
Lecture one:

Contents:

1. introduction to prolog language

2. some o f prolog language characteristic

3. prolog language uses

4. prolog language component

4.1 fact

4.2 rule

4.3 questions

 5. Variables

1. Introduction to prolog language

Prolog: is a computer programming language that is used for solving

problems involves objects and relationships between objects.

Example:

 “John owns the book”

 Owns (john,book) relationship(object1,object2)

The relationship has a specific order, johns own the book, but the book dose

not owns john, and this relationship and its representation above called fact.

♦we are using rule to describe relationship between objects.
Example: the rule” two people are sisters if they are both female and have

the same parents”

1. Tell us something about what it means to be sisters.

2. Tell us hoe to find if two people are sisters, simply: check to see if

they are both female have the same parents.

Component of computer programming in prolog

Computer programming in prolog consist of:

1. Declearing some facts about object and their relationships.

2. Defining some rules about objects and their relationships.

3. Asking questions about objects and their relationships.

if we write our rule about sisters, we could then ask the questions

whether Mary and Jane are sisters.

 Prolog would search through what we told it about Mary and Jane, and

come back with the answer Yes or No, depending on what we told it

earlier.

So, we can consider prolog as a store house of facts and rules, and it uses

the facts and rules to answer questions.

♦prolog is a conversational language. Which means you and the

computer carry out a kind of conversation, typing a letter from keyboard

and displaying it at the screen, prolog work like this manner, prolog will

wait for you to type in facts and rules that certain to the problem you

want to solve? Then if you ask the right kind of questions prolog will

work out the answers and show them.

2.Some of prolog language characteristics:

1. We can solve a particular problem using prolog in less no of line of

code.

2. It’s an important tool to develop AI application and ES.

3. Prolog program consist of fact and rule to solve the problem and the

output is all possible answer to the problem.

4. Prolog language is a descriptive language use the inference depend on

fact and rule we submit to get all possible answer while in other

language the programmer must tell the computer on how to reach the

solution by gives the instruction step by step.

3. Prolog language uses:

1. Construct NLI (Natural Language Interface).

2. Translate language.

3. Constructor symbolic manipulation language packages.

4. Implement powerfully database application.

5. Construct expert system programs.

4. Prolog language component

4.1 Facts

Is the mechanism for representing knowledge in the program.

Syntax of fact:

1. The name of all relationship and objects must begin with a lower-case

letter, for example likes (john, mary).

2. The relationship is written first, and the objects are written separated

by commas, and enclosed by a pair of round brackets.

Like (john, mary)

3. The full stop character ‘.’ Must come at the end of fact.

Example:

Gold is valuable valuable (gold).

Jane is female female (jane).

John owns gold owns (johns, gold).

Johns is the father of Mary father (john, marry).

The names of objects that are enclosed within the round brackets are

called arguments. And the name of relationship called predicates

Relationship has arbitrary number of argument. If we want to define

predicate called play, were we mention two players and a game they play

with each other, it can be:

Play (john, Mary, football).

In prolog the collection of facts is called database.

4.2 Rules

Rules are used when you want to say that a fact depends on a group of

other facts, and we use the following syntax:

1. One fact represents the head (conclusion).

2. The word if used after the head and represented as “:-‘.

3. One or more fact represents the requirement (condition).

The syntax of if statement

If (condition) then (conclusion)

[Conclusion: - condition] rule

Example:

I use the umbrella if there is rain

 Conclusion condition

Represent both as fact like:

Wheatear (rain).

Use (umbrella)

Use (Iam, umberella):-whether (rain).

4.3 Questions

Question used to ask about facts and rules.

Question look like the fact and written under the goal program section

while fact and rule written under clauses section.

Example: for the following fact owns (mary , book).

We can ask:dose mary own the book in the following manner:

Goal:

Owns (mary ,book)

When Q is asked in prolog, it will search through the database you typed

before, it look for facts that match the fact in the question.

Two fact matches if their predicates are the same and their corresponding

argument are the same, if prolog finds a fact that matches the question,

prolog will respond with Yes, otherwise the answer is No.

5. Variables

If we want to get more interest information about fact or rule, we can use

variable to get more than Yes/No answer.

*variables dose not name a particular object but stand for object that we

cannot name.

*variable name must begin with capital letter.

*using variable we can get all possible answer about a particular fact or

rule.

*variable can be either bound or not bound.

Variable is bound when there is an object that the variable stands for.

The variable is not bound when what the variable stand for is not yet

known.

Example:

Fact

Like (john, mary).

Like (john, flower).

Like (ali, mary).

Question:

1. Like (john,X)

X= mary

X = flower

2. like(X, mary)

X=john

3. Like(X, Y)

 1

X=john Y=flower

X=john Y=mary

X=ali Y=mary

5. Type of questing in the goal

There are three type of question in the goal summarized as

follow:

1. Asking with constant: prolog matching and return Yes/No

answer.

2. Asking with constant and variable: prolog matching and

produce

result for the Variable.

3. Asking with variable: prolog produce result.

Example:

Age(a,10).

Age(b,20).

Age(c,30).

Goal:

1.Age(a,X). ans:X=10 Type2

2.age(X,20). Ans:X=b Type2

3.age(X,Y). ans: X=a Y=10, X=b Y=20, X=c Y=30.

Type3

4.Age(_,X). ans:X=10 , X=20, X=30. ‘_’ means don’t care

Type3

5.Age(_,_). Ans:Yes Type1

 2

H.W:

Convert the following paragraph into fact or rule:

1. a person may steal something if the person is a thief and he likes

the

thing and the thing is valuable.

2. Bob likes all kind of game. Football is a game. Anything anyone

plays

and not killed by is a game.

 3

Lecture two:

Propositional logic

Ali is a brave man

This car has 4 wheels

Symbols operator

 P not T

Q V or

 ^ and

If weather is cold then it is winter

 P Q

 P Q

 Condition evident or conclusion

Laws:

(P)

P Q

 Q P

P^ Q Q^P

 (P Q) P^ Q

 (P^ Q) P Q

 4

Predicate Logic:

Relation معناها الفعل او الصفة

Object الاشياء التي نوصفها اما فعلا او صفة

Ali is a man

Man(ali)

is(ali,man)

object(obj1,obj2,…..).

1-Facts

Maha is a girl

Girl(maha)

Is(maha,girl).

I have a book

Have (I) book

Ali is a brave man

Is (ali , man, brave)

Man (ali,brave)

Brave (ali,man).

Man(ali) ^ brave (ali)

 5

Ali have red car

Have (ali, car,red)

Have (ali,car) ^ colour(car,red)

This is sunny day

Is(day,sunny)

Sunny(day).

