Event Scheduling Simulation
1. Example: Single Server Queuing System with a FIFO scheduling policy

Statistics to be collected
· The average waiting time for a customer:
[image: image1.wmf]rs

rOfCustome

totalNumbe

eue

ngTimeInQu

totalWaiti

· The probability that a customer has to wait in the queue:

[image: image2.wmf]rs

rOfCustome

totalNumbe

Wait

stomersWho

numberOfCu

· The fraction of idle time of the server:

[image: image3.wmf]simulation

of

run time

total

server

of

 time

idle

total

· The average service time:

[image: image4.wmf]rs

rOfCustome

totalNumbe

ceTime

totalServi

· The average time between arrivals

[image: image5.wmf]1

-

s

rOfArrival

totalNumbe

es

ArrivalTim

sumOfInter

· The average waiting time of those who wait:

[image: image6.wmf]rsWhoWait

rOfCustome

TotalNumbe

itInQueue

ustomersWa

TotalTimeC

· The average time a customer spends in the system:

[image: image7.wmf]rs

rOfCustome

TotalNumbe

m

endInSyste

ustomersSp

TotalTimeC

public class SingleServer {

 FEL fel;

 double time;

 State s;

 double toatlBusyTime;

 int maximumQL;

 public SingelServer() {

 init();

 simulate();

 }

 protected void init() {

 toatlBusyTime=maximumQL=0;

 fel = new FEL();

 time = 0;

 s = new State();

 double runTime = 1000;

//add first arrival and STOP

 fel.insert(new Event(Event.ARRIVAL,nextArrivalTime()));

 fel.insert(new Event(Event.STOP,runTime));

 }

 protected void simulate() {

 boolean done = false;

 while(!done) {

 //get imminent event

 Event e = fel.pop();

 // advance clock

 time = e.time;

 if(e.type == Event.STOP) {

 done = true;

 } else if(e.type == Event.ARRIVAL) {

 Arrival(e);

 } else if(e.type == Event.DEPARTURE) {

 Departure(e);

 }

 }

System.out.println("Maximum QL: "+maximumQL);

 System.out.println("Server utilization: "+totalBusyTime/1000.0);

 }

 protected void Arrival(Event e) {

 if(s.serverState == State.IDLE) {

 s.serverState = State.BUSY;

 totalBusyTime++;

 fel.insert(new Event(Event.DEPARTURE,time+nextServiceTime()));

 } else {

 s.queueLen++;

 maximumQL++;

 }

 fel.insert(new Event(Event.ARRIVAL,time+nextArrivalTime()));

 }

protected void Departure(Event e) {

 if(s.queueLen == 0) {

 s.serverState = State.IDLE;

 } else {

 s.queueLen--;

 fel.insert(new Event(Event.DEPARTURE,time+nextServiceTime()));

 }

 }

protected double nextArrivalTime(){

 return 1+Math.random()*6;

 }

protected double nextServiceTime(){

 return 1+Math.random()*8;

 }

public static void main(String[] args) {

 new SingleServer();

 }

}

class State {

 public int queueLen;

 public int serverState;

 public static final int IDLE = 0;

 public static final int BUSY = 1;

 public State(){

 queueLen=0;

 serverState=IDLE;

 }

}

class FEL extends LinkedList {

 public void insert(Event e){

 int x=position(e);

 if(x==-1){

 add(e);

 }

 else{

 add(x,e);

 }

 }

 // get immenent event

 public Event pop() {

 Event e=(Event)remove();

 return e;

 }

 public int position(Event e){

 int len=size();

 int index=-1;

 if(len>0){

 for(int i=0;i<len;i++){

 if(e.time<(double)((Event)get(i)).time)

 {

 index=i;

 break;

 }

 }

 }

 return index;

}

}

class Event {

 public int type;

 public double time;

 public static final int ARRIVAL = 0;

 public static final int DEPARTURE = 1;

 public static final int STOP = 2;

 public Event(int type,double t) {

 this.time=t;

 this.type=type;

 }

}

2. Modify the above program so that customers are served according to the LIFO scheduling policy. Determine the total busy time, maximum queue length, average waiting time and average response time.

Assignment---15%
3. Consider a single-process web server that serves static HTTP requests. Requests arrive at the server with inter-arrival times that are exponential random variables with mean 0.5 seconds. In the web server context, the service time of a request can be estimated at the outset based on the size of the requested file. Assume that each request upon arrival specifies the size of the download, and that the file sizes are exponential random variables with mean 125 KB. A request arriving at the server may either immediately start receiving service (if the server process is idle) or queue for service (if the server process is busy servicing another request). Requests in queue are served according to the scheduling policy in use:

a) First-In-First-Out (FIFO) scheduling

b) Shortest Job First (SJF) scheduling,

Assume that the server process can deliver 1250 KB/second. Your task is to write a simulation program in Java for this Web server scheduling problem. Each simulation run should continue until 5,000 requests are processed by the server.

For both policies, determine the mean and the maximum response time of the requests, the fraction of requests that are delayed in queue for more than 2 minutes, and the maximum number of requests in queue. Based on your results, which policy would you recommend?

_1364644420.unknown

_1364644960.unknown

_1364645594.unknown

_1364645729.unknown

_1364645062.unknown

_1364644955.unknown

_1364644292.unknown

