Handling Reasoning Under Uncertainty - Statistical reasoning
We will introduce two ways of statistical methods of handling uncertainty:

· Probabilistic reasoning. 

· Certainty factors

1. Classical Probability

The oldest and best defined technique for managing uncertainty is based on classical probability theory. Let us start to review it by introducing some terms. 

· Sample space: Consider an experiment whose outcome is not predictable with certainty in advance. However, although the outcome of the experiment will not be known in advance, let us suppose that the set of all possible outcomes is known. This set of all possible outcomes of an experiment is known as the sample space of the experiment and denoted by S. 


For example: 

· If the outcome of an experiment consists in the determination of the sex of a newborn child, then




S = {g, b}

where the outcome g means that the child is a girl and b that it is a boy.

· If the experiment consists of flipping two coins, then the sample space consists of the following four points:




S = {(H, H), (H, T), (T, H), (T, T)}
· Event: any subset E of the sample space is known as an event. 

· That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.

For example, if E = {(H, H), {H, T)}, then E is the event that a head appears on the first coin. 

· For any event E we define the new event E’, referred to as the complement of E, to consist of all points in the sample space S that are not in E. 

· Mutually exclusive events: A set of events E1, E2, ..., En in a sample space S, are called mutually exclusive events if Ei ( Ej = (, i ( j, 1( i, j ( n. 

· A formal theory of probability can be made using three axioms:

1. 
0 ( P(E) ( 1. 

2.
( P(Ei) = 1 (or P(S) = 1)


 i
This axiom states that the sum of all events which do not affect each other, called mutually exclusive events, is 1. 


As a corollary of this axiom: 



P(Ei) + P(Ei’) = 1, 


where Ei’ is the complement of event Ei. 

3.
P(E1 ( E2) = P(E1) + P(E2), 

where E1 and E2 are mutually exclusive events. In general, this is also true. 
Compound probabilities

· Events that do not affect each other in any way are called independent events. For two independent events A and B, 



P(A ( B) = P(A) P(B)

Independent events: The events E1, E2, ..., En in a sample space S, are independent if



P(Ei1 ( ... ( Eik) = P(Ei1) ...P(Eik)

for each subset {i1, ...,ik) ({1, ..., n},1( k ( n, n ( 1. 

· If events A and B are mutually exclusive, then 



P(A ( B) = P(A) + P(B)

· If events A and B are not mutually exclusive, then 



P(A ( B) = P(A) + P(B) - P(A ( B)


This is also called Addition law. 

Conditional Probabilities

The probability of an event A, given B occurred, is called a conditional probability and indicated by 


P(A | B)

The conditional probability is defined as 





P(A ( B)



P(A | B) = ------------------, for P(B) ( 0. 


P(B)

· Multiplicative Law of probability for two events is then defined as 


P(A ( B) = P(A | B) P(B)


which is equivalent to the following


P(A ( B) = P(B | A) P(A)

· Generalized Multiplicative Law

P(A1 ( A2 ( ... ( An) = 



P(A1 | A2 ( ... ( An)  P(A2 | A3 ( ... ( An)



...  P(An-1 | An)  P(An)
An example

As an example of probabilities, Table below shows hypothetical probabilities of a disk crash using a Brand X drive within one year.

	
Brand X
Brand X’
Total of Rows

Crash    C
0.6
0.1
0.7

No crash   C’
0.2
0.1
0.3

Total of columns
0.8
0.2
1.0





Hypothetical probabilities of a disk crash

	
	X
	X’
	Total of rows

	C
	P(C ( X)
	P(C ( X’)
	P(C)

	C’
	P(C’( X)
	P(C’ ( X’)
	P(C’)

	Total of columns
	P(X)
	P(X’)
	1

	
	
	
	


Probability interpretation of two sets
Using above tables, the probabilities of all events can be calculated. Some probabilities are 

(1)
P(C) = 0.7

(2)
P(C’) = 0.3

(3)
P(X) = 0.8

(4)
P(X’) = 0.2

(5)
P(C ( X) = 0.6 



(the probability of a crash and using Brand X)
(6) 
The probability of a crash, given that Brand X is used, is


P(C ( X)
0.6



           P(C | X) = -------------    =
    ------- = 0.75


P(X)
0.8

(7)
The probability of a crash, given that Brand X is not used, is


P(C ( X’)
0.1



           P(C | X’) = -------------    =       ------- = 0.50


P(X’)
0.2

· Probabilities (5) and (6) may appear to have similar meanings when you read their descriptions. However (5) is simply the intersection of two events, while (6) is a conditional probability. 


