
i^ A BOOK APART

Briefbooks forpeople who make websites

foreword by Jeffrey Zeldman

Jeremy Keith

Copyright © 2010 by Jeremy Keith
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Editor:Mandy Brown
Technical Editor: Ethan Marcottc

Copyeditor: Krista Stevens

ISBN 978-0-9844425-0-8

A Book Apart
New York, New York
http://books.alistapart.com

1234567890

TABLE OF CONTENTS

CHAPTER 1

A Brief History of Markup

CHAPTER 2

The Design of HTML5

CHAPTER 3

Rich Media

CHAPTER 4

Web Forms 2.0

0 CHAPTER 5

Semantics

CHAPTER 6

Using HTML5 Today

Index

FOREWORD

When Mandy Brown, Jason Santa Maria and I formed A Book
Apart, one topic burned uppermost in our minds, and there
was only one author for the job.

Nothing else, not even "real fonts" or CSS3, has stirred the
standards-based design community like the imminent arrival
of HTML5. Born out of dissatisfaction with the pacingand
politicsof the W3C, and conceived for a web of applications
(not just documents), this new edition of the web's lingua
franca has in equal measure excited, angered, and confused
the web design community.

Just as he did with the DOM and JavaScript, Jeremy Keith has
a unique ability to illuminate HTML5 and cut straight to what
matters to accessible, standards-based designer-developers.
And he does it in this book, usingonly as many words and
pictures as are needed.

There are other books about HTML5, and there will be many
more. There will be 500 pagetechnical books for application
developers, whose needs drove much of HTML5's develop
ment. There will be even longer secret books for browser
makers, addressing technical challenges that you and I are
blessed never to need to think about.

But this is a book for you—you who create web content, who
mark up web pages for sense and semantics, and who design
accessible interfaces and experiences. Call it your user guide
to HTML5. Its goal—one it will share with every title in the
forthcoming ABook Apart catalog—is to shed clearlighton a
tricky subject, and do it fast, so you can get back to work.

—Jeffrey Zeldman

html is the unifying language of the World Wide Web.

Using just the simple tags it contains, the human race has cre
ated an astoundingly diverse network of hyperlinkcd docu
ments, from Amazon, eBay, and Wikipedia, to personal blogs
and websites dedicated to cats that look like Hitler.

HTML5 is the latest iteration of this lingua franca. While it is
the most ambitious change to our common tongue, this isn't
the first time that HTML has been updated. The language has
been evolving from the start.

As with the web itself, the HyperText Markup Language was
the brainchild of Sir Tim Berners-Lee. In 1991 he wrote a doc
ument called "HTMLTags" in which he proposed fewer than
two dozen elements that could be used for writingweb pages.

SirTimdidn't come up with the ideaof using tags consisting
of words between angle brackets; those kinds of tags already
existed in the SGML (Standard Generalized Markup Language)

A BRIEF HISTORY OF MARKUP 1

format. Rather than inventing a new standard, Sir Tim saw
the benefit of building on top of what already existed—a trend
that can still be seen in the development of HTML5.

FROM IETF TO W3C: THE ROAD TO HTML 4

There was never any such thing as HTML 1. The first official
specification was HTML 2.0, published by the IETF, the
Internet Engineering Task Force. Many of the features in this
specification were driven by existing implementations. For
example, the market-leading Mosaic web browser of 1994
already provided a way for authors to embed images in
their documents using an tag. The img element later
appeared in the HTML 2.0 specification.

The role of the IETF was superceded by the W3C, the World
Wide Web Consortium, where subsequent iterations of the
HTML standard have been published at http://www.w3.0rg.
The latter half of the nineties saw a flurry of revisions to the
specification until HTML4.01 was published in 1999.

At that time, HTML faced its first major turning point.

XHTML 1: HTML AS XML

After HTML 4.01, the next revision to the language was called
XHTML 1.0. The X stood for "eXtreme" and web developers
were required to cross their arms in an Xshape when speak
ing the letter.

No, not really.The Xstood for "extensible" and arm crossing
was entirely optional.

The content of the XHTML1.0 specification was identical
to that of HTML 4.01. No new elements or attributes were
added. The only difference was in the syntax of the language.
Whereas HTML allowed authors plenty of freedom in how

2 HTML5 FOR WEB DESIGNERS

they wrote theirelements and attributes, XHTML required
authors to follow the rules of XML, a stricter markup language
upon which the W3C was basing mostof their technologies.

Having stricter rules wasn'tsuch a bad thing. It encouraged
authors to use a single writingstyle. Whereas previously tags
and attributes could be written in uppercase, lowercase, or
any combination thereof,a valid XHTML 1.0 document re
quired all tags and attributes to be lowercase.

The publication of XHTML 1.0coincided with the rise of
browser support for CSS. Asweb designersembraced the
emergence of web standards, ledbyThe Web Standards
Project, the stricter syntax of XHTML wasviewed as a "best
practice" way of writing markup.

Then the W3C published XHTML 1.1.

While XHTML 1.0 was simply HTML reformulated as XML,
XHTML 1.1 was real, honest-to-goodness XML. That meant
it couldn't be served with a mime-type of text/html. But if
authors published a document with an XML mime-type, then
the most popular web browser in the world at the time-
Internet Explorer—couldn't render the document.

It seemed as if the W3C were losing touch with the day-to-day
reality of publishing on the web.

XHTML 2: OH, WE'RE NOT GONNA TAKE IT!

If Dustin Hoffman's character in The Graduate had been a web

designer, the W3C would have said one word to him, just one
word: XML.

As far as the W3C was concerned, HTML was finished as of
version 4. They began working on XHTML 2, designed to lead
the web to a bright new XML-based future.

A BRIEF HISTORY OF MARKUP 3

Although the name XHTML 2 sounded verysimilar to
XHTML 1, they couldn't have been more different. Unlike
XHTML 1, XHTML 2 wasn't going to be backwardscompat
ible with existingweb content or even previous versions of
HTML. Instead, it was going to be a pure language, unbur
dened by the sloppy history of previous specifications.

It was a disaster.

THE SCHISM: WHATWG TF?

A rebellion formed within the W3C. The consortium seemed
to be formulating theoretically pure standards unrelated to the
needsof web designers. Representatives from Opera, Apple,
and Mozilla were unhappy with this direction. They wanted
to see more emphasis placed on formats that allowed the cre
ation of web applications.

Things came to a head in a workshop meeting in 2004. Ian
Hickson, who was working for Opera Software at the time,
proposed the idea of extending HTMLto allow the creation of
web applications. The proposal was rejected.

The disaffected rebels formed their own group: the Web
Hypertext Application Technology Working Group, or
WHATWG for short.

FROM WEB APPS 1.0 TO HTML5

From the start, the WHATWG operated quite differently than
the W3C. The W3C uses a consensus-based approach: issues
are raised, discussed, and voted on. At the WHATWG, issues
are also raised and discussed, but the final decision on what
goes into a specification rests with the editor. The editor is Ian
Hickson.

4 HTML5 FOR WEB DESIGNERS

On the faceof it, the W3C process sounds more democratic
and fair. In practice, politics and internal bickering can bog
down progress. At the WHATWG, where anyone is free to
contribute but the editor has the last word, things move at a
fasterpace. Butthe editordoesn't quite have absolute power:
an invitation-onlysteering committee can impeach him in the
unlikely event of a Strangelovescenario.

Initially, the bulkof the work at the WHATWG wassplit into
two specifications: Web Forms 2.0 and Web Apps 1.0. Both
specifications were intended to extend HTML. Over time,
they were merged into a single specification called simply
HTML5.

REUNIFICATION

While HTML5 was being developed at the WHATWG, the
W3C continued working on XHTML 2. It would be inaccurate
to say that it was going nowhere fast. It was going nowhere
very, very slowly.

In October 2006, Sir Tim Berners-Lee wrote a blog post in
which he admitted that the attempt to move the web from
HTML to XML just wasn't working. A few months later, the
W3C issued a new charter for an HTML Working Group.
Rather than start from scratch, they wisely decided that the
work of the WHATWG should be used as the basis for any
future version of HTML.

All of this stopping and starting led to a somewhat confusing
situation. The W3C was simultaneously working on two
different, incompatible types of markup: XHTML 2 and
HTML 5 (note the space before the number five). Meanwhile a
separate organization, the WHATWG, was working on a
specification called HTML5 (with no space) that would be
used as a basis for one of the W3C specifications!

A BRIEF HISTORY OF MARKUP 5

Any web designers trying to make sense of this situation
would havehad an easier time deciphering a movie marathon
ofMemento, Primer, and thecomplete works of David Lynch.

XHTML IS DEAD: LONG LIVE XHTML SYNTAX

The fogofconfusion began to clear in 2009. The W3C an
nounced that the charter for XHTML 2 would not be re
newed. The format had been asgood as dead for several years;
this announcement was little more than a death certificate.

Strangely, rather than passing unnoticed, the death ofXHTML 2
was greeted with some mean-spirited gloating. XML naysayers
used the announcement as an opportunity to deride anyone
who had ever used XHTML 1—despite the fact that XHTML 1
and XHTML 2 have almost nothing in common.

Meanwhile, authors who had been writing XHTML 1 in order
to enforce a stricter writing style became worried that HTML5
would herald a return to sloppy markup.

As you'll soon see, that's not necessarily the case. HTML5 is as
sloppy or as strict as you want to make it.

THE TIMELINE OF HTML5

The current state of HTML5 isn't as confusing as it once was,
but it still isn't straightforward.

There are two groups working on HTML5. The WHATWG is
creating an HTML5 specification using its process of "commit
then review."The W3C HTML Working Group is taking that
specification and putting it through its process of"review then
commit." As you can imagine, it's an uneasy alliance. Still,
there seems to finally be some consensus about that pesky

6 HTML5 FOR WEB DESIGNERS

"space or no space?" question (it's HTML5 with no space, just
in case you were interested).

Perhaps the most confusing issue for web designers dipping
their toes into the waters of HTML5 is getting an answer to
the question, "when will it be ready?"

In an interview, Ian Hickson mentioned 2022 as the year he
expected HTML5 to become a proposed recommendation.
What followed was a wave of public outrage from some web
designers. They didn't understand what "proposed recom
mendation" meant, but they knew they didn't have enough
fingers to count off the years until 2022.

The outrage was unwarranted. In this case, reaching a status
of"proposed recommendation" requires two complete imple
mentations of HTML5. Considering the scope of the specifica
tion, this date is incredibly ambitious. After all, browsers don't
have the best track record of implementing existing standards.
It took Internet Explorer over a decade just to add support for
the abbr element.

The date that really matters for HTML5 is 2012. That's when
the specification is due to become a "candidate recommenda
tion." That's standards-speak for "done and dusted."

But even that date isn't particularly relevant to web design
ers. What really matters is when browsers start supporting
features. We began using parts of CSS 2.1 as soon as browsers
started shipping with support for those parts. If we had wait
ed for every browser to completely support CSS 2.1 before we
started using any of it, we would still be waiting.

It's no different with HTML5. There won't be a single point in
time at which we can declare that the language is ready to use.
Instead, we can start using parts of the specification as web
browsers support those features.

A BRIEF HISTORY OF MARKUP 7

Remember, HTML5 isn't a completely new language created
from scratch. It's an evolutionary rather than revolutionary
change in the ongoing story of markup. If you are currently
creating websites with any version of HTML,you're already
using HTML5.

8 HTML5 FOR WEB DESIGNERS

^^Mi

the French revolution was an era of extreme political
and social change. Revolutionary fervor was applied to time
itself. For a brief period, the French Republic introduced a
decimal time system, with each day divided into ten hours
and each hour divided into one hundred minutes. It was thor

oughly logical and clearly superior to the sexagesimal system.

Decimal time was a failure. Nobody used it. The same could
be said for XHTML 2. The W3C rediscovered the lesson of

post-revolutionary France: changing existing behavior is very,
very difficult.

DESIGN PRINCIPLES

Keen to avoid the mistakes of the past, the WHATWG drafted
a series of design principles to guide the development of
HTML5. One of the key principles is to "Support existing con
tent." That means there's no Year Zero for HTML5.

THE DESIGN OF HTMLS 9

Where XHTML 2 attempted to sweep aside all that had come
before, HTML5 builds upon existing specifications and imple
mentations. Most of HTML 4.01 has survived in HTML5.

Some of the other design principles include "Do not reinvent
the wheel," and "Pave the cowpaths," meaning, if there's a
widespread way for web designers to accomplish a task—even
if it's not necessarily the best way—it should be codified in
HTML5. Put another way, "If it ain't broke, don't fix it."

Many of these design principles will be familiar to you if
you've ever dabbled in the microformats community (http://
microformats.org). The HTML5 community shares the same
pragmatic approach to getting a format out there, without
worrying too much about theoretical problems.

This attitude is enshrined in the design principle of"Priority
ofconstituencies," which states, "In case ofconflict, consider
users over authors over implementers over specifiers over
theoretical purity."

