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Abstract

This research proposal aims to explore the scalability problems associated with solving the named entity recognition (NER) problem using high-dimensional input space and support vector machines (SVM), and to provide solutions that lower the computational time and memory requirements. The proposed approach for named entity recognition is one that fosters language and domain independence by eliminating the use of prior language and/or domain knowledge. 

In order to assess the feasibility of the proposed approach, a set of baseline NER experiments using biomedical abstracts is undertaken. The biomedical domain is chosen for the initial experiments due to its importance and inherent challenges. Single class and multi-class classification performance and results are examined. The initial performance results – measured in terms of precision, recall, and F-score – are comparable to those obtained using more complex approaches. These results demonstrate that the proposed architecture is capable of providing a reasonable solution to the language and domain-independent named entity recognition problem. 

To improve the scalability of named entity recognition using support vector machines, we propose to develop new database-supported algorithms for multi-class handling embedded in a relational database server. The database schema design will focus on a novel decomposition of the SVM problem that eliminates computational redundancy and improves the training time. The proposed database-supported NER/SVM system will address both the single class and multi-class classification problems. Building a growing dictionary of previously identified named entities will be made possible by the database repository.  In addition, incremental training will be investigated in an attempt to reduce the input size required to obtain a reasonably trained machine and to allow the incorporation of new data without restarting the learning process.
As an auxiliary observation regarding SVM usability and the lack of integrated tools to support the machine learning process, we recommend a service-oriented architecture (SOA) that provides a flexible infrastructure for support vector machines, supported by a database schema especially designed to provide data exchange services for the SOA modules. The proposed architecture should improve the usability of SVM and promote future research on specific components by providing a practical and easily expandable infrastructure. Although this research proposal will focus primarily on improving SVM multi-class scalability, we thought the recommendation is worth noting for future research. 
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1 Introduction
Named entity recognition (NER) is one of the important tasks in information extraction, which involves the identification and classification of words or sequences of words denoting a concept or entity. Examples of such information units are names of persons, organizations, or locations in the general context of newswires, and the names of proteins and genes in the molecular biology context. With the extension of named entity recognition to new information areas, the task of identifying meaningful entities has become more complex as categories are more specific to a given domain. NER solutions that achieve a high level of accuracy in some language or domain may perform much poorly in a different context.
Different approaches are used for carry out the identification and classification of entities. Statistical, probabilistic, rule-based, memory-based, and machine learning methods are developed. The extension of NER to specialized domains raise the importance of devising solutions that require less human intervention in the annotation of examples or the development of specific rules. Machine learning techniques are therefore experiencing an increased adoption and much research activity is taking place in order to make such solutions more feasible. Support Vector Machine (SVM) is rapidly emerging as a promising pattern recognition methodology due to its generalization capability and its ability to handle high-dimensional input. However, SVM is known to suffer from slow training especially with large input data size.
In this paper, we explore the scalability issues for named entity recognition using high-dimensional features and support vector machines. We present the results of experiments using large biomedical datasets and propose a plan to improve SVM scalability using new database-supported algorithms.
In Chapter 2, we present the named entity recognition problem and the current state of the art solutions for it. We then explore the language-independent NER research activities as well as those specific to recognizing named entities in biomedical abstracts as an example of a specialized domain. The methods and features used by many systems using the same sets of training and testing data from three NER challenge tasks are summarized followed by a discussion of the named entity recognition scalability challenges.
The mathematical foundation of Support Vector Machine (SVM) is briefly introduced in Chapter 3. The binary classification for linearly separable and non-linearly separable data is presented, followed by the different approaches used to classify data with several classes. We conclude the chapter with a discussion of SVM scalability issues and briefly introduce how they are addressed in the literature.
In order to investigate the potential problems associated with named entity recognition using support vector machines, a series of single class and multi-class experiments were performed using datasets from the biomedical domain. The approach used is one that eliminates the use of prior language or domain-specific knowledge. The detailed architecture and methods used as well as the experiments’ results are presented in Chapter 4. We compare the results to other systems using the same datasets and demonstrate that the simplified NER process is capable of achieving performance measures that are comparable to published results.
Having explored the state of the art and experimented with a challenging domain’s datasets, we propose a database-supported SVM solution in order to improve support vector machines’ scalability with large datasets. The proposed solution will address both the single class and multi-class classification problems. The database schema design will focus on a novel decomposition of the SVM problem that eliminates computational redundancy and lowers the total training time. In addition, we will investigate using an incremental training approach in order to promote scalability of the solution and to allow the incorporation of new training data when available while eliminating the need for restarting the learning process. The proposed architecture and solution are presented in Chapter 5.
For future research, we propose a dynamic service-oriented machine learning architecture that promotes reusability, expandability, and maintainability of the various components needed to implement the complete solution. The aim of the dynamic architecture is to provide a research environment with a flexible infrastructure such that researchers may easily focus on specific components without spending much time on rebuilding the experimentation infrastructure. The proposed architecture’s design will be service-oriented with a clear definition of the inter-modules interaction and interfaces. The database schema design will also support the proposed service-oriented architecture. Initial thoughts about the dynamic architecture are included in Appendix A. Due to the scope and level of challenge of the proposed research, further exploration of this idea will be left for future work.
2 Named Entity Recognition
Named entity recognition (NER) is one of the important tasks in information extraction, which involves the identification and classification of words or sequences of words denoting a concept or entity. Examples of named entities in general text are names of persons, locations, or organizations. Domain-specific named entities are those terms or phrases that denote concepts relevant to one particular domain. For example, protein and gene names are named entities which are of interest to the domain of molecular biology and medicine. The massive growth of textual information available in the literature and on the Web necessitates the automation of identification and management of named entities in text.

The task of identifying named entities in a particular language is often accomplished by incorporating knowledge about the language taxonomy in the method used. In the English language, such knowledge may include capitalization of proper names, known titles, common prefixes or suffixes, part of speech tagging, and/or identification of noun phrases in text. Techniques that rely on language-specific knowledge may not be suitable for porting to other languages. For example, the Arabic language does not use capitalization to identify proper names, and word variations are based on the use of infixes in addition to prefixes and suffixes. Moreover, the composition of named entities in literature pertaining to specific domains follows different rules in each, which may or may not benefit from those relevant to general NER.

This chapter presents an overview of the research activities in the area of named entity recognition in several directions related to the focus of this proposal:

· Named entity recognition approaches

· Common machine learning architecture for NER

· Named entity recognition in the biomedical literature context
· Language-independent named entity recognition
· Named entity recognition challenges
A. Named Entity Recognition Approaches
Named entity recognition activities began in the late 1990’s with limited number of general categories such as names of persons, organizations, and locations (Sekine 2004; Nadeau and Sekine 2007). Early systems were based on the use of dictionaries and rules built by hand, and few used supervised machine learning techniques. The CoNLL-02 (Tjong Kim Sang 2002a) and CoNLL-03 (Tjong Kim Sang and De Meulder 2003) discussed later in this chapter provided valuable NE evaluation tasks for four languages: English, German, Spanish, and Dutch. With the extension of named entity recognition activities to new languages and domains, more entity categories are introduced which made the methods relying on manually built dictionaries and rules much more difficult to adopt, if at all feasible.

The extended applicability of NER in new domains led to more adoption of supervised machine learning techniques which include:

· Decision Trees (Paliouras et al. 2000; Black and Vasilakopoulos 2002)
· AdaBoost (Carreras et al. 2002, 2003b; Wu et al. 2003; Tsukamoto et al. 2002)
· Hidden Markov Model (HMM) (Scheffer et al. 2001; Kazama et al. 2001; Zhang et al. 2004; Zhao 2004; Zhou 2004)
· Maximum Entropy Model (ME) (Kazama et al. 2001; Bender et al. 2003; Chieu and Ng 2003; Curran and Clark 2003; Lin et al. 2004; Nissim et al. 2004)
· Boosting and voted perceptrons (Carreras et al. 2003a; Dong and Han 2005; Wu et al. 2002; Wu et al. 2003)
· Recurrent Neural Networks (RNN) (Hammerton 2003)
· Conditional Random Fields (CRF) (McCallum and Li 2003; Settles 2004; Song et al. 2004; Talukdar et al. 2006)
· Support Vector Machine (SVM) (Lee, Hou et al. 2004; Mayfield et al. 2003; McNamee and Mayfield 2002; Song et al. 2004; Rössler 2004; Zhou 2004; Giuliano et al. 2005).
Memory-based (De Meulder and Daelemans 2003; Hendrickx and Bosch 2003; Tjong Kim Sang 2002b) and transformation-based (Black and Vasilakopoulos 2002; Florian 2002; Florian et al. 2003) techniques have been successfully used for recognizing general named entities where the number of categories is limited, but are less adopted in more complex NER tasks such as the biomedical domain (Finkel et al. 2004). Recent NER systems also combined several classifiers using different machine learning techniques in order to achieve better performance results (Florian et al. 2003; Klein et al. 2003; Mayfield et al. 2003; Song et al. 2004; Rössler 2004; Zhou 2004).

With the growing adoption of machine learning techniques for NER, especially for specialized domains, the need for developing semi-supervised or unsupervised solutions. Supervised learning methods rely on the existence of manually annotated training data, which is very expensive in terms of labor and time and a hindering factor for many complex domains with growing nomenclature. However, using unannotated training data or a mixture of labeled and unlabeld data requires the development of new NER machine learning solutions based on clustering and inference techniques. Named entity recognition systems that attempted to use unannotated training data include (Cucerzan and Yarowsky 1999; Riloff and Jones 1999; De Meulder and Daelemans 2003; Yangarber and Grishman 2001; Hendrickx and Bosch 2003; Goutte et al. 2004; Yangarber et al. 2002; Zeng et al. 2003; Bodenreider et al. 2002; Collins and Singer 1999).
Comparing the relative performance of the various NER approaches is a nontrivial task. The performance of earlier systems that relied on manually built dictionaries and rules depends in the first on the quality of the rules and dictionaries used. Systems based on statistical approaches and machine learning techniques, whether they use just one method or a combination of several techniques, require the use of annotated training data and extraction of many orthographic, contextual, linguistic, and domain-specific features in addition to possibly using external resources such as dictionaries, gazetteers, or even the World Wide Web. Therefore, judging the performance of a given system  cannot be made solely based on the choice of a machine learning approach but rather on the overall solution design and final performance results. This observation makes the use of a machine learning technique for NER an art more than a science.
B. Common Machine Learning Architecture
Constructing a named entity recognition solution using a machine learning approach requires many computational steps including preprocessing, learning, classification, and post-processing. The specific components included in a given solution vary but they may be viewed as making part of the following groups summarized in Figure ‎2.1.

1) Preprocessing Modules

Using a supervised machine learning technique relies on the existence of annotated training data. Such data is usually created manually by humans or experts in the relevant field. The training data needs to be put in a format that is suitable to the solution of choice. New data to be classified also requires the same formatting. Depending on the needs of the solution, the textual data may need to be tokenized, normalized, scaled, mapped to numeric classes, prior to being fed to a feature extraction module. To reduce the training time with large training data, some techniques such as chunking or instance pruning (filtering) may need to be applied.
2) Feature Extraction

In the feature extraction phase, training and new data is processed by one or more pieces of software in order to extract the descriptive information about it. The choice of feature extraction modules depends on the solution design and may include the extraction of orthographic and morphological features, contextual information about how tokens appear in the documents, linguistic information such as part-of-speech or syntactic indicators, and domain-specific knowledge such as the inclusion of specialized dictionaries or gazetteers (reference lists). Some types of information may require the use of other machine learning steps to generate it, for example, part-of-speech tagging is usually performed by a separate machine learning and classification software which may or may not exist for a particular language.
Preparing the data for use by the feature extractor may require special formatting to suit the input format of the software. Also, depending on the choice of machine learning software, one may need to reformat the output of the feature extraction to be compatible with what’s expected by the machine learning module(s). Due to the lack of standardization in this area and because no integrated solutions exist for named entity recognition, several compatibilities exist between the many tools one may use to build the overall architecture. In addition, one may also need to build customized interfacing modules to fit all the pieces of the solution together.

3) Machine Learning and Classification

Most of the publicly available machine learning software use a two-phased approach where learning is first performed to generate a trained machine followed by a classification step. The trained model for a given problem can be reused for many classifications as long as there is no need to change the learning parameters or the training data.
4) Post-Processing Modules
The post-processing phase prepares the classified output for use by other applications and/or for evaluation. The classified output may need to be reformatted, regrouped into one large chunk if the input data was broken down into smaller pieces prior to being processed, remapped to reflect  the string class names, and tested for accuracy by evaluation tools. The final collection of annotated documents may be reviewed by human experts prior to being used for other needs.
Figure ‎2.1 – Commonly Used Architecture
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C. Performance Measures

The performance measures used to evaluate the named entity recognition systems participating in the CoNLL-02, CoNLL-03 and JNLPBA-04 challenge tasks are precision, recall, and the weighted mean Fβ=1-score. Precision is the percentage of named entities found by the learning system that are correct. Recall is the percentage of named entities present in the corpus that are found by the system. A named entity is correct only if it is an exact match of the corresponding entity in the data file, i.e., the complete named entity is correctly identified. Definitions of the performance measures used are summarized below. The same performance measures are used to evaluate the results of the baseline experiments.
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D. Biomedical Named Entity Recognition
Biomedical entity recognition aims to identify and classify technical terms in the domain of molecular biology that are of interest to biologists and scientists. Example of such entities are protein and gene names, cell types, virus name, DNA sequence, and others. The U.S. National Library of Medicine maintains a large collection of controlled vocabulary, MeSH (NLM 2007b), used for indexing articles for MEDLINE/PubMed (NLM 2007a) and to provide a consistent way to retrieve information that may use different terminology for the same concepts. PubMed’s constantly growing collection of articles raises the need for automated tools to extract new entities appearing in the literature.
The biomedical named entity recognition remains a challenging task as compared to general NER. Systems that achieve high accuracy in recognizing general names in the newswires (Tjong Kim Sang and De Meulder 2003) have not performed as well in the biomedical NER with an accuracy of 20 or 30 points difference in their F-score measure. The biomedical field NER presents many challenges due to growing nomenclature, ambiguity in the left boundary of entities caused by descriptive naming, shortened forms due to abbreviation and aliasing, difficulty to create consistently annotated training data with large number of classes, etc. (Kim et al. 2004).
Biomedical named entity recognition systems make use of publicly or privately available corpora to train and test their systems. The quality of the corpus used impacts the output performance as one would expect. Cohen et al. (Cohen et al. 2005) compare the quality of six publicly available corpora and evaluate them in terms of age, size, design, format, structural and linguistic annotation, semantic annotation, curation, and maintenance. The six public corpora are the Protein Design Group (PDG) corpus (Blaschke et al. 1999), the University of Wisconsin corpus (Craven and Kumlein 1999), Medstract (Pustejovsky et al. 2002), the Yapex corpus (Franzen et al. 2002; Eriksson et al. 2002), the GENIA corpus (Ohta et al. 2002; Kim et al. 2003), and the BioCreative task dataset (GENETAG) (Tanabe et al. 2005). These corpora are widely used in the biomedical named entity recognition research community and serve as basis of performance comparison. Cohen et al. (Cohen et al. 2005) conclude that the GENIA corpus’ quality has improved over the years most probably due to its continued development and maintenance. The GENIA corpus is the source of the JNLPBA-04 challenge task datasets described in Appendix B, often referred to as the BioNLP data. We used the JNLPBA-04 (BioNLP) datasets for the baseline experiments and plan to continue to use the same datasets for the proposed research work. Evaluation of this research will be primarily using the JNLPBA-04 datasets as they represent a challenging NER domain.
The availability of common experimentation data and evaluation tools provides a great opportunity for researchers to compare their performance results against other systems. The BioNLP tools and data are used by many systems with published results. Table ‎2.1 summarizes the methods used by several systems performing biomedical named entity recognition using the JNLPBA-04 (BioNLP) datasets as well as the features and any external resources they used. Systems performing biomedical NER used Support Vector Machine (SVM), Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), or Condirional Random Fields (CRF) as their classification methods either combined or in isolation. The features used by the different systems are listed in abbreviated form in Table ‎2.1 and include some or all of the following:
· lex: lexical features beyond simple orthographic features
· ort: orthographic information

· aff: affix information (character n-grams)

· ws: word shapes

· gen: gene sequences (ATCG sequences)

· wv: word variations

· len: word length

· gaz: gazetteers (reference lists of known named entities)
· pos: part-of-speech tags

· np: noun phrase tags

· syn: syntactic tags

· tri: word triggers

· ab: abbreviations

· cas: cascaded entities

· doc: global document information

· par: parentheses handling information
· pre: previously predicted entity tags

· External resources: B: British National Corpus (Oxford 2005); M: MEDLINE corpus (NLM 2007a); P: Penn Treebank II corpus (The Penn Treebank Project 2002); W: World Wide Web; V: virtually generated corpus; Y: Yapex (Eriksson et al. 2002) (Y); G: GAPSCORE (Chang et al. 2004)
In the following paragraphs we will highlight the top performing systems (Zhou and Su 2004; Finkel et al. 2004; Settles 2004; Giuliano et al. 2005). Two of the top performing systems used SVM, where one combined it with HMM (Zhou and Su 2004) and the other used it as the only classification model (Giuliano et al. 2005). The second best system used a maximum entropy approach (Finkel et al. 2004) and the system that ranked third used conditional random fields (Settles 2004).

