
The Fourier Transform

As we have seen, any (sufficiently smooth) function f(t) that is periodic can be built out of sin’s and

cos’s. We have also seen that complex exponentials may be used in place of sin’s and cos’s. We shall now

use complex exponentials because they lead to less writing and simpler computations, but yet can easily be

converted into sin’s and cos’s. If f(t) has period 2ℓ, its (complex) Fourier series expansion is

f(t) =
∞∑

k=−∞
ckeik π

ℓ
t with ck = 1

2ℓ

∫ ℓ

−ℓ

f(t)e−ik π

ℓ
t dt (1)

Not surprisingly, each term ckeik π

ℓ
t in this expansion also has period 2ℓ, because ckeik π

ℓ
(t+2ℓ) =

ckeik π

ℓ
tei2kπ = ckeik π

ℓ
t. We now develop an expansion for non-periodic functions, by allowing complex

exponentials (or equivalently sin’s and cos’s) of all possible periods, not just 2ℓ, for some fixed ℓ. So, from

now on, do not assume that f(t) is periodic.

For simplicity we’ll only develop the expansions for functions that are zero for all sufficiently large |t|.
With a little more work, one can show that our conclusions apply to a much broader class of functions. Let

L > 0 be sufficiently large that f(t) = 0 for all |t| ≥ L. We can get a Fourier series expansion for the part

of f(t) with −L < t < L by using the periodic extension trick. Define FL(t) to be the unique function

determined by the requirements that

i) FL(t) = f(t) for − L < t ≤ L

ii) FL(t) is periodic of period 2L

Then, for −L < t < L,

f(t) = FL(t) =

∞∑

k=−∞
ck(L)eik π

L
t where ck(L) = 1

2L

∫ L

−L

f(t)e−ik π

L
t dt (2)

If we can somehow take the limit L → ∞, we will get a representation of f that is is valid for all t’s , not

just those in some finite interval −L < t < L. This is exactly what we shall do, by the simple expedient

of interpreting the sum in (2) as a Riemann sum approximation to a certain integral. For each integer k,

define the kth frequency to be ωk = k π
L and denote by ∆ω = π

L the spacing, ωk+1 − ωk, between any two

successive frequencies. Also define f̂(ω) =
∫ ∞
−∞ f(t)e−iωt dt. Since f(t) = 0 for all |t| ≥ L

ck(L) = 1
2L

∫ L

−L

f(t)e−ik π

L
t dt = 1

2L

∫ ∞

−∞
f(t)e−i(k π

L
)t dt = 1

2L

∫ ∞

−∞
f(t)e−iωkt dt = 1

2L f̂(ωk) = 1
2π f̂(ωk)∆ω

In this notation,

f(t) = FL(t) = 1
2π

∞∑

k=−∞
f̂(ωk)eiωkt∆ω (3)

for any −L < t < L. As we let L → ∞, the restriction −L < t < L disappears, and the right hand

side converges exactly to the integral 1
2π

∫ ∞
−∞ f̂(ω)eiωt dω. To see this, cut the domain of integration into

ω

y

y = 1
2π f̂(ω)eiωt

0 ω1 ω2 ω3 ∆ω
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small slices of width ∆ω and approximate, as in the above figure, the area under the part of the graph of
1
2π f̂(ω)eiωt with ω between ωk and ωk + ∆ω by the area of a rectangle of base ∆ω and height 1

2π f̂(ωk)eiωkt.

This approximates the integral 1
2π

∫ ∞
−∞ f̂(ω)eiωt dω by the sum 1

2π

∑∞
k=−∞ f̂(ωk)eiωkt∆ω. As L → ∞ the

approximation gets better and better so that the sum approaches the integral. So taking the limit of (3) as

L → ∞ gives

f(t) = 1
2π

∫ ∞

−∞
f̂(ω)eiωt dω where f̂(ω) =

∫ ∞

−∞
f(t)e−iωt dt (4)

The function f̂ is called the Fourier transform of f . It is to be thought of as the frequency profile of the

signal f(t).

