DSP (Spring, 2007) The z-Transform

The z-Transform

< Introduction
® Why do we study them?
B A generalization of DTFT.
Some sequences that do not converge for DTFT have valid z-transforms.

B Better notation (compared to FT) in analytical problems (complex variable theory)

B Solving difference equation. - algebraic equation.

® [ourier Transform, Laplace Transform, DTFT, & z-Transform
Fourier Transform

Sx}= [ x(t)e Mt

To encompass a broader class of signals:

fw(x(t)e‘“)e‘jmdt = f; x(t)e™dt = L{x(t)} Laplace Transform
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X(t) = ix[k]é(t—kT)

Similarly,

L{x(0)} = { Z x[Klo(t—kT)}=[" {Z x[k]5(t —KT)}e “dt = x[k] [ s(t-km)edt

= _Zx[k]e‘SkT = Zx[k]z‘k = Z{x[n]}= X(2)

k=—0

z-Transform

® Eigenfunctions of discrete-time LTI systems

7" Discrete- H(z)z"
> Time LTI '

If x[n] =z, Z, : some complex constant

y[n]=x[n]*h[n]—2x[n k]h[k]—ZZS “hIK] = {zh[k]z ¥

Remark:

X(@) = 3 x[nle ™

N=—0o0

DTFT can be viewed as a special case: Z =€ Jo

=H (ZO)ZS
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< z-Transform

® (Two-sided) z-Transform (bilateral z-Transform)

Forward: Z{X[n]}= ix[n]z‘” = X (2)

N=—o0

From DTFT viewpoint: zgqngy = F{r"x(n]}

relo =z

(Or, DTFT is a special case of z-T when z = e®  unit circle.)

Inverse: y[n]= 2;§ X (2)z" 'z =Z2"[X(2)]

Note: The integration is evaluated along a counterclockwise circle on the complex z plane

with a radius r. (A proof of this formula requires the complex variable theory.)

® Single-sided z-Transform (unilateral) — for causal sequences

X(2)= 3 xn)z"

® Region of Convergence (ROC)

The set of values of z for which the z-transform converges.

B Uniform convergence
If z=rel® (polar form), the z-transform converges uniformly if x[n]r™" is absolutely

summable; that is,

i| X[n]r™" | < oo

n=—o
B Ingeneral, if some value of z, say z = z,, is in the ROC, then all values of z on the circle
defined by | z |=| z, | are also in the ROC. =» ROC is a “ring”.
B If ROC contains the unit circle, |z| =1, then the FT of this sequence converges.
B By its definition, X(z) is a Laurent series (complex variable)
=> X(z) is an analytic function in its ROC

=> All its derivatives are continuous (in z) within its ROC.
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B DTFT v.s. z-Transform

sinw.n
~x[n]= €, —oo<NnN<ow

Not absolutely summable; but square summable

- z-transform does not exist; DTFT (in m.s. sense) exists.

- X,[N]=cosw,n, —wo<n<o

Not absolutely summable; not square summable

- z-transform does not exist; “useful” DTFT (impulses) exists.

- x.[n]=a"u[n], |a]>1l -w<n<wx
3

—> z-transform exist (a certain ROC); DTFT does not exists.

® Some Common Z-T Pairs

B 5[nle1,6[n-m]le 27", m>0,|z|>0,

S[n+mle 2™, m>0,|z/<w»

u u[n]<—>1_z_l, z|>1—u[-n-1] & _1 —, |z]<1
" anunle - z| > |a]
1-az

—a”u[—n—1]<—>l_az_l, 2] < |a]
- 1-[rcos w,]z "

r" cos nJuln z| > r

oonJuin 1-[2rcos wy ]zt +r2z? d
. -1
r"sin [o,njuln] & L-[rsin @,z — |z]>r

1-[2rsin wy ]zt +r?z
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<> Properties of ROC for z-Transform

® Rational functions

P(2)
X(z)= -2
D=0

Poles — Roots of the denominator; the z such that X (z) — o
Zeros — Roots of the numerator; the z such that X (z) =0
B Properties of ROC
(1) The ROC is aring or disk in the z-plane centered at the origin.
(2) The ET. of x[n] converges absolutely < its ROC includes the unit circle.
(3) The ROC cannot contain any poles.
(4) 1f x[n] is finite-duration, then the ROC is the entire z-plane except possibly z =0 or
Z =00,
(5) If x[n] is right-sided, the ROC, if exists, must be of the form ‘Z‘ > Fax €XCept possi-
bly Z = o0, where I ... is the magnitude of the largest pole.
(6) Ifx[n] is left-sided, the ROC, if exists, must be of the form |z| < I, except possi-
blyz =0, where I is the magnitude of the smallest pole.
(7) Ifx[n] is two-sided, the ROC must be of the form r, < \z\ <r, if exists, where I and
I, are the magnitudes of the interior and exterior poles.

(8) The ROC must be a connected region.

