The Design Document



The main purpose of the Design Document is to integrate all the parts of the design in a single coherent document.  This document will also serve the following purposes:

1 – To be used to review the complete system design at each iteration of the design process.

2 – To be a guide for the developers to follow in the code development phase.

3 – To serve as a reference document in the maintenance and enhancement phases and in design of follow-on or related products.

It should be organized in to two main parts:

A. General Design (also called Conceptual Design)

B. Detailed Design (also called Technical Design).

General Design Document

The General Design Document is intended for non-technical groups or those who wish to see only an introductory description of the design.  It is largely all in a natural language with some accompanying diagrams.

Its contents can be roughly as follows:

1 – The types of users this document is intended for.  

2 – The overall functions of the system. 

4 - The hardware/software platform(s) required to operate the software. 

5 – The types of users involved in the system and the functions available to them.

6 – The major data objects (files/databases) created and maintained by other systems which are used by this system. 

7 – The major data objects (files/databases) created and/or maintained by this system.

8 – Summary of interfaces with other systems.

9 – Reports which can be produced by the system.

10 – References and other appendices as required.

Detailed Design Document

This document is intended for the programmers who will implement the code for the project. Therefore it makes the design very clear and unambiguous.  This is not to say that the implementors will not have to make any decision at all; but that those decisions should not have major effects on the systems operation, performance, security or reliability.

Thsi document is based on the Software Requirements Specification (SRS) and therefore makes references to the appropriate sections and paragraphs of the  SRS as needed to justify design decisions.

If the design is object-oriented, it describes in detail the classes which should be created, the component libraries to be used, any new classes added or libraries created which other users can use.

Since this document integrates all the parts of the system design, possibly prepared by different groups, it contains sections describing these various parts.  These may be as follows:

1. Introduction.

Since this document is published in the same volume as the General Design Document, this section can be very short. It uses terminology intended for the programmers.


2. The Behavioral Design

A detailed list of functions performed by the system, including:

a. The functions which can be invoked by the user,

b. How the system executes each function – major conditions effecting the flow of control, error conditions and their handling, using state diagrams, decision boxes, formulas and other mathematical notations,  and flowchart-type diagrams as necessary. (Note: This is still at a relatively high level since the details of interfaces and component-level design are described later.)


3. The Data Design

In this section  all the external data objects (class libraries, files and databases created by others) and internal data objects (classes, files and databases created or maintained by this software) are described. The description contains the following parts:

a. For each external data object:

i. The owner of the object (i.e. the software and/or group responsible for its implementation) and  references to its documentation, its geographic network or library location. Here the intent is fro the implementor to quickly locate this object.,

ii. Its general contents,

iii. Its detailed structure and contents (as much detail as needed for this application).

iv. Other software which use this object and which can impact our usage of it (e.g.through locks, authorization/security controls, pattern and frequency of updates and the like.)

v. Entity Relationship Diagrams (ERDs) between this object and other external data objects.


b. Internal data objects:

i. Individual files and databases created or maintained by our software.

1. Its general contents,

2. Its detailed structure and contents

3. ERDs between this object and other internal data objects and external data objects 

4. If this object can be used by othe software, notes related to such usage (e.g.  usage of locks, required authorization/security controls, pattern and frequency of updates, backups and the like

ii. Classes

1. Library and superclass(es)

2. Description of data structures  

3. Associated constructors and methods

4. Destruction of instances

5. Relations to other classes

 

4. Design of Interfaces


a. Interfaces with other systems

Description, media, formats and field semantics of all messages and signals exchanged with other systems


b. User Interfaces

GUI: Screen descriptions, including all controls (buttons, icons, pop-up menus), their oeration and semantics, including all side effects.

Typed (console) commands: Syntax, semantics and replies to all commands, actions taken on replies, including all side effects.


5. Component-level Design

Description of functional components in as much detail as needed to be clearly understood by the programmers. 

Inputs and outputs are described formally. 

Processing logic can be described using flowcharts, decision tables, mathematical notations, and pseudo-code as appropriate.

References to other parts of design (behavioral, data, interfaces) and SRS should be made to clarify the descriptions.

6. Bibliography
7. Appendices

These are very general requirements.  They should be augmented or modified as appropriate for the particular application area (e.g. compilers, commercial applications, games, mobile software, military applications, scientific/engineering applications and the like.).