Example 1 Suppose that a signal gets turned on at t = 0 and then decays exponentially, so that

f(t) =

{
e−at if t ≥ 0
0 if t < 0

for some a > 0. The Fourier transform of this signal is

f̂(ω) =

∫ ∞

−∞
f(t)e−iωt dt =

∫ ∞

0

e−ate−iωt dt =

∫ ∞

0

e−t(a+iω) dt =
e−t(a+iω)

−(a + iω)

∣∣∣∣
∞

0

=
1

a + iω

Since a + iω has modulus
√

a2 + ω2 and phase tan−1 ω
a , we have that f̂(ω) = A(ω)eiφ(ω) with A(ω) =

1
|a+iω| = 1√

a2+ω2
and φ(ω) = − tan−1 ω

a . The amplitude A(ω) and phase φ(ω) are plotted below.

A(ω)

ωaa

ϕ(ω)

ωaa

Example 2 Suppose that a signal consists of a single rectangular pulse of width 1 and height 1. Let’s

say that it gets turned on at t = − 1
2 and turned off at t = 1

2 . The standard name for this “normalized”

rectangular pulse is

rect(t) =

{
1 if − 1

2 < t < 1
2

0 otherwise
t1

2− 1
2

1

It is also called a normalized boxcar function. The Fourier transform of this signal is

r̂ect(ω) =

∫ ∞

−∞
rect(t) e−iωt dt =

∫ 1/2

−1/2

e−iωt dt =
e−iωt

−iω

∣∣∣∣
1/2

−1/2

=
eiω/2 − e−iω/2

iω
= 2

ω sin ω
2
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when ω 6= 0. When ω = 0, r̂ect(0) =
∫ 1/2

−1/2 dt = 1. By l’Hôpital’s rule

lim
ω→0

r̂ect(ω) = lim
ω→0

2
sin ω

2

ω
= lim

ω→0
2

1
2 cos ω

2

1
= 1 = r̂ect(0)

so r̂ect(ω) is continuous at ω = 0. There is a standard function called “sinc” that is defined(1) by sincω =
sin ω

ω . In this notation r̂ect(ω) = sinc ω
2 . Here is a graph of r̂ect(ω).

r̂ect(ω)

ω
2π−2π

1

Properties of the Fourier Transform

Linearity

If α and β are any constants and we build a new function h(t) = αf(t) + βg(t) as a linear combination

of two old functions f(t) and g(t), then the Fourier transform of h is

ĥ(ω) =

∫ ∞

−∞
h(t)e−iωt dt =

∫ ∞

−∞

[
αf(t) + βg(t)

]
e−iωt dt = α

∫ ∞

−∞
f(t)e−iωt dt + β

∫ ∞

−∞
g(t)e−iωt dt

= αf̂(ω) + βĝ(ω)

(L)

Time Shifting

Suppose that we build a new function h(t) = f(t − t0) by time shifting a function f(t) by t0. The easy

way to check the direction of the shift is to note that if the original signal f(t) has a jump when its argument

t = a, then the new signal h(t) = f(t − t0) has a jump when t − t0 = a, which is at t = a + t0, t0 units to

the right of the original jump.

t0

f(t) h(t) = f(t − t0)

ta a + t0
The Fourier transform of h is

ĥ(ω) =

∫ ∞

−∞
h(t)e−iωt dt =

∫ ∞

−∞
f(t − t0)e

−iωt dt =

∫ ∞

−∞
f(t′)e−iω(t′+t0) dt′ where t = t′ + t0, dt = dt′

= e−iωt0

∫ ∞

−∞
f(t′)e−iωt′ dt′ = e−iωt0 f̂(ω)

(T)

(1) There are actually two different commonly used definitions. The first, which we shall use, is sincω = sin ω

ω
. The second is

sinc ω = sin πω

πω
. It is sometimes called the normalized sinc function.
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Scaling

If we build a new function h(t) = f
(

t
α

)
by scaling time by a factor of α > 0, then the Fourier transform

of h is

ĥ(ω) =

∫ ∞

−∞
h(t)e−iωt dt =

∫ ∞

−∞
f
(

t
α

)
e−iωt dt = α

∫ ∞

−∞
f(t′)e−iωαt′ dt′ where t = αt′, dt = αdt′

= αf̂(αω)

(S)

Example 3 Now consider a signal that consists of a single rectangular pulse of height H , width W and

centre C.