In general, if X (Z) is rational, its inverse has the following form (assuming N poles: {d, })
x[n] = i A (d, )" - Foraright-sided sequence, it means n = N,, where Nj is the first

k=1
nonzero sample.
N
The nth term in the z-transform is x[n]r " = Z A (dkrfl)” ,
k=1

This sequence converges if i| dkr’l " <o for every pole k =1,..., N . Inorderto

n:Nl

beso, |r|>d, |, k=1...,N.
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< Pole Location and Time-Domain Behavior for Causal

Signals

Reference: Digital Signal Processing by Proakis & Manolakis

z-plane
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Figure 3.11 Time-domain behavior of a single-real pole causal signal as a function
it circle

of the location of the pole with respect to the uni
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Figure 3.13 A pair of complex-conjugate poles corresponds to causal signals with
oscillatory behavior.
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Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle.
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< The Inverse z-Transform

Inverse formula: X[n]:21_§X(z)z”‘ldz
2B

This formula can be proved using Cauchy integral theorem (complex variable theory).
® Methods of evaluating the inverse z-transform

(1) Table lookup or inspection

(2) Partial fraction expansion

(3) Power series expansion
® Inspection (transform pairs in the table) — memorized them
® Partial Fraction Expansion

N (oM
by +bz 7+ +b,z™ > X(Z)zZ (byz™ +---+by)
A+ @zt e +ayz M (82" +---+ay)

X(2)=

Hence, it has M zeros (roots of Zbkz“" ~K), N poles (roots of zakzN"‘ ), and (M-N)

poles at zero if M>N (or (N-M) zeros at zero if N>M).

> _byl-¢z)--(@-cyz™) ; ¢, , nonzero zeros; d, , nonzero poles.
X(z)= ~ =) k k
aO(l_dlz )"'(l_dNZ )
B Casel: M < N, strictly proper
Simple (single) poles:

X(Z)= Ai ~ + A2 5 +...+¢71
@-diz7) (@-d,z7) (1-dyz™)

where A =(1-d,z )X (2)],-q,

Multiple poles: Assume di is the sth order pole. (Repeated s times)

3 Ak C1 CZ Cs
X(2) = k=§$i (l—dszl) +(1—di271) + (1—di271)2 +oo 4 (1_di2’1)s

single-pole terms multiple-pole terms
where c 1 dsm
" (s—m)l(=d,)*™ | dws "

[@-diw)° X (W‘l)]}

W=di71

B Case2: M >N

X(z):MZ_:NB 77"+ y A +i Cn
r i (-diz™) amE-diz "

impulses  single-poles multiple-pole
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® Power Series Expansion

0

X(2)= Y x[n]z™"

n=-ow

B Case 1. Right-sided sequence, ROC: |Z| > lax

It is expanded in powers of Z_l.

EX. X (2)=

o lzblal

B Case 2: Left-sided sequence, ROC: ‘Z‘< Fin

It is expanded in powers of Z.

EX. X (2) = 1z|<al

1-azt’

W Case 3: Two-sided sequence, ROC: , < \z\ <r,
X(z)= X, (2) + X_(2)
converges for | Z [> I, converges for | Z |< T,
2 xX[n]= x.[n] + x_[n]

causal sequence anti-causal sequence

The z-Transform
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< z-Transform Properties

If x[n] &> X[z] and y[n] <> Y[z], ROC: Ry, Ry

B Linearity: ax[n]+by[n] <> aX(z)+bY (2)
ROC: R'> Ry, MR, -- At least as large as their intersection; larger if pole/zero can-

cellation occurs
W Time Shifting: x[n—n,]<>z ™X(z) ROC: R'=R, £{0o0r o |

B Multiplication by an exponential segence:

a"x[n] <> X(z/a) ROC: R'=[aR, -- €xpands or contracts

m Differentiation of X(2): nx[n] <> -z dX(z)' ROC: R'=Ry
dz

B Conjugation of a complex sequence: x*[n] <> X *(z*), ROC: R'=R,

B Time reversal: x*[-n]< X *(1/z%),
ROC: R'=1/R, (Meaning: If R, i1y <|z|<r ,then R"1/1 <|z|<1/rg.

Corollary: x[-n] <> X (1/z2)

B Convolution: x[n]=*y[n] <> X (2)Y (2)

ROC: R'> Ry N R, (=, if no pole/zero cancellation)

B Initial Value Theorem:

If x[n]=0, n<0, then x[0]= lim X (2)
Z—>0

10
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B Final Value Theorem:
If (1) x[n]=0, n<0, and
(2) all singularities of (1—z ") X (z) are inside the unit circle,
then x[oo] = lim(1 - 71X (2)

Remarks: (1) If all poles of X(z) are inside unit circle, Xx[n] ->0asn — o
(2) If there are multiple poles at “1”, X[n] — w0 asn — o

(3) If poles are on the unit circle but not at “1”, x[n] = cos wyn

<Supplementary>
z-Transform Solutions of Linear Difference Equations

Use single-sided z-transform:
Z{yln-1}=2"Y (2) + y[-1]
Z{yln-2}=2Y () + 2 y[-1+y[-2]
Z{yIn -3} =Y (2) + 2 y[-U+ 27y[-2] + y[-3]

For causal signals, their single-sided z-transforms are identical to their two-sided

z-transforms.

Ex., Find y[n] of the difference eqn.
y[n]-0.5y[n—-1]= x[n] with x[n]=1,n>0,and y[-1]=1

(Sol) Take the single-sided z-transform of the above eqgn.

1

ZY@-05Z Y@y =X (@)=

1 1
> Y@= {1—0.5z—1}{0'5+1— 2‘1}

__ 05 | 1
1-05z% (@1-05zH)@1-z1)
2 0.5

2Y(2)=

1-z' 1-05z7°
Take the inverse z-transform

> y[n]=2-0.5(0.5)", n>0
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