The meaning of (5) is the following:

IF a disk drive is picked randomly, then 0.6 of the time it will be Brand x and have crashed. 


In other words, we are just picking samples from the population of disk drives. Some of those drives are Brand X and have crashed (0.6), some are not Brand X and have crashed (0.1), some are Brand X and have not crashed (0.2), and some are not Brand X and have not crashed (0.1). 


In contrast, the meaning of the conditional probability (6) is very different

IF a Brand X disk drive is picked, then 0.75 of the time it will have crashed.

· Note also that if any of the following equation is true, then events A and B are independent. 


P(A | B) = P(A) or


P(B | A) = P(B) or


P(A  (  B) = P(A) P(B).
Bayes’ Theorem

Note that conditional probability is defined as





P(H ( E)



P(H | E) = ------------------, for P(E) ( 0. 


P(E)

i.e., the conditional probability of H given E. 

· In real-life practice, the probability P(H | E) cannot always be found in the literature or obtained from statistical analysis. The conditional probabilities 



P(E | H)

however often are easier to come by; 

· In medical textbooks, for example, a disease is described in terms of the signs likely to be found in a typical patient suffering from the disease. 

· The following theorem provides us with a method for computing the conditional probability P(H | E) from the probabilities P(E), P(H) and P(E | H);  


From conditional probability:





P(H  (  E) 



        P(H | E) = ------------------, 



P(E)




P(E ( H)
Furthermore, we have, 



P(E | H) = ---------------




P(H)

So,


P(E | H)P(H) = P(H | E)P(E) = P(H ( E)

Thus


P(E | H) P(H) 



P(H | E) = ---------------------



P(E)

· This is the Bayes’ Theorem. Its general form can be written in terms of events, E, and hypotheses (assumptions), H, in the following alternative forms. 

P(E ( Hi)


             P(Hi | E)    = -------------------


( P(E ( Hj)


j

P(E | Hi) P(Hi)
P(E | Hi) P(Hi)


= -----------------------                       =           ---------------------


( P(E | Hj) P(Hj)
P(E)
Bayes’ rule and knowledge-based systems

As we know, rule-based systems express knowledge in an IF-THEN format:


IF X is true


THEN Y can be concluded with probability p

· If we observe that X is true, then we can conclude that Y exist with the specified probability. For example


IF the patient has a cold


THEN the patient will sneeze (0.75)
·  But what if we reason abductively and observe Y (i.e., the patient sneezes) while knowing nothing about X (i.e., the patient has a cold)? What can we conclude about it? Bayes’ Theorem describes how we can derive a probability for X. 
· Within the rule given above, Y (denotes some piece of evidence (typically referred to as E) and X denotes some hypothesis (H) given



P(E | H) P(H)

(1)             P(H | E) = -------------------



P(E)

or


                P(E | H) P(H)

(2)                  P(H | E) = -----------------------------------------



     P(E | H)P(H) + P(E | H’)P(H’)

To make this more concrete, consider whether Rob has a cold (the hypothesis) given that he sneezes (the evidence). 

· Equation (2) states that the probability that Rob has a cold given that he sneezes is the ratio of the probability that he both has a cold and sneezes, to the probability that he sneezes. 