Ian Hickson has stated on many occasions that browser
makers are the real arbiters of what winds up in HTML5. If
a browser vendor refuses to support a particular proposal,
there's no point in adding that proposal to the specification
because then the specification would be fiction. According to
the priority of constituencies, we web designers have an even
stronger voice. If we refuse to use part of the specification,
then the specification is equally fictitious.

KEEPING IT REAL

The creation of HTML5 has been driven by an ongoing inter
nal tension. On the one hand, the specification needs to be
powerful enough to support the creation of web applications.
On the other hand, HTML5 needs to support existing con
tent, even if most existing content is a complete mess. If the

10 HTML5 FOR WEB DESIGNERS

specification strays too far in one direction, it will suffer the
same fate as XHTML 2. But if it goes too far in the other direc
tion, the specification will enshrine tags and tables for
layout because, after all, that's what a huge number ofweb
pages are built with.

It's a delicate balancing act that requires a pragmatic, level
headed approach.

ERROR HANDLING

The HTML5 specification doesn't just declare what browsers
should do when they are processing well-formed markup. For
the first time, a specification also defines what browers should
do when they are dealing with badly formed documents.

Until now, browser makers have had to individually figure
out how to deal with errors. This usually involved reverse
engineering whatever the most popular browser was doing—
not a very productive use of their time. It would be better for
browser makers to implement new features rather than waste
their time duplicating the way their competitors handle mal
formed markup.

Defining error handling in HTML5 is incrediblyambitious.
Even if HTML5 had exactly the same elements and attributes
as HTML 4.01, with no new features added, defining error
handling by 2012 would still be a Sisyphean task.

Error handling might not be of much interest to web design
ers, especially if we are writing valid, well-formed documents
to begin with, but it's very important for browser makers.
Whereas previous markup specifications were written for
authors, HTML5 is written for authors and implementers.
Bearthat in mind when perusing the specification. It explains
why the HTML5 specification is so big and why it seems to
have been written with a level of detail normally reserved for

THE DESIGN OF HTML5 11

trainspotters who enjoy a nice game of chess while indexing
their stamp collection.

GIVE IT TO ME STRAIGHT, DOCTYPE

A Document Type Declaration, or doctype for short, has
traditionally been used to specify which particular flavor of
markup a document is written in.

The doctype for HTML 4.01 looks like this {line wraps
marked »):

<!DOCTYPE HTML PUBLIC »

"-//W3C//DTD HTML 4.01//EN" »

"http://www.w3.org/TR/html4/strict.dtd">

Here's the doctype for XHTML 1.0:

<!DOCTYPE html PUBLIC »

"-//W3C//DTD XHTML 1.0 Strict //EN" »

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

They're not very human-readable, but, in their own way, they
are simply saying "this document is written in HTML 4.01,"or
"this document is written in XHTML 1.0."

You might expect the doctype declaring "this document is
written in HTML5" would have the number five in it some

where. It doesn't. The doctype for HTML5 looks like this:

<!DOCTYPE html>

It's so short that even I can memorize it.

Butsurelythis is madness! Withouta version number in the
doctype, how will we specify future versions of HTML?

12 HTML5 FOR WEB DESIGNERS

When I first saw the doctype for HTML5,1 thought it was the
height of arrogance. I asked myself, "Do they really believe
that this will be the final markup specification ever written?"

It seemed to be a textbook case ofYearZero thinking.

In fact, though, the doctype for HTML5 is very pragmatic.
Because HTML5 needs to support existing content, the doc
type could be applied to an existing HTML 4.01 or XHTML
1.0 document. Any future versions of HTML will also need to
support the existing content in HTML5, so the very concept
of applying version numbers to markup documents is flawed.

The truth is that doctypes aren't even important. Let's say
you serve up a document with a doctype for HTML 4.01. If
that document includes an element from another specifica
tion, such as HTML 3.2 or HTML5, a browser will still render
that part of the document. Browsers support features, not
doctypes.

Document Type Declarations were intended for validators,
not browsers. The only time that a browser pays any attention
to a doctype is when it is performing "doctype switching"—
a clever little hack that switches rendering between quirks
mode and standards mode depending on the presence of a
decent doctype.

The minimum information required to ensure that a browser
renders using standards mode is the HTML5 doctype. In fact,
that's the only reason to include the doctype at all. An HTML
document written without the HTML5 doctype can still be
valid HTMLS.

KEEPING IT SIMPLE

The doctype isn't the only thing that has been simplified in
HTML5.

THE DESIGN OF HTMLS 13

If you want to specify the character encoding of a markup
document, the best way is to ensure that your server sends
the correct Content-Type header. If you want to be doubly
certain, you can also specify the character set using a <meta>
tag. Here's the meta declaration for a document written in
HTML 4.01:

<meta http-equiv="Content-Type" content="text/html; »

charset=UTF-8">

Here's the much more memorable way ofdoing the same
thing in HTMLS:

<meta charset="UTF-8">

As with the doctype, this simplified character encoding
contains the minimum number ofcharacters needed to be

interpreted by browsers.

The <script> tag is another place that can afford to shed
some fat. It's common practice to add a type attribute with a
value of "text/javascript" to script elements:

<script type="text/javascript" src="file.js"x/script>

Browsers don't need that attribute. They will assume that the
script is written in JavaScript, the most popular scripting lan
guage on the web (let's be honest: the only scripting language
on the web):

<script src ="file.js"x/script>

Likewise, you don't need to specify a type value of "text/ess"
every time you link to a CSS file:

<link rel="stylesheet" type="text/css" href="file.css">

14 HTML5 FOR WEB DESIGNERS

You can simply write:

<link rel="stylesheet" href="file.css">

SYNTAX: MARKING IT UP YOUR WAY

Some programming languages, such as Python, enforce a
particular way of writing instructions. Using spaces to indent
code is mandatory—the white space is significant. Other pro
gramming languages, such as JavaScript, don't pay any atten
tion to formatting—the white space at the start of a line isn't
significant.

If you're looking for a cheap evening's entertainment, get an
array of programmers into the same room and utter the words
"significant white space." You can then spend hours warming
yourself by the ensuing flame war.

There's a fundamental philosophical question at the heart of
the significant white space debate: should a language enforce
a particular style of writing, or should authors be free to write
in whatever style they like?

Markup doesn't require significant white space. If you want
to add a new line and an indentation every time you nest an
element, you can do so, but browsers and validators don't re
quire it. This doesn't mean that markup is a free-for-all. Some
flavors of markup enforce a stricter writing style than others.

Before XHTML 1.0, it didn't matter if you wrote tags in upper
case or lowercase. It didn't matter whether or not you quoted
attributes. For some elements, it didn't even matter whether
you included the closing tag.

XHTML 1.0 enforces the syntax of XML. All tags must be writ
ten in lowercase. All attributes must be quoted. All elements

THE DESIGN OF HTML5 15

must have a closing tag. In the special case of standalone ele
ments such as br, the requirement for a closing tag is replaced
with a requirement for a closing slash:
.

With HTML5, anything goes. Uppercase, lowercase, quoted,
unquoted, self-closing or not; it's entirely up to you.

I've been using the XHTML 1.0 doctype for years. I like the
fact that I must write in one particular style and I like the way
that the W3C validator enforces that style. Now that I'm using
HTML5, it's up to me to enforce the style I want.

I can see why some people don't like the looseness of the
HTML5 syntax. It seems like it's turning the clock back on
years of best practices. Some people have even said that the
lax syntax of HTML5 is encouraging bad markup. I don't
think that's true, but I can see why it's a concern. It's as if a
programming language that enforced significant white space
suddenly changed over to a more forgiving rule set.

Personally, I'm okay with the casual syntax of HTML5. I've
come to terms with having to enforce my own preferred writ
ing style myself. But I would like to see more tools that would
allow me to test my markup against a particular style. In the
world of programming, these are called lint tools: programs
that flag up suspect coding practices. A lint tool for markup
would be different than a validator, which checks against a
doctype; but it would be wonderful if the two could be com
bined into one lean, mean validating linting machine.

Whosoever shall program such a device will earn the undying
respect and admiration of web designers everywhere.

WE DON'T USE THAT KIND OF LANGUAGE

In past versions of HTML, whenever a previously existing
element or attribute was removed from the specification, the
process was called deprecation. Webdesigners were advised

l6 HTMLS FOR WEB DESIGNERS

not to use deprecated elements, or send them Christmas
cards, or even mention them in polite company.

There are no deprecated elements or attributes in HTMLS. But
there are plenty ofobsolete elements and attributes.

No, this isn't a case of political correctness gone mad. "Obso
lete" has a subtly different meaning from "deprecated."

Because HTML5 aims to be backwards compatible with exist
ing content, the specification must acknowledge previously
existing elements even when those elements are no longer
in HTML5. This leads to a slightly confusing situation where
the specification simultaneously says, "authors, don't use this
element" and, "browsers, here's how you should render this
element." If the element were deprecated, it wouldn't be men
tioned in the specification at all; but because the element is
obsolete, it is included for the benefit of browsers.

Unless you're building a browser, you can treat obsolete ele
ments and attributes the same way you would treat deprecated
elements and attributes: don't use them in your web pages and
don't invite them to cocktail parties.

If you insist on using an obsolete element or attribute, your
document will be "non-conforming." Browsers will render
everything just fine, but you might hear a tut-ing sound from
the website next door.

So long, been good to know ya

The frame, frameset, and noframes elements are obsolete.
They won't be missed.

The acronym element is obsolete, thereby freeing up years
ofdebating time that can be better spent calculating the
angel-density capacity of standard-sized pinheads. Do not
mourn the acronym element; just use the abbr element in
stead. Yes, I know there's a difference between acronyms and

THE DESIGN OF HTMLS 1J

abbreviations—acronyms are spoken as single words, like
NATO and SCUBA—but just remember: all acronyms are ab
breviations, but not all abbreviations are acronyms.

Presentational elements such as font, big, center, and strike
are obsolete in HTMLS. In reality, they've been obsolete for
years; it's much easier to achieve the same presentational
effects using CSS properties such as font-size and text-
align. Similarly, presentational attributes such as bgcolor,
cellspacing, cellpadding, and valign are obsolete. Just use
CSS instead.

Not all presentational elements are obsolete. Some of them
have been through a re-education program and given one
more chance.

TURN & FACE THE STRANGE (CH-CH-CHANGES)

The big element is obsolete but the small element isn't. This
apparent inconsistency has been resolved by redefining what
small means. It no longer has the presentational connotation,
"render this at a small size." Instead, it has the semantic value,
"this is the small print," for legalese, or terms and conditions.

Of course, nine times out often you will want to render the
small print at a small size, but the point is that the purely pre
sentational meaning of the element has been superseded.

The b element used to mean, "render this in bold." Now it is

used for some text "to be stylistically offset from the normal
prose without conveying any extra importance." If the text
has any extra importance, then the strong element would be
more appropriate.

Similarly, the i element no longer means "italicize." It means
the text is "in an alternate voice or mood." Again, the element
doesn't imply any importance or emphasis. For emphasis, use
the em element.

l8 HTMLS FOR WEB DESIGNERS

These changes might sound like word games. They are;
but they also help to increase the device-independence of
HTML5. If you think about the words "bold" and "italic," they
only make sense for a visual medium such as a screen or a
page. By removing the visual bias from the definitions of these
elements, the specification remains relevant for non-visual
user agents such as screen readers. It also encourages design
ers to think beyond visual rendering environments.

Out of cite

The cite element has been redefined in HTML5. Where it

previously meant "a reference to other sources," it now means
"the title of a work." Quite often, a cited reference will be the

title of a work, such as a book or a film, but the source could
just as easily be a person. Before HTMLS, you could mark up
that person's name using cite. Now that's expressly forbid
den—so much for backwards compatibility.

The justification for this piece of revisionism goes something
like this: browsers italicize the text between <cite> tags; titles
of works are usually italicized; people's names aren't usually
italicized; therefore the cite element shouldn't be used for

marking up people's names.

That's just plain wrong. I'm in favor of HTML5 taking its lead
from browsers, but this is a case of the tail wagging the dog.

Fortunately, no validator can possibly tell whether the text
between opening and closing <cite> tags refers to a person
or not, so there's nothing to stop us web designers from using
the cite element in a sensible, backwards compatible way.

The a element on steroids

While the changes to previously existing elements involve
creative wordplay, there's one element that's getting a super
charged makeover in HTMLS.

THE DESIGN OF HTML5 19

The a element is, without a doubt, the most important
element in HTML. It turns our text into hypertext. It is the
connective tissue of the World Wide Web.

The a element has always been an inline element. If you want
ed to make a headline and a paragraph into a hyperlink, you
would have to use multiple a elements:

<h2xa href="/about">About me</ax/h2>

<pxa href="/about">Find out what makes me tick.</ax/p>

In HTML5, you can wrap multiple elements in a single a
element:

<h2>About me</h2>

<p>Find out what makes me tick.</p>

The only caveat is that you can't nest an a element within an
other a element.