Zhou and Su (Zhou and Su 2004) combined a Support Vector Machine (SVM) with a sigmoid kernel and a Hidden Markov Model (HMM). The system explored deep knowledge in external resources and specialized dictionaries in order to derive alias information, cascaded entities, and abbreviation resolution. The authors made use of existing gene and protein name databases such as SwissProt in addition to a large number of orthographic and language-specific features such as part-of-speech tagging and head noun triggers. The system achieved the highest performance with an F-score of 72.6%. Given the complex system design and the large number of preprocessing and post-processing steps undertaken in order to correctly identify the named entities, it is difficult to judge the impact of the machine learning approach alone. The performance gain is most probably due to the heavy use of specialized dictionaries, gazetteer lists, and previously identified entities in order to flag known named entities.
Finkel et al. (Finkel et al. 2004; Dingare et al. 2005) achieved F-score of 70.1% on BioNLP data using a maximum entropy-based system previously used for the language-independent task CoNLL-03. The system used a rich set of local features and several external sources of information such as parsing and searching the web, domain-specific gazetteers, and compared NE’s appearance in different parts of a document. Post-processing attempted to correct multi-word entity boundaries and combined results from two classifiers trained forward and backward. (Dingare et al. 2005) confirmed the known challenge in identifying named entities in biomedical documents, which causes the performance results to lag behind those achieved in general NER tasks such as CoNLL-03 by 18% or more.
Settles (Settles 2004) used Conditional Random Fields (CRM) and a rich set of orthographic and semantic features to extract the named entities. The system also made use of external resources, gazetteer lists, and previously identified entities in order to flag known named entities.

Giuliano et al. (Giuliano et al. 2005) used a Support Vector Machine (SVM) with a large number of orthographic and contextual features extracted using the jFex software. The system incorporated part-of-speech tagging and word features of tokens surrounding each analyzed token in addition to features similar to those used in this experiment. In addition, Giuliano et al. (Giuliano et al. 2005) pruned the data instances in order to reduce the dataset size by filtering out frequent words from the corpora because they are less likely to be relevant than rare words.
The comparison of the top performing systems does not single out a particular machine learning methodology in being more efficient than others. From observation of the rich feature sets used by these systems, which include language and domain-specific knowledge, we may conclude that the combination of machine learning with prior domain knowledge and a large set of linguistic features is what led to the superior performance of these systems as compared to others that used the same machine learning choice with a different set of features.

E. Language-Independent NER
Table ‎2.3 and Table ‎2.4 summarize the methods and features used by several systems performing language-independent named entity recognition using CoNLL-02 datasets and CoNLL-03 datasets respectively. The composition of these datasets is described in details in Appendix B. CoNLL-02 concerned general NER in Spanish and Dutch languages, while CoNLL-03 focused on English and German languages. Systems performing language-independent NER used Support Vector Machine (SVM), Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Condirional Random Fields (CRF), Conditional Markov Model (CMM), Robust Risk Minimization (RMM), Voted Perceptrons (PER), Recurrent Neural Networks (RNN), AdaBoost, memory-based techniques (MEM), or transformation-based techniques (TRAN) as their classification methods either combined or in isolation. The features used by the different systems are listed in abbreviated form in Table ‎2.3 and Table ‎2.4 and include some or all of the following:

· lex: lexical features beyond simple orthographic features

· ort: orthographic information

· aff: affix information (character n-grams)

· ws: word shapes

· wv: word variations

· gaz: gazetteers

· pos: part-of-speech tags

· tri: word triggers

· cs: global case information

· doc: global document information

· par: parentheses handling

· pre: previously predicted entity tags

· quo: word appears between quotes

· bag: bag of words

· chu: chunk tags

CoNLL-02 top performing systems used Adaboost (Carreras et al. 2002; Wu et al. 2002), character-based tries (Cucerzan and Yarowsky 2002), and stacked transformation-based classifiers (Florian 2002) learning techniques. (Carreras et al. 2002) combined boosting and fixed depth decision trees to identify the beginning and end of an entity and whether a token is within a named entity. (Florian 2002) stacked several transformation-based classifiers and Snow (Sparse Network of Winnows) – “an architecture for error-driven machine learning, consisting of a sparse network of linear separator units over a common predefined or incrementally learned feature space” – in order to boost the system’s performance. The output of one classifier serves as input to the next one. (Cucerzan and Yarowsky 2002) used a semi-supervised approach using a small number of seeds in a boosting manner based on character-based tries. (Wu et al. 2002) combined boosting and one-level decision trees as classifiers.
The F-score values achieved by the top performing systems in CoNLL-02 were in the high 70’s to low 80’s for Spanish, and slightly less for Dutch. All systems used a rich set of various features. It is interesting to note that the systems’ performance ranking, summarized in Table ‎2.3, differed slightly between the two languages. In 2005, Giuliano (Giuliano et al. 2005) classified the Dutch data using SVM and a rich set of orthographic and contextual features in addition to part-of-speech tagging. Giuliano achieved an F-score of 75.60 which ranks second as compared to the CoNLL-02 top performing systems.
The CoNLL-03 task required the inclusion of a machine learning technique and the incorporation of additional resources such as gazetteers and/or unannotated data in addition to the training data (Tjong Kim Sang and De Meulder 2003). All participating systems used more complex combinations of learning tools and features than the CoNLL-02 systems. A summary of the methods and features as well as the performance results of CoNLL-03 systems is presented in Table ‎2.4. The three top performing systems used Maximum Entropy Models (MEM). (Florian et al. 2003) combined MEM with a Hidden Markov Model (HMM), Robust Risk Minimization, a transformation-based technique, and a large set of orthographic and linguistic features. (Klein et al. 2003) used an HMM and a Conditional Markov Model in addition to Maximum Entropy. (Chieu and Ng 2003) did not combine MEM with other techniques.
An interesting observation is that the systems that combined Maximum Entropy with other techniques performed consistently in the two languages, while (Chieu and Ng 2003) ranked second on the English data and #12 on the German data. (Wong and Ng 2007) used a Maximum Entropy approach with the CoNLL-03 data and a collection of unannotated data and achieved an F-score of 87.13 on the English data. The system made use of “a novel yet simple method of exploiting this empirical property of one class per named entity to further improve the NER accuracy” (Wong and Ng 2007). Compared to the CoNLL-03 systems, (Wong and Ng 2007) ranks third on the English data experiments. No results were reported using the German data.
Another important note is that the CoNLL-03 systems achieved much higher accuracy levels on the English data with F-scores reaching in the high 80’s, while F-score levels using the German data remained comparable to CoNLL-02 results going as high as 72.41 for the best score. This observation leads us to confirm our earlier conclusion that judging the performance of a machine learning technique based on NER performance would not be necessarily accurate, as the same system achieves inconsistent performance levels when used with different languages. Our conclusion remains that the performance of a given NER system is a result of the combination of classification techniques, features, and external resources used, and no one component may be deemed responsible for the outcome separately. The quality and complexity of the training and test data is also a major contributing factor in reaching a certain performance.

Poibeau (Poibeau et al. 2003) discusses the issues of multilingualism and proposes an open framework to support multiple languages which include: Arabic, Chinese, English, French, German, Japanese, Finnish, Malagasy, Persian, Polish, Russian, Spanish and Swedish. The project maintains resources for all supported languages using the Unicode character set and apply almost the same architecture to all languages. Interestingly, the multilingual system capitalizes on commonality across Indo-European languages and shares external resources such as dictionaries by different languages. 

In conclusion, the review of the NER approaches and how they are applied in different languages and domains demonstrates that the performance of an NER system in a given context depends on the overall solution including the classification technique(s) , features, and external resources used. The quality and complexity of the training and test data also impacts the final accuracy level. Many researchers who worked on biomedical NER noted that the same systems that achieved high performance measures on general or multilingual NER failed to achieve similar results when used in the biomedical domain. While the F-score resulting from general NER systems reaches the high 80’s and higher if feedback techniques are used to boost performance for new data, the best F-score reported for the JNLPBA-04 (BioNLP) data is 72.6. This highlights the complex nature of biomedical NER and the need for special approaches to deal with its inherent challenges.

Table ‎2.1 – Overview of BioNLP Methods, Features, And External Resources
	System
	Methods/Features/External Resources
	Notes

	Zhou (Zhou and Su 2004)
	SVM + HMM + aff + ort + gen + gaz + pos + tri + ab + cas + pre
	Combined models + cascaded entities + previous predictions + language & domain resources

	Finkel (Finkel et al. 2004; Dingare et al. 2005)
	MEMM + lex + aff + ws + gaz + pos + syn + ab + doc + par + pre + B + W
	Language & domain resources + lexical features + previous predictions + boundary adjustment + global document information + Web

	Settles (Settles 2004)
	CRF + lex + aff + ort + ws + gaz + tri + pre + W
	Domain resources + Web + previous predictions

	Song (Song et al. 2004)
	SVM + CRF + lex + aff + ort + pos + np + pre + V
	Combined models + language & domain resources + previous predictions

	Zhao (Zhao 2004)
	HMM + lex + pre + M
	Lexical features + domain resources + previous predictions + Medline

	Rössler (Rössler 2004)
	SVM + HMM + aff + ort + gen + len + pre + M
	Combined models + domain resources + previous predictions + Medline

	Park (Park et al. 2004)
	SVM + aff + ort + ws + gen + wv + pos + np + tri + M + P
	Language & domain resources + Medline + Penn Treebank corpus

	Lee (Lee, Hwang et al. 2004)
	SVM + lex + aff + pos + Y + G
	Lexical features + language resources + Yapex corpus + Gapscore corpus

	Giuliano (Giuliano et al. 2005)
	SVM + lex + ort + pos + ws + wv
	Lexical features + language resources + collocation + instance pruning


SVM: Support Vector Machine; HMM: Hidden Markov Model; MEMM: Maximum Entropy Markov Model; CRF: Conditional Random Fields; lex: lexical features; aff: affix information (character n-grams); ort: orthographic information; ws: word shapes; gen: gene sequences (ATCG sequences); wv: word variations; len: word length; gaz: gazetteers; pos: part-of-speech tags; np: noun phrase tags; syn: syntactic tags; tri: word triggers; ab: abbreviations; cas: cascaded entities; doc: global document information; par: parentheses handling; pre: previously predicted entity tags; External resources (ext): B: British National Corpus; M: MEDLINE corpus; P: Penn Treebank II corpus; W: world wide web; V: virtually generated corpus; Y: Yapex; G: GAPSCORE. Legend Source: (Kim et al. 2004)
Table ‎2.2 – Performance Comparison of Systems Using BioNLP Datasets
(Recall / Precision/ Fβ=1)
	
	1978-1989 Set
	1990-1999 Set
	2000-2001 Set
	S/1998-2001 Set
	Total

	Zhou (Zhou and Su 2004)
	75.3 / 69.5 / 72.3
	77.1 / 69.2 / 72.9
	75.6 / 71.3 / 73.8
	75.8 / 69.5 / 72.5
	76.0 / 69.4 / 72.6

	Finkel (Finkel et al. 2004)
	66.9 / 70.4 / 68.6
	73.8 / 69.4 / 71.5
	72.6 / 69.3 / 70.9
	71.8 / 67.5 / 69.6
	71.6 / 68.6 / 70.1

	Settles (Settles 2004)
	63.6 / 71.4 / 67.3
	72.2 / 68.7 / 70.4
	71.3 / 69.6 / 70.5
	71.3 / 68.8 / 70.1
	70.3 / 69.3 / 69.8

	Giuliano (Giuliano et al. 2005)
	--
	--
	--
	--
	64.4 / 69.8 / 67.0

	Song (Song et al. 2004)
	60.3 / 66.2 / 63.1
	71.2 / 65.6 / 68.2
	69.5 / 65.8 / 67.6
	68.3 / 64.0 / 66.1
	67.8 / 64.8 / 66.3

	Zhao (Zhao 2004)
	63.2 / 60.4 / 61.8
	72.5 / 62.6 / 67.2
	69.1 / 60.2 / 64.7
	69.2 / 60.3 / 64.4
	69.1 / 61.0 / 64.8

	Rössler (Rössler 2004)
	59.2 / 60.3 / 59.8
	70.3 / 61.8 / 65.8
	68.4 / 61.5 / 64.8
	68.3 / 60.4 / 64.1
	67.4 / 61.0 / 64.0

	Park (Park et al. 2004)
	62.8 / 55.9 / 59.2
	70.3 / 61.4 / 65.6
	65.1 / 60.4 / 62.7
	65.9 / 59.7 / 62.7
	66.5 / 59.8 / 63.0

	Lee (Lee, Hwang et al. 2004)
	42.5 / 42.0 / 42.2
	52.5 / 49.1 / 50.8
	53.8 / 50.9 / 52.3
	52.3 / 48.1 / 50.1
	50.8 / 47.6 / 49.1

	Baseline (Kim et al. 2004)
	47.1 / 33.9 / 39.4
	56.8 / 45.5 / 50.5
	51.7 / 46.3 / 48.8
	52.6 / 46.0 / 49.1
	52.6 / 43.6 / 47.7