H

C − W
2 C + W

2

y

y = rHWC(t)

t

The function rHWC(t) = H rect
(

t−C
W

)
(with rect the normalized rectangular pulse of Example 2) has height

H and jumps when t−C
W = ± 1

2 , i.e. t = C ± 1
2W and so is the specified signal. By combining properties (L),

(T) and (S), we can determine the Fourier transform of rHWC(t) = H rect
(

t−C
W

)
for any H , C and W . We

build it up in three steps.

◦ First we consider the special case in which H = 1 and C = 0. Then we have R1(t) = rect
(

t
W

)
. So,

according to the scaling property (S) with

f(t) = rect(t), h(t) = R1(t) = rect
(

t
W

)
= f

(
t

W

)
= f

(
t
α

)
with α = W

we have

R̂1(ω) = ĥ(ω) = αf̂(αω) = W r̂ect(Wω) = W 2
Wω sin Wω

2 = 2
ω sin Wω

2

◦ Next we allow a nonzero C too and consider R2(t) = rect
(

t−C
W

)
= R1(t − C). By (T), with

f(t) = R1(t), h(t) = R2(t) = R1(t − C) = f(t − t0), with t0 = C

the Fourier transform is

R̂2(ω) = ĥ(ω) = e−iωt0 f̂(ω) = e−iωCR̂1(ω) = We−iωC r̂ect
(
Wω

)

◦ Finally, by (L), with α = H and β = 0, the Fourier transform of rHWC = H rect
(

t−C
W

)
= HR2(t) is

r̂HWC(ω) = HR̂2(ω) = HWe−iωC r̂ect(Wω) = HWe−iωC 2
Wω sin Wω

2 = e−iωC 2H
ω sin Wω

2

Example 4

Now suppose that we have a signal that consists of a number of rectangular pulses of various heights

and widths. Here is an example
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−2 −1 0 1 2 3 4

1

2

y

y = s(t)

t

We can write this signal as a sum of rectangular pulses. As we saw in the last example, rHWC(t) = H rect
(

t−C
W

)

is a single rectangular signal with height H , centre C and width W . So

s(t) = s1(t) + s2(t) + s3(t) where sn(t) = rHWC(t) with

{
H = 2, W = 1, C = −1.5 for n = 1
H = 1, W = 2, C = 1 for n = 2
H = 0.5, W = 2, C = 3 for n = 3

So, using (L) and r̂HWC(ω) = e−iωC 2H
ω sin Wω

2 , which we derived in Example 3,

ŝ(ω) = ŝ1(ω) + ŝ2(ω) + ŝ3(ω) = 4
ω ei 3

2
ω sin ω

2 + 2
ω e−iω sin ω + 1

ω e−i3ω sin ω

Differentiation

If we build a new function h(t) = f ′(t) by differentiating an old function f(t), then the Fourier transform

of h is

ĥ(ω) =

∫ ∞

−∞
h(t)e−iωt dt =

∫ ∞

−∞
f ′(t)e−iωt dt

Now integrate by parts with u = e−iωt and dv = f ′(t) dt so that du = −iωe−iωt dt and v = f(t). Assuming

that f(±∞) = 0, this gives

ĥ(ω) =

∫ ∞

−∞
u dv = uv

∣∣∣
∞

−∞
−

∫ ∞

−∞
v du = −

∫ ∞

−∞
f(t) (−iω)e−iωt dt = iωf̂(ω) (D)

Example 5 The differentiation property is going to be useful when we use the Fourier transform to solve

differential equations. As an example, let’s take another look at the RLC circuit

+

−
x(t)

R L

C

+

−

y(t)

thinking of the voltage x(t) as an input signal and the voltage y(t) as an output signal. If we feed any input

signal x(t) into an RLC circuit, we get an output y(t) which obeys the differential equation

LCy′′(t) + RCy′(t) + y(t) = x(t) (5)
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You should be able to quickly derive this equation, which is also (16) in the notes “Fourier Series”, on your

own. Take the Fourier transform of this whole equation and use that

◦ the Fourier transform of y′(t) is iωŷ(ω) and

◦ the Fourier transform of y′′(t) is iω times the Fourier transform of y′(t) and so is −ω2ŷ(ω)

So the Fourier transform of (5) is

−LCω2ŷ(ω) + iRCωŷ(ω) + ŷ(ω) = x̂(ω)

This is trivially solved for

ŷ(ω) = x̂(ω)
−LCω2+iRCω+1 (6)

which exhibits classic resonant behaviour. The circuit acts independently on each frequency ω component

of the signal. The amplitude |ŷ(ω)| of the frequency ω part of the output signal is the amplitude |x̂(ω)| of

the frequency ω part of the input signal multiplied by A(ω) = 1
|−LCω2+iRCω+1| = 1√

(1−LCω2)2+R2C2ω2
.

