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Preface

This book presents an introduction to computational and mathematical techniques for
modeling, simulating , and analyzing the performance of various systems using simulation.
For the most part the system models studied are: stochastic (at least some of the system
state variables are random); dynamic (the time evolution of the system state variables is
important); and discrete-event (significant changes in system state variables are associated
with events that occur at discrete time instances only). Therefore, the book represents
an introduction to what is commonly known as discrete-event simulation. There is also a
significant, but secondary, emphasis on Monte Carlo simulation and its relation to static

stochastic systems. Deterministic systems, static or dynamic, and stochastic dynamic
systems that evolve continuously in time are not considered in any significant way.

Discrete-event simulation is a multi-disciplinary activity studied and applied by stu-
dents of applied mathematics, computer science, industrial engineering, management sci-
ence, operations research, statistics, and various hybrid versions of these disciplines found
in schools of engineering, business, management, and economics. As it is presented in this
book, discrete-event simulation is a computational science — a mix of theory and experi-
mentation with a computer as the primary piece of laboratory equipment. In other words,
discrete-event simulation is a form of computer-aided model building and problem solving.
The goal is insight, a better understanding of how systems operate and respond to change.

Prerequisites

In terms of formal academic background, we presume the reader has taken the under-
graduate equivalent of the first several courses in a conventional computer science program,
two calculus courses and a course in probability or statistics. In more detail, and in de-
creasing order of importance, these prerequisites are as follows.

Computer Science — readers should be able to program in a contemporary high-level
programming language, for example C, C++, Java, Pascal, or Ada, and have a work-
ing knowledge of algorithm complexity. Because the development of most discrete-event
simulation programs necessarily involves an application of queues and event lists, some
familiarity with dynamic data structures is prerequisite, as is the ability to program in a
language that naturally supports such things. By design, the computer science prerequisite
is strong. We firmly believe that the best way to learn about discrete-event simulation is
by hands-on model building. We consistently advocate a structured approach wherein a
model is constructed at three levels — conceptual, specification, and computational. At
the computational level the model is built as a computer program; we believe that this
construction is best done with a standard and widely available general-purpose high-level
programming language, using already-familiar (editor, compiler, debugger, etc.) tools.*

* The alternative to using a general-purpose high-level programming language is to use
a (proprietary, generally unfamiliar and potentially expensive) special-purpose simulation
language. In some applications this may be a superior alternative, particularly if the
simulation language is already familiar (and paid for); see Chapter 1 and Appendix A for
more discussion of this trade-off.



Calculus — readers should be able to do single-variable differential and integral cal-
culus. Although still relatively strong, the calculus prerequisite is as weak as possible.
That is, for example, we have generally avoided the use of multi-variate calculus; however,
single-variable integration and differentiation is used as appropriate in the discussion of
continuous random variables, for example. In addition, we freely use the analogous, but
more computationally intuitive, discrete mathematics of summation and differencing in the
discussion of discrete random variable. By design, we maintain a balance between contin-
uous and discrete stochastic models, generally using the more easily understood, but less
common, discrete (non-calculus) techniques to provide motivation for the corresponding
continuous (calculus) techniques.

Probability — readers should have a working knowledge of probability including ran-
dom variables, expected values, and conditioning. Some knowledge of statistics is also
desirable, but not necessary. Those statistical tools most useful in discrete-event simula-
tion are developed as needed. Because of the organization of the material, our classroom
experience has been that students with strength in the computer science and calculus pre-
requisites only can use this book to develop a valid intuition about things stochastic. In this
way the reader can learn about discrete-event simulation and, if necessary, also establish
the basis for a later formal study of probability and statistics. That study is important for
serious students of discrete-event simulation because without the appropriate background
a student is unlikely to ever be proficient at modeling and analyzing the performance of
stochastic systems.

Organization and Style

The book has ten chapters, organized into 41 sections. The shortest path through
the text could exclude the 15 optional Sections 2.4, 2.5, 4.4, 5.3, 6.4, 6.5, 7.4, 7.5, 7.6,
8.5, 9.3, and 10.1–10.4. All the 26 remaining core sections are consistent with a 75-minute
classroom lecture and together they define a traditional one-semester, three credit-hour
course.* Generally, the optional sections in the first nine chapters are also consistent with
a 75-minute presentation and so can be used in a classroom setting as supplemental lectures.
Each section in the tenth chapter provides relatively detailed specifications for a variety
of discrete-event simulation projects designed to integrate much of the core material. In
addition, there are seven appendices that provide background or reference material.

In a traditional one-semester, three credit-hour course there may not be time to cover
more than the 26 core sections. In a four credit-hour course there will be time to cover the
core material, some of the optional sections (or appendices) and, if appropriate, structure
the course around the projects in the tenth chapter as a culminating activity. Similarly,
some optional sections can be covered in a three credit-hour course, provided student
background is sufficient to warrant not devoting classroom time to some of the core sections.

* Because of its multi-disciplinary nature, there is not universal agreement on what
constitutes the academic core of discrete-event simulation. It is clear, however, that the
core is large, sufficiently so that we have not attempted to achieve comprehensive coverage.
Instead, the core sections in the first nine chapters provide a self-contained, although
limited, first course in discrete-event simulation.



The book is organized consistent with a dual philosophy: (i) begin to model, simulate,
and analyze simple-but-representative systems as soon as possible; (ii) whenever possible,
encourage the experimental exploration and self-discovery of theoretical results before their
formal presentation. As an example of (i), detailed trace-driven computational models of
a single-server queue and a simple inventory system are developed in Chapter 1, then
used to motivate the need for the random number generator developed in Chapter 2. The
random number generator is used to convert the two trace-driven models into stochastic
models that can be used to study both transient and steady-state system performance in
Chapter 3. Similarly, as an example of (ii), an experimental investigation of sampling
uncertainty and interval estimation is motivated in Chapters 2 and 3. A formal treatment
of this topic is presented in Chapter 8.

We have tried to achieve a writing style that emphasizes concepts and insight without
sacrificing rigor. Generally, formalism and proofs are not emphasized. When appropri-
ate, however, definitions and theorems (most with proofs) are provided, particularly if
their omission could create a sense of ambiguity that might impede a reader’s ability to
understand concepts and develop insights.

Software

Software is an integral part of the book. We provide this software as source code
for several reasons. Because a computer program is the logical product of the three-
level approach to model building we advocate, an introductory discrete-event simulation
book based on this philosophy would be deficient if a representative sampling of such
programs were not presented. Moreover, many important exercises in the book are based
on the idea of extending a system model at the computational level; these exercises are
conditioned on access to the source code. The software consists of many complete discrete-
event programs and a variety of libraries for random number generation, random variate
generation, statistical data analysis, priority queue access, and event list processing.

The software has been translated from it original development in Turbo Pascal to
ANSI C with units converted to C libraries. Although experienced C programmers will
no doubt recognize the Pascal heritage, the result is readable, structured, portable, and
reasonably efficient ANSI C source code.*

Exercises

There are exercises associated with each chapter and some appendices — about 400
in all. They are an important part of the book, designed to reinforce and extend previous
material and encourage computational experimentation. Some exercises are routine, others
are more advanced; the advanced exercises are denoted with an ‘a’ superscript. Some of the
advanced exercises are sufficiently challenging and comprehensive to merit consideration
as (out-of-class) exam questions or projects. Serious readers are encouraged to work a
representative sample of the routine exercises and, time permitting, a large portion of the
advanced exercises.

* All the programs and libraries compile successfully, without warnings, using the GNU
C compiler gcc with the -ansi -Wall switches set. Alternatively, the C++ compiler g++
can be used instead.



Consistent with the computational philosophy of the book, a significant number of
exercises require some computer programming. If required, the amount of programming is
usually small for the routine exercises, less so for the advanced exercises. For some of the
advanced exercises the amount of programming may be significant. In most cases when
programming is required, the reader is aided by access to source code for the programs
and related software tools the book provides.

Our purpose is to give an introductory, intuitive development of algorithms and meth-
ods used in Monte Carlo and discrete-event simulation modeling. More comprehensive
treatments are given in the textbooks referenced throughout the text.
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CHAPTER 1

MODELS

The modeling approach in this book is based on the use of a general-purpose

programming language for model implementation at the computational level. The

alternative approach is to use a special-purpose simulation language; for a survey

of several such languages, see Appendix A.

Sections

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. A Single-Server Queue (program ssq1) . . . . . . . . . . . . . . . 12

1.3. A Simple Inventory System (program sis1) . . . . . . . . . . . . . 26

This chapter presents an introduction to discrete-event simulation, with an emphasis
on model building. The focus in Section 1.1 is on the multiple steps required to construct
a discrete-event simulation model. By design, the discussion in this section is at a high
level of generality, with few details. In contrast, two specific discrete-event system models
are presented in Sections 1.2 and 1.3, with a significant amount of detail. A single-server
queue model is presented in Section 1.2 and a simple inventory system model is presented
in Section 1.3. Both of these models are of fundamental importance because they serve as
a basis for a significant amount of material in later chapters.

Although the material in this chapter also can be found in other modeling and sim-
ulation texts, there is a relatively novel emphasis on model building at the conceptual,
specification and computational levels. Moreover, in Sections 1.2 and 1.3 there is a sig-
nificant amount of notation, terminology, and computational philosophy which extends to
subsequent chapters. For these reasons, this chapter is important to any reader of the
book, even those already familiar with the rudiments of discrete-event simulation.



2 1.1 Introduction

This book is the basis for a first course on discrete-event simulation. That is, the book
provides an introduction to computational and mathematical techniques for modeling, sim-

ulating and analyzing the performance of discrete-event stochastic systems. By definition,
the nature of discrete-event simulation is that one does not actually experiment with or
modify an actual system. Instead, one develops and then works with a discrete-event sim-
ulation model. Consistent with that observation, the emphasis in this first chapter is on
model building.

1.1.1 MODEL CHARACTERIZATION

Briefly, a discrete-event simulation model is both stochastic and dynamic with the
special discrete-event property that the system state variables change value at discrete
times only (see Definition 1.1.1). But what does that mean?

A system model is deterministic or stochastic. A deterministic system model has no
stochastic (random) components. For example, provided the conveyor belt and machine
never fail, a model of a constant velocity conveyor belt feeding parts to a machine with
a constant service time is deterministic. At some level of detail, however, all systems
have some stochastic components; machines fail, people are not robots, service requests
occur at random, etc. An attractive feature of discrete-event simulation is that stochastic
components can be accommodated, usually without a dramatic increase in the complexity
of the system model at the computational level.

A system model is static or dynamic. A static system model is one in which time
is not a significant variable. For example, if three million people play the state lottery
this week, what is the probability that there will be at least one winner? A simulation
program written to answer this question should be based on a static model; when during
the week these three million people place their bets is not significant. If, however, we are
interested in the probability of no winners in the next four weeks, then this model needs
to be dynamic. That is, experience has revealed that each week there are no winners, the
number of players in the following week increases (because the pot grows). When this
happens, a dynamic system model must be used because the probability of at least one
winner will increase as the number of players increases. The passage of time always plays
a significant role in dynamic models.

A dynamic system model is continuous or discrete. Most of the traditional dynamic
systems studied in classical mechanics have state variables that evolve continuously. A
particle moving in a gravitational field, an oscillating pendulum, or a block sliding on an
inclined plane are examples. In each of these cases the motion is characterized by one
or more differential equations which model the continuous time evolution of the system.
In contrast, the kinds of queuing, machine repair and inventory systems studied in this
book are discrete because the state of the system is a piecewise-constant function of time.
For example, the number of jobs in a queuing system is a natural state variable that only
changes value at those discrete times when a job arrives (to be served) or departs (after
being served).
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The characterization of a system model can be summarized by a tree diagram that
starts at the system model root and steps left or right at each of the three levels, as
illustrated in Figure 1.1.1.

system model

deterministic stochastic

static dynamic static dynamic

continuous discrete continuous discrete

Monte Carlo simulation

discrete-event simulation

.........................................................................................................................................................................................................................................

.....................................................................................................................

.....................................................................................................................

.....................................................................................................................

.....................................................................................................................

.....................................................................................................................

.........................................................................................................................................................................................................................................
.....................................................................................................................

.....................................................................................................................
.....................................................................................................................

Figure 1.1.1.

System model

taxonomy.

As summarized by Definition 1.1.1, the system model characterized by the right-most
branch of this tree is of primary interest in this book.

Definition 1.1.1 A discrete-event simulation model is defined by three attributes:

• stochastic — at least some of the system state variables are random;

• dynamic — the time evolution of the system state variables is important;

• discrete-event — significant changes in the system state variables are associated with
events that occur at discrete time instances only.

One of the other five branches of the system model tree is of significant, but secondary,
interest in this book. A Monte Carlo simulation model is stochastic and static — at least
some of the system state variables are random, but the time evolution (if any) of the system
state variables is not important. Accordingly, the issue of whether time flows continuously
or discretely is not relevant.

Because of space constraints, the remaining four branches of the system model tree
are not considered. That is, there is no material about deterministic systems, static or
dynamic, or about stochastic dynamic systems that evolve continuously in time.

1.1.2 MODEL DEVELOPMENT

It is naive to think that the process of developing a discrete-event simulation model
can be reduced to a simple sequential algorithm. As an instructional device, however, it is
useful to consider two algorithms that outline, at a high level, how to develop a discrete-
event simulation model (Algorithm 1.1.1) and then conduct a discrete-event simulation
study (Algorithm 1.1.2).



4 1. Models

Algorithm 1.1.1 If done well, a typical discrete-event simulation model will be devel-
oped consistent with the following six steps. Steps (2) through (6) are typically iterated,
perhaps many times, until a (hopefully) valid computational model, a computer program,
has been developed.

(1) Determine the goals and objectives of the analysis once a system of interest has been
identified. These goals and objectives are often phrased as simple Boolean decisions
(e.g., should an additional queuing network service node be added) or numeric de-
cisions (e.g., how many parallel servers are necessary to provide satisfactory perfor-
mance in a multi-server queuing system). Without specific goals and objectives, the
remaining steps lack meaning.

(2) Build a conceptual model of the system based on (1). What are the state variables, how
are they interrelated and to what extent are they dynamic? How comprehensive should
the model be? Which state variables are important; which have such a negligible effect
that they can be ignored? This is an intellectually challenging but rewarding activity
that should not be avoided just because it is hard to do.

(3) Convert the conceptual model into a specification model. If this step is done well, the
remaining steps are made much easier. If instead this step is done poorly (or not at
all) the remaining steps are probably a waste of time. This step typically involves
collecting and statistically analyzing data to provide the input models that drive the
simulation. In the absence of such data, the input models must be constructed in an
ad hoc manner using stochastic models believed to be representative.

(4) Turn the specification model into a computational model, a computer program. At this
point, a fundamental choice must be made — to use a general-purpose programming
language or a special-purpose simulation language. For some this is a religious issue
not subject to rational debate.

(5) Verify. As with all computer programs, the computational model should be consistent
with the specification model — did we implement the computational model correctly?
This verification step is not the same as the next step.

(6) Validate. Is the computational model consistent with the system being analyzed — did
we build the right model? Because the purpose of simulation is insight, some (including
the authors) would argue that the act of developing the discrete-event simulation
model — steps (2), (3), and (4) — is frequently as important as the tangible product.
However, given the blind faith many people place in any computer generated output
the validity of a discrete-event simulation model is always fundamentally important.
One popular non-statistical, Turing-like technique for model validation is to place
actual system output alongside similarly formatted output from the computational
model. This output is then examined by an expert familiar with the system. Model
validation is indicated if the expert is not able to determine which is the model output
and which is the real thing. Interactive computer graphics (animation) can be very
valuable during the verification and validation steps.
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Example 1.1.1 The following machine shop model helps illustrate the six steps in Algo-
rithm 1.1.1. A new machine shop has 150 identical machines; each operates continuously,
8 hours per day, 250 days per year until failure. Each machine operates independently of
all the others. As machines fail they are repaired, in the order in which they fail, by a
service technician. As soon as a failed machine is repaired, it is put back into operation.
Each machine produces a net income of $20 per hour of operation. All service technicians
are hired at once, for 2 years, at the beginning of the 2-year period with an annual salary
expense of $52,000. Because of vacations, each service technician only works 230 8-hour
days per year. By agreement, vacations are coordinated to maximize the number of service
technicians on duty each day. How many service technicians should be hired?

(1) The objective seems clear — to find the number of service technicians for which the
profit is maximized. One extreme solution is to hire one technician for each machine;
this produces a huge service technician overhead but maximizes income by minimizing
the amount of machine down-time. The other extreme solution is to hire just one
technician; this minimizes overhead at the potential expense of large down-times and
associated loss of income. In this case, neither extreme is close to optimal for typical
failure and repair times.

(2) A reasonable conceptual model for this system can be expressed in terms of the state
of each machine (failed or operational) and each service technician (busy or idle).
These state variables provide a high-level description of the system at any time.

(3) To develop a specification model, more information is needed. Machine failures are
random events; what is known (or can be assumed) about the time between failures for
these machines? The time to repair a machine is also random; what, for example, is
the distribution of the repair time? In addition, to develop the associated specification
model some systematic method must be devised to simulate the time evolution of the
system state variables.

(4) The computational model will likely include a simulation clock data structure to keep
track of the current simulation time, a queue of failed machines and a queue of available
service technicians. Also, to characterize the performance of the system, there will be
statistics gathering data structures and associated procedures. The primary statistic
of interest here is the total profit associated with the machine shop.

(5) The computational model must be verified, usually by extensive testing. Verification is
a software engineering activity made easier if the model is developed in a contemporary
programming environment.

(6) The validation step is used to see if the verified computational model is a reasonable
approximation of the machine shop. If the machine shop is already operational, the
basis for comparison is clear. If, however, the machine shop is not yet operational,
validation is based primarily on consistency checks. If the number of technicians is
increased, does the time-averaged number of failed machines go down; if the average
service time is increased, does the time-averaged number of failed machines go up?



6 1. Models

System Diagrams

Particularly at the conceptual level, the process of model development can be facili-
tated by drawing system diagrams. Indeed, when asked to explain a system, our experience
is that, instinctively, many people begin by drawing a system diagram. For example, con-
sider this system diagram of the machine shop model in Example 1.1.1.
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Figure 1.1.2.

Machine shop

system diagram.

The box at the top of Figure 1.1.2 represents the pool of machines. The composite
object at the bottom of the figure represents the four service technicians and an associated
single queue. Operational machines are denoted with a ◦ and broken machines with a •.
Conceptually, as machines break they change their state from operational (◦) to broken
(•) and move along the arc on the left from the box at the top of the figure to the queue
at the bottom of the figure. From the queue, a broken machine begins to be repaired as
a service technician becomes available. As each broken machine is repaired, its state is
changed to operational and the machine moves along the arc on the right, back to the pool
of operational machines.*

As time evolves, there is a continual counter-clockwise circulation of machines from
the pool at the top of Figure 1.1.2 to the service technicians at the bottom of the figure,
and then back again. At the “snapshot” instant illustrated, there are six broken machines;
four of these are being repaired and the other two are waiting in the queue for a service
technician to become available.

* The movement of the machines to the servers is conceptual, as is the queue. In
practice, the servers would move to the machines and there would not be a physical queue
of broken machines.
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In general, the application of Algorithm 1.1.1 should be guided by the following ob-
servations.

• Throughout the development process, the operative principle should always be to
make every discrete-event simulation model as simple as possible, but never simpler.
The goal is to capture only the relevant characteristics of the system. The dual
temptations of (1) ignoring relevant characteristics or (2) including characteristics
that are extraneous to the goals of the model, should be avoided.

• The actual development of a complex discrete-event simulation model will not be
as sequential as Algorithm 1.1.1 suggests, particularly if the development is a team
activity in which case some steps will surely be worked in parallel. The different
characteristics of each step should always be kept clearly in mind avoiding, for example,
the natural temptation to merge steps (5) and (6).

• There is an unfortunate tendency on the part of many to largely skip over steps (1), (2),
and (3), jumping rapidly to step (4). Skipping these first three steps is an approach to
discrete-event simulation virtually certain to produce large, inefficient, unstructured
computational models that cannot be validated. Discrete-event simulation models
should not be developed by those who like to think a little and then program a lot.

1.1.3 SIMULATION STUDIES

Algorithm 1.1.2 Following the successful application of Algorithm 1.1.1, use of the
resulting computational model (computer program) involves the following steps.

(7) Design the simulation experiments. This is not as easy as it may seem. If there are a
significant number of system parameters, each with several possible values of interest,
then the combinatoric possibilities to be studied make this step a real challenge.

(8) Make production runs. The runs should be made systematically, with the value of
all initial conditions and input parameters recorded along with the corresponding
statistical output.

(9) Analyze the simulation results. The analysis of the simulation output is statistical
in nature because discrete-event simulation models have stochastic (random) com-
ponents. The most common statistical analysis tools (means, standard deviations,
percentiles, histograms, correlations, etc.) will be developed in later chapters.

(10) Make decisions. Hopefully the results of step (9) will lead to decisions that result in
actions taken. If so, the extent to which the computational model correctly predicted
the outcome of these actions is always of great interest, particularly if the model is to
be further refined in the future.

(11) Document the results. If you really did gain insight, summarize it in terms of specific
observations and conjectures. If not, why did you fail? Good documentation facilitates
the development (or avoidance) of subsequent similar system models.
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Example 1.1.2 As a continuation of Example 1.1.1, consider the application of Algo-
rithm 1.1.2 to a verified and validated machine shop model.

(7) Since the objective of the model is to determine the optimal number of service tech-
nicians to hire to maximize profit, the number of technicians is the primary system
parameter to be varied from one simulation run to the next. Other issues also con-
tribute to the design of the simulation experiments. What are the initial conditions
for the model (e.g., are all machines initially operational)? For a fixed number of ser-
vice technicians, how many replications are required to reduce the natural sampling
variability in the output statistics to an acceptable level?

(8) If many production runs are made, management of the output results becomes an issue.
A discrete-event simulation study can produce a lot of output files which consume large
amounts of disk space if not properly managed. Avoid the temptation to archive “raw
data” (e.g., a detailed time history of simulated machine failures). If this kind of data
is needed in the future, it can always be reproduced. Indeed, the ability to reproduce
previous results exactly is an important feature which distinguishes discrete-event
simulation from other, more traditional, experimental sciences.

(9) The statistical analysis of simulation output often is more difficult than classical sta-
tistical analysis, where observations are assumed to be independent. In particular,
time-sequenced simulation-generated observations are often correlated with one an-
other, making the analysis of such data a challenge. If the current number of failed
machines is observed each hour, for example, consecutive observations will be found
to be significantly positively correlated. A statistical analysis of these observations
based on the (false) assumption of independence may produce erroneous conclusions.

(10) For this example, a graphical display of profit versus the number of service technicians
yields both the optimal number of technicians and a measure of how sensitive the profit
is to variations about this optimal number. In this way a policy decision can be made.
Provided this decision does not violate any external constraints, such as labor union
rules, the policy should be implemented.

(11) Documentation of the machine shop model would include a system diagram, expla-
nations of assumptions made about machine failure rates and service repair rates, a
description of the specification model, software for the computational model, tables
and figures of output, and a description of the output analysis.

Insight

An important benefit of developing and using a discrete-event simulation model is that
valuable insight is acquired. As conceptual models are formulated, computational models
developed and output data analyzed, subtle system features and component interactions
may be discovered that would not have been noticed otherwise. The systematic application
of Algorithms 1.1.1 and 1.1.2 can result in better actions taken due to insight gained by
an increased understanding of how the system operates.
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1.1.4 PROGRAMMING LANGUAGES

There is a continuing debate in discrete-event simulation — to use a general-purpose
programming language or a (special-purpose) simulation programming language. For ex-
ample, two standard discrete-event simulation textbooks provide the following contradic-
tory advice. Bratley, Fox, and Schrage (1987, page 219) state “. . . for any important
large-scale real application we would write the programs in a standard general-purpose
language, and avoid all the simulation languages we know.” In contrast, Law and Kelton
(2000, page 204) state “. . . we believe, in general, that a modeler would be prudent to give
serious consideration to the use of a simulation package.”

General-purpose languages are more flexible and familiar; simulation languages allow
modelers to build computational models quickly. There is no easy way to resolve this
debate in general. However, for the specific purpose of this book — learning the principles
and techniques of discrete-event simulation — the debate is easier to resolve. Learning
discrete-event simulation methodology is facilitated by using a familiar, general-purpose
programming language, a philosophy that has dictated the style and content of this book.

General-Purpose Languages

Because discrete-event simulation is a specific instance of scientific computing, any
general-purpose programming language suitable for scientific computing is similarly suit-
able for discrete-event simulation. Therefore, a history of the use of general-purpose pro-
gramming languages in discrete-event simulation is really a history of general-purpose
programming languages in scientific computing. Although this history is extensive, we will
try to summarized it in a few paragraphs.

For many years FORTRAN was the primary general-purpose programming language
used in discrete-event simulation. In retrospect, this was natural and appropriate because
there was no well-accepted alternative. By the early 80’s things began to change dramati-
cally. Several general-purpose programming languages created in the 70’s, primarily C and
Pascal, were as good as or superior to FORTRAN in most respects and they began to gain
acceptance in many applications, including discrete-event simulation, where FORTRAN
was once dominant. Because of its structure and relative simplicity, Pascal became the de
facto first programming language in many computer science departments; because of its
flexibility and power, the use of C became common among professional programmers.

Personal computers became popular in the early 80’s, followed soon thereafter by
increasingly more powerful workstations. Concurrent with this development, it became
clear that networked workstations or, to a lesser extent, stand-alone personal comput-
ers, were ideal discrete-event simulation engines. The popularity of workstation networks
then helped to guarantee that C would become the general-purpose language of choice
for discrete-event simulation. That is, the usual workstation network was Unix-based, an
environment in which C was the natural general-purpose programming language of choice.
The use of C in discrete-event simulation became wide-spread by the early 90’s when C
became standardized and C++, an object-oriented extension of C, gained popularity.
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In addition to C, C++, FORTRAN, and Pascal, other general-purpose programming
languages are occasionally used in discrete-event simulation. Of these, Ada, Java, and
(modern, compiled) BASIC are probably the most common. This diversity is not surprising
because every general-purpose programming language has its advocates, some quite vocal,
and no matter what the language there is likely to be an advocate to argue that it is ideal
for discrete-event simulation. We leave that debate for another forum, however, confident
that our use of ANSI C in this book is appropriate.

Simulation Languages

Simulation languages have built-in features that provide many of the tools needed
to write a discrete-event simulation program. Because of this, simulation languages sup-
port rapid prototyping and have the potential to decrease programming time significantly.
Moreover, animation is a particularly important feature now built into most of these sim-
ulation languages. This is important because animation can increase the acceptance of
discrete-event simulation as a legitimate problem-solving technique. By using animation,
dynamic graphical images can be created that enhance verification, validation, and the
development of insight. The most popular discrete-event simulation languages historically
are GPSS, SIMAN, SLAM II, and SIMSCRIPT II.5. Because of our emphasis in the book
on the use of general-purpose languages, any additional discussion of simulation languages
is deferred to Appendix A.

Because it is not discussed in Appendix A, for historical reasons it is appropriate here
to mention the simulation language Simula. This language was developed in the 60’s as an
object-oriented ALGOL extension. Despite its object orientation and several other novel
(for the time) features, it never achieved much popularity, except in Europe. Still, like
other premature-but-good ideas, the impact of Simula has proven to be profound, including
serving as the inspiration for the creation of C++.

1.1.5 ORGANIZATION AND TERMINOLOGY

We conclude this first section with some brief comments about the organization of the
book and the sometimes ambiguous use of the words simulation, simulate, and model.

Organization

The material in this book could have been organized in several ways. Perhaps the
most natural sequence would be to follow, in order, the steps in Algorithms 1.1.1 and
1.1.2, devoting a chapter to each step. However, that sequence is not followed. Instead, the
material is organized in a manner consistent with the experimental nature of discrete-event
simulation. That is, we begin to model, simulate, and analyze simple-but-representative
systems as soon as possible (indeed, in the next section). Whenever possible, new concepts
are first introduced in an informal way that encourages experimental self-discovery, with
a more formal treatment of the concepts deferred to later chapters. This organization has
proven to be successful in the classroom.
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Terminology

The words “model” and “simulation” or “simulate” are commonly used interchange-
ably in the discrete-event simulation literature, both as a noun and as a verb. For pedagog-
ical reasons this word interchangeability is unfortunate because, as indicated previously,
a “model” (the noun) exists at three levels of abstraction: conceptual, specification, and
computational. At the computational level, a system model is a computer program; this
computer program is what most people mean when they talk about a system simulation.
In this context a simulation and a computational system model are equivalent. It is uncom-
mon, however, to use the noun “simulation” as a synonym for the system model at either
the conceptual or specification level. Similarly, “to model” (the verb) implies activity at
three levels, but “to simulate” is usually a computational activity only.

When appropriate we will try to be careful with these words, generally using simulation
or simulate in reference to a computational activity only. This is consistent with common
usage of the word simulation to characterize not only the computational model (computer
program) but also the computational process of using the discrete-event simulation model
to generate output statistical data and thereby analyze system performance. In those cases
when there is no real need to be fussy about terminology, we will yield to tradition and use
the word simulation or simulate even though the word model may be more appropriate.

1.1.6 EXERCISES

Exercise 1.1.1 There are six leaf nodes in the system model tree in Figure 1.1.1. For
each leaf node, describe a specific example of a corresponding physical system.

Exercise 1.1.2 The distinction between model verification and model validation is not
always clear in practice. Generally, in the sense of Algorithm 1.1.1, the ultimate objective
is a valid discrete-event simulation model. If you were told that “this discrete-event sim-
ulation model had been verified but it is not known if the model is valid” how would you
interpret that statement?

Exercise 1.1.3 The state of a system is important, but difficult to define in a general
context. (a) Locate at least five contemporary textbooks that discuss system modeling
and, for each, research and comment on the extent to which the technical term “state”
is defined. If possible, avoid example-based definitions or definitions based on a specific
system. (b) How would you define the state of a system?

Exercise 1.1.4 (a) Use an Internet search engine to identify at least 10 different simula-
tion languages that support discrete-event simulation. (Note that the ‘-’ in discrete-event
is not a universal convention.) Provide a URL, phone number, or mailing address for each
and, if it is a commercial product, a price. (b) If you tried multiple search engines, which
produced the most meaningful hits?
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In this section we will construct a trace-driven discrete-event simulation model (i.e., a
model driven by external data) of a single-server service node. We begin the construction
at the conceptual level.

1.2.1 CONCEPTUAL MODEL

Definition 1.2.1 A single-server service node consists of a server plus its queue.*
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Figure 1.2.1.

Single-server

service node

system diagram.

Jobs (customers) arrive at the service node at random points in time seeking service. When
service is provided, the service time involved is also random. At the completion of service,
jobs depart. The service node operates as follows: as each (new) job arrives, if the server
is busy then the job enters the queue, else the job immediately enters service; as each (old)
job departs, if the queue is empty then the server becomes idle, else a job is selected from
the queue to immediately enter service. At any time, the state of the server will either be
busy or idle and the state of the queue will be either empty or not empty. If the server is
idle, the queue must be empty; if the queue is not empty then the server must be busy.

Example 1.2.1 If there is just one service technician, the machine shop model presented
in Examples 1.1.1 and 1.1.2 is a single-server service node model. That is, the “jobs” are
the machines to be repaired and the “server” is the service technician. (In this case,
whether the jobs move to the server or the server moves to the jobs is not an important
distinction because the repair time is the primary source of delay.)

Definition 1.2.2 Control of the queue is determined by the queue discipline — the
algorithm used when a job is selected from the queue to enter service. The standard
algorithms are:

• FIFO — first in, first out (the traditional computer science queue data structure);

• LIFO — last in, first out (the traditional computer science stack data structure);

• SIRO — service in random order;

• Priority — typically, shortest job first (SJF) or equivalently, in job-shop terminology,
shortest processing time (SPT).

The maximum possible number of jobs in the service node is the capacity. The capacity
can be either finite or infinite. If the capacity is finite then jobs that arrive and find the
service node full will be rejected (unable to enter the service node).

* The term “service node” is used in anticipation of extending this model, in later
chapters, to a network of service nodes.
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Certainly the most common queue discipline is FIFO (also known as FCFS — first
come, first served). If the queue discipline is FIFO, then the order of arrival to the service
node and the order of departure from the service node are the same; there is no passing.
In particular, upon arrival a job will enter the queue if and only if the previous job has
not yet departed the service node. This is an important observation that can be used
to simplify the simulation of a FIFO single-server service node. If the queue discipline is
not FIFO then, for at least some jobs, the order of departure will differ from the order of
arrival. In this book, the default assumptions are that the queue discipline is FIFO and
the service node capacity is infinite, unless otherwise specified. Discrete-event simulation
allows these assumptions to be easily altered for more realistic modeling.

There are two important additional default assumptions implicit in Definition 1.2.1.
First, service is non-preemptive — once initiated, service on a job will be continued until
completion. That is, a job in service cannot be preempted by another job arriving later.
Preemption is commonly used with priority queue disciplines to prevent a job with a large
service time requirement from producing excessive delays for small jobs arriving soon after
service on the large job has begun. Second, service is conservative — the server will never
remain idle if there is one or more jobs in the service node. If the queue discipline is not
FIFO and if the next arrival time is known in advance then, even though one or more
jobs are in the service node, it may be desirable for a non-conservative server to remain
idle until the next job arrives. This is particularly true in non-preemptive job scheduling
applications if a job in the service node has a much larger service requirement than the
next job scheduled to arrive.

1.2.2 SPECIFICATION MODEL

The following variables, illustrated in Figure 1.2.2, provide the basis for moving from
a conceptual model to a specification model. At their arrival to the service node, jobs are
indexed by i = 1, 2, 3, . . . For each job there are six associated time variables.

• The arrival time of job i is ai.

• The delay of job i in the queue is di ≥ 0.

• The time that job i begins service is bi = ai + di.

• The service time of job i is si > 0.

• The wait of job i in the service node (queue and service) is wi = di + si.

• The time that job i completes service (the departure time) is ci = ai + wi.

ai bi ci

←−−−−−−−−−− wi −−−−−−−−−−→
←−−−−− di −−−−−→←−− si −−→

time

Figure 1.2.2.

Six variables

associated

with job i.
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The term “wait” can be confusing; wi represents the total time job i spends in the
service node, not just the time spent in the queue. The time spent in the queue (if any) is
the delay di. In many computer science applications the term response time is used. To
some authors this means wait , to others it means delay. Because of this ambiguity, we will
generally avoid using the term “response time” choosing instead to consistently use the
terminology specified previously. Similarly, we avoid the use of the common terms sojourn

time, flow time, or system time, in place of wait.

Arrivals

As a convention, if the service node capacity is finite then rejected jobs (if any) are
not indexed. That is, although rejected jobs may be counted for statistical purposes (for
example, to estimate the probability of rejection), the index i = 1, 2, 3, . . . is restricted to
only those jobs that actually enter the service node.

Rather than specify the arrival times a1, a2, . . . explicitly, in some discrete-event
simulation applications it is preferable to specify the interarrival times r1, r2, . . ., thereby
defining the arrival times implicitly, as shown in Figure 1.2.3 and defined in Definition 1.2.3.

ai−2 ai−1 ai ai+1

←− ri −→

time (t)

Figure 1.2.3.

Relationship

between

arrival and

interarrival

times.

Definition 1.2.3 The interarrival time between jobs i− 1 and i is ri = ai − ai−1. That
is, ai = ai−1 + ri and so (by induction), with a0 = 0 the arrival times are*

ai = r1 + r2 + · · ·+ ri i = 1, 2, 3, . . .

(We assume that ri > 0 for all i, thereby eliminating the possibility of bulk arrivals. That
is, jobs are assumed to arrive one at a time.)

Algorithmic Question

The following algorithmic question is fundamental. Given a knowledge of the arrival
times a1, a2, . . . (or, equivalently, the interarrival times r1, r2, . . .), the associated service
times s1, s2, . . ., and the queue discipline, how can the delay times d1, d2, . . . be computed?

As discussed in later chapters, for some queue disciplines this question is more difficult
to answer than for others. If the queue discipline is FIFO, however, then the answer is
particularly simple. That is, as demonstrated next, if the queue discipline is FIFO then
there is a simple algorithm for computing di (as well as bi, wi, and ci) for all i.

* All arrival times are referenced to the virtual arrival time a0. Unless explicitly stated
otherwise, in this chapter and elsewhere we assume that elapsed time is measured in such
a way that a0 = 0.
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Two Cases

If the queue discipline is FIFO then the delay di of job i = 1, 2, 3, . . . is determined by
when the job’s arrival time ai occurs relative to the departure time ci−1 of the previous
job. There are two cases to consider.

• Case I. If ai < ci−1, i.e., if job i arrives before job i− 1 departs then, as illustrated,
job i will experience a delay of di = ci−1 − ai. Job i − 1’s history is displayed above
the time axis and job i’s history is displayed below the time axis in Figures 1.2.4 and
1.2.5.

ai bi ci

←−− ri −−→←−−−−− di −−−−−→←−− si −−→| | | |

t

ai−1 bi−1
ci−1

←−−−− di−1 −−−−→←−− si−1 −−→| | |
Figure 1.2.4.

Job i arrives

before job

i− 1 departs.

• Case II. If instead ai ≥ ci−1, i.e., if job i arrives after (or just as) job i − 1 departs
then, as illustrated, job i will experience no delay so that di = 0.

ai ci

←−−−−−−−−−−−−−− ri −−−−−−−−−−−−−−→←−− si −−→| | |

t

ai−1 bi−1
ci−1

←−−−− di−1 −−−−→←−− si−1 −−→| | |
Figure 1.2.5.

Job i arrives

after job

i− 1 departs.

Algorithm

The key point in algorithm development is that if the queue discipline is FIFO then the
truth of the expression ai < ci−1 determines whether or not job i will experience a delay.
Based on this logic, the computation of the delays is summarized by Algorithm 1.2.1. This
algorithm, like all those presented in this book, is written in a C-like pseudo-code that is
easily translated into other general-purpose programming languages.

Although it is not an explicit part of Algorithm 1.2.1, an equation can be written for
the delay that depends on the interarrival and service times only. That is

ci−1 − ai = (ai−1 + di−1 + si−1)− ai

= di−1 + si−1 − (ai − ai−1)

= di−1 + si−1 − ri.

If d0 = s0 = 0 then d1, d2, d3, . . . are defined by the nonlinear equation

di = max{ 0, di−1 + si−1 − ri } i = 1, 2, 3, . . .

This equation is commonly used in theoretical studies to analyze the stochastic behavior
of a FIFO service node.
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Algorithm 1.2.1 If the arrival times a1, a2, . . . and service times s1, s2, . . . are known
and if the server is initially idle, then this algorithm computes the delays d1, d2, . . . in a
single-server FIFO service node with infinite capacity.

c0 = 0.0; /* assumes that a0 = 0.0 */

i = 0;

while ( more jobs to process ) {

i++;

ai = GetArrival();

if (ai < ci−1)

di = ci−1 - ai; /* calculate delay for job i */

else

di = 0.0; /* job i has no delay */

si = GetService();

ci = ai + di + si; /* calculate departure time for job i */

}

n = i;

return d1, d2, . . ., dn;

The GetArrival and GetService procedures read the next arrival and service time from a
file. (An algorithm that does not rely on the FIFO assumption is presented in Chapter 5.)

Example 1.2.2 If Algorithm 1.2.1 is used to process n = 10 jobs according to the
input indicated below (for simplicity the ai’s and si’s are integer time units, e.g., seconds,
minutes, etc.) then the output is the sequence of delays are calculated as:

i : 1 2 3 4 5 6 7 8 9 10
read from file ai : 15 47 71 111 123 152 166 226 310 320
from algorithm di : 0 11 23 17 35 44 70 41 0 26
read from file si : 43 36 34 30 38 40 31 29 36 30

For future reference, note that the last job arrived at time an = 320 and departed at time
cn = an + dn + sn = 320 + 26 + 30 = 376.

As discussed in more detail later in this section, it is a straight-forward programming
exercise to produce a computational model of a single-server FIFO service node with infinite
capacity using Algorithm 1.2.1. The ANSI C program ssq1 is an example. Three features
of this program are noteworthy. (i) Because of its reliance on previously recorded arrival
and service time data read from an external file, ssq1 is a so-called trace-driven discrete-
event simulation program. (ii) Because the queue discipline is FIFO, program ssq1 does
not need to use a queue data structure. (iii) Rather than produce a sequence of delays
as output, program ssq1 computes four averages instead: the average interarrival time,
service time, delay, and wait. These four job-averaged statistics and three corresponding
time-averaged statistics are discussed next.
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1.2.3 OUTPUT STATISTICS

One basic issue that must be resolved when constructing a discrete-event simulation
model is the question of what statistics should be generated. The purpose of simulation is
insight and we gain insight about the performance of a system by looking at meaningful
statistics. Of course, a decision about what statistics are most meaningful is dependent
upon your perspective. For example, from a job’s (customer’s) perspective the most im-
portant statistic might be the average delay or the 95th percentile of the delay — in either
case, the smaller the better. On the other hand, particularly if the server is an expensive
resource whose justification is based on an anticipated heavy workload, from management’s
perspective the server’s utilization (the proportion of busy time, see Definition 1.2.7) is
most important — the larger the better.

Job-Averaged Statistics

Definition 1.2.4 For the first n jobs, the average interarrival time and the average

service time are, respectively*

r̄ =
1

n

n
∑

i=1

ri =
an

n
and s̄ =

1

n

n
∑

i=1

si.

The reciprocal of the average interarrival time, 1/r̄, is the arrival rate; the reciprocal of
the average service time, 1/s̄, is the service rate.

Example 1.2.3 For the n = 10 jobs in Example 1.2.2, r̄ = an/n = 320/10 = 32.0 and
s̄ = 34.7. If time in this example is measured in seconds, then the average interarrival
time is 32.0 seconds per job and the average service time is 34.7 seconds per job. The
corresponding arrival rate is 1/r̄ = 1/32.0 ∼= 0.031 jobs per second; the service rate is
1/s̄ = 1/34.7 ∼= 0.029 jobs per second. In this particular example, the server is not quite
able to process jobs at the rate they arrive on average.

Definition 1.2.5 For the first n jobs, the average delay in the queue and the average

wait in the service node are, respectively

d̄ =
1

n

n
∑

i=1

di and w̄ =
1

n

n
∑

i=1

wi.

Recall that wi = di + si for all i. Therefore, the average time spent in the service
node will be the sum of the average times spent in the queue and in service. That is

w̄ =
1

n

n
∑

i=1

wi =
1

n

n
∑

i=1

(di + si) =
1

n

n
∑

i=1

di +
1

n

n
∑

i=1

si = d̄+ s̄.

The point here is that it is sufficient to compute any two of the statistics w̄, d̄, s̄. The
third statistic can then be computed from the other two, if appropriate.

* The equation r̄ = an/n follows from Definition 1.2.3 and the assumption that a0 = 0.
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Example 1.2.4 For the data in Example 1.2.2, d̄ = 26.7 and s̄ = 34.7. Therefore, the
average wait in the node is w̄ = 26.7 + 34.7 = 61.4. (See also Example 1.2.6.)

In subsequent chapters we will construct increasingly more complex discrete-event
simulation models. Because it is never easy to verify and validate a complex model, it is
desirable to be able to apply as many consistency checks to the output data as possible.
For example, although program ssq1 is certainly not a complex discrete-event simulation
model, it is desirable in this program to accumulate w̄, d̄, and s̄ independently. Then, from
the program output the equation w̄ = d̄+ s̄ can be used as a consistency check.

Time-Averaged Statistics

The three statistics w̄, d̄ and s̄ are job-averaged statistics — the data is averaged over
all jobs. Job averages are easy to understand; they are just traditional arithmetic averages.
We now turn to another type of statistic that is equally meaningful, time-averaged. Time-
averaged statistics may be less familiar, however, because they are defined by an area
under a curve, i.e., by integration instead of summation.

Time-averaged statistics for a single-server service node are defined in terms of three
additional variables. At any time t > 0:

• l(t) = 0, 1, 2, . . . is the number of jobs in the service node at time t;

• q(t) = 0, 1, 2, . . . is the number of jobs in the queue at time t;

• x(t) = 0, 1 is the number of jobs in service at time t.

By definition, l(t) = q(t) + x(t) for any t > 0.

The three functions l(·), q(·), and x(·) are piecewise constant. That is, for example,
a display of l(t) versus t will consist of a sequence of constant segments with unit height
step discontinuities as illustrated in Figure 1.2.6. (This figure corresponds to the data in
Example 1.2.2. The dashed line represents the time-averaged number in the node — see
Example 1.2.6.)
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Figure 1.2.6.

Number of

jobs in the

service

node.

The step discontinuities are positive at the arrival times and negative at the departure
times. The corresponding figures for q(·) and x(·) can be deduced from the fact that
q(t) = 0 and x(t) = 0 if and only if l(t) = 0, otherwise q(t) = l(t)− 1 and x(t) = 1.
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Definition 1.2.6 Over the time interval (0, τ) the time-averaged number in the node is

l̄ =
1

τ

∫ τ

0

l(t) dt.

Similarly, the time-averaged number in the queue and the time-averaged number in service

are

q̄ =
1

τ

∫ τ

0

q(t) dt and x̄ =
1

τ

∫ τ

0

x(t) dt.

Because l(t) = q(t) + x(t) for all t > 0 it follows that

l̄ = q̄ + x̄.

Example 1.2.5 For the data in Example 1.2.2 (with τ = c10 = 376) the three time-
averaged statistics are l̄ = 1.633, q̄ = 0.710, and x̄ = 0.923. These values can be determined
by calculating the areas associated with the integrals given in Definition 1.2.6 or by ex-
ploiting a mathematical relationship between the job-averaged statistics w̄, d̄, and s̄ and
the time-averaged statistics l̄, q̄, and x̄, as illustrated subsequently in Example 1.2.6.

The equation l̄ = q̄ + x̄ is the time-averaged analog of the job-averaged equation
w̄ = d̄ + s̄. As we will see in later chapters, time-averaged statistics have the following
important characterizations.

• If we were to observe (sample) the number in the service node, for example, at many
different times chosen at random between 0 and τ and then calculate the arithmetic
average of all these observations, the result should be close to l̄.

• Similarly, the arithmetic average of many random observations of the number in the
queue should be close to q̄ and the arithmetic average of many random observations
of the number in service (0 or 1) should be close to x̄.

• x̄ must lie in the closed interval [0, 1].

Definition 1.2.7 The time-averaged number in service x̄ is also known as the server
utilization. The reason for this terminology is that x̄ represents the proportion of time
that the server is busy.

Equivalently, if one particular time is picked at random between 0 and τ then x̄ is
the probability that the server is busy at that time. If x̄ is close to 1.0 then the server is
busy most of the time and correspondingly large values of l̄ and q̄ will be produced. On
the other hand, if the utilization is close to 0.0 then the server is idle most of the time and
the values of l̄ and q̄ will be small. The case study, presented later, is an illustration.

Little’s Equations

One important issue remains — how are job averages and time averages related?
Specifically, how are w̄, d̄, and s̄ related to l̄, q̄, and x̄?
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In the particular case of an infinite capacity FIFO service node that begins and ends in
an idle state, the following theorem provides an answer to this question. See Exercise 1.2.7
for a generalization of this theorem to any queue discipline.

Theorem 1.2.1 (Little, 1961) If the queue discipline is FIFO, the service node capacity
is infinite, and the server is idle both initially (at t = 0) and immediately after the departure
of the nth job (at t = cn) then
∫ cn

0

l(t) dt =

n
∑

i=1

wi and

∫ cn

0

q(t) dt =

n
∑

i=1

di and

∫ cn

0

x(t) dt =

n
∑

i=1

si.

Proof For each job i = 1, 2, . . ., define an indicator function ψi(t) that is 1 when the i
th

job is in the service node and is 0 otherwise

ψi(t) =
{

1 ai < t < ci
0 otherwise.

Then

l(t) =
n
∑

i=1

ψi(t) 0 < t < cn

and so
∫ cn

0

l(t) dt =

∫ cn

0

n
∑

i=1

ψi(t) dt =
n
∑

i=1

∫ cn

0

ψi(t) dt =
n
∑

i=1

(ci − ai) =
n
∑

i=1

wi.

The other two equations can be derived in a similar way.
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Example 1.2.6 Figure 1.2.7 illustrates Little’s first equation for the data in Exam-
ple 1.2.2. The top step function denotes the cumulative number of arrivals to the service
node and the bottom step function denotes the cumulative number of departures from the
service node. The vertical distance between the two step-functions at any time t is l(t),
which was plotted in Figure 1.2.6. The wait times are indicated as the horizontal distances
between the risers. In this figure, it is easy to see that

∫

376

0

l(t) dt =
10
∑

i=1

wi = 614.

Little’s equations provide a valuable link between the job-averaged statistics w̄, d̄, and s̄

and the time-averaged statistics l̄, q̄, and x̄. In Definition 1.2.6 let τ = cn. Then from
Theorem 1.2.1 we have

cn l̄ =

∫ cn

0

l(t) dt =

n
∑

i=1

wi = nw̄

so that l̄ = (n/cn)w̄. Similarly, cnq̄ = nd̄ and cnx̄ = ns̄. Therefore

l̄ =

(

n

cn

)

w̄ and q̄ =

(

n

cn

)

d̄ and x̄ =

(

n

cn

)

s̄

which explains how w̄, d̄, and s̄ are related to l̄, q̄, and x̄. These important equations relate
to steady-state statistics and Little’s equations — for more detail, see Chapter 8.

Example 1.2.7 For the data in Example 1.2.2 the last (n = 10) job departs at cn = 376.
From Example 1.2.4, w̄ = 61.4 and therefore l̄ = (10/376) 61.4 ∼= 1.633. Similarly, the
time-averaged number in the queue and in service are q̄ = (10/376) 26.7 ∼= 0.710 and
x̄ = (10/376) 34.7 ∼= 0.923.

1.2.4 COMPUTATIONAL MODEL

As discussed previously, by using Algorithm 1.2.1 in conjunction with some statistics
gathering logic it is a straight-forward programming exercise to produce a computational
model of a single-server FIFO service node with infinite capacity. The ANSI C program
ssq1 is an example. Like all of the software presented in this book, this program is designed
with readability and extendibility considerations.

Program ssq1

Program ssq1 reads arrival and service time data from the disk file ssq1.dat. This
is a text file that consists of arrival times a1, a2, . . . , an and service times s1, s2, . . . , sn for
n = 1000 jobs in the format

a1 s1

a2 s2

...
...

an sn
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In Chapter 3 we will free this trace-driven program from its reliance on external data by
using randomly generated arrival and service times instead.

Because the queue discipline is FIFO, program ssq1 does not need to use a queue
data structure. In Chapter 5 we will consider non-FIFO queue disciplines and some cor-
responding priority queue data structures that can be used at the computational model
level.

Program ssq1 computes the average interarrival time r̄, the average service time s̄,
the average delay d̄, and the average wait w̄. In Exercise 1.2.2 you are asked to modify
this program so that it will also compute the time-averaged statistics l̄, q̄, and x̄.

Example 1.2.8 For the datafile ssq1.dat the observed arrival rate 1/r̄ ∼= 0.10 is signif-
icantly less than the observed service rate 1/s̄ ∼= 0.14. If you modify ssq1 to compute l̄,
q̄, and x̄ you will find that 1− x̄ ∼= 0.28, and so the server is idle 28% of the time. Despite
this significant idle time, enough jobs are delayed so that the average number in the queue
is nearly 2.0.

Traffic Intensity

The ratio of the arrival rate to the service rate is commonly called the traffic intensity.
From the equations in Definition 1.2.4 and Theorem 1.2.1 it follows that the observed traffic
intensity is the ratio of the observed arrival rate to the observed service rate

1/r̄

1/s̄
=

s̄

r̄
=

s̄

an/n
=

(

cn

an

)

x̄.

Therefore, provided the ratio cn/an is close to 1.0, the traffic intensity and utilization will
be nearly equal. In particular, if the traffic intensity is less than 1.0 and n is large, then
it is reasonable to expect that the ratio cn/an = 1 + wn/an will be close to 1.0. We will
return to this question in later chapters. For now, we close with an example illustrating
how relatively sensitive the service node statistics l̄, q̄, w̄, and d̄ are to changes in the
utilization and how nonlinear this dependence can be.

Case Study

Sven & Larry’s Ice Cream Shoppe is a thriving business that can be modeled as
a single-server queue. The owners are considering adding additional flavors and cone
options, but are concerned about the resultant increase in service times on queue length.
They decide to use a trace-driven simulation to assess the impact of the longer service
times associated with the additional flavors and cone options.

The file ssq1.dat represents 1000 customer interactions at Sven & Larry’s. The file
consists of arrival times of groups of customers and the group’s corresponding service times.
The service times vary significantly because of the number of customers in each group.
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The dependence of the average queue length q̄ on the utilization x̄ is illustrated in
Figure 1.2.8. This figure was created by systematically increasing or decreasing each service
time in the datafile ssq1.dat by a common multiplicative factor, thereby causing both x̄

and q̄ to change correspondingly. The (x̄, q̄) ∼= (0.72, 1.88) point circled corresponds to
the data in ssq1.dat while the point immediately to its right, for example, corresponds
to the same data with each service time multiplied by 1.05. The next point to the right
corresponds to each service time multiplied by 1.10. From this figure, we see that even a
modest increase in service times will produce a significant increase in the average queue
length. A nonlinear relationship between x̄ and q̄ is particularly pronounced for utilizations
near x̄ = 1. A 15% increase in the service times from their current values will result in a
109% increase in the time-averaged number of customers in queue, whereas a 30% increase
in the service times from their current values will result in a 518% increase in the time-
averaged number of customers in queue.
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Sven & Larry need to assess the impact of the increased service time associated with
new flavors and cones on their operation. If the service times increase by only a modest
amount, say 5% or 10% above the current times, the average queue length will grow
modestly. The new flavors and cone options may, however, also increase the arrival rate —
potentially exacerbating the problem with long lines. If queues grow to the point where the
owners believe that customers are taking their ice cream business elsewhere, they should
consider hiring a second server. A separate analysis would be necessary to determine the
probability that an arriving group of customers will balk (never enter the queue) or renege
(depart from the queue after entering) as a function of the queue’s length.

Graphics Considerations

Figure 1.2.8 presents “raw” simulation output data. That is, each • represents a com-
puted (x̄, q̄) point. Because there is nothing inherently discrete about either x̄ or q̄, many
additional points could have been computed and displayed to produce an (essentially)
continuous q̄ versus x̄ curve. In this case, however, additional computations seem redun-
dant; few would question the validity of the smooth curve produced by connecting the •’s
with lines, as illustrated in Figure 1.2.9. The nonlinear dependence of q̄ on x̄ is evident,
particularly as x̄ approaches 1.0 and the corresponding increase in q̄ becomes dramatic.



24 1. Models

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

q̄

x̄

©
• • • • • • •

•
•

•

•

•

•

................................................................
...............................................

.....................................
...............................

...........................
.......................

..................
................

...........
...........
...........
..........
.........
.........
.........
.........
........
........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......Figure 1.2.9.

Average queue

length vs.

utilization

with linear

interpolation.

Perhaps because we were taught to do this as children, there is a natural tendency
to always “connect the dots” (interpolate) when presenting a discrete set of experimental
data. (The three most common interpolating functions are linear, quadratic, and spline
functions.) Before taking such artistic liberties, however, consider the following guidelines.

• If the data has essentially no uncertainty and if the resulting interpolating curve is
smooth, then there is little danger in connecting the dots — provided the original dots
are left in the figure to remind the reader that some artistic license was used.

• If the data has essentially no uncertainty but the resulting interpolating curve is not
smooth then more dots need to be generated to achieve a graphics scale at which
smooth interpolation is reasonable.

• If the dots correspond to uncertain (noisy) data then interpolation is not justified; in-
stead, either approximation should be used in place of interpolation, or the temptation
to superimpose a continuous curve should be resisted completely.

These guidelines presume that the data is not inherently discrete. If the data is inherently
discrete then it is illogical and potentially confusing to superimpose a continuous (inter-
polating or approximating) curve. Example 1.3.7 in the next section is an illustration of
data that is inherently discrete.*

1.2.5 EXERCISES

Exercise 1.2.1a How would you use the table in Example 1.2.2 to construct the asso-
ciated l(t) versus t figure? That is, construct an algorithm that will compute in order the
interlaced arrival and departure times that define the points at which l(t) changes. (Avoid
storing a1, a2, . . . , an and c1, c2, . . . , cn as two arrays, linked lists or external disk files and
then merging the two into one due to memory and CPU considerations for large n.)

* Those interested in an excellent discussion and illustration of graphics considerations
are encouraged to read the classic The Visual Display of Quantitative Information (Tufte,
2001). The author discusses clarity of presentation through uncluttered graphics that
maximize information transmission with minimal ink. The accurate display of simulation
output will be stressed throughout this text.
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Exercise 1.2.2 (a) Modify program ssq1 to output the additional statistics l̄, q̄, and x̄.
(b) Similar to the case study, use this program to compute a table of l̄, q̄, and x̄ for traffic
intensities of 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2. (c) Comment on how l̄, q̄, and x̄ depend
on the traffic intensity. (d) Relative to the case study, if it is decided that q̄ greater than
5.0 is not acceptable, what systematic increase in service times would be acceptable? Use
d.dd precision.

Exercise 1.2.3 (a) Modify program ssq1 by adding the capability to compute the
maximum delay, the number of jobs in the service node at a specified time (known at
compile time) and the proportion of jobs delayed. (b) What was the maximum delay
experienced? (c) How many jobs were in the service node at t = 400 and how does the
computation of this number relate to the proof of Theorem 1.2.1? (d) What proportion of
jobs were delayed and how does this proportion relate to the utilization?

Exercise 1.2.4 Complete the proof of Theorem 1.2.1.

Exercise 1.2.5 If the traffic intensity is less than 1.0, use Theorem 1.2.1 to argue why
for large n you would expect to find that l̄ ∼= λ w̄, q̄ ∼= λ d̄, and x̄ ∼= λ s̄, where the observed
arrival rate is λ = 1/r̄.

Exercise 1.2.6 The text file ac.dat consists of the arrival times a1, a2, . . . , an and the
departure times c1, c2, . . . , cn for n = 500 jobs in the format

a1 c1
a2 c2
...

...
an cn

(a) If these times are for an initially idle single-server FIFO service node with infinite
capacity, calculate the average service time, the server’s utilization and the traffic intensity.
(b) Be explicit: for i = 1, 2, . . . , n how does si relate to ai−1, ai, ci−1, and ci?

Exercise 1.2.7a State and prove a theorem analogous to Theorem 1.2.1 but valid for
any queue discipline. Hint: in place of cn use τn = max{c1, c2, . . . , cn}. For a conservative
server prove that τn is independent of the queue discipline.

Exercise 1.2.8 (a) Similar to Exercise 1.2.2, modify program ssq1 to output the ad-
ditional statistics l̄, q̄, and x̄. (b) By using the arrival times in the file ssq1.dat and an
appropriate constant service time in place of the service times in the file ssq1.dat, use
the modified program to compute a table of l̄, q̄, and x̄ for traffic intensities of 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, and 1.2. (c) Comment on how l̄, q̄, and x̄ depend on the traffic intensity.

Exercise 1.2.9a (a) Work Exercises 1.2.2 and 1.2.8. (b) Compare the two tables pro-
duced and explain (or conjecture) why the two tables are different. Be specific.
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The inputs to program ssq1, the arrival times and the service times, can have any
positive real value — they are continuous variables. In some models, however, the input
variables are inherently discrete. That is the case with the (trace-driven) discrete-event
simulation model of a simple inventory system constructed in this section. As in the
previous section, we begin with a conceptual model then move to a specification model
and, finally, to a computational model.

1.3.1 CONCEPTUAL MODEL

Definition 1.3.1 An inventory system consists of a facility that distributes items from
its current inventory to its customers in response to a customer demand that is typically
random, as illustrated in Figure 1.3.1. Moreover, the demand is integer-valued (discrete)
because customers do not want a portion of an item.* Because there is a holding cost

associated with items in inventory, it is undesirable for the inventory level to be too high.
On the other hand, if the inventory level is too low, the facility is in danger of incurring a
shortage cost whenever a demand occurs that cannot be met.

facilitycustomers supplier

................................................................................................................................................................................................................................... ..........................
demand

.............................................................................................................................................................................................................................................................

items

................................................................................................................................................................................................................................... ..........................
order

.............................................................................................................................................................................................................................................................

items

Figure 1.3.1.

Simple inventory

system diagram.

As a policy, the inventory level is reviewed periodically and new items are then (and only
then) ordered from a supplier, if necessary.** When items are ordered, the facility incurs
an ordering cost that is the sum of a fixed setup cost independent of the amount ordered
plus an item cost proportional to the number of items ordered. This periodic inventory

review policy is defined by two parameters, conventionally denoted s and S.

• s is the minimum inventory level — if at the time of review the current inventory level
is below the threshold s then an order will be placed with the supplier to replenish the
inventory. If the current inventory level is at or above s then no order will be placed.

• S is the maximum inventory level — when an order is placed, the amount ordered is
the number of items required to bring the inventory back up to the level S.

• The (s, S) parameters are constant in time with 0 ≤ s < S.

* Some inventory systems distribute “items” that are not inherently discrete, for exam-
ple, a service station that sells gasoline. With minor modifications, the model developed
in this section is applicable to these inventory systems as well.
** An alternate to the periodic inventory review policy is a transaction reporting inven-

tory policy . With this policy, inventory review occurs after each demand instance. Because
inventory review occurs more frequently, significantly more labor may be required to imple-
ment a transaction reporting inventory policy. (The scanners at a grocery store, however,
require no extra labor). The transaction reporting policy has the desirable property that,
for the same value of s, it is less likely for the inventory system to experience a shortage.
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A discrete-event simulation model can be used to compute the cost of operating the
facility. In some cases, the values of s and S are fixed; if so, the cost of operating the
facility is also fixed. In other cases, if at least one of the (s, S) values (usually s) is not
fixed, the cost of operating the facility can be modified and it is natural to search for values
of (s, S) for which the cost of operating the facility is minimized.

To complete the conceptual model of this simple (one type of item) inventory system
we make three additional assumptions. (a) Back ordering (backlogging) is possible — the
inventory level can become negative in order to model customer demands not immediately
satisfied. (b) There is no delivery lag— an order placed with the supplier will be delivered
immediately. Usually this is an unrealistic assumption; it will be removed in Chapter 3.
(c) The initial inventory level is S.

Example 1.3.5, presented later in this section, describes an automobile dealership as
an example of an inventory system with back ordering and no delivery lag. In this example
the periodic inventory review occurs each week. The value of S is fixed, the value of s is
not.

1.3.2 SPECIFICATION MODEL

The following variables provide the basis for a specification model of a simple inventory
system. Time begins at t = 0 and is measured in a coordinate system in which the inventory
review times are t = 0, 1, 2, 3, . . . with the convention that the ith time interval begins at
time t = i− 1 and ends at t = i.

• The inventory level at the beginning of the ith time interval is an integer li−1.

• The amount ordered (if any) at time t = i− 1 is an integer oi−1 ≥ 0.

• The demand quantity during the ith time interval is an integer di ≥ 0.

Because we have assumed that back ordering is possible, if the demand during the ith

time interval is greater than the inventory level at the beginning of the interval (plus the
amount ordered, if any) then the inventory level at the end of the interval will be negative.

The inventory level is reviewed at t = i− 1. If li−1 is greater than or equal to s then
no items are ordered so that oi−1 = 0. If instead li−1 is less than s then oi−1 = S − li−1

items are ordered to replenish inventory. In this case, because we have assumed there is
no delivery lag, ordered items are delivered immediately (at t = i − 1) thereby restoring
inventory to the level S. In either case, the inventory level at the end of the ith time
interval is diminished by di. Therefore, as summarized by Algorithm 1.3.1, with l0 = S

the inventory orders o0, o1, o2, . . . and corresponding inventory levels l1, l2, . . . are defined
by

oi−1 =

{

0 li−1 ≥ s

S − li−1 li−1 < s
and li = li−1 + oi−1 − di.

Note that l0 = S > s and so o0 must be zero; accordingly, only o1, o2, . . . are of interest.
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Algorithm 1.3.1 If the demands d1, d2, . . . are known then this algorithm computes the
discrete time evolution of the inventory level for a simple (s, S) inventory system with back
ordering and no delivery lag.

l0 = S; /* the initial inventory level is S */

i = 0;

while ( more demand to process ) {

i++;

if (li−1 < s)

oi−1 = S - li−1;

else

oi−1 = 0;

di = GetDemand();

li = li−1 + oi−1 - di;

}

n = i;

on = S - ln;

ln = S; /* the terminal inventory level is S */

return l1, l2, . . . , ln and o1, o2, . . . , on;

Example 1.3.1 Let (s, S) = (20, 60) and apply Algorithm 1.3.1 to process n = 12 time
intervals of operation with the input demand schedule:

i : 1 2 3 4 5 6 7 8 9 10 11 12
input di : 30 15 25 15 45 30 25 15 20 35 20 30

As illustrated in Figure 1.3.2, the time evolution of the inventory level typically features
several intervals of decline, followed by an increase when an order is placed (indicated by
the vertical dotted line) and, because there is no delivery lag, is immediately delivered.
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Figure 1.3.2.

Inventory

levels.

At the end of the last interval (at t = n = 12) an order for on = 50 inventory units was
placed. The immediate delivery of this order restores the inventory level at the end of the
simulation to the initial inventory level S, as shown in Figure 1.3.2.
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1.3.3 OUTPUT STATISTICS

As with the development of program ssq1 in the previous section, we must address
the issue of what statistics should be computed to measure the performance of a simple
inventory system. As always, our objective is to analyze these statistics and, by so doing,
better understand how the system operates.

Definition 1.3.2 The average demand and average order are, respectively

d̄ =
1

n

n
∑

i=1

di and ō =
1

n

n
∑

i=1

oi.

Example 1.3.2 For the data in Example 1.3.1, d̄ = ō = 305/12 ∼= 25.42 items per time
interval. As explained next, these two averages must be equal.

The terminal condition in Algorithm 1.3.1 is that at the end of the nth time interval
an order is placed to return the inventory to its initial level. Because of this terminal
condition, independent of the value of s and S, the average demand d̄ and the average
order ō must be equal. That is, over the course of the simulated period of operation, all
demand is satisfied (although not immediately when back ordering occurs). Therefore, if
the inventory level is the same at the beginning and end of the simulation then the average
“flow” of items into the facility from the supplier, ō, must have been equal to the average
“flow” of items out of the facility to the customers, d̄. With respect to the flow of items
into and out of the facility, the inventory system is said to be flow balanced.

facilitycustomers supplier..................................................................................................................................................................................
d̄ ..................................................................................................................................................................................

ō Figure 1.3.3.

Flow balance.

Average Inventory Level

The holding cost and shortage cost are proportional to time-averaged inventory levels.
To compute these averages it is necessary to know the inventory level for all t, not just at
the inventory review times. Therefore, we assume that the demand rate is constant between
review times so that the continuous time evolution of the inventory level is piecewise linear

as illustrated in Figure 1.3.4.
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Definition 1.3.3 If the demand rate is constant between review times, then at any time
t in the ith time interval the inventory level is l(t) = l′

i−1
− (t − i + 1)di, as illustrated in

Figure 1.3.5.

i− 1 i

l′
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− di

l′
i−1

l(t)

t
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•

•

(i− 1, l′
i−1
)

(i, l′
i−1

− di)

l(t) = l′
i−1

− (t− i+ 1)di

Figure 1.3.5.

Linear inventory

level in time

interval i.

In this figure and related figures and equations elsewhere in this section, l′
i−1
= li−1+ oi−1

represents the inventory level after inventory review. Accordingly, l′
i−1

≥ s for all i. (For
the figure in Example 1.3.1, the ◦’s and •’s represent li−1 and l′

i−1
respectively).

The equation for l(t) is the basis for calculating the time-averaged inventory level for
the ith time interval.* There are two cases to consider. If l(t) remains non-negative over
the ith time interval then there is only a time-averaged holding level integral to evaluate:

l̄+
i
=

∫ i

i−1

l(t) dt.

If instead l(t) becomes negative at some time τ interior to the ith interval then, in addi-
tion to a time-averaged holding level integral, there is also a time-averaged shortage level

integral to evaluate. In this case the two integrals are

l̄+
i
=

∫ τ

i−1

l(t) dt and l̄−
i
= −

∫ i

τ

l(t) dt.

* Because the inventory level at any time is an integer, the figure in Definition 1.3.3 is
technically incorrect. Instead, rounding to an integer value should be used to produce the
inventory level time history illustrated in Figure 1.3.6. (bzc is the floor function; bz+0.5c
is z rounded to the nearest integer.)
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Figure 1.3.6.

Piecewise

constant

inventory

level in

time

interval i.

It can be shown, however, that rounding has no effect on the value of l̄+
i
and l̄−

i
.
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No Back Ordering

The inventory level l(t) remains non-negative throughout the ith time interval if and
only if the inventory level at the end of this interval is non-negative, as in Figure 1.3.7.
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Inventory level

in time interval

i with no

backordering.

Therefore, there is no shortage during the ith time interval if and only if di ≤ l′
i−1
. In this

case the time-averaged holding level integral for the ith time interval can be evaluated as
the area of a trapezoid so that

l̄+
i
=

∫ i

i−1

l(t) dt =
l′
i−1
+ (l′

i−1
− di)

2
= l′i−1

−
1

2
di and l̄−

i
= 0.

With Back Ordering

The inventory level becomes negative at some point τ in the ith time interval if and
only if di > l′

i−1
, as illustrated in Figure 1.3.8.
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By using similar triangles, it can be shown that τ = i − 1 + (l′
i−1

/di). In this case, the
time-averaged holding level integral and shortage level integral for the ith time interval can
be evaluated as the area of a triangle so that

l̄+
i
=

∫ τ

i−1

l(t) dt = · · · =
(l′
i−1
)2

2di
and l̄−

i
= −

∫ i

τ

l(t) dt = · · · =
(di − l′

i−1
)2

2di
.
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The time-averaged holding level and shortage level for each time interval can be
summed over all intervals with the resulting sums divided by the number of intervals.
Consistent with Definition 1.3.4, the result represents the average number of items “held”
and “short” respectively, with the average taken over all time intervals.

Definition 1.3.4 The time-averaged holding level and the time-averaged shortage level

are, respectively

l̄+ =
1

n

n
∑

i=1

l̄+
i

and l̄− =
1

n

n
∑

i=1

l̄−
i
.

It is potentially confusing to define the time-averaged shortage level as a positive

number, as we have done in Definition 1.3.3. In particular, it would be a mistake to
compute the time-averaged inventory level as the sum of l̄+ and l̄−. Instead, the time-

averaged inventory level is the difference

l̄ =
1

n

∫ n

0

l(t) dt = l̄+ − l̄−.

The proof of this result is left as an exercise.

Example 1.3.3 For the data in Example 1.3.1, l̄+ = 31.74 and l̄− = 0.70. Therefore,
over the 12 time intervals, the average number of items held was 31.74, the average number
of items short was 0.70, and the average inventory level was 31.04.

1.3.4 COMPUTATIONAL MODEL

Algorithm 1.3.1 is the basis for program sis1 presented at the end of this section —
a trace-driven computational model of a simple inventory system.

Program sis1

Program sis1 computes five statistics: d̄, ō, l̄+, l̄− and the order frequency ū, which
is

ū =
number of orders

n
.

Because the simulated system is flow balanced, ō = d̄ and so it would be sufficient for
program sis1 to compute just one of these two statistics. The independent computation
of both ō and d̄ is desirable, however, because it provides an important consistency check
for a (flow balanced) simple inventory system.

Example 1.3.4 Program sis1 reads input data corresponding to n = 100 time intervals
from the file sis1.dat. With the inventory policy parameter values (s, S) = (20, 80) the
results (with dd.dd precision) are

ō = d̄ = 29.29 ū = 0.39 l̄+ = 42.40 l̄− = 0.25.

As with program ssq1, in Chapter 3 we will free program sis1 from its reliance on external
data by using randomly generated demand data instead.
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1.3.5 OPERATING COST

Definition 1.3.5 In conjunction with the four statistics ō, ū, l̄+ and l̄−, a facility’s cost
of operation is determined by four constants:

• citem — the (unit) cost of a new item;

• csetup — the setup cost associated with placing an order;

• chold — the cost to hold one item for one time interval;

• cshort — the cost of being short one item for one time interval.

Case Study

Consider a hypothetical automobile dealership that uses a weekly periodic inventory
review policy. The facility is the dealer’s showroom, service area and surrounding storage
lot and the items that flow into and out of the facility are new cars. The supplier is the
manufacturer of the cars and the customers are people convinced by clever advertising that
their lives will be improved significantly if they purchase a new car from this dealer.

Example 1.3.5 Suppose space in the facility is limited to a maximum of, say S = 80,
cars. (This is a small dealership.) Every Monday morning the dealer’s inventory of cars is
reviewed and if the inventory level at that time falls below a threshold, say s = 20, then
enough new cars are ordered from the supplier to restock the inventory to level S.*

• The (unit) cost to the dealer for each new car ordered is citem = $8000.

• The setup cost associated with deciding what cars to order (color, model, options, etc.)
and arranging for additional bank financing (this is not a rich automobile dealer) is
csetup = $1000, independent of the number ordered.

• The holding cost (interest charges primarily) to the dealer, per week, to have a car sit
unsold in his facility is chold = $25.

• The shortage cost to the dealer, per week, to not have a car in inventory is hard to
determine because, in our model, we have assumed that all demand will ultimately
be satisfied. Therefore, any customer who wants to buy a new car, even if none
are available, will agree to wait until next Monday when new cars arrive. Thus the
shortage cost to the dealer is primarily in goodwill. Our dealer realizes, however, that
in this situation customers may buy from another dealer and so, when a shortage
occurs, he sweetens his deals by agreeing to pay “shorted” customers $100 cash per

day when they come back on Monday to pick up their new car. This means that the
cost of being short one car for one week is cshort = $700.

* There will be some, perhaps quite significant, delivery lag but that is ignored, for now,
in our model. In effect, we are assuming that this dealer is located adjacent to the supplier
and that the supplier responds immediately to each order.
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Definition 1.3.6 A simple inventory system’s average operating costs per time interval

are defined as follows:

• item cost: citem · ō;

• setup cost: csetup · ū;

• holding cost: chold · l̄+;

• shortage cost: cshort · l̄
−.

The average total cost of operation per time interval is the sum of these four costs. This
sum multiplied by the number of time intervals is the total cost of operation.

Example 1.3.6 From the statistics in Example 1.3.4 and the constants in Example 1.3.5,
for our auto dealership the average costs are:

• the item cost is $8000 · 29.29 = $234, 320;

• the setup cost is $1000 · 0.39 = $390;

• the holding cost is $25 · 42.40 = $1060;

• the shortage cost is $700 · 0.25 = $175.

Each of these costs is a per week average.

Cost Minimization

Although the inventory system statistic of primary interest is the average total cost
per time interval, it is important to know the four components of this total cost. By
varying the value of s (and possibly S) it seems reasonable to expect that an optimal
(minimal average cost) periodic inventory review policy can be determined for which these
components are properly balanced.

In a search for optimal (s, S) values, because ō = d̄ and d̄ depends only on the demand
sequence, it is important to note that the item cost is independent of (s, S). Therefore,
the only cost that can be controlled by adjusting the inventory policy parameters is the
sum of the average setup, holding, and shortage costs. In Example 1.3.7, this sum is called
the average dependent cost . For reference, in Example 1.3.6 the average dependent cost is
$390 + $1060 + $175 = $1625 per week.

If S and the demand sequence is fixed, and if s is systematically increased, say from
0 to some large value less than S, then we expect to see the following.

• Generally, the average setup cost and holding cost will increase with increasing s.

• Generally, the average shortage cost will decrease with increasing s.

• Generally, the average total cost will have a ‘U’ shape indicating the presence of one
(or more) optimal value(s) of s.

Example 1.3.7 is an illustration.
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Example 1.3.7 With S fixed at 80, a modified version of program sis1 was used to
study how the total cost relates to the value of s. That is, the cost constants in Exam-
ple 1.3.5 were used to compute the average setup, holding, shortage, and dependent cost
for a range of s values from 1 to 40. As illustrated in Figure 1.3.9, the minimum average
dependent cost is approximately $1550 at s = 22.

0 5 10 15 20 25 30 35 40
1400

1500

1600

1700

1800

1900

2000

dependent cost
•

•

••

••••••••
•
•
•
••

•
••

•
•
•
••
•••

•
•
••
•
••••

•••

s

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600
setup cost

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦◦

◦
◦◦◦

◦◦
◦◦
◦◦◦◦

◦◦◦
◦◦◦◦◦

◦◦◦

s

0 5 10 15 20 25 30 35 40
800

900

1000

1100

1200

1300

1400

holding cost

◦
◦◦◦

◦◦◦◦◦◦◦◦◦
◦◦
◦◦
◦
◦◦◦

◦
◦
◦◦
◦◦◦

◦◦
◦◦
◦
◦◦◦◦

◦◦◦

s

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600
shortage cost

◦

◦

◦◦

◦◦◦◦◦◦◦◦◦

◦◦

◦◦

◦
◦◦

◦

◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦ s

Figure 1.3.9.

Costs for an

(s, 80) simple

inventory

system for

s = 1, 2, . . . , 40.

As in the case study concerning the ice cream shop, the “raw” simulation output data is
presented. In this case, however, because the parameter s is inherently integer-valued (and
so there is no “missing” output data at, say, s = 22.5) no interpolating or approximating
curve is superimposed. [For a more general treatment of issues surrounding simulation
optimization, see Andradóttir (1998).]

1.3.6 EXERCISES

Exercise 1.3.1 Verify that the results in Example 1.3.1 and the averages in Exam-
ples 1.3.2 and 1.3.3 are correct.

Exercise 1.3.2 (a) Using the cost constants in Example 1.3.5, modify program sis1 to
compute all four components of the total average cost per week. (b) These four costs may
differ somewhat from the numbers in Example 1.3.6. Why? (c) By constructing a graph
like that in Example 1.3.7, explain the trade-offs involved in concluding that s = 22 is the
optimum value (when S = 80). (d) Comment on how well-defined this optimum is.
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Exercise 1.3.3 Suppose that the inventory level l(t) has a constant rate of change over
the time interval a ≤ t ≤ b and both l(a) and l(b) are integers. (a) Prove that

∫ b

a

l(t) dt =

∫ b

a

bl(t) + 0.5c dt =
1

2
(b− a)

(

l(a) + l(b)
)

.

(b) What is the value of this integral if l(t) is truncated rather than rounded (i.e., if the
0.5 is omitted in the second integral)?

Exercise 1.3.4 (a) Construct a table or figure similar to Figure 1.3.7 but for S = 100
and S = 60. (b) How does the minimum cost value of s seem to depend on S? (See
Exercise 1.3.2.)

Exercise 1.3.5 Provided there is no delivery lag, prove that if di ≤ s for i = 1, 2, . . . , n,
then l̄− = 0.

Exercise 1.3.6 (a) Provided there is no delivery lag, prove that if S − s < di ≤ S for
i = 1, 2, . . . , n then l̄+ = S − d̄/2. (b) What is the value of l̄− and ū in this case?

Exercise 1.3.7 Use Definitions 1.3.3 and 1.3.4 to prove that the average inventory level
equation

l̄ =
1

n

∫ n

0

l(t) dt = l̄+ − l̄−

is correct. Hint: use the (·)+ and (·)− functions defined for any integer (or real number)
x as

x+ =
|x|+ x

2
and x− =

|x| − x

2

and recognize that x = x+ − x−.

Exercise 1.3.8 (a) Modify program sis1 so that the demands are first read into a
circular array, then read out of that array, as needed, during program execution. (b) By
experimenting with different starting locations for reading the demands from the circular
array, explore how sensitive the program’s statistical output is to the order in which the
demands occur.

Exercise 1.3.9a (a) Consider a variant of Exercise 1.3.8, where you use a conventional
(non-circular) array and randomly shuffle the demands within this array before the de-
mands are then read out of the array, as needed, during program execution. (b) Repeat
for at least 10 different random shuffles and explore how sensitive the program’s statistical
output is to the order in which the demands occur.



CHAPTER 2

RANDOM NUMBER GENERATION

The material in this chapter presumes some knowledge of integer arithmetic and

elementary number theory; for background material see Appendix B.
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Discrete-event and Monte Carlo simulation cannot be done correctly without access
to a good random number generator. Ideally, computer users should be able to assume the
existence of a good system-supplied generator that can be used as a “black box” like other
standard, reliable mathematical functions (sqrt, sin, exp, etc.). Unfortunately, history
suggests this is frequently a false assumption. For that reason, the first two sections of
this chapter provide a comprehensive discussion of an easily understood random number
generation algorithm that can be used with confidence.

Section 2.1 is introductory, beginning with a conceptual model of the two-parameter
algorithm as equivalent to drawing, at random, from an urn whose contents are determined
by the choice of parameters. Given an appropriate choice of parameter values, Section 2.2
is primarily concerned with the important issue of correct algorithm implementation. That
is, a software implementation of the random number generation algorithm is developed that
is correct, efficient, and portable to essentially any contemporary computing system. This
software implementation is then used in Section 2.3 as the basis for introducing Monte
Carlo simulation as it relates to the estimation of probabilities.

Section 2.4 provides Monte Carlo examples that are more involved and interesting
than those in the third section. Unlike the material in the first two sections, which is
specific to a particular random number generation algorithm, Section 2.5 provides a more
general discussion of random number generation algorithms.
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Programs ssq1 and sis1 both require input data from an external source. Because
of this, the usefulness of these programs is limited by the amount of available input data.
What if more input data is needed? Or, what if the model is changed; can the input data
be modified accordingly? Or, what can be done if only a small amount of input data is
available, or perhaps, none at all?

In each case the answer is to use a random number generator. By convention, each
call to the random number generator will produce a real-valued result between 0.0 and 1.0
that becomes the inherent source of randomness for a discrete-event simulation model. As
illustrated later in this chapter, consistent with user-defined stochastic models of arrival
times, service times, demand amounts, etc., the random number generator’s output can
be converted to a random variate via an appropriate mathematical transformation. The
random variates are used to approximate some probabilistic element (e.g., service times)
of a real-world system for a discrete-event simulation model.

2.1.1 RANDOM NUMBER GENERATION

Historically three types of random number generators have been advocated for com-
putational applications: (a) 1950’s-style table look-up generators like, for example, the
RAND corporation table of a million random digits; (b) hardware generators like, for ex-
ample, thermal “white noise” devices; and (c) algorithmic (software) generators. Of these
three types, only algorithmic generators have achieved widespread acceptance. The reason
for this is that only algorithmic generators have the potential to satisfy all of the following
generally well-accepted random number generation criteria. A generator should be:

• random — able to produce output that passes all reasonable statistical tests of ran-
domness;

• controllable — able to reproduce its output, if desired;

• portable — able to produce the same output on a wide variety of computer systems;

• efficient — fast, with minimal computer resource requirements;

• documented — theoretically analyzed and extensively tested.

In addition, as discussed and illustrated in Chapter 3, it should be easy to partition the
generator’s output into multiple “streams”.

Definition 2.1.1 An ideal random number generator is a function, say Random, with
the property that each assignment

u = Random();

will produce a real-valued (floating-point) number u between 0.0 and 1.0 in such a way
that any value in the interval 0.0 < u < 1.0 is equally likely to occur. A good random
number generator produces results that are statistically indistinguishable, for all practical
purposes, from those produced by an ideal generator.
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What we will do in this chapter is construct, from first principles, a good random
number generator that will satisfy all the criteria listed previously. We begin with the
following conceptual model.

• Choose a large positive integer m. This defines the set Xm = {1, 2, . . . ,m− 1}.

• Fill a (conceptual) urn with the elements of Xm.

• Each time a random number u is needed, draw an integer x “at random” from the
urn and let u = x/m.

Each draw simulates a realization (observation, sample) of an independent identically dis-
tributed (iid) sequence of so-called Uniform(0, 1) random variables. Because the possible
values of u are 1/m, 2/m, . . ., 1 − 1/m, it is important for m to be so large that the
possible values of u will be densely distributed between 0.0 and 1.0. Note that the values
u = 0.0 and u = 1.0 are impossible. As discussed in later chapters, excluding these two
extreme values is important for avoiding problems associated with certain random variate
generation algorithms.

Ideally we would like to draw from the urn independently and with replacement. If so
then each of the m− 1 possible values of u would be equally likely to be selected on each
draw. For practical reasons, however, we will use a random number generation algorithm
that simulates drawing from the urn without replacement. Fortunately, if m is large and
the number of draws is small relative to m then the distinction between drawing with
and without replacement is largely irrelevant. To turn the conceptual urn model into an
specification model we will use a time-tested algorithm suggested by Lehmer (1951).

2.1.2 LEHMER’S ALGORITHM

Definition 2.1.2 Lehmer’s algorithm for random number generation is defined in terms
of two fixed parameters

• modulus m, a fixed large prime integer

• multiplier a, a fixed integer in Xm

and the subsequent generation of the integer sequence x0, x1, x2, . . . via the iterative
equation

• xi+1 = g(xi) i = 0, 1, 2, . . .

where the function g(·) is defined for all x ∈ Xm = {1, 2, . . . ,m− 1} as

• g(x) = ax mod m

and the initial seed x0 is chosen from the set Xm. The modulus function mod gives the
remainder when the first argument (ax in this case) is divided by the second argument (the
modulus m in this case). It is defined more carefully in Appendix B. A random number
generator based on Lehmer’s algorithm is called a Lehmer generator.
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Because of the mod (remainder) operator, the value of g(x) is always an integer
between 0 and m − 1; however, it is important to exclude 0 as a possible value. That is,
g(0) = 0 and so if 0 ever occurs in the sequence x0, x1, x2, . . . then all the terms in the
sequence will be 0 from that point on. Fortunately, if (a,m) is chosen consistent with
Definition 2.1.2, it can be shown that g(x) 6= 0 for all x ∈ Xm so that g : Xm → Xm.
This guaranteed avoidance of 0 is part of the reason for choosing m to be prime. Because
g : Xm → Xm, it follows (by induction) that if x0 ∈ Xm then xi ∈ Xm for all i = 0, 1, 2, . . .

Lehmer’s algorithm represents a good example of the elegance of simplicity. The
genius of Lehmer’s algorithm is that if the multiplier a and prime modulus m are properly
chosen, the resulting sequence x0, x1, x2, . . . , xm−2 will be statistically indistinguishable
from a sequence drawn at random, albeit without replacement, from Xm. Indeed, it is only

in the sense of simulating this random draw that the algorithm is random; there is actually
nothing random about Lehmer’s algorithm, except possibly the choice of the initial seed.
For this reason Lehmer generators are sometimes called pseudo-random.*

An intuitive explanation of why Lehmer’s algorithm simulates randomness is based on
the observation that if two large integers, a and x, are multiplied and the product divided
by another large integer, m, then the remainder, g(x) = ax mod m, is “likely” to take on
any value between 0 and m− 1, as illustrated in Figure 2.1.1.

0 m 2m 3m 4m 5mx a ax

• • •

←− −→| |
g(x)

←−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−→|
bax/mcm

←−−−−−−−−−−−−−−−−−−−−− ax −−−−−−−−−−−−−−−−−−−−−→| |

Figure 2.1.1.

Lehmer

generator

geometry.

This is somewhat like going to the grocery store with no change, only dollars, and buying
many identical items. After you pay for the items, the change you will receive is likely to
be any value between 0/c and 99/c. [That is, a is the price of the item in cents, x is the
number of items purchased, and m = 100. The analogy is not exact, however, because the
change is m− g(x), not g(x)].

Modulus and Multiplier Considerations

To construct a Lehmer generator, standard practice is to choose the large prime mod-
ulus m first, then choose the multiplier a. The choice of m is dictated, in part, by system
considerations. For example, on a computer system that supports 32-bit, 2’s complement
integer arithmetic, m = 231−1 is a natural choice because it is the largest possible positive
integer and it happens to be prime. (For 16-bit integer arithmetic we are not so fortunate,
however, because 215 − 1 is not prime. See Exercise 2.1.6. Similarly, for 64-bit integer
arithmetic 263 − 1 is not prime. See Exercise 2.1.10.) Given m, the subsequent choice of
a must be made with great care. The following example is an illustration.

* Lehmer generators are also known as (take a deep breath) prime modulus multiplica-
tive linear congruential pseudo-random number generators, abbreviated PMMLCG.
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Example 2.1.1 As a tiny example, consider the prime modulus m = 13.*

• If the multiplier is a = 6 and the initial seed is x0 = 1 then the resulting sequence of
x’s is

1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, . . .

where, as the ellipses indicate, the sequence is actually periodic because it begins to
cycle (with a full period of length m − 1 = 12) when the initial seed reappears. The
point is that any 12 consecutive terms in this sequence appear to have been drawn at
random, without replacement, from the set X13 = {1, 2, . . . , 12}.

• If the multiplier is a = 7 and the initial seed is x0 = 1 then the resulting full-period
sequence of x’s is

1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . .

Randomness is, like beauty, only in the eye of the beholder. Because of the 12, 6, 3
and 8, 4, 2, 1 patterns, however, most people would consider this second sequence to
be “less random” than the first.

• If the multiplier is a = 5 then either

1, 5, 12, 8, 1, . . . or 2, 10, 11, 3, 2, . . . or 4, 7, 9, 6, 4, . . .

will be produced, depending on the initial seed x0 = 1, 2 or 4. This type of less-than-
full-period behavior is clearly undesirable because, in terms of our conceptual model of
random number generation, this behavior corresponds to first partitioning the set Xm

into several disjoint subsets (urns), then selecting one subset and thereafter drawing
exclusively from it.

Example 2.1.1 illustrates two of the three central issues that must be resolved when
choosing (a,m).

• Does the function g(·) generate a full-period sequence?

• If a full-period sequence is generated, how random does the sequence appear to be?

The third central issue is implementation.

• Can the ax mod m operation be evaluated efficiently and correctly for all x ∈ Xm?

For Example 2.1.1 the issue of implementation is trivial. However, for realistically large
values of a and m, a portable, efficient implementation in a high-level language is a sub-
stantive issue because of potential integer overflow associated with the ax product. We will
return to this implementation issue in the next section. In the remainder of this section
we will concentrate on the full-period issue.

* For a hypothetical computer system with 5-bit 2’s complement integer arithmetic, the
largest positive integer would be 24 − 1 = 15. In this case m = 13 would be the largest
possible prime and, in that sense, a natural choice for the modulus.
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Full Period Considerations

From the definition of the mod function (see Appendix B), if xi+1 = g(xi) then there
exists a non-negative integer ci = baxi/mc such that

xi+1 = g(xi) = axi mod m = axi −mci i = 0, 1, 2, . . .

Therefore (by induction)

x1 = ax0 −mc0

x2 = ax1 −mc1 = a2x0 −m(ac0 + c1)

x3 = ax2 −mc2 = a3x0 −m(a2c0 + ac1 + c2)

...

xi = axi−1 −mci−1 = aix0 −m(ai−1c0 + ai−2c1 + · · ·+ ci−1).

Because xi ∈ Xm we have xi = xi mod m. Moreover, (aix0 −mc) mod m = aix0 mod m

independent of the value of the integer c = ai−1c0 + ai−2c1 + · · · + ci−1. Therefore, we
have proven the following theorem.

Theorem 2.1.1 If the sequence x0, x1, x2, . . . is produced by a Lehmer generator with
multiplier a and modulus m then

xi = aix0 mod m i = 0, 1, 2, . . .

Although it would be an eminently bad idea to compute xi by first computing ai,
particularly if i is large, Theorem 2.1.1 has significant theoretical importance due, in part,
to the fact that xi can be written equivalently as

xi = aix0 mod m = [(ai mod m) (x0 mod m)] mod m = [(ai mod m)x0] mod m

for i = 0, 1, 2, . . . via Theorem B.2 in Appendix B. In particular, this is true for i =
m− 1. Therefore, because m is prime and a mod m 6= 0, from Fermat’s little theorem (see
Appendix B) it follows that am−1 mod m = 1 and so xm−1 = x0. This observation is the
key to proving the following theorem. The details of the proof are left as an exercise.

Theorem 2.1.2 If x0 ∈ Xm and the sequence x0, x1, x2, . . . is produced by a Lehmer
generator with multiplier a and (prime) modulus m then there is a positive integer p with
p ≤ m− 1 such that x0, x1, x2, . . . , xp−1 are all different and

xi+p = xi i = 0, 1, 2, . . .

That is, the sequence x0, x1, x2, . . . is periodic with fundamental period p. In addition,
(m− 1) mod p = 0.



2.1 Lehmer Random Number Generators: Introduction 43

The significance of Theorem 2.1.2 is profound. If we pick any initial seed x0 ∈ Xm

and start to generate the sequence x0, x1, x2, . . . then we are guaranteed that the initial
seed will reappear. In addition, the first instance of reappearance is guaranteed to occur
at some index p that is either m− 1 or an integer divisor of m− 1 and from that index on
the sequence will cycle through the same p distinct values as illustrated

x0, x1, . . . , xp−1
︸ ︷︷ ︸

period

, x0, x1, . . . , xp−1
︸ ︷︷ ︸

period

, x0, . . .

Consistent with Definition 2.1.3, we are interested in choosing multipliers for which the
fundamental period is p = m− 1.

Full Period Multipliers

Definition 2.1.3 The sequence x0, x1, x2, . . . produced by a Lehmer generator with
modulus m and multiplier a has a full period if and only if the fundamental period p is
m−1. If the sequence has a full period then a is said to be a full-period multiplier relative
to m.*

If the sequence x0, x1, x2, . . . has a full period then any m − 1 consecutive terms in
the sequence have been drawn without replacement from the set Xm. In effect a full-period
Lehmer generator creates a virtual circular list with m − 1 distinct elements. The initial
seed provides a starting list element; subsequent calls to the generator traverse the list.

Example 2.1.2 From Example 2.1.1, if m = 13 then a = 6 and a = 7 are full-period
multipliers (p = 12) and a = 5 is not (p = 4). The virtual circular lists (with traversal
in a clockwise direction) corresponding to these two full-period multipliers are shown in
Figure 2.1.2.
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generators.

* A full-period multiplier a relative to m is also said to be a primitive root of m.
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Algorithm 2.1.1 This algorithm, based upon Theorem 2.1.2, can be used to determine
if a is a full-period multiplier relative to the prime modulus m.

p = 1;

x = a;

while (x != 1) {

p++;

x = (a * x) % m; /* beware of a * x overflow */

}

if (p == m - 1)

/* a is a full-period multiplier */

else

/* a is not a full-period multiplier */

If m is not prime Algorithm 2.1.1 may not halt. It provides a slow-but-sure O(m)*
test for a full-period multiplier. The algorithm uses x0 = 1 as an arbitrary initial seed
(note that x1 = a) and the recursive generation of new values of x until the initial seed
reappears. Before starting to search for full-period multipliers, however, it would be good
to know that they exist and with what frequency. That is, given a prime modulus m, how
many corresponding full-period multipliers are there? The following theorem provides the
answer to this question.

Theorem 2.1.3 If m is prime and p1, p2, . . . , pr are the (unique) prime factors of m− 1
then the number of full-period multipliers in Xm is

(p1 − 1)(p2 − 1) . . . (pr − 1)

p1p2 . . . pr
(m− 1).

Example 2.1.3 If m = 13 then m− 1 = 22 · 3. From the equation in Theorem 2.1.3 this

prime modulus has (2−1)(3−1)

2·3
(13− 1) = 4 full-period multipliers: a = 2, 6, 7, and 11.

Example 2.1.4 The Lehmer generator used in this book has the (Mersenne, i.e., of the
form 2k − 1, where k is a positive integer) prime modulus m = 231 − 1 = 2 147 483 647.
Because the prime decomposition of m− 1 is

m− 1 = 231 − 2 = 2 · 32 · 7 · 11 · 31 · 151 · 331

from the equation in Theorem 2.1.3 the number of full-period multipliers is
(

1 · 2 · 6 · 10 · 30 · 150 · 330

2 · 3 · 7 · 11 · 31 · 151 · 331

)

(2 · 32 · 7 · 11 · 31 · 151 · 331) = 534 600 000.

Therefore, for this prime modulus approximately 25% of the multipliers between 1 and
m− 1 are full-period multipliers.

* A function f is called “orderm”, for example, written O(m), if there exist real positive
constants c1 and c2 independent of m such that c1m ≤ f(m) ≤ c2m.
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Using Algorithm 2.1.1 (and a lot of computer time) it can be shown that ifm = 231−1
then a = 2, 3, 4, 5, 6 are not full-period multipliers but that a = 7 is. Remarkably, once one

full-period multiplier has been found, in this case a = 7, then all the others can be found
using the following O(m) algorithm. This algorithm presumes the availability of a function
gcd that returns the greatest common divisor of two positive integers (see Appendix B).

Algorithm 2.1.2 Given the prime modulus m and any full-period multiplier a, the
following algorithm generates all the full-period multipliers relative to m.*

i = 1;

x = a;

while (x != 1) {

if (gcd(i, m− 1) == 1)

/* x is a full-period multiplier equal to ai mod m */

i++;

x = (a * x) % m; /* beware of a * x overflow */

}

Algorithm 2.1.2 is based on Theorem 2.1.4 which establishes a one-to-one correspon-
dence between integers i ∈ Xm that are relatively prime tom−1 and full-period multipliers
ai mod m ∈ Xm. That is, the equation in Theorem 2.1.3 counts both the number of full-
period multipliers and the number of integers in Xm that are relatively prime to m − 1.
The proof of Theorem 2.1.4 is left as an (advanced) exercise.

Theorem 2.1.4 If a is any full-period multiplier relative to the prime modulus m then
each of the integers

ai mod m ∈ Xm i = 1, 2, 3, . . . ,m− 1

is also a full-period multiplier relative to m if and only if the integer i has no prime factors
in common with the prime factors of m − 1, i.e., i and m − 1 are relatively prime (see
Appendix B).

Example 2.1.5 If m = 13 then from Example 2.1.3 there are 4 integers between 1 and
12 that are relatively prime to 12. They are i = 1, 5, 7, 11. From Example 2.1.1, a = 6
is a full-period multiplier relative to 13; from Theorem 2.1.4 the 4 full-period multipliers
relative to 13 are therefore

61 mod 13 = 6, 65 mod 13 = 2, 67 mod 13 = 7, 611 mod 13 = 11.

Equivalently, if we had known that a = 2 is a full-period multiplier relative to 13 we could
have used Algorithm 2.1.2 with a = 2 to determine the full-period multipliers as

21 mod 13 = 2, 25 mod 13 = 6, 27 mod 13 = 11, 211 mod 13 = 7.

* See Exercises 2.1.4 and 2.1.5.



46 2. Random Number Generation

Example 2.1.6 If m = 231 − 1 then from Example 2.1.4 there are 534600000 integers
between 1 and m − 1 that are relatively prime to m − 1. The first few of these are
i = 1, 5, 13, 17, 19. As discussed previously, a = 7 is a full-period multiplier relative to this
modulus and so from Algorithm 2.1.2

71 mod 2147483647 = 7

75 mod 2147483647 = 16807

713 mod 2147483647 = 252246292

717 mod 2147483647 = 52958638

719 mod 2147483647 = 447489615

are full-period multipliers relative to 231 − 1 = 2147483647. Note that the full-period
multiplier 16807 is a logical choice; 7 is the smallest full-period multiplier and 5 is the
smallest integer (other than 1) that is relatively prime to m − 1. However, that the
multiplier 16807 is a logical choice does not mean that the resulting sequence it generates
is necessarily “random”. We will have more to say about this in the next section.

Standard Algorithmic Generators

Most of the standard algorithmic generators in use today are one of the following three
linear congruential types (Law and Kelton, 2000, pages 406–412):

• mixed : g(x) = (ax + c) mod m with m = 2b (b = 31 typically), a mod 4 = 1 and
c mod 2 = 1. All integer values of x ∈ {0} ∪ Xm are possible and the period is m.

• multiplicative with m = 2b: g(x) = ax mod m with m = 2b (b = 31 typically) and
a mod 8 = 3 or a mod 8 = 5. To achieve the maximum period, which is only m/4, x
must be restricted to the odd integers in Xm.

• multiplicative with m prime: g(x) = ax mod m with m prime and a a full-period
multiplier. All integer values of x ∈ Xm = {1, 2, . . . ,m − 1} are possible and the
period is m− 1.

Of these three, specialists generally consider the third generator, which has been presented
in this chapter, to be best. Random number generation remains an area of active research,
however, and reasonable people will probably always disagree about the best algorithm
for random number generation. Section 2.5 contains a more general discussion of random
number generators.

For now we will avoid the temptation to be drawn further into the “what is the best
possible random number generator” debate. Instead, as discussed in the next section, we
will use a Lehmer generator with modulus m = 231 − 1 and a corresponding full-period
multiplier a = 48271 carefully selected to provide generally acceptable randomness and

facilitate efficient software implementation. With this generator in hand, we can then turn
our attention to the main topic of this book — the modeling, simulation and analysis of
discrete-event stochastic systems.
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2.1.3 EXERCISES

Exercise 2.1.1 For the tiny Lehmer generator defined by g(x) = ax mod 127, find all
the full-period multipliers. (a) How many are there? (b) What is the smallest multiplier?

Exercise 2.1.2 Prove Theorem 2.1.2.

Exercise 2.1.3 Prove that if (a,m) are chosen consistent with Definition 2.1.2, then
g : Xm → Xm is a bijection (one-to-one and onto).

Exercise 2.1.4a (a) Prove that if (a,m) are chosen consistent with Definition 2.1.2, then
g(x) 6= 0 for all x ∈ Xm and so g : Xm → Xm. (b) In addition, relative to this definition,
prove that there is nothing to be gained by considering integer multipliers outside of Xm.
Consider the two cases a ≥ m and a ≤ 0.

Exercise 2.1.5 (a) Except for the special case m = 2, prove that a = 1 cannot be a
full-period multiplier. (b) What about a = m− 1?

Exercise 2.1.6 In ANSI C an int is guaranteed to hold all integer values between
−(215 − 1) and 215 − 1 inclusive. (a) What is the largest prime modulus in this range?
(b) How many corresponding full-period multipliers are there and what is the smallest one?

Exercise 2.1.7a Prove Theorem 2.1.4.

Exercise 2.1.8 (a) Evaluate 7i mod 13 and 11i mod 13 for i = 1, 5, 7, 11. (b) How does
this relate to Example 2.1.5?

Exercise 2.1.9 (a) Verify that the list of five full-period multipliers in Example 2.1.6 is
correct. (b) What are the next five elements in this list?

Exercise 2.1.10a (a) What is the largest prime modulus less than or equal to 263 − 1?
(b) How many corresponding full-period multipliers are there? (c) How does this relate to
the use of Lehmer random number generators on computer systems that support 64-bit
integer arithmetic?

Exercise 2.1.11 For the first few prime moduli, this table lists the number of full-period
multipliers and the smallest full-period multiplier. Add the next 10 rows to this table.

prime modulus m number of full-period multipliers smallest full-period multiplier a
2 1 1
3 1 2
5 2 2
7 2 3
11 4 2
13 4 2
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Recall that one good reason to choosem = 231−1 as the modulus for a Lehmer random
number generator is that virtually all contemporary computer systems support 32-bit 2’s
complement integer arithmetic and on such systems 231 − 1 is the largest possible prime.
Consistent with that observation, a portable and efficient algorithmic implementation of
an m = 231 − 1 Lehmer generator that is valid (provided all integers between −m and m

can be represented exactly) is developed in this section.

We can use ANSI C for the implementation because 32-bit signed integer arithmetic
is supported in a natural way. That is, the ANSI C type long is required to be valid
for all integers between LONG MIN and LONG MAX inclusive and, although the values are
implementation dependent, LONG MAX and LONG MIN are required to be at least 231 − 1 and
at most −(231 − 1) respectively.*

2.2.1 IMPLEMENTATION

If there is no guarantee that integers larger than m can be represented exactly, then
the implementation issue of potential integer overflow must be addressed. That is, for any
full-period Lehmer generator, the product ax can be as large as a(m−1). Therefore, unless
values of t as large as a(m − 1) can be represented exactly, it is not possible to evaluate
g(x) = ax mod m in the “obvious” way by first computing the intermediate product t = ax

and then computing t mod m = t− bt/mcm.

Example 2.2.1 If (a,m) = (48271 , 231 − 1) then a(m− 1) ∼= 1.47 × 246. Therefore,
it would not be possible to implement this (a,m) Lehmer generator in the obvious way
without access to a register that is at least 47 bits wide to store the intermediate product t.
This is true even though t mod m is no more than 31 bits wide. (If a = 16807 then a 46 bit
register would be required to hold the intermediate product.)

Type Considerations

If we wish to implement a Lehmer generator with m = 231 − 1 in ANSI C, and do it
in the obvious way, then the type declaration of t will dictate the number of bits available
to store the intermediate t = ax product. Correspondingly, if t is (naturally) an integer

type then the integer division t/m can be used to evaluate bt/mc; or if t is a floating point

type then a floating point division t/m followed by a floating-point-to-integer cast can be
used to evaluate bt/mc.

Example 2.2.2 If the variable t is declared to be a long andm = 231−1 then the obvious
implementation will be correct only if LONG MAX is a(m− 1) or larger. Most contemporary
computer systems do not support integers this large and thus for a Lehmer generator with
m = 231 − 1 the obvious implementation is not a viable algorithm option.

* The macros LONG MIN and LONG MAX are defined in the ANSI C library <limits.h>.
The type long is a shorthand representation for the type long int. LONG LONG is sup-
ported in C99, the new (maybe latest) ANSI/ISO Standard for C for 64-bit integers. This
option is only appropriate if the hardware supports 64-bit arithmetic (e.g., Apple, AMD).
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Example 2.2.3 If the variable t is declared to be the ANSI C floating point type double
then the obvious implementation may be correct provided the multiplier a is not too large.
That is, double is generally consistent with the IEEE 754 64-bit floating point standard
which specifies a 53-bit mantissa (including the sign bit) and if m = 231 − 1 a mantissa
this large allows for t to be much larger than m. So it may be possible to implement a
m = 231 − 1 Lehmer generator with a sufficiently small multiplier in the obvious way by
doing the integer calculations in floating point arithmetic. However, when portability is
required and an efficient integer-based implementation is possible, only the unwise would
use a floating point implementation instead.

Algorithm Development

Consistent with the previous examples, it is desirable to have an integer-based imple-
mentation of Lehmer’s algorithm that will port to any system which supports the ANSI C
type long. This can be done provided no integer calculation produces an intermediate or
final result larger than m = 231 − 1 in magnitude. With this constraint in mind we must
be prepared to do some algorithm development.

If it were possible to factor the modulus as m = aq for some integer q then g(x)
could be written as g(x) = ax mod m = a(x mod q), enabling us to do the mod before the
multiply and thereby avoid the potential overflow problem. That is, in this case the largest
possible value of ax mod m would be a(q−1) = m−a and this is less thanm. Of course ifm
is prime no such factorization is possible. It is always possible, however, to “approximately
factor” m as m = aq + r with q = bm/ac and r = m mod a. As demonstrated in this
section, if the remainder r is small relative to the quotient q, specifically if r < q, then
this (q, r) decomposition of m provides the basis for an algorithm to evaluate g(x) in such
a way that integer overflow is eliminated.

Example 2.2.4 If (a,m) = (48271, 231 − 1) then the quotient is q = bm/ac = 44488
and the remainder is r = m mod a = 3399. Similarly, if a = 16807 then q = 127773 and
r = 2836. In both cases r < q.

For all x ∈ Xm = {1, 2, . . . ,m− 1} define the two functions

γ(x) = a(x mod q)− rbx/qc and δ(x) = bx/qc − bax/mc.

Then, for any x ∈ Xm

g(x) = ax mod m = ax−mbax/mc

= ax−mbx/qc+mbx/qc −mbax/mc

= ax− (aq + r)bx/qc+mδ(x)

= a
(

x− qbx/qc
)

− rbx/qc+mδ(x)

= a(x mod q)− rbx/qc+mδ(x) = γ(x) +mδ(x).

An efficient, portable implementation of a Lehmer random number generator is based upon
this alternate representation of g(x) and the following theorem.
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Theorem 2.2.1 If m = aq+r is prime, r < q, and x ∈ Xm, then δ(x) = bx/qc−bax/mc

is either 0 or 1. Moreover, with γ(x) = a(x mod q)− rbx/qc

• δ(x) = 0 if and only if γ(x) ∈ Xm;

• δ(x) = 1 if and only if −γ(x) ∈ Xm.

Proof First observe that if u and v are real numbers with 0 < u−v < 1 then the integer
difference buc − bvc is either 0 or 1. Therefore, because δ(x) = bx/qc − bax/mc, the first
part of the theorem is true if we can show that

0 <
x

q
−

ax

m
< 1.

Rewriting the center of the inequality as

x

q
−

ax

m
= x

(

1

q
−

a

m

)

= x

(

m− aq

mq

)

=
xr

mq

and because r < q

0 <
xr

mq
<

x

m
≤

m− 1

m
< 1

which establishes that if x ∈ Xm then δ(x) is either 0 or 1. To prove the second part of this
theorem recall that if x ∈ Xm then g(x) = γ(x) +mδ(x) is in Xm. Therefore, if δ(x) = 0
then γ(x) = g(x) is in Xm; conversely if γ(x) ∈ Xm then δ(x) cannot be 1 for if it were
then g(x) = γ(x) +m would be m+ 1 or larger which contradicts g(x) ∈ Xm. Similarly, if
δ(x) = 1 then −γ(x) = m− g(x) is in Xm; conversely if −γ(x) ∈ Xm then δ(x) cannot be
0 for if it were then g(x) = γ(x) would not be in Xm.

Algorithm

The key to avoiding overflow in the evaluation of g(x) is that the calculation with
the potential to cause overflow, the ax product, is “trapped” in δ(x). This is important
because, from Theorem 2.2.1, the value of δ(x) can be deduced from the value of γ(x) and
it can be shown that γ(x) can be computed without overflow — see Exercise 2.2.5. This
comment and Theorem 2.2.1 can be summarized with the following algorithm.

Algorithm 2.2.1 If m = aq + r is prime, r < q, and x ∈ Xm, then g(x) = ax mod m

can be evaluated as follows without producing any intermediate or final values larger than
m− 1 in magnitude.

t = a * (x % q) - r * (x / q); /* t = γ(x) */

if (t > 0)

return (t); /* δ(x) = 0 */

else

return (t + m); /* δ(x) = 1 */
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Modulus Compatibility

Definition 2.2.1 The multiplier a is modulus-compatible with the prime modulus m if
and only if the remainder r = m mod a is less than the quotient q = bm/ac.

If a is modulus-compatible with m then Algorithm 2.2.1 can be used as the basis for
an implementation of a Lehmer random number generator. In particular, if the multiplier
is modulus-compatible with m = 231 − 1 then Algorithm 2.2.1 can be used to implement
the corresponding Lehmer random number generator in such a way that it will port to
any system that supports 32-bit integer arithmetic. From Example 2.2.4, for example, the
full-period multiplier a = 48271 is modulus-compatible with m = 231 − 1.

In general, there are no modulus-compatible multipliers beyond (m−1)/2. Moreover,
as the following example illustrates, modulus-compatible multipliers are much more densely
distributed on the low end of the 1 ≤ a ≤ (m− 1)/2 scale.

Example 2.2.5 The (tiny) modulus m = 401 is prime. Figure 2.2.1 illustrates, on the
first line, the 38 associated modulus-compatible multipliers. On the second line are the
160 full-period multipliers and the third line illustrates the ten multipliers (3, 6, 12, 13,
15, 17, 19, 21, 23, and 66) that are both modulus-compatible and full-period.

0 50 100 150 200 250 300 350 400

Multipliers a between 1 and 400

| ||| || || | || || || | ||| | || ||| | || || | |||| |||

| | || | || | ||| | | || ||| || || | ||| || || || | ||| ||| || || || | | |||| ||| | || || ||||| || || |||| | ||| || || ||| ||| ||| | |||| || | || || ||| | || || || ||| | || | || || || |||| | | || | ||| || || | | | || || || | | ||| | || || |

|| || || ||||

Figure 2.2.1.

Modulus-

compatible

full-period

multipliers

for m = 401.

If you have a very high resolution graphics device, a very long piece of paper, a magnifying
glass, and a few hours of CPU time, you are encouraged to make the corresponding figure
for m = 231 − 1. (For this modulus there are 92679 modulus-compatible multipliers. Of
these, 23093 are also full-period — see Example 2.2.6.)

Modulus-compatibility is closely related to the smallness of the multiplier. In partic-
ular, a is defined to be “small” if and only if a2 < m. If a is small then a is modulus-
compatible with m — see Exercise 2.2.4. From this result it follows, for example, that all
the multipliers between 1 and 46340 inclusive are modulus-compatible with m = 231 − 1.
Thus smallness is sufficient to guarantee modulus-compatibility. Smallness is not a neces-
sary condition, however. In particular, a = 48271 is modulus-compatible with m = 231−1,
but it is not small. Similarly, of the 38 modulus-compatible multipliers for m = 401 in Ex-
ample 2.2.5, only about half (those between 1 and 20) satisfy the a2 < m small multiplier
test.
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As illustrated in Example 2.2.5, for a given prime modulus there are relatively few
associated full-period, modulus-compatible multipliers. A mechanical way to find one of
these is to start with the small (and thus modulus-compatible) multipliers a = 2, a = 3,
etc.; until the first full-period multiplier is found — see Algorithm 2.1.1. Given that we
have found one full-period, modulus-compatible multiplier, the following O(m) algorithm
can be used to generate all the others. This algorithm, an extension of Algorithm 2.1.2,
presumes the availability of a function gcd that returns the greatest common divisor of
two positive integers (see Appendix B).

Algorithm 2.2.2 Given the prime modulus m and any associated full-period, modulus-
compatible multiplier a the following algorithm generates all the full-period, modulus-
compatible multipliers relative to m.

i = 1;

x = a;

while (x != 1) {

if ((m % x < m / x) and (gcd(i, m - 1) == 1))

/* x is a full-period modulus-compatible multiplier */

i++;

x = g(x); /* use Algorithm 2.2.1 to evaluate g(x) = ax mod m */

}

Example 2.2.6 Using Algorithm 2.2.2 with m = 231 − 1 = 2147483647, a = 7 and a
lot of CPU cycles we find that there are a total of 23093 associated full-period, modulus-
compatible multipliers, the first few of which are

71 mod 2147483647 = 7

75 mod 2147483647 = 16807

7113039 mod 2147483647 = 41214

7188509 mod 2147483647 = 25697

7536035 mod 2147483647 = 63295.

Of these, the multiplier a = 16807 deserves special mention. It was first suggested by Lewis,
Goodman, and Miller (1969), largely because it was easy to prove (as we have done) that
it is a full-period multiplier. Since then it has become something of a “minimal” standard
(Park and Miller, 1988).

In retrospect a = 16807 was such an obvious choice that it seems unlikely to be the
best possible full-period multiplier relative to m = 231 − 1 and, indeed, subsequent testing
for randomness has verified that, at least in theory, other full-period multipliers generate
(slightly) more random sequences. Although several decades of generally favorable user
experience with a = 16807 is not easily ignored, we will use a = 48271 instead.
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Randomness

For a given (prime) modulus m, from among all the full-period, modulus-compatible
multipliers relative to m we would like to choose the one that generates the “most ran-
dom” sequence. As suggested in Example 2.1.1, however, there is no simple and universal
definition of randomness and so it should come as no surprise to find that there is less than
complete agreement on what this metric should be.

Example 2.2.7 To the extent that there is agreement on a randomness metric, it is
based on a fundamental geometric characteristic of all Lehmer generators, first established
by Marsaglia (1968), that “random numbers fall mainly in the planes.” That is, in 2-space
for example, the points

(x0, x1), (x1, x2), (x2, x3), . . .

all fall on a finite, and possibly small, number of parallel lines to form a lattice structure
as illustrated in Figure 2.2.2 for (a,m) = (23, 401) and (66, 401). If a simulation model of
a nuclear power plant, for example, required two consecutive small random numbers (e.g.,
both smaller than 0.08) for a particular rare event (e.g., melt down), this would never occur
for the (66, 401) generator due to the void in the southwest corner of the graph. [Using
the axiomatic approach to probability, the exact probability is (0.08)(0.08) = 0.0064.]
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Figure 2.2.2.

Random

numbers

falling in

planes.

In general, for any integer k ≥ 2 the points

(x0, x1, . . . , xk−1), (x1, x2, . . . , xk), (x2, x3, . . . , xk+1), . . .

form a lattice structure. The best Lehmer generator randomness metrics are based on
analyzing (numerically, not visually) the uniformity of this lattice structure in k-space for
small values of k. Knuth (1998) gives one popular randomness metric of this type known
as the spectral test. Consistent with these metrics, for m = 401 the multiplier a = 23
would be a much better full-period, modulus-compatible multiplier than a = 66.
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ANSI C Implementation

The kind of theoretical testing for randomness illustrated in Example 2.2.7 has been
done for all of the 23093 full-period, modulus-compatible multipliers relative tom = 231−1.
Of these, the winner is a = 48271 with q = bm/ac = 44488 and r = m mod a = 3399.*

Example 2.2.8 A Lehmer random number generator with (a,m) = (48271, 231−1) can
be implemented correctly, efficiently and portably in ANSI C as follows

double Random(void)

{

const long A = 48271; /* multiplier */

const long M = 2147483647; /* modulus */

const long Q = M / A; /* quotient */

const long R = M % A; /* remainder */

static long state = 1;

long t = A * (state % Q) - R * (state / Q);

if (t > 0)

state = t;

else

state = t + M;

return ((double) state / M);

}

With minor implementation-dependent modifications, the random number generator
in Example 2.2.8 is the basis for all the simulated stochastic results presented in this book.
There are three important points relative to this particular implementation.

• The static variable state is used to hold the current state of the random number
generator, initialized to 1. There is nothing magic about 1 as an initial state (seed);
any value between 1 and 2 147 483 646 could have been used.

• Because state is a static variable, the state of the generator will be retained between
successive calls to Random, as must be the case for the generator to operate properly.
Moreover, because the scope of state is local to the function, the state of the generator
is protected — it cannot be changed in any way other than by a call to Random.

• If the implementation is correct, tests for randomness are redundant; if the implemen-
tation is incorrect, it should be discarded. A standard way of testing for a correct
implementation is based on the fact that if the initial value of state is 1, then after
10 000 calls to Random the value of state should be 399 268 537.

* In addition to “in theory” testing, the randomness associated with this (a,m) pair
has also been subjected to a significant amount of “in practice” empirical testing — see
Section 10.1.
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Example 2.2.9 As a potential alternative to the generator in Example 2.2.8, the random
number generator in the ANSI C library <stdlib.h> is the function rand. The intent of
this function is to simulate drawing at random from the set {0, 1, 2, . . . ,m − 1} with m

required to be at least 215. That is, rand returns an int between 0 and RAND MAX inclusive
where the macro constant RAND MAX (defined in the same library) is required to be at
least 215 − 1 = 32767. To convert the integer value returned by rand to a floating point
number between 0.0 and 1.0 (consistent with Definition 2.1.1) it is conventional to use an
assignment like

u = (double) rand() / RAND MAX;

Note, however, that the ANSI C standard does not specify the details of the algorithm on
which this generator is based. Indeed, the standard does not even require the output to
be random! For scientific applications it is generally a good idea to avoid using rand, as
indicated in Section 13.15 of Summit (1995).

Random Number Generation Library

The random number generation library used in this course is based upon the imple-
mentation considerations developed in this section. This library is defined by the header file
"rng.h" and is recommended as a replacement for the standard ANSI C library functions
rand and srand, particularly in simulation applications where the statistical goodness of
the random number generator is important. The library provides the following capabilities.

• double Random(void) — This is the Lehmer random number generator in Exam-
ple 2.2.8. We recommended it as a replacement for the standard ANSI C library
function rand.

• void PutSeed(long seed) — This function can be used to initialize or reset the
current state of the random number generator. We recommended it as a replacement
for the standard ANSI C library function srand. If seed is positive then that value
becomes the current state of the generator. If seed is 0 then the user is prompted
to set the state of the generator interactively via keyboard input. If seed is negative
then the state of the generator is set by the system clock.*

• void GetSeed(long *seed) — This function can be used to get the current state of
the random number generator.∗

• void TestRandom(void)— This function can be used to test for a correct implemen-
tation of the library.

Although we recommend the use of the multiplier 48271, and that is the value used in
the library rng, as discussed in Example 2.2.6 the 16807 multiplier is something of a
minimal standard. Accordingly, the library is designed so that it is easy to use 16807 as
an alternative to 48271.

* See Section 2.3 for more discussion about the use of PutSeed and GetSeed.



56 2. Random Number Generation

Example 2.2.10 As an example of the use of Random and PutSeed, this algorithm was
used to create the two scatterplots illustrated in Figure 2.2.3 for two different values of the
initial seed.

seed = 123456789; /* or 987654321 */

PutSeed(seed);

x0 = Random();

for (i = 0; i < 400; i++) {

xi+1 = Random();

Plot(xi, xi+1); /* a generic graphics function */

}

Unlike the lattice structure so obvious in Example 2.2.7, the (xi, xi+1) pairs in this case
appear to be random with no lattice structure evident, as desired. (For a more direct com-
parison all the integer-valued coordinates in Example 2.2.7 would need to be normalized
to 1.0 via division by m = 401. That would be a purely cosmetic change, however.)
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Scatterplots

of 400

random

number

pairs.

Consistent with the discussion in Example 2.2.7, it should be mentioned that in a
sense the appearance of randomness in Example 2.2.10 is an illusion. That is, if all of
the possible pairs of (xi, xi+1) points were generated (there are m− 1 = 231 − 2 of these)
and if it were somehow possible to plot all of these pairs of points at a fine enough scale
to avoid blackening the page, then like the figures in Example 2.2.7 a micro-scale lattice
structure would be evident.* This observation is one of the reasons why we distinguish
between ideal and good random number generators (see Definition 2.1.1).

* Contemplate what size graphics device and associated dpi (dots per inch) resolution
would be required to actually do this.
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Example 2.2.11 Plotting consecutive, overlapping random number pairs (xi, xi+1) from
a full-period Lehmer generator with m = 231 − 1 would blacken the unit square, obscuring
the lattice structure. The fact that any tiny square contained in the unit square will
exhibit approximately the same appearance is exploited in the algorithm below, where
all of the random numbers are generated by Random(), but only those that fall in the
square with opposite corners (0, 0) and (0.001, 0.001) are plotted. One would expect that
approximately (0.001)(0.001)(231 − 2) ∼= 2147 of the points would fall in the tiny square.

seed = 123456789;

PutSeed(seed);

x0 = Random();

for (i = 0; i < 2147483646; i++) {

xi+1 = Random();

if ((xi < 0.001) and (xi+1 < 0.001)) Plot(xi, xi+1);

}

The results of the implementation of the algorithm are displayed in Figure 2.2.4 for the
multipliers a = 16807 (on the left) and a = 48271 (on the right). The random numbers
produced by a = 16807 fall in just 17 nearly-vertical parallel lines, whereas the random
numbers produced by a = 48271 fall in 47 parallel lines. These scatterplots provide further
evidence for our choice of a = 48271 over a = 16807 in the random number generator
provided in the library rng.
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Figure 2.2.4.

Scatterplots

for a = 16807
and a = 48271.

We have shown that as we zoom in on the unit square the (unwanted) lattice structure
of the (xi, xi+1) pairs produced by our good random number generator becomes more
apparent. It is appropriate at this juncture to contemplate what would happen with an
ideal random number generator. An ideal generator exhibits no lattice behavior as you
zoom in on increasingly tiny squares. Like a fractal or a scale-free network, all scatterplots
will look like those in Figure 2.2.3, assuming more points are generated as you zoom in.
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Other Multipliers

Recall that for the modulus m = 231 − 1 = 2 147 483 647, there are 534 600 000 mul-
tipliers a that result in a full-period random number generator. Of these, 23 093 are
modulus-compatible. Although the modulus-compatible, full-period multiplier a = 48 271
is used in library rng, are there other multipliers that are recommended? One rather te-
dious way of approaching this question is to execute the statistical tests for random number
generators outlined in Section 10.1 on all of the generators. A second, more efficient ap-
proach is to consult the experts who perform research in this area. Fishman (2001, pages
428–445) notes that a = 16 807, a = 630 360 016, and a = 742 938 285 are employed by
the discrete-event simulation languages SIMAN, SIMSCRIPT II.5, and GPSS/H, respec-
tively, ordered here by improving lattice structure. In addition to a = 742 938 285, he also
suggests four other multipliers with similar performance in terms of parallel hyperplanes
in 2, 3, 4, 5, and 6 dimensions: a = 950 706 376, a = 1226 874 159, a = 62 089 911, and
a = 1343 714 438. Determining whether these multipliers are modulus-compatible is left
as an exercise.

