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The Laplace Transform

2

2–1 INTRODUCTION

The Laplace transform is one of the most important mathematical tools available
for modeling and analyzing linear systems. Since the Laplace transform method
must be studied in any system dynamics course, we present the subject at the begin-
ning of this text so that the student can use the method throughout his or her study
of system dynamics.

The remaining sections of this chapter are outlined as follows: Section 2–2
reviews complex numbers, complex variables, and complex functions. Section 2–3
defines the Laplace transformation and gives Laplace transforms of several com-
mon functions of time. Also examined are some of the most important Laplace
transform theorems that apply to linear systems analysis. Section 2–4 deals with the
inverse Laplace transformation. Finally, Section 2–5 presents the Laplace transform
approach to the solution of the linear, time-invariant differential equation.

2–2 COMPLEX NUMBERS, COMPLEX VARIABLES,

AND COMPLEX FUNCTIONS

This section reviews complex numbers, complex algebra, complex variables, and
complex functions. Since most of the material covered is generally included in the
basic mathematics courses required of engineering students, the section can be
omitted entirely or used simply for personal reference.
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Sec. 2–2 Complex Numbers, Complex Variables, and Complex Functions 9
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Figure 2–1 Complex plane representa-
tion of a complex number z.

Complex numbers. Using the notation we can express all num-
bers in engineering calculations as

where z is called a complex number and x and jy are its real and imaginary parts,
respectively. Note that both x and y are real and that j is the only imaginary quanti-
ty in the expression. The complex plane representation of z is shown in Figure 2–1.
(Note also that the real axis and the imaginary axis define the complex plane and
that the combination of a real number and an imaginary number defines a point in
that plane.) A complex number z can be considered a point in the complex plane or
a directed line segment to the point; both interpretations are useful.

The magnitude, or absolute value, of z is defined as the length of the directed
line segment shown in Figure 2–1. The angle of z is the angle that the directed line
segment makes with the positive real axis. A counterclockwise rotation is defined as
the positive direction for the measurement of angles. Mathematically,

A complex number can be written in rectangular form or in polar form as
follows:

In converting complex numbers to polar form from rectangular, we use

To convert complex numbers to rectangular form from polar, we employ

Complex conjugate. The complex conjugate of is defined as

z = x - jy

z = x + jy

y = ƒ z ƒ  sin ux = ƒ z ƒ  cos u,

u = tan-1
 

y

x
ƒ z ƒ = 4x2 + y2,

fpolar forms
z = ƒ z ƒ  lu
z = ƒ z ƒ  eju

frectangular forms
z = x + jy

z = ƒ z ƒ 1cos u + j sin u2

angle of z = u = tan-1
 

y

x
magnitude of z = ƒ z ƒ = 4x2 + y2,

z = x + jy

j = 1-1,
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10 The Laplace Transform Chap. 2
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Figure 2–2 Complex number z and its
complex conjugate z.

The complex conjugate of z thus has the same real part as z and an imaginary part that
is the negative of the imaginary part of z. Figure 2–2 shows both z and Note that

Euler’s theorem. The power series expansions of and are,
respectively,

and

Thus,

Since

it follows that

This is known as Euler’s theorem.
Using Euler’s theorem, we can express the sine and cosine in complex form.

Noting that is the complex conjugate of and that

 e-ju = cos u - j sin u

 eju = cos u + j sin u

ejue-ju

cos u + j sin u = eju

ex = 1 + x +
x2

2!
+

x3

3!
+ Á

cos u + j sin u = 1 + 1ju2 +
1ju22

2!
+
1ju23

3!
+
1ju24

4!
+ Á

sin u = u -
u3

3!
+
u5

5!
-
u7

7!
+ Á

cos u = 1 -
u2

2!
+
u4

4!
-
u6

6!
+ Á

sin ucos u

 z = x - jy = ƒ z ƒ  l -u = ƒ z ƒ  1cos u - j sin u2
 z = x + jy = ƒ z ƒ  lu = ƒ z ƒ  1cos u + j sin u2

z.
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Sec. 2–2 Complex Numbers, Complex Variables, and Complex Functions 11

we find that

Complex algebra. If the complex numbers are written in a suitable form, op-
erations like addition, subtraction, multiplication, and division can be performed easily.

Equality of complex numbers. Two complex numbers z and w are said to be
equal if and only if their real parts are equal and their imaginary parts are equal. So
if two complex numbers are written

then if and only if and 

Addition. Two complex numbers in rectangular form can be added by
adding the real parts and the imaginary parts separately:

Subtraction. Subtracting one complex number from another can be consid-
ered as adding the negative of the former:

Note that addition and subtraction can be done easily on the rectangular plane.

Multiplication. If a complex number is multiplied by a real number, the re-
sult is a complex number whose real and imaginary parts are multiplied by that real
number:

If two complex numbers appear in rectangular form and we want the product in rec-
tangular form, multiplication is accomplished by using the fact that Thus, if
two complex numbers are written

then

In polar form, multiplication of two complex numbers can be done easily. The mag-
nitude of the product is the product of the two magnitudes, and the angle of the
product is the sum of the two angles. So if two complex numbers are written

then

zw = ƒ z ƒ ƒ w ƒ  lu + f

w = ƒ w ƒ  lfz = ƒ z ƒ  lu,

 = 1xu - yv2 + j1xv + yu2
 zw = 1x + jy21u + jv2 = xu + jyu + jxv + j2yv

w = u + jvz = x + jy,

j2 = -1.

az = a1x + jy2 = ax + jay   (a = real number)

z - w = 1x + jy2 - 1u + jv2 = 1x - u2 + j1y - v2

z + w = 1x + jy2 + 1u + jv2 = 1x + u2 + j1y + v2

y = v.x = uz = w

w = u + jvz = x + jy,

 sin u =
eju - e-ju

2j

 cos u =
eju + e-ju

2
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12 The Laplace Transform Chap. 2

Multiplication by j. It is important to note that multiplication by j is equiva-
lent to counterclockwise rotation by 90°. For example, if

then

or, noting that if

then

Figure 2–3 illustrates the multiplication of a complex number z by j.

Division. If a complex number is divided by another complex
number then

That is, the result consists of the quotient of the magnitudes and the difference of
the angles.

Division in rectangular form is inconvenient, but can be done by multiplying
the denominator and numerator by the complex conjugate of the denominator.This
procedure converts the denominator to a real number and thus simplifies division.
For instance,

 =
xu + yv

u2 + v2 + j 

yu - xv

u2 + v2

 
z
w

=
x + jy

u + jv
=
1x + jy21u - jv2
1u + jv21u - jv2 =

1xu + yv2 + j1yu - xv2
u2 + v2

z
w

=
ƒ z ƒ  lu
ƒ w ƒ  lf

=
ƒ z ƒ
ƒ w ƒ

 lu - f

w = ƒ w ƒ  lf,
z = ƒ z ƒ  lu

jz = 1 l90° ƒ z ƒ  lu = ƒ z ƒ  lu + 90°

z = ƒ z ƒ  lu

j = 1 l90°,

jz = j1x + jy2 = jx + j2y = -y + jx

z = x + jy

90�

z

Re

Im

0

j
z

Figure 2–4 Division of a complex
number z by j.

90�jz
z

Re0

Im

Figure 2–3 Multiplication of a
complex number z by j.

OgatCh02v3.qxd  7/18/03  7:49 PM  Page 12

udisasc
©2004 Pearson Education, Inc., Pearson Prentice-Hall



Sec. 2–2 Complex Numbers, Complex Variables, and Complex Functions 13

Division by j. Note that division by j is equivalent to clockwise rotation by
90°. For example, if then

or

Figure 2–4 illustrates the division of a complex number z by j.

Powers and roots. Multiplying z by itself n times, we obtain

Extracting the nth root of a complex number is equivalent to raising the number to
the 1/nth power:

For instance,

Comments. It is important to note that

and

Complex variable. A complex number has a real part and an imaginary
part, both of which are constant. If the real part or the imaginary part (or both) are
variables, the complex number is called a complex variable. In the Laplace transfor-
mation, we use the notation s to denote a complex variable; that is,

where is the real part and is the imaginary part. (Note that both and are real.)

Complex function. A complex function F(s), a function of s, has a real part
and an imaginary part, or

where and are real quantities. The magnitude of F(s) is and the
angle of F(s) is The angle is measured counterclockwise from the
positive real axis. The complex conjugate of F(s) is 

Complex functions commonly encountered in linear systems analysis are single-
valued functions of s and are uniquely determined for a given value of s. Typically,

F1s2 = Fx - jFy.
tan-11Fy /Fx2.u

4Fx
2 + Fy

2,FyFx

F1s2 = Fx + jFy

vsjvs

s = s + jv

ƒ z + w ƒ Z ƒ z ƒ + ƒ w ƒ

ƒ zw ƒ = ƒ z ƒ ƒ w ƒ

 12.12 - j2.1221/2 = 19 l -45°21/2 = 3 l -22.5°

 18.66 - j523 = 110 l -30°23 = 1000 l -90° = 0 - j 1000 = -j 1000

z1/n = 1 ƒ z ƒ  lu21/n = ƒ z ƒ 1/n  
u

n

zn = 1 ƒ z ƒ  lu2n = ƒ z ƒ n lnu

z

j
=

ƒ z ƒ  lu
1 l90°

= ƒ z ƒ  lu - 90°

z

j
=

x + jy

j
=
1x + jy2j

jj
=

jx - y

-1
= y - jx

z = x + jy,
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14 The Laplace Transform Chap. 2

such functions have the form

Points at which F(s) equals zero are called zeros. That is,
are zeros of F(s). [Note that F(s) may have additional zeros at infinity; see

the illustrative example that follows.] Points at which F(s) equals infinity are called
poles. That is, are poles of F(s). If the denominator
of F(s) involves k-multiple factors then is called a multiple pole of
order k or repeated pole of order k. If the pole is called a simple pole.