· The probability of his sneezing is the sum of the conditional probability that he sneezes when he has a cold and the conditional probability that he sneezes when he doesn’t have a cold. In other words, the probability that he sneezes regardless of whether he has a cold or not. Suppose that we know in general 



P(H) = P(Rob has a cold)


= 0.2


P(E | H) =P(Rob was observed sneezing | Rob has a cold)


= 0.75


P(E | H’) = P(Rob was observed sneezing | 




Rob does not have a cold)


= 0.2

Then


P(E) = P(Rob was observed sneezing)



= (0.75)(0.2) + (0.2)(0.8)



= 0.31

and 


P(H | E) =P(Rob has a cold | Rob was observed sneezing)


(0.75)(0.2)


 = ---------------



(0.31)


 = 0.48387

· Or Rob’s probability of having a cold given that he sneezes is about 0.5. 
· We can also determine what his probability of having a cold would be if he was not sneezing:



P(E’ | H)P(H)


          P(H | E’) = -------------------



P(E’)



(1-0.75) (0.2)


 = -------------------



(1 - 0.31)


 = 0.07246

· So knowledge that he sneezes increasing his probability of having a cold by approximately 2.5, while knowledge that does not sneeze decreases his probability by a factor of almost 3. 

Propagation of Belief

Note that what we have just examined is very limited since we have only considered when each piece of evidence affects only one hypothesis. 

· This must be generalized to deal with “m” hypotheses H1, H2, ... Hm and “n” pieces of evidence E1, ..., En, the situation normally encountered in real-world problems. When these factors are included, Equation (2) becomes




P(Ej1(Ej2(...(Ejk | Hi) P(Hi)

(3) 
P(Hi | Ej1 (Ej2( ...(Ejk) = -----------------------------------




P(Ej1 (Ej2( ...( Ejk)


P(Ej1 | Hi)P(Ej2 | Hi) ... P(Ejk | Hi)P(Hi)


= -------------------------------------------------------

m


(P(Ej1 | Hl)P(Ej2 | Hl) ... P(Ejk | Hl)P(Hl)


l=1


where {j1, ...,jk) ({1, ..., n}
· This probability is called the posterior probability of hypothesis Hi from observing evidence Ej1, Ej2, ..., Ejk. 
· This equation is derived based on several assumptions:

1. The hypotheses H1, ..., Hm, m ( 1, are mutually exclusive.

2. Furthermore, the hypotheses H1, ..., Hm are collectively exhaustive. 

3. The pieces of evidence E1, ..., En, n ( 1, are conditionally independent given any hypothesis Hi, 1 ( i ( m . 

Conditional independent: The events E1, E2, ..., En, are conditionally independent given an event H if 


P(Ej1 ( ... ( Ejk  | H) = P(Ej1  | H) ...P(Ejk | H)



for each subset {j1, ...,jk) ({1, ..., n}.

· This last assumption often causes great difficulties for probabilistic based methods.

For example, two symptoms, A and B, might each independently indicate that some disease is 50 percent likely. Together, however, it might be that these symptoms reinforce (or contradict) each other. Care must be taken to ensure that such a situation does not exist before using the Bayesian approach.

· To illustrate how belief is propagated through a system using Bayes’ rule, consider the values shown in the Table below. These values represent (hypothetically) three mutually exclusive and exhaustive hypotheses 

1. H1, the patient, Rob, has a cold; 

2. H2, Rob has an allergy; and 

3. H3, Rob has a sensitivity to light

with their prior probabilities, P(Hi)’s, and two conditionally independent pieces of evidence 

1. E1, Rob sneezes and

2. E2, Rob coughs, 

which support these hypotheses to differing degrees.


i = 1
i = 2 
i = 3


(cold) 
(allergy)
(light sensitive)

P(Hi)
0.6
0.3
0.1

P(E1 | Hi)
0.3
0.8
0.3

P(E2 | Hi)
0.6
0.9
0.0
· If we observe evidence E1 (e.g., the patient sneezes), we can compute posterior probabilities for the hypotheses using Equation (3) (where k = 1) to be:



(0.3)(0.6)

                           P(H1 | E1) = ------------------------------------------ = 0.4


      (0.3)(0.6) + (0.8)(0.3) + (0.3)(0.1) 



(0.8)(0.3)

                         P(H2 | E1) = ------------------------------------------ = 0.53


    (0.3)(0.6) + (0.8)(0.3) + (0.3)(0.1) 



(0.3)(0.1)

                       P(H3 | E1) = ------------------------------------------ = 0.06


   (0.3)(0.6) + (0.8)(0.3) + (0.3)(0.1) 

· Note that the belief in hypotheses H1 and H3 have both decreased while the belief in hypothesis H2 has increased after observing E1. If E2 (e.g., the patient coughs) is now observed, new posterior probabilities can be computed from Equation (3) (where k = 2):