Wrapping multiple elements in a single a element might seem
like a drastic change, but most browsers won't have to do
much to support this new linking model. They already sup
port it even though this kind of markup has never been tech
nically legal until now.

This seems slightly counter-intuitive: Surely the browsers
should be implementing an existingspecification? Instead,
the newest specification is documenting what browsers are
already doing.

SHINY NEW TOYS: JAVASCRIPT APIs

If you're looking for documentation on CSS, you go to
the CSS specifications. If you're looking for documentation
on markup, you go to the HTML specifications. But where

20 HTMLS FOR WEB DESIGNERS

do you go for documentation on JavaScript APIs such as
document .write, innerHTML, and window, history? The
JavaScript specification is all about the programming lan
guage—you won't find any browser APIs there.

Until now, browsers have been independently creating and
implementing JavaScript APIs, looking over one another's
shoulders to see what the others are doing. HTML5 will docu
ment these APIs once and for all, which should ensure better
compatibility.

It might sound strange to have JavaScript documentation in a
markup specification, but remember that HTML5 started life
as Web Apps 1.0. JavaScript is an indispensable part of making
web applications.

Entire sections of the HTML5 specification are dedicated to
new APIs for creating web applications. There's an Undo-
Manager that allows the browser to keep track of changes to a
document. There's a section on creating Offline Web Applica
tions using a cache manifest. Drag and drop is described in
detail.

As always, if there is an existing implementation, the specifica
tion will build upon it rather than reinvent the wheel. Micro
soft's Internet Explorer has had a drag and drop API for years,
so that's the basis for drag and drop in HTML5. Unfortunately,
the Microsoft API is—to put it mildly—problematic. Maybe
reinventing the wheel isn't such a bad idea if all you have to
work with is a square wheel.

The APIs in HTMLS are very powerful. They are also com
pletely over my head. I'll leave it to developers smarter than
me to write about them. The APIs deserve their own separate
book.

Meanwhile, there's still plenty of new stuff in HTML5 for
us web designers to get excited about. This excitement com
mences in the very next chapter.

THE DESIGN OF HTMLS 21

the history of the web is punctuated with technological
improvements. One of the earliest additions to HTML was the
img element, which fundamentally altered the web. Then, the
introduction of JavaScript allowed the web to become a more
dynamic environment. Later, the proliferation of Ajax made
the web a viable option for full-fledged applications.

Web standards have advanced so much that it's now possible
to build almost anything using HTML, CSS, and JavaScript—
almost anything.

There are some gaps in the web standards palette. If you want
to publish text and images, HTML and CSS are all you need.
But if you want to publish audio or video, you'll need to use a
plug-in technology such as Flash or Silverlight.

"Plug-in" is an accurate term for these technologies—they

22 HTMLS FOR WEB DESIGNERS

help to fill the holes on the web. They make it relatively easy
to get games, films, and music online. But these technologies
are not open. They are not created by the community. They
are under the control of individual companies.

Flash is a powerful technology, but using it sometimes feels
like a devil's bargain. We gain the ability to publish rich
media on the web, but in doing so, we lose some of our
independence.

HTMLS is filling in the gaps. As such, it is in direct competi
tion with proprietary technologies like Flash and Silverlight.
But instead of requiring a plug-in, the rich media elements in
HTMLS are native to the browser.

CANVAS

When the Mosaic browser added the ability to embed images
within web pages, it gave the web a turbo boost. But images
have remained static ever since. You can create animated gifs.
You can use JavaScript to update an image's styles. You can
generate an image dynamically on the server. But once an im
age has been served up to a browser, its contents cannot be
updated.

The canvas element is an environment for creating dynamic
images.

The element itself is very simple. All you specify within the
opening tag are the dimensions:

<canvas id="my-first-canvas" width="360" height="240">

</canvas>

If you put anything between the opening and closing tags,
only browsers that don't support canvas will see it (fig 3.01):

RICH MEDIA 23

•ccanvas id="my-first-canvas" width="360" height="240">

<p>No canvas support? Have an old-fashioned image »

instead:</p>

</canvas>

fic 3.01: Users without canvas No canvas Support?
support will see the image of Haye &n old.fashioned image instead;

All the hard work is done in JavaScript. First of all, you'll need
to reference the canvas element and its context. The word

"context" here simply means an API. For now, the only con
text is two-dimensional:

var canvas = document.getElementById('my-first-canvas');

var context = canvas.getContext('2d');

Now you can start drawing on the two-dimensional surface of
the canvas element using the API documented in the HTML5
specification at http://bkaprt.eom/html5/1.'

The 2D API offers a lot of the same tools that you find in a
graphics program like Illustrator: strokes, fills, gradients, shad
ows, shapes, and Bezier curves. The difference is that, instead

1. The long URL: http://www.whatwg.org/specs/web-apps/current-work/
multipage/the-canvas-element.html

24 HTML5 FOR WEB DESIGNERS

of using a Graphical User Interface, you have to specify every
thing using JavaScript.

Dancing about architecture: drawing with code

This is how you specify that the stroke color should be red:

context.strokeStyle = '#990000';

Now anything you draw will have a red outline. For example,
if you want to draw a rectangle, use this syntax:

strokeRect (left, top, width, height)

If you want to draw a rectangle that's 100 by 50 pixels in size,
positioned 20 pixels from the left and 30 pixels from the top of
the canvas element, you'd write this (fig 3.02):

context.strokeRect(20,30,100,50);

fic 3.02: A rectangle, drawn
with canvas.

That's one very simple example. The 2D API provides lots of
methods: f illstyle, f illRect, lineWidth, shadowColor and
many more.

In theory, any image that can be created in a program like
Illustrator can be created in the canvas element. In practice,
doing so would be laborious and could result in excessively
long JavaScript. Besides, that isn't really the point of canvas.

RICH MEDIA 25

Canvas. Huh! What is it good for?

It's all well and good using JavaScript and canvas to create im
ages on the fly, but unless you're a hardcore masochist, what's
the point?

The real power ofcanvas is that its contents can be updated at
any moment, drawing new content based on the actions of the
user. This ability to respond to user-triggered events makes it
possible to create tools and games that would have previously
required a plug-in technology such as Flash.

One of the first flagship demonstrations of the power of
canvas came from Mozilla Labs. The Bespin application
(https://bespin.mozilla.com) is a code editor that runs in
the browser (fig 3.03).

It is very powerful. It is very impressive. It is also a perfect
example of what not to do with canvas.

readme.txt - editing with Bespin a

•< 1** A | A *-" + {} https://bespin.mo2illa.com/editor.htmlep C Q,- Google ;

Bespin > SamplcProject - readme.txt > .♦ • e aaa

1 ' elcome to Bespin! I

J A few helpful tips:

5

6 * To jump between the command line and the editor, simply hit Ctrl-J

7

8 * To turn on "strictlines" mode, which means that you can't click anywhere tn th<

9

10 Check out:

11

12 * FAQ: https://wiki.mozilla.org/Labs/Bespin/FAQ

13 * Our initial announcement: http://labs.mozilla.com/Z009/02/introducing-bespin

fic 3.03: The Bespin application, built with canvas.

26 HTML5 FOR WEB DESIGNERS

Access denied

A code editor, by its nature, handles text. The Bespin code
editor handles text within the canvas element—except that it
isn't really text anymore; it's a series of shapes that look like
text.

Every document on the web can be described with a Docu
ment Object Model. This DOM can have many different
nodes, the most important of which are element nodes, text
nodes, and attributes. Those three building blocks are enough
to put together just about any document you can imagine.
The canvas element has no DOM. The content drawn within

canvas cannot be represented as a tree of nodes.

Screen readers and other assistive technology rely on having
access to a Document Object Model to make sense of a docu
ment. No DOM, no access.

The lack of accessibility in canvas is a big problem for
HTMLS. Fortunately there are some very smart people work
ing together as a task force to come up with solutions (http://
bkaprt.com/htm I5/2).-

Canvas accessibility is an important issue and I don't want
any proposed solutions to be rushed. At the same time, I don't
want canvas to hold up the rest of the HTML5 spec.

Clever canvas

Until the lack of accessibility is addressed, it might seem as
though canvas is off-limits to web designers. But it ain't neces
sarily so.

Whenever I use JavaScript on a website, I use it as an en
hancement. Visitors who don't have JavaScript still have ac
cess to all the content, but the experience might not be quite

2. The long URL: http://www.w3.org/WAI/PF/html-task-force

RICH MEDIA 27

as dynamic as in a JavaScript-capable environment. This
multi-tiered approach, called Unobtrusive JavaScript, can also
be applied to canvas. Instead of using canvas to create content,
use it to recycle existing content.

Suppose you have a table filled with data. You might want to
illustrate the trends in the data using a graph. If the data is
static, you can generate an image of a graph—using the Google
Chart API, for example. If the data is editable, updating in re
sponse to user-triggered events, then canvas is a good tool for
generating the changing graph. Crucially, the content repre
sented within the canvas element is already accessible in the
pre-existing table element.

The clever folks at Filament Group have put together a jQuery
plug-in for that very situation (fig 3.04; http://bkaprt.com/
html5/3).'

There is another option. Canvas isn't the only API for gener
ating dynamic images. SVG, Scalable Vector Graphics, is an

Sa:e* Dy C*ttg j- i

•Llhllha. Il
fic 3.04: Using canvas to generate a graph from data input by users.

3. The long URL: http://www.filamentgroup.com/lab/jquery_visualize_plugin_
accessible_charts_graphs_from_tables_html5_canvas/

28 HTML5 FOR WEB DESIGNERS

XML format that can describe the same kind of shapes as can
vas. Because XML is a text-based data format, the contents of

SVG are theoretically available to screen readers.

In practice, SVG hasn't captured the imagination ofdevelop
ers in the same way that canvas has. Even though canvas is
the new kid on the block, it already enjoys excellent browser
support. Safari, Firefox, Opera, and Chrome support canvas.
There's even a JavaScript library that adds canvas support to
Internet Explorer (http://bkaprt.eom/html5/4).4'

Given its mantras of "pave the cowpaths," and "don't reinvent
the wheel," it might seem odd that the WHATWG would
advocate canvas in HTML5 when SVG already exists. As
is so often the case, the HTML5 specification is really just
documenting what browsers already do. The canvas element
wasn't dreamt up for HTMLS; it was created by Apple and
implemented in Safari. Other browser makers saw what Apple
was doing, liked what they saw, and copied it.

It sounds somewhat haphazard, but this is often where our
web standards come from. Microsoft, for example, created the
XMLHttpRequest object for Internet Explorer 5 at the end of
the 20th century. A decade later, every browser supports this
feature and it's now a working draft in last call at the W3C.

In the Darwinian world of web browsers, canvas is spread
ing far and wide. If it can adapt for accessibility, its survival is
ensured.

AUDIO

The first website I ever made was a showcase for my band.
I wanted visitors to the site to be able to listen to the band's

songs. That prompted my journey into the underworld to
investigate the many formats and media players competing

4. The long URL: http://code.google.eom/p/explorercanvas/

RICH MEDIA 29

for my attention: QuickTime, Windows Media Player, Real
Audio—I spent far too much time worrying about relative
market share and cross-platform compatibility.

In the intervening years, the MP3 format has won the battle
for ubiquity. But providing visitors with an easy way to listen
to a sound file still requires a proprietary technology. The
Flash player has won that battle.

Now HTML5 is stepping into the ring in an attempt to take on
the reigning champion.

Embedding an audio file in an HTML5 document is simple:

<audio sre="witchitalineman.mp3">

</audio>

That's a little too simple. You probably want to be a bit more
specific about what the audio should do.

Suppose there's an evil bastard out there who hates the web
and all who sail her. This person probably doesn't care that it's
incredibly rude and stupid to embed an audio file that plays
automatically. Thanks to the autoplay attribute, such malevo
lent ambitions can be realized:

<audio src="witchitalineman.mp3" autoplay>

</audio>

If you ever use the autoplay attribute in this way, I will hunt
you down.

Notice that the autoplay attribute doesn't have a value. This
is known as a Boolean attribute, named for that grand Cork
mathematician George Boole.

Computer logic is based entirely on Boolean logic: an electric-
current is either flowing or it isn't; a binary value is either
one or zero; the result of a computation is either true or false.

30 HTML5 FOR WEB DESIGNERS

Don't confuse Boolean attributes with Boolean values. You'd be

forgiven for thinking that a Boolean attribute would take the
values "true" or "false." Actually, it's the very existence of the
attribute that is Boolean in nature: either the attribute is in

cluded or it isn't. Even if you give the attribute a value, it will
have no effect. Writing autoplay="false" or autoplay="no
thanks" is the same as writing autoplay.

If you are using XHTML syntax, you can write autoplay=
"autoplay". This is brought to you by the Department of
Redundancy Department.

When an auto-playing audio file isn't evil enough, you can in
flict even more misery by having the audio loop forever. An
other Boolean attribute, called loop, fulfills this dastardly plan:

<audio src="witchitalineman.mp3" autoplay loop>

</audio>

Using the loop attribute in combination with the autoplay
attribute in this way will renew my determination to hunt you
down.