Good Generator — Non-representative Subsequences

In any simulation run, only a subset of the random numbers produced by a generator
are typically used. What if, for example, only 20 random numbers were needed for a
simulation. If you had the extreme misfortune of choosing the seed x0 = 109 869 724 with
the generator in the library rng, the resulting 20 random numbers (to only 0.xx precision)
are:

0.64 0.72 0.77 0.93 0.82 0.88 0.67 0.76 0.84 0.84

0.74 0.76 0.80 0.75 0.63 0.94 0.86 0.63 0.78 0.67.

Is there something wrong with this generator to have produced 20 consecutive random
numbers exceeding 0.62? Certainly not. It will only occur once in a blue moon, but
this particular seed resulted in this rather unique sequence of random numbers.* This
sequence of 20 consecutive random numbers may initially seem analogous to an outlier

from statistics. Statisticians sometimes discard outliers as being unrepresentative, but it
is never appropriate to do so in simulation. The random number generator will have a
few sequences of unusually high random numbers as well as a few sequences of unusually
low random numbers, as it should. Analogously, if we were to perform the experiment of
tossing a fair coin 20 times for a large number of replications, there should be a few rare
cases when all 20 tosses come up heads (or tails).

This string of 20 large random numbers highlights the importance of replicating a
simulation many times so as to average out these unusual cases. Replication will be
considered in detail in Chapter 8.

* The probability of 20 consecutive random numbers exceeding 0.62 using the axiomatic
approach to probability is (0.38)20 ∼= 4 · 10−9.
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The Curse of Fast CPUs

When discrete-event simulation was in its infancy, the time required to cycle through
a full-period Lehmer generator with modulus m = 231 − 1 = 2 147 483 647 was measured
in days. This quickly shrank to hours, and now only takes a few minutes on a desktop
machine. Before long, the time to complete a cycle of such a generator will be measured
in seconds. The problem of cycling , that is, reusing the same random numbers in a single
simulation, must be avoided because of the resultant dependency in the simulation output.

Extending the period length of Lehmer generators has been an active research topic
within the simulation community for many years. One simple solution is to run all
simulations on 64-bit machines. Since the largest prime number less than 263 − 1 is
263 − 25 = 9 223 372 036 854 775 783, the period is lengthened from about 2.14 · 109 to
9.22 · 1018. In this case, cycle times are measured in years. Obviously, more machines
supporting 64-bit integer arithmetic is beneficial to the simulation community. Since it is
too early to know if 64-bit machines will become the norm, other portable techniques on
32-bit machines for achieving longer periods have been developed.

One technique for achieving a longer period is to use a multiple recursive generator ,
where our usual xi+1 = axi mod m is replaced by

xi+1 = (a1xi + a2xi−1 + · · ·+ aqxi−q) mod m.

These generators can produce periods as long as mq − 1 if the parameters are chosen
properly. A second technique for extending the period is to use a composite generator ,
where several Lehmer generators can be combined in a manner to extend the period and
improve statistical behavior. A third technique is to use a Tausworthe, or shift-register

generator, where the modulo function is applied to bits, rather than large integers. The
interested reader should consult Chapter 6 of Bratley, Fox, and Schrage (1987), Chapter 5
of Lewis and Orav (1989), Chapter 7 of Law and Kelton (2000), Chapter 9 of Fishman
(2001), Gentle (2003), and L’Ecuyer, Simard, Chen, and Kelton (2002) for more details.

Any of these generators that have been well-tested by multiple authors yield two
benefits: longer periods and better statistical behavior (e.g., fewer hyperplanes). The cost
is always the same: increased CPU time.

2.2.2 EXERCISES

Exercise 2.2.1 Prove that if u and v are real numbers with 0 < u − v < 1 then the
integer difference buc − bvc is either 0 or 1.

Exercise 2.2.2a If g(·) is a Lehmer generator (full period or not) then there must exist
an integer x ∈ Xm such that g(x) = 1. (a) Why? (b) Use the m = aq+ r decomposition of
m to derive a O(a) algorithm that will solve for this x. (c) If a = 48271 and m = 231 − 1
then what is x? (d) Same question if a = 16807.
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Exercise 2.2.3a Derive a O(log(a)) algorithm to solve Exercise 2.2.2. Hint: a and m

are relatively prime.

Exercise 2.2.4 Prove that if a,m are positive integers and if a is “small” in the sense
that a2 < m, then r < q where r = m mod a and q = bm/ac.

Exercise 2.2.5 Write γ(x) = α(x)− β(x) where α(x) = a(x mod q) and β(x) = rbx/qc

with m = aq+ r and r = m mod a. Prove that if r < q then for all x ∈ Xm both α(x) and
β(x) are in {0, 1, 2, . . . ,m− 1}.

Exercise 2.2.6 Is Algorithm 2.2.1 valid if m is not prime? If not, how should it be
modified?

Exercise 2.2.7 (a) Implement a correct version of Random using floating point arithmetic
and do a timing study. (b) Comment.

Exercise 2.2.8 Prove that if a, x, q are positive integers then ax mod aq = a(x mod q).

Exercise 2.2.9 You have been hired as a consultant by XYZ Inc to assess the market
potential of a relatively inexpensive hardware random number generator they may develop
for high-speed scientific computing applications. List all the technical reasons you can
think of to convince them this is a bad idea.

Exercise 2.2.10 There are exactly 400 points in each of the figures in Example 2.2.7.
(a) Why? (b) How many points would there be if a were not a full-period multiplier?

Exercise 2.2.11 Let m be the largest prime modulus less than or equal to 215 − 1
(see Exercise 2.1.6). (a) Compute all the corresponding modulus-compatible full-period
multipliers. (b) Comment on how this result relates to random number generation on
systems that support 16-bit integer arithmetic only.

Exercise 2.2.12a (a) Prove that if m is prime with m mod 4 = 1 then a is a full-period
multiplier if and only if m− a is also a full-period multiplier. (b) What if m mod 4 = 3?

Exercise 2.2.13a If m = 231 − 1 compute the x ∈ Xm for which 7
x mod m = 48271.

Exercise 2.2.14 The lines on the scatterplot in Figure 2.2.4 associated with the multi-
plier a = 16807 appear to be vertical. Argue that the lines must not be vertical based on
the fact that (a,m) = (16807, 231 − 1) is a full-period generator.

Exercise 2.2.15 Determine whether the multipliers associated with m = 231 − 1 given
by Fishman (2001): a = 630 360 016, a = 742 938 285 a = 950 706 376, a = 1226 874 159,
a = 62 089 911, and a = 1343 714 438 are modulus-compatible.
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This section presents four applications of Monte Carlo simulation that are designed to
augment the elementary examples considered in Section 2.3. The applications have been
chosen to highlight the diversity of problems that can be addressed by Monte Carlo simula-
tion, and have been arranged in increasing order of the complexity of their implementation.
The problems are (1) estimating the probability that the determinant of a 3× 3 matrix of
random numbers having a particular sign pattern is positive (program det), (2) estimat-
ing the probability of winning in Craps (program craps), (3) estimating the probability
that a hatcheck girl will return all of the hats to the wrong owners when she returns n
hats at random (program hat) and (4) estimating the mean time to complete a stochastic
activity network (program san). Although the axiomatic approach to probability can be
used to solve some of these problems, a minor twist in the assumptions associated with
the problems often sinks an elegant axiomatic solution. A minor twist in the assumptions
typically does not cause serious difficulties with the Monte Carlo simulation approach.

2.4.1 RANDOM MATRICES

Although the elementary definitions associated with matrices may be familiar to read-
ers who have taken a course in linear algebra, we begin by reviewing some elementary
definitions associated with matrices.

Matrices and Determinants

Definition 2.4.1 A matrix is a set of real or complex numbers arranged in a rectangular
array.

Upper-case letters are typically used to denote matrices, with subscripted lower-case letters
used for their elements. The first subscript denotes the row where the element resides and
the second subscript denotes the column. Thus a generic m×n array A containing m rows
and n columns is written as:

A =









a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn









.

There are many operations (e.g., addition, multiplication, inversion), quantities (e.g.,
eigenvalues, trace, rank), and properties (e.g., positive definiteness) associated with matri-
ces. We consider just one particular quantity associated with a matrix: its determinant, a
single number associated with a square (n× n) matrix A, typically denoted* as |A| or det
A.

* The bars around A associated with the notation |A| have nothing to do with absolute
value.
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Definition 2.4.2 The determinant of a 2× 2 matrix

A =

[

a11 a12

a21 a22

]

is

|A| =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a21a12.

The determinant of a 3 × 3 matrix can be defined as a function of the determinants
of 2× 2 sub-matrices as follows.

Definition 2.4.3 The determinant of a 3× 3 matrix A is

|A| =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

.

Random Matrices

Matrix theory traditionally emphasizes matrices that consist of real or complex con-
stants. But what if the elements of a matrix are random variables? Such matrices are
referred to as “stochastic” or “random” matrices.

Although a myriad of questions can be asked concerning random matrices, our em-
phasis here will be limited to the following question: if the elements of a 3× 3 matrix are
independent random numbers with positive diagonal elements and negative off-diagonal
elements, what is the probability that the matrix has a positive determinant? That is, find
the probability that

∣

∣

∣

∣

∣

∣

+u11 −u12 −u13

−u21 +u22 −u23

−u31 −u32 +u33

∣

∣

∣

∣

∣

∣

> 0,

where the uij ’s are independent random numbers. This question is rather vexing using the
axiomatic approach to probability due to the appearance of some of the random numbers
multiple times on the right hand side of Definition 2.4.3.*

* This question is of interest to matrix theorists as it is the first example of a probability
that cannot be calculated easily. A positive determinant in this case is equivalent to the
matrix being of a special type called an M-matrix (Horn and Johnson, 1990). A positive
determinant in a matrix with this particular sign pattern (positive diagonal elements and
negative off-diagonal elements) corresponds to having all three 2 × 2 principal minors
(determinants of sub-matrices determined by deleting the same numbered row and column)
being positive.
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Having completed the conceptual formulation of this problem, we can go directly to
the implementation step since the algorithm is straightforward. The ANSI C program det

generates random matrices in a loop, counts the number of these matrices that have a
positive determinant and prints the ratio of this count to the number of replications.

In order to estimate the probability with some precision, it is reasonable to make one
long run. We should ensure, however, that we do not recycle random numbers. Since
nine random numbers are used to generate the 3 × 3 random matrix in each replication,
we should use fewer than (231 − 1)/9 ∼= 239 000 000 replications. For an initial random
number generator seed of 987654321 and 200 000 000 replications, the program returns an
estimated probability of a positive determinant as 0.05017347.

The point estimate for the probability has been reported to seven significant digits in
the preceding paragraph. How many of the leading digits are significant, and how many of
the trailing digits are sampling variability (noise) that should not be reported? One way
to address this question is to re-run the simulation with the same number of replications
and seed, but a different multiplier a. (Simply using a new seed will not be effective
because the random numbers will be recycled due to the large number of replications.)
Using a = 16807 and a = 41214, the estimates of the probability of a positive determinant
are 0.050168935 and 0.05021236, respectively. Making a minimum of three runs in Monte
Carlo and discrete-event simulation is good practice because it allows you to see the spread
of the point estimates. Using common sense or some statistical techniques that will be
developed in subsequent chapters, it is reasonable to report the point estimate to just
three significant digits: 0.0502. Obtaining a fourth digit of accuracy pushes the limits of
independence and uniformity of the random number generator.

As illustrated in the exercises, this Monte Carlo simulation solution can be extended
to cover other random variables as entries in the matrix or larger matrices.

2.4.2 CRAPS

The gambling game known as “Craps” provides a slightly more complicated Monte
Carlo simulation application. The game involves tossing a pair of fair dice one or more
times and observing the total number of spots showing on the up faces. If a 7 or 11 is
tossed on the first roll, the player wins immediately. If a 2, 3, or 12 is tossed on the first
roll, the player loses immediately. If any other number is tossed on the first roll, this
number is called the “point”. The dice are rolled repeatedly until the point is tossed (and
the player wins) or a 7 is tossed (and the player loses).

The problem is conceptually straightforward. The algorithm development is slightly
more complicated than in the previous example involving the 3 × 3 random matrix. An
Equilikely(1, 6) random variate is used to model the roll of a single fair die. The algorithm
that follows uses N for the number of replications of the game of Craps. The variable
wins counts the number of wins and the do .. while loop is used to simulate the player
attempting to make the point when more than one roll is necessary to complete the game.
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Algorithm 2.4.1 This algorithm estimates the winning probability usingN replications.

wins = 0;

for (i = 1; i <= N; i++) {

roll = Equilikely(1, 6) + Equilikely(1, 6);

if (roll == 7 or roll == 11)

wins++;

else if (roll != 2 and roll != 3 and roll != 12) {

point = roll;

do {

roll = Equilikely(1, 6) + Equilikely(1, 6);

if (roll == point) wins++;

} while (roll != point and roll != 7)

}

}

return (wins / N);

The algorithm has been implemented in program craps. The function Roll returns
the outcome when a pair of dice are tossed by adding the results of two calls to Equi-

likely(1, 6). The switch statement with several case prefixes (for 2 .. 12) has been
used to determine the result of the game based on the outcome of a roll. The program
was executed for 10 000 replications with seeds 987654321, 123456789, and 555555555,
yielding estimates of winning a game 0.497, 0.485, and 0.502, respectively. Unlike the
previous example, the solution using the axiomatic approach is known in this case — it is
244/495 ∼= 0.4929, which seems to be consistent with the Monte Carlo simulation results.
The fact that the probability of winning is slightly less than 0.5 lures gamblers to the game,
yet assures that the house will extract money from gamblers in the long run.

2.4.3 HATCHECK GIRL PROBLEM

A hatcheck girl at a fancy restaurant collects n hats and returns them at random.
What is the probability that all of the hats will be returned to the wrong owner?

Monte Carlo simulation can be used to solve this classic probability problem. We
begin by numbering the hats 1, 2, . . . , n, which is suitable for algorithm development and
computer implementation. The approach will be to generate one vector containing the
hats in the order that they are checked and another for the order that they are returned.
Since the order that they are checked is arbitrary, we can assume that the order that the
hats are checked is 1, 2, . . . , n. Next, it is necessary to determine the meaning of returning
the hats “at random”. One reasonable interpretation is that as each customer finishes
dining and requests their hat from the hatcheck girl, she chooses one of the remaining hats
in an equally likely manner. If this is the case then all of the n! permutations are equally
likely. When n = 3, for example, the 3! = 6 permutations:
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1, 2, 3 1, 3, 2 2, 1, 3 2, 3, 1 3, 1, 2 3, 2, 1

are equally likely. Since only the permutations 2, 3, 1 and 3, 1, 2 correspond to everyone
leaving the restaurant with the wrong hat (since the hats are checked in as 1, 2, 3), the
probability that all three hats went to the wrong owner is 2/6 = 1/3.

Thus the algorithmic portion of solving this problem via Monte Carlo simulation
reduces to devising an algorithm for generating a random permutation which represents
the order that the hats are returned.

One way to generate an element in a random permutation is to pick one of the n hats
randomly, and return it to the customer if it has not already been returned. Generating
a random permutation by this “obvious” algorithm is inefficient because: (1) it spends a
substantial amount of time checking to see if the hat has already been selected, and (2) it
may require several randomly generated hats in order to produce one that has not yet been
returned. Both of these detractors are particularly pronounced for the last few customers
that retrieve their hats. Fortunately, there is a very clever algorithm for generating a
random permutation that avoids these difficulties. Although it will be presented in detail
in Section 6.5, the reader is encouraged to think carefully about the O(n) algorithm below,
which is used to generate a random permutation of the array a with elements a[0], a[1],

. . ., a[n - 1] from the array a with elements input in any order .

for (i = 0; i < n - 1; i++) {

j = Equilikely(i, n - 1);

hold = a[j];

a[j] = a[i]; /* swap a[i] and a[j] */

a[i] = hold;

}

The Monte Carlo simulation to estimate the probability that all n customers will
receive the wrong hat is implemented in program hat. The function Shuffle is used to
generate a random permutation using the algorithm given above and the function Check

is used to check whether any customers left the restaurant with their own hat. When
run for 10 000 replications with n = 10 hats and initial seeds 987654321, 123456789, and
555555555, the estimates of the probability that all customers leave with the wrong hats
are 0.369, 0.369, and 0.368, respectively.

A question of interest here is the behavior of this probability as n increases. Intuition
might suggest that the probability goes to one in the limit as n → ∞, but this is not
the case. One way to approach this problem is to simulate for increasing values of n and
fashion a guess based on the results of multiple long simulations. One problem with this
approach is that you can never be sure that n is large enough. For this problem, the
axiomatic approach is a better and more elegant way to determine the behavior of this
probability as n → ∞.
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The hatcheck girl problem can be solved using the axiomatic approach to probability.
The probability of no matches is:

1−

(

1−
1

2!
+
1

3!
− · · ·+ (−1)n+1

1

n!

)

(Ross, 2002a, pages 42–44), which is 16481/44800 ∼= 0.3679 when n = 10. This result helps
to validate the implementation of the program hat for the case of n = 10 hats.*

Since the Taylor expansion of e−x around x = 0 is

e−x = 1− x+
x2

2!
−

x3

3!
+ · · ·

the limiting probability (as the number of hats n → ∞) of no matches is 1/e ∼= 0.36787944.
This axiomatic approach is clearly superior to making long Monte Carlo simulation runs
for various increasing values of n in order to determine this limiting probability.

2.4.4 STOCHASTIC ACTIVITY NETWORKS

The fourth and final example of a Monte Carlo simulation study is more comprehensive
than the first three. We consider the estimation of the mean time to complete a stochastic

activity network , where arcs in the network represent activities that must be completed
according to prescribed precedences.

Project Management and Networks

Project management is a field of study devoted to the analysis and management of
projects. Project management analyzes a project that typically occurs once (such as build-
ing a stadium, landing a man on the moon, building a dam, laying out a job shop) whereas
production management involves overseeing the manufacture of many items (such as au-
tomobiles on an assembly line). Production management is more forgiving than project
management in that there are multiple opportunities to correct faulty design decisions
midstream. Production management is repetitive in nature whereas project management
considers only a single undertaking.

Projects consist of activities. One aspect of project management is the sequencing of
these activities. When constructing a stadium, for example, the foundation must be poured
before the seats can be installed. Precedence relationships can be established between the
various activities. Certain activities cannot be started until others have been completed.
Project managers often use networks to graphically illustrate the precedence relationships.

* The fact that all three simulations yielded probability estimates slightly above the
theoretical value, however, would provide some impetus to make a few more runs. In an
analogous fashion, flipping three heads in a row is not sufficient evidence to conclude that
a coin is biased, but a prudent person would certainly make a few more flips to be on the
safe side.
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Generally speaking, a network is a collection of nodes and arcs. In our setting, the arcs
represent activities and the nodes are used to delay the beginning of outgoing activities
until all of the incoming activities have been completed. The network shown in Figure 2.4.1,
adopted from Pritsker (1995, pages 216–221), has six nodes and nine activities. The arc
connecting nodes i and j is denoted by aij . Activity start times are constrained in that no
activity emanating from a given node can start until all activities which enter that node
have been completed. In the network in Figure 2.4.1, activity a46, for example, may not
start until activities a14 and a34 have both been completed.
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a56Figure 2.4.1.

Six node,

nine activity

network.

Activity Durations and Critical Paths

The nodes and arcs in an activity network can be used to mark certain points in the
time evolution of the project:

• the nodes can mark the maximum completion times (e.g., the end time of the lat-
est activity completed for entering activities and the beginning time of all exiting
activities);

• the arcs in an activity network represent activity durations.

Figure 2.4.2 shows an example of a deterministic activity network, where the integers
shown near each arc are the time to complete each activity. If these activity durations are
fixed constants known with certainty, how long will it take to complete this network?
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To answer this question, we must introduce the concept of paths. A path is an ordered
set (sequence) of arcs leading in succession from node 1 to node n. Label the paths
π1, π2, ..., πr. Thus arc aij ∈ πk means that arc aij is along the path πk. The length of
path πk, denoted Lk, is the sum of all of the activity durations corresponding to the arcs
aij ∈ πk.
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Returning to the network in Figure 2.4.2, there are r = 6 paths in the network:

k

1

2

3

4

5

6

Node sequence

1→ 3→ 6

1→ 2→ 3→ 6

1→ 2→ 5→ 6

1→ 4→ 6

1→ 3→ 4→ 6

1→ 2→ 3→ 4→ 6

πk

{a13, a36}

{a12, a23, a36}

{a12, a25, a56}

{a14, a46}

{a13, a34, a46}

{a12, a23, a34, a46}

Lk

13

19

9

19

21

27

The ordering of the six paths is arbitrary. Assume that time is measured in days. The
longest of these paths, namely π6, which has a total duration of L6 = 27 days, is known
as the critical path. An algorithm known as the critical path method (CPM) can be
used to identify and determine the length of the critical path for large networks. In
general we denote the critical path as πc which is the path with the longest length, Lc =
max{L1, L2, ..., Lr}. The length of the critical path determines the time to complete the
entire network. Any path i whose length is shorter than the critical path (that is, Li < Lc)
can be delayed without lengthening the duration of the project. Activity a56, for example,
from the network in Figure 2.4.2 is on only one path, π3. Its duration could be changed
from 3 days to as long as 27− 9 = 18 days without extending the duration of the project.

The analysis of a project with deterministic activity durations, such as the one in
Figure 2.4.2, is straightforward. In most practical applications, however, activity durations
are not deterministic. We consider the analysis of a stochastic activity network, where the
activity durations are positive random variables. In practice, contracts often have penalties
for projects that exceed a deadline and bonuses for projects that are completed early.
Hence the accurate analysis of the time to complete a project can be quite important.*
We begin with the conceptual development of the problem, where the notation necessary
to develop an algorithm is defined. We will alternate between general notation and our
sample network.

Conceptual Development

Activity networks have a single source node labeled 1 and a single terminal node
labeled n, where n is the number of nodes in the network. Node 1 has one or more arcs
leaving it and node n only has arcs entering it. All other nodes must have at least one arc
entering and at least one arc leaving. There are m arcs (activities) in the network.

* The analysis of stochastic activity networks is often performed by a method known
as the project evaluation and review technique (PERT), which yields the approximate
distribution of the time to complete the network based on a result from probability theory
known as the central limit theorem. Our development here estimates the exact distribution
of the time to complete the network via simulation.
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Each arc aij has a positive random activity duration Yij . Node j has a random
time value Tj which denotes the time of completion of all activities entering node j, j =
1, 2, . . . , m. The random time Tn is therefore the completion time of the entire network.

In the deterministic network in Figure 2.4.2, there is always one or more critical
paths. In a stochastic activity network, a path is critical with a certain probability. For
each realization of a stochastic network, a path is the critical path with some probability
p(πk) = Pr(πk ≡ πc), k = 1, 2, . . . , r.

We need to transform the network given in Figure 2.4.1 to a mathematical entity
appropriate for algorithm development. A matrix is well-suited for this task because two
subscripts can be used to define arc aij and the ease of computer implementation. We use
a well-known tool known as a node-arc incidence matrix. A node-arc incidence matrix is
an n×m matrix N , where each row represents a node and each column represents an arc.
Let

N [i, j] =







1 arc j leaves node i

−1 arc j enters node i

0 otherwise.

We now apply the general notation developed so far to specific questions associated
with a specific network. For the network in Figure 2.4.3, use Monte Carlo simulation to
estimate:

• the mean time to complete the network;

• the probability that each path is the critical path.

We assume that each activity duration is a uniform random variate with a lower limit of
zero and an upper limit given in Figure 2.4.2 [e.g., Y12 has a Uniform(0, 3) distribution].
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Figure 2.4.3.

Stochastic

activity

network.

It may initially seem that this problem is best addressed by discrete-event simulation,
rather than Monte Carlo simulation, complete with an event calendar to keep track of the
timing of the activities. The following mathematical relationship, however, can be used to
analyze any network of this type by looking at just one activity at a time, and exploiting
the use of recursion in a programming language. If T1 is defined to be 0.0, then

Tj = max
i∈B(j)

{Ti + Yij},
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for j = 2, 3, . . . , n, where the set B(j) is the set of all nodes immediately before node j.
In the six-node network with j = 6, for example,

T6 = max{T3 + Y36, T4 + Y46, T5 + Y56}.

This observation allows us to write a function that returns a Tj value by recursively calling
for the completion times of all nodes before node j.

The 6× 9 matrix

N =















1 1 1 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0
0 −1 0 −1 0 1 1 0 0
0 0 −1 0 0 −1 0 1 0
0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 −1 −1 −1















is a node-arc incidence matrix of the network with n = 6 nodes and m = 9 arcs in
Figure 2.4.3. The number of 1’s in each row indicates the number of arcs exiting a particular
node and the number of −1’s indicates the number of arcs entering a particular node. There
is exactly one 1 and one −1 in each column and their positions indicates the beginning
and ending node of one particular activity.

Finally, we discuss the appropriate point estimators for the two measures of per-
formance prior to presenting the algorithm. The point estimator for the mean time to
complete the network, for example, is the sample mean of the Tn’s generated using the
algorithm to follow (which is generated by the recursive expression for Tj given earlier).
The point estimator for the probability p(πk) that path πk is a critical path is the fraction
of the networks generated that have πk as the critical path, k = 1, 2, . . . , r.

Algorithm

The recursive algorithm named T (for Time) that follows generates a single time to
completion Tj for some node j given that the network is represented by the node-arc
incidence matrix N . The realization of the stochastic activity durations Yij associated
with each arc aij are generated prior to the call to T . All that is needed to complete
the algorithm is to embed this code in a loop for a particular number of replications and
compute point estimates for the measures of performance listed in the previous paragraph.

The two (global) parameters for this algorithm are the n × m node-arc incidence
matrix N and one realization of the activity durations Yij generated as random variates.
The procedure T has a single argument j, the node whose completion time is of interest
(typically n to determine the time to complete the entire network). When T is passed
the argument 1, it will return a completion time of 0.0, since 0.0 is assumed to be the
beginning time of the network.
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Algorithm 2.4.2 This algorithm returns a random time to complete all activities prior
to node j for a single stochastic activity network with node-arc incidence matrix N .

k = 1; /* initialize index for columns of N */

l = 0; /* initialize index for predecessors to node j */

tmax = 0.0; /* initialize longest time of all paths to node j */

while (l < |B(j)|) { /* loop through predecessor nodes to node j */

if (N [j, k] == -1) { /* if column k of N has arc entering node j */

i = 1; /* begin search for predecessor node */

while (N[i, k] != 1) { /* while i not a predecessor index */

i++; /* increment i */

}

t = Ti + Yij /* recursive call: t is completion time of aij */

if (t >= tmax) tmax = t; /* choose largest completion time */

l++; /* increment predecessor index */

}

k++; /* increment column index */

}

return (tmax); /* return completion time Tj */

In most cases, this algorithm is called with argument n so that a realization of the
time to complete the entire network Tn is generated. In order to estimate p(πk), for
k = 1, 2, . . . , r, each path’s length must be calculated for each realization, then the fraction
of times that the length is the longest is calculated.

Implementation

The Monte Carlo simulation program san implements the recursive algorithm for gen-
erating nrep replications of the stochastic activity network completion times and estimates
the mean time to complete the network and the probability that each of the six paths is
the critical path.

When T is called with the argument j = 6, one realization of the nine uniform Yij ’s
are generated, then the algorithm given above is called to find T6. The recursive calls
associated with the predecessors (for node 6, the predecessor nodes are 3, 4, and 5), and
subsequent recursive calls will be made to their predecessors. When the algorithm is called
to generate the T6’s, the order of the recursive calls associated with the node-arc incidence
matrix given above is T6, T3, T1, T2, T1, etc.

The simulation was run for 10 000 network realizations with initial seeds of 987654321,
123456789, and 555555555. The mean times to complete the network were 14.64, 14.59,
and 14.57, respectively. The point estimates for p(πk) for each of the three runs are given
in the table that follows, where p̂1(πk), p̂2(πk), and p̂3(πk) denote the estimates of p(πk)
for the three initial seeds and p̂a(πk) denotes the average of the three estimates.



2.4 Monte Carlo Simulation Examples 85

k

1

2

3

4

5

6

πk

{a13, a36}

{a12, a23, a36}

{a12, a25, a56}

{a14, a46}

{a13, a34, a46}

{a12, a23, a34, a46}

p̂1(πk)

0.0168

0.0962

0.0013

0.1952

0.1161

0.5744

p̂2(πk)

0.0181

0.0970

0.0020

0.1974

0.1223

0.5632

p̂3(πk)

0.0193

0.0904

0.0013

0.1907

0.1182

0.5801

p̂a(πk)

0.0181

0.0945

0.0015

0.1944

0.1189

0.5726

The path through the nodes 1→ 2→ 3→ 4→ 6 is the most likely of the paths to be the
critical path. It is critical for 57.26% of the 30 000 realizations of the network generated.

2.4.5 EXERCISES

Exercise 2.4.1 Modify program det so that all 231−1 possible matrices associated with
the random number generator with (a,m) = (48271, 231 − 1) are generated.

Exercise 2.4.2 Modify program det so as to test the other random variates as entries:
(a) Uniform(0, 2), (b) Uniform(1, 2), (c) Exponential(1) (see Section 3.1 for the algorithm
to generate an Exponential(1) random variate).

Exercise 2.4.3 Modify program det so that it estimates the probability that a n ×

n matrix of random numbers with positive diagonal and negative off-diagonal signs has
a positive determinant for n = 2, 3, 4, 5. Use 1 000 000 replications and an initial seed
987654321.

Exercise 2.4.4a Show that the exact probability of winning at Craps is 244

495
.

Exercise 2.4.5 Dice can be loaded with weights so that one particular outcome is more
likely (e.g., rolling a six), although the outcome on the opposite side of the die (e.g., rolling
a one) becomes less likely. Assuming that one and six are on opposite faces, two and five
are on opposite faces, and three and four are on opposite faces, is there a way to load a
die so that the probability of winning at Craps exceeds 0.5?

Exercise 2.4.6 You make one $1000 bet on a game of Craps. I make 1000 $1 bets.
Find the probability that each of us comes out ahead. (The result should show you why a
casino would prefer many small bets to few large bets).

Exercise 2.4.7 Modify program Craps to estimate the mean number of rolls required
per game.
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Exercise 2.4.8 Modify program hat to estimate, for i = 1, 2, . . . , 20, (a) the average
number of hats returned correctly, (b) the average number of hats returned prior to the
first hat returned correctly conditioned on the correct return of one or more hats.

Exercise 2.4.9a Show that the exact probability that the hatcheck girl will return all
of the n hats to the improper person is

1−

(

1−
1

2!
+
1

3!
− · · ·+ (−1)n+1

1

n!

)

.

Exercise 2.4.10 Modify program san to estimate the mean time to complete the net-
work of Uniform(0, 1) activity durations given below.
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Y24

Y34

Exercise 2.4.11 Modify program san to store intermediate node completion times so
that no redundant recursive calls are made.

Exercise 2.4.12 Write a program bubble that estimates the mean number of compar-
isons and the mean number of swaps required to bubble sort a list of n numbers in random
order. Test your program for n = 2, 3, . . . , 20.

Exercise 2.4.13 A traveling salesman has his home in a certain city represented by
a random position on the unit square. (Any other shaped city could be modeled by
using the acceptance/rejection technique illustrated in Algorithm 2.3.1.) The salesman
wishes to travel to each of the n− 1 cities, also uniformly distributed on the unit square,
where he does business and returns home. Develop an algorithm and write a Monte Carlo
simulation program tsp that estimates the average distance for the salesman to take the
shortest route that visits each city exactly once and returns home. Code tsp to measure
distance between cities: (a) as the crow flies (Euclidean), and (b) only on North-South and
East-West roads (rectilinear, as in a large city). This traveling salesman problem (Hillier
and Lieberman, 2005) plays a central role in combinatorics and in a branch of operations
research known as “discrete optimization.”

Exercise 2.4.14a Bootstrapping is a statistical technique that is used to analyze a data
set without making any assumptions about the population distribution (for example, that
the population is bell-shaped). Efron and Tibshirani (1993, page 11) provide the rat
survival data given below. Seven rats are given a treatment and their survival times given
in days, are 16, 23, 38, 94, 99, 141, 197. Nine other rats constitute a control group, and
their survival times are 10, 27, 30, 40, 46, 51, 52, 104, 146.
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The median of the treatment group is 94 days and the median of the control group is 46
days. Do the medians differ by enough to conclude that there is a statistically significant
difference between them? The bootstrapping approach to estimating the variability of the
median for the treatment group is to generate B bootstrap samples, each of which consists
of seven samples drawn with replacement from 16, 23, 38, 94, 99, 141, and 197. Draw
B = 1000 such samples using an Equilikely(1, 7) random variate to determine the index of
the value sampled, and perform a similar sampling of B = 1000 values from the control
group. Perform whatever analysis you deem appropriate to determine whether there is a
statistically significant difference between the median survival times.

Exercise 2.4.15a During World War II, Axis Forces unwisely numbered their tanks se-
quentially from 1. As the Allied Forces captured tanks, they recorded the serial numbers
in an effort to determine enemy strength by estimating the total number of tanks. Assume
that four tanks, numbered 952, 1923, 1927, and 2000, have been captured. If an Equi-

likely(1, N) random variate is used to model the number of tanks, where the total number
of tanks N is unknown, here are four reasonable ways to estimate the number of tanks:

• Maximum likelihood. Choose the estimate that maximizes the likelihood of ob-
serving 2000 as the largest tank number. Obviously any estimate less that 2000 is
impossible (since 2000 was observed), so using N̂1 = 2000 as an estimate would yield
the probability of observing 2000 as the largest tank number as 1/2000. Any larger
value, such as 2007, will have a lower probability (that is, 1/2007).

• Mean matching. Since the theoretical mean of the Equilikely(1, N) distribution is
(N + 1)/2, the theoretical mean can be equated to the sample mean:

N + 1

2
=
952 + 1923 + 1927 + 2000

4
.

Solving for N yields N̂2 = 3400.

• Gaps. Since four tanks were captured, the average gap between the data values is

2000− 4

4
=
1996

4
= 499

tanks. Thus if consistent gaps were maintained, a guess for the highest numbered
tank would be N̂3 = 2000 + 499 + 1 = 2500.

• Minimum Variance Unbiased Estimator. For sampling with replacement (not a
brilliant military strategy) from an Equilikely(1, N) distribution, Hogg, McKean, and
Craig (2005, page 388) suggest the estimator

N̂4 =
Y n+1 − (Y − 1)n+1

Y n − (Y − 1)n
,

where n is the sample size and Y is the largest data value. For our data, N̂4 = 2499.38.

Devise a Monte Carlo simulation program that evaluates these four very different estimates
for the number of tanks using criteria of your choice.
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At a high level of abstraction, a common deterministic system model consists of a state

space that defines the set of possible system states and a corresponding state transition

function that determines how the system will evolve from state to state. Because the
system is deterministic, there is no uncertainty about state transitions: when the state of
the system changes, the new state is uniquely defined by the prior state of the system.

As illustrated in Section 2.1, this simple deterministic model is directly applicable
to the computational process associated with random number generation. In this kind of
application the size (cardinality) of the state space is typically large but finite. Because
the state space is finite, as the system transitions from state to state it is inevitable that
eventually some previously occurring state will occur again. At that point a cycle has
occurred and, because each state determines its successor uniquely, the cycle will then
repeat endlessly. The primary focus of this section is the development and implementation
of three algorithms to determine when this cycle begins and, when it does, the length of
the cycle so produced.

2.5.1 BACKGROUND

Definition 2.5.1 A deterministic finite-state system is defined in terms of:

• a finite state space (set) X with |X | elements (typically |X | is very large);

• a state transition function g : X → X ;

• finite-state sequences x0, x1, x2, x3, . . . generated by selecting x0 (perhaps at random)
from X and then defining xi+1 = g(xi) for i = 0, 1, 2, 3, . . .

Example 2.5.1 As a simple example, suppose that X is the set of all integers between
0 and 9999 (|X | = 10000). Thus the states are the 4-digit non-negative integers with the
understanding that if a state x is between 0 and 999 it will be made into a 4-digit integer
by appending 0’s on the left as necessary. Define the state transition function g(·) using the
now infamous midsquares method first suggested by von Neumann and Metropolis in the
1940’s as a possible way to generate random numbers. That is, define the transition from
state to state as follows. Take the current state, a 4-digit number, and square it. Write
the result as an 8-digit number by appending 0’s on the left if necessary. The next state is
then the 4-digit number defined by extracting the middle four digits. For example, if the
current state is xi = 1726 then x2

i
= 02979076 and so xi+1 = 9790. You should convince

yourself that the 4-digit midsquares method is equivalent to applying the following state
transition function g(x) = bx2/100c mod 10000. To illustrate, the finite-state sequences
corresponding to the initial states x0 = 1726, 6283, 5600 are

1726, 9790, 8441, 2504, 2700, 2900, 4100, 8100, 6100, 2100, 4100, . . .

6283, 4760, 6576, 2437, 9389, 1533, 3500, 2500, 2500, . . .

5600, 3600, 9600, 1600, 5600, . . .
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Definition 2.5.2 The sequence x0, x1, x2, . . . is ultimately periodic if and only if there
is a period p ≥ 1 and starting index s ≥ 0 such that xi+p = xi for all i ≥ s.

Consistent with the following theorem, all three finite-state sequence in Example 2.5.1
are ultimately periodic. Indeed, because of Theorem 2.5.1, when dealing with any finite-
state sequences the existence of (s, p) is guaranteed.

Theorem 2.5.1 For any finite state space X , state transition function g : X → X , and
initial state x0 ∈ X , the corresponding infinite sequence of states x0, x1, x2, . . . defined
by xi+1 = g(xi) for i = 0, 1, 2, . . . is ultimately periodic. Moreover, there is a unique
fundamental (smallest) period p ≥ 1 and unique associated starting index s ≥ 0 such that:

• s+ p ≤ |X |;

• if s > 0 the first s (transient) states x0, x1, . . . , xs−1 are all different and never reappear
in the infinite sequence;

• the next p (periodic) states xs, xs+1, . . . , xs+p−1 are all different but each reappears
in the infinite sequence consistent with the periodic pattern xi+p = xi for i ≥ s.

Proof Because X is finite and g : X → X , from the pigeonhole principle at least two of
the first |X |+ 1 states in the sequence x0, x1, x2, . . . must be the same. That is, there are
indices s and t with 0 ≤ s < t ≤ |X | such that xs = xt. Because any set of non-negative
integers has a least element, there is no loss of generality if it is assumed that s and t are
the smallest such integers. This defines s. Moreover, if p = t−s then xp+s = xt = xs which
establishes that p is the fundamental (smallest) period. The remaining details, including
the inductive proof that xp+i = xi for all i ≥ s, are left as an exercise.

Example 2.5.2 In general, the (s, p) pair depends on x0. For Example 2.5.1:

• if the initial state is x0 = 1726 so that

1726, 9790, 8441, 2504, 2700, 2900, 4100, 8100, 6100, 2100, 4100, . . .

then (s, p) = (6, 4);

• if the initial state is x0 = 6283 so that

6283, 4760, 6576, 2437, 9389, 1533, 3500, 2500, 2500, . . .

then (s, p) = (7, 1);

• if the initial state is x0 = 5600 so that

5600, 3600, 9600, 1600, 5600, . . .

then (s, p) = (0, 4).

Three algorithms for computing (s, p) are presented in this section. The first two of
these algorithms are “obvious”, the third (and best) is not.
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2.5.2 ALGORITHMS

The first two algorithms are based on the observation that (s, p) can be determined
as follows.

• Pick x0 and then generate x1 = g(x0). If x0 = x1 then (s, p) = (0, 1).

• If x0 and x1 are different, then generate x2 = g(x1). If x0 = x2 then (s, p) = (0, 2),
else if x1 = x2 then (s, p) = (1, 1).

• If x0, x1, and x2 are all different, then generate x3 = g(x2). If x0 = x3 then (s, p) =
(0, 3), else if x1 = x3 then (s, p) = (1, 2), else if x2 = x3 then (s, p) = (2, 1).

• If x0, x1, x2, x3 are all different, then generate x4 = g(x3) and compare, etc.

Eventually this algorithm will terminate with an index 1 ≤ t ≤ |X | and corresponding
state xt such that the t states x0, x1, . . . xt−1 are all different but exactly one of these
states, say xs, is equal to xt:

x0, x1, x2, x3, . . . , xs, . . . , xt−1
︸ ︷︷ ︸

all are different, but xs = xt

, xt, . . .

At this point s and p = t− s are both determined. Indeed, this algorithm is a constructive
proof of Theorem 2.5.1.

Algorithm 2.5.1

To implement the algorithm outlined above, note that if |X | is small enough then all
the intermediate states x0, x1, x2, . . ., xt can be stored in a linked list as they are generated.
This is summarized by the following algorithm which has (s+ p) storage requirements and
makes (s+ p) calls to g(·).

Algorithm 2.5.1 Given the state transition function g(·) and initial state x0, this algo-
rithm determines the fundamental pair (s, p).

x0 = initial state; /* initialize the list */

t = 0;

s = 0;

while (s == t) { /* while no match found */

xt+1 = g(xt); /* add a state to the list */

t++;

s = 0;

while (xs != xt) /* traverse the list */

s++;

}

p = t - s; /* period is the distance between matches */

return s, p;
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There is an important time-space trade-off in Algorithm 2.5.1. When the algorithm
terminates (s+ p) may be as large as |X |. In many important applications |X | is large, or
unknown, relative to the amount of available storage for the intermediate states. In this
case storing all the intermediate states may not be possible; if so, as an alternative it will
be necessary to trade time for space by generating these states repeatedly as necessary,
once for each comparison.

Algorithm 2.5.2

Algorithm 2.5.1 can be modified to eliminate the need to store all the intermediate
states by observing that only three states need to be stored — the initial state x0 and the
current value of xs and xt. In the following algorithm these three states are denoted x.o,
x.s, and x.t, respectively. This algorithm has minimal storage requirements and is easy to
program; however, the number of calls to g(·) is s+ (p+ s)(p+ s+ 1)/2.

Algorithm 2.5.2 Given the state transition function g(·) and initial state x.o, this
algorithm determines the corresponding fundamental pair (s, p).

x.t = x.o;

t = 0;

s = 0;

while (s == t) {

x.t = g(x.t);

t++;

x.s = x.o;

s = 0;

while (x.s != x.t) {

x.s = g(x.s);

s++;

}

}

p = t - s;

return s, p;

Example 2.5.3 Algorithm 2.5.1 or 2.5.2 applied to the 6-digit midsquares state transi-
tion function

g(x) = bx2/1000c mod 1000000

yields the following results (albeit slowly):

initial state x0 : 141138 119448 586593 735812 613282
fundamental pair (s, p) : (296, 29) (428, 210) (48, 13) (225, 1) (469, 20)
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The time complexity of Algorithm 2.5.2 will be dominated by calls to the state tran-
sition function g(·). For many practical applications, for example analyzing the (funda-
mental) period of a (good) random number generator, s+ (s+ p)(s+ p+ 1)/2 is so large
that the complexity (speed) of Algorithm 2.5.2 is unacceptable. For that reason, we are
motivated to look for a better algorithm to determine (s, p) — an algorithm with the best
features of Algorithms 2.5.1 and 2.5.2.

Algorithm 2.5.3

The development of this better algorithm is based on the following theorem which
provides two important characterizations of periods, fundamental or not. One character-
ization is that the starting index s has the property that x2q = xq if and only if q is a
period at least as large as s; the other is that the fundamental period p has the property
that the positive integer q is a period if and only if q is an integer multiple of p. The proof
of this theorem is left as an exercise.

Theorem 2.5.2 If the finite-state sequence x0, x1, x2, . . . has the fundamental pair (s, p)
and if q > 0 then:

• q is a period and q ≥ s if and only if x2q = xq;

• q is a period if and only if q mod p = 0.

Given the fundamental pair (s, p), the index

q =

{

p s = 0
ds/pep s > 0

plays an important role in the development of Algorithm 2.5.3. That is, since q is either p
or an integer multiple of p, it follows from Theorem 2.5.2 that q is a period of the infinite
sequence. In addition, if s > 0 then q = ds/pep so that

s = (s/p)p ≤ ds/pep = q and q = ds/pep < (1 + s/p)p = p+ s.

Similarly, if s = 0 then q = p. Therefore, the period q satisfies the inequality s ≤ q ≤ p+s.
Because q ≥ s, it follows from Theorem 2.5.2 that x2q = xq.

Now, suppose that x2i = xi for any integer i > 0. It follows from Theorem 2.5.2 that
i is a period with i ≥ s and that there exists an integer α ≥ 1 such that i = αp ≥ s. If
s > 0 then from the condition αp ≥ s, it follows that α ≥ ds/pe. If we multiply both sides
of this inequality by p, it follows that i = αp ≥ ds/pep = q. Similarly, if s = 0 then q = p

and because i = αp ≥ p, it follows that i ≥ q. Therefore, independent of the value of s, if
xi = x2i for some i > 0 then i ≥ q ≥ s.

From the previous discussion we see that although q may or may not be the smallest
(fundamental) period, it is at least the smallest period that is not smaller than s. This is
summarized by the following theorem.
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Theorem 2.5.3 Given the finite-state sequence x0, x1, x2, . . . with fundamental pair
(s, p), the smallest index i > 0 such that x2i = xi is i = q where

q =

{

p s = 0
ds/pep s > 0.

Moreover, i = q is a period that satisfies the inequality s ≤ q ≤ s+ p.

Theorem 2.5.3 is the basis for a 3-step algorithm with at most (5s+ 4p) calls to g(·)
and minimal storage requirements that will find (s, p). This algorithm is based on the
“racetrack analogy” in step (1).

(1) To determine q and xq — think of the two sequences

x0, x1, x2, x3, · · · , xi, · · ·

x0, x2, x4, x6, · · · , x2i, · · ·

as points (states) that start together and then move around a race track with the
second sequence moving twice as fast as the first. From Theorem 2.5.3 the second
sequence will catch the first sequence for the first time at i = q. Since q ≤ s + p the
number of steps in this race is no more than s + p. Thus there is an algorithm for
finding q and xq with no more than (3s + 3p) calls to g(·). Moreover, since the only
states that are needed in this race are the current values of xi and x2i, the storage
requirements for this step are minimal.

(2) To determine s and xs — because q is a period, xs = xs+q. Therefore, the starting
index s and corresponding state xs can be determined from a knowledge of xq by
beginning with the states x0, xq and generating the successor states

x0, x1, x2, x3, · · · , xi, · · ·

xq, x1+q, x2+q, x3+q, · · · , xi+q, · · ·

The starting index s is the first value of i ≥ 0 for which xi = xi+q. The number of
calls to g(·) for this step is 2s and the storage requirements are minimal.

(3) To determine p — once s, q, and xs have been determined, the fundamental period p

can be determined as follows.

(a) If 2s ≤ q (this is the usual case) then p = q. That is, because q ≤ s+ p, it follows
that s + q ≤ 2s + p. Therefore, if 2s ≤ q then s + q ≤ q + p which is equivalent
to s ≤ p. If s ≤ p, however, then q = p.

(b) If 2s > q then because xs = xs+p, a linear search can be used to determine p.
That is, p can be determined by starting with xs and generating the successor
states xs+i. The fundamental period p is then the first value of i > 0 for which
xs = xs+i. The number of calls to g(·) for this step is p with minimal storage
requirements.

Algorithm 2.5.3 is an implementation of this 3-step approach.



94 2. Random Number Generation

Algorithm 2.5.3 Given the state transition function g(·) and initial state x.o, this
algorithm determines the corresponding fundamental pair (s, p).

q = 1;

x.q = g(x.o);

z = g(x.q);

while (x.q != z) { /* step 1: determine q and x.q */

q++;

x.q = g(x.q);

z = g(g(z));

}

s = 0;

x.s = x.o;

z = x.q;

while (x.s != z) { /* step 2: determine s and x.s */

s++;

x.s = g(x.s);

z = g(z);

}

if (2 * s <= q) /* step 3: determine p */

p = q;

else {

p = 1;

z = g(x.s);

while (x.s != z) {

p++;

z = g(z);

}

}

return s, p;

Example 2.5.4 As a continuation of Example 2.5.3, Algorithm 2.5.3 applied to the
6-digit midsquares state transition function

g(x) = bx2/1000c mod 1000000

yields the following results:

initial state : 141138 119448 586593 735812 613282
speed up : 34 72 7 21 48

The “speed up” row indicates the efficiency of Algorithm 2.5.3 relative to Algorithm 2.5.2,
e.g., for x0 = 141138 Algorithm 2.5.3 is approximately 34 times faster than Algorithm 2.5.2.
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Full-Period Sequences

As suggested previously, a primary application for Algorithm 2.5.3 is to analyze the
period of a random number generator. Algorithm 2.5.3 is attractive in this application
because it is efficient and (s, p) can be determined without any knowledge of the “details”
of g(·). All that is needed to apply Algorithm 2.5.3 is a function that implements g(·) and,
perhaps, lots of CPU cycles.

Consistent with the discussion in Sections 2.1 and 2.2, when analyzing the period of a
random number generator, we are primarily concerned with full-period sequences. In the
generalized context of this section, that idea is expressed in terms of (s, p) by the following
definition and associated theorem.

Definition 2.5.3 The function g : X → X is a full-period state transition function and
the corresponding sequence x0, x1, x2, . . . has a full-period if and only if p = |X |.

Note that p = |X | is possible only if s = 0. That is, s = 0 is a necessary (but not
sufficient) condition for g(·) to be a full-period state transition function. Of course, if
(somehow) you know that s = 0 then there is no need to use Algorithm 2.5.3 to test for a
full period. Instead, it is sufficient to use the following variant of Algorithm 2.1.1

p = 1;

x = g(x0);

while (x != x0) {

p++;

x = g(x);

}

return p;

If p = |X | then g(·) is a full-period state transition function.

Example 2.5.5 If g(·) is a Lehmer generator (full period or not) then, from Theo-
rem 2.1.2, for any initial state we know that s = 0. Therefore, (with x0 = 1) the use of
Algorithm 2.1.1 is justified as a test for full period.

The following theorem is an immediate consequence of Definition 2.5.3 and Theo-
rem 2.5.1. The proof is left as an exercise.

Theorem 2.5.4 The infinite finite-state sequence x0, x1, x2, . . . has a full period if and
only if each possible state appears exactly once in any |X | consecutive terms of the se-
quence.

As an exercise you are encouraged to construct your own many-digit state transition
function using a variety of obscure bit-level and byte-level operations to “randomize” the
output. You will be impressed with how difficult it is to construct a full-period state
transition function. In that regard, see Algorithm K in Knuth (1998).
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2.5.3 STATE SPACE PARTITION

Provided (a,m) are properly chosen, Lehmer generators: (1) have full period, (2)
have been extensively studied, (3) provide multiple streams, and (4) produce output that
is generally considered to be acceptably random for discrete-event simulation purposes.
Given all of that, one could ask why anyone would be interested in other types of generators,
particularly if they are not full-period generators. But, the discussion in this section is not
focused on random number generators exclusively, and certainly not on Lehmer generators.
Instead, the focus is on general state transition functions and corresponding finite-state
sequences that may not be (and generally will not be) full period. Correspondingly, in the
remainder of this section we will study a state space partition that is naturally associated
with state transition functions that are not full period. The study of this state space
partition is facilitated by introducing the idea of “jump” functions, defined as follows.

Jump Functions

If g : X → X then for all x ∈ X inductively define the jump function gj(x) as follows

gj(x) =

{

x j = 0
g
(

gj−1(x)
)

j = 1, 2, 3, . . .

Because g : X → X it follows that gj : X → X for any j ≥ 0. That is, the jump
function gj(·) is also a state transition function. Moreover, if g(·) generates the sequence
x0, x1, x2, x3, . . . then gj(·) generates the sequence x0, xj , x2j , x3j , . . . In terms of the race-
track analogy, if j ≥ 2 then the state transition function gj(·) runs the race j times faster
than g(·) by jumping ahead j states at a time. This important idea is used in Chapter 3
to construct a Lehmer random number generator that can create and maintain multiple
streams of random numbers.

Periodic and Transient States

The following definition is the key to studying the state space partition that is natu-
rally associated with a state transition function that is not full period.

Definition 2.5.4 Given a finite state space X and state transition function g : X → X ,
then x ∈ X is a periodic (or recurrent) state if and only if there exists a positive integer j
with 0 < j ≤ |X | such that gj(x) = x. If x ∈ X is not a periodic state, then it is said to
be a transient state.

Theorem 2.5.1 is the basis for this definition. If x = x0 is the initial state in a finite-
state sequence, then either s = 0 in which case x is a periodic state because gp(x) = x, or
s > 0 in which case x is a transient state because gj(x) 6= x for all j = 1, 2, . . .

Definition 2.5.5 If x ∈ X is a periodic state, then the recurrent class corresponding to
x is the set

R = {gi(x) : i = 0, 1, 2, . . . , j − 1}

where j is the smallest positive integer such that gj(x) = x. Note that |R| = j.
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From Theorem 2.5.1, there must be at least one periodic state. Therefore, there must
be at least one recurrent class. Moreover, if x ∈ X is a periodic state with corresponding
recurrent class R and if x′ ∈ X is a periodic state with corresponding recurrent class R′,
then either R = R′ or R ∩ R′ = ∅. That is, the set of periodic states is partitioned into
recurrent classes. Equivalently, as Examples 2.5.6 and 2.6.7 illustrate, if there are multiple
recurrent classes then the classes are disjoint — each periodic state belongs to exactly one
recurrent class.

For reference, note that if g(·) is a full-period state transition function then all states
are periodic and there is only one recurrent class, which is X . If g(·) is not a full-period
state transition function then, generally, there will be transient states and more than one
recurrent class, but not necessarily.

Example 2.5.6 The 1-digit midsquares state transition function

g(x) = bx2c mod 10 = x2 mod 10

has four periodic states (0, 1, 5, 6) and four transient states (2, 3, 4, 7, 8, 9). The periodic
states are partitioned into four recurrent classes: {0}, {1}, {5}, and {6}, as illustrated in
Figure 2.5.1.
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Figure 2.5.1.

Periodic and

transient.

states.

Example 2.5.7 For the 4-digit midsquares state transition function, it can be shown
that there are 17 periodic states and 9983 transient states. The periodic states are par-
titioned into eight recurrent classes: {2100, 4100, 8100, 6100}, {0}, {100}, {2500}, {7600},
{1600, 5600, 3600, 9600}, {540, 2916, 5030, 3009}, and {3792}.

Although the recurrent classes contain periodic states only, from Theorem 2.5.1 any
transient state x ∈ X is “connected to” a recurrent class in the sense that there is a
positive integer j such that gj(x) is a periodic state. This observation is summarized by
the following theorem.

Theorem 2.5.5 If x ∈ X is a transient state then there then there exists a unique
recurrent class R such that gj(x) ∈ R for some j with 0 < j < |X |. In this case x is said
to be connected to R.

It follows from Theorem 2.5.5 that each recurrent class has associated with it a (per-
haps empty) set of transient states that are connected to it. In this way, each recurrent
class can be naturally enlarged to an associated “cluster”.

Definition 2.5.6 For each recurrent class R, the associated recurrent class cluster is

C = R∪ {all the transient states that are connected to R}.
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There is one cluster for each recurrent class, the clusters are disjoint, and each state
(transient or periodic) is in exactly one cluster. Equivalently, the clusters partition the state
space. This is an important conceptual result, particularly as it relates to understanding
the behavior of bad random number generators.

Relative to the conceptual model that random number generation corresponds to
drawing at random from an urn, the clusters correspond to urns, the initial state of the
generator determines the urn (cluster) from which all subsequent draws will be made,
and the recurrent class in the cluster defines the periodic cycle into which the output of
the generator must ultimately collapse. If the initial state of the generator is selected at
random, the cardinality of each cluster determines the probability that cluster (urn) will
be selected.

Example 2.5.8 As a continuation of Example 2.5.7, for the 4-digit midsquares state
transition function, there are eight clusters. The recurrent class associated with each
cluster is illustrated in the table below, along with the size of each cluster. The table is
sorted by decreasing cluster size

cluster size recurrent class
6291 {2100, 4100, 8100, 6100}
1968 {0}
1360 {1600, 5600, 3600, 9600}
130 {2500}
104 {100}
86 {540, 2916, 5030, 3009}
60 {7600}
1 {3792}

As a source of random numbers, the 4-digit midsquares method is a non-starter.

It is an interesting exercise to construct a time efficient algorithm that will generate the
state space decomposition into recurrent class clusters. In that regard, see Exercise 2.5.4.

2.5.4 EXERCISES

Exercise 2.5.1 The BASICA random number generator for the original “true blue”
IBM PC was defined by the state transition function

g(x) = (a(x mod 216) + c) mod 224

with a = 214 013 and c = 13 523 655. (a) If g : X → X with X = {0, 1, . . . ,m − 1} what
is m? (b) Determine (s, p) for initial seeds of 0, 1, 12, 123, 1234, and the last four digits
of your social security number. (c) For each initial seed, how does |X | = m relate to p?
(d) Comment.
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Exercise 2.5.2 Determine (s, p) for both of the following state transition functions

long g(long x) /* start with x = 777 */

{

x = (123 * x + 1) % 123456;

return x;

}

long g(long x) /* start with x = 37911 and x = 1 */

{

x = (9806 * x + 1) % 131071;

return x;

}

Exercise 2.5.3 Prove or disprove the following two conjectures. Given that |X | is finite,
g : X → X , x0 ∈ X , and (s, p) are the values returned by Algorithm 2.5.3: (a) if s = 0 and
p = |X | then the function g is a bijection (one-to-one and onto); (b) if the function g is a
bijection then s = 0 and p = |X |.

Exercise 2.5.4a Given a finite state space X and state transition function g : X → X ,
construct an efficient algorithm that partitions the state space into clusters. In particular,
the algorithm should output the size (cardinality) of each cluster, the smallest periodic
state in each cluster, and the size of each associated recurrent class. (a) What is the
output of this algorithm when applied to the 6-digit midsquares state transition function?
(b) Same question for the state transition function in Exercise 2.5.1? (c) Comment on both
of these state transition functions as a possible source of random numbers. (d) What is
the time complexity (relative to g(·) evaluations) and space complexity of your algorithm?

Exercise 2.5.5a Consider a large round 12-hour clock with an hour hand, a minute
hand, and 3600 marks (seconds) around the circumference of the clock. Both hands move
in discrete steps from one mark to the next. The marks define the set X = {0, 1, . . . , 3599}.
Assume that both hands are “geared” so that a manual movement of the hour hand by
one mark forces the minute hand to move by 12 marks. Generate a sequence of integers
x0, x1, x2, . . . in X as follows. Start with the hands in an arbitrary location (time) and let
x0 ∈ X be the location (mark) of the minute hand. To generate x1, move the hour hand
clockwise to the minute hand mark (x0), allowing the minutes hand to spin accordingly to
a new mark; this new minute hand mark is x1 ∈ X . To generate x2, move the hour hand
to x1 and let x2 ∈ X be the new location of the minute hand, etc. What do you think of
this as a source of random numbers? (“Not much” is not a sufficient answer.)

Exercise 2.5.6a Same as Exercise 2.5.5 except for a clock with 360 000 marks around
the circumference.
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As discussed in Chapter 1, ssq1 and sis1 are examples of trace-driven discrete-
event simulation programs. By definition, a trace-driven simulation relies on input data
from an external source to supply recorded realizations of naturally occurring stochastic
processes. Total reliance on such external data limits the applicability of a discrete-event
simulation program, naturally inhibiting the user’s ability to do “what if” studies. Given
this limitation, a general discrete-event simulation objective is to develop methods for using
a random number generator to convert a trace-driven discrete-event simulation program to
a discrete-event simulation program that is not dependent on external data. This chapter
provides several examples.

3.1.1 SINGLE-SERVER SERVICE NODE

Relative to the single-server service node model from Chapter 1, two stochastic as-
sumptions are needed to free program ssq1 from its reliance on external data. One as-
sumption relates to the arrival times, the other assumption relates to the service times.
We consider the service times first, using a Uniform(a, b) random variate model.

Example 3.1.1 Suppose that time is measured in minutes in a single-server service
node model and all that is known about the service time is that it is random with possible
values between 1.0 and 2.0. That is, although we know the range of possible values, we
are otherwise in such a state of ignorance about the stochastic behavior of this server that
we are unwilling to say some service times (between 1.0 and 2.0) are more likely than
others. In this case we have modeled service time as a Uniform(1.0, 2.0) random variable.
Accordingly, random variate service times, say s, can be generated via the assignment

s = Uniform(1.0, 2.0);

Exponential Random Variates

A Uniform(a, b) random variable has the property that all values between a and b

are equally likely. In most applications this is an unrealistic assumption; instead, some
values will be more likely than others. Specifically, there are many discrete-event simulation
applications that require a continuous random variate, say x, that can take on any positive
value but in such a way that small values of x are more likely than large values.

To generate such a random variate we need a nonlinear transformation that maps
values of the random number u between 0.0 and 1.0 to values of x between 0.0 and ∞

and does so by “stretching” large values of u much more so than small values. Although a
variety of such nonlinear transformation are possible, for example x = u/(1− u), perhaps
the most common is x = −µ ln(1 − u) where µ > 0 is a parameter that controls the rate
of stretching and ln(·) is the natural logarithm (base e).* As explained in Chapter 7, this
transformation generates what is known as an Exponential(µ) random variate.

* The function log(x) in the ANSI C library <math.h> represents the mathematical
natural log function ln(x). In the equation x = −µ ln(1− u) do not confuse the positive,
real-valued parameter µ with the Uniform(0, 1) random variate u.
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It is often appropriate to generate interarrivals as Exponential(µ) random variates, as
we will do later in Example 3.1.2. In some important theoretical situations, service times
are also modeled this way (see Section 8.5). The geometry associated with the Exponen-

tial(µ) random variate transformation x = −µ ln(1− u) is illustrated in Figure 3.1.1.
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Exponential variate

generation geometry.

By inspection we see that the transformation is monotone increasing and, for any value of
the parameter µ > 0, the interval 0 < u < 1 is mapped one-to-one and onto the interval
0 < x < ∞. That is,

0 < u < 1 ⇐⇒ 0 < (1− u) < 1

⇐⇒ −∞ < ln(1− u) < 0

⇐⇒ 0 < −µ ln(1− u) < ∞

⇐⇒ 0 < x < ∞.

Definition 3.1.1 This ANSI C function generates an Exponential(µ) random variate*

double Exponential(double µ) /* use µ > 0.0 */

{

return (-µ * log(1.0 - Random()));

}

The statistical significance of the parameter µ is that if repeated calls to the function
Exponential(µ) are used to generate a random variate sample x1, x2, . . ., xn then, in
the limit as n → ∞, the sample mean (average) of this sample will converge to µ. In
the same sense, repeated calls to the function Uniform(a, b) will produce a sample whose
mean converges to (a+ b)/2 and repeated calls to the function Equilikely(a, b) will also
produce a sample whose mean converges to (a+ b)/2.

* The ANSI C standard says that log(0.0) may produce “a range error”. This possi-
bility is naturally avoided in the function Exponential because the largest possible value
of Random is less than 1.0. See Exercise 3.1.3.
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Example 3.1.2 In a single-server service node simulation, to generate a sequence of
random variate arrival times a1, a2, a3, . . . , an with an average interarrival time that will
converge to µ as n → ∞ it is common to generate Exponential(µ) interarrival times (see
Definition 1.2.3) and then (with a0 = 0) create the arrival times by the assignment

ai = ai−1 + Exponential(µ); i = 1, 2, 3, . . . , n

As discussed in Chapter 7, this use of an Exponential(µ) random variate corresponds
naturally to the idea of jobs arriving at random with an arrival rate that will converge
to 1/µ as n → ∞. Similarly, as in Example 3.1.1, to generate a random variate sequence
of service times s1, s2, s3, . . . , sn equally likely to lie anywhere between a and b (with
0 ≤ a < b) and with an average service time that converges to (a+ b)/2, the assignment

si = Uniform(a, b); i = 1, 2, 3, . . . , n

can be used. The average service time (a+ b)/2 corresponds to a service rate of 2/(a+ b).

Program ssq2

Program ssq2 is based on the two stochastic modeling assumptions in Example 3.1.2.*
Program ssq2 is an extension of program ssq1 in that the arrival times and service times
are generated randomly (rather than relying on a trace-driven input) and a complete set
of first-order statistics r̄, w̄, d̄, s̄, l̄, q̄, x̄ is generated. Note that each time the function
GetArrival() is called the static variable arrival, which represents an arrival time, is
incremented by a call to the function Exponential(2.0), which generates an interarrival

time.

Because program ssq2 generates stochastic data as needed there is essentially no
restriction on the number of jobs that can be processed. Therefore, the program can
be used to study the steady-state behavior of a single-server service node. That is, by
experimenting with an increasing number of jobs processed, one can investigate whether
or not the service node statistics will converge to constant values, independent of the choice
of the rng initial seed and the initial state of the service node. Steady-state behavior —
can it be achieved and, if so, how many jobs does it take to do so — is an important issue
that will be explored briefly in this chapter and in more detail in Chapter 8.

Program ssq2 can also be used to study the transient behavior of a single-server
service node. The idea in this case is to fix the number of jobs processed at some finite
value and run (replicate) the program repeatedly with the initial state of the service node
fixed, changing only the rng initial seed from run to run. In this case replication will
produce a natural variation in the service node statistics consistent with the fact that for
a fixed number of jobs, the service node statistics are not independent of the initial seed
or the initial state of the service node. Transient behavior, and its relation to steady-state
behavior, will be considered in Chapter 8.

* In the jargon of queuing theory (see Section 8.5), program ssq2 simulates what is
known as an M/G/1 queue (see Kleinrock, 1975, 1976, or Gross and Harris, 1985).
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Steady-State Statistics

Example 3.1.3 If the Exponential(µ) interarrival time parameter is set to µ = 2.0
so that the steady-state arrival rate is 1/µ = 0.5 and if the Uniform(a, b) service time
parameters are set to a = 1.0 and b = 2.0 respectively so that the steady-state service rate
is 2/(a+ b) ∼= 0.67, then to d.dd precision the theoretical steady-state statistics generated
from an analytic model (exact, not estimates by simulation) program ssq2 will produce
are (see Gross and Harris, 1985)

r̄ w̄ d̄ s̄ l̄ q̄ x̄

2.00 3.83 2.33 1.50 1.92 1.17 0.75

Therefore, although the server is only busy 75% of the time (x̄ = 0.75), “on average” there
are approximately two jobs (l̄ = 23/12 ∼= 1.92) in the service node and a job can expect to
spend more time (d̄ = 23/6− 3/2 ∼= 2.33 time units) in the queue than in service (s̄ = 1.50
time units). As illustrated in Figure 3.1.2 for the average wait, the number of jobs that
must be pushed through the service node to achieve these steady-state statistics is large.
To produce this figure, program ssq2 was modified to print the accumulated average wait
every 20 jobs. The results are presented for three choices of the rng initial seed.* The
solid, horizontal line at height 23/6 ∼= 3.83 represents the steady-state value of w̄.
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Average

wait times.

In Example 3.1.3 convergence of w̄ to the steady-state value 3.83 is slow, erratic, and
very dependent on the random variate sequence of stochastic arrival and service times, as
manifested by the choice of initial seed. Note, for example, the dramatic rise in average wait
beginning at about job 100 associated with the rng initial seed 12345. You are encouraged
to add diagnostic printing and additional statistics gathering to program ssq2 to better
understand what combination of chance events occurred to produce this rise.

The Uniform(a, b) service time model in Example 3.1.3 may not be realistic. Service
times seldom “cut off” beyond a minimum and maximum value. More detail will be given
in subsequent chapters on how to select realistic distributions for input models.

* There is nothing special about these three initial seeds. Do not fall into the common
trap of thinking that some rng initial seeds are necessarily better than others.
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Example 3.1.3 shows that the stochastic character of the arrival times and service
times, as manifested by the choice of rng initial seed, has a significant effect on the
transition-to-steady-state behavior of a single-server service node. This example also il-
lustrates the use of the library rng to conduct controlled “what if” experiments. Studies
like this are the stuff of discrete-event simulation. Additional examples of this kind of
experimentation, and the selection of values of µ, a, and b, are presented in later chapters.

Geometric Random Variates

As discussed in Chapter 2, an Equilikely(a, b) random variate is the discrete analog of
a continuous Uniform(a, b) random variate. Consistent with this characterization, one way
to generate an Equilikely(a, b) random variate is to generate a Uniform(a, b + 1) random
variate instead (note that the upper limit is b + 1, not b) and then convert (cast) the
resulting floating-point result to an integer. That is, if a and b are integers with a < b and
if x is a Uniform(a, b+ 1) random variate then bxc is an Equilikely(a, b) random variate.

Given the analogy between Uniform(a, b) and Equilikely(a, b) random variates, it is
reasonable to expect that there is a discrete analog to a continuous Exponential(µ) random
variate; and there is. Specifically, if x is an Exponential(µ) random variate, let y be the
discrete random variate defined by y = bxc. For a better understanding of this discrete
random variate, let p = Pr(y 6= 0) denote the probability that y is not zero. Since x is
generated as x = −µ ln(1−u) with u a Uniform(0, 1) random variate, y = bxc will not be
zero if and only if x ≥ 1. Equivalently

x ≥ 1 ⇐⇒ −µ ln(1− u) ≥ 1

⇐⇒ ln(1− u) ≤ −1/µ

⇐⇒ 1− u ≤ exp(−1/µ)

where exp(−1/µ) is e−1/µ, and so y 6= 0 if and only if 1− u ≤ exp(−1/µ). Like u, 1− u is
also a Uniform(0, 1) random variate. Moreover, for any 0 < p < 1, the condition 1−u ≤ p

is true with probability p (see Section 7.1). Therefore, p = Pr(y 6= 0) = exp(−1/µ).

If x is an Exponential(µ) random variate and if y = bxc with p = exp(−1/µ), then it
is conventional to call y a Geometric(p) random variable (see Chapter 6). Moreover, it is
conventional to use p rather than µ = −1/ ln(p) to define y directly by the equation

y = bln(1− u)/ ln(p)c.

Definition 3.1.2 This ANSI C function generates a Geometric(p) random variate*

long Geometric(double p) /* use 0.0 < p < 1.0 */

{

return ((long) (log(1.0 - Random()) / log(p)));

}

* Note that log(0.0) is avoided in this function because the largest possible value
returned by Random is less than 1.0.
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In addition to its significance as Pr(y 6= 0), the parameter p is also related to the mean
of a Geometric(p) sample. Specifically, if repeated calls to the function Geometric(p) are
used to generate a random variate sample y1, y2, . . . , yn then, in the limit as n → ∞, the
mean of this sample will converge to p/(1−p). Note that if p is close to 0.0 then the mean
will be close to 0.0. At the other extreme, if p is close to 1.0 then the mean will be large.

In the following example, a Geometric(p) random variate is used as part of a composite

service time model. In this example the parameter p has been adjusted to make the average
service time match that of the Uniform(1.0, 2.0) server in program ssq2.

Example 3.1.4 Usually one has sufficient information to argue that a Uniform(a, b)
random variate service time model is not appropriate; instead, a more sophisticated model
is justified. Consider a hypothetical server that, as in program ssq2, processes a stream
of jobs arriving, at random, with a steady-state arrival rate of 0.5 jobs per minute. The
service requirement associated with each arriving job has two stochastic components:

• the number of service tasks is one plus a Geometric(0.9) random variate;

• the time (in minutes) per task is, independently for each task, a Uniform(0.1, 0.2)
random variate.

In this case, program ssq2 would need to be modified by including the function Geometric
from Definition 3.1.2 and changing the function GetService to the following.

double GetService(void)

{

long k;

double sum = 0.0;

long tasks = 1 + Geometric(0.9);

for (k = 0; k < tasks; k++)

sum += Uniform(0.1, 0.2);

return (sum);

}

With this modification, the population steady-state statistics from the analytic model to
d.dd precision that will be produced are:

r̄ w̄ d̄ s̄ l̄ q̄ x̄

2.00 5.77 4.27 1.50 2.89 2.14 0.75

Program ssq2 will produce results that converge to these values for a very long run. When
compared with the steady-state results in Example 3.1.3, note that although the arrival rate
1/r̄ = 0.50, the service rate 1/s̄ = 0.67, and the utilization x̄ = 0.75 are the same, the other
four statistics are significantly larger than in Example 3.1.3. This difference illustrates the
sensitivity of the performance measures to the service time distribution. This highlights
the importance of using an accurate service time model. See Exercise 3.1.5.
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3.1.2 SIMPLE INVENTORY SYSTEM

Example 3.1.5 In a simple inventory system simulation, to generate a random variate
sequence of demands d1, d2, d3, . . . equally likely to have any integer value between a and
b inclusive and with an average of (a+ b)/2 use

di = Equilikely(a, b) i = 1, 2, 3, . . .

Recognize, however, that the previous discussion about Uniform(a, b) service times as an
unrealistic model also applies here in the discrete case. That is, in this application the
modeling assumption that all the demands between a and b are equally likely is probably
unrealistic; some demands should be more likely than others. As an alternative model we
could consider generating the demands as Geometric(p) random variates. In this particular
case, however, a Geometric(p) demand model is probably not very realistic either. In
Chapter 6 we will consider alternative models that are more appropriate.

Program sis2

Program sis2 is based on the Equilikely(a, b) stochastic modeling assumption in Ex-
ample 3.1.5. This program is an extension of program sis1 in that the demands are gen-
erated randomly (rather than relying on a trace-driven input). Consequently, in a manner
analogous to that illustrated in Example 3.1.3, program sis2 can be used to study the
transition-to-steady-state behavior of a simple inventory system.

Example 3.1.6 If the Equilikely(a, b) demand parameters are set to (a, b) = (10, 50) so
that the average demand per time interval is (a + b)/2 = 30, then with (s, S) = (20, 80)
the (approximate) steady-state statistics program sis2 will produce are

d̄ ō ū l̄+ l̄−

30.00 30.00 0.39 42.86 0.26

As illustrated in Figure 3.1.3 (using the same three rng initial seeds used in Example 3.1.3)
for the average inventory level l̄ = l̄+ − l̄−, at least several hundred time intervals must be
simulated to approximate these steady-state statistics. To produce Figure 3.1.3, program
sis2 was modified to print the accumulated value of l̄ every 5 time intervals.
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Optimal Steady-State System Performance

Example 3.1.7 As an extension of Example 1.3.7, a modified version of program sis2

was used to simulate n = 100 weeks (about two years) of automobile dealership operation
with S = 80 and values of s varied from 0 to 60. The cost parameters from Example 1.3.5
were used to determine the variable part of the dealership’s average weekly cost of opera-
tion. That is, as discussed in Section 1.3, the (large) part of the average weekly cost that
is proportional to the average weekly order ō, and therefore is independent of (s, S), was
ignored so that only the dependent cost was computed. The results are presented with
◦’s representing the n = 100 averages. As illustrated in Figure 3.1.4, there is a relatively
well-defined minimum with an optimal value of s somewhere between 20 and 30.
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The same initial seed (12345) was used for each value of s. Fixing the initial seed guarantees
that exactly the same sequence of demands will be processed; therefore, any changes in the
resulting system statistics are due to changes in s only. As in Example 3.1.6, the demands
were generated as Equilikely(10, 50) random variates. To compute steady-state statistics,
all the modeling assumptions upon which this simulation is based would have to remain
valid for many years. For that reason, steady-state statistics are not very meaningful in
this example. Indeed, it is questionable to assume that the demand distribution, cost
parameters, and inventory policy will remain constant for even two years. Steady-state
performance statistics are fashionable, however, and represent an interesting limiting case.
For that reason averages based on n = 10000 weeks of operation (approximately 192
years) are presented as •’s for comparison. These estimated steady-state averages have
the attractive feature that they vary smoothly with s and, because of that, the optimum
steady-state value of s is relatively well defined. In a world that (on average) never changes,
if S = 80 the auto dealer should use an inventory threshold of s = 23. This example
illustrates the more general problem of optimizing a function that is not known with
certainty known as stochastic optimization.
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3.1.3 STATISTICAL CONSIDERATIONS

The statistical analysis of simulation-generated data is discussed in Chapters 4 and 8.
In anticipation of that discussion, we note that Example 3.1.7 illustrates two important
ideas: variance reduction and robust estimation. We consider variance reduction first,
particularly as it relates to transient (small n) output statistics.

Variance Reduction

Because the transient statistical output produced by any discrete-event simulation
program depends on the sequence of random variates generated as the program executes,
the output will always have some inherent uncertainty. That is, as illustrated in Exam-
ples 3.1.3 and 3.1.6, the transient statistical output depends on the value of the rng initial
seed, particularly if the number of jobs or the number of simulated time intervals is small.
Therefore, if a variety of initial seeds are used (a policy we certainly advocate) there will
be a natural variance in any computed transient statistic.

The statistical tools used to quantify this variance/uncertainty will be developed in
Chapter 8. For now, the key point to be made is that using common random numbers,
as in Example 3.1.7 when n = 100, is an intuitive approach to reducing the variance in
computed system statistics. This example of variance reduction (using common random
numbers) is consistent with the time-honored approach to experimental scientific “what
if” studies where, if possible, all variables except one are fixed. Fixing the initial seed
at 12345 in Example 3.1.7 isolates the variability of the performance measure (dependent
cost). This technique is more generally known as blocking in statistics.

Robust Estimation

The optimal (minimal cost) estimated steady-state threshold value s = 23 in Exam-
ple 3.1.7 is a robust estimate because other values of s close to 23 yield essentially the same
cost. Therefore, the impact of using one of these alternate values of s in place of s = 23
would be slight. In a more general sense, it is desirable for an optimal value to be robust
to all the assumptions upon which the discrete-event simulation model is based. Relative
to Example 3.1.7, this means that we would be interested in determining what happens to
the optimal value of s when, for example S is varied about 80, or the average demand (per
week) is varied about 30, or there are delivery lags. The estimate s = 23 is robust only if
it remains close to the minimal cost operating policy level when all these assumptions are
altered. In general, robust estimators are insensitive to model assumptions.

3.1.4 EXERCISES

Exercise 3.1.1 (a) Modify program ssq2 to use Exponential(1.5) service times. (b) Pro-
cess a relatively large number of jobs, say 100 000, and determine what changes this pro-
duces relative to the statistics in Example 3.1.3? (c) Explain (or conjecture) why some
statistics change and others do not.
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Exercise 3.1.2 (a) Relative to the steady-state statistics in Example 3.1.3 and the sta-
tistical equations in Section 1.2, list all of the consistency checks that should be applicable.
(b) Verify that all of these consistency checks are valid.

Exercise 3.1.3 (a) Given that the Lehmer random number generator used in the library
rng has a modulus of 231 − 1, what are the largest and smallest possible numerical values
(as a function of µ) that the function Exponential(µ) can return? (b) Comment on this
relative to the theoretical expectation that an Exponential(µ) random variate can have an
arbitrarily large value and a value arbitrarily close to zero.

Exercise 3.1.4 (a) Conduct a transition-to-steady-state study like that in Example 3.1.3
except for a service time model that is Uniform(1.3, 2.3). Be specific about the number
of jobs that seem to be required to produce steady-state statistics. (b) Comment.

Exercise 3.1.5 (a) Verify that the mean service time in Example 3.1.4 is 1.5. (b) Verify
that the steady-state statistics in Example 3.1.4 seem to be correct. (c) Note that the
arrival rate, service rate, and utilization are the same as those in Example 3.1.3, yet all
the other statistics are larger than those in Example 3.1.3. Explain (or conjecture) why
this is so. Be specific.

Exercise 3.1.6 (a) Modify program sis2 to compute data like that in Example 3.1.7.
Use the functions PutSeed and GetSeed from the library rng in such a way that one

initial seed is supplied by the system clock, printed as part of the program’s output and
used automatically to generate the same demand sequence for all values of s. (b) For s =
15, 16, . . . , 35 create a figure (or table) similar to the one in Example 3.1.7. (c) Comment.

Exercise 3.1.7 (a) Relative to Example 3.1.5, if instead the random variate sequence
of demands are generated as

di = Equilikely(5, 25) + Equilikely(5, 25) i = 1, 2, 3, . . .

then, when compared with those in Example 3.1.6, demonstrate that some of the steady-
state statistics will be the same and others will not. (b) Explain why this is so.

Exercise 3.1.8a Modify program sis2 to simulate the operation of a simple inventory
system with a delivery lag. (a) Specifically, assume that if an order is placed at time
t = i − 1 then the order will arrive at the later time t = i − 1 + δi where the delivery lag
δi is a Uniform(0, 1) random variate, independent of the size of the order. (b) What are
the equations for l̄+

i
and l̄−

i
? (c) Using the same parameter values as in Example 3.1.7,

determine that value of s for which the average dependent cost is least. Compare this
result with that obtained in Example 3.1.7. (d) It is important to have the same sequence
of demands for all values of s, with and without a lag. Why? How did you accomplish
this? (e) Discuss what you did to convince yourself that the modification is correct.
(f) For both n = 100 and n = 10000 produce a table of dependent costs corresponding to
s = 10, 20, 30, 40, 50, 60.
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A typical discrete-event simulation model will have many stochastic components.
When this model is implemented at the computational level, the statistical analysis of
system performance is often facilitated by having a unique source of randomness for each
stochastic component. Although it may seem that the best way to meet this need for
multiple sources of randomness is to create multiple random number generators, there is
a simpler and better approach — use one random number generator to generate multiple
“streams” of random numbers using multiple initial seeds as entry points, one for each
stochastic system component. Consistent with this approach, in this section we extend
the Lehmer random number generation algorithm from Chapter 2 by adding the ability to
partition the generator’s output sequence into multiple subsequences (streams).

3.2.1 STREAMS

The library rng provides a way to partition the random number generator’s output
into multiple streams by establishing multiple states for the generator, one for each stream.
As illustrated by the following example, the function PutSeed can be used to set the state
of the generator with the current state of the stream before generating a random variate
appropriate to the corresponding stochastic component and the function GetSeed can be
used to retrieve the revised state of the stream after the random variate has been generated.

Example 3.2.1 The program ssq2 has two stochastic components, the arrival process
and the service process, represented by the functions GetArrival and GetService respec-
tively. To create a different stream of random numbers for each component, it is sufficient
to allocate a different Lehmer generator state variable to each function. This is illustrated
by modifying GetService from its original form in ssq2, which is

double GetService(void) /* original form */

{

return (Uniform(1.0, 2.0));

}

to the multi-stream form indicated which uses the static variable x to represent the current
state of the service process stream, initialized to 123456789.

double GetService(void) /* multi-stream form */

{

double s;

static long x = 123456789; /* use your favorite initial seed */

PutSeed(x); /* set the state of the generator */

s = Uniform(1.0, 2.0);

GetSeed(&x); /* save the new generator state */

return (s);

}
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Example 3.2.2 As in the previous example, the function GetArrival should be modified
similarly, with a corresponding static variable to represent the current state of the arrival
process stream, but initialized to a different value. That is, the original form of GetArrival
in program ssq2

double GetArrival(void) /* original form */

{

static double arrival = START;

arrival += Exponential(2.0);

return (arrival);

}

should be modified to something like

double GetArrival(void) /* multi-stream form */

{

static double arrival = START;

static long x = 987654321; /* use an appropriate initial seed */

PutSeed(x); /* set the state of the generator */

arrival += Exponential(2.0);

GetSeed(&x); /* save the new generator state */

return (arrival);

}

As in Example 3.2.1, in the multi-stream form the static variable x represents the current
state of the arrival process stream, initialized in this case to 987654321. Note that there
is nothing magic about this initial state (relative to 123456789) and, indeed, it may not
even be a particularly good choice — more about that point later in this section.

If GetService and GetArrival are modified as in Examples 3.2.1 and 3.2.2, then the
arrival times will be drawn from one stream of random numbers and the service times will
be drawn from another stream. Provided the two streams don’t overlap, in this way the
arrival process and service process will be uncoupled.* As the following example illustrates,
the cost of this uncoupling in terms of execution time is modest.

Example 3.2.3 The parameter LAST in program ssq2 was changed to process 1 000 000
jobs and the execution time to process this many jobs was recorded. (A large number of
jobs was used to get an accurate time comparison.) Program ssq2 was then modified as
in Examples 3.2.1 and 3.2.2 and used to process 1 000 000 jobs, with the execution time
recorded. The increase in execution time was 20%.

* Also, because the scope of the two stream state variables (both are called x) is local
to their corresponding functions, the use of PutSeed in program ssq2 to initialize the
generator can, and should, be eliminated from main.
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Jump Multipliers

As illustrated in the previous examples, the library rng can be used to support the al-
location of a unique stream of random numbers to each stochastic component in a discrete-
event simulation program. There is, however, a potential problem with this approach —
the assignment of initial seeds. That is, each stream requires a unique initial state that
should be chosen to produce disjoint streams. But, if multiple initial states are picked
at whim there is no convenient way to guarantee that the streams are disjoint; some of
the initial states may be just a few calls to Random away from one another. With this
limitation of the library rng in mind, we now turn to the issue of constructing a random
number generation library called rngs which is a multi-stream version of the library rng.
We begin by recalling two key points from Section 2.1.

• A Lehmer random number generator is defined by the function

g(x) = ax mod m,

where the modulus m is a large prime integer, the full-period multiplier a is modulus
compatible with m, and x ∈ Xm = {1, 2, . . . ,m− 1}.

• If x0, x1, x2, . . . is an infinite sequence in Xm generated by g(x) = ax mod m then each
xi is related to x0 by the equation

xi = aix0 mod m i = 1, 2, . . .

The following theorem is the key to creating the library rngs. The proof is left as an
exercise.

Theorem 3.2.1 Given a Lehmer random number generator defined by g(x) = ax mod m

and any integer j with 1 < j < m− 1, the associated jump function is

gj(x) = (aj mod m)x mod m

with the jump multiplier aj mod m. For any x0 ∈ Xm, if the function g(·) generates the
sequence x0, x1, x2, . . . then the jump function gj(·) generates the sequence x0, xj , x2j , . . .

Example 3.2.4 If m = 31, a = 3, and j = 6 then the jump multiplier is

aj mod m = 36 mod 31 = 16.

Starting with x0 = 1 the function g(x) = 3x mod 31 generates the sequence

1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, . . .

while the jump function g6(x) = 16x mod 31 generates the sequence of underlined terms

1, 16, 8, 4, 2, . . .

That is, the first sequence is x0, x1, x2, . . . and the second sequence is x0, x6, x12, . . .
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The previous example illustrates that once the jump multiplier aj mod m has been
computed — this is a one-time cost — then the jump function gj(·) provides a mechanism
to jump from x0 to xj to x2j , etc. If j is properly chosen then the jump function can be
used in conjunction with a user supplied initial seed to “plant” additional initial seeds,
each separated one from the next by j calls to Random. In this way disjoint streams can be
automatically created with the initial state of each stream dictated by the choice of just
one initial state.

Example 3.2.5 There are approximately 231 possible values in the full period of our
standard (a,m) = (48271, 231 − 1) Lehmer random number generator. Therefore, if we
wish to maintain 256 = 28 streams of random numbers (the choice of 256 is largely arbi-
trary) it is natural to partition the periodic sequence of possible values into 256 disjoint
subsequences, each of equal length. This is accomplished by finding the largest value of j
less than 231/28 = 223 = 8388608 such that the associated jump multiplier 48271j mod m

is modulus-compatible with m. Because this jump multiplier is modulus-compatible, the
jump function

gj(x) = (48271j mod m)x mod m

can be implemented using Algorithm 2.2.1. This jump function can then be used in
conjunction with one user supplied initial seed to efficiently plant the other 255 additional
initial seeds, each separated one from the next by j ∼= 223 steps.* By planting the additional
seeds this way, the possibility of stream overlap is minimized.

Maximal Modulus-Compatible Jump Multipliers

Definition 3.2.1 Given a Lehmer random number generator with (prime) modulus m,
full-period modulus-compatible multiplier a, and a requirement for s disjoint streams as
widely separated as possible, the maximal jump multiplier is aj mod m where j is the
largest integer less than bm/sc such that aj mod m is modulus compatible with m.

Example 3.2.6 Consistent with Definition 3.2.1 and with (a,m) = (48271, 231 − 1) a
table of maximal modulus-compatible jump multipliers can be constructed for 1024, 512,
256, and 128 streams, as illustrated.

# of streams s bm/sc jump size j jump multiplier aj mod m

1024 2097151 2082675 97070
512 4194303 4170283 44857
256 8388607 8367782 22925
128 16777215 16775552 40509

Computation of the corresponding table for a = 16807 (the minimal standard multiplier)
is left as an exercise.

* Because j is less than 231/28, the last planted initial seed will be more than j steps
from the first.
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Library rngs

The library rngs is an upward-compatible multi-stream replacement for the library
rng. The library rngs can be used as an alternative to rng in any of the programs presented
earlier by replacing

#include "rng.h"

with

#include "rngs.h"

As configured rngs provides for 256 streams, indexed from 0 to 255, with 0 as the default
stream. Although the library is designed so that all streams will be initialized to default
values if necessary, the recommended way to initialize all streams is by using the function
PlantSeeds. Only one stream is active at any time; the other 255 are passive. The function
SelectStream is used to define the active stream. If the default stream is used exclusively,
so that 0 is always the active stream, then the library rngs is functionally equivalent to
the library rng in the sense that rngs will produce exactly the same Random output as rng
(for the same initial seed, of course).

The library rngs provides six functions, the first four of which correspond to analogous
functions in the library rng.

• double Random(void)—This is the Lehmer random number generator used through-
out this book.

• void PutSeed(long x) — This function can be used to set the state of the active
stream.

• void GetSeed(long *x) — This function can be used to get the state of the active
stream.

• void TestRandom(void)— This function can be used to test for a correct implemen-
tation of the library.

• void SelectStream(int s)— This function can be used to define the active stream,
i.e., the stream from which the next random number will come. The active stream
will remain as the source of future random numbers until another active stream is
selected by calling SelectStream with a different stream index s.

• void PlantSeeds(long x) — This function can be used to set the state of all the
streams by “planting” a sequence of states (seeds), one per stream, with all states
dictated by the state of the default stream. The following convention is used to set
the state of the default stream:

if x is positive then x is the state;

if x is negative then the state is obtained from the system clock;

if x is 0 then the state is to be supplied interactively.
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3.2.2 EXAMPLES

The following examples illustrate how to use the library rngs to allocate a separate
stream of random numbers to each stochastic component of a discrete-event simulation
model. We will see additional illustrations of how to use rngs in this and later chapters.
From this point on rngs will be the basic random number generation library used for all

the discrete-event simulation programs in this book.

Example 3.2.7 As a superior alternative to the multi-stream generator approach in
Examples 3.2.1 and 3.2.2, the functions GetArrival and GetService in program ssq2 can
be modified to use the library rngs, as illustrated

double GetArrival(void)

{

static double arrival = START;

SelectStream(0); /* this line is new */

arrival += Exponential(2.0);

return (arrival);

}

double GetService(void)

{

SelectStream(2); /* this line is new */

return (Uniform(1.0, 2.0));

}

The other modification is to include "rngs.h" in place of "rng.h" and use the function
PlantSeeds(123456789) in place of PutSeed(123456789) to initialize the streams.*

If program ssq2 is modified consistent with Example 3.2.7, then the arrival process
will be uncoupled from the service process. That is important because we may want to
study what happens to system performance if, for example, the return in the function
GetService is replaced with

return (Uniform(0.0, 1.5) + Uniform(0.0, 1.5));

Although two calls to Random are now required to generate each service time, this new
service process “sees” exactly the same job arrival sequence as did the old service process.
This kind of uncoupling provides a desirable variance reduction technique when discrete-
event simulation is used to compare the performance of different systems.

* Note that there is nothing magic about the use of rngs stream 0 for the arrival process
and stream 2 for the service process — any two different streams can be used. In particular,
if even more separation between streams is required then, for example, streams 0 and 10
can be used.
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A Single-Server Service Node With Multiple Job Types

A meaningful extension to the single-server service node model is multiple job types,
each with its own arrival and service process. This model extension is easily accommo-
dated at the conceptual level; each arriving job carries a job type that determines the kind
of service provided when the job enters service. Similarly, provided the queue discipline
is FIFO the model extension is straightforward at the specification level. Therefore, using
program ssq2 as a starting point, we can focus on the model extension at the implementa-
tion level. Moreover, we recognize that to facilitate the use of common random numbers,
the library rngs can be used with a different stream allocated to each of the stochastic
arrival and service processes in the model. The following example is an illustration.

Example 3.2.8 Suppose that there are two job types arriving independently, one with
Exponential(4.0) interarrivals and Uniform(1.0, 3.0) service times and the other with Ex-

ponential(6.0) interarrivals and Uniform(0.0, 4.0) service times. In this case, the arrival
process generator in program ssq2 can be modified as

double GetArrival(int *j) /* j denotes job type */

{

const double mean[2] = {4.0, 6.0};

static double arrival[2] = {START, START};

static int init = 1;

double temp;

if (init) { /* initialize the arrival array */

SelectStream(0);

arrival[0] += Exponential(mean[0]);

SelectStream(1);

arrival[1] += Exponential(mean[1]);

init = 0;

}

if (arrival[0] <= arrival[1])

*j = 0; /* next arrival is job type 0 */

else

*j = 1; /* next arrival is job type 1 */

temp = arrival[*j]; /* next arrival time */

SelectStream(*j); /* use stream j for job type j */

arrival[*j] += Exponential(mean[*j]);

return (temp);

}

Note that GetArrival returns the next arrival time and the job type as an index with
value 0 or 1, as appropriate.
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Example 3.2.9 As a continuation of Example 3.2.8, the corresponding service process
generator in program ssq2 can be modified as

double GetService(int j)

{

const double min[2] = {1.0, 0.0};

const double max[2] = {3.0, 4.0};

SelectStream(j + 2); /* use stream j + 2 for job type j */

return (Uniform(min[j], max[j]));

}

Relative to Example 3.2.9, note that the job type index j is used in GetService to
insure that the service time corresponds to the appropriate job type. Also, rngs streams
2 and 3 are allocated to job types 0 and 1 respectively. In this way all four simulated
stochastic processes are uncoupled. Thus, the random variate model corresponding to any
one of these four processes could be changed without altering the generated sequence of
random variates corresponding to the other three processes.

Consistency Checks

Beyond the modifications in Examples 3.2.8 and 3.2.9, some job-type-specific statistics
gathering needs to be added in main to complete the modification of program ssq2 to
accommodate multiple job types. If these modifications are made correctly, with d.dd

precision the steady-state statistics that will be produced are

r̄ w̄ d̄ s̄ l̄ q̄ x̄

2.40 7.92 5.92 2.00 3.30 2.47 0.83

The details are left in Exercise 3.2.4. How do we know these values are correct?

In addition to w̄ = d̄+ s̄ and l̄ = q̄+ x̄, the three following intuitive consistency checks
give us increased confidence in these (estimated) steady-state results:

• Both job types have an average service time of 2.0, so that s̄ should be 2.00. The
corresponding service rate is 0.5.

• The arrival rate of job types 0 and 1 are 1/4 and 1/6 respectively. Intuitively, the net
arrival rate should then be 1/4 + 1/6 = 5/12 which corresponds to r̄ = 12/5 = 2.40.

• The steady-state utilization should be the ratio of the arrival rate to the service rate,
which is (5/12)/(1/2) = 5/6 ∼= 0.83.

3.2.3 EXERCISES

Exercise 3.2.1 (a) Construct the a = 16807 version of the table in Example 3.2.6.
(b) What is the O(·) time complexity of the algorithm you used?
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Exercise 3.2.2a (a) Prove that if m is prime, 1 ≤ a ≤ m − 1, and a∗ = am−2 mod m

then
a∗a mod m = 1.

Now define
g(x) = ax mod m and g∗(x) = a∗x mod m

for all x ∈ Xm = {1, 2, . . . ,m − 1}. (b) Prove that the functions g(·) and g∗(·) generate
the same sequence of states, except in opposite orders. (c) Comment on the implication of
this relative to full period multipliers. (d) If m = 231 − 1 and a = 48271 what is a∗?

Exercise 3.2.3 Modify program ssq2 as suggested in Example 3.2.7 to create two pro-
grams that differ only in the function GetService. For one of these programs, use the
function as implemented in Example 3.2.7; for the other program, use

double GetService(void)

{

SelectStream(2); /* this line is new */

return (Uniform(0.0, 1.5) + Uniform(0.0, 1.5));

}

(a) For both programs verify that exactly the same average interarrival time is produced
(print the average with d.dddddd precision). Note that the average service time is approx-
imately the same in both cases, as is the utilization, yet the service nodes statistics w̄, d̄,
l̄, and q̄ are different. (b) Why?

Exercise 3.2.4 Modify program ssq2 as suggested in Examples 3.2.8 and 3.2.9.
(a) What proportion of processed jobs are type 0? (b) What are w̄, d̄, s̄, l̄, q̄, and x̄

for each job type? (c) What did you do to convince yourself that your results are valid?
(d) Why are w̄, d̄, and s̄ the same for both job types but l̄, q̄, and x̄ are different?

Exercise 3.2.5 Prove Theorem 3.2.1.

Exercise 3.2.6 Same as Exercise 3.2.3, but using the GetService function in Exam-
ple 3.1.4 instead of the GetService function in Exercise 3.2.3.

Exercise 3.2.7 Suppose there are three job types arriving independently to a single-
server service node. The interarrival times and service times have the following character-
ization

job type interarrival times service times
0 Exponential(4.0) Uniform(0.0, 2.0)
1 Exponential(6.0) Uniform(1.0, 2.0)
2 Exponential(8.0) Uniform(1.0, 5.0)

(a) What is the proportion of processed jobs for each type? (b) What are w̄, d̄, s̄, l̄, q̄, and
x̄ for each job type? (c) What did you do to convince yourself that your results are valid?
(Simulate at least 100 000 processed jobs.)
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In this section we will consider three discrete-event system models, each of which is
an extension of a model considered previously. The three models are (i) a single-server
service node with immediate feedback, (ii) a simple inventory system with delivery lag, and
(iii) a single-server machine shop.

3.3.1 SINGLE-SERVER SERVICE NODE WITH IMMEDIATE FEEDBACK

We begin by considering an important extension of the single-server service node
model first introduced in Section 1.2. Consistent with the following definition (based on
Definition 1.2.1) the extension is immediate feedback — the possibility that the service a
job just received was incomplete or otherwise unsatisfactory and, if so, the job feeds back
to once again request service.

Definition 3.3.1 A single-server service node with immediate feedback consists of a
server plus its queue with a feedback mechanism, as illustrated in Figure 3.3.1.
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Jobs arrive at the service node, generally at random, seeking service. When service is
provided, the time involved is generally also random. At the completion of service, jobs
either depart the service node (forever) or immediately feed back and once again seek
service. The service node operates as follows: as each job arrives, if the server is busy then
the job enters the queue, else the job immediately enters service; as each job completes
service, either a departure or a feedback occurs, generally at random. When a departure

occurs, if the queue is empty then the server becomes idle, else another job is selected from
the queue to immediately enter service. When a feedback occurs, if the queue is empty
then the job immediately re-enters service, else the job enters the queue, after which one
of the jobs in the queue is selected to immediately enter service. At any instant in time,
the state of the server will either be busy or idle and the state of the queue will be either
empty or not empty. If the server is idle then the queue must be empty; if the queue is
not empty then the server must be busy.

Note the distinction between the two events “completion of service” and “departure”.
If there is no feedback these two events are equivalent; if feedback is possible then it is
important to make a distinction. When the distinction is important, the completion-of-
service event is more fundamental because at the completion of service, either a departure
event or a feedback event then occurs. This kind of “which event comes first” causal
reasoning is important at the conceptual model-building level.
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Model Considerations

When feedback occurs we assume that the job joins the queue (if any) consistent with
the queue discipline. For example, if the queue discipline is FIFO then a fed-back job would
receive no priority; it would join the queue at the end, in effect becoming indistinguishable
from an arriving job. Of course, other feedback queue disciplines are possible, the most
common of which involves assigning a priority to jobs that are fed back. If feedback is
possible the default assumption in this book is that a fed-back job will join the queue
consistent with the queue discipline and a new service time will be required, independent
of any prior service provided. Similarly, the default assumption is that the decision to
depart or feed back is random with feedback probability β, as illustrated in Figure 3.3.2.
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In addition to β, the other two parameters that characterize the stochastic behavior of a
single-server service node with immediate feedback are the arrival rate λ and the service

rate ν. Consistent with Definition 1.2.5, 1/λ is the average interarrival time and 1/ν is the
average service time.*

As each job completes service, it departs the service node with probability 1 − β or
feeds back with probability β. Consistent with this model, feedback is independent of past
history and so a job may feed back more than once. Indeed, in theory, a job may feed back
arbitrarily many times — see Exercise 3.3.1. Typically β is close to 0.0 indicating that
feedback is a rare event. This is not a universal assumption, however, and so a well written
discrete-event simulation program should accommodate any probability of feedback in the
range 0.0 ≤ β < 1.0. At the computational model-building level, feedback can be modeled
with a boolean-valued function as illustrated.

int GetFeedback(double beta) /* use 0.0 <= beta < 1.0 */

{

SelectStream(2); /* use rngs stream 2 for feedback */

if (Random() < beta)

return (1); /* feedback occurs */

else

return (0); /* no feedback */

}

* The use of the symbol ν to denote the service rate is non-standard. Instead, the usual
convention is to use the symbol µ. See Section 8.5 for more discussion of arrival rates,
service rates, and our justification for the use of ν in place of µ.



122 3. Discrete-Event Simulation

Statistical Considerations

If properly interpreted, the mathematical variables and associated definitions in Sec-
tion 1.2 remain valid if immediate feedback is possible. The interpretation required is that
the index i = 1, 2, 3, . . . counts jobs that enter the service node; once indexed in this way, a
fed-back job is not counted again. Because of this indexing all the job-averaged statistics
defined in Section 1.2 remain valid provided delay times, wait times, and service times are
incremented each time a job is fed back. For example, the average wait is the sum of the
waits experienced by all the jobs that enter the service node divided by the number of
such jobs; each time a job is fed back it contributes an additional wait to the sum of waits,
but it does not cause the number of jobs to be increased. Similarly, the time-averaged
statistics defined in Section 1.2 also remain valid if feedback is possible.

The key feature of immediate feedback is that jobs from outside the system are merged
with jobs from the feedback process. In this way, the (steady-state) request-for-service rate
is larger than λ by the positive additive factor βx̄ν. As illustrated later in Example 3.3.2, if
there is no corresponding increase in service rate this increase in the request-for-service rate
will cause job-averaged and time-averaged statistics to increase from their non-feedback
values. This increase is intuitive — if you are entering a grocery store and the check-
out queues are already long, you certainly do not want to see customers re-entering these
queues because they just realized they were short-changed at check-out or forgot to buy a
gallon of milk.

Note that indexing by arriving jobs will cause the average service time s̄ to increase as
the feedback probability increases. In this case do not confuse s̄ with the reciprocal of the
service rate; 1/ν is the (theoretical) average service time per service request, irrespective
of whether that request is by an arriving job or by a fed back job.

Algorithm and Data Structure Considerations

Example 3.3.1 Consider the following arrival times, service times, and completion times
for the first 9 jobs entering a single-server FIFO service node with immediate feedback.
(For simplicity all times are integers.)

job index : 1 2 3 4 5 · 6 · 7 8 · 9 · · ·

arrival/feedback : 1 3 4 7 10 13 14 15 19 24 26 30 · · ·

service : 9 3 2 4 7 5 6 3 4 6 3 7 · · ·

completion : 10 13 15 19 26 31 37 40 44 50 53 60 · · ·

The bold-face times correspond to jobs that were fed back. For example, the third job
completed service at time 15 and immediately fed back. At the computational level, note
that some algorithm and data structure is necessary to insert fed back jobs into the arrival
stream. That is, an inspection of the yet-to-be-inserted feedback times (15, 26) reveals
that the job fed back at time 15 must be inserted in the arrival stream after job 6 (which
arrived at time 14) and before job 7 (which arrived at time 19).
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The reader is encouraged to extend the specification model of a single-server service
node in Section 1.2 to account for immediate feedback. Then, extend this model at the
computational level by starting with program ssq2 and using a different rngs stream for
each stochastic process. Example 3.3.1 provides insight into an algorithmic extension and
associated data structure that can be used to accomplish this.

Example 3.3.2 Program ssq2 was modified to account for immediate feedback. Con-
sistent with the stochastic modeling assumptions in Example 3.1.3, the arrival process
has Exponential(2.0) random variate interarrivals corresponding to a fixed arrival rate of
λ = 0.50, the service process has Uniform(1.0, 2.0) random variate service times corre-
sponding to a fixed service rate of ν ∼= 0.67 and the feedback probability is 0.0 ≤ β ≤ 1.0.
To illustrate the effect of feedback, the modified program was used to simulate the oper-
ation of a single-server service node with nine different values of levels of feedback varied
from β = 0.0 (no feedback) to β = 0.20. In each case 100 000 arrivals were simulated.
Utilization x̄ as a function of β is illustrated on the left-hand-side of Figure 3.3.3; the
average number in the queue q̄ as a function of β is illustrated on the right-hand-side.
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As the probability of feedback increases, the utilization increases from the steady-state
value of x̄ = 0.75 when there is no feedback toward the maximum possible value x̄ = 1.0.
If this x̄ versus β figure is extrapolated, it appears that saturation (x̄ = 1.0) is achieved as
β → 0.25.

Flow Balance and Saturation

The observation that saturation occurs as β approaches 0.25 is an important consis-
tency check based on steady-state flow balance considerations. That is, jobs flow into the
service node at the average rate of λ. To remain flow balanced jobs must flow out of the
service node at the same average rate. Because the average rate at which jobs flow out of
the service node is x̄(1− β)ν, flow balance is achieved when λ = x̄(1− β)ν. Saturation is
achieved when x̄ = 1; this happens as β → 1 − λ/ν = 0.25. Consistent with saturation,
in Example 3.3.2 we see that the average number in the queue increases dramatically as β
increases, becoming effectively infinite as β → 0.25.
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3.3.2 SIMPLE INVENTORY SYSTEM WITH DELIVERY LAG

The second discrete-event system model we will consider in this section represents an
important extension of the periodic review simple inventory system model first introduced
in Section 1.3. The extension is delivery lag (or lead time) — an inventory replacement
order placed with the supplier will not be delivered immediately; instead, there will be a
lag between the time an order is placed and the time the order is delivered. Unless stated
otherwise, this lag is assumed to be random and independent of the amount ordered.

If there are no delivery lags then a typical inventory time history looks like the one in
Section 1.3, reproduced in Figure 3.3.4 for convenience, with jump discontinuities possible
only at the (integer-valued) times of inventory review.
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If delivery lags are possible, a typical inventory time history would have jump disconti-
nuities at arbitrary times, as illustrated in Figure 3.3.5. (The special-case order at the
terminal time t = 12 is assumed to be delivered with zero lag.)

0 2 4 6 8 10 12
−40

−20

0

s

40

S

80

l(t)

t

..............................................................................................................................................................................................................

...............................................................................................................................................................................................................................................

........................................................................................................................................................................................

...........................................................................................................................................................................................................................................

.............................................................................................................................

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.3.5.

Inventory

levels with

delivery

lags.

Unless stated otherwise, we assume that any order placed at the beginning of a time
interval (at times t = 2, 5, 7, and 10 in this case) will be delivered before the end of the
time interval. With this assumption there is no change in the simple inventory system
model at the specification level (see Algorithm 1.3.1). There is, however, a significant
change in how the system statistics are computed. For those time intervals in which a
delivery lag occurs, the time-averaged holding and shortage integrals in Section 1.3 must
be modified.
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Statistical Considerations

As in Section 1.3, li−1 denotes the inventory level at the beginning of the ith time
interval (at t = i−1) and di denotes the amount of demand during this interval. Consistent
with the model in Section 1.3, the demand rate is assumed to be constant between review
times. Given di, li−1, and this assumption, there are two cases to consider.

If li−1 ≥ s then, because no order is placed at t = i − 1, the inventory decreases at
a constant rate throughout the interval with no “jump” in level. The inventory level at
the end of the interval is li−1 − di. In this case, the equations for l̄

+

i
and l̄−

i
in Section 1.3

remain valid (with li−1 in place of l
′
i−1
.)

If li−1 < s then an order is placed at t = i − 1 which later causes a jump in the
inventory level when the order is delivered. In this case the equations for l̄+

i
and l̄−

i
in

Section 1.3 must be modified. That is, if li−1 < s then an order for S− li−1 items is placed
at t = i − 1 and a delivery lag 0 < δi < 1 occurs during which time the inventory level
drops at a constant rate to li−1 − δidi. When the order is delivered at t = i − 1 + δi the
inventory level jumps to S− δidi. During the remainder of the interval the inventory level
drops at the same constant rate to its final level S − di at t = i. All of this is summarized
with the observation that, in this case, the inventory-level time history during the ith time
interval is defined by one vertical and two parallel lines, as illustrated in Figure 3.3.6.*
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Figure 3.3.6.

Inventory level

during time

interval i

when an order

is placed.

Depending on the location of the four line-segment endpoints indicated by •’s, with each
location measured relative to the line l(t) = 0, either triangular or trapezoidal figures will
be generated. To determine the time-averaged holding level l̄+

i
and time-averaged shortage

level l̄−
i
(see Definition 1.3.3), it is necessary to determine the area of each figure. The

details are left as an exercise.

* Note that δidi must be integer-valued.
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Consistency Checks

When system models are extended, it is fundamentally important to verify that the
extended model is consistent with the parent model (the model before extension). This
is usually accomplished by setting system parameters to special values. For example, if
the feedback probability is set to zero an extended computational model that simulates
a single-server service node with feedback reduces to a parent computational model of a
single-server service node without feedback. At the computational level the usual way to
make this kind of consistency check is to compare output system statistics and verify that,
with the extension removed, the output statistics produced by the extended model agree
with the output statistics produced by the parent model. Use of the library rngs facilitates
this kind of comparison. In addition to these “extension removal” consistency checks, it is
also good practice to check for intuitive “small-perturbation” consistency. For example, if
the feedback probability is small, but non-zero, the average number in the queue should
be slightly larger than its feedback-free value. The following example applies this idea to
a simple inventory system model with delivery lag.

Example 3.3.3 For a simple inventory system with delivery lag we adopt the convention
that δi is defined for all i = 1, 2, . . . , n with δi = 0.0 if and only if there is no order placed
at the beginning of the ith time interval (that is, if li−1 ≥ s). If an order is placed then
0.0 < δi < 1.0. With this convention the stochastic time evolution of a simple inventory
system with delivery lag is driven by the two n-point stochastic sequences d1, d2, . . . , dn
and δ1, δ2, . . . , δn. The simple inventory system is lag-free if and only if δi = 0.0 for all
i = 1, 2, . . . , n; if δi > 0.0 for at least one i then the system is not lag-free. Relative to the
five system statistics in Section 1.3, if the inventory parameters (S, s) are fixed then, even
if the delivery lags are small, the following points are valid.

• The average order ō, average demand d̄, and relative frequency of setups ū are exactly
the same whether the system is lag-free or not.

• Compared to the lag-free value, if the system is not lag-free then the time-averaged
holding level l̄+ will decrease.

• Compared to the lag-free value, if the system is not lag-free then the time-averaged
shortage level l̄− will either remain unchanged or it will increase.

At the computational level these three points provide valuable consistency checks for a
simple inventory system discrete-event simulation program.

Delivery Lag

If the statistics-gathering logic in program sis2 is modified to be consistent with the
previous discussion, then the resulting program will provide a computational model of a
simple inventory system with delivery lag. To complete this modification, a stochastic
model of delivery lag is needed. In the absence of information to the contrary, we assume
that each delivery lag is an independent Uniform(0, 1) random variate.
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Example 3.3.4 Program sis2 was modified to account for Uniform(0, 1) random variate
delivery lags, independent of the size of the order. As an extension of the automobile
dealership example (Example 3.1.7), this modified program was used to study the effect
of delivery lag. That is, with S = 80 the average weekly cost was computed for a range
of inventory threshold values s between 20 and 60. To avoid clutter only steady-state
cost estimates (based on n = 10 000 time intervals) are illustrated. For comparison, the
corresponding lag-free cost values from Example 3.1.7 are also illustrated in Figure 3.3.7.
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Effect of

delivery lag

on dependent

cost.

Figure 3.3.7 shows that the effect of delivery lag is profound; the U-shaped cost-versus-s
curve is shifted up and to the right. Because of this shift the optimum (minimum cost)
value of s is increased by approximately 20 automobiles and the corresponding minimum
weekly cost is increased by almost $200.*

The shift in the U-shaped curve in Example 3.3.4 is consistent with the second and
third points in Example 3.3.3. That is, delivery lags cause l̄+ to decrease and l̄− to increase
(or remain the same). Because the holding cost coefficient is Chold = $25 and the shortage
cost coefficient is Cshort = $700 (see Example 1.3.5), delivery lags will cause holding costs
to decrease a little for all values of s and will cause shortage costs to increase a lot, but
only for small values of s. The shift in the U-shaped curve is the result.

Examples 3.3.2 and 3.3.4 present results corresponding to significant extensions of the
two canonical system models used throughout this book. The reader is strongly encouraged
to work through the details of these extensions at the computational level and reproduce
the results in Examples 3.3.2 and 3.3.4.

* Because of the dramatic shift in the optimum value of s from the lag-free value of
s ∼= 23 to the with-lag value of s ∼= 43, we see that the optimal value of s is not robust
with respect to model assumptions about the delivery lag.
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3.3.3 SINGLE-SERVER MACHINE SHOP

The third discrete-event simulation model considered in this section is a single-server
machine shop. This is a simplified version of the multi-server machine shop model used in
Section 1.1 to illustrate model building at the conceptual, specification, and computational
level (see Example 1.1.1).

A single-server machine shop model is essentially identical to the single-server service
node model first introduced in Section 1.2, except for one important difference. The service
node model is open in the sense that an effectively infinite number of jobs are available to
arrive from “outside” the system and, after service is complete, return to the “outside”. In
contrast, the machine shop model is closed because there are a finite number of machines
(jobs) that are part of the system — as illustrated in Figure 3.3.8, there is no “outside”.

queue .......................................................................................................
...........
.........
........
.......
.......
......
......
......
......
.......
.......
........
.........

...........
......................

.................................................................................. server

operational
machines

.........................................................................................................................................................

............................................................................................................................... ..........................

Figure 3.3.8.

Single-server

machine shop

system diagram.

In more detail, there is a finite population of statistically identical machines, all of
which are initially in an operational state (so the server is initially idle and the queue
is empty). Over time these machines fail, independently, at which time they enter a
broken state and request repair service at the single-server service node.* Once repaired,
a machine immediately re-enters an operational state and remains in this state until it
fails again. Machines are repaired in the order in which they fail, without interruption.
Correspondingly, the queue discipline is FIFO, non-preemptive and conservative. There is
no feedback.

To make the single-server machine shop model specific, we assume that the service
(repair) time is a Uniform(1.0, 2.0) random variate, that there are M machines, and that
the time a machine spends in the operational state is an Exponential(100.0) random variate.
All times are in hours. Based on 100 000 simulated machine failures, we want to estimate
the steady-state time-averaged number of operational machines and the server utilization
as a function of M .

* Conceptually the machines move along the network arcs indicated, from the opera-
tional pool into and out of service and then back to the operational pool. In practice, the
machines are usually stationary and the server moves to the machines. The time, if any,
for the server to move from one machine to another is part of the service time.
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Program ssms

Program ssms simulates the single-server machine shop described in this section. This
program is similar to program ssq2, but with two important differences.

• The library rngs is used to provide an independent source of random numbers to both
the simulated machine failure process and the machine repair process.

• The failure process is defined by the array failure which represents the time of next
failure for each of the M machines.

The time-of-next-failure list (array) is not maintained in sorted order and so it must be
searched completely each time a machine failure is simulated. The efficiency of this O(M)
search could be a problem for largeM . Exercise 3.3.7 investigates computational efficiency
improvements associated with an alternative algorithm and associated data structure.

Example 3.3.5 Because the time-averaged number in the service node l̄ represents the
time-averaged number of broken machines, M − l̄ represents the time-averaged number of
operational machines. Program ssms was used to estimate M − l̄ for values of M between
20 and 100, as illustrated in Figure 3.3.9.
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As expected, for small values of M the time-averaged number of operational machines is
essentially M . This is consistent with low server utilization and a correspondingly small
value of l̄. The angled dashed line indicates the ideal situation where all machines are
continuously operational (i.e., l̄ = 0). Also, as expected, for large values of M the time-
averaged number of operational machines is essentially constant, independent of M . This
is consistent with a saturated server (utilization of 1.0) and a correspondingly large value
of l̄. The horizontal dashed line indicates that this saturated-server constant value is
approximately 67.

Distribution Parameters

The parameters used in the distributions in the models presented in this section, e.g.,
µ = 2.0 for the average interarrival time and β = 0.20 for the feedback probability in the
single-server service node with feedback, have been drawn from thin air. This has been
done in order to focus on the simulation modeling and associated algorithms. Chapter 9
on “Input Modeling” focuses on techniques for estimating realistic parameters from data.
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3.3.4 EXERCISES

Exercise 3.3.1 Let β be the probability of feedback and let the integer-valued random
variable X be the number of times a job feeds back. (a) For x = 0, 1, 2, . . . what is Pr(X =
x)? (b) How does this relate to the discussion of acceptance/rejection in Section 2.3?

Exercise 3.3.2a (a) Relative to Example 3.3.2, based on 1 000 000 arrivals, generate a
table of x̄ and q̄ values for β from 0.00 to 0.24 in steps of 0.02. (b) What data structure
did you use and why? (c) Discuss how external arrivals are merged with fed back jobs.

Exercise 3.3.3 For the model of a single-server service node with feedback presented in
this section, there is nothing to prevent a fed-back job from colliding with an arriving job.
Is this a model deficiency that needs to be fixed and, if so, how would you do it?

Exercise 3.3.4a Modify program ssq2 to account for a finite service node capacity.
(a) For capacities of 1, 2, 3, 4, 5, and 6 construct a table of the estimated steady-state
probability of rejection. (b) Also, construct a similar table if the service time distribution is
changed to be Uniform(1.0, 3.0). (c) Comment on how the probability of rejection depends
on the service process. (d) How did you convince yourself these tables are correct?

Exercise 3.3.5a Verify that the results in Example 3.3.4 are correct. Provide a table of
values corresponding to the figure in this example.

Exercise 3.3.6 (a) Relative to Example 3.3.5, construct a figure or table illustrating
how x̄ (utilization) depends on M . (b) If you extrapolate linearly from small values of
M , at what value of M will saturation (x̄ = 1) occur? (c) Can you provide an empirical
argument or equation to justify this value?

Exercise 3.3.7a In program ssms the time-of-next-failure list (array) is not maintained
in sorted order and so the list must be searched completely each time another machine
failure is simulated. As an alternative, implement an algorithm and associated sorted
data structure to determine if a significant improvement in computational efficiency can
be obtained. (You may need to simulate a huge number of machine failures to get an
accurate estimate of computational efficiency improvement.)

Exercise 3.3.8 (a) Relative to Example 3.3.2, compare a FIFO queue discipline with
a priority queue discipline where fed-back jobs go the head of the queue (i.e., re-enter
service immediately). (b) Is the following conjecture true or false: although statistics for
the fed-back jobs change, system statistics do not change?

Exercise 3.3.9a (a) Repeat Exercise 3.3.7 using M = 120 machines, with the time a
machine spends in the operational state increased to an Exponential(200.0) random variate.
(b) Use M = 180 machines with the time spent in the operational increased accordingly.
(c) What does the O(·) computational complexity of your algorithm seem to be?
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The first three sections in this chapter consider the computation and interpretation of
univariate-data sample statistics. If the size of the sample is small then essentially all that
can be done is compute the sample mean and standard deviation. Welford’s algorithm for
computing these quantities is presented in Section 4.1. In addition, Chebyshev’s inequality
is derived and used to illustrate how the sample mean and standard deviation are related
to the distribution of the data in the sample.

If the size of the sample is not small, then a sample data histogram can be computed
and used to analyze the distribution of the data in the sample. Two algorithms are
presented in Section 4.2 for computing a discrete-data histogram. A variety of examples
are presented as well. Similarly, a continuous-data histogram algorithm and a variety of
examples are presented in Section 4.3. In both of these sections concerning histograms, the
empirical cumulative distribution function is presented as an alternative way to graphically
present a data set. The fourth section deals with the computation and interpretation of
paired-data sample statistics, in both paired-correlation and auto-correlation applications.
Correlation is apparent in many discrete-event simulations. The wait times of adjacent
jobs in a single-server node, for example, tend to be above their means and below their
means together, that is, they are “positively” correlated.
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Discrete-event simulations generate experimental data — frequently a lot of exper-
imental data. To facilitate the analysis of all this data, it is conventional to compress
the data into a handful of meaningful statistics. We have already seen examples of this
in Sections 1.2 and 3.1, where job averages and time averages were used to characterize
the performance of a single-server service node. Similarly, in Sections 1.3 and 3.1, aver-
ages were used to characterize the performance of a simple inventory system. This kind
of “within-the-run” data generation and statistical computation (see programs ssq2 and
sis2, for example) is common in discrete-event simulation. Although less common, there
is also a “between-the-runs” kind of statistical analysis commonly used in discrete-event
simulation. That is, a discrete-event simulation program can be used to simulate the same
stochastic system repeatedly — all you need to do is change the initial seed for the random
number generator from run to run. This process is known as replication.

In either case, each time a discrete-event simulation program is used to generate
data it is important to appreciate that this data is only a sample from that much larger
population that would be produced, in the first case, if the program were run for a much
longer time or, in the second case, if more replications were used. Analyzing a sample and
then inferring something about the population from which the sample was drawn is the
essence of statistics. We begin by defining the sample mean and standard deviation.

4.1.1 SAMPLE MEAN AND STANDARD DEVIATION

Definition 4.1.1 Given the sample x1, x2, . . ., xn (either continuous or discrete data)
the sample mean is

x̄ =
1

n

n
∑

i=1

xi.

The sample variance is the average of the squared differences about the sample mean

s2 =
1

n

n
∑

i=1

(xi − x̄)2.

The sample standard deviation is the positive square root of the sample variance, s =
√
s2.

The sample mean is a measure of central tendency of the data values. The sample
variance and standard deviation are measures of dispersion— the spread of the data about
the sample mean. The sample standard deviation has the same “units” as the data and
the sample mean. For example, if the data has units of sec then so also does the sample
mean and standard deviation. The sample variance would have units of sec2. Although the
sample variance is more amenable to mathematical manipulation (because it is free of the
square root), the sample standard deviation is typically the preferred measure of dispersion
since it has the same units as the data. (Because x̄ and s have the same units, the ratio
s/x̄, known as the coefficient of variation, has no units. This statistic is commonly used
only if the data is inherently non-negative, although it is inferior to s as a measure of
dispersion because a common shift in the data results in a change in s/x̄.)
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For statistical reasons that will be explained further in Chapter 8, a common alterna-
tive definition of the sample variance (and thus the sample standard deviation) is

1

n− 1

n
∑

i=1

(xi − x̄)2 rather than
1

n

n
∑

i=1

(xi − x̄)2.

Provided one of these definitions is used consistently for all computations, the choice of
which equation to use for s2 is largely a matter of taste, based on statistical considerations
listed below. There are three reasons that the 1/(n − 1) form of the sample variance
appears almost universally in introductory statistics books:

• The sample variance is undefined when n = 1 when using the 1/(n − 1) form. This
is intuitive in the sense that a single observed data value indicates nothing about the
spread of the distribution from which the data value is drawn.

