
7. The Z-transform

7.1 Definition of the Z-transform

We saw earlier that complex exponential of the from {ejwn} is an eigen func-
tion of for a LTI System. We can generalize this for signals of the form {zn}
where, z is a complex number.

y[n] =
∞∑

k=−∞
h[k]x[n − k]

=
∞∑

k=−0

h[k]zn−k

=

( ∞∑
k=−∞

h[k]z−k

)
zn

= H(z)zn

where

H(z) =
∞∑

k=−∞
h[k]z−h (7.1)

Thus if the input signal is {zn} then output signal is H(z){zn}. For z = ejw

w real (i.e for |z| = 1), equation (7.1) is same as the discrete-time fourier
transform. The H(z) in equation (7.1) is known as the bilateral z-transform
of the sequence {h[n]}. We define for any sequence of a sequence {x[n]} as

X(z) =
∞∑

n=−∞
x[n]z−n (7.2)

where z is a complex variable. Writing z in polar form we get z = rejw,
where r is magnitude and ω is angle of z.

X(rejw) =
∞∑

n=−∞
x[n](rejw)−n

=
∞∑

n=−∞
(x[n]r−n)e−jwn (7.3)

This shows that X(rejw) is Fourier transform of the sequence {r−nx[n]}.
When r = 1 the z-transform reduces to the Fourier transform of {x[n]}.
From equation (7.3) we see that for convergence of z-transform that Fourier
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transform of the sequence {r−nx[n]} converges. This will happen for some

r and not for others. The values of z - for which
∞∑

n=−∞
r−n|x[n]| < ∞ is

called the region of convergence(ROC). If the ROC contains unit circle (i.e.
r = 1 or equivalently |z| = 1 then the Fourier transform also converges.
Following examples show that we must specify ROC to completely specify
the z-transform.
Example 1: Let {x[n]} = {anu[n]}, then

X(z) =
∞∑

n=−∞
x[n]z−n

=
∞∑

n=0

(az−1)n

This is a geometric series and converges if |az−1| < 1 or |z| > |a|. Then

X[z] =
1

1 − az−1
=

z

z − a
, |z| > |a| (7.4)

We see that X(z) = 0 at z = 0, and 1/X((z) = 0 at z = a. Values of z where
X(z) is zero is called zero of X(z) and value of z where 1/X(z) is zero is
called a pole of X(z). Here we see that ROC consists of a region in Z-plane
which lies outside the circle centered at origin and passing through the pole.
FIGURE

Example 2: Let, {y[n]} = {−anu[−n − 1]}, then

Y (z) =
−1∑

n=−∞
−anz−n

=
∞∑

m=1

−a−mzm

This is a geometric series which converges when |a−1z| < 1, that is |z| < |a|
Then

Y (z) =
−a−1z

1 − a−1z
= − z

a − z

=
z

z − a
, |z| < |a| (7.5)

FIGURE
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Here the ROC is inside the circle of radius |a|. Comparing equation (7.4)
and (7.5) we see that algebraic form of X(z) and Y (z) are same, but ROC
are different and they correspond to two different sequences. Thus in spec-
ifying z-transform, we have to give functional form X(z) and the region of
convergence.
Now we state some properties of the region of convergence

7.2 Properties of the ROC

1. The ROC of X(z) consists of an annular region in the z-plane, centered
about the origin. This property follows from equation (7.3), where we
see that convergence depends on r only.

2. The ROC does not certain any poles. Since at poles X(z) does not
converge.

3. The ROC is a connected region in z-plane. This property is proved in
complex analysis.

4. If {x[n]} is a right sided sequence, i.e. x[n] = 0, for n < n0, and if
the circle |Z| = r0 is in the ROC, then all finite values of z, for which
|z| > r0 will also be in the ROC.
For a right sided sequence

X(z) =
∞∑

n=n0

x[n]z−n

If n0 is negative then we can write

X(z) =
0∑

n=n0

x[n]z−n +
∞∑

n=1

x[n]z−n

Let Z = rejw, with r > r0, then, X(z) exists if
−1∑

n=n0

|x[n]|r−n +
∞∑

n=0

|x[n]|r−n is finite.

The first summation is finite as it consists of a finite number of terms.
In the second summation note that each term is less than |x[n]|r−n

0 as

r > r0. Since
∞∑

n=1

|x[n]|r−n
0 is finite by our assumption that circle with

radius r0 lies in ROC, the second sum is also finite. Hence values of z
such that |z| > r0 lies in ROC, except when z = ∞. At z = ∞, the
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first summation will became infinite. So if n0 ≥ 0, i.e. the sequence
x[n] is causal, the value z = ∞ will lie in the ROC.