As an illustrative example, consider the complex function

G(s) has zeros at and simple poles at and 
and a double pole (multiple pole of order 2) at Note that G(s) becomes
zero at Since, for large values of s,

it follows that G(s) possesses a triple zero (multiple zero of order 3) at If
points at infinity are included, G(s) has the same number of poles as zeros. To sum-
marize, G(s) has five zeros and five
poles 

2–3 LAPLACE TRANSFORMATION

The Laplace transform method is an operational method that can be used advanta-
geously in solving linear, time-invariant differential equations. Its main advantage is
that differentiation of the time function corresponds to multiplication of the trans-
form by a complex variable s, and thus the differential equations in time become
algebraic equations in s. The solution of the differential equation can then be found
by using a Laplace transform table or the partial-fraction expansion technique.
Another advantage of the Laplace transform method is that, in solving the differen-
tial equation, the initial conditions are automatically taken care of, and both the par-
ticular solution and the complementary solution can be obtained simultaneously.

Laplace transformation. Let us define

 F1s2 = Laplace transform of f1t2
by the Laplace integralL

q

0
e-st dt

quantity upon which it operates is to be transformed
 l = an operational symbol indicating that the
 s = a complex variable

 f1t2 = a time function such that f1t2 = 0 for t 6 0

1s = 0, s = -1, s = -5, s = -15, s = -152.1s = -2, s = -10, s = q , s = q , s = q2
s = q .

G1s2 �  
K

s3

s = q .
s = -15.

s = -5,s = 0, s = -1,s = -10,s = -2

G1s2 =
K1s + 221s + 102

s1s + 121s + 521s + 1522

k = 1,
s = -p1s + p2k,

s = -p1, s = -p2, Á , s = -pn

s = -zm

s = -z1, s = -z2, Á ,

F1s2 =
K1s + z121s + z22Á 1s + zm2
1s + p121s + p22Á 1s + pn2
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Sec. 2–3 Laplace Transformation 15

Then the Laplace transform of f(t) is given by

The reverse process of finding the time function f(t) from the Laplace transform
F(s) is called inverse Laplace transformation.The notation for inverse Laplace trans-
formation is Thus,

Existence of Laplace transform. The Laplace transform of a function f(t)
exists if the Laplace integral converges. The integral will converge if f(t) is piecewise
continuous in every finite interval in the range and if f(t) is of exponential
order as t approaches infinity. A function f(t) is said to be of exponential order if a
real, positive constant exists such that the function

approaches zero as t approaches infinity. If the limit of the function 
approaches zero for greater than and the limit approaches infinity for less
than the value is called the abscissa of convergence.

It can be seen that, for such functions as and the abscissa of
convergence is equal to zero. For functions like and the abscis-
sa of convergence is equal to In the case of functions that increase faster than
the exponential function, it is impossible to find suitable values of the abscissa of
convergence. Consequently, such functions as and do not possess Laplace
transforms.

Nevertheless, it should be noted that, although for does not
possess a Laplace transform, the time function defined by

does, since for only a limited time interval and not for
Such a signal can be physically generated. Note that the signals that can

be physically generated always have corresponding Laplace transforms.
If functions and are both Laplace transformable, then the Laplace

transform of is given by

Exponential function. Consider the exponential function

where A and are constants. The Laplace transform of this exponential function
can be obtained as follows:

l[Ae-at] = L
q

0
Ae-ate-st dt = AL

q

0
e-1a+ s2t dt =

A

s + a

a

for t Ú 0 = Ae-at

for t 6 0 f1t2 = 0

l[f11t2 + f21t2] = l[f11t2] + l[f21t2]
f11t2 + f21t2

f21t2f11t2
0 … t … q .

0 … t … Tf1t2 = et2

for t 6 0, T 6 t = 0
for 0 … t … T 6 q f1t2 = et2

0 … t … qet2

tet2
et2

-c.
e-ct sin vt,e-ct, te-ct,

t sin vt,t, sin vt,
scsc,

sscs

e-st ƒ f1t2 ƒ

e-st ƒ f1t2 ƒ

s

t 7 0

l-1[F1s2] = f1t2
l-1.

l[f1t2] = F1s2 = L
q

0
e-st dt[f1t2] = L

q

0
f1t2e-st dt
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16 The Laplace Transform Chap. 2

In performing this integration, we assume that the real part of s is greater than 
(the abscissa of convergence), so that the integral converges. The Laplace trans-
form F(s) of any Laplace transformable function f(t) obtained in this way is valid
throughout the entire s plane, except at the poles of F(s). (Although we do not pre-
sent a proof of this statement, it can be proved by use of the theory of complex
variables.)

Step function. Consider the step function

where A is a constant. Note that this is a special case of the exponential function
where The step function is undefined at Its Laplace transform is

given by

The step function whose height is unity is called a unit-step function. The unit-
step function that occurs at is frequently written a notation that will
be used in this book.The preceding step function whose height is A can thus be writ-
ten A1(t).

The Laplace transform of the unit-step function that is defined by

is 1/s, or

Physically, a step function occurring at corresponds to a constant signal
suddenly applied to the system at time t equals 

Ramp function. Consider the ramp function

where A is a constant. The Laplace transform of this ramp function is

To evaluate the integral, we use the formula for integration by parts:

L
b

a
u dv = uv `

a

b

- L
b

a
v du

l[At] = AL
q

0
te-st dt

for t Ú 0 = At

for t 6 0 f1t2 = 0

t0.
t = t0

l[11t2] =
1
s

for t 7 0 = 1
for t 6 0 11t2 = 0

11t - t02,t = t0

l[A] = L
q

0
Ae-st dt =

A
s

t = 0.a = 0.Ae-at,

for t 7 0 = A

for t 6 0 f1t2 = 0

-a
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Sec. 2–3 Laplace Transformation 17

In this case, and [Note that ] Hence,

Sinusoidal function. The Laplace transform of the sinusoidal function

where A and are constants, is obtained as follows: Noting that

and

we can write

Hence,

Similarly, the Laplace transform of can be derived as follows:

Comments. The Laplace transform of any Laplace transformable function
f(t) can be found by multiplying f(t) by and then integrating the product from

to Once we know the method of obtaining the Laplace transform, how-
ever, it is not necessary to derive the Laplace transform of f(t) each time. Laplace
transform tables can conveniently be used to find the transform of a given function
f(t). Table 2–1 shows Laplace transforms of time functions that will frequently appear
in linear systems analysis. In Table 2–2, the properties of Laplace transforms are given.

Translated function. Let us obtain the Laplace transform of the translated
function where This function is zero for The func-
tions f(t)1(t) and are shown in Figure 2–5.

By definition, the Laplace transform of is

l[f1t - a211t - a2] = L
q

0
f1t - a211t - a2e-st dt

f1t - a211t - a2f1t - a211t - a2 t 6 a.a Ú 0.f1t - a211t - a2,

t = q .t = 0
e-st

l[A cos vt] =
As

s2 + v2

A cos vt

 =
A

2j
 

1
s - jv

-
A

2j
  

1
s + jv

=
Av

s2 + v2

 l[A sin vt] =
A

2jL
q

0
1ejvt - e-jvt2e-st dt

sin vt =
1
2j

 1ejvt - e-jvt2

e-jvt = cos vt - j sin vt

ejvt = cos vt + j sin vt

v

for t Ú 0 = A sin vt

for t 6 0 f1t2 = 0

 =
A
s L

q

0
e-st dt =

A

s2

 l[At] = AL
q

0
te-st dt = Aa t 

e-st

-s
`
0

q

- L
q

0
 
e-st

-s
 dtb

v = e-st/1-s2.dv = e-st dt.u = t
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18 The Laplace Transform Chap. 2

f(t) F(s)

1 Unit impulse 1

2 Unit step 1(t)

3 t

4

5

6

7

8

9

10

11

12

13

14

15

16

17
1

s1s + a21s + b2
1

ab
 c1 +

1
a - b

 1be-at - ae-bt2 d

s

1s + a21s + b21
b - a

 1be-bt - ae-at2

1
1s + a21s + b2

1
b - a

 1e-at - e-bt2

1
s1s + a2

1
a

 11 - e-at2

s

s2 - v2cosh vt

v

s2 - v2sinh vt

s

s2 + v2cos vt

v

s2 + v2sin vt

n!