Maha has 4 books

Have(maha,4,book)

Have (maha,book) ^number (book,4)

Ali going to school now

go(ali,school) ^time(now)

I have one or two books

Have (I,books) ^ (number(books,1) number(books,two))

2- rules

If its winter then it is cold

Is(weather,winter) is (weather,cold)

When I’m sick , I will go to the doctor

 6

Sick(I’m) go (I,doctor)

I f student will read good he will pass

Read(X,good) pass(X).

Ahmed got to the school when he is 6 years old

Age (ahmed,6) go(ahmed,school).

Example:

Write predicate for book in library

Book(“artificial intelligence”,’gorge lugur”,2009,10)

Book(“c++”,”xt”,2009,9).

Example: write predicate for cars

Car(“BMW”,”black”,”1990”,”full automatic”, “special”).

Car(“Mazda”,”white”,”1995”,”ordinarily”, “special”).

Car(“chery”,”yello”,”2009”,”full automatic”, “Taxi”).

 7

Calling types:-

Book(“prolog”,”A.I”,”Gourge”,10,2000).

Book(“c++”,”programming”,”Rintice Hill”,5,2001).

Book(“Expert system”,”A.I”,”Daniel”,5,1994).

Goal: book(X,Y,A,b,C).

 predicate false عدم المطابقة بسبب اختلاف اسم

No

Goal: book(A,B,C,D)

 arguments No عدم مطابقة بسبب اختلاف عدد

Goal:book(A,B,C,D,E)

A=Prolod, B=A.I , C=George , D=10, E=2000

A=c++, B=programming, C=printce hill, D= 5, E=2001

A=expert system , B=A.I, C= Daniel, D=5, E=1994.

3/ solution

Yes

Goal: book(A,”A.I”),C,D,X).

A=prolog, C=George ,D=10,X=2000

A=expert, C=Daniel , D=5,X=2000.

2/SOLUTIONS

 8

Goal: book(X,Y,Z,10,W).

X=Expert, Y=A.I , Z=George, W=2000

1/ SOLUTION

Goal: book(“prolog”,A,C,N,2000)

A=A.I , C=George, N=10

1/ solution

Goal: book(A,”A.I”,X,Y,2004).

No Solution

Goal: book(c++,A,B,20,X).

No Solution

 .Capital letterبلغة برولوك يكتب ب Variablesالمتغيرات : ملاحظة مهمة جدا

Goal: Book(“c++”,”programming”,”Rintice Hill”,5,2001).

Yes

Book(“C++”,”A.I”,”Gourge”,10,2000).

NO

 .Predicateاذا اخذ ثابت قيمة معينة لايجوز تغييرها في نفس ال : ملاحظة مهمة جدا

H.W

Goal: BOOK(A,”A.I”,N,P,2000).

Goal: book(A,”A.I”,X,5,1993).

 9

Family Relations

Son(ali,ahmed).

Son(ahmed,majed).

Son(mohammed,taha).

Son(Hamza,ahmed).

Son(hussain,majed).

Son (Hassan ,hussain).

Father (X,Y):-son(X,Y).

Brother(X,Y):-father(Z,X),dather(Z,Y).

Grandfather(X,Y):-father(X,Z),father(Z,Y).

Cousin(X,Y):-father(Z,X),father(W,Y),brother(Z,W).

Goal

Father(,ali,B).

B=ahmed. Yes

Goal

Brother(hamza,C)

 Father(Z,hamza) , father(Z,C)

 Son(hamza,Z) true son(C,ahmed)

true

 Z=ahmed C=ali

 10

H.W

Write appropriate predicates for the following family relations:

‐ Uncle

‐ Mother

‐ Sister

 11

Lecture three:

Conjunctions and backtracking

1. Conjunctions

1. and ‘,’.

2. or ‘;’.

Used to combine facts in the rule , or to combine fact in the goal to

answer questions about more complicated relationship.

Example:

Facts

Like (mary,food).

Like(mary,wine).

Like(john,mary).

Goal

Like(mary,john),like(john,mary).

We can ask dose mary like john and dose john like mary?

Now, how would prolog answer this complicated question?

Prolog answers the question by attempting to satisfy the first the first

goal. if the first goal is in the database, then prolog will mark the place in

the database, and attempt to satisfy the second goal.

If the second goal is satisfied, then prolog marks that goal‘s place in the

database, and we have a solution that satisfy both goals.

♦ It is important to remember that each goal keeps its own place marker.

If, however, the second goals are not satisfied, then prolog will attempt to

re-satisfy the previous goal.

 12

Prolog searches the database in case it has to re-satisfy the goal at a later

time. But when a goal needs to be re-satisfied, prolog will begin the

search the search database completely for each goal. If a fact in the

database happens to match , satisfying the goal, then prolog will mark

the place in the database in case it has to re-satisfy the goal at the later

time. But when a goal needs to be re-satisfied, prolog will begin the

search from the goal’s own place marker, rather than from the start of

database and this behavior called “backtracking”.

 Example: about backtracking

*Facts

Like(mary,food).

Like(mary,wine).

Like(john,wine).

Like(john,mary).

*Goal:

Like(mary,X),like(john,X).

1. The first goal succeed, bound X to food.
2. Next, attempt to satisfy the second goal.

Like(mary,X) , like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

 13

 ,

X= food

3. The second goal fails.
4. Next, backtrack: forget previous value of X and attempt to resatisfy the
first goal.

X= wine

5. The first goal succed agin, bund X to wine.
6. Next, attempt to satisfy the second goal.

7. The second goal succeeds.
8. Prolog notifies you of success.

H.W
Trace the following goal to find the value of X,Y,W,Z.
Fact
Mark(a,10).
Mark(b,20).

Like(mary,X) like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

Like(mary,X) , like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

Like(mary,X) , like(john,X)

Like(mary ,food).
Like(mary,wine).
Like(john,wine).
Like(john,mary).

 14

Mark(c,30).

Goal:
Mark(X,Y),Mark(W,Z).

 15

Lecture four:
 Content
 1. Data type.
 2. Program structure.
 3. Read and write functions.
 4. Arithmetic and logical operation.

1. data type
 Prolog supports the following data type to define program entries.

1. Integer: to define numerical value like 1, 20, 0,-3,-50, ect.

2. Real: to define the decimal value like 2.4, 3.0, 5,-2.67, ect.

3. Char: to define single character, the character can be of type small

letter or capital letter or even of type integer under one condition it

must be surrounded by single quota. For example, ‘a’,’C’,’123’.