• The 1/(n− 1) form of the sample variance is an unbiased estimate of the population
variance when the data values are drawn independently from a population with a
finite mean and variance. The designation of an estimator as “unbiased” in statistical
terminology implies that the sample average of many such sample variances converges
to the population variance.

• The statistic
n
∑

i=1

(xi − x̄)2

has n− 1 “degrees of freedom”. It is common practice in statistics (particularly in a
sub-field known as analysis of variance) to divide a statistic by its degrees of freedom.

Despite these compelling reasons, why do we still use the 1/n form of the sample variance
as given in Definition 4.1.1 consistently throughout the book? Here are five reasons:

• The sample size n is typically large in discrete-event simulation, making the difference
between the results obtained by using the two definitions small.

• The unbiased property associated with the 1/(n − 1) form of the sample variance
applies only when observations are independent. Observations within a simulation
run are typically not independent in discrete-event simulation.

• In the unlikely case that only n = 1 observation is collected, the algorithms presented
in this text using the 1/n form are able to compute a numeric value (zero) for the
sample variance. The reader should understand that a sample variance of zero in the
case of n = 1 does not imply that there is no variability in the population.

• The 1/n form of the sample variance enjoys the status as a “plug-in” (details given in
Chapter 6) estimate of the population variance. It also is the “maximum likelihood
estimate” (details given in Chapter 9) when sampling from bell-shaped populations.
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• Authors of many higher-level books on mathematical statistics prefer the 1/n form of
the sample variance.

The relationship between the sample mean and sample standard deviation is summa-
rized by Theorem 4.1.1. The proof is left as an exercise.

Theorem 4.1.1 In a root-mean-square (rms) sense, the sample mean is that unique
value that best fits the sample x1, x2, . . . , xn and the sample standard deviation is the
corresponding smallest possible rms value. In other words, if the rms value associated
with any value of x is

d(x) =

√

√

√

√

1

n

n
∑

i=1

(xi − x)2

then the smallest possible rms value of d(x) is d(x̄) = s and this value is achieved if and
only if x = x̄.

Example 4.1.1 Theorem 4.1.1 is illustrated in Figure 4.1.1 for a random variate sample
of size n = 50 that was generated using a modified version of program buffon. The data
corresponds to 50 observations of the x-coordinate of the righthand endpoint of a unit-
length needle dropped at random (see Example 2.3.10). The 50 points in the sample are
indicated with hash marks.
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For this sample x̄ ∼= 1.095 and s ∼= 0.354. Consistent with Theorem 4.1.1 the smallest
value of d(x) is d(x̄) = s as illustrated.

The portion of the figure in Figure 4.1.1 that looks like

|| | | || || || |||| || ||| | | || || ||||| ||| | |||||| ||| | ||||||

is known as a univariate scatter diagram — a convenient way to visualize a sample, provided
the sample size is not too large. Later in this chapter we will discuss histograms — a
superior way to visualize a univariate sample if the sample size is sufficiently large.
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Chebyshev’s Inequality

To better understand how the sample mean and standard deviation are related, ap-
preciate that the number of points in a sample that lie within k standard deviations of
the mean can be bounded by Chebyshev’s inequality. The derivation of this fundamental
result is based on a simple observation — the points that make the largest contribution to
the sample standard deviation are those that are most distant from the sample mean.

Given the sample S = {x1, x2, . . . , xn} with mean x̄ and standard deviation s, and
given a parameter k > 1, define the set*

Sk = {xi | x̄− ks < xi < x̄+ ks}

consisting of all those xi ∈ S for which |xi − x̄| < ks. For k = 2 and the sample in
Example 4.1.1, the set S2 is defined by the hash marks that lie within the 2ks = 4s wide
interval centered on x̄ as shown by the portion of Figure 4.1.1 given below.

|| | | || || || |||| || ||| | | || || ||||| ||| | |||||| ||| | |||||| •

x̄

•

x̄+ 2s

•

x̄− 2s

| |←−−−−−−−−−−−−−−−− 4s −−−−−−−−−−−−−−−−→

Let pk = |Sk|/n be the proportion of xi that lie within ±ks of x̄. This proportion is
the probability that an xi selected at random from the sample will be in Sk. From the
definition of s2

ns2 =
n
∑

i=1

(xi − x̄)2 =
∑

xi∈Sk

(xi − x̄)2 +
∑

xi∈Sk

(xi − x̄)2

where the set Sk is the complement of Sk. If the contribution to s2 from all the points
close to the sample mean (the points in Sk) is ignored then, because the contribution to s

2

from each point in Sk (the points far from the sample mean) is at least (ks)
2, the previous

equation becomes the following inequality

ns2 ≥
∑

xi∈Sk

(xi − x̄)2 ≥
∑

xi∈Sk

(ks)2 = |Sk|(ks)
2 = n(1− pk)k

2s2.

If ns2 is eliminated the result is Chebyshev’s inequality

pk ≥ 1−
1

k2
(k > 1).

(This inequality says nothing for k ≤ 1.) From this inequality it follows that, in particular,
p2 ≥ 0.75. That is, for any sample at least 75% of the points in the sample must lie within
±2s of the sample mean.

* Some values in the sample may occur more than once. Therefore, S is actually a multi-

set. For the purposes of counting, however, the elements of S are treated as distinguishable
so that the cardinality (size) of S is |S| = n.
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For the data illustrated by the scatter diagram the true percentage of points within
±2s of the sample mean is 98%. That is, for the sample in Example 4.1.1, as for most
samples, the 75% in the k = 2 form of Chebyshev’s inequality is very conservative. Indeed,
it is common to find approximately 95% of the points in a sample within ±2s of the sample
mean. (See Exercise 4.1.7.)

The primary issue here is not the accuracy (or lack thereof) of Chebyshev’s inequality.
Instead, Chebyshev’s inequality and practical experience with actual data suggest that the
x̄ ± 2s interval defines the “effective width” of a sample.* As a rule of thumb, most but
not all of the points in a sample will fall within this interval. With this in mind, when
analyzing experimental data it is common to look for outliers — values so far from the
sample mean, for example ±3s or more — that they must be viewed with suspicion.

Linear Data Transformations

It is sometimes the case that the output data generated by a discrete-event simulation,
for example the wait times in a single-server service node, are statistically analyzed in one
system of units (say seconds) and later there is a need to convert to a different system
of units (say minutes). Usually this conversion of units is a linear data transformation
and, if so, the change in system statistics can be determined directly, without any need to
re-process the converted data.

That is, if x′
i
= axi+b for i = 1, 2, . . . , n then how do the sample mean x̄ and standard

deviation s of the x-data relate to the sample mean x̄′ and standard deviation s′ of the
x′-data? The answer is that

x̄′ =
1

n

n
∑

i=1

x′i =
1

n

n
∑

i=1

(axi + b) =
a

n

(

n
∑

i=1

xi

)

+ b = ax̄+ b

and

(s′)2 =
1

n

n
∑

i=1

(x′i − x̄′)2 =
1

n

n
∑

i=1

(axi + b− ax̄− b)2 =
a2

n

n
∑

i=1

(xi − x̄)2 = a2s2.

Therefore
x̄′ = ax̄+ b and s′ = |a|s.

Example 4.1.2 Suppose the sample x1, x2, . . . , xn is measured in seconds. To convert
to minutes, the transformation is x′

i
= xi/60 so that if, say x̄ = 45 (seconds) and s = 15

(seconds), then

x̄′ =
45

60
= 0.75 (minutes) and s′ =

15

60
= 0.25 (minutes).

* There is nothing magic about the value k = 2. Other values like k = 2.5 and k = 3
are sometimes offered as alternatives to define the x̄±ks interval. To the extent that there
is a standard, however, k = 2 is it. This issue will be revisited in Chapter 8.
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Example 4.1.3 Some people, particularly those used to analyzing so-called “normally
distributed” data, like to standardize the data by subtracting the sample mean and divid-
ing the result by the sample standard deviation. That is, given a sample x1, x2, . . . , xn
with sample mean x̄ and standard deviation s, the corresponding standardized sample is
computed as

x′i =
xi − x̄

s
i = 1, 2, . . . , n.

It follows that the sample mean of the standardized sample is x̄′ = 0 and the sample stan-
dard deviation is s′ = 1. Standardization is commonly used to avoid potential numerical
problems associated with samples containing very large or very small values.

Nonlinear Data Transformations

Although nonlinear data transformations are difficult to analyze in general, there are
times when data is used to create a Boolean (two-state) outcome. That is, the value of xi

is not as important as the effect— does xi cause something to occur or not? In particular,
if A is a fixed set and if for i = 1, 2, . . . , n we define the nonlinear data transformation

x′i =
{

1 xi ∈ A

0 otherwise

then what are x̄′ and s′? To answer this question let the proportion of xi that fall in A be

p =
the number of xi in A

n

then

x̄′ =
1

n

n
∑

i=1

x′i = p

and

(s′)2 =
1

n

n
∑

i=1

(x′i − p)2 = · · · = (1− p)(−p)2 + p(1− p)2 = p(1− p).

Therefore
x̄′ = p and s′ =

√

p(1− p).

Example 4.1.4 For a single-server service node, let xi = di be the delay experienced
by the ith job and let A be the set of positive real numbers. Then x′

i
is 1 if and only if

di > 0 and p is the proportion of jobs (out of n) that experience a non-zero delay. If, as in
Exercise 1.2.3, p = 0.723 then x̄′ = 0.723 and s′ =

√

(0.723)(0.277) = 0.448.

Example 4.1.5 As illustrated in Section 2.3, a Monte Carlo simulation used to estimate
a probability ultimately involves the generation of a sequence of 0’s and 1’s with the
probability estimate p being the ratio of the number of 1’s to the number of trials. Thus
p is the sample mean of this sequence of 0’s and 1’s and

√

p(1− p) is the sample standard
deviation.
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4.1.2 COMPUTATIONAL CONSIDERATIONS

One significant computational drawback to calculating the sample standard deviation
using the equation

s =

√

√

√

√

1

n

n
∑

i=1

(xi − x̄)2

is that it requires a two-pass algorithm. That is, the sample must be scanned once to
calculate the sample mean by accumulating the

∑

xi partial sums, and then scanned a
second time to calculate the sample standard deviation by accumulating the

∑

(xi − x̄)2

partial sums. This two-pass approach is usually undesirable in discrete-event simulation
because it creates a need to temporarily store or re-create the entire sample, which is
undesirable when n is large.

Conventional One-Pass Algorithm

There is an alternate, mathematically equivalent, equation for s2 (and thus s) that
can be implemented as a one-pass algorithm. The derivation of this equation is

s2 =
1

n

n
∑

i=1

(xi − x̄)2

=
1

n

n
∑

i=1

(x2

i − 2x̄xi + x̄2)

=

(

1

n

n
∑

i=1

x2

i

)

−

(

2

n
x̄

n
∑

i=1

xi

)

+

(

1

n

n
∑

i=1

x̄2

)

=

(

1

n

n
∑

i=1

x2

i

)

− 2x̄2 + x̄2

=

(

1

n

n
∑

i=1

x2

i

)

− x̄2.

If this alternate equation is used, the sample mean and standard deviation can be calculated
in one pass through the sample by accumulating the

∑

xi and
∑

x2

i
partial sums, thereby

eliminating the need to store the sample. As each new observation arises in a Monte
Carlo or discrete-event simulation, only three memory locations are needed in order to
store

∑

xi,
∑

x2

i
, and the number of observations to date. There is, however, a potential

problem with this one-pass approach — floating-point round-off error. To avoid overflow,
the sums are typically accumulated with floating-point arithmetic, even if the data is
integer-valued. Floating-point arithmetic is problematic in this case because the sample
variance is ultimately calculated by subtracting two quantities that may be very large
relative to their difference. That is, if the true value of s is tiny relative to |x̄| then
accumulated floating-point round-off error may yield an incorrect value for s.
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Fortunately there is an alternate one-pass algorithm (due to B. P. Welford in 1962)
that can be used to calculate the sample mean and standard deviation. This algorithm is
superior to the conventional one-pass algorithm in that it is much less prone to significant
floating-point round-off error. The original algorithm is given in Welford (1962). Chan,
Golub, and LeVeque (1983) survey other alternative algorithms. Welford’s algorithm is
based upon the following definition and associated theorem.

Welford’s One-Pass Algorithm

Definition 4.1.2 Given the sample x1, x2, x3, . . ., for i = 1, 2, 3, . . ., define the running
sample mean and the running sample sum of squared deviations as

x̄i =
1

i
(x1 + x2 + · · ·+ xi)

vi = (x1 − x̄i)
2 + (x2 − x̄i)

2 + · · ·+ (xi − x̄i)
2

where x̄i and vi/i are the sample mean and variance, respectively, of x1, x2, . . . , xi.

Theorem 4.1.2 For i = 1, 2, 3, . . ., the variables x̄i and vi in Definition 4.1.2 can be
computed recursively by

x̄i = x̄i−1 +
1

i
(xi − x̄i−1)

vi = vi−1 +

(

i− 1

i

)

(xi − x̄i−1)
2

with the initial conditions x̄0 = 0 and v0 = 0.

Proof Both equations in this theorem are valid by inspection if i = 1. If i > 1 then we
can write

ix̄i = x1 + x2 + · · ·+ xi

= (x1 + x2 + · · ·+ xi−1) + xi

= (i− 1)x̄i−1 + xi

= ix̄i−1 + (xi − x̄i−1)

from which the first equation follows via division by i. This establishes the first equation
in the theorem. As in the prior discussion of the conventional one-pass algorithm, an
alternate equation for vi is

vi = x2

1
+ x2

2
+ · · ·+ x2

i − ix̄2

i i = 1, 2, 3, . . .

From this alternate equation and the first equation in the theorem, if i > 1 we can write
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vi = (x
2

1
+ x2

2
+ · · ·+ x2

i−1
) + x2

i − ix̄2

i

= vi−1 + (i− 1)x̄
2

i−1
+ x2

i − ix̄2

i

= vi−1 − i(x̄2

i − x̄2

i−1
) + (x2

i − x̄2

i−1
)

= vi−1 − i(x̄i − x̄i−1)(x̄i + x̄i−1) + (xi − x̄i−1)(xi + x̄i−1)

= vi−1 − (xi − x̄i−1)(x̄i + x̄i−1) + (xi − x̄i−1)(xi + x̄i−1)

= vi−1 + (xi − x̄i−1)(xi − x̄i)

= vi−1 + (xi − x̄i−1)

(

xi − x̄i−1 −
1

i
(xi − x̄i−1)

)

= vi−1 + (xi − x̄i−1)
2 −

1

i
(xi − x̄i−1)

2

which establishes the second equation in the theorem.

Algorithm 4.1.1 Given the sample x1, x2, x3, . . ., Welford’s algorithm for calculating
the sample mean x̄ and standard deviation s is

n = 0;

x̄ = 0.0;

v = 0.0;

while ( more data ) {

x = GetData();

n++;

d = x - x̄; /* temporary variable */

v = v + d * d * (n - 1) / n;

x̄ = x̄ + d / n;

}

s = sqrt(v / n);

return n, x̄, s;

Program uvs

Algorithm 4.1.1 is a one-pass O(n) algorithm that does not require prior knowledge of
the sample size n. The algorithm is not as prone to accumulated floating-point round-off
error as is the conventional one-pass algorithm, yet it is essentially as efficient. Program
uvs at the end of this section is based on a robust version of Algorithm 4.1.1 designed to
not fail if applied, by mistake, to an empty sample. This program computes the sample
mean and standard deviation as well as the sample minimum and maximum.

Input to program uvs can be integer-valued or real-valued. The input is assumed to
be a text data file, in a one-value-per-line format with no blank lines in the file. (The file
uvs.dat is an example.) To use the program, compile uvs.c to produce the executable
file uvs. Then at a command line prompt, uvs can be used in three ways:
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• To have uvs read a disk data file, say uvs.dat, at a command line prompt use ‘<’
redirection as:

uvs < uvs.dat

• To have uvs filter the numerical output of a program, say test, at a command line
prompt use a ‘|’ pipe as:

test | uvs

• To use uvs with keyboard input, at a command line prompt enter:

uvs

then enter the data, one value per line, being sure to signify an end-of-file as the last
line of input [∧d (Ctrl-d) in Unix or ∧z (Ctrl-z) in Microsoft Windows].

4.1.3 EXAMPLES

The two examples given here illustrate the effect of independent and dependent sam-
pling on the sample statistics x̄ and s.

Example 4.1.6 If a Uniform(a, b) random variate sample x1, x2, . . ., xn is generated
then, in the limit as n → ∞, the sample mean and sample standard deviation will converge
to the limits indicated

x̄ →
a+ b

2
and s →

b− a
√
12

.

(see Chapter 7 for more details concerning Uniform(a, b) random variates.)

Welford’s algorithm was used in conjunction with a random variate sample generated by
calls to Random (drawn from stream 0 with an rngs initial seed of 12345). Since the
random variates so generated are independent Uniform(0, 1), as the sample size increases
the sample mean and standard deviation should converge to

0 + 1

2
= 0.5 and

1− 0
√
12

∼= 0.2887.

In the upper display in Figure 4.1.2, the sample values are indicated with ◦’s. The •’s show
the running values of x̄ and indicate the convergence of the corresponding sample mean
x̄n to 0.5 (the solid, horizontal line). As expected, the ◦ and the • overlap when n = 1.
The plot of x̄ may remind students of grade point average (GPA) calculations which can
be significantly influenced during the freshman and sophomore years, but remains fairly
constant during the junior and senior years. Similarly, in the lower display in Figure 4.1.2,
the •’s show the running values of s and indicate the convergence of the sample standard
deviation sn =

√

vn/n to 0.2887 (the solid, horizontal line). As discussed earlier in this
section, the sample standard deviation is 0 when n = 1. Consistent with the discussion in
Section 2.3, the convergence of both x̄ and s to their theoretical values is not necessarily
monotone with increasing n. The final values plotted on each display corresponding to
n = 100 are x̄ = 5.15 and s = 0.292.
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Figure 4.1.2.

Running

x̄ and s

of random

numbers.

Analogous to Example 4.1.6, if an Equilikely(a, b) random variate sample is generated
then, in the limit as n → ∞, the mean and standard deviation of the sample will converge
to the limits indicated

x̄ →
a+ b

2
and s →

√

(b− a+ 1)2 − 1

12
.

Similarly, if an Exponential(µ) random variate sample is generated then

x̄ → µ and s → µ

as n → ∞ and for a Geometric(p) random variate sample

x̄ →
p

1− p
and s →

√
p

1− p
.

(Chapters 6 and 7 contain derivations of many of these results.)

Serial Correlation

The random variates generated in Example 4.1.6 were independent samples. Infor-
mally, independence means that each xi in the sample x1, x2, . . . , xn has a value that does
not depend in any way on any other point in the sample. When an independent sample
is displayed, as in Example 4.1.6, there will not be any deterministic “pattern” or “trend”
to the data.
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Because repeated calls to Random produce a simulated independent sample, there is
no deterministic pattern or trend to the sample in Example 4.1.6. If, however, we were
to display the time-sequenced output from a discrete-event simulation then that sample
typically will not be independent. For example, if we display a sample of random waits
experienced by consecutive jobs passing through a single-server service node then a pattern
will be evident because the sample is not independent, particularly if the utilization is
large. That is, if the ith job experiences a large wait then the (i+ 1)th job is likely to also
experience a large wait with an analogous statement true if the ith job experiences a small
wait. In statistical terms, the wait times of consecutive jobs have positive serial correlation

(see Section 4.4 for more details) and because of this the wait times in the sample will be
dependent (i.e., not independent).

Hence independence is typically an appropriate assumption for Monte Carlo simula-
tion, as illustrated in Example 4.1.6. It is typically not an appropriate assumption for
discrete-event simulation, however, as illustrated in the following example.

Example 4.1.7 Program ssq2, with Exponential(2) interarrival times and Uniform(1, 2)
service times, was modified to output the waits w1, w2, . . . , wn experienced by the first
n = 100 jobs. To simulate starting the service node in (approximate) steady-state the
initial value of the program variable departure was set to 3.0. The rng initial seed was
12345. For this single-server service node it can be shown (see Section 8.5) that as n → ∞

the sample mean and standard deviation of the wait times should converge to 3.83 and
2.83 respectively, as indicated by the solid horizontal lines in Figure 4.1.3.
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As in Example 4.1.6, the sample values are indicated in the upper figure with ◦’s and
the •’s indicate the (unbiased) convergence of the corresponding sample mean to its ex-
pected steady-state value.* Unlike the upper figure in Example 4.1.6, this sample reveals a
lack-of-independence pattern caused by high positive serial correlation in the sample wait
times w1, w2, . . . , wn. A sequence of longer-than-average waits is followed by a sequence
of smaller-than-average waits. This pattern is quite different from that in Figure 4.1.2,
where each observation is above or below the mean (1/2) as in a sequence of tosses of
a fair coin. The running average wait does, however, converge to the theoretical value.
Moreover, as illustrated in the lower figure, the high positive serial correlation produces a
pronounced bias in the sample standard deviation. That is, the sample standard deviation
consistently underestimates the expected value. In this case a profound modification to the
sample variance equation (and thus the sample standard deviation equation) is required
to remove the bias; just replacing 1/n with 1/(n− 1) will not do it. (See Appendix F.)

4.1.4 TIME-AVERAGED SAMPLE STATISTICS

As discussed in previous chapters, time-averaged statistics play an important role in
discrete-event simulation. The following definition is the time-averaged analog of Defini-
tion 4.1.1.

Definition 4.1.3 Given a function x(t) defined for all 0 < t < τ as a realization (sample
path) of a stochastic process the sample-path mean is

x̄ =
1

τ

∫ τ

0

x(t) dt.

The associated sample-path variance is

s2 =
1

τ

∫ τ

0

(

x(t)− x̄
)2

dt

and the sample-path standard deviation is s =
√
s2.

The equation for s2 in Definition 4.1.3 is the two-pass variance equation; the corre-
sponding one-pass equation is

s2 =

(

1

τ

∫ τ

0

x2(t) dt

)

− x̄2.

As the time-averaged statistic changes at the event times in a discrete-event simulation,
only three memory locations are needed in order to store the running statistics

∫

x(t) dt,
∫

x2(t) dt, and the length of the observation period to date.

* If the initial state of the service node had been idle, rather than adjusted to simulate
starting the service node in (approximate) steady-state, then there would have been some
initial state bias in the sample means.
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For a discrete-event simulation a sample path is naturally piecewise constant. That
is, as illustrated in Figure 4.1.4, there are event times 0 = t0 < t1 < t2 < · · · < tn = τ and
associated state values x1, x2, . . . , xn on the time intervals (t0, t1], (t1, t2], . . . , (tn−1, tn].
The choice of making the left endpoint of these intervals open and the right endpoint of
these intervals closed is arbitrary.
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Figure 4.1.4.

Generic

sample

path.

If a sample path is piecewise constant then the sample-path integral equations for
x̄ and s2 in Definition 4.1.3 can be reduced to summation equations, as summarized by
Theorem 4.1.3 that follows. The defining formulas given in Definition 4.1.3 are useful
conceptually, but Theorem 4.1.3 gives the computational formulas that are used to compute
x̄ and s2 in practice.

Theorem 4.1.3 Given a sample path represented by the piecewise constant function

x(t) =















x1 t0 < t ≤ t1
x2 t1 < t ≤ t2
...

...
xn tn−1 < t ≤ tn.

and the inter-event times δi = ti − ti−1 for i = 1, 2, . . . , n then with t0 = 0 and τ = tn the
sample-path mean is

x̄ =
1

τ

∫ τ

0

x(t) dt =
1

tn

n
∑

i=1

xi δi

and the sample-path variance is

s2 =
1

τ

∫ τ

0

(

x(t)− x̄
)2

dt =
1

tn

n
∑

i=1

(

xi − x̄
)2

δi =

(

1

tn

n
∑

i=1

x2

i δi

)

− x̄2.

Welford’s Sample-Path Algorithm

The two-pass and one-pass algorithms are susceptible to floating-point round-off error
as described earlier. Welford’s algorithm can be extended to the time-averaged case by
defining running sample means and running sample sum of squared deviations analogous
to the earlier case.
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Definition 4.1.4 With reference to Theorem 4.1.3, for i = 1, 2, . . . , n the sample-path
variant of Welford’s algorithm is based on the definitions

x̄i =
1

ti
(x1δ1 + x2δ2 + · · ·+ xiδi)

vi = (x1 − x̄i)
2δ1 + (x2 − x̄i)

2δ2 + · · ·+ (xi − x̄i)
2δi

where x̄i and vi/ti are the sample-path mean and variance, respectively, of the sample
path x(t) for t0 ≤ t ≤ ti.

Theorem 4.1.4 For i = 1, 2, . . . , n the variables x̄i and vi in Definition 4.1.4 can be
computed recursively by

x̄i = x̄i−1 +
δi

ti
(xi − x̄i−1)

vi = vi−1 +
δiti−1

ti
(xi − x̄i−1)

2

with the initial conditions x̄0 = 0 and v0 = 0.

4.1.5 EXERCISES

Exercise 4.1.1 Prove Theorem 4.1.1 by first proving that d2(x) = (x− x̄)2 + s2.

Exercise 4.1.2 Prove Theorem 4.1.1 for the 1/(n− 1) form of the sample variance.

Exercise 4.1.3 Relative to Theorem 4.1.2, prove that the sequence v1, v2, . . . , vn satisfies
the inequality 0 = v1 ≤ v2 ≤ · · · ≤ vn−1 ≤ vn = ns2.

Exercise 4.1.4a What common sample statistic best fits the sample x1, x2, . . . , xn in
the sense of minimizing

d(x) =
1

n

n
∑

i=1

|xi − x|?

Exercise 4.1.5 The statistic q3 is the so-called sample skewness defined by

q3 =
1

n

n
∑

i=1

(

xi − x̄

s

)3

.

(a) What is the one-pass version of the equation for q3? (b) Extend the conventional (non-
Welford) one-pass algorithm to also compute the sample statistic q = (q3)1/3. (c) What is
the value of q for the data in the file uvs.dat?
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Exercise 4.1.6 Look up the article by Chan, Golub, and LeVeque (1983) in the bibli-
ography. Give a survey of existing algorithms for computing the sample variance listing
the pros and cons of each method.

Exercise 4.1.7 (a) Generate an Exponential(9) random variate sample of size n = 100
and compute the proportion of points in the sample that fall within the intervals x̄ ± 2s
and x̄ ± 3s. Do this for 10 different rngs streams. (b) In each case, compare the results
with Chebyshev’s inequality. (c) Comment.

Exercise 4.1.8 Generate a plot similar to that in Figure 4.1.2 with calls to Exponen-

tial(17), rather than Random to generate the variates. Indicate the values to which the
sample mean and sample standard deviation will converge.

Exercise 4.1.9a Prove Theorems 4.1.3 and 4.1.4.

Exercise 4.1.10 (a) Given x1, x2, . . ., xn with a ≤ xi ≤ b for i = 1, 2, . . . , n, what is
the largest and smallest possible value of x̄? (b) Same question for s.

Exercise 4.1.11 Calculate x̄ and s by hand using the 2-pass algorithm, the 1-pass
algorithm, and Welford’s algorithm in the following two cases. (a) The data based on
n = 3 observations: x1 = 1, x2 = 6, and x3 = 2. (b) The sample path x(t) = 3 for
0 < t ≤ 2, and x(t) = 8 for 2 < t ≤ 5, over the time interval 0 < t ≤ 5.

Exercise 4.1.12a The extent to which accumulated round-off error is a potential prob-
lem in any calculation involving floating-point arithmetic is determined, in part, by what
is known as the computational system’s “floating-point precision.” One way to determine
this precision is by executing the code fragment below.

typedef float FP; /* float or double */

const FP ONE = 1.0;

const FP TWO = 2.0;

FP tiny = ONE;

int count = 0;

while (ONE + tiny != ONE) {

tiny /= TWO;

count++;

}

(a) Experiment with this code fragment on at least three systems being sure to use both
float and double data types for the generic floating-point type FP. (b) Explain what this
code fragment does, why the while loop terminates, and the significance of the variables
tiny and count. Be explicit.
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Given a univariate sample S = {x1, x2, . . . , xn}, if the sample size is sufficiently large
(say n > 50 or so) then generally it is meaningful to do more than just calculate the
sample mean and standard deviation. In particular, the sample can be processed to form
a histogram and thereby gain insight into the distribution of the data. There are two cases
to consider, discrete data and continuous data. In this section we deal with the easier case,
discrete data; continuous data is considered in the next section.

4.2.1 DISCRETE-DATA HISTOGRAMS

Definition 4.2.1 Given the discrete-data sample (multiset) S = {x1, x2, . . . , xn}, let
X be the set of possible distinct values in S. For each x ∈ X the relative frequency

(proportion) is

f̂(x) =
the number of xi ∈ S for which xi = x

n

A discrete-data histogram is a graphical display of f̂(x) versus x.*

The point here is that if the sample size n = |S| is large and the data is discrete
then it is reasonable to expect that the number of distinct values in the sample will be
much smaller than the sample size — values will appear multiple times. A discrete-data
histogram is nothing more than a graphical display of the relative frequency with which
each distinct value in the sample appears.

Example 4.2.1 As an example of a discrete-data histogram, a modified version of pro-
gram galileo was used to replicate n = 1000 rolls of three fair dice (with an rng initial
seed of 12345) and thereby create a discrete-data sample S = {x1, x2, . . . , xn} with each
xi an integer between 3 and 18 inclusive. (Each xi is the sum of the three up faces.)
Therefore, X = {3, 4, . . . , 18}. The resulting relative frequencies (probability estimates)
are plotted as the discrete-data histogram on the left side of Figure 4.1.2. Illustrated on
the right is the same histogram with the theoretical probabilities associated with the sum-
of-three-dice experiment superimposed as •’s. Each theoretical probability represents the
limit to which the corresponding relative frequency will converge as n → ∞.
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Histograms

for program

galileo.

* The reason for the f̂(x) “hat” notation will be explained in Chapter 8.
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No matter how many replications are used, in Example 4.2.1 we know a priori that
X = {3, 4, . . . , 18}. Because of that it is natural to use an array to accumulate the relative
frequencies, as in program galileo. An array can also be used to accumulate the relative
frequencies in the next example. In this case, however, the use of an array is less natural
because, although we know that X = {0, 1, 2, . . . , b} for some value of b, a reasonable
value for b, valid for any value of n, is not easily established a priori. If an array is
not appropriate, a more flexible data structure based on dynamic memory allocation is
required to tally relative frequencies. As an illustration, a linked-list implementation of a
discrete-data histogram algorithm is presented later in this section.

Example 4.2.2 Suppose that 2n = 2000 balls are placed at random into n = 1000
boxes. That is, for each ball a box is selected at random and the ball is placed in it. The
Monte Carlo simulation algorithm given below can be used to generate a random sample
S = {x1, x2, . . . , xn} where, for each i, xi is the number of balls placed in box i.

n = 1000;

for (i = 1; i <= n; i++) /* i counts boxes */

xi = 0;

for (j = 0; j < 2 * n; j++) { /* j counts balls */

i = Equilikely(1, n); /* pick a box at random */

xi++; /* then put a ball in it */

}

return x1, x2, . . . , xn;

When 2000 balls are placed into 1000 boxes in this way then each box will have exactly
two balls in it on average. Some boxes will be empty, however, some will have just one ball,
some will have two balls, some will have three balls, etc., as illustrated in Figure 4.2.2.
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In this case, for an rng initial seed of 12345, X = {0, 1, 2, . . . , 9}. As in Example 4.2.1, the
discrete-data histogram is on the left and the figure on the right is the same histogram with
theoretical probabilities superimposed as •’s. Each theoretical probability represents the
limit to which the corresponding relative frequency will converge as n → ∞. (The relative

frequencies f̂(7) = 0.002 and f̂(9) = 0.001 are too small to be visible in the histogram

and, because no boxes ended up with 8 balls, f̂(8) = 0.000.)
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Note the asymmetric shape of the histogram in Example 4.2.2. This asymmetry is
frequently associated with non-negative data when the mean is small. As an exercise you
should repeat this example in the situation where there are 1000 boxes and 10 000 balls.
In that case the shape of the histogram will change to a distribution symmetric about the
expected number of balls in each box, which is 10. The reason for this shift to a symmetric
distribution will be discussed in Chapter 6.

Histogram Mean and Standard Deviation

Definition 4.2.2 Given the relative frequencies from Definition 4.2.1, the discrete-data

histogram mean is

x̄ =
∑

x

xf̂(x)

and the associated discrete-data histogram standard deviation is

s =

√

∑

x

(x− x̄)2f̂(x)

where the sum is over all x ∈ X . The discrete-data histogram variance is s2.

Consistent with their interpretation as probability estimates, the relative frequencies
from Definition 4.2.1 are defined so that f̂(x) ≥ 0 for all x ∈ X and

∑

x

f̂(x) = 1.

Moreover, it follows from the definition of S and X that
n
∑

i=1

xi =
∑

x

xnf̂(x) and
n
∑

i=1

(xi − x̄)2 =
∑

x

(x− x̄)2 nf̂(x).

(In both equations, the two summations compute the same thing, but in a different order.)
Therefore, from the equations in Definition 4.1.1 and Definition 4.2.2 it follows that the
sample mean and standard deviation are mathematically equivalent to the discrete-data

histogram mean and standard deviation, respectively.

Provided the relative frequencies have already been computed, it is generally preferable
to compute x̄ and s using the discrete-data histogram equations. Moreover, the histogram-
based equations have great theoretical significance in that they provide the motivation for
defining the mean and standard deviation of discrete random variables — see Chapter 6.

The equation for s in Definition 4.2.2 is the two-pass version of the standard deviation
equation. The mathematically equivalent one-pass version of this equation is

s =

√

√

√

√

(

∑

x

x2f̂(x)

)

− x̄2

where the sum is over all x ∈ X .
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Example 4.2.3 For the data in Example 4.2.1

x̄ =
18
∑

x=3

x f̂(x) ∼= 10.609 and s =

√

√

√

√

18
∑

x=3

(x− x̄)2f̂(x) ∼= 2.925

Similarly, for the data in Example 4.2.2

x̄ =
9
∑

x=0

x f̂(x) = 2.0 and s =

√

√

√

√

9
∑

x=0

(x− x̄)2f̂(x) ∼= 1.419

4.2.2 COMPUTATIONAL CONSIDERATIONS

As illustrated in Examples 4.2.1 and 4.2.2, in many simulation applications the discrete
data will, in fact, be integer -valued. For integer-valued data, the usual way to tally the
discrete-data histogram is to use an array. Recognize, however, that the use of an array
data structure for the histogram involves the allocation of memory with an associated
requirement to know the range of data values. That is, when memory is allocated it is
necessary to assume that X = {a, a+1, a+2, . . . , b} for reasonable integer values of a < b.
Given a knowledge of a, b the following one-pass O(n) algorithm is the preferred way to
compute a discrete-data histogram for integer-valued data.

Algorithm 4.2.1 Given integers a, b with a < b and integer-valued data x1, x2, . . . the
following algorithm computes a discrete-data histogram.

long count[b - a + 1];

n = 0;

for (x = a; x <= b; x++)

count[x - a] = 0;

outliers.lo = 0;

outliers.hi = 0;

while ( more data ) {

x = GetData();

n++;

if ((a <= x) and (x <= b))

count[x - a]++;

else if (a > x)

outliers.lo++;

else

outliers.hi++;

}

return n, count[ ], outliers /* f̂(x) is (count[x− a] / n) */
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Outliers

By necessity Algorithm 4.2.1 allows for the possibility of outliers— occasional xi that
fall outside the range a ≤ xi ≤ b. Generally with simulation-generated data there should
not be any outliers. That is, an outlier is a data point that some omniscient being considers
to be so different from the rest that it should be excluded from any statistical analysis.
Although outliers are common with some kinds of experimentally measured data, it is
difficult to argue that any data generated by a valid discrete-event simulation program is
an outlier, no matter how unlikely the value may appear to be.

General-Purpose Discrete-Data Histogram Algorithm

Algorithm 4.2.1 is not appropriate as a general-purpose discrete-data histogram algo-
rithm for two reasons.

• If the discrete-data sample is integer-valued and the a, b parameters are not chosen
properly then either outliers will be produced, perhaps without justification, or exces-
sive computational memory (to store the count array) may be required needlessly.

• If the data is not integer-valued then Algorithm 4.2.1 is not applicable.

In either case we must find an alternative, more general, algorithm that uses dynamic
memory allocation and has the ability to handle both real-valued and integer-valued data.
The construction of this algorithm is one of several occasions in this book where we will
use dynamic memory allocation, in this case in the form of a linked-list, as the basis for
an algorithm that is well suited to accommodate the uncertainty and variability naturally
associated with discrete-event simulation data.

Definition 4.2.3 A linked-list discrete-data histogram algorithm with general applica-
bility can be constructed using a list pointer head and multiple list nodes (structures) each
consisting of three fields value, count, and next, as illustrated in Figure 4.2.3.

value

count

next
•

value

count

next
•

value

count

next
•

head
•

Figure 4.2.3.

Linked list data

structure for

discrete data.

The association between the first two fields in each list node and the corresponding terms
in Definition 4.2.1 is x ∼ value and, after all data is processed, nf̂(x) ∼ count. The next
field is the link (pointer) from one list node to the next.

Algorithm 4.2.2 Given the linked-list data structure in Definition 4.2.3 and the discrete
data x1, x2, . . . , xn a discrete-data histogram is computed by using x1 to initialize the first
list node. Then, for i = 2, 3, . . . , n, as each xi is read the list is searched (linearly from the
head by following the links) to see if a list node with value equal to xi is already present
in the list. If so the corresponding list node count is increased by 1; otherwise a new list
node is added to the end of the list with value equal to xi and count equal to 1.
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Example 4.2.4 For the discrete data 3.2, 3.7, 3.7, 2.9, 3.7, 3.2, 3.7, 3.2, Algorithm 4.2.2
generates the corresponding linked-list illustrated in Figure 4.2.4.
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Figure 4.2.4.

Sample linked

list.

Note that the order of the linked-list nodes is dictated by the order in which the data
appears in the sample. As an alternative, it may be better to use the count field and
maintain the list in sorted order by decreasing relative frequency, or to use the value field
and sort by data value — see Exercise 4.2.6.

Program ddh

The discrete-data histogram program ddh is based on Algorithm 4.2.2 and the linked-
list data structure in Definition 4.2.3. The program has been designed so that the linked list
is sorted by value prior to output. This program is valid for both integer-valued and real-
valued input with no artificial outlier check imposed and no restriction on the sample size.
Like program uvs, program ddh supports file redirection, as illustrated by Example 4.2.5
(to follow).

If program ddh is used improperly to tally a large sample that is not discrete the
program’s execution time may be excessive. That is, the design of program ddh is based
on the assumption that, even though the sample size |S| is essentially arbitrary, the number
of distinct values in the sample |X | is not too large, say a few hundred or less. If the number
of distinct values is large then the O(|X |) complexity (per sample value) of the function
Insert and the one-time O(|X |2) complexity of the function Sort will become the source
of excessive execution time. Note, however, that a discrete-data sample with more than a
few hundred distinct values would be very unusual.

Example 4.2.5 Program sis2 computes the statistics d̄, ō, ū, l̄+, and l̄−. If we were
interested in a more detailed look at this simple inventory system we could, for example,
construct a histogram of the inventory level prior to inventory review. This is easily accom-
plished by eliminating the printing of summary statistics in program sis2 and modifying
the while loop in main by inserting the one line indicated

index++;

printf("%ld\n", inventory); /* this line is new */

if (inventory < MINIMUM) {

If the new program sis2 is compiled to disk (with STOP = 10 000), the command

sis2 | ddh > sis2.out

will then produce a discrete-data histogram file sis2.out from which an inventory level
histogram can be constructed.



154 4. Statistics

Example 4.2.6 As a continuation of Example 4.2.5 the inventory level histogram is
illustrated (x denotes the inventory level prior to review) in Figure 4.2.5.
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The sample mean and standard deviation for this data are x̄ = 27.63 and s = 23.98. The
corresponding x̄ ± 2s interval is indicated. In this case approximately 98.5% of the data
falls in this interval. Therefore, consistent with the discussion in the previous section, the
“at least 75%” estimate guaranteed by Chebyshev’s inequality is very conservative. That
is, the x̄± 2s interval contains almost all the sample data.

As discussed in Example 3.1.5, the assumption of Equilikely(10, 50) random variate
demands in program sis2 is questionable. Generally one would expect the extreme values
of the demand, in this case 10 and 50, to be much less likely than an intermediate value
like 30. One way to accomplish this is use the assignment

return(Equilikely(5, 25) + Equilikely(5, 25));

in the function GetDemand. It can be verified by the axiomatic approach to probability
that the theoretical mean and standard deviation of the demand for this assignment is 30
and

√

220/3 ∼= 8.56 respectively. Moreover, the distribution and associated histogram will
have a triangular shape with a peak at 30. Of course, other stochastic demand models are
possible as well. We will investigate this issue in more detail in Chapter 6.

Example 4.2.7 Compared to the histogram in Example 4.2.6, the use of the more
realistic discrete triangular random variate demand model produces a corresponding change
in the inventory level histogram, as illustrated in Figure 4.2.6.
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This inventory level histogram is much more tapered at the extreme values, particularly
at 70. The sample mean and standard deviation are 27.29 and 22.59 respectively. The
corresponding x̄ ± 2s interval is slightly smaller, as illustrated. As in Example 4.2.6,
approximately 98.5% of the data lie in this interval.
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Accuracy of Point Estimates

We now consider the accuracy of probability estimates derived by Monte Carlo sim-
ulation. This issue was first raised in Chapter 2 and, at that point, largely dismissed.
Now we can use program ddh as an experimental tool to study the inherent uncertainty in
such probability estimates. The following example uses the Monte Carlo program craps

from Section 2.4 to generate 1000 point estimates of the probability of winning in the dice
game craps. Because of the inherent uncertainty in any one of these estimates, when many
estimates are generated a natural distribution of values will be produced. This distribution
of values can be characterized with a discrete-data histogram and in that way we can gain
significant insight into just how uncertain any one probability estimate may be.

Example 4.2.8 A Monte Carlo simulation of the dice game craps was used to generate
1000 estimates of the probability of winning. In the top figure each estimate is based on
just N = 25 plays of the game; in the bottom figure N = 100 plays per estimate were used.
For either figure, let p1, p2, p3, . . ., pn denote the n = 1000 estimates where pi = xi/N

and xi is the number of wins in N plays of the game. Since only N + 1 values of pi are
possible, it is natural to use a discrete-data histogram in this application, as illustrated in
Figure 4.2.7.
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In the top histogram, the sample mean is 0.494, the sample standard deviation is 0.102
and there is significant variation about the true probability of winning at craps, which is
known to be 244/495 ∼= 0.4929 using the analytic approach to probability. This variation
corresponds to an inherently large uncertainty in any one estimate. That is, if just one

probability estimate were generated based on 25 plays of the game, then our experiment
with 1000 replications shows that probability estimates as far away from the true proba-
bility as 5/25 = 0.2 and 20/25 = 0.8 could be generated. In the bottom histogram, the
associated sample mean and standard deviation are 0.492 and 0.048 respectively. When
compared with the top histogram there is still significant variability, but it is reduced. In
particular, the standard deviation is reduced by a factor of about two (from 0.102 to 0.048)
resulting in a corresponding two-fold reduction in the uncertainty of any one estimate.
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The reduction in the sample standard deviation from 0.102 to 0.048 in Example 4.2.8
is good. That a four -fold increase in the number of replications (games) is required to
produce a two-fold reduction in uncertainty, however, is not so good. We will have much
more to say about this in Chapter 8.

In Example 4.2.8 the “bell-shape” of the discrete-data histogram is important. As
will be discussed in Chapter 8, this bell (or Gaussian) shape, which shows up in a wide
variety of applications, is accurately described by a well-known mathematical equation
that provides the basis for establishing a probability estimate interval within which the
true (theoretical) probability lies with high confidence.

4.2.3 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS

The histogram is an effective tool for estimating the shape of a distribution. There are
occasions, however, when a cumulative version of the histogram is preferred. Two such oc-
casions are when quantiles (e.g., the 90th quantile of a distribution) are of interest or when
two or more distributions are to be compared. An empirical cumulative distribution func-

tion, which simply takes an upward step of 1/n at each of the n data values x1, x2, . . . , xn,
is easily computed. In the case of discrete data, of course, there will typically be many
ties, so the step function will have varying heights to the risers.

Example 4.2.9 The n = 1000 estimates of the probability of winning in craps for
N = 100 plays from Example 4.2.8 range from 0.33 to 0.64. Four empirical cumulative

distribution functions for this data set using different formats are plotted in Figure 4.2.8
for 0.3 < p < 0.7. The top two graphs plot the cumulative probability only at the observed
values, while the bottom two graphs are step functions plotted for all values of p. The
choice between these four styles is largely a matter of taste.
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4.2.4 EXERCISES

Exercise 4.2.1a Find the theoretical values of the probabilities, mean, and variance for
program galileo in Example 4.2.1.

Exercise 4.2.2 (a) Generate the 2000-ball histogram in Example 4.2.2. (b) Verify that

the resulting relative frequencies f̂(x) satisfy the equation

f̂(x) ∼=
2x exp(−2)

x!
x = 0, 1, 2, . . .

(c) Then generate the corresponding histogram if 10 000 balls are placed, at random, in
1000 boxes. (d) Find an equation that seems to fit the resulting relative frequencies well
and illustrate the quality of the fit.

Exercise 4.2.3 The gap in the histogram in Figure 4.2.2 in Example 4.2.2 corresponding
to no boxes having exactly eight balls brings up an important topic in Monte Carlo and
discrete-event simulation: the generation of rare events. To use the probabilist’s terminol-
ogy, there is poorer precision for estimating the probability of events out in the fringes (or
“tails”) of a distribution. (a) In theory, could all of the 2000 balls be in just one of the
boxes? If so, give the probability of this event. If not, explain why not. (b) In practice,
with our random number generator rng, could all of the 2000 balls be in one of the boxes?

Exercise 4.2.4a Find the theoretical probabilities required to generate the right-hand
plot in Figure 4.2.2.

Exercise 4.2.5 Program ddh computes the histogram mean and standard deviation. If
you were to modify this program so that it also computes the sample mean and standard
deviation using Welford’s algorithm you would observe that (except perhaps for floating-
point round-off errors) these two ways of computing the mean and standard deviation
produce identical results. (a) If, instead, Algorithm 4.2.1 were used to compute the his-
togram mean and standard deviation, would they necessarily agree exactly with the sample
mean and standard deviation? (b) Why or why not?

Exercise 4.2.6 Although the output of program ddh is sorted by value, this is only a
convention. As an alternative, modify program ddh so that the output is sorted by count
(in decreasing order).

Exercise 4.2.7a Use simulation to explore the “efficiency increasing” modifications sug-
gested in Example 4.2.4. That is, either of these modifications will make the algorithm
more complicated for what may be, in return, only a marginal increase in efficiency. Be-
cause of its quadratic complexity beware of simply using a modified version of the function
Sort in this application.
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Exercise 4.2.8 How do the inventory level histograms in Examples 4.2.6 and 4.2.7 relate
to the relative frequency of setups ū?

Exercise 4.2.9a Generate a random variate demand sample of size n = 10 000 as

di = Equilikely(5, 25) + Equilikely(5, 25); i = 1, 2, . . . , n

(a) Why is the sample mean 30? (b) Why is the the sample standard deviation
√

220/3?
(c) Why is the shape of the histogram triangular?

Exercise 4.2.10 A discrete-data histogram of orders is illustrated (corresponding to the
demand distribution in Example 4.2.6). Based on this histogram, by inspection estimate
the histogram mean and standard deviation.
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Exercise 4.2.11a A test is compiled by selecting 12 different questions, at random and
without replacement, from a well-publicized list of 120 questions. After studying this list
you are able to classify all 120 questions into two classes, I and II. Class I questions are
those about which you feel confident; the remaining questions define class II. Assume that
your grade probability, conditioned on the class of the problems, is

A B C D F

class I 0.6 0.3 0.1 0.0 0.0
class II 0.0 0.1 0.4 0.4 0.1

Each test question is graded on an A = 4, B = 3, C = 2, D = 1, F = 0 scale and a score
of 36 or better is required to pass the test. (a) If there are 90 class I questions in the list,
use Monte Carlo simulation and 100 000 replications to generate a discrete-data histogram
of scores. (b) Based on this histogram what is the probability that you will pass the test?

Exercise 4.2.12a Modify program ssq2 so that each time a new job arrives the program
outputs the number of jobs in the service node prior to the job’s arrival. (a) Generate a
discrete-data histogram for 10 000 jobs. (b) Comment on the shape of the histogram and

compare the histogram mean with l̄. (c) How does f̂(0) relate to x̄?
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As in the previous section, we assume a sample S = {x1, x2, . . . , xn} with n sufficiently
large that it is reasonable to do more than just calculate the sample mean and standard
deviation. In sharp contrast to the discrete-data situation in the previous section, how-
ever, we now consider continuous-data histograms where the data values x1, x2, . . . , xn are
assumed to be real-valued and generally distinct.

4.3.1 CONTINUOUS-DATA HISTOGRAMS

Given a real-valued sample S = {x1, x2, . . . , xn}, without loss of generality we can
assume the existence of real-valued lower and upper bounds a, b with the property that

a ≤ xi < b i = 1, 2, . . . , n.

This defines an interval of possible values for some random variable X as X = [a, b) = {x |

a ≤ x < b}, that can be partitioned into k equal-width bins (k is a positive integer) as

[a, b) =
k−1
⋃

j=0

Bj = B0 ∪ B1 ∪ · · · ∪ Bk−1,

where the bins are B0 = [a, a+ δ), B1 = [a+ δ, a+ 2δ), . . . and the width of each bin is

δ =
b− a

k

as illustrated on the axis below.

a b

B0 B1 Bj Bk−1

| |←− δ −→

Definition 4.3.1 Given the sample S = {x1, x2, . . . , xn} and the related parameters a,
b, and either k or δ, for each x ∈ [a, b) there is a unique bin Bj with x ∈ Bj . The estimated
density of the random variable X is then

f̂(x) =
the number of xi ∈ S for which xi ∈ Bj

n δ
a ≤ x < b.

A continuous-data histogram is a “bar” plot of f̂(x) versus x.*

As the following example illustrates, f̂(·) is a piecewise constant function (constant
over each bin) with discontinuities at the histogram bin boundaries. Since simulations tend
to produce large data sets, we adopt the graphics convention illustrated in Example 4.3.1 of
drawing f̂(·) as a sequence of piecewise constant horizontal segments connected by vertical
lines. This decision is consistent with maximizing the “data-to-ink” ratio (see Tufte, 2001).

* Compare Definition 4.3.1 with Definition 4.2.1. The bin index is j = b(x−a)/δc. The
density is the relative frequency of the data in bin Bj normalized via a division by δ.
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Example 4.3.1 As an extension of Example 4.1.1, a modified version of program buf-

fon was used to generate a random variate sample of n = 1000 observations of the
x-coordinate of the righthand endpoint of a unit-length needle dropped at random. To
form a continuous-data histogram of the sample, the values a = 0.0 and b = 2.0 are, in
this case, obvious choices for lower and upper bounds.* The number of histogram bins
was selected, somewhat arbitrarily, as k = 20 so that δ = (b − a)/k = 0.1. The resulting
histogram is illustrated on the left side of Figure 4.3.1.
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Figure 4.3.1.

Histograms

for k = 20.

Illustrated on the right is the same histogram with a continuous curve superimposed. As
discussed later in Chapter 7, this curve represents the probability density function of the
righthand endpoint, which is the limit to which the histogram will converge as the sample
size (n) approaches infinity and simultaneously k approaches infinity or, equivalently, δ
approaches zero.

Histogram Parameter Guidelines

There is an experimental component to choosing the continuous-data histogram pa-
rameters a, b, and either k or δ. These guidelines are certainly not rigid rules.

• For data produced by a (valid) simulation there should be few, if any, outliers. That
is, the bounds a, b should be chosen so that few, if any, data points in the sample are
excluded. Of course, as in the discrete-data case, prior knowledge of reasonable values
for a, b may not always be easily obtained.

• If k is too large (δ is too small) then the histogram will be too “noisy” with the
potential of exhibiting false features caused by natural sampling variability; if k is too
small (δ is too large) then the histogram will be too “smooth” with the potential of
masking significant features — see Example 4.3.2.

• The histogram parameters should always be chosen with the aesthetics of the resulting
figure in mind, e.g., for a = 0 and b = 2, if n is sufficiently large a choice of k = 20
(δ = 0.1) would be a better choice than k = 19 (δ ∼= 0.10526).

• Typically blog
2
(n)c ≤ k ≤ b

√
nc with a bias toward k ∼= b(5/3) 3

√
nc (Wand, 1997).

• Sturges’s rule (Law and Kelton, 2000, page 336) suggests k ∼= b1 + log
2
nc.

* Because the needle has unit length, 0.0 < xi < 2.0 for i = 1, 2, . . . , n.
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Example 4.3.2 As a continuation of Example 4.3.1, two additional histograms are il-
lustrated in Figure 4.3.2 corresponding to k = 10 (δ = 0.2) on the left and to k = 40
(δ = 0.05) on the right. The histogram on the right is clearly too noisy consistent with
a choice of k that violates the second histogram parameter guideline (i.e., k is too large
relative to n). Although this characterization is less clear, the histogram on the left may
be too smooth because k is too small. For this sample, the best choice of k seems to be
somewhere between 10 and 20 (using the last of the histogram guidelines, 9 ≤ k ≤ 31
and k ∼= b(5/3) 3

√
1000c = 16). Since simulations typically produce large numbers of obser-

vations, and therefore many histogram bins are required, we avoid the common practice
of dropping the vertical lines to the horizontal axis which visually partitions the bins.
Including these lines unnecessarily clutters the histogram and obscures the shape of the
histogram, particularly for large k.
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Figure 4.3.2.

Histograms

for k = 10
and k = 40.

Histogram Integrals

Definition 4.3.2 As an extension of Definition 4.3.1, for each j = 0, 1, . . . , k − 1 define
pj as the relative frequency of points in S = {x1, x2, . . . , xn} that fall into bin Bj . Since
the bins form a partition of [a, b) each point in S is counted exactly once (assuming no
outliers) and so p0 + p1 + · · ·+ pk−1 = 1. In addition, define the bin midpoints

mj = a+

(

j +
1

2

)

δ j = 0, 1, . . . , k − 1

as illustrated on the axis below.

a b

m0 m1 mj mk−1

| |←− δ −→

• • • • • • • • • •

It follows from Definitions 4.3.1 and 4.3.2 that

pj = δf̂(mj) j = 0, 1, . . . , k − 1

and that f̂(·) is a non-negative function with unit area. That is
∫ b

a

f̂(x) dx =

k−1
∑

j=0

∫

Bj

f̂(x) dx =

k−1
∑

j=0

f̂(mj)

∫

Bj

dx =

k−1
∑

j=0

(pj

δ

)

δ =

k−1
∑

j=0

pj = 1.
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In addition to proving that
∫ b

a
f̂(x) dx = 1, the previous derivation can be extended

to the two integrals

∫ b

a

xf̂(x) dx and

∫ b

a

x2f̂(x) dx.

That is, for the first of these two integrals,

∫ b

a

xf̂(x) dx =

k−1
∑

j=0

∫

Bj

xf̂(x) dx =

k−1
∑

j=0

f̂(mj)

∫

Bj

x dx =

k−1
∑

j=0

(pj

δ

)

∫

Bj

x dx

and in analogous fashion, for the second integral

∫ b

a

x2f̂(x) dx = · · · =
k−1
∑

j=0

(pj

δ

)

∫

Bj

x2 dx.

In this way, because f̂(·) is piecewise constant, the two integrals over [a, b) are reduced to
simple polynomial integration over each histogram bin. In particular, for j = 0, 1, . . . , k−1,

∫

Bj

x dx =

∫ mj+δ/2

mj−δ/2

x dx =
(mj + δ/2)2 − (mj − δ/2)2

2
= · · · = mjδ,

so that the first integral reduces to

∫ b

a

xf̂(x) dx =

k−1
∑

j=0

(pj

δ

)

∫

Bj

x dx =

k−1
∑

j=0

mj pj .

Similarly
∫

Bj

x2 dx =
(mj + δ/2)3 − (mj − δ/2)3

3
= · · · = m2

jδ +
δ3

12

so that the second integral reduces to

∫ b

a

x2f̂(x) dx =

k−1
∑

j=0

(pj

δ

)

∫

Bj

x2 dx =





k−1
∑

j=0

m2

j pj



+
δ2

12

Therefore, the two integrals
∫ b

a
xf̂(x) dx and

∫ b

a
x2f̂(x) dx can be evaluated exactly by

finite summation. This is significant because the continuous-data histogram sample mean
and sample standard deviation are defined in terms of these two integrals.



4.3 Continuous-Data Histograms 163

Histogram Mean and Standard Deviation

Definition 4.3.3 Analogous to the discrete-data equations in Definition 4.2.2 (replacing
∑

’s with
∫

’s), the continuous-data histogram mean and standard deviation are defined as

x̄ =

∫ b

a

xf̂(x) dx and s =

√

∫ b

a

(x− x̄)2f̂(x) dx.

The continuous-data histogram variance is s2.

The integral equations in Definition 4.3.3 provide the motivation for defining the
population mean and standard deviation of continuous random variables in Chapter 7.
From the integral equations derived previously it follows that a continuous-data histogram
mean can be evaluated exactly by finite summation with the equation

x̄ =
k−1
∑

j=0

mj pj .

Moreover,

s2 =

∫ b

a

(x− x̄)2f̂(x) dx = · · · =

(

∫ b

a

x2f̂(x) dx

)

− x̄2

and, similarly,
k−1
∑

j=0

(mj − x̄)2 pj = · · · =





k−1
∑

j=0

m2

j pj



− x̄2.

From these last two equations it follows that a continuous-data histogram standard devi-
ation can be evaluated exactly by finite summation with either of the two equations*

s =

√

√

√

√

√





k−1
∑

j=0

(mj − x̄)2 pj



+
δ2

12
or s =

√

√

√

√

√





k−1
∑

j=0

m2

j
pj



− x̄2 +
δ2

12
.

In general the continuous-data histogram mean and standard deviation will differ
slightly from the sample mean and standard deviation, even if there are no outliers. This
difference is caused by the quantization error associated with the arbitrary binning of
continuous data. In any case this difference should be slight — if the difference is not
slight then the histogram parameters a, b, and either k or δ should be adjusted. Although
the histogram mean and standard deviation are inferior to the sample mean and standard
deviation, there are circumstances where a data analyst is presented with binned data and
does not have access to the associated raw data.

* There is some disagreement in the literature relative to these two equations. Many
authors use these equations, with the δ2/12 term ignored, to define the continuous-data
histogram standard deviation.
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Example 4.3.3 For the 1000-point sample in Example 4.3.1, using a = 0.0, b = 2.0,
k = 20, the difference between the sample and histogram statistics is slight:

raw data histogram histogram with δ = 0
x̄ 1.135 1.134 1.134
s 0.424 0.426 0.425

Moreover, by comparing the last two columns in this table we see that, in this case, there
is essentially no impact of the δ2/12 = (0.1)2/12 = 1/1200 term in the computation of the
histogram standard deviation.

4.3.2 COMPUTATIONAL CONSIDERATIONS

Algorithm 4.3.1 Given the parameters a, b, k, and the real-valued data x1, x2, . . ., this
algorithm computes a continuous-data histogram.

long count[k];

δ = (b - a) / k;

n = 0;

for (j = 0; j < k; j++)

count[j] = 0; /* initialize bin counters */

outliers.lo = 0; /* initialize outlier counter on (−∞, a) */

outliers.hi = 0; /* initialize outlier counter on [b,∞) */

while ( more data ) {

x = GetData();

n++;

if ((a <= x) and (x < b)) {

j = (long) (x - a) / δ;

count[j]++; /* increment appropriate bin counter */

}

else if (a > x)

outliers.lo++;

else

outliers.hi++;

}

return n, count[ ], outliers /* pj is (count[j] / n) */

The previously derived summation equations for x̄ and s can then be used to compute the
histogram mean and standard deviation.

If the sample is written to a disk file (using sufficient floating-point precision), then
one can experiment with different values for the continuous-data histogram parameters
in an interactive graphics environment. Consistent with this, program cdh illustrates
the construction of a continuous-data histogram for data read from a text file. For an
alternative approach see Exercise 4.3.7.
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Example 4.3.4 As in Example 4.1.7, a modified version of program ssq2 was used to
generate a sample consisting of the waits w1, w2, . . . , wn experienced by the first n = 1000
jobs. The simulation was initialized to simulate steady-state and the rng initial seed was
12345. Program cdh was used to process this sample with the continuous-data histogram
parameters set to (a, b, k) = (0.0, 30.0, 30), as illustrated in Figure 4.3.3.
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Figure 4.3.3.

Histogram

of n = 1000
wait times.

The histogram mean is 4.57 and the histogram standard deviation is 4.65. The associ-
ated two-standard deviation “effective width” of the sample is 4.57 ± 9.30, as illustrated.
Consistent with previous examples this interval includes most of the points in the sample.*

Point Estimation

The issue of sampling variability and how it relates to the uncertainty of any prob-
ability estimate derived from a Monte Carlo simulation was considered in the previous
section. This issue is sufficiently important to warrant reconsideration here in the context
of continuous-data histograms. In particular, recall that for Example 4.2.8 there was a
sample S = {p1, p2, . . . , pn} of n = 1000 point estimates of the probability of winning
at the game of craps. One figure in Example 4.2.8 corresponds to probability estimates
based on 25 plays of the game per estimate; the other figure is based on 100 plays per
estimate. For both figures, the samples were displayed as discrete-data histograms and we
were primarily interested in studying how the width of the histograms decreased with an
increase in the number of games per estimate.

If we were to study the issue of how the histogram width depends on the number of
games in more detail, it would be natural to quadruple the number of games per estimate
to 400, 1600, 6400, etc. As the number of games increases, the associated discrete-data
histograms will look more continuous as the histogram spikes get closer together. Given
that, it is natural to ignore the inherently discrete nature of the probability estimates and,
instead, treat the sample as though it were continuous data. That is what is done in the
following example.

* The interval 4.57 ± 9.30 includes approximately 93% of the sample. There are 21
points in the sample with a value larger than 20.0, the largest of which is 28.2.
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Example 4.3.5 The sample of n = 1000 probability estimates based on N = 25 plays
of the game of craps from Example 4.2.8 was processed as a continuous-data histogram
with parameters (a, b, k) = (0.18, 0.82, 16). This choice of parameters is matched to the
“resolution” of the estimates (which is δ = 0.04) with the center of each histogram bin
corresponding to exactly one possible value of an estimate.*
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Figure 4.3.4.

Histogram of

n = 1000
estimates

of winning at

craps from

N = 25 plays.

In a similar way the sample of n = 1000 probability estimates based on N = 100 plays
of the game was processed as a continuous-data histogram with parameters (a, b, k) =
(0.325, 0.645, 16). This choice of parameters is matched to half the resolution of the esti-
mates (δ = 0.02) with the center of each histogram bin corresponding to the midpoint of
exactly two possible values of an estimate, as illustrated in Figure 4.3.5.
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Figure 4.3.5.

Histogram of

n = 1000
estimates

of winning at

craps from

N = 100 plays.

* Continuous-data histograms are density estimates, not probability estimates. Thus
values of f̂(p) can be greater than 1.0 are possible, as in this example, but the histogram

value can’t stay at that height too long since
∫

1

0
f̂(p) dp = 1.
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As in Example 4.2.8, we see that increasing the number of replications per estimate by a
factor of four causes the uncertainty in any one probability estimate to decrease by a factor
of two. The advantage to using a continuous-data histogram representation in this example
is that experimentation with more games per estimate can be naturally accommodated.
As the number of games per estimate is increased the histogram will become taller and
narrower, always centered near the true value of 244/495 ∼= 0.4929, and always consistent

with the invariant unit-area requirement
∫

1

0
f̂(p) dp = 1.

Random Events Yield Exponentially Distributed Inter-Events

Example 4.3.6 As another continuous-data histogram example, pick a positive param-
eter t > 0 and suppose that n calls to the function Uniform(0, t) are used to generate a
random variate sample of n events occurring at random in the interval (0, t). If these n

event times are then sorted into increasing order, the result is a sequence of events times
u1, u2, . . . , un ordered so that 0 < u1 < u2 < · · · < un < t. With u0 = 0 define

xi = ui − ui−1 > 0 i = 1, 2, . . . , n,

as the inter-event times. Let µ = t/n and recognize that

x̄ =
1

n

n
∑

i=1

xi =
un − u0

n
∼=

t

n
= µ

so that the sample mean of the inter-event times is approximately µ. One might expect
that a histogram of the inter-event times will be approximately “bell-shaped” and centered
at µ. As illustrated in Figure 4.3.6, however, that is not the case — the histogram has an
exponential shape.* In particular, the smallest inter-event times are the most likely.
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Figure 4.3.6.

Histogram

of n = 1000
inter-event

times.

* The histogram actually has an even longer tail than that illustrated in Figure 4.3.6.
There are eight data points in the sample (out of 1000) with a value larger than 10.
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The continuous curve superimposed illustrates that in this case f̂(x) ∼= f(x) where

f(x) =
1

µ
exp(−x/µ) x > 0.

Indeed, in the limit as n → ∞ and δ → 0 (with µ held constant) f̂(x) → f(x) for all
x > 0.* We will return to this important example in Chapter 7.

4.3.3 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS

The fact that parameters, such as the number of bins k, must be chosen by the
modeler is a distinct drawback for continuous-data histograms. Two different data analysts
could have the extreme misfortune of choosing different binning schemes for the same data
set and produce histograms with somewhat different shapes. This is particularly true if
the sampling variability inherent in the data set conspires with the two different binning
schemes to accentuate the difference between the two histograms.

An alternative approach to plotting continuous data that avoids arbitrary parameters
from the modeler is known as the empirical cumulative distribution function.

Definition 4.3.4 Given the sample S = {x1, x2, . . . , xn}, the estimated cumulative dis-

tribution function of the random variable X is

F̂ (x) =
the number of xi ∈ S for which xi ≤ x

n
.

The empirical cumulative distribution function is a plot of F̂ (x) versus x.

When x1, x2, . . . , xn are distinct, the plot of F̂ (x) versus x is a step function with
an upward step of 1/n at each data value. On the other hand, if d values are tied at a
particular x-value, the height of the riser on that particular step is d/n.

The empirical cumulative distribution function requires no parameters from the mod-
eler, which means that one data set always produces the same empirical cumulative dis-
tribution function.

We now compare the computational complexity and memory requirements of the two
graphical procedures. The continuous-data histogram algorithm performs a single-pass
through the data values, with time complexity O(n) and requires k memory locations.
Plotting the empirical cumulative distribution function requires a sort, with time com-
plexity O(n log n) at best, and all data values must be stored simultaneously, requiring n

memory locations.

* See, for example, Rigdon and Basu (2000, pages 50–52) for the details concerning the
relationship between the uniform and exponential distributions in this case.
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Example 4.3.7 Consider again the modified version of program buffon that was used
to generate a random variate sample of n = 50 observations of the x-coordinate of the
righthand endpoint of a unit-length needle dropped at random using an initial seed of
123456789. The empirical cumulative distribution function is plotted in Figure 4.3.6 using
our choice among the four plotting formats displayed for discrete data in Figure 4.2.8.
There is an upward step of 1/50 at each of the values generated. The minimum and
maximum values generated by the program are 0.45688 and 1.79410, respectively, which
correspond to the horizontal position of the first and last step of the plot of the empirical
cumulative distribution function. In this example it is possible to compute the theoretical
cumulative distribution function using the axiomatic approach to probability. This is the
smooth curve superimposed in Figure 4.3.7. The difference between the step function and
the smooth curve is due to random sampling variability.
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Figure 4.3.7.

Theoretical and

empirical cumulative

distribution functions

using fifty replications.

How does one compare the advantages and disadvantages of the continuous-data his-
togram and empirical cumulative distribution function? The histogram is clearly superior
at detecting the shape of the distribution of the random quantity of interest. The arbitrary
parameters associated with binning are its only downside. Selecting the continuous-data
histogram parameters is more of an art than a science, which drives us to an alternative.
The empirical cumulative distribution function is nonparametric, and thus less suscep-
tible to the effects of sampling variability since there is no binning. Unfortunately, its
shape is less distinct than the continuous-data histogram. It is often used to compare a
hypothesized or fitted distribution to a data set using a statistical “goodness-of-fit” test.*

Increased CPU speeds makes generating large data sets possible in simulation, putting
a strain on the memory and speed associated with plotting an empirical cumulative dis-
tribution function. Fortunately this is typically only done once during a simulation run.

We end this section with an example which combines some of the best features of
continuous-data histograms and empirical cumulative distribution functions.

* The Kolmogorov–Smirnov, Anderson–Darling, and Cramer–von Mises are three well-
known statistical goodness-of-fit tests for continuous data.
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Example 4.3.8 If the sample size from the previous example (n = 50) were dramati-
cally increased to n = 1000 000 000, one would expect the empirical cumulative distribution
function to become very smooth and approximate the theoretical curve. We plot an em-
pirical cumulative distribution function in order to take advantage of its nonparametric
nature. Unfortunately, plotting the empirical cumulative distribution function requires
that we store and sort the one billion righthand needle endpoints. Since each data value
lies on 0 ≤ x ≤ 2, we can create a close approximation to the empirical cumulative dis-
tribution function by defining, for instance, 200 equal-width cells on 0 ≤ x ≤ 2, i.e.,
[0, 0.01), [0.01, 0.02), . . . , [1.99, 2.00).* Counts associated with these cells are accumulated,
and plot of the cumulative proportions associated with these cells should be virtually iden-
tical to a plot from the raw data. The cells take advantage of the fact that the counts
can be updated as the data is generated, eliminating the need for storage and sorting.
The plot of the cumulative proportions shown in Figure 4.3.8 is much smoother than the
plot for n = 50 in Figure 4.3.7 because of the huge number of replications. The difference
between the plot in Figure 4.3.8 and the true cumulative distribution function could only
be apparent to someone with a powerful microscope!
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Approximate

empirical

cumulative

distribution

function

with one

billion

replications.

4.3.4 EXERCISES

Exercise 4.3.1 (a) Use program cdh to construct a continuous-data histogram like the
one on the left in Example 4.3.1, but corresponding to a needle of length r = 2. (b) Based
on this histogram what is the probability that the needle will cross at least one line.
(c) What is the corresponding axiomatic probability that a needle of length r = 2 will
cross at least one line?

* The number of cells chosen in this example (200) is arbitrary. The formulas given in
Section 4.3.1 for choosing the number of histogram cells do not apply here. The choice
depends on the physical size of the plot, the dsired smoothness, and the sample size.
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Exercise 4.3.2 Repeat the experiment in Example 4.3.6 with t = 5000 and n = 2000.
Do not use a bubble sort.

Exercise 4.3.3 Fill in the = · · · =’s in the derivation of the two equations

∫ b

a

xf̂(x) dx = · · · =

k−1
∑

j=0

mj pj and

∫ b

a

x2f̂(x) dx = · · · =





k−1
∑

j=0

m2

j pj



+
δ2

12
.

Exercise 4.3.4 Generate a random variate sample x1, x2, . . . , xn of size n = 10 000 as
follows:

for (i = 1; i <= n; i++)

xi = Random() + Random();

(a) Use program cdh to construct a 20-bin continuous-data histogram. (b) Can you find
an equation that seems to fit the histogram density well?

Exercise 4.3.5 (a) As a continuation of Exercise 1.2.6, construct a continuous-data
histogram of the service times. (b) Compare the histogram mean and standard deviation
with the corresponding sample mean and standard deviation and justify your choice of the
histogram parameters a, b, and either k or δ.

Exercise 4.3.6 As an extension of Definition 4.3.1, the cumulative histogram density is
defined as

F̂ (x) =

∫ x

a

f̂(t) dt a ≤ x < b.

Derive a finite summation equation for F̂ (x).

Exercise 4.3.7a To have more general applicability, program cdh needs to be restruc-
tured to support file redirection, like programs uvs and ddh. That part is easy. The ulti-
mate objective here, however, should be a large-sample “auto-cdh” program that buffers,
say, the first 1000 sample values and then automatically computes good values for the
histogram parameters a, b, and either k or δ with a dynamic data structure allowance
for additional bins to be added at the tails of the histogram and thereby avoid outliers if
extreme values occur. (a) Construct such a program. (b) Discuss the logic you used for
computing good values for the histogram parameters.

Exercise 4.3.8a Show that the theoretical cumulative distribution function superim-
posed over the empirical cumulative distribution function in Figure 4.3.7 is

F (x) =















2(x arcsin(x) +
√
1− x2 − 1)

π
0 < x < 1

2(1− x) arcsin(x− 1)− 2
√

x (2− x) + πx

π
1 < x < 2.
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In a discrete-event simulation model it is often the case that two random variables are
“co-related”. That is, the natural variation in these two variables is somehow coupled. The
statistical term for this is correlation. For example, in a FIFO single-server service node
there is (positive) correlation between a job’s wait in the service node and the wait time
of the preceding job. This section examines two types of correlation: paired and serial.

4.4.1 PAIRED CORRELATION

Given a paired sample (ui, vi) for i = 1, 2, . . . , n, we begin by considering how to
compute a statistic that measures the extent to which this sample exhibits correlation.

Definition 4.4.1 A display of the paired data (ui, vi) for i = 1, 2, . . . , n as illustrated in
Figure 4.1.1 is called a bivariate scatterplot.
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Figure 4.4.1.

Bivariate

scatterplot.

When a bivariate scatterplot is created, it is sometimes the case that the (ui, vi) points
lie primarily clustered around a line, as is the case in Figure 4.4.1. If this is the case then
it is natural to ask what line “best fits” the scatterplot data. It is in this sense that what
we are discussing is called linear correlation. Consider the line in the (u, v) plane defined
by the equation au+bv+c = 0 and for each point (ui, vi), let di be the orthogonal distance
from this point to the line, as illustrated below.
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au+ bv + c = 0di =
|aui + bvi + c|

√
a2 + b2

From calculus recall that the equation for di is as indicated. Thus we choose the (a, b, c)
line parameters that minimize the mean-square orthogonal distance

D =
1

n

n
∑

i=1

d2

i =
1

n(a2 + b2)

n
∑

i=1

(aui + bvi + c)2.
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Three-Parameter Minimization

To determine the line that best fits the data, or equivalently to determine the choice
of the (a, b, c) line parameters that will minimize D, we begin with the observation that D
can be written as*

D =
1

n(a2 + b2)

n
∑

i=1

(

a(ui − ū) + b(vi − v̄)
)2

+
1

n(a2 + b2)

n
∑

i=1

(a ū+ b v̄ + c)2

where

ū =
1

n

n
∑

i=1

ui and v̄ =
1

n

n
∑

i=1

vi

are the sample means of the u and v data respectively. Both terms in the equation for D
are non-negative since they involve sums of squares. The first term is independent of c;
the second term is not. Therefore, to minimize D the line parameter c should be chosen
so as to minimize the second term. By inspection, the minimum value of the second term
is zero and this is achieved by choosing c so that

a ū+ b v̄ + c = 0,

which eliminates the second term. For any choice of the (a, b) line parameters, if a ū+b v̄+
c = 0 it follows that the line must pass through the point (u, v) = (ū, v̄). In particular, this
geometric property is true for the choice of the (a, b) line parameters that will minimize
D. The three-parameter minimization problem has been reduced to a two-parameter
minimization problem.

Two-Parameter Minimization

Because c = −a ū − b v̄ the equation au + bv + c = 0 can be written equivalently as
a(u− ū)+ b(v− v̄) = 0. Moreover, since the (a, b) line parameters cannot both be zero, we
can simplify the equation for D by assuming that (a, b) are normalized so that a2+ b2 = 1.
The following theorem summarizes this discussion.

Theorem 4.4.1 The line that best fits the data (ui, vi) for i = 1, 2, . . . , n in a mean-
squared orthogonal distance sense is given by the equation

a(u− ū) + b(v − v̄) = 0

where the (a, b) line parameters are chosen to minimize

D =
1

n

n
∑

i=1

(

a(ui − ū) + b(vi − v̄)
)2

subject to the constraint a2 + b2 = 1.

* The details of this derivation are left as an exercise.
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Covariance and Correlation

We now re-write the algebraic expression for D in Theorem 4.4.1. We do this by
introducing two important (related) statistical measures of how the u’s and v’s are “co-
related”.

Definition 4.4.2 Given the bivariate sample (ui, vi) for i = 1, 2, . . . , n the (linear) sam-

ple covariance is

cuv =
1

n

n
∑

i=1

(ui − ū)(vi − v̄)

and, provided both su and sv are not zero, the (linear) sample correlation coefficient is

r =
cuv

susv

where ū, v̄,

s2

u =
1

n

n
∑

i=1

(ui − ū)2, and s2

v =
1

n

n
∑

i=1

(vi − v̄)2

are the sample means and sample variances of the u and v data respectively.*

As we will see, the correlation coefficient r measures the “spread” (dispersion) of the
u, v data about the line that best fits the data. By using Definition 4.4.2 the expression
for D can be written in terms of s2

u, s
2

v, and r as

D =
1

n

n
∑

i=1

(

a(ui − ū) + b(vi − v̄)
)2

=
1

n

n
∑

i=1

(

a2(ui − ū)2 + 2ab(ui − ū)(vi − v̄) + b2(vi − v̄)2
)

=
a2

n

(

n
∑

i=1

(ui − ū)2

)

+
2ab

n

(

n
∑

i=1

(ui − ū)(vi − v̄)

)

+
b2

n

(

n
∑

i=1

(vi − v̄)2

)

= a2s2

u + 2abrsusv + b2s2

v.

Note that r = 1 if and only if D = (asu + bsv)
2 and that r = −1 if and only if

D = (asu − bsv)
2. Therefore, if |r| = 1 then it is possible to choose (a, b) in such a way

that D = 0. Indeed, as we will see, the following three conditions are equivalent

|r| = 1 ⇐⇒ D = 0 ⇐⇒ all the points (ui, vi) lie on a line.

* The covariance is a generalization of the variance in the sense that cuu = s2

u and
cvv = s2

v. Note that the covariance derives its “dimensions” from u and v. The correlation
coefficient is dimensionless.
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The covariance equation in Definition 4.4.2 is a two-pass expression. As in Section 4.1
it can be shown that an equivalent one-pass expression for the covariance is

cuv =
1

n

(

n
∑

i=1

uivi

)

− ūv̄.

The derivation is left as an exercise. We will consider the computational significance of
this result later in the section.

One-Parameter Minimization

Let θ be the angle of the line a(u − ū) + b(v − v̄) = 0 measured counterclockwise
relative to the u-axis, as illustrated in Figure 4.4.2.
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Figure 4.4.2.

Defining the

angle θ.

Because a(u − ū) + b(v − v̄) = 0 and a2 + b2 = 1, the (a, b) line parameters form a unit
vector that is orthogonal to the line. Therefore the relation between (a, b) and θ using
elementary trigonometry is

a = − sin θ and b = cos θ.

Consistent with Theorem 4.4.1, minimizing D is accomplished by rotating the line
about the point (ū, v̄) to find the angle θ for which D is smallest. To find this angle, we
can write D in terms of θ as

D = a2s2

u + 2abcuv + b2s2

v

= s2

u sin
2 θ − 2cuv sin θ cos θ + s2

v cos
2 θ

= s2

u(1− cos
2 θ)− cuv sin 2θ + s2

v cos
2 θ

...

=
1

2
(s2

u + s2

v)− cuv sin 2θ −
1

2
(s2

u − s2

v) cos 2θ.
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The value of θ that minimizes

D =
1

2
(s2

u + s2

v)− cuv sin 2θ −
1

2
(s2

u − s2

v) cos 2θ

solves the equation
dD

dθ
= −2cuv cos 2θ + (s

2

u − s2

v) sin 2θ = 0.

This equation can be solved for tan 2θ to yield

tan 2θ =
2cuv

s2
u − s2

v

(su 6= sv)

as illustrated in Figure 4.4.3.
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Finding the

value of θ

that minimizes D.

Therefore, the angle which minimizes D is

θ =
1

2
tan−1(s2

u − s2

v, 2cuv),

where tan−1(u, v) is the usual 4-quadrant inverse tangent function, measured counterclock-
wise from the positive u-axis.* This discussion is summarized by the following theorem.

Theorem 4.4.2 The line that best fits the data (ui, vi) for i = 1, 2, . . . , n in a mean-
squared orthogonal distance sense passes through the point (ū, v̄) at the angle

θ =
1

2
tan−1(s2

u − s2

v, 2cuv)

measured counterclockwise relative to the positive u-axis. The equation of the line is

v = (u− ū) tan(θ) + v̄

provided θ 6= π/2. (By convention −π < tan−1(u, v) ≤ π so that −π/2 < θ ≤ π/2.)

* The function atan2(v, u) in the ANSI C library <math.h> represents the mathemat-
ical function tan−1(u, v). Note the (u, v) switch.
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Definition 4.4.3 The line that best fits the data (ui, vi) for i = 1, 2, . . . , n is known as
the (mean-square orthogonal distance) linear regression line.*

As a corollary to Theorem 4.4.2, it can be shown that the smallest possible value of
D is

2Dmin = (s
2

u + s2

v)−
√

(s2
u − s2

v)
2 + 4r2s2

us
2
v,

which can be written equivalently as

Dmin =
2(1− r2)s2

us
2

v

s2
u + s2

v +
√

(s2
u − s2

v)
2 + 4r2s2

us
2
v

.

The details of this derivation are left as an exercise. There are three important observations
that follow immediately from this equation and the fact that Dmin cannot be negative.

• The correlation coefficient satisfies the inequality −1 ≤ r ≤ 1.

• The closer |r| is to 1, the smaller the dispersion of the (u, v) data about the regression
line, and the better the (linear) fit.

• All the (ui, vi) points lie on the regression line if and only if Dmin = 0 or equivalently
if and only if |r| = 1.

Example 4.4.1 The scatterplot in Definition 4.4.1, reproduced in Figure 4.4.4, corre-
sponds to 82 student scores on two standardized tests of English verbal skills: the Test
of English as a Foreign Language (TOEFL) and Graduate Record Examination (GRE).
Although one might hope that the two test scores would be highly correlated with r close
to 1, in this case r = 0.59. That is, consistent with the considerable scatter that is evident
about the linear regression line, the correlation is not particularly high. The consistency
between the two tests is certainly less than desirable.
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Figure 4.4.4.

English verbal

measures

scatterplot.

* The derivation of an alternate mean-square non-orthogonal distance linear regression
line is outlined in the exercises.
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Significance

The magnitude of |r| is a measure of the extent to which there is a linear relation
between the u and v data. Associated terminology is provided by the following definition.

Definition 4.4.4 If r 6= 0 then the slope of the regression line is positive (θ > 0) if and
only if r > 0 and the slope of the regression line is negative (θ < 0) if and only if r < 0. If
r is close to +1 the data is said to be positively correlated. If r is close to −1 the data is
said to be negatively correlated. If r is close to 0 then the data is said to be uncorrelated.

Example 4.4.2 A modified version of program ssq2 was used to generate interarrival,
service, delay, and wait times for a steady-state sample of 100 jobs passing through an
M/M/1 service node with arrival rate 1.0 and service rate 1.25. An M/M/1 service
node has Exponential interarrival time, Exponential service times, and a single server. By
pairing these times, a total of six bivariate scatterplots could be formed, four of which are
illustrated in Figure 4.4.5.
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In this case we see, as expected, that the strongest positive correlation is between a job’s
delay and wait. For the other three pairings illustrated, the correlation is weak, if it is
non-zero at all at all.
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The statistical question of how far |r| has to be from 0 to conclude that the bivariate
data is actually correlated is a difficult one made more complicated by the fact that the
decision depends on the sample size and the joint probability distribution of the two random
variables. The smaller the sample size, the larger |r| needs to be before one can safely
conclude that the data is correlated.

If the sample size is small then the value of r is uncertain in the sense that another
sample of the same size could produce a significantly different value of r. For example, for
an M/M/1 service node, a job’s delay and service time are uncorrelated. Why? Thus the
weak r = −0.11 negative correlation indicated in Figure 4.4.5 is not statistically different
from zero — another sample of size 100 will produce a positive correlation with probability
1/2.

Computational Considerations

To return to the covariance equation in Definition 4.4.2, recall from Section 4.1 that
there are two ways to calculate a variance (or standard deviation). One method involves
two passes through the data, the first to evaluate the mean and then the second to sum
the squares of the deviations about the mean. The other method involves just one pass
through the data. An analogous result applies to the calculation of the covariance and,
therefore, the correlation coefficient. Indeed, we have already observed that there are two
mathematically equivalent expressions for the covariance

cuv =
1

n

n
∑

i=1

(ui − ū)(vi − v̄)

︸ ︷︷ ︸

two-pass

and cuv =
1

n

n
∑

i=1

uivi − ūv̄

︸ ︷︷ ︸

one-pass

.

For the same reasons discussed in Section 4.1, the one-pass algorithm is virtually always
preferred in discrete-event simulation. Moreover, there is an extension to Welford’s algo-
rithm (Algorithm 4.1.2) that applies in this case, based on the following theorem.

Theorem 4.4.3 Let ūi and v̄i denote the sample means of u1, u2, . . . , ui and v1, v2, . . . , vi
respectively and define

wi = (u1 − ūi)(v1 − v̄i) + (u2 − ūi)(v2 − v̄i) + · · ·+ (ui − ūi)(vi − v̄i)

for i = 1, 2, . . . , n where wi/i is the covariance of the first i data pairs. Then, with the
initial condition w0 = 0,

wi = wi−1 +

(

i− 1

i

)

(ui − ūi−1)(vi − v̄i−1) i = 1, 2, . . . , n

which provides a one-pass recursive algorithm to compute cuv = wn/n.

Program bvs

The program bvs is based upon the extended version of Welford’s algorithm in Theo-
rem 4.4.3. This program illustrates the calculation of the bivariate sample statistics ū, su,
v̄, sv, r, and the linear regression line angle θ.
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4.4.2 SERIAL CORRELATION

It is frequently the case that one is interested in the extent to which a set of data is
auto-correlated (e.g., self-correlated). This is particularly true, for example, in a steady-
state analysis of the waits experienced by consecutive jobs entering a service node. Intu-
itively, particularly if the utilization of the service node is high, there will be a high positive
correlation between the wait wi experienced by the i

th job and the wait wi+1 experienced
by the next job. Indeed, there will be a statistically significant positive correlation between
wi and wi+j for some range of small, positive j values.

In general, let x1, x2, . . . , xn be data which is presumed to represent n consecutive

observations of some stochastic process whose serial correlation we wish to characterize.
In the (ui, vi) notation used previously in this section, we pick a (small) fixed positive
integer j ¿ n and then associate ui with xi and vi with xi+j as illustrated

u : x1 x2 x3 · · · xi · · · xn−j xn−j+1 · · · xn
v : x1 · · · xj x1+j x2+j x3+j · · · xi+j · · · xn

The integer j > 0 is called the autocorrelation lag (or shift). Although the value j = 1
is generally of primary interest, it is conventional to calculate the serial correlation for a
range of lag values j = 1, 2, . . . , k where k ¿ n.*

Because of the lag we must resolve how to handle the “non-overlap” in the data at the
beginning and end. The standard way to handle this non-overlap is to do the obvious —
ignore the extreme data values. That is, define the sample autocovariance for lag j, based
only on the n− j overlapping values, as

cj =
1

n− j

n−j
∑

i=1

(xi − x̄)(xi+j − x̄) j = 1, 2, . . . , k,

where the sample mean, based on all n values, is

x̄ =
1

n

n
∑

i=1

xi.

The associated autocorrelation is then defined as follows.

Definition 4.4.5 The sample autocorrelation for lag j is

rj =
cj

c0
j = 1, 2, . . . , k

where the sample variance is

c0 = s2 =
1

n

n
∑

i=1

(xi − x̄)2.

* Serial statistics are commonly known as auto-statistics, e.g., autocovariance and auto-

correlation.
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Computational Considerations

The problem with the “obvious” definition of the sample autocovariance is that an
implementation based on this definition would involve a two-pass algorithm. For that
reason, it is common to use the following alternate definition of the sample autocovariance.
Although this definition is not algebraically equivalent to the “obvious” definition, if j ¿
n then the numerical difference between these two autocovariance definitions is slight.
Because it can be implemented as a one-pass algorithm, Definition 4.4.6 is preferred (in
conjunction with Definition 4.4.5).

Definition 4.4.6 The sample autocovariance for lag j is

cj =

(

1

n− j

n−j
∑

i=1

xixi+j

)

− x̄2 j = 1, 2, . . . , k.

Example 4.4.3 A modified version of program ssq2 was used to generate a sam-
ple of waits and services experienced by 10 000 consecutive jobs processed through an
M/M/1 service node, in steady-state, with arrival rate 1.0, service rate 1.25, and utiliza-
tion 1/1.25 = 0.8. Definitions 4.4.5 and 4.4.6 were used to compute the corresponding
sample autocorrelations rj for j = 1, 2, . . . , 50, in what is commonly known as an sample

autocorrelation function, or correlogram, illustrated in Figure 4.4.6.
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As expected, the sample wait autocorrelation is positive and high for small values of j,
indicating that each job’s wait is strongly (auto)correlated with the wait of the next few jobs
that follow. Also, as expected, the sample autocorrelation decreases monotonically toward
zero as j increases. The rate of decrease may be slower than expected; if the utilization
were smaller (larger), the rate of decrease would be higher (lower). It is quite surprising
that the wait times of two jobs separated by 49 intervening jobs have a moderately strong
positive correlation. Also, as expected, the sample service autocorrelation is essentially
zero for all values of j, consistent with the stochastic independence of the service times.
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We select the first three values of the the sample autocorrelation function for the wait
times in order to interpret the magnitude of the rj values. First, r0 = 1 means that there
is perfect correlation between each observation and itself, since the lag associated with r0

is zero. The next sample autocorrelation value, r1 = 0.957, indicates that adjacent (lag
1) jobs, such as job number 15 and job number 16, have a statistically significant strong
positive correlation. If the 15th job has a long wait, then the 16th job is almost certain
to also have a long wait. Likewise, if the 15th job has a short wait, then the 16th job is
almost certain to also have a short wait. Anyone who has waited in a busy queue recognizes
this notion intuitively. Finally, consider the estimated lag-two sample autocorrelation
r2 = 0.918. This autocorrelation is not quite a strong as the lag-one autocorrelation
due to the increased temporal distance between the wait times. The positive value of r2

indicates that wait times two jobs apart (e.g., the 29th and the 31st wait times) tend to
be above the mean wait time together or below the mean wait time together.

Graphical Considerations

Several formats are common for displaying the sample autocorrelation function. In
Figure 4.4.6, we plot the rj values as points. Another common practice is to draw “spikes”
from the horizontal axis to the r0, r1, . . . , rk values. It is certainly not appropriate to
connect the points to produce a piecewise-linear function. This would imply that rj is
defined for non-integer values of j — which it is not.

Statistical Considerations

The previous example indicated that jobs separated by 50 lags have wait times that
are positively correlated. But how do we know that r50 differs significantly from 0. Leaving
out the details, Chatfield (2004, page 56) indicates that an rj value will fall outside the
limits ±2/

√
n with approximate probability 0.95 when the lag j values are uncorrelated.

In the previous example with n = 10 000, for instance, these limits are at ±0.02, indicating
the all of the wait time sample autocorrelation values plotted differ significantly from 0.
For the service times, only r10 = 0.022 falls outside of these limits. Experience dictates
that this is simply a function of random sampling variability rather than some relationship
between service times separated by 10 jobs. We have set up our service time model with
independent service times, so we expect a flat sample autocorrelation function for service
times. The spurious value can be ignored.

The high autocorrelation that typically exists in the time-sequenced stochastic data
produced by a simulation makes the statistical analysis of the data a challenge. Specifically,
if we wish to make an interval estimate of some steady-state statistic like, for example, the
average wait in a service node, we must be prepared to deal with the impact of autocor-
relation on our ability to make an accurate estimates of the standard deviation. Most of
so-called “classical” statistics relies on the assumption that the values sampled are drawn
independently from a population. This is often not the case in discrete-event simulation
and appropriate measures must be taken in order to compute appropriate interval esti-
mates.
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Program acs

To implement Definition 4.4.6 as a one-pass algorithm for a fixed lag-value j involves
nothing more than storing the values xi, xi+j , accumulating the xi sum, and accumulating
the x2

i
and xixi+j “cosums.” It is a greater challenge to construct a one-pass algorithm

that will compute cj for a range of lags j = 1, 2, . . . , k. In addition to the accumulation
of the xi sum, the simultaneous computation of c0, c1, . . . , ck involves storing the k + 1
consecutive values xi, xi+1, . . . , xi+k and accumulating the k + 1 (lagged) xixi+j cosums
for j = 0, 1, 2, . . . , k. The k + 1 cosums can be stored as an array of length k + 1. A more
interesting queue data structure is required to store the values xi, xi+1, . . . , xi+k. This
queue has been implemented as a circular array in the program acs. A circular array is a
natural choice here because the queue length is fixed at k+1 and efficient access to all the
elements in the queue, not just the head and tail, is required. In the following algorithm
the box indicates the rotating head of the circular queue. An array index p keeps track of
the current location of the rotating head; the initial value is p = 0.

Algorithm 4.4.1 Program acs is based on the following algorithm. A circular queue is
initially filled with x1, x2, . . . , xk, xk+1, as illustrated by the boxed elements below. The
lagged products x1x1+j are computed for all j = 0, 1, . . . , k thereby initializing the k + 1
cosums. Then the next data value is read into the (old) head of the queue location, p is
incremented by 1 to define a new head of the queue location, the lagged products x2x2+j

are computed for all j = 0, 1, . . . , k, and the cosums are updated. This process is continued
until all the data has been read and processed. (The case n mod (k+1) = 2 is illustrated.)

(i = k + 1) x1 x2 x3 · · · xk−1 xk xk+1 (p = 0)

(i = k + 2) xk+2 x2 x3 · · · xk−1 xk xk+1 (p = 1)

(i = k + 3) xk+2 xk+3 x3 · · · xk−1 xk xk+1 (p = 2)

...
...

...
...

...
...

...
...

(i = 2k) xk+2 xk+3 xk+4 · · · x2k xk xk+1 (p = k)

(i = 2k + 1) xk+2 xk+3 xk+4 · · · x2k x2k+1 xk+1 (p = k + 1)

(i = 2k + 2) xk+2 xk+3 xk+4 · · · x2k x2k+1 x2k+2 (p = 0)

...
...

...
...

...
...

...
...

(i = n) xn−1 xn xn−k · · · xn−4 xn−3 xn−2 (p = 2)

After the last data value, xn, has been read, the associated lagged products computed, and
the cosums updated, all that remains is to “empty” the queue. This can be accomplished
by effectively reading k additional 0-valued data values. For more details, see program
acs.
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4.4.3 EXERCISES

Exercise 4.4.1 Prove that the orthogonal distance from the point (ui, vi) to the line
a u+ b v + c = 0 is in fact

di =
|a ui + b vi + c|

√
a2 + b2

.

Hint: consider the squared distance (u− ui)
2 + (v − vi)

2 from (ui, vi) to a point (u, v) on
the line and show that d2

i
is the smallest possible value of this distance.

Exercise 4.4.2 (a) If u′
i
= αuui+βu and v′

i
= αvvi+βv for i = 1, 2, . . . , n and constants

αu, αv, βu, and βv how does the covariance of the u
′, v′ data relate to the covariance of

the u, v data? (b) Same question for the correlation coefficients? (c) Comment.

Exercise 4.4.3a The orthogonal distance regression derivation presented in this section
treats both variables equally — there is no presumption that one variable is “independent”
and the other is “dependent.” Consider the more common regression approach in which
the equation of the regression line is v = au+ b, consistent with a model that treats u as
independent and v as dependent. That is, given the data (ui, vi) for i = 1, 2, . . . , n and the
line defined by the equation v = au+ b, the conventional (non-orthogonal) distance from
the point (ui, vi) to the line is

δi = |vi − (aui + b)|.

(a) What choice of the (a, b) parameters will minimize the conventional mean-square dis-
tance

∆ =
1

n

n
∑

i=1

δ2

i =
1

n

n
∑

i=1

(vi − aui − b)2.

(b) Prove that the minimum value of ∆ is (1− r2)s2

v.

Exercise 4.4.4 Prove Theorem 4.4.3.

Exercise 4.4.5 To what extent are these two definitions of the autocovariance different?

c′j =
1

n− j

n−j
∑

i=1

(xi − x̄)(xi+j − x̄) and cj =

(

1

n− j

n−j
∑

i=1

xixi+j

)

− x̄2

Exercise 4.4.6 (a) Generate a figure like the one in Figure 4.4.6 but corresponding to
a utilization of 0.9. Do this for three different rngs streams. Comment. (b) Repeat for a
utilization of 0.7. (You can ignore the service autocorrelations.) Comment.

Exercise 4.4.7 If Definition 4.4.6 is used in conjunction with Definition 4.4.5, there is
no guarantee that |rj | ≤ 1 for all j = 1, 2, . . . , k. If it is important to guarantee that this
inequality is true, then how should the two definitions be modified?
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The three sections in this chapter all concern the next-event approach to discrete-event
simulation. Section 5.1 defines the fundamental terminology used in next-event simulation
such as system state, events, simulation clock, event scheduling, and event list (which is
also known as the calendar), and provides an introduction to this fundamental approach as
it applies to the simulation of a single-server service node with and without feedback. The
algorithm associated with next-event simulation initializes the simulation clock (typically
to time zero), event list (with an initial arrival, for example, in a queuing model), and
system state to begin the simulation. The simulation model continues to (1) remove the
next event from the event list, (2) update the simulation clock to the time of the next
event, (3) process the event, and (4) schedule the time of occurrence of any future events
spawned by the event, until some terminal condition is satisfied.

Section 5.2 provides further illustrations of this approach relative to the simulation of
a simple inventory system with delivery lag and a multi-server service node. The multi-
server service node provides an illustration of an event list which can have an arbitrarily
large number of elements.

As the simulations in Sections 5.1 and 5.2 illustrate, an event list is an integral feature
of the next-event approach. The data structures and algorithms that are used to manage
the event list are crucial to the efficiency of a next-event simulation. Section 5.3 provides
a sequence of examples associated with the management of an event list that begin with
a naive and inefficient data structure and algorithm and iterate toward a more efficient
scheme.
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In this section we will present a general next-event approach to building discrete-event
simulation models. From this chapter on, this next-event approach will be the basis for all
the discrete-event simulation models developed in this book.

The motivation for considering the next-event approach to discrete-event simulation is
provided by considering the relative complexity of the effort required to extend the discrete-
event simulation models in Section 3.1 to accommodate the slightly more sophisticated
corresponding models in Section 3.3. That is, at the computational level compare the
simplicity of program ssq2 in Section 3.1 with the increased complexity of the extension
to ssq2 that would be required to reproduce the results in Example 3.3.2. Yet the only
increase in the complexity of the associated single-server service node model is the addition
of immediate feedback. Similarly, compare the simplicity of program sis2 in Section 3.1
with the increased complexity of the extension to sis2 that would be required to reproduce
the results in Example 3.3.4. Yet in this case the only increase in the complexity of the
associated simple inventory system model is the addition of a delivery lag.

5.1.1 DEFINITIONS AND TERMINOLOGY

While programs ssq2 and sis2 and their corresponding extensions in Section 3.3 are
valid and meaningful (albeit simple) discrete-event simulation programs, they do not adapt
easily to increased model complexity and they do not generalize well to other systems.
Based on these observations we see the need for a more general approach to discrete-
event simulation that applies to queuing systems, inventory systems and a variety of other
systems as well. This more general approach — next-event simulation — is based on some
important definitions and terminology: (1) system state, (2) events, (3) simulation clock,
(4) event scheduling, and (5) event list (calendar).

System State

Definition 5.1.1 The state of a system is a complete characterization of the system at
an instance in time — a comprehensive “snapshot” in time. To the extent that the state
of a system can be characterized by assigning values to variables, then state variables are
what is used for this purpose.

To build a discrete-event simulation model using the next-event approach, the focus
is on refining a description of the state of the system and its evolution in time. At the
conceptual model level the state of a system exists only in the abstract as a collection of
possible answers to the following questions: what are the state variables, how are they
interrelated, and how do they evolve in time? At the specification level the state of the
system exists as a collection of mathematical variables (the state variables) together with
equations and logic describing how the state variables are interrelated and an algorithm
for computing their interaction and evolution in time. At the computational level the state
of the system exists as a collection of program variables that collectively characterize the
system and are systematically updated as (simulated) time evolves.
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Example 5.1.1 A natural way to describe the state of a single-server service node is
to use the number of jobs in the service node as a state variable. As demonstrated later
in this section, by refining this system state description we can construct a next-event
simulation model for a single-server service node with or without immediate feedback.

Example 5.1.2 Similarly, a natural way to describe the state of a simple inventory
system is to use the current inventory level and the amount of inventory on order (if any)
as state variables. As demonstrated in the next section, by refining this system state
description we can construct a next-event simulation model of a simple inventory system
with or without delivery lag.

Events

Definition 5.1.2 An event is an occurrence that may change the state of the system.
By definition, the state of the system can only change at an event time. Each event has
an associated event type.

Example 5.1.3 For a single-server service node model with or without immediate feed-
back, there are two types of events: the arrival of a job and the completion of service for a
job. These two types of occurrences are events because they have the potential to change
the state of the system. An arrival will always increase the number in the service node by
one; if there is no feedback, a completion of service will always decrease the number in the
service node by one. When there is feedback, a completion may decrease the number in
the service node by one. In this case there are two event types because the “arrival” event
type and the “completion of service” event type are not the same.

Example 5.1.4 For a simple inventory system with delivery lag there are three event
types: the occurrence of a demand instance, an inventory review , and the arrival of an
inventory replenishment order. These are events because they have the potential to change
the state of the system: a demand will decrease the inventory level by one, an inventory
review may increase the amount of inventory on order, and the arrival of an inventory
replenishment order will increase the inventory level and decrease the amount of inventory
on order.

The may in Definition 5.1.2 is important; it is not necessary for an event to cause a
change in the state of the system, as illustrated in the following four examples: (1) events
can be scheduled that statistically sample, but do not change, the state of a system, (2) for
a single-server service node with immediate feedback, a job’s completion of service will
only change the state of the system if the job is not fed back, (3) for a single-server service
node, an event may be scheduled at a prescribed time (e.g., 5 PM) to cut off the stream
of arriving jobs to the node, which will not change the state of the system, and (4) for a
simple inventory system with delivery lag, an inventory review will only change the state
of the system if an order is placed.
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Simulation Clock

Because a discrete-event simulation model is dynamic, as the simulated system evolves
it is necessary to keep track of the current value of simulated time. In the implementation
phase of a next-event simulation, the natural way keep track of simulated time is with a
floating point variable, which is typically named t, time, tnow, or clock in discrete-event
simulation packages. The two examples that follow the definition of the simulation clock
highlight the inability of the discrete-event simulation approach to easily generalize or
embellish models. The next-event framework overcomes this limitation.

Definition 5.1.3 The variable that represents the current value of simulated time in a
next-event simulation model is called the simulation clock.

Example 5.1.5 The discrete-event simulation model that program ssq2 represents is
heavily dependent on the job processing order imposed by the FIFO queue discipline.
Therefore, it is difficult to extend the model to account for immediate feedback, or a
finite service node capacity, or a priority queue discipline. In part, the reason for this
difficulty is that there are effectively two simulation clocks with one coupled to the arrival
events and the other coupled to the completion of service events. These two clocks are not
synchronized and so it is difficult to reason about the temporal order of events if arrivals
and completions of service are merged by feedback.

Example 5.1.6 The discrete-event simulation model that program sis2 represents has
only one type of event, inventory review, and events of this type occur deterministically at
the beginning of each time interval. There is a simulation clock, but it is integer-valued and
so is primitive at best. Because the simulation clock is integer-valued we are essentially
forced to ignore the individual demand instances that occur within each time interval.
Instead, all the demands per time interval are aggregated into one random variable. This
aggregation makes for a computationally efficient discrete-event simulation program, but
forces us in return to do some calculus to derive equations for the time-averaged holding
and shortage levels. As outlined in Section 3.3, when there is a delivery lag the derivation
of those equations is a significant task.

Event Scheduling

In a discrete-event simulation model it is necessary to use a time-advance mechanism

to guarantee that events occur in the correct order — that is, to guarantee that the
simulation clock never runs backward. The primary time-advance mechanism used in
discrete-event simulation is known as next-event time advance; this mechanism is typically
used in conjunction with event scheduling.

Definition 5.1.4 If event scheduling is used with a next-event time-advance mechanism
as the basis for developing a discrete-event simulation model, the result is called a next-

event simulation model.
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To construct a next-event simulation model, three things must be done:

• construct a set of state variables that together provide a complete system description;

• identify the system event types;

• construct a collection of algorithms that define the state changes that will take place
when each type of event occurs.

The model is constructed so as to cause the (simulated) system to evolve in (simulated)
time by executing the events in increasing order of their scheduled time of occurrence. Time
does not flow continuously; instead, the simulation clock is advanced discontinuously from
event time to event time. At the computational level, the simulation clock is frozen during
the execution of each state-change algorithm so that each change of state, no matter how
computationally complex, occurs instantaneously relative to the simulation clock.

Event List

Definition 5.1.5 The data structure that represents the scheduled time of occurrence
for the next possible event of each type is called the event list or calendar.

The event list is often, but not necessarily, represented as a priority queue sorted by
the next scheduled time of occurrence for each event type.

5.1.2 NEXT-EVENT SIMULATION

Algorithm 5.1.1 A next-event simulation model consists of the following four steps:

• Initialize. The simulation clock is initialized (usually to zero) and, by looking ahead,
the first time of occurrence of each possible event type is determined and scheduled,
thereby initializing the event list.

• Process current event. The event list is scanned to determine the most imminent

possible event, the simulation clock is then advanced to this event’s scheduled time of
occurrence, and the state of the system is updated to account for the occurrence of
this event. This event is known as the “current” event.

• Schedule new events. New events (if any) that may be spawned by the current
event are placed on the event list (typically in chronological order).

• Terminate. The process of advancing the simulation clock from one event time to
the next continues until some terminal condition is satisfied. This terminal condition
may be specified as a pseudo-event that only occurs once, at the end of the simulation,
with the specification based on processing a fixed number of events, exceeding a fixed
simulation clock time, or estimating an output measure to a prescribed precision.

The next-event simulation model initializes once at the beginning of a simulation replica-
tion, then alternates between the second step (processing the current event) and third step
(scheduling subsequent events) until some terminate criteria is encountered.
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Because event times are typically random, the simulation clock runs asynchronously.
Moreover, because state changes only occur at event times, periods of system inactivity
are ignored by advancing the simulation clock from event time to event time. Compared
to the alternate, which is a fixed-increment time-advance mechanism, there is a clear
computational efficiency advantage to this type of asynchronous next-event processing.*

In the remainder of this section, next-event simulation will be illustrated by con-
structing a next-event model of a single-server service node. Additional illustrations are
provided in the next section by constructing next-event simulation models of a simple
inventory system with delivery lag and a multi-server service node.

5.1.3 SINGLE-SERVER SERVICE NODE

The state variable l(t) provides a complete characterization of the state of a single-
server service node in the sense that

l(t) = 0 ⇐⇒ q(t) = 0 and x(t) = 0

l(t) > 0 ⇐⇒ q(t) = l(t)− 1 and x(t) = 1

where l(t), q(t), and x(t) represent the number in the node, in the queue, and in service
respectively at time t > 0. In words, if the number in the service node is known, then
the number in the queue and the status (idle or busy) of the server is also known. Given
that the state of the system is characterized by l(t), we then ask what events can cause
l(t) to change? The answer is that there are two such events: (1) an arrival in which case
l(t) is increased by 1; and (2) a completion of service in which case l(t) is decreased by
1. Therefore, our conceptual model of a single-server service node consists of the state
variable l(t) and two associated event types, arrival and completion of service.

To turn this next-event conceptual model into a specification model, three additional
assumptions must be made.

• The initial state l(0) can have any non-negative integer value. It is common, however,
to assume that l(0) = 0, often referred to as “empty and idle” in reference to the
initial queue condition and server status, respectively. Therefore, the first event must
be an arrival.

* Note that asynchronous next-event processing cannot be used if there is a need at
the computational level for the simulation program to interact synchronously with some
other process. For example, because of the need to interact with a person, so called
“real time” or “person-in-the-loop” simulation programs must use a fixed-increment time-
advance mechanism. In this case the underlying system model is usually based on a system
of ordinary differential equations. In any case, fixed-increment time-advance simulation
models are outside the scope of this book, but are included in some of the languages
surveyed in Appendix A.
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• Although the terminal state can also have any non-negative integer value, it is common
to assume, as we will do, that the terminal state is also idle. Rather than specifying
the number of jobs processed, our stopping criteria will be specified in terms of a
time τ beyond which no new jobs can arrive. This assumption effectively “closes the
door” at time τ but allows the system to continue operation until all jobs have been
completely served. This would be the case, for instance, at an ice cream shop that
closes at a particular hour, but allows remaining customers to be served. Therefore,
the last event must be a completion of service.*

• Some mechanism must be used to denote an event as impossible. One way to do this is
to structure the event list so that it contains possible events only. This is particularly
desirable if the number of event types is large. As an alternate, if the number of event
types is not large then the event list can be structured so that it contains both possible
and impossible events — but with a numeric constant “∞” used for an event time to
denote the impossibility of an event. For simplicity, this alternate event list structure
is used in Algorithm 5.1.2.

To complete the development of a specification model, the following notation is used.
The next-event specification model is then sufficiently simple that we can write Algo-
rithm 5.1.2 directly.

• The simulation clock (current time) is t.

• The terminal (“close the door”) time is τ .

• The next scheduled arrival time is ta.

• The next scheduled service completion time is tc.

• The number in the node (state variable) is l.

The genius and allure of both discrete-event and next-event simulation is apparent,
for example, in the generation of arrival times in Algorithm 5.1.2. The naive approach of
generating and storing all arrivals prior to the execution of the simulation is not necessary.
Even if this naive approach were taken, the modeler would be beset by the dual problems
of memory consumption and not knowing how many arrivals to schedule. Next-event
simulation simply primes the pump by scheduling the first arrival in the initialization phase,
then schedules each subsequent arrival while processing the current arrival. Meanwhile,
service completions weave their way into the event list at the appropriate moments in order
to provide the appropriate sequencing of arrivals and service completions.

At the end of this section we will discuss how to extend Algorithm 5.1.2 to account for
several model extensions: immediate feedback, alternative queue disciplines, finite capacity,
and random sampling.

* The simulation will terminate at t = τ only if l(τ) = 0. If instead l(τ) > 0 then the
simulation will terminate at t > τ because additional time will be required to complete
service on the jobs in the service node.
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Algorithm 5.1.2 This algorithm is a next-event simulation of a FIFO single-server
service node with infinite capacity. The service node begins and ends in an empty and idle
state. The algorithm presumes the existence of two functions GetArrival and GetService
that return a random value of arrival time and service time respectively.

l = 0; /* initialize the system state */

t = 0.0; /* initialize the system clock */

ta = GetArrival(); /* initialize the event list */

tc = ∞; /* initialize the event list */

while ((ta < τ) or (l > 0)) { /* check for terminal condition */

t = min(ta, tc); /* scan the event list */

if (t == ta) { /* process an arrival */

l++;

ta = GetArrival();

if (ta > τ)

ta = ∞;

if (l == 1)

tc = t + GetService();

}

else { /* process a completion of service */

l--;

if (l > 0)

tc = t + GetService();

else

tc = ∞;

}

}

If the service node is to be an M/M/1 queue (exponential interarrival and service times
with a single server) with arrival rate 1.0 and service rate 1.25, for example, the two ta =

GetArrival() statements can be replaced with ta = t + Exponential(1.0) and the two
ta = GetService() statements can be replaced with tc = t + Exponential(0.8). The
GetArrival and GetService functions can draw their values from a file (a “trace-driven”
approach) or generate variates to model these stochastic elements of the service node.

Because there are just two event types, arrival and completion of service, the event
list in Algorithm 5.1.2 contains at most two elements, ta and tc. Given that the event list
is small and its size is bounded (by 2), there is no need for any special data structure to
represent it. If the event list were larger, an array or structure would be a natural choice.
The only drawback to storing the event list as ta and tc is the need to specify the arbitrary
numeric constant “∞” to denote the impossibility of an event. In practice, ∞ can be any
number that is much larger than the terminal time τ (100τ is used in program ssq3).
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If the event list is large and its size is dynamic then a dynamic data structure is
required with careful attention paid to its organization. This is necessary because the
event list is scanned and updated each time an event occurs. Efficient algorithms for
the insertion and deletion of events on the event list can impact the computational time
required to execute the next-event simulation model. Henriksen (1983) indicates that for
telecommunications system models, the choice between an efficient and inefficient event list
processing algorithm can produce a five-fold difference in total processing time. Further
discussion of data structures and algorithms associated with event lists is postponed to
Section 5.3.

Program ssq3

Program ssq3 is based on Algorithm 5.1.2. Note, in particular, the state variable
number which represents l(t), the number in the service node at time t, and the important
time management structure t that contains:

• the event list t.arrival and t.completion (ta and tc from Algorithm 5.1.2);

• the simulation clock t.current (t from Algorithm 5.1.2);

• the next event time t.next (min(ta, tc) from Algorithm 5.1.2);

• the last arrival time t.last.

Event list management is trivial. The event type (arrival or a completion of service) of the
next event is determined by the statement t.next = Min(t.arrival, t.completion).

Note also that a statistics gathering structure area is used to calculate the time-
averaged number in the node, queue, and service. These statistics are calculated exactly
by accumulating time integrals via summation, which is valid because l(·), q(·), and x(·)
are piecewise constant functions and only change value at an event time (see Section 4.1).
The structure area contains:

•

∫ t

0

l(s) ds evaluated as area.node;

•

∫ t

0

q(s) ds evaluated as area.queue;

•

∫ t

0

x(s) ds evaluated as area.service.

Program ssq3 does not accumulate job-averaged statistics. Instead, the job-averaged
statistics w̄, d̄, and s̄ are computed from the time-averaged statistics l̄, q̄, and x̄ by using
the equations in Theorem 1.2.1. The average interarrival time r̄ is computed from the
equation in Definition 1.2.4 by using the variable t.last. If it were not for the use of the
assignment t.arrival = INFINITY to “close the door”, r̄ could be computed from the
terminal value of t.arrival, thereby eliminating the need for t.last.
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World Views and Synchronization

Programs ssq2 and ssq3 simulate exactly the same system. The programs work in
different ways, however, with one clear consequence being that ssq2 naturally produces job-
averaged statistics and ssq3 naturally produces time-averaged statistics. In the jargon of
discrete-event simulation the two programs are said to be based upon different world views.*
In particular, program ssq2 is based upon a process-interaction world view and program
ssq3 is based upon an event-scheduling world view. Although other world views are
sometimes advocated, process interaction and event-scheduling are the two most common.
Of these two, event-scheduling is the discrete-event simulation world view of choice in this
and all the remaining chapters.

Because programs ssq2 and ssq3 simulate exactly the same system, these programs
should be able to produce exactly the same output statistics. Getting them to do so,
however, requires that both programs process exactly the same stochastic source of arriving
jobs and associated service requirements. Because the arrival times ai and service times
si are ultimately produced by calls to Random, some thought is required to provide this
synchronization. That is, the random variates in program ssq2 are always generated in
the alternating order a1, s1, a2, s2, . . . while the order in which these random variates are
generated in ssq3 cannot be known a priori. The best way to produce this synchronization
is to use the library rngs, as is done is program ssq3. In Exercise 5.1.3, you are asked
to modify program ssq2 to use the library rngs and, in that way, verify that the two
programs can produce exactly the same output.

5.1.4 MODEL EXTENSIONS

We close this section by discussing how to modify program ssq3 to accommodate
several important model extensions. For each of the four extensions you are encouraged
to consider what would be required to extend program ssq2 correspondingly.

Immediate Feedback

Given the function GetFeedback from Section 3.3, we can modify program ssq3 to
account for immediate feedback by just adding an if statement so that index and number
are not changed if a feedback occurs following a completion of service, as illustrated.

else { /* process a completion of service */

if (GetFeedback() == 0) { /* this statement is new */

index++;

number--;

}

* A world view is the collection of concepts and views that guide the development of
a simulation model. World views are also known as conceptual frameworks, simulation

strategies, and formalisms.
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For a job that is not fed back, the counter for the number of departed jobs (index) is
incremented and the counter for the current number of jobs in the service node (number)
is decremented. The simplicity of the immediate feedback modification is a compelling
example of how well next-event simulation models accommodate model extensions.

Alternate Queue Disciplines

Program ssq3 can be modified to simulate any queue discipline. To do so, it is
necessary to add a dynamic queue data structure such as, for example a singly-linked list
where each list node contains the arrival time and service time for a job in the queue, as
illustrated.*
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arrival

service
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• .................................................................................................................................................................................. •
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Figure 5.1.1.
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Two supporting queue functions, Enqueue and Dequeue, are also needed to insert and
delete jobs from the queue, respectively. Then ssq3 can be modified as follows:

• use Enqueue each time an arrival event occurs and the server is busy;

• use Dequeue each time a completion of service event occurs and the queue is not
empty.

The details of this important modification are left as an exercise. This modification will
result in a program that can be tested for correctness by using a FIFO queue discipline
and reproducing results from program ssq3.

Note in particular that this modification can be combined with the immediate feedback
modification illustrated previously. In this case, the arrival field in the linked list would
hold the time of feedback for those jobs that are fed back. The resulting program would
allow a priority queue discipline to be used for fed back jobs if (as is common) a priority
assumption is appropriate.

Finite Service Node Capacity

Program ssq3 can be modified to account for a finite capacity by defining a constant
CAPACITY which represents the service node capacity (one more than the queue capacity)
and declaring an integer variable reject which counts rejected jobs. Then all that is
required is a modification to the “process an arrival” portion of the program, as illustrated.

* If this queue data structure is used, then service times are computed and stored at the
time of arrival. In this way, each job’s delay in the queue and wait in the service node can
be computed at the time of entry into service, thereby eliminating the need to compute
job-averaged statistics from time-averaged statistics.
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if (t.current == t.arrival) { /* process an arrival */

if (number < CAPACITY) {

number++;

if (number == 1)

t.completion = t.current + GetService();

}

else

reject++;

t.arrival = GetArrival();

if (t.arrival > STOP) {

t.last = t.current;

t.arrival = INFINITY;

}

}

This code replaces the code in program ssq3 for processing an arrival. As with the imme-
diate feedback modification, again we see the simplicity of this modification is a compelling
example of how well next-event simulation models accommodate model extensions.

Random Sampling

An important feature of program ssq3 is that its structure facilitates direct sampling

of the current number in the service node or queue. This is easily accomplished by adding
a sampling time element, say t.sample, to the event list and constructing an associated
algorithm to process the samples as they are acquired. Sampling times can then be sched-
uled deterministically, every δ time units, or at random by generating sampling times with
an Exponential(δ) random variate inter-sample time. In either case, the details of this
modification are left as an exercise.

5.1.5 EXERCISES

Exercise 5.1.1 Consider a next-event simulation model of a three-server service node
with a single queue and three servers. (a) What variable(s) are appropriate to describe the
system state? (b) Define appropriate events for the simulation. (c) What is the maximum
length of the event list for the simulation? (Answer with and without considering the
pseudo-event for termination of the replication.)

Exercise 5.1.2 Consider a next-event simulation model of three single-server service
nodes in series. (a) What variable(s) are appropriate to describe the system state? (b) De-
fine appropriate events for the simulation. (c) What is the maximum length of the event
list for the simulation? (Answer with and without considering the pseudo-event for termi-
nation of the replication.)
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Exercise 5.1.3 (a) Use the library rngs to verify that programs ssq2 and ssq3 can
produce exactly the same results. (b) Comment on the value of this as a consistency check
for both programs.

Exercise 5.1.4 Add a sampling capability to program ssq3. (a) With deterministic
inter-sample time δ = 1.0, sample the number in the service node and compare the average
of these samples with the value of l̄ computed by the program. (b) With average inter-
sample time δ = 1.0, sample at random the number in the service node and compare the
average of these samples with the value of l̄ computed by the program. (c) Comment.

Exercise 5.1.5 Modify program ssq3 by adding a FIFO queue data structure. Verify
that this modified program and ssq3 produce exactly the same results.

Exercise 5.1.6a As a continuation of Exercise 5.1.5, simulate a single-server service
node for which the server uses a shortest-job-first priority queue discipline based upon a
knowledge of the service time for each job in the queue. (a) Generate a histogram of the
wait in the node for the first 10000 jobs if interarrival times are Exponential(1.0) and service
times are Exponential(0.8). (b) How does this histogram compare with the corresponding
histogram generated when the queue discipline is FIFO? (c) Comment.

Exercise 5.1.7 Modify program ssq3 to reproduce the feedback results obtained in
Section 3.3.

Exercise 5.1.8 Modify program ssq3 to account for a finite service node capacity.
(a) Determine the proportion of rejected jobs for capacities of 1, 2, 3, 4, 5, and 6. (b) Repeat
this experiment if the service time distribution is Uniform(1.0, 3.0). (c) Comment. (Use
a large value of STOP.)

Exercise 5.1.9 (a) Construct a next-event simulation model of a single-server machine
shop. (b) Compare your program with the program ssms and verify that, with a proper use
of the library rngs, the two programs can produce exactly the same output. (c) Comment
on the value of this as a consistency check for both programs.

Exercise 5.1.10a An M/M/1 queue can be characterized by the following system state
change mechanism, where the system state is l(t), the number of jobs in the node:

• The transition from state j to state j + 1 is exponential with rate λ1 > 0 (the arrival
rate) for j = 0, 1, . . ..

• The transition from state j to state j − 1 is exponential with rate λ2 > 0 (the service
rate) for j = 1, 2, . . ..

If the current state of the system is some positive integer j, what is the probability that
the next transition will be to state j + 1?
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As a continuation of the discussion in the previous section, in this section two next-
event simulation models will be developed. The first is a next-event simulation model of a
simple inventory system with delivery lag, the second is a next-event simulation model of
a multi-server service node.

5.2.1 A SIMPLE INVENTORY SYSTEM WITH DELIVERY LAG

To develop a next-event simulation model of a simple inventory system with delivery
lag, we make two changes relative to the model on which program sis2 is based. The first
change is consistent with the discussion of delivery lag in Section 3.3. The second change
is new and provides a more realistic demand model.

• There is a lag between the time of inventory review and the delivery of any inventory
replenishment order that is placed at the time of review. This delivery lag is assumed
to be a Uniform(0, 1) random variable, independent of the size of the order. Consistent
with this assumption, the delivery lag cannot be longer than a unit time interval;
consequently, any order placed at the beginning of a time interval will arrive by the
end of the time interval, before the next inventory review.

• The demands per time interval are no longer aggregated into one random variable
and assumed to occur at a constant rate during the time interval. Instead, individual
demand instances are assumed to occur at random throughout the simulated period
of operation with an average rate of λ demand instances per time interval. That is,
each demand instance produces a demand for exactly one unit of inventory and the
inter-demand time is an Exponential(1/λ) random variable.

Figure 5.2.1 shows the first six time intervals of a typical inventory level time history l(t).
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Each demand instance causes the inventory level to decrease by one. Inventory review for
the ith time interval occurs at t = i− 1 = 0, 1, 2, . . . with an inventory replenishment order
in the amount oi−1 = S − l(i− 1) placed only if l(i − 1) < s. Following a delivery lag δi,
the subsequent arrival of this order causes the inventory to experience an increase of oi−1

at time t = i− 1 + δi, as illustrated for i = 3 and i = 6 in Figure 5.2.1.
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Recall that in program sis2 the aggregate demand in each time interval is generated
as an Equilikely(10, 50) random variate. Although the aggregate demand in each time
interval can be any value between 10 and 50, within each interval there is nothing random
about the occurrence of the individual demands — the inter-demand time is constant.
Thus, for example, if the random variate aggregate demand in a particular interval is 25
then the inter-demand time throughout that interval is 0.04.

