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Chapter 6 The Laplace transform

6.1 Introduction

The Laplace transform is closely related to the Fourier transform and we shall be considering this
relationship in some detail. This will allow many of the properties of the Laplace transform to
be deduced from those of the Fourier transform. You should already be familiar with the use of
Laplace transforms for solving initial value differential equations and for carrying out transient
analysis of electrical circuits and so these applications will not be covered in detail.

6.2 The one-sided Laplace transform

Given a function f(t) which is assumed to be causal so that f(t) = 0 for t < 0, the (one-sided)
Laplace transform of f(t) is

FL(s) =

Z ∞

0
f(t) exp(¡st) dt (6.1)

In this deÞnition s is assumed to be a complex variable s = ¾ + j!. The set of values of s for
which the integral converges absolutely is called the region of absolute convergence of the
Laplace transform.

Theorem If the one-sided Laplace transform of the locally integrable function f(t) converges
absolutely at some complex number s0, then it converges at every point s satisfying <s ¸ <s0.
Proof: We make use of the fact that the improper integral of a locally integrable function Á(t),Z ∞

0
Á(t) dt (6.2)

converges if and only if for any given ² > 0 there exists M > 0 with the property that whenever t1
and t2 are chosen so that t2 > t1 > M , ¯̄̄̄Z t2

t1

Á(t) dt

¯̄̄̄
< ² (6.3)

(This is called the Cauchy condition for the existence of the improper integral.)

Let us now consider the Laplace transform integral at s for arbitrary limits t2 > t1 > 0¯̄̄̄Z t2

t1

f(t) exp(¡st) dt

¯̄̄̄
·

Z t2

t1

jf(t) exp(¡s0t) exp[¡(s¡ s0)t]j dt (6.4)

=

Z t2

t1

jf(t) exp(¡s0t)j exp[¡<(s¡ s0)t] dt (6.5)

·
Z t2

t1

jf(t) exp(¡s0t)jdt (6.6)

where the last inequality follows from <s ¸ <s0 and t2 > t1 > 0. Since the Laplace transform
converges absolutely at s0, the integralZ ∞

0
jf(t) exp(¡s0t)jdt (6.7)
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exists and satisÞes the Cauchy condition. Thus for a given ² > 0, there exists M > 0 such that
choosing t2 > t1 > M will ensure that (6.6) is less than ². This shows that the Laplace transform
integral at s satisÞes the Cauchy condition and thus must exist. Indeed the above also shows that
the convergence of the Laplace transform integral at s is absolute.

This result shows that the region of absolute convergence of a one-sided Laplace transform is either

1. An open right half-plane <s > ¾a

2. A closed right half-plane <s ¸ ¾a

where ¾a is a real number (which may be §1) called the abscissa of absolute convergence of
the Laplace transform.

Exercise: Fill in the details required to establish the above claim. In particular consider why it is
that the Laplace transform cannot be absolutely convergent at any point to the left of s = ¾a and
why it is that the line s = ¾a itself must either be entirely inside or entirely outside the region of
absolute convergence.

(Technical note: It is possible to work with the region of simple convergence of Laplace transforms
where we only require convergence rather than absolute convergence of the integral. However
this complicates the theory somewhat. The region of simple convergence need not coincide with
the region of absolute convergence. In fact there are functions for which the Laplace transform
is convergent everywhere but absolutely convergent nowhere. For more details see for example
Introduction to the Theory and Application of the Laplace Transformation by Gustav Doetsch,
Springer-Verlag 1974.)

If we now write s = ¾ + j! in the Laplace transform integral, we see that

FL(¾ + j!) =

Z ∞

0
f(t) exp(¡¾t) exp(¡j!t) dt (6.8)

If we compare this with the Fourier transform for a function g(t) (using the ! form rather than the
º form)

G(!) =

Z ∞

−∞
g(t) exp(¡j!t) dt (6.9)

it is clear that we can consider the Laplace transform of f on the vertical line ¾ + j! as a Fourier
transform of the function

g(t) = f(t) exp(¡¾t) (6.10)

With this deÞnition,
G(!) = FL(¾ + j!) (6.11)

In the region of absolute convergence of the Laplace transform, we see that f(t) exp(¡¾t) is ab-
solutely integrable and so its Fourier transform is well-deÞned in the classical sense. The inverse
Fourier transform allows us to recover g(t)

g(t) =
1

2¼

Z ∞

−∞
G(!) exp(j!t) d! (6.12)

=
1

2¼

Z ∞

−∞
FL(¾ + j!) exp(j!t) d! (6.13)
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Using (6.10) this tells us how to recover f(t) from FL since

f(t) = exp(¾t)g(t) (6.14)

