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C.T.J. Dodson, School of Mathematics, Manchester University

1 What are Laplace Transforms, and Why?

This is much easier to state than to motivate! We state the definition in two ways,
first in words to explain it intuitively, then in symbols so that we can calculate
transforms.

Definition 1
Given f, a function of time, with value f(t) at time t, the Laplace transform of f is
denoted f̃ and it gives an average value of f taken over all positive values of t such
that the value f̃(s) represents an average of f taken over all possible time intervals
of length s.

Definition 2

L[f(t)] = f̃(s) =

∫ ∞

0

e−stf(t) dt, for s > 0. (1.1)

A short table of commonly encountered Laplace Transforms is given in Section 7.5.
Note that this definition involves integration of a product so it will involve frequent
use of integration by parts—see Appendix Section 7.1 for a reminder of the formula
and of the definition of an infinite integral like (1.1).

This immediately raises the question of why to use such a procedure. In fact the
reason is strongly motivated by real engineering problems. There, typically we en-
counter models for the dynamics of phenomena which depend on rates of change of
functions, eg velocities and accelerations of particles or points on rigid bodies, which
prompts the use of ordinary differential equations (ODEs). We can use ordinary cal-
culus to solve ODEs, provided that the functions are nicely behaved—which means
continuous and with continuous derivatives. Unfortunately, there is much interest in
engineering dynamical problems involving functions that input step change or spike
impulses to systems—playing pool is one example. Now, there is an easy way to
smooth out discontinuities in functions of time: simply take an average value over
all time. But an ordinary average will replace the function by a constant, so we use
a kind of moving average which takes continuous averages over all possible intervals
of t. This very neatly deals with the discontinuities by encoding them as a smooth
function of interval length s.

The amazing thing about using Laplace Transforms is that we can convert a whole
ODE initial value problem into a Laplace transformed version as functions of s,
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2 Introduction to Laplace Transforms

simplify the algebra, find the transformed solution f̃(s), then undo the transform to
get back to the required solution f as a function of t.

Interestingly, it turns out that the transform of a derivative of a function is a simple
combination of the transform of the function and its initial value. So a calculus prob-
lem is converted into an algebraic problem involving polynomial functions, which is
easier.

There is one further point of great importance: calculus operations of differentiation
and integration are linear. So the Laplace Transform of a sum of functions is the
sum of their Laplace Transforms and multiplication of a function by a constant can
be done before or after taking its transform.

In this course we find some Laplace Transforms from first principles, ie from the
definition (1.1), describe some theorems that help finding more transforms, then use
Laplace Transforms to solve problems involving ODEs.

2 Finding Laplace Transforms

We have three methods to find f̃(s) for a given f(t);

From the definition: Here we use (1.1) directly: eg

For f(t) = 1, L[1] =

∫ ∞

0

e−st dt =

[
−1

s
e−st

]∞
0

=
1

s
.

For f(t) = t, L[t] =

∫ ∞

0

e−stt dt =

[
−1

s
e−stt

]∞
0

+

∫ ∞

0

1

s
e−st =

1

s2
.

For f(t) =
dy

dt
, L

[
dy

dt

]
=

∫ ∞

0

e−st dy

dt
dt =

[
e−sty

]∞
0

+

∫ ∞

0

se−sty dt = −y(0)+sỹ(s).

For f(t) = eat, a constant,

L[eat] =

∫ ∞

0

e−steat dt =

∫ ∞

0

e−(s−a)t dt =

[
− 1

s− a
e−(s−a)t

]∞
0

=
1

s− a
, s > a.

From a property: There are a number of powerful theorems about the properties
of transforms: eg L[af + bg] = aL[f ] + bL[g]

L[3t + 4] = 3
1

s2
+ 4

1

s
.

L[cos at + i sin at] = L[eiat] by DeMoivre.

L[eiat] =
1

s− ia
=

s

s2 + a2
+

ia

s2 + a2
.

Hence, equating real and imaginary parts and using linearity

L[cos at] =
s

s2 + a2
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L[sin at] =
a

s2 + a2
.

We can apply the convolution property from the table to find

L−1

[
f(s)

s

]
.

L−1[f(s)] = f(t), and L−1[
1

s
] = 1 = g(t),

so

L−1

[
f(s)

s

]
=

∫ t

0

f(θ) dθ.