In contrast to the demand model in program sis2, it is more realistic to generate
the inter-demand time as an Exponential(1/λ) random variate. In this way the demand is
modeled as an arrival process (e.g., customers arriving at random to buy a car) with λ as
the arrival rate per time interval. Thus, for example, if we want to generate demands with
an average of 30 per time interval then we would use λ = 30.

States

To develop a next-event simulation model of this system at the specification level, the
following notation is used.

• The simulation clock (current time) is t and the terminal time is τ .

• At any time t > 0 the current inventory level is l(t).

• At any time t > 0 the amount of inventory on order (if any) is o(t).

In addition to l(t), the new state variable o(t) is necessary to keep track of an inventory
replenishment order that, because of a delivery lag, has not yet arrived. Together, l(t) and
o(t) provide a complete state description of a simple inventory system with delivery lag.
Both l(t) and o(t) are integer-valued. Although t is real-valued, inventory reviews occur
at integer values of t only. The terminal time τ corresponds to an inventory review time
and so it is integer-valued.

We assume the initial state of the inventory system is l(0) = S, o(0) = 0. That is,
the initial inventory level is S and the inventory replenishment order level is 0. Similarly,
the terminal state is assumed to be l(τ) = S, o(τ) = 0 with the understanding that the
ordering cost associated with increasing l(t) to S at the end of the simulation (at t = τ ,
with no delivery lag) should be included in the accumulated system statistics.

Events

Given that the state of the system is defined by l(t) and o(t), there are three types of
events that can change the state of the system:

• a demand for an item at time t, in which case l(t) will decrease by 1;

• an inventory review at (integer-valued) time t, in which case o(t) will increase from 0
to S − l(t) provided l(t) < s, else o(t) will remain 0;

• an arrival of an inventory replenishment order at time t, in which case l(t) will increase
from its current level by o(t) and then o(t) will decrease to 0.
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To complete the development of a specification model, the time variables td, tr, and
ta are used to denote the next scheduled time for the three events inventory demand,
inventory review, and inventory arrival , respectively. As in the previous section,∞ is used
to denote (schedule) an event that is not possible.

Algorithm 5.2.1 This algorithm is a next-event simulation of a simple inventory sys-
tem with delivery lag. The algorithm presumes the existence of two functions GetLag
and GetDemand that return a random value of delivery lag and the next demand time
respectively.

l = S; /* initialize inventory level */

o = 0; /* initialize amount on order */

t = 0.0; /* initialize simulation clock */

td = GetDemand(); /* initialize the event list */

tr = t + 1.0; /* initialize the event list */

ta = ∞; /* initialize the event list */

while (t < τ) {

t = min(td, tr, ta); /* scan the event list */

if (t == td) { /* process an inventory demand */

l--;

td = GetDemand();

}

else if (t == tr) { /* process an inventory review */

if (l < s) {

o = S - l;

δ = GetLag();

ta = t + δ;

}

tr += 1.0;

}

else { /* process an inventory arrival */

l += o;

o = 0;

ta = ∞;

}

}

Program sis3

Program sis3 is an implementation of Algorithm 5.2.1. The event list consists of three
elements t.demand, t.review, and t.arrive corresponding to td, tr, and ta respectively.
These are elements of the structure t. Similarly, the two state variables inventory and
order correspond to l(t) and o(t). Also, the time-integrated holding and shortage integrals
are sum.hold and sum.short.
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5.2.2 A MULTI-SERVER SERVICE NODE

As another example of next-event simulation we will now consider a multi -server
service node. The extension of this next-event simulation model to account for immediate
feedback, or finite service node capacity, or a priority queue discipline is left as an exercise.
This example serves three objectives.

• A multi-server service node is one natural generalization of the single-server service
node.

• A multi-server service node has considerable practical and theoretical importance.

• In a next-event simulation model of a multi-server service node, the size of the event
list is dictated by the number of servers and, if this number is large, the data structure
used to represent the event list is important.

Definition 5.2.1 A multi-server service node consists of a single queue, if any, and two
or more servers operating in parallel. At any instant in time, the state of each server will
be either busy or idle and the state of the queue will be either empty or not empty. If at
least one server is idle, the queue must be empty. If the queue is not empty then all the
servers must be busy.
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Figure 5.2.2.

Multi-server

service node

system diagram.

Jobs arrive at the node, generally at random, seeking service. When service is provided,
generally the time involved is also random. At the completion of service, jobs depart.
The service node operates as follows. As each job arrives, if all servers are busy then the
job enters the queue, else an available server is selected and the job enters service. As
each job departs a server, if the queue is empty then the server becomes idle, else a job is
selected from the queue to enter service at this server. Servers process jobs independently
— they do not “team up” to process jobs more efficiently during periods of light traffic.
This system configuration is popular, for example, at airport baggage check-in, banks, and
roller coasters. Felt ropes or permanent dividers are often used to herd customers into
queues. One advantage to this configuration is that it is impossible to get stuck behind a
customer with an unusually long service time.
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As in the single-server service node model, control of the queue is determined by the
queue discipline — the algorithm used when a job is selected from the queue to enter
service (see Section 1.2). The queue discipline is typically FIFO.

Server Selection Rule

Definition 5.2.2 A job may arrive to find two or more servers idle. In this case, the
algorithm used to select an idle server is called the server selection rule.

There are several possible server selection rules. Of those listed below, the random,
cyclic, and equity server selection rules are designed to achieve an equal utilization of all
servers. With the other two server selection rules, typically some servers will be more
heavily utilized than others.

• Random selection — select at random from the idle servers.

• Selection in order — select server 1 if idle, else select server 2 if idle, etc.

• Cyclic selection — select the first available server beginning with the successor (a
circular search, if needed) of the last server engaged.

• Equity selection — select the server that has been idle longest or the idle server whose
utilization is lowest.*

• Priority selection — choose the “best” idle server. This will require a specification
from the modeler as how “best” is determined.

For the purposes of mathematical analysis, multi-server service nodes are frequently
assumed to have statistically identical, independent servers. In this case, the server selec-
tion rule has no effect on the average performance of the service node. That is, although
the utilization of the individual servers can be affected by the server selection rule, if the
servers are statistically identical and independent, then the net utilization of the node is
not affected by the server selection rule. Statistically identical servers are a convenient
mathematical fiction; in a discrete-event simulation environment, if it is not appropriate
then there is no need to assume that the service times are statistically identical.

States

In the queuing theory literature, the parallel servers in a multi-server service node are
commonly called service channels. In the discussion that follows,

• the positive integer c will denote the number of servers (channels);

• the server index will be s = 1, 2, . . . , c.

* There is an ambiguity in this server selection rule in that idle time can be measured
from the most recent departure or from the beginning of the simulation. The modeler
must specify which metric is appropriate.
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As for a single-server node, the state variable l(t) denotes the number of jobs in the service
node at time t. For a multi-server node with distinct servers this single state variable
does not provide a complete state description. If l(t) ≥ c, then all servers are busy and
q(t) = l(t) − c jobs are in the queue. If l(t) < c, however, then for a complete state
description we need to know which servers are busy and which are idle. Therefore, for
s = 1, 2, . . . , c define

xs(t) : the number of jobs in service (0 or 1) by server s at time t,

or, equivalently, xs(t) is the state of server s at time t (with 0 denoting idle and 1 denoting
busy). Finally, observe that

q(t) = l(t)−
c
∑

s=1

xs(t),

that is, the number of jobs in the queue at time t is the number of jobs in the service at
time t minus the number of busy servers at time t.

Events

The c+1 state variables l(t), x1(t), x2(t), . . . , xc(t) provide a complete state description
of a multi-server service node. With a complete state description in hand we then ask what
types of events can cause the state variables to change. The answer is that if the servers
are distinct then there are c + 1 event types — either an arrival to the service node or
completion of service by one of the c servers. If an arrival occurs at time t, then l(t) is
incremented by 1. Then, if l(t) ≤ c an idle server s is selected and the job enters service at
server s (and the appropriate completion of service is scheduled), else all servers are busy
and the job enters the queue. If a completion of service by server s occurs at time t then
l(t) is decremented by 1. Then, if l(t) ≥ c a job is selected from the queue to enter service
at server s, else server s becomes idle.

The additional assumptions needed to complete the development of the next-event
simulation model at the specification level are consistent with those made for the single-
server model in the previous section.

• The initial state of the multi-server service node is empty and idle. Therefore, the
first event must be an arrival.

• There is a terminal “close the door” time τ at which point the arrival process is turned
off but the system continues operation until all jobs have been completed. Therefore,
the terminal state of the multi-server node is empty and idle and the last event must
be a completion of service.

• For simplicity, all servers are assumed to be independent and statistically identical.
Moreover, equity selection is assumed to be the server selection rule.

All of these assumptions can be relaxed.
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Event List

The event list for this next-event simulation model can be organized as an array of
c+ 1 event types indexed from 0 to c as illustrated below for the case c = 4.

t x

t x

t x

t x

t x

0 arrival

1 completion of service by server 1

2 completion of service by server 2

3 completion of service by server 3

4 completion of service by server 4

Figure 5.2.3.

Event list

data structure

for multi-server

service node.

The t field in each event structure is the scheduled time of next occurrence for that event;
the x field is the current activity status of the event. The status field is used in this data
structure as a superior alternative to the∞ “impossibility flag” used in the model on which
programs ssq3 and sis3 are based. For the 0th event type, x denotes whether the arrival
process is on (1) or off (0). For the other event types, x denotes whether the corresponding
server is busy (1) or idle (0).

An array data structure is appropriate for the event list because the size of the event
list cannot exceed c + 1. If c is large, however, it is preferable to use a variable-length
data structure like, for example, a linked-list containing events sorted by time so that the
next (most imminent) event is always at the head of the list. Moreover, in this case the
event list should be partitioned into busy (event[e].x = 1) and idle (event[e].x = 0)
sublists. This idea is discussed in more detail in the next section.

Program msq

Program msq is an implementation of the next-event multi-server service node simu-
lation model we have just developed.

• The state variable l(t) is number.

• The state variables x1(t), x2(t), . . . , xc(t) are incorporated into the event list.

• The time-integrated statistic
∫ t

0
l(θ) dθ is area.

• The array named sum contains structures that are used to record, for each server, the
sum of service times and the number served.

• The function NextEvent is used to search the event list to determine the index e of
the next event.

• The function FindOne is used to search the event list to determine the index s of the
available server that has been idle longest (because an equity selection server selection
rule is used).
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5.2.3 EXERCISES

Exercise 5.2.1 Use program ddh in conjunction with program sis3 to construct a
discrete-data histogram of the total demand per time interval. (Use 10 000 time intervals.)
(a) Compare the result with the corresponding histogram for program sis2. (b) Comment
on the difference.

Exercise 5.2.2a (a) Modify program sis3 to account for a Uniform(0.5, 2.0) delivery
lag. Assume that if an order is placed at time t and if o(t) > 0 then the amount ordered
will be S − l(t)− o(t). (b) Discuss why you think your program is correct.

Exercise 5.2.3 Modify program sis3 so that the inventory review is no longer periodic
but, instead, occurs after each demand instance. (This is transaction reporting — see
Section 1.3.) Assume that when an order is placed, further review is stopped until the
order arrives. This avoids the sequence of orders that otherwise would occur during the
delivery lag. What impact does this modification have on the system statistics? Conjecture
first, then simulate using STOP equal to 10 000.0 to estimate steady-state statistics.

Exercise 5.2.4 (a) Relative to program msq, provide a mathematical justification for
the technique used to compute the average delay and the average number in the queue.
(b) Does this technique require that the service node be idle at the beginning and end of
the simulation for the computation of these statistics to be exact?

Exercise 5.2.5 (a) Implement a “selection in order” server selection rule for program
msq and compute the statistics. (b) What impact does this have on the system performance
statistics?

Exercise 5.2.6 Modify program msq so that the stopping criteria is based on “closing
the door” after a fixed number of jobs have entered the service node.

Exercise 5.2.7 Modify program msq to allow for feedback with probability β. What
statistics are produced if β = 0.1? (a) At what value of β does the multi-server service
node saturate? (b) Provide a mathematical justification for why saturation occurs at this
value of β.

Exercise 5.2.9 Modify program msq to allow for a finite capacity of r jobs in the node
at one time. (a) Draw a histogram of the time between lost jobs at the node. (b) Comment
on the shape of this histogram.

Exercise 5.2.10 Write a next-event simulation program that estimates the average time
to complete the stochastic activity network given in Section 2.4. Compute the mean and
variance of the time to complete the network.
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The next-event simulation models for the single-server service node and the simple
inventory system from the previous two sections have such short event lists (two events
for the single-server service node and three events for the simple inventory system) that
their management does not require any special consideration. There are next-event simu-
lations, however, that may have hundreds or even thousands of events on their event list
simultaneously, and the efficient management of this list is crucial. The material in this
section is based on a tutorial by Henriksen (1983) and Chapter 5 of Fishman (2001).

Although the discussion in this section is limited to managing event lists, practically
all of the discussion applies equally well, for example, to the management of jobs in a single-
server service node. A FIFO or LIFO queue discipline results in a trivial management of
the jobs in the queue: jobs arriving when the server is busy are simply added to the tail
(FIFO) or head (LIFO) of the queue. A “shortest processing time first” queue discipline
(which is commonly advocated for minimizing the wait time in job shops), on the other
hand, requires special data structures and algorithms to efficiently insert jobs into the
queue and delete jobs from the queue.

5.3.1 INTRODUCTION

An event list is the data structure that contains a list of the events that are scheduled
to occur in the future, along with any ancillary information associated with these events.
The list is traditionally sorted by the scheduled time of occurrence, but, as indicated in
the first example in this section, this is not a requirement. The event list is also known
as the calendar, future events chain, sequencing set, future event set, etc. The elements
that comprise an event list are known as future events, events, event notices, transactions,
records, etc. We will use the term event notice to describe these elements.

Why is efficient management of the event notices on the event list so important that
it warrants an entire section? Many next-event simulation models expend more CPU time
on managing the event list than on any other aspect (e.g., random number generation, ran-
dom variate generation, processing events, miscellaneous arithmetic operations, printing
reports) of the simulation.

Next-event simulations that require event list management can be broken into four
categories according to these two boolean classifications:

• There is a either a fixed maximum or a variable maximum number of event notices on
the event list. There are clear advantages to having the maximum number of events
fixed in terms of memory allocation. All of the simulations seen thus far have had a
fixed maximum number of event notices.

• The event list management technique is either being devised for one specific model
or is being developed for a general-purpose simulation language. If the focus is on a
single model, then the scheduling aspects of that model can be exploited for efficiency.
An event list management technique designed for a general-purpose language must be
robust in the sense that it performs reasonably well for a variety of simulation models.
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There are two critical operations in the management of the event notices that comprise
the event list. The first is the insertion, or enqueue operation, where an event notice is
placed on the event list. This operation is also referred to as “scheduling” the event. The
second is the deletion, or dequeue operation, where an event notice is removed from the
event list. A deletion operation is performed to process the event (the more common case)
or because a previously scheduled event needs to be canceled for some reason (the rare
case). Insertion and deletion may occur at a prescribed position in the event list, or a
search based on some criteria may need to be initiated first in order to determine the
appropriate position. We will use the term event list management scheme to refer to the
data structures and associated algorithms corresponding to one particular technique of
handling event list insertions and deletions.

Of minor importance is a change operation, where a search for an existing event notice
is followed by a change in some aspect of the event notice, such as changing its scheduled
time of occurrence. Similarly, an examine operation searches for an existing event notice in
order to examine its contents. A count operation is used to determine the number of event
notices in the list. Due to their relative rarity in discrete-event simulation modeling and
their similarity to insertion and deletion in principle, we will henceforth ignore the change,
examine, and count operations and focus solely on the insertion and deletion operations.

5.3.2 EVENT LIST MANAGEMENT CRITERIA

Three criteria that can be used to assess the effectiveness of the data structures and
algorithms for an event list management scheme are:

• Speed. The data structure and associated algorithms for inserting and deleting event
notices should execute in minimal CPU time. Critical to achieving fast execution
times is the efficient searching of the event list. The balance between sophisticated
data structures and algorithms for searching must be weighed against the associated
extraneous overhead calculations (e.g., maintaining pointers for a list or heap opera-
tions) that they require. An effective general-purpose algorithm typically bounds the
number of event notices searched for inserting or deleting.

• Robustness. Efficient event list management should perform well for a wide range
of scheduling scenarios. This is a much easier criteria to achieve if the characteristics
of one particular model can be exploited by the analyst. The designer of an event list
management scheme for a general-purpose language does not have this advantage.

• Adaptability. An effective event list management scheme should be able to adapt
its searching time to account for both the length of the event list and the distribution
of new events that are being scheduled. It is also advantageous for an event list
management scheme to be “parameter-free” in the sense that the user should not be
required to specify parameters that optimize the performance of the scheme. A “black
box” approach to managing an event list is particularly appropriate for a general-
purpose simulation language since users have a variety of sophistication levels.
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Given these criteria, how do we know whether our event list management scheme is
effective? If this is for a single model, the only way to answer this question is by running
several different schemes on the same model to see which executes the fastest. It is typically
not possible to prove that one particular scheme is superior to all other possible schemes,
since a more clever analyst may exploit more of the structure associated with a specific
model. It is, however, possible to show that one scheme dominates another in terms of
execution time by making several runs with different seeds and comparing execution times.

Testing event list management schemes for a general-purpose language is much more
difficult. In order to compare event list management schemes, one must consider a represen-
tative test-bed of diverse simulation models on which to test various event-list management
schemes. Average and worst-case performance in terms of the CPU time tests the speed,
robustness, and adaptability of various event list management schemes.

5.3.3 EXAMPLE

We consider the computer timesharing model presented in Henriksen (1983) to discuss
event list management schemes. In our usual manner, we start with the conceptual model
before moving to the specification and computational models.

Conceptual Model

Consider a user at a computer timesharing system who endlessly cycles from (1) think-
ing, to (2) typing in a command, to (3) receiving the output from the command. The user
does not take any breaks, never tires, and the workstation never fails. A system diagram
that depicts this behavior is given in Figure 5.3.1.
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Figure 5.3.1.

Timeshare

system

diagram.

This is the first time we have encountered what is known as a “closed” system. The
“open” systems considered previously are the queuing models (jobs arrive, are processed,
then depart) and inventory models (inventory arrives, is purchased, then departs). In the
timesharing model, there is no arrival or departure. The three-step activity loops endlessly.

The times to perform the three operations, measured in seconds, are:

• The time to think requires Uniform(0, 10) seconds.

• There are an Equilikely(5, 15) number of keystrokes involved in typing in a command,
and each keystroke requires Uniform(0.15, 0.35) seconds.

• The output from the command contains an Equilikely(50, 300) number of characters,
each requiring (the ancient rate of) 1/120 second to display at the workstation.
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If we were to simulate just one user, this would be a rather trivial model since there
is only one event on the event list: the completion of the next activity (thinking, typing
a keystroke, receiving an output character). To make event list management an issue,
assume that the computer timesharing system consists of n users at n terminals, each
asynchronously cycling through the three-step process of thinking, typing, and receiving.

Many critiques of this model would be valid. Do all of the users really all think
and type at the same rate? Does the distribution of thinking time really “cut-off” at ten
seconds as the Uniform(0, 10) thinking time implies? Are all of the Uniform and Equilikely

distributions appropriate? Why doesn’t the receive rate degrade when several users receive
output simultaneously? Why doesn’t the receiving portion of the system bog down as n
increases? Because the purpose of this model is to illustrate the management of the event
list, we will forgo discussion about the reasonableness and accuracy of the model. The
important topic of developing “input” models that accurately mimic the system of interest
is addressed in Chapter 9.

Back-of-an-Envelope Calculations

Since all of the distributions in this model are either Uniform or Equilikely , it is
worthwhile to do some preliminary calculations which may provide insight into model
behavior prior to the simulation. The mean of a Uniform or Equilikely random variable
is, not surprisingly, the average of their two parameters. Thus the expected length of each
cycle for each user is:
(

0 + 10

2

)

+

(

5 + 15

2

)(

0.15 + 0.35

2

)

+

(

50 + 300

2

)(

1

120

)

= 5 + 10 · 0.25 + 175 ·
1

120
∼= 5 + 2.5 + 1.4583

= 8.9583

seconds. Thus if one were to observe a user at a random instant in time of a system in
steady state, the probabilities that the user will be thinking, typing, and receiving are

5

8.9583
∼= 0.56,

2.5

8.9583
∼= 0.28, and

1.4583

8.9583
∼= 0.16.

These fractions apply to individual users, as well as the population of n users. At any
particular point in simulated time, we could expect to see about 56% of the users thinking,
28% typing, and 16% receiving output.

Although it is clear from this analysis that the largest portion of a user’s simulated

time is spent thinking and the smallest portion of a user’s simulated time is spent receiving,
the opposite is true of the number of scheduled events. Each cycle has exactly one thinking
event, an average of ten keystrokes, and an average of 175 characters received. Thus each
cycle averages 1+10+175 = 186 events. The expected fractions of events associated with
thinking, typing a keystroke, and receiving an output character during a cycle are

1

186
∼= 0.005,

10

186
∼= 0.054, and

175

186
∼= 0.941.
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The vast majority of the events scheduled during the simulation will be receiving a char-
acter. This observation will influence the probability distribution of the event times as-
sociated with event notices on the event list. This distribution can be exploited when
designing an event list management scheme.

Specification Model

There are three events that comprise the activity of a user on the timesharing system:

(1) complete thinking time;

(2) complete a keystroke;

(3) complete the display of a character.

For the second two events, some ancillary information must be stored as well: the number
of keystrokes in the command and the number of characters returned from the command.
For all three events, an integer (1 for thinking, 2 for typing and 3 for receiving) is stored
to denote the event type. Ancillary information of this type is often called an “attribute”
in general-purpose simulation languages.

As with most next-event simulation models, the processing of each event triggers the
scheduling of future events. For this particular model, we are fortunate that each event
triggers just one future event to schedule: the next activity for the user whose event is
presently being processed.

Several data structures are capable of storing the event notices for this model. Two
likely candidates are an array and a linked list. For simplicity, an array will be used to
store the event notices. We can use an array here because we know in advance that there
will always be n events on the event list, one event notice for the next activity for each
user. We begin with this very simplistic (and grossly inefficient) data structure for the
event list. We will subsequently refine this data structure, and eventually outline more
sophisticated schemes. We will store the times of the events in an array of length n in an
order associated with the n users, and make a linear search of all elements of the array
whenever the next event to be processed needs to be found. Thus the deletion operation
requires searching all n elements of the event list to find the event with the smallest event
time, while the insertion operation requires no searching since the next event notice for a
particular user simply overwrites the current event notice.

However, there is ancillary information that must be carried with each event notice.
Instead of an array of n times, the event list for this model should be organized as an
array of n event structures. Each event structure consists of three fields: time, type, and
info. The time field in the ith event structure stores the time of the event for the ith
user (i = 0, 1, . . . , n − 1). The type field stores the event type (1, 2, or 3). The info
field stores the ancillary information associated with a keystroke or display of a character
event: the number of keystrokes remaining (for a Type 2 event) or the number of characters
remaining in the output (for a Type 3 event). The info field is not used for a thinking
(Type 1) event since no ancillary information is needed for thinking.
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The initialization phase of the next-event simulation model schedules a complete think-
ing time event (Type 1 event) for each of the n users on the system. The choice of beginning
with this event and applying the choice to all users is arbitrary*. After the initialization,
the event list for a system with n = 5 users might look like the one presented in Fig-
ure 5.3.2. Each of the five Uniform(0, 10) completion of thinking event times is placed in
the time field of the corresponding event structure. The value in the time field of the third
structure is the smallest, indicating that the third user will be the first to stop thinking
and begin typing at time 1.305. All five of these events are completion of thinking events,
as indicated by the type field in each event structure.
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Figure 5.3.2.

Initial

event list.

The remainder of the algorithm follows the standard next-event protocol — while the
terminal condition has not been met: (1) scan the event list for the most imminent event,
(2) update the simulation clock accordingly, (3) process the current event, and (4) schedule
the subsequent event by placing the appropriate event notice on the event list.

As the initial event (end of thinking for the third user at time 1.305) is deleted from
the event list and processed, a number of keystrokes [an Equilikely(5, 15) random variate
which takes the value of 7 in this case — a slightly shorter than average command] and
a time for the first keystroke [a Uniform(0.15, 0.35) random variate which takes the value
of 0.301 in this case — a slightly longer than average keystroke time] are generated. The
time field in the third event structure is incremented by 0.301 to 1.305 + 0.301 = 1.606,
and the number of keystrokes in this command is stored in the corresponding info field.
Subsequent keystrokes for the third user decrement the integer in the corresponding info
field. The condition of the event list after the processing of the first event is shown in
Figure 5.3.3.
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To complete the development of the specification model, we use the following notation:

• The simulation clock is t, which is measured in seconds.

• The simulation terminates when the next scheduled event is τ seconds or more.

The algorithm is straightforward, as presented in Algorithm 5.3.1.

* All users begin thinking simultaneously at time 0, but will behave more independently
after a few cycles as the timesharing system “warms up.”
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Algorithm 5.3.1 This algorithm is a next-event simulation of a think-type-receive time-
sharing system with n concurrent users. The algorithm presumes the existence of four
functions GetThinkTime, GetKeystrokeTime, GetNumKeystrokes, and GetNumCharacters
that return the random time to think, time to enter a keystroke, number of keystrokes per
command, and number of characters returned from a command respectively. The function
MinIndex returns the index of the most imminent event notice.

t = 0.0; /* initialize system clock */

for (i = 0; i < n; i++) { /* initialize event list */

event[i].time = GetThinkTime();

event[i].type = 1;

}

while (t < τ) { /* check for terminal condition */

j = MinIndex(event.time); /* find index of imminent event */

t = event[j].time; /* update system clock */

if (event[j].type == 1) { /* process completion of thinking */

event[j].time = t + GetKeystrokeTime();

event[j].type = 2;

event[j].info = GetNumKeystrokes();

}

else if (event[j].type == 2) { /* process completion of keystroke */

event[j].info--; /* decrement number of keystrokes remaining */

if (event[j].info > 0) /* if more keystrokes remain */

event[j].time = t + GetKeystrokeTime();

else { /* else last keystroke */

event[j].time = t + 1.0 / 120.0;

event[j].type = 3;

event[j].info = GetNumCharacters();

}

}

else if (event[j].type == 3) { /* process complete character rcvd */

event[j].info--; /* decrement number of characters remaining */

if (event[j].info > 0) /* if more characters remain */

event[j].time = t + 1.0 / 120.0;

else { /* else last character */

event[j].time = t + GetThinkTime();

event[j].type = 1;

}

}

}
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Program ttr

The think-type-receive specification model has been implemented in program ttr,
which prints the total number of events scheduled and the average number of event notices
searched for each deletion. For each value of n in the table below, the simulation was run
three times with seeds 123456789, 987654321, and 555555555 for τ = 100 seconds, and the
averages of the three runs are reported.

number of expected number of average number of average number of
users n events scheduled events scheduled event notices searched
5 10 381 9 902 5
10 20 763 20 678 10
50 103 814 101 669 50
100 207 628 201 949 100

The column headed “expected number of events scheduled” is determined as follows. Since
the average length of each cycle is 8.9583 seconds, each user will go through an average of

100

8.9583
∼= 11.16

cycles in τ = 100 seconds. Since the average number of events per cycle is 186, we expect
to see

(11.16) · (186) · n = 2076.3n

total events scheduled during the simulation. These values are reported in the second
column of the table. The averages in the table from the three simulations are slightly
lower than the expected values due to our arbitrary decision to begin each cycle thinking,
the longest event. In terms of event list management, each deletion event (required to
find the next event notice) requires an exhaustive search of the time field in all n event
structures, so the average number of event notices searched for each deletion is simply n.
The simplistic event list management scheme used here sets the stage for more sophisticated
schemes.

5.3.4 AN IMPROVED EVENT LIST MANAGEMENT SCHEME

Our decision in the previous example to store event times unordered is a departure
from the traditional convention in simulation languages, which is to order the event notices
on the event list in ascending order of event times, i.e., the event list is maintained in
chronological order. If we now switch to an ordered event list, a deletion requires no
searching and an insertion requires a search — just the opposite situation from the previous
event list management scheme. This will be a wash time-wise for the think-type-receive
model, since there is deletion for every insertion during the simulation. Every deletion
associated with the scheduling of an event pulls the first event notice from the head of the
list. This section is focused, therefore, on efficient algorithms for inserting event notices
into the event list.
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There is good and bad news associated with the move to an event list that is ordered
by ascending event time. The good news is that the entire event list need not necessarily
be searched exhaustively every time an insertion operation is conducted. The bad news,
however, is that arrays are no longer a natural choice for the data structure due to the
overhead associated with shuffling event notices down the array when an event notice is
placed at the beginning or middle of the list. A singly- or doubly-linked list is a preferred
data structure due to its ability to easily insert items in the middle of the list. The
overhead of maintaining pointers, however, dilutes the benefit of moving to an event list
that is ordered by ascending event time. Also, direct access to the array is lost and time-
consuming element-by-element searches through the linked list are required.

A secondary benefit associated with switching to linked lists is that the maximum
size of the list need not be specified in advance. This is of no consequence in our think-
type-receive model since there are always n events in the event list. In a general-purpose
discrete-event simulation language, however, linked lists expand until memory is exhausted.

Example 5.3.1 For the think-type-receive model with n = 5, for example, a singly-
linked list, linked from head (top) to tail (bottom), to store the elements of the event list
corresponding to Figure 5.3.3 is shown in Figure 5.3.4. The three values stored on each
event notice are the event time, event type, and ancillary information (seven keystrokes
remaining in a command for the first element in the list). The event notices are ordered by
event time. A deletion now involves no search, but a search is required for each insertion.

next
•

next
•

next
•

next
•

next
•

1.606 2.155 3.507 8.243 9.803
2 1 1 1 1
7


head
• ......................................................................................................................................................... •

tail

Figure 5.3.4.

Event list as

a linked list.

One question remains before implementing the new data structure and algorithm for
the search. Should the list be searched from head to tail (top to bottom for a list with
forward pointers) or tail to head (bottom to top for a list with backward pointers)? We
begin by searching from tail to head and check our efficiency gains over the naive event
management scheme presented in the previous subsection. The table below shows that the
average number of events scheduled is identical to the previous event management scheme
(as expected due to the use of identical seeds), and improvements in the average number
of searches per insertion improvements range from 18.8% (n = 100) to 23.4% (n = 5).

number of average number of average number of
users n events scheduled event notices searched
5 9 902 3.83
10 20 678 8.11
50 101 669 40.55
100 201 949 81.19
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These results are certainly not stunning. The improvement in search time is slight.
What went wrong? The problem here is that we ignored our earlier back-of-an envelope
calculations. These calculations indicated that 94.1% of the events in the simulation would
be the receipt of a character, which has a very short inter-event time. Thus we should have
searched the event list from head to tail since these short events are much more likely to
be inserted at or near the top of the list. We re-programmed the search to go from head
to tail, and the results are given in the table below.

number of average number of average number of
users n events scheduled event notices searched
5 9 902 1.72
10 20 678 2.73
50 101 669 10.45
100 201 949 19.81

Confirming our calculations, the forward search performs far better than the backward
search.* In this case the savings in terms of the number of searches required over the
exhaustive search ranges from 66% (for n = 5) to 80% (for n = 100).

The think-type-receive model with n = 100 highlights our emphasis on efficient event
list management techniques. Even with the best of the three event list management
schemes employed so far (forward linear search of a singly-linked list, averaging 19.81
searches per insertion), more time is spent on event list management than the rest of
the simulation operations (e.g., random number generation, random variate generation,
processing events) combined!

5.3.5 MORE ADVANCED EVENT LIST MANAGEMENT SCHEMES

The think-type-receive model represents the simplest possible case for event list man-
agement. First, the number of event notices on the event list remains constant throughout
the simulation. Second, the fact that there are frequent short events (e.g., receiving a
character) can be exploited in order to minimize the search time for an insertion using a
forward search.

* An interesting verification of the forward and backward searches can be made in this
case since separate streams of random numbers assures an identical sequencing of events.
For an identical event list of size n, the sum of the number of forward searches and the
number of backward searches equals n for an insertion at the top or bottom of the list. For
an insertion in the middle, however, the sum equals n+1 for identical lists. Therefore, the
sum of the rightmost columns of the last two tables will always lie between n and n + 1,
which it does in this case. The sums are 5.55, 10.84, 51.00, and 101.00 for n = 5, 10, 50, and
100. The sum tends to n+ 1 for large n since it is more likely to have an insertion in the
middle of the list as n grows. Stated another way, when n is large it is a near certainty that
several users will be simultaneously receiving characters when an event notice is placed on
the event list, meaning that the event is unlikely to be placed at the front of the list.
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We now proceed to a discussion of the general case where (1) the number of event
notices in the event list varies throughout the simulation, (2) the maximum length of
the event list is not known in advance, and (3) the structure of the simulation model is
unknown so it cannot be exploited for optimizing an event list management scheme.

In order to reduce the scope of the discussion, assume that a memory allocation
mechanism exists so that a memory location occupied by a deleted event notice may
be immediately occupied by an event notice that is subsequently inserted into the event
list. When memory space is released as soon as it becomes available in this fashion, the
simulation will fail due to lack of memory only when an insertion is made to an event
list that exhausts the space allocated to the event list. Many general-purpose languages
effectively place all entities (e.g., event notices in the event list, jobs waiting in a queue)
in the simulation in a single partitioned list in order to use memory in the most efficient
manner. Data structures and algorithms associated with the allocation and de-allocation
of memory are detailed in Chapter 5 of Fishman (2001).

The next four subsections briefly outline event list management schemes commonly
used to efficiently insert event notices into an event list and delete event notices from an
event list in a general setting: multiple linked lists, binary search trees, heaps, and hybrid
schemes.

Multiple Linked Lists

One approach to reducing search time associated with insertions and deletions is to
maintain multiple linear lists, each sorted by event time. Let k denote the number of
such lists and n denote the number of event notices in all lists at one particular point in
simulated time. Figure 5.3.5 shows k = 2 equal-length, singly-linked lists for n = 10 initial
think times in the think-type-receive model. An insertion can be made into either list.
If the list sizes were not equal, choosing the shortest list minimizes the search time. The
time savings associated with the insertion operation is offset by (1) the overhead associated
with maintaining the multiple lists, and (2) a less efficient deletion operation. A deletion
now requires a search of the top (head) event notices of the k lists, and the event notice
with the smallest event time is deleted.
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tail

Figure 5.3.5.

Multiple

linked lists.
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We close the discussion of multiple event lists with three issues that are important for
minimizing CPU time for insertions and deletions:

• The decision of whether to fix the number of lists k throughout the simulation or
allow it to vary depends on many factors, including the largest value of n throughout
the simulation, the distribution of the position of insertions in the event list, and how
widely n varies throughout the simulation.

• If the number of lists k is allowed to vary throughout the simulation, the modeler
must determine appropriate thresholds for n where lists are split (as n increases) and
combined (as n decreases).

• The CPU time associated with inserting an event notice, deleting an event notice,
combining lists, and splitting lists as functions of n and k should drive the optimization
of this event list management scheme.

The next two data structures, binary trees and heaps, are well-known data structures.
Rather than developing the data structures and associated operations from scratch, we refer
the reader to Carrano and Prichard (2002) for basic definitions, examples, and applications.
Our discussion of these two data structures here will be rather general in nature.

Binary Trees

We limit our discussion of trees to binary trees. A binary tree consists of n nodes
connected by edges in a hierarchical fashion such that a parent node lies above and is
linked to at most two child nodes. The parent-child relationship generalizes to the ancestor-

descendant relationship in an analogous fashion to a family tree. A subtree in a binary
tree consists of a node, along with all of the associated descendants. The top node in a
binary tree is the only node in the tree without a parent, and is called the root . A node
with no children is called a leaf . The height of a binary tree is the number of nodes on the
longest path from root to leaf. The level of a node is 1 if it is the root or 1 greater than
the level of its parent if it is not the root. A binary tree of height h is full if all nodes at a
level less than h have two children each. Full trees have n = 2h − 1 nodes. A binary tree
of height h is complete if it is full down to level h− 1 and level h is filled from left to right.
A full binary tree of height h = 3 with n = 7 nodes and a complete binary tree of height
h = 4 with n = 12 nodes are displayed in Figure 5.3.6.
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Nodes are often associated with a numeric value. In our setting, a node corresponds
to an event notice and the numeric value associated with the node is the event time. A
binary search tree is a binary tree where the value associated with any node is greater
than or equal to every value in its left subtree and less than or equal to every value in its
right subtree. The “or equal to” portions of the previous sentence have been added to the
standard definition of a binary search tree to allow for the possibility of equal event times.

Example 5.3.2 There are many ways to implement a binary tree. Figure 5.3.7 shows
a pointer-based complete binary tree representation of the ten initial events (from Fig-
ure 5.3.5) for a think-type-receive model with n = 10 users, where each user begins with
a Uniform(0, 10) thinking activity. Each event notice has three fields (event time, event
type, and event information) and each parent points to its child or children, if any. Every
event time is greater than or equal to every event time in its left subtree and less than
or equal to every event time in its right subtree. Although there are many binary search
tree configurations that could contain these particular event notices, the placement of the
event notices in the complete binary search tree in Figure 5.3.7 is unique.
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Binary search
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for the ten initial

events in the

think-type-receive

model.

One advantage to binary search trees for storing event notices is that the “leftmost”
leaf in the tree will always be the most imminent event. This makes a deletion operation
fast, although it may require reconfiguring the tree after the deletion.
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Insertions are faster than a linear search of a list due to the decreased number of
comparisons necessary to find the appropriate insertion position. The key decision that
remains for the scheme is whether the binary tree will be maintained as a complete tree
(involving extra overhead associated with insertions and deletions) or allowed to evolve
without the requirement that the tree is complete (which may result in an “imbalanced”
tree whose height increases over time, requiring more comparisons for insertions). Splay

trees, which require frequent rotations to maintain balance, have also performed well.

Heaps

A heap is another data structure for storing event notices in order to minimize inser-
tion and deletion times. In our setting, a heap is a complete binary tree with the following
properties: (1) the event time associated with the root is less than or equal to the event
time associated with each of its children, and (2) the root has heaps as subtrees. Fig-
ure 5.3.8 shows a heap associated with the first ten events in the think-type-receive model.
This heap is not unique.* An obvious advantage to the heap data structure is that the
most imminent event is at the root, making deletions fast. The heap property must be
maintained, however, whenever an insertion or deletion operation is performed.
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* If the event notices associated with times 2.220 and 2.211 in Figure 5.3.8, for example,
were interchanged, the heap property would be retained.
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Hybrid Schemes

The ideal event list management scheme performs well regardless of the size of the
event list. Jones (1986) concludes that when there are fewer than ten event notices on
an event list, a singly-linked list is optimal due to the overhead associated with more
sophisticated schemes. Thus to fully optimize an event list management scheme, it may
be necessary to have thresholds, similar to those that switch a thermostat on and off, that
switch from one set of data structures and algorithms to another based on the number of
events on the list. It is important to avoid switching back and forth too often, however,
since the switch typically requires overhead processing time as well.

If a heap, for example, is used when the event list is long and a singly-linked list is used
when the event list is short, then appropriate thresholds should be determined that will
switch from one scheme to the other. As an illustration, when the number of event notices
shrinks to n = 5 (e.g., n decreases from 6 to 5), the heap is converted to a singly-linked
list. Similarly, when the number of event notices grows to n = 15 (e.g., n increases from
14 to 15), the singly-linked list is converted to a heap.

Henriksen’s algorithm (Henriksen, 1983) provides adaptability to short and long event
lists without alternating data structures based on thresholds. Henriksen’s algorithm uses
a binary search tree and a doubly-linked list simultaneously. This algorithm has been
implemented in several simulation languages, including GPSS, SLX, and SLAM. At the
conceptual level, Henriksen’s algorithm employs two data structures:

• The event list is maintained as a single, linear, doubly-linked list ordered by event
times. The list is augmented by a dummy event notice on the left with a simulated
time of −∞ and a dummy event notice on the right with a simulated time of +∞ to
allow symmetry of treatment for all real event notices.

• A binary search tree with nodes associated with a subset of the event notices in the
event list, has nodes with the format shown in Figure 5.3.9. Leaf nodes have zeros for
left and right child pointers. The leftmost node in the tree has a zero for a pointer to
the next lower time tree node. This binary search tree is degenerate at the beginning
of the simulation (prior to scheduling initial events).

Pointer to next lower time tree node
Pointer to left child tree node
Pointer to right child tree node

Event time
Pointer to the event notice

Figure 5.3.9.

Binary search

tree node

format.

A three-node binary search tree associated with the ten initial events in the think-
type-receive model is given in Figure 5.3.10. The binary search tree is given at the top of
the figure, and the linear doubly-linked list containing the ten initial event notices (plus
the dummy event notices at both ends of the list) is shown at the bottom of the figure.
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A deletion is an O(1) operation since the first real event notice in the event list is
the most imminent event. To insert an event notice into the event list, the binary search
tree is traversed in order to find the position of the event in the tree with the smallest
event time greater than the event notice being inserted. A backward linear search of the
doubly-linked event list is initiated at the event notice to the left of the one found in the
binary search tree. This backward linear search continues until either:

• the appropriate insertion position is found in l or fewer searches (Henriksen recom-
mends l = 4), in which case the new event notice is linked into the event list at the
appropriate position, or

• the appropriate insertion position is not found in l or fewer searches, in which case a
“pull” operation is attempted. The pull operation begins by examining the pointer to
the event in the binary search tree with the next lower time relative to the one found
previously. If this pointer is non-zero, its pointer is changed to the most recently
examined event notice in the doubly-linked list, i.e., the lth event encountered during
the search, and the search continues for another l event notices as before. If the pointer
is zero, there are no earlier binary tree nodes that can be updated, so the algorithm
adds a new level to the tree. The new level is initialized by setting its leftmost leaf
to point to the dummy notice on the right (event time +∞) and setting all other new
leaves to point to the dummy notice on the left (event time −∞). The binary search
tree is again searched as before.
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Henriksen’s algorithm works quite well at reducing the average search time for an
insertion. Its only drawback seems to be that the maximum search time can be quite long.
Other hybrid event list management schemes may also have promise for reducing CPU
times associated with insertions and deletions (e.g., Brown, 1988).

5.3.6 EXERCISES

Exercise 5.3.1 Modify program ttr so that the initial event for each user is the comple-
tion of the first character received as output, rather than the completion of thinking. Run
the modified programs for n = 5, 10, 50, 100, and for initial seeds 123456789, 987654321,
and 555555555. Compare the average number of events for the three simulation runs rel-
ative to the results in Section 5.3.3. Offer an explanation of why the observed average
number of events goes up or down.

Exercise 5.3.2 Modify program ttr to include an event list that is sorted by event time
and is stored in a linked list. Verify the results for a forward search given in Example 5.3.1.

Exercise 5.3.3 Assume that all events (thinking, typing a character, and receiving a
character) in the think-type-receive model have deterministic durations of exactly 1/10
second. Write a paragraph describing an event list management scheme that requires no

searching. Include the reason(s) that no searching is required.

Exercise 5.3.4 Assume that all events (thinking, typing a character, and receiving a
character) in the think-type-receive model have Uniform(0.4, 0.6) second durations. If
you use a doubly-linked list data structure to store the event list with events stored in
chronological order, would it be wiser to begin an insertion operation with a search starting
at the top (head) of the list or the bottom (tail) of the list? Justify your answer.

Exercise 5.3.5a Assume that all events (thinking, typing a character, and receiving
a character) in the think-type-receive model have Exponential(0.5) second durations. If
you use a doubly-linked list data structure to store the event list with events stored in
chronological order, would it be wiser to begin an insertion operation with a search starting
at the top (head) of the list or the bottom (tail) of the list? Justify your answer.

Exercise 5.3.6 The verification process from Algorithm 1.1.1 involves checking whether
a simulation model is working as expected. Program ttr prints the contents of the event
list when the simulation reaches its terminal condition. What verification technique could
be applied to this output to see if the program is executing as intended.

Exercise 5.3.7 The verification process from Algorithm 1.1.1 involves checking whether
a simulation model is working as expected. Give a verification technique for comparing
the think-type-receive model with (a) an unsorted event list with an exhaustive search for
a deletion, and (b) an event list which is sorted by event time with a backward search for
an insertion.
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This chapter begins a more thorough and methodical description of random variables,
their properties, how they can be used to model the stochastic (random) components
of a system of interest, and the development of algorithms for generating the associated
random variates for a Monte Carlo or discrete-event simulation model. This chapter is
devoted entirely to describing and generating discrete random variables. The next chapter
is devoted to describing and generating continuous random variables.

Section 6.1 defines a discrete random variable and introduces four popular models: the
Bernoulli, binomial, Pascal, and Poisson distributions. Section 6.2 contains an approach to
generating discrete random variables that is more general than the ad hoc approaches given
earlier for the Equilikely(a, b) variate and the Geometric(p) variate. Section 6.3 applies
these variate generation techniques to the simple inventory system. Section 6.4 contains
a summary of the six discrete distributions encountered thus far. Finally, Section 6.5
departs slightly from the topic of discrete random variables and considers the related topic
of the development of algorithms for shuffling and drawing random samples from a group
of objects.



224 6.1 Discrete Random Variables

As illustrated in previous chapters, random variables, both discrete and continuous,
appear naturally in discrete-event simulation models. Because of this, it is virtually im-
possible to build a valid discrete-event simulation model of a system without a good un-
derstanding of how to construct a valid random variable model for each of the stochastic
system components. In this chapter and the next we will develop the mathematical and
computational tools for building such stochastic models. Discrete random variables are
considered in this chapter; continuous random variables are considered in the next.

6.1.1 DISCRETE RANDOM VARIABLE CHARACTERISTICS

The notation and development in this section largely follows the axiomatic approach
to probability. As a convention, uppercase characters X, Y , . . . are used to denote random
variables (discrete or continuous), the corresponding lowercase characters x, y, . . . are used
to denote the specific values of X, Y , . . ., and calligraphic characters X , Y, . . . are used to
denote the set of all possible values (often known as the support of the random variable).
A variety of examples are used in this section to illustrate this notation.

Definition 6.1.1 The random variable X is discrete if and only if its set of possible
values X is finite or, at most, countably infinite.

In a discrete-event simulation model discrete random variables are often integers used
for counting, e.g., the number of jobs in a queue or the amount of inventory demand. There
is no inherent reason, however, why a discrete random variable has to be integer-valued
(see Example 6.1.14).

Probability Density Function

Definition 6.1.2 A discrete random variable X is uniquely determined by its set of
possible values X and associated probability density function (pdf ), a real-valued function
f(·) defined for each possible value x ∈ X as the probability that X has the value x

f(x) = Pr(X = x).

By definition, x ∈ X is a possible value of X if and only if f(x) > 0. In addition, f(·) is
defined so that

∑

x

f(x) = 1

where the sum is over all x ∈ X .*

It is important to understand the distinction between a random variable, its set of
possible values, and its pdf. The usual way to construct a model of a discrete random
variable X is to first specify the set of possible values X and then, for each x ∈ X , specify
the corresponding probability f(x). The following three examples are illustrations.

* The pdf of a discrete random variable is sometimes called a probability mass function
(pmf) or probability function (pf); that terminology is not used in this book.
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Example 6.1.1 If the random variable X is Equilikely(a, b), then X is the set of integers
between a and b inclusive. Because |X | = b−a+1 and each possible value is equally likely,
it follows that

f(x) =
1

b− a+ 1
x = a, a+ 1, . . . , b.

As a specific example, if we were to roll one fair die and let the random variable X be the
up face, then X would be Equilikely(1, 6).

Example 6.1.2 Roll two fair dice. If the random variable X is the sum of the two up
faces, then the set of possible values is X = {x | x = 2, 3, . . . , 12} and from the table in
Example 2.3.1, the pdf of X is

f(x) =
6− |7− x|

36
x = 2, 3, . . . , 12.

Although the sum of the up faces is the usual discrete random variable for games of chance
that use two dice, see Exercise 6.1.2 for an alternative.

Example 6.1.3 Suppose a coin has p as its probability of a head and suppose we agree
to toss this coin until the first tail occurs. If X is the number of heads (i.e., the number
of tosses is X + 1), then X = {x | x = 0, 1, 2, . . .} and the pdf is

f(x) = px(1− p) x = 0, 1, 2, . . .

This random variable is said to be Geometric(p). (The coin is fair if p = 0.5.)

Because the set of possible values is infinite, for a Geometric(p) random variable some
math is required to verify that

∑

x
f(x) = 1. Fortunately, this infinite series and other

similar series can be evaluated by using the following properties of geometric series. If
p 6= 1 then

1 + p+ p2 + p3 + · · ·+ px =
1− px+1

1− p
x = 0, 1, 2, . . .

and if |p| < 1 then the following three infinite series converge to tractable quantities:

1 + p+ p2 + p3 + p4 + · · · =
1

1− p
,

1 + 2p+ 3p2 + 4p3 + · · · =
1

(1− p)2
,

1 + 22p+ 32p2 + 42p3 + · · · =
1 + p

(1− p)3
.

Although the three infinite series converge for any |p| < 1, negative values of p have no
meaning in Example 6.1.3. From the first of these infinite series we have that

∑

x

f(x) =

∞
∑

x=0

px(1− p) = (1− p)(1 + p+ p2 + p3 + p4 + · · ·) = 1

as required.
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As the previous examples illustrate, discrete random variables have possible values
that are determined by the outcomes of a random experiment. Therefore, a Monte Carlo
simulation program can be used to generate these possible values consistent with their
probability of occurrence — see, for example, program galileo in Section 2.3. Provided
the number of replications is large, a histogram of the values generated by replication should
agree well with the random variable’s pdf. Indeed, in the limit as the number of replications
becomes infinite, the discrete-data histogram and the discrete random variable’s pdf should
agree exactly, as illustrated in Section 4.2.

Cumulative Distribution Function

Definition 6.1.3 The cumulative distribution function (cdf ) of the discrete random
variable X is the real-valued function F (·) defined for each x ∈ X as

F (x) = Pr(X ≤ x) =
∑

t≤x

f(t)

where the sum is over all t ∈ X for which t ≤ x.

Example 6.1.4 If X is an Equilikely(a, b) random variable (Example 6.1.1), then the
cdf is

F (x) =
x
∑

t=a

1/(b− a+ 1) = (x− a+ 1)/(b− a+ 1) x = a, a+ 1, . . . , b.

Example 6.1.5 For the sum-of-two-dice random variable in Example 6.1.2 there is no
simple equation for F (x). That is of no real significance, however, because |X | is small
enough that the cumulative pdf values are easily tabulated to yield the cdf. Figure 6.1.1
shows the pdf on the left and the cdf on the right (the vertical scale is different for the two
figures). Any of the four styles for plotting a cdf given in Figure 4.2.8 is acceptable.
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Figure 6.1.1.
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Example 6.1.6 If X is a Geometric(p) random variable (Example 6.1.3), then the cdf
is

F (x) =
x
∑

t=0

pt(1− p) = (1− p)(1 + p+ p2 + · · ·+ px) = 1− px+1 x = 0, 1, 2, . . .



6.1 Discrete Random Variables 227

The cdf of a discrete random variable can always be generated from its corresponding
pdf by recursion. If the possible values of X are the consecutive integers x = a, a+1, . . . , b,
for example, then

F (a) = f(a)

F (x) = F (x− 1) + f(x) x = a+ 1, a+ 2, . . . , b.

Similarly, a pdf can always be generated from its corresponding cdf by subtracting consec-
utive terms

f(a) = F (a)

f(x) = F (x)− F (x− 1) x = a+ 1, a+ 2, . . . , b.

Therefore, a model of a discrete random variable can be defined by specifying either the
pdf or the cdf and then computing the other — there is no need to specify both.

As illustrated in Example 6.1.5, the cdf of a discrete random variable is strictly mono-
tone increasing — if x1 and x2 are possible values of X with x1 < x2, then F (x1) < F (x2).
Moreover, since F (x) is defined as a probability, 0 ≤ F (x) ≤ 1. The monotonicity of F (·)
is fundamentally important; in the next section we will use it as the basis for a method to
generate discrete random variates.

Mean and Standard Deviation

Recall from Definition 4.2.2 that for a discrete-data sample the sample mean x̄ and
standard deviation s can be computed from the discrete-data histogram as

x̄ =
∑

x

xf̂(x) and s =

√

∑

x

(x− x̄)2f̂(x),

respectively. Moreover, the histogram relative frequencies f̂(x) converge to the correspond-
ing probabilities f(x) as the sample size becomes infinite. These two observations motivate
the following definition.

Definition 6.1.4 The (population)mean µ and the corresponding (population) standard

deviation σ are

µ =
∑

x

xf(x) and σ =

√

∑

x

(x− µ)2f(x),

where the summations are over all x ∈ X . The population variance is σ2. An alternative,
algebraically equivalent expression for σ is

σ =

√

√

√

√

(

∑

x

x2f(x)

)

− µ2.

The population mean µ is a fixed constant, whereas the sample mean x̄ is a random
variable that varies from sample to sample. They are fundamentally different, although
analogous, quantities. Since x̄ is a random variable, it has a pdf and cdf that describe its
distribution.
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Example 6.1.7 If X is an Equilikely(a, b) random variable (Example 6.1.1), then

µ =
a+ b

2
and σ =

√

(b− a+ 1)2 − 1

12
The derivation of these two equations is left as an exercise. In particular, if X is the result
of rolling one fair die, then X is Equilikely(1, 6) so that

µ = 3.5 and σ =

√

35

12
∼= 1.708,

illustrating the fact that µ need not necessarily be a member of X . The geometric inter-
pretation of the mean is the horizontal center of mass of the distribution.

Example 6.1.8 If X is the sum-of-two-dice random variable (Example 6.1.2), then

µ =

12
∑

x=2

xf(x) = · · · = 7 and σ2 =

12
∑

x=2

(x− µ)2f(x) = · · · = 35/6.

Therefore the population standard deviation is σ =
√

35/6 ∼= 2.415.

Example 6.1.9 If X is a Geometric(p) random variable (Example 6.1.3), then

µ =

∞
∑

x=0

xf(x) =

∞
∑

x=1

xpx(1− p) = · · · =
p

1− p

using the infinite series following Example 6.1.3, and

σ2 =

(

∞
∑

x=0

x2f(x)

)

− µ2 =

(

∞
∑

x=1

x2px(1− p)

)

−
p2

(1− p)2
= · · · =

p

(1− p)2

so that σ =
√
p/(1 − p). The derivation of these equations is left as an exercise. In

particular, tossing a fair (p = 0.5) coin until the first tail occurs generates a Geometric(0.5)
random variable (X is the number of heads) with

µ = 1 and σ =
√
2 ∼= 1.414.

The population mean and the population variance are two special cases of a more
general notion known as “expected value”.

Expected Value

Definition 6.1.5 The mean of a random variable (discrete or continuous) is also known
as the expected value. It is conventional to denote the expected value as E[ · ]. That is, the
expected value of the discrete random variable X is

E[X] =
∑

x

xf(x) = µ

where the summation is over all x ∈ X .*

* The expected value may not exist if there are infinitely many possible values.



6.1 Discrete Random Variables 229

If we were to use a Monte Carlo simulation to generate a large random variate sample
x1, x2, . . . , xn corresponding to the random variable X and then calculate the sample mean
x̄, we would expect to find that x̄ → E[X] = µ as n → ∞. Thus, the expected value of X
is really the “expected average” and in that sense the term “expected value” is potentially
misleading. The expected value (the mean) is not necessarily the most likely possible value
[which is the mode, the element in X corresponding to the largest value of f(x)].

Example 6.1.10 If a fair coin is tossed until the first tail appears, then the most likely

number of heads is 0 and the expected number of heads is 1 (see Example 6.1.9). In this
case, 0 occurs with probability 1/2 and 1 occurs with probability 1/4. Thus the most likely
value (the mode) is twice as likely as the expected value (the mean). On the other hand,
for some random variables the mean and mode may be the same. For example, if X is
the sum-of-two-dice random variable then the expected value and the most likely value are
both 7 (see Examples 6.1.5 and 6.1.8).

Definition 6.1.6 If h(·) is a function defined for all possible values of X, then as x takes
on all possible values in X the equation y = h(x) defines the set Y of possible values for a
new random variable Y = h(X). The expected value of Y is

E[Y ] = E[h(X)] =
∑

x

h(x)f(x)

where the sum is over all x ∈ X .*

Example 6.1.11 If y = (x− µ)2 with µ = E[X], then from Definitions 6.1.4 and 6.1.6

E[Y ] = E[(X − µ)2] =
∑

x

(x− µ)2f(x) = σ2.

That is, the variance σ2 is the expected value of the squared difference about the mean.
Similarly, if y = x2 − µ2 then

E[Y ] = E[X2 − µ2] =
∑

x

(x2 − µ2)f(x) =

(

∑

x

x2f(x)

)

− µ2 = σ2

so that
σ2 = E[X2]− E[X]2.

This last equation demonstrates that the two operations E[ · ] and (·)2 do not commute;
the expected value of X2 is not equal to the square of E[X]. Indeed, E[X2] ≥ E[X]2

with equality if and only if X is not really random at all, i.e., σ2 = 0, often known as a
degenerate distribution.

* Definition 6.1.6 can be established as a theorem. When presented as a definition it is
sometimes called the “law of the unconscious statistician”. If the set of possible values X
is infinite then E[Y ] may not exist.
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Example 6.1.12 If Y = aX + b for constants a and b, then

E[Y ] = E[aX + b] =
∑

x

(ax+ b)f(x) = a

(

∑

x

xf(x)

)

+ b = aE[X] + b.

In particular, suppose that X is the number of heads before the first tail and that you are
playing a game with a fair coin where you win $2 for every head. Let the random variable
Y be the amount you win. The possible values of Y are defined by

y = h(x) = 2x x = 0, 1, 2, . . .

and your expected winnings (for each play of the game) are

E[Y ] = E[2X] = 2E[X] = 2.

If you play this game repeatedly and pay more than $2 per game to do so, then in the long
run expect to lose money.

6.1.2 DISCRETE RANDOM VARIABLE MODELS

Let X be any discrete random variable. In the next section we will consider a uni-
fied algorithmic approach to generating possible values of X. The values so generated
are random variates. The distinction between a random variable (discrete or continuous)
and a corresponding random variate is subtle, but important. The former is an abstract,
but well-defined, mathematical function that maps the outcome of an experiment to a
real number (see Definition 6.1.2); the latter is an algorithmically generated possible value
(realization) of the former (see Definition 2.3.2). For example, the functions Equilikely
(Definition 2.3.4) and Geometric (Definition 3.1.2) generate random variates correspond-
ing to Equilikely(a, b) and Geometric(p) random variables, respectively.

Bernoulli Random Variable

Example 6.1.13 The discrete random variable X with possible values X = {0, 1} is said
to be Bernoulli(p) if X = 1 with probability p and X = 0 otherwise (i.e., with probability
1− p). In effect, X is a Boolean random variable with 1 as true and 0 as false. The pdf
for a Bernoulli(p) random variable is f(x) = px(1 − p)1−x for x ∈ X . The corresponding
cdf is F (x) = (1 − p)1−x for x ∈ X . The mean is µ = 0 · (1 − p) + 1 · p = p and the
variance is σ2 = (0−p)2(1−p)+(1−p)2p = p(1−p). Therefore, the standard deviation is
σ =

√

p(1− p). We can generate a corresponding Bernoulli(p) random variate as follows.

if (Random() < 1.0 - p)

return 0;

else

return 1;

As illustrated in Section 2.3, no matter how sophisticated or computationally complex, a
Monte Carlo simulation that uses n replications to estimate an (unknown) probability p is
equivalent to generating an iid sequence of n Bernoulli(p) random variates.
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Example 6.1.14 A popular state lottery game Pick-3 requires players to pick a 3-digit
number from the 1000 numbers between 000 and 999. It costs $1 to play the game. If
the 3-digit number picked by a player matches the 3-digit number chosen, at random, by
the state then the player wins $500, minus the original $1 investment, for a net yield of
+$499. Otherwise, the player’s yield is −$1. (See Exercise 6.1.7 for another way to play
this game.) Let the discrete random variable X represent the result of playing the game
with the convention that X = 1 denotes a win and X = 0 denotes a loss. Then X is
a Bernoulli(p) random variable with p = 1/1000. In addition, let the discrete random
variable Y = h(X) be the player’s yield where

h(x) =
{

−1 x = 0
499 x = 1.

From Definition 6.1.6, the player’s expected yield is

E[Y ] =

1
∑

x=0

h(x)f(x) = h(0)(1− p) + h(1)p = −1 ·
999

1000
+ 499 ·

1

1000
= −0.5.

In this case, Y has just two possible values — one is 1000 times more likely than the other
and neither is the expected value. Even though the support values for Y are far apart (−1
and 499), the value of E[Y ] shows that playing Pick-3 is the equivalent of a voluntary 50
cent tax to the state for every dollar bet.

Because it has only two possible values, a Bernoulli(p) random variable may seem
to have limited applicability. That is not the case, however, because this simple random
variable can be used to construct more sophisticated stochastic models, as illustrated by
the following examples.

Binomial Random Variable

Example 6.1.15 In the spirit of Example 6.1.3, suppose a coin has p as its probability
of tossing a head and suppose we toss this coin n times. Let X be the number of heads;
in this case X is said to be a Binomial(n, p) random variable. The set of possible values
is X = {0, 1, 2, . . . , n} and the associated pdf is

f(x) =

(

n

x

)

px(1− p)n−x x = 0, 1, 2, . . . , n.

That is, px(1 − p)n−x is the probability of x heads and n − x tails and the binomial
coefficient accounts for the number of different sequences in which these heads and tails
can occur. Equivalently, n tosses of the coin generate an iid sequence X1, X2, . . ., Xn of
Bernoulli(p) random variables (Xi = 1 corresponds to a head on the i

th toss) and

X = X1 +X2 + · · ·+Xn.
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Although it may be intuitive that the pdf in Example 6.1.15 is correct, when building
a discrete random variable model it is necessary to confirm that, in fact, f(x) > 0 for all
x ∈ X (which is obvious in this case) and that

∑

x
f(x) = 1 (which is not obvious). To

verify that the pdf sum is 1, we can use the binomial equation

(a+ b)n =

n
∑

x=0

(

n

x

)

axbn−x.

In the particular case where a = p and b = 1− p

1 = (1)n =
(

p+ (1− p)
)n
=

n
∑

x=0

(

n

x

)

px(1− p)n−x

which is equivalent to f(0) + f(1) + · · ·+ f(n) = 1 as desired. To determine the mean of
a binomial random variable:

µ = E[X] =
n
∑

x=0

xf(x)

=

n
∑

x=0

x

(

n

x

)

px(1− p)n−x

=

n
∑

x=0

x
n!

x! (n− x)!
px(1− p)n−x

=

n
∑

x=1

x
n!

x! (n− x)!
px(1− p)n−x

=

n
∑

x=1

n!

(x− 1)! (n− x)!
px(1− p)n−x

= np

n
∑

x=1

(n− 1)!

(x− 1)! (n− x)!
px−1(1− p)n−x.

To evaluate the last sum, let m = n− 1 and t = x− 1 so that m− t = n− x. Then from
the binomial equation

µ = np

m
∑

t=0

m!

t! (m− t)!
pt(1− p)m−t = np

(

p+ (1− p)
)m
= np(1)m = np.

That is, the mean of a Binomial(n, p) random variable is µ = np. In a similar way, it can
be shown that the variance is

σ2 = E[X2]− µ2 =

(

n
∑

x=0

x2f(x)

)

− µ2 = · · · = np(1− p)

so that the standard deviation of a Binomial(n, p) random variable is σ =
√

np(1− p).
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Pascal Random Variable

Example 6.1.16 As a second example of using Bernoulli(p) random variables to build
a more sophisticated stochastic model, suppose a coin has p as its probability of a head
and suppose we toss this coin until the nth tail occurs. If X is the number of heads (i.e.,
the number of tosses is X + n), then X is said to be a Pascal(n, p) random variable. The
set of possible values is X = {0, 1, 2, . . .} and the associated pdf is

f(x) =

(

n+ x− 1

x

)

px(1− p)n x = 0, 1, 2, . . .

That is, px(1 − p)n is the probability of x heads and n tails and the binomial coefficient
accounts for the number of different sequences in which these n + x heads and tails can
occur, given that the last coin toss must be a tail.

Although it may be intuitive that the Pascal(n, p) pdf equation is correct, it is nec-
essary to prove that the infinite pdf sum does, in fact, converge to 1. The proof of this
property is based on another (negative exponent) version of the binomial equation — for
any positive integer n

(1− p)−n = 1 +

(

n

1

)

p+

(

n+ 1

2

)

p2 + · · ·+

(

n+ x− 1

x

)

px + · · ·

provided |p| < 1. (See Example 6.1.3 for n = 1 and n = 2 versions of this equation.) By
using the negative-exponent binomial equation we see that*

∞
∑

x=0

(

n+ x− 1

x

)

px(1− p)n = (1− p)n
∞
∑

x=0

(

n+ x− 1

x

)

px = (1− p)n(1− p)−n = 1

which confirms that f(0) + f(1) + f(2) + · · · = 1. Moreover, in a similar way it can be
shown that the mean is

µ = E[X] =

∞
∑

x=0

xf(x) = · · · =
np

1− p

and the variance is

σ2 = E[X2]− µ2 =

(

∞
∑

x=0

x2f(x)

)

− µ2 = · · · =
np

(1− p)2

so that the standard deviation is σ =
√
np/(1− p). The details of this derivation are left

as an exercise.

* Because the negative-exponent binomial equation is applicable to the mathematical
analysis of its characteristics, a Pascal(n, p) random variable is also known as a negative

binomial random variable.
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Example 6.1.17 As a third example of using Bernoulli(p) random variables to build a
more sophisticated stochastic model, a Geometric(p) random variable is a special case of
a Pascal(n, p) random variable when n = 1. If instead n > 1 and if X1, X2, . . ., Xn is an
iid sequence of n Geometric(p) random variables, then the sum

X = X1 +X2 + · · ·+Xn

is a Pascal(n, p) random variable. For example, if n = 4 and if p is large then a typical
head/tail sequence might look like

hhhhhht
︸ ︷︷ ︸

X1 = 6

hhhhhhhhht
︸ ︷︷ ︸

X2 = 9

hhhht
︸ ︷︷ ︸

X3 = 4

hhhhhhht
︸ ︷︷ ︸

X4 = 7

where X1, X2, X3, X4 count the number of heads in each h . . . ht sequence and, in this case,

X = X1 +X2 +X3 +X4 = 26.

The number of heads in each h · · ·ht Bernoulli(p) sequence is an independent realization
of a Geometric(p) random variable. In this way we see that a Pascal(n, p) random variable
is the sum of n iid Geometric(p) random variables. From Example 6.1.9 we know that if
X is Geometric(p) then µ = p/(1− p) and σ =

√
p/(1− p).

Poisson Random Variable

A Poisson(µ) random variable is a limiting case of a Binomial(n, µ/n) random vari-
able. That is, let X be a Binomial(n, p) random variable with p = µ/n. Fix the values of
µ and x and consider what happens in the limit as n → ∞. The pdf of X is

f(x) =
n!

x!(n− x)!

(µ

n

)x(

1−
µ

n

)n−x

=
µx

x!

(

n!nx

(n− x)!(n− µ)x

)

(

1−
µ

n

)n

for x = 0, 1, . . . , n. It can be shown that

lim
n→∞

(

n!nx

(n− x)!(n− µ)x

)

= 1 and lim
n→∞

(

1−
µ

n

)n

= exp(−µ)

so that

lim
n→∞

f(x) =
µx exp(−µ)

x!
.

This limiting case is the motivation for defining a Poisson(µ) random variable. For large
values of n, Binomial(n, µ/n) and Poisson(µ) random variables are virtually identical,
particularly if µ is small. As an exercise you are asked to prove that the parameter µ in
the definition of the Poisson(µ) pdf

f(x) =
µx exp(−µ)

x!
x = 0, 1, 2, . . .

is in fact the mean and that the standard deviation is σ =
√
µ.
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6.1.3 EXERCISES

Exercise 6.1.1 (a) Simulate rolling a pair of dice 360 times with five different seeds and
generate five histograms of the resulting sum of the two up faces. Compare the histogram
mean, standard deviation and relative frequencies with the corresponding population mean,
standard deviation and pdf. (b) Repeat for 3600, 36 000, and 360 000 replications. (c) Com-
ment.

Exercise 6.1.2 Repeat the previous exercise except that the random variable of interest
is the absolute value of the difference between the two up faces.

Exercise 6.1.3 Derive the equations for µ and σ in Example 6.1.7. (See Exercise 6.1.5.)

Exercise 6.1.4 Prove that
∑

x
(x− µ)2f(x) =

(
∑

x
x2f(x)

)

− µ2.

Exercise 6.1.5 X is a discrete random variable with possible values x = 1, 2, . . . , n.
(a) If the pdf of X is f(x) = αx then what is α (as a function of n)? (b) Determine the
cdf, mean, and standard deviation of X. Hint:

n
∑

x=1

x =
n(n+ 1)

2

n
∑

x=1

x2 =
n(n+ 1)(2n+ 1)

6

n
∑

x=1

x3 =
n2(n+ 1)2

4
.

Exercise 6.1.6 Fill in the = · · · =’s in Example 6.1.9.

Exercise 6.1.7 As an alternative to Example 6.1.14, another way to play Pick-3 is for
the player to opt for a win in any order. That is, for example, if the player’s number is 123
then the player will win (the same amount) if the state draws any of 123, 132, 231, 213,
321, or 312. Because this is an easier win, the pay-off is suitably smaller, namely $80 for a
net yield of +$79. (a) What is the player’s expected yield (per game) if this variation of the
game is played? (Assume the player is bright enough to pick a 3-digit number with three
different digits.) (b) Construct a Monte Carlo simulation to supply “convincing numerical
evidence” of the correctness of your solution.

Exercise 6.1.8a An urn is initially filled with 1 amber ball and 1 black ball. Each time
a ball is drawn, at random, if it is a black ball then it and another black ball are put
back in the urn. Let X be the number of random draws required to find the amber ball.
(a) What is E[X]? (b) Construct a Monte Carlo simulation to estimate E[X] based on
1000, 10 000, 100 000, and 1 000 000 replications. (c) Comment.

Exercise 6.1.9a The location of an interval of fixed length r > 0 is selected at random
on the real number line. Let X be the number of integers within the interval. Find the
mean and standard deviation of X as a function of (r, p) where p = r − brc.

Exercise 6.1.10 If X is Poisson(µ) random variable, prove that the mean of X is the
parameter µ and that the standard deviation is

√
µ.
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In this section we will consider the development of correct, exact algorithms for the
generation of discrete random variates. We begin with an important definition, associated
theorem, and algorithm.

6.2.1 INVERSE DISTRIBUTION FUNCTION

Definition 6.2.1 Let X be a discrete random variable with cdf F (·). The inverse

distribution function (idf ) of X is the function F ∗: (0, 1)→ X defined for all u ∈ (0, 1) as

F ∗(u) = min
x

{x : u < F (x)}

where the minimum is over all possible values x ∈ X . That is, if F ∗(u) = x then x is the
smallest possible value of X for which F (x) is greater than u.*

Example 6.2.1 Figure 6.2.1 provides a graphical illustration of the idf for a discrete
random variable with X = {a, a+1, . . . , b} for two common ways of plotting the same cdf.
The value of x ∈ X corresponding to a given u, in this case u = 0.45, is found by extending
the dashed line horizontally until it strikes one of the cdf “spikes” in the left-hand cdf or
one of the “risers” on the right-hand cdf. The value of X ∈ X corresponding to that cdf
spike defines the value of x = F ∗(u).

a x b
0.0

u

1.0

F (·)

F ∗(u) = x

•

•

a x b
0.0

u

1.0

F (·)

F ∗(u) = x

•

•

Figure 6.2.1.

Generating

discrete

random

variables.

The following theorem is based on Definition 6.2.1 and the insight provided by the pre-
vious example. The significance of the theorem is that it provides an important algorithmic
characterization of the idf.

Theorem 6.2.1 Let X be an integer-valued random variable with X = {a, a+1, . . . , b}
where b may be ∞ and let F (·) be the cdf of X. For any u ∈ (0, 1), if u < F (a) then
F ∗(u) = a, else F ∗(u) = x where x ∈ X is the (unique) possible value of X for which
F (x− 1) ≤ u < F (x).

Although Theorem 6.2.1 (and others that follow in this section) are written for integer-

valued discrete random variables, they are easily extended to the more general case.

* The rather unusual definition of the inverse [and the avoidance of the notation F−1(u)]
is to account for the fact that F (x) is not 1–1. A specific value of the idf is also called
a fractile, quantile, or percentile of the distribution of X. For example, F ∗(0.95) is often
called the 95th percentile of the distribution of X.
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Algorithm 6.2.1 Let X be an integer-valued random variable with X = {a, a+1, . . . , b}
where b may be ∞ and let F (·) be the cdf of X. For any u ∈ (0, 1) the following linear
search algorithm defines the idf F ∗(u)

x = a;

while (F (x) <= u)

x++;

return x; /* x is F ∗(u) */

Because u < 1.0 and F (x) → 1.0 as x increases, the loop in Algorithm 6.2.1 is
guaranteed to terminate. Note, however, that the search is linear and begins at the smallest
possible value of X so that average case efficiency can be a real problem if µ = E[X] is
large relative to a. More specifically, in repeated application of this algorithm using values
of u generated by calls to Random, the average number of passes through the while loop
will be µ−a. To see this, let u be a Uniform(0, 1) random variate and let X be the discrete
random variable corresponding to the random variate x generated by Algorithm 6.2.1. If
the discrete random variable Y represents the number of while loop passes then Y = X−a.
Therefore, from Definition 6.1.6, E[Y ] = E[X − a] = E[X]− a = µ− a.

Algorithm 6.2.1 can be made more efficient by starting the search at a better (more
likely) point. The best (most likely) starting point is the mode.* We then have the
following more efficient version of Algorithm 6.2.1.

Algorithm 6.2.2 Let X be an integer-valued random variable with X = {a, a+1, . . . , b}
where b may be ∞ and let F (·) be the cdf of X. For any u ∈ (0, 1), the following linear
search algorithm defines the idf F ∗(u)

x = mode; /* initialize with the mode of X */

if (F (x) <= u)

while (F (x) <= u)

x++;

else if (F (a) <= u)

while (F (x− 1) > u)

x--;

else

x = a;

return x; /* x is F ∗(u) */

Although Algorithm 6.2.2 is still a linear search, generally it is more efficient than
Algorithm 6.2.1, perhaps significantly so, unless the mode of X is a. If |X | is very large,
even more efficiency may be needed. In this case, a binary search should be considered.
(See Exercise 6.2.9.)

* The mode of X is the value of x ∈ X for which f(x) is largest. For many discrete
random variables, but not all, bµc is an essentially equivalent choice.
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Idf Examples

In some important cases the idf F ∗(u) can be determined explicitly by using Theo-
rem 6.2.1 to solve the equation F (x) = u for x. The following three examples are illustra-
tions.

Example 6.2.2 If X is Bernoulli(p) and F (x) = u then x = 0 if and only if 0 < u < 1−p

and x = 1 otherwise. Therefore

F ∗(u) =

{

0 0 < u < 1− p

1 1− p ≤ u < 1.

Example 6.2.3 If X is Equilikely(a, b) then

F (x) =
x− a+ 1

b− a+ 1
x = a, a+ 1, . . . , b.

Therefore, provided u ≥ F (a),

F (x− 1) ≤ u < F (x) ⇐⇒
(x− 1)− a+ 1

b− a+ 1
≤ u <

x− a+ 1

b− a+ 1

⇐⇒ x− a ≤ (b− a+ 1)u < x− a+ 1

⇐⇒ x ≤ a+ (b− a+ 1)u < x+ 1.

Thus, for F (a) ≤ u < 1 the idf is

F ∗(u) = a+ b(b− a+ 1)uc.

Moreover, if 0 < u < F (a) = 1/(b − a + 1) then 0 < (b − a + 1)u < 1 so that F ∗(u) = a,
as required. Therefore, the idf equation is valid for all u ∈ (0, 1).

Example 6.2.4 If X is Geometric(p) then

F (x) = 1− px+1 x = 0, 1, 2, . . .

Therefore, provided u ≥ F (0),

F (x− 1) ≤ u < F (x) ⇐⇒ 1− px ≤ u < 1− px+1

⇐⇒ −px ≤ u− 1 < −px+1

⇐⇒ px ≥ 1− u > px+1

⇐⇒ x ln(p) ≥ ln(1− u) > (x+ 1) ln(p)

⇐⇒ x ≤
ln(1− u)

ln(p)
< x+ 1.

Thus, for F (0) ≤ u < 1 the idf is

F ∗(u) =

⌊

ln(1− u)

ln(p)

⌋

Moreover, if 0 < u < F (0) = 1 − p then p < 1 − u < 1 so that F ∗(u) = 0, as required.
Therefore, the idf equation is valid for all u ∈ (0, 1).
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6.2.2 RANDOM VARIATE GENERATION BY INVERSION

The following theorem is of fundamental importance in random variate generation
applications. Because of the importance of this theorem, a detailed proof is presented.
The proof makes use of a definition and two results, listed here for reference.

• Two random variables X1 and X2 with corresponding pdf’s f1(·) and f2(·) defined on
X1 and X2 respectively, are identically distributed if and only if they have a common
set of possible values X1 = X2 and for all x in this common set f1(x) = f2(x).

• The idf F ∗: (0, 1)→ X maps the interval (0, 1) onto X .

• If U is Uniform(0, 1) and 0 ≤ α < β ≤ 1 then Pr(α ≤ U < β) = β − α.*

Theorem 6.2.2 (Probability integral transformation) If X is a discrete random variable
with idf F ∗(·) and the continuous random variable U is Uniform(0, 1) and Z is the discrete
random variable defined by Z = F ∗(U), then Z and X are identically distributed.

Proof Let X , Z be the set of possible values forX, Z respectively. If x ∈ X then, because
F ∗ maps (0, 1) onto X , there exists u ∈ (0, 1) such that F ∗(u) = x. From the definition
of Z it follows that x ∈ Z and so X ⊆ Z. Similarly, if z ∈ Z then from the definition of
Z there exists u ∈ (0, 1) such that F ∗(u) = z. Because F ∗ : (0, 1) → X , it follows that
z ∈ X and so Z ⊆ X . This proves that X = Z. Now, let X = Z = {a, a + 1, . . . , b} be
the common set of possible values. To prove that X and Z are identically distributed we
must show that Pr(Z = z) = f(z) for any z in this set of possible values, where f(·) is the
pdf of X. From the definition of Z and F ∗(·) and Theorem 6.2.1, if z = a then

Pr(Z = a) = Pr
(

U < F (a)
)

= F (a) = f(a).

Moreover, if z ∈ Z with z 6= a then

Pr(Z = z) = Pr
(

F (z − 1) ≤ U < F (z)
)

= F (z)− F (z − 1) = f(z)

which proves that Z and X have the same pdf and so are identically distributed.

Theorem 6.2.2 is the basis for the following algorithm by which any discrete random
variable can be generated with just one call to Random. In Section 7.2 we will see that
there is an analogous theorem and algorithm for continuous random variables. This elegant
algorithm is known as the inversion method for random variate generation.

Algorithm 6.2.3 If X is a discrete random variable with idf F ∗(·) then a corresponding
discrete random variate x can be generated as follows

u = Random();

return F ∗(u);

* See Example 7.1.2 in the next chapter for more discussion of this result.
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Inversion Examples

Random variate generation by inversion has a clear intuitive appeal and always works.
It is the method of choice for discrete random variate generation, provided the idf can be
manipulated into a form that is mathematically tractable for algorithmic implementation.
We begin with an example for an arbitrary discrete distribution.

Example 6.2.5 Consider the discrete random variable X with pdf:

f(x) =







0.1 x = 2

0.3 x = 3

0.6 x = 6.

The cdf for X is plotted using two different formats in Figure 6.2.2.
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For a random number u (which strikes the vertical axes in Figure 6.2.2, for example, at
u = 0.803), F ∗(u) assumes a value of 2, 3, or 6 depending on the intersection point of the
associated horizontal line with the cdf. The reader is encouraged to reflect on the geometry
in Figure 6.2.2 to appreciate the fact that the algorithm

u = Random();

if (u < 0.1)

return 2;

else if (u < 0.4)

return 3;

else

return 6;

returns 2 with probability 0.1, returns 3 with probability 0.3, and returns 6 with probability
0.6, which corresponds to the pdf of X. The inversion method for generating discrete
random variates always carries this intuitive geometric interpretation. Problems arise,
however, when |X | is large or countably infinite. The average execution time for this
particular example can be minimized by checking the ranges for u associated with x = 6
(the mode) first, then x = 3, then x = 2. This way, 60% of the invocations of this algorithm
require the evaluation of just one condition.
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Random variate generation algorithms for popular discrete probability models that
include parameters follow.

Example 6.2.6 This algorithm uses inversion and the idf expression from Example 6.2.2
to generate a Bernoulli(p) random variate (see Example 6.1.13)

u = Random();

if (u < 1 - p)

return 0;

else

return 1;

Example 6.2.7 This algorithm uses inversion and the idf expression from Example 6.2.3
to generate an Equilikely(a, b) random variate

u = Random();

return a + (long) (u * (b - a + 1));

This is the algorithm used to define the function Equilikely(a, b) (see Definition 2.3.4).

Example 6.2.8 This algorithm uses inversion and the idf expression from Example 6.2.4
to generate a Geometric(p) random variate

u = Random();

return (long) (log(1.0 - u) / log(p));

This is the algorithm used to define the function Geometric(p) (see Definition 3.1.2).

Examples 6.2.6, 6.2.7, and 6.2.8 illustrate random variate generation by inversion for
three of the six parametric discrete random variable models presented in the previous
section. For the other three models, inversion is not so easily applied.

Example 6.2.9 If X is a Binomial(n, p) random variable the cdf is

F (x) =

x
∑

t=0

(

n

t

)

pt(1− p)n−t x = 0, 1, 2, . . . , n.

It can be shown that this sum is the complement of an incomplete beta function (see
Appendix D)

F (x) =

{

1− I(x+ 1, n− x, p) x = 0, 1, . . . , n− 1

1 x = n.

Except for special cases, an incomplete beta function cannot be inverted algebraically to
form a “closed form” expression for the idf. Therefore, inversion is not easily applied to
the generation of Binomial(n, p) random variates.
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Algorithm Design Criteria

As suggested by Example 6.2.9, for many discrete random variables the design of a
correct, exact, and efficient algorithm to generate corresponding random variates is sig-
nificantly more complex than just a straight-forward implementation of Algorithm 6.2.3.
There are some important, generally accepted algorithm design criteria listed below. With
minor modifications, these criteria apply equally well to continuous random variate gener-
ation algorithms also.

• Portability — a random variate generation algorithm should be implementable in a
high-level language in such a way that it ports easily to any common contemporary
computing environment. Hardware-dependent implementations should be rejected,
even if the cost to do so is an increase in execution time.

• Exactness — assuming a perfect random number generator, the histogram that results
from generating random variates from an exact algorithm converges to the correspond-
ing random variable pdf as the number of random variates generated goes to infinity.
Example 6.2.10, presented later, is an illustration of a random variate generator that
is approximate, not exact.

• Robustness — the performance of a random variate generation algorithm should be
insensitive to small changes in the random variable model parameters (e.g., n and p for
a Binomial(n, p) model) and work properly for all reasonable values of the parameters.

• Efficiency — although this criteria is commonly over-rated, a random variate gen-
eration algorithm should be both time and memory efficient. Execution time often
consists of two parts. Set-up time occurs once (for example, to compute and store
a cdf array); marginal execution time occurs each time a random variate is gener-
ated. Ideally both times are small. If not, an implementation-dependent algorithm
judgment must be made about which is more important.

• Clarity — if all other things are equal, a random variate generation algorithm that is
easy to understand and implement is always preferred. For some people this is the most
important criteria; however, for random variate generation specialists, portability,
exactness, robustness, and efficiency tend to be most important.

• Synchronization — a random variate generation algorithm is synchronized if exactly
one call to Random is required for each random variate generated. This property and
monotonicity are often needed to implement certain variance reduction techniques like,
for example, the common random numbers technique, illustrated in Example 3.1.7.

• Monotonicity — a random variate generation algorithm is monotone if it is synchro-
nized and, like Algorithm 6.2.3, the transformation from u to x is monotone increasing
(or monotone decreasing).

Although some of these criteria will be automatically satisfied if inversion is used, others
(e.g., efficiency) may not. Generally, however, like the algorithms in Examples 6.2.6, 6.2.7,
and 6.2.8, the best random variate generation algorithm is based on Algorithm 6.2.3.
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Example 6.2.10 In practice, an algorithm that uses inversion but is only approximate,
may be satisfactory, provided the approximation is sufficiently good. As an illustration,
suppose we want to generate Binomial(10, 0.4) random variates. To the 0.ddd precision
indicated, the corresponding pdf is

x : 0 1 2 3 4 5 6 7 8 9 10
f(x) : 0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.042 0.011 0.002 0.000

Consistent with these approximate pdf values, random variates can be generated by filling
a 1000-element integer-valued array a[ · ] with 6 zeros, 40 ones, 121 twos, etc. Then the
algorithm

j = Equilikely(0, 999);

return a[j];

can be used each time a Binomial(10, 0.4) random variate is needed. The non-exactness
of this algorithm is evident. A ten, for example, will never be generated, even though
f(10) =

(

10

10

)

(0.4)10(0.6)0 = 1/9765625. It is “approximately exact,” however, with an
accuracy that may be acceptable in some applications. Moreover, the algorithm is portable,
robust, clear, synchronized, and monotone. Marginal execution time efficiency is good. Set-
up time efficiency is a potential problem, however, as is memory efficiency. For example,
if 0.ddddd precision is desired, then it would be necessary to use a 100 000-element array.

Example 6.2.11 The algorithm in Example 6.2.10 for generating Binomial(10, 0.4)
random variates is inferior to an exact algorithm based on filling an 11-element floating-
point array with cdf values and then using Algorithm 6.2.2 with x = 4 (the mode) to
initialize the search.

In general, inversion can be used to generate Binomial(n, p) random variates by com-
puting a floating-point array of n + 1 cdf values and then using Algorithm 6.2.2 with
x = bnpc to initialize the search. The capability provided by the library rvms (see Ap-
pendix D) can be used in this case to compute the cdf array by calling the cdf function
cdfBinomial(n, p, x) for x = 0, 1, . . . , n. Because this approach is inversion, in many re-
spects it is ideal. The only drawback to this approach is some inefficiency in the sense of
set-up time (to compute the cdf array) and memory (to store the cdf array), particularly
if n is large.*

Example 6.2.12 The need to store a cdf array can be eliminated completely, at the
expense of increased marginal execution time. This can be done by using Algorithm 6.2.2
with the cdf capability provided by the library rvms to compute cdf values only as needed.
Indeed, in the library rvms this is how the idf function idfBinomial(n, p, u) is evaluated.
Given that rvms provides this capability, Binomial(n, p) random variates can be generated
by inversion as

* As discussed in the next section, if n is large, the size of the cdf array can be truncated

significantly and thereby partially compensate for the memory and set-up time inefficiency.
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u = Random();

return idfBinomial(n, p, u); /* use the library rvms */

With appropriate modifications, the approach in Examples 6.2.11 and 6.2.12 can be
used to generate Poisson(µ) and Pascal(n, p) random variates. Therefore, inversion can
be used to generate random variates for all six of the parametric random variable models
presented in the previous section. For Equilikely(a, b), Bernoulli(p), and Geometric(p)
random variates inversion is essentially ideal. For Binomial(n, p), Pascal(n, p), and Pois-

son(µ) random variates, however, time and memory efficiency can be a problem if inversion
is used. In part, this justifies the development of alternative generation algorithms for Bi-

nomial(n, p), Pascal(n, p), and Poisson(µ) random variates.

6.2.3 ALTERNATIVE RANDOM VARIATE GENERATION ALGORITHMS

Binomial Random Variates

As an alternative to inversion, a Binomial(n, p) random variate can be generated by
summing an iid sequence of Bernoulli(p) random variates. (See Example 6.1.15.)*

Example 6.2.13 This algorithm uses a Bernoulli(p) random variate generator to gen-
erate a Binomial(n, p) random variate

x = 0;

for (i = 0; i < n; i++)

x += Bernoulli(p);

return x;

This algorithm is portable, exact, robust, and clear. It is not synchronized or monotone
and the O(n) marginal execution time complexity can be a problem if n is large.

Poisson Random Variates

A Poisson(µ) random variable is the limiting case of a Binomial(n, µ/n) random
variable as n → ∞. Therefore, if n is large then one of these random variates can be
generated as an approximation to the other. Unfortunately, because the algorithm in
Example 6.2.13 is O(n), if n is large we must look for other ways to generate a Poisson(µ)
random variate. The Poisson(µ) cdf F (·) is equal to the complement of an incomplete

gamma function (see Appendix D)

F (x) = 1− P (x+ 1, µ) x = 0, 1, 2 . . .

Except for special cases, an incomplete gamma function cannot be inverted to form an
idf. Therefore, inversion can be used to generate a Poisson(µ) random variate, but the
cdf is not simple enough to avoid the need to use a numerical approach like those in
Examples 6.2.11 or 6.2.12.

* Random variate generation by summing an iid sequence of more elementary random
variates is known as a convolution method.
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There are standard algorithms for generating a Poisson(µ) random variate that do
not rely on either inversion or a “large n” version of the algorithm in Example 6.2.13. The
following is an example.

Example 6.2.14 This algorithm generates a Poisson(µ) random variate

a = 0.0;

x = 0;

while (a < µ) {

a += Exponential(1.0);

x++;

}

return x - 1;

This algorithm is portable, exact, and robust. It is neither synchronized nor monotone,
and marginal execution time efficiency can be a problem if µ is large because the expected
number of passes through the while loop is µ + 1. Although the algorithm is obscure at
this point, clarity will be provided in Section 7.3.

Pascal Random Variates

Like a Binomial(n, p) cdf, a Pascal(n, p) cdf contains an incomplete beta function (see
Appendix D). Specifically, a Pascal(n, p) cdf is

F (x) = 1− I(x+ 1, n, p) x = 0, 1, 2, . . .

Except for special cases, an incomplete beta function cannot be inverted algebraically to
form a closed-form idf. Therefore, inversion can be used to generate a Pascal(n, p) random
variate, but the cdf is not simple enough to avoid the need to use a numerical approach
like those in Examples 6.2.11 or 6.2.12.

As an alternative to inversion, recall from Section 6.1 that the random variable X is
Pascal(n, p) if and only if

X = X1 +X2 + · · ·+Xn

where X1, X2, . . ., Xn is an iid Geometric(p) sequence. Therefore, a Pascal(n, p) random
variate can be generated by summing an iid sequence of n Geometric(p) random variates.

Example 6.2.15 This algorithm uses a Geometric(p) random variate generator to gen-
erate a Pascal(n, p) random variate.

x = 0;

for (i = 0; i < n; i++)

x += Geometric(p);

return x;

This algorithm is portable, exact, robust, and clear. It is neither synchronized nor mono-
tone and the O(n) marginal execution time complexity can be a problem if n is large.
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Library rvgs

See Appendix E for the library rvgs (Random Variate GeneratorS). This library
consists of six functions for generating discrete random variates and seven functions for
generating continuous random variates (see Chapter 7). The six discrete random variate
generators in the library are:

• long Bernoulli(double p) — returns 1 with probability p or 0 otherwise;

• long Binomial(long n, double p) — returns a Binomial(n, p) random variate;

• long Equilikely(long a, long b) — returns an Equilikely(a, b) random variate;

• long Geometric(double p) — returns a Geometric(p) random variate;

• long Pascal(long n, double p) — returns a Pascal(n, p) random variate;

• long Poisson(double µ) — returns a Poisson(µ) random variate.

These random variate generators feature minimal set-up times, in some cases at the expense
of potentially large marginal execution times.

Library rvms

The Bernoulli(p), Equilikely(a, b), and Geometric(p) generators in rvgs use inversion
and in that sense are ideal. The other three generators do not use inversion. If that is a
problem, then as an alternative to the library rvgs, the idf functions in the library rvms

(Random Variable ModelS, Appendix D) can be used to generate Binomial(n, p), Pas-

cal(n, p), and Poisson(µ) random variates by inversion, as illustrated in Example 6.2.12.

Because the idf functions in the library rvms were designed for accuracy at the pos-
sible expense of marginal execution time inefficiency, use of this approach is generally not
recommended when many observations need to be generated. Instead, in that case set up
an array of cdf values and use inversion (Algorithm 6.2.2), as illustrated in Example 6.2.11.
This approach is considered in more detail in the next section.

6.2.4 EXERCISES

Exercise 6.2.1 Prove that F ∗(·) is a monotone increasing function, i.e., prove that if
0 < u1 ≤ u2 < 1 then F ∗(u1) ≤ F ∗(u2).

Exercise 6.2.2 If inversion is used to generate a Geometric(p) random variate x, use
your knowledge of the largest and smallest possible values of Random to determine (as a
function of p) the largest and smallest possible value of x that can be generated. (See also
Exercise 3.1.3.)

Exercise 6.2.3 Find the pdf associated with the random variate generation algorithm

u = Random();

return d3.0 + 2.0 ∗ u2e;
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Exercise 6.2.4 (a) Generate a Poisson(9) random variate sample of size 1 000 000 using
the appropriate generator function in the library rvgs and form a histogram of the results.
(b) Compare the resulting relative frequencies with the corresponding Poisson(9) pdf using
the appropriate pdf function in the library rvms. (c) Comment on the value of this process
as a test of correctness for the two functions used.

Exercise 6.2.5 (a) If X is a discrete random variable with possible values x = 1, 2, . . . , n
and pdf f(x) = αx, find an equation for the idf F ∗(u) as a function of n. (See Exer-
cise 6.1.5.) (b) Construct an inversion function that will generate a value of X with one
call to Random. (c) How would you convince yourself that this random variate generator
function is correct?

Exercise 6.2.6 X is a discrete random variable with cdf F (·) and idf F ∗(·). Prove
or disprove the following. (a) If u ∈ (0, 1) then F (F ∗(u)) = u. (b) If x ∈ X then
F ∗(F (x)) = x.

Exercise 6.2.7 (a) Implement Algorithm 6.2.1 for a Poisson(µ) random variable and
use Monte Carlo simulation to verify that the expected number of passes through the while
loop is µ. Use µ = 1, 5, 10, 15, 20, 25. (b) Repeat with Algorithm 6.2.2. (c) Comment. (Use
the function cdfPoisson in the library rvms to generate the Poisson(µ) cdf values.)

Exercise 6.2.8 Design and then implement a consistent “invalid input” error trapping
mechanism for the functions in the library rvgs. Write a defense of your design.

Exercise 6.2.9a Suppose X is a discrete random variable with cdf F (·) and possible
values X = {a, a + 1, . . . , b} with both a and b finite. (a) Construct a binary search
algorithm that will determine F ∗(u) for any u ∈ (0, 1). (b) Present convincing numerical
evidence that your algorithm is correct when used to generate Binomial(100, 0.2) random
variates and compare its efficiency with that of algorithms 6.2.1 and 6.2.2. (c) Comment.

Exercise 6.2.10 (a) As an extension of Exercise 6.1.8, what is the idf of X? (b) Provide
convincing numerical evidence that this idf is correct.

Exercise 6.2.11a Two integers X1, X2 are drawn at random, without replacement, from
the set {1, 2, . . . , n} with n ≥ 2. Let X = |X1 − X2|. (a) What are the possible values
of X? (b) What are the pdf, cdf, and idf of X? (c) Construct an inversion function that
will generate a value of X with just one call to Random. (d) What did you do to convince
yourself that this random variate generator function is correct?

Exercise 6.2.12a Same as the previous exercise, except that the draw is with replace-
ment.
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The purpose of this section is to demonstrate several discrete random variable ap-
plications using the capabilities provided by the discrete random variate generators in
the library rvgs and the pdf, cdf, and idf functions in the library rvms. We begin by
considering alternatives to the inventory demand models used in programs sis2 and sis3.

6.3.1 ALTERNATIVE INVENTORY DEMAND MODELS

Example 6.3.1 The inventory demand model in program sis2 is that the demand per
time interval is generated as an Equilikely(10, 50) random variate d. In this case, the mean
is 30, the standard deviation is

√
140 ∼= 11.8, and the demand pdf is flat, as illustrated in

Figure 6.3.1.
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As discussed in Example 3.1.5, this is not a very realistic model.* Therefore, we consider
alternative models, one of which is that there are, say, 100 instances per time interval
when a demand for 1 unit may occur. For each of these instances the probability that the
demand will occur is, say, 0.3 independent of what happens at the other demand instances.
The inventory demand per time interval is then the sum of 100 independent Bernoulli(0.3)
random variates or, equivalently, it is a Binomial(100, 0.3) random variate. In this case
the function GetDemand in the program sis2 should be

long GetDemand(void)

{

return (Binomial(100, 0.3));

}

The resulting random demand per time interval will have a mean of 30, a standard deviation
of

√
21 ∼= 4.6, and a pdf approximately symmetric about the mean, as illustrated in

Figure 6.3.2.
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* Discussion of matching models to data collected from the system of interest is delayed
until Chapter 9.
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Example 6.3.2 If we believe that the Binomial(100, 0.3) model in the previous example
may be close to reality, then a Poisson(30) model should also be considered. For this
model, the random variate returned by the function GetDemand in program sis2 would be

return (Poisson(30.0));

The resulting random variate demand per time interval will have a mean of 30, a standard
deviation of

√
30 ∼= 5.5, and the pdf illustrated in Figure 6.3.3. Although similar to the

Binomial(100, 0.3) pdf in Example 6.3.1, the Poisson(30) pdf has slightly “heavier” tails,
consistent with the larger standard deviation.
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For reasons discussed in Section 7.3, a traditional model for inventory systems is what
was used in Example 6.3.2 — the discrete demand is a Poisson(λ) random variable with
the parameter λmatched to the expected amount of demand per time interval (the demand
rate). Indeed, this is the inventory demand model used in program sis3 with λ = 30.

Example 6.3.3 Yet another potential model for the inventory demand is that there are,
say, 50 instances per time interval when a Geometric(p) inventory demand will occur with
p equal to, say, 0.375 and the amount of demand that actually occurs at each of these
instances is independent of the amount of demand that occurs at the other instances. The
demand per time interval is then the sum of 50 independent Geometric(0.375) random
variates or, equivalently it is a Pascal(50, 0.375) random variate. The random variate
returned by the function GetDemand in program sis2 would then be

return (Pascal(50, 0.375));

producing a random variate demand per time interval with a mean of 30, a standard
deviation of

√
48 ∼= 6.9, and the pdf illustrated in Figure 6.3.4.
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Consistent with the increase in the standard deviation from 5.5 to 6.9, this pdf has slightly
heavier tails than the Poisson(30) pdf.
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Example 6.3.4 As an extension of the previous example, one might argue that the
inventory demand model should also allow for the number of demand instances per time
interval to be an independent discrete random variable as well, say Poisson(50). The
function GetDemand in program sis2 would then be*

long GetDemand(void)

{

long instances = Poisson(50.0); /* must truncate to avoid 0 */

return (Pascal(instances, 0.375));

}

With this extension, the mean of the resulting random variate demand per time interval
will remain 30. As illustrated in Figure 6.3.5, the pdf will become further dispersed about
the mean, consistent with an increase of the standard deviation to

√
66 ∼= 8.1.
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To determine the pdf of the “compound” (or “stochastic parameters”) random vari-
able corresponding to the random variates generated by the function GetDemand in Exam-
ple 6.3.4, let the discrete random variablesD and I denote the demand amount and number
of demand instances per time interval, respectively. From the law of total probability it
follows that

f(d) = Pr(D = d) =

∞
∑

i=0

Pr(I = i) Pr(D = d | I = i) d = 0, 1, 2, . . .

For any value of d the probability f(d) can be evaluated by using the pdf capability in the
library rvms. To do so, however, the infinite sum over possible demand instances must be
truncated to a finite range, say 0 < a ≤ i ≤ b. The details of how to determine a and b are
discussed later in this section. Provided a and b are selected appropriately, the following
algorithm can then be used to compute f(d)

double sum = 0.0;

for (i = a; i <= b; i++) /* use the library rvms */

sum += pdfPoisson(50.0, i) * pdfPascal(i, 0.375, d);

return sum; /* sum is f(d) */

These compound random variables are of interest in a branch of statistics known as
Bayesian statistics.

* There is a potential problem with this function — see Exercise 6.3.7.
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Any of the inventory demand models in the previous examples can be used in program
sis2 as a replacement for the Equilikely(a, b) model. In most applications this will result in
a model that more accurately reflects the system. Moreover, with some minor modification,
a more accurate inventory demand model can be used in program sis3. The result is
program sis4.

Program sis4

Program sis4 is based on the next-event simulation program sis3 but with a more
realistic inventory demand model that allows for a random amount of demand at each
demand instance. That is, like program sis3 demand instances are assumed to occur at
random throughout the period of operation with an average rate of λ instances per time
interval so that the inter-demand time is an Exponential(1/λ) random variate. Unlike the
model on which program sis3 is based, however, these demand instances correspond to
times where a demand may occur. Whether or not a demand actually occurs at these
demand instances is random with probability p. Moreover, to allow for the possibility of
more than one unit of inventory demand at a demand instance, the demand amount is
assumed to be a Geometric(p) random variate. Because the expected value of a Geomet-

ric(p) random variable is p/(1−p) and the expected number of demand instances per time
interval is λ, the expected demand per time interval is λ p/(1− p).

Example 6.3.5 In terms of the automobile dealership example considered previously,
the inventory demand model on which program sis4 is based corresponds to an average
of λ customers per week that visit the dealership with the potential to buy one or more
automobiles. Each customer will, independently, not buy an automobile with probability
1 − p, or they will buy one automobile with probability (1 − p)p, or they will buy two
automobiles with probability (1 − p)p2, or three with probability (1 − p)p3, etc. The
parameter values used in program sis4 are λ = 120.0 and p = 0.2, which correspond to
an expected value of 30.0 automobiles purchased per week. For future reference, note that

30.0 =
λ p

1− p
= λ

∞
∑

x=0

x(1− p)px = λ (1− p)p
︸ ︷︷ ︸

19.200

+2λ (1− p)p2

︸ ︷︷ ︸

7.680

+3λ (1− p)p3

︸ ︷︷ ︸

2.304

+ · · ·

Therefore, on average, of the 120 customers that visit per week

• λ (1− p) = 96.0 do not buy anything;

• λ (1− p)p = 19.200 buy one automobile;

• λ (1− p)p2 = 3.840 buy two automobiles;

• λ (1− p)p3 = 0.768 buy three automobiles;

• etc.

In the remainder of this section we will deal with the issue of how to truncate a discrete
random variable. By using truncation the demand model can be made more realistic by
limiting the number of automobiles a customer buys to 0, 1 or 2 (see Exercise 6.3.2).
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6.3.2 TRUNCATION

Let X be a discrete random variable with possible values X = {x | x = 0, 1, 2, . . .}
and cdf F (x) = Pr(X ≤ x). A modeler might be interested in formulating a pdf that
effectively restricts the possible values to a finite range of integers a ≤ x ≤ b with a ≥ 0
and b < ∞.* If a > 0 then the probability of X being strictly less than a is

α = Pr(X < a) = Pr(X ≤ a− 1) = F (a− 1).

Similarly, the probability of X being strictly greater than b is

β = Pr(X > b) = 1− Pr(X ≤ b) = 1− F (b).

In general, then

Pr(a ≤ X ≤ b) = Pr(X ≤ b)− Pr(X < a) = F (b)− F (a− 1)

so that a value of X outside the range a ≤ X ≤ b is essentially impossible if and only if
F (b) ∼= 1.0 and F (a− 1) ∼= 0.0. There are two cases to consider.

• If a and b are specified then the cdf of X can be used to determine the left-tail and
right-tail probabilities

α = Pr(X < a) = F (a− 1) and β = Pr(X > b) = 1− F (b)

respectively. The cdf transformation from possible values to probabilities is exact.

• If instead the (positive) left-tail and right-tail probabilities α and β are specified, then
the idf of X can be used to determine the possible values

a = F ∗(α) and b = F ∗(1− β)

respectively. Because X is a discrete random variable, this idf transformation from
probabilities to possible values is not exact. Instead a and b only provide bounds in
the sense that Pr(X < a) ≤ α and Pr(X > b) < β.

Example 6.3.6 For the Poisson(50) random variable I in Example 6.3.4 it was necessary
to determine a, b so that Pr(a ≤ I ≤ b) ∼= 1.0 with negligible error. By experimentation it
was determined that, in this case, “negligible error” could be interpreted as α = β = 10−6.
The idf capability in the random variate models library rvms was then used to compute

a = idfPoisson(50.0, α); /* α = 10−6 */

b = idfPoisson(50.0, 1.0 - β); /* β = 10−6 */

to produce the results a = 20, b = 87. Consistent with the bounds produced by the
(α, β) to (a, b) conversion, Pr(I < 20) = cdfPoisson(50.0, 19) ∼= 0.48 × 10−6 < α and
Pr(I > 87) = 1.0− cdfPoisson(50.0, 87) ∼= 0.75× 10−6 < β.

* In the case of the automobile dealership example, a = 0 and b = 45 implies that there
is no left-hand truncation and no week contains more than 45 customer demands.
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To facilitate the evaluation of the compound pdf values in Example 6.3.4, the possible
values of a Poisson(50) random variable were truncated to the integers 20 through 87
inclusive. As demonstrated in Example 6.3.6, this truncation is so slight as to be of no
practical significance. That is, because a Poisson(50) pdf is effectively zero for all integers
less than 20 or greater than 87, the truncated random variable and the un-truncated
random variable are essentially identically distributed. In some simulation applications
truncation, is more significant. There are two reasons for this.

• Efficiency — when discrete random variates are generated using inversion and the
idf is not available as a simple algebraic expression, then a cdf search technique like
Algorithm 6.2.2 must be used. To facilitate this search, cdf values are usually stored in
an array. Because the range of possible values defines the size of the array, traditional
computer science space/time considerations dictate that the range of possible values
should be as small as possible (assuming that the model remains realistic).

• Realism— some discrete random variates can take on arbitrarily large values (at least
in theory). If you have created a discrete random variable model with a mean of 30
and a standard deviation of 10 do you really want your random variate generator to
(surprise!) return a value of 100?

When it is significant, truncation must be done correctly because the result is a new

random variable. The four examples that follow are illustrations.

Incorrect Truncation

Example 6.3.7 As in Example 6.3.2, suppose we want to use a Poisson(30) demand
model in program sis2 but, to avoid extreme values, we want to truncate the demand to
the range 20 ≤ d ≤ 40. In this case, we might be tempted to generate the demand with

d = Poisson(30.0);

if (d < 20)

d = 20;

if (d > 40)

d = 40;

return d;

Because the pdf values below 20 and above 40 “fold” back to 20 and 40 respectively, as
the resulting pdf spikes at d = 20 and d = 40 shown in Figure 6.3.6 indicate this is not a
correct truncation for most applications.
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Truncation by cdf Modification

Example 6.3.8 As in Example 6.3.7, we want to generate Poisson(30) demands trun-
cated to the range 20 ≤ d ≤ 40. This time, however, we want to do it correctly. Before
truncation the Poisson(30) pdf is

f(d) =
30d exp(−30)

d!
d = 0, 1, 2, . . .

with

Pr(20 ≤ D ≤ 40) = F (40)− F (19) =
40
∑

d=20

f(d) ∼= 0.945817.

The truncation correction is to compute a new truncated random variable Dt with pdf
ft(d). This is done by increasing the corresponding value of f(d) via division by the factor
F (40)− F (19) as

ft(d) =
f(d)

F (40)− F (19)
d = 20, 21, . . . , 40.

The corresponding truncated cdf is

Ft(d) =
d
∑

t=20

ft(t) =
F (d)− F (19)

F (40)− F (19)
d = 20, 21, . . . , 40.

A random variate correctly truncated to the range 20 ≤ d ≤ 40 can now be generated by
inversion using the truncated cdf Ft(·) and Algorithm 6.2.2 as follows

u = Random();

d = 30;

if (Ft(d) <= u)

while (Ft(d) <= u)

d++;

else if (Ft(20) <= u)

while (Ft(d− 1) > u)

d--;

else

d = 20;

return d;

Compared to the mean and standard deviation of D, which are µ = 30.0 and σ =
√
30 ∼=

5.477, the mean and standard deviation of Dt are

µt =
40
∑

d=20

d ft(d) ∼= 29.841 and σt =

√

√

√

√

40
∑

d=20

(d− µt)2ft(d) ∼= 4.720.
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The pdf of the correctly truncated Poisson(30) random variable in Example 6.3.8 is
illustrated in Figure 6.3.7. For reference, the incorrectly truncated pdf from Example 6.3.7
and the un-truncated pdf from Example 6.3.2 are also shown.
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In general, if it is desired to truncate the integer-valued discrete random variable X
to the set of possible values Xt = {a, a + 1, . . . , b} ⊂ X thereby forming the new discrete
random variable Xt, then the pdf and cdf of Xt are defined as

ft(x) =
f(x)

F (b)− F (a− 1)
x ∈ Xt

and

Ft(x) =
F (x)− F (a− 1)

F (b)− F (a− 1)
x ∈ Xt

where f(·) and F (·) are the pdf and cdf of X. Random values of Xt can then be generated
using inversion and Algorithm 6.2.2 with Ft(·), as in Example 6.3.8. [The equations for
ft(x) and Ft(x) presume that a− 1 is a possible value of X.]

There may be rare occasions where “incorrect truncation” is appropriate in a discrete-
event simulation model. Decisions concerning the style of truncation are driven by the fit
between the model and the real-world system.
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As an alternative to truncation by cdf modification, we can use truncation by con-

strained inversion, as illustrated next. Provided the idf of X can be easily applied, this is
the truncation approach of choice.

Truncation by Constrained Inversion

If F ∗(·) is the idf of X then the following algorithm can be used to generate the
random variate Xt correctly truncated to the range a ≤ x ≤ b

α = F (a− 1); /* assumes that a - 1 is a possible value of X */

β = 1.0 - F (b);

u = Uniform(α, 1.0 - β);

x = F ∗(u);

return x;

The key here is that u is constrained to a subrange (α, 1− β) ⊂ (0, 1) in such a way that
correct truncation is automatically enforced prior to the idf inversion. This is another
illustration of the elegance of random variate generation by inversion.

Example 6.3.9 The cdf and idf capabilities in the library rvms can be used to generate
a Poisson(30) random demand, correctly truncated to the range 20 ≤ d ≤ 40, as illustrated

α = cdfPoisson(30.0, 19); /* set-up */

β = 1.0 - cdfPoisson(30.0, 40); /* set-up */

u = Uniform(α, 1.0 - β);

d = idfPoisson(30.0, u);

return d;

This algorithm should be implemented so that α and β are static variables that are
computed once only.

Truncation by Acceptance-Rejection

Example 6.3.10 As an alternative to the techniques in Example 6.3.8 and 6.3.9, correct
truncation can also be achieved, at the potential expense of some extra calls to the function
Poisson(30), by using acceptance-rejection as follows

d = Poisson(30.0);

while ((d < 20) or (d > 40))

d = Poisson(30.0);

return d;

Although easily remembered and easily programmed, acceptance-rejection is not syn-
chronized or monotone even if the un-truncated generator has these properties. Generally,
the cdf modification technique in Example 6.3.8 or the constrained inversion technique in
Example 6.3.9 is preferable.
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6.3.3 EXERCISES

Exercise 6.3.1 (a) Suppose you wish to use inversion to generate a Binomial(100, 0.1)
random variate X truncated to the subrange x = 4, 5, . . . , 16. How would you do it? Work
through the details. (b) What is the value of the mean and standard deviation of the
resulting truncated random variate?

Exercise 6.3.2 The function GetDemand in program sis4 can return demand amounts
outside the range 0, 1, 2. (a) What is the largest demand amount that this function can
return? In some applications, integers outside the range 0, 1, 2 may not be meaningful,
no matter how unlikely. (b) Modify GetDemand so that the value returned is correctly
truncated to the range 0, 1, 2. Do not use acceptance-rejection. (c) With truncation, what
is the resulting average demand per time interval and how does that compare to the average
with no truncation?

Exercise 6.3.3 Prove that the “truncation by constrained inversion” algorithm is cor-
rect. Also, draw a figure that illustrates the geometry behind the “truncation by con-
strained inversion” algorithm.

Exercise 6.3.4a Prove that the mean of the compound demand in Example 6.3.4 is 30
and that the variance is 66.

Exercise 6.3.5a (a) Do Exercise 6.2.10. (b) In addition, prove that the expected value
of X is infinitely large (i.e., E[X] = ∞.) (c) Comment on the potential paradox that by
using inversion just one call to Random is somehow equivalent to a direct Monte Carlo
simulation of this random experiment that requires, on average, an infinite number of calls
to Random. Hint: the pdf of X is

f(x) =
1

x(x+ 1)
=
1

x
−

1

x+ 1
x = 1, 2, 3, . . .

Exercise 6.3.6a (a) Implement the function GetDemand in Example 6.3.4 in such a way
that you can use Monte Carlo simulation to estimate the expected number of calls to
Random per call to GetDemand. (b) Construct an alternative version of GetDemand that
requires exactly one call to Random per call to GetDemand and yet is effectively equivalent
to the original function in the sense that the alternative function produces a random variate
whose pdf matches the pdf illustrated in Example 6.3.4. (c) Provide convincing numerical
evidence of correctness.

Exercise 6.3.7 (a) Is it necessary to modify the function GetDemand in Example 6.3.4
so that instances must be positive? (b) If so, why and how would you do it? If not
necessary, why?
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For convenience, the characteristic properties of the following six discrete random vari-
able models are summarized in this section: Equilikely(a, b), Bernoulli(p), Geometric(p),
Pascal(n, p), Binomial(n, p), and Poisson(µ). For more details about these models, see
Sections 6.1 and 6.2; for supporting software, see the random variable models library rvms
in Appendix D and the random variate generators library rvgs in Appendix E.

6.4.1 EQUILIKELY

Definition 6.4.1 The discrete random variable X is Equilikely(a, b) if and only if

• the parameters a, b are integers with a < b

• the possible values of X are X = {a, a+ 1, . . . , b}

• the pdf of X is

f(x) =
1

b− a+ 1
x = a, a+ 1, . . . , b

as illustrated in Figure 6.4.1
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Figure 6.4.1.

Equilikely(a, b) pdf.

• the cdf of X is

F (x) =
x− a+ 1

b− a+ 1
x = a, a+ 1, . . . , b

• the idf of X is
F ∗(u) = a+ b(b− a+ 1)uc 0 < u < 1

• the mean of X is

µ =
a+ b

2

• the standard deviation of X is

σ =

√

(b− a+ 1)2 − 1

12
.

An Equilikely(a, b) random variable is used to model those situations where a discrete
random variable is restricted to the integers between a and b inclusive and all values in
this range are equally likely. A typical application will involve a model derived from a
statement like “. . . an element is selected at random from a finite set . . . ” An Equilikely

random variable is also known as a discrete uniform, DU , or rectangular random variable
— terminology that is not used in this book.
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6.4.2 BERNOULLI

Definition 6.4.2 The discrete random variable X is Bernoulli(p) if and only if

• the real-valued parameter p satisfies 0 < p < 1

• the possible values of X are X = {0, 1}

• the pdf of X is
f(x) = px(1− p)1−x x = 0, 1

as illustrated in Figure 6.4.2 for p = 0.6
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Figure 6.4.2.

Bernoulli(0.6) pdf.

• the cdf of X is
F (x) = (1− p)1−x x = 0, 1

• the idf of X is

F ∗(u) =

{

0 0 < u < 1− p

1 1− p ≤ u < 1

• the mean of X is
µ = p

• the standard deviation of X is

σ =
√

p(1− p).

A Bernoulli(p) random variable is used to model the Boolean situation where only
two outcomes are possible — success or failure, true or false, 1 or 0, etc. The parameter p
determines the probability of the two possible outcomes with the convention that

p = Pr(success) = Pr(X = 1)

and
1− p = Pr(failure) = Pr(X = 0).

The random variables X1, X2, X3, . . ., define an iid sequence of so-called Bernoulli(p)
trials if and only if each Xi is Bernoulli(p) and each is statistically independent of all
the others. The repeated tossing of a coin (biased or not) is the classic example of an iid

sequence — a head is equally likely on each toss (p does not change) and the coin has no
memory of the previous outcomes (independence).
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6.4.3 GEOMETRIC

Definition 6.4.3 The discrete random variable X is Geometric(p) if and only if

• the real-valued parameter p satisfies 0 < p < 1

• the possible values of X are X = {0, 1, 2, . . .}

• the pdf of X is
f(x) = px(1− p) x = 0, 1, 2, . . .

as illustrated in Figure 6.4.3 for p = 0.75

0 µ
x0

f(x)Figure 6.4.3.

Geometric(0.75) pdf.

• the cdf of X is
F (x) = 1− px+1 x = 0, 1, 2, . . .

• the idf of X is

F ∗(u) =

⌊

ln(1− u)

ln(p)

⌋

0 < u < 1

• the mean of X is
µ =

p

1− p

• the standard deviation of X is

σ =

√
p

1− p
.

A Geometric(p) random variable is conventionally used to model the number of “suc-
cesses” (1’s) before the first “failure” (0) in a sequence of independent Bernoulli(p) trials.
For example, if a coin has p as the probability of a head (success), then X counts the num-
ber of heads before the first tail (failure). Equivalently, a Geometric(p) random variable
can be interpreted as a model for random sampling from a urn containing balls, a fraction
p of which are 1’s with the remainder 0’s. A Geometric(p) random variable counts the
number of 1’s that are drawn, with replacement, before the first 0. If X is Geometric(p)
then X has the memoryless property — for any non-negative integer x′

Pr(X ≥ x+ x′ |X ≥ x′) = Pr(X ≥ x) = px x = 0, 1, 2, . . .

independent of x′. An intuitive interpretation of this property is that a string of x′ − 1
consecutive 1’s is followed by a sequence of 0’s and 1’s that is probabilistically the same
as a brand new sequence.
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6.4.4 PASCAL

Definition 6.4.4 The discrete random variable X is Pascal(n, p) if and only if

• the parameter n is a positive integer

• the real-valued parameter p satisfies 0 < p < 1

• the possible values of X are X = {0, 1, 2, . . .}

• the pdf of X is

f(x) =

(

n+ x− 1

x

)

px(1− p)n x = 0, 1, 2, . . .

as illustrated in Figure 6.4.4 for (n, p) = (5, 2/7)

0 µ
x0

f(x)
Figure 6.4.4.

Pascal(5, 2/7) pdf.

• the cdf of X contains an incomplete beta function (see Appendix D)

F (x) = 1− I(x+ 1, n, p) x = 0, 1, 2, . . .

• except for special cases, the idf of X must be determined by numerical inversion

• the mean of X is
µ =

np

1− p

• the standard deviation of X is

σ =

√
np

1− p
.

A Pascal(n, p) random variable is the number of 1’s before the nth 0 in an iid sequence
of independent Bernoulli(p) trials. Therefore, a Pascal(1, p) random variable and a Geo-

metric(p) random variable are equivalent. Moreover, X is a Pascal(n, p) random variable
if and only if

X = X1 +X2 + · · ·+Xn,

where X1, X2, . . ., Xn is an iid sequence of Geometric(p) random variables. In terms
of the urn model presented in Section 6.4.3, a Pascal(n, p) random variable counts the
number of 1’s that are drawn, with replacement, before the nth 0. A Pascal(n, p) random
variable is also called a negative binomial — terminology that is not used in this book.
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6.4.5 BINOMIAL

Definition 6.4.5 The discrete random variable X is Binomial(n, p) if and only if

• the parameter n is a positive integer

• the real-valued parameter p satisfies 0 < p < 1

• the possible values of X are X = {0, 1, 2, . . . , n}

• the pdf of X is

f(x) =

(

n

x

)

px(1− p)n−x x = 0, 1, . . . , n

as illustrated in Figure 6.4.5 for (n, p) = (10, 0.3)

0 µ n
x0

f(x)Figure 6.4.5.

Binomial(10, 0.3) pdf.

• the cdf of X contains an incomplete beta function (see Appendix D)

F (x) =
{

1− I(x+ 1, n− x, p) x = 0, 1, . . . , n− 1
1 x = n

• except for special cases, the idf of X must be determined by numerical inversion

• the mean of X is
µ = np

• the standard deviation of X is

σ =
√

np(1− p).

A Binomial(n, p) random variable is the number of 1’s in a sequence of n independent
Bernoulli(p) trials. Therefore a Binomial(1, p) random variable and a Bernoulli(p) random
variable are the same. Equivalently, X is a Binomial(n, p) random variable if and only if

X = X1 +X2 + · · ·+Xn,

where X1, X2, . . ., Xn is an iid sequence of Bernoulli(p) random variables. For example,
if a coin has p as the probability of a head (success), then X counts the number of heads
in a sequence of n tosses. In terms of the urn model, a Binomial(n, p) random variable
counts the number of 1’s that will be drawn, with replacement, if exactly n balls are
drawn. Because drawing x 1’s out of n is equivalent to drawing n−x 0’s it follows that X
is Binomial(n, p) if and only if n−X is a Binomial(n, 1− p) random variable.
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6.4.6 POISSON

Definition 6.4.6 The discrete random variable X is Poisson(µ) if and only if

• the real-valued parameter µ satisfies µ > 0

• the possible values of X are X = {0, 1, 2, . . .}

• the pdf of X is

f(x) =
µx exp(−µ)

x!
x = 0, 1, 2 . . .

as illustrated in Figure 6.4.6 for µ = 5

0 µ
x0

f(x)
Figure 6.4.6.

Poisson(5) pdf.

• the cdf of X contains an incomplete gamma function (see Appendix D)

F (x) = 1− P (x+ 1, µ) x = 0, 1, 2 . . .

• except for special cases, the idf of X must be determined by numerical inversion

• the mean of X is µ

• the standard deviation of X is
σ =

√
µ.

A Poisson(µ) random variable is a limiting case of a Binomial random variable. That
is, let X be a Binomial(n, µ/n) random variable (p = µ/n). Fix the values of µ and x and
consider what happens in the limit as n → ∞. The pdf of X is

f(x) =
n!

x!(n− x)!

(µ

n

)x(

1−
µ

n

)n−x

=
µx

x!

(

n!nx

(n− x)!(n− µ)x

)

(

1−
µ

n

)n

.

It can be shown that

lim
n→∞

(

n!nx

(n− x)!(n− µ)x

)

= 1 and lim
n→∞

(

1−
µ

n

)n

= exp(−µ).

Therefore

lim
n→∞

f(x) =
µx exp(−µ)

x!

which shows that for large values of n, Binomial(n, µ/n) and Poisson(µ) random variables
are virtually identical, particularly if µ is small.
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6.4.7 SUMMARY

Effective discrete-event simulation modeling requires that the modeler be familiar with
several parametric distributions which can be used to mimic the stochastic elements of the
model. In order to choose the proper distribution, it is important to know

• how these distributions arise;

• their support X ;

• their mean µ;

• their variance σ2;

• the shape of their pdf.

Thus when a modeling situation arises, the modeler has a wide array of options for selecting
a stochastic model.

It is also important to know how these distributions relate to one another. Figure 6.4.7
summarizes relationships between the six distributions considered in this text. Listed
in each oval are the name, parameter(s), and support of each distribution. The solid
arrows connecting the ovals denote special cases [e.g., the Bernoulli(p) distribution is a
special case of the Binomial(n, p) distribution when n = 1] and transformations [e.g.,
the sum (convolution) of n independent and identically distributed Bernoulli(p) random
variables has a Binomial(n, p) distribution]. The dashed line between the Binomial(n, p)
and Poisson(µ) distributions indicates that the limiting distribution of a binomial random
variable as n → ∞ has a Poisson distribution.
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Figure 6.4.7.