=
1

2¼

Z ∞

−∞
FL(¾ + j!) exp[(¾ + j!)t] d! (6.15)

This is the inverse Laplace transform relationship. It is more commonly written as a contour
integral over s = ¾ + j!

f(t) =
1

j2¼

Z σ+j∞

σ−j∞
FL(s) exp(st) ds (6.16)

where this is simply a different notation for exactly the same integral as in (6.15). The value of ¾
must be chosen to lie within the region of absolute convergence of FL. Notice that the integral is
carried out on a line parallel to the imaginary axis in the complex plane. There are usually many
such lines within the region of absolute convergence. Performing the integral along any of these
lines must give the same result. In this sense, we may regard the Laplace transform as a family
of Fourier transforms of f(t) exp(¡¾t) for many different values of ¾. The effect of the damped
exponential is to control the function at large values of t so that the result is absolutely integrable.

Example: Calculate the inverse Laplace transform of

FL(s) =
exp (¡s)

s2 + a2
(6.17)

whose region of absolute convergence is <s > 0.

Substituting into the inverse Laplace transform relationship, we see that

f(t) =
1

j2¼

Z σ+j∞

σ−j∞
es(t−1)

s2 + a2
ds (6.18)

The integral is over a line L in the right-hand half-plane parallel to the imaginary axis starting at
¾¡j1 and ending at ¾+j1. We wish to use complex integration methods to evaluate this integral.
The function FL(s) and hence the integrand is only deÞned on the region of absolute convergence
but we can easily extend the integrand to the entire complex plane by deÞning

I(s) =
es(t−1)

s2 + a2
(6.19)

This function is meromorphic, which means that it is analytic everywhere on the complex plane
except at a set of isolated singularities at which there are poles. Since this function agrees with the
required integrand on the line L, it will have the same integral over L. By extending the function
in this way, however, it is possible to use the techniques of complex variable theory to evaluate the
integral by means of residues and contour integration.

(Informal note: If you like, think of the contour integration as a mathematical trick used to evaluate
the integral over the line L. As part of this trick, we need to extend the integrand to I(s) over
the whole complex plane so that we can draw a contour through a region outside the region of
convergence of the Laplace transform. The extended integrand I(s) needs to agree with the true
integrand only along the line L so that it will give the correct integral which is required to recover
f(t).)

The extended integrand I(s) has simple poles at s = ja and s = ¡ja. We need to consider two
cases:
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² If t < 1, I(s) becomes large in the left-hand half-plane (as <s ! ¡1) and small in the
right-hand half-plane (as <s ! 1). Let us consider completing the contour in the right-hand
half plane with a large semicircle CR whose radius we will ultimately take to inÞnity.

This contour encloses no singularities of I(s) and so the integral vanishes, i.e.,µZ
L
+

Z
CR

¶
I (s) ds = 0 (6.20)

It is easy to see that as the radius of CR increases, the second integral tends to zero since the
integrand I(s) becomes small more rapidly than the arc length. Hence

f(t) =
1

j2¼

Z
L
I(s) ds = 0 for t < 1: (6.21)

² If t > 1, I(s) becomes small in the left-hand half-plane (as <s ! ¡1) and large in the right-
hand half-plane (as <s ! 1). Thus, let us consider complete the contour in the left-hand
half plane with a large semicircle CL whose radius we will ultimately take to inÞnity.

This contour encloses two singularities of I(s). By the residue theoremµZ
L
+

Z
CL

¶
I (s) ds = j2¼ [Res (I (s) ; ja) + Res (I (s) ;¡ja)] (6.22)

Recall that the residue at a pole s = p is the coefficient of the term 1=(s¡ p) in the Laurent
expansion of the function. Since

I(s) =
1

j2a

µ
1

s¡ ja
+

1

s+ ja

¶
es(t−1) (6.23)

we see that

Res(I(s); ja) =
1

j2a
eja(t−1); Res(I(s);¡ja) = ¡ 1

j2a
e−ja(t−1) (6.24)

Hence µZ
L
+

Z
CL

¶
I (s) ds =

¼

a

h
eja(t−1) ¡ e−ja(t−1)

i
=

j2¼

a
sin [a (t¡ 1)] (6.25)

Combining the results yields

f(t) =
1

a
u(t¡ 1) sin[a(t¡ 1)] (6.26)

Exercise: Ensure that you can recover u(t)tn−1=(n ¡ 1)! by explicitly calculating the inverse
Laplace transform of s−n.