From a list: Computer algebra packages like Mathematica, Matlab and Maple
know Laplace Transforms of all the functions you are likely to encounter,
so you have access to these online, and the packages have also an inversion
routine to find a function f from a given f̃ . There are books with long lists
of transforms of known functions and compositions of functions; we give some
in Section 7.5, which you should read through, eg some that are harder to
calculate:

L[tn] =
n!

sn+1
, n = 0, 1, 2, . . . , L[t1/2] =

1

2

( π

s3

)1/2

, L[t−1/2] =
(π

s

)1/2

.

2.1 Exercises

1. Use the definition to prove the Shift Theorem:

L[eatf(t)] = f̃(s− a).

2. Deduce that

L[e2t cos 4t] =
s− 2

s2 − 4s + 20
.

3. Check that

L[e−3tt3] =
6

(s + 8)4
.

3 Finding inverse transforms using partial frac-

tions

Given a function f, of t, we denote its Laplace Transform by L[f ] = f̃ ; the inverse
process is written:

L−1[f̃ ] = f.

A common situation is when f̃(s) is a polynomial in s, or more generally, a ratio
of polynomials; then we use partial fractions to simplify the expressions. Given
an expression for a Laplace transform of the form N/D where numerator N and
denominator D are both polynomials of s, possibly in the form of factors, and N
may be constant; use partial fractions:
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(i) if N has degree equal to or higher than D, divide N by D until the remainder
is of lower degree than D

(ii) For every linear factor like (as + b) in D, write a partial fraction of the form
A/(as + b)

(iii) For every repeated factor like (as + b)2 in D write two partial fractions of
the form A/(as + b) and B/(as + b)2. Similarly for every repeated factor like
(as+ b)3 in D write three partial fractions of the form A/(as+ b), B/(as+ b)2

and C/(as + b)3; and so on.

(iv) For quadratic factor (as2+bs+c) write a partial fraction (As+B)/(as2+bs+c).

For repeated quadratic factors write a series of partial fractions as in (iii), but with
numerators of the form (As + B) and successive powers of the quadratic factor as
the denominators.

With a little more algebra you should in this way be able to write the original
expression as a sum of simpler transforms, which are found in your table. You then
add their inverse transforms together, to get the inverse of the original transform.

3.1 Exercises

1. Show that

L−1

[
1

2s + 3

]
=

1

2
e−3t/2.

2. Given

f̃(s) =
1 + s

(s + 3)(s− 2)

show that

f̃(s) =
2
5

s + 3
+

3
5

s− 2
.

Deduce that

f(t) =
2

5
e−3t +

3

5
e2t.

3. Given

f̃(s) =
1 + s

s2 + s + 1

complete the square in the denominator to obtain

1 + s

s2 + s + 1
=

1 + s

(s + 1
2
)2 + 3

4

=
(s + 1

2
) + 1

2

(s + 1
2
)2 + (

√
3

2
)2

.

Use the Shift Theorem and the table of transforms to deduce

L−1

[
(s + 1

2
) + 1

2

(s + 1
2
)2 + (

√
3

2
)2

]
= e−t/2 cos

√
3

2
t +

1√
3
e−t/2 sin

√
3

2
t.
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Figure 1: Solution of the ODE problem 2y′ − y = sin t, y(0) = 1 in 4.2.

Note that this last expression can be simplified to

2
√

3

2
e−t/2 cos

(√
3

2
t− π

6

)

by using the phase relationship between the sine and cosine functions.

4 Solving ODEs and ODE Systems

The application of Laplace Transform methods is particularly effective for linear
ODEs with constant coefficients, and for systems of such ODEs. To transform an
ODE, we need the appropriate initial values of the function involved and initial
values of its derivatives. We illustrate the methods with the following programmed
Exercises.

4.1 Exercises

1. For the ODE problem

2
dy

dt
− y = sin t, y(0) = 1. (4.2)

(a) obtain the transformed version as

2(sỹ − 1)− ỹ =
1

s2 + 1
.

(b) Rearrange to get

ỹ(s) =
2s2 + 3

(2s− 1)(s2 + 1)
=

A

2s− 1
+

Bs + C

s2 + 1
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(c) Show that A = 14
5
, B = −2

5
, C = −1

5
, and take the inverse transform to

obtain the final solution to (4.2) as

y(t) =
7

5
et/2 − 2

5
cos t− 1

5
sin t.