P(H1 | E1 ( E2)
(0.3)(0.6)(0.6)


= ------------------------------------------------------------   = 0.33

(0.3)(0.6)(0.6) + (0.8)(0.9)(0.3) + (0.3)(0.0)(0.1)

P(H2 | E1 ( E2)


(0.8)(0.9)(0.3)


= ------------------------------------------------------------


(0.3)(0.6)(0.6) + (0.8)(0.9)(0.3) + (0.3)(0.0)(0.1)


= 0.67

P(H3 | E1 ( E2)


(0.3)(0.0)(0.1)


= ------------------------------------------------------------


(0.3)(0.6)(0.6) + (0.8)(0.9)(0.3) + (0.3)(0.0)(0.1)


= 0.0

· Hypothesis H3 (e.g., sensitivity to light) has now ceased to be a viable hypothesis and H2 (e.g., allergy) is considered much more likely than H1 (e.g., cold) even though H1 initially ranked higher. 
Advantages and disadvantages of Bayesian methods

The Bayesian methods have a number of advantages that indicates their suitability in uncertainty management. 

· Most significant is their sound theoretical foundation in probability theory. Thus, they are currently the most mature of all of the uncertainty reasoning methods.

While Bayesian methods are more developed than the other uncertainty methods, they are not without faults.

1. They require a significant amount of probability data to construct a knowledge base. Furthermore, human experts are normally uncertain and uncomfortable about the probabilities they are providing.

2. What are the relevant prior and conditional probabilities based on? If they are statistically based, the sample sizes must be sufficient so the probabilities obtained are accurate. If human experts have provided the values, are the values consistent and comprehensive?

3. Often the type of relationship between the hypothesis and evidence is important in determining how the uncertainty will be managed. Reducing these associations to simple numbers removes relevant information that might be needed for successful reasoning about the uncertainties. For example, Bayesian-based medical diagnostic systems have failed to gain acceptance because physicians distrust systems that cannot provide explanations describing how a conclusion was reached (a feature difficult to provide in a Bayesian-based system).

4. The reduction of the associations to numbers also eliminated using this knowledge within other tasks. For example, the associations that would enable the system to explain its reasoning to a user are lost, as is the ability to browse through the hierarchy of evidences to hypotheses. 

2: Certainty factors

· Certainty factor is another method of dealing with uncertainty. This method was originally developed for the MYCIN system.

· One of the difficulties with Bayesian method is that there are too many probabilities required. Most of them could be unknown. 

· The problem gets very bad when there are many pieces of evidence. 

· Besides the problem of amassing all the conditional probabilities for the Bayesian method, another major problem that appeared with medical experts was the relationship of belief and disbelief. 

· At first sight, this may appear trivial since obviously disbelief is simply the opposite of belief. In fact, the theory of probability states that

               P(H) + P(H’) = 1


and so

               P(H) = 1 - P(H’)

· For the case of a posterior hypothesis that relies on evidence, E

      (1) 
P(H | E) = 1 - P(H’ | E)

· However, when the MYCIN knowledge engineers began interviewing medical experts, they found that physicians were extremely reluctant to state their knowledge in the form of equation (1).

· For example, consider a MYCIN rule such as the following.

      IF
1) The stain of the organism is gram positive, and

          
2) The morphology of the organism is coccus, and

    

3) The growth conformation of the organism is chains

      THEN   There is suggestive evidence (0.7) that the 

                      identity of the organism is streptococcus
· This can be written in terms of posterior probability:

      (2) 
P(H | E1( E2 ( E3) = 0.7

where the Ei correspond to the three patterns of the antecedent.

· The MYCIN knowledge engineers found that while an expert would agree to equation (2), they became uneasy and refused to agree with the probability result

      (3) 
P(H’ | E1( E2 ( E3) = 1 - 0.7 = 0.3

· This illustrates these numbers such as 0.7 and 0.3 are likelihoods of belief, not probabilities.

· Let us have another example. 

Suppose this is your last course required for a degree. Assume your grade-point-average (GPA) has not been too good and you need an ‘A’ in this course to bring up your GPA. The following formula may express your belief in the likelihood of graduation.