In practice, we usually do not use the explicit inverse transform relationship. Instead, we reduce
the expression into a sum of standard forms (e.g. using partial fractions) and then use a table
of Laplace transforms to work backwards. Under some conditions, it may be possible to write an
expression as a product of two familiar transforms and to use the convolution theorem to evaluate
the desired inverse transform.
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6.3 Properties of the one-sided Laplace transform

The following properties of the one-sided Laplace transform may readily be proven. We use the
notation f(t) $ FL(s) to indicate a Laplace transform pair.

1. Linearity
f(t) + g(t) $ FL(s) +GL(s) (6.27)

2. Differentiation
f 0(t) $ sFL(s)¡ f(0) (6.28)

f (n)(t) $ snFL(s)¡ sn−1f(0)¡ sn−2f 0(0)¡ :::¡ f (n−1)(0) (6.29)

¡tf(t) $ F 0L(s) (6.30)

(¡1)ntnf(t) $ F
(n)
L (s) (6.31)

3. Integration Z t

0
f(¿) d¿ $ 1

s
FL(s) (6.32)

4. Convolution Z t

0
f(¿)g(t¡ ¿) d¿ $ FL(s)GL(s) (6.33)

5. Scaling and translation
eatf(t) $ FL(s¡ a) (6.34)

1

c
f(t=c) $ FL(cs) (c > 0) (6.35)

f(t¡ b)u(t¡ b) $ e−bsFL(s) (6.36)

6. Initial value theorem
lim
t→0+

f(t) = lim
s→∞ sFL(s) (6.37)

7. Final value theorem
lim
t→∞ f(t) = lim

s→0 sFL(s) (6.38)

6.4 The two-sided Laplace transform

This is simply the Laplace transform deÞned for functions which need not be zero for negative
arguments. The transform pair is

FL(s) =

Z ∞

−∞
f(t) exp(¡st) dt (6.39)

f(t) =
1

j2¼

Z σ+j∞

σ−j∞
FL(s) exp(st) ds (6.40)
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The region of absolute convergence of a two-sided Laplace transform consists of points in a strip
bounded by two lines parallel to the imaginary axis. There are thus two abscissae of absolute
convergence ¡1 · ¾1 < ¾2 · 1 such that the integral converges absolutely within ¾1 < <s < ¾2.
It is easy to see that this must be the case since we can write f(t) as a sum of a causal part and
an anticausal part. The region of absolute convergence of f is the intersection of the regions of
absolute convergence of the two parts.

For the two-sided Laplace transform, it is essential to specify the region of absolute convergence
together with the function FL(s) since different f(t) can have the same FL(s) but with different
regions of absolute convergence.

Example: What are the two-sided Laplace transforms of

² u(t) exp(¡at)

² ¡u(¡t) exp(¡at)

Substituting these into the deÞnition, we see that the Laplace transform of u(t) exp(¡at) isZ ∞

0
exp[¡(a+ s)t] dt =

1

s+ a
provided that ¾ > ¡a (6.41)

The Laplace transform of ¡u(¡t) exp(¡at) isZ 0

−∞
exp[¡(a+ s)t] dt =

1

s+ a
provided that ¾ < ¡a (6.42)

These two different functions have the same expression for the Laplace transform but different
regions of absolute convergence.

Exercises:

1. Use the inverse Laplace transform relationship to recover each of the above functions from
1=(s+ a) using the appropriate region of absolute convergence. Ensure that you understand
how to get the both forms in the regions t < 0 and t > 0.

2. Consider the function

FL(s) =
exp (2s)

(s+ 2) (s+ 3)
(6.43)

Calculate the inverse Laplace transform given that the region of absolute convergence is

(a) <s < ¡3

(b) ¡3 < <s < ¡2

(c) <s > ¡2

6.5 Example: Solution of the diffusion equation

Consider the differential equation for heat diffusion in a one-dimension

·
@2µ

@x2
=

@µ

@t
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together with the initial and boundary conditions

µ(x; 0) is speciÞed, (6.44)

µ(¡1; t) = µ(1; t) = 0 for all t (6.45)

To solve this problem, we use a Fourier transform in x and a (one-sided) Laplace transform in t. In
general, a Fourier transform is appropriate when the boundary conditions at §1 are homogeneous
and a Laplace transform is useful for initial-value problems. We introduce

£F (u; t) =

Z ∞

−∞
µ(x; t) exp(¡j2¼ux) dx (6.46)

and

£FL(u; s) =

Z ∞

0
£F (u; t) exp(¡st) dt (6.47)

Taking the Fourier transform (in x) of the differential equation yields

·(j2¼u)2£F (u; t) =
@£F
@t

(6.48)

