
University of Amsterdam
Dept. of Social Science Informatics (SWI)

Roeterstraat 15, 1018 WB Amsterdam
The Netherlands

Tel. (+31) 20 5256121 SSII
WW

SWI-Prolog 4.0
Reference Manual

Updated for version 4.0.2, March 2001

Jan Wielemaker

jan@swi.psy.uva.nl http://www.swi.psy.uva.nl/projects/SWI-Prolog/

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed as anopenProlog environment, providing
a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright c© 1990–2001, University of Amsterdam

Contents

1 Introduction 7
1.1 SWI-Prolog . 7

1.1.1 Other books about Prolog. 7
1.2 Status . 8
1.3 Compliance to the ISO standard. 8
1.4 Should you be using SWI-Prolog?. 8
1.5 The XPCE GUI system for Prolog. 9
1.6 Release Notes. 10

1.6.1 Version 1.8 Release Notes. 10
1.6.2 Version 1.9 Release Notes. 10
1.6.3 Version 2.0 Release Notes. 11
1.6.4 Version 2.5 Release Notes. 11
1.6.5 Version 2.6 Release Notes. 12
1.6.6 Version 2.7 Release Notes. 12
1.6.7 Version 2.8 Release Notes. 12
1.6.8 Version 2.9 Release Notes. 12
1.6.9 Version 3.0 Release Notes. 13
1.6.10 Version 3.1 Release Notes. 13
1.6.11 Version 3.3 Release Notes. 13
1.6.12 Version 3.4 Release Notes. 14
1.6.13 Version 4.0 Release Notes. 15

1.7 Acknowledgements. 15

2 Overview 16
2.1 Getting started quickly. 16

2.1.1 Starting SWI-Prolog. 16
2.1.2 Executing a query. 17

2.2 The user’s initialisation file. 17
2.3 Initialisation files and goals. 17
2.4 Command line options. 18
2.5 GNU Emacs Interface. 20
2.6 Online Help. 21
2.7 Query Substitutions. 22

2.7.1 Limitations of the History System. 22
2.8 Reuse of toplevel bindings. 23
2.9 Overview of the Debugger. 23
2.10 Compilation. 26

2.10.1 During program development. 26
2.10.2 For running the result. 27

2.11 Environment Control (Prolog flags). 28

SWI-Prolog 4.0 Reference Manual

Contents 3

2.12 An overview of hook predicates. 33
2.13 Automatic loading of libraries. 34
2.14 Garbage Collection. 35
2.15 Syntax Notes. 35

2.15.1 ISO Syntax Support. 35
2.16 System limits . 37

2.16.1 Limits on memory areas. 37
2.16.2 Other Limits . 37
2.16.3 Reserved Names. 39

3 Built-in predicates 40
3.1 Notation of Predicate Descriptions. 40
3.2 Character representation. 40
3.3 Loading Prolog source files. 41

3.3.1 Quick load files. 46
3.4 Listing and Editor Interface. 47
3.5 Verify Type of a Term. 49
3.6 Comparison and Unification or Terms. 49

3.6.1 Standard Order of Terms. 49
3.7 Control Predicates. 51
3.8 Meta-Call Predicates. 52
3.9 ISO compliant Exception handling. 54

3.9.1 Debugging and exceptions. 54
3.9.2 The exception term. 55
3.9.3 Printing messages. 55

3.10 Handling signals . 57
3.10.1 Notes on signal handling. 58

3.11 The ‘block’ control-structure. 59
3.12 DCG Grammar rules. 59
3.13 Database. 60

3.13.1 Update view . 63
3.13.2 Indexing databases. 63

3.14 Declaring predicates properties. 63
3.15 Examining the program. 64
3.16 Input and output. 67

3.16.1 Input and output using implicit source and destination. 67
3.16.2 Explicit Input and Output Streams. 68
3.16.3 Switching Between Implicit and Explicit I/O. 71

3.17 Status of streams. 71
3.18 Primitive character I/O. 72
3.19 Term reading and writing. 75
3.20 Analysing and Constructing Terms. 79
3.21 Analysing and constructing atoms. 80
3.22 Classifying characters. 83
3.23 Representing text in strings. 85
3.24 Operators. 86
3.25 Character Conversion. 86

SWI-Prolog 4.0 Reference Manual

4

3.26 Arithmetic. 87
3.27 Arithmetic Functions. 88
3.28 Adding Arithmetic Functions. 92
3.29 List Manipulation. 92
3.30 Set Manipulation. 94
3.31 Sorting Lists. 94
3.32 Finding all Solutions to a Goal. 95
3.33 Invoking Predicates on all Members of a List. 96
3.34 Forall . 96
3.35 Formatted Write. 96

3.35.1 Writef . 97
3.35.2 Format . 98
3.35.3 Programming Format. .100

3.36 Terminal Control .101
3.37 Operating System Interaction. .101
3.38 File System Interaction. .103
3.39 Multi-threading (alpha code). .106

3.39.1 Thread communication. .108
3.39.2 Thread synchronisation. .109
3.39.3 Thread-support library(threadutil). 111
3.39.4 Status of the thread implementation. 111

3.40 User Toplevel Manipulation. .111
3.41 Creating a Protocol of the User Interaction. 112
3.42 Debugging and Tracing Programs. 113
3.43 Obtaining Runtime Statistics. .115
3.44 Finding Performance Bottlenecks. 115
3.45 Memory Management. .118
3.46 Windows DDE interface. .119

3.46.1 DDE client interface. .119
3.46.2 DDE server mode. .120

3.47 Miscellaneous. .121

4 Using Modules 123
4.1 Why Using Modules?. .123
4.2 Name-based versus Predicate-based Modules. 123
4.3 Defining a Module .124
4.4 Importing Predicates into a Module. 124

4.4.1 Reserved Modules. .125
4.5 Using the Module System. .125

4.5.1 Object Oriented Programming. 126
4.6 Meta-Predicates in Modules. .127

4.6.1 Definition and Context Module. 127
4.6.2 Overruling Module Boundaries. 128

4.7 Dynamic Modules. .128
4.8 Module Handling Predicates. .129
4.9 Compatibility of the Module System. 130

4.9.1 Emulatingmeta predicate/1 . 132

SWI-Prolog 4.0 Reference Manual

Contents 5

5 Foreign Language Interface 133
5.1 Overview of the Interface. .133
5.2 Linking Foreign Modules. .133

5.2.1 What linking is provided?. 134
5.2.2 What kind of loading should I be using?. 134

5.3 Dynamic Linking of shared libraries. 134
5.4 Using the library shlib for.DLL and.so files . 135

5.4.1 Static Linking. .136
5.5 Interface Data types. .137

5.5.1 Typeterm t : a reference to a Prolog term. 137
5.5.2 Other foreign interface types. 139

5.6 The Foreign Include File. .140
5.6.1 Argument Passing and Control. 140
5.6.2 Atoms and functors. .141
5.6.3 Analysing Terms via the Foreign Interface. 143
5.6.4 Constructing Terms. .148
5.6.5 Unifying data. .151
5.6.6 Calling Prolog from C. .156
5.6.7 Discarding Data .158
5.6.8 Foreign Code and Modules. 158
5.6.9 Prolog exceptions in foreign code. 159
5.6.10 Foreign code and Prolog threads. 161
5.6.11 Miscellaneous .162
5.6.12 Catching Signals (Software Interrupts). 164
5.6.13 Errors and warnings. .164
5.6.14 Environment Control from Foreign Code. 165
5.6.15 Querying Prolog. .165
5.6.16 Registering Foreign Predicates. 165
5.6.17 Foreign Code Hooks. .167
5.6.18 Storing foreign data. .168
5.6.19 Embedding SWI-Prolog in a C-program. 172

5.7 Linking embedded applications using plld. 174
5.7.1 A simple example .175

5.8 The Prolog ‘home’ directory. .176
5.9 Example of Using the Foreign Interface. 176
5.10 Notes on Using Foreign Code. .180

5.10.1 Memory Allocation. .180
5.10.2 Debugging Foreign Code. 180
5.10.3 Name Conflicts in C modules. 180
5.10.4 Compatibility of the Foreign Interface. 180

6 Generating Runtime Applications 182
6.1 Limitations of qsaveprogram. .184
6.2 Runtimes and Foreign Code. .184
6.3 Using program resources. .185

6.3.1 Predicates Definitions. .186
6.3.2 Theplrc program. .187

SWI-Prolog 4.0 Reference Manual

6

6.4 Finding Application files. .187
6.4.1 Passing a path to the application. 188

6.5 The Runtime Environment. .188
6.5.1 The Runtime Emulator. .188

A Hackers corner 190
A.1 Examining the Environment Stack. 190
A.2 Intercepting the Tracer. .191
A.3 Hooks using theexception/3 predicate . 192
A.4 Readline Interaction. .192

B Glossary of Terms 194

C Summary 199
C.1 Predicates. .199
C.2 Arithmetic Functions. .210
C.3 Operators .212

SWI-Prolog 4.0 Reference Manual

Introduction 1
1.1 SWI-Prolog

SWI-Prolog has been designed and implemented to get a Prolog implementation which can be used
for experiments with logic programming and the relation to other programming paradigms. The inten-
tion was to build a Prolog environment which offers enough power and flexibility to write substantial
applications, but is straightforward enough to be modified for experiments with debugging, optimi-
sation or the introduction of non-standard data types. Performance optimisation is limited due to the
main objectives: portability (SWI-Prolog is entirely written in C and Prolog) and modifiability.

SWI-Prolog is based on a very restricted form of the WAM (Warren Abstract Machine) described
in [Bowen & Byrd, 1983] which defines only 7 instructions. Prolog can easily be compiled into this
language and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the WAM interpreter there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance degradation (taking out the
debugger from the WAM interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen & Byrd, 1983] to im-
prove performance. While extending this set care has been taken to maintain the advantages of de-
compilation and tracing of compiled code. The extensions include specialised instructions for unifi-
cation, predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2 ,
|/2), if-then (->/2) and negation-by-failure (\+/1).

1.1.1 Other books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-
gram in Prolog. These subjects have been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For more advanced Prolog material see
[OKeefe, 1990]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those described in [Clocksin & Melish, 1987]. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog1 [Qui, 1997] and
BIM Prolog2 [BIM, 1989].

ISO compliant predicates are based on “Prolog: The Standard”, [Deransartet al., 1996], validated
using [?].

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 4.0 Reference Manual

8 CHAPTER 1. INTRODUCTION

1.2 Status

This manual describes version 4.0 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing and two large workbenches for knowledge en-
gineering. Although we experienced rather obvious and critical bugs can remain unnoticed for a
remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected in
infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[Deransartet al., 1996].

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor/3 for example). Many predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [Deransartet al., 1996] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

• SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

• Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

• You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

• Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (seemake/0).

SWI-Prolog 4.0 Reference Manual

1.5. THE XPCE GUI SYSTEM FOR PROLOG 9

• Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always I/O
bound.

• Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

• Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

• Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C as
well as C calling Prolog (see section5. It can also beembeddedembedded in external programs
(see section5.7). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

• Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE [Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11 and Win32 (Windows
95 and NT).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor"::
send(Self, send_super, initialise, ’Prolog Lister’),

SWI-Prolog 4.0 Reference Manual

10 CHAPTER 1. INTRODUCTION

send(Self, append, new(D, dialog)),
send(D, append,

text_item(predicate, message(Self, list, @arg1))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification"::
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),

pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd)

; send(Self, report, error, ’Syntax error’)
).

:- pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unixtm platforms, Windows 95, 98 and Windows NT. It has been
connected to SWI-Prolog, SICStustm and Quintustm Prolog as well as some Lisp dialects and C++.
The Quintus version is commercially distributed and supported as ProWindows-3tm.

Info. further information is available fromhttp://www.swi.psy.uva.nl/projects/xpce/
or by E-mail toxpce-request@swi.psy.uva.nl . There are demo versions for Windows 95,
98, NT and i386/Linux available from the XPCE download page.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the fileChangeLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

SWI-Prolog 4.0 Reference Manual

1.6. RELEASE NOTES 11

• Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :-redefine system predicate/1 directive.

• ‘Answer’ reuse
The toplevel maintains a table of bindings returned by toplevel goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section2.8.

• Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

• 32-bit Virtual Machine
Removes various limits and improves performance.

• Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such asvar/1 , etc.

• Various compatibility improvements

• Stream based I/O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI-Stream.h . Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the+term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.

Apart from various bug fixes listed in the Changelog file, these are the main changes since 2.1.0:

• ISO compatibility
Many ISO compatibility features have been added:open/4 , arithmetic functions, syntax, etc.

• Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

• Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

SWI-Prolog 4.0 Reference Manual

12 CHAPTER 1. INTRODUCTION

• Portable saved-states
The predicateqsave program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

• 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

• Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

• Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
Seeqsave program/2 .

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format. SWI-
Prolog no longer limits the use ofmalloc() or uses assumptions on the addresses returned by this
function.

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New arecatch/3 , throw/1 , abolish/1 , write term/[2,3] ,
write canonical/[1,2] and the C-functionsPL exception() and PL throw() . The
predicatesdisplay/[1,2] and displayq/[1,2] have been moved to library(backcomp),
so old code referring to them will autoload them.

SWI-Prolog 4.0 Reference Manual

1.6. RELEASE NOTES 13

The interface toPL open query() has changed. Thedebugargument is replaced by a bitwise
or’ed flagsargument. The valuesFALSE andTRUEhave their familiar meaning, making old code
using these constants compatible. Non-zero values other thanTRUE(1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
Seeresource/3 , open resource/3 , andqsave program/[1,2] .

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (seeon signal/3 andPL signal()). Prolog stack overflows
now raise theresource error exception and thus can be handled in Prolog usingcatch/3 .

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicates (see/1 , tell/1 , etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatibleprint message/2 , message hook/3 andprint message lines/3 . All
predicates descriped in [Deransartet al., 1996] are now implemented.

As of version 3.3, SWI-Prolog adheres the ISOlogical update viewfor dynamic predicates. See
section3.13.1for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section5.6.2. In addition, both the user-level and
foreign interface supports atoms holding0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section3.39.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

• !/0 , call/1
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed tocall/1 and is local to theconditionpart of if-then-else as well as the argument of
\+/1 .

• atom chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The

SWI-Prolog 4.0 Reference Manual

14 CHAPTER 1. INTRODUCTION

behaviour of the old predicate is available in the —also ISO compliant—atom codes/2
predicate. Safest repair is a replacement of allatom chars into atom codes . If you do not
want to change any souce-code, you might want to use

user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).

• number chars/2
Same applies fornumber chars/2 andnumber codes/2 .

• feature/2 , set feature/2
These are replaced by the ISO compliantcurrent prolog flag/2 and
set prolog flag/2 . The library library(backcomp) provides definitions for
feature/2 andset feature/2 , so no sourcehasto be updated.

• Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1 . Now there is also documentedcurrent prolog flag (argv, Argv).

• dup stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup stream/2 was designed anddup/2 from theclib package can with most others.

• op/3
Operators are nowlocal to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

• setprolog flag(characterescapes, Bool)
This prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

• current stream/3 and streamposition
These predicates have been moved to library(quintus).

1.6.12 Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

• Argument order inselect/3
The list-processing predicateselect/3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
?List, ?Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module library(checkselect) will print references toselect/3 in your
source code and install a version of select that enters the debugger if select is called and the
second argument is not a list.

This library can be loaded explicitely or by callingcheck old select/0 .

SWI-Prolog 4.0 Reference Manual

1.7. ACKNOWLEDGEMENTS 15

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

• Register the GUI tracer
Using a call toguitracer/0 , hooks are installed that replace the normal command-line
driven tracer with a graphical forntend.

• Register PceEmacs for editing files
From your initialisation file. you can load library(emacs/swi prolog) that causeedit/1
to use the built-in PceEmacs editor.

1.7 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Ed-
inburgh C-Prolog code: grammar rule compilation andwritef/2 . Also some of the C-code orig-
inates from C-Prolog: finding the path of the currently running executable and the code underlying
absolute file name/2 . Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’sthief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!

SWI-Prolog 4.0 Reference Manual

Overview 2
2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unixman pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl
% /staff/jan/.plrc compiled 0.00 sec, 1,260 bytes
Welcome to SWI-Prolog (Version 3.4.0)
Copyright (c) 1990-2000 University of Amsterdam.
Copy policy: GPL-2 (see www.gnu.org)

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

After starting Prolog, one normally loads a program into it usingconsult/1 , which—for historical
reasons—may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the filelikes.pl containing clauses for the predicateslikes/2 :

?- [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?-

After this point, Unix and Windows users are united again.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

• A folder (calleddirectory in the remainder of this document) calledpl containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

SWI-Prolog 4.0 Reference Manual

2.2. THE USER’S INITIALISATION FILE 17

• A program plwin.exe , providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

• The file-extension.pl is associated with the programplwin.exe . Opening a.pl file will
causeplwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with thelikes.pl file mentioned in section2.1.1is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Pro-
log to prove whether ‘john’ likes someone and who is liked by ‘john’. The system responds with
X = 〈value〉 if it can prove the goal for a certainX. The user can type the semi-colon (;) if (s)he
wants another solution, orRETURN if (s)he is satisfied, after which Prolog will sayYes. If Prolog
answersNo, it indicates it cannot find any more answers to the query. Finally, Prolog can answer
using an error message to indicate the query or program contains an error.

?- likes(john, X).

X = mary

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (seeconsult/1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file pl.ini and on Unix systems.plrc . The file is searched using thefile search path/2
clauses foruser profile . The table below shows the default value for this search-path.

Unix Windows
local . .
home ˜ %HOME%or %HOMEDRIVE%\%HOMEPATH%
global SWI-Home directory or%WINDIR%or %SYSTEMROOT%

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file ’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, iffile is none , no file is loaded.

2.3 Initialisation files and goals

Using commandline arguments (see section2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
-f file to make Prolog load an initialisation file,-g goal to define an initialisation goal and
-t goal to define thetoplevel goal. The following is a typical example for starting an application
directly from the commandline.

SWI-Prolog 4.0 Reference Manual

18 CHAPTER 2. OVERVIEW

machine% pl -f load.pl -g go -t halt

It tells SWI-Prolog to loadload.pl , start the application using theentry-pointgo/0 and —instead
of entering the interactive toplevel— exit after completinggo/0 .

In MS-Windows, the same can be achieved using a short-cut with appropriately defined comman-
dline arguments. A typically seen alternative is to write a filerun.pl with content as illustrated
below. Double-clickingrun.pl will start the application.

:- [load]. % load program
:- go. % run it
:- halt. % and exit

Chapter6 discusses the generation of runtime executables. Runtime executables are a mean to deliver
executables that do not require the Prolog system.

2.4 Command line options

The full set of command line options is given below:

-help
When given as the only option, it summarises the most important options.

-v
When given as the only option, it summarises the version and the architecture identifier.

-arch
When given as the only option, it prints the architecture identifier (see currentprolog flag(arch,
Arch)) and exits. See also-dump-runtime-variables .

-dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be used in shell-
scripts to deal with Prolog parameters. This feature is also used byplld (see section5.7).
Below is a typical example of using this feature.

eval ‘pl -dump-runtime-variables‘
cc -I$PLBASE/include -L$PLBASE/runtime/$PLARCH ...

-Lsize[km]
Give local stack limit (2 Mbytes default). Note that there is no space between the size option
and its argument. By default, the argument is interpreted in Kbytes. Postfixing the argument
with mcauses the argument to be interpreted in Mbytes. The following example specifies 32
Mbytes local stack.

% pl -L32m

A maximum is useful to stop buggy programs from claiming all memory resources.-L0 sets
the limit to the highest possible value. See section2.16.

SWI-Prolog 4.0 Reference Manual

2.4. COMMAND LINE OPTIONS 19

-Gsize[km]
Give global stack limit (4 Mbytes default). See-L for more details.

-Tsize[km]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. See-L for more details.

-Asize[km]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See-L for more details.

-c file . . .
Compile files into an ‘intermediate code file’. See section2.10.

-o output
Used in combination with-c or -b to determine output file for compilation.

-O
Optimised compilation. Seecurrent prolog flag/2 .

-f file
Usefile as startup file instead of the default. ‘-f none ’ stops SWI-Prolog from searching for
a startup file. See section2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
〈script〉.rc . The defaultscript name is deduced from the executable, taking the leading al-
phanumerical characters (letters, digits and underscore) from the program-name.-F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a scriptiso.rc and then select ISO compatibility mode using
pl -F iso or make a link fromiso-pl to pl .

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the wel-
come message. The welcome message can thus be suppressed by giving-g true . goal can
be a complex term. In this case quotes are normally needed to protect it from being expanded
by the Unix shell.

-t goal
Usegoal as interactive toplevel instead of the default goalprolog/0 . goal can be a complex
term. If the toplevel goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. This flag also determines the goal started bybreak/0 andabort/0 . If you want to stop
the user from entering interactive mode start the application with ‘-g goal ’ and give ‘halt’ as
toplevel.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer andget single char/1 . By default manipulating the terminal is enabled unless the

SWI-Prolog 4.0 Reference Manual

20 CHAPTER 2. OVERVIEW

system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior process.
This flag is sometimes required for smooth interaction with other applications.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the-b or -c option or a program saved using
qsave program/[1,2] .

-p alias=path1[:path2 . . .]
Define a path alias for filesearchpath.alias is the name of the alias,path1 ...is a : separated
list of values for the alias. A value is either a term of the form alias(value) or pathname. The
computed aliases are added tofile search path/2 usingasserta/1 , so they precede
predefined values for the alias. Seefile search path/2 for details on using this file-
location mechanism.

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one. Seecurrent prolog flag/2 using the flagargv for obtaining the commandline
arguments.

The following options are for system maintenance. They are given for reference only.

-b initfile . . .-c file . . .
Boot compilation.initfile . . . are compiled by the C-written bootstrap compiler,file . . . by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level tolevel. Only has effect if the system is compiled with the-DO DEBUGflag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setq auto-mode-alist
(append

’(("\\.pl" . prolog-mode))
auto-mode-alist))

(setq prolog-program-name "pl")
(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or I don’t use
;it as intended.
;(setq prolog-indent-width 8)

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el file for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 fromhttp://w1.858.telia.com/ u85810764/Prolog-mode/index.html

SWI-Prolog 4.0 Reference Manual

2.6. ONLINE HELP 21

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file library(’MANUAL’). The file library(helpidx) pro-
vides an index into this file. library(’MANUAL’) is created from the LATEX sources with a modified
version ofdvitty , using overstrike for printing bold text and underlining for rendering italic text.
XPCE is shipped with library(swi help), presenting the information from the online help in a hyper-
text window. The prolog-flagwrite help with overstrike controls whether or nothelp/1
writes its output using overstrike to realise bold and underlined output or not. If this prolog-flag is
not set it is initialised by the help library totrue if the TERMvariable equalsxterm and false
otherwise. If this default does not satisfy you, add the following line to your personal startup file (see
section2.2):

:- set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent tohelp(help/1) .

help(+What)
Show specified part of the manual.Whatis one of:

〈Name〉/〈Arity〉 Give help on specified predicate
〈Name〉 Give help on named predicate with any arity or C interface

function with that name
〈Section〉 Display specified section. Section numbers are dash-

separated numbers:2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained usingapropos/1 .

Examples:

?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help(’PL retry’). Give help on interface functionPL retry()

See also apropos/1 , and the SWI-Prolog home page at
http://www.swi.psy.uva.nl/projects/SWI-Prolog/ , which provides a
FAQ, an HTML version of manual for online browsing and HTML and PDF versions for
downloading.

apropos(+Pattern)
Display all predicates, functions and sections that havePattern in their name or summary de-
scription. Lowercase letters inPatternalso match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

SWI-Prolog 4.0 Reference Manual

22 CHAPTER 2. OVERVIEW

!!. Repeat last query
!nr. Repeat query numbered〈nr〉
!str. Repeat last query starting with〈str〉
!?str. Repeat last query holding〈str〉
ˆoldˆnew. Substitute〈old〉 into 〈new〉 in last query
!nrˆoldˆnew. Substitute in query numbered〈nr〉
!strˆoldˆnew. Substitute in query starting with〈str〉
!?strˆoldˆnew. Substitute in query holding〈str〉
h. Show history list
!h. Show this list

Table 2.1: History commands

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the formName/Arityor a term of the formModule:Name/Arity,
explain will try to explain the predicate as well as possible references to it.

explain(+ToExplain, -Explanation)
Unify Explanationwith an explanation forToExplain. Backtracking yields further explanations.

2.7 Query Substitutions

SWI-Prolog offers a query substitution mechanism similar to that of Unix csh (csh(1)), called ‘his-
tory’. The availability of this feature is controlled byset prolog flag/2 , using thehistory
prolog-flag. By default, history is available if the prolog-flagreadline is false . To enable this
feature, remembering the last 50 commands, put the following into your startup file (see section2.2:

:- set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. It also allows to correct queries and syntax errors. SWI-Prolog does not offer the
Unix csh capabilities to include arguments. This is omitted as it is unclear how the first, second, etc.
argument should be defined.1

The available history commands are shown in table2.1.