Out of control

The audio element can be used for good as well as evil. Giving
users control over the playback of an audio file is a sensible
idea that is easily accomplished using the Boolean attribute
controls:

<audio src="witchitalineman.mp3" controls>

</audio>

The presence of the controls attribute prompts the browser
to provide native controls for playing and pausing the audio,
as well as adjusting the volume (fig 3.05).

If you're not happy with the browser's native controls, you
can create your own. Using JavaScript, you can interact with

RICH MEDIA 31

fic 3.05: Use controls to display play, . . •. y^ • . ji u.
pause, and volume controls foryouraudio. ^

the Audio API, which gives you access to methods such as
play and pause and properties such as volume. Here's a
quick 'n' dirty example using button elements and nasty
inline event handlers (fig 3.06):

<audio id="player" src="witchitalineman.mp3">

</audio>

<div>

<button »

onclick="document.getElementById('player').play()"> »

Play

</button>

<button »

one1ick="document.getElementById('player').pause()"> »

Pause

</button>

<button »

onelick="document.getElementByld('player').volume »

+= 0.1">

Volume Up

</button>

<button »

onelick="document.getElementById('player').volume »

-= 0.1">

Volume Down

</button>

</div>

Buffering

At one point, the HTML5 spec included another Boolean
attribute for the audio element. The autobuffer attribute

was more polite and thoughtful than the nasty autoplay
attribute. It provided a way for authors to inform the browser

32 HTML5 FOR WEB DESIGNERS

rz \ rrr. rr^> rm ~ \ fig 3.06: The controls produced
Pause Volume Uo Volume Down

by the button elements.

that—although the audio file shouldn't play automatically—it
will probably be played at some point, so the browser should
start pre-loading the file in the background.

This would have been a useful attribute, but unfortunately
Safari went a step further. It preloaded audio files regardless
of whether or not the autobuffer attribute was present. Re
member that because autobuffer was a Boolean attribute,

there was no way to tell Safari not to preload the audio:
autobuffer="false" was the same as autobuffer="true" or

any other value http://bkaprt.eom/html5/5).5

The autobuffer attribute has now been replaced with the
preload attribute. This isn't a Boolean attribute. It can take
three possible values: none, auto, and metadata. Using
preload="none", you can now explicitly tell browsers not to
pre-load the audio:

<audio src="witchitalineman.mp3" controls preload="none">

</audio>

If you only have one audio element on a page, you might want
to use preload="auto", but the more audio elements you
have, the more your visitors' bandwidth is going to get ham
mered by excessive preloading.

You play to-may-to, I play to-mah-to

The audio element appears to be nigh-on perfect. Surely there
must be a catch somewhere? There is.

The problem with the audio element isn't in the specification.
The problem lies with audio formats.

5. The long URL: https://bugs.webkit.org/show_bug.cgi?id=25267

RICH MEDIA 33

Although the MP3 format has become ubiquitous, it is not
an open format. Because the format is patent-encumbered,
technologies can't decode MP3 files without paying the patent
piper. That's fine for corporations like Apple or Adobe, but
it's not so easy for smaller companies or open-source groups.
Hence, Safari will happily play back MP3 files while Firefox
will not.

There are other audio formats out there. The Vorbis codec—

usually delivered as an .ogg file—isn't crippled by any patents.
Firefox supports Ogg Vorbis—but Safari doesn't.

Fortunately, there's a way to use the audio element without
having to make a Sophie's Choice between file formats. In
stead of using the src attribute in the opening <audio> tag,
you can specify multiple file formats using the source element
instead:

<audio controls>

<source src="witchitalineman.ogg">

<source src="witchitalineman.mp3">

</audio>

A browser that can play back Ogg Vorbis files will look no
further than the first source element. A browser that can

play MP3 files but not Ogg Vorbis files will skip over the
first source element and play the file in the second source
element.

Youcan help the browsers by providing the mime types for
each source file:

<audio controls>

<source src="witchitalineman.ogg" type="audio/ogg">

<source src="witchitalineman.mp3" type="audio/mpeg">

</audio>

34 HTML5 FOR WEB DESIGNERS

The source element is a standalone—or "void"—element, so if
you are using XHTML syntax, remember to include a trailing
slash at the end of each <source /> tag.

Falling back

The ability to specify multiple source elements is very use
ful. But there are some browsers that don't support the audio
element at all yet. Can you guess which browser I might be
talking about?

Internet Explorer and its ilk need to be spoon-fed audio files
the old-fashioned way, via Flash. The content model of the
audio element supports this. Anything between the opening
and closing <audio> tags that isn't a source element will be
exposed to browsers that don't understand the audio element:

<audio controls>

<source src="witchitalineman.ogg" type="audio/ogg">

<source src="witchitalineman.mp3" type="audio/mpeg">

<object type="application/x-shockwave-flash" »

data="player.swf?soundFile=witchitalineman.mp3">

<param name="movie" »

value="player.swf?soundFile=witchitalineman.mp3">

</object>

</audio>

The object element in this example will only be exposed to
browsers that don't support the audio element.

Youcan go even further. The object element also allows you
to include fallback content. That means you can provide a
good old-fashioned hyperlink as a last resort:

<audio controls>

<source src="witchitalineman.ogg" type="audio/ogg">

<source src="witchitalineman.mp3" type="audio/mpeg">

RICH MEDIA 35

<object type="application/x-shockwave-flash" »

data="player.swf?soundFile=witchitalineman.mp3">

<param name="movie" »

value="player.swf?soundFile=witchitalineman.mp3">

Download the song

</object>

</audio>

This example has four levels ofgraceful degradation:

• The browser supports the audio element and the Ogg Vorbis format.

• The browser supports the audio element and the MP3 format.

• The browser doesn't support the audio element but does have the
Flash plug-in installed.

• The browser doesn't support the audio element and doesn't have the
Flash plug-in installed.

Access all areas

The content model of the audio element is very useful for
providing fallback content. Fallback content is not the same as
accessibility content.

Suppose there's a transcript to go along with an audio file.
This is not the way to mark it up:

<audio controls>

<source src="witchitalineman.ogg" type="audio/ogg">

<source src="witchitalineman.mp3" type="audio/mpeg">

<p>I am a lineman for the county...</p>

</audio>

The transcript will only be visible to browsers that don't sup
port the audio element. Marking up the non-audio content in
that way isn't going to help a deaf user with a good browser.
Besides, so-called accessibility content is often very useful for
everyone, so why hide it?

36 HTML5 FOR WEB DESIGNERS

<audio controls>

<source src="witchitalineman.ogg" type="audio/ogg">

<source src="witchitalineman.mp3" type="audio/mpeg">

</audio>

<p>I am a lineman for the county...</p>

VIDEO

If browser-native audio is exciting, the prospect of browser-
native video has web designers salivating in anticipation. As
bandwidth has increased, video content has grown increas
ingly popular. The Flash plug-in is currently the technology of
choice for displaying video on the web. HTMLS could change
that.

The video element works just like the audio element. It has
the optional autoplay, loop, and preload attributes. You can
specify the location of the video file by either using the src
attribute on the video element or by using source elements
nested within the opening and closing <video> tags. You can
let the browser take care of providing a user interface with the
controls attribute or you can script your own controls.

The main difference between audio and video content is

that movies, by their nature, will take up more room on the
screen, so you'll probably want to provide dimensions:

<video src="movie.mp4" controls width="360" height="240">

</video>

You can choose a representative image for the video and tell
the browser to display it using the poster attribute (fig 3.07):

<video src="movie.mp4" controls width="360" »

height="240" poster="placeholder.jpg">

</video>

RICH MEDIA 37

fig 3.07: This placeholder
image is displayed using the
poster attribute. THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR

APPROPRIATE AUDIENCES

BY THE MOTION PICTURE ASSOCIATION OF AMERICA. INC.

THE FILM ADVERTISED H/l

PG PARENTAL GUIDANCE
!•::••!: •>::i»ii

*wwl.!mrj1lngtcom
.....mpMtKS

The battleground of competing video formats is even bloodier
than that of audio. Some of the big players are MP4—which
is patent-encumbered—and Theora Video, which isn't. Once
again, you'll need to provide alternate encodings and fallback
content:

<video controls width="360" height="240" »

poster="placeholder.jpg">

<source src="movie.ogv" type="video/ogg">

<source src="movie.mp4" type="video/mp4">

<object type="application/x-shockwave-flash" »

width="360" height="240" »

data="player.swf?file=movie.mp4">

<param name="movie" »

value="player.swf?file=movie.mp4">

Download the movie

</object>

</video>

The authors of the HTML5 specification had originally hoped
to specify a baseline level of format support. Alas, the browser
makers could not agree on a single format.

Going native

The ability to embed video natively in web pages could be
the most exciting addition to HTML since the introduction of

38 HTML5 FOR WEB DESIGNERS

the img element. Big players like Google have not been shy in
expressing their enthusiasm. You can get a taste for what they
have planned for YouTube at http://youtube.com/HTML5.

One of the problems with relying on a plug-in for rich media
is that plug-in content is sandboxed from the rest of the docu
ment. Having native rich media elements in HTML means
that they play nicely with the other browser technologies-
JavaScript and CSS.

The video element is not only scriptable, it is also styleable
(fig 3.08).

fic 3.08: The video element,
styled.

Try doing that to a plug-in.

Audio and video are welcome additions to HTMLS, but the
web isn't a broadcast medium—it's interactive. Forms are

the oldest and most powerful way ofenabling interaction.
In Chapter 4, we'll take a look at how forms are getting an
upgrade in HTML5.

RICH MEDIA 39

when javascript was introduced into web browsers, it
was immediately seized upon for two tasks: Image rollovers
and form enhancements. When CSS came along with its
:hover pseudo-class, web designers no longer needed to reach
for JavaScript just to achieve a simple rollover effect.

This is a recurring trend. If a pattern is popular enough, it
will almost certainly evolve from requiring a scripted solution
to something more declarative. That's why CSS3 introduces
even more animation capabilities that previously required
JavaScript.

When it comes to enhancing forms, CSS has its limitations.
That's where HTMLS comes in. Following the same migratory
pattern from scripted to declarative solutions, the specification
introduces many new form enhancements.

40 HTMLS FOR WEB DESIGNERS

These features were originally part of a WHATWG specifica
tion called Web Forms 2.0, based upon existing work at the
W3C. That specification has now been rolled into HTMLS.

PLACEHOLDER

Here's a common DOM Scripting pattern, often used for
search forms:

1. When a form field lias no value, insert some placeholder text into it.

2. When the user focuses on that field, remove the placeholder text.

3. If the user leaves the field and the field still has no value, reinstate the
placeholder text.

The placeholder text is usually displayed in a lighter shade
than an actual form field value—either through CSS,
JavaScript, or a combination of both.

In an HTMLS document, you can simply use the placeholder
attribute (fig 4.01):

<label for="hobbies">Your hobbies</label>

<input id="hobbies" name="hobbies" type="text" »

placeholder="Owl stretching">

The placeholder attribute works wonderfully in the brows
ers that support it, but, alas, that's a fairly small subset of
browsers right now. It's up to you to decide how you want to
deal with other, non-supporting browsers.

You might decide not to do anything at all. After all, the func
tionality is "nice to have," not "must have." Alternatively, you

., ' fic a.01: "Owl stretching" appears in the
Your hobbies \, ., . . , , ,.

input field via the placeholder attribute.

WEB FORMS 2.0 41

might decide to fall back on a JavaScript solution. In that case,
you need to make sure that the JavaScript solution is only
applied to browsers that don't understand the placeholder
attribute.

Here's a generic little JavaScript function that tests whether an
element supports a particular attribute:

function elementSupportsAttribute(element, attribute) {

var test = document.createElement(element);

if (attribute in test) {

return true;

} else {

return false;

}

}

This works by creating a "phantom" element in memory—
but not in your document—and then checking to see if the
prototype for that element has a property with the same name
as the attribute you are testing for. The function will return
either true or false.

Using this function, you can make sure that a JavaScript
solution is only provided to browsers that don't support
placeholder:

if (!elementSupportsAttribute('input','placeholder')) {

// JavaScript fallback goes here.

}

AUTOFOCUS

"Hi. I'm the auto-focus pattern. You may remember me from
such websites as 'Google: I'm Feeling Lucky' and 'Twitter:
What's happening?'"

42 HTML5 FOR WEB DESIGNERS

This is a simple one-step pattern, easily programmed in
JavaScript:

l. When the document loads, automatically focus one particular
form field.

HTMLS allows you to do this using the Boolean autofocus
attribute:

•clabel for="status">What's happening?</label>

<input id="status" name="status" type="text" autofocus>

The only problem with this pattern is that it can be annoying
as hell. When I'm surfing the web, I often hit the space bar to
scroll down to content "below the fold." On sites like Twitter

that use the auto-focus pattern, I find myself filling up a form
field with spaces instead.