1s + a2n + 1tne-at    1n = 1, 2, 3, Á 2

1
1s + a2n

1
1n - 12! tn - 1e-at 1n = 1, 2, 3, Á 2

1

1s + a22te-at

1
s + a

e-at

n!

sn + 1
tn 1n = 1, 2, 3, Á 2

1
sn

tn - 1

1n - 12! 1n = 1, 2, 3, Á 2

1

s2

1
s

d1t2

TABLE 2–1 Laplace Transform Pairs
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f(t) F(s)

18

19

20

21

22

23

24

25

26

27

28

29

30

31
s2

1s2 + v222
1

2v
 1sin vt + vt cos vt2

s

1s2 + v1
221s2 + v2

22
1

v2
2 - v1

2 1cos v1 t - cos v2 t2    1v1
2 Z v2

22

s2 - v2

1s2 + v222t cos vt

s

1s2 + v222
1

2v
 t sin vt

2v3

1s2 + v222sin vt - vt cos vt

v3

s21s2 + v22vt - sin vt

v2

s1s2 + v221 - cos vt

f = tan-1
 
41 - z2

z

1 -
141 - z2

 e-zvn t sin1vn41 - z2 t + f2

f = tan-1
 
41 - z2

z

-  
141 - z2

 e-zvn t sin1vn41 - z2 t - f2

vn
2

s2 + 2zvn s + vn
2

vn41 - z2
 e-zvn t sin vn41 - z2 t

s + a

1s + a22 + v2e-at cos vt

v

1s + a22 + v2e-at sin vt

1

s21s + a2
1

a2 1at - 1 + e-at2

1

s1s + a22
1

a2 11 - e-at - ate-at2

s

s2 + 2zvn s + vn
2

vn
2

s1s2 + 2zvn s + vn
22

TABLE 2–1 (continued)

19
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1

2

3

4

5

where 

6

7

8

9

10

11

12

13

14

15

16

17 l cfa t

a
b d = aF1as2

l c1
t

 f1t2 d = L
q

s
F1s2 ds if lim

t:0
 
1
t

 f1t2 exists

l[tnf1t2] = 1-12n 
dn

dsn  F1s2    n = 1, 2, 3, Á

l[t2f1t2] =
d2

ds2 F1s2

l[tf1t2] = -  

dF1s2
ds

l[f1t - a211t - a2] = e-asF1s2    a Ú 0

l[e-atf1t2] = F1s + a2
L

q

0
f1t2 dt = lim

s:0
 F1s2    ifL

q

0
f1t2 dt exists

l cL
t

0
f1t2 dt d =

F1s2
s

l; cL Á Lf1t21dt2n d =
F1s2

sn + a
n

k = 1
 

1

sn - k + 1 cL Á Lf1t21dt2k d
t = 0 ;

l; cOf1t2 dt dt d =
F1s2

s2 +
[1f1t2 dt]t = 0 ;

s2 +
[4f1t2 dt dt]t = 0 ;

s

l; cLf1t2 dt d =
F1s2

s
+

[1f1t2 dt]t = 0 ;

s

f1t21k - 12   

=
  dk - 1

dtk - 1 f1t2

l; c dn

dtn  f1t2 d = snF1s2 - a
n

k = 1
sn - k

    f10;21k - 12

l; c d2

dt2 f1t2 d = s2F1s2 - sf10;2 - f
# 10;2

l; c d

dt
 f1t2 d = sF1s2 - f10;2

l[f11t2 ; f21t2] = F11s2 ; F21s2
l[Af1t2] = AF1s2

TABLE 2–2 Properties of Laplace Transforms

20
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Sec. 2–3 Laplace Transformation 21

f(t) 1(t)

0 t

f(t � α) 1(t � α)

0 α t

Figure 2–5 Function f(t)1(t) and translated function f1t - a211t - a2.

By changing the independent variable from t to where we obtain

Noting that for we can change the lower limit of integration
from to 0. Thus,

where

Hence,

This last equation states that the translation of the time function f(t)1(t) by (where
) corresponds to the multiplication of the transform F(s) by 

Pulse function. Consider the pulse function shown in Figure 2–6, namely,

where A and are constants.
The pulse function here may be considered a step function of height that

begins at and that is superimposed by a negative step function of height A/t0t = 0
A/t0

t0

for t 6 0, t0 6 t = 0

for 0 6 t 6 t0 f1t2 =
A

t0

e-as.a Ú 0
a

l[f1t - a211t - a2] = e-asF1s2    a Ú 0

F1s2 = l[f1t2] = L
q

0
f1t2e-st dt

 = e-as

L
q

0
f1t2e-st dt = e-asF1s2

 = L
q

0
f1t2e-ste-as dt

 L
q

-a
f1t211t2e-s1t+a2 dt = L

q

0
f1t211t2e-s1t+a2 dt

-a
t 6 0,f1t211t2 = 0

L
q

0
f1t - a211t - a2e-st dt = L

q

-a
f1t211t2e-s1t+a2 dt

t = t - a,t,
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22 The Laplace Transform Chap. 2

beginning at that is,

Then the Laplace transform of f(t) is obtained as

(2–1)

Impulse function. The impulse function is a special limiting case of the
pulse function. Consider the impulse function

Figure 2–7 depicts the impulse function defined here. It is a limiting case of the pulse
function shown in Figure 2–6 as approaches zero. Since the height of the impulse
function is and the duration is the area under the impulse is equal to A. As
the duration approaches zero, the height approaches infinity, but the area
under the impulse remains equal to A. Note that the magnitude of the impulse is
measured by its area.

From Equation (2–1), the Laplace transform of this impulse function is shown
to be

 = lim
t0 :0

 

d

dt0
 [A11 - e-st02]

d

dt0
 1t0 s2

=
As
s

= A

 l[f1t2] = lim
t0 :0

 c A

t0 s
 11 - e-st02 d

A/t0t0

t0,A/t0

t0

for t 6 0, t0 6 t = 0

for 0 6 t 6 t0 f1t2 = lim
t0 :0

 
A

t0

 =
A

t0 s
 11 - e-st02

 =
A

t0 s
-

A

t0 s
 e-st0

 l[f1t2] = l cA
t0

 11t2 d - l cA
t0

 11t - t02 d

f1t2 =
A

t0
 11t2 -

A

t0
 11t - t02

t = t0;

f(t)

t0
A

t0 t0

Figure 2–6 Pulse function.

t0 0

0 t

t0
A

�

Figure 2–7 Impulse function.
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Sec. 2–3 Laplace Transformation 23

Thus, the Laplace transform of the impulse function is equal to the area under the
impulse.

The impulse function whose area is equal to unity is called the unit-impulse
function or the Dirac delta function. The unit-impulse function occurring at is
usually denoted by which satisfies the following conditions:

An impulse that has an infinite magnitude and zero duration is mathematical
fiction and does not occur in physical systems. If, however, the magnitude of a pulse
input to a system is very large and its duration very short compared with the system
time constants, then we can approximate the pulse input by an impulse function. For
instance, if a force or torque input f(t) is applied to a system for a very short time 
duration where the magnitude of f(t) is sufficiently large so that

is not negligible, then this input can be considered an impulse input.
(Note that, when we describe the impulse input, the area or magnitude of the
impulse is most important, but the exact shape of the impulse is usually immaterial.)
The impulse input supplies energy to the system in an infinitesimal time.

The concept of the impulse function is highly useful in differentiating discon-
tinuous-time functions. The unit-impulse function can be considered the
derivative of the unit-step function at the point of discontinuity or

Conversely, if the unit-impulse function is integrated, the result is the unit-
step function With the concept of the impulse function, we can differenti-
ate a function containing discontinuities, giving impulses, the magnitudes of which
are equal to the magnitude of each corresponding discontinuity.

Multiplication of f(t) by e t. If f(t) is Laplace transformable and its
Laplace transform is F(s), then the Laplace transform of f(t) is obtained as

(2–2)

We see that the multiplication of f(t) by has the effect of replacing s by
in the Laplace transform. Conversely, changing s to is equivalent to

multiplying f(t) by (Note that may be real or complex.)
The relationship given by Equation (2–2) is useful in finding the Laplace

transforms of such functions as and For instance, since

l[cos vt] =
s

s2 + v2 = G1s2andl[sin vt] =
v

s2 + v2 = F1s2
e-at cos vt.e-at sin vt

ae-at.
1s + a21s + a2 e-at

l[e-atf1t2] = L
q

0
 e-atf1t2e-st dt = F1s + a2

e-at

�A

11t - t02.
d1t - t02

d1t - t02 =
d

dt
 11t - t02

t = t0,11t - t02
d1t - t02

1 t0

0  f1t2 dt
0 6 t 6 t0,

 L
q

-q
 d1t - t02 dt = 1

for t = t0 d1t - t02 = q
for t Z t0 d1t - t02 = 0

d1t - t02,
t = t0
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24 The Laplace Transform Chap. 2

it follows from Equation (2–2) that the Laplace transforms of and
are given, respectively, by

and

Comments on the lower limit of the Laplace integral. In some cases, f(t)
possesses an impulse function at Then the lower limit of the Laplace integral
must be clearly specified as to whether it is or since the Laplace transforms
of f(t) differ for these two lower limits. If such a distinction of the lower limit of the
Laplace integral is necessary, we use the notations

and

If f(t) involves an impulse function at then

since

for such a case. Obviously, if f(t) does not possess an impulse function at (i.e.,
if the function to be transformed is finite between and ), then

Differentiation theorem. The Laplace transform of the derivative of a
function f(t) is given by

(2–3)

where f(0) is the initial value of f(t), evaluated at Equation (2–3) is called the
differentiation theorem.