2.7.1 Limitations of the History System

History expansion is executed afterraw-reading. This is the first stage ofread term/2 and friends,
reading the term into a string while deleting comment and canonising blank. This makes it hard to use
it for correcting syntax errors. Command-line editing as provided using the GNU-readline library is
more suitable for this. History expansion is first of all useful for executing or combining commands
from long ago.

1One could choose words, defining words as a sequence of alpha-numeric characters and the word separators as anything
else, but one could also choose Prolog arguments

SWI-Prolog 4.0 Reference Manual

2.8. REUSE OF TOPLEVEL BINDINGS 23

1 ?- maplist(plus(1), "hello", X).

X = [105,102,109,109,112]

Yes
2 ?- format(’˜s˜n’, [$X]).
ifmmp

Yes
3 ?-

Figure 2.1: Reusing toplevel bindings

2.8 Reuse of toplevel bindings

Bindings resulting from the successful execution of a toplevel goal are asserted in a database. These
values may be reused in further toplevel queries as $Var. Only the latest binding is available. Example:

Note that variables may be set by executing=/2 :

6 ?- X = statistics.

X = statistics

Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes

Yes
8 ?-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer [Clocksin & Melish, 1987] with
two additional ports. The optionalunify port allows the user to inspect the result after unification of
the head. Theexceptionport shows exceptions raised bythrow/1 or one of the built-in predicates.
See section3.9.

SWI-Prolog 4.0 Reference Manual

24 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).

Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 < 2 ? creep
Fail: (5) 3 < 2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 2], 2)

Yes
[trace] 3 ?-

Figure 2.2: Example trace

The standard ports are calledcall , exit , redo , fail andunify . The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (seespy/1
anddebug/0) or when an exception is raised.

The interactive toplevel goaltrace/0 means “trace the next query”. The tracer shows the
port, displaying the port name, the current depth of the recursion and the goal. The goal is printed
using the Prolog predicatewrite term/2 . The style is defined by the prolog-flagdebug-
ger print options and can be modified using this flag or using thew, p andd commands of
the tracer.

On leashed ports(set with the predicateleash/1 , default arecall , exit , redo andfail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command line option-tty is active. Tracer options:

+ (Spy)
Set a spy point (seespy/1) on the current predicate.

- (No spy)
Remove the spy point (seenospy/1) from the current predicate.

/ (Find)
Search for a port. After the ‘/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

SWI-Prolog 4.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 25

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name

solve
/c solve(a,) Search for a call to solve/2 whose first argument

is a variable or the atoma
/a member(,) Search for any port onmember/2 . This is equiv-

alent to setting a spy point onmember/2 .

. (Repeat find)
Repeat the last find command (see ‘/’).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. Ifon the context module of the goal is displayed between square
brackets (see section4). Default isoff .

L (Listing)
List the current predicate withlisting/1 .

a (Abort)
Abort Prolog execution (seeabort/0).

b (Break)
Enter a Prolog break environment (seebreak/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set themax depth (Depth) option of debugger print options , limiting the depth to
which terms are printed. See also thewandp options.

e (Exit)
Terminate Prolog (seehalt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘?’).

i (Ignore)
Ignore the current goal, pretending it succeeded.

l (Leap)
Continue execution, stop at next spy point.

SWI-Prolog 4.0 Reference Manual

26 CHAPTER 2. OVERVIEW

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the prolog-flagdebugger print options to [quoted(true), portray(true), max depth(10)] .
This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port ofthis goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port ofthe parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the prolog-flagdebugger print options to [quoted(true)] , bypassing
portray/1 , etc.

The ideal 4 port model as described in many Prolog books [Clocksin & Melish, 1987] is not vis-
ible in many Prolog implementations because code optimisation removes part of the choice- and
exit-points. Backtrack points are not shown if either the goal succeeded deterministically or its alter-
natives were removed using the cut. When running in debug mode (debug/0) choice points are only
destroyed when removed by the cut. In debug mode, tail recursion optimisation is switched off.2

Reference information to all predicates available for manipulating the debugger is in section3.42.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded usingconsult/1 , or the list abbre-
viation. It is common practice to organise a project as a collection of source-files and aload-file, a
Prolog file containing onlyuse module/[1,2] or ensure loaded/1 directives, possibly with
a definition of theentry-pointof the program, the predicate that is normally used to start the program.
This file is often calledload.pl . If the entry-point is calledgo, a typical session starts as:

% pl
<banner>

1 ?- [load].
<compilation messages>

2This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 4.0 Reference Manual

2.10. COMPILATION 27

Yes
2 ?- go.
<program interaction>

When using Windows, the user may openload.pl from the Windows explorer, which will cause
plwin.exe to be started in the directory holdingload.pl . Prolog loadsload.pl before entering
the toplevel.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Creating a shell-script

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=pl

exec $PL -f none -g "load_files([’$base/load’],[silent(true)])" \
-t go -- $*

go :-
current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).

go(Args) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a.bat file.

Creating a saved-state

For larger programs, as well as for programs that are required run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created usingqsave program/[1,2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter6.

SWI-Prolog 4.0 Reference Manual

28 CHAPTER 2. OVERVIEW

Compilation using the -c commandline option

This mechanism loads a series of Prolog source files and then creates a saved-state as
qsave program/2 does. The command syntax is:

% pl [option ...] [-o output] -c file ...

Theoptionsargument are options toqsave program/2 written in the format below. The option-
names and their values are described withqsave program/2 .

-- option-name=option-value

For example, to create a stan-alone executable that starts by executingmain/0 and for which the
source is loaded throughload.pl , use the command

% pl --goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

% pl
<banner>
?- [load].
?- qsave_program(myprog,

[goal(main),
stand_alone(true)

]).
?- halt.

2.11 Environment Control (Prolog flags)

The predicatescurrent prolog flag/2 andset prolog flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current prolog flag(?Key, -Value)
The predicatecurrent prolog flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all defined
prolog-flags. With the ‘Key’ instantiated it unify the value of the prolog-flag. Features come
in three types: boolean prolog-flags, prolog-flags with an atom value and prolog-flags with an
integer value. A boolean prolog-flag is true iff the prolog-flag is presentand the Value is the
atomtrue . Currently defined keys:

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to de-
termine the startup file as well as to select foreign files for the right architecture. See also
section5.4.

SWI-Prolog 4.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 29

version (integer)
The version identifier is an integer with value:

10000×Major + 100×Minor + Patch

Note that in releases upto 2.7.10 this prolog-flag yielded an atom holding the three num-
bers separated by dots. The current representation is much easier for implementing
version-conditional statements.

home(atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses it’s home directory to
find its startup file as〈home〉/startup/startup. 〈arch〉 and to find its library as
〈home〉/library .

executable(atom)
Path-name of the running executable. Used byqsave program/2 as default emulator.

argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note thatall arguments are included in the list returned.

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream) , etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files) or dynamic link libraries (.DLL files).

shared object extension(atom)
Extension used by the operating system for shared objects.so for most Unix systems and
dll for Windows. Used for locating files using thefile type executable . See also
absolute file name/3 .

dynamic stacks(bool)
If true , the system uses some form of ‘sparse-memory management’ to realise the stacks.
If false, malloc()/realloc() are used for the stacks. In earlier days this had consequenses
for foreign code. As of version 2.5, this is no longer the case.

Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter,
and checking the stack-boundary is often realised by the hardware using a ‘guard-page’.
Also, memory is actually returned to the system after a garbage collection or call to
trim stacks/0 (called byprolog/0 after finishing a user-query).

c libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section5.7.

c cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section5.7.

c ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section5.7.

SWI-Prolog 4.0 Reference Manual

30 CHAPTER 2. OVERVIEW

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

savedprogram (bool)
If true, Prolog is started from a state saved withqsave program/[1,2] .

runtime (bool)
If true, SWI-Prolog is compiled with -DORUNTIME, disabling various useful develop-
ment features (currently the tracer and profiler).

max integer (integer)
Maximum integer value. Most arithmetic operations will automatically convert to floats if
integer values above this are returned.

min integer (integer)
Minimum integer value.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 4-bytes
storage and are used for indexing. Larger integers are represented as ‘indirect data’ and
require 16-bytes on the stacks (though a copy requires only 4 additional bytes).

min tagged integer (integer)
Start of the tagged-integer value range.

float format (atom, changeable)
C printf() format specification used bywrite/1 and friends to determine how float-
ing point numbers are printed. The default is%g. The specified value is passed to printf()
without further checking. For example, if you want more digits printed,%.12g will print
all floats using 12 digits instead of the default 6. See alsoformat/[1,2] , write/1 ,
print/1 andportray/1 .

toplevel print options (term, changeable)
This argument is given as option-list towrite term/2 for printing results of queries.
Default is[quoted(true), portray(true), max depth(10)] .

debuggerprint options (term, changeable)
This argument is given as option-list towrite term/2 for printing goals by the de-
bugger. Modified by the ‘w’, ‘p’ and ‘〈N〉 d’ commands of the debugger. Default is
[quoted(true), portray(true), max depth(10)] .

debuggershow context (bool, changeable)
If true , show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

compiled at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides theDATE and TIME macros.

character escapes(bool, changeable)
If true (default), read/1 interprets\ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

SWI-Prolog 4.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 31

double quotes(codes,chars,atom,string, changeable)
This flag determines how double-quotes strings are read by Prolog and is —like charac-
ter escapes— maintained for each module. Ifcodes (default), a list of character-codes
is returned, ifchars a list of one-character atoms, ifatom double quotes are the same
as single-quotes and finally,string reads the text into a Prolog string (see section3.23).
See alsoatom chars/2 andatom codes/2 .

allow variable name as functor (bool, changeable)
If true (default is false),Functor(arg) is read as if it was written’Functor’(arg) .
Some applications use the Prologread/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain none-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by callingread term/2 using
the optionvariable names and binding the variables to their name. Using this feature,
F(x) can be turned into valid syntax for such script languages. Suggested by Robert van
Engelen. SWI-Prolog specific.

history (integer, changeable)
If integer> 0, support Unixcsh(1) like history as described in section2.7. Otherwise,
only support reusing commands through the commandline editor. The default is to set this
prolog-flag to 0 if a commandline editor is provided (see prolog-flagreadline) and 15
otherwise.

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

agc margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See alsoPL register atom() .

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:

• is/2 and evaluation underflag/3 do not automatically convert floats to integers
if the float represents an integer.

• The //2 (float division)alwaysreturn a float, even if applied to integers that can be
divided.

• In the standard order of terms (see section3.6.1), all floats are before all integers.
• atom length/2 yields an instantiation error if the first argument is a number.
• clause/[2,3] raises a permission error when accessing static predicates.
• abolish/[1,2] raises a permission error when accessing static predicates.

optimise (bool, changeable)
If true , compile in optimised mode. The initial value istrue if Prolog was started with
the-O commandline option.
Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
danttrue/0 that may result fromexpand goal/2 .
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.

SWI-Prolog 4.0 Reference Manual

32 CHAPTER 2. OVERVIEW

Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

char conversion(bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char conversion/2 .

autoload (bool, changeable)
If true (default) autoloading of library functions is enabled. See section2.13.

verboseautoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

trace gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed.

max arity (unbounded)
ISO prolog-flag describing there is no maximum arity to compound terms.

integer rounding function (down,towardzero)
SO prolog-flag describing rounding by// andrem arithmetic functions. Value depends
on the C-compiler used.

bounded(true)
ISO prolog-flag describing integer representation is bound bymin integer and
min integer .

tty control (bool)
Determines whether the terminal is switched to raw mode forget single char/1 ,
which also reads the user-actions for the trace. May be set. See also the+/-tty
command-line option.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. Iffail , the pred-
icates fails silently. Ifwarn , a warning is printed, and execution continues as if the
predicate was not defined and iferror (default), anexistence error exception is
raised. This flag is local to each module.

debug(bool, changeable)
Switch on/off debugging mode. If debug mode is activated the system traps encountered
spy-points (seespy/1) and trace-points (seetrace/1). In addition, tail-recursion op-
timisation is disabled and the system is more conservative in destroying choice-points to
simplify debugging.

Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

tail recursion optimisation (bool, changeable)
Determines whether or not tail-recursion optimisation is enabled. Normally the value of
this flag is equal to thedebug flag. As programs may run out of stack if tail-recursion
optimisation is omitted, it is sometimes necessary to enable it during debugging.

abort with exception(bool, changeable)
Determines howabort/0 is realised. See the description ofabort/0 for details.