Table ‎2.3 – Comparison of Systems Using the CoNLL-02 Data

	
	Spanish Results
	Dutch Results

	System
	Methods/Features
	Performance
(Rec/Prec/ Fβ=1)
	Fβ=1
Rank
	Performance
(Rec/Prec/ Fβ=1)
	Fβ=1
Rank

	Carreras (Carreras et al. 2002)
	ADA + decision trees + lex + pre + pos + gaz + ort + ws
	81.40 / 81.38 / 81.39
	1
	76.29 / 77.83 / 77.05
	1

	Florian (Florian 2002)
	Stacked TRAN + Snow + forward-backward
	79.40 / 78.70 / 79.05
	2
	74.89 / 75.10 / 74.99
	3

	Cucerzan (Cucerzan and Yarowsky 2002)
	Character-based tries + pos + aff + lex + gaz
	76.14 / 78.19 / 77.15
	3
	71.62 / 73.03 / 72.31
	5

	Wu (Wu et al. 2002)
	ADA + decision tree + lex + pos + gaz + cs + pre
	77.38 / 75.85 / 76.61
	4
	73.83 / 76.95 / 75.36
	2

	Burger (Burger et al. 2002)
	HMM + gaz + pre
	77.44 / 74.19 / 75.78
	5
	72.45 / 72.69 / 72.57
	4

	Tjong Kim Sang (Tjong Kim Sang 2002b)
	MEM + stacking + combination
	75.55 / 76.00 / 75.78
	6
	68.88 / 72.56 / 70.67
	7

	Patrick (Patrick et al. 2002)
	Six stages using compiled lists and n-grams + context
	73.52 / 74.32 / 73.92
	7
	68.90 / 74.01 / 71.36
	6

	Jansche (Jansche 2002)
	CMM + ws +cs + collocation
	73.76 / 74.03 / 73.89
	8
	69.26 / 70.11 / 69.68
	8

	Malouf (Malouf 2002)
	MEMM (also tried HMM) + pre + boundary detection
	73.39 / 73.93 / 73.66
	9
	65.50 / 70.88 / 68.08
	9

	Tsukamoto (Tsukamoto et al. 2002)
	ADA (five cascaded classifiers)
	74.12 / 69.04 / 71.49
	10
	65.02 / 57.33 / 60.93
	10

	Black (Black and Vasilakopoulos 2002)
	TRAN (also tried decision trees)
	66.24 / 68.78 / 67.49
	11
	51.69 / 62.12 / 56.43
	12

	McNamee (McNamee and Mayfield 2002)
	SVM (two cascaded) + 9000 binary features
	66.51 / 56.28 / 60.97
	12
	63.24 / 56.22 / 59.52
	11

	Baseline  (Tjong Kim Sang 2002a)
	
	56.48 / 26.27 / 35.86
	13
	45.19 / 64.38 / 53.10
	13

	Giuliano (Giuliano et al. 2005)
	SVM + lex + ort + pos + ws + wv
	not used
	–
	69.60 / 82.80 / 75.60
	* 2


SVM: Support Vector Machine; HMM: Hidden Markov Model; MEMM: Maximum Entropy Markov Model; CRF: Conditional Random Fields; CMM: Conditional Markov Model; RRM: Robust Risk Minimization; PER: Voted Perceptrons; RNN: Neural Networks; ADA: AdaBoost; MEM: Memory-Based; TRAN: Transformation-Based; lex: lexical features; aff: affix information (character n-grams); ort: orthographic information; ws: word shapes; wv: word variations; gaz: gazetteers; pos: part-of-speech tags; tri: word triggers; cs: global case information; doc: global document information; par: parentheses handling; pre: previously predicted entity tags; quo: between quotes; bag: bag of words; chu: chunk tags
Table ‎2.4 – Comparison of Systems Using the CoNLL-03 Data

	
	English Results
	German Results

	System
	Methods/Features
	Performance
(Rec/Prec/ Fβ=1)
	Fβ=1
Rank
	Performance
(Rec/Prec/ Fβ=1)
	Fβ=1
Rank

	Florian (Florian et al. 2003)
	MEMM + HMM + RRM + TRAN + lex + pos + aff + pre + ort + gaz + chu + cs
	88.54 / 88.99 / 88.76
	1
	83.87 / 63.71 / 72.41
	1

	Chieu (Chieu and Ng 2003)
	MEMM + lex + pos + aff + pre + ort + gaz + tri + quo + doc
	88.51 / 88.12 / 88.31
	2
	76.83 / 57.34 / 65.67
	12

	Klein (Klein et al. 2003)
	MEMM + HMM + CMM + lex + pos + aff + pre
	86.21 / 85.93 / 86.07
	3
	80.38 / 65.04 / 71.90
	2

	Zhang (Zhang and Johnson 2003)
	RRM + lex + pos + aff + pre + ort + gaz + chu + tri
	84.88 / 86.13 / 85.50
	4
	82.00 / 63.03 / 71.27
	3

	Carreras (Carreras et al. 2003b)
	ADA + lex + pos + aff + pre + ort + ws
	85.96 / 84.05 / 85.00
	5
	75.47 / 63.82 / 69.15
	5

	Curran (Curran and Clark 2003)
	MEMM + lex + pos + aff + pre + ort + gaz + ws + cs
	85.50 / 84.29 / 84.89
	6
	75.61 / 62.46 / 68.41
	7

	Mayfield (Mayfield et al. 2003)
	SVM + HMM + lex + pos + aff + pre + ort + chu + ws + quo
	84.90 / 84.45 / 84.67
	7
	75.97 / 64.82 / 69.96
	4

	Carreras (Carreras et al. 2003a)
	PER + lex + pos + aff + pre + ort + gaz + chu + ws + tri + bag
	82.84 / 85.81 / 84.30
	8
	77.83 / 58.02 / 66.48
	10

	McCallum (McCallum and Li 2003)
	CRF + lex + ort + gaz + ws
	83.55 / 84.52 / 84.04
	9
	75.97 / 61.72 / 68.11
	8

	Bender (Bender et al. 2003)
	MEMM + lex + pos + pre + ort + gaz + chu
	83.18 / 84.68 / 83.92
	10
	74.82 / 63.82 / 68.88
	6

	Munro (Munro et al. 2003)
	Voting + Bagging + lex + pos + aff + chu + cs + tri bag
	84.21 / 80.87 / 82.50
	11
	69.37 / 66.21 / 67.75
	9

	Wu (Wu et al. 2003)
	ADA (stacked 3 learners) + lex + pos + aff + pre + ort + gaz
	81.39 / 82.02 / 81.70
	12
	75.20 / 59.35 / 66.34
	11

	Whitelaw (Whitelaw and Patrick 2003)
	HMM + aff + pre + cs
	78.05 / 81.60 / 79.78
	13
	71.05 / 44.11 / 54.43
	15

	Hendrickx (Hendrickx and Bosch 2003)
	MEM + lex + pos + aff + pre + ort + gaz + chu
	80.17 / 76.33 / 78.20
	14
	71.15 / 56.55 / 63.02
	13

	De Meulder (De Meulder and Daelemans 2003)
	MEM + lex + pos + aff + ort + gaz + chu + cs
	78.13 / 75.84 / 76.97
	15
	63.93 / 51.86 / 57.27
	14

	Hammerton (Hammerton 2003)
	RNN + lex + pos + gaz + chu
	53.26 / 69.09 / 60.15
	16
	63.49 / 38.25 / 47.74
	16

	Baseline
	
	50.90 / 71.91 / 59.61
	17
	31.86 / 28.89 / 30.30
	17

	Giuliano (Giuliano et al. 2005)
	SVM + lex + ort + pos + ws + wv
	76.70 / 90.50 / 83.10
	* 11
	not used
	–

	Talukdar (Talukdar et al. 2006)
	CRF + Three NE lists + Context pattern induction + tri + pruning
	F-score = 84.52
	* 8
	not used
	–

	Wong (Wong and Ng 2007)
	MEMM + 300 million unlabeled tokens + lex + aff + pre + ort + cs
	F-score = 87.13
	* 3
	not used
	–


SVM: Support Vector Machine; HMM: Hidden Markov Model; MEMM: Maximum Entropy Markov Model; CRF: Conditional Random Fields; CMM: Conditional Markov Model; RRM: Robust Risk Minimization; PER: Voted Perceptrons; RNN: Neural Networks; ADA: AdaBoost; MEM: Memory-Based; TRAN: Transformation-Based; lex: lexical features; aff: affix information (character n-grams); ort: orthographic information; ws: word shapes; wv: word variations; gaz: gazetteers; pos: part-of-speech tags; tri: word triggers; cs: global case information; doc: global document information; par: parentheses handling; pre: previously predicted entity tags; quo: between quotes; bag: bag of words; chu: chunk tags
F. Named Entity Recognition Challenges

In this section we summarize the named entity recognition challenges in different domains:

· The explosion of information raises the need for automated tools to extract meaningful entities and concepts from unstructured text in various domains.

· An entity the is relevant in one domain may not irrelevant in another.

· Named entities may take any shape, often composed of multiple words. This raises more challenges in correctly identifying the beginning and the end of a multi-word NE.

· NER solutions are not easily portable across languages and domains, and the same system performs inconsistently in different contexts.
· General NER systems that have an F-score in the high 80’s and higher do not perform as well in the biomedical context, with F-score values lagging behind by 15 to 30 points.

· Manually annotating training data to be used with machine learning techniques is a labor expensive, time consuming, and error prone task.

· The extension of NER to challenging domains with multiple NE classes makes manual annotation very difficult to accomplish, especially with growing nomenclature.
· There is a growing need for systems that use semi-supervised or unsupervised machine learning technique in order to use mostly unannotated training data.

· Due to the large size of potential NER datasets in real-world applications, classification techniques need to be highly scalable.

· The quality of the annotated training data, the features and external resources used impact the overall recognition performance and accuracy.

· Extraction of language and domain-specific features requires additional processes.

· The effect of part-of-speech (POS)  tagging on performance may be questionable. (Collier and Takeuchi 2004) note that simple orthographic features have consistently been proven to be more valuable than POS.  This observation has been confirmed during phase One of this work (presented in Chapter 4).

· It is difficult to judge the efficacy of a given technique because of the different components used to construct the total solution.. There is no consistent way to conclude whether a particular machine learning or other approach are best suited for NER. The quality of the recognition can only be seen as a whole.

In the following chapter, we will introduce the theory of support vector machines as our choice of machine learning method for the biomedical named entity recognition. Given the unique challenges in recognizing biomedical entities discussed earlier in this chapter, we decided to select a classification model that is capable of handling a high number of features and of discovering patterns in a large input space with irregular representation of classes. Support vector machines promise to handle both questions but not without challenges of their own.
3 Support Vector Machines
In this chapter we present a brief summary of the Support Vector Machine (SVM) theory and its application in the area of named entity recognition. An introduction to the mathematical foundation of support vector machines for binary classification is presented, followed by an overview of the different approaches used for multi-class problems. We then discuss the scalability issues of support vector machines and how they have been addressed in the literature.
A. Support Vector Machines

The Support Vector Machine (SVM) is a powerful machine learning tool based on firm statistical and mathematical foundations concerning generalization and optimization theory. It offers a robust technique for many aspects of data mining including classification, regression, and outlier detection. SVM was first suggested by Vapnik in the early 1970’s but it began to gain popularity in the mid-1990’s. SVM is based on Vapnik’s statistical learning theory (Vapnik 1998) and falls at the intersection of kernel methods and maximum margin classifiers. Support vector machines have been successfully applied to many real-world problems such as face detection, intrusion detection, handwriting recognition, information extraction, and others.
Support Vector Machine is an attractive method due to its high generalization capability and its ability to handle high-dimensional input data. Compared to neural networks or decision trees, SVM does not suffer from the local minima problem, it has fewer learning parameters to select, and it produces stable and reproducible results. If two SVMs are trained on the same data with the same learning parameters, they produce the same results independent of the optimization algorithm they use. However, SVMs suffer from slow training especially with non-linear kernels and with large input data size. Support vector machines are primarily binary classifiers. Extensions to multi-class problems are most often done by combining several binary machines in order to produce the final multi-classification results. The more difficult problem of training one SVM to classify all classes uses much more complex optimization algorithms and are much slower to train than binary classifiers.
In the following sections, we present the SVM mathematical foundation for the binary classification case, then discuss the different approaches applied for multi-classification.
B. Binary Support Vector Classification
Binary classification is the task of classifying the members of a given set of objects into two groups on the basis of whether they have some property or not. Many applications take advantage of binary classification tasks, where the answer to some question is either a yes or no. For example, product quality control, automated medical diagnosis, face detection, intrusion detection, or finding matches to a specific class of objects. 
The mathematical foundation of Support Vector Machines and the underlying Vapnik-Chervonenkis dimension (VC Dimension) is described in details in the literature covering the statistical learning theory (Vapnik 1998; Abe 2005; Müller et al. 2001; Kecman 2001; Joachims 2002; Alpaydin 2004) and many other sources. In this section we briefly introduce the mathematical background of SVMs in the linearly separable and non-linearly separable cases. One of the attractive properties of support vector machines is the geometric intuition of its principles where one may relate the mathematical interpretation to simpler geometric analogies.
1) Linearly Separable Case

In the linearly separable case, there exists one or more hyperplanes that may separate the two classes represented by the training data with 100% accuracy. Figure ‎3.1(a) shows many separating hyperplanes (in the case of a two-dimensional input the hyperplane is simply a line). The main question is how to find the optimal hyperplane that would maximize the accuracy on the test data. The intuitive solution is to maximize the gap or margin separating the positive and negative examples in the training data. The optimal hyperplane is then the one that evenly splits the margin between the two classes, aas shown in Figure ‎3.1(b).
Figure ‎3.1 – SVM Linearly Separable Case
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In Figure ‎3.1(b), the data points that are closest to the separating hyperplane are called support vectors. In mathematical terms, the problem is to find 
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Assuming a linearly separable dataset, the task of learning coefficients w and b of support vector machine 
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 reduces to solving the following constrained optimization problem:

find w and b that minimize: 
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Note that minimizing the inverse of the weights vector is equivalent to maximizing 
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This optimization problem can be solved by using the Lagrangian function defined as:
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where (1,(2, … (N are Lagrange multipliers and ( = [(1,(2, … (N]T. 

The support vectors are those data points xi with (i > 0, i.e., the data points within each class that are the closest to the separation margin.

Solving for the necessary optimization conditions results in
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By replacing 
[image: image18.wmf]å

=

a

=

N

i

i

i

i

y

1

x

w

into the Lagrangian function and by using 
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 as a new constraint, the original optimization problem can be rewritten as its equivalent dual problem as follows:

Find ( that maximizes

[image: image20.wmf]å

å

å

a

a

-

a

i

j

j

T

i

j

i

j

i

i

i

y

y

x

x

2

1


subject to



[image: image21.wmf]i

y

i

N

i

i

i

"

³

a

=

a

å

=

,

0

,

0

1


The optimization problem is therefore a convex quadratic programming problem which has global minimum. This characteristic is a major advantage of support vector machines as compared to neural networks or decision trees. The optimization problem can be solved in O(N3) time, where N is the number of input data points. 
2) Non-Linearly Separable Case

In the non-linearly separable case, it is not possible to find a linear hyperplane that separates all positive and negative examples. To solve this case, the margin maximization technique may be relaxed by allowing some data points to fall on the wrong side of the margin, i.e., to allow a degree of error in the separation. Slack Variables (i are introduced to represent the error degree for each input data point. Figure ‎3.2 demonstrates the non-linearly separable case where data points may fall into one of three possibilities:
1. Points falling outside the margin that are correctly classified, with (i = 0

2. Points falling inside the margin that are still correctly classified, with 0 < (i < 1

3. Points falling outside the margin and are incorrectly classified, with (i = 1

Figure ‎3.2 – SVM Non-Linearly Separable Case
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If all slack variables have a value of zero, the data is linearly separable. For the non-linearly separable case, some slack variables have nonzero values. The optimization goal in this case is to maximize the margin while minimizing the points with (i ≠ 0, i.e., to minimize the margin error.