2. For the system of ODEs

dy

dt
− dx

dt
+ y + 2x = et (4.3)

dy

dt
+

dx

dt
− x = e2t (4.4)

Initial data : x(0), y(0) = 1, (4.5)

(a) transform to obtain

(sỹ − y0)− (sx̃− x0) + ỹ + 2x̃ =
1

s− 1
(4.6)

(sỹ − y0) + (sx̃− x0)− x̃ =
1

s− 2
. (4.7)

(b) Rearranging,

(s + 1)ỹ − (s− 2)x̃ =
1

s− 1
+ 1− 1 =

1

s− 1
(4.8)

sỹ + (s− 1)x̃ =
1

s− 2
+ 1 + 1 =

2s− 3

s− 2
. (4.9)

(c) To eliminate ỹ, multiply (4.8) by s and (4.9) by (s + 1) then subtract,
and deduce as follows

((s− 1)(s + 1) + s(s− 2)) x̃ =
(2s− 3)(s + 1)

s− 2
− s

s− 1
, (4.10)

x̃(s) =
2s3 − 4s2 + 3

(s− 1)(s− 2)(2s2 − 2s− 1)
.(4.11)

Then, by partial fractions,

x̃(s) =
1

s− 1
+

1

s− 2
−

s− 1
2

(s− 1
2
)2 − (

√
3

2
)2
− 1√

3

√
3

2

(s− 1
2
)2 − (

√
3

2
)2

. (4.12)

(d) From the table of transforms, we can find x(t) as

x(t) = et + e2t − et/2 cosh

(√
3

2
t

)
− 1√

3
et/2 sinh

(√
3

2
t

)
.

(e) You can find y(t) by differentiating and substituting dx
dt

in either of the
system equations. Quicker here is to subtract the second equation from
the first to obtain

−2
dx

dt
+ y + x + 2x = et − e2t

so

y(t) = 2
dx

dt
− 3x + et − e2t.

The trajectory curve of the ODE system 4.3-4.5 in x, y-space, with time
increasing along the curve from left to right, is shown in Figure 2.
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Figure 2: Solution of the ODE system 4.3 to 4.5; here we plot the trajectory of the
system in x, y-space, with parameter t representing time increasing along the curve
from left to right.

5 Impulse problems

Laplace transform methods are particularly valuable in handling differential equa-
tions involving impulse and step functions. The problem in the Exercise below
represents the dynamics of a point, initially at rest, moving away from the origin
along the y-axis under a constant acceleration of value 10 for 0 ≤ t < 1 and an extra
impulse acceleration of size 10 is applied at t = 1. This is like a simple rocket boost,
but can you solve it any other way? We use the Dirac impulse function δ(t − a)
which is nonzero at t = a, but zero elsewhere while having unit total area under it:

δ(t− a) = 0 if (t 6= a) and

∫ ∞

−∞
δ(t− a) dt = 1. (5.13)

5.1 Exercises

Consider the ODE initial value problem given by

y′′ = 10 + 10δ(t− 1), y(0) = y′(0) = 0. (5.14)

1. Begin by sketching the graph of the acceleration, y′′, to show the step increase.

2. Transforming according to the table, to get

s2ỹ − sy(0)− y′(0) =
10

s
+ 10e−s

so, rearranging ỹ(s) =
10

s3
+

10e−s

s2
= 5

2

s3
+ 10e−s 1

s2

3. From the table use the Delay property to deduce that

y(t) = 5t2 + 10(t− 1) H(t− 1)
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Figure 3: Solution of ẍ + 3ẋ + 2x = H(t), x(0) = ẋ(0) = 0 in (6.15); x(t) is
asymptotic to x = 1

2
, why is that obvious?

4. By interpreting the step function H(t−1) up to and after t = 1, show that the
impulse at t = 1 produces what you would expect: a discontinuity in velocity
at t = 1. Sketch the full solution:

y(t) = 5t2 for t ≤ 1 (so here y′(t) = 10t)

y(t) = 5t2 + 10(t− 1) for t > 1 (so here y′(t) = 10t + 10).