SWI-Prolog 4.0 Reference Manual

2.12. AN OVERVIEW OF HOOK PREDICATES 33

debug on error (bool, changeable)
If true , start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See alsofileerrors/2 and the prolog-flag
report error . May be changed. Default istrue , except for the runtime version.

report error (bool, changeable)
If true , print error messages, otherwise suppress them. May be changed. See also the
debug on error prolog-flag. Default istrue , except for the runtime version.

file name variables (bool, changeable)
If true (default false), expand$varname and˜ in arguments of builtin-predicates
that accept a file name (open/3 , exists file/1 , access file/2 , etc.). The pred-
icateexpand file name/2 should be used to expand environment variables and wild-
card patterns. This prolog-flag is intended for backward compatibility with older versions
of SWI-Prolog.

unix (bool)
If true , the operating system is some version of Unix. Defined if the C-compiler used to
compile this version of SWI-Prolog either defines__unix__ or unix .

windows (bool)
If true , the operating system is an implementation of Microsoft Windows (3.1, 95, NT,
etc.).

set prolog flag(+Key, +Value)
Define a new prolog-flag or change its value.Key is an atom. If the flag is a system-
defined flag that is not markedchangeableabove, an attempt to modify the flag yields
a permission error . If the providedValue does not match the type of the flag, a
type error is raised.

In addition to ISO, SWI-Prolog allows for user-defined prolog flags. The type of the flag is
determined from the initial value and cannot be changed afterwards.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

• portray/1
Hook intowrite term/3 to alter the way terms are printed (ISO).

• message hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

• library directory/1
Hook intoabsolute file name/3 to define new library directories. (most Prolog system).

• file search path/2
Hook intoabsolute file name/3 to define new search-paths (Quintus/SICStus).

SWI-Prolog 4.0 Reference Manual

34 CHAPTER 2. OVERVIEW

• term expansion/2
Hook into load files/1 to modify read terms before they are compiled (macro-processing)
(most Prolog system).

• goal expansion/2
Same asterm expansion/2 for individual goals (SICStus).

• prolog edit:locate/3
Hook intoedit/1 to locate objects (SWI).

• prolog edit:edit source/1
Hook intoedit/1 to call some internal editor (SWI).

• prolog edit:edit command/2
Hook intoedit/1 to define the external editor to use (SWI).

• prolog list goal/1
Hook into the tracer to list the code associated to a particular goal (SWI).

• prolog trace interception/4
Hook into the tracer to handle trace-events (SWI).

• resource/3
Defines a new resource (not really a hook, but similar) (SWI).

• exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails theauto loaderis activated. On first activation an index
to all library files in all library directories is loaded in core (seelibrary directory/1). If the
undefined predicate can be located in the one of the libraries that library file is automatically loaded
and the call to the (previously undefined) predicate is resumed. By default this mechanism loads
the file silently. Thecurrent prolog flag/2 verbose autoload is provided to get verbose
loading. The prolog-flagautoload can be used to enable/disable the entire auto load system.

The auto-loader only works if the unknown flag (seeunknown/2) is set totrace (default). A
more appropriate interaction with this flag will be considered.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 4. The files are loaded withuse module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX.pl that contains an index to all library files in the directory. This file consists of lines of
the following format:

index(Name, Arity, Module, File).

The predicatemake/0 scans the autoload libraries and updates the index if it exists, is writable and
out-of-date. It is advised to create an empty file calledINDEX.pl in a library directory meant for
auto loading before doing anything else. This index file can then be updated by running the prolog
make library index/1 (‘%’ is the Unix prompt):

SWI-Prolog 4.0 Reference Manual

2.14. GARBAGE COLLECTION 35

% mkdir ˜/lib/prolog
% cd !$
% pl -g true -t ’make_library_index(.)’

If there are more than one library files containing the desired predicate the following search schema
is followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in thelibrary directory/1
predicate and within the directory alphabetically.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

2.14 Garbage Collection

SWI-Prolog version 1.4 was the first release to support garbage collection. Together with last-call
optimisation this guarantees forward chaining programs do not waste infinite amounts of memory.

2.15 Syntax Notes

SWI-Prolog uses standard ‘Edinburgh’ syntax. A description of this syntax can be found in the Prolog
books referenced in the introduction. Below are some non-standard or non-common constructs that
are accepted by SWI-Prolog:

• 0’ 〈char〉
This construct is not accepted by all Prolog systems that claim to have Edinburgh compatible
syntax. It describes the ASCII value of〈char〉. To test whetherC is a lower case character one
can usebetween(0’a, 0’z, C) .

• /* .../* ...*/ ...*/
The/* ...*/ comment statement can be nested. This is useful if some code with/* ...*/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Character Escape Syntax

Within quoted atoms (using single quotes:’ 〈atom〉’ special characters are represented using escape-
sequences. An escape sequence is lead in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility.

SWI-Prolog 4.0 Reference Manual

36 CHAPTER 2. OVERVIEW

\ a
Alert character. Normally the ASCII character 7 (beep).

\ b
Backspace character.

\ c
No output. All input characters upto but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Nor supported by ISO. Example:

format(’This is a long line that would look better if it was \c
split across multiple physical lines in the input’)

\ 〈RETURN〉
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention as\c but ISO compatible.

\ f
Form-feed character.

\ n
Next-line character.

\ r
Carriage-return only (i.e. go back to the start of the line).

\ t
Horizontal tab-character.

\ v
Vertical tab-character (ASCII 11).

\ x23
Hexadecimal specification of a character.23 is just an example. The ‘x’ may be followed by
a maximum of 2 hexadecimal digits. The closing\ is optional. The code\xa\3 emits the
character 10 (hexadecimal ‘a’) followed by ‘3’. The code\x201 emits 32 (hexadecimal ‘20’)
followed by ‘1’. According to ISO, the closing\ is obligatory and the number of digits is un-
limited. The SWI-Prolog definition allows for ISO compatible specification, but is compatible
with other implementations.

\ 40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications too, but the maximum allowed number of octal digits is 3.

\ 〈character〉
Any character immediately preceded by a\ and not covered by the above escape sequences is
copied verbatim. Thus,’\\’ is an atom consisting of a single\ and ’\’’ and ’’’’ both
describe the atom with a single’ .

SWI-Prolog 4.0 Reference Manual

2.16. SYSTEM LIMITS 37

Character escaping is only available if thecurrent prolog flag(character escapes, true)
is active (default). Seecurrent prolog flag/2 . Character escapes conflict withwritef/2 in
two ways: \40 is interpreted as decimal 40 bywritef/2 , but character escapes handling by read
has already interpreted as 32 (40 octal). Also,\l is translated to a single ‘l’. It is adviced to use the
more widely supportedformat/[2,3] predicate instead. If you insist using writef, either switch
character escapes to false , or use double\\ , as inwritef(’\\l’) .

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as〈radix〉’ 〈number〉, where〈radix〉 is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using0[bxo] 〈number〉. For
example:A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

2.16 System limits

2.16.1 Limits on memory areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by ak or m. With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), withm, the value is interpreted in Mbytes (1024× 1024 bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more in
general to2bits-per-long−5 bytes.

The heap

With the heap, we refer to the memory area used bymalloc() and friends. SWI-Prolog uses the
area to store atoms, functors, predicates and their clauses, records and other dynamic data. As of
SWI-Prolog 2.8.5, no limits are imposed on the addresses returned bymalloc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space upto the limit is claimed at startup and committed and released while the area grows and
shrinks. On Win32 platform this is realised usingVirtualAlloc() and friends. On Unix systems
this is realised usingmmap() .

2.16.2 Other Limits

Clauses Currently the following limitations apply to clauses. The arity may not be more than 1024
and the number of variables should be less than 65536.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings.read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off withstyle check/1 .

SWI-Prolog 4.0 Reference Manual

38 CHAPTER 2. OVERVIEW

Option Default Area name Description
-L 2M local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the
alternatives are cut of with the
!/0 predicate or no choice points
have been created since the in-
vocation and the last subclause
is started (tail recursion optimi-
sation).

-G 4M global stack The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

-T 4M trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.

-A 1M argument stack The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms are
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.

Table 2.2: Memory areas

SWI-Prolog 4.0 Reference Manual

2.16. SYSTEM LIMITS 39

Address spaceSWI-Prolog data is packed in a 32-bit word, which contains both type and value
information. The size of the various memory areas is limited to 128 Mb for each of the areas,
except for the program heap, which is not limited.

Integers Integers are 32-bit to the user, but integers upto the value of themax tagged integer
prolog-flag are represented more efficiently.

Floats Floating point numbers are represented as native double precision floats, 64 bit IEEE on most
machines.

2.16.3 Reserved Names

The boot compiler (see-b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc. that
should be hidden from the user start with a dollar ($) sign (seestyle check/1).

SWI-Prolog 4.0 Reference Manual

Built-in predicates 3
3.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a ‘+’, ‘-’ or ‘?’ sign.
‘+’ indicates the argument is input to the predicate, ‘-’ denotes output and ‘?’ denotes ‘either input or
output’.1 Constructs like ‘op/3 ’ refer to the predicate ‘op’ with arity ‘3’.

3.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented usingcharacter-codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.
Since a long while 8-bit character sets are allowed, providing support for national character sets, of
which iso-latin-1 (ISO 8859-1) is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (seeopen/4). These types are:

• code
A character-codeis an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

• char
Alternatively, characters may be represented asone-character-atoms. This is a very natural rep-
resentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

• byte
Bytes are used for accessing binary-streams.

The current version of SWI-Prolog does not provide support for multi-byte character encoding.
This implies for example that it is not capable of breaking a multi-byte encoded atom into characters.
For SWI-Prolog, bytes and codes are the same and one-character-atoms are simple atoms containing
one byte.

To ease the pain of these multiple representations, SWI-Prolog’s built-in predicates dealing with
character-data work as flexible as possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments that are instantiated, the character

1These marks donot suggest instantiation (e.g. var(+Var)).

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 41

is extracted before unification. This implies that the following two calls are identical, both testing
whether the next input characters is ana.

peek_code(Stream, a).
peek_code(Stream, 97).

These multiple-representations are handled by a large number of built-in predicates, all of which are
ISO-compatible. For converting betweem code and character there ischar code/2 . For breaking
atoms and numbers into characters are areatom chars/2 , atom codes/2 , number codes/2
and number chars/2 . For character I/O on streams there isget char/[1,2] ,
get code/[1,2] , get byte/[1,2] , peek char/[1,2] , peek code/[1,2] ,
peek byte/[1,2] , put code/[1,2] , put char/[1,2] and put byte/[1,2] . The
prolog-flag double quotes (see current prolog flag/2) controls how text between
double-quotes is interpreted.

3.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a text-file (often referred to
asASCII-file) containing a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains a Prolog clauses and directives, but nomodule-
declaration. They are normally loaded usingconsult/1 or ensure loaded/1 .

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only thepublicpredicates are made available to the context load-
ing the module. Module files are normally loaded usinguse module/[1,2] . See chapter4
for details.

A include Prolog source file is loaded using theinclude/1 directive and normally contains only
directives.

Prolog source-files are located usingabsolute file name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,

[file_type(prolog),
access(read)

],
Path).

The file type (prolog) option is used to determine the extension of the file using
prolog file type/2 . The default extension is.pl . Specallows for the path-alias con-
struct defined byabsolute file name/3 . The most commonly used path-alias isli-
brary (LibraryFile). The example below loads the library fileoset.pl (containing predicates for
manipulating ordered sets).

:- use_module(library(oset)).

SWI-Prolog 4.0 Reference Manual

42 CHAPTER 3. BUILT-IN PREDICATES

SWI-Prolog recognises grammar rules (DCG) as defined in [Clocksin & Melish, 1987]. The
user may define additional compilation of the source file by defining the dynamic predicate
term expansion/2 . Transformations by this predicate overrule the systems grammar rule trans-
formations. It is not allowed to useassert/1 , retract/1 or any other database predicate in
term expansion/2 other than for local computational purposes.2

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separatereconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

load files(+Files, +Options)
The predicateload files/2 is the parent of all the other loading predicates. It currently
supports a subset of the options of Quintusload files/2 . Files is either specifies a single, or
a list of source-files. The specification for a source-file is handledabsolute file name/2 .
See this predicate for the supported expansions.Optionsis a list of options using the format

OptionName(OptionValue)

The following options are currently supported:

if(Condition)
Load the file only if the specified condition is satisfied. The valuetrue loads the file
unconditionally,changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time,not loaded loads the file if it was not loaded before.

must be module(Bool)
If true , raise an error if the file is not a module file. Used byuse module/[1,2] .

imports(ListOrAll)
If all and the file is a module file, import all public predicates. Otherwise import only
the named predicates. Each predicate is refered to as〈name〉/〈arity〉. This option has no
effect if the file is not a module file.

silent(Bool)
If true , load the file without printing a message. The specified value is the default for all
files loaded as a result of loading the specified files.

consult(+File)
ReadFile as a Prolog source file.File may be a list of files, in which case all members are con-
sulted in turn.File may start with the csh(1) special sequences˜ , 〈user〉 and$〈var〉. File may
also belibrary(Name) , in which case the libraries are searched for a file with the specified
name. See alsolibrary directory/1 andfile search path/2 . consult/1 may
be abbreviated by just typing a number of file names in a list. Examples:

?- consult(load). % consultload or load.pl
?- [library(quintus)] . % load Quintus compatibility library

Equivalent to loadfiles(Files, []).
2It does work for normal loading, but not forqcompile/1 .