4. string : to define a sequence of character like “good” i.e define word

or statement entries the string must be surrounded by double quota for

example “computer”, “134”, “a”. The string can be of any length and

type.

5. Symbol: anther type of data type to define single character or

sequence of character but it must begin with small letter and don’t

surround with single quota or double quota.

2. program structure
 Prolog program structure consists of five segments, not all of them

must appear in each program. The following segment must be included in

each program predicates, clauses, and goal.

1. Domains: define global parameter used in the program.

 16

Domains
 I= integer
 C= char
 S = string
 R = real
2. Data base: define internal data base generated by the program
 Database
 Greater (integer)

3. Predicates: define rule and fact used in the program.
 Predicates
 Mark(symbol,integer).

4. Clauses: define the body of the program.. For the above predicates the

clauses portion may contain Mark (a, 20).

5.Goal: can be internal or external, internal goal written after clauses

portion , external goal supported by the prolog compiler if the program

syntax is correct

This portion contains the rule that drive the program execution.

2. mathematical and logical operation

a .mathematical operation:

operation symbol
addition +

subtraction -
multiplication *

Integer part of division div
Remainder of division mod

 17

B .logical operation

operation symbol
greater >

Less than <
Equal =

Not equal <>
Greater or equal >=

Less than or equal <=

3. Other mathematical function
Function name operation
Cos(X) Return the cosine of its argument
Sine(X) Return the sine of its argument
Tan(X) Return the tranget of its argument
Exp(X) Return e raised to the value to which X is

bound
Ln(X) Return the natural logarithm of X (base e)
Log(X) Return the base 10 logarithm of log 10x
Sqrt(X) Return the positive square of X
Round(X) Return the rounded value of X. Rounds X up

or down to the nearest integer
Trunc(X) Truncates X to the right of the decimal point
Abs(X) Return the absolute value of X

4. Read and write function
Read function:
 readint(Var) : read integer variable.
 Readchar(Var) : read character variable.
 Readreal(Var) : read read (decimal) variable.
 Readln(Var) : read string.
Write function
 Write(Var) : write variable of any type.

Example 1: write prolog program to read integer value and print it.

 18

Domains
 I = integer
Predicates
 print.
Clauses
 Print:- write (“please read integer number”), readint(X),
 write(“you read”,X).

Goal
 Print.

Output:
 Please read integer number 4
 You read 4

Example2: write prolog program that take two integer input us integer
and print the greater.

Domains
 I = integer
Predicates
 Greater (i,i)
Clauses
 Greater(X,Y):- X>Y,write(“the greater is”,X).
 Greater(X,Y):- write (“ the greater is “,Y).
Goal
 Greater(4,3).

Output:
 The greater is 4

H.W:
1. write prolog program that read any phrase then print it.
2.write prolog program that read an integer number then print it after
multiplying it by any other integer like 5.

 19

Lecture five: More examples

 This lecture present several example that intended to display various

way to write prolog program, how to write if –else program ,divide

problem into several parts then combine them in a single rule and how to

write program describe specific problem.

Example 1: write prolog program to check if the given number is positive
or negative.
Basic rule to check the number

If X>=0 then
 X is positive
 Else
 X is negative

Domains
 I= integer
Predicates
 Pos_neg(i)
Clauses
 Pos_neg(X):-X>=0, write(“positive number”),nl.
 Pos_neg(_):-write(“negative number”),nl.

Goal
 Pos_neg(4)

Output:
 Positive number

Note: nl mean new line.

Example 2: write prolog program to check if a given number is odd or
even.
Basic rule to check number

 20

If X mod 2=0 then
 X is even number
 Else
 X is odd number

Predicates
 Odd_even(integer)
Clauses
 Odd_even(X):-X mod 2= 0, write (“even number”), NL.
 Odd_even(X):- write (“odd number”), nl.

Goal
 Odd_even(5)

Output
 Odd number

Example 3: write prolog program to combine both rule in example 1 and
example2.

Domains
 I= integer
Predicates
 Pos_neg(i)
 Odd_even(i)
 Oe_pn(i)
Clauses
 Oe_pn(X):-pos_neg(X),odd_even(X).
 Odd_even(X):-X mod 2= 0, write(“ even number”),nl.
 Odd_even(X):- write(“odd number”),nl.
 Pos_neg(X):-X>=0, write(“positive number”),nl.
 Pos_neg(_):-write(“negative number”),nl.

Goal
 Oe_pn(3)

Output:
 Odd number
 Positive number

 21

Note: the rule of same type must be gathering with each other.

Example 4 : write prolog program to describe the behavior of the logical
And gate.

Truth table of And gate
X Y Z
0 0 0
1 0 0
0 1 0
1 1 1

Sol 1:

Domains
 I= integer
Predicates
 And1(I, I , I)

Clauses
 And1(0,0,0).
 And1(0,1,0).
 And1(1,0,0).
 And1(1,1,1).

Goal
 And1 (0,1,Z)

Output:
 Z =0

Sol 2:
From the truth table we can infer the following rule:

 If X= Y then
 Z= X
 Else
 Z =0

 22

Domains
 I= integer
Predicates
 And1 (I ,I, I)
Clauses
 And1 (X,Y,Z):- X=Y, Z=X.
 And1(X,Y,Z):- X<> Y, Z=0.

Goal
 And1(0,0,Z)

Output
 Z=0

H.W
1. Write prolog program that read character and check if it’s a capital
letter, small letter, digit or special character.
2. Modify prolog program in example 3 such that the value of X is read
inside the program.
3. Write prolog program that describe the operation of logical Or gate.

 23

Lecture six:
 1. Cut and fail function
 2. Negation

1. cut
 Represented as “!” is a built in function always True , used to stop

backtracking and can be placed any where in the rule, we list the cases

where “!” can be inserted in the rule:

1 .R:-f1, f2,!. “f1, f2 will be deterministic to one solution.
2. R:-f1,!,f2. “ f1 will be deterministic to one solution while f2 to all .
3. R:- !,f1,f2. “R will be deterministic to one solution.

Example1 : program with out use cut.
Domains
 I= integer
Predicates
 No(I)
Clauses
 No (5).
 No (7).
 No (10).

Goal
 No (X).

Output:
 X=5
 X=7
 X=10

Example 2: program using cut.
Domains
 I= integer
Predicates
 No(I)
Clauses
 No (5):-!.
 No (7).

 24

 No (10).
Goal
 No (X).

 Output:
 X=5.

Example3: program with out using cut.

Domains
 I =integer
 S = symbol
Predicates
 a (I)
 b (s)
 c (I, s)
Clauses
 a(10).
 a(20)
 b(a)
 b(c)
 c (X, Y):- a (X), b (Y).