I can see why the autofocus attribute has been added to
HTML5—it's paving a cowpath—but I worry about the usabil
ity of this pattern, be it scripted or native. This feature could
be helpful, but it could just as easily be infuriating. Please
think long and hard before implementing this pattern.

One of the advantages in moving this pattern from scripting
to markup is that, in theory, browsers can offer users a prefer
ence option to disable auto-focusing. In practice, no browser
does this yet, but the pattern is still quite young. Currently,
the only way to disable scripted auto-focusing is to disable
JavaScript completely. It works, but it's a heavy-handed solu
tion, like gouging out your eyes to avoid bright lights.

As with the placeholder attribute, you can test for autofocus
support and fall back to a scripted solution:

if (!elementSupportsAttribute('input','autofocus')){

document.getElementById('status').focus();

}

WEB FORMS 2.0 43

The autofocus attribute doesn't only work on the input
element; it can be used on any kind of form field, such as
textarea or select, but it can only be used once per
document.

REQUIRED

One of the most common uses of JavaScript is client-side form
validation. Once again, HTML5 is moving this solution from
scripting to markup. Just add the Boolean attribute required:

<label for="pass">Your password</label>

<input id="pass" name="pass" type="password" required>

Theoretically, this allows browsers to prevent form submis
sions if required fields haven't been filled out. Even though
browsers aren't doing that yet, you can still make use of the
required attribute in your JavaScript form validation. Instead
of keeping a list of all the required fields in your script or add
ing class ="required" to your markup, you can now check
for the existence of the required attribute.

AUTOCOMPLETE

Browsers don't simply display web pages. Most browsers have
additional features designed to enhance usability, security, or
convenience when surfing the web's tide. Automatically fill
ing in forms is one such feature. Most of the time, it's very
useful, but occasionally it can be annoying or even downright
dangerous. I don't mind if my browser remembers my contact
details, but I probably don't want it to remember the log-in for
my bank account, just in case my computer is stolen.

HTML5 allows you to disable auto-completion on a per-form
or per-field basis. The autocomplete attribute isn't Boolean,
yet it can only take two possible values: "on" or "off":

44 HTML5 FOR WEB DESIGNERS

<form action="/selfdestruct" autocomplete="off">

By default, browsers will assume an autocomplete value of
"on," allowing them to pre-fill the form.

You can have your auto-completion cake and eat it. If you
want to allow pre-filling for a form but disable pre-filling for
just one or two fields in that form, you can do so:

<input type="text" name="onetimetoken" »

autocomplete="off">

There isn't any JavaScript fallback for browsers that don't sup
port the autocomplete attribute. In this case, the new HTML5
attribute is augmenting an existing browser behavior rather
than replacing a scripted solution.

The ability to disable auto-completion in browsers might
seem like a strange addition to the HTML5 specification.
HTML5 is supposed to be codifying prevalent patterns and
this isn't a very common use case. But given the potential
security risks that auto-completion enables, it makes sense
to allow website owners to override this particular browser
feature.

DATALIST

The new datalist element allows you to crossbreed a regular
input element with a select element. Using the list attri
bute, you can associate a list of options with an input field (fig
4.02):

<label for="homeworld">Your home planet</label>

<input type="text" name="homeworld" id="homeworld" »

list="planets">

<datalist id="planets">

<option value="Mercury">

<option value="Venus">

WEB FORMS 2.0 45

<option value="Earth">

<option value="Mars">

<option value="Dupiter">

<option value="Saturn">

<option value="Uranus">

<option value="Neptune">

</datalist>

This allows users to select an option from the list provided or
to type in a value that isn't in the list at all. This is very handy
for situations that would normally require an extra form field
labeled, "If'other', please specify . . ." (fig 4.03).

Your home planet
Mercury

Venus

Earth j.
Mars

Jupiter

Saturn

Uranus

Neptune

fic 4.02: The new datalist element.

Your home planet 1Pluto

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

fic 4.03: The datalist element, showing
that the user can type in a value that is not
in the list.

The datalist element is a nice, unobtrusive enhancement to
a form field. If a browser doesn't support datalist, then the
form field behaves as a normal input.

INPUT TYPES

The type attribute of the input element is being greatly ex
panded in HTMLS. There are so many cowpaths to pave, it's
like doing construction work in the aftermath of a stampede.

46 HTML5 FOR WEB DESIGNERS

Searching

An input element with a type value of "search" will behave
much the same way as an input element with a type value of
"text":

<label for="query">Search</label>

•cinput id="query" name="query" type="search">

The only difference between "text" and "search" is that a
browser might display a search input differently to be more
consistent with the styling of search fields in the operating
system. That's exactly what Safari does (fig 4.04).

Search ("~ Search I'm a searchin

fig 4.04: Safari styles search inputs to be consistent with Mac OS

Contact details

There are three new type values for specific kinds ofcontact
details: email addresses, websites, and telephone numbers:

<label for="email">Email address</label>

<input id="email" name="email" type="email">

<label for="website">Website</label>

<input id="website" name="website" type="url">

<label for="phone">Telephone</label>

<input id="phone" name="phone" type="tel">

Once again, these fields will behave in the same way as text
inputs, but browsers now have a bit more information about
the kind of data expected in the field.

WEB FORMS 2.0 47

Safari claims to support these new input types but a quick
look at a form in the desktop browser reveals no differences
to simply using type="text". However, if you start inter
acting with the same form in Mobile Safari, the differences
become apparent. The browser displays a different on-screen
keyboard depending on the value of the type attribute (fig
4-05).

Email address i

Website i

Telephone

Email address

Website n

deplume

|q_werWERTYU I OP] !Q W E RITIYIUI I |0|P

ASDFGHJKL • AlSlDlF|GIHI J

Email address

Website

Telephone [T

+ •*#

fic 4.05: MobileSafari shows a different on-screen keyboard depending on the value of the
type attribute.

Subtly played, Webkit, subtly played.

Sliders

Many JavaScript libraries offer pre-built widgets that you can
use in your web applications. They work fine—as long as
JavaScript is enabled. It would be nice if our users didn't have
to download a JavaScript file every time we want to add an
interesting control to our pages.

A classic example is a slider control. Until now, we've had to
use JavaScript to emulate this kind of interactive element. In

48 HTML5 FOR WEB DESIGNERS

HTML5, thanks to type="range", browsers can now offer a
native control:

<label for="amount">How much?</label>

<input id="amount" name="amount" type="range">

Both Safari and Opera currently support this input type, offer
ing similar-looking controls (fig 4.06).

H..„ -....l, <-. fic 4-o6: The range input type in both
now muui. Safari and Opera.

Bydefault, the input will accept a range from zero to one hun
dred. Youcan set your own minimum and maximum values
using the min and max attributes:

<label for="rating">Your rating</label>

•(input id ="rating" name="rating" type="range" »

min="l" max="5">

That's all well and good for Safari and Opera users; other
browsers will simply display a regular text input. That's prob
ably fine, but you might want to use a JavaScript fallback for
browsers that don't support type="range".

Testing

Testing for native support of input types requires a similar
trick to the test for attribute support. Once again, you will
need to create a "phantom" input element in memory. Then,
set the type attribute to the value you want to test. When you
query the value of the type property, if you get back a value of
"text," then you'll know that the browser doesn't support the
value that you set.

WEB FORMS 2.0 49

Here's some sample code, although I'm sure you can write
something far more elegant than this:

function inputSupportsType(test) {

var input = document.createElement('input');

input.setAttribute('type' ,test);

if (input.type == 'text') {

return false;

} else {

return true;

}

}

You can then use this function to ensure that a JavaScript wid
get is only provided to browsers that don't natively support a
particular input type:

if (!inputSupportsType('range')) {

// JavaScript fallback goes here.

}

A native input control will certainly load faster than a scripted
solution that needs to wait until the DOM has finished load

ing. A native control will also usually be more accessible than
a scripted control, although—bizarrely—Safari's range control
currently isn't keyboard-accessible!

Spinners

A browser-native range control doesn't expose the underly
ing value to the user. Instead, the number is translated into
the graphical representation of a slider widget. That's fine for
certain kinds of data. Other kinds of data work best when the

user can see and choose the numerical value. That's where

type="number" comes in:

<label for="amount">How much?</label>

<input id="amount" name="amount" type="number" »

min="5" max="20">

50 HTML5 FOR WEB DESIGNERS

As well as allowing the user to input a value directly into a text
field, browsers can also display "spinner" controls to allow
users to increase or decrease the value (fig 4.07).

How much? m F,c *-°7: sP'nner controls where
type="number"is used.

The number input type is a hybrid of text and range. It
allows users to enter values directly, like a text field, but it
also allows browsers to ensure that only numerical values
are entered, like a range control.

Dates and times

One of the most popular JavaScript widgets is the calendar
picker. You know the drill: you're booking a flight or creating
an event and you need to choose a date. Up pops a little calen
dar for you to choose a date from.

These calendar widgets all do the same thing, but you'll find
that they're implemented slightly differently on each site. A
native calendar widget would smooth away the inconsisten
cies and reduce cognitive load during the date-picking process.

HTMLS introduces a raft of input types specifically for dates
and times:

• date is for a year, month, and clay.

• datetime is for a year, month, and day in combination with hours,
minutes, and seconds and time zone information.

• datetime-local is the same but without the time zone information.

• time is for hours, minutes, and seconds.

• month is for a year and a month but without a day.

All of these input types will record timestamps with some
subset of the standardized format YYYY-MM-DDThh:mm:ss.Z

(Y is year, M is month, D is day, h is hour, m is minute, s is
second, and Z is timezone). Take, for example, the date and

WEB FORMS 2.0 51

time at which World War One ended, 11:11am on November
11th, 1918:

• date: 1918-11-11

• datetime: ioi8-]i-nTli:il:oo+oi

• datetime-local: ioi8-ii-nTii:ii:oo

• time: 11:11:00

• month: 1918-11

There is no year input type, although there is a week input
type that takes a number between 1and 53 in combination
with a year.

Using the date and time input types is straightforward:

<label for="dtstart">Start date</label>

•cinput id="dtstart" name="dtstart" type="date">

Opera implements these input types using its patented ugly-
stick technology (fig 4.08).

fic 4.08: Opera's native
calendar display, with the
ugly-stick.

Start date •71

-" December • 2009 *

Week Mon Tue Wed Thu Fri Sat Sun

12 3 4 5 6

50 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

53 28 29 30 31

8 9 10

Today None

As always, browsers that don't support these input types will
fall back to displaying a regular text input. In that situation,
you could ask your users to enter dates and times in the ISO
format or you could use your JavaScript library of choice to

52 HTML5 FOR WEB DESIGNERS

generate a widget. Make sure to check for nativesupport first:

if (!inputSupportsType('date')) {

// Generate a calendar widget here.

}

Even the most elegantly written JavaScript calendar widget is
going to require some complexcode to generate the table of
days and handle the date-picking events. Browser-native cal
endar widgets should be considerably smoother and faster, as
well as being consistent from site to site.

Color pickers

Perhaps the most ambitious widget replacement in HTMLS
is the color input type. This accepts values in the familiar
Hexadecimal format: #000000 for black, #FFFFFF for white.

<label for="bgcolor">Background color</label>

<input id="bgcolor" name="bgcolor" type="color">

The plan is for browsers to implement native color pickers
like the ones in just about every other application on your
computer. So far, no browsers have done this but when they
do, it will be, like, totally awesome.

In the meantime, you can use a JavaScript solution, but be
sure to test for native support, so your code is future-proofed
for tomorrow's browsers.

Rolling your own

All of these new input types serve two purposes: they allow
browsers to display native controls suited to the expected
input data, and to validate the value entered. These additions
to HTML5 cover the majority of scenarios, but you still might
find that you need to validate a value that doesn't fall under
any of the new categories.

WEB FORMS 2.0 53

The good news is that you can use the pattern attribute to
specify exactly what kind of value is expected. The bad news
is that you have to use a regular expression:

<label for="zip">US Zip code</label>

<input id="zip" name="zip" pattern="[\d]{5}(-[\d]{4})">

Most of the time, you'll never need to use the pattern attri
bute. On the occasions that you do, you have my sympathy.

LOOKING TO THE FUTURE

Forms have been given a huge boost in HTML5. Much of
the burden that has traditionally been carried by JavaScript
is shifting onto the shoulders of markup. Right now, we're in
a transitional phase where some of that functionality is sup
ported by some browsers. We can't ditch our JavaScript just
yet, but we're not too far away from a brighter future.

Client-side validation is going to get a whole lot easier—
although you shouldn't ever rely on it; always validate form
values on the server as well. Generating form controls will no
longer require that your users download a JavaScript library;
it will all be handled natively in the browser.

I'm sure you can see the benefits to having native browser
controls for calendars and sliders, but I bet you're wondering:
"Can I style them?"

It's a good question. For the time being, the answer is "no."
Take it up with the CSS Working Group.

This might be a deal breaker for you. If you feel that a particu
lar browser's implementation of a form element is less than
finessed, you might prefer to use a JavaScript widget that gives
you more control.