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 43

ensure loaded(+File)
If the file is not already loaded, this is equivalent toconsult/1 . Otherwise, if the file defines a
module, import all public predicates. Finally, if the file is already loaded, is not a module file and
the context module is not the global user module,ensure loaded/1 will call consult/1 .

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use module/[1,2] .

Equivalent to loadfiles(Files, [if(changed)]).

include(+File)
Pretend the terms inFile are in the source-file in which:- include(File) appears. The
include construct is only honnoured if it appears as a directive in a source-file. NormallyFile
contains a sequence of directives.

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, doesnot load the library. Instead it creates a procedure header
for the predicate if this does not exist. This will flag the predicate as ‘undefined’. See also
check/0 andautoload/0 .

make
Consult all source files that have been changed since they were consulted. It checksall loaded
source files: files loaded into a compiled state usingpl -c ... and files loaded using consult
or one of its derivatives. The predicatemake/0 is called afteredit/1 , automatically reload-
ing all modified files. It the user uses an external editor (in a separate window),make/0 is
normally used to update the program after editing.

library directory(?Atom)
Dynamic predicate used to specify library directories. Default./lib , ˜/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1 , asserta/1 or remove system defaults usingretract/1 .

file searchpath(+Alias, ?Path)
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specificationdemo(myfile) will be expanded to/usr/lib/prolog/demo/
myfile . The second argument offile search path/2 may be another alias.

Below is the initial definition of the file search path. This path impliesswi(〈Path〉) refers to
a file in the SWI-Prolog home directory. The aliasforeign(〈Path〉) is intended for storing
shared libraries (.so or .DLL files). See alsoload foreign library/[1,2] .

SWI-Prolog 4.0 Reference Manual

44 CHAPTER 3. BUILT-IN PREDICATES

user:file_search_path(library, X) :-
library_directory(X).

user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).

user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat(’lib/’, Arch, ArchLib).

user:file_search_path(foreign, swi(lib)).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3] .

expand file searchpath(+Spec, -Path)
Unifies Path will all possible expansions of the file name specificationSpec. See also
absolute file name/3 .

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in moduleuser determines the extensions considered
by file search path/2 . Extensionis the filename extension without the leading dot,Type
denotes the type as used by thefile type (Type) option of file search path/2 . Here
is the initial definition ofprolog file type/2 :

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-

current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, qlf).
user:prolog_file_type(Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example withperl) as well as to be compatible with some specific implementation. The
preferred alternative extension is.pro .

sourcefile(?File)
Succeeds ifFile is a loaded Prolog source file.File is the absolute and canonical path to the
source-file.

sourcefile(?Pred, ?File)
Is true if the predicate specified byPredwas loaded from fileFile, whereFile is an absolute path
name (seeabsolute file name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. See alsoclause property/2 .

prolog load context(?Key, ?Value)
Determine loading context. The following keys are defined:

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 45

Key Description
module Module into which file is loaded
file File loaded
stream Stream identifier (seecurrent input/1)
directory Directory in whichFile lives.
term position Position of last term read. Term of the form

’$stream position’(0, 〈Line〉,0,0,0)

Quintus compatibility predicate. See alsosource location/2 .

source location(-File, -Line)
If the last term has been read from a physical file (i.e. not from the fileuser or a string), unify
File with an absolute path to the file andLinewith the line-number in the file. New code should
useprolog load context/2 .

term expansion(+Term1, -Term2)
Dynamic predicate, normally not defined. When defined by the user all terms read during
consulting that are given to this predicate. If the predicate succeeds Prolog will assertTerm2in
the database rather then the read term (Term1). Term2may be a term of a the form ‘?-Goal’
or ‘:- Goal’. Goal is then treated as a directive. IfTerm2is a list all terms of the list are stored
in the database or called (for directives). IfTerm2is of the form below, the system will assert
Clauseand record the indicated source-location with it.

’$source location’(〈File〉, 〈Line〉): 〈Clause〉

When compiling a module (see chapter4 and the directivemodule/2), expand term/2
will first try term expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term,expand term/2 will try term expansion/2 in moduleuser . For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand term/2 , goal expansion/2 andexpand goal/2 .

expand term(+Term1, -Term2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
term expansion/2 . If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal expansion(+Goal1, -Goal2)
Like term expansion/2 , goal expansion/2 provides for macro-expansion of Prolog
source-code. Betweenexpand term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed toexpand goal/2 , which uses thegoal expansion/2
hook to do user-defined expansion.

The predicategoal expansion/2 is first called in the module that is being compiled, and
then on theuser module.

Only goals apearing in the body of clauses when reading a source-file are expanded using mech-
anism, and only if they appear literally in the clause, or as an argument to the meta-predicates
not/1 , call/1 or forall/2 . A real predicate definition is required to deal with dynami-
cally constructed calls.

SWI-Prolog 4.0 Reference Manual

46 CHAPTER 3. BUILT-IN PREDICATES

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal expansion/2 . If this fails it returns the first argument.

at initialization(+Goal)
RegisterGoal to be ran when the system initialises. Initialisation takes place after reloading a
.qlf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issued ifGoal fails, but execution continues. See
alsoat halt/1

at halt(+Goal)
RegisterGoal to be ran when the system halts. The hooks are run in the order they were regis-
tered. Success or failure executing a hook is ignored. These hooks may not callhalt/[0,1] .

initialization(+Goal)
Call Goal and register it usingat initialization/1 . Directives that do other things
that creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
qsave program/[1,2] .

compiling
Succeeds if the system is compiling source files with the-c option into an intermediate code
file. Can be used to perform code optimisations inexpand term/2 under this condition.

preprocessor(-Old, +New)
Read the input file via a Unix process that acts as preprocessor. A preprocessor is specified as
an atom. The first occurrence of the string ‘%f’ is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard output of this command is
loaded. To use the Unix C preprocessor one should define:

?- preprocessor(Old, ’/lib/cpp -C -P %f’), consult(...).

Old = none

3.3.1 Quick load files

The features described in this section should be regardedalpha.
As of version 2.0.0, SWI-Prolog supports compilation of individual or multiple Prolog source-

files into ‘Quick Load Files’. A ‘Quick Load Files’ (.qlf file) stores the contents of the file in a
precompiled format.

These files load considerably faster than sourcefiles and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created usingqcompile/1 . They are loaded usingconsult/1 or one
of the other file-loading predicates described in section3.3. If consult is given the explicit.pl file,
it will load the Prolog source. When given the.qlf file, it will load the file. When no extension is
specified, it will load the.qlf file when present and the fileextpl file otherwise.

SWI-Prolog 4.0 Reference Manual

3.4. LISTING AND EDITOR INTERFACE 47

qcompile(+File)
Takes a single file specification likeconsult/1 (i.e. accepts constructs like
library(LibFile) and creates a Quick Load File fromFile. The file-extension of
this file is.qlf . The base name of the Quick Load File is the same as the input file.

If the file contains ‘:- consult(+File) ’ or ‘ :- [+File] ’ statements, the referred files
are compiled into the same.qlf file. Other directives will be stored in the.qlf file and
executed in the same fashion as when loading the.pl file.

For term expansion/2 , the same rules as described in section2.10apply.

Source references (source file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

3.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented byedit/1 and consists of three parts:
locating, selectingandstarting the editor.

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1) predicates defined in the moduleprolog edit .

The built-in edit specifications foredit/1 (seeprolog edit:locate/3) are described be-
low.

Fully specified objects
〈Module〉:〈Name〉/〈Arity〉 Refers a predicate
module(〈Module〉) Refers to a module
file(〈Path〉) Refers to a file
sourcefile(〈Path〉) Refers to a loaded source-file

Ambiguous specifications
〈Name〉/〈Arity〉 Refers this predicate in any module
〈Name〉 Refers to (1) named predicate in any module with any ar-

ity, (2) a (source) file or (3) a module.

edit(+Specification)
First exploitsprolog edit:locate/3 to translateSpecificationinto a list of Locations.
If there is more than one ‘hit’, the user is allows to select from the found locations. Finally,
prolog edit:edit source/1 is used to invoke the user’s preferred editor.

prolog edit:locate(+Spec, -FullSpec, -Location)
WhereSpecis the specification provided throughedit/1 . This multifile predicate is used to
enumerate locations at with an object satisfying the givenSpeccan be found.FullSpecis unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, ifSpecis an atom, which appears as the base-name of a loaded file
and as the name of a predicate,FullSpecwill be bound tofile (Path) or Name/Arity.

Location is a list of attributes of the location. Normally, this list will contain the term
file (File) and —if available— the termline (Line).

prolog edit:locate(+Spec, -Location)
Same asprolog edit:locate/3 , but only deals with fully-sepecified objects.

SWI-Prolog 4.0 Reference Manual

48 CHAPTER 3. BUILT-IN PREDICATES

prolog edit:edit source(+Location)
Start editor onLocation. Seeprolog edit:locate/3 for the format of a location term.
This multi-file predicate is normally not defined. If it succeeds,edit/1 assumes the editor is
started.

If it fails, edit/1 will invoke an external editor. The editor to be invoked is determined from
the evironment variableEDITOR, which may be set from the operating system or from the
Prolog initialisation file usingsetenv/2 . If no editor is defined,vi is the default in Unix
systems, andnotepad on Windows.

The predicateprolog edit:edit command/2 defines how the editor will be invoked.

prolog edit:edit command(+Editor, -Command)
Determines howEditor is to be invoked usingshell/1 . Editor is the determined editor (see
edit source/1), without the full path specification, and without possible (exe) extension.
Commandis an atom describing the command. The pattern%f is replaced by the full file-name
of the location, and%dby the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the%f pattern, and one holding both
patterns.

The default contains definitions forvi , emacs, emacsclient , vim andnotepad (latter
without line-number version).

Please contribute your specifications tojan@swi.psy.uva.nl .

prolog edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load library(swi edit), containing definitions to locate classes and methods as well as to bind
this package to the PceEmacs built-in editor.

:- multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus loosing user’s layout and
variable name information. See alsoportray clause/1 .

listing
List all predicates of the database usinglisting/1 .

portray clause(+Clause)
Pretty print a clause. A clause should be specified as a term ‘〈Head〉 :- 〈Body〉’. Facts are
represented as ‘〈Head〉 :- true ’.

SWI-Prolog 4.0 Reference Manual

3.5. VERIFY TYPE OF A TERM 49

3.5 Verify Type of a Term

var(+Term)
Succeeds ifTermcurrently is a free variable.

nonvar(+Term)
Succeeds ifTermcurrently is not a free variable.

integer(+Term)
Succeeds ifTermis bound to an integer.

float(+Term)
Succeeds ifTermis bound to a floating point number.

number(+Term)
Succeeds ifTermis bound to an integer or a floating point number.

atom(+Term)
Succeeds ifTermis bound to an atom.

string(+Term)
Succeeds ifTermis bound to a string.

atomic(+Term)
Succeeds ifTermis bound to an atom, string, integer or floating point number.

compound(+Term)
Succeeds ifTermis bound to a compound term. See alsofunctor/3 and =../2.

callable(+Term)
Succeeds ifTerm is bound to an atom or a compound term, so it can be handed without type-
error tocall/1 , functor/3 and =../2.

ground(+Term)
Succeeds ifTermholds no free variables.

3.6 Comparison and Unification or Terms

3.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables< Atoms< Strings< Numbers< Terms3

2. Old Variable< New Variable4

3. Atomsare compared alphabetically.
3Strings might be considered atoms in future versions. See also section3.23
4In fact the variables are compared on their (dereferenced) addresses. Variables living on the global stack are always<

than variables on the local stack. Programs should not rely on the order in which variables are sorted.

SWI-Prolog 4.0 Reference Manual

50 CHAPTER 3. BUILT-IN PREDICATES

4. Stringsare compared alphabetically.

5. Numbersare compared by value. Integers and floats are treated identically.

6. Compoundterms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

If the prologflag (seecurrent prolog flag/2) iso is defined, all floating point numbers
precede all integers.