Goal
 c(X,Y).

Output:
 X= 10 Y=a
 X=10 Y=c

 X=20 Y=a
 X=20 Y=c
Example 4: using cut in the end of the rule.

Domains
 I =integer
 S = symbol
Predicates
 a(I)
 b (s)

 25

 c (I, s)
Clauses
 a(10).
 a(20)
 b(a)
 b(c)
 c (X, Y):- a (X), b (Y),!.

Goal
 c(X,Y).

Output:
 X= 10 Y=a

Example 5: using cut in the middle of the rule.

Domains
 I =integer
 S = symbol
Predicates
 a(I)
 b (s)
 c (I, s)
Clauses
 a(10).
 a(20)
 b(a)
 b(c)
 c (X, Y):- a (X),!, b (Y).

Goal
 c(X,Y).

Output:
 X= 10 Y=a
 Y=c

 26

2. Fail

 Built in function written as word “fail” used to enforce

backtracking, place always in the end of rule, produce false and can be

used with internal goal to produce all possible solution.

Example 6:

Predicates
 Student (symbol , integer)
 Printout.
Clauses
 Student (aymen,95).
 Student(zainab,44).
 Student(ahmed,60).

 Printout:-student(N,M),write(N,” “,M),nl,fail.

Goal
 Printout.

Output:
 aymen 95
 zainab 44
 ahmed 60
 No

Example 7:

Predicates
 Student (symbol , integer)
 Printout.
Clauses
 Student (aymen,95).
 Student(zainab,44).
 Student(ahmed,60).

 27

 Printout:-student(N,M),write(N,” “,M),nl,fail.
 Printout.

Goal
 Printout.

Output:
 aymen 95
 zainab 44
 ahmed 60
 Yes

3. Negation

 Exceptions and return false in specific situation. Can be implemented
using:
1. Cut-fail.
2. Not.

1. Cut-fail

Example 8:
 Ahmed likes swimming and he want to visit all middle east seas accept
the dead sea. Write prolog program to describe this situation.

A: using fail.

Predicates
 Visit (symbol)
 Middle_east (symbol)

Clauses
 Visit (Sea) :- middle_east (Sea).
 Middle_east (deadsea):- fail.
 Middle_east(redsea).
 Middle_east(arabsea).

 28

Goal
 1. Visit (deadsea)
 2. Visit (W).

Output:
 1. No

 2. W= red_sea
 W=arab_sea

B: using cut- fail

Predicates
 Visit (symbol)
Clauses
 Visit (Sea) :- Sea=deadsea,!,fail.
 Visit (X):-middle_east(X).
 Middle_east(redsea).
 Middle_east(arabsea).

Example 9: ban like all animals but snake, write prolog program for this
case.

Predicates
 Like(symbol, symbol)
 Snake(symbol)
 Animal(symbol)

Clauses
 Like(ban ,X):- animal(X),X=snake,!,fail.
 Like(ban,X):- animal(X).
 Animal(cat).
 Animal(bird).
 Animal(dog).
2. using not
 For example 8: we can write it using not as follow.
Predicates
 Visit (symbol)
 Middle_east(symbol).
Clauses

 29

 Visit (X):- middle_east(X),not (X = deadsea).
 Middle_east(redsea).
 Middle_east(arabsea).

H.w:
1. Trace the following clauses and find the output:
 a. clauses
 reading:- readchar(Ch),writ(Ch),Ch=’#’.
 Reading.

 b.clauses
 Go.
 Go:-go.
 Reading:- go,readchar(Ch),write(Ch),Ch=’#,!.

3. Use negation to define the different relation: diff(X,Y) which is true

when X and Y are different numbers.

 30

Lecture seven: repetition and recursion
1. Repetition
2. Recursion
2.1 Tail recursion
2.2 Non-tail recursion

1. Repetition

 In prolog there is a constant formula to generate repetition; this

technique can generate repetition for some operation until the

stopping condition become true.

Example: prolog program read and write a number of characters

continue until the input character equal to ‘#’.

Predicates
Repeat.
Typewriter.

Clauses
Repeat.
Repeat:-repeat.
Typewriter:-repeat,readchar(C),write(C),nl,C=’#’,!.

2.Recursion
 In addition to have rules that use other rules as part of their

requirements, we can have rules that use themselves as part of their

requirements.

This kind of rule called “recursive “because the relation ship in the

conclusion appears again in the body of the rule, where the requirements

are specified.

 31

A recursive rule is a way of generating a chain of relationship for a

recursive rule to be effective. However, there must be some place in the

chain of relationship where the recursion stops.

This stopping condition must be answerable in the database like any

other rule.

2.1 Tail Recursion
 We place the predicate that cause the recursion in the tail of the rule as
shown below:
 Head :- p1,p2,p3, head.

Predicates 1

Predicates 2

Predicates 3

Check point

Setup
variables

Output result

 32

Example 1: program to print number from n to 1.

Predicates
 A (integer)
Clauses
 A(1) :- write (1), nl ,!.
 A(M):- write (M) , nl, M1 = M -1, A(M1).

Goal
A(4)

Output:
4
3
2
1
Yes

Example 2: program to find factorial.

 5! = 5*4*3*2*1

Predicates
 Fact (integer, integer, integer)
Clauses
 Fact(1, F, F):-!.
 Fact(N,F,R):- F1=F*N , N1=N-1, fact(N1,F1,R).

Goal
Fact (5,1,F).

Output:
 F = 120.

 33

Example 3: program to find power .

3 4 = 3*3*3*3

Domains
 I= integer
Predicates
 Power (I,I,I, I).
Clauses
 Power (X,Y,P,R):- P1= P*X, Y1 =Y-1, power(X,Y1,P1,R).
 Power (_,0,P,P):-!.

Goal
Power(3,2,1,P)

Output
P= 9

2.2 Non –Tail Recursion (Stack Recursion)

 This type of recursion us the stack to hold the value of the

variables till the recursion is complete. The statement is self – repeated as

many times as the number of items in the stack.. Below a simple

comparison between tail and non-tail recursion.

Tail recursion Non-tail recursion
1. Call for rule place in the end

of the rule.
2. It is not fast as much as stack

recursion.
3. Use more variable than stack

recursion.

1. Call for the rule place in the
middle in the rule.

2. Stack recursion is fast to
implement.

3. Few parameters are used.

 34

Example 4: factorial program using non-tail recursion.

Predicates

fact(integer,integer).

Clauses

 fact(1,1).

 fact(N,F):- N>1,N1=N-1,fact(N1,F1),F=N*F1.