  
(4) 
P(graduating | ‘A’ in this course) = 0.70

Notice that this likelihood is not 100%. The reason it’s not 100% is that a final audit of your course and grades must be made by the school. There could be problem due to a number of reasons that would still prevent your graduation.

Assuming that you agree with (4) (or perhaps your own value for the likelihood) then by equation (1)

      (5)  
P(not graduating  |  ‘A’ in this course) = 0.30
· From a probabilistic point of view, (5) is correct. However, it seems intuitively wrong. It is just not right that if you really work hard and get an ‘A’ in this course, then there is a 30% chance that you won’t graduate. (5) should make you uneasy. 

· The fundamental problem is that while P(H | E) implies a cause of effect relationship between E and H, there may be no cause and effect relationship between E and H’. 

These problems with the theory of probability led the the researchers in MYCIN to investigate other ways of representing uncertainty. 

· The method that they used with MYCIN was based on certainty factors. 

Measures of belief and disbelief

In MYCIN, the certainty factor (CF) was originally defined as the difference between belief and disbelief.

          CF(H, E) = MB(H, E) - MD(H, E)


where

  
CF is the certainty factor in the hypothesis H 




due to evidence E

      
MB is the measure of increased belief in H due to E

      
MD is the measure of increased disbelief in H due to E

· The certainty factor is a way of combining belief and disbelief into a single number.

· Combining the measures of belief and disbelief into a single number has some interesting uses. 

· The certainty factor can be used to rank hypothesis in order of importance. 

For example, If a patient has certain symptoms which suggest several possible diseases, then the disease with the highest CF would be the one that is first investigated by ordering tests.

The measures of belief and disbelief were defined in terms of probabilities by

                     MB(H, E)
= 
1                    if P(H) = 1      

                    

max[P(H | E), P(H)] - P(H)

                   
=           ---------------------------------- 
   otherwise

          
                     1 - P(H)

                         = 
1                           



if P(H) =1


MD(H,E) 


                                   
min [P(H | E), P(H)] - P(H)

                        
=
---------------------------------- 
otherwise

 
                        - P(H)

· According to these definitions, some characteristics are shown in Table 5-1.

      
____________________________________


Characteristics

Values

      
------------------------------------------------------


Ranges                                0 ( MB ( 1

                                                   
0 ( MD ( 1





-1 ( CF ( 1


-------------------------------------------------------

      
Certain True Hypothesis   
MB =1  

      
P(H | E) = 1                           
MD =0

      


CF = 1


-------------------------------------------------------


Certain False Hypothesis  
MB =0

      
P(H’|E) =1                          
MD =1

       


CF = -1


-------------------------------------------------------

      
Lack of evidence                 
MB = 0

     
P(H | E) = P(H) 

MD = 0

CF =0


-------------------------------------------------------  

Some Characteristics of MB, MD and CF
· The certainty factor, CF, indicates the net belief in hypothesis based on some evidence. 

· A positive CF means the evidence supports the hypothesis since MB > MD. 

· A CF = 1 means that the evidence definitely proves the hypothesis. 

· A CF = 0 means one of two possibilities. 

1. First, a CF = MB - MD = 0 could mean that both MB and MD are 0. 

2. The second possibility is that MB = MD and both are nonzero. The result is that the belief is canceled out by the disbelief.

· A negative CF means that the evidence favors the negation of the hypothesis since MB < MD. Another way of stating this is that there is more reason to disbelief a hypothesis than to belief it. 

For example, a CF = -70% means that the disbelief is 70% greater than the belief. 

A CF=70% means that the belief is 70% greater than the disbelief.

· Certainty factors allow an expert to express a belief without committing a value to the disbelief. 

· The following equation is true.

         CF(H, E) + CF(H’, E) =0

· The equation means that evidence supporting a hypothesis reduces support to the negation of the hypothesis by an equal amount so that the sum is always 0.

· For the example of the student graduating if an ‘A’ is given in the course

    
CF(H,E) = 0.70   CF(H’,E) = -0.70


which means


(6) I am 70 % certain that  I will graduate if I get

    

an ‘A’ in this course.

    
(7) I am -70% certain that I will not graduate if I     

    

get an ‘A’ in this course.

· 0 means no evidence. 