+Term1== +Term2
Succeeds ifTerm1is equivalent toTerm2. A variable is only identical to a sharing variable.

+Term1\== +Term2
Equivalent to\+Term1 == Term2 .

+Term1= +Term2
Unify Term1with Term2. Succeeds if the unification succeeds.

unify with occurs check(+Term1, +Term2)
As =/2 , but usingsound-unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two goals below:

1 ?- A = f(A).

A = f(f(f(f(f(f(f(f(f(f(...))))))))))
2 ?- unify_with_occurs_check(A, f(A)).

No

I.e. the first creates acyclic-term, which is printed as an infinitly nestedf/1 term (see the
max depth option ofwrite term/2). The second executes logically sound unification and
thus fails.

+Term1\= +Term2
Equivalent to\+Term1 = Term2 .

+Term1=@=+Term2
Succeeds ifTerm1is ‘structurally equal’ toTerm2. Structural equivalence is weaker than equiv-
alence (==/2), but stronger than unification (=/2). Two terms are structurally equal if their
tree representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true

x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

+Term1\=@= +Term2
Equivalent to‘\+Term1 =@= Term2’ .

SWI-Prolog 4.0 Reference Manual

3.7. CONTROL PREDICATES 51

+Term1@<+Term2
Succeeds ifTerm1is beforeTerm2in the standard order of terms.

+Term1@=<+Term2
Succeeds if both terms are equal (==/2) or Term1 is beforeTerm2 in the standard order of
terms.

+Term1@>+Term2
Succeeds ifTerm1is afterTerm2in the standard order of terms.

+Term1@>=+Term2
Succeeds if both terms are equal (==/2) or Term1is afterTerm2in the standard order of terms.

compare(?Order, +Term1, +Term2)
Determine or test theOrder between two terms in the standard order of terms.Order is one of
<, > or =, with the obvious meaning.

3.7 Control Predicates

The predicates of this section implement control structures. Normally these constructs are translated
into virtual machine instructions by the compiler. It is still necessary to implement these constructs
as true predicates to support meta-calls, as demonstrated in the example below. The predicate finds
all currently defined atoms of 1 character long. Note that the cut has no effect when called via one of
these predicates (see !/0).

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail
Always fail. The predicatefail/0 is translated into a single virtual machine instruction.

true
Always succeed. The predicatetrue/0 is translated into a single virtual machine instruction.

repeat
Always succeed, provide an infinite number of choice points.

!
Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies that
the cut is transparent to;/2 , ->/2 and*->/2 . Cuts appearing in theconditionpart of->/2
and*->/2 as well as in\+/1 are local to the condition.

As an extension, a variable goal that is bound the the! is handled as a true cut. This is the only
difference betweencall/1 and a variable appearing as subgoal.

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3(G) :- a, G, fail. % if ‘G = !’ cuts a/0 and t1/1
t4(G) :- a, call(G), fail. % if ‘G = !’ cut has no effect
t5 :- call((a, !, fail ; b)). % cuts a/0
t6 :- \+(a, !, fail ; b). % cuts a/0

SWI-Prolog 4.0 Reference Manual

52 CHAPTER 3. BUILT-IN PREDICATES

+Goal1 , +Goal2
Conjunction. Succeeds if both ‘Goal1’ and ‘Goal2’ can be proved. It is defined as (this defini-
tion does not lead to a loop as the second comma is handled by the compiler):

Goal1, Goal2 :- Goal1, Goal2.

+Goal1 ; +Goal2
The ‘or’ predicate is defined as:

Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.

+Goal1 | +Goal2
Equivalent to;/2 . Retained for compatibility only. New code should use;/2 . Still nice
though for grammar rules.

+Condition -> +Action
If-then and If-Then-Else. The->/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by;/2), or by goals called by this
clause. Unlike!/0 , the choicepoint of the predicate as a whole (due to multiple clauses) isnot
destroyed. The combination;/2 and->/2 is defines as:

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Note that the operator precedence relation between; and-> ensureIf -> Then ; Else
is actually a term of the form;(->(If, Then), Else) . The first two clauses belong to
the definition of;/2), while only the last defines->/2 .

+Condition *-> +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: IfCondi-
tion succeeds at least once, the semantics is the same as (Condition, Action). If Conditiondoes
not succeed, the semantics is that of (Condition, Else). In other words, IfConditionsucceeds at
least once, simply behave as the conjunction ofConditionandAction, otherwise executeElse.

\+ +Goal
Succeeds if ‘Goal’ cannot be proven (mnemonic:+ refers toprovableand the backslash (\) is
normally used to indicate negation).

3.8 Meta-Call Predicates

Meta call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

SWI-Prolog 4.0 Reference Manual

3.8. META-CALL PREDICATES 53

call(+Goal)
InvokeGoal as a goal. Note that clauses may have variables as subclauses, which is identical
to call/1 , except when the argument is bound to the cut. See!/0 .

call(+Goal, +ExtraArg1, . . .)
AppendExtraArg1, ExtraArg2, . . .to the argument list ofGoaland call the result. For example,
call(plus(1), 2, X) will call plus/3 , bindingX to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicatescall/[2-6] are defined as true predicates, so they can be
handled by interpreted code.

apply(+Term, +List)
Append the members ofList to the arguments ofTermand call the resulting term. For example:
apply(plus(1), [2, X]) will call plus(1, 2, X) . apply/2 is incorporated in the
virtual machine of SWI-Prolog. This implies that the overhead can be compared to the overhead
of call/1 . New code should use call/[2..] if the length ofList is fixed, which is more widely
supported and faster because there is no need to build and examine the argument list.

not(+Goal)
Succeeds whenGoal cannot be proven. Retained for compatibility only. New code should use
\+/1 .

once(+Goal)
Defined as:

once(Goal) :-
Goal, !.

once/1 can in many cases be replaced with->/2 . The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a :- b, c -> d.

ignore(+Goal)
CallsGoalasonce/1 , but succeeds, regardless of whetherGoalsucceeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit(+Goal, +Limit, -Result)
If Goal can be proven without recursion deeper thanLimit levels,
call with depth limit/3 succeeds, bindingResult to the deepest recursion level
used during the proof. Otherwise,Resultis unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails ifGoal fails without exceeding
Limit.

SWI-Prolog 4.0 Reference Manual

54 CHAPTER 3. BUILT-IN PREDICATES

The depth-limit is guarded by the internal machinery. This differ from the depth computed
based on a theoretical model. For example,true/0 is translated into an inlined virtual machine
instruction. Also,repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-

repeat.

As a result,call with depth limit/3 may still loop inifitly on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques likeiterrative deepening.
It was implemented after discussion with Steve Moylesmoyle@ermine.ox.ac.uk .

3.9 ISO compliant Exception handling

SWI-Prolog defines the predicatescatch/3 andthrow/1 for ISO compliant raising and catching
of exceptions. In the current implementation (2.9.0), only part of the built-in predicates generate
exceptions. In general, exceptions are implemented for I/O and arithmetic.

catch(:Goal, +Catcher, :Recover)
Behaves ascall/1 if no exception is raised when executingGoal. If a exception is raised
using throw/1 while Goal executes, and theGoal is the innermost goal for whichCatcher
unifies with the argument ofthrow/1 , all choicepoints generated byGoalare cut, andRecover
is called as incall/1 .

The overhead of calling a goal throughcatch/3 is very comparable tocall/1 . Recovery
from an exception has a similar overhead.

throw(+Exception)
Raise an exception. The system will look for the innermostcatch/3 ancestor for which
Exceptionunifies with theCatcherargument of thecatch/3 call. Seecatch/3 for details.

If there is nocatch/3 willing to catch the error in the current Prolog context, the toplevel
(prolog/0) catches the error and prints a warning message. If an exception was raised in a
callback from C (see chapter5), PL next solution() will fail and the exception context
can be retrieved usingPL exception() .

3.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an
error message, after which the predicate failed. If the prologflag (seecurrent prolog flag/2)
debug on error was in effect (default), the tracer was switched on. The combination of the error
message and trace information is generally sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
toplevel will trap it to prevent termination.

SWI-Prolog 4.0 Reference Manual

3.9. ISO COMPLIANT EXCEPTION HANDLING 55

If we do not take special precautions, the context information associated with an unexpected
exception (i.e. a programming error) is lost. Therefore, if an exception is raised, which is not caught
usingcatch/3 and the toplevel is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is nocatch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the prologflag debugon error:

• current prolog flag(debugon error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed usingPL exception() . This is the default.

• current prolog flag(debugon error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is adviced to switch on debug
mode using the predicatedebug/0 .

3.9.2 The exception term

Builtin predicates generates exceptions using a termerror (Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context (Name/Arity, Message), whereName/Arity describes the built-in predicate that raised the
error, andMessageprovides an additional description of the error. Any part of this structure may be a
variable if no information was present.

3.9.3 Printing messages

The predicateprint message/2 may be used to print a message term in a human readable for-
mat. The other predicates from this section allow the user to refine and extend the message system.
The most common usage ofprint message/2 is to print error messages from exceptions. The
code below prints errors encountered during the execution ofGoal, without further propagating the
exception and without starting the debugger.

...,
catch(Goal, E,

(print_message(error, E),
fail

)),
...

Another common use is to definedmessage hook/3 for printing messages that are normallysilent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

SWI-Prolog 4.0 Reference Manual

56 CHAPTER 3. BUILT-IN PREDICATES

print message(+Kind, +Term)
The predicateprint message/2 is used to print messages, notably from exceptions in a
human-readable format.Kind is one of informational , warning , error , help or
silent . A human-readable message is printed to the streamuser error .

This predicate first translates theTerm into a list of ‘message lines’ (see
print message lines/3 for details). Next it will call the hookmessage hook/3 to
allow the user intercepting the message. Ifmessage hook/3 fails it will print the message
unlessKind is silent.

The print message/2 predicate and its rules are in the file
〈plhome〉/boot/messages.pl , which may be inspected for more information on the
error messages and related error terms.

See alsomessage to string/2 .

print messagelines(+Stream, +Prefix, +Lines)
Print a message (seeprint message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

〈Format〉-〈Args〉
WhereFormat is an atom andArgs is a list of format argument. Handed toformat/3 .

flush
If this appears as the last element,Streamis flushed (seeflush output/1) and no final
newline is generated.

at same line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (seeformat/1 , ˜N).

〈Format〉
Handed toformat/3 asformat(Stream, Format, []) .

nl
A new line is started and if the message is not complete thePrefix is printed too.

See alsoprint message/2 andmessage hook/3 .

messagehook(+Term, +Kind, +Lines)
Hook predicate that may be define in the moduleuser to intercept messages from
print message/2 . TermandKind are the same as passed toprint message/2 . Lines
is a list of format statements as described withprint message lines/3 . See also
message to string/2 .

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

messageto string(+Term, -String)
Translates a message-term into a string object (see section??. Primarily intended to write
messages to Windows in XPCE (see section1.5) or other GUI environments.

SWI-Prolog 4.0 Reference Manual

3.10. HANDLING SIGNALS 57

3.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section5.6.12).

Signals are used to handle internal errors (execution of a non-existing CPU intruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the Posix standard and part of all Unix machines. The MS-Windows Win32
provides a subset of the signal handling routines, lacking the vital funtionality to raise a signal in
another thread for achieving asynchronous inter-process (or inter-thread) communication (Unix kill()
function).

on signal(+Signal, -Old, :New)
Determines the reaction onSignal. Old is unified with the old behaviour, while the behaviour is
switched toNew. As with similar environment-control predicates, the current value is retrieved
usingon signal(Signal, Current, Current) .

The action description is an atom denoting the name of the predicate that will be called if
Signalarrives.on signal/3 is a meta predicate, which implies that〈Module〉:〈Name〉 refers
the〈Name〉/1 in the module〈Module〉.
Two predicate-names have special meaning.throw implies Prolog will map the signal onto a
Prolog exception as described in section3.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

Signals bound to a foreign function throughPL signal() are reported using the term$for-
eign function (Address).

After receiving a signal mapped tothrow , the exception raised has the structure

error(signal(〈SigName〉, 〈SigNum〉), 〈Context〉)

One possible usage of this is, for example, to limit the time spent on proving a goal. This
requires a little C-code for setting the alarm timer (see chapter5):

#include <SWI-Prolog.h>
#include <unistd.h>

foreign_t
pl_alarm(term_t time)
{ double t;

if (PL_get_float(time, &t))
{ alarm((long)(t+0.5));

PL_succeed;
}

PL_fail;
}

SWI-Prolog 4.0 Reference Manual

58 CHAPTER 3. BUILT-IN PREDICATES

install_t
install()
{ PL_register_foreign("alarm", 1, pl_alarm, 0);
}

Next, we can define the following Prolog code:

:- load_foreign_library(alarm).