Goal
Fact (4,Y)

Output:
Y =24.

Example 5: power program using non-tail recursion.

Predicates
 Power (integer, integer, integer)
 Clauses
 Power (_,0,1):-!.
 Power (X,Y,P) :- Y> 0, Y1=Y -1, power (X,Y1,P1),PZ= X*P1.
Goal
 Power (3,2,Z)

Output
 Z = 9.

 35

H.W

1. Write prolog program to find the sum of 10 integer element using tail
and non tail recursion.
2. Write prolog program to find the maximum value between 10 elements.
3. Write prolog program to find the minimum value between 10 elements.

 4. Find the sum S = 1+2 + 3 ….+N

fact(1,1).
fact(4,Y):- 4>1,
 fact(3,Y1),
 Y=4*Y1.

fact(1,1).
fact(3,Y):- 3>1,
 fact(2,Y1),
 Y=3*Y1.

fact(1,1).
fact(2,Y):- 2>1,
 fact(1,Y1),
 Y=2*Y1.

fact(1,1).

سيقوم الأستدعاء الأول
٣بأستدعاء ذاتي بقيمة

سѧѧيتولد لѧѧدينا هنѧѧا إسѧѧتدعاء
ثѧѧѧѧѧѧان ثѧѧѧѧѧѧم يقѧѧѧѧѧѧوم بѧѧѧѧѧѧدوره
بقيمة ٢بإستدعاء

ثم أستدعاء ثالث ليستدع
١بقيمة

هنا لا ينطبق
 مع الأول

 ٦أرجاع قيمة
 Y1للـ

 ٢أرجاع قيمة
 Y1للـ

 ١أرجاع قيمة
 Y1للـ

 36

Lecture eight:

String standard predicates

1. Isname(string) test if the content of the string is name or not

Isname("abc") yes
Isname("123"). No

2.char_int(char,integer) convert the character to its integer value and the
opposit
 Char_int('A',X)
 X=65
 Char_int(X,65)
 X='A'

3. Str_char(string,char) convert the string (of one char) to char and the
opposit

 Str_char("A",X)
 X='A'

 Str_char(X,'A')
 X="A"

4. str_real (string,real) convert the string (ofreal) to real and the opposit

 Str_real("0.5",X)
 X=0.5
 Str_real(X,0.5)
 X="0.5"
5.Fronttoken(string,string,string).
 Take token of word from the string and return the reminder of the string .
 Fronttoken(string,token,rem).
 Fronttoken("ab cd ef",X,Y).
 X="ab" y="cd ef"
 Fronttoken("c def",X,Y)
 X="cd" Y="ef"

 37

6. Frontstring(integer,string,string,string)
Take a string(str) with length specified by the integer value and
return the reminder
 Frontstring(integer,string,str,rem)
 Frontstr(3,"ahmed",X,Y)
 X="ahm" Y="ed"
 Frontstr(2,"abcde",X,Y).
 X="ab" Y="cde"
 Frontstr(3,S,"ahm","ed").
 S="ahmed"

7. Frontchar(string,char,string).
Take one char from a specific string and return the reminder
 Frontchar(string,char,rem).
 Frontchar("ahmed",X,Y)
 X='a' Y="hmed"
 Frontchar(X,'a',"hmed")
 X="ahmed"

8. Str_len(string,length)
Return the length of specific string
 Str_len("ahmed",X)
 X=5
 Str_len("ab",X)
 X=2
 Str_len("ab",3) no
 Str_len(X,3) X="---"

9. Concat(string,string,string).
Concat two string together to produce one string
 Concat("ab","cd",X)
 X="abcd"

10. Upper_lower(string,string)

Convert the string in upper case(in capital letter) to the lower case
(small letter) and the opposite.
 Upper_lower(capital_letter,small_letter)
 Upper_lower("ABC",X)

 38

 X="abc"
 Upper_lower("Abc",X)
 X="abc"
 Upper_lower(,X,"abc")
 X="ABC"

Prolog Programs that deal with string

Ex1:Pogram that read two string and concat them in one string as upper
case.

predicates
start(string)
clauses
start(X):-readln(S),readln(S1),concat(S,S1,S2),upper_lower(X,S2).

Goal

 Start(X)

 Output:

Ahmed
Ali
X=AHMEDALI yes

Ex2:program that read string of one character then return the integer
value of this char.

predicates
start(integer).
clauses
start(X):-readln(S),str_char(S,X).

goal
start(X)

 Output:
a
X=97
yes

 39

Ex3: Program that take a string of words and print each word in a line as
upper case.

predicates
start(string).
clauses

start(S):-fronttoken(S,S3,S2), upper_lower(S1,S3), write(S1),
nl,start(S2).
start("").

Goal
Start("ali is a good boy").

 Output:
ALI
IS
A
GOOD
BOY
yes

Ex4: program that take a string and convert each character it contain to
its corresponding integer value.

Predicates
start(string).
clauses

start(S):-fronttoken(S,S3,S2), char_int(S1,I), write(I), nl , start(S2).
start("").

Goal
Start("abc").

 Output:
97
98
99
Yes

 40

Ex5: program that return the number of names in a specific string.

predicates
start(string,INTEGER).
clauses

start(S,X):-fronttoken(S,S1,S2),isname(S1),X1=X+1,start(S2,X1).
start(S,X):-fronttoken(S,_,S2),start(S2,X).
start("",X):-write("the number of names is", X).
goal
start("ali has 2 cars").

 Output:
 The no. of names is 3
Yes

Ex6:program that split a specific string to small string with length 3 char.
predicates
start(string).
clauses
start("").
start(S):-str_len(S,I), I MOD 3=0, frontstr(3,S,S1,S2), write(S1),
nl,start(S2).
start(S):-concat(S," ",S1),start(S1).

Goal
Start("abcdefg").

Output:
abc
def
g
yes

 H.W
1- Write a prolog program that do the following: convert the string such as
"abcdef" to 65 66 67 68 69 70.
2-Program tofind the number of tokens and the number of character in a
specific string such as: "ab c def" the output is tokens and 6 character.

 41

 Lecture nine:
1. list in prolog
2. syntax of list
3. head and tail

1. list in prolog

In prolog, a list is an object that contains an arbitrary number of other
objects within it. Lists correspond roughly to array in other languages
but unlike array, a list dose not require you to how big it will be before
use it.

2. syntax of list

List always defined in the domains section of the program as follow:

Domains
 list = integer*

• ‘*’ refer to list object which can be of length zero or un defined.
• The type of element list can be of any standard defined data

type like integer, char … ect or user defined data type explained
later.