For a given function f(t), the values of and may be the same or
different, as illustrated in Figure 2–8. The distinction between and is
important when f(t) has a discontinuity at because, in such a case, df(t)/dt willt = 0,

f10-2f10+2f10-2f10+2
t = 0.

l c d

dt
 f1t2 d = sF1s2 - f102

l+[f1t2] = l-[f1t2]
t = 0+t = 0-

t = 0

L
0+

0-
f1t2e-st dt Z 0

l+[f1t2] Z l-[f1t2]
t = 0,

l-[f1t2] = L
q

0-
f1t2e-st dt = l+[f1t2] + L

0+

0-
f1t2e-st dt

l+[f1t2] = L
q

0+
f1t2e-st dt

0+ ,0-
t = 0.

l[e-at cos vt] = G1s + a2 =
s + a

1s + a22 + v2

l[e-at sin vt] = F1s + a2 =
v

1s + a22 + v2

e-at cos vt
e-at sin vt
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Sec. 2–3 Laplace Transformation 25

f(t)

f(0 �)

f(0 �)

0 t

f(t)

f(0 �) f(0 �)

0 t

Figure 2–8 Step function and sine function indicating initial values at and
t = 0+ .

t = 0-

involve an impulse function at If Equation (2–3) must be
modified to

To prove the differentiation theorem, we proceed as follows: Integrating the
Laplace integral by parts gives

Hence,

It follows that

Similarly, for the second derivative of f(t), we obtain the relationship

where is the value of df(t)/dt evaluated at To derive this equation, define

d

dt
 f1t2 = g1t2

t = 0.f
#102

l c d2

dt2 f1t2 d = s2F1s2 - sf102 - f
#102

l c d

dt
 f1t2 d = sF1s2 - f102

F1s2 =
f102

s
+

1
s

 l c d

dt
 f1t2 d

L
q

0
f1t2e-st dt = f1t2 

e-st

-s
`
0

q

- L
q

0
c d

dt
 f1t2 d  e-st

-s
 dt

 l- c d

dt
 f1t2 d = sF1s2 - f10-2

 l+ c d

dt
 f1t2 d = sF1s2 - f10+2

f10+2 Z f10-2,t = 0.
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26 The Laplace Transform Chap. 2

Then

Similarly, for the nth derivative of f(t), we obtain

where represent the values of 
respectively, evaluated at If the distinction between and is

necessary, we substitute or into 
depending on whether we take or 

Note that, for Laplace transforms of derivatives of f(t) to exist,
must be Laplace transformable.

Note also that, if all the initial values of f(t) and its derivatives are equal to
zero, then the Laplace transform of the nth derivative of f(t) is given by 

Final-value theorem. The final-value theorem relates the steady-state behav-
ior of f(t) to the behavior of sF(s) in the neighborhood of The theorem, howev-
er, applies if and only if exists [which means that f(t) settles down to a
definite value as ]. If all poles of sF(s) lie in the left half s plane, then 
exists, but if sF(s) has poles on the imaginary axis or in the right half s plane, f(t) will
contain oscillating or exponentially increasing time functions, respectively, and

will not exist.The final-value theorem does not apply to such cases. For in-
stance, if f(t) is a sinusoidal function then sF(s) has poles at and

does not exist.Therefore, the theorem is not applicable to such a function.
The final-value theorem may be stated as follows: If f(t) and df(t)/dt are

Laplace transformable, if F(s) is the Laplace transform of f(t), and if 
exists, then

To prove the theorem, we let s approach zero in the equation for the Laplace trans-
form of the derivative of f(t), or

Since if exists, then we obtain

 = lim
s:0

 sF1s2 - f102
 L

q

0
c d

dt
 f1t2 d  dt = f1t2 `

0

q

= f1q2 - f102
limt:q f1t2lims:0 e-st = 1,

lim
s:0L

q

0
c d

dt
 f1t2 de-st dt = lim

s:0
 [sF1s2 - f102]

lim
t: q

 f1t2 = lim
s:0

 sF1s2

limt:q f1t2
limt:q f1t2 s = ;jv,sin vt,
limt:q f1t2

limt:q f1t2t : q
limt:q f1t2 s = 0.

snF1s2.
1n = 1, 2, 3, Á 2 dnf1t2/dtn

l-.l+

f1t2, df1t2/dt, Á , dn - 1f1t2/dtn - 1,t = 0-t = 0+
l-l+t = 0.dtn - 1,

f1t2, df1t2/dt, Á , dn - 1f1t2/f102, f #102, Á , f1021n - 12

l c dn

dtn  f1t2 d = snF1s2 - sn - 1f102 - sn - 2f
 #102 - Á -f1021n - 12

 = s2F1s2 - sf102 - f
 #102

 = sl c d

dt
 f1t2 d - f

 #102
 l c d2

dt2 f1t2 d = l c d

dt
 g1t2 d = sl[g1t2] - g102
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Sec. 2–3 Laplace Transformation 27

from which it follows that

Initial-value theorem. The initial-value theorem is the counterpart of the
final-value theorem. Using the initial-value theorem, we are able to find the value of
f(t) at directly from the Laplace transform of f(t). The theorem does not give
the value of f(t) at exactly but rather gives it at a time slightly greater than zero.

The initial-value theorem may be stated as follows: If f(t) and df(t)/dt are both
Laplace transformable and if exists, then

To prove this theorem, we use the equation for the transform of df(t)/dt:

For the time interval as s approaches infinity, approaches zero.
(Note that we must use rather than for this condition.) Hence,

or

In applying the initial-value theorem, we are not limited as to the locations of
the poles of sF(s). Thus, the theorem is valid for the sinusoidal function.

Note that the initial-value theorem and the final-value theorem provide a con-
venient check on the solution, since they enable us to predict the system behavior in
the time domain without actually transforming functions in s back to time functions.

Integration theorem. If f(t) is of exponential order, then the Laplace trans-
form of exists and is given by

(2–4)

where and evaluated at Equation (2–4) is
called the integration theorem.

The integration theorem can be proven as follows: Integration by parts yields

 = cLf1t2 dt d  e-st

-s
`
0

q

- L
q

0
f1t2 

e-st

-s
 dt

 l cLf1t2 dt d = L
q

0
 cLf1t2 dt de-st dt

t = 0.f-1102 = 1f1t2 dt,F1s2 = l[f1t2]
l cLf1t2 dt d =

F1s2
s

+
f-1102

s

1f1t2 dt

f10+2 = lim
s: q

 sF1s2

lim
s: qL

q

0+
c d

dt
 f1t2 de-st dt = lim

s: q
 [sF1s2 - f10+2] = 0

l-l+

e-st0+ … t … q ,

l+ c d

dt
 f1t2 d = sF1s2 - f10+2

l+

f10+2 = lim
s: q

sF1s2
lims:q sF1s2

t = 0,
t = 0+

f1q2 = lim
t: q

 f1t2 = lim
s:0

 sF1s2
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28 The Laplace Transform Chap. 2

and the theorem is proven.
Note that, if f(t) involves an impulse function at then 

So if f(t) involves an impulse function at we must modify Equation
(2–4) as follows:

We see that integration in the time domain is converted into division in the s
domain. If the initial value of the integral is zero, the Laplace transform of the inte-
gral of f(t) is given by F(s)/s.

The integration theorem can be modified slightly to deal with the definite inte-
gral of f(t). If f(t) is of exponential order, the Laplace transform of the definite inte-
gral can be given by

(2–5)

To prove Equation (2–5), first note that

where is equal to evaluated at and is a constant. Hence,

Referring to Equation (2–4) and noting that is a constant, so that

we obtain

l cL
t

0
f1t2 dt d =

F1s2
s

+
f-1102

s
-

f-1102
s

=
F1s2

s

l[f-1102] =
f-1102

s

f-1102
 = l cLf1t2 dt d - l[f-1102]

 l cL
t

0
f1t2 dt d = l cLf1t2 dt - f-1102 d

t = 0,1f1t2 dt,f-1102
L

t

0
f1t2 dt = Lf1t2 dt - f-1102

l cL
t

0
f1t2 dt d =

F1s2
s

1 t
0 f1t2 dt

 l- cLf1t2 dt d =
F1s2

s
+

f-110-2
s

 l+ cLf1t2 dt d =
F1s2

s
+

f-110+2
s

t = 0,f-110-2. f-110+2Zt = 0,

=
f-1102

s
+

F1s2
s

=
1
sLf1t2 dt `

t = 0
+

1
sL

q

0
f1t2e-st dt
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Sec. 2–4 Inverse Laplace Transformation 29

Note that, if f(t) involves an impulse function at then 
and the following distinction must be observed:

2–4 INVERSE LAPLACE TRANSFORMATION

The inverse Laplace transformation refers to the process of finding the time func-
tion f(t) from the corresponding Laplace transform F(s). Several methods are avail-
able for finding inverse Laplace transforms.The simplest of these methods are (1) to
use tables of Laplace transforms to find the time function f(t) corresponding to a
given Laplace transform F(s) and (2) to use the partial-fraction expansion method.
In this section, we present the latter technique. [Note that MATLAB is quite useful
in obtaining the partial-fraction expansion of the ratio of two polynomials,
B(s)/A(s). We shall discuss the MATLAB approach to the partial-fraction expan-
sion in Chapter 4.]

Partial-fraction expansion method for finding inverse Laplace transforms.