:- on_signal(alrm, throw).

:- module_transparent
call_with_time_limit/2.

call_with_time_limit(Goal, MaxTime) :-
alarm(MaxTime),
catch(Goal, error(signal(alrm, _), _), fail), !,
alarm(0).

call_with_time_limit(_, _) :-
alarm(0),
fail.

The signal names are defined by the C-Posix standards as symbols of the form
SIG 〈SIGNAME〉. The Prolog name for a signal is the lowercase version of〈SIGNAME〉. The
predicatecurrent signal/3 may be used to map between names and signals.

Initially, some signals are mapped tothrow , while all other signals aredefault . The fol-
lowing signals throw an exception:ill , fpe , segv , pipe , alrm , bus , xcpu , xfsz and
vtalrm .

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling.Nameis the signal name,Id is the numerical
identifier andHandler is the currently defined handler (seeon signal/3).

3.10.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

• Portibility
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary.

• Safety
Signal handling is not completely safe in the current implementation, especially ifthrow is
used in combination with external foreign code. The system will use the C longjmp() construct
to direct control to the innermostPL next solution() , thus forcing an external procedure
to be abandoned at an arbitrary moment. Most likely not all SWI-Prologs own foreign code is
(yet) safe too.

SWI-Prolog 4.0 Reference Manual

3.11. THE ‘BLOCK’ CONTROL-STRUCTURE 59

• Garbage Collection
The garbage collector will block all signals that are handled by Prolog. While handling a signal,
the garbage-collector is disabled.

• Time of delivery
Normally delivery is immediate (or as defined by the operating system used). Signals are
blocked when the garbage collector is active, and internally delayed if they occur within in
a ‘critical section’. The critical sections are generally very short.

3.11 The ‘block’ control-structure

Theblock/3 predicate and friends have been introduced before ISO compatiblecatch/3 excep-
tion handling for compatibility with some Prolog implementation. The only feature not covered by
catch/3 and throw/1 is the posibility to execute global cuts. New code should usecatch/3
andthrow/1 to deal with exceptions.

block(+Label, +Goal, -ExitValue)
ExecuteGoal in a block. Label is the name of the block.Label is normally an atom, but the
system imposes no type constraints and may even be a variable.ExitValueis normally unified
to the second argument of anexit/2 call invoked byGoal.

exit(+Label, +Value)
Calling exit/2 makes the innermostblockwhich Labelunifies exit. The block’sExitValueis
unified withValue. If this unification fails the block fails.

fail(+Label)
Calling fail/1 makes the innermostblockwhichLabelunifies fail immediately. Implemented
as

fail(Label) :- !(Label), fail.

! (+Label)
Cut all choice-points created since the entry of the innermostblockwhichLabelunifies.

3.12 DCG Grammar rules

Grammar rules form a comfortable interface todifference-lists. They are designed both to support
writing parsers that build a parse-tree from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog standard. Most Prolog engines
implement DCG, but the details differ slightly.

Grammar rules look like ordinary clauses using-->/2 for separating the head and body rather
then :-/2 . Expanding grammar rules is done byexpand term/2 , which adds two additional
argument to each term for representing the difference list. We will illustrate the behaviour by defining
a rule-set for parsing an integer.

integer(I) -->
digit(D0),

SWI-Prolog 4.0 Reference Manual

60 CHAPTER 3. BUILT-IN PREDICATES

digits(D),
{ number_chars(I, [D0|D])
}.

digits([D|T]) -->
digit(D), !,
digits(T).

digits([]) -->
[].

digit(D) -->
[D],
{ code_type(D, digit)
}.

The body of a grammar rule can contain three types of terms. A compound term interpreted as a
reference to a grammar-rule. Code between{ . . .} is interpreted as a reference to ordinary Prolog
code and finally, a list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1 ,
->/2 , ;// 2, ,/2 and!/0) can be used in grammar rules.

Grammar rule-sets are called using the builtin predicatesphrase/2 andphrase/3 :

phrase(+RuleSet, +InputList)
Equivalent tophrase(RuleSet , InputList , []) .

phrase(+RuleSet, +InputList, -Rest)
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly. The example below calls the
rule-set ‘integer’ defined above.

?- phrase(integer(X), "42 times", Rest).

X = 42
Rest = [32, 116, 105, 109, 101, 115]

3.13 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses asserted usingassert/1 or
one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 and retractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1 .

The second way of storing arbitrary terms in the database is using the “recorded database”. In this
database terms are associated with akey. A key can be an atom, integer or term. In the last case only
the functor and arity determine the key. Each key has a chain of terms associated with it. New terms

SWI-Prolog 4.0 Reference Manual

3.13. DATABASE 61

can be added either at the head or at the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it. It is faster
than the mechanisms described above, but can only be used to store simple status information like
counters, etc.

abolish(:PredicateIndicator)
Removes all clauses of a predicate with functorFunctorand arityArity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard,abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is alreadyretract/1 and
retractall/1 . The abolish/1 predicate has been introduced in DEC-10 Prolog pre-
cisely for dealing with static procedures. In SWI-Prolog,abolish/1 works on static proce-
dures, unless the prolog flagiso is set totrue .

It is adviced to useretractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same asabolish(Name/Arity) . The predicateabolish/2 conforms to the Edinburgh
standard, whileabolish/1 is ISO compliant.

redefine systempredicate(+Head)
This directive may be used both in moduleuser and in normal modules to redefine any system
predicate. If the system definition is redefined in moduleuser , the new definition is the default
definition for all sub-modules. Otherwise the redefinition is local to the module. The system
definition remains in the modulesystem .

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

retract(+Term)
WhenTermis an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

retractall(+Head)
All facts or clauses in the database for which theheadunifies withHeadare removed.

assert(+Term)
Assert a fact or clause in the database.Term is asserted as the last fact or clause of the corre-
sponding predicate.

asserta(+Term)
Equivalent toassert/1 , butTermis asserted as first clause or fact of the predicate.

assertz(+Term)
Equivalent toassert/1 .

SWI-Prolog 4.0 Reference Manual

62 CHAPTER 3. BUILT-IN PREDICATES

assert(+Term, -Reference)
Equivalent toassert/1 , but Referenceis unified with a unique reference to the asserted
clause. This key can later be used withclause/3 or erase/1 .

asserta(+Term, -Reference)
Equivalent toassert/2 , butTermis asserted as first clause or fact of the predicate.

assertz(+Term, -Reference)
Equivalent toassert/2 .

recorda(+Key, +Term, -Reference)
AssertTermin the recorded database under keyKey. Key is an integer, atom or term.Reference
is unified with a unique reference to the record (seeerase/1).

recorda(+Key, +Term)
Equivalent torecorda(Key, Value ,) .

recordz(+Key, +Term, -Reference)
Equivalent torecorda/3 , but puts theTermat the tail of the terms recorded underKey.

recordz(+Key, +Term)
Equivalent torecordz(Key, Value ,) .

recorded(+Key, -Value, -Reference)
Unify Valuewith the first term recorded underKeywhich does unify.Referenceis unified with
the memory location of the record.

recorded(+Key, -Value)
Equivalent torecorded(Key, Value ,) .

erase(+Reference)
Erase a record or clause from the database.Referenceis an integer returned byrecorda/3 or
recorded/3 , clause/3 , assert/2 , asserta/2 or assertz/2 . Other integers might
conflict with the internal consistency of the system. Erase can only be called once on a record
or clause. A second call also might conflict with the internal consistency of the system.5

flag(+Key, -Old, +New)
Key is an atom, integer or term. UnifyOld with the old value associated withKey. If the key
is used for the first timeOld is unified with the integer 0. Then store the value ofNew, which
should be an integer, float, atom or arithmetic expression, underKey. flag/3 is a very fast
mechanism for storing simple facts in the database. Example:

:- module_transparent succeeds_n_times/2.

succeeds_n_times(Goal, Times) :-
(flag(succeeds_n_times, Old, 0),

Goal,
flag(succeeds_n_times, N, N+1),

5BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about consis-
tency matters. Currently some simple heuristics are used to determine whether a reference is valid.

SWI-Prolog 4.0 Reference Manual

3.14. DECLARING PREDICATES PROPERTIES 63

fail
; flag(succeeds_n_times, Times, Old)
).

3.13.1 Update view

Traditionally, Prolog systems used theimmediate update view: new clauses became visible to predi-
cates backtracking over dynamic predicates immediately and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere thelogical update view, where backtrackable predicates
that enter the definition of a predicate will not see any changes (either caused byassert/1 or
retract/1) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’.6 Logical updates are realised by keeping reference-counts on predicates andgeneration
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created as well as the generation it was erased. Only clauses with ‘created’
. . . ‘erased’ interval that encloses the generation of the current goal are considered visible.

3.13.2 Indexing databases

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.
SWI-Prolog allows indexing on other and multiple arguments using the declarationindex/1 .

For advanced database indexing, it defineshash term/2 :

hash term(+Term, -HashKey)
If Term is a ground term (seeground/1), HashKeyis unified with a positive integer value
that may be used as a hash-key to the value. IfTerm is not ground, the predicate succeeds
immediately, leavingHashKeyan unbound variable.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations of SWI-Prolog.

3.14 Declaring predicates properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1 , multifile/1 anddiscontiguous/1 are operators of priority 1150 (seeop/3),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
foo/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

6For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 4.0 Reference Manual

64 CHAPTER 3. BUILT-IN PREDICATES

dynamic +Functor/+Arity, . . .
Informs the interpreter that the definition of the predicate(s) may change during execution (us-
ing assert/1 and/orretract/1). Currentlydynamic/1 only stops the interpreter from
complaining about undefined predicates (seeunknown/2). Future releases might prohibit
assert/1 andretract/1 for not-dynamic declared procedures.

multifile +Functor/+Arity, . . .
Informs the system that the specified predicate(s) may be defined over more than one file. This
stopsconsult/1 from redefining a predicate when a new definition is found.

discontiguous+Functor/+Arity, . . .
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See alsostyle check/1 .

index(+Head)
Index the clauses of the predicate with the same name and arity asHeadon the specified argu-
ments.Head is a term of which all arguments are either ‘1’ (denoting ‘index this argument’)
or ‘0’ (denoting ‘do not index this argument’). Indexing has no implications for the semantics
of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose
algorithm is used to select candidate clauses based on the actual arguments of the goal. This
algorithm checks whether indexed arguments might unify in the clause head. Only atoms, in-
tegers and functors (e.g. name and arity of a term) are considered. Indexing is very useful for
predicates with many clauses representing facts.

Due to the representation technique used at most 4 arguments can be indexed. All indexed
arguments should be in the first 32 arguments of the predicate. If more than 4 arguments are
specified for indexing only the first 4 will be accepted. Arguments above 32 are ignored for
indexing.

By default all predicates with〈arity〉 ≥ 1 are indexed on their first argument. It is possible to
redefine indexing on predicates that already have clauses attached to them. This will initiate
a scan through the predicates clause list to update the index summary information stored with
each clause.

If—for example—one wants to represents sub-types using a fact list ‘subtype(Sub, Super)’ that
should be used both to determine sub- and super types one should declare subtype/2 as follows:

:- index(sub_type(1, 1)).

sub_type(horse, animal).
...
...

3.15 Examining the program

current atom(-Atom)
Successively unifiesAtomwith all atoms known to the system. Note thatcurrent atom/1
always succeeds ifAtomis instantiated to an atom.

SWI-Prolog 4.0 Reference Manual

3.15. EXAMINING THE PROGRAM 65

current functor(?Name, ?Arity)
Successively unifiesNamewith the name andArity with the arity of functors known to the
system.

current flag(-FlagKey)
Successively unifiesFlagKeywith all keys used for flags (seeflag/3).

current key(-Key)
Successively unifiesKeywith all keys used for records (seerecorda/3 , etc.).

current predicate(?Name, ?Head)
Successively unifiesNamewith the name of predicates currently defined andHeadwith the
most general term built fromNameand the arity of the predicate. This predicate succeeds for
all predicates defined in the specified module, imported to it, or in one of the modules from
which the predicate will be imported if it is called.

predicate property(?Head, ?Property)
Succeeds ifHeadrefers to a predicate that has propertyProperty. Can be used to test whether a
predicate has a certain property, obtain all properties known forHead, find all predicates having
propertyor even obtaining all information available about the current program.Propertyis one
of:

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

built in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

foreign
Is true if the predicate is defined in the C language.

dynamic
Is true if the predicate is declared dynamic using thedynamic/1 declaration.

multifile
Is true if the predicate is declared multifile using themultifile/1 declaration.