• List element surrounded with square brackets and separated by
comma as follow: l = [1, 2, 3, 4].

• List consist of two parts head and tail , the head represent the
first element in the list and the tail represent the remainder (i.e
head is an element but tail is a list) . for the following list :
 L = [1,2,3]
 H = 1 T =[2,3]
 H =2 T =[3]
 H =3 T=[]

[] refer to empty list.
List can be written as [H|T] in the program, if the list is non
empty then this statement decompos the list into Head and tail
otherwise (if the list is empty) this statement add element to
the list.

 42

4. list and recursion
 As maintained previous list consist of many element, therefore to
manipulate each element in the list we need recursive call to the list until
it become empty.
Example 1: program to print list element in one line.

Domains
 L = integer*
Predicates
 Print (L)
Clauses
 Print ([]):-!.
 Print ([H|T]):- write (H) , print (T).

Goal
 Print ([1,4,6,8]).
Output:
 1468

Example 2: program to find sum of integer list.

Domains
 I= integer
L=i*

Predicates
 Sum (L I, I)
Clauses

Sum ([],S,S):-!.
Sum([H| T],S1,S):- S2 = S1+H , Sum (T,S2,S).

Goal
Sum ([1,4,6,9],0 ,S).

Output
S = 20

 43

Example 3: prolog program to spilt list into to list positive and negative
list.

Domains
L= integer*

Predicates
Spilt (L,L,L)

Clauses

Spilt ([],[],[]):-!.
Spilt ([H| T],[H|T1],L2):- H>= 0,!,spilt (T, T1,L2).
Spilt ([H|T],L1,[H|T2]) :- spilt (T,L1,T2).

Goal
Spilt ([-1,4,-9,8,0],L1,L2).
L1 = [4,9,0]
L2 = [-1,-9]

H.W
1. Write prolog program to find the union of two lists.
2. Write prolog program to find the intersection between two lists.
3. Write prolog program to find the difference between two lists.
4. Write prolog program that check the equality between two lists.
5. Write prolog program to find the last element in a list.
6. Write prolog program to find the union of two lists.
7. Write prolog program to find the length of a list.
8. Write prolog program to find the index of specified element in a list.
9. Write prolog program to get the element at nth index lists.
10. Write prolog program that replace specified element in a list with value

0.
11. Write prolog program that delete a specified element in a lists.
12. Write prolog program that take two lists as input and produce a third
list as output, this list is the sum of the two lists.
13. Write prolog program that multiply each element in the list by 5.
14. Write prolog program that sort a list descending.
15. Write prolog program that convert any given decimal number to its
binary representation and store it in a list.

 44

Lecture ten:

1) Data – Driven and Goal Driven Search (Reasoning Search):-

In data –driven search , sometimes called Forward Chaining (F.W) , the

problem solver begins with the give facts and a set of rules for changing the

state. Search proceeds by apply rules to facts to produce new facts . This

process continues until it generates a path that satisfies the goal.

 In Goal-Driven search , sometimes called Backward Chaining (B.W)

, the problem solver begins with the goal to be used to generate this goal and

determine what conditions must be true to use them. These conditions

become the new goals, sub goals , for the search. This process continues ,

working backward through successive sub goals, until a path is generated

that lead back to facts of the problem.

Example of Data Driven Search (F.W)

Using (F.W) to find if the goal w is true or false

a. b. c. d.
w:-r,z.
r:-a,b.
z:-c,d.

sol/
a. b. c. d. r. z. w. the goal is true
1) w:-r,z. 6
2) r:-a,b. 4
3) z:-c,d. 5
4)r:-b.
5) z:-d.
6)w:-z.

 45

 F.Wملاحظات عن

في جهة اليمين فأذا آانت موجودة (Rules)بالبحث عنها في القواعد (Facts)نبدأ بالحقائق)١

 -:تحذف من الطرف اليمين

 ruleوالا فتضاف factالى ruleفي الطرف الأيمن فارغة تتحول ال ruleاذا أصبحت ال)٢

 .جديدة بعد عملية الحذف

 . falseوالا فهو trueفهو facts موجود ضمن الإذا آان الهدف factsبعد تأشير آل)٣

Example of Goal Driven Search (B.W)
Try the previous facts & rules to prove if (w) is true or false.
a. b. c. d. z. r. w. the goal is true
1) w:-r,z. 6
2)z:-a,b. 4
3)r:-c,d. 5
4)r:-b.
5) r:-d.
6)w:-r.

 F.Wلاحظات عن م

 .Falseوألا فهو true إذا آان موجود فهو factsنبدأ بالهدف وذلك بالبحث عنه في ال)١

في جهة اليسار في حالة وجوده نحاول إثبات الطرف الأيمن Rulesنبحث عن الهدف في)٢

True.

Example: Try the following facts & Rules with (F.W) & (B.W)

Chaining.

a(1). B. c. d(1).

W:-r(x),z(x).

R(w):-a(w),b.

Z(v),c.

 46

Sol/

a(1). B. c. d(1). r(1). Z(1). W. the goal is true

1) w:-r(x),z(x). 6

2) r (w):-a(w),b. 4

3) z (v):d(v),c. 5

4) r (1):-b.

5) z(v):-d(v).

6) w:-z(1).

Sol/ B.W Chaining

a(1). B. c. d(1). z (1). r(1). W. the goal is true

1) w:-z(x),r(x). 6

2) r(w):-a(w),b. 4

3) z(v):-d(v),c. 5

4) z(1):-c.

5) r(1):-b.

6) w:-r(1).

H.W/ Using B.W & F.W chaining to reasoning that the goal (Z) is true

or not.

a(1). b(2). c(3). d(1). e.

 47

r:-a(x),b(y).

z:-e, not (f),not(b(3)),w.

w:-c(z),d(l),not (a(3)),r.

 48

Lecture eleven:

Knowledge Representation
 There are many methods can be used for knowledge representation

and they can be described as follows:-

1- Semantic net.

2- Conceptual graph.

3- Frames

4- Predicates logic.

5- Clause forms

1) Semantic Net
It is consist of a set of nodes and arcs , each node is represented as a

rectangle to describe the objects, the concepts and the events. The arcs

are used to connect the nodes and they divided to three parts:-

Is a: for objects & types

Is To define the object or describe it

Has a

 لتمثيل الأفعال والأحداث والكائنات

 اتلتمثيل العلاقة بين الكائن

can

 49

) agent(تخرج من الفعل لتوضح او لتشير الى الفاعل arcsفي وصف اللغات الطبيعية فان

، آما تشير الى وقت حدوث الفعل أي في الماضي) object(والكائن) Reciever(والمستقبل

 .الحاضر او المستقبل

Example1: Computer has many part like a CPU and the computer divided

into two type, the first one is the mainframe and the second is the personal

computer ,Mainframe has line printer with large sheet but the personal

computer has laser printer , IBM as example to the mainframe and PIII and

PIV as example to the personal computer.