54 HTML5 FOR WEB DESIGNERS

I'd likeyou to think about a differentquestion: "Should I style
them?"

Remember, the web isn't about control. If a visitor to your site
is familiar with using a browser's native form doodad, you
won't be doing them any favors if you override the browser
functionality with your own widget, even if you think your
widget looks better.

Personally, I'd like to see browser vendors competing on the
prettiness and usability of their HTML5 form controls. That's
a browser war I could support.

Let's put forms to one side now, and take a look at the juicy
new semantics in HTML5.

WEB FORMS 2.0 55

HTML DOESN'T PROVIDE A HUGE NUMBER OF ELEMENTS for

us to work with. The selection available is more like that of a

corner store than a Walmart.

We have paragraphs, lists, and headlines but we don't have
events, news stories, or recipes. HTML gives us an element
for marking up a string as an abbreviation, but it doesn't give
us an element for marking up a number as a price.

Clearly, this limitation hasn't been a show-stopper; just look
at the amazing variety of websites out there. Even though
HTML might not provide a specific element for marking up a
particular piece of content, it provides just enough flexibility
to be "good enough."

To paraphrase Winston Churchill, HTML is the worst form of
markup except all the others that have been tried.

56 HTML5 FOR WEB DESIGNERS

EXTENSIBILITY

Other markup languages allow you to invent any element
you want. In XML, if you want an event element or a price
element, you just go right ahead and create it. The downside
to this freedom is that you then have to teach a parser what
event or price means. The advantage to HTML's limited set
of elements is that every user agent knows about every ele
ment. Browsers have a built-in knowledge of HTML. That
wouldn't be possible if we were allowed to make up element
names.

HTML provides a handy escape clause that allows web de
signers to add more semantic value to elements: the class
attribute. This attribute allows us to label specific instances
of an element as being a special class or type of that element.
The fact that browsers don't understand the vocabulary we
use in our class attributes doesn't affect the rendering of our
documents.

If, at this point, you're thinking "Wait a minute; aren't classes
for CSS?" then you're half right. The CSS class selector is one
example of a technology that makes use of the class attribute
but it isn't the only reason for using classes. Classes can also be
used in DOM Scripting. They can even be used by browsers
if the class names follow an agreed convention, as is the case
with microformats.

Microformats

Microformats are a set ofconventions which are agreed upon
by a community. These formats use the class attribute to plug
some of the more glaring holes in HTML: hCard for contact
details, hCalendar for events, hAtom for news stories. Because
there is a community consensus on what class names to use,
there are now parsers and browser extensions that work with
those specific patterns.

SEMANTICS 57

Microformats are limited by design. They don't attempt to
solve every possible use case. Instead, they aim for the "low-
hanging fruit." They solve 80% of the use cases with 20% of
the effort. Deciding what qualifiesas "low-hanging fruit"
is pretty straightforward: Just look at what kind of content
people are already marking up. In other words, pave the
cowpaths.

Sound familiar? Microformats and HTML5 are built on very
similar philosophies. In fact, the way I described microfor
mats—conventions agreed upon by a community—could just
as easily be applied to HTML5.

Boiling the ocean

The way that the microformats process has been used as a
template for developing HTML5 isn't to everyone's taste.
While the 80/20 rule is good enough for the rough 'n' ready
world ofclass names, is it really good enough for the most
important markup language in the world?

Some people feel that HTML needs to be infinitely extensible.
That means it isn't enough to provide solutions to the major
ity of use cases; the language must provide a solution to any
possible use case.

Perhaps the most eloquent argument for this kind of exten
sibility came from John Allsopp in his superb A List Apart ar
ticle, "Semantics in HTML5" (http://bkaprt.eom/html5/6):'

We don't need to addspecifc terms to the vocabulary ofHTML,
we need to add a mechanism that allows semantic richness to be

added to a documentas required.

Technologies already exist to do just that. RDFa allows
authors to embed custom vocabularies within HTML

1. The long URL: http://www.alistapart.com/articles/semanticsinHTML5

58 HTML5 FOR WEB DESIGNERS

documents. But unlike microformats—which simply use an
agreed set of class names—RDFa uses namespaces to allow an
infinite variety of formats. So where a microfonnat might use
markup such as <hl class="summary">, RDFa would use
<hl property="myformat:summary">.

There's no doubt that RDFa is potentially very powerful, but
its expressiveness comes at a price. Namespaces introduce an
extra layer ofcomplexity that doesn't sit well with the rela
tively simple nature of HTML.

The namespace debate isn't new. In a blog post from a few
years back, Mark Nottingham mused on the potentially de
structive side-effects (http://bkaprt.eom/html5/7):2

What Ifound interesting about HTML extensibility was
that namespaces weren't necessary; Netscape added blink,
MSFT addedmarquee, and soforth. I'd putforth that having
namespaces in HTML from the start would havehad the effect
oflegitimising andinstitutionalising the differences between
different browsers insteadof(eventually) converging on the same
solution.

Rather than infinite extensibility, that's a powerful argument
for a limited vocabulary based on community consensus.

HTMLS will probably ship with some kind of method for ex
tending its native semantics. The class attribute is still in there
of course, so microformats will continue to work as they
always have. HTML5 might be altered to become compatible
with RDFa, or it might use its own "microdata" vocabulary.
In either case, such extensibility will probably be ofvery little
interest to most web designers. What really matters are the
native semantics, agreed upon by a community and imple
mented by browser vendors.

2. The long URL: http://www.mnot.net/blog/2006/0V07/extensibility

SEMANTICS 59

NEW ELEMENTS

HTML5 introduces a handful of new inline elements to aug
ment our existing arsenal of span, strong, em, abbr, et al. Oh,
and we don't call them "inline" anymore. Instead, they de
scribe "text-level semantics."

mark

When browsing a list of search results, you'll often see the
search term highlighted within each result. You could mark
up each instance of the search term with a span element, but
span is a semantically meaningless crutch, good for little more
than hanging classes off for styling.

You could use em or strong but that wouldn't be semanti

cally accurate; you don't want to place any importance on the
search term, you simply want it to be highlighted somehow.

Enter the mark element:

<hl>Search results for 'unicorn'</hl>

<lixa href="http://clearleft.com/">

Riding the UX <mark>unicorn</mark> across »

the rainbow of the web.

</ax/li>

The mark element doesn't attach any importance to the con
tent within it, other than to show that it's currently of inter
est. As the specification says, mark denotes "a run of text in
one document marked or highlighted for reference purposes,
due to its relevance in another context."

The mark element is permitted in contexts other than search
results, but I'm damned if I can think of a single such example.

60 HTML5 FOR WEB DESIGNERS

time

hCalendar is one of the most popular microformats because
it scratches a very common itch: marking up events so that
users can add them straight to their calendar.

The only tricky bit in hCalendar is describing dates and times
in a machine-readable way. Humans like to describe dates as
"May 25th" or "next Wednesday" but parsers expect a nicely-
formated ISO date: YYYY-MM-DDThh:mm:ss.

The microformats community came up with some clever solu
tions to this problem, such as using the abbr element:

<abbr class="dtstart" title="1992-01-12">

January 12th, 1992

</abbr>

If using the abbr element in this way makes you feel a
little queasy, there are plenty of other ways of marking up
machine-readable dates and times in microformats using the
class-value pattern. In HTML5, the issue is solved with the
new time element:

<time class="dtstart" datetime="1992-01-12">

January 12th, 1992

</time>

The time element can be used for dates, times, or combina
tions of both:

<time datetime="17:00">5pm</time>

<time datetime="2010-04-07">April 7th</time>

<time datetime="2010-04-07T17:00">5pm on April 7th</time>

You don't have to put the datetime value inside the datetime
attribute—but if you don't, then you must expose the value to
the end user:

SEMANTICS 6l

<time>2010-04-07</time>

meter

The meter element can be used to mark up measurements,
provided that those measurements are part of a scale with
minimum and maximum values.

<meter>9 out of 10 cats</meter>

You don't have to expose the maximum value if you don't want
to. You can use the max attribute instead:

<meter max="10">9 cats</meter>

There's a corresponding min attribute. You also get high, low,
and optimum attributes to play with. If you want, you can even
hide the measurement itself inside a value attribute.

<meter low="-273" high="100" min="12" max="30" »

optimum="21" value="25">

It's quite warm for this time of year.

</meter>

progress

While meter is good for describing something that has already
been measured, the progress element allows you to mark up a
value that is in the process ofchanging:

Your profile is <progress>60%</progress> complete.

Once again, you have min, max, and value attributes if you
want to use them:

<progress min="0" max="100" value="60"x/progress>

62 HTML5 FOR WEB DESIGNERS

The progress element is most useful when it used in combi
nation with DOM Scripting. You can use JavaScript to dynami
cally update the value, allowing the browser to communicate
that change to the user—very handy for Ajax file uploads.

STRUCTURE

Back in 2005, Google did some research to find out what kind
of low-hanging fruit could be found on the cowpaths of the
web (http://code.google.com/webstats/).

A parser looked at over a billion web pages and tabulated the
most common class names. The results were unsurprising.
Class names such as "header," "footer," and "nav" were preva
lent. These emergent semantics map nicely to some of the
new structural elements introduced in HTML5.

section

The section element is used for grouping together themati-
cally-related content. That sounds a lot like the div element,
which is often used as a generic content container. The differ
ence is that div has no semantic meaning; it doesn't tell you
anything about the content within. The section element, on
the other hand, is used explicitly for grouping related content.

You might be able to replace some of your div elements with
section elements, but remember to always ask yourself, "Is
all of the content related?"

<section>

<hl>DOM Scripting</hl>

<p>The book is aimed at designers »

rather than programmers.</p>

<p>By Deremy Keith</p>

</section>

SEMANTICS 63

header

The HTML5 spec describes the header element as a container
for "a group of introductory or navigational aids." That sounds
reasonable. That's the kind of content I would expect to find
in a masthead, and the word "header" is often used as a syn
onym for masthead.

There's a crucial difference between the header element in

HTML5 and the generally accepted use of the word "header"
or "masthead." There's usually only one masthead in a page,
but a document can have multiple header elements. You
can use the header element within a section element, for
example. In fact, you probably shoulduse a header within a
section. The specification describes the section element as
"a thematic grouping ofcontent, typically with a heading."

<section>

<header>

<hl>DOM Scripting</hl>

</header>

<p>The book is aimed at designers »

rather than programmers.</p>

<p>By Deremy Keith</p>

</section>

A header will usually appear at the top of a document or sec
tion, but it doesn't have to. It is defined by its content—intro
ductory or navigational aids—rather than its position.

footer

Like the header element, footer sounds like it's a description
of position but, as with header, this isn't the case. Instead, the
footer element should contain information about its contain

ing element: who wrote it, copyright information, links to
related content, etc.

64 HTML5 FOR WEB DESIGNERS

That maps quite nicely onto the mental model that web
designers have for the word "footer."The difference is that,
whereas we are used to having one footer for an entire docu
ment, HTML5 allows us to also have footers within sections.

<section>

<header>

<hl>DOM Scripting</hl>

</header>

<p>The book is aimed at designers »

rather than programmers.</p>

<footer>

<p>By Deremy Keith</p>

</footer>

</section>

aside

Just as the header element matches the concept of a masthead,
the aside element matches the concept of a sidebar. When I
say "sidebar," I'm not referring to position. Just because some
content appears to the left or to the right of the main content
isn't enough reason to use the aside element. Once again, it's
the content that matters, not the position.

The aside element should be used for tangentially related
content. If you have a chunk of content that you consider to
be separate from the main content, then the aside element
is probably the right container for it. Ask yourself if the con
tent within an aside could be removed without reducing the
meaning of the main content of the document or section.

Pullquotes are a good example of tangentially related content;
they're nice to have, but you can remove them without affect
ing the comprehension of the main content.

Remember, just because your visual design calls for some
content to appear in a sidebar doesn't necessarily mean that
aside is the correct containing element. It's quite common,

SEMANTICS 65

for example, to place an author bio in a sidebar. That kind of
data is best suited to the footer element—the specification
explicitly mentions authorship information as being suitable
for footers (fig 5.01).

2005 2000 2007 2008 20OT

COMMENTS CZJ

Given its relativelylimitodsccpo. HTML can DoremarkaBlyexpressive. Witha bit o(
lateral thinking, wo can mark up content such as Mo.clouds and nropreaa matafa.

wnen we don't have oxplicit HTML elements for those patterns.

.:.-,•: :•. mark up • at on com •••••• i

Alee: 'I tnmk Evo a watching.'

Deo: 'Tho isn't a cryptography tutorial ...wo'ro in tno wrong oxampio!"

A note «i the trw HT)W <0f spec says It's okay to use a definition list

Another appacation of dl . tor example, ts for marking up ctalogues, with each

dt nanwig a speaker, and each co containing ha or her words.

fic 5.01: The "about the author" text in this screenshot should be marked up with footer,
not aside.