If F(s), the Laplace transform of f(t), is broken up into components, or

and if the inverse Laplace transforms of are readily avail-
able, then

where are the inverse Laplace transforms of 
respectively. The inverse Laplace transform of F(s) thus obtained is unique,

except possibly at points where the time function is discontinuous. Whenever the
time function is continuous, the time function f(t) and its Laplace transform F(s)
have a one-to-one correspondence.

For problems in systems analysis, F(s) frequently occurs in the form

where A(s) and B(s) are polynomials in s and the degree of B(s) is not higher than
that of A(s).

The advantage of the partial-fraction expansion approach is that the individ-
ual terms of F(s) resulting from the expansion into partial-fraction form are very
simple functions of s; consequently, it is not necessary to refer to a Laplace trans-
form table if we memorize several simple Laplace transform pairs. Note, however,
that in applying the partial-fraction expansion technique in the search for the

F1s2 =
B1s2
A1s2

Fn1s2,
F21s2, Á ,F11s2,f11t2, f21t2, Á , fn1t2

 = f11t2 + f21t2 + Á + fn1t2
 l-1[F1s2] = l-1[F11s2] + l-1[F21s2] + Á + l-1[Fn1s2]

F11s2, F21s2, Á , Fn1s2
F1s2 = F11s2 + F21s2 + Á + Fn1s2

 l- cL
t

0-
f1t2 dt d =

l-[f1t2]
s

 l+ cL
t

0+
 f1t2 dt d =

l+[f1t2]
s

1 t
0-  

f1t2 dt,1 t
0+ f1t2 dt Zt = 0,
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30 The Laplace Transform Chap. 2

inverse Laplace transform of the roots of the denominator poly-
nomial A(s) must be known in advance.That is, this method does not apply until the
denominator polynomial has been factored.

Consider F(s) written in the factored form

where and are either real or complex quantities, but for
each complex or there will occur the complex conjugate of or respective-
ly. Here, the highest power of s in A(s) is assumed to be higher than that in B(s).

In the expansion of B(s)/A(s) into partial-fraction form, it is important that the
highest power of s in A(s) be greater than the highest power of s in B(s) because if that
is not the case, then the numerator B(s) must be divided by the denominator A(s) in
order to produce a polynomial in s plus a remainder (a ratio of polynomials in s whose
numerator is of lower degree than the denominator). (For details, see Example 2–2.)

Partial-fraction expansion when F(s) involves distinct poles only. In
this case, F(s) can always be expanded into a sum of simple partial fractions; that is,

(2–6)

where are constants. The coefficient is called the residue at
the pole at The value of can be found by multiplying both sides of
Equation (2–6) by and letting giving

We see that all the expanded terms drop out, with the exception of Thus, the
residue is found from

(2–7)

Note that since f(t) is a real function of time, if and are complex conjugates,
then the residues and are also complex conjugates. Only one of the conjugates,

or need be evaluated, because the other is known automatically.
Since

f(t) is obtained as

f1t2 = l-1[F1s2] = a1 e-p1 t + a2 e-p2 t + Á + an e-pn t   t Ú 0

l-1 c ak

s + pk
d = ak e-pk t

a2,a1

a2a1

p2p1

ak = c1s + pk2 

B1s2
A1s2 d s = -pk

ak

ak.

 = ak

+
ak

s + pk
 1s + pk2 + Á +

an

s + pn
 1s + pk2 d

s = -pk

 c1s + pk2 

B1s2
A1s2 d s = -pk

= c a1

s + p1
 1s + pk2 +

a2

s + p2
 1s + pk2 + Á

s = -pk,1s + pk2
aks = -pk.

akak1k = 1, 2, Á , n2
F1s2 =

B1s2
A1s2 =

a1

s + p1
+

a2

s + p2
+ Á +

an

s + pn

zi,pizi,pi

z1, z2, Á , zmp1, p2, Á , pn

F1s2 =
B1s2
A1s2 =

K1s + z121s + z22Á 1s + zm2
1s + p121s + p22Á 1s + pn2

F1s2 = B1s2/A1s2,
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Sec. 2–4 Inverse Laplace Transformation 31

Example 2–1

Find the inverse Laplace transform of

The partial-fraction expansion of F(s) is

where and are found by using Equation (2–7):

Thus,

Example 2–2

Obtain the inverse Laplace transform of

Here, since the degree of the numerator polynomial is higher than that of the
denominator polynomial, we must divide the numerator by the denominator:

Note that the Laplace transform of the unit-impulse function is unity and that the
Laplace transform of is s. The third term on the right-hand side of this last
equation is F(s) in Example 2–1. So the inverse Laplace transform of G(s) is given as

Comment. Consider a function F(s) that involves a quadratic factor
in the denominator. If this quadratic expression has a pair of complex-

conjugate roots, then it is better not to factor the quadratic, in order to avoid com-
plex numbers. For example, if F(s) is given as

F1s2 =
p1s2

s1s2 + as + b2

s2 + as + b

g1t2 =
d

dt
 d1t2 + 2d1t2 + 2e-t - e-2t     t Ú 0-

dd1t2/dt
d1t2

G1s2 = s + 2 +
s + 3

1s + 121s + 22

G1s2 =
s3 + 5s2 + 9s + 7
1s + 121s + 22

 = 2e-t - e-2t    t Ú 0

 = l-1 c 2
s + 1

d + l-1 c -1
s + 2

d
 f1t2 = l-1[F1s2]

 a2 = c1s + 22 
s + 3

1s + 121s + 22 d s = -2
= c s + 3

s + 1
d

s = -2
= -1

 a1 = c1s + 12 
s + 3

1s + 121s + 22 d s = -1
= c s + 3

s + 2
d

s = -1
= 2

a2a1

F1s2 =
s + 3

1s + 121s + 22 =
a1

s + 1
+

a2

s + 2

F1s2 =
s + 3

1s + 121s + 22
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32 The Laplace Transform Chap. 2

where and and if has a pair of complex-conjugate
roots, then expand F(s) into the following partial-fraction expansion form:

(See Example 2–3 and Problems A–2–15, A–2–16, and A–2–19.)

Example 2–3

Find the inverse Laplace transform of

Notice that the denominator polynomial can be factored as

The two roots of the denominator are complex conjugates. Hence, we expand F(s) into
the sum of a damped sine and a damped cosine function.

Noting that and referring to the Laplace trans-
forms of and rewritten as

and

we can write the given F(s) as a sum of a damped sine and a damped cosine function:

It follows that

Partial-fraction expansion when F(s) involves multiple poles. Instead
of discussing the general case, we shall use an example to show how to obtain the
partial-fraction expansion of F(s). (See also Problems A–2–17 and A–2–19.)

Consider

F1s2 =
s2 + 2s + 3

1s + 123

 = 5e-t sin 2t + 2e-t cos 2t    t Ú 0

 = 5l-1 c 2

1s + 122 + 22 d + 2l-1 c s + 1

1s + 122 + 22 d
 f1t2 = l-1[F1s2]

 = 5 
2

1s + 122 + 22 + 2 
s + 1

1s + 122 + 22

 F1s2 =
2s + 12

s2 + 2s + 5
=

10 + 21s + 12
1s + 122 + 22

l[e-at cos vt] =
s + a

1s + a22 + v2

l[e-at sin vt] =
v

1s + a22 + v2

e-at cos vt,e-at sin vt
s2 + 2s + 5 = 1s + 122 + 22

s2 + 2s + 5 = 1s + 1 + j221s + 1 - j22

F1s2 =
2s + 12

s2 + 2s + 5

F1s2 =
c
s

+
ds + e

s2 + as + b

s2 + as + b = 0b 7 0,a Ú 0
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Sec. 2–4 Inverse Laplace Transformation 33

The partial-fraction expansion of this F(s) involves three terms:

where and are determined as follows: Multiplying both sides of this last
equation by we have

(2–8)

Then, letting we find that Equation (2–8) gives

Also, differentiating both sides of Equation (2–8) with respect to s yields

(2–9)

If we let in Equation (2–9), then

Differentiating both sides of Equation (2–9) with respect to s, we obtain

From the preceding analysis, it can be seen that the values of and are found
systematically as follows:

 =
1
2

 122 = 1

 =
1
2!

 c d2

ds2 1s2 + 2s + 32 d
s = -1

 b1 =
1
2!

 e d2

ds2 c1s + 123 

B1s2
A1s2 d f s = -1

 = 0
 = 12s + 22s = -1

 = c d

ds
 1s2 + 2s + 32 d

s = -1

 b2 = e d

ds
 c1s + 123 

B1s2
A1s2 d f s = -1

 = 2
 = 1s2 + 2s + 32s = -1

 b3 = c1s + 123 

B1s2
A1s2 d s = -1

b1b3, b2,

d2

ds2 c1s + 123 

B1s2
A1s2 d = 2b1

d

ds
 c1s + 123 

B1s2
A1s2 d s = -1

= b2

s = -1

d

ds
 c1s + 123 

B1s2
A1s2 d = b2 + 2b11s + 12

c1s + 123 

B1s2
A1s2 d s = -1

= b3

s = -1,

1s + 123 

B1s2
A1s2 = b3 + b21s + 12 + b11s + 122

1s + 123,b1b3, b2,

F1s2 =
B1s2
A1s2 =

b3

1s + 123 +
b2

1s + 122 +
b1

s + 1
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34 The Laplace Transform Chap. 2

We thus obtain

2–5 SOLVING LINEAR, TIME-INVARIANT DIFFERENTIAL EQUATIONS

In this section, we are concerned with the use of the Laplace transform method in
solving linear, time-invariant differential equations.