Taking the Laplace transform (in s) of this yields

¡4¼2·u2£FL(u; s) = s£FL(u; s)¡£F (u; 0) (6.49)

Solving this yields

£FL(u; s) =
£F (u; 0)

s+ 4¼2·u2
(6.50)

The inverse Laplace transform of this is

£F (u; t) = £F (u; 0) exp(¡4¼2·u2t) (6.51)

The desired solution is found by taking an inverse Fourier transform. The right-hand side becomes
a convolution of µ(x; 0) with the inverse Fourier transform of exp(¡4¼2·u2t) which is

1p
4¼·t

exp

µ
¡ x2

4·t

¶
(6.52)

Thus,

µ(x; t) =

Z ∞

−∞
µ(»; 0)p
4¼·t

exp

Ã
¡(x¡ »)2

4·t

!
d» (6.53)

If the initial temperature distribution is a delta function, this spreads out in time into a Gaussian
of width proportional to

p
t. This scaling of the width is characteristic of a diffusion process.

Exercises:

1. Instead of a rod of inÞnite length, consider a rod of length L extending between x = 0 and
x = L. The initial temperature µ(x; 0) is again speciÞed but the boundary conditions are now
µ(0; t) = µ(L; t) = 0. Using the fact that µ(x; t) can be expanded as a sine series

µ(x; t) =
∞X
k=1

ck(t) sin

µ
k¼x

L

¶
(6.54)

calculate an expression for µ(x; t) in terms of µ(x; 0).
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2. The density of neutrons n in a cubical block of uranium 235 of side a is governed by the
equation

·r2n+ °n =
@n

@t
(6.55)

where · and ° are constants. At the surfaces of the block (x = 0, x = a, y = 0, y = a, z = 0,
z = a) the neutron density is zero. Find the value of a such that the block becomes critical.

Hint: Write n as a three-dimensional sine series

n(x; y; z; t) =
∞X
k=1

∞X
l=1

∞X
m=1

cklm(t) sin

µ
k¼x

a

¶
sin

µ
l¼y

a

¶
sin

³m¼z

a

´
(6.56)

6.6 The Laplace transform and the matrix exponential

Consider a system of coupled linear differential equations with constant coefficients which can be
written in matrix form as

dx

dt
= Ax where x (0) is given. (6.57)

In this equation, x is a column vector with components x1(t),..., xn(t) and A is an n£ n matrix.
By analogy with the case where A is a scalar, the solution of this system is written as

x(t) = exp(At)x(0) (6.58)

This matrix exponential is interpreted in terms of a power series, namely

exp(At) = I+At+
A2t2

2!
+

A3t3

3!
+ ::: (6.59)

We can use Laplace transforms to Þnd an explicit closed form for exp(At) when a speciÞc matrix
is involved. For example suppose that

A =

µ
0 1
¡2 ¡3

¶
(6.60)

Taking the Laplace transform of the differential equation, we see that the Laplace transform X(s)
of x(t) is given by X(s) = (sI¡A)−1x(0). The Laplace transform of exp(At) is thus

(sI¡A)−1 =
µ

s ¡1
2 s+ 3

¶−1
(6.61)

=
1

s2 + 3s+ 2

µ
s+ 3 1
¡2 s

¶
(6.62)

Taking the inverse Laplace transform shows that

exp(At) =

µ
2e−t ¡ e−2t e−t ¡ e−2t

¡2e−t + 2e−2t ¡e−t + 2e−2t

¶
(6.63)

An alternative way of calculating the matrix exponential involves the use of the eigenvalues and
eigenvectors of the matrix A. It is easy to check that the eigenvalues of A are ¡1 and ¡2 with
corresponding eigenvectors

³
1
−1

´
and

³
1
−2

´
. This means that we can write

A = VDV−1 =
µ

1 1
¡1 ¡2

¶µ ¡1 0
0 ¡2

¶µ
2 1
¡1 ¡1

¶
(6.64)
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where V is the matrix whose columns are the eigenvectors of A and D is the diagonal matrix of
eigenvalues. For any power of A it is clear that An = (VDV−1)n = VDnV−1 and Dn is simply
found by raising the diagonal elements to the n�th power. From the power series deÞnition we see
that

exp(At) = V exp(Dt)V−1 =
µ

1 1
¡1 ¡2

¶µ
e−t 0
0 e−2t

¶µ
2 1
¡1 ¡1

¶
=

µ
2e−t ¡ e−2t e−t ¡ e−2t

¡2e−t + 2e−2t ¡e−t + 2e−2t

¶
(6.65)

This coincides with the form found above. The second method fails if the matrix A is defective,
i.e., if the eigenvectors of A do not span the entire space.