ω

A

We shall shortly learn how to convert (6) into an equation that expresses the time domain output signal y(t)

in terms of the time domain input signal x(t).

Example 6 The Fourier transform, r̂ect(ω), of the rectangular pulse function of Example 2 decays rather

slowly, like 1
ω for large ω. We can try suppressing large frequencies by eliminating the discontinuities at

t = ± 1
2 in rect(t). For example

g(t) =





0 if t ≤ − 5
8

4(t + 5
8 ) if − 5

8 ≤ t ≤ − 3
8

1 if − 3
8 ≤ t ≤ 3

8

4(5
8 − t) if 3

8 ≤ t ≤ 5
8

0 if t ≥ 5
8

y = g(t)

t

y

3
8− 3

8
5
8− 5

8

1

It is not very difficult to evaluate the Fourier transform ĝ(ω) directly. But it easier to use properties (L)–(D),

since

g′(t) =





0 if t ≤ − 5
8

4 if − 5
8 ≤ t ≤ − 3

8

0 if − 3
8 ≤ t ≤ 3

8

−4 if 3
8 ≤ t ≤ 5

8

0 if t ≥ 5
8





= s4(t) + s5(t)

y = g′(t)

t

y

3
8

− 3
8

5
8

− 5
8

where sn(t) = rHWC(t) with

{
H = 4, W = 1

4 , C = − 1
2 for n = 4

H = −4, W = 1
4 , C = 1

2 for n = 5

By Example 3, the Fourier transform of

ŝ4(ω) + ŝ5(ω) = 8
ω eiω/2 sin ω

8 − 8
ω e−iω/2 sin ω

8 = 2i 8
ω sin ω

2 sin ω
8
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By Property (D), the Fourier transform of g′(t) is iω times ĝ(ω). So the Fourier transform of g(t) is 1
iω times

the Fourier transform of g′(t):

ĝ(ω) = 1
iω

(
2i 8

ω sin ω
2 sin ω

8

)
= 16

ω2 sin ω
2 sin ω

8

This looks somewhat like the the Fourier transform in Example 2 but exhibits faster decay for large ω.

ĝ(ω)

ω
2π−2π

1

Parseval’s Relation

The energy carried by a signal f(t) is

∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
f(t)f(t) dt

Subbing in that

f(t) = 1
2π

∫ ∞

−∞
f̂(ω)eiωt dω = 1

2π

∫ ∞

−∞
f̂(ω) eiωt dω = 1

2π

∫ ∞

−∞
f̂(ω)e−iωt dω

we have that

∫ ∞

−∞
|f(t)|2 dt = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t)f̂(ω)e−iωt dω dt = 1

2π

∫ ∞

−∞
f̂(ω)

[∫ ∞

−∞
f(t)e−iωt dt

]
dω

= 1
2π

∫ ∞

−∞
f̂(ω) f̂(ω) dω = 1

2π

∫ ∞

−∞
|f̂(ω)|2 dω

This formula,
∫ ∞
−∞ |f(t)|2 dt = 1

2π

∫ ∞
−∞ |f̂(ω)|2 dω, is called Parseval’s relation.

Duality

The duality property says that if we build a new time–domain function g(t) = f̂(t) by exchanging the

roles of time and frequency, then the Fourier transform of g is

ĝ(ω) = 2πf(−ω) (Du)

To verify this, just write down just the definition of ĝ(ω) and the Fourier inversion formula (4) for f(t) and,

in both integrals, make a change of variables so that the integration variable is s:

ĝ(ω) =

∫ ∞

−∞
g(t)e−iωt dt =

∫ ∞

−∞
f̂(t)e−iωt dt

t=s
=

∫ ∞

−∞
f̂(s) e−iωs ds

f(t) = 1
2π

∫ ∞

−∞
f̂(ω)eiωt dω

ω=s
= 1

2π

∫ ∞

−∞
f̂(s) eist ds

So ĝ(ω), which is given by the last integral of the first line is exactly 2π times the last integral of the second

line with t replaced by −ω, which is 2πf(−ω).
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Example 7 In this example, we shall compute the Fourier transform of sinc(t) = sin t
t . Our starting point

is Example 2, where we saw that the Fourier transform of the rectangular pulse rect(t) of height one and

width one is r̂ect(ω) = 2
ω sin ω

2 = sinc ω
2 . So, by duality (Du), with f(t) = rect(t) and g(t) = f̂(t) = r̂ect(t),

the Fourier transform of g(t) = sinc t
2 is ĝ(ω) = 2πf(−ω) = 2π rect(−ω) = 2π rect(ω), since rect(t) is

even. So we now know that the Fourier transform of sinc t
2 is 2π rect(t). To find the Fourier transform

of sinc(t), we just need to scale the 1
2 out of t

2 . So we apply the scaling property (S) with f(t) = sinc t
2

and h(t) = sinc(t) = f(2t) = f
(

t
α

)
where α = 1

2 . By (S), the Fourier transform of h(t) = sinc(t) is

αf̂(αω) = α 2π rect(αω) = π rect
(

ω
2

)
.

Multiplication and Convolution

A very common operation in signal processing is that of filtering. It is used to eliminate high frequency

noise and also to eliminate sixty cycle hum, arising from the ordinary household AC current. It is also

used to extract the signal from any one desired radio or TV station. In general, the filter is described

by a function Ĥ(ω) of frequency. For example you might have Ĥ(ω) = 1 for desired frequencies and

Ĥ(ω) = 0 for undesirable frequencies. When a signal f(t) is fed into the filter, an output signal g(t), whose

Fourier transform is f̂(ω)Ĥ(ω) is produced. For example, the RLC circuit of Example 5 is a filter with

Ĥ(ω) = 1
−LCω2+iRCω+1 .

The question “what is g(t)?” remains. Of course it is the inverse Fourier transform

g(t) = 1
2π

∫ ∞

−∞
f̂(ω)Ĥ(ω)eiωt dω

of f̂(ω)Ĥ(ω), but we would like to express it more directly in terms of the original time–domain signal f(t).

So let’s substitute f̂(ω) =
∫ ∞
−∞ f(τ)e−iωτ dτ (which expresses f̂(ω) in terms f(t)) and see if we can simplify

the result.

g(t) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
f(τ)e−iωτ Ĥ(ω)eiωt dτdω

=

∫ ∞

−∞
f(τ)

[
1
2π

∫ ∞

−∞
Ĥ(ω)eiω(t−τ) dω

]
dτ

=

∫ ∞

−∞
f(τ)H(t − τ) dτ

The last integral is called a convolution integral and is denoted

(f ∗ H)(t) =

∫ ∞

−∞
f(τ)H(t − τ) dτ

If we make the change of variables τ = t − τ ′, dτ = −dτ ′ we see that we can also express

(f ∗ H)(t) =

∫ −∞

∞
f(t − τ ′)H(τ ′) (−dτ ′) =

∫ ∞

−∞
f(t − τ ′)H(τ ′) dτ ′

We conclude that

ĝ(ω) = f̂(ω)Ĥ(ω) =⇒ g(t) = (f ∗ H)(t) (C)

Example 8 The convolution integral gives a sort of moving weighted average, with the weighting determined

by H . Its value at time t involves the values of f for times near t. I say “sort of” because there is no

requirement that
∫ ∞
−∞ H(t) dt = 1 or even that H(t) ≥ 0.
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Suppose for example, that we use the filter with

Ĥ(ω) = 2
ω sin ω

2

The graph of this function was given in Example 2. It is a “low pass filter” in the sense that it lets through

most small frequencies ω and suppresses high frequencies. It is not really a practical filter, but I have chosen

it anyway because it is relatively easy to see the effect of this filter in t–space. From Example 2 we know

that

H(t) =

{
1 if − 1

2 < t < 1
2

0 otherwise

So when this filter is applied to a signal f(t), the output at time t is

(f ∗ H)(t) =

∫ ∞

−∞
f(t − τ)H(τ) dτ =

∫ 1

2

− 1

2

f(t − τ) dτ = −
∫ t− 1

2

t+ 1

2

f(τ ′) dτ ′ where τ ′ = t − τ, dτ ′ = −dτ

=

∫ t+ 1

2

t− 1

2

f(τ ′) dτ ′

which is the area under the part of the graph of f(τ ′) from τ ′ = t− 1
2 to τ ′ = t+ 1

2 . To be concrete, suppose

that the input signal is

f(τ ′) =
{

1 if τ ′ ≥ 0
0 if τ ′ < 0

τ ′

y

Then the output signal at time t is the area under the part of this graph from τ ′ = t − 1
2 to τ ′ = t + 1

2 .