The Laplace transform method yields the complete solution (complementary
solution and particular solution) of linear, time-invariant differential equations.
Classical methods for finding the complete solution of a differential equation
require the evaluation of the integration constants from the initial conditions. In the
case of the Laplace transform method, however, this requirement is unnecessary
because the initial conditions are automatically included in the Laplace transform
of the differential equation.

If all initial conditions are zero, then the Laplace transform of the differential
equation is obtained simply by replacing d/dt with s, with and so on.

In solving linear, time-invariant differential equations by the Laplace trans-
form method, two steps are followed:

1. By taking the Laplace transform of each term in the given differential equa-
tion, convert the differential equation into an algebraic equation in s and ob-
tain the expression for the Laplace transform of the dependent variable by
rearranging the algebraic equation.

2. The time solution of the differential equation is obtained by finding the in-
verse Laplace transform of the dependent variable.

In the discussion that follows, two examples are used to demonstrate the solu-
tion of linear, time-invariant differential equations by the Laplace transform
method.

Example 2–4

Find the solution x(t) of the differential equation

where a and b are constants.
Writing the Laplace transform of x(t) as X(s), or

we obtain

 l[x
$
] = s2X1s2 - sx102 - x

# 102
 l[x

#
] = sX1s2 - x102

l[x1t2] = X1s2

x
# 102 = bx102 = a,x

$ + 3x
# + 2x = 0,

s2,d2/dt2

 = 1t2 + 12e-t    t Ú 0
 = t2e-t + 0 + e-t

 = l-1 c 2

1s + 123 d + l-1 c 0

1s + 122 d + l-1 c 1
s + 1

d
 f1t2 = l-1[F1s2]
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Sec. 2–5 Solving Linear, Time-Invariant Differential Equations 35

The Laplace transform of the given differential equation becomes

Substituting the given initial conditions into the preceding equation yields

or

Solving this last equation for X(s), we have

The inverse Laplace transform of X(s) produces

which is the solution of the given differential equation. Notice that the initial condi-
tions a and b appear in the solution. Thus, x(t) has no undetermined constants.

Example 2–5

Find the solution x(t) of the differential equation

Noting that and we see that the Laplace trans-
form of the differential equation becomes

Solving this equation for X(s), we obtain

Hence, the inverse Laplace transform becomes

which is the solution of the given differential equation.

 =
3
5

-
3

10
 e-t sin 2t -

3
5

 e-t cos 2t   t Ú 0

 =
3
5

 l-1 c1
s
d -

3
10

 l-1 c 2

1s + 122 + 22 d -
3
5

 l-1 c s + 1

1s + 122 + 22 d
 x1t2 = l-1[X1s2]

 =
3
5

 
1
s

-
3
10

 
2

1s + 122 + 22 -
3
5

 
s + 1

1s + 122 + 22

 =
3
5

 
1
s

-
3
5

 
s + 2

s2 + 2s + 5

 X1s2 =
3

s1s2 + 2s + 52

s2X1s2 + 2sX1s2 + 5X1s2 =
3
s

x
# 102 = 0,l[3] = 3/s, x102 = 0,

x
# 102 = 0x102 = 0,x

$ + 2x
# + 5x = 3,

 = 12a + b2e-t - 1a + b2e-2t    t Ú 0

 x1t2 = l-1[X1s2] = l-1 c2a + b

s + 1
d - l-1 ca + b

s + 2
d

X1s2 =
as + b + 3a

s2 + 3s + 2
=

as + b + 3a

1s + 121s + 22 =
2a + b

s + 1
-

a + b

s + 2

1s2 + 3s + 22X1s2 = as + b + 3a

[s2X1s2 - as - b] + 3[sX1s2 - a] + 2X1s2 = 0

[s2X1s2 - sx102 - x
# 102] + 3[sX1s2 - x102] + 2X1s2 = 0
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36 The Laplace Transform Chap. 2

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A–2–1

Obtain the real and imaginary parts of

Also, obtain the magnitude and angle of this complex quantity.

Solution

Hence,

The magnitude and angle of this complex quantity are obtained as follows:

Problem A–2–2

Find the Laplace transform of

Solution Since

referring to Equation (2–2), we obtain

Problem A–2–3

What is the Laplace transform of

where is a constant?

Solution Noting that

sin1vt + u2 = sin vt cos u + cos vt sin u

u

t Ú 0 = sin1vt + u2
t 6 0 f1t2 = 0

F1s2 = l[te-3t] = G1s + 32 =
1

1s + 322

l[t] = G1s2 =
1

s2

t Ú 0 = te-3t

t 6 0 f1t2 = 0

 angle = tan-1
 
-1/5
2/5

= tan-1
 
-1
2

= -26.565°

 magnitude = Ba2
5
b2

+ a -1
5
b2

= B 5
25

=
115

= 0.447

imaginary part = -j 
1
5

real part =
2
5

,

 =
2
5

- j 
1
5

 
2 + j1

3 + j4
=
12 + j1213 - j42
13 + j4213 - j42 =

6 + j3 - j8 + 4

9 + 16
=

10 - j5

25

2 + j1

3 + j4
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Example Problems and Solutions 37

f(t)

0

1
a2

1
a2�

t
2a

a

Figure 2–9 Function f(t).

we have

Problem A–2–4

Find the Laplace transform F(s) of the function f(t) shown in Figure 2–9. Also, find the
limiting value of F(s) as a approaches zero.

Solution The function f(t) can be written

Then

As a approaches zero, we have

 = lim
a:0

 
2se-as - 2se-2as

2as
= lim

a:0
 
e-as - e-2as

a

 lim
a:0

F1s2 = lim
a:0

 
1 - 2e-as + e-2as

a2s
= lim

a:0
 

d

da
 11 - 2e-as + e-2as2

d

da
 1a2s2

 =
1

a2s
 11 - 2e-as + e-2as2

 =
1

a2  
1
s

-
2

a2  
1
s

  e-as +
1

a2  
1
s

  e-2as

 =
1

a2 l[11t2] -
2

a2 l[11t - a2] +
1

a2 l[11t - 2a2]
 F1s2 = l[f1t2]

f1t2 =
1

a2 11t2 -
2

a2 11t - a2 +
1

a2 11t - 2a2

 =
v cos u + s sin u

s2 + v2

 = cos u 
v

s2 + v2 + sin u 
s

s2 + v2

 l[sin1vt + u2] = cos u l[sin vt] + sin u l[cos vt]
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38 The Laplace Transform Chap. 2

b

0

−b

a

t

f3(t) = −b . 1(t − a)

f2(t) = −

t . 1(t)

(t−a) . 1(t − a)b
a

f1(t) =

f(t)

b
a

Figure 2–11 Functions and
f31t2.

f11t2, f21t2,

Problem A–2–5

Obtain the Laplace transform of the function f(t) shown in Figure 2–10.

Solution The given function f(t) can be defined as follows:

Notice that f(t) can be considered a sum of the three functions and 
shown in Figure 2–11. Hence, f(t) can be written as

 =
b

a
 t # 11t2 -

b

a
 1t - a2 # 11t - a2 - b # 11t - a2

 f1t2 = f11t2 + f21t2 + f31t2

f31t2f11t2, f21t2,
a 6 t = 0

0 6 t … a =
b

a
 t

t … 0 f1t2 = 0

 = -s + 2s = s

 = lim
a:0

 

d

da
 1e-as - e-2as2

d

da
 1a2

= lim
a:0

 
-se-as + 2se-2as

1

f(t)
b

0 a tFigure 2–10 Function f(t).
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Example Problems and Solutions 39

Then the Laplace transform of f(t) becomes

The same F(s) can, of course, be obtained by performing the following Laplace inte-
gration:

Problem A–2–6

Prove that if the Laplace transform of f(t) is F(s), then, except at poles of F(s),

and in general,

Solution

Similarly, by defining the result is

Repeating the same process, we obtain

n = 1, 2, 3, Ál[tnf1t2] = 1-12n 
dn

dsn  F1s2

 = 1-122 
d2

ds2 F1s2 =
d2

ds2 F1s2
 l[t2f1t2] = l[tg1t2] = -  

d

ds
 G1s2 = -  

d

ds
c -  

d

ds
 F1s2 d

tf1t2 = g1t2,
 = -  

d

dsL
q

0
f1t2e-st dt = -  

d

ds
 F1s2

 l[tf1t2] = L
q

0
tf1t2e-st dt = -L

q

0
f1t2 

d

ds
 1e-st2 dt

n = 1, 2, 3, Ál[tnf1t2] = 1-12n 
dn

dsn  F1s2

 l[t2f1t2] =
d2

ds2 F1s2
 l[tf1t2] = -  

d

ds
 F1s2

 =
b

as2 11 - e-as2 -
b

s
 e-as

 = b 
e-as

-s
-

b

as2 1e-as - 12
 = b 

e-as

-s
+

b

as
  
e-st

-s
`
0

a

 =
b

a
 t 

e-st

-s
`
0

a

- L
a

0
 
b

a
  
e-st

-s
 dt

 l[f1t2] = L
a

0
 
b

a
 te-st dt + L

q

a
0 e-st dt

 =
b

as2 11 - e-as2 -
b

s
 e-as

 F1s2 =
b

a
  

1

s2 -
b

a
  

1

s2 e-as - b 
1
s

 e-as
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40 The Laplace Transform Chap. 2