In mathematical terms, the optimization goal becomes:

find w and b that minimize: 
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where C is an user-defined parameter to enforce that all slack variables are as close to zero as possible. Finding the most appropriate choice for C will depend on the input data set in use.

As in the linearly separable problem, this optimization problem can be converted to its dual problem:

find ( that maximizes
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In order to solve the non-linearly separable case, SVM introduces the use of a mapping function (: RM ( F to translate the non-linear input space into a higher dimension feature space where the data is linearly separable. Figure ‎3.3 presents an example of the effect of mapping the nonlinear input space into a higher dimension linear feature space.

Figure ‎3.3 – SVM Mapping to Higher Dimension Feature Space
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The dual problem is solved in feature space where its aim becomes to:

find ( that maximizes
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the resulting SVM is of the form:
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3) The Kernel “Trick”

Mapping the input space into a higher dimension feature space transforms the nonlinear classification problem into a linear one that is more likely to be solved. However, the problem is more likely to face the curse of dimensionality. The kernel “trick” allows the computation of the vector product 
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From Mercer’s theorem, there is a class of mappings ( such that 
[image: image32.wmf])

,

(

)

(

)

(

y

x

y

x

K

T

=

F

F

, where K is a corresponding kernel function. Being able to compute the vector products in the lower dimension input space while solving the classification problem in the linearly separable feature space is a major advantage of SVMs using a kernel function. The dual problem then becomes to:

find ( that maximizes
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and the resulting SVM takes the form: 
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Examples of kernel functions:

· Linear kernel (identity kernel):
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· Polynomial kernel with degree d:
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· Radial basis kernel with width σ:
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· Sigmoid kernel with parameter К and Θ:
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· It’s also possible to use other kernel functions to solve specific problems

C. Multi-class Support Vector Classification
For classification problems with multiple classes, different approaches are developed in order to decide whether a given data point belongs to one of the classes or not. The most common approaches are those that combine several binary classifiers and use a voting technique to make the final classification decision. These include:  One-Against-All (Vapnik 1998), One-Against-One (Kreßel 1999), Directed Acyclic Graph (DAG) (Platt et al. 2000), and Half-against-half method (Lei and Govindaraju 2005). A more complex approach is one that attempts to build one Support Vector Machine that separates all classes at the same time. In this section we will briefly introduce these multi-class SVM approaches. Figure ‎3.4 compares the decision boundaries for three classes using a One-Against-All SVM, a One-Against-One SVM, and an All-Together SVM. The interpretation of these decision boundaries will be discussed as we define the training and classification techniques using each approach.
Figure ‎3.4 – Comparison of Multi-Class Boundaries
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1) One-Against-All Multi-Class SVM
One-Against-All (Vapnik 1998) is the earliest and simplest multi-class SVM. For a K-class problem, it constructs K binary SVMs. The ith SVM is trained with all the samples from the ith class against all the samples from the other classes. To classify a sample x, x is evaluated by all of the K SVMs and the label of the class that has the largest value of the decision function is selected.

For a K-class problem, One-Against-One maximizes K hyperplanes separating each class from all the rest. Since all other classes are considered negative examples during training of each binary classifier, the hyperplane is optimized for one class only. As illustrated in Figure ‎3.4, unclassifiable regions exist when more than one classifier returns a positive classification for an example x or when all classifiers evaluate x as negative (Abe 2005). 

2) One-Against-One or Pairwise SVM

One-Against-One (Kreßel 1999) constructs one binary machine between pairs of classes. For a K-class problem, it constructs 
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binary classifiers. To classify a sample x, each of 
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 machines evaluate x and casts a vote. Finally, the class with the most votes is chosen.

Since One-Against-One separates two classes at a time, the separating hyperplanes identified by this approach are tuned better than those found with One-Against-All (Figure ‎3.4). Unclassifiable regions exist only when all classifiers evaluate a sample x as negative.

3) Directed Acyclic Graph SVM

Similar to One-Against-One SVM, Directly Acyclic Graph (DAG) (Platt et al. 2000) trains 
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binary classifiers for pairwise classes. To evaluate a sample x, this technique builds a DAG ordering the classes 1 through K to make a decision. The sample x is first evaluated by the first and the last classifier on the DAG and eliminates the lower vote from the DAG. The process is repeated until only one class remains and its label is chosen. Therefore, a decision is reached after (K – 1) binary SVM evaluations. Unclassifiable regions are eliminated by excluding one class at a time.
4) Half-Against-Half SVM

Half-Against-Half multi-class SVM (Lei and Govindaraju 2005) is useful for problems where there is a close similarity between groups of classes. Figure ‎3.5 illustrates an example with six classes where a linear separation exist between a group of three classes and another group of three classes. Using Half-Against-Half SVM, a binary classifier is built that evaluates one group of classes against another group. The trained model consists of at most 
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binary SVMs. To classify a sample x, this technique identifies the group of classes where the sample x belongs, than continues to evaluate x with a subgroup, and so on, until the final class label is found. The classification process is similar to a decision tree that requires 
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 evaluations at most. Figure ‎3.5 illustrates a possible decision tree for the six classes.
Figure ‎3.5 – Half-Against-Half Multi-Class SVM

Source: (Lei and Govindaraju 2005)
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5) All-Together or All-At-Once SVM

An All-Together multi-classification approach is computationally more expensive yet usually more accurate than all other multi-classification methods. Hsu and Lin (Hsu and Lin 2002) note that “as it is computationally more expensive to solve multi-class problems, comparisons of these methods using large-scale problems have not been seriously conducted.
This approach builds one SVM that maximizes all separating hyperplanes at the same time. Training data representing all classes is used to generate the trained model. With this approach, there are no unclassifiable regions as each data point belongs to some class represented in the training dataset. Figure ‎3.4 illustrates the elimination of unclassifiable regions in this case.

The All-together multi-class SVM poses a complex optimization problem as it maximizes all decision functions at the same time (Crammer and Singer 2001). Algorithms to decompose the problem (Hsu and Lin 2002) and to solve the optimization problem (Tsochantaridis et al. 2004) have been developed, however, the All-Together multi-class SVM approach remains a daunting task. The training time is very slow which makes the approach so far unusable for real-world problems with a large data set and/or a high number of classes.
D. Named Entity Recognition Using SVM

The extension of named entity recognition to new domains with high ambiguity and growing nomenclature raises concerns about the machine learning methodology that is most suitable for such domains. Support Vector Machine (SVM) is a promising technique due to its ability to handle a high number of features and to discover patterns in a large input space with irregular representation of classes. SVM is gaining popularity as the approach of choice for challenging data such as the biomedical NER data. Many systems that participated in the JNLPBA-04 challenge task to identify named entities in the GENIA biomedical corpus were able to achieve reasonable performance results using SVM either separately or in conjunction with other machine learning approaches.
Evidence exists that using high-dimensional orthographic and contextual features leads to good NER classification. In order to classify entities with varying shapes and ambiguous boundaries, input data vectors are usually sparse and high-dimensional. Due to its high generalization ability, SVM is capable of discovering patterns under these circumstances.
Multi-class problems remain a daunting task for SVM, especially with large data size and a high number of classes. For multi-word named entities, one needs to design a learning solution that identifies the beginning, middle, and end of a named entity with accuracy. There is no known best approach to handle this situation. One possibility is to label all parts of a named entity with the same label in order to minimize the number of classes. Another approach is to train machines to identify either the beginning or the end then combine all classified outputs in order to label the whole sequence of words in the entity. The number of classes in the problem doubles using this method. If an All-together multi-class SVM is used, more classes lead to a much more complex optimization problem and much longer training time.
Integration of prior domain knowledge into SVM training is currently achieved outside of learning and classification process. SVM handles input vectors and is not yet capable of handling general information types.
E. SVM Scalability Challenges

(Bennett and Campbell 2000) discuss the common usability and scalability issues of support vector machines. In this section we summarize the SVM scalability challenges noted in the literature, which include:
· Optimization requires O(n3) time and O(n2) memory for single class training, where n is input size (depends on algorithm used). To address this issue, new optimization algorithms continue to be introduced (Joachims 2006; Serafini and Zanni 2005; Collobert et al. 2006b, 2006a).
· Multi-class training time is much higher, especially for all-together optimization.

· Multi-class performance depends on approach used and deteriorates with more classes.
· Slow training, especially with non-linear kernels, may be addressed by :
· Reducing the input data size : pruning, chunking, clustering
· Reducing the number of support vectors: model decomposition and shrinking (Joachims 1999)
· Reducing feature dimensionality : using a priori clustering (Barros de Almeida et al. 2000) or adaptive clustering (Boley and Cao 2004)
· SVM is impractical for large input datasets, especially with non-linear kernel functions.
In addition to the scalability issues, SVM shares similar usability challenges as neural networks and other machine learning techniques related to the selection of model parameters. Model parameters are often selected using a grid search, cross-validation, or heuristic-based methods. Selection of a suitable kernel function for the problem at hand is another designer-determined factor, which is also tackled using cross-validation, decision trees, or heuristics. While these issues are concerning SVM usability, as discussed in Appendix A,  using grid search and cross-validation to select the best model may be unfeasible with large datasets.
F. Emerging SVM Techniques

Recent developments in the area of support vector machines attempt to use SVM for unsupervised learning in order to answer the need for new techniques to deal with unannotated data. Support Vector Clustering (SVC) (Ben-Hur et al. 2001) maps the input data into a higher dimension feature space where it tries to find clusters of data by minimizing a sphere in the higher dimension space. SVC introduced a novel idea that takes advantage of SVM’s mapping, however, this technique remains applicable only to toy data or very small datasets and cannot be used with real-world problems. Attemps to improve and/or provide alternative methods for clustering using support vectors followed (Lee and Daniels 2006; Lee 2006). This area of research would certainly benefit from improved SVM scalability options.
Other research activities to accelerate SVM training in binary classification (Tsang et al. 2005) and to introduce new kernels for classification (Sullivan and Luke 2007) are also introduced.
In the next chapter, we report the results and observations we reached by constructing a set of biomedical named entity recognition experiments using support vector machines. These experiments were instrumental in providing good insight into the scalability and usability challenges when using SVM with large scale from the unique biomedical domain. Our research proposal is influenced by reviewing the literature and the problems identified during the exploration phase presented in the following chapter.
4 Identifying Challenges in Large Scale NER
In this chapter we report the research work already completed during the first phase of this proposed work, which consisted of building the infrastructure necessary to conduct the research and of designing and implementing a series of experiments to investigate the potential challenges of large scale named entity recognition using support vector machines. The main motivation for conducting these baseline experiments was to identify the challenges in large scale named entity recognition problems, to assess the feasibility of the language and domain independent NER approach, and to obtain a set of baseline performance measures. 

The baseline experiments attempt to eliminate language and domain-specific knowledge from the named entity recognition process when applied to the English biomedical entity recognition task, as a baseline for other languages and domains. The biomedical field NER remains a challenging task due to growing nomenclature, ambiguity in the left boundary of entities caused by descriptive naming, difficulty of manually annotating large sets of training data, strong overlap among different entities, to cite a few of the NER challenges in this domain.
In the following sections, we present the architecture and methods used to conduct the experiments. We then report the experiments results both in the case of single-class (protein) classification and for the multi-class classification results, and compare the results to those reported by other systems using the same challenge data. We conclude the chapter with a discussion of the challenges and problems faced while conducting these experiments which motivate the proposed research on scalability issues.
A. Baseline Experiment Design
The baseline experiment aims to identify biomedical named entities using a supervised learning approach. The training and testing data use the JNLPBA-04 (Kim et al. 2004) challenge task data, where the names of proteins, cell lines, cell types, DNA and RNA entities are previously labeled. The approach employed in this experiment is the supervised machine learning using Support Vector Machines (SVM) (Vapnik 1998), due to the their ability to handle high-dimensional feature and input space.
The JNLPBA-04 shared task (Kim et al. 2004) is an open challenge task proposed at the “International Joint Workshop on Natural Language Processing in Biomedicine and its Application”. The task uses the GENIA corpus (Kim et al. 2003) described above.  The systems participating in this task employ a variety of machine learning techniques such as Support Vector Machines (SVM), Hidden Markov Models (HMM), Maximum Entropy Markov Models (MEMMs) and Conditional Random Fields (CRFs). Five systems adopted SVMs either in isolation (Park et al. 2004; Lee, Hwang et al. 2004), or in conjunction with other  model (Zhou and Su 2004; Song et al. 2004; Rössler 2004). The results of the experiment presented in this paper are compared to the five JNLPBA-04 task participating systems listed above, in addition to the results reported in (Giuliano et al. 2005). Table ‎4.2 summarizes the performance comparison results. 
This experiment is composed of two main parts – the first identifies protein named entities only, while the second locates and classifies all five named entities (protein, DNA, RNA, cell type, and cell line). The SVM-Light software by T. Joachims (Joachims 2002) is used for the single-class part of the experiment, and the SVM-Multiclass software – also by T. Joachims – is used for the multi-class experiments. Table ‎4.3 and Table ‎4.4 summarize the experiment results of both parts.
The training and test data pre-processing involves morphological and contextual features extraction only. In order to estimate a worse-case scenario of the approach used, no instance pruning or filtering is performed prior to learning and classification, thereby leaving the scarcity nature of the data intact. No language-specific pre-processing such as part-of-speech or noun phrases tagging is used. No dictionaries, gazetteers (seed words), or other domain-specific knowledge are used. Figure ‎4.1 presents the architecture used to conduct the experiments. The common machine learning architecture used for NER is simplified by limiting the pre-processing stage to feature extraction and reducing post-processing to class labeling and performance evaluation.
The initial results are promising and prove that the approach used is capable of recognizing and identifying the named entities successfully without making use of any language-specific or domain-specific prior knowledge. Performance measures of the experiments are reported in terms of recall, precision, and Fβ=1-score.
Figure ‎4.1 – Baseline Experiments Architecture
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B. Features Selection
The training and testing data is preprocessed using the JFEX software (Giuliano et al. 2005) in order to extract morphological and contextual features that do not use language-specific knowledge such as part-of-speech or noun phrase tagging. The generated feature space is very large, including about a million different features. The features extracted are described below. Since words appearing separately or within windows of other words each constitutes a feature in the lexicon, the potential number of possibilities is very high. Including character n-grams describing prefixes, infixes, and suffixes would further increase the number of features in the lexicon. The feature extraction process is intentionally designed that way in order to test the scalability of the approach used and to allow the experiments to proceed in a language-independent and domain-independent fashion. All features are binary, i.e., each feature denotes whether the current token possesses this feature (one) or not (zero). Character n-grams were not included in the baseline experiment data due to memory limitations encountered during the feature extraction process.
The morphological features extracted are:

· Capitalization: token begins with a capital letter.