Relationships between

discrete distributions.

There are internal characteristics associated with these distributions that are not
shown in Figure 6.4.7. One such example is that the sum of independent Poisson random
variables also has a Poisson distribution. Another is that the sum of independent binomial
random variables with identical parameters p also has a binomial distribution.
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The mean and variance of a random variable are special cases of what are called
moments. The table below summarizes the first four moments of the distribution of the six
discrete random variables surveyed in this chapter. The first moment, the mean µ = E[X],
and the second moment about the mean, the variance σ2 = E[(X − µ)2], have been
defined earlier. The skewness and kurtosis are the third and fourth standardized centralized
moments about the mean, defined by

E

[

(

X − µ

σ

)3
]

and E

[

(

X − µ

σ

)4
]

.

The skewness is a measure of the symmetry of a distribution. A symmetric pdf has a
skewness of zero. A positive skewness typically indicates that the distribution is “leaning”
to the left, and a negative skewness typically indicates that the distribution is “leaning”
to the right. The geometric distribution, for example, has a positive skewness for all
values of its parameter p. The kurtosis is a measure of the peakedness and tail behavior
of a distribution. In addition to being measures associated with particular distributions,
the higher-order moments are occasionally used to differentiate between the parametric
models.

Distribution Mean Variance Skewness Kurtosis

Equilikely(a, b)
a+ b

2

(b− a+ 1)2 − 1

12
0

3

5

[

3−
4

(b− a)(b− a+ 2)

]

Bernoulli(p) p p(1− p)
1− 2p

√

p(1− p)

1

p(1− p)
− 3

Geometric(p)
p

1− p

p

(1− p)2
1 + p
√
1− p

p2 + 7p+ 1

p

Pascal(n, p)
np

1− p

np

(1− p)2
1 + p

√

n(1− p)
3 +

6

n
+
(1− p)2

np

Binomial(n, p) np np(1− p)
1− 2p

√

np(1− p)
3−

6

n
+

1

np(1− p)

Poisson(µ) µ µ
1
√
µ

3 +
1

µ

Although discussion is limited here to just six discrete distributions, there are many
other parametric distributions capable of modeling discrete distributions. For a complete
list of common discrete and continuous parametric distributions including their pdf, cdf,
idf, and moments, we recommend the compact work of Evans, Hastings, and Peacock
(2000) or the encyclopedic works of Johnson, Kotz, and Kemp (1993) and Johnson, Kotz,
and Balakrishnan (1994, 1995, 1997).

We conclude this section with a brief discussion of the techniques and software asso-
ciated with the evaluation of the pdf, cdf, and idf of the six discrete distributions surveyed
in this chapter.
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6.4.8 PDF, CDF AND IDF EVALUATION

Library rvms

Pdf’s, cdf’s, and idf’s for all six of the discrete random variable models in this section
can be evaluated by using the functions in the library rvms, listed in Appendix D. For
example, if X is Binomial(n, p) then for any x = 0, 1, 2, . . . , n

pdf = pdfBinomial(n, p, x); /* f(x) */

cdf = cdfBinomial(n, p, x); /* F (x) */

and for any 0.0 < u < 1.0

idf = idfBinomial(n, p, u); /* F ∗(u) */

This library also has functions to evaluate pdf’s, cdf’s, and idf’s for all the continuous
random variables cataloged in Chapter 7.

Alternative, Recursive Approaches for Calculating pdf Values

Although this approach is not used in the library rvms to evaluate pdf’s and cdf’s,
if X is a discrete random variable then pdf values (and cdf values, by summation) can
usually be easily generated recursively. In particular:

• if X is Geometric(p) then

f(0) = 1− p

f(x) = pf(x− 1) x = 1, 2, 3, . . .

• if X is Pascal(n, p) then

f(0) = (1− p)n

f(x) =
(n+ x− 1)p

x
f(x− 1) x = 1, 2, 3, . . .

• if X is Binomial(n, p) then

f(0) = (1− p)n

f(x) =
(n− x+ 1)p

x(1− p)
f(x− 1) x = 1, 2, 3, . . . , n

• if X is Poisson(µ) then

f(0) = exp(−µ)

f(x) =
µ

x
f(x− 1) x = 1, 2, 3, . . .
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6.4.9 EXERCISES

Exercise 6.4.1 (a) Simulate the tossing of a fair coin 10 times and record the number
of heads. (b) Repeat this experiment 1000 times and generate a discrete-data histogram
of the results. (c) Verify numerically that the relative frequency of the number of heads is
approximately equal to the pdf of a Binomial(10, 0.5) random variable.

Exercise 6.4.2 Prove that a Geometric(p) random variable has the memoryless prop-
erty.

Exercise 6.4.3 Derive the Geometric(p), Pascal(n, p), Binomial(n, p), and Poisson(µ)
recursive pdf equations.

Exercise 6.4.4 Use the Binomial(n, p) recursive pdf equations to implement the func-
tions pdfBinomial(n,p,x) and cdfBinomial(n,p,x). Compare your implementations,
in terms of both accuracy and speed, with the corresponding functions in the library rvms.
Use n = 10, 100, 1000 with µ = 5 and p = µ/n. The comparison can be restricted to
possible values x within the range µ± 3σ.

Exercise 6.4.5 Verify numerically that the pdf of a Binomial(25, 0.04) random variable
is virtually identical to the pdf of a Poisson(µ) random variable for an appropriate value of
µ. Evaluate these pdf’s in two ways: by using the appropriate pdf functions in the library
rvms and by using the Binomial(n , p) recursive pdf equations.

Exercise 6.4.6a Prove or disprove: if X is a Pascal(n, p) random variable then the cdf
of X is F (x) = I(n, x+ 1, 1− p).

Exercise 6.4.7a Prove or disprove: if X is a Binomial(n, p) random variable then the
cdf of X is F (x) = I(n− x, x+ 1, 1− p).

Exercise 6.4.8 Prove that if X is Binomial(n, p) then

Pr(X > 0) =
n−1
∑

x=0

p(1− p)x.

What is the probability interpretation of this equation?

Exercise 6.4.9 (a) If you play Pick-3 (as in Example 6.1.14) once a day for 365 con-
secutive days, what is the probability that you will be ahead at the end of this period?
(b) What is your expected yield (winnings) at the end of this period?

Exercise 6.4.10 Let X be a Geometric(p) random variable. As an alternative to the
definition used in this book, some authors define the random variable Y = X + 1 to be
Geometric(p). (a) What is the pdf, cdf, idf, mean, and standard deviation of Y ? (b) Does
this random variable also have the memoryless property?
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The topic of primary importance in this section is random sampling. That is, we
will focus on algorithms that use a random number generator to sample, at random, from
a fixed collection (set) of objects. We begin, however, with the related topic of random

shuffling.

6.5.1 RANDOM SHUFFLING

Definition 6.5.1 Exactly m! different permutations (a0, a1, . . . , am−1) can be formed
from a finite set A with m = |A| distinct elements. A random shuffle generator is an
algorithm that will produce any one of these m! permutations in such a way that all are
equally likely.

Example 6.5.1 If A = {0, 1, 2} then the 3! = 6 different possible permutations of A are

(0, 1, 2) (0, 2, 1) (1, 0, 2) (1, 2, 0) (2, 0, 1) (2, 1, 0).

A random shuffle generator can produce any of these six possible permutations, each with
equal probability 1/6.

Algorithm 6.5.1 The intuitive way to generate a random shuffle of A is to draw the
first element a0 at random from A. Then draw the second element a1 at random from
the set A− {a0} and the third element a2 at random from the set A− {a0, a1}, etc. The
following in place algorithm does that, provided the elements of the set A are stored (in
any order) in the array a[0], a[1], . . . , a[m− 1]

for (i = 0; i < m - 1; i++) {

j = Equilikely(i, m - 1);

hold = a[j];

a[j] = a[i]; /* swap a[i] and a[j] */

a[i] = hold;

}

Algorithm 6.5.1 is an excellent example of the elegance of simplicity. Figure 6.5.1
(corresponding to m = 9) illustrates the two indices i and j [j is an Equilikely(i,m − 1)
random variate] and the state of the a[ · ] array (initially filled with the integers 0 through
8 in sorted order, although any order is acceptable) for the first three passes through the
for loop.

prior to a[0], a[3] swap

i j

0 1 2 3 4 5 6 7 8

prior to a[1], a[6] swap

i j

3 1 2 0 4 5 6 7 8

prior to a[2], a[4] swap

i j

3 6 2 0 4 5 1 7 8

Figure 6.5.1.

Permutation

generation

algorithm.

This algorithm is ideal for shuffling a deck of cards (m = 52 for a standard deck) — always
a useful simulation skill. Moreover, as discussed later in this section, a minor modification
to this algorithm makes it suitable for random sampling, without replacement.
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6.5.2 RANDOM SAMPLING

We now turn to the topic of primary importance in this section, algorithms for random
sampling. To provide a common basis for comparison of the algorithms, the following
notation and terminology is used.

• We are given a population P of m = |P| elements a0, a1, . . . , am−1. Typically m is
large, perhaps so large that the population must be stored in secondary memory as
a disk file, for example. If m is not large, then the population could be stored in
primary memory as an array a[0], a[1], . . . , a[m − 1] or a linked list. In either case,
whether m is large or not, the population is a list. That is, P is ordered so that there
is a first element a0, a second element a1, etc.

• We wish to obtain a random sample S of n = |S| elements x0, x1, . . . , xn−1 from
P. Like P, the sample S is also a list. Typically n is small relative to m, but not
necessarily so. If n is small then the sample can be stored in primary memory as the
array x[0], x[1], . . . , x[n − 1] with the data type of x[ · ] the same as the data type of
the population elements. For most algorithms, however, the use of an array is not a
fundamental restriction; a linked list could be used instead, for example, or the sample
could be written to secondary memory as a disk file if n is large.

• The algorithms use two generic functions Get(&z, L, j) and Put(z, L, j) where
the list L could be either P or S and:

Get(&z, L, j) returns the value of the jth element in the list L as z;

Put(z, L, j) assigns the value of z to the jth element in the list L.

Both P and S can be accessed by Get and Put. The use of these generic functions
allows the algorithms to be presented in a form that is essentially independent of how
the lists P and S are actually stored.

• In some random sampling applications it is important to preserve the order of the
population in the sample; in other applications order preservation is not important.

• A random sampling algorithm may be sequential, in which case P is traversed once,
in order, and elements are selected at random to form S. A sequential algorithm is
necessarily used when random access to P is not possible. In contrast, a non-sequential

random sampling algorithm is based on the assumption that random access to P is
possible and reasonably efficient. Note that it is access to P, not S, that determines
whether a random sampling algorithm is sequential or non-sequential.

• A random sampling algorithm may use sampling with replacement, in which case the
sample can contain multiple instances of the same population element. If so, then
n could be larger than m. Instead, if sampling without replacement is used, then
the sample cannot contain multiple instances of the same population element and so
n ≤ m. Sampling without replacement is the usual case in practice. For the special
(trivial) case of sampling without replacement when n = m, P ≡ S.
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Relative to random sampling algorithms, the phrase “at random” can be interpreted in
at least two different (but closely related) ways: (i) each element of P is equally likely to be
an element of S or (ii) each possible sample of size n is equally likely to be selected. Because
these two interpretations of randomness are not equivalent, it is important to recognize
what kind of samples a particular random sampling algorithm actually produces.

Non-Sequential Sampling

Algorithm 6.5.2 This O(n) algorithm provides non-sequential random sampling with
replacement. The value of m must be known.

for (i = 0; i < n; i++) {

j = Equilikely(0, m - 1);

Get(&z, P, j); /* random access */

Put(z, S, i);

}

Because sampling is with replacement, n can be larger than m in Algorithm 6.5.2.
If the elements of P are distinct, the number of possible samples is mn and all samples
are equally likely to be generated. The order of P is not preserved in S. Algorithm 6.5.2
should be compared with Algorithm 6.5.3, which is the without replacement analog. For
both algorithms, the O(n) complexity is based on the number of random variates generated
and ignores, perhaps unrealistically, the complexity of access to P and S.

Example 6.5.2 In most non-sequential random sampling applications the population
and sample are stored as arrays a[0], a[1], . . . , a[m−1] and x[0], x[1], . . . , x[n−1] respectively,
in which case Algorithm 6.5.2 is equivalent to

for (i = 0; i < n; i++) {

j = Equilikely(0, m - 1);

x[i] = a[j];

}

Algorithm 6.5.3 This O(n) algorithm provides non-sequential random sampling with-
out replacement. The value of m must be known a priori and n ≤ m.

for (i = 0; i < n; i++) {

j = Equilikely(i, m - 1); /* note, i not 1 */

Get(&z, P, j); /* random access */

Put(z, S, i);

Get(&x, P, i); /* sequential access */

Put(z, P, i); /* sequential access */

Put(x, P, j); /* random access */

}
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If the elements of P are distinct, the number of possible samples is m(m− 1) . . . (m−

n + 1) = m!/(m − n)! and all samples are equally likely to be generated. The order of
P is not preserved in S. Also, the order that exists in P is destroyed by this sampling
algorithm. If this is undesirable, use a copy of P instead.

Example 6.5.3 In most non-sequential random sampling applications the population
and sample are stored as arrays a[0], a[1], . . . , a[m− 1] and x[0], x[1], . . . , x[n− 1], respec-
tively. In this case Algorithm 6.5.3 is equivalent to

for (i = 0; i < n; i++) {

j = Equilikely(i, m - 1);

x[i] = a[j];

a[j] = a[i];

a[i] = x[i];

}

In this form, it is clear that Algorithm 6.5.3 is a simple extension of Algorithm 6.5.1.

Sequential Sampling

The next three algorithms provide sequential sampling. For each algorithm the basic
idea is the same — traverse P once, in order, and select elements to put in S. The selection
or non-selection of elements is random with probability p using the generic statements

Get(&z, P, j);

if (Bernoulli(p))

Put(z, S, i);

For Algorithm 6.5.4, p is independent of i and j. For Algorithms 6.5.5 and 6.5.6, however,
the probability of selection changes adaptively conditioned on the values of i, j, and the
number of elements previously selected.

Algorithm 6.5.4 This O(m) algorithm provides sequential random sampling without
replacement. Each element of P is selected, independently, with probability p.

i = 0; /* i indexes the sample */

j = 0; /* j indexes the population */

while ( more data in P ) {

Get(&z, P, j); /* sequential access */

j++;

if (Bernoulli(p)) {

Put(z, S, i);

i++;

}

}
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Although p = n/m is a logical choice for the probability of selection, Algorithm 6.5.4
does not make use of either m or n explicitly. Note also that Algorithm 6.5.4 is not
consistent with the idea of a specified sample size. Although the expected size of the
sample is mp, the actual size is a Binomial(m, p) random variable. That is, no matter how
p is chosen (with 0 < p < 1), there is no way to specify the exact size of the sample. It
can range from 0 to m. The order of P is preserved in S.

Example 6.5.4 In many sequential random sampling applications the population is
stored in secondary memory as a sequential file and the sample is stored in primary memory
as an array x[0], x[1], . . . , x[n− 1] in which case Algorithm 6.5.4 is equivalent to

i = 0;

while ( more data in P ) {

z = GetData();

if (Bernoulli(p)) {

x[i] = z;

i++;

}

}

The fact that Algorithm 6.5.4 does not make use of m can be an advantage in some
discrete-event simulation and real-time data acquisition applications. In these applications,
the objective may be to sample, at random, say 1% of the population elements, independent
of the population size. Algorithm 6.5.4 with p = 0.01 would provide this ability, but at the
expense of not being able to specify the sample size exactly. In contrast, Algorithm 6.5.5
provides the ability to specify the sample size provided m is known and Algorithm 6.5.6
provides this ability even if m is unknown.

Algorithm 6.5.5 This O(m) algorithm provides sequential random sampling of n sam-
ple values from P without replacement, provided m = |P| is known a priori.

i = 0; /* i indexes the sample */

j = 0; /* j indexes the population */

while (i < n) {

Get(&z, P, j); /* sequential access */

p = (n - i) / (m - j);

j++;

if (Bernoulli(p)) {

Put(z, S, i);

i++;

}

}
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The key to the correctness of Algorithm 6.5.5 is that the population element aj is
selected with a probability (n − i)/(m − j) that is conditioned on the number of sample
elements left to be selected and the number of population elements left to be considered.
Access to the population list is sequential (as is access to the sample list). Because sampling
is without replacement, n ≤ m. If the elements of P are distinct, then the number
of possible samples is the binomial coefficient m!/(m − n)!n! (see Appendix D) and all
samples are equally likely to be generated. The order of P is preserved in S.

Example 6.5.5 In many sequential random sampling applications the population is
stored in secondary memory as a sequential file and the sample is stored in primary memory
as an array x[0], x[1], . . . , x[n− 1] in which case Algorithm 6.5.5 is equivalent to

i = 0;

j = 0;

while (i < n) {

z = GetData();

p = (n - i) / (m - j);

j++;

if (Bernoulli(p)) {

x[i] = z;

i++;

}

}

Algorithm 6.5.6 This O(m) algorithm provides sequential random sampling of n sam-
ple values from P without replacement, even if m = |P| is not known a priori

for (i = 0; i < n; i++) {

Get(&z, P, i); /* sequential access */

Put(z, S, i);

}

j = n;

while ( more data in P ) {

Get(&z, P, j); /* sequential access */

j++;

p = n / j;

if (Bernoulli(p)) {

i = Equilikely(0, n - 1);

Put(z, S, i);

}

}
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Algorithm 6.5.6 is based on initializing the sample with the first n elements of the
population. Then, for each of the (unknown number of) additional population elements,
with conditional probability n/(j + 1) the population element aj (for j ≥ n) overwrites
an existing randomly selected element in the sample. Access to the population list is
sequential. Access to the sample list is not sequential, however, and so the order in P is
not preserved in S. Because sampling is without replacement, n ≤ m. If the elements of P
are distinct, then the number of possible samples is the binomial coefficient m!/(m−n)!n!
(see Appendix D) and all samples are equally likely to be generated. There is an important
caveat, however — see Example 6.5.8.

Example 6.5.6 In many sequential random sampling applications the population is
stored in secondary memory as a sequential file and the sample is stored in primary memory
as an array x[0], x[1], . . . , x[n− 1] in which case Algorithm 6.5.6 is equivalent to

for (i = 0; i < n; i++) {

z = GetData();

x[i] = z;

}

j = n;

while ( more data in P ) {

z = GetData();

j++;

p = n / j;

if (Bernoulli(p)) {

i = Equilikely(0, n− 1);

x[i] = z;

}

}

Algorithm Differences

Although Algorithms 6.5.5 and 6.5.6 have some similarities, there are two important
differences.

• Algorithm 6.5.5 requires knowledge of the population size m and Algorithm 6.5.6 does
not. This makes Algorithm 6.5.6 valuable in those discrete-event simulation and real-
time data acquisition applications where m is not known a priori, particularly if the
sample size is sufficiently small so that the sample can be stored in primary memory
as an array.

• Beyond this obvious difference, there is a more subtle difference related to the number
of possible samples when order is considered. Algorithm 6.5.5 preserves the order
present in the population, Algorithm 6.5.6 does not. This difference is illustrated by
the following two examples.
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Example 6.5.7 If Algorithm 6.5.5 is used to select samples of size n = 3 from the
population list (0, 1, 2, 3, 4), then m = 5 and, because the sampling is sequential and the
order of the population list is preserved in the samples, we find that exactly

(

5

3

)

=
5!

2! 3!
= 10

ordered samples are possible, as illustrated

(0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 2, 3) (0, 2, 4) (0, 3, 4) (1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4).

Each of these (ordered) samples will occur with equal probability 1/10.

Example 6.5.8 If Algorithm 6.5.6 is used then 13 samples are possible, as illustrated

(0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 3, 2) (0, 4, 2)
(0, 3, 4)

(0, 4, 3)
(3, 1, 2) (4, 1, 2)

(3, 1, 4)

(4, 1, 3)

(3, 4, 2)

(4, 3, 2)

Each of these samples are not equally likely, however. Instead, each of the six samples
that are pairwise alike except for permutation will occur with probability 1/20. The
other seven samples will occur with probability 1/10. If permutations are combined (for
example, by sorting and then combining like results) then, as desired, each of the resulting
10 samples will have equal probability 1/10. Because order in P is not preserved in S

by Algorithm 6.5.6, some ordered samples, like (1, 3, 4), cannot occur except in permuted
order, like (3, 1, 4) and (4, 1, 3). For this reason, Algorithm 6.5.6 produces the correct
number of equally likely samples only if all alike-but-for-permutation samples are combined.
This potential need for post processing is the (small) price paid for not knowing the
population size a priori.

6.5.3 URN MODELS

Many discrete stochastic models are based on random sampling. We close this section
with four examples. Three of these discrete stochastic models were considered earlier in
this chapter, the other is new:

• Binomial(n, p);

• Hypergeometric(n, a, b);

• Geometric(p);

• Pascal(n, p).

All four of these models can be motivated by drawing, at random, from a conceptual urn
initially filled with a amber balls and b black balls.
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Binomial

Example 6.5.9 An urn contains a amber balls and b black balls. A total of n balls
are drawn from the urn, with replacement. Let x be the number of amber balls drawn.
A Monte Carlo simulation of this random experiment is easily constructed. Indeed, one
obvious way to construct this simulation is to use Algorithm 6.5.2, as implemented in
Example 6.5.2, applied to a population array of length m = a+ b with a 1’s (amber balls)
and b 0’s (black balls). Then x is the number of 1’s in a random sample of size n. The
use of Algorithm 6.5.2 is overkill in this case, however, because an equivalent simulation
can be constructed without using either a population or sample data structure. That is,
let p = a/(a+ b) and use the O(n) algorithm

x = 0;

for (i = 0; i < n; i++)

x += Bernoulli(p);

return x;

The discrete random variate x so generated is Binomial(n, p). The associated pdf of X is

f(x) =

(

n

x

)

px(1− p)n−x x = 0, 1, 2, . . . , n.

Hypergeometric

Example 6.5.10 As a variation of Example 6.5.9, suppose that the draw from the
urn is without replacement (and so n ≤ m). Although Algorithm 6.5.3 could be used
as implemented in Example 6.5.3, it is better to use a properly modified version of the
algorithm in Example 6.5.9 instead, as illustrated

m = a + b;

x = 0;

for (i = 0; i < n; i++) {

p = (a - x) / (m - i);

x += Bernoulli(p);

}

return x;

The discrete random variate x so generated is said to be Hypergeometric(n, a, b). The
associated pdf of X is

f(x) =

(

a

x

)(

b

n− x

)

(

a+ b

n

) x = max{0, n− b}, . . . ,min{a, n}.
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The lower limit in the range of possible values of X accounts for the possibility that the
sample size may exceed the number of black balls (n > b). If n > b then at least n − b

amber balls must be drawn. Similarly, the upper limit accounts for the possibility that
the sample size may exceed the number of amber balls (n > a). If n > a then at most a
amber balls can be drawn. In applications where n is less than or equal to both a and b,
the range of possible values is x = 0, 1, 2, . . . , n.

Geometric

Example 6.5.11 As another variation of Example 6.5.9, suppose that the draw is from
the urn with replacement but that we draw only until the first black ball is obtained. Let x
be the number of amber balls drawn. With p = a/(a+b) the following algorithm simulates
this random experiment

x = 0;

while (Bernoulli(p))

x++;

return x;

The discrete random variate x so generated is Geometric(p). The associated pdf of X is

f(x) = px(1− p) x = 0, 1, 2, . . .

This stochastic model is commonly used in reliability studies, in which case p is usually
close to 1.0 and x counts the number of successes before the first failure.

This algorithm for generating geometric variates is inferior to the inversion algorithm
presented in Example 6.2.8. The algorithm presented here is (1) not synchronized, (2) not
monotone, and (3) inefficient. The expected number of passes through the while loop is

1 +
p

1− p
.

If p is close to 1, the execution time for this algorithm can be quite high.

Pascal

Example 6.5.12 As an extension of Example 6.5.11, suppose that we draw with re-
placement until the nth black ball is obtained. Let x be the number of amber balls drawn
(so that a total of n + x balls are drawn, the last of which is black). With p = a/(a + b)
the following algorithm simulates this random experiment.

x = 0;

for (i = 0; i < n; i++)

while (Bernoulli(p))

x++;

return x;
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The discrete random variate x so generated is Pascal(n, p). The associated pdf is

f(x) =

(

n+ x− 1

x

)

px(1− p)n x = 0, 1, 2, . . .

This stochastic model is commonly used in reliability studies, in which case p is usually
close to 1.0 and x counts the number of successes before the nth failure.

Further reading on random sampling and shuffling can be found in the textbooks by
Nijenhuis and Wilf (1978) and Wilf (1989) or the journal articles by McLeod and Bellhouse
(1983) and Vitter (1984).

6.5.4 EXERCISES

Exercise 6.5.1 Two cards are drawn in sequence from a well-shuffled ordinary deck of
52. (a) If the draw is without replacement, use Monte Carlo simulation to verify that the
second card will be higher in rank than the first with probability 8/17. (b) Estimate this
probability if the draw is with replacement.

Exercise 6.5.2 Which of the four discrete stochastic models presented in this section
characterizes the actual (random variate) sample size when Algorithm 6.5.4 is used?

Exercise 6.5.3 (a) For a = 30, b = 20, and n = 10 use Monte Carlo simulation to verify
the correctness of the probability equations in Examples 6.5.9 and 6.5.10. (b) Verify that
in both cases the mean of x is na/(a+ b). (c) Are the standard deviations the same?

Exercise 6.5.4 Three people toss a fair coin in sequence until the first occurrence of
a head. Use Monte Carlo simulation to estimate (a) the probability that the first person
to toss will eventually win the game by getting the first head, (b) the second person’s
probability of winning, and (c) the third person’s probability of winning. Also, (d) compare
your estimates with the analytic solutions.

Exercise 6.5.5a How would the algorithm and pdf equation need to be modified if the
random draw in Example 6.5.12 is without replacement?

Exercise 6.5.6a An urn is initially filled with one amber ball and one black ball. Each
time a black ball is drawn, it is replaced and another black ball is also placed in the urn.
Let X be the number of random draws required to find the amber ball. (a) What is the
pdf of X for x = 1, 2, 3, . . . ? (b) Use Monte Carlo simulation to estimate the pdf and the
expected value of X.

Exercise 6.5.7a Same as the previous exercise except that there is a reservoir of just
eight black balls to add to the urn. Comment.
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The focus shifts from discrete random variables to continuous random variables in this
chapter. The first four sections in this chapter have identical titles to the previous chapter
with “discrete” replaced by “continuous”. As in the previous chapter, we proceed with a
more thorough and methodical description of continuous random variables, their proper-
ties, how they can be used to model the stochastic (random) components of a system of
interest, and the development of algorithms for generating the associated random variates
for a Monte Carlo or discrete-event simulation model.

Section 7.1 defines a continuous random variable and introduces eight popular models:
the uniform, exponential, standard normal, normal, lognormal, Erlang, chisquare, and
student distributions. Section 7.2 contains an approach to generating continuous random
variables that is more general than the ad hoc approaches given earlier for the Uniform(a, b)
and Exponential(µ) variates. Section 7.3 applies these variate generation techniques to the
generation of arrival processes and service times. Section 7.4 contains a summary of the
eight continuous distributions encountered thus far. Section 7.5 considers the topic of the
modeling and generation of arrivals to a system when the arrival rate varies with time.
A model known as a nonstationary Poisson process is introduced. Finally, Section 7.6
introduces a variate generation technique known as acceptance-rejection, which can be
used to generate continuous random variates.
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The formal theory of continuous random variables closely parallels the corresponding
theory of discrete random variables. In many instances little more is involved than re-
placing sums with integrals and differences with derivatives. With this in mind, we will
cover the corresponding topics in this chapter more rapidly than in the previous chapter,
pausing to elaborate only when the continuous theory is significantly different from the
discrete theory.

7.1.1 CONTINUOUS RANDOM VARIABLE CHARACTERISTICS

Definition 7.1.1 The random variable X is continuous if and only if the cdf of X,
F (x) = P (X ≤ x) is a continuous function.*

Continuous random variables are real-valued measurements like size, weight, distance,
elapsed time, volume, density, etc. In practice, it is common to assume that X is an open
interval (a, b) where a may be −∞ and b may be ∞.

Probability Density Function

Definition 7.1.2 As in the discrete case, the continuous random variable X is uniquely
determined by its set of possible values X and corresponding probability density function

(pdf) which is a real-valued function f(·) defined for all x ∈ X in such a way that
∫ b

a

f(x) dx = Pr(a ≤ X ≤ b)

for any interval (a, b) ⊆ X . By definition, x ∈ X is a possible value of X if and only if
f(x) > 0. In addition, f(·) is defined so that

∫

x

f(x) dx = 1

where the integration is over all x ∈ X .

Example 7.1.1 If the random variable X is Uniform(a, b) then the possible values of
X are all the real numbers between a and b, i.e., X = (a, b). Because the length of this
interval is b− a and all values in this interval are equally likely it follows that

f(x) =
1

b− a
a < x < b.

If X is a discrete random variable then it makes sense to evaluate a “point” probability
like Pr(X = 1). However, if X is a continuous random variable, then “point” probabilities
are zero. In the continuous case, probability is defined by an area under the pdf curve and
so Pr(X = x) = 0 for any x ∈ X . For the same reason, endpoint inclusion is not an issue.
That is, if X is a continuous random variable and if [a, b] ⊆ X then all of the probabilities

Pr(a ≤ X ≤ b), Pr(a < X ≤ b), Pr(a ≤ X < b), Pr(a < X < b) are equal to
∫ b

a
f(x) dx.

* Thus the set of possible values in X is continuous, not discrete — see Definition 6.1.1.
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Cumulative Distribution Function

Definition 7.1.3 The cumulative distribution function (cdf) of the continuous random
variable X is the continuous real-valued function F (·) defined for each x ∈ R as

F (x) = Pr(X ≤ x) =

∫

t≤x

f(t) dt.

Example 7.1.2 If the random variable X is Uniform(a, b) then X = (a, b) and the cdf
is

F (x) =

∫ x

a

1

b− a
dt =

x− a

b− a
a < x < b.

In the important special case where U is Uniform(0, 1) the cdf is

F (u) = Pr(U ≤ u) = u 0 < u < 1.

Figure 7.1 illustrates the relation between a general pdf on the left and the associated
cdf on the right. The two vertical axes are not drawn to the same scale. The shaded area
in the graph of the pdf represents F (x0) for some arbitrary x-value x0.
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Figure 7.1.1.

The pdf and

cdf of a

continuous

random

variable X.

As in the discrete case, the cdf is strictly monotone increasing — if x1 and x2 are possible
values of X with x1 < x2 and all the real numbers between x1 and x2 are also possible
values, then F (x1) < F (x2). Moreover F (·) is bounded between 0.0 and 1.0.

As illustrated in Figure 7.1.1, consistent with Definition 7.1.3 the cdf can be obtained
from the pdf by integration. Conversely, the pdf can be obtained from the cdf by differen-
tiation as

f(x) =
d

dx
F (x) x ∈ X .

Thus, as in the discrete case, a continuous random variable model can be constructed by
specifying X and either the pdf or the cdf. One can be determined from the other.
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Example 7.1.3 In Section 3.1 an Exponential(µ) random variable X was defined by the
transformation X = −µ ln(1 − U) where U is Uniform(0, 1). To determine the cdf of X
from this definition, recognize that for any x > 0

F (x) = Pr(X ≤ x)

= Pr
(

− µ ln(1− U) ≤ x
)

= Pr
(

1− U ≥ exp(−x/µ)
)

= Pr
(

U ≤ 1− exp(−x/µ)
)

= 1− exp(−x/µ)

where the last equation follows from Example 7.1.2. Therefore, the pdf of X is

f(x) =
d

dx
F (x) =

d

dx

(

1− exp(−x/µ)
)

=
1

µ
exp(−x/µ) x > 0.

Mean and Standard Deviation

Definition 7.1.4 The mean µ of the continuous random variable X is

µ =

∫

x

xf(x) dx

and the corresponding standard deviation σ is

σ =

√

∫

x

(x− µ)2f(x) dx =

√

(
∫

x

x2f(x) dx

)

− µ2

where the integration is over all possible values x ∈ X . The variance is σ2.*

Example 7.1.4 If X is Uniform(a, b) then it can be shown that

µ =
a+ b

2
and σ =

b− a
√
12

.

This derivation is left as an exercise.

Example 7.1.5 If X is Exponential(µ) then from the pdf equation in Example 7.1.3
∫

x

xf(x) dx =

∫ ∞

0

x

µ
exp(−x/µ) dx = µ

∫ ∞

0

t exp(−t) dt = · · · = µ

using integration by parts. So the parameter µ is in fact the mean. Moreover, the variance
is

σ2 =

(
∫ ∞

0

x2

µ
exp(−x/µ) dx

)

− µ2 =

(

µ2

∫ ∞

0

t2 exp(−t) dt

)

− µ2 = · · · = µ2.

For this particular distribution, the parameter µ is also the standard deviation.

* Compare Definition 7.1.4 with Definition 4.3.3.
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Expected Value

Definition 7.1.5 As in the discrete case, the mean of a continuous random variable is
also known as the expected value and the expected value operator is denoted as E[ · ]. In
particular, the mean of X is the expected value of X

µ = E[X] =

∫

x

xf(x) dx

and the variance is the expected value of (X − µ)2

σ2 = E[(X − µ)2] =

∫

x

(x− µ)2f(x) dx.

In general, if g(X) is some function of the random variable X, i.e., Y = g(X), then the
expected value of the random variable Y is

E[Y ] = E[g(X)] =

∫

x

g(x)f(x) dx.

In all three of these equations the integration is over all x ∈ X .

Example 7.1.6 Consider a circle of fixed radius r and a fixed point Q on the circum-
ference of the circle. Suppose a second point P is selected at random on the circumference
of the circle and let the random variable Y be the distance of the line segment (chord)
joining points P and Q. To determine the expected value of Y let Θ be the angle of point
P measured counter-clockwise from point Q. It can be shown that the relation between Y

and Θ is Y = 2r sin(Θ/2), as illustrated in Figure 7.1.2.
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Figure 7.1.2.

A random

chord.

Therefore, if we interpret the phrase “P is selected at random” to mean that the angle
Θ is Uniform(0, 2π), then the pdf of Θ is f(θ) = 1/2π for 0 < θ < 2π and the expected
length of the chord, E[Y ], is

E[Y ] =

∫

2π

0

2r sin(θ/2)f(θ) dθ =

∫

2π

0

2r sin(θ/2)

2π
dθ = · · · =

4r

π
.

Because some possible values of Y are more likely than others, Y is not a Uniform(0, 2r)
random variable; if it were, the expected value of Y would be r. (See Exercise 7.1.6 for an
alternate approach to this example.)
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Example 7.1.7 As in the discrete case, if X is a continuous random variable and Y is
the continuous random variable Y = aX + b for constants a and b, then

E[Y ] = E[aX + b] = aE[X] + b.

7.1.2 CONTINUOUS RANDOM VARIABLE MODELS

In addition to the Uniform(a, b) and Exponential(µ) continuous random variables
already discussed, in the remainder of this section we will consider several other parametric
models, beginning with the so-called Normal(0, 1) or standard normal continuous random
variable. All students of elementary statistics will recognize this as a special case of the
ubiquitous “bell-shaped curve” used by many (appropriately or not) to model virtually all
things random.

Standard Normal Random Variable

Definition 7.1.6 The continuous random variable Z is said to be Normal(0, 1) if and
only if the set of all possible values is Z = (−∞,∞) and the pdf is

f(z) =
1

√
2π
exp(−z2/2) −∞ < z < ∞,

as illustrated in Figure 7.1.3.
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If Z is a Normal(0, 1) random variable then Z is “standardized” (see Example 4.1.3).
That is, the mean is

µ =

∫ ∞

−∞

zf(z) dz =
1

√
2π

∫ ∞

−∞

z exp(−z2/2) dz = · · · = 0

and the variance is

σ2 =

∫ ∞

−∞

(z − µ)2f(z) dz =
1

√
2π

∫ ∞

−∞

z2 exp(−z2/2) dz = · · · = 1.

The µ = 0 derivation is easy, the σ2 = 1 derivation is not. Both are left as an exercise.
The standard deviation is σ = 1.
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If Z is a Normal(0, 1) random variable then the corresponding cdf is

F (z) =

∫ z

−∞

f(t) dt = Φ(z) −∞ < z < ∞

where the special function Φ(·) is defined as

Φ(z) =
1

√
2π

∫ z

−∞

exp(−t2/2) dt −∞ < z < ∞.

As a special function, Φ(·) cannot be evaluated in “closed form.” It can, however, be
written as a function of an incomplete gamma function P (a, x), as detailed in Appendix D,
and evaluated numerically. Specifically, it can be shown that if z ≥ 0 then

Φ(z) =
1 + P (1/2, z2/2)

2
z ≥ 0.

For z < 0, Φ(z) can be evaluated by using the identity Φ(−z) = 1 − Φ(z). The special
function Φ(z) is available in the library rvms as the function cdfNormal(0.0, 1.0, z).

One compelling reason for the popularity of the expected value notation is that it ap-
plies equally well to both discrete and continuous random variables. For example, suppose
that X is a random variable (discrete or continuous) with mean µ and standard deviation
σ. For constants a and b define the new random variable X ′ = aX + b with mean µ′ and
standard deviation σ′. As an extension of Example 7.1.7,

µ′ = E[X ′] = E[aX + b] = aE[X] + b = aµ+ b

and
(σ′)2 = E[(X ′ − µ′)2] = E[(aX − aµ)2] = a2E[(X − µ)2] = a2σ2.

Therefore
µ′ = aµ+ b and σ′ = |a|σ.

(See Section 4.1 for analogous sample statistics equations.)

Example 7.1.8 Suppose that Z is a random variable with mean 0 and standard devi-
ation 1 (often known as a standardized random variable) and we wish to construct a new
random variable X with specified mean µ and standard deviation σ. The usual way to
do this is to define X = σZ + µ. Then, because E[Z] = 0 and E[Z2] = 1, the mean and
variance of X are

E[X] = σE[Z] + µ = µ and E[(X − µ)2] = E[σ2Z2] = σ2E[Z2] = σ2

respectively, as desired. The standard deviation of X is σ. This example is the basis for
the following definition.
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Normal Random Variable

Definition 7.1.7 The continuous random variable X is Normal(µ, σ) if and only if

X = σZ + µ

where σ > 0 and the random variable Z is Normal(0, 1).

From Example 7.1.7, it follows that if X is a Normal(µ, σ) random variable then
the mean of X is µ and the standard deviation is σ. That is, for this random variable
model the mean and standard deviation are explicit parameters. The point here is that
a Normal(µ, σ) random variable is constructed from a Normal(0, 1) random variable by
“shifting” the mean from 0 to µ via the addition of µ and by “scaling” the standard
deviation from 1 to σ via multiplication by σ.

The cdf of a Normal(µ, σ) random variable is

F (x) = Pr(X ≤ x) = Pr(σZ + µ ≤ x) = Pr
(

Z ≤ (x− µ)/σ
)

−∞ < x < ∞

so that

F (x) = Φ

(

x− µ

σ

)

−∞ < x < ∞

where the special function Φ(·) is the cdf of a Normal(0, 1) random variable. Because the
pdf of a Normal(0, 1) random variable is

d

dz
Φ(z) =

1
√
2π
exp(−z2/2) −∞ < z < ∞

the associated pdf of a Normal(µ, σ) random variable is

f(x) =
dF (x)

dx
=

d

dx
Φ

(

x− µ

σ

)

= · · · =
1

σ
√
2π
exp

(

−(x− µ)2/2σ2
)

−∞ < x < ∞

as illustrated in Figure 7.1.4.
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The shift parameter µ and the scale parameter σ allow the normal distribution to
enjoy a wide variety of mathematical modeling applications such as the weights of newborn
babies, measurements on industrial products, agricultural yields, and IQ scores. For all
choices of the parameters µ and σ, the pdf of a normal random variable has the bell shape
shown in Figure 7.1.4.

In a field of study known as “classical statistics,” observations are assumed to be
drawn from populations having a Normal(µ, σ) distribution which allows for conclusions
to be drawn concerning µ and σ. An important result in statistical theory is known as the
central limit theorem, which states that the limiting distribution of sums of independent
and identically distributed random variables tends to the normal distribution as the number
of random variables in the sum goes to infinity (Hogg, McKean, and Craig, 2005).

We summarize a few facts about normal random variables below:

• A Normal(µ, σ) random variable is also commonly called a Gaussian random variable.

• The 68–95–99.73 rule for Normal(µ, σ) random variables indicates that the area under
the pdf within 1, 2, and 3 standard deviations of the mean µ is approximately 0.68,
0.95, and 0.9973.

• The pdf has inflection points at µ± σ.

• Our choice of using Normal(µ, σ) to denote a normal random variable differs signif-
icantly from the more common N (µ, σ2). We use the non-standard notation so that
the parameters in our software are consistent with the presentation in the text.

Finally, a warning about the Normal(µ, σ) distribution. Since the support is X =
{x|−∞ < x < ∞}, the Normal(µ, σ) distribution is not an appropriate choice for modeling
certain aspects (e.g., time between arrivals or service times in a queue) of a discrete-event
simulation model since it could potentially move the simulation clock backward with po-
tential disastrous consequences. Thus the Normal(µ, σ) distribution must be manipulated
in a manner to produce only positive values. One such manipulation is the lognormal
distribution presented next.

Lognormal Random Variable

Definition 7.1.8 The continuous random variable X is Lognormal(a, b) if and only if

X = exp(a+ bZ)

where the random variable Z is Normal(0, 1) and b > 0.

Like a Normal(µ, σ) random variable, a Lognormal(a, b) random variable is also based
on transforming a Normal(0, 1) random variable. The transformation in this case is non-
linear and therefore the result is more difficult to analyze. However, the nonlinear trans-
formation provides an important benefit; a Lognormal(a, b) random variable is inherently
positive and therefore potentially well suited to modeling naturally positive quantities like
service times.
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The cdf of a Lognormal(a, b) random variable is

F (x) = Pr(X ≤ x) = Pr
(

exp(a+ bZ) ≤ x
)

= Pr
(

a+ bZ ≤ ln(x)
)

x > 0

so that

F (x) = Pr
(

Z ≤ (ln(x)− a)/b
)

= Φ

(

ln(x)− a

b

)

x > 0

where the special function Φ(·) is the cdf of a Normal(0, 1) random variable. Differentiation
by x then establishes that the pdf of a Lognormal(a, b) random variable is

f(x) =
dF (x)

dx
= · · · =

1

bx
√
2π
exp

(

−(ln(x)− a)2/2b2
)

x > 0

as illustrated in Figure 7.1.5 for (a, b) = (−0.5, 1.0).
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It can be verified that the mean and standard deviation of a Lognormal(a, b) random
variable are

µ = exp
(

a+ b2/2
)

and σ = exp
(

a+ b2/2
)
√

exp(b2)− 1.

For the pdf illustrated, µ = 1.0 and σ =
√
e− 1 ∼= 1.31.

A Uniform(a, b) random variable is the continuous analog of a discrete Equilikely(a, b)
random variable. Similarly, an Exponential(µ) random variable is the continuous analog
of a Geometric(p) random variable. Given that, because a Pascal(n, p) random variable is
the sum of n iid Geometric(p) random variables, it is natural to assume that the sum of n
iid Exponential(µ) random variables defines a commonly-used continuous random variable
model. That is the case.

Erlang Random Variable

Definition 7.1.9 The continuous random variable X is Erlang(n, b) if and only if

X = X1 +X2 + · · ·+Xn

where X1, X2, . . . , Xn is an iid sequence of Exponential(b) random variables.
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Although the details of the derivation are beyond the scope of this book, from Defi-
nition 7.1.9 it can be shown that the pdf of an Erlang(n, b) random variable is

f(x) =
1

b(n− 1)!
(x/b)n−1 exp(−x/b) x > 0

as illustrated in Figure 7.1.6 for (n, b) = (3, 1.0). In this case µ = 3.0 and σ ∼= 1.732.
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The corresponding cdf is an incomplete gamma function (see Appendix D)

F (x) =

∫ x

0

f(t) dt = 1−
[

exp
(

−
x

b

)]

(

n−1
∑

i=0

(x/b)i

i!

)

= P (n, x/b) x > 0.

The associated mean and standard deviation are

µ = nb and σ =
√
n b.

Chisquare and Student Random Variables

In addition to Erlang(n, b), Exponential(µ), Lognormal(a, b), Normal(µ, σ), and Uni-

form(a, b) random variables, two other continuous random variables commonly used in
simulation applications are Chisquare(n) and Student(n). These two random variables are
defined in the next section and summarized in Section 7.4. Although they are less likely to
be used for parametric modeling in a discrete-event simulation model due to their integer
parameters, they are often used for statistical inference.

7.1.3 EXERCISES

Exercise 7.1.1 The possible values of the continuous random variable X are a < x < b.
(a) If the pdf of X is f(x) = α(b− x), what is α in terms of a and b? (b) Derive equations
for the cdf as a function of x, in terms of a and b. (c) Derive equations for the mean and
standard deviation in terms of a and b.

Exercise 7.1.2 (a) Derive the equations for µ and σ in Example 7.1.4 and compare
with the corresponding equations in Example 6.1.7. (b) If σ2

u and σ2

e are the variance of
a Uniform(a, b) and Equilikely(a, b) random variable respectively, show that σ2

e > σ2

u and
that σ2

e/σ
2

u → 1 as (b− a)→ ∞.
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Exercise 7.1.3 IfX is a continuous random variable with pdf f(·), mean µ, and variance
σ2, prove that

∫

x

x2f(x) dx = µ2 + σ2

where the integration is over all possible values of X.

Exercise 7.1.4 If X is an Exponential(µ) random variable and Y = bXc, prove that Y
is a Geometric(p) random variable for an appropriate value of p (which depends on µ).

Exercise 7.1.5 (a) If X = U/(1 − U) with U a Uniform(0, 1) random variable, then
what is the set of possible values X ? (b) What is the cdf of X? (c) What is the pdf of X?

Exercise 7.1.6a (a) If Y = 2r sin(Θ/2) where the random variable Θ is Uniform(0, 2π)
and r > 0, prove that the pdf of Y is

f(y) =
2

π
√

4r2 − y2
0 < y < 2r.

(b) Why is there a 2 in the numerator? (c) As an alternative to the derivation in Exam-
ple 7.1.6, use this pdf to prove that E[Y ] = 4r/π. (d) What is the standard deviation
of Y ?

Exercise 7.1.7a (a) If U is Uniform(0, 1), if Θ is Uniform(−π/2, π/2), if U and Θ are
independent, and if V = U + cos(Θ), prove that the possible values of V are 0 < v < 2
and the pdf of V is

f(v) =

{

1− (2/π) arccos(v) 0 < v < 1

(2/π) arccos(v − 1) 1 ≤ v < 2.

(b) How does this relate to Example 4.3.1?

Exercise 7.1.8 If X is a Normal(µ, σ) random variable what is the numerical value of
Pr(|X − µ| ≤ kσ) for k = 1, 2, 3, 4?

Exercise 7.1.9 (a) If X = exp(U) with U a Uniform(a, b) random variable then what
is X ? (b) What is the cdf of X? (c) What is the pdf of X? (d) What is the mean of X?

Exercise 7.1.10 Show that the inflection points on the pdf for a Normal(µ, σ) random
variable occur at x = µ± σ.

Exercise 7.1.11 Let X be a random variable with finite mean µ and finite variance σ2.
Find the mean and variance of the standardized random variable Y = (X − µ)/σ.
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This section is the continuous random variate analog of Section 6.2. As in Section 6.2,
the emphasis is on the development of inversion algorithms for random variate generation.

7.2.1 INVERSE DISTRIBUTION FUNCTION

Definition 7.2.1 LetX be a continuous random variable with cdf F (·) and set of possible
values X . The inverse distribution function (idf ) of X is the function F−1 : (0, 1) → X

defined for all u ∈ (0, 1) as
F−1(u) = x

where x ∈ X is the unique possible value for which F (x) = u.

Because the cdf is strictly monotone increasing, there is a one-to-one correspondence
between possible values x ∈ X and cdf values u = F (x) ∈ (0, 1).* Therefore, unlike the idf
for a discrete random variable which is a pseudo inverse, the idf for a continuous random
variable is a true inverse, as illustrated in Figure 7.2.1.
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Because the idf is a true inverse, it is sometimes possible to determine the idf in “closed
form” by solving the equation F (x) = u for x using common algebraic techniques. Gener-
ally this is much easier to do in the continuous case than in the discrete case because no
inequality manipulations are required.

Examples

Example 7.2.1 If X is Uniform(a, b) then F (x) = (x−a)/(b−a) for a < x < b. Solving
the equation u = F (x) for x yields the idf

x = F−1(u) = a+ (b− a)u 0 < u < 1.

Example 7.2.2 If X is Exponential(µ) then F (x) = 1− exp(−x/µ) for x > 0. Solving
the equation u = F (x) for x yields the idf

x = F−1(u) = −µ ln(1− u) 0 < u < 1.

* The condition f(x) > 0 for all x ∈ X is sufficient to guarantee that F (·) is strictly
monotone increasing — see Definition 7.1.3.
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Example 7.2.3 If X is a continuous random variable with possible values 0 < x < b

and pdf f(x) = 2x/b2 then the cdf is F (x) = (x/b)2. The equation u = F (x) = (x/b)2 can
be solved for x to establish that the idf of X is F−1(u) = b

√
u for 0 < u < 1.

7.2.2 RANDOM VARIATE GENERATION BY INVERSION

As in the discrete case, the idf of a continuous random variable can be used to generate
corresponding random variates by using inversion. The theoretical basis for this is the
following theorem, which is known as the probability integral transformation. The proof
is left as an exercise.

Theorem 7.2.1 If X is a continuous random variable with idf F−1(·), the continuous
random variable U is Uniform(0, 1), and Z is the continuous random variable defined by
Z = F−1(U), then Z and X are identically distributed.*

Algorithm 7.2.1 If X is a continuous random variable with idf F−1(·), then a corre-
sponding continuous random variate can be generated by inversion as follows.

u = Random();

return F−1(u);

Example 7.2.4 This algorithm uses inversion and Example 7.2.1 to generate a Uni-

form(a, b) random variate.

u = Random();

return a + (b - a) * u;

This is the algorithm used to define the function Uniform(a, b) (see Definition 2.3.3).

Example 7.2.5 This algorithm uses inversion and Example 7.2.2 to generate an Expo-

nential(µ) random variate.

u = Random();

return −µ * log(1 - u);

This is the algorithm used to define the function Exponential(µ) (see Definition 3.1.1).

Note that the random variable U is Uniform(0, 1) if and only if the random variable
1 − U is also Uniform(0, 1). Therefore, it is also valid to generate an Exponential(µ)
random variate as follows, thereby saving the essentially negligible cost of a subtraction

u = Random();

return −µ * log(u);

Because this algorithm has reverse monotonicity (e.g., large values of u correspond to small
values of x and conversely), for esthetic reasons we prefer the algorithm in Example 7.2.5.

* Compare with Theorem 6.2.2.
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The random variate generation algorithms in Examples 7.2.4 and 7.2.5 are essentially
ideal. That is, both algorithms are portable, exact, robust, efficient, clear, synchronized,
and monotone.

Generally it is not possible to solve for a continuous random variable idf explicitly by
algebraic techniques. There are, however, two other options that may be available.

• Use a function that accurately approximates F−1(·).

• Determine the idf by solving the equation u = F (x) numerically.

We will see examples of both approaches in this section.

Approximate Inversion

If Z is a Normal(0, 1) random variable then the cdf is the special function Φ(·) and
the idf Φ−1(·) cannot be evaluated in closed form. However, as demonstrated by Odeh
and Evans (1974), the idf can be approximated with reasonable efficiency and essentially
negligible error as the ratio of two fourth-degree polynomials. That is, for any u ∈ (0, 1),
a Normal(0, 1) idf approximation is Φ−1(u) ∼= Φ−1

a (u) where

Φ−1

a (u) =

{

−t+ p(t)/q(t) 0.0 < u < 0.5

t− p(t)/q(t) 0.5 ≤ u < 1.0,

and

t =

{
√

−2 ln(u) 0.0 < u < 0.5
√

−2 ln(1− u) 0.5 ≤ u < 1.0,

and
p(t) = a0 + a1t+ · · ·+ a4t

4

q(t) = b0 + b1t+ · · ·+ b4t
4.

If the ten polynomial coefficients are chosen carefully, then this approximation is accurate
with an absolute error less than 10−9 for all 0.0 < u < 1.0 (see Exercise 7.2.8).*

Example 7.2.6 Given that the Φ−1

a (u) approximation to Φ
−1(u) is essentially exact and

can be evaluated with reasonable efficiency, inversion can be used to generate Normal(0, 1)
random variates as illustrated.

u = Random();

return Φ−1

a (u);

This algorithm is portable, essentially exact, robust, reasonably efficient, synchronized,
and monotone, at the expense of clarity.

* The values of the ten constants are listed in the the file rvgs.c. The numerical analysis
details of how these coefficients were originally determined are beyond the scope of this
book.
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Alternative Methods

For historical perspective we mention two other Normal(0, 1) random variate genera-
tion algorithms, although we prefer the inversion algorithm in Example 7.2.6.

• One algorithm is based on the fact that if U1, U2, . . ., U12 is an iid sequence of
Uniform(0, 1) random variables, then the random variable

Z = U1 + U2 + · · ·+ U12 − 6

is approximately Normal(0, 1). The mean of this random variable is exactly 0.0, the
standard deviation is exactly 1.0, and the pdf is symmetric about 0. The set of
possible values is −6.0 < z < 6.0, however, and so it is clear that some approximation
is involved. The justification for this algorithm is provided by the central limit theorem
— see Section 8.1. This algorithm is portable, robust, relatively efficient, and clear;
it is not exact, synchronized, or monotone. We do not recommended this algorithm
since it is not exact.

• The other algorithm, due to Box and Muller (1958), is based on the fact that if U1,
U2 are independent Uniform(0, 1) random variables then

Z1 =
√

−2 ln(U1) cos(2πU2) and Z2 =
√

−2 ln(U1) sin(2πU2)

will be independent Normal(0, 1) random variables. If only one normal variate is
needed, the second normal variate must be stored for a subsequent call or discarded.
The algorithm is portable, exact, robust, and relatively efficient. It is not clear (unless
the underlying theory is understood), it is not monotone, and it is only synchronized
in pair-wise fashion. The polar method (Marsaglia and Bray, 1964) improves the
computational efficiency.

Normal Random Variates

Consistent with Definitions 7.1.7 and 7.1.8, random variates corresponding to Nor-

mal(µ, σ) and Lognormal(a, b) random variables can be generated by using a Normal(0, 1)
generator. This illustrates the importance of having a good Normal(0, 1) random variate
generator and helps explain why a significant amount of past research has been devoted
to the development of such generators.

Example 7.2.7 This algorithm generates a Normal(µ, σ) random variate.

z = Normal(0.0, 1.0);

return µ + σ * z; /* see definition 7.1.7 */

Lognormal Random Variates

Example 7.2.8 This algorithm generates a Lognormal(a, b) random variate.

z = Normal(0.0, 1.0);

return exp(a + b * z); /* see definition 7.1.8 */
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The algorithm in Example 7.2.6 generates a Normal(0, 1) random variate by inver-
sion. Provided this algorithm is used to generate the Normal(0, 1) random variate, the
algorithms in Examples 7.2.7 and 7.2.8 use inversion also and, therefore, are essentially
ideal.

Numerical Inversion

Numerical inversion provides another way to generate continuous random variates
when F (x) can’t be inverted algebraically (i.e., when F−1(u) can’t be expressed in closed-
form). That is, the equation u = F (x) can be solved for x iteratively. Several iterative
algorithms can be used. Of these, Newton’s method provides a good compromise between
rate of convergence and robustness. Given u ∈ (0, 1), to derive Newton’s method for
inverting a cdf, let t be numerically close to the value of x for which u = F (x). If F (·) is
expanded in a Taylor’s series about the point t, then

F (x) = F (t) + F ′(t)(x− t) +
1

2!
F ′′(t)(x− t)2 + · · ·

where F ′(t) and F ′′(t) are the first and second derivative of the cdf evaluated at t. Because
the first derivative of the cdf is the pdf, F ′(t) = f(t). Moreover, if |x − t| is sufficiently
small then the (x− t)2 and higher-order terms can be ignored so that

u = F (x) ∼= F (t) + f(t)(x− t).

Solving the equation u ∼= F (t) + f(t)(x− t) for x yields

x ∼= t+
u− F (t)

f(t)

With initial guess t0, this last equation defines an iterative numerical algorithm of the form

ti+1 = ti +
u− F (ti)

f(ti)
i = 0, 1, 2, . . .

that solves the equation u = F (x) for x in the sense that ti → x as i → ∞, as illustrated
in Figure 7.2.2.
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There are two remaining issues relative to Newton’s method: the choice of an initial
value t0 and the test for convergence.

• Generally, as in the discrete case, the best choice for the initial value is the mode.
For most of continuous random variable models considered in this book, t0 = µ is an
essentially equivalent choice.

• Generally, given a (user supplied, tiny) convergence parameter ε > 0, the condition
|ti+1 − ti| < ε is a reasonable test for convergence.

With the initial value and convergence issues resolved in this way, Newton’s method for
numerical inversion is summarized by the following algorithm.

Algorithm 7.2.2 Given u ∈ (0, 1), the pdf f(·), the cdf F (·), and a convergence param-
eter ε > 0, this algorithm will solve for x = F−1(u)

x = µ; /* µ is E[X] */

do {

t = x;

x = t + (u - F (t)) / f(t);

} while (|x− t| > ε);

return x; /* x is F−1(u) */

If Algorithm 7.2.2 is used to compute the idf for an inherently positive random variable
and if u is small, then a negative value of x may occur early in the iterative process. A
negative value of x will cause t to be negative on the next iteration so that F (t) and f(t)
will then be undefined. The following modification of Algorithm 7.2.2 can be used to avoid
this problem.

x = µ; /* µ is E[X] */

do {

t = x;

x = t + (u - F (t)) / f(t);

if (x <= 0.0)

x = 0.5 * t;

} while (|x− t| > ε);

return x; /* x is F−1(u) */

Algorithms 7.2.1 and 7.2.2 together provide a general-purpose inversion approach to
continuous random variate generation. For example, the Erlang(n, b) idf capability pro-
vided in the library rvms, which is based on Algorithm 7.2.2, can be used with Algo-
rithm 7.2.1 as

u = Random();

return idfErlang(n, b, u);
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7.2.3 ALTERNATIVE RANDOM VARIATE GENERATION ALGORITHMS

Properties relating parametric distributions to one another can be used to develop
variate generation algorithms for some common parametric distributions. We exploited
these special properties in the last chapter to devise variate generation algorithms for
discrete random variables (e.g., a Binomial(n, p) random variable is the sum of n indepen-
dent and identically distributed Bernoulli(p) random variables). We consider the Erlang,
chisquare, and student distributions here.

Erlang Random Variates

As an alternative to inversion, an Erlang(n, b) random variate can be generated by
summing n independent and identically distributed Exponential(b) random variates (see
Definition 7.1.9), as follows.

x = 0.0;

for (i = 0; i < n; i++)

x += Exponential(b);

return x;

This algorithm is portable, exact, robust, and clear. Because it is O(n), if n is large the
algorithm is not efficient. For any n, it is not synchronized or monotone. To increase
computational efficiency this algorithm can be modified as follows

t = 1.0;

for (i = 0; i < n; i++)

t *= (1.0 - Random());

return -b * log(t);

If n is large, the time saving with this modification is potentially significant because only
one log() evaluation is required rather than n of them. Since the product of n random
numbers

∏n

i=1
Ui has the same distribution as

∏n

i=1
(1 − Ui), still more processing time

(i.e., n subtractions) can be saved by replacing the statement in the for loop with t *=

Random();

Both algorithms presented here are inherently O(n), however, and are thus not efficient
if n is large. If floating-point arithmetic could be done with infinite precision these two
algorithms would produce identical output. See Exercise 7.2.2.

Chisquare Random Variates

If n is an even positive integer then an Erlang(n/2, 2) random variable is equivalent
to a Chisquare(n) random variable. As an alternative characterization, if n is even or odd
then X is a Chisquare(n) random variable if and only if X = Z2

1
+ Z2

2
+ · · · + Z2

n where
Z1, Z2, . . ., Zn is an iid sequence of Normal(0, 1) random variables. This alternative
characterization can be used with a Normal(0, 1) random variate generator to generate a
Chisquare(n) random variate as follows
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x = 0.0;

for (i = 0; i < n; i++) {

z = Normal(0.0, 1.0);

x += (z * z);

}

return x;

This algorithm is portable, exact, robust, and clear. Because it is O(n), if n is large the
algorithm is not efficient. For any n > 1, it is not synchronized or monotone.

Student Random Variates

The random variable X is Student(n) if and only if X = Z/
√

V/n where Z is Nor-

mal(0, 1), V is Chisquare(n) and Z, V are independent.* Therefore, the following algo-
rithm uses a Normal(0, 1) random variate generator and a Chisquare(n) random variate
generator to generate a Student(n) random variate as

z = Normal(0.0, 1.0);

v = Chisquare(n);

return z / sqrt(v / n);

This algorithm is exact, robust, portable, and clear. Because it is O(n), if n is large the
algorithm is not efficient. For any n, it is not synchronized or monotone.

7.2.4 TESTING FOR CORRECTNESS

Any continuous random variate generation algorithm should be tested for correctness.
One quick method to test for incorrectness is to calculate the sample mean and sample
standard deviation for a large sample size. Since x̄ → µ and s → σ as n → ∞, the sample
mean and standard deviation should be “reasonably close” to the associated population
mean and standard deviation. The meaning of “reasonably close” will be investigated
further in the next two chapters, but for now we can say that if the sample mean and
sample standard deviations are not closing in on the appropriate theoretical values, the
algorithm is incorrect. The convergence described here is a necessary, but not a sufficient
condition for the correctness of the algorithm. The reason that we can’t conclude that
the algorithm is correct is that two different distributions can have identical mean and
variance (e.g., a Uniform(−

√
3,
√
3) and a Normal(0, 1) random variable). Two empirical

tests for correctness are based on the pdf f(x) and the cdf F (x) which, unlike the mean
and standard deviation, completely characterize the distribution.

* This distribution was discovered by W.S. Gossett when he was working for an Irish
brewery. Since the brewery did not want its competitors to know that it was using sta-
tistical methods, they required that he use the pseudonym “Student” to publish his work.
Most textbooks refer to this distribution as either the Student’s-t or just the t distribution.
This distribution is the basis for one of the cornerstone statistical tests — the two-sample
t-test for comparing the means of two populations (Hogg, McKean, and Craig, 2005).
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Comparing the histogram and f(x)

A natural way to test the correctness of a random variate generation algorithm at the
computational level is to use the algorithm to generate a sample of n random variates and,
as in Section 4.3, construct a k-bin continuous-data histogram with bin width δ. If X is
the set of possible values, f̂(x) is the histogram density, and f(x) is the pdf, then provided

the algorithm is correct, for all x ∈ X we should find that f̂(x) → f(x) as n → ∞ and
δ → 0. Of course, in practice, these limits cannot be achieved. Instead, we use a large but
finite value of n and a small but non-zero value of δ.

Given that n is finite and δ is not zero, perfect agreement between f̂(x) and f(x)
will not be achieved. In the discrete case, this lack of perfect agreement is due to natural
sampling variability only. In the continuous case, the quantization error associated with
binning the sample is an additional factor that will contribute to the lack of agreement.
That is, let B = [m−δ/2, m+δ/2) be a small histogram bin with width δ and midpoint m.
Provided that f(x) has a Taylor’s series expansion at x = m we can write

f(x) = f(m) + f ′(m)(x−m) +
1

2!
f ′′(m)(x−m)2 +

1

3!
f ′′′(m)(x−m)3 + · · ·

from which it follows that

Pr(X ∈ B) =

∫

B

f(x) dx = · · · = f(m)δ +
1

24
f ′′(m)δ3 + · · ·

If terms of order δ4 or higher are ignored, then for all x ∈ B the histogram density is

f̂(x) =
1

δ
Pr(X ∈ B) ∼= f(m) +

1

24
f ′′(m)δ2.

Therefore, (unless f ′′(m) = 0) depending on the sign of f ′′(m) there is a positive or
negative bias between the (experimental) density of the histogram bin and the (theoretical)
pdf evaluated at the bin midpoint. This bias may be significant if the curvature of the pdf
is large at the bin midpoint.

Example 7.2.9 If X is a continuous random variable with pdf

f(x) =
2

(x+ 1)3
x > 0

then the cdf X is

F (x) =

∫ x

0

f(t) dt = 1−
1

(x+ 1)2
x > 0

and, by solving the equation u = F (x) for x, we find that the idf is

F−1(u) =
1

√
1− u

− 1 0 < u < 1.
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In this case, the pdf curvature is very large close to x = 0. Therefore, if inversion is
used to generate random variates corresponding to X and if the correctness of the inversion
algorithm is tested by constructing a histogram, unless δ is very small we expect that the
histogram will not match the pdf well for the bins close to x = 0. In particular, if a
histogram bin width of δ = 0.5 is used then, in the limit as n → ∞, for the first six
histogram bins f̂(x) and f(m) are (with d.dddd precision)

m : 0.25 0.75 1.25 1.75 2.25 2.75
f̂(x) : 1.1111 0.3889 0.1800 0.0978 0.0590 0.0383
f(m) : 1.0240 0.3732 0.1756 0.0962 0.0583 0.0379

The “curvature bias” is evident in the first few bins. Indeed, for the first bin (m = 0.25)
the curvature bias is

1

24
f ′′(m)δ2 = 0.08192

which explains essentially all the difference between f̂(x) and f(m).

Comparing the Empirical cdf and F (x)

Comparing the empirical cdf, introduced in Section 4.3, and the population cdf F (x)
is a second method for assessing the correctness of a variate generation algorithm. The
quantization error associated with binning is eliminated. For large samples, the empirical
cdf should converge to F (x), i.e., F̂ (x) → F (x) as n → ∞ if the variate generation
algorithm is valid.

Library rvgs

All of the continuous random variate generators presented in this section are provided
in the library rvgs as the seven functions:

• double Chisquare(long n) — returns a Chisquare(n) random variate;

• double Erlang(long n, double b) — returns an Erlang(n, b) random variate;

• double Exponential(double µ) — returns an Exponential(µ) random variate;

• double Lognormal(double a, double b)— returns a Lognormal(a, b) random vari-
ate;

• double Normal(double µ, double σ) — returns a Normal(µ, σ) random variate;

• double Student(long n) — returns a Student(n) random variate;

• double Uniform(double a, double b) — returns a Uniform(a, b) random variate.

7.2.5 EXERCISES

Exercise 7.2.1 Prove Theorem 7.2.1.

Exercise 7.2.2 To what extent will the two Erlang(n, b) random variate generation
algorithms in Section 7.2.3 produce the same output? Why?
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Exercise 7.2.3 What are the largest and smallest possible values that can be returned
by the function Normal(0, 1)?

Exercise 7.2.4 A continuous random variable X is Weibull(a, b) if the real-valued pa-
rameters a, b are positive, the possible values of X are x > 0, and the cdf is

F (x) = 1− exp
(

− (bx)a
)

x > 0.

What is the pdf and idf?

Exercise 7.2.5 The continuous random variable is Logistic(a, b) if the real-valued pa-
rameter a is unconstrained, the real-valued parameter b is positive, the possible values of
X are −∞ < x < ∞, and the idf is

F−1(u) = a− b ln

(

1− u

u

)

0 < u < 1.

What is the pdf and cdf?

Exercise 7.2.6a A continuous random variable X is Pareto(a, b) if the real-valued pa-
rameters a, b are positive, the possible values of X are x > a, and the pdf is

f(x) = bab/xb+1 x > a.

(a) Determine the mean and standard deviation of X, paying careful attention to any
restrictions that must be imposed on a and b. (b) Construct a function that uses inversion
to generate values of X. (c) Present convincing numerical evidence that this random
variate generator is correct in the case a = 1.0, b = 2.0. (d) Comment.

Exercise 7.2.7a (a) Given a circle of radius r centered at the origin of a conventional
(x, y) coordinate system, construct an algorithm that will generate points uniformly, at
random, interior to the circle. This algorithm cannot use more than two calls to Random

per (x, y) point generated. (b) Explain clearly the theory behind the correctness of your
algorithm. (Guessing this algorithm, even if correct, is not enough.)

Exercise 7.2.8 (a) If Φ−1

a (·) is the Normal(0, 1) idf approximation as implemented in
the library rvgs by the function Normal and Φ(·) is the Normal(0, 1) cdf as implemented
in the library rvms by the function cdfNormal, use Monte Carlo simulation to estimate the
smallest value of ε > 0 such that |Φ(Φ−1

a (u))− u| < ε for all u ∈ (0, 1). (Use the libraries
rngs, rvgs and rvms directly; do not cut-and-paste from rvgs.c and rvms.c to build the
Monte Carlo simulation program.) (b) Comment on the value of this process as a cdf/idf
consistency check.

Exercise 7.2.9 (a) Give the theoretical largest and smallest standard normal random
variates that can be generated by the Box–Muller method using a random number gen-
erator with m = 231 − 1. (b) Compute the actual largest and smallest standard normal
random variates that can be generated when a = 48 271, m = 231 − 1, and the random
numbers U1 and U2 are generated by consecutive calls to Random using a single stream.
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The purpose of this section is to demonstrate several continuous random variable
applications, using the capabilities provided by the continuous random variate generators
in the library rvgs and the pdf, cdf, and idf functions in the library rvms. We begin by
developing an after-the-fact justification for some of the assumptions used in the discrete-
event simulation models developed earlier in this book.

7.3.1 ARRIVAL PROCESS MODELS

Recall that the usual convention is to model interarrival times as a sequence of positive
random variables R1, R2, R3, . . . and then construct the corresponding arrival times as a
sequence of random variables A1, A2, A3, . . . defined by

A0 = 0

Ai = Ai−1 +Ri i = 1, 2, . . .

By induction, for all i (with A0 = 0)

Ai = R1 +R2 + · · ·+Ri i = 1, 2, . . .

The arrival times are ordered so that 0 = A0 < A1 < A2 < A3 < · · · as illustrated below.

Ai−2 Ai−1 Ai Ai+1

←− Ri −→

time

Example 7.3.1 This approach is used in programs ssq2 and ssq3 to generate job ar-
rivals with the additional assumption that the random variables R1, R2, R3, . . . are Expo-

nential(1/λ). In both programs, the arrival rate is equal to λ = 0.5 jobs per unit time.
Similarly, this approach and an Exponential(1/λ) interdemand random variable model is
used in programs sis3 and sis4 to generate demand instances. The demand rate corre-
sponds to an average of λ = 30.0 actual demands per time interval in program sis3 and
λ = 120.0 potential demands per time interval in program sis4.

Definition 7.3.1 If R1, R2, R3, . . . is an iid sequence of random positive interarrival
times with common mean 1/λ > 0, then the corresponding random sequence of arrival
times A1, A2, A3, . . . is a stationary arrival process with rate λ.*

The “units” of the mean interarrival time 1/λ are time per arrival. Thus the arrival
rate λ has reciprocal units of arrivals per unit time. For example, if the average interarrival
time is 0.1 minutes, then the arrival rate is λ = 10.0 arrivals per minute. Although it is
traditional to specify stationary arrival processes in terms of λ, it is usually more convenient
for discrete-event simulation software to use 1/λ for the purpose of generating the arrival
process, as is done in programs ssq2, ssq3, sis3, and sis4.

* A stationary arrival process is also known as a renewal process, which models the
sequence of event times A1, A2, A3, . . . (in our case, events are arrivals). A stationary
arrival process is also called a homogeneous arrival process.
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If the arrival rate λ varies with time, then the arrival process is nonstationary. Truly
stationary arrival process are a convenient fiction.* Despite that, stationary arrival pro-
cesses: (i) are important theoretically, (ii) sometimes provide a satisfactory approximation
over a short time interval, and (iii) must be understood before attempting to study non-
stationary arrival processes. Nonstationary arrival processes are considered in Section 7.5.

Stationary Poisson Arrival Process

Although the interarrival times R1, R2, R3, . . . can be any type of positive random
variable, in the absence of information to the contrary both theory and practice support
the hypothesis that it is usually most appropriate to assume that the interarrival times are
Exponential(1/λ), as is done in programs ssq2, ssq3, sis3, and sis4,

Definition 7.3.2 If R1, R2, R3, . . . is an iid sequence of Exponential(1/λ) interarrival
times, then the corresponding sequence A1, A2, A3, . . . of arrival times is a stationary
Poisson arrival process with rate λ. Equivalently, for i = 1, 2, 3, . . . the arrival time Ai is
an Erlang(i, 1/λ) random variable.

Algorithm 7.3.1 Given λ > 0 and t > 0, this algorithm generates a realization of a
stationary Poisson arrival process with arrival rate λ over the time interval (0, t)

a0 = 0.0; /* a convention */

n = 0;

while (an < t) {

an+1 = an + Exponential(1 / λ);

n++;

}

return a1, a2, a3, . . . , an−1;

Random Arrivals

We now turn to several fundamental theoretical results that demonstrate the interre-
lation between Uniform, Exponential , and Poisson random variables. These results will
help explain why arrival processes are commonly assumed to be stationary Poisson pro-
cesses. In the discussion that follows: (i) t > 0 defines a fixed time interval (0, t), (ii) n
represents the number of arrivals in the interval (0, t), and (iii) r > 0 is the length of a
small subinterval located at random interior to (0, t).

Correspondingly, λ = n/t is the arrival rate, p = r/t is the probability that a particular
arrival will be in the subinterval, and np = nr/t = λr is the expected number of arrivals in
the subinterval. This notation and the discussion to follow is consistent with the stochastic
experiment illustrated in Example 4.3.6.

* Consider, for example, the rate at which jobs arrive to a fileserver or the rate at
which customers arrive to a fastfood restaurant. In both cases, the arrival rate will vary
dramatically during a typical 24-hour day of operation.
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Theorem 7.3.1 Let A1, A2, . . ., An be iid Uniform(0, t) random variables and let the
discrete random variable X be the number of Ai that fall in a fixed subinterval of length
r = pt interior to (0, t). Then X is a Binomial(n, p) random variable.*

Proof Each Ai is in the subinterval of length r with probability p = r/t. For each i

define

Xi =

{

1 if Ai is in the subinterval

0 otherwise.

Because X1, X2, . . ., Xn is an iid sequence of Bernoulli(p) random variables and the
number of Ai that fall in the subinterval is X = X1 +X2 + · · ·+Xn, it follows that X is
a Binomial(n, p) random variable.

Random Arrivals Produce Poisson Counts

Because p = λr/n, X is a Binomial(n, λr/n) random variable. As discussed in
Chapter 6, if n is large and λr/n = r/t is small, then X will be indistinguishable from a
Poisson(λr) random variable. Therefore, the previous theorem can be restated as follows.

Theorem 7.3.2 Let A1, A2, . . ., An be iid Uniform(0, t) random variables and let
the discrete random variable X be the number of Ai that fall in a fixed subinterval of
length r interior to (0, t). If n is large and r/t is small then X is indistinguishable from a
Poisson(λr) random variable with λ = n/t.

Example 7.3.2 As in Example 4.2.2, suppose n = 2000 Uniform(0, t) random variates
are generated and tallied into a continuous-data histogram with 1000 bins of size r =
t/1000. If the resulting 1000 bin counts are then tallied into a discrete-data histogram,
then in this case λr = (n/t)(t/1000) = 2 and, consistent with Theorem 7.3.2, the resulting
discrete-data histogram relative frequencies will agree with the pdf of a Poisson(2) random
variable.

To paraphrase Theorem 7.3.2, if many arrivals occur at random with a rate of λ then
the number of arrivals X that will occur in an interval of length r is a Poisson(λr) random
variable. Therefore, the probability of x arrivals in any interval of length r is

Pr(X = x) =
(λr)x exp(−λr)

x!
x = 0, 1, 2, . . .

In particular, Pr(X = 0) = exp(−λr) is the probability of no arrivals in an interval of
length r. Correspondingly, the probability of at least one arrival in the interval is

Pr(X > 0) = 1− Pr(X = 0) = 1− exp(−λr).

For a fixed arrival rate λ, the probability of at least one arrival increases with increasing
interval length r.

* As in Example 4.3.6, think of the Ai as unsorted arrival times.
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Random Arrivals Produce Exponential Interarrivals

If R is the continuous random variable that represents the time between consecutive
arrivals (the interarrival time), then the possible values of R are r > 0. What is the cdf of
R?

Consider an arrival time Ai selected at random and a corresponding interval of
length r, beginning at Ai, as illustrated below.

Ai−1 Ai Ai+1 Ai+2

............................. .......................... time

←−−− r −−−→| |

The random variable R = Ai+1 −Ai will be less than r, as illustrated, if and only if there
is at least one arrival in this interval. Therefore, the cdf of R is

Pr(R ≤ r) = Pr(at least one arrival in this interval) = 1− exp(−λr) r > 0.

From this cdf equation we see that R is an Exponential(1/λ) random variable (see Defini-
tion 7.4.2). This proves the following important theorem.

Theorem 7.3.3 If arrivals occur at random (i.e., as a stationary Poisson process) with
rate λ then the corresponding interarrival times form an iid sequence of Exponential(1/λ)
random variables.*

Consistent with the previous discussion, if all that is known about an arrival process
is that arrivals occur at random with a constant rate λ then the function GetArrival in
programs ssq2 and ssq3 is appropriate. Similarly, if all that is known about a demand
process is that demand instances occur at random with a constant rate λ then the function
GetDemand in programs sis3 and sis4 is appropriate.

Are there occasions when a stationary Poisson arrival process is an appropriate model?
Over short time intervals, such a model may provide a good approximation. Also, a result
given in Fishman (2001, page 464) states that the superposition of many general stationary
arrival processes (each not necessarily Poisson) is a stationary Poisson arrival process.

The following example is based on the observation that if arrivals occur at random
with rate λ = 1 (which is often referred to as a unit Poisson process) then the number
of arrivals X in an interval of length µ will be a Poisson(µ) random variate. (The case
X = 4 is illustrated below.)

0 a1 a2 a3 a4 a5

............................... ..........................

←−−−−−−−−−−−−−−− µ −−−−−−−−−−−−−−−→| |
time

* Theorem 7.3.3 is the justification for Definition 7.3.2.
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Example 7.3.3 An algorithm that generates a Poisson(µ) random variate is

a = 0.0;

x = 0;

while (a < µ) {

a += Exponential(1.0);

x++;

}

return x− 1;

Example 7.3.3 provides an explanation for the choice of the Poisson(µ) random variate
generator presented in Example 6.2.13. The algorithm can be made a bit more efficient by
replacing the calls to Exponential(1.0) with corresponding calls to Random. The details
are left as an exercise.

Summary

Given a fixed time interval (0, t), there are two ways of generating a realization of a
stationary Poisson arrival process with rate λ over this time interval.

• Generate the number of arrivals as a Poisson(λt) random variate n. Then generate a
Uniform(0, t) random variate sample of size n and sort this sample to form the arrival
process 0 < a1 < a2 < a3 < · · · < an, as in Example 4.3.6.

• Use Algorithm 7.3.1 to generate Exponential(1/λt) interarrival times.

Although these two approaches are statistically equivalent, they are certainly not compu-
tationally equivalent. Because of the need to temporarily store the entire n-point sample
and then sort it, there is no computational justification for the use of the first approach,
particularly if n is large. Instead, the second approach, which is based on Theorem 7.3.3,
is always preferred. Indeed, from a computational perspective, the second approach rep-
resents a triumph of theory over brute-force computing.

It is important to remember that the mode of the exponential distribution is 0, which
means that a stationary Poisson arrival process will exhibit a clustering of arrivals. The top
axis below shows the clustering associated with the arrival times of a stationary Poisson
arrival process with λ = 1 and the bottom axis shows a stationary arrival process with
Erlang(4, 1/4) interarrival times. The top axis has many short interarrival times, which
results in clusters of arrivals. The arrival pattern associated with a stationary Poisson
arrival process is often referred to as “random” arrivals.

.................................. .......................... time
0

.................................. .......................... time
0
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The stationary Poisson arrival process generalizes to (i) a stationary arrival process
when the exponential time between arrivals is replaced by any continuous random variable
with positive support, and (ii) a nonstationary Poisson process when the arrival rate λ

varies with time.

This concludes our discussion of arrival processes. We now turn to a discussion of
service processes.

7.3.2 SERVICE PROCESS MODELS

For a service node simulation model a default service process model is not well defined;
there are only application-dependent guidelines.

• Uniform(a, b) service times are rarely ever an appropriate model. Service times seldom
“cut off” at minimum and maximum values a and b. Service time models typically
have “tails” on their pdf’s.

• Because service times are inherently positive, they can not be Normal(µ, σ) unless
this random variable is truncated to positive values only.

• Probability models such as the Lognormal(a, b) distribution generate inherently posi-
tive random variates, making them candidates for modeling service times.

• When service times consist of the sum of n iid Exponential(b) sub-task times, the
Erlang(n, b) model is appropriate.

Program ssq4

Program ssq4 is based on program ssq3, but with a more realistic Erlang(5, 0.3)
service time model. The corresponding service rate is 2/3. As in program ssq3, program
ssq4 uses Exponential(2) random variate interarrivals. The corresponding arrival rate is
1/2.

Example 7.3.4 The arrival rate is λ = 0.5 for both program ssq3 and program ssq4.
For both programs the service rate is ν = 2/3 ∼= 0.667. As illustrated in Figure 7.3.1,
however, the distribution of service times for the two programs is very different.
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models.
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The solid line is the Erlang(5, 0.3) service time pdf in ssq4; the dashed line represents the
Uniform(1, 2) pdf in ssq3. Both have a mean of 1.5. Because of this difference in the
service time distributions, one would expect a difference in some (all?) of the steady-state
service node statistics. As an exercise, you are asked to first conjecture how the steady-
state statistics will differ for these two programs and then investigate the correctness of
your conjecture via discrete-event simulation.*

Erlang Service Times

The Erlang(n, b) service time model is appropriate when service processes can be
naturally decomposed into a series (tandem) of independent “sub-processes” as illustrated
in Figure 7.3.2.
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Figure 7.3.2.

Three

sub-process

service

time.

If there are n service sub-processes (the case n = 3 is illustrated) then the total service
time will be the sum of the service times for each sub-process. If, in addition, the time to
perform each service sub-process is independent of the other times then a random variate
service time can be generated by generating a service time for each sub-process and then
summing the sub-process service time variates. In the particular case that each of the
n service sub-process is Exponential(b), the total service time will be Erlang(n, b). The
service rate will be 1/nb.

Truncation

Let X be a continuous random variable with the set of possible values X and cdf
F (x) = Pr(X ≤ x). Consider an interval (a, b) ⊂ X and suppose we wish to restrict
(truncate) the possible values of X to this interval. Truncation in this continuous-variable
context is similar to, but simpler than, truncation in the discrete-variable context (see
Section 6.3). By definition the probability of X being less than or equal to a is

Pr(X ≤ a) = F (a).

Similarly, the probability of X being greater than or equal to b is

Pr(X ≥ b) = 1− Pr(X < b) = 1− F (b).

In general then

Pr(a < X < b) = Pr(X < b)− Pr(X ≤ a) = F (b)− F (a).

* Which statistics will change, and in what way?
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Relative to truncation, there are two cases to consider.

• If the left-truncation value a and the right-truncation value b are specified, then the
cdf of X can be used to determine the left-tail, right-tail truncation probabilities as

α = Pr(X ≤ a) = F (a) and β = Pr(X ≥ b) = 1− F (b)

respectively.

• If instead α and β are specified then the idf of X can be used to determine the left-tail,
right-tail truncation possible values as

a = F−1(α) and b = F−1(1− β)

respectively.

In either case, for a continuous random variable the cdf transformation from possible values
to probabilities or the idf transformation from probabilities to possible values is exact.

Example 7.3.5 As a continuation of Example 7.3.4, suppose we want to use a Nor-

mal(1.5, 2.0) random variable to model service times. Because service times cannot be
negative, it is necessary to truncate the left tail of this random variable to non-negative
service times. Moreover, to prevent extremely large service times suppose we choose to
truncate the right tail to values less than 4.0. Therefore a = 0.0, b = 4.0, and the cdf
capability in the library rvms can be used to determine the corresponding truncation
probabilities α, β as

α = cdfNormal(1.5, 2.0, a); /* a is 0.0 */

β = 1.0 - cdfNormal(1.5, 2.0, b); /* b is 4.0 */

The result is α = 0.2266 and β = 0.1056. Note that the resulting truncated Nor-

mal(1.5. 1.0) random variable has a mean of 1.85, not 1.5, and a standard deviation of
1.07, not 2.0. The mean increases since more probability was lopped off of the left-hand
tail than the right-hand tail. The standard deviation, on the other hand, decreases since
the most extreme values have been eliminated.

Constrained Inversion

Once the left-tail and right-tail truncation probabilities α and β have been determined,
either by specification or by computation, then the corresponding truncated random variate
can be generated by using constrained inversion as

u = Uniform(α, 1.0 - β);

return F−1(u);

Example 7.3.6 The idf capability in the library rvms can be used to generate the
truncated Normal(1.5, 2.0) random variate in Example 7.3.5 as
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α = 0.2266274;

β = 0.1056498;

u = Uniform(α, 1.0 - β);

return idfNormal(1.5, 2.0, u);

The geometry for the generation of a Normal(1.5, 2.0) random variate truncated on the
left at a = 0.0 and on the right at b = 4.0 is shown in Figure 7.3.3. The random number
in the figure is u = 0.7090, which corresponds to a truncated normal variate of x = 2.601.
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inversion.

Triangular Random Variable

Although it is not one of the standard continuous random variate models summarized
in the next section, the three-parameter Triangular(a, b, c) model is commonly used in
those situations where all that is known is the range of possible values along with the most
likely possible value (the mode). In this case, it is reasonable to assume that the pdf of
the random variable has the shape illustrated in Figure 7.3.4.*
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Formally, the continuous random variable X is Triangular(a, b, c) if and only if the real-
valued parameters a, b, and c satisfy a < c < b, the possible values of X are X = {x | a <

x < b}, and the pdf of X is

f(x) =















2(x− a)

(b− a)(c− a)
a < x ≤ c

2(b− x)

(b− a)(b− c)
c < x < b.

* See Exercise 7.3.9 for the special cases c = a or c = b.
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When modeling service times with a known finite range of possible values, the Triangu-

lar(a, b, c) random variable should be considered as a viable alternative to truncating one
of the more traditional service time models like, for example, an Erlang(n, b) or Lognor-

mal(a, b) random variable model. Another scenario where the triangular distribution is
appropriate is the case when no data is available. One of the authors of this text was
modeling the construction of the Space Station and, of course, no data existed for the
various construction operations. The construction times were modeled by interviewing an
expert at NASA who was able to make informed guesses about the shortest construction
time a, the longest construction time b, and the most likely construction time c.

It follows from the definition of a Triangular(a, b, c) random variable that the mean
and standard deviation are

µ =
a+ b+ c

3
and σ =

√

(a− b)2 + (a− c)2 + (b− c)2

6
.

Moreover, by integrating the pdf, the cdf is

F (x) =















(x− a)2

(b− a)(c− a)
a < x ≤ c

1−
(b− x)2

(b− a)(b− c)
c < x < b,

and, by solving the equation u = F (x) for x, the idf is

F−1(u) =











a+
√

(b− a)(c− a)u 0 < u ≤
c− a

b− a

b−
√

(b− a)(b− c)(1− u)
c− a

b− a
< u < 1.

All of these derivations are left as an exercise.

7.3.3 EXERCISES

Exercise 7.3.1 Modify the function GetService in program ssq4 so that service times
greater than 3.0 are not possible. Do this in two ways: (a) using acceptance-rejection;
(b) using truncation by constrained inversion. (c) Comment.

Exercise 7.3.2 (a) Investigate the issue concerning steady-state statistics discussed in
Example 7.3.4. Specifically, compare the steady-state statistics produced by programs
ssq3 and ssq4. (b) Which of these statistics are different, and why?

Exercise 7.3.3 Repeat Exercises 7.3.1 and 7.3.2 using instead the truncated random
variable model from Example 7.3.5.
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Exercise 7.3.4 (a) Prove that if Y is a Normal(µ, σ) random variable X truncated to
the interval (a, b), then

E[Y ] = µ−

(

f(b)− f(a)

F (b)− F (a)

)

σ2,

where f(·) and F (·) are the pdf and cdf of X (not Y ). (b) How could you check that this
result is correct?

Exercise 7.3.5 (a) Derive the equations for the mean and standard deviation of a
Triangular(a, b, c) random variable. (b) Similarly, derive the equations for the cdf and idf.

Exercise 7.3.6a (a) Use Monte Carlo simulation to demonstrate that the following
algorithm is computationally more efficient than the algorithm in Example 7.3.3.

t = exp(µ);

x = 0;

while (t > 1.0) {

t *= Random();

x++;

}

return x− 1;

(b) Demonstrate also that the two algorithms produce identical random variates for iden-
tical streams of random numbers. (c) There is, however, a computational problem with
the more efficient algorithm if µ is large. What is that problem?

Exercise 7.3.7 (a) Starting from the cdf equation for a Triangular(a, b, c) random vari-
able, derive the corresponding idf equation. (b) Implement an algorithm that will generate
a Triangular(a, b, c) random variate with just one call to Random. (c) In the specific case
(a, b, c) = (1.0, 7.0, 3.0) use Monte Carlo simulation to generate a continuous-data his-
togram that provides convincing evidence that your random variate generator is correct.

Exercise 7.3.8a (a) As an alternative to using a truncated Normal(1.5, 2.0) random
variable in Example 7.3.5, if a Normal(µ, 2.0) random variable is used instead as the basis
for truncation, use the capabilities in the library rvms to determine what value of the
parameter µ is required to yield a service rate of ν = 2/3. (b) Discuss your approach to
solving for µ. (c) This choice of µ forces the truncated random variable to have a mean of
1.5. What are the corresponding values of α and β? (d) What is the standard deviation
of the resulting truncated random variable?

Exercise 7.3.9 (a) Relative to the definition of a Triangular(a, b, c) random variable,
verify that the parameter constraint a < c < b can be relaxed to a ≤ c ≤ b, if done
correctly. (b) Specifically, what are the pdf, cdf, and idf equations if a = c < b? (c) Same
question if a < b = c.
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The characteristic properties of the following seven continuous random variable models
are summarized in this section: Uniform(a, b), Exponential(µ), Erlang(n, b), Normal(µ, σ),
Lognormal(a, b), Chisquare(n), and Student(n). For more details about these models, see
Sections 7.1 and 7.2. For supporting software, see the random variable models library rvms
in Appendix D and the random variate generators library rvgs in Appendix E.

7.4.1 UNIFORM

Definition 7.4.1 The continuous random variable X is Uniform(a, b) if and only if

• the real-valued location (see Section 7.4.9) parameters a, b satisfy a < b

• the possible values of X are X = {x | a < x < b}

• the pdf of X is

f(x) =
1

b− a
a < x < b,

as illustrated in Figure 7.4.1

a µ b
0

f(x)

x

Figure 7.4.1.

Uniform(a, b) pdf.

• the cdf of X is

F (x) =
x− a

b− a
a < x < b

• the idf is
F−1(u) = a+ (b− a)u 0 < u < 1

• the mean of X is

µ =
a+ b

2

• the standard deviation of X is

σ =
b− a
√
12

.

A Uniform(a, b) random variable is used to model situations where a continuous ran-
dom variable is restricted to a subrange (a, b) of the real line and all values in this subrange
are equally likely. Thus a Uniform(a, b) random variable is the continuous analog of the
discrete Equilikely(a, b) random variable. A typical Uniform(a, b) application will involve
a model derived from a statement like “. . . the service time is chosen at random from
the time interval (a, b).” The special case a = 0 and b = 1 is particularly important
because virtually all random number generators are designed to generate a sequence of
Uniform(0, 1) random variates.
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7.4.2 EXPONENTIAL

Definition 7.4.2 The continuous random variable X is Exponential(µ) if and only if

• the real-valued scale parameter µ satisfies µ > 0

• the possible values of X are X = {x | x > 0}

• the pdf of X is

f(x) =
1

µ
exp(−x/µ) x > 0,

as illustrated in Figure 7.4.2
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Figure 7.4.2.

Exponential(µ)
pdf.

• the cdf of X is
F (x) = 1− exp(−x/µ) x > 0

• the idf is
F−1(u) = −µ ln(1− u) 0 < u < 1

• the mean of X is µ

• the standard deviation of X is σ = µ.

Exponential random variables are frequently used to model the interarrival distribution
associated with arrival processes. Exponential random variables are also used to model the
service time distribution for individual service nodes in a network of queues and component
lifetimes in system reliability analysis. If X is Exponential(µ) then X has the important
memoryless property — for any x′ > 0

Pr (X ≥ x+ x′ |X ≥ x′) = Pr(X ≥ x) = exp(−x/µ) x > 0

independent of x′. If a light bulb, for example, has an exponential lifetime, then a used bulb
that has been has successfully functioning for x′ hours has an identical remaining lifetime
pdf as that of a brand new bulb. Graphically, any right-hand tail of an exponential
pdf that is rescaled so that it integrates to one is identical (except for location) to the
original pdf. An Exponential(µ) random variable is the continuous analog of the discrete
Geometric(p) random variable. Just as the normal distribution plays an important role in
classical statistics because of the central limit theorem, the exponential distribution plays
an important role in stochastic processes (particularly reliability and queueing theory)
since it is the only continuous distribution with the memoryless property. The only discrete
distribution with the memoryless property is the geometric distribution.
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7.4.3 ERLANG

Definition 7.4.3 The continuous random variable X is Erlang(n, b) if and only if

• the shape parameter n is a positive integer

• the real-valued scale parameter b satisfies b > 0

• the possible values of X are X = {x | x > 0}

• the pdf of X is

f(x) =
1

b (n− 1)!
(x/b)n−1 exp(−x/b) x > 0,

as illustrated in Figure 7.4.3 for n = 3 and b = 1
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Figure 7.4.3.

Erlang(n, b) pdf.

• the cdf of X is an incomplete gamma function (see Appendix D)

F (x) = P (n, x/b) x > 0

• except for special cases, the idf of X must be determined by numerical inversion

• the mean of X is
µ = nb

• the standard deviation of X is
σ =

√
n b.

Erlang random variables are frequently used to model random service times, par-
ticularly when the service is defined by a series of independent sub-processes. That is
consistent with the fact that a continuous random variable X is Erlang(n, b) if and only if

X = X1 +X2 + · · ·+Xn,

where X1, X2, . . ., Xn is an iid sequence of Exponential(b) random variables. An Er-

lang(1, b) random variable and an Exponential(b) random variable are equivalent. An
Erlang(n, b) random variable is the continuous analog of the discrete Pascal(n, p) random
variable.
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7.4.4 STANDARD NORMAL

Definition 7.4.4 The continuous random variable Z is Normal(0, 1) (standard normal)
if and only if

• the possible values of Z are Z = {z | −∞ < z < ∞}

• the pdf of Z is

f(z) =
1

√
2π
exp

(

−z2/2
)

−∞ < z < ∞,

as illustrated in Figure 7.4.4
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Figure 7.4.4.

Normal(0, 1)
pdf.

• the cdf of Z is the special function Φ(·)

F (z) = Φ(z) =
1

√
2π

∫ z

−∞

exp(−t2/2) dt −∞ < z < ∞

• the idf of X is
F−1(u) = Φ−1(u) 0 < u < 1

where Φ−1(·) is defined by an algorithm (see Section 7.2) that computes the numerical
inverse of the equation u = Φ(x)

• the mean of Z is µ = 0

• the standard deviation of Z is σ = 1.

A Normal(0, 1) random variable is a special case of a Normal(µ, σ) random variable.
The letter Z for a Normal(0, 1) random variable, and the symbols φ and Φ for its pdf
and cdf are used because of the centrality of the normal distribution in probability and
statistics. The pdf has inflection points at ±1. For both the Normal(0, 1) and Normal(µ, σ)
models, the areas under the pdf within 1, 2, and 3 standard deviations from the mean are
approximately 0.68, 0.95, and 0.997, respectively.
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7.4.5 NORMAL

Definition 7.4.5 The continuous random variable X is Normal(µ, σ) if and only if

• the real-valued location parameter µ can have any value

• the real-valued scale parameter σ satisfies σ > 0

• the possible values of X are X = {x | −∞ < x < ∞}

• the pdf of X is

f(x) =
1

σ
√
2π
exp

(

−(x− µ)2/2σ2
)

−∞ < x < ∞,

as illustrated in Figure 7.4.5
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Figure 7.4.5.

Normal(µ, σ) pdf.

• the cdf of X is defined by the Normal(0, 1) cdf as

F (x) = Φ
(x− µ

σ

)

−∞ < x < ∞

• the idf of X is defined by the Normal(0, 1) idf as

F−1(u) = µ+ σΦ−1(u) 0 < u < 1

• the mean of X is µ

• the standard deviation of X is σ.

The random variable X is Normal(µ, σ) if and only if

X = µ+ σZ

where the random variable Z is Normal(0, 1). Elementary statistics textbooks usually state
this result as: if X is Normal(µ, σ) then Z = (X − µ)/σ is Normal(0, 1). The primary
importance of a Normal(µ, σ) random variable in simulation is its role as the asymptotic

form of the sum of other random variables. That is, if X1, X2, . . ., Xn is an iid sequence
of random variables each with mean µ and standard deviation σ and if

X = X1 +X2 + · · ·+Xn

then the random variable X has a mean of nµ and a standard deviation of
√
nσ. In

addition, X is asymptotically Normal(nµ,
√
nσ) as n → ∞. This result is one form of the

central limit theorem. The pdf of the Normal(µ, σ) has inflection points at µ± σ.
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7.4.6 LOGNORMAL

Definition 7.4.6 The continuous random variable X is Lognormal(a, b) if and only if

• the real-valued parameter a can have any value [exp(a), the median, is a scale param-
eter]

• the real-valued shape parameter b satisfies b > 0

• the possible values of X are X = {x | x > 0}

• the pdf of X is

f(x) =
1

bx
√
2π
exp

(

−(ln(x)− a)2/2b2
)

x > 0,

as illustrated in Figure 7.4.6 for (a, b) = (−0.5, 1)

0 µ
0

f(x)

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

....

....

....

....

.....

......

.......

.........
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... x

Figure 7.4.6.

Lognormal(a, b)
pdf.

• the cdf of X is defined by the Normal(0, 1) cdf as

F (x) = Φ
( ln(x)− a

b

)

x > 0

• the idf of X is defined by the Normal(0, 1) idf as

F−1(u) = exp
(

a+ bΦ−1(u)
)

0 < u < 1

• the mean of X is
µ = exp

(

a+ b2/2
)

• the standard deviation of X is

σ = exp
(

a+ b2/2
)
√

exp(b2)− 1.

The random variable X is Lognormal(a, b) if and only if

X = exp(a+ bZ)

where the random variable Z is Normal(0, 1). The Lognormal distribution is sometimes
used as an alternate to the Erlang distribution as a model of, for example, a service time.
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7.4.7 CHISQUARE

Definition 7.4.7 The continuous random variable X is Chisquare(n) if and only if

• the shape parameter n is a positive integer, known as the “degrees of freedom”

• the possible values of X are X = {x | x > 0}

• the pdf of V is

f(x) =
1

2Γ(n/2)
(x/2)n/2−1 exp(−x/2) x > 0,

as illustrated in Figure 7.4.7 for n = 5
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Figure 7.4.7.

Chisquare(n) pdf.

• the cdf of X is an incomplete gamma function (see Appendix D)

F (x) = P (n/2, x/2) x > 0

• except for special cases, the idf of X must be determined by numerical inversion

• the mean of X is
µ = n

• the standard deviation of X is
σ =

√
2n.

The random variable X is Chisquare(n) if and only if

X = Z2

1
+ Z2

2
+ · · ·+ Z2

n

where Z1, Z2, . . ., Zn is an iid sequence of Normal(0, 1) random variables. The Chisquare

random variable is commonly used in statistical “goodness-of-fit” tests (see Section 9.2).
The discrete nature of the parameter n precludes the use of this distribution for model
stochastic elements of a system in most applications. If n is an even number then a
Chisquare(n) random variable and a Erlang(n/2, 2) random variable are equivalent.
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7.4.8 STUDENT

Definition 7.4.8 The continuous random variable X is Student(n) if and only if

• the shape parameter n is a positive integer, known as the “degrees of freedom”

• the possible values of X are X = {x | −∞ < x < ∞}

• the pdf of X is

f(x) =
1

√
nB(1/2, n/2)

(1 + x2/n)−(n+1)/2 −∞ < x < ∞,

as illustrated in Figure 7.4.8 for n = 10, where B(·, ·) is the incomplete beta function
defined in Appendix D

−3 −2 −1 0 1 2 3
0

f(x)

................................
...................

...............
............
...........
..........
.........
.........
.........
........
........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
........
.........
...........
.................................................................................................................................................................................................................................................................................................................................. x

Figure 7.4.8.

Student(n)
pdf.

• if x ≥ 0 then the cdf of X is a function of an incomplete beta function

F (x) =
1 + I

(

1/2, n/2, n/(n+ x2)
)

2
x ≥ 0

and if x < 0 then F (x) = 1− F (−x)

• the idf of X must be determined by numerical inversion

• the mean of X is µ = 0 for n = 2, 3, 4 . . .

• the standard deviation of X is

σ =

√

n

n− 2
n = 3, 4, 5 . . .

The continuous random variable X is Student(n) if and only if

X =
Z

√

V/n
,

where Z is a Normal(0, 1) random variable, V is a Chisquare(n) random variable and Z,
V are independent. The primary use of a Student(n) random variable in simulation is in
interval estimation. The pdf is symmetric and bell-shaped, with slightly heavier tails than
the pdf of a standard normal random variable. The limiting distribution (Hogg, McKean,
and Craig, 2005, Chapter 4) of a Student(n) distribution as n → ∞ is a Normal(0, 1)
distribution.
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7.4.9 SUMMARY

Effective discrete-event simulation modeling requires that the modeler be familiar with
several continuous parametric distributions which can be used to mimic the stochastic
elements of the model. In order to choose the proper distribution, it is important to know

• how these distributions arise and how they are related to one another;

• their support X ;

• their mean µ;

• their variance σ2;

• the shape of their pdf.

If the situation calls for a continuous model (e.g., interarrival times) a modeler can quickly
examine the shape of the histogram associated with a data set to rule in and rule out
certain distributions based on the shapes of their pdfs.

Parameters

Parameters in a distribution allow modeling of such diverse applications as a machine
failure time, patient post-surgery survival time, and customer interarrival time by a single
distribution [for example, the Lognormal(a, b) distribution]. In our brief overview of each
of the eight continuous distributions presented in this chapter, we have used the adjectives
scale, shape, and location to classify parameters. We now consider the meaning behind
each of these terms.

Location parameters are used to shift the distribution to the left or right along the
x-axis. If c1 and c2 are two values of a location parameter for a distribution with cdf
F (x; c), then there exists a real constant α such that F (x; c1) = F (α + x; c2). A familiar
example of a location parameter is the mean µ of the Normal(µ, σ) distribution. This
parameter simply translates the bell-shaped curve to the left and right for various values
of µ. Location parameters are also known as “shift” parameters.

Scale parameters are used to expand or contract the x-axis by a factor of α. If λ1

and λ2 are two values for a scale parameter for a distribution with cdf F (x;λ), then there
exists a real constant α such that F (αx;λ1) = F (x;λ2). A familiar example of a scale
parameter is µ in the Exponential(µ) distribution. The pdf always has the same shape,
and the units on the x-axis are determined by the value of µ.

Shape parameters are appropriately named since they affect the shape of the pdf.
A familiar example of a shape parameter is n in the Erlang(n, b) distribution. The pdf
assumes different shapes for various values of n.

In summary, location parameters translate distributions along the x-axis, scale pa-
rameters expand or contract the scale for distributions, and all other parameters are shape
parameters.
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Relationships between distributions

It is also important to know how these distributions relate to one another. Figure 7.4.9
highlights some relationships between the eight distributions summarized in this section,
plus the Uniform(0, 1) distribution. Listed in each oval are the name, parameter(s), and
support of each distribution. Each distribution, including the standard normal distribu-
tion, is designated by the generic random variable X. The solid arrows connecting the
ovals denote special cases [e.g., the Normal(0, 1) distribution is a special case of the Nor-

mal(µ, σ) distribution when µ = 0 and σ = 1] and transformations [e.g., the sum (convo-
lution) of n independent and identically distributed Exponential(µ) random variables has
an Erlang(n, µ) distribution]. The dashed line between the Student(n) and Normal(0, 1)
distributions, for example, indicates that the limiting distribution of a Student(n) random
variable as n → ∞ has a standard normal distribution.
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Figure 7.4.9.

Relationships between

continuous distributions.

There are internal characteristics associated with these distributions that are not
shown in Figure 7.4.9. One such example is that the sum of independent normal random
variables also has a normal distribution. Another is that the sum of independent chi-square
random variables also has chi-square distribution.

There could be an arrow drawn from the Uniform(0, 1) distribution to every other dis-
tribution, in theory, because of the probability integral transformation (Theorem 7.2.1).
Only the transformations to the Uniform(a, b) and Exponential(µ) distributions are in-
cluded in the figure, however, as these are the only distributions with monotone, synchro-
nized variate generation algorithms that do not require numerical methods.
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The alert reader will notice that the sequence of arrows running from the Uniform(0, 1)
distribution to the Exponential(2) distribution to the Chisquare(2) distribution to the Nor-

mal(0, 1) distribution in Figure 7.4.9 is related to the Box–Muller algorithm for generating
normal variates given in Section 7.2.

Moments

As in the case of discrete random variables, the table below summarizes the first four
moments of the distribution of the continuous random variables surveyed in this chapter.
earlier. To save space, the Lognormal(a, b) distribution uses ω = exp(b2). As before the
mean, variance, skewness, and kurtosis are defined by

µ = E[X], σ2 = E[(X − µ)2], E

[

(

X − µ

σ

)3
]

, and E

[

(

X − µ

σ

)4
]

.

The ith moment for the Student(n) distribution is only defined for n > i, for i = 1, 2, 3, 4.
As with discrete distributions, the skewness is a measure of the symmetry of a distribution.
The Exponential(µ) distribution, for example, has a positive skewness for all values of its
parameter µ. The kurtosis is a measure of the peakedness and tail behavior of a distri-
bution. The Student(n) distribution, for example, with its heavier tails than a standard
normal distribution, has a kurtosis that converges to 3 from above as n → ∞.

Distribution Mean Variance Skewness Kurtosis

Uniform(a, b)
a+ b

2

(b− a)2

12
0

9

5

Exponential(µ) µ µ2 2 9

Erlang(n, b) nb nb2
2
√
n

3 +
6

n

Normal(0, 1) 0 1 0 3

Normal(µ, σ) µ σ2 0 3

Lognormal(a, b) ea+b
2
/2 e2aω(ω − 1) (ω + 2)

√
ω − 1 ω4 + 2ω3 + 3ω2 − 3

Chisquare(n) n 2n
23/2
√
n

3 +
12

n

Student(n) 0
n

n− 2
0

3(n− 2)

n− 4

Although discussion here is limited to just the continuous distributions introduced in
this chapter, there are many other parametric distributions capable of modeling continuous
random variables. For a complete list of common discrete and continuous parametric
distributions including their pdf, cdf, idf, and moments, we recommend the compact work
of Evans, Hastings, and Peacock (2000) or the encyclopedic works of Johnson, Kotz, and
Kemp (1993) and Johnson, Kotz, and Balakrishnan (1994, 1995, 1997).
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7.4.10 PDF, CDF AND IDF EVALUATION

Pdf’s, cdf’s and idf’s for all seven of the continuous random variable models in this
section can be evaluated by using the functions in the library rvms (see Appendix D). For
example, if X is Erlang(n, b) then for any x > 0

pdf = pdfErlang(n, b, x); /* f(x) */

cdf = cdfErlang(n, b, x); /* F (x) */

and for any 0.0 < u < 1.0

idf = idfErlang(n, b, u); /* F−1(u) */

This library also has functions to evaluate pdf’s, cdf’s, and idf’s for all the discrete random
variables in Chapter 6.

7.4.11 EXERCISES

Exercise 7.4.1 Prove that the cdf of an Erlang(n, b) random variable is

F (x) = P (n, x/b)

where P (·, ·) is the incomplete gamma function.

Exercise 7.4.2 Prove that if n > 0 is an even integer then a Chisquare(n) random
variable and a Erlang(n/2, 2) random variable are equivalent.

Exercise 7.4.3 Prove that an Exponential(µ) random variable has the lack of memory
property.

Exercise 7.4.4 From the Normal(0, 1) cdf definition

Φ(z) =
1

√
2π

∫ z

−∞

exp(−t2/2) dt −∞ < z < ∞,

prove that Φ(−z) + Φ(z) = 1.

Exercise 7.4.5 Let X be a random variable with finite mean µ and standard deviation
σ. Prove that the standardized random variable

X − µ

σ

has a mean of 0 and a standard deviation of 1.

Exercise 7.4.6a (a) Find the mean, variance, skewness, and kurtosis of

Z = U1 + U2 + · · ·+ U12 − 6,

where U1, U2, . . ., U12 is an independent and identically distributed sequence of Uni-

form(0, 1) random variables. (b) Generate 10 000 variates using this approach (see Sec-
tion 7.2) and provide convincing numerical evidence that the variates so generated are
approximately normally distributed.
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In this section we will develop two algorithms for simulating a nonstationary Poisson
process. That is, rather than events that occur at a constant rate of occurrence λ, we
now consider processes whose time-varying rate is governed by λ(t). We introduce non-
stationary Poisson processes by developing one incorrect and two correct algorithms for
generating a realization of simulated event times.

7.5.1 AN INCORRECT ALGORITHM

For reference, recall that we can simulate a stationary Poisson process with rate λ for
the time interval 0 ≤ t < τ by using Algorithm 7.3.1, reproduced here for convenience

a0 = 0.0;

n = 0;

while (an < τ) {

an+1 = an + Exponential(1 / λ);

n++;

}

return a1, a2, . . ., an−1;

This algorithm generates a realization of a stationary Poisson process with event times
a1, a2, a3, . . . and constant event rate λ. Based upon this algorithm it might be conjectured
that if the event rate varies with time then the following minor modification will correctly
generate a nonstationary Poisson process with event rate function λ(t)

a0 = 0.0;

n = 0;

while (an < τ) {

an+1 = an + Exponential(1 / λ(an));

n++;

}

return a1, a2, . . ., an−1;

Unfortunately, this naive modification of the correct stationary Poisson process algorithm
is not correct. The algorithm only considers the value of the event rate function λ(t) at the
time of the previous event an, and hence ignores the future evolution of λ(t) after time an.
In general, the incorrectness of this algorithm will manifest itself as an “inertia error” that
can be characterized for a rate function λ(t) that is monotone on (an, an+1) as follows:

• if λ(an) < λ(an+1) then an+1 − an will tend to be too large;

• if λ(an) > λ(an+1) then an+1 − an will tend to be too small.

If λ(t) varies slowly with t then the inertia error will be uniformly small and the incorrect
algorithm may produce an acceptable approximation to what is desired. Of course this is
a weak justification for using an algorithm known to be incorrect, particularly in light of
the existence of two correct algorithms for simulating a nonstationary Poisson process.
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Example 7.5.1 A nonstationary Poisson process with a piecewise-constant event rate
function

λ(t) =







1 0 ≤ t < 15

2 15 ≤ t < 35

1 35 ≤ t < 50

was simulated using the incorrect algorithm with τ = 50. Note that the expected number
of events in the interval 0 ≤ t < 15 is 15; in the interval 15 ≤ t < 35 the expected number
is 2 × (35 − 15) = 40; and 15 events are expected in the interval 35 ≤ t < 50. Therefore,
the expected number of events in the interval 0 ≤ t < 50 is 70. The nonstationary Poisson
process was replicated 10 000 times so that the expected number of events was 700 000, and
a time-dependent relative frequency histogram was generated by partitioning the interval
0 ≤ t ≤ 50 into 50 bins with bin size 1.0, as illustrated in Figure 7.5.1.

0 15 35 50
0.5

1.0

1.5

2.0

2.5

λ̂(t)

t

λ(t) · · ·

λ̂(t) —

Figure 7.5.1.
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nonstationary

Poisson

process

generation.

The number of events was accumulated for each bin and then divided by the number
of replications (10 000) to provide an estimate λ̂(t) of the expected rate at time t where
t corresponds to the midpoint of the bin.* Consistent with the previous discussion, the
inertia error causes λ̂(t) to under-estimate λ(t) immediately to the right of the step-increase
at t = 15 and to over-estimate λ(t) immediately to the right of the step-decrease at t = 35.
Although this error is accentuated by the discontinuous nature of λ(t), some error would
remain even if the discontinuities in λ(t) were removed. You are asked to investigate this
issue further in Exercise 7.5.2.

Correct Algorithms

Two correct algorithms for generating a realization of a nonstationary Poisson process
will be presented in the two subsequent subsections: thinning and inversion. Neither algo-
rithm dominates the other in terms of performance — thinning works for a wider range of
event rate functions λ(t), but inversion is synchronized and typically more computationally
efficient. The existence of these two exact algorithms is sufficient reason to never use the
incorrect algorithm in practice.

* If the bin width had not been 1.0, to compute λ̂(t) it would have been necessary to
divide by the bin width as well.
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7.5.2 THINNING METHOD

The first correct algorithm for generating a nonstationary Poisson process is based
upon the existence of an upper bound (majorizing constant) on the event rate λmax such
that λ(t) ≤ λmax for 0 ≤ t < τ . As we will see, the efficiency of the algorithm is dependent
upon λmax being a tight bound. The algorithm is based upon generating a stationary
Poisson process with rate λmax, but correcting for this too-high event rate and making the
process nonstationary by occasionally thinning (discarding) some of the event times. The
following algorithm, known as the thinning method, is due to Lewis and Shedler (1979).
(As demonstrated in the next section, the thinning method is actually just a clever use of
the acceptance-rejection method for random variate generation.)

Algorithm 7.5.1 Provided λ(t) ≤ λmax for 0 ≤ t < τ , this algorithm generates a
nonstationary Poisson process with event rate function λ(t)

a0 = 0.0;

n = 0;

while (an < τ) {

s = an;

do { /* thinning loop */

s = s + Exponential(1 / λmax); /* possible next event time */

u = Uniform(0, λmax);

} while ((u > λ(s)) and (s < τ)); /* thinning criteria */

an+1 = s;

n++;

}

return a1, a2, . . ., an−1;

The key to the correctness of the thinning method is the rate correction defined by the
do-while loop, as illustrated geometrically in Figure 7.5.2. If it were not for this loop, the
process generated would be stationary with event rate λmax. When the event rate function
λ(t) is low (high), more (fewer) “trial” event times s are thinned out, as expected.

an s
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λ(t)

t
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Because occasional multiple “thinning” passes through the do-while loop are necessary
to make the process nonstationary, efficiency suffers if λ(s) differs significantly from λmax.
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Example 7.5.2 Algorithm 7.5.1 was used with λmax = 2.0 to repeat the experiment in
Example 7.5.1. In this case the nonstationary Poisson process is correctly simulated, as
illustrated in Figure 7.5.3.
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Relative to the incorrect algorithm, there is increased complexity with Algorithm 7.5.1.
In particular, as compared with the time to compute the histogram in Example 7.5.1, the
thinning method time was approximately 2.2 times longer.

So long as λmax is a tight upper bound to λ(t), resulting in infrequent thinning,
Algorithm 7.5.1 is relatively efficient and, primarily because it is easy to implement, the
algorithm is popular. At least two random variates are required per event, however, and
even if rngs is used with separate streams allocated to the Exponential and Uniform calls,
synchronization is a problem because multiple passes through the thinning loop can occur.
The inversion method, presented next, eliminates the need for multiple calls to Random.

7.5.3 INVERSION METHOD

The second correct algorithm is based upon the inverse transformation method of
random variate generation (see Sections 6.2 and 7.2). Because of this, and in contrast to
the thinning method, this second algorithm has the desirable property that only one call
to Random is required to generate each new event time. The algorithm is based upon the
cumulative event rate function defined as

Λ(t) =

∫ t

0

λ(s) ds 0 ≤ t < τ

which represents the expected number of events in the interval [0, t). Note that λ(·) is
analogous to the pdf of a continuous random variable and Λ(·) is analogous to the cdf.

We assume that λ(t) > 0 for all t ∈ [0, τ), except perhaps at a finite number of times
where λ(t) may be 0. Therefore, Λ(t) is a strictly monotone increasing function with
positive slope

dΛ(t)

dt
= λ(t) 0 < t < τ.

Because Λ(·) is a strictly monotone increasing function, there exists an inverse function
Λ−1(·), analogous to the idf of a continuous random variable. Based upon these observa-
tions, it can be shown that the following algorithm is correct.
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Algorithm 7.5.2 If Λ−1(·) is the inverse of the function Λ(·) defined by

Λ(t) =

∫ t

0

λ(s) ds 0 ≤ t < τ

then this algorithm (due to a result by Çinlar, 1975) generates a nonstationary Poisson
process with event rate function λ(t) for 0 ≤ t < τ

a0 = 0.0; /* initialize nonstationary Poisson process */

u0 = 0.0; /* initialize unit Poisson process */

n = 0; /* initialize event counter */

while (an < τ) {

un+1 = un + Exponential(1.0);

an+1 = Λ−1(un+1);

n++;

}

return a1, a2, . . ., an−1;

Algorithm 7.5.2 works by generating a sequence of event times u1, u2, u3, . . . corre-
sponding to a stationary “unit” Poisson process with rate 1.* The inverse function Λ−1(·)
is then used to transform the u’s into a sequence of event times a1, a2, a3, . . . correspond-
ing to a nonstationary Poisson process with event rate function λ(t), as illustrated in
Figure 7.5.4.

a1 a2 a3 a4

0

u1

u2

u3

u4

Λ(t)

t

.........................................
............................

......................
..................

................
..............

............
...........
..........
..........
.........
.........
........
........
.......
.......
.......
......
......
......
......
......
.......
.......
.......
........
........
........
.........
..........
..........
...........
............
..............

................
..................

......................
............................

........................................
...

Figure 7.5.4.

Inversion

algorithm

geometry.

The extent to which Algorithm 7.5.2 is useful is determined by the extent to which
the inverse function Λ−1(·) can be evaluated efficiently. As illustrated in the following
example, if the event rate function λ(t) is assumed to be piecewise constant then Λ(t) will
be piecewise linear and the evaluation of Λ−1(·) is easy.

* From the results in Section 7.3, this is statistically equivalent to generating n points
at random in the interval 0 < u < Λ(τ) where Λ(τ) is the expected number of events in
the interval [0, τ).
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Example 7.5.3 If λ(t) is the piecewise constant event rate function in Examples 7.5.1
and 7.5.2 then it follows by integration that

Λ(t) =

{

t 0 ≤ t < 15
2t− 15 15 ≤ t < 35
t+ 20 35 ≤ t < 50.

Thus, by solving the equation u = Λ(t) for t we find that

Λ−1(u) =

{

u 0 ≤ u < 15
(u+ 15)/2 15 ≤ u < 55
u− 20 55 ≤ u < 70.

As illustrated in Figure 7.5.5, the nonstationary Poisson process can then be correctly
simulated by inversion using Algorithm 7.5.2.
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In contrast to the timing results in Example 7.5.2 for the thinning method, the time
required to generate this histogram by inversion is essentially identical to the time required
to generate the incorrect results in Example 7.5.1. The event rate function in this particular
example has been ideal in the sense that the cumulative event rate function Λ(t) can easily
be inverted in closed form. If this is not the case, the modeler is left with three options:
(i) use thinning if a majorizing constant λmax can be found; (ii) use numerical methods
to invert Λ(t); or (iii) use an approximate algorithm.

Next-Event Simulation Orientation

The three algorithms for generating a nonstationary Poisson process (the incorrect
algorithm, thinning, and inversion) all return event times a1, a2, . . . , an−1, violating next-
event simulation practice. All three, however, can easily be adapted for a next-event
simulation. With inversion, for example, an arrival event being processed at time t should
schedule the next arrival at time

Λ−1
(

Λ(t) + Exponential(1.0)
)

,

assuming that this time does not exceed the termination time τ . This procedure would be
appropriate for generating the next event time a3, given the current event time t = a2, for
example, in Figure 7.5.4.
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What happens in a next-event simulation when the time of a scheduled event exceeds
τ? If the interval 0 ≤ t < τ represents a single cycle that cuts off at time τ (e.g., a restaurant
that opens at 11:00 AM and closes at 9:00 PM), then the event to be scheduled after time
τ is simply discarded (not scheduled) and the arrival stream is cut off. Alternatively, the
interval 0 ≤ t < τ may represent one of many cycles in a repeating cyclical process such
as a hospital emergency room where τ = 24 hours. Furthermore, there may be different
functions Λ1(t), Λ2(t), . . . for each cycle (e.g., Λ1(t) for Sunday, Λ2(t) for Monday, etc.).
In this case, when

Λ−1

1

(

Λ1(t) + Exponential(1.0)
)

exceeds τ , the residual amount of the unit stationary Poisson process,

Λ1(t) + Exponential(1.0)− Λ1(τ)

is used as an argument in Λ2(t) to generate the first event time in the second cycle (e.g.,
the first patient to arrive to the emergency room on Monday).

Piecewise-Constant Versus Piecewise-Linear

In most applications, a piecewise-constant event rate function λ(t) is not realistic.
Instead, it is more likely that λ(t) will vary continuously with t, avoiding discontinuous
jumps like those at t = 15 and t = 35 in Examples 7.5.1, 7.5.2, and 7.5.3. On the other
hand, because accurate estimates of λ(t) are difficult to obtain (because of the large amount
of data required), it is hard to justify “high-order” smooth polynomial approximations to
λ(t). Therefore, as a compromise, we will examine the case where λ(t) is a piecewise-linear
function (spline). That is, we will specify λ(t) at a sequence of (tj , λj) points (spline knots)
and then use linear interpolation to “fill in” other values of λ(t) as necessary.

7.5.4 PIECEWISE-LINEAR TIME-DEPENDENT EVENT RATE FUNCTIONS

As discussed in the previous paragraph, it is common to assume that the event rate
λ(t) is piecewise linear. That is, we assume that λ(t) is specified as a piecewise-linear
function defined for 0 ≤ t < τ by the k + 1 knot pairs (tj , λj) for j = 0, 1, . . . , k with the
understanding that 0 = t0 < t1 < · · · < tk = τ and λj ≥ 0 for j = 0, 1, . . . , k, as illustrated
for the case k = 6 in Figure 7.5.6.
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Algorithm 7.5.3 Given a piecewise-linear, time-dependent event rate function λ(t)
specified by the k+1 knot pairs (tj , λj) for j = 0, 1, . . . , k, the mathematical construction
of the piecewise linear function λ(t), the corresponding piecewise quadratic cumulative
event rate function Λ(t), and the inverse function Λ−1(u) involves four steps.

• Define the k slopes of the piecewise linear segments of λ(t)

sj =
λj+1 − λj

tj+1 − tj
j = 0, 1, . . . , k − 1.

• Define the k + 1 cumulative event rates 0 = Λ0 ≤ Λ1 ≤ · · · ≤ Λk as

Λj =

∫ tj

0

λ(t) dt j = 1, 2, . . . , k.

With Λ0 = 0 the cumulative event rates can be calculated recursively as

Λj = Λj−1 +
1

2
(λj + λj−1)(tj − tj−1) j = 1, 2, . . . , k.

• For each subinterval tj ≤ t < tj+1, if sj 6= 0 then

λ(t) = λj + sj(t− tj)

is a linear function of t − tj . Instead, if sj = 0 then λ(t) is a constant function.
Similarly, if sj 6= 0 then

Λ(t) = Λj + λj(t− tj) +
1

2
sj(t− tj)

2

is a quadratic function of t− tj and if sj = 0 then Λ(t) is a linear function of t− tj .