· So certainty values greater than 0 favor the hypothesis 

· Certainty factors less than 0 favor the negation of the hypothesis. Statements (6) and (7) are equivalent using certainty factors

· The above CF values might be elicited by asking


How much do you believe that getting an ‘A”  

            will help you graduate?

if the evidence is to confirm the hypothesis,  or
          
How much do you disbelief that getting ‘A’ 

          
will help you graduate?

An answer of 70% to each question will set CF(H, E) = 0.7, and CF(H’,E) = -0.70. 

Calculation with Certainty Factors

Although the original definition of CF was

             CF = MB - MD

there were difficulties with this definition

· because one piece of disconfirming evidence could control the confirmation of many other pieces of evidence. 

For example, ten pieces of evidence might produce a MB = 0.999 and one disconfirming piece with MD = 0.799 could then give

            CF = 0.999 - 0.799 = 0.200

· The definition of CF was changed in MYCIN in 1977 to be  

                                 MB - MD

                  CF = ------------------------

                            1 - min(MB, MD)  

· This softens the effects of a single piece of disconfirming evidence on many confirming pieces of evidence. Under this definition with MB=0.999, MD=0.799

                
0.999-0.799
0.200

      CF = --------------------------- = ------------- = 0.995

                1- min(0.999, 0.799)     
1 - 0.799

· The MYCIN method for combining evidence in the antecedent of a rule are shown in Table 5-2.

     -------------------------------------------------------------

     

Evidence, E        
Antecedent Certainty

     -------------------------------------------------------------

     

E1 AND  E2     

min [CF(E1, e),CF(E2, e)]   

     

E1 OR  E2        

max[CF(E1, e),CF(E2, e)]  

     

NOT  E              
-CF(E, e)                              

     --------------------------------------------------------------

                               
Table 5-2

· For example, given a logical expression for combining evidence such as

     
E = (E1 AND E2 AND E3) or (E4  AND  NOT E5)


the evidence E would be computed as

     
E = max[min(E1, E2, E3), min(E4, -E5)]


for values

     
E1 =  0.9     E2 =  0.8     E3 = 0.3

     
E4 = -0.5     E5 = -0.4


the result is

     
E 
= max[min(0.9, 0.8, 0.3), min(-0.5, -(-0.4)]

         

= max[0.3, -0.5]

         

= 0.3

· The formula for the CF of a rule

     
If   E   THEN   H


is given by

     
(8)  CF(H,e) =  CF(E,e) CF(H,E)


where

CF(E,e) is the certainty factor of the evidence E making up the antecedent of the rule base on uncertain evidence e.

CF(H,E) is the certainty factor of hypothesis  assuming that the evidence is with certainty,  when CF(E,e) = 1.

CF(H,e) is the certainty factor of the hypothesis based on uncertain evidence e.
· Thus, if all the evidence in the antecedent is known with certainty, the formula for the certainty factor of the hypothesis is

                  CF(H,e)  =  CF(H,E)


since CF(E,e) = 1.

· See an example. Consider the CF for the streptococcus rule discussed before,

      
IF  
1) The stain of the organism is gram positive, and



2) The morphology of the organism is coccus, and



3) The growth confirmation of the organism is chains


THEN There is suggestive evidence (0.7) that the

                 identity of the organism is streptococcus

where the certainty factor of the hypothesis under certain evidence is

            CF(H, E) = CF (H, E1(E2(E3) = 0.7

and is also called the attenuation factor.

The attenuation factor is based on the assumption that all the evidence--E1, E2 and E3--is known with certainty. That is,

            CF(E1, e) = CF(E2, e) = CF(E3, e) = 1

· What happens when all the evidenced are not known with certainty? 

· In the case of MYCIN, the formula (8) must be used to determine the resulting CF value since CF(H, E1(E2(E3) = 0.7 is no longer valid for uncertain evidence.


For example, assuming

     
CF(E1,e) = 0.5

     
CF(E2,e) = 0.6

     
CF(E3,e) = 0.3


then

     
CF(E,e) = CF(E1(E2(E3,e)

                   = min[CF(E1,e), CF(E2,e), CF(E3,e)]

                   = min[0.5, 0.6, 0.3]

                   = 0.3


The certainty factor of the conclusion is

     
CF(H, e) 
= CF(E,e)  CF(H,E)

                    
= 0.3 * 0.7

                    
= 0.21
· What happen when another rule also concludes the same hypothesis, but with a different certainty factor? 