Ninety percent of the time, headers will be positioned at the
top of your content, footers will be positioned at the end of
your content, and asides will be positioned to one side. But
don't get complacent. Stay on your toes and watch out for the
remaining ten percent.

nav

The nav element does exactly what you think it does. It con
tains navigation information, usually a list of links.

66 HTML5 FOR WEB DESIGNERS

Actually, I'd better clarify that. The nav element is intended for
major navigation information. Just because a group of links
are grouped together in a list isn't enough reason to use the
nav element. Site-wide navigation, on the other hand, almost
certainly belongs in a nav element.

Quite often, a nav element will appear within a header ele
ment. That makes sense when you consider that the header
element can be used for "navigational aids."

article

It's helpful to think of header, footer, nav, and aside as be
ing specialized forms of the section element. A section is a
generic chunk of related content, while headers, footers, navs,
and asides are chunks ofspecific kinds of related content.

The article element is another specialized kind of section.
Use it for self-contained related content. Now the tricky part
is deciding what constitutes "self-contained."

Ask yourself if you would syndicate the content in an RSS or
Atom feed. If the content still makes sense in that context,
then article is probably the right element to use. In fact, the
article element is specifically designed for syndication.

If you use a time element within an article, you can add an
optional pubdate Boolean attribute to indicate that it contains
the date of publication:

<article>

<header>

<hl>DOM Scripting review</hl>

</header>

<p>A small lighthouse for what has been a long >>

and sometimes dark voyage for JavaScript.</p>

<footer>

SEMANTICS 67

<p>Published

•ctime datetime="2005-10-08T15:13" pubdate>

3:13pm on October 8th, 2005

</time>

by Glenn 3ones</p>

</footer>

</article>

If you have more than one time element within an article,
only one of them can have the pubdate attribute.

The article element is useful for blog posts, news stories,
comments, reviews, and forum posts. It covers exactly the
same use cases as the hAtom microformat.

The HTML5 specification goes further than that. It also
declares that the article element should be used for self-

contained widgets: stock tickers, calculators, clocks, weather
widgets, and the like. Now the article element is trying to
cover the same use cases as Microsoft's Web Slices (http://
bkaprt.eom/html5/8).'

It seems very unintuitive to me that an element named
"article" should apply to the construct known as "widget."
Then again, both articles and widgets are self-contained
syndicatable kinds ofcontent.

What's more problematic is that article and section are
so very similar. All that separates them is the word "self-
contained." Deciding which element to use would be easy if
there were some hard and fast rules. Instead, it's a matter of

interpretation. You can have multiple articles within a section,
you can have multiple sections within an article, you can nest
sections within sections and articles within articles. It's up to
you to decide which element is the most semantically appro
priate in any given situation.

3. The long URL: http://www.ieaddons.com/en/webslices/

68 HTML5 FOR WEB DESIGNERS

A cure for div-itis?

HTML5 gives us the handful of new structural elements
described above. They're especially handy if you're putting
together a conventional site, such as a blog. Most blogdesigns
consist of a header followed by a series ofarticles, with some
tangentialcontent in an aside, and finished off with a footer
(fig 5.02).

Friday, December 11th, 2009

Belfast

thoroughly enjOY*bie t •: I en;Oy any opooetur..ty to geek ojT aoojt

bjicmg ".'/*/_'!»; m from of a captrve Ml er.ee !M

:: seems • r it".a'. 11s a pretty v.beant c;**. scene.

Ireland Belfast feit a little strange t

live now (England). Bui mostry. '1 hi

Bfll took great care of me while I wat In

cund the city. The historical pari of the t

; audience seeentd to actual? enpy •

ina-ne'jl gtven ihai l grrw 1

grew up (Ireland) and l *Mi

the ughis. We too< a black cab t

1 and the political pan wa> um

Shankhdl Road just didn't s>t right «

was fast <n Berlin wtiere tountts now

ElSl Ofmjn Border O-jjfd. I dtoVtl

Don't get me wrong. I'm not wann(

unerfy tacsy violence of the past.

1'* aiked the cab driver. Somehow, taking snapshots on

*# It's not eaactly anciem history It remmded me of when I

f the opportunity to •»..* their o«lure taken with A fake
iny p-cturei 0' the mura-l

ij g (11 rue oment-day t -a*try tacky tourism over the

1 Oochfin emblazoned mt

fig 5.02: The blog of yours truly.

adactio

About this ait*

»:•< :- "< 'r.-t :•

CutlOfltiM

Onoee •theme...

Recommended reading

... I...,--;-.;-;-.';.-;-**"

You can now replace some of your div elements with more
semantically precise structural elements. Don't go overboard,
though. Chances are, if you are using a div today, you will
still be using a div tomorrow. Don't swap your div elements
for shiny new HTML5 elements just for the sake of it. Think
about the content.

SEMANTICS 69

These new elements weren't created just to replace div ele
ments. They provide web browsers with a completely new
way of understanding your content.

CONTENT MODELS

Previous flavors of markup divided elements into two
categories: inline and block. HTML5 uses a more fine
grained approach, dividing elements into a wider range of
categories.

Inline elements now have a content model of "text-level

semantics." Many block level elements now fall under the
banner of "grouping content": paragraphs, list items, divs,
and so on. Forms have their own separate content model.
Images, audio, video, and canvas are all "embedded content."
The new structural elements introduce a completely new
content model called "sectioning content."

Sectioning content

It's possible to create an outline of an HTMLdocument using
the heading elements, hi to h6.Take a look at this markup, for
example:

<hl>An Event Apart</hl>

<h2>Cities</h2>

<p>3oin us in these cities in 2010.</p>

<h3>Seattle</h3>

<p>Follow the yellow brick road to the emerald city.</p>

<h3>Boston</h3>

<p>That's Beantown to its friends.</p>

<h3>Minneapolis</h3>

<p>It's so nice.</p>

<small>Accommodation not provided.</small>

70 HTML5 FOR WEB DESIGNERS

That gives us this outline:

• An Event Apart

• Cities

• Seattle

• Boston

•Minneapolis

This works well enough. Any content that follows a heading
element is presumed to be associated with that heading.

Now look at the final small element. That should be associ

ated with the entire document. But a browser has no way of
knowing that. There's no way of knowing that the small ele
ment shouldn't fall under the heading "Minneapolis."

The new sectioning content in HTML5 allows you to explic
itly demarcate the start and the end of related content:

<hl>An Event Apart</hl>

<section>

<header>

<h2>Cities</h2>

</header>

<p>Doin us in these cities in 2010.</p>

<h3>Seattle</h3>

<p>Follow the yellow brick road.</p>

<h3>Boston</h3>

<p>That's Beantown to its friends.</p>

<h3 Minneapolis </h3>

<p>It's so nice.</p>

</section>

<small>Accommodation not provided.</small>

Now it's clear that the small element falls under the heading
"An Event Apart" rather than "Minneapolis."

SEMANTICS 71

Ican subdivide this content even further, placing each city in
its own section:

<hl>An Event Apart</hl>

<section>

<header>

<h2>Cities</h2>

</header>

<p>3oin us in these cities in 2010.</p>

<section>

<header>

<h3>Seattle</h3>

</header>

<p>Follow the yellow brick road.</p>

</section>

<section>

<header>

<h3>Boston</h3>

</header>

<p>That's Beantown to its friends.</p>

</section>

<section>

<header>

<h3>Minneapolis</h3>

</header>

<p>It's so nice.</p>

</section>

</section>

<small>Accommodation not provided.</small>

That still gives us the same outline:

•An Event Apart

•Cities

• Seattle

• Boston

•Minneapolis

72 HTML5 FOR WEB DESIGNERS

The outline algorithm

So far, the new sectioning content isn't giving us much more
than what we could do with previous versions of HTML.
Here's the kicker: In HTML5, each piece ofsectioning content
has its own self-contained outline. That means you don't have
to keep track of what heading level you should be using—you
can just start from hi each time:

<hl>An Event Apart</hl>

<section>

<header>

<hl>Cities</hl>

</header>

<p>Doin us in these cities in 2010.</p>

<section>

<header>

<hl>Seattle</hl>

</header>

<p>Follow the yellow brick road.</p>

</section>

<section>

<header>

<hl>Boston</hl>

</header>

<p>That's Beantown to its friends.</p>

</section>

<section>

<header>

<hl>Minneapolis</hl>

</header>

<p>It's so nice.</p>

</section>

</section>

<small>Accommodation not provided.</small>

In previous versions of HTML, this would have produced an
inaccurate outline:

semantics 73

• An Event Apart

• Cities

• Seattle

• Boston

• Minneapolis

In HTML5, the outline is accurate:

• An Event Apart

• Cities

• Seattle

• Boston

•Minneapolis

hgroup

There are times when you might want to use a heading ele
ment but you don't want its contents to appear in the docu
ment outline. The hgroup element allows you to do just that:

<hgroup>

<hl>An Event Apart</hl>

<h2>For people who make websites</h2>

</hgroup>

In this case, the level two heading "For people who make
websites" is really a tagline. In an hgroup element, only the
first heading will contribute to the outline. The first heading
doesn't necessarily have to be an hi:

<hgroup>

<h3>D0M Scripting</h3>

<h4>Web Design with JavaScript »

and the Document Object Model</h4>

</hgroup>

74 HTML5 FOR WEB DESIGNERS

Sectioning roots

Some elements are invisible to the generated outline. In other
words, it doesn't matter how many headings you use within
these elements, they won't appear in the document's outline.

The blockquote, f ieldset, and td elements are all immune
to the outline algorithm. These elements are called "sectioning
roots"—not to be confused with sectioning content.

Portability

Because each piece of sectioning content generates its own
outline, you can now get far more heading levels than simply
hi to h6. There is no limit to how deep your heading levels
can go. More importantly, you can start to think about your
content in a truly modular way.

Suppose I have a blog post entitled "Cheese sandwich." Before
HTML5, I would need to know the context of the blog post in
order to decide which heading level to use for the title of the
post. If the post is on the front page, then it appears after an
hi element containing the title of my blog:

<hl>My awesome blog</hl>

<h2xa href="cheese.html">Cheese sandwich</ax/h2>

<p>My cat ate a cheese sandwich.</p>

But if I'm publishing the blog post on its own page, then I
want the title of the blog post to be a level one heading:

<hl>Cheese sandwich</hl>

<p>My cat ate a cheese sandwich.</p>

In HTMLS, I don't have to worry about which heading level
to use. I just need to use sectioning content—an article ele
ment in this case:

semantics 75

<article>

<hl>Cheese sandwich</hl>

<p>My cat ate a cheese sandwich.</p>

</article>

Now the content is truly portable. It doesn't matter whether
it's appearing on its own page or on the home page:

<hl>My awesome blog</hl>

<article>

<hl>Cheese sandwich</hl>

<p>My cat ate a cheese sandwich.</p>

</article>

HTML5's new outline algorithm produces the correct result:

• My awesome blog

• Cheese sandwich

Scoped styles

The fact that each piece of sectioning content has its own
outline makes it the perfect match for Ajax. Yet again, HTML5
displays its provenance as a specification for web applications.

Trying to port a piece ofcontent from one document into an
other introduces some problems. The CSS rules being applied
to the parent document will also apply to the inserted content.
That's currently one of the challenges in distributing widgets
on the web.

HTML5 offers a solution to this problem in the shape of the
scoped attribute, which can be applied to a style element.
Any styles declared within that style element will only be
applied to the containing sectioning content:

76 HTMLS FOR WEB DESIGNERS

<hl>My awesome blog</hl>

<article>

cstyle scoped>

hi { font-size: 75% }

</style>

<hl>Cheese sandwich</hl>

<p>My cat ate a cheese sandwich.</p>

</article>

In that example, only the second hi element will have a font-
size value of 75%. That's the theory anyway. No browsers sup
port the scoped attribute yet.

Therein lies the rub. Before you can start using a new addition
to HTML5, you need to consider the browser support for that
feature. I have a few strategies to help you get started with
HTML5, no matter what the browser support is like. In the
next and final chapter, I'd like to share those strategies with
you.

SEMANTICS 77

if you want to start using HTML5's new structural ele
ments today, there's nothing stopping you. Most browsers will
allow you to style the new elements. It's not that browsers
actively support these elements, it's just that most browsers
allow you to use and style any element you care to invent.

STYLING

Browsers won't apply any default styling to the new elements.
So, at the very least, you will want to declare that the new
structural elements should force a line break:

section, article, header, footer, nav, aside, hgroup {

display: block;

}

That's enough for most browsers. Internet Explorer has spe
cial needs. It resolutely refuses to recognize the new elements

78 HTML5 FOR WEB DESIGNERS

unless an exemplar of each element is first created with
JavaScript, like this:

document.createElement('section');

JavaScript genius Remy Sharp has written a handy little script
that generates all of the new HTML5 elements. Load this
script within a conditional comment so that it's only served
up to the needy Internet Explorer:

<!--[if IE]>

<script src= »

"http://html5shiv.googlecode.com/svn/trunk/html5.js">

</script>

<! [endif]-->

Now you can style the new elements to your heart's content.