• For each subinterval Λj ≤ u < Λj+1, if sj 6= 0 then the quadratic equation u = Λ(t)
can be solved for t to yield the inverse function

Λ−1(u) = tj +
2(u− Λj)

λj +
√

λ2

j
+ 2sj(u− Λj)

.

Instead, if sj = 0 then the linear equation u = Λ(t) can be solved for t to yield the
inverse function

Λ−1(u) = tj +
u− Λj

λj
.

The mathematical derivation of these four steps is left as an exercise.
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The following algorithm is just Algorithm 7.5.2 with an additional index j to keep
track of which branch of the Λ−1(·) function should be used. As the event times increase,
the index j of the current Λj < u ≤ Λj+1 subinterval is updated accordingly, thereby
eliminating the need to search for the index of the subinterval in which un lies.

Algorithm 7.5.4 If λ(t) is a piecewise-linear function with components defined consis-
tent with Algorithm 7.5.3, then this inversion algorithm generates a nonstationary Poisson
process with event rate function λ(t) for 0 ≤ t < τ

a0 = 0.0;

u0 = 0.0;

n = 0;

j = 0;

while (an < τ) {

un+1 = un + Exponential(1.0);

while ((Λj+1 < un+1) and (j < k))

j++;

an+1 = Λ−1(un+1); /* Λj < un+1 ≤ Λj+1 */

n++;

}

return a1, a2, . . ., an−1;

Using Algorithm 7.5.3, the slopes sj and cumulative event rates Λj can be generated
once external to Algorithm 7.5.4. Or these parameters can be generated internal to Algo-
rithm 7.5.4, as needed, each time j is incremented. In either case, the time-complexity of
Algorithm 7.5.4 is essentially independent of the number of knots. When λ(t) is piecewise-
linear, Algorithm 7.5.4 is the preferred way to generate a nonstationary Poisson process.

7.5.5 EXERCISES

Exercise 7.5.1 Work through the details of Algorithm 7.5.3. Be sure to address the
issue of how we know to always use the + sign when solving the u = Λ(t) quadratic
equation and verify that as sj → 0 the sj 6= 0 version of the Λ

−1(u) equation degenerates
into the sj = 0 version.

Exercise 7.5.2 (a) Use the event rate function

λ(t) =



















1 0 ≤ t < 10
t/10 10 ≤ t < 20
2 20 ≤ t < 30
(50− t)/10 30 ≤ t < 40
1 40 ≤ t < 50

and the incorrect nonstationary Poisson process algorithm to produce a figure similar to
the one in Example 7.5.1. (b) Comment.
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Exercise 7.5.3 (a) Use the event rate function in Exercise 7.5.2 and Algorithm 7.5.1 to
produce a figure similar to the one in Example 7.5.2. (b) Comment.

Exercise 7.5.4 (a) Use the event rate function in Exercise 7.5.2 and Algorithm 7.5.4 to
produce a figure similar to the one in Example 7.5.3. (b) Comment.

Exercise 7.5.5 Prove that if λ(t) is constant with value λmax then Algorithm 7.5.1
reduces to Algorithm 7.3.1.

Exercise 7.5.6 Prove that if λ(t) is constant with value λ then Algorithm 7.5.2 reduces
to Algorithm 7.3.1.

Exercise 7.5.7a Use Algorithm 7.5.4 with τ = 2000 to construct a finite-horizon sim-
ulation of an initially idle single-server service node with a nonstationary Poisson arrival
process. Assume that the arrival rate function λ(t) is the piecewise-linear function illus-
trated and that the service time distribution is Erlang(4, 0.25).
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(a) The simulation should be replicated 64 times to estimate the mean of the instantaneous
(snapshot) number in the node at each of the λ(t) time knots (other than t0 = 0). (b) Com-
ment. (c) If you were to approximate the nonstationary Poisson arrival process with an
“equivalent” stationary arrival process with constant rate λ̄, what would the numerical
value of λ̄ be?

Exercise 7.5.8 Draw Λ(t) associated with λ(t) from Figure 7.5.6. Show the geometry
associated with Algorithm 7.5.4 on your graph.

Exercise 7.5.9 Construct an algorithm for generating a realization of a nonstationary
Poisson process with a piecewise constant event rate function λ(t).

Exercise 7.5.10 Thinning can be performed in a more general setting than presented
in this section. A majorizing function λmax(t) can replace the majorizing constant λmax.
Reformulate the thinning algorithm in its more general setting.
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The thinning method was presented in the previous section as a technique for generat-
ing a realization of a nonstationary Poisson arrival process. The thinning method is based
on a more general technique, acceptance-rejection, commonly used in non-uniform random
variate generation. We introduce the acceptance-rejection technique in this section, and
illustrate its use by developing an efficient algorithm for generating a Gamma(a, b) random
variate.

7.6.1 BACKGROUND

Definition 7.6.1 Acceptance-rejection is a technique for generating non-uniform ran-
dom variates. The technique is most commonly applied to generating continuous random
variates as follows. Let X be a continuous random variable with an associated set of pos-
sible values X and pdf f(x) defined for all x ∈ X . Choose a majorizing pdf g(x) with the
same set of possible values x ∈ X and an associated real-valued constant c > 1 such that

• f(x) ≤ c g(x) for all x ∈ X ;

• the idf G−1(·) associated with the majorizing pdf can be evaluated efficiently.

The basic idea behind acceptance-rejection (von Neumann, 1951) is to use the inverse
transformation method to generate a possible value x ∈ X consistent with the majorizing
pdf g(·) and then either accept or reject x dependent on how well c g(x) (the dashed line
in Figure 7.6.1) approximates f(x) (the solid line in Figure 7.6.1).

x
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Figure 7.6.1.

Acceptance-

rejection

geometry.

Algorithm 7.6.1 Given the two pdfs f(·) and g(·) with common domain X , given a
constant c > 1 such the f(x) ≤ c g(x) for all x ∈ X , and given the idf G−1(·) corresponding
to g(·), then the following acceptance-rejection algorithm generates a random variate X

with pdf f(·)

do {

u = Random();

x = G−1(u);

v = Random();

} while (c * g(x) * v > f(x));

return x;
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Algorithm Correctness

To prove that Algorithm 7.6.1 is correct, define the acceptance region

A =

{

(t, v)

∣

∣

∣

∣

v ≤
f(t)

c g(t)

}

⊂ X × (0, 1)

and then write Algorithm 7.6.1 in the equivalent form

do {

u = Random();

t = G−1(u); /* generate T */

v = Random(); /* generate V */

} while ((t, v) 6∈ A);

x = t; /* generate X */

return x;

This formulation helps make it clear that Algorithm 7.6.1 works by repeatedly generating
samples (t, v) of the bivariate random variable (T, V ) until a sample falls in the acceptance
region. When this occurs x = t is a sample of the univariate random variable X.

Proof What we must prove is that Pr(X ≤ x) = F (x) for all x ∈ X where

F (x) =

∫

t≤x

f(t) dt.

From the definition of conditional probability

Pr(X ≤ x) = Pr
(

T ≤ x | (T, V ) ∈ A
)

=
Pr
(

(T ≤ x) and (T, V ) ∈ A
)

Pr
(

(T, V ) ∈ A
) ,

where the numerator in the last expression is

Pr
(

(T ≤ x) and (T, V ) ∈ A
)

=

∫

t≤x

Pr
(

(T, V ) ∈ A | T = t
)

g(t) dt,

and the denominator Pr
(

(T, V ) ∈ A
)

is this same integral integrated over all t ∈ X . The
correctness of Algorithm 7.6.1 then follows from the fact that V is Uniform(0, 1) and so

Pr
(

(T, V ) ∈ A | T = t
)

= Pr

(

V ≤
f(t)

c g(t)

)

=
f(t)

c g(t)
.

That is

Pr
(

(T ≤ x) and (T, V ) ∈ A
)

=

∫

t≤x

f(t)

c g(t)
g(t) dt =

F (x)

c
,

and Pr
(

(T, V ) ∈ A
)

= 1/c so that Pr(X ≤ x) = F (x), as desired.
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Note that, in addition to calling Random twice, each do-while loop iteration in Algo-
rithm 7.6.1 involves

• one evaluation of G−1(u);

• one evaluation of f(x);

• one evaluation of g(x).

Therefore, the extent to which Algorithm 7.6.1 is efficient is determined, in part, by the
efficiency of these three function evaluations. In addition, the expected number of loop
iterations is also important and this is determined by how well c g(x) fits f(x).*

The design of a good acceptance-rejection algorithm, customized to a specific pdf
f(·), is usually a mathematically-oriented exercise. Important trade-off choices must be
made between the expected number of do-while loop iterations and the computational
simplicity of g(·) and G−1(·) function evaluations.

Example 7.6.1 Suppose that the pdf f(x) (the solid line in Figure 7.6.2 defined on
0 < x < w) is a smoothed histogram of many service times. Suppose also that f(x) can be
fit well with a triangular majorizing pdf c g(x), also defined on 0 < x < w with parameters
(h,w). (The dashed line is c g(x), not g(x).)
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Figure 7.6.2.

Service time

pdf with triangular

majorizing function.

Appropriate values for (h,w) can be determined by inspection. The triangular majorizing
pdf can then be written as

c g(x) = (1− x/w)h 0 < x < w

and the constant c can be determined from the pdf requirement
∫ w

0
g(x) dx = 1. That is

c = c

∫ w

0

g(x) dx =

∫ w

0

c g(x) dx =

∫ w

0

(1− x/w)h dx = · · · =
1

2
hw

and so we find that, in this case, a majorizing pdf is

g(x) =
(

1−
x

w

) 2

w
0 < x < w.

* See Exercise 7.6.1.
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The associated majorizing cdf is

G(x) =

∫ x

0

g(s) ds =
2

w

∫ x

0

(

1−
s

w

)

ds = · · · =
2x

w

(

1−
x

2w

)

0 < x < w.

The attractive feature of this triangular majorizing pdf is that the associated cdf is
quadratic and so the idf can be determined from the quadratic formula. That is, we
can write u = G(x) and solve for u to find that the idf of the majorizing pdf is

x = G−1(u) = w
(

1−
√
1− u

)

0 < u < 1.

The resulting acceptance-rejection algorithm is

do {

u = Random();

x = w * (1.0 - sqrt(1.0 - u));

v = Random();

} while (h * (1.0 - x / w) * v > f(x));

return x;

Example 7.6.2 As an alternate to the triangular majorizing pdf in Example 7.6.1,
suppose that we choose an Exponential(a) majorizing pdf

g(x) =
1

a
exp(−x/a) 0 < x < ∞,

where the parameters (a, c) are selected so that f(x) ≤ c g(x) for all x > 0. Then

G−1(u) = −a ln(1− u) 0 < u < 1

and the resulting acceptance-rejection algorithm is

do {

x = Exponential(a);

v = Random();

} while ((c / a) * exp(-x / a) * v > f(x));

return x;

Relative to Examples 7.6.2 and 7.6.3, the choice of whether to use the triangle or
exponential majorizing pdf is determined by the shape of f(·) and the resulting value of c.
By necessity, c is always greater than 1; the closer c is to 1, the better, since the expected
number of passes through the do-while loop (rejections) is smaller. For more insight, see
Exercise 7.6.1.
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7.6.2 GAMMA RANDOM VARIATES

We now use the acceptance-rejection technique to develop an efficient algorithm for
generating Gamma(a, b) random variates. We begin with the following definition.

Definition 7.6.2 The continuous random variable X is Gamma(a, b) if and only if

• the real-valued shape parameter a satisfies a > 0

• the real-valued scale parameter b satisfies b > 0

• the possible values of X are X = {x|x > 0}

• the pdf of X is

f(x) =
1

bΓ(a)
(x/b)a−1 exp(−x/b) x > 0

• the cdf of X is an incomplete gamma function

F (x) = P (a, x/b) x > 0

• the mean of X is
µ = ab

• the standard deviation of X is
σ = b

√
a.

As shown in Figure 7.6.3, a Gamma(a, b) random variable is an important generaliza-
tion of three common continuous random variables.
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In specific,

• A Gamma(1, b) random variable is an Exponential(b) random variable.

• If n is a positive integer, then a Gamma(n, b) random variable is an Erlang(n, b)
random variable.

• If n is a positive integer, then a Gamma(n/2, 2) random variable is a Chisquare(n)
random variable.

Except for special cases (in particular, a = 1), because the cdf of a Gamma(a, b)
random variable is an incomplete gamma function, there is no hope of determining a
closed-form equation for the idf F−1(·). Therefore, the inverse transformation method is
not directly applicable. However, as demonstrated in the remainder of this section, the
acceptance-rejection technique is applicable. The reason for this is based, in part, on the
following theorem, which effectively reduces the problem of generating a two-parameter
gamma random variate to generating a one-parameter gamma random variate. The proof
is left as an exercise.

Theorem 7.6.1 The random variable X is Gamma(a, 1) if and only if the random
variable Y = bX is Gamma(a, b), for all a > 0 and b > 0.

The significance of Theorem 7.6.1 is that it is sufficient to develop an efficient algorithm
to generate a Gamma(a, 1) random variate; a Gamma(a, b) random variate can then be
generated via multiplication by b. Therefore, in the discussion that follows we assume that
the pdf to be majorized is the Gamma(a, 1) pdf

f(x) =
1

Γ(a)
xa−1 exp(−x) x > 0.

As illustrated in Figure 7.6.4, the xa−1 term in f(x) causes the shape of the pdf to be
fundamentally different in the two cases a > 1 and a < 1. The pdf for a < 1 has a vertical
asymptote at x = 0. Because of this, it should be no surprise to find that two different
majorizing pdfs are required, one for each case.
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pdfs.
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Cheng’s Algorithm

We begin with the more common case, a > 1, and develop a majorizing pdf using an
approach developed by Cheng (1977). The majorizing cdf that Cheng used is

G(x) =
xt

xt + at
x > 0

which has the associated pdf

g(x) =
dG(x)

dx
=

tatxt−1

(xt + at)2
x > 0

and idf

G−1(u) = a

(

u

1− u

)1/t

0 < u < 1.

In these three equations, the real-valued parameter t is positive but otherwise arbitrary.

Note that G(x) is, in fact, a valid cdf for a positive, continuous random variable. That
is, G(x) is a continuous function that increases monotonically from a value of 0 at x = 0
to a value of 1 as x → ∞. This cdf was chosen, in part, so that the idf could be easily
evaluated.

The key to Cheng’s approach is a clever choice of t and the following theorem. The
proof is left as a (challenging) exercise.

Theorem 7.6.2 If f(x) is the pdf of a Gamma(a, 1) random variable, if g(x) is the pdf
in Definition 7.6.3, and if t =

√
2a− 1 with a > 1, then for all x > 0

f(x)

g(x)
=

xa−t(xt + at)2 exp(−x)

tatΓ(a)
≤

f(a)

g(a)
=
4aa exp(−a)

tΓ(a)

That is, the largest possible value of the ratio f(x)/g(x) occurs at x = a.

Note that if t =
√
2a− 1 with a > 1 then 1 < t < a. In addition, if

c =
f(a)

g(a)
=
4aa exp(−a)
√
2a− 1Γ(a)

then it can be verified numerically that we have the following table

a : 1 1.5 2 3 5 10 20 50 ∞

c : 1.47 1.31 1.25 1.20 1.17 1.15 1.14 1.13 1.13

Because c is the largest possible value of f(x)/g(x) it follows that

f(x) ≤ c g(x) x > 0.

The fact that c is only slightly greater than 1.0 for all a > 1 is important because it means
that g(x) is a good majorizing pdf (i.e., few rejections) for f(x) for all values of of a > 1.*

* Cheng’s algorithm becomes increasingly more efficient as a → ∞.
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If f(x) is the pdf of a Gamma(a, 1) random variable and g(x) is the pdf in Defi-
nition 7.6.3, then Cheng’s acceptance-rejection algorithm for generating a Gamma(a, 1)
random variate is

c = f(a) / g(a);

t = sqrt(2.0 * a - 1.0);

do {

u = Random();

s = log(u / (1.0 - u));

x = a * exp(s / t);

v = Random();

} while (c * g(x) * v > f(x));

return x;

Efficiency Improvement

Most acceptance-rejection methods can be made more efficient by analyzing the com-
putational details of the implementation in an attempt to eliminate unnecessary and re-
dundant calculations. The following example is an illustration of this.

Example 7.6.3 The c g(x) v > f(x) test at the bottom of the do-while loop in Cheng’s
Gamma(a, 1) variate generation algorithm can be simplified considerably by observing that
if

x = G−1(u) = a

(

u

1− u

)1/t

then

xt =
atu

1− u
and xt + at =

at

1− u
.

The inequality test can then be written as

c g(x) v > f(x) ⇐⇒

(

4aa exp(−a)

tΓ(a)

)(

tatxt−1

(xt + at)2

)

v >
1

Γ(a)
xa−1 exp(−x)

⇐⇒ 4vaaatxt exp(−a) > xa(xt + at)2 exp(−x)

⇐⇒ 4vaaat
(

atu

1− u

)

exp(−a) > aa
(

u

1− u

)a/t(

at

(1− u)

)2

exp(−x)

⇐⇒ 4vu(1− u) >

(

u

1− u

)a/t

exp(a− x).

All this symbol manipulation yields the following simple yet efficient acceptance-rejection
algorithm. The correctness of this algorithm can be verified (for particular values of a > 1
and b) by generating, say 100 000, values and comparing the resulting continuous data
histogram or empirical cdf with the corresponding Gamma(a, b) pdf or cdf, respectively.
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Algorithm 7.6.2 If a > 1, then for any b > 0 this algorithm generates a Gamma(a, b)
random variate without calculating c directly

t = sqrt(2.0 * a - 1.0);

do {

u = Random();

s = log(u / (1.0 - u));

x = a * exp(s / t);

v = Random();

} while (4.0 * v * u * (1.0 - u) > exp(a - x + a * s / t));

x = b * x;

return x;

Ahrens and Dieter’s Algorithm

We now turn to the case 0 < a ≤ 1 and develop a majorizing pdf using an approach
developed by Ahrens and Dieter (1974). The development begins with the observation
that if a ≤ 1 and if we define

c g(x) =

{

xa−1/Γ(a) 0 < x ≤ 1

exp(−x)/Γ(a) 1 < x < ∞

then by inspection

f(x) =
xa−1 exp(−x)

Γ(a)
≤ c g(x) 0 < x < ∞.

To determine the constant c write

c = c

∫ ∞

0

g(x) dx =

∫

1

0

xa−1

Γ(a)
dx+

∫ ∞

1

exp(−x)

Γ(a)
dx = · · · =

1

tΓ(a+ 1)

where the parameter t < 1 is

t =
e

e+ a
(e = exp(1) = 2.71828 . . .)

It can be verified numerically that c > 1 for all 0 < a ≤ 1 and, indeed, we have the
following representative table

a : 0 1/32 1/16 1/8 1/4 1/2 1
c : 1.00 1.03 1.06 1.11 1.20 1.34 1.37

Therefore, the majorizing function is

g(x) =

{

atxa−1 0 < x ≤ 1
at exp(−x) 1 < x < ∞

which has the associated cdf

G(x) =

{

txa 0 < x ≤ 1
1− at exp(−x) 1 < x < ∞.
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The idf can be expressed in closed-form as

G−1(u) =

{

(u/t)1/a 0 < u ≤ t

− ln
(

(1− u)/at
)

t < u < 1.

As in Cheng’s algorithm, the choice of majorizing pdf is dictated, in part, by the
simplicity of G−1(u). Moreover, because c is uniformly close to 1 for all 0 < a ≤ 1, Ahrens
and Dieter’s algorithm is efficient, becoming more so as a → 0.

Finally, we observe that the c g(x)v > f(x) inequality in Ahrens and Dieter’s algorithm
can be written (depending on whether x < 1 or x > 1) as

c g(x) v > f(x) ⇐⇒

{

v > exp(−x) 0 < x ≤ 1
v > xa−1 1 < x < ∞,

which is summarized by the following algorithm.

Algorithm 7.6.3 If 0 < a ≤ 1 then for any b > 0 this algorithm generates aGamma(a, b)
random variate.

t = e / (e + a); /* e = exp(1) ∼= 2.718281828459 · · · */

do {

u = Random();

if (u ≤ t) { /* 0 < x ≤ 1 */

x = exp(log(u / t) / a);

s = exp(-x);

}

else { /* 1 < x < ∞ */

x = -log((1.0 - u) / (a * t));

s = exp((a - 1.0) * log(x));

}

v = Random();

} while (v > s);

x = b * x;

return x;

This completes our discussion of the algorithms for generating a Gamma(a, b) random
variate. The problem was initially reduced to generating generating aGamma(a, 1) random
variate. If a = 1 (the exponential case), then an Exponential(1) variate is generated. If
a > 1, then Cheng’s Algorithm (Algorithm 7.6.2) is executed. If a < 1, then Ahrens
and Dieter’s Algorithm (Algorithm 7.6.3) is executed. Finally, in all three cases, the
Gamma(a, 1) random variate is multiplied by b to produce a Gamma(a, b) random variate.
We end this section with a review of the performance of the two acceptance-rejection
algorithms.
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Performance

Example 7.6.4 Algorithms 7.6.2 and 7.6.3 were implemented and compared with the
corresponding generators in the library rvgs. The times (in seconds) required to generate
1000 random observations are as illustrated for selected values of a

a : 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
algorithms 7.6.2 and 7.6.3 : 2.8 2.7 2.8 2.7 2.6 2.6 2.5 2.5

library rvgs : 1.5 0.7 1.6 3.2 6.2 12.3 24.5 48.8

The second row of the table corresponds to Algorithms 7.6.2 and 7.6.3. As expected, the
times are essentially independent of a. The third row used functions from the library rvgs
as follows: for a = 0.5, Chisquare(1); for a = 1.0, Exponential(1.0); for all other values of
a, Erlang(a, 1.0). Because the algorithm used in rvgs to generate an Erlang(a, b) random
variate is O(a), it should be avoided if a is larger than, say, 4; instead use Algorithm 7.6.2.

Further Reading

This section has provided an elementary introduction to the acceptance-rejection tech-
nique for generating random variates, along with a fairly sophisticated application (i.e.,
generating a Gamma(a, b) random variate). We recommend Devroye’s (1986) text for a
more thorough treatment.

7.6.3 EXERCISES

Exercise 7.6.1 Let the discrete random variable R with possible value r = 0, 1, 2, . . .
count the number of rejections (per return) by Algorithm 7.6.1. (a) Find the pdf of R.
(b) Prove that E[R] = c− 1.

Exercise 7.6.2 Work through the details of Examples 7.6.1 and 7.6.2. How do you
know to choose the ‘−’ sign when using the quadratic equation to determine G−1(u)?

Exercise 7.6.3 Prove Theorem 7.6.1.

Exercise 7.6.4a Prove Theorem 7.6.2. Hint: Consider the first derivative of the ratio
f(x)/g(x) and verify that this first derivative is zero at some point x > 0 if and only if
s(x) = 0 where

s(x) = (a− x− t)at + (a− x+ t)xt x > 0.

Then show that s(x) = 0 if and only if x = a.

Exercise 7.6.5 Implement the Gamma(a, b) generator defined by Algorithms 7.6.2 and
7.6.3. Present convincing numerical evidence that your implementation is correct in the
three cases (a, b) = (0.5, 1.0), (2.0, 1.0), and (10.0, 1.5).
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This chapter contains a more thorough presentation of techniques that can be ap-
plied to the output produced by a Monte Carlo or discrete-event simulation. In the case
of discrete-event simulation models, these techniques are complicated by the presence of
serial (auto-) correlation — which means that the standard statistical techniques which
are often based on the assumption of independence must be modified to account for the
autocorrelation.

Section 8.1 contains a graphical demonstation of the fundamentally important cen-
tral limit theorem. It also contains an introduction to interval estimation, or confidence

intervals as they are more commonly known. These intervals give an indication of the
accuracy or precision associated with a point estimate of a performance measure (such as
a mean, variance, or fractile). Section 8.2 applies the concepts associated with interval
estimation to Monte Carlo simulation. The purpose is to augment the point estimate with
an interval which contains the true value of the parameter of interest with high “confi-
dence”. Section 8.3 introduces the concept of finite-horizon and infinite-horizon statistics
as two classifications of statistics associated with a system. The M/G/1 queue is used to
illustrate the difference between the two types of statistics. Section 8.4 introduces “batch
means”, which is a popular technique for reducing the effect of autocorrelation when ana-
lyzing simulation output. Section 8.5 provides insight into the mathematics of traditional
queueing theory as applied to the steady-state statistics associated with the single-server
service node.
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This chapter is concerned with simulation applications based on the fundamentally
important central limit theorem, and its relation to interval estimation. That is, because
discrete-event simulation models produce statistical estimates (means, relative frequen-
cies, etc.) that are inherently uncertain, some technique must be used to quantify that
uncertainty; many such techniques are based on the central limit theorem.

8.1.1 CENTRAL LIMIT THEOREM

Although a rigorous proof of the central limit theorem is beyond the scope of this book
(see Hogg, McKean, and Craig, 2005, for a proof), we can use Monte Carlo simulation to
demonstrate the theorem’s correctness and, by so doing, gain insight. We begin with a
statement of the theorem.

Theorem 8.1.1 If X1, X2, . . ., Xn are iid random variables with a common mean finite
µ and common finite standard deviation σ and if X̄ is the mean of these random variables

X̄ =
1

n

n
∑

i=1

Xi

then the mean of X̄ is µ and the standard deviation of X̄ is σ/
√
n. Furthermore, X̄

approaches a Normal(µ, σ/
√
n) random variable as n → ∞.

Sample Mean Distribution

Example 8.1.1 Suppose we choose one of the random variate generators in the library
rvgs — it does not matter which one — and use it to generate a sequence of random
variate samples, each of fixed sample size n > 1. As each of the n-point samples indexed
j = 1, 2, . . . is generated, the corresponding sample mean x̄j and sample standard deviation
sj can be calculated using Algorithm 4.1.1 (Welford’s Algorithm), as illustrated

x1, x2, . . . , xn
︸ ︷︷ ︸

x̄1, s1

, xn+1, xn+2, . . . , x2n
︸ ︷︷ ︸

x̄2, s2

, x2n+1, x2n+2, . . . , x3n
︸ ︷︷ ︸

x̄3, s3

, x3n+1, . . .

A continuous-data histogram can then be created using program cdh, as illustrated in
Figure 8.1.1.

cdh

histogram mean

histogram standard deviation

histogram density

x̄1, x̄2, x̄3, . . . ........................................................... ..............

........................................................... ..............

........................................................... ..............

........................................................... ..............

Figure 8.1.1.

Calculating a

histogram of

the sample

means.

Let µ and σ denote the theoretical (population) mean and standard deviation of the random
variates. Consistent with Theorem 8.1.1, the resulting sample mean histogram will have
the following three properties:
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• Independent of n, the histogram mean will be approximately µ.

• Independent of n, the histogram standard deviation will be approximately σ/
√
n.

• The histogram approaches the pdf of a Normal(µ, σ/
√
n) random variable as n → ∞.

Example 8.1.2 To illustrate Example 8.1.1 in more detail, the library rvgs was used to
generate 10 000 Exponential(µ) random variate samples of size n = 9 and 10 000 samples
of size n = 36 (using the default rngs stream and initial seed in both cases). These
histograms are shown in Figure 8.1.2.
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Figure 8.1.2.

Histograms

of sample

means.

Consistent with the central limit theorem, for both cases the histogram mean and standard
deviation are approximately µ and σ/

√
n respectively. (Because Exponential(µ) random

variate samples were used, the population standard deviation is σ = µ in both cases.)
Moreover, the histogram density corresponding to the 36-point sample means (the stairstep
curve) is matched almost exactly by the pdf of a Normal(µ, σ/

√
n) random variable (the

continuous curve). This agreement illustrates that, for Exponential(µ) samples, n = 36 is
large enough for the sample mean to be approximately a Normal(µ, σ/

√
n) random vari-

ate. Similarly, the histogram density corresponding to the 9-point sample means matches
relatively well, but with a skew to the left. This skew is caused by the highly asymmetric
shape of the Exponential(µ) pdf and the fact that, in this case, n = 9 is not a large enough
sample — the sample mean histogram retains a vestige of the asymmetric population pdf.
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As stated in Example 8.1.1 and illustrated in Example 8.1.2, the standard deviation
of the sample mean histogram is σ/

√
n. Moreover, in the sense of Chebyshev’s inequality,

this standard deviation defines an interval within which essentially all the sample means
lie. Because the existence of this interval is so important as the theoretical basis for the
development of an interval estimation technique, for emphasis we provide the following
two related summary points.

• Essentially all (about 95%) of the sample means are within an interval of width of
4σ/

√
n centered about µ.

• Because σ/
√
n → 0 as n → ∞, if n is large then essentially all of the sample means

will be arbitrarily close to µ.

The random variate samples in Examples 8.1.1 and 8.1.2 are drawn from a population
with a fixed pdf. As illustrated in Example 8.1.2, the accuracy of the Normal(µ, σ/

√
n)

pdf approximation of the distribution of X̄ is dependent on the shape of this population
pdf. If the samples are drawn from a population with a highly asymmetric pdf (like the
Exponential(µ) pdf for example) then n may need to be as large as 30 or more for the
Normal(µ, σ/

√
n) pdf to be a good fit to the histogram density. If instead the samples

are drawn from a population with a pdf symmetric about the mean (like the Uniform(a, b)
pdf for example) then values of n as small as 10 or less may produce a satisfactory fit.

Standardized Sample Mean Distribution

Example 8.1.3 As an extension of Example 8.1.1, there is another way to characterize
the central limit theorem. In addition to computing the sample means x̄1, x̄2, x̄3, . . . we
can standardize each sample mean by subtracting µ and dividing the result by σ/

√
n to

form the standardized sample means z1, z2, z3, . . . defined by

zj =
x̄j − µ

σ/
√
n

j = 1, 2, 3, . . .

We can then generate a continuous-data histogram for the standardized sample means by
using program cdh, as illustrated in Figure 8.1.3.

cdh

histogram mean

histogram standard deviation

histogram density

z1, z2, z3, . . . ........................................................... ..............

........................................................... ..............

........................................................... ..............

........................................................... ..............

Figure 8.1.3.

Calculating a

histogram of

the standardized

sample means.

The resulting standardized sample mean histogram will have the following three properties.

• Independent of n, the histogram mean will be approximately 0.

• Independent of n, the histogram standard deviation will be approximately 1.

• Provided n is sufficiently large, the histogram density will approximate the pdf of a
Normal(0, 1) random variable.
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Example 8.1.4 To illustrate Example 8.1.3 in more detail, the sample means from
Example 8.1.2 were standardized to form the two histograms illustrated in Figure 8.1.4.
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Figure 8.1.4.

Histograms of

standardized

sample

means.

Consistent with Example 8.1.3, in both cases the histogram mean and standard deviation
are approximately 0.0 and 1.0 respectively. Moreover, the histogram density corresponding
to the 36-point samples (the stairstep curve) matches the pdf of a Normal(0, 1) random
variable (the continuous curve) almost exactly. Similarly, the histogram density corre-
sponding to the 9-point samples also matches, but not quite as well because it retains a
vestige of the population’s asymmetric pdf.

t-Statistic Distribution

The next issue to consider is the effect of replacing the population standard deviation
σ with the sample standard deviation sj in the equation

zj =
x̄j − µ

σ/
√
n

j = 1, 2, 3, . . .

But first, a definition and some discussion.

Definition 8.1.1 Each sample mean x̄j is a point estimate of µ, each sample variance
s2

j
is a point estimate of σ2, and each sample standard deviation sj is a point estimate of

σ.
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Relative to Definition 8.1.1 and the discussion in Section 4.1, the following points
address the issue of bias as it relates to the sample mean and sample variance.

• The sample mean is an unbiased point estimate of µ. That is, the mean of the sample
means x̄1, x̄2, x̄3, . . . will converge to µ as the number of sample means is increased.
Indeed, this is guaranteed by the central limit theorem.

• The sample variance is a biased point estimate of σ2. Specifically, the mean of the
sample variances s2

1
, s2

2
, s2

3
, . . . will converge to (n− 1)σ2/n, not σ2. To remove this

(n− 1)/n bias it is conventional to multiply the sample variance by a bias correction

factor n/(n− 1). The result is an unbiased point estimate of σ2.*

The square root of the unbiased point estimate of σ2 is a point estimate of σ. The
corresponding point estimate of σ/

√
n is then

(√

n

n− 1

)

sj

√
n

=
sj

√
n− 1

The following two examples illustrate what changes in Examples 8.1.3 and 8.1.4 if σ/
√
n

is replaced with sj/
√
n− 1 in the definition of zj .

Example 8.1.5 As an extension of Example 8.1.3, instead of computing zj for each
n-point sample we can calculate the t-statistic

tj =
x̄j − µ

sj/
√
n− 1

j = 1, 2, 3, . . .

and then generate a continuous-data histogram using program cdh, as illustrated in Fig-
ure 8.1.5.

cdh

histogram mean

histogram standard deviation

histogram density

t1, t2, t3, . . . ........................................................... ..............

........................................................... ..............

........................................................... ..............

........................................................... ..............

Figure 8.1.5.

Calculating a

histogram

of sample

t-statistics.

The resulting t-statistic histogram will have the following three properties.

• If n > 2, the histogram mean will be approximately 0.

• If n > 3, the histogram standard deviation will be approximately
√

(n− 1)/(n− 3).

• Provided n is sufficiently large, the histogram density will approximate the pdf of a
Student(n− 1) random variable.

* If the “divide by n− 1” definition of the sample variance had been used in Section 4.1
then multiplication by the n/(n− 1) bias correction factor would not be necessary.
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Example 8.1.6 To illustrate Example 8.1.5 in more detail, the sequence of sample means
and sample standard deviations from Example 8.1.2 were processed as t-statistics to form
the two histograms illustrated in Figure 8.1.6.
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Figure 8.1.6.

Histograms of

sample

t-statistics.

Consistent with Example 8.1.5, in both cases the histogram mean is approximately 0.0 and
the histogram standard deviation is approximately

√

(n− 1)/(n− 3) ∼= 1.0. Moreover, the
histogram density corresponding to the 36-point samples (the stairstep curve) matches the
pdf of a Student(35) random variable (the continuous curve) relatively well. Similarly, the
histogram density corresponding to the 9-point samples matches the pdf of a Student(8)
random variable, but not quite as well.

8.1.2 INTERVAL ESTIMATION

The discussion to this point has been focused on the central limit theorem, leading
to Examples 8.1.5 and 8.1.6 which provide an experimental justification for the following
theorem. In turn, this theorem is the theoretical basis for the important idea of interval

estimation which is the application focus of this chapter.



8.1 Interval Estimation 353

Theorem 8.1.2 If x1, x2, . . ., xn is an (independent) random sample from a “source”
of data with unknown finite mean µ, if x̄ and s are the mean and standard deviation of
this sample, and if n is large, then it is approximately true that

t =
x̄− µ

s/
√
n− 1

is a Student(n− 1) random variate.*

The significance of Theorem 8.1.2 is that it provides the justification for estimating an
interval that is quite likely to contain the mean µ. That is, if T is a Student(n−1) random
variable and if α is a “confidence parameter” with 0.0 < α < 1.0 (typically α = 0.05), then
there exists a corresponding positive real number t∗ such that

Pr(−t∗ ≤ T ≤ t∗) = 1− α

as illustrated in Figure 8.1.7.
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Student(n− 1)
pdf.

Suppose that µ is unknown. From Theorem 8.1.2, since t is a Student(n − 1) random
variate the inequality

−t∗ ≤
x̄− µ

s/
√
n− 1

≤ t∗

will be (approximately) true with probability 1− α. Multiplying by s/
√
n− 1 yields

−
t∗s

√
n− 1

≤ x̄− µ ≤
t∗s

√
n− 1

.

Subtracting x̄ and negating, the inequality

x̄−
t∗s

√
n− 1

≤ µ ≤ x̄+
t∗s

√
n− 1

will be (approximately) true with probability 1− α. This proves that there is an interval
within which µ lies with probability 1− α, as summarized by the following theorem.

* Recall from Figure 7.4.9 that as n → ∞ a Student(n−1) random variate becomes sta-
tistically indistinguishable from a Normal(0, 1) random variate. Although Theorem 8.1.2
is an exact result if the random sample is drawn from a Normal(µ, σ) population, this
theorem is stated here only as an approximate result.
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Theorem 8.1.3 If x1, x2, . . ., xn is an (independent) random sample from a “source” of
data with finite unknown mean µ, if x̄ and s are the mean and standard deviation of this
sample, and if n is large, then given a confidence parameter α with 0.0 < α < 1.0 there
exists an associated positive real number t∗ such that

Pr

(

x̄−
t∗s

√
n− 1

≤ µ ≤ x̄+
t∗s

√
n− 1

)

∼= 1− α.

Example 8.1.7 From Theorem 8.1.3, if α = 0.05 then we are 95% confident that µ lies
somewhere in the interval defined by the endpoints

x̄−
t∗s

√
n− 1

and x̄+
t∗s

√
n− 1

.

For a fixed sample size n and level of confidence 1 − α we can use the idf capability in
the library rvms to determine the critical value as t∗ = idfStudent(n − 1, 1 − α/2). For
example, if n = 30 and α = 0.05 then the value of t∗ is idfStudent(29, 0.975) which is
approximately 2.045.

Definition 8.1.2 The interval defined by the two endpoints

x̄±
t∗s

√
n− 1

is a (1−α)× 100% confidence interval estimate for µ. The parameter 1−α is the level of

confidence associated with this interval estimate and t∗ is the critical value of t.

Algorithm 8.1.1 The following steps summarize the process of calculating an interval

estimate for the unknown mean µ of that much larger population from which a random
sample x1, x2, x3, . . ., xn of size n > 1 was drawn.

• Pick a level of confidence 1 − α (typically α = 0.05, but α = 0.20, 0.10 and 0.01 are
also commonly used).

• Calculate the sample mean x̄ and the sample standard deviation s (Definition 4.1.1).

• Calculate the critical value t∗ = idfStudent(n− 1, 1− α/2).

• Calculate the interval endpoints

x̄±
t∗s

√
n− 1

.

If n is sufficiently large you are then (1 − α) × 100% confident that µ lies somewhere in
the interval defined by these two endpoints. The associated point estimate of µ is the
mid-point of this interval (which is x̄).
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Example 8.1.8 The data

1.051 6.438 2.646 0.805 1.505 0.546 2.281 2.822 0.414 1.307

is a random sample of size n = 10 from a population with unknown mean µ. The sample
mean and standard deviation are x̄ = 1.982 and s = 1.690.

• To calculate a 90% confidence interval estimate we first evaluate

t∗ = idfStudent(9, 0.95) ∼= 1.833

and then construct the interval estimate as

1.982± (1.833)
1.690
√
9
= 1.982± 1.032.

Therefore, we are approximately 90% confident that the (unknown) value of µ is
somewhere between 0.950 and 3.014. This is typically reported as the confidence
interval 0.950 ≤ µ ≤ 3.014.

• Similarly, to calculate a 95% confidence interval estimate

t∗ = idfStudent(9, 0.975) ∼= 2.262

and thus the interval is

1.982± (2.262)
1.690
√
9
= 1.982± 1.274.

Therefore, we are approximately 95% confident that the (unknown) value of µ is
somewhere in the interval 0.708 ≤ µ ≤ 3.256.

• And, to calculate a 99% confidence interval estimate

t∗ = idfStudent(9, 0.995) ∼= 3.250

and thus the interval is

1.982± (3.250)
1.690
√
9
= 1.982± 1.832.

Therefore, we are approximately 99% confident that the (unknown) value of µ is
somewhere in the interval 0.150 ≤ µ ≤ 3.814.

In each case, the modifier “approximately” is used because n is not large. If we had knowl-
edge that the 10 data values were drawn from a Normal(µ, σ) population distribution,
then the “approximately” modifier could be dropped and the confidence interval would be
known as an “exact” confidence interval.
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Tradeoff — Confidence Versus Sample Size

Example 8.1.8 illustrates the classic interval estimation tradeoff. For a given sample
size, more confidence can be achieved only at the expense of a larger interval and a smaller
interval can be achieved only at the expense of less confidence. The only way to make the
interval smaller without lessening the level of confidence is to increase the sample size —
collect more data!

Collecting more data in simulation applications is usually easy to do. The question
then is how much more data is enough? That is, how large should n be in Algorithm 8.1.1
to achieve an interval estimate x̄ ± w for a user-specified interval width w? The answer
to this question is based on using Algorithm 4.1.1 in conjunction with Algorithm 8.1.1 to
iteratively collect data until a specified interval width is achieved. This process is simplified
by the observation that if n is large then the value of t∗ is essentially independent of n, as
illustrated in Figure 8.1.8.
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Figure 8.1.8.

Sample size

considerations.

The asymptotic (large n) value of t∗ indicated is

t∗∞ = lim
n→∞

idfStudent(n− 1, 1− α/2) = idfNormal(0.0, 1.0, 1− α/2).

Unless α is very close to 0.0, if n > 40 then the asymptotic value t∗∞ can be used. In
particular, if n > 40 and we wish to construct a 95% confidence interval estimate for µ
then t∗∞ = 1.960 can be used for t

∗ in Algorithm 8.1.1.

Example 8.1.9 Given a reasonable guess for s and a user-specified half-width parame-
ter w, if t∗∞ is used in place of t∗ the value of n can be determined by solving the equation

w =
t∗∞s

√
n− 1

for n. The result is

n =

⌊

(

t∗∞s

w

)2
⌋

+ 1

provided n > 40 (which will surely be the case if w/s is small). For example, if s = 3.0,
α = 0.05, and w = 0.5, then a sample size of n = 139 should be used.
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Example 8.1.10 Similarly, if a reasonable guess for s is not available, then w can
be specified as a proportion of s thereby eliminating s from the previous equation. For
example, if w is 10% of s (so that w/s = 0.1) and if 95% confidence is desired, then a value
of n = 385 should be used to estimate µ to within ±w.

Program estimate

Based on Algorithm 8.1.1, program estimate automates the interval estimation pro-
cess. A typical application of this program is to estimate the value of an unknown popu-
lation mean µ by using n replications to generate an independent random variate sample
x1, x2, . . . , xn. Let Generate() represent a discrete-event or Monte Carlo simulation pro-
gram configured as a function that returns a random variate output x. If n is specified
then the algorithm

for (i = 1; i <= n; i++)

xi = Generate();

return x1, x2, . . . , xn;

generates a random variate sample. Given a user-defined level of confidence 1−α, program
estimate can then be used with x1, x2, . . ., xn, to compute an interval estimate for µ.

As an alternative to using program estimate directly, if the desired interval half-
width w is specified instead of the sample size n then repeated calls to Generate() can
be used in conjunction with Algorithm 4.1.1 to iteratively collect data until the 2w in-
terval width is achieved. This process is summarized by the following algorithm which
uses the t∗ asymptotic approximation discussed previously to eliminate needless calls to
idfStudent(n− 1, 1− α/2) inside the while loop.

Algorithm 8.1.2 Given an interval half-width w and level of confidence 1 − α, this
algorithm computes the (large sample size) interval estimate for µ of the form x̄± w.

t = idfNormal(0.0, 1.0, 1− α/2); /* this is t∗∞ */

x = Generate();

n = 1;

v = 0.0;

x̄ = x;

while ((n < 40) or (t * sqrt(v / n) > w * sqrt(n - 1)) {

x = Generate();

n++

d = x - x̄;

v = v + d * d * (n - 1) / n;

x̄ = x̄ + d / n;

}

return n, x̄;
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Welford’s Algorithm (Algorithm 4.1.1) is contained in Algorithm 9.1.2 so that only
one pass is made through the data and the likelihood of overflow is minimized.

It is important to appreciate the need for sample independence in Algorithms 8.1.1
and 8.1.2. The problem here is that both of these algorithms can be used naively even
if the sample is not independent. However, the resulting interval estimate is valid only if
the sample is independent. If the sample is not independent then the interval “coverage”
will be incorrect, perhaps dramatically so. For example, an interval alleged to be 95%
confident may be actually only, say, 37% confident.

The Meaning of Confidence

One common mistake that occurs when novices begin working with confidence intervals
is reflected in the following statements:

“I made n runs of the simulation and created a 95% confidence interval for µ.
The probability that the true mean µ is contained in my confidence interval is
0.95.”

The problem with this statement is that the (unknown) true value of µ either is or is not

in the confidence interval. A probability statement can be made, although it is painfully
tedious:

“I made n runs of the simulation and created a 95% confidence interval for µ.
This particular interval may or may not contain µ. However, if I were to create
many confidence intervals like this one many times over, then approximately 95%
of these intervals would cover the true mean µ.”

This discussion indicates why the phrase “confidence interval” is used rather than the
phrase “probability interval.”

Example 8.1.11 One hundred 95% confidence intervals associated with data drawn
from a Normal(6, 3) population with sample size n = 9 are shown in Figure 8.1.9, each
displayed as a vertical line. A horizontal line is drawn at the population mean µ = 6.
Three of the confidence intervals “miss low” (e.g., the upper limit is less than µ = 6) and
two of the confidence intervals “miss high” (e.g., the lower limit is greater than µ = 6).
The lower and upper limits of these confidence intervals are random — whereas µ is fixed.
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8.1.3 EXERCISES

Exercise 8.1.1 This exercise illustrates the central limit theorem. (a) Generate 100 000
Uniform(2, 6) random variate samples of size n = 4. For each sample calculate the sample
mean and then generate a 20-bin continuous-data histogram of the 100 000 sample means.
(Use 10 bins on each side of 4.0 and choose the other histogram parameters appropriately.)
Plot the histogram and overlay the theoretical Normal pdf that should approximate it.
(b) Repeat with n = 9. (c) Repeat with n = 25. (d) Comment.

Exercise 8.1.2 To illustrate that the central limit theorem is an approximation, prove
that for an iid sequence of Exponential(µ) random variables X1, X2, . . ., Xn the pdf of
the X̄ is

f(x̄) =
n

µ(n− 1)!

(

nx̄

µ

)n−1

exp(−nx̄/µ) x̄ > 0.

Exercise 8.1.3 (a) Generate 100 000 Poisson(10) random variate samples of size 4, for
each sample calculate the variance, and then calculate the mean of these 100 000 sample
variances. (b) Compare this mean with the theoretical variance of a Poisson(10) random
variable. (c) Explain why there is a difference in these two variances.

Exercise 8.1.4 This exercise is a continuation of Exercise 8.1.1. (a) Generate 100 000
Uniform(2, 6) random variate samples of size n = 4. For each sample calculate both the
sample mean x̄, the standard deviation s, and

t =
x̄− 1

s/
√
n− 1

.

Then generate a 20-bin histogram of the 100 000 t’s. (Use 10 bins on each side of 0.0 and
choose the other histogram parameters appropriately.) Plot the histogram and overlay the
theoretical Student pdf that should approximate it. (b) Repeat with n = 9. (c) Repeat
with n = 25. (d) Comment.

Exercise 8.1.5 This exercise illustrates interval estimation for the mean. (a) Generate
100 000 Exponential(1) random variate samples of size n = 4 and for each sample calculate
a 95% confidence interval estimate of the mean. Compute the relative frequency of times
(out of 100 000) that the interval estimate includes 1.0. (b) Repeat with n = 9, 25, 49,
100, and 1000. (c) Comment on how the “coverage” depends on the sample size.

Exercise 8.1.6 Repeat Exercise 8.1.5 using Uniform(2, 6) random variates instead.

Exercise 8.1.7 Repeat Exercise 8.1.5 using Geometric(0.8) random variates instead.

Exercise 8.1.8 How does Exercise 8.1.6 relate to Exercises 8.1.1 and 8.1.4? Be specific.

Exercise 8.1.9a Do Exercise 7.5.7, but calculate 95% confidence interval estimates for
the instantaneous (snapshot) number in the node at each of the λ(t) time knots.
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One of the primary applications of parameter estimation is Monte Carlo simulation.
That is, Monte Carlo simulation is based upon the use of many independent replications of
the same static, stochastic system to generate an estimate of some parameter of interest.
If, as in Section 2.3, this estimate is just a point estimate then there is no associated
measure of precision. How close is the point estimate to the true (unknown) value of the
parameter being estimated? If the Monte Carlo estimate is an interval estimate, however,
then the precision of the estimate has been quantified by establishing an interval in which
the true value of the parameter lies with high probability.

8.2.1 PROBABILITY ESTIMATION

Example 8.2.1 The program craps was run once with n = 100 replications and a
rngs initial seed of 12345. There were 56 wins and 44 losses; the corresponding point

estimate of the probability of winning is 0.56. Recall from Section 2.4.2 that the true
(theoretical) probability of winning at Craps is 244/495 ∼= 0.493 and so this point estimate
is not particularly accurate. However, by using interval estimation it can be shown that
56 wins in 100 tries corresponds to a 95% confidence interval estimate of 0.56± 0.10 (see
Example 8.2.3, to follow). Therefore we are 95% confident that the true probability of
winning is somewhere between 0.46 and 0.66. There are two important points in this case:

• the 0.56 ± 0.10 interval estimate is “correct” in the sense that it contains the true
probability of winning;

• the interval is quite wide indicating that (many) more than 100 replications should
have been used.

The general interval estimation technique developed in the previous section applies to
the specific case of Monte Carlo simulation used to estimate a probability. That is, recall
from Section 4.1 that if x1, x2, . . ., xn is a random sample of size n with the property that
each xi is either 0 (a “loss”) or 1 (a “win”) then the sample mean is

x̄ =
1

n

n
∑

i=1

xi =
the number of 1′s

n

and the sample standard deviation is

s =

√

√

√

√

(

1

n

n
∑

i=1

x2

i

)

− x̄2 =
√

x̄− x̄2 =
√

x̄(1− x̄).

From Algorithm 8.1.1, if n is sufficiently large the corresponding interval estimate for the
(unknown) population mean is

x̄± t∗

√

x̄(1− x̄)

n− 1

where the critical value t∗ = idfStudent(n− 1, 1−α/2) is determined by the sample size
and the level of confidence 1− α.
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Example 8.2.1 not withstanding, when Monte Carlo simulation is used to estimate a
probability, the sample size (the number of replications) is almost always large. Moreover,
the conventional level of confidence is 95%. Consistent with the discussion in Section 8.1,
if n is sufficiently large and if α = 0.05 then

t∗ = t∗∞ = idfNormal(0.0, 1.0, 0.975) ∼= 1.960 ∼= 2.0.

In addition, if n is large, then the distinction between n and n− 1 in the interval estimate
equation is insignificant. Therefore, the approximate 95% confidence interval estimate can
be written as x̄± 1.96

√

x̄(1− x̄)/n, or x̄− 1.96
√

x̄(1− x̄)/n < p < x̄+ 1.96
√

x̄(1− x̄)/n.

Algorithm

If p denotes the (unknown) value of the probability to be estimated, then it is conven-
tional to use the notation p̂, rather than x̄, to denote the point estimate of p. Using this
notation, Monte Carlo probability interval estimation can be summarized by the following
algorithm. [If p is very close to either 0.0 or 1.0, then more sophisticated approaches to
interval estimation, such as those given in Hogg, McKean, and Craig (2005), are required.]

Algorithm 8.2.1 To estimate the unknown probability p of an event A by Monte Carlo
simulation, replicate n times and let

p̂ =
the number of occurrences of event A

n

be the resulting point estimate of p = Pr(A). We are then 95% confident that p lies
somewhere in the interval with endpoints

p̂± 1.96

√

p̂(1− p̂)

n
.

Example 8.2.2 Program craps was run 200 times with n = 100. For each run a
95% confidence interval estimate was computed using Algorithm 8.2.1. Each of these
200 interval estimates are illustrated as vertical lines in Figure 8.2.1; the horizontal line
corresponds to the true probability p ∼= 0.493. (The left-most vertical line corresponds to
the 0.56± 0.10 interval estimate in Example 8.2.1.)
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Consistent with the probability interpretation of a 95% confidence interval, we see that in
this case 95.5% (191 of 200) of the intervals include p.
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Approximate Interval Estimation

If the point estimate p̂ is close to 0.5 then
√

p̂(1− p̂) is also close to 0.5. In this case
the 95% confidence interval estimate reduces to (approximately)

p̂±
1
√
n
.

The significance of this approximate interval estimate is that it is easily remembered, it is
conservative, and it clearly highlights the “curse” of

√
n. In particular, (unless p is close

to 0.0 or 1.0) approximately:

• 100 replications are necessary to estimate p to within ±0.1;

• 10 000 replications are necessary to estimate p to within ±0.01;

• 1 000 000 replications are necessary to estimate p to within ±0.001.

Therefore, the general result is seen clearly — to achieve 1 more decimal digit of precision
in the interval estimate, be prepared to do 100 times more work! (This is a worst case
scenario — see Example 8.2.4.)

Example 8.2.3 For a random sample of size n = 100,
√
n = 10. Therefore, if p̂ = 0.56

then the corresponding 95% confidence interval estimate is approximately 0.56± 0.10.

Specified Precision

Example 8.2.4 When using Monte Carlo simulation to estimate a probability p it is
frequently the case that we want to know a priori how many replications n will be required
to achieve a specified precision ±w. Specifically, if it is desired to estimate p as p̂±w with
95% confidence then, replacing 1.96 with 2, the equation

w = 2

√

p̂(1− p̂)

n

can be solved for n to yield

n =

⌊

4p̂(1− p̂)

w2

⌋

.

A small run with say n = 100 can be used to get a preliminary value for p̂. This preliminary
value can then be used in the previous equation to determine the approximate number of
replications required to estimate p to within ±w. In particular, suppose a small trial run
produced a preliminary estimate of p̂ = 0.2 and suppose we wish to estimate p to within
±0.01. Then w = 0.01 and, in this case, the approximate number of replications required
to achieve a 95% confidence interval estimate is

n =

⌊

4(0.2)(0.8)

(0.01)2

⌋

= 6400

instead of the more conservative 10 000 replications suggested previously.
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The sample size determinations considered here also apply to political polls used to
determine the support for a particular issue or candidate. Monte Carlo estimation has two
advantages over this more classical statistical estimation problem: (i) observations tend to
be very cheap and can be collected quickly, and (ii) there is no concern over sampling bias

that might be generated by non-representative sampling.* Sampling bias can be introduced
in classical statistics by factors such as dependent sampling.

Algorithm 8.2.2, properly modified, can be used to automate the process illustrated
in Example 8.2.4. In this case the function Generate() represents a Monte Carlo program
configured to estimate the probability p = Pr(A) by returning a value of x = 1 or x = 0
depending on whether event A occurred or not. The result is the following algorithm.

Algorithm 8.2.2 Given a specified interval half-width w and level of confidence 1− α,
the following algorithm computes a confidence interval estimate for p to at least p̂ ± w

precision.

t = idfNormal(0.0, 1.0, 1 - α / 2);

n = 1;

x = Generate(); /* returns 0 or 1 */

p̂ = x;

while ((n < 40) or (t * sqrt(p̂ * (1 - p̂)) > w * sqrt(n)) {

n++;

x = Generate(); /* returns 0 or 1 */

p̂ = p̂ + (x− p̂) / n;

}

return n, p̂;

8.2.2 MONTE CARLO INTEGRATION

As a second application of interval estimation we will now consider the use of Monte
Carlo simulation to estimate the value of the definite integral

I =

∫ b

a

g(x) dx.

* One of the more famous cases of biased sampling occurred after the pre-election polls
of 1948 which predicted that Thomas Dewey would defeat incumbent Harry Truman in the
U.S. presidential election. Three separate polls incorrectly predicted that Dewey would
prevail. What went wrong? All three polls used a technique known as quota sampling ,
which resulted in somewhat more likely access to Republicans, who were more likely to
have permanent addresses, own telephones, etc. (Trosset, 2004). A photograph of the
victorious and jubilant Truman holding a copy of the Chicago Tribune with the headline
“Dewey defeats Truman” was the result of biased sampling.
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This is a classic application with considerable intuitive appeal, but limited practical value.*
Let X be a Uniform(a, b) random variable and use the function g(·) to define the random
variable

Y = (b− a)g(X).

Because the pdf of X is f(x) = 1/(b− a) for a < x < b, from Definition 7.1.5 the expected
value of Y is

E[Y ] =

∫ b

a

(b− a)g(x)f(x) dx =

∫ b

a

g(x) dx = I.

Therefore I = E[Y ] and so an interval estimate Î ± w for I can be calculated by using a
slightly modified version of Algorithm 8.1.2 to determine an interval estimate for E[Y ], as
summarized by Algorithm 8.2.3.

Algorithm 8.2.3 Given a specified interval half-width w, level of confidence 1−α, and
a need to evaluate the definite integral

I =

∫ b

a

g(x) dx,

the following algorithm computes an interval estimate for I to at least Î ± w precision.

t = idfNormal(0.0, 1.0, 1 - α / 2);

n = 1;

x = Uniform(a, b); /* modify as appropriate */

y = (b - a) * g(x); /* modify as appropriate */

ȳ = y;

v = 0.0;

while ((n < 40) or (t * sqrt(v / n) > w * sqrt(n - 1))) {

n++;

x = Uniform(a, b); /* modify as appropriate */

y = (b - a) * g(x); /* modify as appropriate */

d = y - ȳ;

v = v + d * d * (n - 1) / n;

ȳ = ȳ + d / n;

}

return n, ȳ; /* ȳ is Î */

* One dimensional Monte Carlo integration has limited practical value because there are
much more efficient deterministic algorithms for doing the same thing (e.g., the trapezoid
rule and Simpson’s rule) — see Example 8.2.5.
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Example 8.2.5 Algorithm 8.2.3 was used to evaluate the integral

I =
1

√
2π

∫

4

−3

exp(−x2/2) dx

with w = 0.01 and α = 0.05. With a rngs initial seed of 12345 and

g(x) =
exp(−x2/2)

√
2π

− 3 < x < 4,

the number of replications n = 37 550 produced the interval estimate

Î ± w = 0.997± 0.01.

That is, we are 95% confident that 0.987 < I < 1.007. This interval estimate is consistent
with the correct value of I which is I = Φ(4)−Φ(−3) ∼= 0.9986. Recognize, however, that
37 550 function evaluations were required to achieve this modest precision. In contrast,
the trapezoid rule with just 30 function evaluations evaluates I to ±0.0001 precision. To
achieve this precision with Monte Carlo integration, approximately 3.8 × 108 function
evaluations would be required (start early, your mileage may vary).

Algorithm 8.2.3 uses

Î =
(b− a)

n

n
∑

i=1

g(xi) as a point estimate of I =

∫ b

a

g(x) dx

where x1, x2, . . . , xn is a Uniform(a, b) random variate sample. As illustrated in Exam-
ple 8.2.5, a huge sample size may be required to achieve reasonable precision. What can
be done to improve things?

Importance Sampling

Relative to Example 8.2.5, it should be clear that the slow convergence is due, in
part, to the use of Uniform(a, b) random variates. That is, it is wasteful to repeatedly
sample and sum g(x) for values of x where g(x) ∼= 0. Instead, the integration process
should concentrate on sampling and summing g(x) for values of x where g(x) is large
because those values contribute most to the integral. What is needed to accomplish this
is a random variable X whose pdf is similar to g(x). This particular variance reduction

technique is known as importance sampling.

In general, to derive a generalization of Algorithm 8.2.3 we can proceed as illustrated
previously but with X a general random variable with pdf f(x) > 0 defined for all possible
values x ∈ X = (a, b). Then define the new random variable

Y = g(X)/f(X)

and recognize that the expected value of Y is

E[Y ] =

∫ b

a

g(x)

f(x)
f(x) dx =

∫ b

a

g(x) dx = I.
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As before, an interval estimate Î ± w for I = E[Y ] can be calculated by using a slightly
modified version of Algorithm 8.2.3 to determine an interval estimate for E[Y ]. The key
feature here is a clever choice of X or, equivalently, the pdf f(·).

Example 8.2.6 In the spirit of Example 8.2.5, suppose we wish to evaluate the integral

I =

∫

4

0

exp(−x2/2) dx.

If X is a Uniform(a, b) random variate then this is, essentially, Example 8.2.5 all over
again, complete with slow convergence. If instead X is an Exponential(1) random variate,
truncated to the interval X = (0, 4), then better convergence should be achieved. In this
case, the pdf of X is

f(x) =
exp(−x)

F (4)
0 < x < 4

where F (4) = 1− exp(−4) ∼= 0.9817 is the cdf of an un-truncated Exponential(1) random
variable. Algorithm 8.2.3, with the two indicated x, y assignments modified accordingly,
can be used to compute an interval estimate for I. The details are left as an exercise.

8.2.3 TIME-AVERAGED STATISTICS

Recall from Section 1.2 that, by definition, the time-averaged number in a single-server
service node is

l̄ =
1

τ

∫ τ

0

l(t) dt

where l(t) is the number in the service node at time t and the average is over the interval
0 < t < τ . The following example, an application of Monte Carlo integration, clarifies
the statement made in Section 1.2 that “if we were to observe (sample) the number in the
service node at many different times chosen at random between 0 and τ and then calculate
the arithmetic average of all these observations, the result should be close to l̄.”

Example 8.2.7 Let the random variable T be Uniform(0, τ) and define the new (dis-
crete) random variable

L = l(T ).

By definition the pdf of T is f(t) = 1/τ for 0 < t < τ ; therefore the expected value of L is

E[L] =

∫ τ

0

l(t)f(t) dt =
1

τ

∫ τ

0

l(t) dt = l̄.

Now, let the observation times t1, t2, . . . , tn be generated as an n-point random variate
sample of T . Then l(t1), l(t2), . . ., l(tn) is a random sample of L, and the mean of this
random sample is an (unbiased) point estimate of the expected value E[L] = l̄. If the
sample size is large, the sample mean (“arithmetic average”) should be close to l̄.*

* There is a notational conflict in this example. Do not confuse the n (sample size) in
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Random Sampling

The previous example applies equally well to any other function defined for 0 < t < τ .
For example, the utilization can be estimated by sampling x(t). Moreover, the random
times ti at which the l(ti) [or x(ti)] samples are taken can be generated by the same
algorithm used to generate a stationary Poisson arrival process (Algorithm 7.3.1). That
is, to generate n random sample times (in sorted order) with an average inter-sample time
of δ we can use the algorithm

t0 = 0;

for (i = 0; i < n; i++)

ti+1 = ti + Exponential(δ);

return t1, t2, . . . , tn;

8.2.4 EXERCISES

Exercise 8.2.1 (a) Modify program buffon so that it will use Algorithm 8.2.1 to produce
a 95% confidence interval estimate for the probability of a line crossing. Then run this
modified program 10 000 times (with a different initial rngs initial seed for each run), use
n = 100 replications per run, and count the proportion of times out of 10 000 that the
true (theoretical) probability of a line crossing falls within the 95% confidence interval
predicted. (b) Comment.

Exercise 8.2.2a Work through the details of Example 8.2.6, estimating the value of I
as Î ± w with 95% confidence and w = 0.01.

Exercise 8.2.3 How many replications are required to estimate a probability whose
value is expected to be 0.1 to with ±0.001 with 95% confidence?

Exercise 8.2.4 (a) Use Algorithm 8.2.3 to estimate the value of the integral

I =

∫

2

0

x7(2− x)13 dx

to within 1% of its true (unknown) value with 95% confidence. (b) Calculate the true value
of I. (c) Comment.

Exercise 8.2.5 (a) Evaluate the integral in Exercise 8.2.4 using the trapezoid rule.
(b) Comment.

Exercise 8.2.6 Modify program ssq4 to use random sampling to generate 95% con-
fidence interval estimates for l̄, q̄ and x̄. Sample at the rate 2λ (where λ is the arrival
rate).

Example 8.2.7 with the n (number of jobs) in the single-server service node model presented
in Section 1.2. The two numbers may be the same, but that is not necessarily the case.
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The discussion in this section is motivated by the following type of question and an-
swer. Consider a single-server service node that processes a large number of jobs arriving
as a stationary Poisson process with arrival rate λ = 1/2. If the service time is an Er-

lang(5, 0.3) random variable, so that the service rate is ν = 2/3, then what is the average
wait in the node, the time-averaged number in the node, and the utilization? This question
can be answered by using program ssq4. To do so, however, we must make some judgment
about what constitutes a “large” number of jobs. Moreover, we should be concerned about
the possible effects on the simulation output of forcing the service node to begin and end
in an idle state, as is done in program ssq4.*

8.3.1 EXPERIMENTAL INVESTIGATION

Definition 8.3.1 Steady-state system statistics are those statistics, if they exist, that
are produced by simulating the operation of a stationary discrete-event system for an
effectively infinite length of time.

Example 8.3.1 If program sis4 is used to simulate a large number of time intervals the
resulting average inventory level per time interval is an estimate of a steady-state statistic.
In particular, for a rngs initial seed of 12345 and an increasing number of time intervals n,
program sis4 yields the following sequence of average inventory level estimates l̄ = l̄+− l̄−.

n : 20 40 80 160 320 640 1280 2560
l̄ : 25.98 26.09 25.49 27.24 26.96 26.36 27.19 26.75

As n → ∞ it appears that l̄ will converge to a steady-state value of approximately 26.75.

Since the n → ∞ convergence in Example 8.3.1 can only be approximated, a better
approach to estimating the steady-state value of l̄ would be to develop an interval esti-
mation technique applicable when n is large, but finite. One way to do this is to use the
method of batch means — which will be introduced in Section 8.4.

The “if they exist” phrase in Definition 8.3.1 is important. For some systems steady-
state statistics do not exist.

Example 8.3.2 If we run the simulation program ssq4 with an arrival rate of 1/2 and
the Erlang(n, b) parameters specified so that the service rate is 1/2 or less, then we will
find that the average wait and the average number in the service node will tend to increase
without limit as the number of jobs is increased. The reason for this should be intuitive —
unless the service rate is greater than the arrival rate then, on average, the server will not
be able to keep up with the demand resulting in an average queue length that continues
to grow as more jobs arrive. In this case the steady-state average wait and the average
number in the node are both infinite.

* As an alternative, if we interpret “large” as infinite then this question can also be
answered by applying the mathematical tools of steady-state queuing theory. Some of
these theoretical tools are summarized in Section 8.5.
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Infinite-Horizon Versus Finite-Horizon Statistics

Steady-state statistics are also known as infinite-horizon statistics. The idea here is
that an infinite-horizon discrete-event simulation is one for which the simulated operational
time is effectively infinite. In contrast, a finite-horizon discrete-event simulation is one for
which the simulated operational time is finite. One of the characteristics of an infinite-
horizon simulation is that the initial conditions are not important — as simulated time
becomes infinite, the choice of the initial state of the simulated system on system statistics
is irrelevant, i.e., the simulated system loses all memory of its initial state. For finite-
horizon simulations this is not true — the initial state of the system is important.

Definition 8.3.2 Transient system statistics are those statistics that are produced by
a finite-horizon discrete-event simulation.

Example 8.3.3 With minor modifications program ssq4 can be used to simulate an
initially idle M/M/1 service node processing a small number of jobs (say 100) and with
a relatively high traffic intensity (say 0.8).* If this program is executed multiple times
varying only the rngs initial seed from replication to replication then the average wait in
the node will vary significantly from replication to replication. Moreover, for most (perhaps
all) replications, the average wait will not be close to the steady-state (infinite-horizon)
average wait in an M/M/1 service node. On the other hand, if a relatively large number
of jobs (say 10 000) are used then the replication to replication variability of the average
wait in the node will be much less significant and for most replications the average wait
will be close to the steady-state average number in an M/M/1 service node.

Consistent with Example 8.3.3, if the number of jobs processed (or equivalently, the
simulated operational time) is small then the average wait in the service node will be
strongly biased by the initial idle state of the system. However, as the number of jobs
becomes infinite this initial condition bias disappears.

In addition to the importance of the initial condition bias, there is another important
distinction between steady-state and transient statistics. In an infinite-horizon simulation
it is virtually always true that the system “environment” is assumed to remain static

(stationary). Thus, for example, if the system is a single-server service node then both
the arrival rate and the service rate are assumed to remain constant in time. Most real-
world systems do not operate in a static environment for an extended period of time
and for those systems steady-state statistics may have little meaning. In a finite-horizon
simulation, there is no need to assume a static environment — natural temporal (dynamic)
changes in the environment can be incorporated into the discrete-event simulation and the
transient statistics so produced will then properly reflect the influence of this dynamic
environment.

* Recall that an M/M/1 service node is a single-server service node with a Poisson
arrival process and Exponential service times.
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The system dictates the choice between using steady-state or transient statistics:

• Consider a bank that opens at 9 AM and closes at 5 PM. A finite-horizon simula-
tion over the 8-hour period produces transient statistics which might be valuable in
determining the optimal staffing of tellers throughout the day.

• Consider a fast food restaurant with a drive-up window that experiences a lunch rush
period between 11:45 AM and 1:15 PM with an arrival rate that remains constant
over the rush period. This 90-minute period could be simulated for a much longer
time period, producing steady-state statistics which might be valuable for estimating
the average wait time at the drive-up window.

Steady-state statistics are better understood because they are easier to analyze math-

ematically using analytic methods as, for example, in Section 8.5. Transient statistics are
important because steady-state is often a convenient fiction — most real systems do not
operate long enough in a stationary environment to produce steady-state statistics. De-
pending on the application, both transient and steady-state statistics may be important.
For that reason, one of the most important skills that must be developed by a discrete-
event simulation specialist is the ability to decide, on a system-by-system basis, which kind
of statistics best characterizes the system’s performance.

Initial and Terminal Conditions

Finite-horizon discrete-event simulations are also known as terminating simulations.
This terminology emphasizes the point that there must be some terminal conditions that
are used to define the simulated period of system operation. Terminal conditions are
typically stated in terms of either a fixed number of events (e.g., processed jobs), or a
fixed amount of (simulated) elapsed time. In any case, for a finite-horizon discrete-event
simulation model it is important to clearly define the desired terminal system state.

Example 8.3.4 In program ssq4, the system (service node) state is idle at the beginning
and at the end of the simulation. The terminal condition is specified by the “close the
door” time. Similarly, in program sis4 the state of the inventory system is the current
and on-order inventory levels; these states are the same at the beginning and at the end
of the simulation. The terminal condition is specified by the number of time intervals.

Infinite-horizon (steady-state) discrete-event simulations must be terminated. How-
ever, in an infinite-horizon simulation the state of the system at termination should not be
important and so it is common to use whatever stopping conditions are most convenient.
The basic idea here is that steady-state statistics are based on such a huge amount of data
that a few “non-steady-state” data points accumulated at the beginning and the end of
the simulation should have no significant impact (bias) on output statistics. Recognize,
however, that there is a fair amount of wishful thinking involved here and a significant
amount of research [e.g., Schruben (1982), Gallagher, Bauer, and Maybeck (1996)] has
been devoted to the problem of eliminating initial condition (and terminal condition) bias
from simulation-generated steady-state statistics.
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8.3.2 FORMAL REPRESENTATION

To present the previous discussion in a more formal analytic setting, consider a
discrete-event system whose state is characterized by a time-varying random variable X(t)
with associated realizations denoted by x(t). The state variable X(t) can be either discrete
or continuous and the initial state X(0) can be either specified as a fixed value or modeled
as a random variable with a specified pdf. The state variable X(·) is known formally as a
stochastic process.*

• The typical objective of a finite-horizon simulation of this system would be to estimate
the time-averaged transient statistic

X̄(τ) =
1

τ

∫ τ

0

X(t) dt,

where τ > 0 is the terminal time.

• In contrast, the typical objective of an infinite-horizon simulation of this system would
be to estimate the time-averaged steady-state statistic

x̄ = lim
τ→∞

X̄(τ) = lim
τ→∞

1

τ

∫ τ

0

X(t) dt.

As the notation suggests, X̄(τ) is a random variable but x̄ is not. That is, to estimate X̄(τ)
it is necessary to replicate a finite-horizon simulation many times, each time generating
one estimate of X̄(τ). In contrast, to estimate x̄ it is, in principle, only necessary to run
the infinite-horizon simulation once, but for a very loooong time.

Definition 8.3.3 If a discrete-event simulation is repeated, varying only the rngs initial
states from run to run, then each run of the simulation program is a replication and the
totality of replications is said to be an ensemble.

Replications are used to generate independent estimates of the same transient statis-
tic. Therefore, the initial seed for each replication should be chosen so that there is no
replication-to-replication overlap in the sequence of random numbers used. The standard
way to prevent this overlap is to use the final state of each rngs stream from one replication
as the initial state for the next replication. This is automatically accomplished by calling
PlantSeeds once outside the main replication loop. The set of estimated time-averaged
statistics is then an independent sample that can be used to produce an interval estimate,
as in Section 8.2.

* For a single-server service node with stochastic arrival and service times, X(t) might
be the number in the node at time t. For a simple inventory system with stochastic demand
instances and delivery lags, X(t) might be the inventory level at time t. For a stochastic
arrival process, X(t) might be the number of arrivals in the interval (0, t).
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Independent Replications and Interval Estimation

Suppose the finite-horizon simulation is replicated n times, each time generating a
state time history xi(t) and the corresponding time-averaged transient statistic

x̄i(τ) =
1

τ

∫ τ

0

xi(t) dt

where i = 1, 2, . . . , n is the replication index within the ensemble. Each data point x̄i(τ)
is then an independent observation of the random variable X̄(τ). If n is large enough the
pdf of X̄(τ) can be estimated from a histogram of the x̄i(τ) data. In practice, however,
it is usually only the expected value E[X̄(τ)] that is desired and a point estimate of this
transient statistic is available as an ensemble average, even if n is not large. That is,

1

n

n
∑

i=1

x̄i(τ)

is a point estimate of E[X̄(τ)]. Moreover, an interval estimate for E[X̄(τ)] can be calcu-
lated from the ensemble (sample) mean and standard deviation of the x̄i(τ) data by using
Algorithm 8.1.1. Independence is assured by the careful selection of seeds. Normality
follows from the central limit theorem since x̄i(τ) is an average.

Example 8.3.5 As an illustration of the previous discussion, a modified version of pro-
gram sis4 was used to produce 21 replications. For each replication, 100 time intervals of
operation were simulated with (s, S) = (20, 80). The 21 transient time-averaged inventory
levels that were produced are illustrated.

|| | | || | | || || || | |||| | |

←−−−− −−−−→
27.06± 0.8223 31

If L̄(τ) denotes the time-averaged inventory level (with τ = 100) then each of these 21
numbers is a realization of L̄(τ). The mean and standard deviation of this sample are
27.06 and 1.76 respectively. If a 95% confidence interval estimate is desired then the
corresponding critical value of t is

t∗ = idfStudent(20, 0.975) = 2.086

Therefore, from program estimate the 95% confidence interval estimate is

27.06±
(2.086)(1.76)

√
20

= 27.06± 0.82

as illustrated above. We are 95% confident that E[L̄(τ)] is somewhere between the interval
endpoints 26.24 = 27.06 − 0.82 and 27.88 = 27.06 + 0.82. That is, we are 95% confident
that if program sis4 were used to generate a large ensemble then the ensemble average of
the resulting transient time-averaged inventory levels would be somewhere between 26.24
and 27.88.
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In some discrete-event simulations the terminal time is not fixed. Instead, the termi-
nal time is determined by other terminal conditions. For example, in program ssq2 the
terminal condition is specified by the number of jobs processed, not the stopping time,
and because of this the terminal time will vary randomly from replication to replication.
The idea of multiple replications, with nothing varied except the initial state of the rngs
stream, is still valid; each replication will produce an independent observation of the tran-
sient statistic of interest and these observations can be combined to produce a point and
interval estimate.

Example 8.3.6 A modified version of program ssq2 was used to produce 20 replications
of a simulation for which 100 jobs are processed through an initially idle M/M/1 service
node with arrival rate λ = 1.0 and service rate ν = 1.25. The resulting 20 observations of
the average wait in the node are illustrated.

| ||| || | || | ||||||| || | •

←−−−− −−−−→
3.33± 1.041 12

From program estimate the resulting 95% confidence interval estimate is 3.33±1.04. Thus
we are 95% confident that if we were to do thousands of replications, the ensemble average
of the resulting transient time-averaged number in the node would be somewhere between
2.29 = 3.33− 1.04 and 4.37 = 3.33 + 1.04.

In Section 8.5 it is shown that if the arrival rate is ν = 1.00 and the service rate is
ν = 1.25 for an M/M/1 service node then the steady-state average wait in the node is

1

ν − λ
=

1

1.25− 1.00
= 4.0.

This exact steady-state value determined by analytic methods is indicated in Example 8.3.6
with a ‘•’. Therefore, we see that it is possible that 100 jobs are enough to produce steady-
state statistics. To explore this conjecture, the modified version of program ssq2 was used
to produce 60 more replications. Consistent with the

√
n rule this four-fold increase in the

number of replications (from 20 to 80) should result in an approximate two-fold decrease
in the width of the interval estimate and if the ensemble mean remains close to 3.33, then
4.0 will no longer be interior to the interval estimate.

Example 8.3.7 Based upon 80 replications, the resulting 95% confidence interval esti-
mate was 3.25± 0.39, as illustrated.

| ||| || | || | ||||||| || | || || | || ||| |||| ||| |||| ||| || | || || ||| ||||| | |||| | ||| | || |||| || ||| •

← →
3.25± 0.391 12

Now we see that in this case 100 jobs are clearly not enough to produce steady-state
statistics — the bias of the initially idle state is still evident in the transient statistic.



374 8. Output Analysis

Example 8.3.8 As a continuation of Example 8.3.6, the number of jobs per replication
was increased from 100 to 1000. As before, 20 replications were used to produce 20
observations of the average wait in the node, as illustrated.

|| | || | | ||| || | |||| | || •

← →
3.82± 0.371 12

With this increase in the number of processed jobs, the 95% confidence interval estimate
shifted to the right toward the steady-state average wait and shrunk to 3.82 ± 0.37. The
steady-state average wait ‘•’ indicator is now interior to the interval estimate, suggesting
that in this case 1000 jobs are enough to achieve statistics that are close to their steady-
state values.

Relative to the 100-jobs per replication results in Example 8.3.6, reproduced here for
convenience, note that the 1000-jobs per replication results in Example 8.3.8 exhibit a
sample distribution that is much more symmetric about the sample mean.

| ||| || | || | ||||||| || | •

←−−−− −−−−→
3.33± 1.041 12

That is, the 1000-jobs per replication results are more consistent with the underlying
theory of interval estimation, dependent as it is on a sample mean distribution that is
approximately Normal(µ, σ/

√
n) and centered on the (unknown) population mean.

8.3.3 EXERCISES

Exercise 8.3.1 (a) Repeat the experiment presented in Example 8.3.5 using program
sis4 modified so that estimates of L̄(10), L̄(20), L̄(40), and L̄(80) can also be produced.
(b) Comment.

Exercise 8.3.2 (a) Repeat the 100-jobs per replication experiment in Examples 8.3.6
and 8.3.7 using program ssq4 but modified so that estimates of the average number in
the node can be produced for 10, 20, 40, 80, 160, and 320 replications. (b) For the 320
replication case, construct a continuous-data histogram of the average waits. (c) Comment.

Exercise 8.3.3 (a) Repeat the 1000-jobs per replication experiment presented in Ex-
amples 8.3.8 using program ssq4 but modified so that estimates of the average number in
the node can be produced for 10, 20, 40, 80, 160, and 320 replications. (b) For the 320
replication case, construct a continuous-data histogram of the average waits. (c) Comment.

Exercise 8.3.4 Illustrate graphically how well the two histograms in Exercise 8.3.2 and
8.3.3 can be approximated by a Normal(µ, σ) pdf for appropriately chosen values of (µ, σ).
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As discussed in the previous section, there are two types of discrete-event simulation
models, transient (finite horizon) and steady-state (infinite horizon). In a transient sim-
ulation, interval estimates can be constructed for the statistics of interest by replication.
In a steady-state simulation, the general advice is to run the simulation for a long time in
order to (hopefully) achieve a good point estimate for each statistic of interest. The last
observation leads to an obvious question — is there a way to obtain interval estimates for
steady-state statistics?

The answer is yes, there are several ways to obtain interval estimates for steady-state
statistics. The most common way to do so is by using the so-called method of batch means.

8.4.1 EXPERIMENTAL INVESTIGATION

Example 8.4.1 To investigate the issue of interval estimates for steady-state statistics,
program ssq2 was modified to simulate anM/M/1 single-server service node with λ = 1.0,
ν = 1.25. In this case the steady-state utilization is ρ = λ/ν = 0.8 and, from the results
in Section 8.5, the expected steady-state wait is E[W ] = 4. We can attempt to eliminate
the initial state bias by initializing the program variable departure to a non-zero value,
in this case 4.2. That is, in Exercise 8.4.1 you are asked to prove that this initialization
causes the simulation to begin in its expected steady-state condition in the sense that
the first job’s expected wait is 4. The multi-stream capability of the library rngs was
used (with initial seed 12345) to create 16 independent replications, with the first using
stream 0 for both arrival times and service times, the second using stream 1 for both,
etc. The finite-horizon interval estimation technique from the previous section was used
to compute average wait point and interval estimates for 8, 16, 32, . . . , 1024 processed jobs.
The results are illustrated in Figure 8.4.1.
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Figure 8.4.1.

Confidence

intervals

for mean

wait.

The horizontal line is the steady-state wait E[W ] = 4. The vertical lines are the 95%
confidence interval estimates for a sample size of 16 and the • denotes the point estimate w̄.
As hoped, we see that unless the number of jobs is very small the finite-horizon interval
estimates are accurate steady-state estimates, becoming increasingly more accurate as the
number of jobs increases.
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Example 8.4.2 As a continuation of Example 8.4.1, in an attempt to better understand
the use of replicated finite-horizon statistics to estimate a steady-state statistic, two other
initial values of departure were tried, 0.0 and 6.0. The initial value 0.0 can be justified on
the basis that the most likely steady-state condition is an idle node. Indeed, in this case an
arriving job finds the service node idle with probability 0.2. The resulting interval estimates
are presented in the plot on the left-hand side of Figure 8.4.2. The initial value 6.0 was
chosen by experimentation and justified on the basis that it produced interval estimates
consistent with the expected steady-state wait even when the number of jobs was small.
The resulting interval estimates are on the right-hand side of Figure 8.4.2.
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The graph on the left illustrates the potential significant impact of the initial state bias
on the estimates when the number of jobs is small. The graph on the right illustrates
that, at least in principle, it is possible to choose an initial state for the service node that
minimizes the initial state bias. As in Example 8.4.1, when the number of jobs is large,
the estimates are very good and essentially independent of the initial state of the service
node. Of course, this is as it should be if they are to be steady-state estimates.

Replications

Examples 8.4.1 and 8.4.2 illustrate that one way to obtain interval estimates for steady-
state statistics is to use the replication-based finite-horizon interval estimation technique
from the previous section with each replication corresponding to a long simulated period
of operation. To do so, three interrelated issues must be resolved.

• What is the initial state of the system?

• How many replications should be used?

• What is the length of the simulated period of operation (per replication).

Figures 8.4.1 and 8.4.2 provide insight into the first and third of these issues. The initial
state values 4.2, 0.0, and 6.0 for departure illustrated the initial states. The length of each
simulation varied from 8 to 1024 jobs. The number of replications, however, was always
fixed at 16. The following example provides insight into the second issue.
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Example 8.4.3 To better understand the importance of the number of replications of
the simulation model, the simulations in Examples 8.4.1 and 8.4.2 were repeated using
64 replications. Except for this 4-fold increase in replications (using the first 64 rngs

streams) all other parameters in the model were held at the same levels as before. By
increasing the number of replications, the width of the interval estimates should be re-
duced and the estimates thereby improved. Specifically, because of the square root rule
(Section 8.1), we expect that a 4-fold increase in the number of replications should reduce
the interval width by approximately 1/2.
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As illustrated in Figure 8.4.3, when compared to the results displayed in Figure 8.4.1,
the interval estimates have been cut approximately in half. Moreover, even for a small
number of jobs the interval estimates include the steady-state expected value, indicating
that the initial condition bias has been largely eliminated by initializing the program
variable departure to 4.2. That is, the initial state bias that seemed to be evident in
Figure 8.4.1 based on 16 replications was actually just natural small-sample variation.
Another run with a different seed may just as likely produce a bias that is above the
theoretical steady-state value. A valid 95% confidence interval procedure will contain
the true value 95% of the time. It is quite possible that the two confidence intervals in
Figure 8.4.1 based on 16 replications that fell wholly below the steady state value were
among the 5% of the confidence intervals that did not contain the true value of 4.

Example 8.4.4 As a continuation of the previous example, when compared to the
corresponding results in Example 8.4.2 based on 16 replications, these figures based on
64 replications reveal that again the width of the interval estimates have been halved
approximately. Moreover, from the graph on the right-hand side of Figure 8.4.4 we see
that choosing the initial value of departure to be 6.0, which seemed to work with just 16
replications, actually introduces some initial state bias, causing the estimates (for a small
number of jobs) to be larger than the theoretical steady-state value. That 6.0 seemed right
from Figure 8.4.2 was a false impression based on misleading small-sample statistics.
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To summarize, replicated finite-horizon statistics can be used to generate accurate
infinite-horizon (steady-state) interval estimates. However, there is an initial bias problem
with this technique. Therefore, we need another interval estimation technique that avoids
the initial state bias problem.* [Interval estimation techniques other than batch means
are outlined in Alexopoulos and Seila (1998) and Goldsman and Nelson (1998).]

8.4.2 METHOD OF BATCH MEANS

The reason the initial state bias was an issue in the previous examples was because
each replication was initialized with the same system state. Why not, instead, make one

long run with, say, 64 · 512 jobs and partition the wait times into 64 consecutive batches

each of length 512? An average wait can be computed for each batch of 512 jobs and an
interval estimate can be computed from the 64 batch means. This is the method of batch
means. With this method, the initial state bias is eliminated because the statistics for each
batch (other than the first) are naturally initialized to the state of the system at the time
the statistical counters for the batch are reset.

Algorithm 8.4.1 The method of batch means applied to the sequence x1, x2, . . . , xn
consists of six steps. (Only the first two steps are unique to the method of batch means.
Except for notation, the last four steps are identical to Algorithm 8.1.1.)

• Select a batch size b > 1. The number of batches is then k = bn/bc. (If b is not a
divisor of n, discard the last n mod b data points.)

• Group the sequence into k batches:

x1, x2, . . . , xb
︸ ︷︷ ︸

batch 1

, xb+1, xb+2, . . . , x2b
︸ ︷︷ ︸

batch 2

, x2b+1, x2b+2, . . . , x3b
︸ ︷︷ ︸

batch 3

, . . .

* We were able to avoid the initial state bias problem in Example 8.4.3 (with departure
initialized to 4.2) only because we already knew the steady-state result! In practice, the
steady-state result is seldom known, for if it were there would be no point in simulating
the system to compute the steady-state estimates.
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and for each batch calculate the batch mean

x̄j =
1

b

b
∑

i=1

x(j−1)b+i j = 1, 2, . . . , k.

• Compute the mean x̄ and standard deviation s of the batch means x̄1, x̄2, . . . , x̄k.

• Pick a level of confidence 1− α (typically α = 0.05).

• Calculate the critical value t∗ = idfStudent(k − 1, 1− α/2).

• Calculate the interval endpoints x̄± t∗s/
√
k − 1.

You then claim to be (1−α)×100% confident that the true (unknown) steady-state mean
lies somewhere in this interval. If the batch size b is large, your claim is probably true even

if the sample is autocorrelated (see Section 4.4 and Appendix F). The method of batch
means reduces the impact of autocorrelated data since only the trailing observations of
one batch are significantly correlated with the initial observation of the subsequent batch.

Provided no points are discarded, the “mean of the means” is the same as the “grand
sample mean”:

x̄ =
1

k

k
∑

j=1

x̄j =
1

n

n
∑

i=1

xi.

This is an important observation because it demonstrates that the choice of the (b, k)
parameters has no impact on the point estimate of the mean. Only the width of the
interval estimate is affected by the choice of (b, k).

Example 8.4.5 A modified version of program ssq2 was used to generate n = 32768
consecutive waits for an initially idle M/M/1 service node with (λ, ν) = (1, 1.25). The
batch means estimate of the steady-state wait E[W ] = 4.0 was computed for several
different (b, k) values with the following results.

(b, k) (8, 4096) (64, 512) (512, 64) (4096, 8)
w̄ 3.94± 0.11 3.94± 0.25 3.94± 0.29 3.94± 0.48

As illustrated, the point estimate 3.94 is independent of (b, k) but the width of the interval
estimate clearly is not.

The variable width result in Example 8.4.5 is typical of the method of batch means.
The obvious question then is, for a fixed value of n = bk what is the best choice of (b, k)?
The answer to this question is conditioned on the following important observations relative
to the theory upon which the method of batch means is based.

• The validity of the x̄± t∗s/
√
k − 1 interval estimate is based on the assumption that

the batch means x̄1, x̄2, . . . , x̄k are (at least approximately) an independent, identically
distributed sequence of Normal random variates.
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• The method of batch means becomes increasingly more valid as the batch size b is
increased. This occurs for two related reasons: (i) the mean of b random variables,
independent or not, tends to become more Normal as b is increased and (ii) the au-
tocorrelation that typically exists in time-sequenced data is reduced in the associated
time-sequenced batch means, becoming effectively zero if b is sufficiently large.

Guidelines

If the value of the product n = bk is fixed, then the batch size b cannot be too large
for if it is the number of batches k will be too small resulting in a wide interval estimate
width (see Figure 8.1.8). The following guidelines are offered for choosing (b, k).

• Schmeiser (1982) recommends a number of batches between k = 10 and k = 30,
although this advice should be tempered by the two other guidelines.

• Pegden, Shannon, and Sadowski (1995, page 184) recommend a batch size that is
at least ten times as large as the largest lag for which the autocorrelation function
remains significant (see Section 4.4).

• Banks, Carson, Nelson, and Nicol (2001, page 438) recommend that the batch size be
increased until the lag one autocorrelation between batch means is less than 0.2.

The following examples provide additional insight into the choice of (b, k).

Example 8.4.6 An extrapolation of the autocorrelation results in Example 4.4.3 sug-
gests that for an M/M/1 service node with steady-state utilization λ/ν = 0.8 the effective
cut-off lag is approximately 100. Figure 8.4.5 illustrates that autocorrelation is present in
a sequence of batch means for batch sizes b = 4, 8, 16, 32, 64, 128.* Although the second
guideline is violated with b = 256, Figure 8.4.5 shows that the third guideline will be
satisfied with b = 256.
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As b is increased the autocorrelation in the batch means is reduced. For b = 128 the
reduction is so complete that there is no residual autocorrelation for lags greater than 1.

* For each value of b, the results in this figure were produced by piping 1000 batch
means into program acs.
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To summarize, we expect that if k = 64 batches each of size b = 256 are used with
Algorithm 8.4.1, then the batch mean interval estimate of the steady-state wait for jobs
in an M/M/1 service node with steady-state utilization λ/ν = 0.8 will contain E[W ] with
probability 1 − α. Therefore, in this case n = bk = 16384 jobs must be processed to
produce this estimate. If λ/ν were larger, a larger value of n would be required.

Iteration

Since Algorithm 8.4.1 can be applied for any reasonable pair of (b, k) values, even if the
underlying theory is not valid, it is common to find the method of batch means presented
as a black box algorithm with an associated recommendation to experiment with increasing
values of b until “convergence” is achieved. In this context, convergence means significant
overlap in a sequence of increasingly more narrow interval estimates produced, typically,
by using k = 64 batches and systematically doubling the batch size b. Although they were
computed in a different way, the results produced by fixing k = 64 and systematically
doubling b will be similar to those illustrated in Examples 8.4.3 and 8.4.4.

Example 8.4.7 The method of batch means, with (b, k) = (256, 64), was applied to a
simulation of aM/M/1 service node with (λ, ν) = (1.00, 1.25) to produce interval estimates
of the steady-state wait E[W ] = 4. Ten 95% confidence interval estimates were produced,
corresponding to the first ten rngs streams.
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As illustrated on the left-hand-side of Figure 8.4.6, all but one of these interval estimates
(the one corresponding to stream 2) brackets the true steady-state value, resulting in an
actual coverage of 90%. In contrast, as illustrated on the right-hand-side of Figure 8.4.6, if
the interval estimates are computed naively and incorrectly by not batching but, instead,
just piping all n = 16384 waits directly into program estimate, then the intervals are far

too narrow and only three out of ten estimates bracket the true steady-state value, resulting
in an actual coverage of 30%. The message is clear — failure to correctly batch the data
can lead to unrealistically small variance estimates, resulting in a false sense of confidence
about the accuracy of the interval estimate. For example, if (b, k) = (1, 16384), then a
confidence interval estimate alleged to have 95% confidence appears to have a coverage of
approximately 30%.
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8.4.3 EXERCISES

Exercise 8.4.1a In the notation of Section 1.2, let c0 denote the departure time of the
(virtual) 0th job (i.e., the initial value of departure in program ssq2). Assume a Poisson
arrival process with rate λ, assume service times are Exponential(1/ν), and let W1 be the
associated random wait of the first job. (a) Prove that

E[W1] = c0 +
1

ν
−
1

λ

(

1− exp(−λc0)
)

(b) How does this relate to Examples 8.4.1 and 8.4.3?

Exercise 8.4.2 (a) Repeat Example 8.4.5 except with observations obtained by n =
32768 calls to the function Exponential(4.0). (b) Comment. (c) Why are the interval
estimates so much more narrow? Do not just conjecture, explain.

Exercise 8.4.3 Produce a figure like Figure 8.4.6, but for the two cases (b, k) = (64, 256)
and (b, k) = (16, 1024).

Exercise 8.4.4 The stochastic process X1, X2, X3, . . . is said to be covariance stationary

provided there is a common mean µ and variance σ2

E[Xi] = µ and E[(Xi − µ)2] = σ2 i = 1, 2, 3 . . .

and the covariance is independent of i so that

E[(Xi − µ)(Xi+j − µ)]

σ2
= ρ(j) j = 1, 2, 3, . . .

For a integer batch size b, define the k batch means X̄1, X̄2, . . ., X̄k as in Algorithm 8.4.1.
The grand sample mean is then

X̄ =
X̄1 + X̄2 + · · ·+ X̄k

k
.

(a) Prove that, for any value of b, the mean of X̄ is

E[X̄] = µ.

(b) Prove that if b is large enough to make X̄1, X̄2, . . . , X̄k independent, then the variance
of X̄ is

E[(X̄ − µ)2] =
σ2

n
ξb

where n = bk and

ξb = 1 + 2
b−1
∑

j=1

(1− j/b) ρ(j).

(c) What is the significance of this result?
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The purpose of this section is to provide insight into the mathematics of traditional
queuing theory as it applies to characterizing the steady-state statistics for a single-server
service node. That is, in this section we will develop mathematical characterizations of
what happens to job-averaged statistics and time-averaged statistics in the limit as the
number of processed jobs becomes infinite. This discussion is based on the single-server
service node model developed in Section 1.2.

8.5.1 GENERAL CASE

In all the discussion in this section we assume that the arrival process and service
process are stationary. That is, random variate interarrival times can be generated by
sampling from a fixed interarrival time distribution with mean 1/λ > 0. Therefore, con-
sistent with Definition 7.3.1, the arrival process is stationary with rate λ. (Later in the
section, as necessary, we will assume a Poisson arrival process.) Similarly, service times
can be generated by sampling from a fixed service time distribution with mean 1/ν > 0.
Analogous to the arrival process terminology, it is conventional to say that the service
process is stationary with rate ν.*

Effective Service Rate

Although it is conventional to refer to the reciprocal of the average service time as the
“service rate” (see Definition 1.2.5), some explanation is necessary. Suppose we monitor
jobs departing the service node.

• During a period of time when the server is always busy — as soon as one job departs
another enters the server — the average time between departures will be 1/ν and
the departure times will form a stationary process with rate ν. Therefore, during a
continuously busy period, the service process is stationary with rate ν.

• During a period of time when the server is always idle there are no departures and so
the service rate is 0. Therefore, during a continuously idle period, the service process
is stationary with rate 0.

Recall that the server utilization x̄ is the proportion of time (probability) that the
server is busy and so 1 − x̄ is the proportion of time (probability) that the server is idle.
Therefore, an estimate of the expected service rate is x̄·ν+(1−x̄)·0 = x̄ν. That is, because
x̄ is an estimate of the probability that the server is busy, the service rate is analogous
to a discrete random variable with possible values ν (when busy) and 0 (when idle) and
associated probabilities x̄ and 1 − x̄. The expected value of this random variable is x̄ν.
The point here is that ν is actually the maximum possible service rate. Because the server
is occasionally idle the effective service rate is x̄ν.

* For historical reasons, in queuing theory it is conventional to use µ to denote the
service rate. Unfortunately, this notational convention conflicts with the common use
of µ to denote a mean or expected value. Because of this notational conflict, ν is used
consistently throughout this book to denote a service rate.
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Flow Balance

Definition 8.5.1 The traffic intensity ρ is the ratio of the arrival rate to the service
rate. That is, ρ = λ/ν. (See Section 1.2.)

The traffic intensity is particularly relevant in steady-state queuing theory because of
the following important theorem. Although a rigorous proof of this very general result is
beyond the scope of this book, a specific instance of the theorem is proved later in this
section.

Theorem 8.5.1 Steady-state (infinite-horizon) statistics exist for a stochastic, conser-
vative single-server service node with infinite capacity and any queue discipline if and only
if ρ < 1.

Assume that ρ = λ/ν < 1 and let x̄ be the steady-state utilization. Since the arrival
rate is less than the service rate, it is intuitive that in this case the service node is “flow
balanced” or equivalently, that there is a “conservation of jobs.” That is, as illustrated in
Figure 8.5.1, the average rate of flow of jobs into the service node is λ, the average rate
that jobs flow out of the service node is x̄ν, and “flow in = flow out” so that λ = x̄ν.

.............................................................................................................
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Figure 8.5.1.

Single-server

service node.

If the flow balance equation λ = x̄ν is compared with Definition 8.5.1 we see that it is
equivalent to the equation x̄ = ρ. That is, if ρ = λ/ν < 1 then ρ is the steady-state server
utilization. If instead ρ ≥ 1 then x̄ will approach 1.0 as the number of jobs increases and
the average queue length will grow without bound. If ρ ≥ 1 then steady-state values for
the statistics d̄, w̄, q̄, and l̄ are arbitrarily large.

Example 8.5.1 Use a modified version of program ssq4 to simulate processing a large
number of jobs, graphing the accumulated value of x̄ every, say, 20 jobs (as in Exam-
ple 3.1.3). If ρ < 1 then this sequence of x̄’s will converge to ρ. If ρ ≥ 1 then the
convergence will be to 1.0.

Steady-state flow balance is a long term property — if ρ < 1 then in the long term
as many jobs will flow into the service node as flow out. Flow balance is generally not

true in the short term. Even if the mean arrival rate and service rate are constant, there
will be periods of time when the effective arrival rate and/or service rate are significantly
different from their mean values and during these periods “flow in 6= flow out.” During
periods when the flow in is greater than the flow out, the queue length will build. When the
opposite is true, the queue length will diminish. In either case there will be a natural ebb
and flow that will persist forever. Steady-state does not mean that the state of the service
node becomes constant — it means that the initial state of the system is not relevant.
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Definition 8.5.2 Let w̄n be the average wait experienced by the first n jobs to leave the
service node

w̄n =
1

n

n
∑

i=1

wi

and let l̄n be the time-averaged number in the node over the time interval (0, τn)

l̄n =
1

τn

∫ τn

0

l(t) dt,

where τn is the departure time of the n
th job to leave the service node. Let the average

delay d̄n, average service time s̄n, time-averaged number in the queue q̄n, and the server
utilization x̄n be defined similarly.

Note that there is a subtle but significant difference between Definition 8.5.2 and the
corresponding definitions in Section 1.2. In Definition 8.5.2 the job index is referenced to
jobs leaving the service node.

• If the queue discipline is FIFO then τn = cn and Definition 8.5.2 is identical to those
used in Section 1.2.*

• If the queue discipline is not FIFO then the order of arrival is different than the order
of departure (for at least some jobs) so τn may differ from cn.

Concentrating as it does on departing jobs, Definition 8.5.2 allows for any type of queue
discipline (see Exercise 1.2.7).

Using arguments similar to those in Section 1.2, it can be shown that the six statistics
in Definition 8.5.2 are related as follows

w̄n = d̄n + s̄n

l̄n = q̄n + x̄n

l̄n ∼=

(

n

τn

)

w̄n

q̄n ∼=

(

n

τn

)

d̄n

x̄n ∼=

(

n

τn

)

s̄n

where, for any finite value of n, the ∼= is an equality if and only if the service node is idle
at t = 0 and at t = τn. Note that, if the service node is idle at τn then

τn = max{c1, c2, . . . , cn}.

What we will discuss next is what happens to w̄n, l̄n, d̄n, q̄n, s̄n, and x̄n in the limit as
n → ∞, provided ρ < 1.

* Recall that cn is the departure time of the n
th job to enter the service node.
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Definition 8.5.3 Assume that ρ < 1 (so that Theorem 8.5.1 applies) and let

w̄ = lim
n→∞

w̄n = lim
n→∞

1

n

n
∑

i=1

wi

and

l̄ = lim
n→∞

l̄n = lim
n→∞

1

τn

∫ τn

0

l(t) dt.

Define d̄, s̄, q̄, and x̄ similarly. Each of these quantities represents a steady-state statistic
for a single-server service node.

Steady-State Equations

Given a knowledge of λ and ν with ρ = λ/ν < 1, we want to determine equations that
relate the steady-state statistics in Definition 8.5.3 to λ, ν, and ρ. Since s̄n is an unbiased
point estimate of the expected service time

s̄ = lim
n→∞

s̄n = 1/ν.

In addition, we already argued that if ρ < 1 then

x̄ = lim
n→∞

x̄n = ρ.

Therefore, we know two of the six steady-state statistics in Definition 8.5.3. Moreover, if
ρ < 1 then

lim
n→∞

n

τn
= λ.

This result can be argued intuitively based on the observation that in the time interval
from 0 to τn the expected number of jobs to enter the service node is λτn. If n is sufficiently
large then, because ρ < 1, this product is also the expected number of jobs to leave the
service node. Therefore, n ∼= τnλ or equivalently n/τn ∼= λ with equality in the limit as
n → ∞. From this result we see that in the limit as n → ∞ the “equation”

x̄n ∼=

(

n

τn

)

s̄n

becomes

x̄ ∼=
λ

ν
.

However, ρ = λ/ν and so as n → ∞ we see that the ∼= will become an equality. It can be
shown that the same comment also applies to the other two “equations”

l̄n ∼=

(

n

τn

)

w̄n and q̄n ∼=

(

n

τn

)

d̄n.

Therefore, we have the following theorem that summarizes much of the previous discussion.
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Theorem 8.5.2 For a conservative single-server service node with infinite capacity and
any queue discipline, if ρ = λ/ν < 1 then the steady-state server utilization and average
service time are

x̄ = ρ and s̄ = 1/ν.

Moreover, the four steady state statistics w̄, l̄, d̄, q̄ are related by the four linear equations*

w̄ = d̄+ 1/ν

l̄ = q̄ + ρ

l̄ = λw̄

q̄ = λd̄.

At first glance it might appear that the four linear equations in Theorem 8.5.2 relating
w̄, l̄, d̄, and q̄ can be solved to determine unique values for these four steady-state statistics.
That is not the case, however. These four equations can be written in matrix form as







ν 0 −ν 0
0 1 0 −1
λ −1 0 0
0 0 λ −1













w̄

l̄

d̄

q̄






=







1
ρ

0
0







and by applying elementary row operations it can be shown that the coefficient matrix has
only three linearly independent rows. That is, three of the four steady-state statistics can
be determined by solving these equations but the fourth statistic must be determined some
other way — either by discrete-event simulation or, in special cases, by analytic methods.

Example 8.5.2 Suppose λ = 0.5 (so that 1/λ = 2.0) and ν = 0.625 (so that 1/ν = 1.6).
Then the steady-state utilization is x̄ = ρ = 0.8 and s̄ = 1.6. Suppose also that we have
used discrete-event simulation to determine that the steady-state average wait is w̄ = 8.0.
Then the other three steady-state statistics are

d̄ = w̄ − 1/ν = 8.0− 1.6 = 6.4

l̄ = λw̄ = 8.0/2 = 4.0

q̄ = l̄ − ρ = 4.0− 0.8 = 3.2.

The discussion and results to this point have been “distribution free.” That is, no
distribution-specific stochastic assumptions were made about the interarrival times and
service times. (In addition, the discussion and results to this point are valid for any

queue discipline.) Given this generality, little more can be said without making additional
distributional assumptions, as we will now do.

* The last two equations in Theorem 8.5.2 are known as Little’s Equations — they are
an important part of the folklore of steady-state queuing theory.
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8.5.2 M/M/1 SERVICE NODE

In the previous discussion we saw that the four steady-state single-server service node
statistics w̄, l̄, d̄, and q̄ can be evaluated provided any one of the four can be evaluated.
We will now consider an important analytic method whereby l̄ (and thus w̄, d̄, and q̄)
can be determined — provided we are willing to make appropriate assumptions about the
distribution of interarrival times and service times.

Definition 8.5.4 An M/M/1 service node has interarrival times and service times that
are iid sequences of Exponential(1/λ) and Exponential(1/ν) random variables, respectively.

Notation

The firstM in theM/M/1 notation refers to the distribution of the interarrival times,
the second M refers to the distribution of the service times, and 1 denotes the number
of parallel servers. M refers to the “memoryless” (Markov) property of the Exponential

distribution (see Section 7.4). The standard notation used for probability distributions in
queuing theory are:

• M for Exponential;

• E for Erlang;

• U for Uniform;

• D for deterministic (not stochastic);

• G for general (a random variable with positive support not listed above).

Example 8.5.3 A E/U/1 service node has a single server with Erlang interarrival times
and Uniform service times. Similarly, a M/G/3 service node has Exponential interarrival
times and three statistically identical servers operating in parallel, each with the same gen-
eral service time distribution. Program ssq1 simulates a G/G/1 service node. Programs
ssq2 and ssq3 simulate a M/U/1 service node. Program ssq4 simulates a M/E/1 service
node. Program msq simulates a M/U/3 service node.

M/M/1 Steady-State Characteristics

The steady-state characteristics of an M/M/1 service node have been extensively
analyzed. One common approach to this analysis is based on the following definition.

Definition 8.5.5 Let the discrete random variable L(t) denote the number of jobs in an
M/M/1 service node at time t > 0. The possible values of L(t) are l = 0, 1, 2, . . . and the
associated pdf is

f(l, t) = Pr(L(t) = l).

That is, the function f(l, t) represents the pdf of the number of jobs at time t.
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The pdf f(l, t) can be estimated provided we have a a single-server service node next-
event simulation program (like program ssq4) with the capability to report the number
in the system at a specified time t. By using many replications and varying only the
initial seed from replication to replication we can generate many independent samples
of L(t). From these samples, we can form a discrete-data histogram that will estimate
f(l, t). In particular, if we simulate anM/M/1 service node in this way, if the steady-state
utilization ρ = λ/ν is less than 1, and if t is very large then, from the following theorem
(stated without proof), the histogram will approximate the pdf of a Geometric(ρ) random
variable,

Theorem 8.5.3 For an M/M/1 service node with ρ = λ/ν < 1

lim
t→∞

f(l, t) = (1− ρ)ρl l = 0, 1, 2, . . .

That is, if L is the steady-state number of jobs in an M/M/1 service node then L is a
Geometric(ρ) random variable.*

M/M/1 Steady-State Equations

Before we construct a proof of Theorem 8.5.3, observe that if L is a Geometric(ρ)
random variable (see Section 6.4) then the steady-state average (expected) number in the
service node is

l̄ = E[L] =
ρ

1− ρ
.

Using this result and the steady-state equations from Theorem 8.5.2, it follows that

w̄ =
l̄

λ
=

1

ν − λ
q̄ = l̄ − ρ =

ρ2

1− ρ
d̄ =

q̄

λ
=

ρ

ν − λ
.

That is, these four equations, along with the three additional equations

x̄ = ρ =
λ

ν
r̄ =

1

λ
s̄ =

1

ν

represent the steady-state statistics for an M/M/1 service node.

Example 8.5.4 If we simulate an M/M/1 service node for thousands of jobs, printing
intermediate statistics every, say, 20 jobs, and if ρ < 1 then as n → ∞ we will see the
intermediate statistics l̄n, w̄n, q̄n, d̄n, x̄n, r̄n, and s̄n all eventually converge to the values
given by the M/M/1 steady-state equations.

* The capacity must be infinite and the queue discipline cannot make use of any service
time information. That is, relative to Definition 1.2.2, Theorem 8.5.3 is valid for FIFO,
LIFO, and SIRO (service in random order) queue disciplines but is not valid for a priority
queue discipline that is based on a knowledge of the service times.
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Example 8.5.5 For selected values of ρ the steady-state* average number in the node,
queue, and in service for an M/M/1 service node are

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l̄ 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 ∞

q̄ 0.01 0.05 0.13 0.27 0.50 0.90 1.63 3.20 8.10 ∞

x̄ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

Thus, for example, an M/M/1 service node operating with a steady-state utilization of
0.8 will contain a steady-state average of 3.2 jobs in the queue and 0.8 jobs in service for
a total of 4.0 jobs in the service node. As illustrated in Figure 8.5.2, l̄ (as well as w̄, q̄,
and d̄) becomes infinite as ρ approaches 1. This is consistent with the observation that
steady-state is possible only if ρ < 1.
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Example 8.5.6 If L is a Geometric(ρ) random variable then

Pr(L = l) = (1− ρ)ρl l = 0, 1, 2, . . .

Thus, even though the expected number of jobs becomes infinite as ρ → 1, if ρ < 1 then it is
always true for anM/M/1 service node that the steady-state pdf is a monotone decreasing

function of l. That is, for an M/M/1 service node with ρ < 1, the most likely steady-state
number in the node is 0, the next most likely number is 1, etc. This is a counter-intuitive
result, very much dependent on the memoryless property of Exponential random variables.

* Although the emphasis in this section is on steady-state behavior of the statistics
associated with a single-server queue, Kelton and Law (1985), for example, consider the
transient behavior of the statistics.
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Proof of Theorem 8.5.3

To prove that the steady-state number of jobs in an M/M/1 service node is a Geo-

metric(ρ) random variable, we begin by observing that the arrivals to an M/M/1 service
node are a stationary Poisson process with rate λ where 1/λ > 0 is the mean interarrival
time. Let δ > 0 be the width of a small interval of time and recall from Section 7.3 that
the number of arrivals in this time interval is a Poisson(δλ) random variable. Therefore

Pr(x arrivals in interval of width δ) =
exp(−δλ)(δλ)x

x!
=

(

1− δλ+
(δλ)2

2!
− · · ·

)

(δλ)x

x!

for x = 0, 1, 2, . . .. It turns out that in the expansion of these Poisson(δλ) probabilities,
terms of order (δλ)2 or higher can be ignored because we will ultimately derive the pdf of
L(t) by using a limit as δ → 0. Therefore, if δλ is small

Pr(0 arrivals in δ) ∼= 1− δλ

Pr(1 arrival in δ) ∼= δλ

Pr(2 or more arrivals in δ) ∼= 0.

Similarly, during a period when the server is continuously busy then, because the service
times are Exponential(1/ν), the departures from the service node are a stationary Poisson
process with rate ν where 1/ν > 0 is the mean service time. It follows from the previous
discussion that if L(t) > 0 and if δν is small relative to 1 then

Pr(0 departures in δ) ∼= 1− δν

Pr(1 departure in δ) ∼= δν

Pr(2 or more departures in δ) ∼= 0.

These probabilities are valid provided there is at least one job in the node. Instead, if
L(t) = 0 then the server is idle, no departure is possible, and so

Pr(0 departures in δ) ∼= 1

Pr(1 or more departures in δ) ∼= 0.

Let f(l, t′) denote the pdf of the random variable L(t′) with t′ = t + δ. That is, for
l = 0, 1, 2, . . .

f(l, t) = Pr
(

L(t) = l
)

and f(l, t′) = Pr
(

L(t′) = l
)

.

The small-δλ and small-δν probability equations derived previously are the key to proving
Theorem 8.5.3 by determining how f(l, t) and f(l, t′) are related.



392 8. Output Analysis

Transient Rate Equations

We now use the arrival and departure probabilities established previously to derive
the relationship between f(l, t′) and f(l, t). We do so by assuming that δ is sufficiently
small so that both δν and δλ are sufficiently small and so terms of order δ2 or smaller can
be ignored.

First consider f(l, t′) for l = 0. This is the probability that the service node is idle at
t′ = t+ δ. If L(t′) = 0 then it must be true that at time t:

• either L(t) = 0 and there was no arrival in the next δ;

• or L(t) = 1 and there was one departure in the next δ.

Therefore, by conditioning on the two possible states of the service node at time t, the
probability that L(t′) = 0 is

f(0, t′) ∼= f(0, t)(1− δλ) + f(1, t)δν.

Equivalently, this equation can be written

f(0, t+ δ)− f(0, t)

δ
∼= νf(1, t)− λf(0, t) l = 0.

In the limit as δ → 0 the ∼= becomes an equality and the left-hand side of this equation
represents the first derivative of f(0, t) with respect to t.

Now, consider f(l, t′) for l > 0. If L(t′) = l then it must be true that at time t:

• either L(t) = l and there were no arrivals or departures in the next δ;

• or L(t) = l + 1 and there was one departure in the next δ;

• or L(t) = l − 1 and there was one arrival in the next δ.

Therefore, by conditioning on the three possible states of the service node at time t, the
probability that L(t′) = l is

f(l, t′) ∼= f(l, t)(1− δλ)(1− δν) + f(l + 1, t)(1− δλ)(δν) + f(l − 1, t)(δλ)(1− δν).

If terms of order δ2 or smaller are ignored, this equation can be rewritten as

f(l, t′) ∼= f(l, t)(1− δλ− δν) + f(l + 1, t)δν + f(l − 1, t)δλ

which is equivalent to

f(l, t+ δ)− f(l, t)

δ
∼= νf(l + 1, t)− (λ+ ν)f(l, t) + λf(l − 1, t) l = 1, 2, . . .

As in the l = 0 case, in the limit as δ → 0 the ∼= becomes an equality and the left-hand
side of this equation represents the first derivative of f(l, t) with respect to t.
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Steady-State Rate Equations

If ρ < 1 then as t → ∞ the pdf f(l, t) will lose its “memory” of the initial state of
the queue (at t = 0) and converge to a steady-state pdf. That is, if t is large then the
instantaneous rate of change of the pdf will become zero resulting in a pdf f(l) that is
independent of t and characterized by the equations

0 = νf(1)− λf(0) l = 0

0 = νf(l + 1)− (λ+ ν)f(l) + λf(l − 1) l = 1, 2, . . .

These equations can be solved for f(·) as follows.

• First divide by ν, then write the equations as

f(1) = ρf(0) l = 0

f(l + 1) = (1 + ρ)f(l)− ρf(l − 1) l = 1, 2, . . .

• From these equations we can argue inductively that

f(2) = (1 + ρ)f(1)− ρf(0) = ρ2f(0)

f(3) = (1 + ρ)f(2)− ρf(1) = ρ3f(0)

...

f(l) = · · · = ρlf(0) l = 0, 1, 2, . . .

• Finally, by applying the usual pdf normalizing convention

1 =

∞
∑

l=0

f(l) = f(0)

∞
∑

l=0

ρl = f(0)(1 + ρ+ ρ2 + · · ·) =
f(0)

1− ρ

for ρ < 1, we find that the probability of an idle server is

f(0) = 1− ρ

which is consistent with the fact that 1 − ρ is the steady-state probability of an idle
server. Therefore,

f(l) = (1− ρ)ρl l = 0, 1, 2, . . .

which proves Theorem 8.5.3 — the steady-state number in an M/M/1 service node
is a Geometric(ρ) random variable.
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Steady-State Waiting Time

Let the random variableW denote the steady-state waiting time in anM/M/1 service
node. From results established earlier we know that the expected value of W is

w̄ =
1

ν − λ

but, what is the pdf of W?

If ρ is very small then most jobs will experience little or no delay so that their only
wait will be their service time. Therefore, if ρ is small it seems intuitive that W will be
Exponential(1/ν). On the other hand, if ρ is close to 1 then most jobs will experience large
delays and their wait will be determined primarily by their delay time. In this case it is not

intuitive that W should be Exponential. It is, however — provided the queue discipline is
FIFO. Indeed, we can prove the following theorem.

Theorem 8.5.4 If ρ = λ/ν < 1 then the steady-state wait in a FIFO M/M/1 service
node with infinite capacity is an Exponential(w̄) random variable with w̄ = 1/(ν − λ).

Proof Let l be the number in the service node at the instant a new job arrives. Since
the steady-state number in the node is a Geometric(ρ) random variable, this occurs with
probability (1−ρ)ρl. There are now l+1 jobs in the node and, because the queue discipline
is FIFO, the time this new job will spend in the node is the sum of its service time and
the service time of all those l jobs ahead of it. Each of the l jobs in the queue (including
the job that just arrived) has a service time that is Exponential(1/ν) and, because of the
memoryless property of the Exponential distribution, the remaining service time of the
job in service is also Exponential(1/ν). Thus the wait experienced by a job that arrives to
find l jobs in a FIFOM/M/1 service node is the sum of l+1 iid Exponential(1/ν) random
variables. That is, this wait is an Erlang(l + 1, 1/ν) random variable W with possible
values w > 0 and pdf

ν

l!
(νw)l exp(−νw) w > 0

(see Section 7.4). To determine the pdf of W it is necessary to condition on all possible
values of l. That is, from the law of total probability the pdf of W is

∞
∑

l=0

ν(1− ρ)ρl

l!
(νw)l exp(−νw) = ν(1− ρ) exp(−νw)

∞
∑

l=0

1

l!
(ρνw)l

= (ν − λ) exp(−νw) exp(λw)

=
1

w̄
exp(−w/w̄) w > 0

which proves that W is an Exponential(w̄) random variable.
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Caveat

It is important to avoid becoming too taken with the elegance of M/M/1 steady-
state queuing theory results. These results provide valuable discrete-event simulation
benchmarks and useful system performance tools, but their applicability to real systems
is limited for at least three reasons.

• The assumption of an Exponential(1/ν) server is not valid in many practical applica-
tions — not even approximately. This is particularly true of service time distributions,
which rarely have a mode of 0 in real-word systems.

• The assumption that both the arrival and service processes are stationary may not be
valid, particularly if people are an integral part of the system.

• The number of jobs required to achieve statistics close to their steady-state value may
be very large, particularly if the traffic intensity is close to 1.0.

Relative to the last point, see Exercise 8.5.4.

8.5.3 EXERCISES

Exercise 8.5.1 Prove that the coefficient matrix






ν 0 −ν 0
0 1 0 −1
λ −1 0 0
0 0 λ −1







has rank 3.

Exercise 8.5.2 If Q is the steady-state number in the queue of an M/M/1 service node
(with ρ < 1) then what is the pdf of Q?

Exercise 8.5.3 Simulate an initially idleM/M/1 service node with λ = 1 and ν = 1.25.
Generate the histograms corresponding to f(l, t) for t = 10, t = 100, and t = 1000. Repeat
if the service times are Erlang(4, 0.2). Comment on the shape of the histograms.

Exercise 8.5.4 Verify that if anM/M/1 service node is simulated for thousands of jobs,
printing intermediate statistics every 50 jobs, and if ρ < 1, then as n → ∞ the intermediate
statistics l̄n, w̄n, q̄n, d̄n, x̄n, r̄n, and s̄n will all eventually converge to the values given by
the seven M/M/1 steady-state equations. Consider the cases ρ = 0.3, 0.6, and 0.9 and
comment on the rate of convergence.

Exercise 8.5.5 An M/M/1 service node produced a steady-state value of l̄ = 5. What
was ρ?

Exercise 8.5.6a If D is the steady-state delay in the queue of an M/M/1 service node
(with ρ < 1) then what is the pdf of D?



CHAPTER 9

INPUT MODELING

This chapter, which introduces procedures for developing credible input models,

completes all of the building blocks for the modeling of a system via discrete-event

simulation. We recommend reading Appendix G prior to reading this chapter for

a discussion of the sources of error in discrete-event simulation modeling and for

a development of a high-level framework for the modeling process.
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9.3. Modeling of Nonstationary Processes . . . . . . . . . . . . . . . 423

In the various simulation models presented thus far in the text, both the choice of the
distribution and the associated parameters have been “pulled out of thin air.” Program
ssq2, for example, uses Uniform(a, b) for the service time distribution with parameters
a = 1 and b = 2. These parameters have been fictitious so as to concentrate our efforts on
developing algorithms for the modeling of the system, rather than determining the origins
of their values. In practice, representative “input models” are determined by gathering data
from the system under consideration, and analyzing that data to determine an appropriate
probability distribution to mimic some aspect (e.g., service times) of the real-world system.
This chapter introduces the input modeling process in an example-driven fashion.

Input modeling can be subdivided into stationary models, whose probabilistic mech-
anism does not vary with time, and nonstationary models, where time plays a substantive
role in the model. Nonparametric (trace-driven) methods for determining stationary input
models are introduced in Section 9.1, along with a discussion concerning the collecting of
data. Parametric methods for determining stationary models are taken up in Section 9.2.
We introduce the method of moments and maximum likelihood as two techniques for esti-
mating parameter values for a particular distribution. Section 9.3 considers methods for
determining nonstationary input models. The introduction to input modeling presented
here is rather cursory, so the reader is encouraged to consult the more complete treat-
ments in, for example, Banks, Carson, Nelson, and Nicol (2001, Chapter 9) Bratley, Fox,
and Schrage (1987, Chapter 4), Fishman (2001, Chapter 10), Law and Kelton (2000, Chap-
ter 6), and Lewis and Orav (1989, Chapters 6 and 7), and more advanced input modeling
techniques in Nelson and Yaminitsky (1998).
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Most discrete-event simulation models have stochastic elements that mimic the prob-
abilistic nature of the system under consideration. A close match between the input model
and the true underlying probabilistic mechanism associated with the system is required for
successful input modeling. The general question considered in this section and the next two
sections is how to model an element (e.g., arrival process, service times) in a discrete-event
simulation model given a data set collected on the element of interest. For brevity, we as-
sume that there is an existing system from which data can be drawn. The example-driven
approach used here examines only introductory techniques for input modeling.

There are five basic questions to be answered in the following order:

• Have the data been sampled in an appropriate fashion?

• Should a trace-driven model or parametric probability model be selected as an input
model? If the latter is chosen, the following three questions arise.

— What type of distribution seems to “fit” the sample? Equivalently, what
type of random variate generator seems to have produced the data? Does
the Exponential(µ), Gamma(a, b), or Lognormal(a, b), for example, most ad-
equately describe the data?

— What are the value(s) of the parameter(s) that characterize the distribution?
If the distribution is Exponential(µ), for example, then what is the value of
µ?

— How much confidence do we have in our answers to the two previous ques-
tions?

In statistical jargon the processes involved in answering these five questions are known as:

• assuring that appropriate statistical sampling procedures have been used for data
collection;

• choosing between a nonparametric or parametric input model;

— hypothesizing a distribution;

— estimating the distribution’s parameter(s);

— testing for goodness of fit.

We will consider these five processes, in order.

9.1.1 DATA COLLECTION

There are two approaches that arise with respect to the collection of data. The first is
the classical approach, where a designed experiment is conducted to collect the data. The
second is the exploratory approach, where questions are addressed by means of existing
data that the modeler had no hand in collecting. The first approach is better in terms of
control and the second approach is generally better in terms of cost.
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Collecting data on the appropriate elements of the system of interest is one of the initial
and pivotal steps in successful input modeling. An inexperienced modeler, for example,
improperly collects delay times on a single-server service node when the mean delay time
is the performance measure of interest. Although these delay times are valuable for model
validation, they do not contribute to the input model. The appropriate data elements to
collect for an input model for a single-server service node are typically arrival and service
times. The analysis of sample data collected on stationary processes is considered in this
section and the analysis of sample data collected on nonstationary processes is considered
in the next section.

Even if the decision to sample the appropriate element is made correctly, Bratley, Fox,
and Schrage (1987) warn that there are several things that can be “wrong” with a data
set. Vending machine sales will be used to illustrate the difficulties.

• Wrong amount of aggregation. We desire to model daily sales, but have only monthly
sales.