· The certainty factors of rules concluding the same hypothesis is calculated from the combining function for certainty factors defined as


(9) 
CFCOMBINE(CF1,CF2)

                 
=  CF1 + CF2 (1 - CF1) 
if both CF1 and CF2 > 0
                         
CF1 + CF2    


=  -------------------------
if one of CF1 and CF2 < 0


1 - min(|CF1|,|CF2|)


=
CF1 + CF2 (1 + CF1)
if both CF1 and CF2 < 0


where CF1 is CF1(H, e) and CF2 is CF2(H, e).

· The formula for CFCOMBINE used depends on whether the individual certainty factors are positive or negative. 

· The combining function for more than two certainty factors is applied incrementally. That is, the CFCOMBINE is calculated for two CF values, and then the CFCOMBINE is combined using formula (9) with the third CF values, and so forth.
· The following figure summarizes the calculations with certainty factors for two rules based on uncertain evidence and concluding the same hypothesis.


[image: image1]
CF of two rules with the same hypothesis 
based on uncertain evidence
· In our above example, if another rule concludes strepococcus with certainty factor CF2 = 0.5, then the combined certainty using the first formula of (9) is

 
CFCOMBINE(0.21, 0.5) = 0.21 + 0.5(1 - 0.21) = 0.605
· Suppose a third rule also has the same conclusion, but with a CF3 = -0.4. Then the second formula of (9) is used to give
                                               

0.605 - 0.4

 
CFCOMBINE(0.605, -0.4) = --------------------------

                                        

1 - min(|0.605|, |0.4|)

                                     

   0.205

                                   

= --------- = 0.34

                                       

   1 - 0.4

· The CFCOMBINE formula preserves the commutativity of evidence. That is

         CFCOMBINE(X,Y) = CFCOMBINE(Y,X)

and so the order in which evidence is received does not affect the result. 
Advantages and disadvantages of certainty factors

The CF formalism has been quite popular with expert system developers since its creation because

1. It is a simple computational model that permits experts to estimate their confidence in conclusion being drawn.

2. It permits the expression of belief and disbelief in each hypothesis, allowing the expression of the effect of multiple sources of evidence.

3. It allows knowledge to be captured in a rule representation while allowing the quantification of uncertainty.

4. The gathering of the CF values is significantly easier than the gathering of values for the other methods. No statistical base is required - you merely have to ask the expert for the values. 

Many systems, including MYCIN, have utilized this formalism and have displayed a high degree of competence in their application areas. But is this competence due to these systems’ ability  to manipulate and reason with uncertainty or is it due to other factors? 

Some studies have shown that changing the certainty factors or even turn off the CF reasoning portion of MYCIN does not seems to affect the correct diagnoses much.

· This revealed that the knowledge described within the rule contributes much more to the final, derived results than the CF values. 

Other criticisms of this uncertainty reasoning method include among others:

1. The CF lack theoretical foundation. Basically, the CF were partly ad hoc. It is an approximation of probability theory. 

2. Non-independent evidence can be expressed and combined only by “chunking” it together within the same rule. When large quantities of non-independent evidence must be expressed, this proves to be unsatisfactory

3. the CF values could be the opposite of conditional probabilities. 


For example, if


P(H1) = 0.8 

P(H2) = 0.2


P(H1 | E) = 0.9 

P(H2 | E) = 0.8


then 
CF(H1, E) = 0.5 and CF(H2, E) = 0.75

· Since one purpose of CF is to rank hypotheses in terms of likely diagnosis, it is a contradiction for a disease to have a higher conditional probability P(H | E) and yet have a lower certainty factor, CF(H, E).
AND 	OR 	NOT

(min) 	(max) 	(-)



AND 	OR 	NOT

(min) 	(max) 	(-)



Rule 1 	Rule 2



CF2(H, e) = CF2(E, e)CF2(H,e)



CF1(H, e) = CF1(E, e)CF1(H,e)



Hypothesis, H
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