◦ if t + 1
2 < 0, that is t < − 1

2 , then f(τ ′) = 0 for all t − 1
2 < τ ′ < t + 1

2 (see the figure below) so that

(f ∗ H)(t) = 0

t− 1

2
t+ 1

2
τ ′

y
y = f(τ ′)

◦ if t + 1
2 ≥ 0 but t − 1

2 ≤ 0, that is − 1
2 ≤ t ≤ 1

2 , then f(τ ′) = 0 for t − 1
2 < τ ′ < 0 and f(τ ′) = 1 for

0 < τ ′ < t + 1
2 (see the figure below) so that (f ∗ H)(t) =

∫ t+ 1

2

t− 1

2

f(τ ′) dτ ′ =
∫ t+ 1

2

0
1 dτ ′ = t + 1

2

t− 1

2
t+ 1

2
τ ′

y
y = f(τ ′)

◦ if t − 1
2 > 0, that is t > 1

2 , then f(τ ′) = 1 for all t − 1
2 < τ ′ < t + 1

2 and (f ∗ H)(t) =
∫ t+ 1

2

t− 1

2

f(τ ′) dτ ′ =
∫ t+ 1

2

t− 1

2

1 dτ ′ = 1.

t− 1

2
t+ 1

2
τ ′

y
y = f(τ ′)

All together, the output signal is

February 25, 2007 The Fourier Transform 9



(f ∗ H)(t) =





0 if t < − 1
2

t + 1
2 if − 1

2 ≤ t ≤ 1
2

1 if t > 1
2

y = (f ∗ H)(t)

t

y

− 1
2

1
2

Example 9

For a similar, but more complicated example, we can through the procedure of Example 8 with H(t)

still being rect(t) but with f(t) replaced by the more complicated signal s(t) of Example 4. This time the

output signal at time t is

(s ∗ H)(t) =

∫ ∞

−∞
s(t − τ)H(τ) dτ =

∫ 1

2

− 1

2

s(t − τ) dτ =

∫ t+ 1

2

t− 1

2

s(τ ′) dτ ′ where τ ′ = t − τ

which is the area under the part of the graph of s(τ ′) from τ ′ = t − 1
2 to τ ′ = t + 1

2 . We can read off this

area from the figures below. In each figure, the left hand vertical dotted line is τ ′ = t− 1
2 and the right hand

vertical dotted line is τ ′ = t+ 1
2 . The first figure has t so small that the entire interval t− 1

2 < τ ′ < t+ 1
2 is to

the left of τ ′ = −2, where the graph of s(τ ′) “starts”. Then, in each successive figure, we increase t, moving

the interval to the right. In the final figure t is large enough that the entire interval t− 1
2 < τ ′ < t + 1

2 is to

the right of τ ′ = 4, where the graph of s(τ ′) “ends”.