5. If {x[n]} is left sided sequence, i.e. x[n] = 0, n > n0 and |z| = r0 lies
in the ROC, the values of z function 0 < |z| < r0 also lie in the ROC.
The proof is similar to the property 4. The point z = 0, will lie in the
ROC if the sequence is purely anticausal (x[n] = 0, n > 0)

6. If {x[n]} is non zero for, n1 ≤ n ≤ n2, then ROC is entire z-plane
except possibly z = 0, and/or z = ∞
In this case the X(z) consists of finite number of terms and therefore
it converges if each term infinite which is the case when z is different
from 0 or ∞. z = 0 lies in ROC, if n2 ≤ 0, and z = ∞ lies in the ROC
if n1 ≥ 0.

7. If {x[n]} is two-sided sequence and if circle |z| = r0 is in ROC, then
ROC will consist of annular region in z-plane, which includes |z| = r0

We can express a two sided sequence as sum of a right sided sequence
and a left sided sequence. Then using property 4 and 5 we get this
property. Using property 2 and 3 we see what ROC will be banded by
circles passing through the poles.

7.3 The inverse z-transform

The inverse z-transform is given by

x[n] =
1

2πj

∮
X(z)zn−1dz (7.6)

the symbol
∮

indicates contour integration, over a counter clockwise con-
tour in the ROC of X(z). If X(z) consists of ratio of polynomials one can use
Cauchy integral theorem to calculate the contour integral. There are some
other alternative procedures also, which will be considered after discussing
the properties of z-transform.

7.4 Properties of the z-transform:

We use the notation

{x[n]} ↔ X(z), ROC = Rx

to denote z-transform of the sequence {x[n]}.

4



1. Linearity:

The z-transform of a linear combination of two sequence is given by

a{x[n]} + b{y[n]} ↔ aX(z) + bY (z), ROC contains(Rx ∩ Ry)

The algebraic form follows directly from the definition, equation (7.2). The
linear combination is such that some zero’s can cancel the poles, then the
region of convergence may be larger. For example if the linear combination
{anu[n] − anu[n − N ]} is a finite-length sequence, the ROC is entire z-plane
except at a = 0, like individual ROCs are |z| > |a|. If the intersection of Rx

and Ry is null set, the z-transform of the linear combination will not exist.

2. Time shifting

If we shift the time sequence, we get
{x[n−n0]} ↔ z−n0X(z), ROC = Rx except for possible addition or deletion
of z = 0 and/or z = ∞
We have

Y (z) =
∞∑

n=−∞
x[n − n0]z

−n

changing variable, m = n − n0

Y (z) =
∞∑

m=−0

x[m]z−(m+n0)

= z−n0

∞∑
m=−∞

x[m]z−m

= z−n0X(z)

The factor z−n0 can affect the poles and zeros at z = 0, z = ∞

3. Multiplication by a exponential sequence:

{zn
0 x[n]} ↔ X(z/z0), ROC = {z : z/z0 εRx}

This follows directly from defining equation (7.2).

4. Differentiation of X(z):

If we differentiate X(z) term by term we get

dX(z)

dz
=

∞∑
n=−∞

x[n](−n)z−n−1
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Thus

−z
dX(z)

dz
=

∞∑
n=−∞

nx[n]z−n

{nx[n]} ↔ −z dX(z)
dz

, ROC = Rx, except possibly z = 0, z = ∞
The ROC does not change (except z = 0, z = ∞). This follows from the
property that X(z) is an analytic function.

5. Conjugation of a complex sequence

{x∗[n]} ↔ X∗(z∗), ROC = Rx

Y (z) =
∞∑

n=−∞
x∗[n]z−n

=

( ∞∑
n=−∞

x[n](z∗)−n

)∗

= X∗(z∗)

Since ROC depends only an magnitude |z| it does not change.

6. Time Reversal:

{x[−n]} ↔ X(1/z)

ROC = {z :
1

z
εRX}

We have

Y (z) =
∞∑

n=−∞
x[−n]z−n

putting m = −n

y(z) =
∞∑

m=−∞
x[m]zm

= X(1/z)

If we combine it with the previous property, we get

{x∗[−n]} ↔ X∗(1/z∗), ROC = {z :
1

z
εRx}
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7. Convolution of sequence

{x[n]} ∗ {y[n]} ↔ X(z)Y (z), ROC contains Rx ∩ Ry

The z-transform of the convolution is

∞∑
n=−∞

(
∞∑

k=−∞
x[k]y[n − k])z−n

Interchanging the order of summation

=
∞∑

k=−∞
x[k]

∞∑
n=−∞

y[n − k]z−n

using time shifting property (or changing index of summation)

=
∞∑

k=−∞
x[k]z−kY (z)

= X(z)Y (z)

If there is pole-zero cancelation, the ROC will be larger than the common
ROC of two sequence.
Convolution property plays an important role in analysis of LTI system. An
LTI system, which produces a delay of n0, has the transfer function z−n0 ,
therefore delay of no units is often depicted by z−n0

FIGURE

8. Complex convolution theorem:

If we multiply two sequences then

{x[n]y[n]} ↔ 1

2πj

∮
X(v)Y (z/v)v−1dv, ROC contains {zw, zεRx, wεRy}

This can be proved using inverse z-transform definition.