· Numeric: token is a numeric value.

· Punctuation: token is a punctuation.

· Uppercase: token is all in uppercase.

· Lowercase: token is all in lowercase.

· Single character: token length is equal to one.

· Symbol: token is a special character.

· Includes hyphen: one of the characters is a hyphen.

· Includes slash: one of the characters is a slash.

· Letters and Digits: token is alphanumeric.

· Capitals and digits: token contains caps and digits.

· Includes caps: some characters are in uppercase.

· General regular expression summarizing the word shape, for e.g., Xx+-X-x+ describes a word starting with one capital letter followed by a number of lowercase letter, then a hyphen, one capital letter, another hyphen, and ending with a number of lowercase letters.

The morphological features extracted examine a token as a whole and do not include character n-grams features that detect in-word characteristics such as prefixes, suffixes, or infixes. We will plan to extract these additional features during the evaluation phase of our proposed work in order to provide a finer level of word dissection. Morphological feature extraction was applied to the three tokens preceding and following the token being examined in addition to the token itself.

Each word appearing in the training text is considered its own feature. In addition, a consecutive collocation of tokens active over three positions around the token itself is used in order to provide a moving window of consecutive tokens which describes the context of the token relative to its surrounding.
Since biomedical named entities often are composed of more than one token, special labeling for the beginning, the middle, and the ending of a named entity sequence is often used. However, in the initial experiments, all tokens within a sequence use the same label during the SVM training phase. The output of the SVM classification phase is post-processed in order to label the beginning, middle, and end part of a sequence differently, as required by the JNLPBA-04 task evaluation scripts. The post-processing labeling scripts did not attempt to correct classification errors that may arise while identifying the beginning of a sequence, however, the overall performance results are still indicative of the feasibility of the approach used.
C.  Single Class Results
Using SVM-Light (Joachims 2002), a single-class support vector machine is trained to recognize protein name sequences. The trained machine is then used to classify proteins in the test data. Performance results of the protein classification task are summarized in Table ‎4.3. The hardware configuration used for single-class classification experiments is a single-processor Windows-based Pentium IV machine with 1 GB of RAM. This configuration was enough to complete each single-class experiment successfully within 20-30 minutes.
Since no pre-processing was performed on the training and testing data besides features extraction, the positive examples in the data sets remained scarce. As a result, we consider the performance results reported in Table ‎4.3 to represent a worse-case indication of the potential performance.
SVM-Light (Joachims 2002) offers the option of “boosting” the weight of the positive examples relative to the negative ones. We experimented with boosting factors of 2, 4, and 8 in order to counter the effect of positive data scarcity. The relative performance results are reported in Table ‎4.1 and Table ‎4.3. The overall recall, precision, and Fβ=1-score measures achieved with the different boosting factors is as follows:

Table ‎4.1 – Effect of Positive Example Boosting
	No positive boosting
	68.06 / 59.29 / 63.37

	Positive boosting factor = 2
	75.54 / 58.82 / 66.14

	Positive boosting factor = 4 
	78.70 / 57.30 / 66.32

	Positive boosting factor = 8 
	78.49 / 54.84 / 64.56


As expected, increasing the positive weight boosting factor led to an improved recall measure at the expense of the precision measure. The resulting Fβ=1-score improved with a boosting factor of two and four relative to the experiment without any positive weight boosting. However, a further increase of the positive boosting factor to eight led to a decrease of the overall Fβ=1-score, as a result of the decreasing precision measure.  A careful balance of the recall and precision results is required in order to maintain an overall Fβ=1-score, if such a measure is deemed to be the final performance indicator.
D. Multi-class Results
The SVM-Multiclass implementation by T. Joachims is based on (Crammer and Singer 2001) and uses a different quadratic optimization algorithm described in (Tsochantaridis et al. 2004).  The SVM-Multiclass implementation uses an “all-together” multi-classification approach, which is computationally more expensive yet usually more accurate than “one-against-all” or “one-against-one”  multi-classification methods. Hsu and Lin (Hsu and Lin 2002) note that “as it is computationally more expensive to solve multi-class problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multi-class SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets.” The multi-class experiment presented in this paper is one such attempt at solving a large-scale problem using an “all-together” classification method.
Initial experiments for multi-class classification were unsuccessful, mostly due to hitting the processing power limits of the single processor machines. The same experiments were attempted on different machine configurations, and unreasonably long processing time was needed to finally complete one such experiment. The first successful experiment required a total learning and classification time of 17 days in order to complete using a serial algorithm on a quad-processor Pentium IV machine. The same experiment was repeated on a Xeon quad-processor 3.6 GHz Linux machine with four gigabytes of main memory and completed in 97 hours or four days and one hour. 
The multi-class performance results are summarized in Table ‎4.4. Detailed multi-class results are presented in Table ‎4.5, Table ‎4.6, Table ‎4.7, and Table ‎4.8. The overall recall measure achieved is 62.43%, with a precision of 64.50%, and a final F-score of 63.45%. These results are compared to those obtained by the five JNLPBA-04 participating systems which used support vector machines either in isolation or in combination with other models, as well as the results reported by (Giuliano et al. 2005) using the same task data. The performance comparison results are reported in Table ‎4.2. The language-independent approach used in this experiment performed very close to (Park et al. 2004) and better than (Lee, Hwang et al. 2004) which both used SVM as the only learning model. Park et al. (Park et al. 2004) used character n-grams, orthographic information, word shapes, gene sequences prior knowledge, word variations, part-of-speech tags, noun phrase tags,  and word triggers. Lee et al. (Lee, Hwang et al. 2004) used lexical features, character n-grams, and part-of-speech tags in a two-phased model based on SVMs.
Rössler (Rössler 2004) adapted a NER-system for German to the biomedical field. The system used character n-grams, orthographic information, gene sequences prior knowledge, and word length as features. The overall performance of (Rössler 2004) is very close to that achieved in this experiment. The approach used by (Rössler 2004) is particularly interesting in demonstrating the applicability of some NER-system from one language to another by not incorporating language-specific features. However, Rössler (Rössler 2004) made use of domain-specific knowledge while applying the system to the biomedical domain.

Zhou and Su (Zhou and Su 2004) developed the system that performed best  in the JNLPBA-04 task. Their system performance reached an overall recall/precision/F-score of 76.0%, 69.4%, and 72.6% respectively. Zhou and Su (Zhou and Su 2004) used SVM in conjunction with Hidden Markov Models in a more complex learning method. The systems also made use of many language-specific and domain-specific knowledge such as character n-grams, orthographic information, gene sequences, gazetteers, part-of-speech tags, word triggers, abbreviations, and cascaded entities. While this system performed better than the current multi-class experiment, its heavy use of language and domain-specific prior knowledge contradicts the promise of the approach presented in this paper.
Song et al. (Song et al. 2004) used SVM in combination with Conditional Random Fields (CRFs) and included character n-grams, orthographic information, and other lexical features in addition to part-of-speech and noun phrase tagging. The overall performance of this system is comparable to that of the multi-class experiment results hereby presented. Giuliano et al. (Giuliano et al. 2005) also incorporated part-of-speech tagging and word features of tokens surrounding each analyzed token in addition to features similar to those used in this experiment. In addition, Giuliano et al. (Giuliano et al. 2005) pruned the data instances in order to reduce the dataset size by filtering out frequent words from the corpora because they are less likely to be relevant than rare words.
Table ‎4.2 – Performance of BioNLP Systems Using SVM vs. Experiment Results
	
	1978-1989 Set
	1990-1999 Set
	2000-2001 Set
	S/1998-2001 Set
	Total

	Zhou (Zhou and Su 2004)
	75.3 / 69.5 / 72.3
	77.1 / 69.2 / 72.9
	75.6 / 71.3 / 73.8
	75.8 / 69.5 / 72.5
	76.0 / 69.4 / 72.6

	Giuliano (Giuliano et al. 2005)
	--
	--
	--
	--
	64.4 / 69.8 / 67.0

	Song (Song et al. 2004)
	60.3 / 66.2 / 63.1
	71.2 / 65.6 / 68.2
	69.5 / 65.8 / 67.6
	68.3 / 64.0 / 66.1
	67.8 / 64.8 / 66.3

	Rössler (Rössler 2004)
	59.2 / 60.3 / 59.8
	70.3 / 61.8 / 65.8
	68.4 / 61.5 / 64.8
	68.3 / 60.4 / 64.1
	67.4 / 61.0 / 64.0

	Habib
	53.2  / 70.8 / 60.7
	63.7 / 63.6 / 63.7
	64.2 / 65.4 / 64.8
	63.0 / 63.2 / 63.1
	62.4 / 64.5 / 63.5

	Park (Park et al. 2004)
	62.8 / 55.9 / 59.2
	70.3 / 61.4 / 65.6
	65.1 / 60.4 / 62.7
	65.9 / 59.7 / 62.7
	66.5 / 59.8 / 63.0

	Lee (Lee, Hwang et al. 2004)
	42.5 / 42.0 / 42.2
	52.5 / 49.1 / 50.8
	53.8 / 50.9 / 52.3
	52.3 / 48.1 / 50.1
	50.8 / 47.6 / 49.1

	Baseline (Kim et al. 2004)
	47.1 / 33.9 / 39.4
	56.8 / 45.5 / 50.5
	51.7 / 46.3 / 48.8
	52.6 / 46.0 / 49.1
	52.6 / 43.6 / 47.7


Table ‎4.3 – Effect of Positive Examples Boosting on Protein Single-Class  SVM Results
	
	1978-1989 Set
	1990-1999 Set
	2000-2001 Set
	S/1998-2001 Set
	Total

	No Boosting

Complete
	57.47 / 53.35 / 55.34
	71.69 / 62.76 / 66.93
	68.35 / 59.60 / 63.68
	68.27 / 58.63 / 63.08
	68.06 / 59.29 / 63.37

	Right
	73.56 / 68.29 / 70.83
	81.76 / 71.58 / 76.33
	79.04 / 68.92 / 73.63
	79.47 / 68.25 / 73.43
	79.30 / 69.09 / 73.84

	Left
	59.61 / 55.34 / 57.39
	77.82 / 68.13 / 72.65
	76.70 / 66.88 / 71.45
	76.08 / 65.34 / 70.30
	75.24 / 65.55 / 70.06

	Boost Factor = 2

Complete
	65.35 / 50.83 / 57.18
	78.59 / 60.88 / 68.61
	76.33 / 60.36 / 67.41
	75.58 / 58.40 / 65.89
	75.54 / 58.82 / 66.14

	Right
	80.62 / 62.71 / 70.55
	87.75 / 67.98 / 76.61
	86.28 / 68.23 / 76.20
	86.25 / 66.65 / 75.19
	86.09 / 67.04 / 75.38

	Left
	67.98 / 52.87 / 59.48
	85.70 / 66.39 / 74.82
	83.67 / 66.16 / 73.89
	83.21 / 64.30 / 72.54
	82.57 / 64.30 / 72.30

	Boost Factor = 4

Complete
	71.43 / 48.49 / 57.77
	81.55 / 59.32 / 68.68
	78.99 / 59.03 / 67.57
	78.63 / 57.04 / 66.11
	78.70 / 57.30 / 66.32

	Right
	84.73 / 57.53 / 68.53
	89.93 / 65.42 / 75.74
	88.58 / 66.20 / 75.77
	88.64 / 64.30 / 74.53
	88.55 / 64.46 / 74.61

	Left
	74.38 / 50.50 / 60.16
	88.66 / 64.50 / 74.67
	86.10 / 64.35 / 73.65
	86.00 / 62.39 / 72.31
	85.58 / 62.31 / 72.11

	Boost Factor = 8

Complete
	71.43 / 44.52 / 54.85
	81.41 / 57.14 / 67.15
	78.76 / 56.91 / 66.08
	78.34 / 54.74 / 64.45
	78.49 / 54.87 / 64.59

	Right
	85.06 / 53.02 / 65.32
	90.14 / 63.27 / 74.35
	88.21 / 63.74 / 74.00
	88.42 / 61.78 / 72.73
	88.41 / 61.81 / 72.76

	Left
	73.89 / 46.06 / 56.75
	88.59 / 62.18 / 73.08
	86.47 / 62.48 / 72.54
	86.44 / 60.39 / 71.11
	85.83 / 60.00 / 70.63


Table ‎4.4 – Summary of Multi-class SVM Experiment Results
	Named Entity
	1978-1989 Set
	1990-1999 Set
	2000-2001 Set
	S/1998-2001 Set
	Total

	protein
	58.62 / 70.83 / 64.15
	72.68 / 63.43 / 67.74
	70.83 / 62.03 / 66.14
	71.28 / 60.19 / 65.27
	70.37 / 62.00 / 65.92

	DNA
	61.61 / 65.71 / 63.59
	52.21 / 63.01 / 57.10
	52.55 / 70.59 / 60.25
	47.11 / 69.60 / 56.19
	51.00 / 67.64 / 58.16

	RNA
	0.00 /  0.00 /  0.00
	55.10 / 57.45 / 56.25
	50.00 / 74.29 / 59.77
	50.00 / 62.50 / 55.56
	51.16 / 63.77 / 57.02

	cell_type
	51.79 / 73.55 / 60.78
	51.42 / 72.84 / 60.28
	52.94 / 82.89 / 64.62
	50.09 / 81.31 / 61.99
	59.56 / 78.00 / 67.55

	cell_line
	32.39 / 67.86 / 43.85
	50.00 / 50.60 / 50.30
	56.94 / 55.03 / 55.97
	53.53 / 43.75 / 48.15
	47.72 / 51.64 / 49.61

	Overall
	53.18 / 70.79 / 60.73
	63.68 / 63.63 / 63.66
	64.15 / 65.39 / 64.76
	62.97 / 63.16 / 63.06
	62.43 / 64.50 / 63.45

	Correct Right
	71.55 / 95.25 / 81.72
	79.44 / 79.38 / 79.41
	78.95 / 80.47 / 79.70
	78.40 / 78.64 / 78.52
	78.05 / 80.65 / 79.33

	Correct Left
	56.12 / 74.72 / 64.10
	70.33 / 70.28 / 70.31
	70.95 / 72.31 / 71.63
	69.68 / 69.90 / 69.79
	68.76 / 71.06 / 69.89


Table ‎4.5 – Multi-class SVM Results 1978-1989 Set
	named entity
	complete match
	right boundary match
	left boundary match

	protein  ( 609) 
	357 (58.62 / 70.83 / 64.15)
	464 (76.19 / 92.06 / 83.38)
	371 (60.92 / 73.61 / 66.67)

	DNA    ( 112) 
	69 (61.61 / 65.71 / 63.59)
	96 (85.71 / 91.43 / 88.48)
	73 (65.18 / 69.52 / 67.28)

	RNA    (   1) 
	0 ( 0.00 /  0.00 /  0.00)
	0 ( 0.00 /  0.00 /  0.00)
	0 ( 0.00 /  0.00 /  0.00)

	cell_type ( 392) 
	203 (51.79 / 73.55 / 60.78)
	273 (69.64 / 98.91 / 81.74)
	215 (54.85 / 77.90 / 64.37)

	cell_line ( 176) 
	57 (32.39 / 67.86 / 43.85)
	90 (51.14 / 107.14 / 69.23)
	65 (36.93 / 77.38 / 50.00)