Example 2: Layla gave Selma a book

Computer CPU
Has a

Mainframe PC Laser
printer

Line
printer

IBM PII PIV

Is a Is a

Is a Is a Is a

Has a Has a

Layla gave Selma
agent receiver

object

book Past

time

 50

Example 3: Layla told Suha that she gave Selma a book

Example 4: Ali gave Ban a disk which is Zaki bought

Layla told Suha agent receiver

time

past

Gave

time

Selma

a book

receiver

object

past

proposition

Ali gave Ban agent receiver

object

disk Past

time

bought

Past

Zaki

agent

object

time

 51

2) The Conceptual Graph

 :وتتكون من جزئيين Semantic Netوهي طريقة لتمثيل المعرفة مشابهة لطريقة

 يستخدم لتمثيل الأسماء والصفات والأفعال والثوابت

 يستخدم لتمثيل أدوات التعريف والعلاقات

Example 1: Ahmed read a letter Yesterday

Ahmed agent read object letter

time

present

 52

Example 2:- The dog Scratch it ear with is paw

Example 3: Ahmed tell Saad that he saw Suha

The dog agent scratch object ear

time

present

instrument

paw Part of

Ahmed agent tell receiver Saad

time

present

saw receiver Suha proposition

time

past

 53

3) Frame:

Frame-list(node-name, parent, [child]).

Slot-list(node-name, parent).

Example:

Frame –list(computer,_ ,[Internal structure, monitor, keyboard , plotters]).

Frame-list(Internal structure, computer, [disk controller, mother board]).

Frame- list(printer, peripheral, [speed, ports]).

Slot-list(motherboard, Internal structure).

Slot-list(mouse, peripheral).

 Frame-list

Slot-list

computer

Internal
Structure

peripherals

keyboard

monitor

Disk controller

Mother board

No. of function key

plotters mouse

printer
ports

speed

 54

Homework 1: solve with Semantic net

 Ships are divided in two types, the first is “Ocean lines” and the

second is “Oil tank” , the ships has an engine , the oil tank are specified to

transfer oil therefore it has “ fire tools” , the ocean lines are specified to

transfer the traveler therefore it has “ swimming poot” , Ibnkaldon as an

example to oil tank and ship b and ship n as an example to ocean line.

Homework 2: Using Semantic Net and Conceptual graph to solve

the following statement:
1) Suha send a book to Tom.

2) Tom believe that Mustafa like cheese.

3) Monkey ema grasp the banana with hand.

 55

Lecture twelve:

Search Algorithms:
 To successfully design and implement search algorithms, a
programmer must be able to analyze and predict their behavior.
Many questions needed to be answered by the algorithm these include:

- is the problem solver guranteed to find a solution?
- Will the problem solver always terminate , or can it become caught in

an infinite loop?
- When a solution is found , is it guaranteed to be optimal?
- -What is the complexity of the search process in terms of time usage ?

space search?
- How can the interpreter be designed to most effectively utilize a

representation language?

-State Space Search

The theory of state space search is our primary tool for answering
these questions , by representing a problem as state space graph, we can
use graph theory to analyze the structure and complexity of both the
problem and procedures used to solve it.

- Graph Theory:-

A graph consist of a set of a nodes and a set of arcs or links
connecting pairs of nodes. The domain of state space search , the
nodes are interpreted to be stated in problem_solving process, and the
arcs are taken to be transitions between states.

Graph theory is our best tool for reasoning about the structure of
objects and relations.

Nodes={a,b,c,d,e}

 e

 a b

c

d

 56

Arcs={(a,b), (a,d),(b,c),(c,b),(d,e),(e,c),(e,d)}

Nodes=={a,b,c,d,e,f,g,h,i}
Arcs={(a,b),(a,c),(a,d),(b,e),(b,f),(c,f),(c,g),(c,h),(c,i),(d,j)}

State Space Representation of Problems:-
 A state space is represented by four_tuple [N,A,S,G,D],
where:-
• N is a set of nodes or states of the graph. These correspond to the
states in a problem –solving process.
• A is the set of arcs between the nodes. These correspond to the
steps in a problem –solving process.
• S a nonempty subset of N ,contains the start state of the problem.

• GD a nonempty subset of N contains the goal state of the
problem.

A solution path:- Is a path through this graph from a node S to a node
in GD.

 b
c

d

e f g h i j

 a

 57

State Space Searchs examples:-

1) Monkey and Banana Problem
There is a monkey at the door in to a room. In the middle of the

room a banana is hunging from the ceiling. The monkey is hungry and

wants to get the banana , but he cannot stretch high enough from the

floor. At the window of the room there is a box the monkey may use.

The monkey can perform the following actions:-

•walk on the floor

• Climb the box

• Push the box a round (if it is already at the box).

• Grasp the banana if standing on the box directly under the banana.

 The question is (Can the monkey get the banana?), the initial

state of the world is setermind by:-

1- Monkey is at door.

2- Monkey is on floor.

3- Box is at Window.

4- Monkey does not have banana

Initial state :- State (at door, on floor, at window, has not).

At door horizontal position of monkey

On floor vertical position of monkey

At window Position of box

Has not monkey has not banana

Goal state:-State (_,_,_,has).

State1 state2

 58

Move (state1, move, state2).

State1: is the state before the move.

Move: is the move executed.

State2:is the state after the move.

To answer the question :- Can the monkey in some initial state (state)

get the banana?

This can be formulated as a predicate canget(state).The program

canget can be based on two observation:-

1) The program:- for any state in which the monkey already has the

banana. The predicate canget must certainly be true , no move is

needed in this case:

Canget(state(state(_,_,_,has)).

2) In other cases one or more moves are necessary.

Canget (state):-move (state1,move,state2),canget (state2).

A program of monkey and banana problem:-
Move (state (at door , on floor , at window , has not), walk, state (at

box , on floor , at window , has not)).

Move (state (at box , on floor , at window , has not), push , state

(middle, on floor, middle, has not)).

Move (state (middle, on floor, middle, has not), climb, state (middle,

on box, middle, has not)).

Move (state (middle, on box, middle, has not),grasp, state (middle, on

box, middle, has not)).

Canget(state(_,_,_,has)).

Canget (State1):- move (state1,move,state2), canget (state2).

 59

Goal= canget (state(at door, on floor, at window ,has not)).