9. Initial value Theorem:

If x[n] is zero for n < 0, i.e. x[n] is causal, then

x[0] = lim
z→∞

X(z)

Taking limit term by term in X(z), we get the above result.

7



10. Parseval’s relation:
∞∑

n=−∞
x[n]y∗[n] ↔ 1

2πj

∮
X(v)Y ∗(1/v∗)v−1dv

These properties are summarized in take 7.1

Table 7.1 z-transform properties

Sequence Transform ROC
1. {x[n]} X(z) Rx

2. a{x[n]} + b{y[n]} aX(z) + bY (z) contains Rx ∩ Ry

3. {x[n − n0]} z−noX(z) Rx, except change at z = o, z = ∞
4. {zn

0 x[n]} X(z/z0) {z/z0εRx}
5. {nx[n]} −z dX(z)

dz
Rx, except change at −z = 0, z = ∞

6. {x∗[n]} X∗(z∗) Rx

7. {x[−n]} X(1/z) {1/ZεRx}
8. {x[n]} ∗ {y[n]} X(z)Y (z) Contains Rx ∩ Ry

9. {x[n]y[n]} 1
2πj

∮
X(v)Y (z/v)u−1

dv Contains RxRy

1. Methods of inverse z-transform

We can use the contour integration and the equation (7.6) to calculate inverse
z-transform. This equation has to be evaluated for all values of n, which can
be quite complicated in many cases. Here we give two simple methods for
the inverse transform computation.

1. Inverse transform by partial fraction expansion:

This is method is useful when z-transform is ratio of polynomials. A rational
X(z) can be expressed as

X(z) =
N(z)

D(z)

where N(z) and D(z) are polynomials in z−1. If degree M of the numerator
polynomial N(z) is greater than or equal to the degree N of the denominator
polynomial D(z), we can divide N(z) by D(z) and re-express X(z) as

X(z) =
M−N∑
k=0

a[k]z−k +
N1(z)

D(z)
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where the degree of polynomial N1(z) is strictly less than that of D(z). For
simplicity let us assume that all poles are simple. Then

X(z) =
M−N∑
k=0

Bkz
−k +

N∑
k=1

Ak

1 − dkZ−l

where Ak = (1 − dkZ
−1)N1(z)

D(z)
|Z=dk

Example: Let

X(z) =
1 + 2z−1

(1 − ·2 z−1)(1 + · 6z−1)

The partial fraction expression is

X(z) =
A1

1 − ·2 z−1
+

A2

(1 + ·6 z−1)

A1 = (1 − ·2 z−1)X(z)|Z=·2 =
1 + 2z−1

1 + ·6 z−1
|z=·2 = 2.75

A2 = (1 − ·6 z−1)X(z)|Z=−·6 =
1 + 2z−1

1 − ·2z−1
|z=·−6 = −1.75

X(z) =
2.75

1 − ·2z−1
− 1.75

1 + ·6z−1

The inverse z-transform depends on the ROC. If ROC is |z| > ·6, then ROCs
associated with each term is outside a circle(so that common ROC is outside
a circle), sequences are causal. Using linearity property and z-transform of
anu[n] we get

x[n] = 2.75(0.2)nu[n] − 1.75(−.6)nu[n]

If the ROC is .2 < |z| < .6, the ROC of the term 1
1−.2z−1 should be outside

the circle |z| = .2, and ROC for 1
1+.6z−1 should be |z| < .6. Hence we get the

sequence as
x[n] = 2.75(.2)nu[n] + 1.75(−.6)nu[−n − 1]

Similarly if ROC is |Z| < .2 we get a noncausal sequence

x[n] = −2.75(.2)nu[−n − 1] + 1.75(−.6)nu[−n − 1]

If X(z) has multiple poles, the partial fraction has slightly different form. If
X(z) has a pole of order s at z = di, and all other poles are simple Then

X(z) =
M−N∑
k=0

Bkz
−k +

N∑
k=1,k �=i

Ak

1 − dkZ−1
+

s∑
m=1

Cm

(1 − diz−1)m
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where Ak and Bk are obtained as before, the coefficients Cm are given by

Cm =
1

(s − m)!(−di)s−m

{
ds−m

dws−m
(1 − diw)sX(w−1)