−2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

τ ′

Case: t + 1
2 < −2, that is t < − 5

2

area = 0

t− 1

2
t+ 1

2 −2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

τ ′

Case: −2 ≤ t + 1
2 ≤ −1, that is − 5

2 ≤ t ≤ − 3
2

area = 2((t + 1
2 ) − (−2)) = 2t + 5

−2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

τ ′

Case: −1 ≤ t + 1
2 ≤ 0, that is − 3

2 ≤ t ≤ − 1
2

area = 2((−1) − (t − 1
2 )) = −1 − 2t

−2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

τ ′

Case: 0 ≤ t + 1
2 ≤ 1, that is − 1

2 ≤ t ≤ 1
2

area = t + 1
2

−2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

τ ′

Case: 1 ≤ t + 1
2 ≤ 2, that is 1

2 ≤ t ≤ 3
2

area = 1

−2 −1 0 1 2 3 4

1

2
y

τ ′

Case: 2 ≤ t + 1
2 ≤ 3, that is 3

2 ≤ t ≤ 5
2

area = [2 − (t − 1
2 ) + 1

2 [(t + 1
2 ) − 2] = 7

4 − 1
2 t
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−2 −1 0 1 2 3 4

1

2
y

τ ′

Case: 3 ≤ t + 1
2 ≤ 4, that is 5

2 ≤ t ≤ 7
2

area = 1
2

−2 −1 0 1 2 3 4

1

2
y

τ ′

Case: 4 ≤ t + 1
2 ≤ 5, that is 7

2 ≤ t ≤ 9
2

area = 1
2 [4 − (t − 1

2 )] = 9
4 − 1

2 t

−2 −1 0 1 2 3 4

1

2
y

y = s(τ ′)

Case: t − 1
2 > 4, that is t > 9

2

area = 0

t− 1

2
t+ 1

2

All together, the graph of the output signal is

−2 −1 0 1 2 3 4

1

2

(s ∗ H)(t)

t

Impulses

The inverse Fourier transform H(t) of Ĥ(ω) is called the impulse response function of the filter, because

it is the output generated when the input is an impulse at time 0. An impulse, usually denoted δ(t) (and

called a “delta function”) takes the value 0 for all times t 6= 0 and the value ∞ at time t = 0. In fact it is

so infinite at time 0 that the area under its graph is exactly 1. Of course there isn’t any such function, in

t

y

y = δ(t)

∞

the usual sense of the word. But it is possible to generalize the concept of a function (to something called

a distribution or a generalized function) so as to accommodate delta functions. One generalization involves
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taking the limit as ε → 0 of “approximate delta functions” like

δε(t) =

{
1
2ε if −ε < t < ε

0 otherwise
t

y

y = δε(t)

−ε ε

1
2ε

A treatment of these generalization procedures is well beyond the scope of this course. Fortunately, in practice

it suffices to be able to compute the value of the integral
∫ ∞
−∞ δ(t)f(t) dt for any continuous function f(t)

and that is easy. Because δ(t) = 0 for all t 6= 0, δ(t)f(t) is the same as δ(t)f(0). (Both are zero for t 6= 0.)

Because f(0) is a constant, the area under δ(t)f(0) is f(0) times the area under δ(t), which we already said

is 1. So ∫ ∞

−∞
δ(t)f(t) dt = f(0)

In particular, choosing f(t) = e−iωt gives the Fourier transform of δ(t):

δ̂(ω) =

∫ ∞

−∞
δ(t)e−iωt dt = e−iωt

∣∣
t=0

= 1

By the time shifting property (T), the Fourier transform of δ(t − t0) (where t0 is a constant) is e−iωt0 . We

may come to the same conclusion by first making the change of variables τ = t − t0 to give

∫ ∞

−∞
δ(t − t0)e

−iωt dt
τ=t−t0=

∫ ∞

−∞
δ(τ)e−iω(τ+t0) dτ

and then applying
∫ ∞
−∞ δ(τ)f(τ) dτ = f(0) with f(τ) = e−iω(τ+t0).

Returning to the impulse response function, we can now verify that the output generated by a filter

Ĥ(ω) in response to the impulse input signal δ(t) is indeed

(δ ∗ H)(t) =

∫ ∞

−∞
δ(τ)H(t − τ) dτ = H(t)

where we have applied
∫ ∞
−∞ δ(τ)f(τ) dτ = f(0) with f(τ) = H(t − τ).

Example 10 We saw in (6) that for an RLC circuit

Ĥ(ω) = 1
−LCω2+iRCω+1

To make the numbers work out cleanly, let’s choose R = 1, L = 6 and C = 5. Then

Ĥ(ω) = 1
−6ω2+i5ω+1 = 1

(3iω+1)(2iω+1)

Recall from Example 1 that

f(t) =

{
e−at if t ≥ 0
0 if t < 0

⇒ f̂(ω) = 1
a+iω (7)

So we can determine the impulse response function H(t) for the RLC filter just by using partial fractions to

write H(ω) as a linear combination of 1
a+iω ’s. Since

Ĥ(ω) =
1

(3iω + 1)(2iω + 1)
=

a

3iω + 1
+ b

2iω+1 =
a(2iω + 1) + b(3iω + 1)

(3iω + 1)(2iω + 1)
=

(2a + 3b)iω + (a + b)