6 Step Input problems

Here we consider the following initial value problem which involves a step input
function—typical of many control-type problems:

ẍ + 3ẋ + 2x = H(t), x(0) = ẋ(0) = 0. (6.15)

Here we have a second order ODE representing a system that is at rest until time
t = 0, when a unit step input H(t) is applied; we seek the output x(t).

6.1 Exercises

1. Transform (6.15) to get

(s2 + 3s + 2)x̃(s) =
1

s
,

x̃(s) =
1

s

(
1

(s + 2)(s + 1)

)
=

1

s

(
−1

(s + 2)
+

1

(s + 1)

)
.



C.T.J. Dodson 9

2. Apply the Integration property to obtain

x(t) =

∫ t

0

(
−e−2θ + e−θ

)
dθ (6.16)

=

[
1

2
e−2θ − e−θ

]t

0

(6.17)

=
1

2
e−2t − e−t − 1

2
+ 1 (6.18)

=
1

2
e−2t − e−t +

1

2
. (6.19)

3. Show that the solution x(t) is asymptotic to x = 1
2
, cf Figure 3; why is this

obvious as a steady state solution?

7 Appendix

7.1 Integration by Parts and Infinite Integrals

Recall the product rule for differentiation, when y = uv:

d(uv)

dt
= v

du

dt
+ u

dv

dt

Suppose we integrate both sides with respect to t:∫
d(uv)

dt
dt =

∫
v
du

dt
dt +

∫
u
dv

dt
dt

On the left, we are integrating the derivative, so we get back to the original function,
which is uv. Rearranging, this becomes:∫

u
dv

dt
dt = uv −

∫
v
du

dt
dt.

Now this gives us a useful formula for integrating products: we let one of the func-
tions be u and let the other be dv

dt
, next work out v and du

dt
, then use the formula.

7.2 Infinite Integrals

The integral of a function over an infinite interval is the limit of the integral over a
finite interval as the bound on the interval tends to infinity. In symbols:∫ ∞

0

f(t) dt = lim
k→∞

∫ k

0

f(t) dt,

So, first do the finite form of the integral then find the limiting value as we let k
tend to ∞.
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7.3 Scientific Wordprocessing with LATEX

This pdf document with its hyperlinks was created using LATEX which is the stan-
dard (free) mathematical wordprocessing package; more information can be found
via the webpage:
http://www.ma.umist.ac.uk/kd/latextut/pdfbyex.htm

7.4 Computer Algebra Methods

The computer algebra package Mathematica can be used to find and invert Laplace
Transforms, it was used to produce the graphics of functions in these notes. See:
http://www.ma.umist.ac.uk/kd/mmaprogs/AREADMEFILE
for beginning Mathematica. Similarly, Maple and Matlab also can be used for
working with Laplace Transforms and for creating graphics.

7.5 Frequently used Laplace Transforms

Function f(t) Transform f̃(s) =
∫∞

0
e−stf(t) dt

1 1/s
tn, for n = 0, 1, 2, . . . n!/sn+1

t1/2 1
2
(π/s3)1/2

t−1/2 (π
s
)1/2

eat 1/(s− a)
sin ωt ω/(s2 + ω2)
cosωt s/(s2 + ω2)
t sin ωt 2ωs/(s2 + ω2)2

t cos ωt (s2 − ω2)/(s2 + ω2)2

eattn n!/(s− a)n+1

eat sin ωt ω/ ((s− a)2 + ω2)
eat cos ωt (s− a)/ ((s− a)2 + ω2)
sinh ωt ω/(s2 − ω2)
cosh ωt s/(s2 − ω2)
Impulse (Dirac δ): δ(t− a) (6= 0 at t = a, else = 0) e−as

Step function: Ha(t) (= 0 for t < a and = 1, t ≥ a) e−as/s
Delay of g : Ha(t)g(t− a) e−asg̃(s)
Shift of g: eatg(t) g̃(s− a)

Convolution: f(t) ∗ g(t) =
∫ t

0
f(t− τ)g(τ) dτ g̃(s)f̃(s)

Integration: 1 ∗ g(t) =
∫ t

0
g(τ) dτ 1

s
g̃(s)

Derivative: y′ sỹ(s)− y(0)
y′′ s2ỹ(s)− sy(0)− y′(0)

http://www.ma.umist.ac.uk/kd/latextut/pdfbyex.htm
http://www.ma.umist.ac.uk/kd/mmaprogs/AREADMEFILE
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