	[-ALL-]  (1290) 
	686 (53.18 / 70.79 / 60.73)
	923 (71.55 / 95.25 / 81.72)
	724 (56.12 / 74.72 / 64.10)


Table ‎4.6 – Multi-class SVM Results 1990-1999 Set
	named entity
	complete match
	right boundary match
	left boundary match

	protein  (1420) 
	1032 (72.68 / 63.43 / 67.74)
	1200 (84.51 / 73.76 / 78.77)
	1129 (79.51 / 69.39 / 74.11)

	DNA    ( 385) 
	201 (52.21 / 63.01 / 57.10)
	288 (74.81 / 90.28 / 81.82)
	232 (60.26 / 72.73 / 65.91)

	RNA    (  49) 
	27 (55.10 / 57.45 / 56.25)
	41 (83.67 / 87.23 / 85.42)
	31 (63.27 / 65.96 / 64.58)

	cell_type ( 459) 
	236 (51.42 / 72.84 / 60.28)
	325 (70.81 / 100.31 / 83.01)
	256 (55.77 / 79.01 / 65.39)

	cell_line ( 168) 
	84 (50.00 / 50.60 / 50.30)
	117 (69.64 / 70.48 / 70.06)
	97 (57.74 / 58.43 / 58.08)

	 [-ALL-]  (2481) 
	1580 (63.68 / 63.63 / 63.66)
	1971 (79.44 / 79.38 / 79.41)
	1745 (70.33 / 70.28 / 70.31)


Table ‎4.7 – Multi-class SVM Results 2000-2001 Set
	named entity
	complete match
	right boundary match
	left boundary match

	protein  (2180) 
	1544 (70.83 / 62.03 / 66.14)
	1815 (83.26 / 72.92 / 77.75)
	1723 (79.04 / 69.22 / 73.81)

	DNA    ( 411) 
	216 (52.55 / 70.59 / 60.25)
	284 (69.10 / 92.81 / 79.22)
	241 (58.64 / 78.76 / 67.22)

	RNA    (  52) 
	26 (50.00 / 74.29 / 59.77)
	40 (76.92 / 114.29 / 91.95)
	26 (50.00 / 74.29 / 59.77)

	cell_type ( 714) 
	378 (52.94 / 82.89 / 64.62)
	513 (71.85 / 112.50 / 87.69)
	402 (56.30 / 88.16 / 68.72)

	cell_line ( 144) 
	82 (56.94 / 55.03 / 55.97)
	112 (77.78 / 75.17 / 76.45)
	92 (63.89 / 61.74 / 62.80)

	 [-ALL-]  (3501) 
	2246 (64.15 / 65.39 / 64.76)
	2764 (78.95 / 80.47 / 79.70)
	2484 (70.95 / 72.31 / 71.63)


Table ‎4.8 – Multi-class SVM Results 1998-2001 Set
	named entity
	complete match
	right boundary match
	left boundary match

	protein  (3186) 
	2271 (71.28 / 60.19 / 65.27)
	2666 (83.68 / 70.66 / 76.62)
	2526 (79.28 / 66.95 / 72.60)

	DNA    ( 588) 
	277 (47.11 / 69.60 / 56.19)
	386 (65.65 / 96.98 / 78.30)
	312 (53.06 / 78.39 / 63.29)

	RNA    (  70) 
	35 (50.00 / 62.50 / 55.56)
	53 (75.71 / 94.64 / 84.13)
	36 (51.43 / 64.29 / 57.14)

	cell_type (1138) 
	570 (50.09 / 81.31 / 61.99)
	802 (70.47 / 114.41 / 87.22)
	612 (53.78 / 87.30 / 66.56)

	cell_line ( 170) 
	91 (53.53 / 43.75 / 48.15)
	132 (77.65 / 63.46 / 69.84)
	104 (61.18 / 50.00 / 55.03)

	 [-ALL-]  (5152) 
	3244 (62.97 / 63.16 / 63.06)
	4039 (78.40 / 78.64 / 78.52)
	3590 (69.68 / 69.90 / 69.79)


E. Challenges and Problems
Running the baseline experiments provided a good first-hand experience and exposure to the usability and scalability challenges associated with named entity recognition and support vector machines. In this section we describe some of the issues encountered as they provide a basis for the proposed research presented in Chapter 5. We begin with a discussion of the scalability challenges then proceed with some of the practical problems and usability issues faced.
The Java-based JFEX feature extraction system provided by (Giuliano et al. 2005) provides a scripted approach to define which features are to be extracted, which adds flexibility to the feature extraction process. However, the system memory requirements are very high, especially with a large dataset and a selection of several complex features. The memory requirements can be reduced by breaking down the datasets into smaller sets grouped in a folder, yet similar memory needs reduction was not possible when complex features were to be extracted. For the sake of this experiment, word shape features for surrounding tokens could not be included due to the memory limitation. Also, extraction of character n-grams was not included in this system. The resulting set of features used in this experiment mostly includes simple orthographic information, contextual features, and the words themselves.

Different machine configurations were tried during the course of this research. Desktops and laptops with Pentium IV processors and 1-2 GB of RAM were used for single-class classification experiments. Attempts to run multi-class experiments failed on single processor machines due to the CPU-intensive nature of the classification process. The later experiment was tried on a Pentium III quad-processor Linux machine. The process did not complete in 22 days and was aborted. The first successful multi-class experiment that was run on a Pentium IV quad-processor Linux-based machine completed in 17 days. Running the same experiment on a Xeon quad-processor 3.6GHz machine completed in 96 hours (4 days). Table ‎4.9 summarizes the training time and performance results for some single class tests with different kernel types and a multi-class test with a linear kernel. All tests reported in Table ‎4.9 were run on a dual core Xeon 3.6 GHz machine with 4 GB of RAM selecting a margin error of 0.1 and a maximum of 2GB of total memory per process.
Table ‎4.9 – Single and Multi-class Training Times
	Test Type
	Kernel Type
	Training Time
	Recall
	Precision
	F-score

	Protein
	Linear
	814.85 sec. 13.58 min.
	68.13
	59.33
	63.43

	Protein
	Polynomial degree=2
	390082.24 sec.
6501.37 min.
	69.93
	62.23
	65.86

	Protein
	Polynomial degree=3
	78506.33 sec. 1308.44 min.
	68.47
	62.44
	65.32

	Protein
	Radial basis
	still running
	
	
	

	Multi-class
	Linear
	353367.03 sec. 5889.45 min.
	70.09 (P) 63.01 (A)
	61.93 (P) 64.44 (A)
	65.76 (P) 63.71 (A)


(P): Identified protein names; (A): All identified entities
Some initial parallelization single-class experiments were attempted successfully on a cluster of Linux machines at the US Air Force Academy (USAFA). The parallel SVM software developed by Zanni et al.  (Zanni et al. 2006) based on (Zanghirati and Zanni 2003; Serafini et al. 2005) was used. However, the initial performance measures achieved by the serial SVM software were superior to those attained by the parallel algorithm, with no considerable gain in computational time. Further experiments are needed in order to determine the best use of the parallel SVM software in (Zanni et al. 2006) or other parallel algorithms.
Most of the NER and SVM usability issues were experienced during this exercise. Model parameters and kernel selection, identification of a suitable class labeling convention, developing preprocessing and post-processing modules to suit the needs of different tools, and not being able to capitalize on results obtained from different experiments without having to restart the learning process, were just a few examples of the common challenges facing developers of machine learning solutions in general. 

Designing and building the experimentation infrastructure was the main practical problem faced. In order to compile and/or construct the resources needed for the machine learning solution, it was evident that in order to contribute to the research activity one has to spend a considerable amount of time and effort recreating existing solutions before getting to the point where more focused research and development could be possible. Despite the existence of previously developed tools within the research community, these tools lack standardization and require extensive work to preprocess the data according to different formats and to build interface modules to link the tools and construct a total solution. The problem is compounded by the lack of compatible components and reliable documentation on the type of preprocessing that may be needed by one or more of these components. In order to build a new research infrastructure from scratch, one needs to reproduce previous work to get to the point where new research may be started. This experience demonstrates the need for a complete yet flexible research infrastructure that facilitates the construction of new solutions from existing components and enables the addition of new research in focused areas. This is a software engineering issue in the first place and is often overlooked in the excitement of a challenging research activity.
In summary, we view the issues associated with large-scale named entity recognition using support vector machines as a two-fold problem: one of software engineering and one of machine learning, and recommend that they should be addressed as such. Although this research proposal will focus primarily on improving SVM’s scalability with large datasets and multiple classes, we recommend a new service-oriented framework to address the usability, maintainability, and expandability issues observed while running the baseline experiments. Some initial thoughts about the framework are presented in Appendix A. We hope to explore and implement these ideas in future research projects. 

In the next chapter, we propose a novel database-supported framework for classification using support vector machines, to be applied to the biomedical named entity recognition problem in particular.
5 Research Proposal
The proposed research plan attempts to address the scalability challenges associated with named entity recognition using support vector machines in order to provide a named entity recognition solution that is useable across languages and domains. The plan addresses both folds of the problem: software engineering and machine learning. 

We propose an SVM solution based on database-supported algorithms and a database repository in order to improve the scalability of SVM with large datasets. The proposed solution will address both the single class and multi-class classification problems. The database schema design will focus on a novel decomposition of the SVM problem that eliminates computational redundancy and supports the dynamic programming algorithms. The database schema will also support the proposed service-oriented architecture. In addition, we will investigate using an incremental training approach in order to promote scalability of the solution and to allow the incorporation of new training data when available while eliminating the need for restarting the learning process.

In the following sections, we summarize the scalability challenges inherent in solving large-scale named entity recognition problems using support vector machines, and propose a database-supported approach to address these issues. We discuss the proposed solution and how to complement it with a database schema and embedded database modules. An evaluation plan is presented followed by a brief discussion of the potential success criteria. The proposed research aims to advance the state of the art by proposing a decomposition of the support vector machines learning using database-assisted algorithms to improve the scalability of the learning technique. The application of this proposal will focus on providing a named entity recognition solution for the biomedical domain that does not make use of prior language or domain knowledge thereby making it portable across languages and domains.
A. NER/SVM Scalability Challenges
In this section we summarize the various usability and scalability challenges discussed in the previous two chapters. The NER/SVM problem combines questions inherent in both fields and compounds the software engineering issue. The biomedical NER using SVM poses several challenges which include:
· Higher level of ambiguity and uncertainly regarding biomedical entity shapes.

· Difficulty to annotate training data manually, a labor and time expensive process.

· Need for high-dimensional features to compensate for ambiguity in defining entities.

· SVM slow training and high memory requirements.

· Difficulty to select suitable SVM model parameters and kernel for given datasets.

· Complex learning with training data that represent multiple classes.

· Lack of integrated tools to build a total solution.

· Incompatibility of existing tools and the need to develop interfacing modules to fill the gaps and put the different pieces of the solution together.
A language and domain-independent named entity recognition system requires elimination of prior language or domain-specific knowledge. Therefore, any proposed solution needs to address a higher level of ambiguity and a minimize expectations about the shape of named entities. Entities may take any shape or form and patterns may be difficult to discover. Entities are often composed of multiple words with unclear boundaries. When more than one named entity type is to be identified, one may face an unbalanced distribution of the entities belonging to different classes. Positive examples of such entities often appear scarcely and infrequently in the text.
Building large annotated corpora for a given language or domain is a difficult labor and time expensive task. The task requires manual annotation of unstructured data which may be inconsistent and error-prone. With the growing applications of information extraction, the need for using unannotated data or a mixture of both labeled and unlabeled data increases. Unsupervised or semi-supervised solutions are crucial for the widespread adoption of machine learning techniques in various domains, particularly named entity recognition. 

Feature selection is the first step in any classification problem, especially those that are ambiguous by nature such as named entity recognition problems. The challenge is compounded by the aim to develop a solution that does not rely on prior language or domain knowledge. The plan proposes a feature discovery phase where an increasingly large set of binary features from different textual definitions are extracted. The input space therefore consists of high-dimensional sparse vectors.

Support vector machines have been used successfully for named entity recognition. Newly emerging unsupervised or semi-supervised techniques such as support vector clustering (Ben-Hur et al. 2001) promise new grounds in this area. However, slow training and high memory requirements hinder the widespread adoption of support vector machines in applications with large data. Tuning training parameters and selecting and/or designing a kernel that is suitable for the problem at hand are major SVM usability issues.
In addition, multi-class identification and classification requires training several support vector machines on one class or a combination of classes when using one-against-all, pairwise (one-against-one), or half-against-half multi-class solutions. The combined solution is an order of magnitude larger than the single class problem depending on the number of separate SVMs built. Training one SVM to classify all classes at the same time is a much bigger optimization problem and is impractical to use on large datasets until more efficient optimization algorithms are developed.
Finally, due to the lack of integrated systems that offer a complete solution to the NER/SVM problem, advancing the state of the art and/or constructing the solution requires the integration of several, often incompatible, components and the development of integration and interface tools. Reusability and maintainability of existing tools is difficult and the introduction of new algorithms and techniques requires the reconstruction of several components. 
B. Proposed Approach
We propose an integrated machine learning NER solution using support vector machines that attempts to improve the scalability of NER/SVM with large datasets. The proposed integrated architecture is presented in the next section. This research will focus on “all-together” multi-class training algorithms for their superior performance and challenging scalability. As described in Chapter 3, an “all-together” multi-class approach builds one SVM model that maximizes all separating hyperplanes at the same time, which is a challenging optimization problem. If scalability improvement is achieved with all-together multi-class training, one-against-one and one-against-all methods will be guaranteed to scale up. The single class SVM solution will also be included. In addition, the architecture proposed in the next section allows easy inclusion of the other multi-class approaches.
We propose an SVM solution assisted by a special database schema and embedded database modules. The solution will be based on new decompositions of the support vector learning and optimization algorithms in order to separate the working data into smaller reusable fragments stored in a database. The database schema design will incorporate input data, evolving training model(s), pre-computed kernel outputs and dot products, intermediate kernel and optimization results, and output data. The aim of this approach is to improve scalability by reducing (or eliminating) computational redundancy.
In order to reduce the communication overhead with the database backend, we propose extending the database server with embedded modules. This should also provide a better integration of all components. Database triggers may also be used for frequently updated values to improve the parallelization of the learning and database processes.