• Wrong distribution in time. We have sales for this month and want to model next
month’s sales.

• Wrong distribution in space. We want to model sales at a vending machine in location
A, but only have sales figures on a vending machine at location B.

• Insufficient distribution resolution. We want the distribution of the number of soda
cans sold at a particular vending machine, but our data is given in cases, effectively
rounding the data up to the next multiple of 24, the number of cans in a case.

• Censored data. We want to model demand , but we only have sales data. If the vending
machine ever sells out, this constitutes a right-censored observation. The reliability
and biostatistics literature contains techniques for accommodating censored data sets
(Lawless, 2003).

All of these rather sophisticated depictions of data problems exclude the issue of data
validity . Henderson (2004), for example, developed a trace-driven simulation model for
ambulance planning where the ambulance took just one second to load the patient into
the ambulance. How did the modeler arrive at such unusually efficient emergency person-
nel? The source of the problem was in the data collection procedures. The ambulance
personnel had a “computer-aided dispatch” system which included a button situated on
the dashboard of the ambulance to collect the arrival time to and departure time from the
scene. The ambulance driver often (understandably) got busy and forgot to record event
times by pressing the button. Later, when the error was discovered, the driver would press
the button several times in a row in order to “catch up” on missed events. This would
result in data values collected at the scene as short as one second, which, of course, turned
up in the trace-driven simulation. The tiny event times were sampled occasionally, result-
ing in the unusually efficient performance. These errors not only corrupt the recorded time
at the scene, but also corrupt any surrounding travel times.
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There is a lot more that could be written about the careful collection of data and the
assortment of pitfalls that await the collector. We end our short and sketchy discussion
here and refer the interested reader to Cochran (1977) for further reading.

9.1.2 PRELIMINARY DATA ANALYSIS

We now begin a discussion of some preliminary steps that can be taken to analyze a
data set. Following convention, the sample values are denoted by x1, x2, . . . , xn, and may
be sampled from a discrete or continuous population. The following elementary example
(which will be referenced throughout this section) is used to illustrate the types of decisions
that often arise in input modeling for a stationary process.

Example 9.1.1 Consider a data set of n = 23 service times collected on a server in
a single-server service node to determine an input model in a discrete-event simulation
model. The service times in seconds are:

105.84 28.92 98.64 55.56 128.04 45.60 67.80 105.12 48.48

51.84 173.40 51.96 54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

The data values are collected in the order that they are displayed. [Although these service
times actually come from the life testing literature (Caroni, 2002; Lawless, 2003), the same
principles apply to both input modeling and survival analysis.]

The first step is to assess whether the observations are independent and identically dis-
tributed. The data must be given in the order collected for independence to be assessed.
Situations where the identically distributed assumption would not be valid include:

• A new teller has been hired at a bank and the 23 service times represent a task that
has a steep learning curve. The expected service time is likely to decrease as the new
teller learns how to perform the task more efficiently.

• The service times represent 23 times to completion of a physically demanding task
during an 8-hour shift. If fatigue is a significant factor, the expected time to complete
the task is likely to increase with time.

If a simple linear regression of the service times versus the observation numbers shows
a significant nonzero slope, then the identically distributed assumption is probably not

appropriate, and a nonstationary model is appropriate. If the slope of the regression line
does not statistically differ from zero, then a stationary model is appropriate. This simple
linear regression differs slightly from those considered in Section 4.4 in that the observation
number, which ranges from 1 to 23 and is known by statisticians as the independent

variable, is fixed, rather than random.
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Assume that there is a suspicion that a learning curve is present, which makes us suspect
that the service times are decreasing. The scatterplot and least-squares regression line
shown in Figure 9.1.1 indicate a slight downward trend in the service times. The regression
line has a slope of −1.3 and an y-intercept of 87.9 seconds. But is this negative slope
significantly different from zero? A hypothesis test* shows that the negative slope is more
likely to be due to sampling variability, rather than a systematic decrease in service times
over the 23 values collected. For the remainder of this section, we will assume that a
stationary model is appropriate, and thus the observations can be treated as 23 identically
distributed observed service times.
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* The reader should consult any introductory statistics textbook if hypothesis testing
terminology and procedures are not familiar. Although beyond the prerequisites for this
text, here are some of the details for the reader with a background in statistics. The
null and alternative hypotheses are H0 : β1 = 0 and H1 : β1 < 0 associated with the
linear model Y = β0 + β1X + ε, where X is the (fixed) observation number, Y is the
associated (random) service time, β0 is the intercept, β1 is the slope, and ε is an error term
[see Kutner, Nachtsheim, Neter, Wasserman (2003) for details]. The p -value associated
with the hypothesis test is 0.14, which is insufficient evidence to conclude that there is
a statistically significant learning curve present. The negative slope is probably due to
sampling variability. The p -value may be small enough, however, to warrant further data
collection.
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There are a number of graphical and statistical methods for assessing independence. These
include analysis of the sample autocorrelation function associated with the observations
and a scatterplot of adjacent observations. The sample autocorrelation function for the
service times is plotted in Figure 9.1.2 for the first eight lags. The sample autocorrelation
function value at lag 1, for example, is the sample correlation for adjacent service times.
The sample autocorrelation function value at lag 4, for example, is the sample correlation
for service times four customers apart. We plot these autocorrelation values as spikes,
rather than just points as we did in Figure 4.4.4, although this is largely a matter of
taste. The horizontal dashed lines at ±2/

√
n are 95% bounds used to determine whether

the spikes in the autocorrelation function are statistically significant. Since none of the
spikes strayed significantly outside of these bounds for this particular small data set, we
are satisfied that the observations are truly independent and identically distributed. Since
only n = 23 data values were collected and there seems to be no pattern to the sample
autocorrelation function, we are likely to dismiss the spike at lag six falling slightly above
the limits as being due to random sampling variability. Even if these were truly independent
observations, we would expect 1 in 20 of the observations to fall outside of the 95% bounds.
See Chatfield (2004) for further discussion of sample autocorrelation functions.
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The next decision that needs to be made is whether a parametric or nonparametric
input model should be used. We discuss these two options in the following two subsections.

9.1.3 TRACE-DRIVEN (NONPARAMETRIC) MODELING

The trace-driven, or nonparametric approach allows a data set to “stand on its own”,
as opposed to being fit to a parametric model, such as the Exponential(µ) distribution.
The decision of whether to use a nonparametric model or a parametric model can rest on
the sample size n, the number of unusual “gaps” that occur in the data that should be
smoothed over, and the importance and use of the input model in the simulation. We
discuss discrete and continuous distributions separately.
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Discrete distributions

When the simulation modeling situation calls for a discrete model (e.g., number of
cars at a dealership, number of operations in a service time, or number of puppies in a
litter), the modeling and associated variate generation algorithms using the trace-driven
approach are straightforward. Let x1, x2, . . . , xn be the data values collected on a random
variable that is discrete by its nature. One simple trace-driven input model for variate
generation would be to repeatedly select one of the data values with probability 1/n. This
corresponds to an “empirical” pdf

f̂(x) =
1

n
x = xi; i = 1, 2, . . . , n

if all of the data values are distinct. With a discrete random variable, of course, it is likely
that there are tied data values. If d data values, for example, are tied at a particular xi,
then the pdf at that particular xi is f̂(x) = d/n. The empirical cdf can be defined by

F̂ (x) =
N(x)

n
x = xi; i = 1, 2, . . . , n,

where N(x) is the number of data values that are less than or equal to x.

Variate generation in this case is straightforward. An algorithm for generating variates
for a discrete-event simulation requires only two lines. Algorithm 9.1.1 is synchronized,
efficient, clear, and, if the data values are sorted, monotone. The algorithm has reasonable
storage requirements for moderate sample sizes n, which is typically the case for data
collected by hand.

Algorithm 9.1.1 Given the (sorted or unsorted) data values x1, x2, . . . , xn stored in
x[1], x[2], . . ., x[n], the following algorithm returns one of the data values with proba-
bility 1/n for use in a trace-driven input model.

i = Equilikely(1, n);

return (x[i]);

Two disadvantages to the trace-driven approach are the interpolation and extrapola-
tion problems, as illustrated in the following example.

Example 9.1.2 Consider the number of door panels that contain painting defects in a
lot of ten panels. Such a random variable is naturally modeled by a discrete distribution
since it is a counting variable. Furthermore, it is clear that the support of this random
variable is X = {x|x = 0, 1, . . . , 10}. The interpolation and extrapolation problems can
be seen in the following scenario. Assume that n = 50 lots are sampled, yielding the data
shown below.

x : 0 1 2 3 4 5 6 7 8 9 10
counts : 14 11 8 0 7 4 5 1 0 0 0
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The empirical pdf is

f̂(x) =



































14/50 x = 0
11/50 x = 1
8/50 x = 2
7/50 x = 4
4/50 x = 5
5/50 x = 6
1/50 x = 7.

There is a “hole” in the data set at x = 3. Surprisingly, none of the 50 lots sampled
contains exactly three door panels with defects. If we decide to take the trace-driven
approach, the discrete-event simulation would never generate a lot that contains exactly
three defects, which is almost certainly undesirable. This is known as the interpolation

problem with the trace-driven approach. Likewise, it is not possible to generate exactly 8,
9, or 10 panels with defects using the trace-driven approach, which also may be undesirable.
This is known as the extrapolation problem with the trace-driven approach. These two
problems often lead modelers to consider the parametric approach for small data sets or
those that exhibit significant random sampling variability. The parametric approach will
smooth over the rough spots and fill the gaps that may be apparent in the data. The
parametric Binomial(10, p) model, for example, might be a more appropriate model for
this particular data set. Estimating an appropriate value of p is a topic taken up later in
this section.

Continuous distributions

When the simulation modeling situation calls for a continuous model (e.g., interarrival
times or service times at a service node), the trace-driven approach is analogous to the
discrete case. Again let x1, x2, . . . , xn be the data values collected on a random variable
that is continuous by its nature. One simple trace-driven input model for variate generation
would be to repeatedly select one of the data values with probability 1/n, just as in the
discrete case. This again corresponds to an “empirical” pdf

f̂(x) =
1

n
x = xi; i = 1, 2, . . . , n

if all of the data values are distinct. As before, if d data values are tied at a particular
x = xi value, then the pdf at that particular xi is f̂(x) = d/n. The empirical cdf can be
defined by

F̂ (x) =
N(x)

n
x = xi; i = 1, 2, . . . , n,

whereN(x) is the number of data values that are less than or equal to x. Variate generation
is identical to the discrete case. The algorithm for generating variates for a discrete-event
simulation is repeated here.
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Algorithm 9.1.2 Given the (sorted or unsorted) data values x1, x2, . . . , xn stored in
x[1], x[2], . . ., x[n], the following algorithm returns one of the data values with proba-
bility 1/n for use in a trace-driven input model.

i = Equilikely(1, n);

return (x[i]);

Example 9.1.3 Returning to the n = 23 service times from Example 9.1.1, the empirical
cdf is plotted in Figure 9.1.3. The geometric interpretation of Algorithm 9.1.2 is as follows:
the random number generated in the call to Equilikely(1, n) has a height on the F̂ (x) axis
that corresponds to a returned x-value associated with the stairstep empirical cdf.
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The nonparametric model that repeatedly selects one of the service times with probability
1/23 has several drawbacks for this data set. First, the small size of the data set indicates
that there will be significant sampling variability. Second, the tied value, 68.64 seconds,
and the observation in the far right-hand tail of the distribution, 173.40 seconds, tend to
indicate that the smoothing associated with a parametric analysis may be more appropri-
ate. When these are combined with the interpolation and extrapolation problems inherent
to trace-driven simulations, a modeler might be pushed toward a parametric analysis.

There is a way to overcome the interpolation problem for a continuous data set.
Using the n− 1 “gaps” created by the n data values, a piecewise-linear empirical cdf can
be derived. These n− 1 gaps can each have a linear cdf that rises 1/(n− 1) between each
of the sorted data values. Thus using the “rise over run” definition of the slope of a line,
each piecewise-linear segment will have a slope of

1/(n− 1)

x(i+1) − x(i)

on x(i) ≤ x < x(i+1) for i = 1, 2, . . . , n − 1, where x(1), x(2), . . . , x(n) are the (distinct)
sorted data values.*

* The values x(1), x(2), . . . , x(n) are referred to as “order statistics” by statisticians. See

David (2004) for an introduction and comprehensive survey of the literature.
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Since each of the piecewise segments must pass through the point (x(i), (i−1)/(n−1)),
for i = 1, 2, . . . , n− 1, some algebra yields the piecewise-linear empirical cdf

F̂ (x) =
i− 1

n− 1
+

x− x(i)

(n− 1)(x(i+1) − x(i))
x(i) ≤ x < x(i+1),

for i = 1, 2, . . . , n − 1, and F̂ (x) = 0 for x < x(1), and F̂ (x) = 1 for x ≥ x(n).* This
estimator is still considered “nonparametric” because no parameters need to be estimated
in order to arrive at the estimator.

Example 9.1.4 Returning to the n = 23 service times, the piecewise-linear empirical cdf
is plotted in Figure 9.1.4. The empirical cdf has 22 linear segments, and, not surprisingly,
has a shape that is similar to F̂ (x) from Figure 9.1.3. This cdf allows x-values of any real
value between x(1) = 17.88 and x(23) = 173.40, as opposed to just the data values, which
was the case with the empirical cdf plotted in Figure 9.1.3. The cdf is not a function (but
is plotted as a vertical line) at the tied data value 68.64. The piecewise-linear empirical
cdf effectively solves the interpolation problem presented earlier.
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We now consider generating variates from the piecewise-linear empirical cdf. Since
this cdf is linear, it can be inverted in closed form for distinct data values. When this
equation is solved for x (replacing F̂ (x) with u), the following equation is appropriate for
generating a variate on segment i

x = x(i) +
(

(n− 1)u− (i− 1)
)

(x(i+1) − x(i))
i− 1

n− 1
≤ u <

i

n− 1
,

for i = 1, 2, . . . , n − 1. A variate generation algorithm must first find the appropriate
piecewise segment, then invert the linear function as shown above.

* Notice that this estimator is undefined for tied data values. Fortunately, as seen later,
this does not create problems with the associated variate generation algorithm.
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Algorithm 9.1.3 A one-time sort of the data values x1, x2, . . . , xn into the order statis-
tics x(1), x(2), . . . , x(n) must be performed prior to executing this variate generation algo-
rithm. These sorted values are stored in x[1], x[2], . . ., x[n]. This algorithm returns a
variate associated with the piecewise-linear empirical cdf for use in a trace-driven input
model.

u = Random();

i = d(n - 1) * ue;

return (x[i] + ((n - 1) * u - (i - 1)) * (x[i + 1] - x[i]));

Algorithm 9.1.3 is monotone, synchronized, clear, and efficient. Further, the use of
the piecewise-linear empirical cdf eliminates the interpolation problem associated with
Algorithm 9.1.2. The geometry behind the three steps in Algorithm 9.1.3 are: (i) a
random number u is generated and plotted on the F̂ (x) axis; (ii) the appropriate piecewise-
linear segment corresponding to the random number is determined; (iii) the appropriate
piecewise-linear segment is inverted yielding a variate in the range x(1) < x < x(n).*

How does Algorithm 9.1.3 handle tied data values? These tied data values will be
generated with probability d/n, where d is the number of values tied at a particular x-
value. This is precisely what we would hope for in the case of tied values.

The piecewise-linear empirical cdf has solved the interpolation problem. Solving the
extrapolation problem is difficult and requires more assumptions concerning the popula-
tion.

This concludes our discussion of trace-driven modeling of stationary processes. The
simple nonparametric techniques presented here let the data “speak for itself” rather than
approximating the distribution with a parametric model such as the Exponential(µ) or
Normal(µ, σ) distribution.

Considering the modeling framework developed in Appendix G, trace-driven simula-
tions suffer from three sources of error: (i) error due to a finite data set embodied in Cr;
(ii) error due to a finite simulation run length embodied in Gr; and (iii) error due to incor-
rect assumptions about the system embodied in A. The parametric approach, presented
next, suffers from these three sources of error and more. Barton and Schruben (2001) list
five additional disadvantages of the parametric approach:

• Parametric modeling requires more effort and expertise than nonparametric modeling;

• Error is introduced when an inaccurate parametric model is selected;

• Additional error is introduced in the estimation of parameters;

• Significant serial correlation and between-variable dependencies can oftentimes be lost;

• The parametric approach is typically more difficult to “sell” to management.

* These are strict equalities on x(1) < x < x(n) because we have assumed that the

random number generator will not generate exactly 0.0 or 1.0.
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In spite of these problems, parametric modeling remains significantly more popular than
nonparametric modeling in the simulation community. A novel mix of the two approaches
using Bézier distributions is given by Wagner and Wilson (1995). With their approach,
the modeler determines whether a “notch” in the empirical cdf, such as the one between
x = 60 and x = 70 in Figure 9.1.3, is part of the target cdf of interest (and should be
included in the model) or just random sampling variability (which should be smoothed
over in the model).

9.1.4 EXERCISES

Exercise 9.1.1 Consider the (tiny) fictitious data set with just n = 3 values collected:
1, 2, and 6. (a) Plot the empirical cdf. (b) Plot the piecewise-linear empirical cdf. (c) Gen-
erate 1000 samples of size n = 3 from the empirical cdf and generate 1000 samples of
size n = 3 from the piecewise-linear empirical cdf, and calculate the sample means and
variances of each data set of 1000 values. (d) Comment.

Exercise 9.1.2 Derive the equation

F̂ (x) =
i− 1

n− 1
+

x− x(i)

(n− 1)(x(i+1) − x(i))
x(i) ≤ x < x(i+1),

for i = 1, 2, . . . , n− 1, associated with the piecewise-linear empirical cdf.

Exercise 9.1.3 Prove that

x = x(i) +
(

(n− 1)u− (i− 1)
)

(x(i+1) − x(i))
i− 1

n− 1
≤ u <

i

n− 1
,

for i = 1, 2, . . . , n− 1, is the value of the idf associated with the piecewise-linear empirical
cdf.

Exercise 9.1.4 Consider program ssq2. (a) Modify the program to compute and print
the average delay times for 50 replications with Exponential(2.0) interarrival times and
Uniform(1.0, 2.0) service times. (b) Modify the program to compute and print the average
delay times for 50 replications with Uniform(1.0, 2.0) service times, and interarrival times
which are drawn from an empirical cdf of n = 4 Exponential(2.0) random variates (use 50
such empirical cdfs). This is analogous to a trace-driven simulation when the service time
distribution is known but only 4 interarrival times have been collected. (c) Compute the
means and standard deviation of the two sets of numbers generated in parts (a) and (b).
Plot an empirical cdf of the two sets of numbers. (d) Comment on the two empirical cdfs.
(e) Would it have been a good or bad idea to have used a single random number stream
to generate the service times in parts (a) and (b) of this problem? Why?
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We now describe the parametric approach to the analysis of a stationary data set.
The good news associated with the parametric approach is that the smoothing, interpo-
lation, and extrapolation problems all vanish. The bad news is that more sophistication
in probability and statistics is required (e.g., there is a wide array of parametric models,
far beyond those described in this text, to choose from) and additional error is introduced
when a parametric model is fitted to a data set. Like making a copy of a copy on a copying
machine, we are one more layer removed from the data values when we fit a model.

9.2.1 HYPOTHESIZING A DISTRIBUTION

In some respects the most difficult aspect of fitting a distribution to data is the first
step — hypothesizing a parametric model. This process is less “mechanical” than the
others and consequently it is more dependent on insight, theory, and experience. At best,
there are just guidelines and questions. The answers to the questions posed below can be
used to rule in or rule out certain probability models.

• What is the source of the data? Is the data inherently discrete or continuous? Is
the data bounded? Is it non-negative? Is the data produced by a stationary arrival
process? Is the data the sum or product of random variables?

• Generate a histogram and look at its shape — frequently this will eliminate many
distributions from further consideration. Is the histogram “flat”? Is it symmetric
about the mean? The shape of the histogram can change drastically for different
histogram parameters, and you may need to experiment with different values for
the histogram parameters. Obviously, this is best done interactively in a computer
graphics environment where the histogram parameters can be varied easily.

• Calculate some simple sample statistics in order to help thin the field of potential
input models. For example, (i) a coefficient of variation s/x̄ close to 1, along with
the appropriate histogram shape, indicates that the Exponential(µ) distribution is a
potential input model; (ii) a sample skewness close to 0 indicates that a symmetric
distribution [e.g., a Normal(µ, σ) or Uniform(a, b) distribution] is a potential input
model.

At this point, if you are not a statistician, consider finding one to guide you through this
process.

If the collection of data values is either expensive, difficult, or time consuming, you
may have to address the question of what to do if you do not have enough data to gen-
erate a meaningful histogram. The answer is, not much — unless you can confidently
hypothesize the distribution based primarily on a knowledge of the source of the data. For
example, if the data are interarrival times and you have information that the process is
stationary and likely to be a Poisson process, then the interarrival distribution is likely
to be Exponential(µ) and you only need enough data to accurately estimate the mean
interarrival time µ.
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Example 9.2.1 A histogram with k = 9 cells for the n = 23 service times from Exam-
ple 9.1.1 is given in Figure 9.2.1.
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It is very difficult to draw any meaningful conclusions with a data set that is this small.
This histogram indicates that a skewed, bell-shaped pattern is appropriate for a pdf. The
largest observation lies in the far right-hand tail of the distribution, so care must be taken
to assure that it is representative of the population. The sample mean, standard deviation,
coefficient of variation, and skewness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52

1

n

n
∑

i=1

(

xi − x̄

s

)3

= 0.88.

Since the data set is inherently non-negative (since these are service times), a short list of
the potential models from the text would include the Lognormal(a, b) and the Gamma(a, b)
distributions.

Another graphical device for distinguishing one distribution from another is a plot of
the skewness on the vertical axis versus the coefficient of variation on the horizontal axis.
This approach has the advantage of viewing several competing parametric models simul-
taneously. The population coefficient of variation γ2 = σ/µ and the population skewness
γ3 = E[(X−µ)3/σ3] can be plotted for several parametric distributions. The Gamma(a, b)
distribution, for example, has mean µ = ab, standard deviation σ = b

√
a, coefficient of

variation γ2 = 1/
√
a, and skewness γ3 = 2/

√
a. Thus a plot of γ2 vs. γ3 is linear. The

special cases of the Gamma(a, b) distribution, namely the Chisquare(n), Erlang(n, b), and
Exponential(µ) distributions, all lie on this line. Some distributions are represented as
points, while others lie in lines, while others fall in regions. A reasonable criterion for
a hypothesized model is that the sample values for γ2 and γ3, calculated in the previous
example as γ̂2 = 0.52 and γ̂3 = 0.88, should lie reasonably close to the point, curve, or
region associated with the population values.
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Example 9.2.2 A plot of γ2 vs. γ3 is given in Figure 9.2.2 for the Exponential(µ),
Gamma(a, b), Lognormal(a, b), and Weibull(a, b) distributions. The Weibull(a, b) distri-
bution will be introduced after this example. The point plotted for the service time data
is at (γ̂2, γ̂3) = (0.52, 0.88) and lies reasonably close (based on the small sample size) to
the Gamma, Lognormal , and Weibull models. All three are potential parametric input
models.
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Weibull Random Variates

Since the Lognormal , Gamma, and Weibull models are candidates for modeling the
service times, we briefly diverge from our discussion of input modeling to introduce the
Weibull distribution.

Definition 9.2.1 The continuous random variable X is Weibull(a, b) if and only if

• the real-valued shape parameter a satisfies a > 0

• the real-valued scale parameter b satisfies b > 0

• the possible values of X are X = {x|x > 0}

• the pdf of X is
f(x) = baaxa−1 exp

(

− (bx)a
)

x > 0

• the cdf of X can be expressed in closed form as*

F (x) = 1− exp
(

− (bx)a
)

x > 0

* Beware! There is no standard parameterization for the Weibull distribution. Both
F (x) = 1− exp

(

− (x/b)a
)

and F (x) = 1− exp(−bxa) are also legitimate Weibull cdfs.
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• the mean of X is

µ =
1

b
Γ

(

1 +
1

a

)

• the standard deviation of X is

σ =
1

b

√

Γ

(

1 +
2

a

)

−

[

Γ

(

1 +
1

a

)]2

.

The cdf of the Weibull(a, b) random variable can be inverted in closed form, resulting
in efficient variate generation [unlike the Gamma(a, b) random variable, which requires an
acceptance-rejection algorithm]. The Weibull(a, b) distribution reduces to the Exponen-

tial(µ) distribution when a = 1. The pdf is monotone decreasing for a < 1 and somewhat
bell-shaped for a > 1.

The next step in the process of input modeling is to determine appropriate parameters
for the hypothesized model — a process known as parameter estimation.

9.2.2 PARAMETER ESTIMATION

We will consider two basic approaches to estimating distribution parameters — the
method of moments and maximum likelihood estimation techniques. For many of the
distributions considered in this book, the two approaches yield similar or identical results.
The general setting is as follows. We have collected data values denoted by x1, x2, . . . , xn
and used the techniques from the previous section to decide on one or more potential input
models. Let q denote the number of unknown parameters [e.g., q = 1 for the Exponential(µ)
model and q = 2 for the Lognormal(a, b) model].

Definition 9.2.2 Themethod of moments is an intuitive algebraic method for estimating
the parameters of a distribution by equating the first q population moments defined by

E[Xk]

for k = 1, 2, . . . , q with the corresponding first q sample moments defined by

1

n

n
∑

i=1

xki

for k = 1, 2, . . . , q, and solving the q × q set of equations for the q unknown parameters.

Although it may seem initially awkward to set a fixed quantity (the population mo-
ments) to a random quantity (the sample moments), the intuition associated with the
method of moments technique is compelling — a fitted model will match the first q sample
moments. We use hats to denote estimators. The method is easily learned by example.
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Example 9.2.3 To estimate the single (q = 1) parameter µ for a Poisson(µ) model,
equate the population mean to the sample mean,

µ = x̄

and solve for µ yielding the method of moments estimator µ̂ = x̄.

Example 9.2.4 To estimate the single (q = 1) parameter µ for a Exponential(µ) model,
equate the population mean to the sample mean,

µ = x̄

and solve for µ yielding the method of moments estimator µ̂ = x̄. Even though the
Exponential(µ) model was not on our short list of potential input models for the n = 23
service times from our analysis in the previous section, we will go through the process
of fitting the distribution to make the point that the fitting process can be entered into
blindly, with corresponding results. Since the sample mean is x̄ = 72.22, the method of
moments parameter estimate is µ̂ = 72.22. The fitted cdf is F̂ (x) = 1− exp(−x/72.22) for
x > 0. This fitted cdf is plotted along with the empirical cdf in Figure 9.2.3.
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Figure 9.2.3.

Fitted

exponential

cdf and

empirical

cdf.

We can see that this is a very poor fit. The fitted Exponential cdf is much higher than the
empirical cdf for small service times. This means that a discrete-event simulation using
the Exponential(72.22) model will generate many more short service times than it should.
Likewise, the fitted Exponential cdf is much lower than the empirical cdf for large service
times. Using statistical jargon, this indicates that the fitted pdf has a heavier right-hand
“tail” than the empirical. A discrete-event simulation using the Exponential(72.22) model
will generate more long service times that it should. Fitting the Exponential model in
this case has resulted in a fitted model with significantly higher variability than the data
would suggest (the fitted model has standard deviation 72.22 whereas the sample standard
deviation is 37.49). Using this particular input model will induce significant error into the
discrete-event simulation. The accurate modeling of the right-hand tail in particular is
important for queuing simulations since these values constitute the unusually long service
times that cause congestion.
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Example 9.2.5 To estimate the two (q = 2) parameters µ and σ for a Normal(µ, σ)
model, equate the first two population moments to the first two sample moments,

E[X] =
1

n

n
∑

i=1

xi

E[X2] =
1

n

n
∑

i=1

x2

i .

For compactness, denote the right-hand sides of these two equations by m1 and m2. Using
the relationship σ2 = E[X2]− µ2, the equations can be rewritten as

µ = m1

σ2 + µ2 = m2.

Solving for µ and σ yields the method of moments estimators

µ̂ = m1 = x̄

σ̂ =
√

m2 −m2

1
= s.

Thus the method of moments technique estimates the population mean by the sample
mean and the population standard deviation by the sample standard deviation.

In the previous three examples the population moments and the sample moments
match up in a way that is intuitive. The next three examples illustrate the less intuitive case
where oftentimes more algebra is required to arrive at the method of moments estimators.

Example 9.2.6 To estimate the single (q = 1) parameter p for the Geometric(p) model,
start by equating the population mean and the sample mean

p

1− p
= x̄.

Then solve for p to yield the estimate

p̂ =
x̄

1 + x̄
.

The parameter p for the Geometric(p) model must satisfy 0 < p < 1. Does the method
of moments estimator satisfy this constraint on the parameter? If the data is drawn from
a Geometric(p) population, then the data must assume the values X = {0, 1, 2, . . .}. This
means that x̄ ≥ 0. The only case where the method of moments experiences difficulty is a
data set with x̄ = 0, which corresponds to a data set of all zeros.
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Example 9.2.7 To estimate the two (q = 2) parameters a and b for the Gamma(a, b)
model, introduced in Section 7.6, equate the first two population moments to the first two
sample moments,

ab = m1

ab2 + (ab)2 = m2

using the relationship σ2 = E[X2]− µ2. Solving for a and b yields

â =
m2

1

m2 −m2

1

=
x̄2

s2
and b̂ =

m2 −m2

1

m1

=
s2

x̄
.

Since the Gamma(a, b) distribution was on our short list of potential input models for the
service time data, we estimate the parameters as:

â =
x̄2

s2
=
72.222

37.492
= 3.7 and b̂ =

s2

x̄
=
37.492

72.22
= 19.46

yielding the fitted cdf displayed in Figure 9.2.4.
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Figure 9.2.4.

Fitted

gamma cdf

and empirical

cdf.

The fitted Gamma(a, b) model is far superior to the fitted Exponential(µ) model illustrated
in Figure 9.2.3. Both tails and the body display better fits and, since there are now two

parameters in the fitted models, both the mean and the variance are now appropriate. It
is up to the modeler to determine whether the “notch” in the empirical cdf between x = 60
and x = 70 is: (i) an inherent and important part of the distribution which may require
switching to a trace-driven approach or (ii) just sampling variability, in which case the
Gamma(a, b) model appropriately smooths over the notch.

Since the Exponential(µ) distribution is a special case of the Gamma(a, b) distribution
when a = 1, the Gamma distribution will typically “appear” to fit a data set better, even
when the data is drawn from an Exponential population. The extra parameter param-
eter gives the Gamma distribution more “flexibility” than the more rigid one-parameter
Exponential . The extra parameter allows for an “S-shape” for the cdf, as illustrated in
Figure 9.2.4, which is not possible for the cdf of an Exponential random variable.
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Example 9.2.8 To estimate the two (q = 2) parameters a and b for the Uniform(a, b)
distribution start by equating the first two population and sample moments

a+ b

2
= m1

(b− a)2

12
+

(

a+ b

2

)2

= m2.

Then solve for a and b to yield the estimates

â = x̄−
√
3 s

b̂ = x̄+
√
3 s.

The a, b estimates for the Uniform(a, b) distribution provide a good illustration of the
difference between method of moments estimates and maximum likelihood estimates. It is
intuitive that if the data is truly Uniform(a, b) then all the data must fall between a and

b. The â and b̂ values given above do not necessarily satisfy this criterion. The maximum
likelihood estimators for a and b are the smallest and largest data values. When maximum
likelihood estimates differ from method of moments estimates, it is generally considered
desirable to use the former. Computational considerations are also important, however,
and when there is a difference, method of moments estimates are often easier to calculate.

Definition 9.2.3 The maximum likelihood estimators are the parameter values associ-
ated with a hypothesized distribution that correspond to the distribution that is the most
likely to have produced the data set x1, x2, . . . , xn. If θ = (θ1, θ2, . . . , θq)

′ is a vector of

unknown parameters, then the maximum likelihood estimators θ̂, often abbreviated MLE,
maximize the likelihood function

L(θ) =
n
∏

i=1

f(xi, θ).

The vector of unknown parameters θ has been added to the pdf in order to emphasize the
dependence of the likelihood function on θ.

Since the observations are independent, the likelihood function, L(θ), is the product
of the pdf evaluated at each data value, known to statisticians as the joint pdf. The
maximum likelihood estimator θ̂ is found by maximizing L(θ) with respect to θ, which
typically involves some calculus. Thus the maximum likelihood estimator corresponds to
the particular value(s) of the parameters that are most likely to have produced the data
values x1, x2, . . . , xn.
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In practice, it is often easier to maximize the log likelihood function, lnL(θ), to find
the vector of maximum likelihood estimators, which is valid because the logarithm function
is monotonic. The log likelihood function is

lnL(θ) =
n
∑

i=1

ln f(xi, θ)

and is asymptotically normally distributed by the central limit theorem, since it consists
of the sum of n random, independent terms.

Example 9.2.9 Let x1, x2, . . . , xn be a random sample from an Exponential(µ) popula-
tion. The likelihood function is

L(µ) =

n
∏

i=1

f(xi, µ) =

n
∏

i=1

1

µ
exp(−xi/µ) = µ−n exp

(

−

n
∑

i=1

xi/µ

)

.

The log likelihood function is

lnL(µ) = −n lnµ−

n
∑

i=1

xi/µ.

In order to maximize the log likelihood function, differentiate with respect to µ.

∂ lnL(µ)

∂µ
= −

n

µ
+

∑n

i=1
xi

µ2
.

Equating to zero and solving for µ yields the maximum likelihood estimator

µ̂ =
1

n

n
∑

i=1

xi,

which is the sample mean x̄. In this particular case, the method of moments and max-
imum likelihood estimators are identical. This is the case for many, but not all, of the
distributions introduced in this text.

Example 9.2.10 Figure 9.2.5 illustrates the maximum likelihood estimator for µ for an
Exponential population drawn from a (fictitious) sample size of n = 3

1 2 6.

(One could argue that these data values look more discrete than continuous, but we use
integers to make the arithmetic easy.) Consider all the allowable µ values for an Exponen-

tial(µ) distribution (i.e., µ > 0). Of the infinite number of µ > 0, the µ̂ = x̄ = 3 value
depicted in Figure 9.2.5 (shown in the associated pdf) is that which maximizes the product
of the pdf values at the data points, i.e., the product of the lengths of the vertical dashed
lines.



9.2 Parametric Modeling of Stationary Processes 417

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

f̂(x)

x

Fitted Exponential(3) pdf
.......................................................................................................................................................

.......
.......
....

........
..........
........



Figure 9.2.5.

Maximum

likelihood

estimation

geometry.

Any other choice of µ results in a smaller value of L(µ). The pdf plotted in Figure 9.2.5
is the one most likely to produce the observed data values. Although the next example
violates one of the pre-requisites for the text (single-variable calculus), we include it to
illustrate how two-parameter distributions are handled.

Example 9.2.11 The Weibull(a, b) distribution was also listed as a potential model for
the n = 23 service times. We derive the q = 2 maximum likelihood estimates in the general
case, then determine their numerical values associated with the service times. TheWeibull

distribution has pdf

f(x) = baaxa−1 exp (−(bx)a) x > 0,

where b is a positive scale parameter and a is a positive shape parameter. Let x1, x2, . . . , xn
denote the data values. The likelihood function is a function of the unknown parameters
a and b

L(a, b) =
n
∏

i=1

f(xi) = banan

[

n
∏

i=1

xi

]a−1

exp

(

−

n
∑

i=1

(bxi)
a

)

.

The mathematics is typically more tractable for maximizing a log likelihood function,
which, for the Weibull distribution, is

lnL(a, b) = n ln a+ an ln b+ (a− 1)

n
∑

i=1

lnxi − ba
n
∑

i=1

xai .

Differentiating these equations with respect to the unknown parameters a and b and equat-
ing to zero yields the 2× 2 set of nonlinear equations

∂ lnL(a, b)

∂a
=

n

a
+ n ln b+

n
∑

i=1

lnxi −

n
∑

i=1

(bxi)
a ln bxi = 0

and
∂ lnL(a, b)

∂b
=

an

b
− aba−1

n
∑

i=1

xai = 0.
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These simultaneous equations have no closed-form solution for â and b̂. To reduce the
problem to a single unknown, the second equation can be solved for b in terms of a

b =

(

n
∑n

i=1
xa
i

)1/a

.

Law and Kelton (2000, page 305) give an initial estimate for a and Qiao and Tsokos

(1994) give a fixed-point algorithm for calculating â and b̂. Their algorithm is guaranteed
to converge for any positive initial estimate for a.

For the 23 service times, the fittedWeibull distribution has maximum likelihood estimators
â = 2.10 and b̂ = 0.0122. The log likelihood function evaluated at the maximum likelihood
estimators is lnL(b̂, â) = −113.691. Figure 9.2.6 shows the empirical cdf along with the
cdf of the Weibull fit to the data.
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Figure 9.2.6.

Fitted

Weibull cdf

and empirical

cdf.

The difference between the fitted Gamma(a, b) cdf displayed in Figure 9.2.4 and the fit-
ted Weibull(a, b) cdf displayed in Figure 9.2.6 may look so insignificant that the modeler
might conclude that the two are interchangeable. This is an example of where a good
knowledge of probability and statistics can help to differentiate between the two models.
The Gamma(a, b) distribution has “exponential” right-hand tails, which means that for
large service times that have not been completed, the remaining service time is approx-
imately exponentially distributed via the memoryless property. Is this an appropriate
property for service times? That all depends on the situation. It is enough to say that
the Gamma(a, b) model has a heavier right-hand tail and that theWeibull(a, b) model has
a lighter right-hand tail for the particular fitted distribution given here. There may be
specific information about the system that would help determine which model is superior.
As mentioned earlier, precise modeling in the right-hand tail of a service time distribution
is crucial to the effective modeling of the service node.

The method of moments and maximum likelihood estimators are special cases of
what is known more generally in statistics as “point estimates.” Hogg, McKean, and
Craig (2005) and Casella and Berger (2002), for example, survey the properties of point
estimators known as unbiasedness, minimum variance, efficiency, and consistency.
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Accuracy of Point Estimators

Many argue that a point estimator is of little use by itself since it does not contain any
information about the accuracy of the estimator. Statisticians often use interval estimation

to quantify the precision of estimates. When there is a single (q = 1) parameter, a
confidence interval is used to measure the precision of the point estimate. When there are
several (q > 1) parameters, a “confidence region” is used to measure the precision of the
point estimates. Interval estimators incorporate the variability of the point estimator to
indicate the accuracy of the point estimator. Not surprisingly, these intervals and regions
tend to narrow as the sample size n increases.

Although the specifics of interval estimation are beyond the prerequisites for this text,
we present an example of such an interval estimate and its associated interpretation for
the service time example.

Example 9.2.12 Returning to the n = 23 service times that were fitted by the Weibull

model, the fact that the “likelihood ratio test statistic,” defined by Casella and Berger
(2003) as 2[lnL(b̂, â)− lnL(b, a)], is asymptotically Chisquare(2), means that a 95% con-
fidence region for the parameters is the region containing all b and a satisfying

2[−113.691− lnL(b, a)] < 5.99,

where the 95th percentile of the Chisquare(2) distribution is 5.99. The maximum like-
lihood estimators and 95% confidence region are shown in Figure 9.2.7. The maximum
likelihood estimators are plotted at the point (â, b̂) = (2.10, 0.0122). The line a = 1 (when
the Weibull distribution collapses to the Exponential distribution) is not interior to the
confidence region, which gives a third confirmation that the Exponential distribution is
not an appropriate model for the service time data set.
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A confidence region like the one plotted in Figure 9.2.7 can be quite helpful in de-
termining the effect of the sampling variability associated with the data set drawn from
the system on the simulation output. Assume that the Weibull(a, b) model is selected
as an input model. It would be reasonable to make simulation runs at the values of the
maximum likelihood estimates (â, b̂) = (2.10, 0.0122), as well as a few selected points along
the boundary of the confidence region. In this manner the effect of how far the parameters
of the input model could stray from the maximum likelihood estimators can be used to
assess the impact on the output values from the simulation.

9.2.3 GOODNESS OF FIT

There are two approaches to testing for goodness of fit — visual and analytic. The
visual method has been emphasized thus far. A visual test for goodness of fit is an edu-
cated inspection of how well the histogram or empirical cdf is approximated (fitted) by a
hypothesized distribution pdf or cdf whose parameters have been estimated. Visually com-
paring the fitted cdf of the Exponential(72.22) model with the empirical cdf in Figure 9.2.3,
for example, allowed us to conclude that the Exponential model was not an appropriate
service time model. Other methods for visually comparing distributions include “P–P”
(probability–probability) and “Q–Q” (quantile–quantile) plots as described, for example,
in Law and Kelton (2000). A P–P plot is the fitted cumulative distribution function at
the ith order statistic x(i), F̂ (x(i)), versus the adjusted empirical cumulative distribution

function, F̃ (x(i)) = (i− 0.5)/n, for i = 1, 2, . . . , n. A plot where the points fall close to the
line passing through the origin and (1, 1) indicates a good fit.

Example 9.2.13 For the n = 23 service times, a P–P plot for theWeibull fit is shown in
Figure 9.2.8, along with a line connecting (0, 0) and (1, 1). P–P plots should be constructed
for all competing models.
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We would like to have an objective technique assessing fit since visual methods are
subjective. The analytic approach begins with two standard statistical tests: chi-square

for discrete models and Kolmogorov–Smirnov for continuous models.

• If the data is discrete, the heights of the mass values on a discrete data histogram are
compared with the corresponding mass values associated with the fitted distribution.
The chi-square goodness-of-fit test statistic is a function of the squared differences
between these heights.

• If the data is continuous, the Kolmogorov–Smirnov goodness-of-fit test statistic is the
largest vertical distance between the empirical and fitted cdfs. This largest difference
is traditionally denoted by Dn.

Example 9.2.14 The Kolmogorov–Smirnov test statistics for four of the models con-
sidered in this chapter, all fitted by maximum likelihood, are given below. A large vertical
difference in cdfs for the Exponential model, and smaller vertical differences for the three
two-parameter models, confirm our visual goodness-of-fit results from Figures 9.2.3, 9.2.4,
and 9.2.6.

Distribution D23

Exponential(µ) 0.307

Weibull(a, b) 0.151

Gamma(a, b) 0.123

Lognormal(a, b) 0.090

The Cramer–von Mises and Anderson–Darling goodness-of-fit tests (Lawless, 2003;
D’Agostino and Stephens, 1986) are improvements upon the Kolmogorov–Smirnov test.
These tests are often more sensitive to lack of fit in the tails of a distribution, which can
often be critical in developing an input model.

Many of the discrete-event simulation packages and several stand-alone software pack-
ages automate all of the processes considered in this chapter with little or no expert inter-
vention. These packages calculate parameter estimates for dozens of popular parametric
distributions, and perform goodness-of-fit tests so that the distribution that best fits the
data set can quickly be determined.

In both simulation education and practice, it is typically the case that the input model
for the discrete-event simulation is considered “exact,” and output analysis (considered in
Chapter 9) estimates performance measures based on this incorrect assumption. The cor-
rect (and more difficult) approach is to somehow combine the error associated with the
input modeling process with the error involved in simulating the system in the estima-
tion of performance measures. Chick (2001), for example, incorporates random sampling
variability from the data set in the analysis of the output from a discrete-event simulation.
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9.2.4 EXERCISES

Exercise 9.2.1 Consider program ssq2. (a) Modify the program to compute and print
the average delay times for 50 replications with Exponential(2.0) interarrival times and
Uniform(1.0, 2.0) service times. (b) Modify the program to compute and print the average
delay times for 50 replications with Exponential(µ̂) interarrival times and Uniform(1.0, 2.0)
service times, where µ̂ is the sample mean of n = 4 Exponential(2.0) random variates (use
50 such sample means). (c) Compute the means and standard deviation of the two sets of
numbers generated in parts (a) and (b). Plot an empirical cdf of the two sets of numbers.
(d) Comment.

Exercise 9.2.2 Explain why the Gamma(a, b) distribution is generally preferred to the
Erlang(n, b) distribution for modeling a continuous random variable.

Exercise 9.2.3 Explain why you would be nervous about the validity of a discrete-event
simulation model with a Uniform(a, b) service time.

Exercise 9.2.4 Perform the algebra necessary to arrive at the method of moments
estimators for a and b in Example 9.2.8.

Exercise 9.2.5 Use a modified version of program ssq2 to estimate the steady-state
wait for customers entering a M/M/1 service node with arrival rate λ = 1, and service
rate ν = 1.25. Which of the continuous distributions we have studied seems to fit this data
best? Comment.

Exercise 9.2.6 Derive the Lognormal(a, b) method of moments parameter estimation
equations.

Exercise 9.2.7a Let x1, x2, . . . , xn be a random sample drawn from an inverse Gaussian

(Wald) population with positive parameters λ and µ, and pdf (Chikkara and Folks, 1989)

f(x) =

√

λ

2π
x−3/2 exp

(

−
λ

2µ2x
(x− µ)2

)

x > 0.

Find the maximum likelihood estimators for µ and λ.

Exercise 9.2.8 Find the maximum likelihood estimators for µ when n independent and
identically distributed observations are drawn from a Poisson(µ) population.

Exercise 9.2.9 Use a modified version of program ssq3 to supply convincing numer-
ical evidence that the steady-state number of customers in a M/M/1 service node is a
Geometric(ρ) random variable.

Exercise 9.2.10 Use a modified version of program msq to estimate the pdf of the
steady-state number of customers in a M/M/20 service node. What discrete distribution
fits this histogram best?
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There are modeling situations that arise where one of the stationary input models
from the previous section does not adequately describe a stochastic element of interest.
A nonstationary model is needed to model the arrival times of patients to an emergency
room, the failure times of an automobile, or the arrival times of customers to a fast food
restaurant. Any stochastic model that varies with time requires a nonstationary model.
Therefore, accurate input modeling requires a careful evaluation of whether a stationary
(no time dependence) or nonstationary model is appropriate.

9.3.1 AN EXAMPLE

Modeling customer arrival times to a lunch wagon will be used throughout this section
to illustrate the decision-making process involved in determining a nonstationary input
model.

Example 9.3.1 Customer arrival times to a lunch wagon between 10:00 AM and 2:30
PM are collected on three days. These realizations were generated from a hypothetical
arrival process given by Klein and Roberts (1984). A total of 150 arrival times were
observed, comprising 56 on the first day, 42 on the second day, and 52 on the third day.
Defining (0, 4.5] to be the time interval of interest (in hours), the three realizations are

0.2153 0.3494 0.3943 0.5701 0.6211 . . . 4.0595 4.1750 4.2475,

0.3927 0.6211 0.7504 0.7867 1.2480 . . . 3.9938 4.0440 4.3741,

and

0.4499 0.5495 0.6921 0.9218 1.2057 . . . 3.5099 3.6430 4.3566.

One preliminary statistical issue concerning this data is whether the three days represent
processes drawn from the same population. External factors such as the weather, day of
the week, advertisement, and workload should be fixed. For this particular example, we
assume that these factors have been fixed and the three realizations are drawn from a
representative target arrival process.

Since the arrival times are realizations of a continuous-time, discrete-state stochastic
process, the remaining question concerns whether or not the process is stationary. If the
process proves to be stationary, the techniques from the previous section, such as drawing
a histogram, and choosing a parametric or nonparametric model for the interarrival times,
are appropriate. On the other hand, if the process is nonstationary, a nonstationary Poisson
process, which was introduced in Section 7.5, might be an appropriate input model. Recall
that a nonstationary Poisson process is governed by an event rate function λ(t) that gives
an arrival rate [e.g., λ(2) = 10 means that the arrival rate is 10 customers per hour at time
2] that can vary with time. Although we place exclusive emphasis on the nonstationary
Poisson process model in this section, there are dozens of other nonstationary models that
are appropriate in other modeling situations. As in the previous section on the modeling of
stationary processes, input models can be divided into trace-driven (nonparametric) and
parametric models. We begin with trace-driven models.
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9.3.2 TRACE-DRIVEN MODELING

This subsection describes three nonparametric (trace-driven) procedures for estimat-
ing the event rate function λ(t) or, equivalently, the cumulative event rate function

Λ(t) =

∫ t

0

λ(τ)dτ

from k realizations sampled from a “target” nonstationary Poisson process. The term
target refers to the population process that we want to estimate and simulate. The first
procedure can be used on “count” data. The second and third procedures are appropriate
for “raw” data. In each of the procedures, we (i) find point estimates for the cumulative
event rate function, (ii) find interval estimates for the cumulative event rate function, and
(iii) develop algorithms for generating event times from the estimated process.

Count Data

The event rate function λ(t) or cumulative event rate function Λ(t) is to be estimated
on (0, S], where S is a known constant. The interval (0, S] may represent the time a system
allows arrivals (e.g., 9:00 AM to 5:00 PM at a bank) or one period of a cycle (e.g., one
day at an emergency room). There are k representative realizations collected on the target
process on (0, S].

For systems with high arrival rates (e.g., busy call centers or web sites), there is often
so much data that counts of events that occur during bins (subintervals) are available,
rather than the raw event times. Although this is less preferable than having the raw
data, it is still possible to construct an estimate of the event rate function and generate
variates for a discrete-event simulation model. The time interval (0, S] can be partitioned
into m subintervals

(a0, a1], (a1, a2], . . . , (am−1, am],

where a0 = 0 and am = S. The subintervals do not necessarily have equal widths. Let
n1, n2, . . . , nm be the total number of observed events in the subintervals over the k real-
izations.

Example 9.3.2 Consider the m = 9 equal-width subintervals associated with the lunch
wagon example

(0.0, 0.5], (0.5, 1.0], . . . , (4.0, 4.5].

The counts during each half-hour subinterval are

subinterval number, i : 1 2 3 4 5 6 7 8 9
event count, ni : 5 13 12 24 32 27 21 10 6

Since the counts range from n1 = 5 arrivals in the first subinterval to n5 = 32 arrivals in the
fifth subinterval, there is a strong suspicion that a nonstationary model is appropriate and
we can proceed toward fitting a nonstationary Poisson process to the data set of counts.
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To simplify the estimation process, assume that the target nonstationary Poisson
process has an event rate function λ(t) that is piecewise constant on each subinterval of
the partition (a0, a1], (a1, a2], . . . , (am−1, am]. Since the average event rate function on
the interval (ai−1, ai] is the rate per unit time of the events that occur on that interval,
the maximum likelihood estimator is the average number of events that occurred on the
interval, normalized for the length of the interval

λ̂(t) =
ni

k(ai − ai−1)
ai−1 < t ≤ ai

for i = 1, 2, . . . ,m.

Example 9.3.3 For the lunch wagon count data, there are five arrivals in the first
subinterval. The estimated event rate during this subinterval is

λ̂(t) =
5

3(0.5− 0.0)
= 10/3 ai−1 < t ≤ ai

customers per hour. Figure 9.3.1 shows the event rate function for all nine of the subin-
tervals calculated in a similar manner.
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event rate

function

estimate.

We have connected the piecewise constant segments with vertical lines, although this is
largely a matter of taste. Even though the diagram in Figure 9.3.1 looks tantalizingly close
to a histogram, it should not be called a “histogram” because of the time dependence.



426 9. Input Modeling

Since the event rate estimator is piecewise constant, the associated cumulative event
rate function estimator is a continuous, piecewise-linear function on (0, S]

Λ̂(t) =

∫ t

0

λ̂(τ)dτ =





i−1
∑

j=1

nj

k



+
ni(t− ai−1)

k(ai − ai−1)
ai−1 < t ≤ ai

for i = 1, 2, . . . ,m.* This estimator passes through the points
(

ai,
∑i

j=1
nj/k

)

for i =

1, 2, . . . ,m. A graph of a generic version of this estimator is shown in Figure 9.3.2. The
tick marks on the horizontal axis correspond to the subinterval endpoints. The tick marks
on the vertical axis are determined by the count data. In the unlikely case that the
piecewise-linear segments are all parallel [i.e., the estimator is a line connecting (0, 0) with
(S,
∑m

i=1
ni/k)], the model reduces from a nonstationary Poisson process to a stationary

(homogeneous) Poisson process. Asymptotic properties of this estimator in the case of
equal-width subintervals are considered by Henderson (2003).
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+
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∑
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* If there are no events observed on interval i, i.e., ni = 0, then the event rate function
estimate is zero on interval i and the cumulative event rate function estimate is constant
on interval i. In the variate generation algorithm to be described subsequently, no events
will be generated for such an interval. This is useful for modeling an interval where no
events should occur, e.g., lunch breaks.
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Example 9.3.4 Figure 9.3.3 contains the piecewise-linear cumulative event rate function
estimate associated with the lunch wagon arrival counts. The estimator begins at (0, 0)
and ends at (4.5, 150/3), as expected. Recalling that the interpretation of the cumulative
event rate function is the expected number of events by time t, we can say that the data
suggests that there will be n/k = 150/3 = 50 arrivals to the lunch wagon per day between
the hours of 10:00 AM and 2:30 PM. The S-shape for the cumulative event rate function
estimator indicates that fewer customers tend to arrive at the beginning and end of the
observation period.
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As in the previous section, it is important to assess the accuracy of the estimators
developed thus far, which is typically done via confidence intervals. Based on the fact
that the number of events by time t has a Poisson

(

Λ(t)
)

distribution, an approximate,
two-sided (1− α)100% confidence interval for Λ(t) is

Λ̂(t)− zα/2

√

Λ̂(t)

k
< Λ(t) < Λ̂(t) + zα/2

√

Λ̂(t)

k
,

for 0 < t ≤ S, where zα/2 is the 1− α/2 fractile of the standard normal distribution. The
interval is always asymptotically exact at the endpoints, but asymptotically exact for all
t in (0, S] only when the target event rate function λ(t) is piecewise constant over each
subinterval (ai−1, ai] in the arbitrary partition of (0, S]. In most applications, this rather
restrictive assumption is not satisfied.
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Example 9.3.5 Figure 9.3.4 illustrates the cumulative event rate function estimator and
the associated 95% confidence limits. Not surprisingly, these limits expand with time since
we are less certain of the number of arrivals by time 4.0, for example, than we are of the
number of arrivals by time 1.0. Increasing the number of realizations k will narrow the
width of the confidence limits.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

5

10

15

20

25

30

35

40

45

50

55

60

Λ̂(t)

t.......................
.......................

.......................
................

...........
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...........
...........
...........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
............
.............
.............
.............
.............
.............
..............
...................

...................
...................

...................
..

............. ............. ............. .............
.............

.............
.............

.............
.............

.............
........
.....
........
.....
........
.....
........
.....
........
.....
.......
......
.......
......
.......
......
.......
......
.......
......
........
.....
........
.....
........
.....
........
.....
........
.....
.........
....
.........
....
.........
....
.........
....

.............
.............

.............
.............

.............
.............

......

.............
.............

.............
............
.
.........
....

.........
....

.........
....

.........
....

..........
...

..........
...

..........
...

.........
....
........
.....
........
.....
........
.....
........
.....
........
.....
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
........
.....
........
.....
........
.....
........
.....
........
.....

............
.
............
.
............
. .............

.............
.............

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 9.3.4.

Lunch

wagon

cumulative

event rate

function

estimator

and

confidence

limits.

At this point the input model for the nonstationary Poisson process has been deter-
mined. A realization of a nonstationary Poisson process can be generated from the cumula-
tive event rate function estimate for modeling in a discrete-event simulation by inversion.
Let E1, E2, . . . be the event times of a unit stationary Poisson process. Let T1, T2, . . .

denote the associated event times for the nonstationary Poisson process with cumulative
event rate function Λ̂(t) generated on (0, S]. Algorithm 9.3.1 generates the nonstationary
Poisson process event times from the inputs a0, a1, a2, . . . , am; n1, n2, . . . , nm; and k. A
key element of this algorithm is determining the appropriate subinterval (denoted in the
algorithm by i) in which to perform the inversion.
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Algorithm 9.3.1 Given the number of realizations collected k; subinterval boundaries
a0, a1, a2, . . . , am; and event counts n1, n2, . . . , nm, the following algorithm returns a re-
alization of a nonstationary Poisson process via inversion associated with the cumulative
event rate estimator Λ̂(t).

Λmax =
∑m

i=1
ni/k; /* upper bound for HPP */

i = 1; /* initialize interval counter */

j = 1; /* initialize variate counter */

Λ = ni/k; /* initialize cumulative event rate */

Ej = Exponential(1.0); /* generate first HPP event time */

while (Ej <= Λmax) { /* while more events to generate */

while (Ej > Λ) { /* while in wrong interval */

i = i + 1; /* increment interval counter */

Λ = Λ + ni/k;

}

Tj = ai - (Λ - Ej) * k * (ai - ai−1) / ni;

j = j + 1;

Ej = Ej−1 + Exponential(1.0);

}

return (T1, T2, . . . , Tj−1); /* return event times */

The geometry associated with Algorithm 9.3.1 is as follows. The stationary (homo-
geneous) unit Poisson process values E1, E2, . . . are generated along the vertical axis in
Figure 9.3.3. Each Ej is associated with some subinterval i, i = 1, 2, . . . , m. The appro-
priate piecewise linear segment is inverted, yielding the associated nonstationary Poisson
process value Tj . Algorithm 9.3.1 is monotone, synchronized, clear, and efficient.

Algorithm 9.3.1 is valid only when the target process has an event rate function λ(t)
that is piecewise constant, a dubious assumption in a real-world setting. Any departure
from this assumption results in an approximate estimator Λ̂(t) and an associated approxi-
mate variate generation algorithm between the subinterval endpoints. The binning of the
data into subintervals typically results in missed trends that occur between the subinterval
endpoints. As seen subsequently, this problem is overcome when working with raw data.

One problem with Algorithm 9.3.1 is that there is no limit on the number of non-
stationary Poisson process event times generated. The algorithm must be modified to
accommodate a next-event simulation model where the scheduling of the next event oc-
curs when a current event is being processed. Algorithm 9.3.2 uses the next-event approach
to schedule the next event when the current event is being processed. The algorithm has
the same static inputs (a0, a1, . . . , am; n1, n2, . . . , nm, and k) as Algorithm 9.3.1, except
this algorithm returns the next event time given that the current event occurs at the dy-
namic input time T ∈ (0, S]. The algorithm returns the time of the next nonstationary
Poisson process event Λ̂−1

(

Λ̂(T ) + E
)

, where E is an Exponential(1.0) variate.
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Algorithm 9.3.2 Given the number of realizations collected k; subinterval boundaries
a0, a1, a2, . . . , am; event counts n1, n2, . . . , nm; and the time of the current event T , the
following algorithm returns the time of the next event in a nonstationary Poisson process
via inversion associated with the cumulative event rate estimator Λ̂(t).

Λmax =
∑m

j=1
nj/k; /* maximum cumulative event rate */

j = 1; /* initialize interval index */

while (T > aj) { /* while wrong interval */

j = j + 1; /* find interval index */

}

ΛT =
∑j−1

i=1
ni / k + nj * (T - aj−1) / (k * (aj - aj−1));

Λ =
∑j

i=1
ni / k;

ΛT = ΛT + Exponential(1.0);

if (ΛT > Λmax)

return(−1); /* −1 indicates no more events to generate */

else {

while (ΛT > Λ) {

j = j + 1;

Λ = Λ + nj / k;

}

return(aj - (Λ - ΛT ) * k * (aj - aj−1) / nj);

}

The algorithm returns the next event time or −1 if there are no further events to be
generated. The variable ΛT initially contains the cumulative event rate function associated
with the time of the current nonstationary Poisson process event T , i.e., Λ̂(T ). This variable
is updated to contain the cumulative event rate function associated with the time of the
next unit stationary Poisson process event, Λ̂(T ) + Exponential(1.0). At the end of the
execution of this algorithm, the variable Λ contains the cumulative event rate function
value at the right subinterval endpoint associated with the returned event time.

A more sophisticated implementation of this next-event algorithm would store Λmax,
j, Λ, and ΛT between the generation of events, effectively eliminating the first seven lines
of the algorithm. The procedure would then begin with the updating of the ΛT value,
saving substantial execution time for large m.

Raw Data I

We now proceed to the case where raw event times are available for the k realizations
collected on (0, S]. The meaning of ni now changes from the count data case. We now let

ni, i = 1, 2, . . . , k be the number of observations in the ith realization, n =
∑k

i=1
ni, and

let t(1), t(2), . . . , t(n) be the order statistics of the superposition of the event times in the k
realizations, t(0) = 0 and t(n+1) = S.
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Example 9.3.6 For the lunch wagon example, the realizations were collected between
time 0 (10:00 AM) and S = 4.5 (2:30 PM), yielding n1 = 56, n2 = 42, and n3 = 52
observations on the k = 3 days. The superposition consists of n = 150 arrival times:
t(0) = 0, t(1) = 0.2153, t(2) = 0.3494, t(3) = 0.3927, t(4) = 0.3943, . . ., t(150) = 4.3741,
and t(151) = 4.5. The superposition of the arrival times to the lunch wagon is plotted in
Figure 9.3.5 [t(0) = 0 and t(151) = 4.5 are not plotted]. A cursory visual inspection of the
arrival pattern reveals a concentration of arrivals near the noon hour.
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We now introduce the standard nonparametric estimate of Λ(t), which is often known
as the “step-function” estimator. For the jth independent replication of the target nonsta-
tionary Poisson process, j = 1, 2, . . . , n, let Nj(t) denote the number of events observed
in the time interval (0, t] and let

N∗
k (t) =

k
∑

j=1

Nj(t) 0 < t ≤ S

denote the aggregated counting (or superposition) process so that n = N ∗
k
(S). The step

function Nj(t) is an appropriate estimator for the cumulative event rate function for real-
ization j only, j = 1, 2, . . . , k. The step-function estimator of Λ(t) which averages all of
the k replications is

Λ̂(t) =
1

k

k
∑

i=1

Nj(t) =
N∗

k
(t)

k
0 < t ≤ S.

Using a result from Leemis (1991), the N1(t), N2(t), . . . , Nj(t) are independent and
identically distributed Poisson

(

Λ(t)
)

random variables. Also, for any arbitrary t in the
interval (0, S], we can conclude that

lim
k→∞

Λ̂(t) = Λ(t)

with probability one. In addition, we can construct the following asymptotically exact
100(1 − α)% confidence interval for Λ(t) whose form is identical to the event count data
case*

Λ̂(t)− zα/2

√

Λ̂(t)

k
< Λ(t) < Λ̂(t) + zα/2

√

Λ̂(t)

k
.

* This interval is asymptotically exact for all t, unlike the interval for the count data.
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The standard step-function estimator takes upward steps of height 1/k only at the
event times in the superposition of the k realizations collected from the target process.
This means that a variate generation algorithm will produce realizations that contain only
event times equal to those collected in one of the k realizations. This is exactly the problem
that we ran into in Section 9.1 which we called the “interpolation” problem. In a very
similar fashion, we can overcome this problem using a piecewise-linear cumulative event
rate function estimator. Thus we skip the development of a variate generation algorithm
and move directly to the solution of the interpolation problem.

Raw Data II

There are n+1 “gaps” on (0, S] created by the superposition t(1), t(2), . . . , t(n). Setting

Λ̂(S) = n/k yields a process where the expected number of events by time S is the average
number of events in k realizations, since Λ(S) is the expected number of events by time S.
The piecewise-linear cumulative event rate function estimate rises by n/[(n+ 1)k] at each
event time in the superposition. Thus the piecewise-linear estimator of the cumulative
event rate function between the time values in the superposition is

Λ̂(t) =
in

(n+ 1)k
+

[

n(t− t(i))

(n+ 1)k(t(i+1) − t(i))

]

t(i) < t ≤ t(i+1); i = 0, 1, 2, . . . , n.

This estimator passes through the points
(

t(i), in/(n + 1)k
)

, for i = 1, 2, . . . , n + 1. This
interval estimator was developed in Leemis (1991) and extended to overlapping intervals
in Arkin and Leemis (2000).

In a similar fashion to the previous two estimators, a (1 − α)100% asymptotically
exact (as k → ∞) confidence interval for Λ(t) can be determined as

Λ̂(t)− zα/2

√

Λ̂(t)

k
< Λ(t) < Λ̂(t) + zα/2

√

Λ̂(t)

k
,

where zα/2 is the 1− α/2 fractile of the standard normal distribution.

Example 9.3.7 Figure 9.3.6 contains point and interval estimates for Λ(t) on (0, 4.5] for
the lunch wagon arrival times. The solid line denotes Λ̂(t) and the dotted lines denote the
95% confidence interval bounds. Lower confidence interval bounds that fall below zero are
equated to zero. The cumulative event rate function estimator at time 4.5 is 150/3 = 50,
which is the point estimator for the expected number of arriving customers per day. If Λ̂(t)
is linear, a stationary model is appropriate. As before, since customers are more likely to
arrive to the lunch wagon between 12:00 (t = 2.0) and 12:30 (t = 2.5) than at other times
and the cumulative event rate function estimator has an S-shape, a nonstationary model
is indicated. The point and interval estimates appear more jagged than in the case of the
count data because each of the three curves represents 151 (tiny) linear segments.
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The fact that each of the piecewise segments rises the same height can be exploited
to create an efficient variate generation algorithm.

Algorithm 9.3.3 Given the number of realizations collected k; the number of observed
events n; the interval length S; and superposition times t(1), t(2), . . . , t(n), the following
algorithm returns a realization of a nonstationary Poisson process via inversion associated
with the piecewise-linear cumulative event rate estimator Λ̂(t).

i = 1;

Ei = Exponential(1.0);

while (Ei <= n / k) {

m = b(n + 1) * k * Ei / nc;

Ti = t(m) + (t(m+1) - t(m)) * ((n + 1) * k * Ei / n - m);

i = i + 1;

Ei = Ei−1 + Exponential(1.0);

}

return (T1, T2, . . . , Ti−1);
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Algorithm 9.3.3 shows that it is a straightforward procedure to obtain a realization
of i− 1 events on (0, S] from i calls to Exponential(1.0). The values of E1, E2, . . . denote
the values in the unit Poisson process, m denotes the index of the appropriate piecewise-
linear segment to invert, and T1, T2, . . . , Ti−1 denote the returned event times from the
simulated nonstationary Poisson process. Inversion has been used to generate this non-
stationary Poisson process, so certain variance reduction techniques, such as antithetic
variates or common random numbers, may be applied to simulation output. Tied values
in the superposition pose no problem to this algorithm although there may be tied values
in the generated realization. As n increases, the amount of memory required increases,
but the amount of execution time required to generate a realization depends only on the
ratio n/k, the average number of events per realization. Thus collecting more realizations
(resulting in narrower confidence intervals) increases the amount of memory required, but
does not impact the expected execution time for generating a realization. Converting
Algorithm 9.3.3 to a next-event orientation is left as an exercise.

To summarize, this piecewise-linear cumulative event rate function estimator is in
some sense ideal in that

• it uses raw data which avoids the loss of accuracy imposed by breaking (0, S] into
arbitrary time subintervals;

• the point and interval estimates of Λ(t) are closed-form and easily computed;

• the point estimate of Λ(t) is consistent, i.e., limk→∞ Λ̂(t) = Λ(t);

• the interval estimate of Λ(t) is asymptotically exact as k → ∞;

• the variate generation algorithm which can be used to simulate a realization from Λ̂(t)
is efficient, monotone, and synchronized.

This completes our discussion of trace-driven modeling of nonstationary processes.
We now consider parametric modeling of nonstationary processes.

9.3.3 PARAMETRIC MODELING

We will continue to focus on our lunch wagon arrival times and the fitting of a non-
stationary Poisson process as we switch the emphasis to parametric models. Maximum
likelihood can again be used for estimating the parameters in a parametric nonstationary
Poisson process model. The likelihood function for estimating the vector of unknown pa-
rameters θ = (θ1, θ2, . . . , θq)

′ from a single realization of event times t1, t2, . . . , tn drawn
from a nonstationary Poisson process with event rate λ(t) on (0, S] is

L(θ) =

[

n
∏

i=1

λ(ti)

]

exp

[

−

∫ S

0

λ(t)dt

]

.

Maximum likelihood estimators can be determined by maximizing L(θ) or its logarithm
with respect to the q unknown parameters. Confidence regions for the unknown parameters
can be found in a similar manner to the service time example in Section 9.2.
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Because of the additive property of the event rate function for multiple realizations,
the likelihood function for the case of k realizations is

L(θ) =

[

n
∏

i=1

kλ(ti)

]

exp

[

−

∫ S

0

kλ(t)dt

]

.

There are many potential parametric models for nonstationary Poisson processes. We limit
our discussion to procedures for fitting a power law process, where the event rate function
is

λ(t) = baata−1 t > 0,

for shape parameter a > 0 and scale parameter b > 0. This event rate function can
assume monotone increasing (a > 1) and monotone decreasing (a < 1) shapes. These
event rate functions can be used to model sequences of events which occur with increasing
(decreasing) frequency. The event rate function is constant when a = 1, which corresponds
to an ordinary (stationary) Poisson process. The likelihood function for k realizations is

L(b, a) = knbnaan exp
(

− k(bS)a
)

n
∏

i=1

ta−1

i
.

The log likelihood function is

lnL(b, a) = n ln(ka)− na ln b− k(bS)a + (a− 1)

n
∑

i=1

ln ti.

Differentiating with respect to a and b and equating to zero yields

∂ lnL(b, a)

∂a
= n ln b+

n

a
+

n
∑

i=1

ln ti − k(bS)a ln (bS) = 0

and
∂ lnL(b, a)

∂b
=

an

b
− kSaaba−1 = 0.

Unlike the Weibull distribution from the previous section, these equations can be solved
in closed form. The analytic expressions for b and a are

â =
n

n lnS −
∑n

i=1
ln ti

,

b̂ =
1

S

(n

k

)1/a

.

We now apply this model to the lunch wagon arrival time data.
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Example 9.3.8 Substituting the n = 150 lunch wagon arrival times into these formulas
yields maximum likelihood estimators â = 1.27 and b̂ = 4.86. The cumulative event rate
function for the power law process

Λ(t) = (bt)a t > 0,

is plotted along with the nonparametric estimator in Figure 9.3.7. Note that due to
the peak in customer arrivals around the noon hour, the power law process is not an
appropriate model since it is unable to adequately approximate the event rate function. It
is unable to model a nonmonotonic λ(t), and hence is a poor choice for a model. In fact,
the fitted cumulative event rate function is so close to linear that the process would look
almost like a stationary Poisson process — completely missing the noon hour rush period!
Other models can be fit in a similar fashion.
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A more appropriate two-parameter distribution to consider would be one with an
event rate function that increases initially, then decreases. The log-logistic process, for
example, with event rate function (Meeker and Escobar, 1998)

λ(t) =
ba(bt)a−1

1 + (bt)a
t > 0,

for shape parameter a > 0 and scale parameter b > 0, would certainly be more appropriate
than the power law process.
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The EPTMP (exponential-polynomial-trigonometric function with multiple periodici-
ties) model, originally given by Lee, Wilson, and Crawford (1991) and generalized by Kuhl,
Damerdji, and Wilson (1998) with event rate function

λ(t) = exp





m
∑

i=0

αit
i +

p
∑

j=1

γj sin(ωjt+ φj)



 t > 0

can also model a nonmonotonic event rate function. The exp forces the event rate function
to be positive, the first summation models polynomial trend, and the second summation
models sinusoidal periodicities in the event rate. The cyclic portion of the model has been
used in discrete-event simulation applications to model the times that storms occur in the
Arctic Sea and arrivals of livers for transplantation by donors. Kuhl, Sumant, and Wilson
(2004) generalize this approach to model periodic effects that are not necessarily modeled
by a trigonometric function. Goodness-of-fit tests associated with the fitted models are
given in Rigdon and Basu (2000) and Ross (2002b).

9.3.4 EXERCISES

Exercise 9.3.1 The lunch wagon example was generated from the cumulative event rate
function from Klein and Roberts (1984)

Λ(t) =







5t2 + t 0 < t ≤ 1.5
16t− 11.25 1.5 < t ≤ 2.5
−3t2 + 31t− 30 2.5 < t ≤ 4.5.

(a) Find the rate function λ(t). (b) Generate 10 realizations via the thinning algorithm
and 10 realizations using inversion (both algorithms were introduced in Section 7.5) and
provide convincing numerical evidence that the two algorithms were implemented correctly.

Exercise 9.3.2 Derive the cumulative event rate function estimator from the event rate
function estimator in the case of count data.

Exercise 9.3.3 Perform the algebra necessary to confirm the appropriate assignment of
Tj in Algorithm 9.3.1.

Exercise 9.3.4 Draw a diagram that illustrates the geometry associated with Algo-
rithm 9.3.2.

Exercise 9.3.5 Use Algorithm 9.3.2 to determine the time of the next event in a non-
stationary Poisson process when m = 3; a0 = 0, a1 = 2, a2 = 6, a3 = 7; n1 = 10, n2 = 3,
n3 = 11; k = 2; T = 1.624; E = 5.091.

Exercise 9.3.6 Convert Algorithm 9.3.3 to a next-event orientation, e.g., given a current
event that occurs at time T , when should the next event be scheduled?
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Projects related to the discrete-event simulation topics considered in this text comprise
this final chapter. These projects may be used as launching pads for a term project or can
be used as miscellaneous topics at the end of the course.

Section 10.1 introduces six empirical test of randomness for a random number genera-
tor. These six tests, along with the Kolmogorov–Smirnov goodness-of-fit test, are applied
to the Lehmer random number generator (a,m) = (48271, 231−1). Section 10.2 introduces
a birth-death process, which is a mathematical model for systems that can be characterized
by a state that changes only by either increasing by one or decreasing by one. Population
models are a popular example of birth-death models used by biologists. The number of jobs
in a single-server service node is another example of a birth-death process. Section 10.3
introduces a finite-state Markov chain, which uses a state transition matrix to define the
probability mechanism for transitions from state to state. These states can represent a
very broad range of real-world system states, e.g., the state of the weather on a particular
day, the position of a job in a job shop, the social class of an individual, or some genetic
characteristic of an individual. Finally, Section 10.4 extends the single-server service node
which has been used throughout the book to a network of single-server service nodes.
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Although the (a,m) = (16807, 231 − 1) minimal standard Lehmer random number
generator introduced in Chapter 2 is less than ideal, there is no need to subject it to
any of the standard tests of randomness — that has been done many times before. In
contrast, the (a,m) = (48271, 231 − 1) generator used in this book is less well established
in the literature and so there is merit in testing it for randomness. Moreover, testing for
randomness is such an important topic that it must be included in any comprehensive
study of discrete-event simulation. With this in mind, empirical tests of randomness will
be illustrated in this section by applying six of the standard tests to the output produced
by the library rngs.

10.1.1 EMPIRICAL TESTING

Definition 10.1.1 An empirical test of randomness is a statistical test of the hypothesis
that repeated calls to a random number generator will produce an iid sample from a
Uniform(0, 1) distribution. An empirical test of randomness consists of three steps.

• Generate a sample by repeated call to the generator.

• Compute a test statistic whose statistical distribution (pdf) is known when the random
numbers are truly iid Uniform(0, 1) random variates.

• Assess the likelihood of the observed (computed) value of the test statistic relative to
the theoretical distribution from which it is assumed to have been drawn.

The test in Definition 10.1.1 is empirical because it makes use of actual generated
data and produces a conclusion that is only valid in a local, statistical sense. In contrast,
theoretical tests are not statistical. Instead, as illustrated in Section 2.2, theoretical tests
use the numerical value of the generator’s modulus and multiplier to assess the global
randomness of the generator.*

Chi-Square Statistic

Definition 10.1.2 Let X ′ be a random variable (discrete or continuous) and suppose
the possible values of X ′ are partitioned into a finite set of possible values (states) X to
form a new discrete random variable X. Typically these states correspond to the bins of
a histogram. Based on a large random sample, for each possible state x ∈ X define

e[x] = the expected number of times state x will occur

o[x] = the observed number of times state x occurred.

The resulting non-negative quantity

v =
∑

x

(

o[x]− e[x]
)2

e[x]

is known as a chi-square statistic. The sum is over all x ∈ X .

* See Knuth (1998) for a comprehensive discussion of theoretical and empirical tests of
randomness.
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All the empirical tests of randomness in this section make use of some form of the
chi-square statistic. The following test is typical.

Test of Uniformity

Algorithm 10.1.1 The uniformity of a random number generator’s output can be tested
by making n calls to Random and tallying this random variate sample into an equally-
spaced k-bin histogram. In this case x is the histogram bin index and the bin counts
o[0], o[1], . . . , o[k − 1] can be tallied as follows.

for (x = 0; x < k; x++)

o[x] = 0;

for (i = 0; i < n; i++) {

u = Random();

x = b u * k c;

o[x]++;

}

Because the expected number of points per bin is e[x] = n/k for all x, in this case the
chi-square statistic is

v =
k−1
∑

x=0

(

o[x]− n/k
)2

n/k
.

The Test of Uniformity (frequency test), based on Algorithm 10.1.1, provides a sta-
tistical answer to the question “Is the histogram flat?”. More precisely, is the variability
among the histogram heights sufficiently small so as to conclude that the n random num-
bers were drawn from a Uniform(0, 1) population? The underlying theory behind this test
is that if the random sample is a truly iid Uniform(0, 1) random variate sample and if

n/k is sufficiently large, say 10 or greater, then the test statistic v is (approximately) a
Chisquare(k − 1) random variate. Therefore, if

v∗
1
= idfChisquare(k − 1, α/2) and v∗

2
= idfChisquare(k − 1, 1− α/2)

then Pr(v∗
1
≤ v ≤ v∗

2
) ∼= 1 − α. To apply the test of uniformity, pick k ≥ 1000, n ≥ 10k,

and then do the following.

• Use Algorithm 10.1.1 to calculate a k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1 − α for a legitimate

random number generator).
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Just as in a jury trial, where people are assumed innocent until proven guilty, a random
number generator is assumed to be “good” until proven “bad.” Therefore, if v∗

1
≤ v ≤ v∗

2

we haven’t really proven that the generator is good — that was already assumed. Instead,
we have only failed to prove it bad. Equivalently, an empirical test is never passed; instead
it is either “failed” or “not failed.” This is an important statistical point. Equivalent
statistical jargon is “reject” the null hypothesis and “fail to reject” the null hypothesis.

Example 10.1.1 As an illustration of the test of uniformity, the library rngs was used
(with an initial seed of 12345) to create the data for 256 tests, one for each possible stream.*
For each test the number of histogram bins was k = 1000 and the number of observations
was n = 10 000. Therefore the expected number of observations per bin was n/k = 10.
The resulting 256 chi-square statistics (the v’s) are plotted in Figure 10.1.1 along with the
corresponding critical values v∗

1
= 913.3 and v∗

2
= 1088.5.
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Figure 10.1.1.

Test of

uniformity.

Consistent with the (hoped for) goodness of fit of the random number generator in rngs,
most of the 256 tests were not failed. Indeed, there were just seven “the histogram is not
uniform” (v > v∗

2
) failures and 11 “the histogram is too uniform” (v < v∗

1
) failures.

Two-Tailed Versus One-Tailed Tests

We have formulated the test of uniformity as a two-tailed test. That is, as illustrated
in Example 10.1.1 the test could be failed in two ways. If v is too small (v < v∗

1
) then

the observed and expected data agree too well — the histogram is too flat. At the other
extreme, if v is too large (v > v∗

2
) then the observed and expected data don’t agree well

at all. Intuitively v > v∗
2
failures seem to be worse and, consequently, some authors argue

that v can’t be too small. Instead, these authors advocate a one-tailed test based only on
a check to see if v is too large. Knuth (1998) advocates a two-tailed test; we agree.

* Test 0 corresponds to stream 0, test 1 to stream 1, etc.
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As the name suggests, the test of uniformity is nothing more than a test for histogram
flatness — does the generator tend to fill each histogram bin equally? The order (or lack
thereof) in which the bins are filled is not tested. Because of this, the test of uniformity is
a statistically weak test of randomness. Moreover, it is perhaps the most obvious test to
apply to a Uniform(0, 1) random number generator. If you are tempted to use a generator
whose quality is unknown (to you), then it would be prudent to first apply the test of
uniformity. However, don’t be surprised to find that the generator will produce an accept-
ably flat histogram (at least for selected values of k) and, in that case, do not jump to the
conclusion that the generator is necessarily “good.”

But what about the 18 failures in Example 10.1.1, do these failures indicate problems?
The answer is no. In fact, if the generator is good then approximately α × 100% of the
tests should be failed. In particular, in 256 tests with a 95% level of confidence, we would
expect to have approximately 256 · 0.05 ∼= 13 failures; significantly more or less than this
number would be an indication of problems.

Test of Extremes

The next empirical test is similar, in spirit, to the test of uniformity. It is a more
powerful test, however, with theoretical support based on the following theorem.

Theorem 10.1.1 If U0, U1, . . ., Ud−1 is an iid sequence of Uniform(0, 1) random vari-
ables and if

R = max{U0, U1, . . . , Ud−1}

then the random variable U = Rd is Uniform(0, 1).*

Proof Pick 0 < r < 1. Since R ≤ r if and only if Uj ≤ r for j = 0, 1, . . . , d− 1,

Pr(R ≤ r) = Pr
(

(U0 ≤ r) and (U1 ≤ r) and . . . and (Ud−1 ≤ r)
)

= Pr(U0 ≤ r) Pr(U1 ≤ r) . . .Pr(Ud−1 ≤ r)

= r · r · . . . · r

= rd

and so the cdf of the random variable R is Pr(R ≤ r) = rd. However, R ≤ r if and only if
Rd ≤ rd and therefore

Pr(Rd ≤ rd) = Pr(R ≤ r) = rd.

Finally, let U = Rd and let u = rd so that the cdf of the random variable U is

Pr(U ≤ u) = Pr(Rd ≤ rd) = rd = u 0 < u < 1.

Since Pr(U ≤ u) = u is the cdf of a Uniform(0, 1) random variable, the theorem is proven.

* Don’t misinterpret Theorem 10.1.1. The random variable U = Rd is Uniform(0, 1),
the random variable R is not Uniform(0, 1).
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Algorithm 10.1.2 The “extreme” behavior of a random number generator can be tested
by grouping (batching) the generator’s output d terms at a time, finding the maximum of
each batch, raising this maximum to the dth power, and then tallying all the maxima so
generated as follows.

for (x = 0; x < k; x++)

o[x] = 0;

for (i = 0; i < n; i++) {

r = Random();

for (j = 1; j < d; j++) {

u = Random();

if (u > r)

r = u;

}

u = exp(d * log(r)); /* u is rd */

x = b u * k c;

o[x]++;

}

Because the expected number of points per bin is e[x] = n/k for all x, in this case the
chi-square statistic is

v =

k−1
∑

x=0

(

o[x]− n/k
)2

n/k

with critical values v∗
1
= idfChisquare(k−1, α/2) and v∗

2
= idfChisquare(k−1, 1−α/2).

The Test Of Extremes is based on Algorithm 10.1.2. To apply this test pick k ≥ 1000,
n ≥ 10k, d ≥ 2 and then do the following.

• Use Algorithm 10.1.2 to calculate a k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1−α for a legitimate random

number generator). The test is typically applied for a range of values, say d = 2, 3, . . . , 6.
For d = 1 the test of extremes reduces to the test of uniformity.

As formulated, the test of extremes is actually a test of maxima. To make the test of
extremes into a test of minima involves only a minor extension to the theory, i.e.,

S = min{U0, U1, . . . , Ud−1}

and (1− S)d are Uniform(0, 1) random variates. The details are left as an exercise.
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Example 10.1.2 As in Example 10.1.1, the library rngs was used (with an initial seed
of 12345) to create the data for 256 tests, one for each rngs stream. For each test, the
number of histogram bins was k = 1000 and the number of observations was n = 10 000,
where each observation was determined by the maximum of d = 5 random numbers. As
in Example 10.1.1, the critical values denoted by horizontal lines in Figure 10.1.2 are
v∗
1
= 913.3 and v∗

2
= 1088.5.
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k = 1000
n = 10 000
d = 5

Figure 10.1.2.

Test of

extremes.

Consistent with expectations, most of the tests were not failed. The number of v > v∗
2

failures was three and there were five v < v∗
1
failures as well. These results are further

evidence of the goodness of the generator. Indeed, because of its multi-variate character,
the test of extremes (with d > 1) is statistically stronger than the test of uniformity and
so these results are more confidence inspiring than are those in Example 10.1.1.

Runs-Up Test of Independence

The next empirical test we will consider is the runs-up test of independence. Although
the underlying theory is simple, the test is considered to be relatively powerful, particularly
when applied to Lehmer generators with poorly chosen multipliers.

Definition 10.1.3 Let u0, u1, u2, . . . be a sequence of numbers produced by repeated
calls to a random number generator. A run-up of length x is a subsequence of length x

with the property that each term in the subsequence is greater than its predecessor. By
convention, each run-up is extended to its largest possible length and then, to make each
run length independent, the next element is “thrown away” before beginning to compute
the length of the next run-up. For example, the sequence of numbers

0.21, 0.39, 0.47, 0.12, 0.87, 0.21, 0.31, 0.38, 0.92, 0.93, 0.57, . . .

consists of a run-up of length 3, followed by a run-up of length 1, followed by a run-up of
length 4, etc. The “thrown away” points are underlined.
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The following theorem provides theoretical support for the runs-up test of indepen-
dence. The proof of this theorem is left as an exercise.

Theorem 10.1.2 If U0, U1, U2, . . . is an iid sequence of Uniform(0, 1) random variables
then, beginning with U0, the probability of a run-up of length x is

p[x] =
x

(x+ 1)!
x = 1, 2, . . .

The corresponding probability of a run-up of length k or greater is

∞
∑

x=k

p[x] =
1

k!
.

Algorithm 10.1.3 This algorithm uses repeated calls to Random to tally n runs-up into
a k-bin histogram of runs of length x = 1, 2, . . . , k.*

for (x = 1; x <= k; x++)

o[x] = 0;

for (i = 0; i < n; i++) {

x = 1;

u = Random();

t = Random();

while (t > u) {

x++;

u = t;

t = Random();

}

if (x > k)

x = k;

o[x]++;

}

Based on the probabilities in Theorem 10.1.2, the appropriate chi-square statistic in this
case is

v =
k
∑

x=1

(

o[x]− np[x]
)2

np[x]

with e[x] = np[x] for all x. The test statistic v is (approximately) a Chisquare(k − 1)
random variate, and the critical values of v are

v∗
1
= idfChisquare(k − 1, α/2) and v∗

2
= idfChisquare(k − 1, 1− α/2).

* Note that o[0] is not used and that o[k] counts runs of length k or greater.
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A run-up of length x > 6 is so unlikely that it is conventional to choose k = 6
and consolidate all runs-up of length 6 or greater, as in Algorithm 10.1.3. The resulting
probabilities are shown below.

x : 1 2 3 4 5 6 or greater
p[x] : 1/2 1/3 1/8 1/30 1/144 1/720

For n runs-up the expected number of runs-up of length x is np[x]. Consistent with this,
if k = 6 then n = 7200 runs-up are required to raise np[6] to 10.

The Runs-Up Test of Independence is based on Algorithm 10.1.3 with n ≥ 7200 and
k = 6. To apply this test, do the following.

• Use Algorithm 10.1.3 to calculate a k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1 − α for a legitimate

random number generator).

Example 10.1.3 As in Examples 10.1.1 and 10.1.2 (with initial rngs seed 12345 and
k = 6), the results of 256 runs-up tests are plotted in Figure 10.1.3. For each test, the
number of runs-up was n = 7200. The critical values are v∗

1
= 0.83 and v∗

2
= 12.83.
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Figure 10.1.3.

Runs-up

test of

independence.

There were ten v < v∗
1
failures and thirteen v > v∗

2
failures, including the one failure

indicated with a ↑ that was a spectacular off-scale v = 26.3 for stream number 58. This
total of 23 failures is uncomfortably larger than expected indicating possible problems with
these particular portions of the generator.
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Use of the chi-square statistic

v =
k
∑

x=1

(

o[x]− np[x]
)2

np[x]

in the runs-up test of independence is questionable for two (related) reasons.

• The expected number of observations per histogram bin is dramatically non-uniform.
Because the expected number of long runs is so small, the division by np[x] causes
the natural sample variation associated with long run lengths to have a much larger
impact (bias) on v than does the natural sample variation associated with short run
lengths. For the runs-up test this bias is undesirable but inevitable. The effect of the
bias can be minimized only at the expense of using a large value of n.

• For this test, the chi-square statistic is only approximately a Chisquare(k−1) random
variate. The approximation becomes better as the expected number of observations
per histogram bin is increased. This is particularly true because the number of bins
(k = 6) is so small.

Example 10.1.4 The tests illustrated in Figure 10.1.3 were repeated with n doubled
to n = 14 400. This doubles the expected number of observations in each histogram bin.
The same initial rngs seed (12345) was used as before and so the net effect was to add an
additional 7200 observations to those generated previously.
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Figure 10.1.4.

Runs-up

test of

independence.

In this case, consistent with expectations, the number of v > v∗
2
failures was seven and

there were also seven v < v∗
1
failures. Our confidence in the goodness of the rngs generator

is restored.
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Three additional empirical tests of randomness will now be presented, the first of
which is quite similar to the runs-up test. We will then consider the statistical question of
how to use each of these six tests to answer the question, “Is the random number generator
good?”.

Gap Test of Independence

The gap test is defined by two real-valued parameters a, b chosen so that 0 ≤ a < b ≤ 1.
These two parameters define a subinterval (a, b) ⊂ (0, 1) with length δ = b− a.

Given an iid sequence U0, U1, U2, . . . of Uniform(0, 1) random variables, the term Ui

will be in the interval (a, b) with probability δ. If Ui ∈ (a, b) then a gap of length 0
occurs if Ui+1 ∈ (a, b). This occurs with probability f(0) = δ. If instead Ui+j /∈ (a, b) for
j = 1, 2, . . . , x and Ui+j ∈ (a, b) for j = x + 1 then a gap of length x has occurred. This
occurs with probability f(x) = δ(1− δ)x. If X is the discrete random variable that counts
gap lengths, it follows that X is Geometric(1− δ). (See Section 6.4.3.)

Because X is Geometric(1− δ), the expected gap length is E[X] = (1− δ)/δ. Similar
to the runs-up test it is conventional to pick a positive integer k (which depends on δ) and
consolidate all gaps of length k − 1 or greater. This consolidation occurs with probability

Pr(X ≥ k − 1) = δ(1− δ)k−1
(

1 + (1− δ) + (1− δ)2 + · · ·
)

=
δ(1− δ)k−1

1− (1− δ)
= (1− δ)k−1.

Algorithm 10.1.4 Given two real-valued parameters a, b with 0.0 ≤ a < b < 1.0, this
algorithm uses repeated calls to Random to tally n gaps into a k-bin histogram corresponding
to gaps of length x = 0, 1, 2, . . . , k − 1 as follows.

for (x = 0; x < k; x++)

o[x] = 0;

for (i = 0; i < n; i++) {

x = 0;

u = Random();

while (u /∈ (a, b)) {

x++;

u = Random();

}

if (x > k - 1)

x = k - 1;

o[x]++;

}

Similar to the runs-up algorithm, o[k − 1] counts gaps of length k − 1 or greater.
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Because the gap length is a Geometric(1− δ) random variate, if a total of n gaps are
generated then the expected number of gaps of length x is

e[x] =

{

nδ(1− δ)x x = 0, 1, 2, . . . , k − 2
n(1− δ)k−1 x = k − 1.

The smallest value of e[x] occurs when x = k−2. Therefore, to make this expected number
of gaps (and all others) be at least 10 it is necessary to choose k so that

e[k − 2] = nδ(1− δ)k−2 ≥ 10.

Solving for k yields the inequality

k ≤ 2 +

⌊

ln(10/nδ)

ln(1− δ)

⌋

.

Typically δ = b − a is small, resulting in a relatively large value for k. For example, if
n = 10 000 and δ = 0.05 then k ≤ 78.*

The chi-square statistic corresponding to the gap test of independence is

v =
k−1
∑

x=0

(

o[x]− e[x]
)2

e[x]

and v is (approximately) a Chisquare(k − 1) random variate. The critical values of v are

v∗
1
= idfChisquare(k − 1, α/2) and v∗

2
= idfChisquare(k − 1, 1− α/2).

The Gap Test Of Independence is based on Algorithm 10.1.4. To apply this test, pick
n ≥ 10 000, 0 ≤ a < b ≤ 1, and k ≤ 2+ bln(10/nδ)/ ln(1− δ)c with δ = b− a. Then do the
following.

• Use Algorithm 10.1.4 to calculate the k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1 − α for a legitimate

random number generator).

* The a, b parameters are usually chosen so that the subinterval (a, b) lies at one end of
the (0, 1) interval or the other. The reason for this is that when the inverse transformation
method is used to generate random variates, points near the ends of the (0, 1) interval are
mapped to the tails of the variates’s distribution. Because extreme points tend to have low
probability but high “impact” in a discrete-event simulation, it is considered particularly
important to test that points in the tail of the distribution are generated correctly.
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As for the three empirical tests considered previously, the library rngs can be used to
generate the data for 256 gap tests and a figure similar to Figures 10.1.1, 10.1.2, 10.1.3,
and 10.1.4 can be created. Doing so is left as an exercise. Similarly, the construction of a
corresponding figure for the following empirical test of randomness is left as an exercise.

Test of Bivariate Uniformity

The test of uniformity can be extended to pairs of points. That is, pairs of randomly
generated points can be tallied into a two-dimensional k × k-bin histogram using the
following algorithm.

Algorithm 10.1.5 This algorithm uses the results of n pairs of calls to Random to tally
a two-dimensional k × k-bin histogram as follows.

for (x1 = 0; x1 < k; x1++)

for (x2 = 0; x2 < k; x2++)

o[x1, x2] = 0;

for (i = 0; i < n; i++) {

u1 = Random();

x1 = b u1 * k c;

u2 = Random();

x2 = b u2 * k c;

o[x1, x2]++;

}

The expected number of counts per bin is e[x1, x2] = n/k2 and so the appropriate
chi-square statistic is

v =
k−1
∑

x1=0

k−1
∑

x2=0

(

o[x1, x2]− n/k2
)2

n/k2
.

The underlying theory is that the test statistic v is a Chisquare(k2 − 1) random variate.
Therefore, the critical values of v are

v∗
1
= idfChisquare(k2 − 1, α/2) and v∗

2
= idfChisquare(k2 − 1, 1− α/2).

The Test Of Bivariate Uniformity is based on Algorithm 10.1.5. To apply this test,
pick k ≥ 100, n ≥ 10k2 and then do the following.

• Use Algorithm 10.1.5 to calculate a k × k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1 − α for a legitimate

random number generator).
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The test of bivariate uniformity can be extended in an obvious way to triples, quadru-
ples, etc. Doing so with meaningful values of k and n, however, results in a requirement
for a large d-dimensional array (with kd elements) and an enormous number of u’s. For
example, even if d is only 2 and if k = 100, then the bivariate histogram is a 100 × 100
array and at least n = 2 · 10 · 1002 = 200, 000 calls to Random are required each time the
test is applied. Of course, smaller values of k can be used but the resulting histogram bin
grid will be too coarse, resulting in a test that has little power to find bad random number
generators.

Permutation Test of Independence

The permutation test of independence makes use of the following result, which Knuth
(1998) calls the “factorial number system.” Let t be a positive integer and consider the
set of t! integers between 0 and t!− 1. For any such integer x there is an associated unique
set of t− 1 integer coefficients c1, c2, . . ., ct−1 with 0 ≤ cj ≤ j such that

x = ct−1(t− 1)! + · · ·+ c22! + c11!

For example, if t = 5 then t! = 120 and for the following integers between 0 and 119 we
have

33 = 1 · 4! + 1 · 3! + 1 · 2! + 1 · 1!

47 = 1 · 4! + 3 · 3! + 2 · 2! + 1 · 1!

48 = 2 · 4! + 0 · 3! + 0 · 2! + 0 · 1!

119 = 4 · 4! + 3 · 3! + 2 · 2! + 1 · 1!

Given an iid sequence U0, U1, . . ., Ut−1, Knuth cleverly uses the factorial number
system to associate an integer x between 0 and t! − 1 uniquely with the sequence, as
follows.

• Let 0 ≤ ct−1 ≤ t− 1 be the index of the largest element of the sequence. Remove this
largest element to form a new sequence with t− 1 terms.

• Let 0 ≤ ct−2 ≤ t− 2 be the index of the largest element of the new sequence. Remove
this largest element to form a new sequence with t− 2 terms.

• Repeat until all the coefficients ct−1, ct−2, . . ., c1 are determined (and the resulting
sequence has just one term), then “encode” the original sequence with the integer

x = ct−1(t− 1)! + · · ·+ c22! + c11!

For the purposes of describing an algorithm for implementing the permutation test of
independence, we refer to x as a “permutation index.”

The corresponding theory behind the permutation test of independence is that the
original sequence can have t! equally likely possible relative orderings (permutations). Ac-
cordingly, the permutation index x is equally likely to have any value between 0 and t!−1.
That is, each possible values of x has probability 1/t!.



452 10. Projects

Algorithm 10.1.6 To implement the permutation test of independence group (batch)
Random’s output t terms at a time, calculate a permutation index x for each batch, and
then tally all the indices so generated into a histogram with k = t! bins as follows.

for (x = 0; x < k; x++)

o[x] = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < t; j++) /* build the permutation array */

u[j] = Random();

r = t - 1;

x = 0;

while (r > 0) {

s = 0;

for (j = 1; j <= r; j++) /* max of u[0], u[1], ..., u[r] */

if (u[j] > u[s])

s = j;

x = (r + 1) * x + s;

temp = u[s]; /* swap u[s] and u[r] */

u[s] = u[r];

u[r] = temp;

r--;

}

o[x]++;

}

The expected number of counts per bin is e[x] = n/k and so the appropriate chi-square
statistic is

v =
k−1
∑

x=0

(

o[x]− n/k
)2

n/k
.

The test statistic v is a Chisquare(k − 1) random variate. Therefore, the critical values of
v are v∗

1
= idfChisquare(k − 1, α/2) and v∗

2
= idfChisquare(k − 1, 1− α/2).

The Permutation Test of Independence is based on Algorithm 10.1.6. To apply this
test, pick t > 3, k = t!, n ≥ 10k, and then do the following.

• Use Algorithm 10.1.6 to calculate a k-bin histogram.

• Calculate the chi-square statistic v.

• Pick a (1− α)× 100% level of confidence (typically α = 0.05).

• Determine the critical values v∗
1
and v∗

2
.

If v < v∗
1
or v > v∗

2
the test failed (this occurs with probability 1 − α for a legitimate

random number generator).
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Summary

We have now introduced six empirical tests of randomness — how do we use them?

• If the generator to be tested is truly awful (some are) then it may be sufficient to use
just one test, for example the runs-up test of independence, a few times with α = 0.05
and check to see if failures are consistently produced. If so, repeat with one or two
other tests and if failures again occur consistently, the generator should be discarded.

• If the generator to be tested is better than truly awful, but still not good, then
proving (in a statistical sense) that it isn’t good may require a lot of testing and
some relatively careful analysis of the results. The recommended way to conduct this
analysis is with the Kolmogorov–Smirnov statistic, introduced in the next subsection.
Unfortunately, if the generator to be tested isn’t good there is no guarantee that any
of the six empirical tests presented will detect the generator’s deficiency, no matter
how sophisticated the analysis of the test results. If the generator isn’t good then
(by definition) there is some empirical test that will reveal the deficiency. There are,
however, no simple rules for finding this silver bullet test.

• If the generator to be tested is good then it should fail any of these tests approximately
α × 100% of the time. In this case, it is relatively meaningless to select just one test
and apply it a few times. If in 10 tests you observe 0, 1 or even 2 failures, what have
you really learned? Extensive testing is required to conclude that a generator is good.

10.1.2 KOLMOGOROV–SMIRNOV ANALYSIS

The Kolmogorov–Smirnov test statistic measures the largest vertical distance between
an empirical cdf calculated from a data set and a hypothesized cdf. Although the focus
in this section has been on testing random numbers for uniformity, the KS statistic can
be applied to distributions other than the Uniform(0, 1) distribution, as indicated by the
general definition given below.

Definition 10.1.4 Let X1, X2, . . ., Xn be an iid sequence of continuous random vari-
ables with a common set of possible values X drawn from a population with theoretical

(or hypothesized) cdf F (x). For x, define the associated empirical cdf as

Fn(x) =
the number of Xi’s that are ≤ x

n
.

The Kolmogorov–Smirnov (KS) statistic is

Dn = sup
x

|F (x)− Fn(x)|

where the sup* is taken over all x.

* sup is an abbreviation for suprememum, which plays an analogous role to maximum.
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Example 10.1.5 We compute the KS test statistic D6 for the first six random numbers
produced by library rngs with an initial seed of 12345 and stream 0. The first n = 6
random numbers, shown to d.ddd precision, are:

0.277 0.726 0.698 0.941 0.413 0.720.

The first step in determining the empirical cdf is to sort the data values, yielding:

0.277 0.413 0.698 0.720 0.726 0.941.

A plot of the empirical cdf (which takes an upward step of height 1/6 at each data value)
and the theoretical cdf [the cdf of a Uniform(0, 1) random variable] are plotted in Fig-
ure 10.1.5.
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Figure 10.1.5.

Empirical

and theoretical

cdfs.

Where does the largest vertical distance between F (x) and F6(x) occur? It occurs just
to the left (this is why sup, rather than max, is used in the definition of Dn) of 0.720.
For this particular data set, D6

∼= 0.720− 2/6 ∼= 0.387. Large values of Dn indicate poor
agreement between the theoretical cdf F (x) and the empirical cdf F6(x).

As illustrated in Figure 10.1.5, because F (·) is continuous monotone increasing func-
tion and Fn(·) is monotone increasing in a piecewise constant fashion, the largest difference
between F (x) and Fn(x) must occur at one of the data values. This means that a compu-

tational formula for determining the value of Dn is

Dn = max
i=1,2,...,n

{∣

∣

∣

∣

F (xi)−
i

n

∣

∣

∣

∣

,

∣

∣

∣

∣

F (xi)−
i− 1

n

∣

∣

∣

∣

}

.

Therefore, Dn can be determined by a simple linear search over the 2n values given in the
computational formula.

The next question that must be addressed is how large Dn must be for the KS test to
fail. This will require the distribution of Dn.
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The Distribution of Dn

Remarkably, it is known that the random variable (statistic) Dn depends only on
n (Ross, 2002b, page 203). That is, for a fixed value of n, the shape of Dn’s pdf (and
associated cdf) is independent of F (·). For this reason, the KS statistic is said to be distri-

bution free. Recall that we saw an analogous result back in Chapter 8.1; the Central Limit
Theorem guarantees that for large sample sizes the sample mean is Normal, independent
of the shape of the “parent” distribution. Unlike the Central Limit Theorem, which is an
asymptotic (large sample size) result, the distribution free characteristic of the KS statistic
is an exact result for all values of n ≥ 1.*

For small to moderate values of n, Drew, Glen, and Leemis (2000) devised an algorithm
that returns the cdf of Dn, which consists of nth order polynomials defined in a piecewise
fashion. A “perfect fit” occurs when F (x) intersects each riser of the stairstep function
Fn(x) at its midpoint, resulting Dn value of 1/(2n). We illustrate the results of the
algorithm for n = 6 in the next example.

Example 10.1.6 The cdf associated with D6 is given by sixth order polynomials defined
in a piecewise fashion:

FD6
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This cdf is plotted in Figure 10.1.6, along with two important points highlighted. The
first value corresponds to the KS test statistic from the last example: (0.387, 0.743), which
indicates that although the test statistic from the previous example seemed rather large,
it was only at the 74th percentile of the distribution of D6. The second value highlighted
is (0.519, 0.950), which corresponds to the D6 value associated with the 95th percentile of
the distribution. Thus a KS test with a sample size of n = 6 at significance level α = 0.05
fails when the test statistic D6 exceeds the critical value d

∗
6
= 0.519 (which will occur 5%

of the time for a valid random number generator).

* One other advantage that the KS test statistic possesses over the chi-square statistics
is that it requires no binning from the modeler. All of the chi-square tests discussed thus
far calculated a k-bin histogram (or a k× k bin in the test of bivariate uniformity), where
k was determined arbitrarily. There is no such arbitrary parameter in the case of the KS
statistic.
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Cumulative

distribution

function of

D6.

For larger values of n, approximations have been developed in order to approximate
particular critical values of the distribution of Dn. The following theorem describes an
approximation developed by Stephens (1974).

Theorem 10.1.3 If Dn is a KS random variable (statistic) and if Pr(Dn ≤ d∗n) = 1− α

then the (one-tailed) critical value d∗n is given by

d∗n =
c1−α

√
n+ 0.12 + 0.11/

√
n

where, for selected values of α, the constant c1−α is

α : 0.100 0.050 0.025 0.010
c1−α : 1.224 1.358 1.480 1.628

Example 10.1.7 If n = 6 and α = 0.05 then

d∗
6
=

1.358
√
6 + 0.12 + 0.11/

√
6
∼= 0.519,

which is identical to the exact value from the previous example. Therefore

Pr(D6 ≤ 0.519) = 0.95.

Example 10.1.8 If n = 256 and α = 0.05 then

d∗
256
=

1.358

16 + 0.12 + 0.007
∼= 0.084.

Therefore
Pr(D256 ≤ 0.084) = 0.95

and so the probability that a single realization of the KS random variable D256 will be less
than 0.084 is 0.95. We fail the KS test when our computed test statistic D256 exceeds the
critical value d∗

256
= 0.084.
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Example 10.1.8 suggests how to combine n = 256 empirical chi-square test statistics
(the x’s from the first part of this section) into one KS statistic d256 and, depending on
whether the KS statistic is less than 0.084 or greater, with 95% confidence conclude that
the source of the empirical test statistics — the random number generator in question —
is random or not. This can be done independently for each empirical test. The details
follow.

Let x1, x2, . . ., xn be a random variate sample that is assumed to be Chisquare(k−1)
for an appropriate value of k.* Let dn be the associated sample statistic defined by

dn = sup
x

|F (x)− Fn(x)|

where F (x) is the Chisquare(k − 1) cdf, the max is over all x ∈ X , and

Fn(x) =
the number of xi’s that are ≤ x

n
.

That is, dn is a realization of the KS random variable Dn.

Example 10.1.9 The 256 runs-up test chi-square statistics illustrated in Figure 10.1.4
were sorted and used to generate F256(x). A portion of this empirical cdf is illustrated
(as the piecewise-constant curve) along with the associated theoretical cdf F (x) in Fig-
ure 10.1.5.
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Empirical and

theoretical

chi-square cdf.

As indicated, in this case the hypothesis is that the chi-square statistics are samples of a
Chisquare(5) random variable. The empirical cdf and hypothesized theoretical cdf fit well.
For reference, the •’s indicate the value of F (xi) for i = 1, 2, . . . , 13.

* For example, for the test of uniformity k− 1 is one less than the number of histogram
bins.
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Example 10.1.10 For the n = 256 chi-square statistics in Example 10.1.4, the computed
KS statistic was d256 = 0.044, which is a value comfortably less than d∗

256
= 0.084. This is

strong evidence that the runs-up test of independence has detected no deficiencies in the
rngs generator. Similarly, for the chi-square statistics in Examples 10.1.1 and 10.1.2, the
computed KS statistic was 0.035 and 0.047 respectively; this is strong evidence that the
test of uniformity and test of extremes also detected no deficiencies in the rngs generator.*

Most specialists consider the best random number generator empirical testing strategy
to consist of multiple applications (n = 100 or more) of multiple chi-square tests (at least
five) using the KS statistic with a 95% (or 99%) level of confidence as the ultimate empirical
test for randomness. Most of these specialists also have unrestricted access to computers,
hardworking graduate students, and much patience.

This section has contained a brief overview of random number testing. We recommend
Law and Kelton (2000, pages 417–427), Banks, Carson, Nelson, and Nicol (2001, pages
264–284), and Fishman (2001, Chapter 9) for alternate, introductory treatments of the
topic.

10.1.3 EXERCISES

Exercise 10.1.1 (a) Implement the test of uniformity (with α = 0.05) and apply it to
each of the 256 streams of random numbers supplied by rngs. Use any nine-digit number
as initial seed for the generator. (b) For how many streams did the test fail? (c) Comment.

Exercise 10.1.2 Same procedure as in the previous exercise except using the test of
extremes with d = 5.

Exercise 10.1.3 (a) Prove that if U0, U1, . . ., Ud−1 is an iid sequence of d Uniform(0, 1)
random variables and if

S = min{U0, U1, . . . , Ud−1}

then (1− S)d is a Uniform(0, 1) random variable. (b) Use this result to modify the test of
extremes accordingly and then repeat Exercise 10.1.2.

Exercise 10.1.4 (a) Prove Theorem 10.1.2. Hint: first prove that the probability a
run-up will be longer than x is 1/(x + 1)!. (b) What is the expected number of calls to
Random to produce n runs?

* For the chi-square statistics in Example 10.1.3 the KS statistic was 0.056. Therefore,
even though the number of test failures in this example was unexpectedly high, when
all 256 tests results are viewed in the aggregate, there is no significant evidence of non-
randomness.
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Exercise 10.1.5 (a) Repeat the procedure in Exercise 10.1.1 using the runs-up test of
independence. (b) How would you turn this test into a runs-down test?

Exercise 10.1.6 Relative to the equation in Definition 10.1.2, if n is the number of
observations prove that an equivalent equation for v is

v =
∑

x

(

o2[x]

e[x]

)

− n.

Exercise 10.1.7 (a) Implement the gap test of independence, generate 256 chi-square
statistics and compute the corresponding KS statistic. (b) Comment.

Exercise 10.1.8 Repeat the previous exercise for the bivariate test of uniformity.

Exercise 10.1.9 Relative to the gap test of independence, what is the expected number
of call to Random to produce n gaps?

Exercise 10.1.10 Is the runs-up test of independence valid if the iid samples are drawn
from another continuous distribution? Experiment with draws from an Exponential(1)
distribution.

Exercise 10.1.11 Repeat Exercise 10.1.7 for the permutation test of independence.

Exercise 10.1.12 Repeat Exercise 10.1.10 for the permutation test of independence.

Exercise 10.1.13 (a) Explain why one random number is skipped between runs in the
runs-up test of independence. (b) If the random number between runs is not skipped, do
you expect the value of the test statistic v to increase or decrease? Explain your reasoning.

Exercise 10.1.14 What is the set of possible values X for the KS random variable Dn

corresponding to sample size n?

Exercise 10.1.15a What is the distribution of D2, the KS statistic in the case of a
sample size of n = 2?

Exercise 10.1.16a If 256 goodness-of-fit tests are conducted with a 95% level of confi-
dence, then one expects 256 · 0.05 ∼= 13 failures. How far away from 13 failures (high and
low) would arouse suspicions concerning an empirical test of randomness?
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The goal of this section is to introduce a particular type of stochastic process known
as a birth-death process. Because the time evolution of such a process is usually defined in
terms of an Exponential random variable, we begin with a brief review of the characteristics
of this random variable from Section 7.4.2, with the cosmetic change of X replaced by T

in order to emphasize the time dependence.

10.2.1 EXPONENTIAL RANDOM VARIABLES

Definition 10.2.1 If the random variable T is Exponential(µ) then

• the real-valued scale parameter µ satisfies µ > 0

• the possible values of T are T = {t | t > 0}

• the pdf of T is

f(t) =
1

µ
exp(−t/µ) t > 0

• the cdf of T is

F (t) = Pr(T ≤ t) = 1− exp(−t/µ) t > 0

• the idf of T is
F−1(u) = −µ ln(1− u) 0 < u < 1

• the mean and standard deviation of T are both µ.

In reliability analysis, if the random variable T represents the lifetime or failure time

of a process — the elapsed time between the initialization of a process and its time of
(first) failure — then it is common to assume that T is Exponential(µ). In this application
the parameter µ represents the expected lifetime and the probability that the lifetime will
exceed some threshold value t is Pr(T > t) = 1− Pr(T ≤ t) = exp(−t/µ).*

Example 10.2.1 If the lifetime T of a process (in seconds) is Exponential(100) then its
expected lifetime is 100 seconds and, for example, the probability that this process will
last more that 120 seconds is Pr(T > 120) = exp(−120/100) ∼= 0.30, as illustrated in
Figure 10.2.1.
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Exponential(100)
pdf.

* S(t) = Pr(T > t) is known as the “survivor function” in reliability analysis.
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Exponential Random Variables Are Memoryless

Theorem 10.2.1 If T is Exponential(µ) then T has the lack of memory property. That
is, for any τ > 0 and t > 0

Pr(T > t+ τ | T > τ) = Pr(T > t) = exp(−t/µ).

Proof As a consequence of the definition of conditional probability,

Pr(T > t+ τ | T > τ) =
Pr
(

(T > t+ τ) and (T > τ)
)

Pr(T > τ)

=
Pr(T > t+ τ)

Pr(T > τ)

=
exp

(

− (t+ τ)/µ
)

exp(−τ/µ)

= exp(−t/µ)

= Pr(T > t).

To paraphrase Theorem 10.2.1, Pr(T > t + τ | T > τ) is independent of τ for all
τ > 0. That is, T has no memory of its past. Equivalently, T is said to be Markovian —
the future stochastic behavior of T is determined uniquely by its current state. In most
respects, people are decidedly non-Markovian; we remember our past and that memory
dictates, in part, our future behavior. To a surprising extent, however, many common
natural stochastic processes are Markovian.

Example 10.2.2 As a continuation of Example 10.2.1, if the lifetime T of a process (in
seconds) is Exponential(100) and if, for example, t = 120, τ = 200 then

Pr(T > 120 + 200 | T > 200) = Pr(T > 120) ∼= 0.30.

Therefore, this process is just as likely to survive for at least 120 more seconds when it has
survived 200 seconds as it was to survive for at least 120 seconds when it was new.

It can be shown that the Exponential random variable is the only continuous random
variable with the lack of memory property. Indeed, the memoryless property can be viewed
as the defining characteristic of this random variable. That is, it can be proven that if T
is a positive continuous random variable with mean µ = E[T ] and if

Pr(T > t+ τ | T > τ) = Pr(T > t)

for all t > 0, τ > 0 then T is Exponential(µ). The proof is left as an exercise.*

* In the discrete case, a similar result applies to a Geometric(p) random variable.
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The theory we have covered so far is a review of previous material. The following
important theorem is new. The proof is deferred until later in the section.

Theorem 10.2.2 If T1, T2, . . ., Tn are independent Exponential(µi) random variables
(the µi may be different) and if T is the smallest of these, i.e.,

T = min{T1, T2, . . . , Tn},

then T is Exponential(µ) where

1

µ
=
1

µ1

+
1

µ2

+ · · ·+
1

µn

.

In addition, the probability that Ti is the smallest of T1, T2, . . ., Tn is

Pr(T = Ti) =
µ

µi

i = 1, 2, . . . , n.

Example 10.2.3 Suppose that T1 and T2 are independent Exponential random variables
with means µ1 = 2 and µ2 = 4 respectively. Then µ = 4/3 and the random variable
T = min{T1, T2} is Exponential(4/3). Moreover,

Pr(T = T1) =
2

3
and Pr(T = T2) =

1

3
.

If you were to generate many (t1, t2) samples of (T1, T2) then t1 would be smaller than t2
approximately 2/3 of the time. Moreover, a histogram of t = min{t1, t2} would converge
to the pdf of an Exponential(4/3) random variable for a large number of replications.

Example 10.2.4 A computer uses 16 RAM chips, indexed i = 1, 2, . . . , 16. If these chips
fail independently (by natural aging rather than, say, because of a power surge) what is
the expected time of the first failure?

• If each chip has an lifetime Ti (in hours) that is Exponential(10000), then the first
failure is determined by T = min{T1, T2, . . . , T16} which is an Exponential(µ) random
variable with µ = 10000/16. Therefore, the expected time of the first failure is
E[T ] = 10000/16 = 625 hours.

• If instead one of the 16 chips has a lifetime that is Exponential(1000) then E[T ] is

1

µ
=

15

10000
+

1

1000
=

25

10000
=

1

400

and so the expected time of the first failure is 400 hours. Moreover, when the first
failure occurs, the probability that it will be caused by the Exponential(1000) chip is
400/1000 = 0.4.

Example 10.2.5 As a continuation of the previous example, suppose there are 17 iden-
tical Exponential(10000) RAM chips, including one spare. If the spare is installed as a
replacement at the time of the first failure, then because of the memoryless property, the
15 old chips are statistically identical to the one new chip. Therefore, the expected time
to the next failure is also 625 hours.
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Proof of Theorem 10.2.2

To prove the first result in Theorem 10.2.2, let T = min{T1, T2, . . . , Tn}, where T1,
T2, . . ., Tn are independent Exponential(µi) random variables. For any t > 0, the cdf of T
is

F (t) = Pr(T ≤ t)

= 1− Pr(T > t)

= 1− Pr
(

(T1 > t) and (T2 > t) and . . . and (Tn > t)
)

= 1− Pr(T1 > t) Pr(T2 > t) . . .Pr(Tn > t)

= 1− exp(−t/µ1) exp(−t/µ2) . . . exp(−t/µn)

= 1− exp(−t/µ),

where
1

µ
=
1

µ1

+
1

µ2

+ · · ·+
1

µn

.

This proves that T is Exponential(µ).

To prove the second part of Theorem 10.2.2, let T ′ = min{T2, T3, . . . , Tn}. From the
previous result, T ′ is Exponential(µ′) where

1

µ′
=
1

µ2

+
1

µ3

+ · · ·+
1

µn

.

Moreover, T1 and T ′ are independent. Now recognize that T1 = T if and only if T1 ≤ T ′

and that by conditioning on the possible values of T ′

Pr(T1 = T ) = Pr(T1 ≤ T ′) =

∫ ∞

0

Pr(T1 ≤ t′)f(t′) dt′

where

f(t′) =
1

µ′
exp(−t′/µ′) t′ > 0

is the pdf of T ′ and Pr(T1 ≤ t′) = 1− exp(−t′/µ1) is the cdf of T1. Therefore

Pr(T1 = T ) =
1

µ′

∫ ∞

0

(

1− exp(−t′/µ1)
)

exp(−t′/µ′) dt′

...

= 1−
µ

µ′
= µ

(

1

µ
−
1

µ′

)

=
µ

µ1

.

This proves that Pr(Ti = T ) = µ/µi for i = 1. Because the argument is equally valid for
any i, the second part of Theorem 10.2.2 is proven.
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Theorem 10.2.2 has an equivalent formulation expressed in terms of rates λi = 1/µi

rather than expected times µi. The rate formulation is more intuitive and, for that reason,
more easily remembered.

Theorem 10.2.3 If T1, T2, . . ., Tn is an independent set of Exponential(1/λi) random
variables (all the λi may be different) and if T is the smallest of these, i.e.

T = min{T1, T2, . . . , Tn}

then T is Exponential(1/λ) where

λ = λ1 + λ2 + · · ·+ λn.

In addition, the probability that Ti is the smallest of T1, T2, . . ., Tn is

Pr(Ti = T ) =
λi

λ
i = 1, 2, . . . , n.

Example 10.2.6 Consider n independent streams of Poisson arrivals, with arrival rates
λ1, λ2, . . . , λn respectively, that merge to form a single stream, as illustrated in Fig-
ure 10.2.2.

λ1

λ2

•

•

•

λn

..........................................................................................................................................................................
.........

........

........
.......
.......
....

..........................................................................................................................................
..............
.........

.........
........

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
................................

..........................
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Figure 10.2.2.

Merging n

independent

arrival streams.

From Theorem 10.2.3, the single stream is a Poisson arrival process with rate λ. Moreover,
the next arrival at the merge point will come from stream i with probability λi/λ.*

Example 10.2.7 Consider a multi-server service node with c independent servers all of
which are busy at time t. Assume that for s = 1, 2, . . . , c server s is Exponential(1/νs)
with service rate νs. From Theorem 10.2.3, the next departure from the service node will
be at t+ T where T is an Exponential(1/ν) random variable and

ν = ν1 + ν2 + · · ·+ νc

is the sum of the individual service rates. Moreover, this next departure will come from
server s with probability νs/ν.

* Similarly, if a single stream of Poisson arrivals with rate λ splits into n streams inde-
pendently with probability p1, p2, . . ., pn, then each of the streams so formed are Poisson
processes with rate piλ for i = 1, 2, . . . , n.
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10.2.2 CONTINUOUS-TIME BIRTH-DEATH PROCESSES

A birth-death processes is defined in terms of a discrete state-space X that may be
either finite or infinite. Without loss of generality, we assume throughout that if the
state-space is finite then

X = {0, 1, 2, . . . , k}

for some positive integer k, else if the state-space is infinite then

X = {0, 1, 2, . . .}.

Definition 10.2.2 Let X be a discrete random variable, indexed by time t as X(t), that
evolves in time as follows.

• At any time t > 0, X(t) ∈ X .

• If x ∈ X is the state of X at time t then X will remain in this state for a random
time T that is Exponential with mean µ(x).

• When a state transition occurs then, independent of the time spent in the current state,
the random variable X will either shift from its current state x to state x+1 ∈ X with
probability p(x) or shift from state x to state x− 1 ∈ X with probability 1− p(x).

The shift from state x to x+ 1 is called a birth, the shift from x to x− 1 is called a death.
The stochastic process defined by X(t) is called a continuous-time birth-death process.*

A continuous-time birth-death process is completely characterized by the initial state
X(0) ∈ X at t = 0 and the two functions µ(x) and p(x) defined for all x ∈ X so that

µ(x) > 0 and 0 ≤ p(x) ≤ 1

with the understanding that p(0) = 1 because a death cannot occur when X is in the state
x = 0. Moreover, if the state-space is finite then p(k) = 0 because a birth cannot occur
when X is in the state x = k.

Continuous-Time Birth-Death Processes Are Memoryless

It is important to recognize that because of the very special memoryless property
of the Exponential random variable, a birth-death process has no memory of its past —
this is the Markovian assumption. At any time, the future time evolution of X depends
only on the current state. The length of (past) time X has been in this state, or any
other state, is completely irrelevant in terms of predicting when the next (future) state
transition will occur and whether it will be a birth or a death. As we will see, for any
c ≥ 1 an M/M/c service node represents an important special case of a continuous-time
birth-death process with X(t) corresponding to the number in the node at time t and
births and deaths corresponding to arrivals and departures respectively.

* Discrete-time birth-death processes are considered later in this section.
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We can use the fact that the function Bernoulli(p) in the library rvgs will return
the value 1 or 0 with probability p and 1 − p respectively to simulate the time evolution
of a birth-death process with Algorithm 10.2.1. Each replication of this simulation will
generate one realization x(t) of the birth-death processX(t); repeated replication generates
an ensemble of realizations.

Algorithm 10.2.1 Given the state-space X , the initial state X(0) ∈ X , and the func-
tions µ(x), p(x) defined for all x ∈ X with µ(x) > 0 and 0 ≤ p(x) ≤ 1, this algorithm
simulates the time evolution of the associated continuous-time birth-death process for
0 < t < τ .

t = 0;

x = X(0);

while (t < τ) {

t += Exponential(µ(x));

x += 2 * Bernoulli(p(x)) - 1;

}

Birth Rates and Death Rates

Continuous-time birth-death processes are frequently characterized in terms of rates

λ(x) =
1

µ(x)
x ∈ X

rather than the corresponding expected times µ(x). The reason for this is that

b(x) = λ(x)p(x) and d(x) = λ(x)
(

1− p(x)
)

can then be thought of as birth and death rates respectively when X is in the state x. Note
that λ(x) = b(x) + d(x) is the rate at which the process will “flow” out of state x, to one
of the adjoining states, x+ 1 or x− 1.*

Because a birth-death process is stochastic, it is a mistake to think of b(x) and d(x) as
instantaneous birth and death rates. Instead they represent infinite-horizon rates. Over a
long period of time, b(x) and d(x) represent the average rate of flow from state x into the
states x+ 1 and x− 1 respectively. This flow analogy is particularly compelling when the
processes is represented by a directed graph, as illustrated in Figure 10.2.3.
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Figure 10.2.3.

Rate diagram

for a birth-death

process.

* If λ(x) = 0 then state x is said to be an absorbing state, a state from which the
birth-death process can’t escape.
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Example 10.2.8 An M/M/1 service node with infinite capacity, arrival rate λ, and
service rate ν defines an infinite-state continuous-time birth-death process. In this case
X(t) represents the number in the node at time t > 0 and the births and deaths correspond
to arrivals and departures respectively.