}
w=d−1

i

If there are more multiple poles, there will be more terms like the third term.
Using linearity and differentiation properties we get some useful z-transform
pairs given in Table 7.2
Table 7.2 Some useful z-transform pairs
Sequence Transform ROC
1. {δ[n]} 1 All z
2. {δ[n − m]} z−m All z, except 0(if m > 0) or ∞(if m < 0)
3. {anu[n]} 1

1−az−1
|z| > |a|

4. {−anu[−n − 1]} 1
1−az−1 |z| < |a|

5. {nanu[n]} az−1

(1−az−1)2
|z| > |a|

6. {−nanu[−n − 1]} az−1

(1−az−1)2
|z| < |a|

7. {rn cos w0nu[n]} 1−r cos w0z−1

1−2r cos w0z−1+r2 z−2 |z| > r

8. {rn sin w0nu[n]} sin w0 z−1

1−2r cos w0z−1+r2 z−2 |z| > r

9. {an, 0 ≤ n ≤ N − 1} 1−aN z−N

1−a z−1 |z| > 0

2. Inverse Transform via long division:

For causal sequence the z-transform X(z) can be exported into a pure series
in z−1. In the series expansion, the coefficient multiplying the term z−n is
x[n]. If X(z) is anticausal then we expand in terms of poles of z.
Example : Let

X(z) =
1 + 2z−1

(1 − .2z−1)(1 + .6z−1)
, ROC |z| > .6

This is a causal sequence, long division gives
LONG DIVISION EQUATION(to be done as image)

This gives x[0] = 1, x[1] = 1.6, x[2] = −.52, x[3] = .4,.....
We can see that it is not easy to write the nth term.
Example 2:

X(z) = ln(1 + az−1), |z| > |a|
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Using the pure series expansion for ln(1 + x) with |x| < |, we obtain

X(z) =
∞∑

n=1

(−1)n+1anz−n

n

x[n] =


 (−1)n+1 an

n
, n ≥ 1

0, otherwise

Analysis of LTI system using z-transform:

From the convolution property we have

Y (z) = H(z) X(z)

where X(z), Y (z)are H(z) are z-transforms of input sequence {x[n]}, output
sequence {y[n]} and impulse response {h[n]} respectively. The H(z) is re-
ferred to as system function or transfer function of the system. For z on the
unit circle (z = ejw), H(z) reduces to the frequency response of the system,
provided that unit circle is in the ROC for H(z).
A causal LTI system has impulse response {h[n]} such that h[n] = 0, n < 0.
Thus ROC of H(z) is exterior of a circle in z-plane including z = ∞. Thus
a discrete time LTI system is causal if and only if ROC is exterior of a circle
which includes infinity.
An LTI system is stable if and only if impulse response {h[n]} is absolutely
summable. This is equivalent to saying that unit circle is in the ROC of
H(z).
For a causal and stable system ROC is outside a circle and ROC contains
the unit circle. That means all the poles are inside the unit circle. Thus a
causal LTI system is stable if and if only if all the poles inside unit circle.

LTI systems characterized by Linear constant coefficient
difference equation:

For the system characterized by

N∑
k=0

aky[n − k] =
M∑

k=0

bkx[n − k]
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We take the z-transform of both sides and use linearity and the time shift
property to get

N∑
k=0

akz
−k Y (z) =

M∑
k=0

bkz
−k X(z)

H(z) =
Y (z)

X(z)
=

M∑
k=0

bkz
−k

N∑
k=0

akz−k

Thus the system function is always a rational function. We can write it by
inspection. Numerator polynomial coefficients are the coefficients of x[n −
k] and denominator coefficients are coefficients of y[n − k]. The difference
equation by itself does not provide information about the ROC, it can be
determined by conditions like causality and stability

System Function and block diagram representation:

The use of z-transform allows us to replace time domain operation such as
convolution time shifting etc with algebraic operations.
Consider the parallel interconnection if two system, as
FIGURE 7.1

shown in figure 7.1. The impulse response of the over all system is

{h[n]} = {h1[n]} + {h2[n]}
From linearity of the z-transform,

H(z) = H1(z) + H2(z)

Similarly, the impulse response of the series connection in figure 7.2 is

{h[n]} = {h1[n]} ∗ {h2[n]}
FIGURE 7.2

From the convolution property.

H(z) = H1(z)H2(z)

The z-transform of the interconnection of linear system can be obtained by
algebraic means. For example consider the feed back connection in figure 7.3
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FIGURE 7.3
We have

Y (z) = H1(z)E(z)

E(z) = X(z) − Z(z)

= X(z) − Y (z)H2(z)

or Y (z) = H1(z)[X(z) − Y (z)H2(z)]

Y (z)

X(z)
= H(z) =

H1(z)

1 + H1(z)H2(z)
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