Using a relational database to support SVM has been attempted in (Rüping 2002) and a more complete yet different solution is included in the Oracle 10g data mining product (ODM) (Milenova et al. 2005).  MySvmDB (Rüping 2002) addresses the high memory requirements by using a relational database to store the input data and parameters. It does not handle the computational time limitations. In fact, communicating constantly with the database system will negatively impact the performance.
The only SVM database implementation that tackles usability and scalability issues is Oracle 10g commercialized SVM integration into the Oracle Data Mining (ODM) product (Milenova et al. 2005). Oracle’s approach to reducing the number of data points considered for training uses “adaptive learning” where a small model is built then used to classify all input data. New informative data points are selected from all remaining input data and the process is repeated until convergence or until reaching the maximum allowed number of support vectors. We do not intend to reduce the input data size as part of the main research work in order to evaluate the efficacy of the database-supported algorithms in providing a scalable solution. As an optional component and depending on how the main research work progresses, we may investigate an “incremental training” approach.
Oracle’s multi-class implementation uses a one-against-all classification method where several binary machines are built and scoring is performed by voting for the best classification. The number of binary machines in this case is equal to the number of classes in the training data. Our proposed approach is to use all-together training and classification where only one machine is built and used for classification. Optimization in this case is more challenging and scalability problems are known to exist. Developing database-supported algorithms that improve the single class case and the all-together multi-class case will also improve the other multi-class learning approaches.
Building a growing list of previously identified and annotated named entities will be made possible by the database repository, which would provide a valuable resource to constantly improve the classification performance. The evolving gazetteer list can be used during preprocessing or post-processing to annotate and/or correct the classification of newly discovered named entities thereby boosting the overall performance. This extension will not be implemented as part of this work but it can be easily added at a future time.
Lastly, we may optionally investigate using an “incremental learning” approach where input data is divided into “chunks” that are introduced sequentially to the learning algorithm. A small training model is built using one chunk. Additional input data points are classified one by one and a decision on whether to include the data point into the training model is made. The retraining process is triggered either explicitly (through a user’s action) or implicitly (when a new input data chunk is available). This approach should improve scalability by reducing the input size used for building the training model. It also allows for easy incorporation of new training data when such data becomes available as it does not require a restart of the training process from scratch.
In summary, our proposed approach is to:

· Use an SVM solution to the biomedical NER problem.

· Develop new database-supported SVM algorithms for both single class and multi-class.

· Decompose the SVM problem and assist algorithms with a special database schema that stores pre-computed or intermediate results.

· Embed SVM modules in a relational database to minimize communication overhead.

· Focus on improving the “all-together” multi-class solution.

· Optionally, investigate incremental training as a means to reduce the input data size and to allow adding new data without retraining.
C. Proposed Architecture
During phase one of this research work presented in Chapter 4, we realized the need for a novel machine learning framework that promotes reusability, expandability, and maintainability of the solution and provides an architecture that encourages future work. Initial thoughts about such architecture are presented in Appendix A. Given the scope and challenge level of the proposed research plan, we decided to focus on tackling NER/SVM scalability issues and not pursue the development of the recommended service-oriented architecture for the time being.

Figure ‎5.1 summarizes the initial architecture we propose to use for the proposed solution. The objective of this architecture is two-fold: first, build a database schema that supports the new SVM decomposition algorithms, and second, embed the machine learning modules within the database server to reduce the communication overhead and online memory needs and to improve the usability of the solution by providing a common interface to the user. This architecture is influenced by the service-oriented architecture recommended in Appendix A for future research. Therefore, we plan to design the machine learning modules as independent modules using clearly defined interfaces in order to allow for easy maintainability of the overall solution.
In this phase of the research plan, we will focus on the main SVM learning and classification modules, and plan to modularize them into components that accomplish specific tasks such as kernel evaluation, optimization, binary classification, multi-class classification, etc.. We will not spend time on writing an embedded module for feature extraction and will continue to use an external feature extraction software. We will however include an input data loading module in order to streamline the inclusion of an embedded feature extraction module in future research.

The evaluation of this research will concentrate on the biomedical literature domain using the JNLPBA-04 (BioNLP) datasets and evaluation tools. Therefore, we will continue to use the external evaluation scripts and not embed the evaluation module in the database server. Similar to the decision regarding the feature extraction module, we will include evaluation data in the database schema design and provide a module to export the classified data to be evaluated by the external tools. This again should make the inclusion of embedded evaluation modules easier in the future.

Optional modules that tackle specific usability issues such as kernel selection, model parameters tuning or clustering modules are beyond the scope of this work. We will make every effort to design the architecture such that it allows the addition of optional modules in the future. Our aim is to provide an architecture that can be easily reused and expanded for future research. Although designing and building the SOA framework is left as a future recommendation, we will attempt to design and build the initial architecture to be used during this phase such that the developed modules may be easily integrated into other database-supported solutions based on the database schema design of the proposed work.
We considered the potential choices for which database management system (DBMS) to use to carry out this research plan. We decided to select an open-source DBMS that would make easier the potential extension into a service-oriented architecture to be used by other users and researchers. The two main open-source database management systems are MySQL and PostgreSQL. Our selection criteria included the adherence to standards, the support for internal and embedded functions in different programming languages (preferably C), as well as performance and scalability. We decided to use PostgreSQL due to its rich features, adherence to standards, and the flexible options to extend DBMS via internal or embedded functions. While PostgreSQL is known to scale up and benchmarks have shown its scalability potential up to several terabytes of data, performance was an issue in the past. MySQL lacks some of the rich features of PostgreSQL and does not provide the same flexibility in extending the database server with embedded modules, yet it used to have a superior performance. Newer versions of both products are moving towards compensating for the potential weaknesses. MySQL 5.0 implements the previously missing features such as views and subqueries, while PostgreSQL 8.x versions focused on enhancing performance and scalability. As a result of the improved performance potential of the newer version of PostgreSQL and its established rich features and better adherence to standards, we decided to select PostgreSQL as the database management server supporting the proposed architecture.
In summary, the focus of the initial architecture presented in Figure ‎5.1 will be on the underlying database repository using PostgreSQL and the new embedded support vector machine modules. Feature extraction and final evaluation tools will remain external to the embedded solution, with provisions made to import the input data vectors and to export the classified output for evaluation.

Figure ‎5.1 – Proposed Architecture
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D. Proposed Plan and Potential Risks
We anticipate that the realization of the proposed research will proceed as follows:
1. Analysis and design of the potential decomposition of SVM learning: This is the most important and challenging step in the solution. It requires careful analysis of existing support vector optimization and learning algorithms especially for the all-together multi-class problem. The objective is to decompose both the algorithms and their supporting data in order to identify possible ways to reduce or eliminate computational redundancy. 

2. For the all-together multi-class case, identify ways to develop a recursive optimization algorithm that reuses partial results from previous computations. We will also investigate the possibility of pre-computing the commonly used data such as dot products of input and support vectors, and to identify candidate updates for triggered actions.
3. Design and build the database schema to support the new algorithms. The schema design may be either relational or object-relational. This is still to be investigated. The database schema will attempt to support the future direction for a service-oriented architecture that allows for the addition/replacement/deletion of modules. For this objective, an object-relational design seems the most suitable in which a “machine” is a configurable object that carries out a pre-defined solution.

4. Design and develop the input loading module to import the input vectors generated by the external feature extraction software.

5. Design and develop the new database embedded SVM learning and classification modules that use the database repository for reusing pre-computed or stored data.

6. Design and develop the embedded class labeling module and the output data export facility in order to use the external evaluation tools.

7. We may also need to regenerate the input vectors for the JNLPBA-04 (BioNLP) datasets in order to include additional features that were not generated due to memory shortage. This would mean repeating all of the baseline experiments with the new data. However, since the evaluation plan presented later in this chapter requires running experiments with different input data size for comparison purposes, this step may prove to be worthwhile.

8. Depending on how the research and development of the previous steps progress, we may investigate the design and development of the incremental training module.

The proposed plan above is not without potential risks, some of which could be:

1. Difficulty to identify potential data decomposition for the SVM learning algorithms.

2. Introducing the database server into the equation may negatively impact the computational time despite the fact that the new modules are embedded.

3. Poorly tuned database parameters may negatively impact the scalability of the solution and the total training time.

4. Running into limitations with the capacity to extend the DBMS with embedded modules.

5. The potential gain in computational time may not be substantial.

6. The optional incremental training approach may not be feasible to implement either due to the lack of time or the complexity of the solution.

A detailed research timeline is included in section H of this chapter. This is an aggressive timeline aiming to defend in late April 2008 or beginning May 2008. Having done a lot of ground work during phase One of this work and with the availability of new testing equipments (a dual core Xeon 3.6 GHz CS machine with 4 GB of RAM and a quad-processor Intel Core 2 2.66 GHz home machine with 4GB of RAM), and being dedicated to the research work during this time, we hope to be able to achieve satisfactory results.

E. Evaluation Plan
In order to evaluate the potential success of the porposed solution, we anticipate to use the following plan:
1. Test using the JNLPBA-04 datasets. If performance results (recall, precision, and F-score) are comparable to published results, then the proposed language-independent, domain-independent approach using high-dimensional input space is valid. According to the baseline experiments results, this hypothesis is validated already.
2. To test for scalability improvement, use incrementally increasing input data size and monitor training and classification times and online memory usage. Compare to traditional SVM. These tests do not assume that incremental training is used. It aims to evaluate the impact of the new database schema and the database-supported modules.
3. Optionally, if incremental training is included, re-train using incrementally increasing data assize and verify that previously stored model can be augmented with new data. Also verify that the total training time improves with incremental training. There will be no need to repeat the traditional SVM tests since these results will be available after evaluation step (2).
F. Success Criteria
At the conclusion of the proposed research work, we hope to demonstrate its success using the following criteria:
1. Demonstrate that the database-supported approach requires less online memory and total training time than traditional SVM.

2. Show that training time consistently outperforms traditional SVM with increased input data size. 

3. Precision/Recall/F-score performance measures remain comparable to those obtained using traditional SVM.

4. Optionally, if incremental training is included, demonstrate the ability to train incrementally without restarting the learning process. 

G. Potential Contributions
Achieving a successful solution based on this proposal would advance the state of the art in biomedical named entity recognition using support vector machines by offering the following contributions:

1. Improved SVM scalability: The support vector machine can train with large amounts of data in a reasonable total training time.
2. Improved multi-class training: New algorithms for all-together multi-class training that reduce (or eliminate) computational redundancy and lowers the total training time.
3. Improved SVM solution usability: By eliminating many of the preprocessing and post-processing steps and by providing a simple and clear interface to the learning machine, the overall solution will be more user-friendly and would allow its adoption by users from other fields.
4. Using high-dimensional input space that eliminates prior language and/or domain knowledge is a feasible approach to named entity recognition: This has been already validated by the baseline experiments design and results.
5. An NER solution that is portable across languages and domains: Since the solution does not incorporate prior language and domain knowledge and does not require preprocessing beyond feature extraction, it can be used in different contexts with the same level of complexity. Having proven to be feasible for the biomedical domain, we anticipate that it would be even more beneficial in less challenging contexts.
6. Optionally, using an incremental learning approach to SVM will improve scalability and allows for easy retraining when new training data is available.

7. Recommendation of a service-oriented architecture that promotes future SVM research in focused areas.

H. Research Timeline
	Task Name
	Estimated Duration
	Start Date
	Finish Date

	Language-Independent Named Entity Recognition
	770d
	Mon 5/2/05
	Fri 4/11/08

	NER infrastructure design
	130d
	Mon 5/2/05
	Fri 9/23/05

	Locate data sources
	15d
	Mon 5/2/05
	Fri 5/20/05

	Evaluate machine learning options
	15d
	Mon 5/23/05
	Fri 6/10/05

	Evaluate machine learning packages
	70d
	Mon 6/13/05
	Fri 9/16/05

	Evaluate SVM implementations
	30d
	Mon 9/19/05
	Fri 10/28/05

	Evaluate feature extraction software
	30d
	Mon 7/18/05
	Fri 8/26/05

	Generate features for JNLPBA-04 using jFex
	20d
	Mon 8/29/05
	Fri 9/23/05

	Discover jFex input format
	5d
	Mon 8/29/05
	Fri 9/2/05

	Resolve jFex memory problems
	10d
	Mon 9/5/05
	Fri 9/16/05

	Partition JNLPBA-04 data and generate features
	5d
	Mon 9/19/05
	Fri 9/23/05

	Run single class experiments
	25d
	Mon 10/31/05
	Fri 12/2/05

	Evaluate multi-class SVM options
	20d
	Mon 11/14/05
	Fri 12/9/05

	Evaluate SVM clustering and parallel SVM options
	130d
	Mon 11/28/05
	Fri 5/26/06

	Run multi-class experiments
	445d
	Mon 12/12/05
	Fri 8/24/07

	Initial experiments
	35d
	Mon 12/12/05
	Fri 1/27/06

	USAFA experiments
	50d
	Mon 4/10/06
	Fri 6/16/06

	More attempts
	30d
	Mon 8/7/06
	Fri 9/15/06

	Successful experiments
	30d
	Mon 10/2/06
	Fri 11/10/06

	Repeat experiments on Windom
	10d
	Mon 8/13/07
	Fri 8/24/07

	Reevaluate SVM clustering options
	20d
	Mon 11/27/06
	Fri 12/22/06

	Document baseline experiments results
	5d
	Mon 7/30/07
	Fri 8/3/07

	Write BIOT-07 paper
	6d
	Mon 8/6/07
	Mon 8/13/07

	Investigate NER/SVM scalability issues
	95d
	Mon 3/12/07
	Fri 7/20/07

	Investigate SVM scalability issues
	15d
	Mon 5/28/07
	Fri 6/15/07

	Investigate SVM database solutions
	15d
	Mon 3/12/07
	Fri 3/30/07

	Identify potential solutions
	15d
	Mon 7/2/07
	Fri 7/20/07

	Address NER/SVM scalability issues
	40d
	Mon 10/15/07
	Fri 11/30/07

	Design proposed solution architecture
	5d
	Mon 10/15/07
	Fri 10/19/07

	Select database server
	3d
	Wed 11/14/07
	Fri 11/16/07

	Identify equipment to use
	10d
	Mon 11/5/07
	Fri 11/16/07

	Setup new equipment at home and repeat baseline
	7d
	Fri 11/16/07
	Fri 11/23/07

	Complete proposal writing
	15d
	Mon 11/12/07
	Fri 11/30/07

	Design/Implement proposed solution
	65d
	Mon 12/3/07
	Fri 2/29/08

	Design SVM decomposition
	15d
	Mon 12/3/07
	Fri 12/21/07

	Design and build database schema
	12d
	Mon 12/24/07
	Tue 1/8/08

	Design dynamic modules architecture
	15d
	Mon 12/3/07
	Fri 12/21/07

	Develop input data loading module
	5d
	Mon 1/7/08
	Fri 1/11/08

	Develop embedded database modules
	30d
	Mon 12/24/07
	Fri 2/1/08

	Design/Implement incremental learning algorithm
	20d
	Mon 2/4/08
	Fri 2/29/08

	Testing and Evaluation
	65d
	Mon 1/7/08
	Fri 4/4/08

	Run SVM tests with different input sizes
	35d
	Mon 1/7/08
	Fri 2/22/08

	Test solution with different input sizes
	25d
	Mon 3/3/08
	Fri 4/4/08

	Final dissertation writing
	20d
	Mon 3/17/08
	Fri 4/11/08

	Document experiments' results
	10d
	Mon 3/17/08
	Fri 3/28/08

	Complete dissertation writing
	20d
	Mon 3/17/08
	Fri 4/11/08
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Appendix A
Addressing SVM Usability Issues

As discussed in Chapter 3, we view the usability issues of support vector machines as a two-fold problem: one of machine learning and one of software engineering. The machine learning usability issues are similar to those experienced with most machine learning approaches. They include the difficulty in selecting the best learning parameters, data preparation, and the need to restart the learning process when new training data is available. In addition, selecting the best kernel function for the data at hand is another factor that adds to the complexity of support vector machines.