• If X(t) = 0 then the (idle) node will remain in this state until the next arrival.
Therefore, in this state only births are possible and they occur at the rate λ so that

p(0) = 1 and λ(0) = λ.

• If X(t) = x > 0 then the transition to the next state will occur at the rate

λ(x) = λ+ ν x = 1, 2, . . .

and it will be an arrival (birth) with probability

p(x) =
λ

λ+ ν
x = 1, 2, . . .

or a departure (death) with probability 1− p(x) = ν/(λ+ ν).

Therefore, the birth rate is

b(x) = λ(x)p(x) = λ x = 0, 1, 2, . . .

and the death rate is

d(x) = λ(x)− b(x) =

{

0 x = 0
ν x = 1, 2, . . .

The corresponding (infinite) directed graph representation is shown in Figure 10.2.4.
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Figure 10.2.4.

Rate diagram

for an M/M/1

service node.

Example 10.2.9 As a continuation of the previous example, the notation M/M/1/k
denotes an M/M/1 service node with finite capacity k. Note that k ≥ 1 is the maximum
possible number of jobs in the service node, not in the queue. In this case, the equations
in Example 10.2.8 must be modified slightly to reflect the fact that the state-space is
X = {0, 1, 2, . . . , k}. The associated (finite) directed graph representation is shown in
Figure 10.2.5.
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service node.
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10.2.3 STEADY-STATE CHARACTERIZATION

Definition 10.2.3 Let f(x, t) = Pr(X(t) = x) denote the probability (pdf) that a
continuous-time birth-death process X(t) is in the state x ∈ X at time t > 0. The steady-

state pdf (if it exists) is defined by

f(x) = lim
t→∞

f(x, t) x ∈ X .

Steady-State Flow Balance

As always, when dealing with probabilities it must be true that f(x) ≥ 0 for all x ∈ X

and
∑

x

f(x) = 1

where the sum is over all x ∈ X . Recall that when the birth-death process is in state x

the rate of flow into the states x+1 and x− 1 is b(x) and d(x) respectively. Because f(x)
represents the steady-state probability that the process is in state x, it follows that for
each x ∈ X :

• b(x)f(x) is the steady-state rate of flow from state x to state x+ 1;

• d(x)f(x) is the steady-state rate of flow from state x to state x− 1.

In steady-state the net rate of flow into state x must be balanced by the net rate of flow
out of this state, as illustrated in Figure 10.2.6.
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Figure 10.2.6.

Generic flow

diagram about

node x.

That is, for state x ∈ X , steady-state is characterized by the flow balance equation

(flow in) d(x+1)f(x+1)+ b(x−1)f(x−1) = b(x)f(x)+d(x)f(x) (flow out).

This equation is linear in the unknown steady-state probabilities. Moreover, there is one
equation for each x ∈ X and so the steady-state probabilities can be determined by solving
a (possibly infinite) system of linear equations.

Example 10.2.10 From Example 10.2.8, for an M/M/1 service node with infinite ca-
pacity the balance equations are

νf(1) = λf(0)

νf(x+ 1) + λf(x− 1) = (λ+ ν)f(x) x = 1, 2, . . .

Recognize that, except for cosmetic differences, these equations are identical to the steady-
state equations developed in Section 8.5.
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By looking at the steady-state rate of flow into and out of each state we can write the
flow balance equations as

flow in = flow out

d(1)f(1) = b(0)f(0) state 0

d(2)f(2) + b(0)f(0) = b(1)f(1) + d(1)f(1) state 1

d(3)f(3) + b(1)f(1) = b(2)f(2) + d(2)f(2) state 2

...

d(x+ 1)f(x+ 1) + b(x− 1)f(x− 1) = b(x)f(x) + d(x)f(x) state x

...

If the first x+1 flow balance equations are added and then like terms are canceled, it can
be shown that the resulting equation is

d(x+ 1)f(x+ 1) = b(x)f(x) x = 0, 1, 2, . . .

Note that, as illustrated in Figure 10.2.7, this last equation could have been written “by
inspection” if we had applied flow balance to the digraph arc connecting states x and x+1
rather than to the digraph node x.
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Figure 10.2.7.

Generic flow

diagram between

nodes x and x+ 1.

Steady-State Probabilities

As summarized by the following theorem, the equations

d(x+ 1)f(x+ 1) = b(x)f(x) x = 0, 1, 2, . . .

provides a recursive algorithm to solve for f(1), f(2), f(3), . . . in terms of f(0).

Theorem 10.2.4 For a continuous-time birth-death process with X = {0, 1, 2, . . . , k}
where k may be infinite, the steady-state probabilities (if they exist) can be calculated
recursively in terms of f(0) as

f(x+ 1) =
b(x)b(x− 1) . . . b(1)b(0)

d(x+ 1)d(x) . . . d(2)d(1)
f(0) x = 0, 1, 2, . . . , k − 1.

The remaining steady-state probability f(0) is determined by the equation
∑

x

f(x) = 1

where the sum is over all x ∈ X .
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Algorithm 10.2.2 Based on Theorem 10.2.4 with X = {0, 1, 2, . . . , k} where k may be
infinite, the following three-step algorithm computes the steady-state probabilities (if they
exist) for a continuous-time birth-death process.

• With f ′(0) = 1 define the un-normalized steady-state probabilities f ′(x) recursively
as

f ′(x+ 1) =
b(x)

d(x+ 1)
f ′(x) x = 0, 1, 2, . . . , k − 1.

• Sum over all possible states x ∈ X to calculate the normalizing constant

α =
∑

x

f ′(x) > 0.

• Compute the (normalized) steady-state probabilities as*

f(x) =
f ′(x)

α
x = 0, 1, 2, . . . , k.

Finite State Space

If the number of possible states is finite then Algorithm 10.2.2 is always valid provided
b(k) = 0 and d(x) 6= 0 for x = 1, 2, . . . , k where the finite state space is X = {0, 1, 2, . . . , k}.
That is, steady-state will always be achieved as t → ∞.

Example 10.2.11 As a continuation of Example 10.2.10, for an M/M/1/k service node
with capacity 1 ≤ k < ∞, we have (using l in place of x)

f ′(l + 1) = ρf ′(l) l = 0, 1, . . . , k − 1

where ρ = λ/ν. If follows that

f ′(l) = ρl l = 0, 1, 2, . . . , k

and

α =

k
∑

l=0

f ′(l) = 1 + ρ+ · · ·+ ρk =
1− ρk+1

1− ρ
(ρ 6= 1).

Therefore, the steady-state pdf for an M/M/1/k service node is

f(l) =

(

1− ρ

1− ρk+1

)

ρl l = 0, 1, 2, . . . , k.

provided ρ 6= 1. If ρ = 1 then f(l) = 1/(k + 1) for l = 0, 1, 2, . . . , k.

* Note that α = 1/f(0).
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The results in Example 10.2.11 are summarized by the following theorem. Note that
if ρ < 1 then ρk+1 → 0 as k → ∞. Therefore, as expected, if ρ < 1 then as the service
node capacity becomes infinite Theorem 10.2.5 reduces to Theorem 9.5.3

Theorem 10.2.5 For an M/M/1/k service node with ρ = λ/ν 6= 1, the steady-state
probability of l jobs in the service node is

f(l) =

(

1− ρ

1− ρk+1

)

ρl l = 0, 1, 2, . . . , k.

If ρ = 1 then f(l) = 1/(k + 1) for l = 0, 1, 2, . . . , k.

Example 10.2.12 As the equation in Theorem 10.2.5 indicates, steady-state can always

be achieved for an M/M/1/k service node, even if ρ = λ/ν > 1. The reason for this is
that if the service node capacity is finite then jobs will be rejected if they arrive to find
the service node full (holding k jobs).
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probabilities

for the

M/M/1/k

queue.

As illustrated in Figure 10.2.8 for k = 10, if ρ < 1 then f(l) is a monotone decreasing
function of l. When ρ = 1 all of the k+1 possibility service node states are equally likely.
For values of ρ > 1, f(l) increases monotonically with increasing l. The probability of
rejection is

f(k) =

(

1− ρ

1− ρk+1

)

ρk

and the probability of an idle service node is

f(0) =

(

1− ρ

1− ρk+1

)

.

As ρ increases, the probability of rejection increases and the probability of an idle service
node decreases.
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Steady-State Statistics

From the equation in Theorem 10.2.5, for an M/M/1/k service node with ρ 6= 1 the
steady-state expected number in the service node E[L] = lim

t→∞
l̄ is

E[L] =
k
∑

l=0

l f(l) =
k
∑

l=1

l f(l) =

(

1− ρ

1− ρk+1

)

(ρ+ 2ρ2 + · · ·+ kρk).

From the identity

ρ+ 2ρ2 + · · ·+ kρk = ρ
d

dρ

(

1 + ρ+ ρ2 + · · ·+ ρk
)

=
ρ(1− ρk+1)− (k + 1)ρk+1(1− ρ)

(1− ρ)2

which is valid for all ρ 6= 1, it follows that

E[L] =
ρ

1− ρ
−
(k + 1)ρk+1

1− ρk+1
.

If ρ = 1 then E[L] = k/2.

Similarly, the steady-state expected number in the queue E[Q] = lim
t→∞

q̄ is

E[Q] =

k
∑

l=1

(l − 1)f(l) =

k
∑

l=1

l f(l)−

k
∑

l=1

f(l) = · · · = E[L]− (1− f(0)).

Little’s equations can be used to determine the corresponding expected wait and delay. To
do so, note that because rejection occurs when the service node is full, the rate at which
jobs flow into the service node is (1− f(k))λ, not λ. Therefore, the steady-state expected
wait E[W ] = lim

t→∞
w̄ is

E[W ] =
E[L]

(1− f(k))λ

and the steady-state expected delay E[D] = lim
t→∞

d̄ is

E[D] =
E[Q]

(1− f(k))λ
.

In the three equations for E[Q], E[W ], and E[D] the probabilities f(0) and f(k) are given
in Example 10.2.12.

Infinite State Space

If the number of possible states for a continuous-time birth-death process is infinite

then, even if d(x) 6= 0 for all x, it is possible that the sum of un-normalized steady-state
probabilities may not converge — the parameter α may be infinite. In this case Algo-
rithm 10.2.2 will fail because the continuous-time birth-death process can never achieve
steady-state. It turns out that the condition α < ∞ is both a necessary and sufficient
condition for steady-state. As we will see, the α < ∞ condition is the continuous-time
birth-death process analog of the familiar ρ < 1 steady-state condition for infinite-capacity,
single-server and multi-server service nodes.
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Example 10.2.13 As a continuation of Examples 10.2.11 and 10.2.12, consider the
limiting case of anM/M/1/k service node with k =∞, i.e., a conventional infinite capacity
M/M/1 service node. In this case

α =

∞
∑

l=0

f ′(l) = 1 + ρ+ ρ2 + · · ·

and (since ρ > 0) this harmonic series converges if and only if ρ < 1. That is, if ρ < 1 then
this series converges to

α =
1

1− ρ

so that the steady-state probability of l jobs in an M/M/1 service node is

f(l) =
f ′(l)

α
= (1− ρ)ρl l = 0, 1, 2, . . .

That is, in steady-state the number of jobs in an M/M/1 service node is a Geometric(ρ)
random variable. This is Theorem 8.5.3.

Multi-Server Service Node

Let us now consider the more mathematically challenging case of an infinite-capacity
M/M/c service node with arrival rate λ and c identical servers, each with service rate ν.
In this case (using l in place of x) it can be shown that an M/M/c service node defines a
continuous-time birth-death process with

p(l) =















λ

λ+ lν
l = 0, 1, 2, . . . , c− 1

λ

λ+ cν
l = c, c+ 1, c+ 2, . . .

and

λ(l) =

{

λ+ lν l = 0, 1, 2, . . . , c− 1
λ+ cν l = c, c+ 1, c+ 2, . . .

Therefore, the birth rate is

b(l) = p(l)λ(l) = λ l = 0, 1, 2, . . .

and the (state-dependent) death rate is

d(l) = λ(l)− b(l) =

{

lν l = 0, 1, 2, . . . , c− 1
cν l = c, c+ 1, c+ 2, . . .

Algorithm 10.2.2 can then be applied, as illustrated in the following example.
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Example 10.2.14 For an M/M/c service node, define ρ = λ/cν. Then,

b(l − 1)

d(l)
=

{

cρ/l l = 1, 2, . . . , c− 1

ρ l = c, c+ 1, c+ 2, . . .

and, with f ′(0) = 1, from Algorithm 10.2.2

f ′(l) =

{

(cρ)l/l! l = 0, 1, 2, . . . , c− 1

(cρ)cρl−c/c! l = c, c+ 1, c+ 2, . . .

If ρ < 1 then the results in the following theorem are based on evaluating the constant

α =
1

f(0)

=
∞
∑

l=0

f ′(l)

=

c−1
∑

l=0

(cρ)l

l!
+

∞
∑

l=c

(cρ)cρl−c

c!

=
c−1
∑

l=0

(cρ)l

l!
+
(cρ)c

c!
(1 + ρ+ ρ2 + · · ·)

=

c−1
∑

l=0

(cρ)l

l!
+

(cρ)c

(1− ρ)c!

and calculating

f(l) =
f ′(l)

α
l = 0, 1, 2, . . .

Theorem 10.2.6 For an M/M/c service node with c > 1 and ρ = λ/cν < 1, the
steady-state probability of l jobs in the service node is f(l) where, for l = 0

f(0) =

(

(cρ)c

(1− ρ) c!
+

c−1
∑

l=0

(cρ)l

l!

)−1

and for l = 1, 2, . . .

f(l) =















(cρ)l

l!
f(0) l = 1, 2, . . . , c− 1

(cρ)c

c!
ρl−cf(0) l = c, c+ 1, c+ 2, . . .

If c = 1 this theorem reduces to Theorem 9.5.3.



10.2 Birth-Death Processes 475

Steady-State Statistics

From the equations in Theorem 10.2.6, for an M/M/c service node the steady-state
expected number in the queue is

E[Q] =
∞
∑

l=c

(l − c)f(l)

=

∞
∑

l=c

(l − c)
(cρ)c

c!
ρl−cf(0)

=
(cρ)c

c!
f(0)

∞
∑

l=c

(l − c)ρl−c

=
(cρ)c

c!
f(0)

(

ρ+ 2ρ2 + 3ρ3 + · · ·
)

...

=
(cρ)c

c!
·

ρ

(1− ρ)2
f(0).

In particular, it can be shown that

lim
ρ→1

E[Q] =
ρ

1− ρ
.

Therefore, as in the single-server case, we see that as the steady-state utilization of each
server approaches 1 the average number in the queue (and thus in the service node) ap-
proaches infinity. This is consistent with the simulations in Figure 1.2.9.

As in Section 8.5, for an M/M/c service node with ρ = λ/cν the four steady-state
statistics E[W ], E[L], E[D], and E[Q] are related by the four equations

E[W ] = E[D] +
1

ν
E[L] = E[Q] + cρ E[L] = λE[W ] E[Q] = λE[D]

and any three of these can be calculated provided the fourth is known. Therefore, by using
the fact that the steady-state average number in the queue is

E[Q] =
(cρ)c

c!

ρ

(1− ρ)2

(

(cρ)c

(1− ρ) c!
+

c−1
∑

l=0

(cρ)l

l!

)−1

,

the other steady-state statistics for an M/M/c service node can be calculated as

E[L] = E[Q] + cρ number in the node

E[D] = E[Q]/λ delay in the queue

E[W ] = E[L]/λ wait in the node.

If ρ ≥ 1 then steady-state statistics do not exist.
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Example 10.2.15 For an M/M/4 service node with λ = 1.0 and ρ = 0.75 (so that the
service rate for each server is ν = 1/3), the steady-state probability of an idle node is

f(0) =

(

(cρ)c

(1− ρ) c!
+

c−1
∑

s=0

(cρ)s

s!

)−1

=

(

34

(1/4) 4!
+

3
∑

s=0

3s

s!

)−1

= · · · =
2

53

and the steady-state average number in the queue is

E[Q] =
(cρ)c

c!
·

ρ

(1− ρ)2
f(0) =

34(3/4)

4! (1/4)2

(

2

53

)

=
81

53
∼= 1.53.

Therefore, because cρ = 3.0,

E[L] =
81

53
+ 3 =

240

53
∼= 4.53

E[D] =
81

53
∼= 1.53

E[W ] =
240

53
∼= 4.53.

Algorithm 10.2.3 Given the arrival rate λ, service rate ν (per server), and the number
of servers c, then if ρ = λ/cν < 1 this algorithm computes the first-order, steady-state
statistics for anM/M/c service node. The symbols q̄, l̄, d̄, and w̄ denote E[Q], E[L], E[D],
and E[W ].

ρ = λ / (c * ν);

sum = 0.0;

s = 0;

t = 1.0;

while (s < c) {

sum += t;

s++;

t *= (c * ρ / s);

} /* at this point t = (cρ)c/c! */

sum += t / (1.0 - ρ); /* and sum is 1/f(0) */

q̄ = t * ρ / ((1.0 - ρ) * (1.0 - ρ) * sum);

l̄ = q̄ + (c * ρ);

d̄ = q̄ / λ;

w̄ = l̄ / λ;

return q̄, l̄, d̄, w̄, ρ;

Finite Capacity Multi-Server Service Node

An M/M/c service node with finite capacity c ≤ k < ∞ is denoted M/M/c/k. As in
the special case c = 1, k is the capacity of the service node, not the queue. A proof of the
following theorem is left as an exercise.
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Theorem 10.2.7 For an M/M/c/k service node with 1 < c ≤ k and ρ = λ/cν 6= 1, the
steady-state probability of l jobs in the service node is f(l) where for l = 0

f(0) =

(

(cρ)c

(1− ρ) c!

(

1− ρk−c+1
)

+
c−1
∑

l=0

(cρ)l

l!

)−1

and for l = 1, 2, . . . , k

f(l) =















(cρ)l

l!
f(0) l = 1, 2, . . . , c− 1

(cρ)c

c!
ρl−cf(0) l = c, c+ 1, c+ 2, . . . , k.

If ρ = 1 then

f(0) =

(

cc

c!
(k − c+ 1) +

c−1
∑

l=0

cl

l!

)−1

and

f(l) =















cl

l!
f(0) l = 1, 2, . . . , c− 1

cc

c!
f(0) l = c, c+ 1, c+ 2, . . . , k.

If c = 1 then this theorem reduces to Theorem 10.2.5.

Steady-State Statistics

Analogous to the case of an M/M/c service node, for an M/M/c/k service node
steady-state statistics can be computed from the equations in Theorem 10.2.7. That is,
the steady-state number in the service node is

E[L] =

k
∑

l=0

l f(l)

and the steady-state number in the queue is

E[Q] =
k
∑

l=c

(l − c) f(l).

These two equations can be evaluated numerically for specific values of ρ, c, and k. The
equations can also be algebraically simplified somewhat, but the resulting expressions are
too complex to be useful for most applications.

Given that E[L] and E[Q] have been evaluated, either numerically or algebraically,
the corresponding steady-state wait in the service node and delay in the queue are

E[W ] =
E[L]

(1− f(k))λ
and E[D] =

E[Q]

(1− f(k))λ

respectively.
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Infinitely Many Servers

The M/M/c steady-state results in Theorem 10.2.6 are valid for any c ≥ 1. If the
number of servers is (effectively) infinite (c → ∞) or, equivalently, if the jobs are self-

serving , each with a expected service time of 1/ν, then

b(l − 1)

d(l)
=

λ

lν
l = 1, 2, 3, . . .

and, with f ′(0) = 1, from Algorithm 10.2.2

f ′(l) =
(λ/ν)l

l!
l = 0, 1, 2, . . .

In this case, the normalizing constant is

α =
1

f(0)
=

∞
∑

l=0

f ′(l) =

∞
∑

l=0

(λ/ν)l

l!
= exp(λ/ν).

Therefore, in steady-state the probability of l jobs in an M/M/∞ service node is

f(l) =
exp(−λ/ν)(λ/ν)l

l!
l = 0, 1, 2, . . .

That is, we have proven the following theorem, valid for any value of λ/ν.

Theorem 10.2.8 In steady-state the number of jobs in an M/M/∞ service node is a
Poisson(λ/ν) random variable.

The M/M/∞ terminology is potentially confusing. An M/M/∞ “queue” will in fact
never have a queue; the number of servers is infinite and so any arrival rate, no matter how
large, can be accommodated. The steady-state expected number of jobs in an M/M/∞

service node is E[L] = λ/ν and this ratio can be arbitrarily large.

It is interesting to compare the two limiting cases associated with an M/M/c service
node: c = 1 and c =∞.

• If λ/ν < 1, then the steady-state number in an M/M/1 service node is a Geomet-

ric(λ/ν) random variable.

• For any value of λ/ν, the steady-state number in an M/M/∞ service node is a Pois-

son(λ/ν) random variable.

Except for these two limiting cases, there is no simple discrete random variable character-
ization for the steady-state number of jobs in an M/M/c service node.
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10.2.4 DISCRETE-TIME BIRTH-DEATH PROCESSES

For some stochastic models time is a continuous variable with, for example, possible
values t ≥ 0; for other stochastic models time is a discrete variable with, for example, pos-
sible values t = 0, 1, 2, . . . To make the distinction between discrete-time and continuous-
time models more clear, this section concludes with a discussion of the discrete-time analog
of the continuous-time birth-death process model discussed previously.

As in the continuous-time case, a discrete-time birth-death processes is defined in
terms of a discrete state-space X that can be either finite or infinite. Without loss of
generality, we assume that if the state-space is finite then

X = {0, 1, 2, . . . , k}

for some positive integer k, else if the state-space is infinite then

X = {0, 1, 2, . . .}.

Formulation

There are two equivalent formulations of a discrete-time birth-death process. We begin
with a three-state “birth-death-remain” formulation that is intuitive, but not directly
analogous to Definition 10.2.2. We then show that this formulation is equivalent to an
alternative formulation that is analogous to the definition of a continuous-time birth-death
process.

Definition 10.2.4 Let X be a discrete random variable, indexed by time t as X(t), that
evolves in time as follows.

• X(t) ∈ X for all t = 0, 1, 2, . . .

• State transitions can occur only at the discrete times t = 0, 1, 2, . . .

• When a state transition can occur then the random variable X will either shift from
its current state x to state x + 1 ∈ X with probability b(x) or shift from state x to
state x−1 ∈ X with probability d(x) or remain in its current state x with probability
c(x) = 1− b(x)− d(x).

The shift from state x to x+ 1 is called a birth, the shift from x to x− 1 is called a death.
The stochastic process defined by X(t) is called a discrete-time birth-death process.

A discrete-time birth-death process is completely characterized by the initial state
X(0) ∈ X at t = 0 and the functions b(x), c(x), d(x) defined for all x ∈ X so that

b(x) ≥ 0 c(x) ≥ 0 d(x) ≥ 0 b(x) + c(x) + d(x) = 1

with the understanding that d(0) = 0 because a death can’t occur when X is in the state
x = 0. Moreover, if the state-space is finite then b(k) = 0 because a birth can’t occur when
X is in the state x = k.
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Because the b(x), c(x), d(x) probabilities sum to 1, it is sufficient to specify any two of
them and then solve for the third. So, for example, one could specify the birth probability
b(x) and death probability d(x) only. The “remain in state” probability c(x) is then defined
by

c(x) = 1− b(x)− d(x)

provided, of course, that c(x) ≥ 0. The significance of c(x) is discussed later.

As in the continuous-time case, a discrete-time birth-death process has no memory
of its past — this is the Markovian assumption. That is, the value of the future states
X(t + 1), X(t + 2), . . ., depend only on the value of the current state X(t). Moreover,
we can use a modified version of Algorithm 10.2.1 to simulate a discrete-time birth-death
process as follows.

Algorithm 10.2.4 Given the state-space X , the initial state X(0) ∈ X , and the proba-
bilities b(x) ≥ 0, c(x) ≥ 0, d(x) ≥ 0 defined for all x ∈ X with b(x) + c(x) + d(x) = 1, this
algorithm simulates the time evolution of the associated discrete-time birth-death process
for all t = 0, 1, 2, . . . , τ .

t = 0;

x = X(0);

while (t < τ) {

t++;

u = Random();

if (u < d(x))

s = -1;

else if (u < d(x) + c(x))

s = 0;

else

s = 1;

x += s;

}

Alternative Formation

Note that if c(x) = 0, then when the discrete-time birth-death process enters state x
it will remain in this state for exactly 1 time unit. That is, if c(x) = 0 and X(t) = x then,
with probability one, X(t+1) 6= x. If, however, c(x) > 0 then, once state x is entered, the
discrete-time birth-death process will remain in this state for a (discrete) random amount
of time. Indeed, because of independence, the probability of remaining in this state for
exactly n+ 1 time units is

cn(x)
(

1− c(x)
)

n = 0, 1, 2, . . .
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Therefore, if c(x) > 0 and X(t) = x then the amount of time the discrete-time birth-
death process will remain in state x is 1+T where T is a Geometric(c(x)) random variable
(see Definition 6.4.3). It follows in this case that when the process enters state x the
expected time the process will remain in state x is

µ(x) = E[1 + T ]

= 1 + E[T ]

= 1 +
c(x)

1− c(x)

=
1

1− c(x)
.

Equivalently, 1− c(x) = b(x) + d(x) and so the expected time in state x is

µ(x) =
1

b(x) + d(x)
.

Moreover, when a state change does occur, it will be a birth with probability

p(x) =
b(x)

b(x) + d(x)

or a death with probability 1− p(x).*

The following theorem summarizes the previous discussion. Recognize that, as an
alternative to Definition 10.2.4, this theorem provides an equivalent characterization of a
discrete-time birth-death process. The conceptual advantage of this alternative charac-
terization is that it parallels the continuous-time birth-death process definition (Defini-
tion 10.2.2) and illustrates nicely that the (memoryless) Geometric random variable is the
discrete analog of the continuous Exponential random variable.

* It is important to appreciate the difference between p(x) and b(x). By definition

b(x) = Pr
(

X(t+ 1) = x+ 1 | X(t) = x
)

is the probability of a state transition from state x at time t to state x+ 1 at time t+ 1.
Instead,

p(x) = Pr
(

X(t+ 1) = x+ 1 | (X(t) = x) and (X(t+ 1) 6= x)
)

is b(x) conditioned on the knowledge that there was a state change. This second probability
can’t be smaller than the first and, indeed, if c(x) > 0 then p(x) > b(x).
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Theorem 10.2.9 Given p(x) = b(x)/(b(x) + d(x)) and µ(x) = 1/(b(x) + d(x)) for all
x ∈ X , if X is a discrete random variable that evolves in time as follows then the stochastic
process defined by X(t) is a discrete-time birth-death process.

• At any time t = 0, 1, 2, . . ., X(t) ∈ X .

• State transitions can occur only at the discrete times t = 0, 1, 2, . . . and if x is the
state of X at time t then X will remain in this state for a random time 1 + T where
T is Geometric with mean µ(x)− 1.

• When a state transition occurs then, independent of the time spent in the current state,
the random variable X will either shift from its current state x to state x+1 ∈ X with
probability p(x) or shift from state x to state x− 1 ∈ X with probability 1− p(x).

If the process is specified in terms of b(x) and d(x), as in Definition 10.2.4, then p(x)
and µ(x) are defined by the equations in Theorem 10.2.9. On the other hand, if the process
is specified in terms of p(x) and µ(x) directly, then b(x) and d(x) are defined by

b(x) =
p(x)

µ(x)
d(x) =

1− p(x)

µ(x)
.

The following algorithm is an implementation of Theorem 10.2.9. This algorithm, which
is the discrete analog of Algorithm 10.2.1, is stochastically equivalent to Algorithm 10.2.4.
Note that because the parameter that defines a Geometric random variable is a probability,
not a mean, Algorithm 10.2.5 is stated in terms of the “remain in state” probability c(x),
which can be shown to be related to µ(x) by the equation

c(x) =
µ(x)− 1

µ(x)
x ∈ X

with the understanding that µ(x) ≥ 1 for all x ∈ X .

Algorithm 10.2.5 Given the state-space X , the initial state X(0) ∈ X , and the prob-
abilities p(x), c(x) defined for all x ∈ X by the equations p(x) = b(x)/(b(x) + d(x)) and
c(x) = 1 − b(x) − d(x), this algorithm simulates the time evolution of the associated
discrete-time birth-death process for all t = 0, 1, 2, . . . , τ .

t = 0;

x = X(0);

while (t < τ) {

t += 1 + Geometric(c(x));

x += 2 * Bernoulli(p(x)) - 1;

}
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Example 10.2.16 As an example of a discrete-time birth-death process with an infinite
state space, consider a data structure (e.g., a linked list) for which one item is either inserted
or deleted each time the data structure is accessed. For each access the probability of an
insertion is p, independent of past accesses; the probability of a deletion is q = 1 − p,
provided the data structure is not empty. If accesses are indexed t = 0, 1, 2, . . ., and X(t)
is the number of items in the data structure after the tth access, then X(t) is a discrete-
time birth-death process. We can use the characterization of this stochastic process in
Definition 10.2.4 to write

b(x) = p x = 0, 1, 2, . . . and d(x) =

{

0 x = 0
q x = 1, 2, . . .

Equivalently, the characterization of this stochastic process in Theorem 10.2.9 can be used
to write

p(x) =

{

1 x = 0
p x = 1, 2, . . .

and µ(x) =

{

1/p x = 0
1 x = 1, 2, . . .

In either case,

c(x) =

{

q x = 0
0 x = 1, 2, . . .

Flow Balance Equations

As in the continuous-time case, the expected times µ(x) can be converted to rates via
the equation

λ(x) =
1

µ(x)
x ∈ X .

These rates can then be multiplied by p(x) and 1 − p(x) respectively to define the birth
and death rates

b(x) = λ(x) p(x) and d(x) = λ(x) (1− p(x))

which, for a discrete-time birth-death process, are numerically equivalent to the birth and
death probabilities, as specified in Definition 10.2.4. It follows that the stochastic process
can be represented by a labeled directed graph as illustrated in Figure 10.2.9.
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Transition

probabilities.

The steady-state probability f(x) of finding the process in state x can be determined, as
in the continuous-time case, by solving the flow-balance equations

d(x+ 1)f(x+ 1) = b(x)f(x) x ∈ X .
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Example 10.2.17 As a continuation of Example 10.2.16, consider the labeled directed
graph representation of the corresponding discrete-time birth-death stochastic process
given in Figure 10.2.10.
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Transition

probabilities.

The corresponding flow-balance equations are

q f(x+ 1) = p f(x) x = 0, 1, 2, . . .

Except for cosmetic differences (p ↔ λ, q ↔ ν) these are exactly the same equations as
those characterizing the steady-state number in an M/M/1 service node. Therefore, it
follows that, provided ρ < 1

ρ =
p

q
=

p

1− p

and, provided ρ < 1
f(x) = (1− ρ) ρx x = 0, 1, 2, . . .

Thus we see that, provided the probability of insertion p is less than the probability of
deletion q, the steady-state number of items in the data structure is a Geometric(ρ) random
variable. In particular, in this case the expected number of items in the data structure is

E[X] =
ρ

1− ρ
=

p

q − p
.

As a specific example, if (p, q) = (0.48, 0.52) then E[X] = 12 and the steady-state distri-
bution of the size of the data structure is as illustrated in Figure 10.2.11.
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Steady-state

size of

the data

structure.

If p is greater than or equal to q, then steady-state can not be achieved because the
expected length of the data structure will grow without bound. If, however, the size of the
data structure is physically restricted to be no larger than k < ∞, then the state-space is
finite and, analogous to an M/M/1/k service node model, steady-state will be possible.
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10.2.5 EXERCISES

Exercise 10.2.1 Suppose that T1 and T2 are independent Exponential random variables
with means µ1 and µ2 respectively. Define T = max{T1, T2}. (a) What is the pdf of T?
(b) What is E[T ]? (c) Use Monte Carlo simulation to verify the correctness of your math
for the case µ1 = 1, µ2 = 2.

Exercise 10.2.2 Complete the derivation of Theorem 10.2.2 by proving that

1

µ′

∫ ∞

0

(

1− exp(−t′/µ1)
)

exp(−t′/µ′) dt′ =
µ

µ1

.

Exercise 10.2.3 (a) If T1, T2, . . . , Tn is an independent sequence of Exponential(µ) ran-
dom variables and T = max{T1, T2, . . . , Tn} what is the cdf and pdf of T? (b) Use Monte
Carlo simulation to verify the correctness of this pdf for the case n = 5, µ = 1. (c) Con-
struct an algorithm that will generate the random variate T with just one call to Random.

Exercise 10.2.4 (a) Use Algorithm 10.2.1 and Example 10.2.8 to construct (yet another)
program to simulate an M/M/1 service node. (b) How would you verify that this program
is correct? (c) Illustrate for the case λ = 3, ν = 4.

Exercise 10.2.5 (a) Use Algorithm 10.2.1 and Example 10.2.9 to construct a program
to simulate an M/M/1/k service node. This program should estimate steady-state values
for the expected number in the service node and the steady-state probabilities f(l) for
l = 0, 1, . . . , k. (b) How would you verify that the program is correct? (c) Illustrate for the
case λ = 3, ν = 4, k = 4.

Exercise 10.2.6 (a) Use Algorithm 10.2.3 to construct a program to calculate the first-
order M/M/c steady-state statistics given values of λ, ν and a range of c values. (b) Cal-
culate and print a table of these four steady-state statistics for the case λ = 30, ν = 2 and
c = 20, 19, 18, 17, 16, 15. (c) Comment.

Exercise 10.2.7 If ρ = 1 derive the steady-state pdf for an M/M/1/k service node.

Exercise 10.2.8 Let Q(t) be the number of jobs in the queue of an M/M/c service
node at time t > 0. Derive an equation for the steady-state (t → ∞) pdf Pr(Q(t) = q) for
q = 0, 1, 2, . . .

Exercise 10.2.9 Use Algorithm 10.2.1 to verify by simulation that the results in Theo-
rem 10.2.7 are correct in the case c = 4, λ = 8, ν = 2, k = 10.
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Exercise 10.2.10 (a) Determine an easily computed condition involving c, λ and ν that
will characterize when the steady-state distribution of the number in an M/M/c service
node and an M/M/∞ service node are essentially identical. (The condition “c is real
big” is not enough.) (b) Present simulation data in support of your condition for the case
λ = 10, ν = 1.

Exercise 10.2.11 A classic example* of a discrete-time finite-state birth-death process
is based on a game of chance played as follows. Two players, P and Q, start with a fixed
amount of money, k (dollars), with a belonging to P and k − a to Q. On each play of
the game, P will win one dollar (from Q) with probability p, independent of the result
of previous games, else Q will win the dollar with probability q = 1 − p. Play continues

until one player has no more money. Let f(x) represent the steady-state probability that
player P has x dollars. (a) Set up the flow-balance equations for this process and argue
why f(x) = 0 for all x = 1, 2, . . . , k − 1. (b) For the case k = 1000 with p = 0.51 estimate
f(0) and f(k) by simulation to within ±0.01 with 95% confidence for each of the cases
a = 10, 20, 30, 40, 50. (c) Also, estimate the expected number of plays. (d) Comment.

Exercise 10.2.12 As a continuation of Exercise 10.2.11, derive equations for f(0) and
f(k). Hint: To derive the equations, define Pr(a) = f(k) as the probability that player P
ultimately ends up with all the money given that P has a dollars initially and then argue
that the 3-term recursion equation

Pr(a) = qPr(a− 1) + pPr(a+ 1) a = 1, 2, . . . , k − 1

is valid, with the boundary conditions Pr(0) = 0, Pr(k) = 1.

Exercise 10.2.13 Prove Theorem 10.2.7.

Exercise 10.2.14 Consider the following entities to determine whether an Exponen-

tial(µ) distribution is an appropriate probabilistic model for their lifetimes: (a) fuse,
(b) candle, (c) cat, (d) light bulb, (e) software company. Base your discussion on the
appropriateness of an exponential model on the memoryless property (i.e., would a used
entity have an identical lifetime distribution to a new entity?).

* This problem is well known in probability as the gambler’s ruin problem. A special
case of the gambler’s ruin problem known as the problem of duration of play was proposed
to Dutch mathematician Christian Huygens (1629–1695) by French mathematician Pierre
de Fermat (1601–1665) in 1657. The general form of the gambler’s ruin problem was
solved by mathematician Jakob Bernoulli (1654–1705) and published eight years after his
death. Ross (2002a, pages 90–94) considers the problem using the analytic approach to
probability.
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This section introduces a particular type of stochastic process known as a finite-state

Markov chain. As we will see, a finite-state birth-death process (see Section 10.2) is a
special case of a finite-state Markov chain. The primary distinction is that in a birth-
death process, state transitions are restricted to neighboring states while in a Markov
chain, there is no such restriction. Because a much larger set of state transitions are
possible, a Markov chain is a much richer stochastic process model. There is, however,
a price to pay for this increased modeling flexibility — an added level of mathematical
sophistication is required to analyze steady-state behavior.

10.3.1 DISCRETE-TIME FINITE-STATE MARKOV CHAINS

In reverse order of presentation relative to Section 10.2, in this section we consider
discrete-time Markov chains before continuous-time Markov chains.

Definition 10.3.1 Let X be a discrete random variable, indexed by time t as X(t), that
evolves in time as follows.

• X(t) ∈ X for all t = 0, 1, 2, . . .

• State transitions can occur only at the discrete times t = 0, 1, 2, . . . and at these times
the random variable X(t) will shift from its current state x ∈ X to another state, say
x′ ∈ X , with fixed probability p(x, x′) = Pr(X(t+ 1) = x′ | X(t) = x) ≥ 0.

If |X | < ∞ the stochastic process defined by X(t) is called a discrete-time, finite-state

Markov chain. Without loss of generality, throughout this section we assume that the
finite state space is X = {0, 1, 2, . . . , k} where k is a finite, but perhaps quite large, integer.

A discrete-time, finite-state Markov chain is completely characterized by the initial
state at t = 0, X(0), and the function p(x, x′) defined for all (x, x′) ∈ X × X . When the
stochastic process leaves the state x the transition must be either to state x′ = 0 with
probability p(x, 0), or to state x′ = 1 with probability p(x, 1), . . ., or to state x′ = k with
probability p(x, k), and the sum of these probabilities must be 1. That is,

k
∑

x′=0

p(x, x′) = 1 x = 0, 1, . . . , k.

Because p(x, x′) is independent of t for all (x, x′), the Markov chain is said to be homoge-

neous or stationary.

Definition 10.3.2 The state transition probability p(x, x′) represents the probability of
a transition from state x to state x′. The corresponding (k + 1)× (k + 1) matrix

p =









p(0, 0) p(0, 1) · · · p(0, k)
p(1, 0) p(1, 1) · · · p(1, k)
...

...
. . .

...
p(k, 0) p(k, 1) · · · p(k, k)









with elements p(x, x′) is called the state transition matrix.
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The elements of the state transition matrix p are non-negative and the elements of
each row sum to 1.0. That is, each row of the state transition matrix defines a pdf for a
discrete random variable. (A matrix with these properties is said to be a stochastic matrix.)
The diagonal elements of the state transition matrix need not be zero. If p(x, x) > 0 then
when X(t) = x it will be possible for the next state “transition” to leave the state of the
system unchanged, i.e., X(t+ 1) = x. This is sometimes called immediate feedback.

Example 10.3.1 Consider a Markov chain with 4 possible states (k = 3, X = {0, 1, 2, 3})
and state transition matrix

p =







0.3 0.2 0.4 0.1
0.0 0.5 0.3 0.2
0.0 0.4 0.0 0.6
0.4 0.0 0.5 0.1






.

For example, the probability of a transition from state 2 to 3 is p(2, 3) = 0.6 and the
probability of immediate feedback when the system is in state 1 is p(1, 1) = 0.5.

As illustrated in the following example, a finite-state Markov chain can be represented
as a directed graph. That is:

• The nodes of this graph are the possible states (the state space X ).

• The labeled arcs, including the immediate feedback circular arcs, are defined by the
state transition probabilities p(x, x′).

The sum of the probabilities associated with all of the arcs emanating from any node
including the circular (feedback) arc, must be 1.0. Why?

Example 10.3.2 A “probability” directed graph representation of the discrete-time
Markov chain in Example 10.3.1 is shown in Figure 10.3.1.
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Definition 10.3.3 Define the cumulative state transition function P (x, x′) as

P (x, x′) = p(x, 0) + p(x, 1) + · · ·+ p(x, x′) (x, x′) ∈ X × X .

That is, P (x, x′) is the probability of a transition from state x to a new state between 0
and x′ inclusive. The associated (k + 1)× (k + 1) matrix

P =









P (0, 0) P (0, 1) · · · 1.0
P (1, 0) P (1, 1) · · · 1.0
...

...
. . .

...
P (k, 0) P (k, 1) · · · 1.0









with elements P (x, x′) is called the cumulative state transition matrix.

Example 10.3.3 Relative to Example 10.3.2, the state transition matrix and cumulative
state transition matrix are

p =







0.3 0.2 0.4 0.1
0.0 0.5 0.3 0.2
0.0 0.4 0.0 0.6
0.4 0.0 0.5 0.1






and P =







0.3 0.5 0.9 1.0
0.0 0.5 0.8 1.0
0.0 0.4 0.4 1.0
0.4 0.4 0.9 1.0






.

Given p, the following algorithm can be used to compute the cumulative state transition
matrix.

Algorithm 10.3.1 This algorithm constructs the cumulative state transition matrix P

from the state transition matrix p.

for (x = 0; x < k + 1; x++) { /* loop over rows */

P[x, 0] = p[x, 0]; /* first column elements identical */

for (x′ = 1; x′ < k; x′++) /* loop over columns */

P[x, x′] = P[x, x′ - 1] + p[x, x′]; /* pdf → cdf */

P[x, k] = 1.0; /* last column elements */

}

return P;

Note that the elements in each row of a cumulative state transition matrix are mono-
tone increasing. Also P [x, k] = 1.0 for all x ∈ X , a condition that is enforced in Algo-
rithm 10.3.1 to guard against accumulated floating-point round-off error yielding a com-
puted value of P [x, k] that is close to, but slightly less than, 1.0. This is important because
a computed value of P [x, k] < 1.0 would create the possibility that Algorithm 10.3.2 (to
follow) might fail.
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If p is a stochastic matrix then each row represents the pdf of a discrete random
variable. Specifically, the x-row of p is the pdf of the “to” state when the “from” state is
x. Correspondingly, the rows of the cumulative state transition matrixP are cdf’s. Because
of this, the cumulative state transition matrix can be used with the discrete idf method of
random variable generation (Algorithm 6.2.1) to construct the following algorithm for the
function NextState.

Algorithm 10.3.2 Given the cumulative state transition matrix P and x ∈ X , this
algorithm is an implementation of the function x′ = NextState(x) using inversion.

u = Random();

x′ = 0;

while (P[x, x′] <= u)

x′++;

return x′;

Because of the simple linear search in Algorithm 10.3.2, the O(k) time complexity
of the function NextState may be a problem if |X | = k + 1 is large. For larger values
of k, Algorithm 6.2.2 or, perhaps, a binary search should be used instead. Also, if k
is large it is quite likely that the state transition matrix p will be sparse — each node
in the associated digraph will have only a few adjacent nodes. If k is large and p is
sparse, then a two-dimensional array is not the right data structure to use. Instead, a
more appropriate data structure, for example a one-dimensional array of pointers to linked
lists, and associated idf search algorithm are required. In any case, given the function
NextState, the following algorithm simulates the time evolution of the corresponding
discrete-time, finite-state Markov chain.

Algorithm 10.3.3 Given the initial state X(0) ∈ X , this algorithm simulates the time
evolution of the associated discrete-time, finite-state Markov chain for t = 0, 1, 2, . . . , τ .

t = 0;

x = X(0);

while (t < τ) {

t++;

x = NextState(x);

}

Example 10.3.4 With the state transition matrix from Example 10.3.3, the initial state
X(0) = 1, and τ = 100 000, Algorithm 10.3.3 produced the output shown below.

state : 0 1 2 3
proportion : 0.160 0.283 0.284 0.273

The second row of this table is the proportion of time spent in each state. Equivalently,
because τ is large, this row is an estimate of the steady-state probability of finding the
Markov chain in each state.
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For all x ∈ X let

f(x, t) = Pr
(

X(t) = x
)

t = 0, 1, 2, . . .

be the probability that the Markov chain is in state x at time t. That is, f(x, t) is the pdf
of X(t). We assume that the initial distribution (the pdf of X(0))

f(x, 0) = Pr
(

X(0) = x
)

x ∈ X

is known. The issue then is how to use this initial distribution and the state transition
matrix p to determine the pdf of X(t) for t = 1, 2, . . . To do this, it is convenient (and
conventional) to define these pdf’s as a sequence of row vectors

ft = [ f(0, t) f(1, t) . . . f(k, t) ] t = 0, 1, 2, . . .

In particular, f0 is the known initial distribution.

Chapman–Kolmogorov Equation

By using matrix/vector notation, from the law of total probability we can write the
pdf of X(1) as

f(x′, 1) = Pr(X(1) = x′)

=

k
∑

x=0

Pr(X(0) = x) Pr(X(1) = x′ | X(0) = x)

=
k
∑

x=0

f(x, 0) p(x, x′) x′ ∈ X

which is equivalent to the matrix equation

f1 = f0 p.

Similarly, it follows that the pdf of X(2) is

f2 = f1 p =
(

f0 p
)

p = f0 p2

and (by induction) the pdf of X(t) is

ft = f0 pt t = 1, 2, 3, . . .

This last matrix/vector equation, know as the Chapman–Kolmogorov equation, is of funda-
mental importance — the pdf of X(t) is determined by raising the state transition matrix
to the tth power, then multiplying the result, on the left, by the row vector corresponding
to the pdf of X(0).
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Example 10.3.5 As a continuation of Examples 10.3.1 and 10.3.2, it can be verified
that

p =







0.300 0.200 0.400 0.100
0.000 0.500 0.300 0.200
0.000 0.400 0.000 0.600
0.400 0.000 0.500 0.100







p2 =







0.130 0.320 0.230 0.320
0.080 0.370 0.250 0.300
0.240 0.200 0.420 0.140
0.160 0.280 0.210 0.350







p4 =







0.149 0.296 0.274 0.282
0.148 0.297 0.279 0.277
0.170 0.274 0.311 0.245
0.150 0.295 0.269 0.287







p8 =







0.155 0.290 0.284 0.272
0.155 0.290 0.284 0.271
0.156 0.289 0.285 0.270
0.155 0.290 0.284 0.272






.

If, as in Example 10.3.4, the initial state is X(0) = 1 with probability 1, then from the
Chapman–Kolmogorov equation it follows that

f0 = [ 0.000 1.000 0.000 0.000 ]

f1 = f0 p1 = [ 0.000 0.500 0.300 0.200 ]

f2 = f0 p2 = [ 0.080 0.370 0.250 0.300 ]

f4 = f0 p4 = [ 0.148 0.297 0.279 0.277 ]

f8 = f0 p8 = [ 0.155 0.290 0.284 0.271 ] .

If, instead the initial state could be any of the four possible values X(0) = 0, 1, 2, 3 with
equal probability, then

f0 = [ 0.250 0.250 0.250 0.250 ]

f1 = f0 p1 = [ 0.175 0.275 0.300 0.250 ]

f2 = f0 p2 = [ 0.153 0.293 0.278 0.278 ]

f4 = f0 p4 = [ 0.154 0.290 0.283 0.273 ]

f8 = f0 p8 = [ 0.155 0.290 0.284 0.271 ] .

In either case, we see that for increasing t the pdf vector ft converges rapidly to a pdf that
is consistent with the estimated steady-state pdf in Example 10.3.4.
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Matrix Power Method

It follows immediately from the Chapman–Kolmogorov equation that if the steady-
state pdf vector limt→∞ ft = f∞ exists then so also must the matrix

p∞ = lim
t→∞

pt

exist. As illustrated in Example 10.3.5 the matrix p∞ has a very special structure — all
rows are equal to the steady-state pdf vector. The reason for this is that the equation

f∞ = f0 p∞

must be valid for any initial pdf vector f0. In particular if the initial state of the Markov
chain is X(0) = 0 with probability 1 then the initial pdf vector is

f0 = [ 1 0 0 · · · 0 ]

and f0 p∞ = f∞ will be the first (0th) row of p∞. Similarly, if X(0) = 1 with probability 1
then

f0 = [ 0 1 0 · · · 0 ]

and we see that the second row of p∞ must also be f∞. This argument applies to all rows
of p∞ which proves the following theorem.

Theorem 10.3.1 For a discrete-time, finite-state Markov chain with state transition
matrix p, if a unique steady-state pdf vector f∞ = [ f(0) f(1) · · · f(k) ] exists then

p∞ = lim
t→∞

pt =









f(0) f(1) · · · f(k)
f(0) f(1) · · · f(k)
...

...
...

f(0) f(1) · · · f(k)









.

Algorithm 10.3.4 If a unique steady-state pdf vector exists, then Theorem 10.3.1 pro-
vides a numerical algorithm for computing it by computing pt for increasing values of t
until all rows of pt converge to a common vector of non-negative values that sum to 1.

Example 10.3.6 If the successive powers p, p2, p3, p4, . . . are computed for the state
transition matrix in Example 10.3.1 and displayed with d.dddd precision we find that for
t > 16 there is no change in the displayed values of pt. Thus we conclude that in this case

p∞ =







0.1549 0.2895 0.2844 0.2712
0.1549 0.2895 0.2844 0.2712
0.1549 0.2895 0.2844 0.2712
0.1549 0.2895 0.2844 0.2712







and that the steady-state pdf vector for this Markov chain is

f∞ = [ 0.1549 0.2895 0.2844 0.2712 ] .
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Eigenvector Method

Algorithm 10.3.4 is easily understood and easily implemented. The primary drawback
to this algorithm is that the multiplication of one (k+1)×(k+1) matrix by another requires
(k + 1)3 multiplications and to compute pt sequentially this process must be repeated t

times. Thus the time complexity of this algorithm is O(t k3). Some efficiency can be gained
by using “successive squaring” to compute, instead, the sequence

p,p2,p4,p8, . . .

But this algorithm is still O(log(t) k3) and so efficiency is an issue if the state space is
large. Accordingly, we consider an alternative approach based on the fact that

ft+1 = ft p t = 0, 1, 2, . . .

From this equation it follows that, in the limit as t → ∞, a steady-state pdf vector must
satisfy the eigenvector equation

f∞ = f∞ p.

That is, we have the following theorem.

Theorem 10.3.2 For a discrete-time, finite-state Markov chain with state transition
matrix p, if a steady-state pdf vector f∞ = [ f(0) f(1) · · · f(k) ] exists then f∞ is a
(left) eigenvector of p with eigenvalue 1, i.e.,

f∞ p = f∞.

Equivalently, the steady-state pdf vector is characterized by the following set of (k + 1)
linear balance equations

k
∑

x=0

f(x) p(x, x′) = f(x′) x′ = 0, 1, . . . , k.

Algorithm 10.3.5 If a unique steady-state pdf vector exists, then Theorem 10.3.2 pro-
vides a second obvious algorithm for computing it.

• Solve the balance equations or, equivalently, compute a left eigenvector of p with
eigenvalue 1.0.

• Check that all elements of the eigenvector are non-negative.

• Normalize the eigenvector so that the elements sum to 1.0.

Not only is Algorithm 10.3.5 inherently more efficient that Algorithm 10.3.4, it is
also the preferred way to produce symbolic (algebraic) steady-state solutions to finite-state
Markov chain models, provided such solutions are possible. The following example is an
illustration.
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Example 10.3.7 The balance equations for the 4-state Markov chain in Example 10.3.1
(redisplayed in Figure 10.3.2 for convenience) are
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Figure 10.3.2.

State transition

diagram for a

discrete-time,

finite-state

Markov chain.

0.3f(0) + 0.4f(3) = f(0)

0.2f(0) + 0.5f(1) + 0.4f(2) = f(1)

0.4f(0) + 0.3f(1) + 0.5f(3) = f(2)

0.1f(0) + 0.2f(1) + 0.6f(2) + 0.1f(3) = f(3).

By inspection f(0) = f(1) = f(2) = f(3) = 0 is a solution to the balance equations.
Therefore, if steady-state is possible this linear system of equations must be singular for,
if not, f(0) = f(1) = f(2) = f(3) = 0 would be the only possible solution. Consistent
with their singular nature, the four balance equations row-reduce to the equivalent three

equations

f(0) −
152

266
f(3) = 0

f(1) −
284

266
f(3) = 0

f(2)−
279

266
f(3) = 0.

By back-substitution f(2), f(1), and f(0) can be expressed in terms of f(3) and then
combined with the normalization equation f(0) + f(1) + f(2) + f(3) = 1 to yield the
steady-state probabilities

f(0) =
152

981
f(1) =

284

981
f(2) =

279

981
f(3) =

266

981
.

To the accuracy displayed in Example 10.3.6, these probabilities agree exactly with the
steady-state pdf vector.
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Flow Balance Equations

Discrete-time Markov chains can be characterized in terms of expected times*

µ(x) =
1

1− p(x, x)
x ∈ X

or, equivalently in terms of rates

λ(x) =
1

µ(x)
= 1− p(x, x) x ∈ X .

When X(t) = x, the term µ(x) represents the expected time the Markov chain will remain
in state x; equivalently λ(x) represents the rate of “flow” out of this state. By accounting
for immediate feedback in this way, it is important to recognize that the corresponding
state transition matrix must be modified accordingly. That is, the state transition matrix
is now

q =









0 q(0, 1) · · · q(0, k)
q(1, 0) 0 · · · q(1, k)
...

...
. . .

...
q(k, 0) q(k, 1) · · · 0









,

where the modified state transition probabilities (which exclude immediate feedback) are

q(x, x′) =







p(x, x′)

1− p(x, x)
x′ 6= x

0 x′ = x.

Then, when X(t) = x the product

λ(x) q(x, x′) =

{

p(x, x′) x′ 6= x

0 x′ = x

represents the rate of flow out of state x, into state x′. Moreover, the balance equations

f(x′) p(x′, x′) +
∑

x6=x′

f(x) p(x, x′) = f(x′) x′ = 0, 1, . . . , k

can then be expressed as
∑

x6=x′

f(x)λ(x) q(x, x′) = f(x′)
(

1− p(x′, x′)
)

x′ = 0, 1, . . . , k.

That is, the balance equations in Theorem 10.3.2 are equivalent to the balance equations
∑

x6=x′

f(x)λ(x) q(x, x′)

︸ ︷︷ ︸

flow in

= f(x′)λ(x′)
︸ ︷︷ ︸

flow out

x′ = 0, 1, . . . , k.

* This assumes that no states are absorbing. That is, p(x, x) < 1 for all x ∈ X .
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When X(t) = x, the product λ(x) q(x, x′) = p(x, x′) represents the rate at which the
flow out of state x goes into state x′ 6= x. Consistent with this observation, as an alternate
to a directed graph representation like that in Example 10.3.7, a usually superior directed
graph representation of a discrete-time, finite-state Markov chain is:

• Each node x ∈ X is labeled by λ(x).

• The arcs are labeled by the state transition rates p(x, x′) = λ(x) q(x, x′).

For this representation, at each node x the sum of all the labeled out-arcs is λ(x). There
are no feedback arcs.

Example 10.3.8 As an alternative to the approach in Example 10.3.7, for the “flow
rate” directed graph representation, shown in Figure 10.3.2,
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Figure 10.3.3.

State transition
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Markov chain.

the balance equations are

+ 0.4f(3) = 0.7f(0)

0.2f(0) + 0.4f(2) = 0.5f(1)

0.4f(0) + 0.3f(1) + 0.5f(3) = 1.0f(2)

0.1f(0) + 0.2f(1) + 0.6f(2) = 0.9f(3).

By inspection, these equations are equivalent to those in Example 10.3.7

Existence and Uniqueness

One important theoretical, question remains — what conditions are necessary and
sufficient to guarantee that a finite-state Markov chain has a unique steady-state pdf
vector? Although it is beyond the scope of this book to answer this question in complete
generality, the following general 2-state Markov chain example illustrates the kinds of
situations that can arise.
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Example 10.3.9 The most general 2-state (k = 1) Markov chain has state transition
matrix

p =

[

1− α α

β 1− β

]

,

where α, β are non-negative parameters no larger than 1. Consider the following cases.

• If α = β = 0 then the Markov chain will remain forever in either state 0 or state 1,
depending on the initial state. In this case the Markov chain is said to be reducible

and there is more than one steady-state pdf vector.

• If either 0 < α < 1 or 0 < β < 1 or both, then there is exactly one steady-state pdf
vector

f∞ =

[

β

α+ β

α

α+ β

]

.

• If α = β = 1 then the Markov chain will cycle forever between states 0 and 1 with
period 2. In this case the Markov chain is said to be periodic and there is no steady-
state pdf vector.

The three cases illustrated in Example 10.3.9 generalize to any finite-state, discrete-
time Markov chain as follows. Let pt[x, x′] denote the [x, x′] element of the matrix pt.

• If pt[x, x′] > 0 for some t > 0, the state x′ is said to be accessible from state x (in t

steps).

• If x′ is accessible from x and, in addition, x is accessible from x′ then states x and x′

are said to communicate.

• State communication defines an equivalence relation on the state space X . That is,
the state space naturally partitions into disjoint sets of communicating states.

• If there is only one set in the state space partition defined by state communication,
then the Markov chain is said to be irreducible. That is, a Markov chain is irreducible
if and only if all states communicate. A sufficient condition for a Markov chain to be
irreducible is the existence of some t > 0 such that pt[x, x′] > 0 for all [x, x′] ∈ X ×X .

• If there is a partition of the state space X = X1 ∪X2 ∪ · · · ∪Xr with the property that
the Markov chain will transition forever as indicated

· · · → X1 → X2 → · · · → Xr → X1 → · · ·

then the Markov chain is said to be periodic with period r > 1. If no such partition
exists, the Markov chain is said to aperiodic. A sufficient condition for a Markov
chain to be aperiodic is p[x, x] > 0 for at least one x ∈ X .

The following theorem provides an important condition sufficient to guarantee the existence
of a unique steady-state vector.

Theorem 10.3.3 An irreducible, aperiodic, finite-state Markov chain has one and only
one steady-state pdf vector.
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10.3.2 CONTINUOUS-TIME, FINITE-STATE MARKOV CHAINS

In the remainder of this section we consider continuous-time Markov chains. The
emphasis is on demonstrating that “within” any continuous-time Markov chain is an asso-
ciated “embedded” discrete-time Markov chain. As in the discrete-time case, we assume a
finite state space X which is, without loss of generality,

X = {0, 1, 2, . . . , k}.

The state space X remains the same as before, but now the dwell time in a state is
continuous, rather than discrete.

Definition 10.3.4 Let X be a discrete random variable, indexed by time t as X(t), that
evolves in time as follows.

• At any time t > 0, X(t) ∈ X .

• If x ∈ X is the state of X at time t then X will remain in this state for a random
time T that is Exponential with mean µ(x).

• When a state transition occurs then, independent of the time spent in the current
state, the random variable X will shift from its current state x to a different state,
say x′ 6= x, with fixed probability p(x, x′).

The stochastic process defined by X(t) is called a continuous-time, finite-state Markov

chain.*

A continuous-time, finite-state Markov chain is completely characterized by the initial
state X(0) ∈ X , the expected time-in-state function µ(x) defined for all x ∈ X so that
µ(x) > 0, and the state-transition probability function defined so that

p(x, x′) ≥ 0 (x, x′) ∈ X × X

with p(x, x) = 0 for all x ∈ X and

k
∑

x′=0

p(x, x′) = 1 x ∈ X .

Equivalently, because p(x, x) = 0, the last equation can be written as

∑

x′ 6=x

p(x, x′) = 1 x ∈ X

where the summation is over all x′ ∈ X except state x.

* Compare with Definitions 10.2.2 and 10.3.1.
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As in the discrete-time case, the analysis of the steady-state behavior of a continuous-
time, finite-state Markov chain is based on the state transition matrix p, defined as follows.
(Compare with Definition 10.3.2.)

Definition 10.3.5 The state transition probability p(x, x′) represents the probability of
a transition from state x to state x′. The corresponding (k + 1)× (k + 1) matrix

p =









0.0 p(0, 1) · · · p(0, k)
p(1, 0) 0.0 · · · p(1, k)
...

...
. . .

...
p(k, 0) p(k, 1) · · · 0.0









with elements p(x, x′) is called the state transition matrix.

The elements of the state transition matrix p are non-negative and the elements of
each row sum to 1.0. That is, each row of the state transition matrix defines the pdf for a
discrete random variable. By convention, immediate feedback at each state is accounted for
by the Exponential time-in-state model and so the diagonal elements of the state transition
matrix are zero.

Continuous-time, finite-state Markov chains are usually characterized in terms of rates

λ(x) =
1

µ(x)
x ∈ X

rather than the corresponding expected times µ(x). The reason for this is that, when
X(t) = x, λ(x) represents the infinite-horizon rate at which X will “flow” out of state x.
Therefore, when X(t) = x, the product λ(x) p(x, x′) represents the rate of flow out of state
x, into state x′ 6= x. The sum of these rates of flow is λ(x).

Example 10.3.10 Consider a Markov chain with 4 possible states (k = 3), state tran-
sition matrix

p =







0.0 0.3 0.6 0.1
0.0 0.0 0.6 0.4
0.0 0.3 0.0 0.7
0.4 0.0 0.6 0.0







and rates

λ(0) = 1 λ(1) = 2/3 λ(2) = 1/2 λ(3) = 2.

For example, the probability of a transition from state 2 to 3 is p(2, 3) = 0.7 and when
X(t) = 2 the expected rate of flow into state 3 is λ(2) p(2, 3) = (0.5)(0.7) = 0.35.
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As illustrated in the following example, a continuous-time, finite-state Markov chain
can be represented as a directed graph.

• The nodes of this graph are the possible states (the state space X ). Each node x ∈ X

is labeled by λ(x).

• The labeled arcs are defined by the state transition probabilities.

This kind of labeled digraph provides a convenient graphical representation of a (small)
continuous-time Markov chain. For each node (state), the sum of all the labeled out-arcs
is 1.0.

Example 10.3.11 The Markov chain in Example 10.3.10 can be represented as the
labeled digraph shown in Figure 10.3.4.
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The row elements of the state transition matrix p can be summed to form the cu-

mulative state transition matrix P (see Algorithm 10.3.1). This matrix can then be used,
as in Algorithm 10.3.2, to defined the function NextState(x) which returns a random
state x′ ∈ X (with x′ 6= x) consistent with the pdf defined by the x-row of the state
transition matrix. This function can then be used to simulate the time evolution of a
continuous-time Markov chain (for τ time units) with the following algorithm. (Compare
with Algorithm 10.3.3.)

Algorithm 10.3.6 Given the initial state X(0) ∈ X and the functions µ(x) defined for
all x ∈ X , this algorithm simulates the time evolution of the associated continuous-time,
finite-state Markov chain for 0 < t < τ .

t = 0;

x = X(0);

while (t < τ) {

t += Exponential(µ(x));

x = NextState(x);

}
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As illustrated by the following example, Algorithm 10.3.6 will produce a piecewise-

constant state time history x(t) with step discontinuities when the state transitions occur.

Example 10.3.12 Algorithm 10.3.6 applied to the Markov chain in Examples 10.3.11
(with X(0) = 0 and τ = 25) yields the following state time history.*
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Example 10.3.13 An implementation of Algorithm 10.3.6 was run with τ = 10 000,
initial state X(0) = 0, and an rngs initial seed of 12345. The resulting proportion of time
spent in each state is shown below.

state : 0 1 2 3
proportion : 0.100 0.186 0.586 0.128

As we will see, the proportions in Example 10.3.13 form a (good) estimate of the
steady-state pdf for the continuous-time Markov chain in Examples 10.3.11. For future
reference, note that (with d.ddd precision)

p∞ =







0.135 0.153 0.375 0.337
0.135 0.153 0.375 0.337
0.135 0.153 0.375 0.337
0.135 0.153 0.375 0.337






,

where p is the state transition matrix for this Markov chain (Example 10.3.10). Clearly the
common rows of this matrix, which represent the steady-state distribution of something,
are not in agreement with the result in Example 10.3.13. The question then is how, if at
all, are the two pdf vectors

[

0.100 0.186 0.586 0.128
]

and
[

0.135 0.153 0.375 0.337
]

related?

* This time history was generated by using the rngs initial seed 12345. Of course, with
a different initial seed, the time history would have been different.
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Embedded Chain

The answer to the question just posed is based on the observation that “within”
any continuous-time Markov chain is an associated embedded discrete-time Markov chain.
This is made clear by comparing Algorithm 10.3.6, reproduced here for convenience, which
simulates a continuous-time Markov chain

t = 0;

x = X(0);

while (t < τ) {

t += Exponential(µ(x)); /* continuous-time increment */

x = NextState(x);

}

with Algorithm 10.3.3, which simulates the associated embedded discrete-time Markov
chain

t = 0;

x = X(0);

while (t < τ) {

t += 1; /* discrete-time increment /*

x = NextState(x);

}

The numerical value of τ in these two algorithms may differ. The only other difference
is the time-increment assignment. Therefore, with a proper choice of τ ’s and the use of
multiple rngs streams, the state-to-state transitions for both the continuous-time Markov
chain and its associated embedded discrete-time Markov chain would be exactly the same.
The only difference would be the Exponential(µ(x)) amount of time the continuous-time
Markov chain spends in each state, before the next state transition occurs.

This embedded chain observation suggests that the answer to the question posed
previously is that the steady-state pdf vector f∞ for the embedded discrete-time Markov
chain is related to the steady-state pdf vector f for the corresponding continuous-time
Markov chain by the equation

f(x) =
f∞(x)

αλ(x)
x ∈ X

where

α =
∑

x

f∞(x)

λ(x)

is the real-valued parameter required to produce the normalization
∑

x

f(x) = 1

and the sums are over all x ∈ X .
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Example 10.3.14 As discussed previously, the steady-state pdf vector for the embed-
ded discrete-time Markov chain corresponding to the continuous-time Markov chain in
Example 10.3.10 is (with d.ddd precision)

f∞ =
[

0.135 0.153 0.375 0.337
]

.

Starting with the un-normalized pdf definition

f ′(x) =
f∞(x)

λ(x)
x = 0, 1, 2, 3

it follows that

f ′(0) ∼=
0.135

1.0000
f ′(1) ∼=

0.153

0.6667
f ′(2) ∼=

0.375

0.5000
f ′(3) ∼=

0.337

2.0000
.

In this case, the numerical value of the parameter α is

α =

3
∑

x=0

f ′(x) ∼= 1.283

and so the (normalized) steady-state pdf vector for the continuous-time Markov chain is

f =
1

α
f ′ ∼=

[

0.105 0.179 0.585 0.131
]

which compares well with the steady-state estimate

[

0.100 0.186 0.586 0.128
]

in Example 10.3.13.

10.3.3 EXERCISES

Exercise 10.3.1 (a) Use Algorithms 10.3.2 and 10.3.3 to construct a program dtmc that
simulates one realization x(t) of a discrete-time, finite-state Markov chain. Program dtmc

should estimate the proportion of time spent in each state and the statistic

x̄ =
1

τ

∫ τ

0

x(t) dt.

(b) How does this statistic relate to the computed proportions? (c) Comment. (Simulate
the Markov chain in Example 10.3.1 with X(0) = 1 and τ = 10 000.)
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Exercise 10.3.2 (a) As an extension of Exercise 10.3.1, modify program dtmc to produce
multiple realizations (replications). (b) With X(0) = 1, τ = 1, 2, 4, 8, 16, 32, 64 and using
100 replications, compute a 95% confidence interval estimate for the transient statistic

X̄(τ) =
1

τ

∫ τ

0

X(t) dt.

(c) How does this statistic relate to the statistic x̄ computed in Exercise 10.3.1? (d) Com-
ment.

Exercise 10.3.3 (a) As an alternate to always using X(0) = 1, repeat Exercise 10.3.2
except that for each replication draw the value of X(0) at random consistent with the
initial distribution

f0 = [ 0.155 0.290 0.284 0.271 ] .

(b) Comment.

Exercise 10.3.4 (a) Use Algorithms 10.3.2 and 10.3.6 to construct a program ctmc that
simulates one realization x(t) of a continuous-time, finite-state Markov chain. Program
ctmc should estimate the proportion of time spent in each state and the statistic

x̄ =
1

τ

∫ τ

0

x(t) dt.

(b) How does this statistic relate to the computed proportions? (c) Comment. (Simulate
the Markov chain in Example 10.3.10 with X(0) = 1 and τ = 10 000.)

Exercise 10.3.5 (a) As an extension of Exercise 10.3.4, modify program ctmc to produce
multiple realizations (replications). (b) With X(0) = 1, τ = 1, 2, 4, 8, 16, 32, 64 and using
100 replications, compute a 95% confidence interval estimate for the transient statistic

X̄(τ) =
1

τ

∫ τ

0

X(t) dt.

(c) How does this statistic relate to the statistic x̄ computed in Exercise 10.3.4? (d) Com-
ment.

Exercise 10.3.6a (a) Use program ctmc (Exercise 10.3.4) to estimate the steady-state
pdf of the number in aM/M/2/5 service node if λ = 2.5, the two servers are distinguishable
with ν1 = 1, ν2 = 2 and the server discipline is to always choose the fastest available server.
Hint : represent the state of the service node as a 3-tuple of the form (x1, x2, q) where
x1, x2 represent the number in server 1, 2 respectively and q represents the number in the
queue. (b) What did you do to convince yourself that your results are correct?
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Exercise 10.3.7 Work through the details of Example 10.3.7. Keep the constants as
fractions, rather than converting to decimal so that your solutions will be expressed as

f(0) =
152

981
f(1) =

284

981
f(2) =

279

981
f(3) =

266

981
.

Exercise 10.3.8 If 0 < α < 1 and 0 < β < 1 then the discrete-time Markov X(t) chain
defined by

p =







0 1− α α 0
β 0 0 1− β

0 0 0 1
0 1 0 0







is irreducible and aperiodic. (a) Determine its steady-state pdf vector and the steady-state
expected value

lim
t→∞

E[X(t)].

(b) If X(0) = 2 with probability 1, determine E[X(t)] for t = 1, 2, 3, 4.

Exercise 10.3.9 If 0 < αx < 1 for x = 0, 1, . . . , k, the discrete-time Markov chain
defined by

p =













1− α0 α0 0 0 · · · 0 0 0
0 1− α1 α1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 1− αk−1 αk−1

αk 0 0 0 · · · 0 0 1− αk













is irreducible and aperiodic. (a) Determine its steady-state pdf vector. Hint: express your
answer in terms of the parameters

µx =
1

αx

x = 0, 1, . . . , k.

(b) Comment.

Exercise 10.3.10 The discrete-time Markov chain defined by

p =







1/2 1/2 0 0
1/2 1/2 0 0
0 1/3 1/3 1/3
0 0 0 1







has two steady-state pdf vectors. What are they?
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We discuss how to construct a discrete-event simulation model of a network of k ≥ 1
single-server service nodes in this section. This simulation will be based upon the following
model.

• The single-server service nodes are indexed s = 1, 2, . . . , k. The index s = 0 is reserved
for the “super node” that represents the exterior of the network — the source of jobs
flowing into the network and the sink for jobs flowing out of the network. The set of
service nodes is denoted S = {1, 2, . . . , k} with S0 = {0} ∪ S = {0, 1, 2, . . . , k}.

• There is a (k + 1)× (k + 1) node transition matrix p defined in such a way that each
job leaving node s ∈ S0 will transition to node s

′ ∈ S0 with probability

p[s, s′] = Pr( transition from node s to node s′ ).

By convention p[0, 0] = 0.0.

• Each service node has its own queue with its own type of queueing discipline (FIFO,
LIFO, etc.), its own service time distribution (Exponential, Erlang, etc.), and infinite
capacity. The service rate of node s ∈ S is νs.

• The net flow of jobs into the network — the external arrivals — is assumed to be a
Poisson process with rate λ0(t). External arrivals occur at node s

′ ∈ S with probability
p[0, s′] and so

p[0, s′]λ0(t)

is the external arrival rate at node s′ ∈ S, provided p[0, s′] > 0. Consistent with this
assumption, the external arrivals at each service node form a Poisson process.

• As the notation suggests, the external arrival rate λ0(t) may vary with time to form
a nonstationary arrival process.* However, for each s′ ∈ S, the probability p[0, s′] is
constant in time. Indeed, all the p[s, s′] probabilities are constant in time.

Definition 10.4.1 If p[0, s′] = 0 for all s′ ∈ S and p[s, 0] = 0 for all s ∈ S then the
network is said to be closed. That is, a closed network is one for which the number of jobs
in the network is fixed. A network that is not closed is said to be open.

By allowing for a time-varying external arrival rate λ0(t), the discrete-event simula-
tion model we are developing will apply equally well to both open and closed networks.
To simulate a closed network, it is sufficient to prevent departures from the network by
choosing the node transition probabilities so that p[s, 0] = 0 for all s ∈ S and by choosing
the external arrival rate so that λ0(t) becomes zero when the expected (or actual) number
of jobs in the network reaches a desired level. Thus, from a simulation perspective, a closed
network is just a special case of an open network.

* Techniques for simulating a nonstationary Poisson arrival process are discussed in
Section 7.5. Techniques for fitting a nonstationary Poisson arrival process to a data set of
arrival times are discussed in Section 9.3.
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There is an appealing conceptual simplicity to modeling external arrivals as transitions
from the 0th node and departures from the network as transitions to the 0th node. In
this way, by viewing the exterior of the network as one (super) node, all transitions,
including external arrivals and network departures, can be neatly characterized by a single
(k+1)×(k+1) node transition matrix p with the structure indicated. This matrix defines
the topology of the network in the sense that p[s, s′] > 0 if and only if jobs can transition
directly from node s to s′. The p[0, s′] row of this matrix represents the external arrival
probabilities; the p[s, 0] column represents the network departure probabilities.*

p =













0.0 p[0, 1] p[0, 2] p[0, 3] · · · p[0, k]
p[1, 0] p[1, 1] p[1, 2] p[1, 3] · · · p[1, k]
p[2, 0] p[2, 1] p[2, 2] p[2, 3] · · · p[2, k]
...

...
...

...
. . .

...
p[k, 0] p[k, 1] p[k, 2] p[k, 3] · · · p[k, k]













.

Each row of p must sum to 1.0. Just as in a simulation of a Markov chain (Section 10.3),
we can convert p to a cumulative node transition matrix P (Algorithm 10.3.1). This cu-
mulative node transition matrix can then be used to simulate the node-to-node transitions
of jobs as they move into, through, and out of the network (Algorithm 10.3.2).

Examples

The following four examples illustrate the node transition matrix associated with
simple networks of single-server service nodes. The graph-like network representation
illustrated in these examples is relatively standard. Given that, it is important to be able
to translate this representation into the corresponding node transition matrix.

Example 10.4.1 The k = 1 single-server model upon which the ssq series of programs
is based corresponds to the node transition matrix

p =

[

0 1
1 0

]

.

As an extension, this single-server model with feedback probability β from Section 3.3 is
illustrated in Figure 10.4.1.
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Figure 10.4.1.

Single-server service

node with feedback

probability β.

corresponds to

p =

[

0 1
1− β β

]

.

* As an alternative approach, if the network is closed then the first row and column of
p are null so that, in this case, p is effectively a k × k matrix.
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Small networks like those in the following three examples are commonly used to model
job shops. The idea is that raw material enters the job shop at one (or more) nodes
where it is processed, then moved to other network nodes for further processing, etc., until
eventually a finished product leaves the network. Travel time from node to node is assumed
to be negligible and hence is not modeled explicitly.

Example 10.4.2 The conventional tandem-server network model consists of k servers
in series (sequence), as illustrated in Figure 10.4.2.

......................................................................
.........
.......
.......
......
......
.......
.......
........
............

.............................................................................................................................................................................. ..........................
1.0

......................................................................
.........
.......
.......
......
......
.......
.......
........
............

.............................................................................................................................................................................. ..........................
1.0

......................................................................
.........
.......
.......
......
......
.......
.......
........
............

.............................................................................................................................................................................. ..........................
1.0

λ0 · · ·ν1 ν2 νk ................................................................................................................ ..........................
1.0

Figure 10.4.2.

Tandem-server

network.

corresponds to the node transition matrix

p =













0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
1 0 0 · · · 0













.

Example 10.4.3 The network with k = 4 servers shown in Figure 10.4.3
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Figure 10.4.3.

Network

with k = 4
servers.

corresponds to the node transition matrix

p =











0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.2 0.0 0.0 0.0 0.8
0.2 0.0 0.0 0.0 0.8
1.0 0.0 0.0 0.0 0.0











.
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Example 10.4.4 The network with k = 5 servers in Figure 10.4.4
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Figure 10.4.4.

Network

with k = 5
servers.

corresponds to the node transition matrix

p =















0.0 0.4 0.0 0.6 0.0 0.0
0.0 0.0 0.8 0.2 0.0 0.0
0.2 0.4 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.2 0.0 0.0 0.8
1.0 0.0 0.0 0.0 0.0 0.0















.

As indicated by the relatively large number of non-zero elements in p, the topology of this
network is significantly more complex than the previous three networks.

• Although there is no immediate feedback (i.e., the diagonal elements of p are all 0.0),
feedback is certainly possible. For example, a job leaving node 1 will go directly to
node 2 with probability 0.8 and from there will be fed back to node 1 with probability
0.4 so that the probability of this two-step 1→ 2→ 1 feedback is 0.32.

• More complex feedback paths are possible. For example, a job could circulate along
the path 1 → 3 → 4 → 2 → 1 and, because of independence, having done so once,
traverse the same path again, and again . . . The probability of this path is so low
(0.016), however, that multiple cycles on this path by any job will virtually never
occur.

States and Events

To characterize the state of a network of single-server service nodes at any time we
need to know the number of jobs (if any) in each of the k service nodes. Consistent with
this, the events — those things that cause the state of the network to change — are:

• the external arrivals;

• the service node departures.
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Event List

Consistent with the previous discussion, the associated list of next-event times

next external arrival

next departure from node 1

...

next departure from node k

consists of (at most) k + 1 elements, one for each event type. The detailed structure of
this event list (array, linked list, binary tree, heap, etc.) is an (important) implementation
issue that we need not resolve at this modeling level. Note that at any event time t

• the number of jobs (if any) in each of the k service node

and

• the contents of the event list,

together provide a comprehensive snapshot of the system. That is, provided all this in-
formation is recorded, a next-event simulation of a network of single-server service nodes
could be stopped at an event time and then re-started later by using only this recorded
information to re-initialize the simulation. This stop-restart process would produce dy-
namic system behavior that would be statistically indistinguishable from that produced
by the system if it were not stopped. This kind of conceptual check is an important part
of discrete-event system modeling.

In addition to the state variables and the event list, to allow for various queueing
disciplines, it will be necessary to maintain k queue data structures, one for each service
node. Again, the detailed structure of these queues (circular arrays, linked lists, etc.) is
an (important) implementation detail that need not be resolved at this point.

Next-Event Simulation

Consistent with the model just constructed at the conceptual level, we can now con-
struct, at the specification level, a next-event simulation of a network of single-server
service nodes. Recognize that, at least in principle:

• the number of network service nodes can be arbitrarily large;

• the network topology can be arbitrarily complex.

That is, the next-event approach to this discrete-event simulation places no inherent bound
on either the size or topological complexity of the network. Of course there will be practical
bounds, but these will be imposed by hardware limitations and the choice of data structures
and supporting algorithms, not the next-event approach to the simulation.
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The following algorithm makes use of an auxiliary function ProcessArrival(s′) that
handles the arrival of a job at node s′ ∈ S. Specifically:

• if the server at service node s′ is idle, this function will place the arriving job in service
and schedule the corresponding departure from the service node;

• else, if the server is busy, this function will place the arriving job in the queue.

Algorithm 10.4.1 The main loop of a next-event simulation of a network of single-server
service nodes is

while ( some stopping criteria is not met ) {

s = DetermineNextEvent();

if (s == 0)

CreateJob();

else

ProcessDeparture(s);

}

where the action of each function can be characterized as follows.

The function DetermineNextEvent() will:

• check the event list to determine the next (most imminent) event type s ∈ S0 and
associated time t;

• advance the clock to t.

The function CreateJob() will:

• create an external arrival by using the 0th row of the cumulative transition matrix P

to determine at which service node s′ ∈ S this arrival will occur and then call the
function ProcessArrival(s′);

• schedule the next external arrival.

The function ProcessDeparture(s) will:*

• remove a job from service node s ∈ S, use the sth row of the cumulative transition ma-
trix P to determine where this job goes next (the new node s′ ∈ S0), and then (unless
s′ = 0 in which case the job exits the network) call the function ProcessArrival(s′)
to process the arrival of this job at service node s′ ∈ S;

• update the status of service node s by selecting a job from the queue at node s, if one
exists, or otherwise setting the server’s status to idle;

• if the server at node s is not idle, schedule the next departure from this node.

* The processing of a job that experiences immediate feedback must be implemented
carefully in the first two steps of ProcessDeparture(s).
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10.4.1 STEADY-STATE

Flow balance can be used to characterize steady-state for a network of single-server
service nodes with constant arrival rates. This characterization is based upon the following
definition and Theorem 10.4.1.

Definition 10.4.2 For each service node s ∈ S define λs to be the total arrival rate.
That is, λs is determined by summing all the internal arrival rates — jobs from other
network service nodes including, possibly, s itself — plus the external arrival rate.

If the external arrival rate λ0 is constant, from Definition 10.4.2 it follows that steady-
state flow balance at all k service nodes is characterized by the k “flow in equals flow out”
equations

λ0p[0, s
′]

︸ ︷︷ ︸

external

+λ1p[1, s
′] + · · ·+ λs′p[s

′, s′] + · · ·+ λkp[k, s
′]

︸ ︷︷ ︸

internal

= λs′ s′ = 1, 2, . . . , k.

Moreover, it is intuitive that flow balance can be achieved only if λs < νs for s = 1, 2, . . . , k.
This is summarized by the following theorem.

Theorem 10.4.1 If steady-state is possible then:

• The total flow rate λ1, λ2, . . . , λk into and out of each service node is characterized by
the k linear balance equations*

k
∑

s=0

λs p[s, s
′] = λs′ s′ = 1, 2, . . . , k.

• The steady-state utilization of each server is

ρs =
λs

νs
< 1 s = 1, 2, . . . , k.

Example 10.4.5 As a continuation of Example 10.4.1, for a single-server service node
with external arrival rate λ0, service rate ν1, and feedback probability β shown in Fig-
ure 10.4.5,
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1− β

β

1.0 Figure 10.4.5.

Single-server service

node with feedback

probability β.

the single balance equation is
λ0 + λ1β = λ1.

Therefore λ1 = λ0/(1 − β) and we see that the steady-state utilization of a single-server
service node with feedback is ρ1 = λ1/ν1 = λ0/(1− β)ν1 provided ρ1 < 1.

* There are k equations and k unknowns; the constant external arrival rate λ0 is not

unknown.
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Example 10.4.6 As a continuation of Example 10.4.2, for the tandem-server network
illustrated in Figure 10.4.6,
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Figure 10.4.6.

Tandem-server

network.

the balance equations are

λs−1 = λs s = 1, 2, . . . , k

and so λs = λ0 for all s = 1, 2, . . . , k. Therefore, the steady-state utilization of each service
node in a tandem-server network is ρs = λ0/νs provided ρs < 1 for s = 1, 2, . . . , k.

Example 10.4.7 As a continuation of Example 10.4.3, for the network in Figure 10.4.7,
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Figure 10.4.7.

Network with

k = 4 servers.

the balance equations are

λ0 = λ1 node 1

0.6λ1 = λ2 node 2

0.4λ1 = λ3 node 3

0.8λ2 + 0.8λ3 = λ4 node 4.

It is easily verified that the (unique) solution to these four equations is

λ1 = λ0 λ2 = 0.6λ0 λ3 = 0.4λ0 λ4 = 0.8λ0

which defines the steady-state utilization of each service node as

ρ1 =
λ0

ν1

ρ2 = 0.6
λ0

ν2

ρ3 = 0.4
λ0

ν3

ρ4 = 0.8
λ0

ν4

provided ρs < 1 for s = 1, 2, 3, 4.
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Example 10.4.8 As a continuation of Example 10.4.4,
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Figure 10.4.8.

Network with

k = 5 servers.

the balance equations are

0.4λ0 + 0.4λ2 = λ1 node 1

0.8λ1 + 0.2λ4 = λ2 node 2

0.6λ0 + 0.2λ1 = λ3 node 3

λ3 = λ4 node 4

0.4λ2 + 0.8λ4 = λ5 node 5.

It can be verified that the (unique) solution to these five equations is

λ1 =
560

830
λ0 λ2 =

570

830
λ0 λ3 =

610

830
λ0 λ4 =

610

830
λ0 λ5 =

716

830
λ0

which defines the steady-state utilization of each service node as

ρ1 =
560

830
·
λ0

ν1

ρ2 =
570

830
·
λ0

ν2

ρ3 =
610

830
·
λ0

ν3

ρ4 =
610

830
·
λ0

ν4

ρ5 =
716

830
·
λ0

ν5

provided ρs < 1 for s = 1, 2, 3, 4, 5.

Consistency Check

In addition to the k flow balance equations in Theorem 10.4.1, there is one additional
equation

k
∑

s=1

λsp[s, 0] = λ0

which characterizes flow balance for the 0th node. Although this may seem to be a new
equation, independent of the others, it is not. That is, it can be shown that this equation
can be derived from the k equations in Theorem 10.4.1. The proof of this result is left as
an exercise. The point is that the 0th node balance equation provides no new information.
However, it does provide a good consistency check on the correctness of the steady-state
λ’s.
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Example 10.4.9 To illustrate the previous discussion:

• for Example 10.4.1, the 0th node balance equation is λ1(1− β) = λ0;

• for Example 10.4.2, the 0th node balance equation is λk = λ0;

• for Example 10.4.3, the 0th node balance equation is 0.2λ2 + 0.2λ3 + λ4 = λ0;

• for Example 10.4.4, the 0th node balance equation is 0.2λ2 + λ5 = λ0.

It can verified that in each case, this equation is satisfied.

Jackson Networks

Definition 10.4.3 A network of single-server service nodes is a Jackson network if and
only if:

• the external arrival process is a stationary Poisson process (λ0 is constant in time);

• the service time distribution at each service node is Exponential(1/νs) (the service
rate νs is constant in time);

• all service times processes and the external arrival process are statistically indepen-
dent;

• at each service node, the queue discipline assumes no knowledge of service times (e.g.,
FIFO, LIFO, and SIRO, which were defined in Section 1.2, are valid queue disciplines,
but SJF is not).

If we are willing to make all the assumption associated with a Jackson network then
the following remarkable theorem, Jackson’s theorem, is valid. The proof of this theorem
is beyond the scope of this text.

Theorem 10.4.2 Each service node in a Jackson network operates independently as an
M/M/1 service node in steady-state.*

By combining Theorems 10.4.1 and 10.4.2 we have the following algorithm for analyz-
ing the steady-state behavior of an open Jackson network of single-server service nodes.

Algorithm 10.4.2 The steady-state behavior of an open Jackson network of k single-
server service nodes can be analyzed as follows.

• Set up and solve the k balance equations for λ1, λ2, . . ., λk.

• Check that the 0th node balance equation is satisfied.

• Check that steady-state can occur, i.e., ρs = λs/νs < 1 for all s = 1, 2, . . . , k.

• Analyze each node as a statistically independent M/M/1 service node with arrival
rate λs, service rate νs, and utilization ρs.

* This theorem is valid for both open and closed Jackson networks.
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Example 10.4.10 As a continuation of Example 10.4.5, for an external Poisson arrival
process with rate λ0, an Exponential(1/ν1) server, and feedback probability β

.................................................................................
.........
........
.......
.......
......
......
......
.......
........
.........

...............
........................................................................................................................................................................................................................... .......................... ................................................................................................................................................................................. ..........................λ0

ν1

......

......

......

......

......

......

......

......

......

......

......

......

..............................

..........................

• •

1− β

β
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Single-server service

node with feedback

probability β.

the steady-state number in the service node, L1, is a Geometric(ρ) random variable pro-
vided ρ1 = λ0/(1 − β)ν1 < 1.* Therefore, in particular, if λ0 = 1, ν1 = 3, and β = 0.5,
then ρ1 = 2/3 and it follows that the expected value of L1 is

E[L1] =
ρ1

1− ρ1

=
2/3

1− 2/3
= 2.

Note that:

• If there is no feedback (β = 0) then ρ1 = 1/3 and E[L1] = 0.5.

• If the feedback probability approaches 2/3 (β → 2/3) then ρ1 → 1 and E[L1]→ ∞.

Example 10.4.11 As a continuation of Example 10.4.6, for an external Poisson arrival
process with rate λ0 and a tandem-server network of k independent Exponential(1/νs)
servers
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Figure 10.4.10.

Tandem-server

network.

the steady-state number in each service node, Ls, is a Geometric(ρs) random variable
provided ρs = λ0/νs < 1 for all s = 1, 2, . . . , k. The steady-state number in the network is
L = L1 + L2 + · · ·+ Lk. Therefore the expected value of L is

E[L] =
ρ1

1− ρ1

+
ρ2

1− ρ2

+ · · ·+
ρk

1− ρk
.

Moreover, if all the service rates are equal, i.e., νs = ν for all s (and if ρ = λ0/ν < 1) then

E[L] =
kρ

1− ρ

Because L is a sum of k independent Geometric(ρ) random variables, we have the following
theorem.

Theorem 10.4.3 Given a stationary Poisson arrival process with rate λ to a tandem-
server network of k independent Exponential(1/ν) servers with ρ = λ/ν < 1 then the
steady-state number in the network is a Pascal(k, ρ) random variable.

* The arrival, service, and feedback processes must be statistically independent.
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In general for any open Jackson network with k service nodes the steady-state expected
number in the network will be

E[L] =
ρ1

1− ρ1

+
ρ2

1− ρ2

+ · · ·+
ρk

1− ρk
.

The E[L] = λE[W ] form of Little’s equation is applicable to the entire network and so the
expected wait (time spent in the network) is

E[W ] =
E[L]

λ0

.

Example 10.4.12 As a continuation of Example 10.4.7, if the network depicted in
Figure 10.4.11
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Figure 10.4.11.

Network with

k = 4 servers.

is a Jackson network with

λ0 =
1

120
ν1 =

1

84
ν2 =

1

170
ν3 =

1

225
ν4 =

1

120

then it can be shown that

E[L] =
7

3
+
17

3
+ 3 + 4 = 15.

It follows that the expected wait in the network is

E[W ] =
E[L]

λ0

= 120 · 15 = 1800.

Exercise 10.4.4 illustrates another way to compute E[W ].
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10.4.2 EXERCISES

Exercise 10.4.1 Consider an open Jackson network with node transition matrix

p =







0.00 1.00 0.00 0.00
0.20 0.00 0.72 0.08
0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00







and parameters

λ0 = 0.15 ν1 = 1.00 ν2 = 0.90 ν3 = 0.12.

(a) Verify that this system can achieve steady-state and determine the steady-state uti-
lization of each service node. (b) Verify that the 0th node balance equation is satisfied.
(c) Compute E[L] and E[W ].

Exercise 10.4.2 Do the same as in Exercise 10.4.1 except for the Jackson network
defined by

p =







0.00 0.50 0.00 0.50
0.00 0.00 1.00 0.00
0.00 0.25 0.25 0.50
1.00 0.00 0.00 0.00







with parameters

λ0 = 2 ν1 = 2 ν2 = 3 ν3 = 3.

Exercise 10.4.3 (a) As an extension of Theorem 10.4.3, prove that if the queue disci-
pline at each service node is FIFO then the steady-state wait in a k-node tandem-server
network is an Erlang(k, 1/(ν − λ)) random variable. (b) Is this result consistent with
Example 10.4.11 and Little’s equation E[L] = λ0E[W ]?

Exercise 10.4.4 (a) As a continuation of Example 10.4.12, compute the expected
steady-state wait E[Ws] for s = 1, 2, 3, 4 and then verify that

E[W ] = E[W1] + 0.6E[W2] + 0.4E[W3] + 0.8E[W4] = 1800.

(b) What special property of the network in Example 10.4.12 facilitates this approach to
computing E[W ]?

Exercise 10.4.5 Construct a next-event simulation of the network in Exercise 10.4.1.
Assume all queues are FIFO.

Exercise 10.4.6 Construct a next-event simulation of the network in Exercise 10.4.2.
Assume all queues are FIFO.
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This text emphasizes the use of a high-level algorithmic language for the implementa-
tion of discrete-event simulation models. Many discrete-event simulation modelers prefer
to use a simulation programming language to save on model development time. This ap-
pendix surveys the history of these simulation programming languages and illustrates the
use of one of these languages on the single-server service node model from Section 1.2.

A.1 HISTORY

The use of a general-purpose simulation programming language (SPL) expedites model
development, input modeling, output analysis, and animation. In addition, SPLs have
accelerated the use of simulation as an analysis tool by bringing down the cost of developing
a simulation model. Nance (1993) gives a history of the development of SPLs from 1955
to 1986. He defines six elements that must be present in an SPL:

• random number generation

• variate generation

• list processing capabilities so that objects can be created, altered, and deleted

• statistical analysis routines

• summary report generators

• a timing executive or event calendar to model the passage of time

These SPLs may be (i) a set of subprograms in a high-level algorithmic language
such as FORTRAN, Java, or C that can be called to meet the six requirements, (ii) a
preprocessor that converts statements or symbols to lines of code in a high-level algorithmic
language, or (iii) a conventional programming language.

The historical period is divided into five distinct periods. The names of several lan-
guages that came into existence in each period (subsequent versions of one particular
language are not listed) are:

• 1955–1960. The period of search: GSP

• 1961–1965 The advent: CLP, CSL, DYNAMO, GASP, GPSS, MILITRAN, OPS,
QUIKSCRIPT, SIMSCRIPT, SIMULA, SOL

• 1966–1975. The formative period: AS, BOSS, Q-GERT, SLANG, SPL

• 1971–1978. The expansion period: DRAFT, HOCUS, PBQ, SIMPL

• 1979–1986. Consolidation and regeneration: INS, SIMAN, SLAM

The General Purpose System Simulator (GPSS) was first developed on various IBM com-
puters in the early 1960’s (Karian and Dudewicz, 1991). Its block semantics were ideally
suited for queueing simulations. Algol-based SIMULA was also developed in the 1960’s
and had features that were ahead of its time, including abstract data types, inheritance,
the co-routine concept, and quasi-parallel execution.
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SIMSCRIPT was developed by the RAND Corporation with the purpose of decreas-
ing model and program development times. SIMSCRIPT models are described in terms
of entities, attributes, and sets. The syntax and program organization was influenced by
FORTRAN. The Control and Simulation Language (CSL) takes an “activity scanning”
approach to language design, where the activity is the basic descriptive unit. The Gen-
eral Activity Simulation Program (GASP), as with several of the other languages, used
flow-chart symbols to bridge the gap between personnel unfamiliar with programming and
programmers unfamiliar with the application area. Although originally written in Al-
gol, GASP provided FORTRAN subroutines for list-processing capabilities (e.g., queue
insertion). GASP was a forerunner to the Simulation Language for Alternative Modeling
(SLAM) and SIMulation ANalysis (SIMAN) languages. SLAM (Pritsker, 1995) was the
first language to include three modeling perspectives in one language: network (process
orientation), discrete-event, and continuous (state variables). SIMAN was the first major
SPL executable on an IBM PC.

Languages that have been developed since Nance’s consolidation and regeneration
period include Witness, Csim, ProModel (Harrell, Ghosh, and Bowden, 2000), SIGMA
(Schruben, 1992), @RISK (Seila, Ceric, Tadikamalla, 2003), and Arena (a combination of
SIMAN and the animator Cinema, see Kelton, Sadowski, and Sadowski, 2002). A survey of
the current SPLs on the market is given by Swain (2003). More detail on current popular
SPLs is given in Chapter 3 of Banks, Carson, Nelson, and Nicol (2001).

A.2 SAMPLE MODEL

Although the choice of languages is arbitrary, we illustrate the use of the SLAM
(Pritsker, 1995) language, which came into prominence between the eras of SPLs consisting
entirely of subprograms and the current “point-and-click” GUIs now available with most
SPLs. The language’s market share peaked in the late 1980’s and and early 1990’s. We
model the single-server service node in SLAM. The single-server service node model was
presented in Section 1.2 using a “process interaction” world view and later presented in
Section 5.1 (program ssq3) using a “next-event” world view. Like program ssq3, SLAM
uses a next-event world view.

SLAM Nodes

The simplest way to model a single-server service node in SLAM is to use a network

orientation with nodes and branches used to represent the system. SLAM uses the term
entity to generically refer to objects passing through the network. Other languages often
use the term transaction. Depending on the model, an entity could be a job, a person, an
object, a unit of information, etc. Branches, or activities, connect the nodes in a network
diagram and represent the paths along which entities move. Activities are used to model
the passage of time. Nodes can be used for creating entities, delaying entities at queues,
assigning variables, etc. For the single-server service node model, an entity is a job. There
are 20 types of nodes in the SLAM language. We will use three of these node types to
model a single-server service node.
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A CREATE node that is used to create entities is illustrated in Figure A.1.
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Figure A.1.

CREATE

node.

The node parameters are:

• TF, the time of the first entity creation (default: 0);

• TBC, the time between entity creations (default: ∞);

• MA, the attribute number associated with the entity where the creation time is saved,
known as the “mark attribute” (default: don’t save the creation time);

• MC, maximum number of entities created at this node (default: ∞);

• M, maximum number of emanating branches to which a created entity can be routed
(default: ∞).

Entities are created using a next-event approach with a deterministic or probabilistic time
between creations, as specified by the TBC parameter. Each entity has a user-specified
number of attributes that it maintains as it passes through the network. Typical attributes
are the arrival time to the system, routing information, and service time characteristics.
The MC parameter determines when the CREATE node will stop creating entities. If the
entity is to be “cloned” and duplicate copies sent out over several branches emanating
from the CREATE node, the M parameter designates the maximum number of branches that
can be taken.

A QUEUE node that is used to store entities that are waiting for a server is illustrated
in Figure A.2.
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Figure A.2.

QUEUE

node.

The node parameters are:

• IQ, initial number in the queue (default: 0);

• QC, queue capacity (default: ∞);

• IFL, a file number used by the SLAM filing system (no default).
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The QUEUE node is used for delaying entities prior to a “service” activity. If the initial
number in the queue is positive, SLAM will place entities in the queue at the beginning
of the simulation run and begin the simulation run with all servers busy. If the queue
capacity is finite, three things can happen to an entity that arrives to a full queue: the
arriving entity can be destroyed; the arriving entity can balk to another node; the entity
can block another server from performing their activity due to lack of space in the queue.
The file number IFL indicates where SLAM will store entities that are delayed because of
busy server(s). SLAM maintains a filing system which is a FORTRAN-based doubly-linked
list to store entities waiting in queues, as well as calendar events.

The TERMINATE node is illustrated in Figure A.3.
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Figure A.3.

TERMINATE

node.

The node parameter TC specifies a simulation termination condition (default: ∞). When
the TCth entity arrives to the TERMINATE node, the simulation ends and a SLAM output
report is printed.

SLAM Network Discrete-Event Simulation Model

Our attention now turns to using these three nodes to model a single-server service
node. Recall that the times between arrivals to the node were independent Exponential(2.0)
random variates, and service times were independent Uniform(1.0, 2.0) random variates.
A SLAM network diagram for a single-server service node is illustrated in Figure A.4.
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Single-server

service node

model.

The first job is created at time zero; subsequent jobs are created with an inter-creation
time that is exponentially distributed with a mean of 2 minutes.* Jobs traverse the branch
(activity) between the CREATE and QUEUE node in 0 time units. In the QUEUE node, jobs
wait in file 1 (numbered for identification on the output report) for the server. The server
is modeled by the activity (branch) number 1 (numbered for output report identification)
following the QUEUE node. The time to traverse this branch is Uniform(1, 2) and corre-
sponds to a service time. The TERMINATE node is where the entity representing the job is
“destroyed.”

* SLAM uses a Lehmer random number generator with 10 streams and changeable
initial seed values. SLAM also provides random variate generators for several popular
distributions (e.g., exponential, normal, Poisson, Weibull).
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The SLAM philosophy is that models are constructed as network diagrams at the
on-screen iconic level. For most implementations of SLAM, software is available for au-
tomatically converting an iconic model (network diagram) to executable FORTRAN-like
statements. The executable SLAM statements corresponding to the single-server service
node network diagram are shown below.

GEN, LEEMIS, SSQ3, 9/30/04, 1, Y, Y, Y, Y, Y, 72;

LIMITS, 1, 2, 100;

NETWORK;

CREATE, EXPON(2.0); CREATE CUSTOMERS

QUEUE(1); WAIT FOR THE SERVER HERE

ACTIVITY/1, UNFRM(1.0, 2.0); SERVICE TIME

TERMINATE; CUSTOMERS LEAVE SYSTEM

ENDNETWORK;

INIT, 0, 10000; RUN FOR 10 000 MINUTES

FIN;

The statements that begin in column 1 are called SLAM control statements. SLAM
provides 20 control statements to create initial or terminal conditions, allocate memory,
run traces, etc. Five such statements are illustrated in this example. The statements
that are indented correspond to the network diagram. All statements end in a semicolon,
followed by optional comments.

The GEN(erate) control statement has a parameter list that begins with the modeler’s
name, model name, and a date. The 1 following the date indicates the number of replica-
tions (called “runs” in SLAM) of the simulation model. The fields following the number of
replications (with Y parameters indicating “YES”) indicate that defaults are to be taken
for printing an echo report, input statements, etc. The last parameter tells SLAM to print
a 72 column output report.

The LIMITS control statement has three parameters: the number of files used, the
number of attributes per entity and the maximum number of concurrent entities in the
system. SLAM uses a file system based on static allocation of memory at compilation time.
The NETWORK control statement indicates the beginning of the SLAM network statements.
The INIT control statement indicates that the simulation should be run between times 0
and 10,000. The FIN control statement indicates the end of the SLAM control statements.

SLAM provides the user with an “echo” report, which gives information such as rank-
ing criterion in files (the FIFO default is used here), random number streams and associ-
ated seed values, model initialization options, termination criteria, and memory allocation.
The echo report has been omitted since its contents simply reflect that the model has been
properly specified.

The SLAM summary report follows.
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S L A M I I S U M M A R Y R E P O R T

SIMULATION PROJECT SSQ3 BY LEEMIS

DATE 9/30/2004 RUN NUMBER 1 OF 1

CURRENT TIME 0.1000E+05

STATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

**FILE STATISTICS**

FILE AVERAGE STANDARD MAXIMUM CURRENT AVERAGE

NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

1 QUEUE 1.181 1.839 16 0 2.349

2 CALENDAR 1.756 0.429 3 1 1.273

**SERVICE ACTIVITY STATISTICS**

ACT ACT LABEL OR SER AVERAGE STD CUR AVERAGE MAX IDL MAX BSY ENT

NUM START NODE CAP UTIL DEV UTIL BLOCK TME/SER TME/SER CNT

1 QUEUE 1 0.756 0.43 0 0.00 16.75 138.05 5026

The report echos the model name, modeler’s name and date, then indicates the simulation
clock time (current time) when this report was generated. The file statistics section shows
that there were two files used in the model: the first for queuing up jobs and the second
to hold the event calendar. The statistics for the queue show that the average number in
the queue (length of the queue) was 1.181, with a standard deviation of 1.839. The queue
length reached a maximum of 16 jobs The average delay (wait) time for a job was 2.349
minutes. The queue is currently (at time 10,000) empty. The statistics for the calendar
show that there were an average of 1.756 events on the calendar during the simulation,
with a standard deviation of 0.429. There were a maximum of three events on the calendar
at one time: the next arrival, an end-of-service event, and the pseudo-event (see Lecture
13) at time 10,000 to end the simulation. There is currently one event left on the calendar
(which must be the next arrival since the pseudo-event has been processed and the server is
idle at the end of the simulation). Finally, the average calendar event stays on the calendar
for 1.273 time units.

The service activity statistics indicate that the server utilization was 0.756. The
server is currently (at time 10,000) idle. The longest time that the server was idle during
the simulation was 16.75 minutes, while the longest time the server was busy during the
simulation was 138.05. A total of 5026 jobs were served during the simulation, which is
consistent with an arrival rate of 0.5.
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A.3 CONCLUSIONS

There are advantages to using SLAM, or any other SPL. First, many lines of code
are saved over implementing a model in a high-level algorithmic language. This may be
helpful in terms of debugging. Second, an SPL has routines for managing files and the event
calendar which allow the modeler to focus on modeling, as opposed to sequencing events
and establishing queue priorities. Third, standard summary reports, including histograms
and other statistical displays, are automatically generated. Fourth, animation of a model,
a powerful tool for communication with management, is typically included as a part of
modern simulation languages. This would be a custom and rather intricate programming
project for someone using a high-level algorithmic language. Templates are now available
in many languages that customize an animation to a particular application area (e.g.,
banking, medicine, manufacturing). Fifth, most ordinary embellishments (e.g., multiple
servers or a new queue discipline) are an easy matter in a simulation language. SLAM, for
example, allows a modeler to write FORTRAN or C code for any embellishments that are
not built into the language.

There are several disadvantages to using an SPL. First, simulation languages tend
to have a slant toward one particular type of model. SLAM, for example, is very strong
in modeling queuing-type models (e.g., inventory models). It has not been designed well
for modeling most reliability systems, however, and a modeler might need to write code
for modeling series and parallel systems in an high-level algorithmic language. Second,
the modeler does not have complete control over the data structures that are used in a
simulation language. In some models, this may be burdensome. Third, memory may
be wasted in a simulation language. SLAM, for example, requires that all entities have
the same number of attributes — something that a programmer may prefer to avoid.
Finally, since the modeler does not have access to the internal algorithms contained in
an SPL, a modeler can easily make an incorrect assumption about the behavior of the
language under certain circumstances, which can result in incorrect conclusions. Schriber
and Brunner (1998) survey the internal assumptions and associated algorithms present in
most modern SPLs.

Recent advances in SPLs include object-oriented simulation languages (Joines and
Roberts, 1998), web-based simulation languages (Kilgore, 2002), and parallel and dis-
tributed simulation (Fujimoto, 1998).

A.4 EXERCISES

Exercise A.1 (a) Program the M/G/1 queue described in this section in the language
of your choice. (b) If possible, control the random number generator seed so that your
output matches that of program ssq3.

Exercise A.2 (a) Use an Internet search engine to identify SPLs that support discrete-
event simulation. (b) Classify these languages based on modeling features of your choice.
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The purpose of this appendix is to summarize the arithmetic and mathematical prop-
erties of integers that are most relevant to an understanding of random number generation.
The primary emphasis is on integer division and factoring.

Terminology

Because some properties summarized in this appendix apply to, for example, the
positive integers only, we begin with the following standard clarifying terminology:

• the positive integers are 1, 2, 3, . . .;

• the non-negative integers (positive and zero) are 0, 1, 2, 3, . . .;

• the negative integers are . . . ,−3,−2,−1;

• the integers (positive, negative and zero) are . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

So, for example, the positive integers have the property that they are closed under addition
and multiplication, but not under subtraction. In contrast, the integers are closed under
all three operations.

Theory

There are two (related) theoretical properties of the positive integers that are listed
here for completeness:

• well ordering — any non-empty set of positive integers has a smallest element;

• mathematical induction — S is a set of positive integers. If 1 ∈ S and if n+1 ∈ S for
each n ∈ S, then all the positive integers are in S.

All of the standard integer arithmetic existence theorems are based on one or both of these
properties. The following important theorem is an example.

Integer Division

Theorem B.1 Division Theorem — if b is an integer and a is a positive integer then
there exists a unique pair of integers q, r with 0 ≤ r < a such that b = aq + r.

Example B.1 The division theorem is an existence theorem. That is, the integer pair
(q, r) is guaranteed to exist. The theorem does not address at all the algorithmic question
of how to determine (q, r). Of course, we were all taught to do division as children and,
in that sense, the algorithm for finding (q, r) is second nature — divide a into b to get the
quotient q with remainder r.

• If (a, b) = (7, 17) then (q, r) = (2, 3). That is, 17 = 7 · 2 + 3.

• If (a, b) = (7,−17) then (q, r) = (−3, 4). That is, −17 = 7 · (−3) + 4.

In terms of implementation, the computation of (q, r) is directly related to the following
two functions.
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Floor and Ceiling Functions

Definition B.1 For any real-valued number x

• the value of the floor function bxc is the largest integer n such that n ≤ x;

• the value of the ceiling function dxe is the smallest integer n such that x ≤ n.

Example B.2 For example, b7.2c = b7.7c = 7 and b−7.2c = b−7.7c = −8. Similarly
d7.2e = d7.7e = 8 and d−7.2e = d−7.7e = −7.

The floor (“round to the left”) and ceiling (“round to the right”) functions are related.
(This figure represents the real number line with tick marks at the integers.)

bxc dxex

•

Specifically, the floor and ceiling functions satisfy the following properties.

• If x is an integer then dxe = bxc.

• If x is not an integer then dxe = bxc+ 1.

• In general dxe = −b−xc.

Because of these properties, it is sufficient for a programming language to provide just one
of these functions, usually the floor function.

Example B.3 In ANSI C both the floor and ceiling functions are provided, albeit in a
potentially confusing way. That is, a floating point value is converted to an integer value
by “truncation of any fractional part.” So, for example, if x is a double and n is a long
then the assignment n = x and the type conversion coerced by the cast (long) x will
both produce bxc if x ≥ 0.0 or dxe if x < 0.0. Therefore, one has to be careful about
the sign of x if a float-to-int conversion is used to compute the floor or ceiling function.
As an alternative, although the functions floor(x) and ceil(x) in the standard library
<math.h> return a floating point result, they are otherwise a correct implementation of
bxc and dxe respectively, even if x is negative.

An important characterization that is used at several places in the body of this text
is that for any number x, integer or not

• bxc ≤ x < bxc+ 1.

So, for example, 3 = b3.4c ≤ 3.4 < b3.4c+ 1 = 4. Moreover, for any integer n

• bx+ nc = bxc+ n

but, in general,

• bnxc 6= nbxc.

So, for example, b3.4 + 8c = b3.4c+ 8 = 11 but b8 · 3.4c = b27.2c = 27 6= 8 · b3.4c = 24.
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Modulus Function

Definition B.2 Relative to Theorem B.1 and Definition B.1, if b is an integer and a is
a positive integer then the remainder is r = b − bb/aca where the quotient is q = bb/ac.
Equivalently, the modulus (mod) function is effectively defined by the division theorem,
with an implementation based on the floor function as

b mod a = b− bb/aca.

Example B.4 As in Example B.1, if (a, b) = (7, 17) then the quotient is q = b17/7c = 2
and the remainder is r = 17 mod 7 = 3. Provided a is a positive integer and b is a
non-negative integer, in ANSI C the computation of q and r is direct as

q = b / a; /* q is bb/ac */

r = b % a; /* r is b mod a */

If, however, b (or a) is a negative integer then the ANSI C standard allows the computation
of q and r to be implementation dependent. That is, in this case the value of q and r may
be different from the mathematical definition of bb/ac and b mod a.*

Although the following theorem is not as fundamental as either Theorem B.1 or B.3
(presented later), it is an important result that relates directly to the implementation of
Lehmer random number generators introduced in Section 2.1. From an implementation
perspective, the significance of this theorem is that the mod function can be applied term-
by-term to help prevent integer overflow in intermediate calculations.

Theorem B.2 If a is a positive integer and b1, b2, . . . , bn are integers then

• (b1 + b2 + · · ·+ bn) mod a =
(

(b1 mod a) + (b2 mod a) + · · ·+ (bn mod a)
)

mod a;

• (b1b2 · · · bn) mod a =
(

(b1 mod a) (b2 mod a) · · · (bn mod a)
)

mod a.

Example B.5 If a is a positive integer and b, c are integers then because a mod a = 0
and 0 ≤ b mod a < a it follows that

(b+ ac) mod a = ((b mod a) + (ac mod a)) mod a

= ((b mod a) + ((a mod a)(c mod a) mod a)) mod a

= (b mod a) mod a

= b mod a.

* It is the case, however, that the division and remainder operations are consistent in
that the value of (b / a) * a + (b % a) is required to be equal to b for all integer values
of a and b, provided a is not zero.
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Divisors and Primes

Definition B.3 If r is zero in Theorem B.1, so that b = aq, then a is said to be a divisor

(or factor) of b. Equivalently, a is said to divide b. (Although not used in this book, the
notation a | b is commonly used to denote “a divides b.”)

Example B.6 Given the positive integers a, b, and c:

• if a divides b and a divides c then a divides b+ c;

• if a divides b and a divides c with b > c then a divides b− c;

• if a divides b or a divides c then a divides bc;

• if a divides b and b divides c then a divides c.

Definition B.4 A positive integer p > 1 is prime if and only if the only positive integers
that divide p are p and 1.*

Example B.7 By convention, 1 is not a prime integer. The first few primes are 2, 3, 5,
7, 11, 13, 17, 19, 23, 29, . . . The program sieve, described subsequently, implements the
classic prime sieve of Eratosthenes, a simple algorithm for finding all the prime numbers
between 2 and a user-specified upper limit.

Theorem B.3 Fundamental Theorem of Arithmetic — any positive integer n > 1 can
be uniquely written as

n = pk1

1
pk2

2
· · · pkr

r

where p1 < p2 < · · · < pr are the r distinct prime integer divisors of n with corresponding
positive integer exponents k1, k2, . . ., kr.

Example B.8 Relative to Theorem B.3, if n is prime then r = 1 and p1 = n with k1 = 1.
If n is not prime then r ≥ 2. For example

38 = 2 · 19

39 = 3 · 13

40 = 23 · 5

41 = 41 (41 is prime)

60 = 22 · 3 · 5

2100 = 22 · 3 · 52 · 7

In general, given a table of primes between 2 and b
√
nc (see program sieve), the prime

factors of n can be determined by systematically trying 2, 3, 5, 7, 11, . . ., in order.

* A positive integer that is not prime is said to be composite.
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Definition B.5 If a, b are positive integers then the positive integer d is a common

divisor if and only if d divides both a and b. The largest such common divisor is called the
greatest common divisor, denoted gcd(a, b). In general, gcd(a, b) = gcd(b, a).

Example B.9 The two integers 12, 30 have 2, 3, and 6 as common divisors. The largest
of these is 6 and so gcd(12, 30) = 6. Note that gcd(12, 24) = 12.

Definition B.6 The two positive integers a, b are relatively prime if and only if a, b
have no common prime divisors, or, equivalently, gcd(a, b) = 1.

Example B.10 The integers 10, 18 are not relatively prime because they have 2 as a
common prime factor. Indeed, gcd(10, 18) = 2. The integers 10, 21 are relatively prime
because they have no common prime factors, i.e., gcd(10, 21) = 1.

Example B.11 If either of the distinct positive integers a, b (or both) are prime then
a, b are relatively prime, i.e., gcd(a, b) = 1.

The definition of the greatest common divisor of two positive integers a and b is clear.
Determining the greatest common divisor is not. The Euclidean Algorithm can be used to
compute the greatest common divisor of a and b.

Algorithm B.1 Euclidean Algorithm — Given two positive integers a, b this algorithm
computes the greatest common division gcd(a, b)

r = a % b;

while (r > 0) {

a = b;

b = r;

r = a % b;

};

return b;

Theorem B.4 (Fermat’s “little” theorem) If m is prime and a is an integer such that
a/m is not an integer, then

am−1 mod m = 1.

A small variation allows this theorem to be stated with a simpler hypothesis.

Theorem B.5 (Fermat’s “little” theorem, second statement) If m is prime, then

am mod m = a mod m

for all integers a.
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Sieve of Eratosthenes

The discussion thus far concerning prime numbers has focused on the definition of
a prime number and associated results rather than how to find prime numbers. Named
after a Greek scientist who devised the algorithm, the sieve of Eratosthenes finds all prime
numbers between 2 and some specified positive integer N . We begin with a conceptual
description of the sieve.

Assume that we want a list of all the prime numbers between 2 and N . One way to
proceed is as follows. For illustration, assume that N = 100. First, write all the integers
between 2 and 100 in order:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 100

The sieve works from left to right on this string of integers in the following fashion. A
pointer initially points to 2. We know that 2 is prime, but all other even numbers can’t
be prime, so we cross out 4, 6, 8, . . . , 100.

...................................
.....
.......
.....

2 3 4
................................. 5 6

................................. 7 8
................................. 9 10

................................. 11 12
................................. 13 14

................................. 15 . . . 100
.................................

The pointer now advances to the next integer that has not been crossed out: 3, which is
prime. The multiples of 3, namely 6, 9, 12, . . . , 99 can’t be prime, so they are crossed out.
(This will result in the even multiples of 3 being crossed out twice.)

2

...................................
.....
.......
.....

3 4
................................. 5 6

.................................

................................. 7 8
................................. 9

................................. 10
................................. 11 12

.................................

................................. 13 14
................................. 15

................................. . . . 100
.................................

The pointer now advances to 5, the next integer that has not been crossed out. The
integers 10, 15, 20, . . . , 100 can’t be prime, so they are crossed out.

2 3 4
.................................

...................................
.....
.......
.....

5 6
.................................

................................. 7 8
................................. 9

................................. 10
.................................

................................. 11 12
.................................

................................. 13 14
................................. 15

.................................

................................. . . . 100
.................................

.................................

Finally, the pointer is advanced to 7, and the integers 14, 21, 28, . . . , 98 are crossed out.

2 3 4
................................. 5 6

.................................

.................................

...................................
.....
.......
.....

7 8
................................. 9

................................. 10
.................................

................................. 11 12
.................................

................................. 13 14
.................................

................................. 15
.................................

................................. . . . 100
.................................

.................................

The sieve only needs to advance the pointer to
√
N =

√
100 = 10 to cross out all of the

composite integers between 2 and 100. The 25 prime numbers that remain are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

At the specification level, we define an array prime that will eventually contain 0 for
composite numbers, and 1 for prime numbers. To initialize, prime[0] and prime[1] are set
to zero, and prime[2] through prime[N] are set to one. The pointer from the conceptual
development is the for loop index n. When ever a prime number n is encountered, prime
[2 * n], prime[3 * n], etc. are set to zero.
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Algorithm B.2 Given some positive integer N , this algorithm implements the sieve of
Eratosthenes, assigning the array prime to binary values (0 for composite, 1 for prime) in
order to indicate all of the prime numbers between 2 and N .

prime[0] = 0; /* zero is composite */

prime[1] = 0; /* one is composite */

for (n = 2; n <= N; n++)

prime[n] = 1;

for (n = 2; n <=
√
N; n++)

if (prime[n])

for (s = 2; s <= (N/n); s++)

prime[s * n] = 0;

Program sieve implements this algorithm and prints the primes between 2 and N in
a tabular format.

The operation of the sieve of Eratosthenes suggests that primes may be rarer for larger
integers. Experimentation indicates that this may indeed be the case. There are 25 primes
between 1 and 100, 21 primes between 101 and 200, 16 primes between 1001 and 1100,
11 primes between 10 001 and 10 100, and only 6 primes between 100 001 and 100 100. Do
we ever “run out” of primes (i.e., is there a “largest” prime)? The answer is no. There
are an infinite number of primes, as proved by Euclid. The distribution of primes over
the positive integers is a central topic in “analytic number theory.” The prime number

theorem, which was proved independently by Hadamard and de la Vallée–Poussin, states
that

lim
x→∞

π(x)

x/ ln(x)
= 1

where π(x) is the number of primes less than of equal to x.

The presentation of integer arithmetic given in this appendix is intentionally elemen-
tary. For more information, we recommend the following texts, in order of increasing level
of sophistication: Chapter 3 of Epp (1990), Vanden Eynden (2001), Chapters 3 and 4 of
Graham, Knuth, and Patashnik (1989), and Niven, Zuckerman, and Montgomery (1991).

B.1 EXERCISES

Exercise B.1 Implement the Euclidean Algorithm (Algorithm B.1). Test the algorithm
with (a) a = 12 and b = 30. (b) a = 48 271 and b = 231 − 1.

Exercise B.2 Modify program sieve to count the number of primes between 1 and x,
defined earlier as π(x), in order to check the validity of the prime number theorem for
x = 10, 100, 1000, 10 000, 100 000, and 1 000 000.
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This appendix contains a summary of the parameter estimates for the discrete and
continuous stationary parametric models presented in this text. See

• Section 9.2.1 for a discussion of how to hypothesize a model (e.g., only use the Pois-

son(µ) distribution when x̄/s2 ∼= 1.0);

• Section 9.2.2 for a general discussion of parameter estimation techniques (i.e., the
method of moments and maximum likelihood estimation techniques whose results are
listed in this appendix);

• Sections 9.2.3 and 10.1.2 for a brief introduction to goodness-of-fit tests which should
be conducted after a model has been selected and fitted (e.g., the Kolmogorov–Smirnov
test).

Discrete Random Variables

We have considered six discrete distributions in this book, two of which are special
cases of the others. The following is a summary of parameter estimates (denoted with
hats) for all six of these discrete distributions. In each case, x̄ and s denote the sample
mean and standard deviation, respectively. The integer parameter n in the Binomial(n, p)
and the Pascal(n, p) distributions is not necessarily the same as the sample size.

• To estimate the two parameters in a Binomial(n, p) distribution use

n̂ =

⌊

x̄2

x̄− s2
+ 0.5

⌋

and p̂ =
x̄

n̂
.

These estimates are valid only if n ≥ 1 and 0.0 < p < 1.0.

• Since the Bernoulli(p) distribution corresponds to the special case n = 1 of a Bino-

mial(n, p) distribution, use
p̂ = x̄.

• To estimate the two parameters in a Pascal(n, p) distribution use

n̂ =

⌊

x̄2

s2 − x̄
+ 0.5

⌋

and p̂ =
x̄/n̂

1 + x̄/n̂
.

These estimates are valid only if n ≥ 1 and 0.0 < p < 1.0.

• Since the Geometric(p) distribution corresponds to the special case n = 1 of a Pas-

cal(n, p) distribution, use

p̂ =
x̄

1 + x̄
.

• To estimate the one parameter in a Poisson(µ) distribution use

µ̂ = x̄.

• To estimate the two parameters in an Equilikely(a, b) distribution use

â = min{x1, x2, . . . , xn} and b̂ = max{x1, x2, . . . , xn}.
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Continuous Random Variables

We have considered seven continuous distributions in this book, one of which is a
special case of another. The following is a summary of parameter estimates (denoted by
hats) for all seven of these continuous distributions. In each case, x̄ and s denote the sample
mean and standard deviation, respectively. The integer parameter n in the Erlang(n, b),
Chisquare(n), and the Student(n) distributions is not necessarily the same as the sample
size.

• To estimate the two parameters in an Erlang(n, b) distribution use

n̂ =

⌊

x̄2

s2
+ 0.5

⌋

and b̂ =
x̄

n̂
.

These estimates are valid only if n ≥ 1 and b > 0.0.

• Since the Exponential(µ) distribution corresponds to the special case n = 1 of a
Erlang(n, b) distribution, use

µ̂ = x̄.

• To estimate the two parameters in a Normal(µ, σ) distribution use

µ̂ = x̄ and σ̂ = s.

• To estimate the two parameters in a Lognormal(a, b) distribution use

â =
1

2
ln

(

x̄4

x̄2 + s2

)

and b̂ =

√

ln

(

x̄2 + s2

x̄2

)

.

• To estimate the one parameter in a Chisquare(n) distribution use

n̂ = bx̄+ 0.5c.

This estimate is valid only if n ≥ 1 and s2/x̄ ∼= 2.0.

• To estimate the one parameter in a Student(n) distribution use

n̂ =

⌊

2s2

s2 − 1
+ 0.5

⌋

.

This estimate is valid only if x̄ ∼= 0.0 and s > 1.0.

• To estimate the two parameters in a Uniform(a, b) distribution use

â = min{x1, x2, . . . , xn} and b̂ = max{x1, x2, . . . , xn}.
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