• The monkey and banana problem can be represented by the

following state space:-

No move possible

state (at door , on floor , at
window , has not)

state (at box , on floor , at
window , has not)

, state (middle, on floor, middle,
has not)

state (middle, on box, middle,
has not)

state (middle, on box, middle,
has not)

State(at window, on box,
at window, has not).

Walk(at door, at box)

Push (at box , middle) climb

 60

Lecture thirteen:

2) The Farmer , Wolf, Goat and Cabbage Problem:-
 A farmer wants to move himself , a wolf , a goat and some cabbage

across a river. Unfortunately his boat is soting , the farmer can take only

one of his possession across any trip worse yet, an attended wolf will eat

a goat, and and attended gaot will eat cabbage , so the farmer not leave

the wolf alone with goat or the goat alone with the cabbage. What he is to

do?

State(F,W,G,C) Initial state

State(w, w ,w ,w)

State(e, w , e ,w)

State(w,w,e,w)

 State(e,w,e,e) State(e,e,e,e)

 State(w,w,w,e) state(w,e,w,w)

F
W
G
C

W F
C G

F
W G
C

C F
 G
 W

W F
 C
 G

F
W C
G

F
C W
G

 61

State(e,e,w,e)

state(w,e,w,e)

state(e,e,e,e)
 Goal state

 The following move rule operates only when the farmer and wolf are

in the same location and takes them to the opposite side of the river. Note

that the goat and cabbage do not change their present location:-

Move(state(X,X,G,C),state(Y,Y,G,C)):-opp(X,Y).

X opposite (opp) the value of Y

Opp (e , w).

Opp (w, e).

 A predicate must be created to test whether each new state is safe , so

that nothing is eaten in the process of getting across the river. These unsafe

situations may be represented with the following rules:-

Unsafe (state(X,X,Y,Y)):-opp(X,Y).

Unsafe(state(X,W,Y,Y)):-opp(X,Y).

 F
G W
 C

F W
G C

 F
 W
 G
 C

 62

Now, a not unsafe test must be added to move rule:-

Move(state (X,X,G,C),state(Y,Y,G,C)):-opp(X,Y), not (unsafe (state

(Y,Y,G,C))).

3) Water Jug Problem
 You are give two jugs , a 4-gallon one and a 3-gallon one. Neither has

any measuring markers on it. There is a pump that can be used to fillthe

jugs with water. How can you get exactly 2 gallons of water in to the 4-

gallon jug?

The state space for this problem can be described as the set of ordered

pairs of integers (x,y) , such that x=0,1,2,3 or 4 and y=0,1,2, or 3; x

represent the number of gallons of a water in the 4-gallon jug , and y

represents the quantity of water in 3-gallon jug. The start state is (0,0). The

goal state is (2,n) for any value of n (since the problem does not specify

how many gallons need to be in the 3-gallon jug).

1) (X,Y: X<4) (4,Y) Fill the 4 – gallon jug

2) (X,Y: Y<3) (X,3) Fill the 3-gallon jug

3) (X,Y:X>0) (X-D,Y) Pour some water out of the 4- gallon jug

4) (X,Y:X>0) (X,Y-D) Pour some water out of the 3- gallon jug

5) (X,Y:X>0) (0,Y) Empty the 4-gallon jug on the ground

6) (X,Y: Y>0) (X,0) Empty the 3-gallon jug on the ground

7) (X,Y: X+Y>=4 ^ Y>0) (4,Y-(4-X)) pour water from the 3-gallon

jug into the 4-gallon jug until the 4-gallon jug is full.

8) (X,Y:X+Y<=4 ^ X>0) (X-(3-Y),3) pour water from the 4-

gallon jug into the 3-gallon jug until the 3-gallon jug is full.

 63

9) (X,Y:X+Y<=4 ^ Y>0) (X+Y,0) pour all the water from 3-

gallon jug into the 4-gallon jug.

10) (X,Y: X+Y<=3 ^ X>0) (0,X+Y) pour all the water from 4-

gallon jug into the 3-gallon jug.

 (0,0)

 0,3 4,0

 0,0 3,0 4,3 4,3 1,3 0,0

 0,3 4,0
 0,0 0,3
 3,3 1,0

 0,3 3,0 1,3 0,0
 4,2 0,1

 1,0
 4,0 3,3 0,0 4,1
 0,2

 4,0 0,1
 4,2 0,0

 The goal
 The goal

 The solutions of water jug problem

2,3
2,0

 64

Lecture fourteen:

Blind Search
This type of search takes all nodes of tree in specific order until it reaches to

goal. The order can be in breath and the strategy will be called breadth – first

– search, or in depth and the strategy will be called depth first search.

Breadth – First – Search
In breadth –first search , when a state is examined , all of its siblings

are examined before any of its children. The space is searched level-by-

level , proceeding all the way across one level before doing down to the next

level.

A

 B C D

 E F G H F J

 K L M N O P Q R

 Y

 Fig (2 – 1): Breadth – first – search

1 – Open = [A]; closed = [].

2 – Open = [B, C, D]; closed = [A].

3 – Open = [C, D, E, F]; closed = [B, A].

4 – Open = [D, E, F, G, H]; closed = [C, B, A].

 65

5 – Open = [E, F, G, H, I, J]; closed = [D, C, B, A].

6 – Open = [F, G, H, I, J, K, L]; closed = [E, D, C, B, A].

7 – Open = [G, H, I, J, K, L, M]; closed = [F, E, D, C, B, A].

8 – Open = [H, I, J, K, L, M, N,]; closed = [G, F, E, D, C, B, A].

9 – and so on until either U is found or open = [].

Depth – first – search
In depth – first – search, when a state is examined, all of its children and

their descendants are examined before any of its siblings.

Depth – first search goes deeper in to the search space when ever this is

possible only when no further descendants of a state cam found owe its

 A

 B C D

 E F G H I J

 K L M N O P Q R

 S T U

 Fig (2 – 2) Depth first search

1 – Open = [A]; closed = [].

2 – Open = [B, C, D]; closed = [A].

3 – Open = [E, F, C, D]; closed = [B, A].

4 – Open = [K, L, F, , D]; closed = [E, B, A].

 66

5 – Open = [S, L, F, C, D]; closed = [K, E, B, A].

6 – Open = [L, F, C, D]; closed = [S, K, E, B, A].

7 – Open = [T, F, C, D]; closed = [L, S, K, E, B, A].

8 – Open = [F, C, D,]; closed = [T, L, S, K, E, B, A].

9 – Open = [M, C, D] as L is already on; closed = [F, T, L, S, K, E, B, A].