As for the software engineering aspect, it stems from the lack of integrated and/or compatible SVM tools. Building a new learning environment requires the compilation of often incompatible tools to carry out any preprocessing needed, feature extraction, training and classification, then any additional post-processing requirements for the solution. Due to the lack of integrated tools, one may often need to build special interfacing modules to fit all the pieces together and build a total solution. The following are some of the usability questions for both sides of the problem.

1) Machine learning issues
· Model selection (parameter tuning): How to select model parameters? The number of parameters to be configured for a given set of data depends on the optimization algorithm and the kernel function. Common ways to help in deciding the parameters to be used are grid search, cross validation, decision tress, and use of heuristics.
· Grid search: try different parameter values and compare the performance results obtained by each combination using a grid.
· Cross validation: chunk the data into different pieces, train each piece with different parameter values then cross-validate the performance results using the rest of the data.
· Decision trees, heuristics: starting with one parameter value, modify other parameters and us a decision tree to figure out the best combination. May also apply heuristics to speed up the decision process.
· Kernel selection: How to select a kernel function that is suitable to a given problem data? Since it is difficult to choose a suitable kernel function simply by examining the data, the selection is based mostly on trying different functions and validating the results obtained until a good function is found. Also, coming up with a new kernel function for a specific type of data is a non-trivial task. Kernel selection is done by:
· Heuristics based on input dimensions

· Cross validation

· Input data formatting, scaling, normalization: Training and test data needs to be prepared for use by the machine learning of choice. Preparation may include special formatting, scaling the vector values to a suitable range, or normalizing the vector values across different data sets.
· Adding new training data requires restarting the learning process, which is a time consuming process.
2) Software engineering issues
· Lack of integrated machine learning tools: many pieces of software and tools tackling specific processes such as feature extraction, learning or classification exist, but using the pieces to build a total solution requires repeating or reinventing one or more parts of the solution and/or developing interfacing tools to fit the pieces together.
· Lack of standardization, incompatible interfaces, need to “reinvent the wheel” to fit pieces together: this is related to the previous issue. Available tools are often developed in isolation and no standard interfaces exist to make combining several tools together more streamlined.
· How to implement new algorithms for partial problems? In order to develop new algorithms for focused areas of the overall solution, for e.g., optimization, model selection, etc.. one needs to rebuild the overall machine learning solution before getting to the point where new contributions could be made.
· How to incorporate optional components into the overall NER/SVM solution? It is often useful to compare results from different algorithms for the same component, for e.g., optimization. To accomplish this objective using existing tools, one needs to build parallel solutions where only one or two components are different.
For future research, we propose a dynamic service-oriented machine learning architecture that promotes reusability, expandability, and maintainability of the various components needed to implement the machine learning solution. The aim of the dynamic architecture is to provide a research environment with a flexible infrastructure such that researchers may easily focus on specific components without spending much time on rebuilding the experimentation infrastructure. The proposed architecture’s design will be service-oriented with a clear definition of the inter-modules interaction and interfaces. 

This future research suggestion aims to advance the state of the art by offering a novel machine learning framework that promotes reusability, expandability, and maintainability of the solution and provides an architecture that encourages future work.
3) Recommended Service-Oriented Architecture

We recommend a dynamic service-oriented machine learning architecture that promotes reusability, expandability, and maintainability of the various components needed to implement the machine learning solution. The aim of the dynamic architecture is to provide a research environment with a flexible infrastructure such that researchers may easily focus on specific components without spending much time on rebuilding the experimentation infrastructure. The proposed architecture’s design will be service-oriented with a clear definition of the inter-modules interaction and interfaces. 

Figure A.1 summarizes our view of an integrated machine learning environment. Within the recommended architecture, machine learning modules providing specific services are separated such that one may select the different components needed to build the total solution from existing alternative or complementary components. The architecture is assisted by a database schema specially designed to provide data exchange services between the different modules. With clear definition of the modules’ interfaces, one does not need to worry about compatibility issues. The dynamic architecture allows the co-existence of alternative implementations for the same service thereby providing a streamlined way to build different solutions for different problems or for comparison purposes. 

Figure A.1 – Recommended Service-Oriented Architecture
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Improving SVM usability is considered a by-product of the proposed architecture. Modules that address the model parameter selection or the kernel selection may be easily incorporated into the overall solution. In fact, several modules offering different solutions to the same problem may be included. The user can define the overall learning solution and/or improve on existing ones by selecting the different components that compose a learning task.

These optional modules may include cross-validation for kernel selection, heuristic-based approaches, grid search modules for model selection, decision tress, or any other techniques. Model and kernel parameters are considered attributes of a given learning instance in the proposed database schema. Model and kernel selection modules are to be configurable options in the architecture. Oracle’s (Milenova et al. 2005) SVM solution provides built-in model and kernel selection methods and/or heuristics. Our approach is to provide an architecture where several solutions may be simultaneously implemented and selected for a given learning task. In fact, optional modules that further improve on SVM’s scalability such as instance pruning may also be incorporated by a user or a researcher.

Other modules may be incorporated into the recommended architecture in order to reduce the number of input vectors, number of classes, and number of support vectors, all of which are main contributors to the SVM scalability issues. In order to reduce the number of input data points, adaptive clustering may optionally be used either in the input space or in the feature space (kernel output). The clustering option can be turned on or off using the dynamic architecture in presented in the previous section. A simple K-means clustering algorithm may be used. To reduce the number of classes, grouping composite NEs into one sentence fragment may be considered. One possibility to reduce the number of support vectors could be to consider clustering support vectors that appear within a close pre-defined proximity measure, such as a K-nearest neighbor approach. This idea has not been investigated in the literature and may be a good candidate for future research.
Appendix B
NER Experimentation Datasets

One of the first steps in setting up experiments is to identify the datasets and evaluation tools to use in order to provide a fair comparison ground for NER systems. In this section we describe the three main datasets commonly used for experimentation purposes: the JNLPBA-04 task (Kim et al. 2004), the CoNLL-02 task (Tjong Kim Sang 2002a), and the CoNLL-03 task (Tjong Kim Sang and De Meulder 2003). The baseline experiments presented in Chapter 4 use the JNLPBA-04 training and testing datasets. The three datasets provide a suitable experimentation collection for language and domain independence. The JNLPBA-04 dataset represents the English biomedical domain and the CoNLL datasets represent the multilingual general domain. Successfully identifying named entities in the three datasets without incorporating domain or language knowledge will support the thesis of this research proposal. 

4) The JNLPBA-04 Dataset

The expanding application of natural language processing in the biomedical literature and the emergence of new systems and techniques for information retrieval and extraction in this field raise the importance of having common and standardized evaluation and benchmarking methods in order to compare and evaluate the efficiency and effectiveness of the IR and IE methods used. Hirschman et al. (Hirschman et al. 2002) propose creating challenge evaluations specifically for the methods used to extract information in the biomedical field. Hirshman et al. identify the ingredients of a successful evaluation as follows: a challenge problem, a task definition, training data, test data, and an evaluation methodology.
The JNLPBA-04 challenge task (Kim et al. 2004) offers all of the necessary ingredients identified by (Hirschman et al. 2002) for a successful evaluation. This challenge task provides a standard testing environment for biomedical NER research. The challenge task defines:

1. A challenge problem: named entity recognition in the biomedical literature.

2. A task definition: identifying the names of proteins, cell lines, cell types, DNA and RNA entities in Medline abstracts.

3. Training and test data: annotated abstracts from the GENIA corpus (Kim et al. 2003). The training and test datasets are described in more details below.

4. An evaluation methodology: a set of Perl scripts to evaluate the performance of the participating systems in terms of precision, recall, and F-score of their output data. Since the named entities are often composed of multiple words, the evaluation scripts measure the performance relative to complete NER matches, left boundary matches, and right boundary matches.

The training and testing data use the GENIA annotated corpus (Kim et al. 2003) of Medline articles (NLM 2007a), where the names of proteins, cell lines, cell types, DNA and RNA entities are previously labeled. The named entities are often composed of a sequence of words. The training data includes 2,000 annotated abstracts (consisting of 492, 551 tokens). The testing data includes 404 abstracts (consisting of 101, 039 tokens)  annotated for the same classes of entities: half of the test abstracts are from the same domain as the training data and the other half of them are from the super-domain of ‘blood cells’ and ‘transcription factors’. The testing data sets are grouped in four subsets, covering abstracts from different year ranges. The fraction of positive examples with respect to the total number of tokens in the training set varies from about 0.2% to about 6%. Basic statistics about the data sets as well as the absolute and relative frequencies for named entities within each set can be found in Table B.1 and Table B.2.

Table B.1– Basic Statistics for the JNLPBA-04 Data Sets
Source: (Kim et al. 2004)
	
	# abstracts
	# sentences
	#words

	Training Set
	2,000
	20,546 (10.27/abs)
	472,006 (236.00/abs) (22.97/sen)

	Test Set
	404
	4,260 (10.54/abs)
	96,780 (239.55/abs) (22.72/sen)

	1978-1989
	104
	991 ( 9.53/abs)
	22,320 (214.62/abs) (22.52/sen)

	1990-1999
	106
	1,115 (10.52/abs)
	25,080 (236.60/abs) (22.49/sen)

	2000-2001
	130
	1,452 (11.17/abs)
	33,380 (256.77/abs) (22.99/sen)

	S/1998-2001
	206
	2,270 (11.02/abs)
	51,957 (252.22/abs) (22.89/sen)


Table B.2 – Absolute and Relative Frequencies for Named Entities Within Each Set
Source: (Kim et al. 2004)
	
	protein
	DNA
	RNA
	cell_type
	cell_line
	All NEs

	Training Set
	30,269 (15.1)
	9,533 (4.8)
	951 (0.5)
	6,718 (3.4)
	3,830 (1.9)
	51,301 (25.7)

	Test Set
	5,067 (12.5)
	1,056 (2.6)
	118 (0.3)
	1,921 (4.8)
	500 (1.2)
	8,662 (21.4)

	1978-1989
	609 ( 5.9)
	112 (1.1)
	1 (0.0)
	392 (3.8)
	176 (1.7)
	1,290 (12.4)

	1990-1999
	1,420 (13.4)
	385 (3.6)
	49 (0.5)
	459 (4.3)
	168 (1.6)
	2,481 (23.4)

	2000-2001
	2,180 (16.8)
	411 (3.2)
	52 (0.4)
	714 (5.5)
	144 (1.1)
	3,501 (26.9)

	S/1998-2001
	3,186 (15.5)
	588 (2.9)
	70 (0.3)
	1,138 (5.5)
	170 (0.8)
	5,152 (25.0)


5) CoNLL-02 Dataset

The CoNLL-02 shared task is a language-independent named entity recognition challenge presented as part of the 6th Workshop on Computational Language Learning. The task concentrates on four types of general named entities: persons, locations, organizations, and names of miscellaneous entities (Tjong Kim Sang 2002a).  It offers datasets for two European languages: Spanish and Dutch. The named entities are assumed to be non-recursive and non-overlapping. 

The Spanish data is a collection of news wire articles from May 2000, made available by the Spanish EFE News Agency. The data contains words and entity tags only appearing on separate lines. The training dataset contains 273,037 lines,  the development dataset contains 54,837 lines, and the test dataset contains 53,049 lines.

The Dutch data consist of four editions of the Belgian newspaper “De Morgen” from the year 2000, and contain words, entity tags and part-of-speech tags. The training dataset contains 218,737 lines,  the development dataset contains 40,656 lines, and the test dataset contains 74,189 lines.

Named entities are tagged using either a B-XXX tag denoting the beginning of an entity (for e.g., B-PER denotes beginning a person’s name), or an I-XXX tag which indicates a continuation of the same entity started with the corresponding B-XXX tag.   Words tagged with O are outside of named entities

6) CoNLL-03 Dataset

The CoNLL-03 shared task is another language-independent named entity recognition challenge offered as part of the 7th Conference on Natural Language Learning (Tjong Kim Sang and De Meulder 2003). The task concentrates on four general named entity types: persons, locations, organizations, and names of miscellaneous entities. It offers datasets for two different European languages than those offered during the CoNLL-02 task, namely English and German. The data for each language consists of four data files for training, development, and test in addition to a large file with unannotated data. The task required using a machine learning approach that incorporates using the unannotated data file in the learning process.

The English data was taken from the Reuters Corpus, which consists of Reuters news stories from 1996 and 1997. The text for the German data was extracted from the 1992 German newspaper Frankfurter Rundshau. Table B.3 and Table B.4 summarize the data contents for each language. The English unannotated data file contains 17 million tokens and the German unannotated data file contains 14 million tokens (German).

The data files contain one word per line with empty lines representing sentence boundaries. Each line contains four fields: the word, its part-of-speech tag, its chunk tag and its named entity tag. Words tagged with O are outside of named entities and the I-XXX tag is used for words inside a named entity of type XXX. Whenever two entities of type XXX are immediately next to each other, the first word of the second entity is tagged B-XXX. The named entity annotation style is different than that used for the CoNLL-02 challenge task, where B-XXX tags were present for each named entity in the corpus and not just to split two consecutive entities.

The CoNLL-03 task data requires the Reuters corpus as the data files contain only references to the Reuters corpus and the scripts needed to extract, tokenize and annotate the data. In addition to the data files, the CoNLL-03 task provides gazetteers (reference lists) of known person names, locations, organizations, and miscellaneous entities.

Table B.3 – Basic Statistics for the CoNLL-03 Dataset

Source: (Tjong Kim Sang and De Meulder 2003)
	
	English Datasets
	German Datasets

	
	Articles
	Sentences
	Tokens
	Articles
	Sentences
	Tokens

	Training
	946
	14,987
	203,621
	553
	12,705
	206,931

	Development
	216
	3,466
	51,362
	201
	3,068
	51,444

	Test
	231
	3,684
	46,435
	155
	3,160
	51,943


Table B.4 – Number of Named Entities in the CoNLL-03 Dataset

Source: (Tjong Kim Sang and De Meulder 2003)
	
	English Datasets
	German Datasets

	
	LOC
	MISC
	ORG
	PER
	LOC
	MISC
	ORG
	PER

	Training
	7140
	3438
	6321
	6600
	4363
	2288
	2427
	2773

	Development
	1837
	922
	1341
	1842
	1181
	1010
	1241
	1401

	Test
	1668
	702
	1661
	1617
	1035
	670
	773
	1195
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(2) Which hyperplane is best to
linearly separate the two classes?
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the margin between the two classes

5




_1129247139.unknown

_1258233313.unknown

_1258308677.unknown

_1258308954.unknown

_1258330181.unknown

_1258332648.unknown

_1258332945.unknown

_1258330283.unknown

_1258309180.unknown

_1258308775.unknown

_1258238079.unknown

_1258238120.unknown

_1258233428.unknown

_1257712143.unknown

_1257896101.unknown

_1258233279.unknown

_1257896077.unknown

_1129251715.unknown

_1129252786.unknown

_1257712129.unknown

_1129252734.unknown

_1129251588.unknown

_1129240949.unknown

_1129242353.unknown

_1129246456.unknown

_1129246885.unknown

_1129242356.unknown

_1129241258.unknown

_1129241345.unknown

_1129241041.unknown

_1129238812.unknown

_1129239040.unknown

_1129237671.unknown

_1129238390.unknown

_1128809404.unknown