Headings

Browsers haven't yet begun to support HTML5's new outline
algorithm but you can still start using the extra heading levels
available to you.

Geoffrey Sneddon has written a handy online tool that
will generate an outline as specified in HTML5 (http://
bkapart.com/htm I5/9).'

If you follow the advice in the HTML5 specification and start
afresh from hi within each piece ofsectioning content, your
CSS rules could get very complicated very quickly:

hi {

font-size: 2.4em;

}

1. The long URL: http://gsnedders.html5.org/outliner

USING HTML5 TODAY 79

h2,

section hi, article hi, aside hi {

font-size: 1.8em;

}

h3,

section h2, article h2, aside h2,

section section hi, section article hi, section aside hl;

article section hi, article article hi, article aside hi,

aside section hi, aside article hi, aside aside hi {

font-size: 1.6emj

}

That's just the first three levels and it doesn't even cover all
the possible combinations of headings within sectioning
content.

Fortunately, the HTMLS outline algorithm is pretty flexible.
If you want to use heading levels the old-fashioned way, that
won't affect the outline in any way.

ARIA

The new structural elements in HTML5 will be very useful
to assistive technology. Instead of creating "skip navigation"
links, all we need to do is use the nav element correctly. This
will allow screen reader users to skip past navigation without
us having to provide an explicit link.

That's the plan, anyway. For now, we must make do with the
technologies that browsers and screen readers support today.

Luckily for us, there is currently excellent support for ARIA
(Accessible Rich Internet Applications).

At its most advanced, ARIA allows assistive technology to par
ticipate fully in all-singing, all-dancing Ajax interactions. At its
simplest, ARIA allows us to specify even more semantic rich
ness in our documents.

80 HTMLS FOR WEB DESIGNERS

The most basic ARIA unit is the role attribute. You can add
role="search" to your search form, role="banner" to your
masthead, and role="contentinfo" to your page footer.
There's a full list of values in the ARIA specification at
http://bkaprt.com/html5/10.2

You can also use these role values in HTML 4.01, XHTML

1.0, or any other flavor of markup, but then your document
will no longer validate—unless you create a custom doctype,
which is a world of pain.

But ARIAroles are part of the HTMLS specification so you can
have your ARIAcake and validate it.

You can also use the added semantics of the role attribute as

styling hooks. The attribute selector is your friend. Selectors
like these allow you to distinguish the headers and footers of
a document from the headers and footers within sectioning
content:

header[role="banner"] { }

footer[role="contentinfo"] { }

VALIDATION

Used wisely, a validator is a very powerful tool for a web
designer. Used unwisely, a validator provides smug nerds
with an easy way of pointing and laughing at other people's
markup.

Henri Sivonen has created a full-featured HTMLS validator at

http://validator.nu/.

You don't even need to update your bookmarks pointing to
the W3C validator (http://validator.w3.0rg/). That too uses
Henri's parser as soon as it detects the HTMLS doctype.

2. The long URL: http://www.w3.org/TR/wai-aria/roles-frole_definitions

USING HTML5 TODAY 8l

FEATURE DETECTION

If you want to start usingsome of the more advanced input
types in HTML5, you'll need a way of testing for browser sup
port so that you can provide JavaScript alternatives.

Modernizr is a useful JavaScript file that will detect support
for input types as wellas audio, video, and canvas (http://
www.modernizr.com/).

The script creates an object in JavaScript called Modernizr.
By querying the properties of this object, you can determine
whether the browser supports a particular input type or not:

if (IModernizr.inputtypes.color) {

// JavaScript fallback goes here.

}

Modernizr will also perform the sleight of hand that
allows you to style the new structural elements in Internet
Explorer—so if you use Modernizr, you don't need to
use Remy's script as well.

CHOOSE YOUR STRATEGY

It's entirely up to you how ambitious or cautious you want to
be with HTML5.

At the very least, you can take your existing HTML or XHTML
documents and update the doctype to:

<!DOCTYPE html>

You have just taken your first step into a larger world. Now
you might as well start using ARIA roles as well; what have
you got to lose?

82 HTML5 FOR WEB DESIGNERS

If you're nervous about using the new structural elements,
you can still get used to the new semantics by using class
names as training wheels:

<div class="section">

<div class="header">

<hl>Hello world!</hl>

</div><!-- /.header -->

</div><!-- /.section -->

Further down the road, when you're feeling more confident
about using new FITML5 elements, you can replace those div
elements and class names with the corresponding structural
elements.

While it might still be too early to use some of the more ad
vanced input types such as date, range, and color, there's
no harm in using search, url, email and other simple input
types. Remember, browsers that don't recognize these values
will simply treat the input as if it were type="text".

If you're feeling adventurous, you can start playing around
with audio, video, and canvas. They might not be ready for
prime time, but they could be fun toys to experiment with on
your personal site.

Resources

I often write about HTML5 on my personal site:
http://adactio.com/journal/tag/html5

I'm not the only who's excited about HTML5. The
mighty Bruce Lawson is also jotting clown his thoughts:
http://brucelawson.co.uk/category/html5/

Bruce is just one of the contributors to HTML5 Doctor, an
excellent community resource packed with great articles:
http://html5doctor.com/

USING HTML5 TODAY 83

If you fancy getting into the more complex side of
HTML5, Remy Sharp is pushing the boundaries:
http://html5demos.com/

Mark Pilgrim has written an exhaustive book called
Dive IntoHTMLS. Buy it from O'Reilly or read it online:
http://diveintohtml5.org/

For those occasions when you need to go straight to
the source, keep the HTML5 specification on speed dial:
http://whatwg.org/html5

The HTMLS specification includes a lot of information
intended for browser makers. The W3C hosts an up-to-
date version of the specification specifically for authors:
http://www.w3.0rg/TR/html-markup

GET INVOLVED

As you embark on your adventure in HTML5, you may find
parts of the specification confusing. That's okay. It's more
than okay; it's very valuable feedback.

There are some very smart people working on HTML5, but
web designers are under-represented. Your perspective would
be greatly appreciated.

You can join the HTML Working Group at the W3C as a
public invited expert—ignoring the Kafkaesque language of
an invitation you need to issue to yourself—but I wouldn't
recommend it. The associated mailing list has a very high
volume of traffic, most of it related to politics and procedure.

The WHATWG mailing list is the place to go if you
actually want to discuss the HTMLS specification:
http://www.whatwg.0rg/mailing-list#specs

84 HTMLS FOR WEB DESIGNERS

There's also an IRC channel. Sometimes you want to go where
everybody knows your handle: irc://irc.freenode.org/whatwg

Don't be shy. The IRCchannel is a great place to ask ques
tions and get answers from Ian Hickson, Anne van Kesteren,
Lachlan Hunt, and other WHATWG members.

THE FUTURE

I hope that this little sashay 'round HTMLS has encouraged
you to start exploring this very excitingtechnology. I also
hope that you will bring the fruits of your exploration back to
the WHATWG.

HTML is the most important tool a web designer can wield.
Without markup, the web wouldn't exist. I find it remarkable
and wonderful that anybody can contribute to the evolution of
this most vital of technologies. Every time you create a web
site, you are contributing to the shared cultural heritage of the
human race. In choosing HTML5, you are also contributing to
the future.

USING HTML5 TODAY 85

INDEX

2012, 7, 11

2022, 7

Ajax, 22, 63, 76, 80
Allsopp, John, 58
API, 20-21, 24-25, 28, 32

Apple, 4, 29, 34
ARIA, 80, 82

article, 67, 75, 76
aside, 65, 67, 78

audio, 22, 29-37, 82
autobulTer, 32-33
autocomplete, 44-45
autofocus, 42-44

autoplay, 30-31, 37

B

Berners-I.ee, Sir Tim, 1, 5

Bespin, 26
big, 18

canvas, 23-29, 70, 82

character encoding, 14
Chrome, 29
cite, 19

class, 57

color, 53, 83
controls, 31, 33-38

CSS, 3, 7, 14, 18, 20, 39, 40. 57> 76, 79

datalist, 45-46

date, 51-53
datetime, 51-52

datetime-local, 51-52

div, 63, 69

doctype, 12-13,16, Si, Si
documenl.write, 21

DOM, 27, 41, 50, 57, 63

drag and drop, 21

86 HTML5 FOR WEB DESIGNERS

em, 18, 60

email, 47, 83

error handling, 11

Firefox, 29, 34
Flash, 22, 26, 30, 35, 37
font, 11,18, 77
footer, 64-65, 66, 78, 81

French Revolution, 9

H

header, 64, 67, 78, 81, 83
hgroup, 74, 78
Hickson, Ian, 4, 7,10, 85
HTML 3.2, 13

HTML 4.01, 2, 10, 12, 14, 81

I
IETF, 2

img, 2, 22, 24, 39
innerllTML, 21

input, 44, 45,47, 82
Internet I-xplorer, 3, 7, 21, 29, 35, 78, 82
IRC,85

JavaScript, 14, 15, 20-21, 40, 50, 54,

79,82

jQuery, 28

Lavvson, Bruce, S3

lint, 16

M

mark, 60

microdata, 59

microformats, 10, 57-59, 61

Mobile Safari, 48

Modernizr, 82

month, 51, 52

Mosaic, 2, 23

Mozilla, 4, 26

MP3, 30, 34

MP4, 38

N
nav, 66-67,78,80

Nottingham, Mark, 59
number, 50-51

obsolete, 17

Ogg Vorbis, 34, 36
Opera, 4, 29,49, 52
outline, 70-76, 79-80

pattern, 54

Pilgrim,Mark, 84
placeholder, 41-42
poster, 37, 38
preload, 33, 37
progress, 62-63

pubdate, 67
Python, 15

QuickTime, 30

range, 49-51,83

RDFa, 58-59

Real Audio, 30
required, 44
role, 81

Safari, 29, 33, 47,49, 50
scoped,76-77
search, 47,60,81, 83

sectioning content, 70-75, 79
sectioning roots, 75

SGML, 1

Sharp, Remy, 79,82, 84
significant white space, 15
Sivonen, Henri, 81

small, 18

Sneddon, Geoffrey, 79
source, 34-37, 38

strong, 60

SVG, 28-29

syntax, 6,15-16, 31, 35

table, 28

tel, 47
Theora Video, 38

time, 61-62

u

UndoManager, 21
url, 47

validate, 53, 54,81
video, 37-39, 70, 82,83

w
W3C, 2-6, 9,16, 29, 41, 81, 84

Web Apps 1.0,4-5, 21
Web Forms 2.0, 5,41

Web Standards Project, 3
week, 52

WHATWG, 4-6, 9, 29, 4>. 84,85

window.history, 21

XHTML 1.0, 2-3,12,15-16

XHTML 1.1, 3

XHTML 2, 3-4, 5, 6, 9,10

XML, 2-3, 5, 6,15, 29, 57

XMLHttpRequest, 29

Y

year, 52

INDEX 87

ABOUT A BOOK APART

Web design is about multi-disciplinary mastery and laser
focus, and that's the thinking behind our new line of brief
books for people who make websites.

A Book Apart publishes highly detailed and meticulously
edited examinations ofsingle topics. We are pleased to launch
our new publishing venture with Jeremy Keith's HTMLSfor
Web Designers.

COLOPHON

The text is set in FF Yoga and its companion, FF Yoga Sans,
both by Xavier Dupre. Headlines and cover are set in Titling
Gothic by David Berlow, code excerpts in Consolas by Lucas
de Groot.

ABOUT THE AUTHOR

^^^^ Jeremy Keith is an Irish web devel-
jM J^l oper living in Brighton, England,

where he works with the web

1-Eg ^ W consultancy firm Clearleft. He has
™ written two previous books, DOM

Scripting and BulletproofAjax, but
what he reallywants to do is direct.
His online home is adactio.com and

his latest project is Huffduffer, a
service for creating podcasts of found sounds. When he's not
making websites, Jeremy plays bouzouki in the band Salter
Cane. His loony bun is fine benny lava.

HTML5 is the longest HTML specification ever
written. It is also the most powerful, and in some
ways, the most confusing. What do accessible,
content-focused standards-based web designers and
front-end developers need to know? And how can we
harness the power of HTML5 in today's browsers?

In this brilliant andentertaining user's guide, Jeremy
Keith cuts to the chasewith crisp, clear, practical
examples, and his patented wit and charm.

Crack open this book afteryoufasten your seatbelt in Boston. Before
you land in Chicago, you'll stop worrying andfinally, fully understand
HTMLS. As usual, Mr. Keith takes a complex topic and eloquently
describes itfor the rest ofus."

—dan cederholm, author ofHandcrafted CSS and Bulletproof Web Design

With superhuman ease and wit, Jeremy Keith always makes the
densest technical concepts seem approachable, intuitive, and—dare
I sayit—fun. He's done it again with HTMLS."

—ethan marcotte, co-author of Designing with Web Standards,
Third Edition, and Handcrafted CSS

isbn TVA-a-TfiLjmias-o-
90000

780984N442508