(3iω + 1)(2iω + 1)

⇐⇒ 2a + 3b = 0, a + b = 1 ⇐⇒ b = 1 − a, 2a + 3(1 − a) = 0 ⇐⇒ a = 3, b = −2
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we have, using (7) with a = 1
3 and a = 1

2 ,

Ĥ(ω) =
3

3iω + 1
− 2

2iω + 1
=

1
1
3 + iω

− 1
1
2 + iω

⇒ H(t) =

{
e−t/3 − e−t/2 if t ≥ 0
0 if t < 0

which has graph

t

y

y = H(t)

Example 10 (again) Here is a sneakier way to do the partial fraction expansion of Example 10. We know

that Ĥ(ω) has a partial fraction expansion of the form

Ĥ(ω) =
1

(3iω + 1)(2iω + 1)
=

a

3iω + 1
+

b

2iω + 1

The fast way to determine a is to multiply both sides of this equation by (3iω + 1)

1

2iω + 1
= a +

b(3iω + 1)

2iω + 1

and then evaluate both sides at 3iω + 1 = 0. Then the b term becomes zero, because of the factor (3iω + 1)

in the numerator and we get

a =
1

2iω + 1

∣∣∣∣
iω=− 1

3

=
1
1
3

= 3

Similarly, multiplying by (2iω + 1) rather than (3iω + 1),

b =
1

3iω + 1

∣∣∣∣
2iω+1=0

=
1

3iω + 1

∣∣∣∣
iω=− 1

2

=
1

− 1
2

= −2
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Properties of the Fourier Transform

Property Signal Fourier Transform

x(t) = 1
2π

∫ ∞
−∞ x̂(ω)eiωt dω x̂(ω) =

∫ ∞
−∞ x(t)e−iωt dt

y(t) = 1
2π

∫ ∞
−∞ ŷ(ω)eiωt dω ŷ(ω) =

∫ ∞
−∞ y(t)e−iωt dt

Linearity Ax(t) + By(t) Ax̂(ω) + Bŷ(ω)

Time shifting x(t − t0) e−iωt0 x̂(ω)

Frequency shifting eiω0tx(t) x̂(ω − ω0)

Scaling x
(

t
α

)
|α|x̂(αω)

Time shift & scaling x
(

t−t0
α ) |α|e−iωt0 x̂(αω)

Frequency shift & scaling |α|eiω0tx(αt) x̂
(

ω−ω0

α

)

Conjugation x(t) x̂(−ω)

Time reversal x(−t) x̂(−ω)

t–Differentiation x′(t) iωx̂(ω)

x(n)(t) (iω)nx̂(ω)

ω–Differentiation tx(t) i d
dω x̂(ω)

tnx(t)
(
id

dω

)n
x̂(ω)

Convolution
∫ ∞
−∞ x(τ)y(t − τ) dτ x̂(ω)ŷ(ω)

Multiplication x(t)y(t) 1
2π

∫ ∞
−∞ x̂(θ)ŷ(ω − θ) dθ

Duality x̂(t) 2πx(−ω)

Parseval
∫ ∞
−∞ |x(t)|2 dt = 1

2π

∫ ∞
−∞ |x̂(ω)|2 dω

e−atu(t) =
{

0 if t < 0,
e−at if t > 0

1

a + iω
(a constant, Re a > 0)

e−atu(−t) =

{
e−at if t < 0,
0 if t > 0

− 1

a + iω
(a constant, Re a < 0)

e−a|t| 2a

a2 + ω2
(a constant, Re a > 0)

Boxcar in time rect(t) =

{
1 if |t| < 1

2

0 if |t| > 1
2

sinc
(

ω
2

)
= 2

ω sin
(

ω
2

)

General boxcar rHWC(t) =

{
H if |t − C| < W

2

0 if |t − C| > W
2

HWe−iωC sinc
(

Wω
2

)
= e−iωC 2H

ω sin Wω
2

Boxcar in frequency 1
2π sinc

(
t
2

)
= 1

πt sin
(

t
2

)
rect(ω) =

{
1 if |ω| < 1/2
0 if |ω| > 1/2

Impulse in time δ(t − t0) e−iωt0

δ(t − t0)x(t) e−iωt0 x(t0)

Single frequency eiω0t 2π δ(ω − ω0)
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