Problem A–2–7

Find the Laplace transform of

Solution Since

referring to Problem A–2–6, we have

Problem A–2–8

Prove that if the Laplace transform of f(t) is F(s), then

Solution If we define and then

Problem A–2–9

Prove that if f(t) is of exponential order and if exists [which means that
assumes a definite value], then

where 

Solution Note that

Referring to Equation (2–5), we have

Since exists, by applying the final-value theorem to this case, we obtain

or

L
q

0
f1t2 dt = lim

s:0
 F1s2

lim
t: qL

t

0
f1t2 dt = lim

s:0
 s 

F1s2
s

1q
0 f1t2 dt

l cL
t

0
f1t2 dt d =

F1s2
s

L
q

0
f1t2 dt = lim

t: qL
t

0
f1t2 dt

F1s2 = l[f1t2].
L

q

0
f1t2 dt = lim

s:0
 F1s2

1q
0 f1t2 dt

1q
0 f1t2 dt

 = aL
q

0
f1t2e-s1t dt = aF1s12 = aF1as2

 l cfa t

a
b d = L

q

0
fa t

a
be-st dt = L

q

0
f1t2e-asta dt

as = s1,t/a = t

a 7 0l cfa t

a
b d = aF1as2

l[f1t2] = l[t2 sin vt] =
d2

ds2 c v

s2 + v2 d =
-2v3 + 6vs2

1s2 + v223

l[sin vt] =
v

s2 + v2

t Ú 0 = t2 sin vt

t 6 0 f1t2 = 0
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Example Problems and Solutions 41

Problem A–2–10

The convolution of two time functions is defined by

A commonly used notation for the convolution is which is defined as

Show that if and are both Laplace transformable, then

where and 

Solution Noting that for we have

Changing the order of integration is valid here, since and are both Laplace
transformable, giving convergent integrals. If we substitute into this last
equation, the result is

or

Thus, the Laplace transform of the convolution of two time functions is the product of
their Laplace transforms.

Problem A–2–11

Determine the Laplace transform of where

Solution Note that

 l[1 - e-t] = F21s2 =
1
s

-
1

s + 1

 l[t] = F11s2 =
1

s2

for t Ú 0 f21t2 = 1 - e-t

for t Ú 0 f11t2 = t

for t 6 0 f11t2 = f21t2 = 0

f11t2*f21t2,

l[f11t2*f21t2] = F11s2F21s2

 = F11s2F21s2
 l cL

t

0
f11t2f21t - t2 dt d = L

q

0
f11t2e-st dtL

q

0
f21l2e-sl dl

l = t - t
f21t2f11t2

 = L
q

0
f11t2 dtL

q

0
f21t - t211t - t2e-st dt

 = L
q

0
e-st cL

q

0
f11t2f21t - t211t - t2 dt d  dt

 l cL
t

0
f11t2f21t - t2 dt d = l cL

q

0
f11t2f21t - t211t - t2 dt d

t 6 t,11t - t2 = 0

F21s2 = l[f21t2].F11s2 = l[f11t2]
l cL

t

0
f11t2f21t - t2 dt d = F11s2F21s2

f21t2f11t2
f11t2*f21t2 = L

t

0
f11t2f21t - t2 dt = L

t

0
f11t - t2f21t2 dt

f11t2*f21t2,
L

t

0
f11t2f21t - t2 dt
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42 The Laplace Transform Chap. 2

The Laplace transform of the convolution integral is given by

To verify that the expression after the rightmost equal sign is indeed the Laplace trans-
form of the convolution integral, let us first integrate the convolution integral and then
take the Laplace transform of the result. We have

Noting that

we have

Thus,

Problem A–2–12

Prove that if f(t) is a periodic function with period T, then

Solution

By changing the independent variable from t to we obtain

l[f1t2] = a
q

n = 0
e-nTs

L
T

0
f1t + nT2e-st dt

t = t - nT,

l[f1t2] = L
q

0
f1t2e-st dt = a

q

n = 0L
1n + 12T

nT
f1t2e-st dt

l[f1t2] = L
T

0
f1t2e-st dt

1 - e-Ts

l c t2

2
- t + 1 - e-t d =

1

s3 -
1

s2 +
1
s

-
1

s + 1

f11t2*f21t2 =
t2

2
- t + 1 - e-t

 L
t

0
te-t dt = -te-t `

0

t

+ L
t

0
e-t dt = - te-t - e-t + 1

 L
t

0
te-t dt = - te-t + t

 L
t

0
1t - t2 dt =

t2

2

 = L
t

0
1t - t - te-t + te-t2 dt

 = L
t

0
1t - t211 - e-t2 dt

 f11t2*f21t2 = L
t

0
t[1 - e-1t -t2] dt

 =
1

s3 -
1

s21s + 12 =
1

s3 -
1

s2 +
1
s

-
1

s + 1

 l[f11t2*f21t2] = F11s2F21s2 =
1

s2 a1
s

-
1

s + 1
b
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Example Problems and Solutions 43

f(t)

1

0

�1

2
T T 2T t

Figure 2–12 Periodic function (square
wave).

Since f(t) is a periodic function with period T, Hence,

Noting that

we obtain

It follows that

Problem A–2–13

What is the Laplace transform of the periodic function shown in Figure 2–12?

Solution Note that

 =
1
s

 [1 - e-11/22Ts]2

 =
1
s

 [e-Ts - 2e-11/22Ts + 1]

 =
e-11/22Ts - 1

-s
+

e-Ts - e-11/22Ts

s

 =
e-st

-s
`
0

T/2

-
e-st

-s
`
T/2

T

 L
T

0
f1t2e-st dt = L

T/2

0
e-st dt + L

T

T/2
1-12e-st dt

l[f1t2] = L
T

0
f1t2e-st dt

1 - e-Ts

a
q

n = 0
e-nTs =

1

1 - e-Ts

 = 1 + e-Tsaa
q

n = 0
e-nTsb

 = 1 + e-Ts11 + e-Ts + e-2Ts + Á 2
 a

q

n = 0
e-nTs = 1 + e-Ts + e-2Ts + Á

l[f1t2] = a
q

n = 0
e-nTs

L
T

0
f1t2e-st dt

f1t + nT2 = f1t2.
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44 The Laplace Transform Chap. 2

Consequently,

Problem A–2–14

Find the initial value of df(t)/dt, where the Laplace transform of f(t) is given by

Solution Using the initial-value theorem, we obtain

Since the transform of is given by

the initial value of df(t)/dt is obtained as

To verify this result, notice that

Hence,

and

Thus,

Problem A–2–15

Obtain the inverse Laplace transform of

where a, b, c, and d are real and a is positive.

F1s2 =
cs + d

1s2 + 2as + a22 + b2

f
# 102 = -1 + 0 = -1

f
# 1t2 = -e-0.5t cos 0.866t + 2e-0.5t0.866 sin 0.866t

f1t2 = 2e-0.5t cos 0.866t

F1s2 =
21s + 0.52

1s + 0.522 + 10.86622 = l[2e-0.5t cos 0.866t]

 = lim
s: q

 
-s2 - 2s

s2 + s + 1
= -1

 lim
t:0+

 

df1t2
dt

= g10+2 = lim
s: q

s[sF1s2 - f10+2]

 =
s12s + 12
s2 + s + 1

- 2 =
-s - 2

s2 + s + 1

 l+[g1t2] = sF1s2 - f10+2
df1t2/dt = g1t2l+

lim
t:0+

 f1t2 = lim
s: q

 sF1s2 = lim
s: q

 

s12s + 12
s2 + s + 1

= 2

F1s2 = l[f1t2] =
2s + 1

s2 + s + 1

 =
1 - e-11/22Ts

s[1 + e-11/22Ts]
=

1
s

 tanh 
Ts

4

 F1s2 = L
T

0
f1t2e-st dt

1 - e-Ts =
11/s2[1 - e-11/22Ts]2

1 - e-Ts
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Example Problems and Solutions 45

Solution Since F(s) can be written as

we obtain

Problem A–2–16

Find the inverse Laplace transform of

Solution Since

it follows that F(s) involves a pair of complex-conjugate poles, so we expand F(s) into
the form

where and are determined from

By comparing corresponding coefficients of the s, and terms on both sides of this
last equation respectively, we obtain

from which it follows that

Therefore,

The inverse Laplace transform of F(s) is

t Ú 0f1t2 =
1
2

-
1
2

 e-t sin t -
1
2

 e-t cos t

 =
1
2

  
1
s

-
1
2

  
1

1s + 122 + 12 -
1
2

  
s + 1

1s + 122 + 12

 F1s2 =
1
2

  
1
s

-
1
2

  
s + 2

s2 + 2s + 2

a3 = -1a2 = -  
1
2

,a1 =
1
2

,

2a1 = 12a1 + a3 = 0,a1 + a2 = 0,

s0s2,

1 = a11s2 + 2s + 22 + 1a2 s + a32s
a3a1, a2,

F1s2 =
1

s1s2 + 2s + 22 =
a1

s
+

a2 s + a3

s2 + 2s + 2

s2 + 2s + 2 = 1s + 1 + j121s + 1 - j12

F1s2 =
1

s1s2 + 2s + 22

f1t2 = ce-at cos bt +
d - ca

b
 e-at sin bt

 =
c1s + a2

1s + a22 + b2 +
d - ca

b
  

b

1s + a22 + b2

 F1s2 =
c1s + a2 + d - ca

1s + a22 + b2
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46 The Laplace Transform Chap. 2

Problem A–2–17

Derive the inverse Laplace transform of

Solution

where

Thus,

The inverse Laplace transform of F(s) is

Problem A–2–18

Find the inverse Laplace transform of

Solution Since the numerator polynomial is of higher degree than the denominator
polynomial, by dividing the numerator by the denominator until the remainder is a
fraction, we obtain

where

 a2 =
2s + 5

s
`
s = -1

= -3

 a1 =
2s + 5
s + 1

`
s = 0

= 5

F1s2 = s2 + s + 2 +
2s + 5

s1s + 12 = s2 + s + 2 +
a1

s
+

a2

s + 1

F1s2 =
s4 + 2s3 + 3s2 + 4s + 5

s1s + 12

f1t2 =
10
3

 t -
25
9

+
5
2

 e-t +
5

18
 e-3t  t Ú 0

F1s2 =
10
3

  
1

s2 -
25
9

  
1
s

+
5
2

  
1

s + 1
+

5
18

  
1

s + 3

 =
51s + 121s + 32 - 51s + 2212s + 42

1s + 1221s + 322 `
s = 0

= -  
25
9

 b1 =
d

ds
c 51s + 22
1s + 121s + 32 d s = 0

 b2 =
51s + 22

1s + 121s + 32 ` s = 0
=

10
3

 a2 =
51s + 22
s21s + 12 ` s = -3

=
5

18

 a1 =
51s + 22
s21s + 32 ` s = -1

=
5
2

F1s2 =
51s + 22

s21s + 121s + 32 =
b2

s2 +
b1

s
+

a1

s + 1
+

a2

s + 3

F1s2 =
51s + 22

s21s + 121s + 32
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Example Problems and Solutions 47

It follows that

The inverse Laplace transform of F(s) is

Problem A–2–19

Obtain the inverse Laplace transform of

(2–10)

Solution Since the quadratic term in the denominator involves a pair of complex-
conjugate roots, we expand F(s) into the following partial-fraction form:

The coefficient can be obtained as

Hence, we obtain

(2–11)

By equating corresponding coefficients in the numerators of Equations (2–10) and
(2–11), respectively, we obtain

from which we get

Hence,

The inverse Laplace transform of F(s) gives

f1t2 = 0.6t + 0.28 - 0.28e-t cos 3t +
1.12

3
 e-t sin 3t

 =
0.6

s2 +
0.28

s
+

-0.281s + 12 + 11.12/32 * 3

1s + 122 + 32

 F1s2 =
0.6

s2 +
0.28

s
+

-0.28s + 0.84

s2 + 2s + 10

c = 0.84b = -0.28,a2 = 0.28,

 1.2 + 10a2 = 4

 0.6 + 2a2 + c = 2

 a2 + b = 0

 =
1a2 + b2s3 + 10.6 + 2a2 + c2s2 + 11.2 + 10a22s + 6

s21s2 + 2s + 102

 F1s2 =
0.6

s2 +
a2

s
+

bs + c

s2 + 2s + 10

a1 =
2s2 + 4s + 6

s2 + 2s + 10
`
s = 0

= 0.6

a1

F1s2 =
a1

s2 +
a2

s
+

bs + c

s2 + 2s + 10

F1s2 =
2s2 + 4s + 6

s21s2 + 2s + 102

f1t2 = l-1[F1s2] =
d2

dt2 d1t2 +
d

dt
 d1t2 + 2d1t2 + 5 - 3e-t     t Ú 0-

F1s2 = s2 + s + 2 +
5
s

-
3

s + 1
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48 The Laplace Transform Chap. 2

Problem A–2–20

Derive the inverse Laplace transform of

Solution

Thus, the inverse Laplace transform of F(s) is obtained as

Problem A–2–21

Obtain the solution of the differential equation

Solution Laplace transforming both sides of this differential equation, we have

or

Solving this last equation for X(s), we obtain

The inverse Laplace transform of X(s) then gives

 = ab +
Av

a2 + v2 be-at +
Aa

a2 + v2 sin vt -
Av

a2 + v2 cos vt   t Ú 0

 x1t2 = l-1[X1s2]

 = ab +
Av

a2 + v2 b  
1

s + a
+

Aa

a2 + v2  
v

s2 + v2 -
Av

a2 + v2  
s

s2 + v2

 =
Av

a2 + v2 a 1
s + a

-
s - a

s2 + v2 b +
b

s + a

 X1s2 =
Av

1s + a21s2 + v22 +
b

s + a

1s + a2X1s2 =
Av

s2 + v2 + b

[sX1s2 - x102] + aX1s2 = A 
v

s2 + v2

x
# + ax = A sin vt,   x(0) = b

t Ú 0f1t2 = l-1[F1s2] =
1

v2 11 - cos vt2 

 =
1

v2  
1
s

-
1

v2  
s

s2 + v2

 F1s2 =
1

s1s2 + v22 =
1

v2 a1
s

-
s

s2 + v2 b

F1s2 =
1

s1s2 + v22
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Problems 49

f(t)

b

0 a ta � b

Figure 2–13 Function f(t).

f(t)

c

0 a b t

Figure 2–14 Pulse function.

PROBLEMS

Problem B–2–1

Derive the Laplace transform of the function

Problem B–2–2

Find the Laplace transforms of the following functions:

(a)

(b)

Problem B–2–3

Obtain the Laplace transform of the function defined by

Problem B–2–4

Obtain the Laplace transform of the function

Problem B–2–5

What is the Laplace transform of the function f(t) shown in Figure 2–13?

Problem B–2–6

Obtain the Laplace transform of the pulse function f(t) shown in Figure 2–14.

t Ú 0 = cos 2vt #  cos 3vt

t 6 0 f1t2 = 0

t Ú 0 = t2e-at

t 6 0 f1t2 = 0

t Ú 0 = 0.0311 - cos 2t2
t 6 0 f21t2 = 0

t Ú 0 = 3 sin15t + 45°2
t 6 0 f11t2 = 0

t Ú 0 = te-2t

t 6 0 f1t2 = 0
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50 The Laplace Transform Chap. 2

Problem B–2–7

What is the Laplace transform of the function f(t) shown in Figure 2–15? Also, what is
the limiting value of as a approaches zero?

Problem B–2–8

Find the Laplace transform of the function f(t) shown in Figure 2–16.Also, find the lim-
iting value of as a approaches zero.

Problem B–2–9

Given

obtain Use the final-value theorem.

Problem B–2–10

Given

obtain Use the initial-value theorem.

Problem B–2–11

Consider a function x(t). Show that

x
# 10+2 = lim

s: q
[s2X1s2 - sx10+2]

f10+2.
F1s2 =

21s + 22
s1s + 121s + 32

f1q2.
F1s2 =

51s + 22
s1s + 12

l[f1t2]

l[f1t2]

5
a

a2
2.5

f(t)

0 a t

10
a2

�

Figure 2–15 Function f(t).

f(t)

0 t

12
a2

12
a2�

a

a
2

Figure 2–16 Function f(t).
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Problems 51

Problem B–2–12

Derive the Laplace transform of the third derivative of f(t).

Problem B–2–13

What are the inverse Laplace transforms of the following functions?

(a)

(b)

Problem B–2–14

Find the inverse Laplace transforms of the following functions:

(a)

(b)

Problem B–2–15

Find the inverse Laplace transform of

Problem B–2–16

Obtain the inverse Laplace transform of

Problem B–2–17

Obtain the inverse Laplace transform of

Problem B–2–18

Obtain the inverse Laplace transform of

Problem B–2–19

Obtain the inverse Laplace transform of

F1s2 =
2s + 10

1s + 1221s + 42

F1s2 =
s2 + 2s + 5

s21s + 12

F1s2 =
s

s2 + 2s + 10

F1s2 =
s2 + 2s + 4

s2

F1s2 =
2s2 + 4s + 5

s1s + 12

F21s2 =
5s + 2

1s + 121s + 222

F11s2 =
6s + 3

s2

F21s2 =
31s + 42

s1s + 121s + 22

F11s2 =
s + 5

1s + 121s + 32
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Problem B–2–20

Derive the inverse Laplace transform of

Problem B–2–21

Obtain the inverse Laplace transform of

where 

Problem B–2–22

Find the solution x(t) of the differential equation

Problem B–2–23

Obtain the solution x(t) of the differential equation

Problem B–2–24

Determine the solution x(t) of the differential equation

Problem B–2–25

Obtain the solution x(t) of the differential equation

x
# 102 = 0x102 = 0,x

$ + x = sin 3t,

x
# 102 = 2x102 = 0,2x

$ + 2x
# + x = 1,

x
# 102 = 0x102 = 0,x

$ + vn
2x = t,

x
# 102 = 0x102 = 5,x

$ + 4x = 0,

a 7 0.

F1s2 =
c

s2 11 - e-as2 -
b

s
 e-as

F1s2 =
1

s21s2 + v22

52 The Laplace Transform Chap. 2
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