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses in it
and it is not declared dynamic. This is true if the predicate occurs in the body of a loaded
predicate, an attempt to call it has been made via one of the meta-call predicates or the
predicate had a definition in the past. See the library packagecheckfor example usage.

transparent
Is true if the predicate is declared transparent using themodule transparent/1 dec-
laration.

exported
Is true if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from moduleModule.

SWI-Prolog 4.0 Reference Manual

66 CHAPTER 3. BUILT-IN PREDICATES

indexed(Head)
Predicate is indexed (seeindex/1) according toHead. Head is a term whose name
and arity are identical to the predicate. The arguments are unified with ‘1’ for indexed
arguments, ‘0’ otherwise.

file(FileName)
Unify FileNamewith the name of the sourcefile in which the predicate is defined. See also
source file/2 .

line count(LineNumber)
Unify LineNumberwith the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See alsosource file/2 .

number of clauses(ClauseCount)
Unify ClauseCountto the number of clauses associated with the predicate. Fails for for-
eign predicates.

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate.Termis a term, which name and arity are used as
a predicate specification.Dwim is instantiated with the most general term built fromNameand
the arity of a defined predicate that matches the predicate specified byTerm in the ‘Do What
I Mean’ sense. Seedwim match/2 for ‘Do What I Mean’ string matching. Internal sys-
tem predicates are not generated, unlessstyle check(+dollar) is active. Backtracking
provides all alternative matches.

clause(?Head, ?Body)
Succeeds whenHeadcan be unified with a clause head andBodywith the corresponding clause
body. Gives alternative clauses on backtracking. For factsBodyis unified with the atomtrue.
Normally clause/2 is used to find clause definitions for a predicate, but it can also be used
to find clause heads for some body template.

clause(?Head, ?Body, ?Reference)
Equivalent toclause/2 , but unifiesReferencewith a unique reference to the clause (see also
assert/2 , erase/1). If Referenceis instantiated to a reference the clause’s head and body
will be unified with HeadandBody.

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Referenceis specified it unifiesPred with the most general term with the same name/arity
as the predicate andIndexwith the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. IfIndex is providedReferencewill be unified
with the clause reference. IfIndex is unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
member/2 :

?- nth_clause(member(_,_), 2, Ref), clause(Head, Body, Ref).

Ref = 160088
Head = system : member(G575, [G578|G579])
Body = member(G575, G579)

SWI-Prolog 4.0 Reference Manual

3.16. INPUT AND OUTPUT 67

clauseproperty(+ClauseRef, -Property)
Queries properties of a clause.ClauseRefis a reference to a clause as produced byclause/3 ,
nth clause/3 or prolog frame attribute/3 . Propertyis one of the following:

file(FileName)
Unify FileNamewith the name of the sourcefile in which the clause is defined. Fails if the
clause is not associated to a file.

line count(LineNumber)
Unify LineNumberwith the line number of the clause. Fails if the clause is not associated
to a file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

3.16 Input and output

SWI-Prolog provides two different packages for input and output. One confirms to the Edinburgh
standard. This package has a notion of ‘current-input’ and ‘current-output’. The reading and writing
predicates implicitly refer to these streams. In the second package, streams are opened explicitly and
the resulting handle is used as an argument to the reading and writing predicate to specify the source
or destination. Both packages are fully integrated; the user may switch freely between them.

3.16.1 Input and output using implicit source and destination

The package for implicit input and output destination is upwards compatible to DEC-10 and C-Prolog.
The reading and writing predicates refer to resp. the current input- and output stream. Initially
these streams are connected to the terminal. The current output stream is changed usingtell/1
or append/1 . The current input stream is changed usingsee/1 . The streams current value can be
obtained usingtelling/1 for output- andseeing/1 for input streams. The table below shows the
valid stream specifications. The reserved namesuser input , user output anduser error
are for neat integration with the explicit streams.

user This reserved name refers to the terminal
user input Input from the terminal
user output Output to the terminal
user error Unix error stream (output only)
〈Atom〉 Name of a Unix file
pipe(〈Atom〉) Name of a Unix command

Source and destination are either a file, one of the reserved words above, or a term
‘pipe(Command)’. In the predicate descriptions below we will call the source/destination argument
‘SrcDest’. Below are some examples of source/destination specifications.

?- see(data). % Start reading from file ‘data’.
?- tell(user error). % Start writing on the error stream.
?- tell(pipe(lpr)). % Start writing to the printer.

SWI-Prolog 4.0 Reference Manual

68 CHAPTER 3. BUILT-IN PREDICATES

Another example of using thepipe/1 construct is shown below. Note that thepipe/1 construct
is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

see(+SrcDest)
MakeSrcDestthe current input stream. IfSrcDestwas already opened for reading withsee/1
and has not been closed since, reading will be resumed. OtherwiseSrcDestwill be opened and
the file pointer is positioned at the start of the file.

tell(+SrcDest)
Make SrcDestthe current output stream. IfSrcDestwas already opened for writing with
tell/1 or append/1 and has not been closed since, writing will be resumed. Otherwise
the file is created or—when existing—truncated. See alsoappend/1 .

append(+File)
Similar to tell/1 , but positions the file pointer at the end ofFile rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Unify the name of the current input stream withSrcDest.

telling(?SrcDest)
Unify the name of the current output stream withSrcDest.

seen
Close the current input stream. The new input stream becomesuser.

told
Close the current output stream. The new output stream becomesuser.

3.16.2 Explicit Input and Output Streams

The predicates below are part of the Quintus compatible stream-based I/O package. In this package
streams are explicitly created using the predicateopen/3 . The resulting stream identifier is then
passed as a parameter to the reading and writing predicates to specify the source or destination of the
data.

open(+SrcDest, +Mode, -Stream, +Options)
ISO compliant predicate to open a stream.SrcDesis either an atom, specifying a Unix file, or

SWI-Prolog 4.0 Reference Manual

3.16. INPUT AND OUTPUT 69

a term ‘pipe(Command) ’, just like see/1 and tell/1 . Mode is one ofread , write ,
append or update . Modeappend opens the file for writing, positioning the file-pointer at
the end. Modeupdate opens the file for writing, positioning the file-pointer at the beginning
of the file without truncating the file. See alsostream position/3 . Streamis either a
variable, in which case it is bound to an integer identifying the stream, or an atom, in which
case this atom will be the stream identifier. TheOptionslist can contain the following options:

type(Type)
Using typetext (default), Prolog will write a text-file in an operating-system compatible
way. Using typebinary the bytes will be read or written without any translation. Note
there is no difference between the two on Unix systems.

alias(Atom)
Gives the stream a name. Below is an example. Be careful with this option as stream-
names are global. See alsoset stream/2 .

?- open(data, read, Fd, [alias(input)]).

...,
read(input, Term),
...

eof action(Action)
Defines what happens if the end of the input stream is reached. Actioneof code makes
get0/1 and friends return -1 andread/1 and friends return the atomend of file .
Repetitive reading keeps yielding the same result. Actionerror is like eof code , but
repetitive reading will raise an error. With actionreset , Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering)
Defines output buffering. The atomfullf (default) defines full buffering,line buffer-
ing by line, andfalse implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush output/[0,1] . This option is not an ISO option.

closeon abort(Bool)
If true (default), the stream is closed on an abort (seeabort/0). If false , the stream
is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (using thepipe/1 construct).

The optionreposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, ?Stream)
Equivalent toopen/4 with an empty option-list.

open null stream(?Stream)
Open a stream that produces no output. All counting functions are enabled on such a stream.
An attempt to read from a null-stream will immediately signal end-of-file. Similar to Unix
/dev/null . Streamcan be an atom, giving the null-stream an alias name.

SWI-Prolog 4.0 Reference Manual

70 CHAPTER 3. BUILT-IN PREDICATES

close(+Stream)
Close the specified stream. IfStreamis not open an error message is displayed. If the closed
stream is the current input or output stream the terminal is made the current input or output.

close(+Stream, +Options)
Providesclose (Stream, [force(true)]) as the only option. Called this way, any resource error
(such as write-errors while flushing the output buffer) are ignored.

stream property(?Stream, ?StreamProperty)
ISO compatible predicate for querying status of open I/O streams.StreamPropertyis one of:

file name(Atom)
If Streamis associated to a file, unifyAtomto the name of this file.

mode(IOMode)
Unify IOModeto the mode given toopen/4 for opening the stream. Values are:read ,
write , append and the SWI-Prolog extensionupdate .

input
True if Streamhas moderead .

output
True if Streamhas modewrite , append or update .

alias(Atom)
If Atomis bound, test of the stream has the specified alias. Otherwise unifyAtomwith the
first alias of the stream.7

position(Term)
Unify Term with the current stream-position. A stream-position is a term of format
$stream position (CharIndex, LineNo, LinePos). See alsoterm position/3 .

end of stream(E)
If Streamis an input stream, unifyE with one of the atomsnot , at or past . See also
at end of stream/[0,1] .

eof action(A)
Unify A with one ofeof code , reset or error . Seeopen/4 for details.

reposition(Bool)
Unify Bool with true if the position of the stream can be set (seeseek/4). It is assumed
the position can be set if the stream has aseek-functionand is not based on a POSIX
file-descriptor that is not associated to a regular file.

type(T)
Unify Boolwith text or binary .

file no(Integer)
If the stream is associated with a POSIX file-descriptor, unifyIntegerwith the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() fromSWI-Stream.h .

current stream(?Object, ?Mode, ?Stream)
The predicatecurrent stream/3 is used to access the status of a stream as well as to

7BUG: Backtracking does not give other aliases.

SWI-Prolog 4.0 Reference Manual

3.17. STATUS OF STREAMS 71

generate all open streams.Objectis the name of the file opened if the stream refers to an open
file, an integer file-descriptor if the stream encapsulates an operating-system stream or the atom
[] if the stream refers to some other object.Modeis one ofread or write .

set stream position(+Stream, +Pos)
Set the current position ofStreamto Pos. Posis a term as returned bystream property/2
using theposition (Pos) property. See alsoseek/4 .

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the givenStream. Methodis one ofbof , currentor eof, indicat-
ing positioning relative to the start, current point or end of the underlying object.NewLocation
is unified with the new offset, relative to the start of the stream.

If the seek modifies the current location, the line number and character position in the line are
set to 0.

If the stream cannot be repostioned, areposition error is raised. The predicateseek/4 is
compatible to Quintus Prolog, though the error conditions and signalling is ISO compliant. See
alsostream position/3 .

set stream(+Stream, +Attribute)
Modify an attribute of an existing stream. Attribute is in the current implemention
only alias (AliasName) to set the alias of an already created stream. IfAliasName
is the name of one of the standard streams is used, this stream is rebound. Thus,
set stream(S, current input) is the same asset input/1 and by setting the alias
of a stream touser input , etc. all user terminal input is read from this stream. See also
interactor/0 .

3.16.3 Switching Between Implicit and Explicit I/O

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

set input(+Stream)
Set the current input stream to becomeStream. Thus, open(file, read, Stream), setinput(Stream)
is equivalent to see(file).

set output(+Stream)
Set the current output stream to becomeStream.

current input(-Stream)
Get the current input stream. Useful to get access to the status predicates associated with
streams.

current output(-Stream)
Get the current output stream.

3.17 Status of streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)
Wait for input on one of the streams inListOfStreamsand return a list of streams on which input

SWI-Prolog 4.0 Reference Manual

72 CHAPTER 3. BUILT-IN PREDICATES

is available inReadyList. wait for input/3 waits for at mostTimeOutseconds.Timeout
may be specified as a floating point number to specify fractions of a second. IfTimeoutequals
0, wait for input/3 waits indefinitely. This predicate can be used to implement timeout
while reading and to handle input from multiple sources. The following example will wait for
input from the user and an explicitly opened second terminal. On return,Inputsmay holduser
or P4or both.

?- open(’/dev/ttyp4’, read, P4),
wait_for_input([user, P4], Inputs, 0).

character count(+Stream, -Count)
Unify Countwith the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Countwith the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Countwith the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed to
reduce the count by one, provided it is positive.

fileerrors(-Old, +New)
Define error behaviour on errors when opening a file for reading or writing. Valid values are the
atomson (default) andoff . FirstOld is unified with the current value. Then the new value is
set toNew.8

3.18 Primitive character I/O

See section3.2for an overview of supported character representations.

nl
Write a newline character to the current output stream. On Unix systemsnl/0 is equivalent to
put(10) .

nl(+Stream)
Write a newline toStream.

put(+Char)
Write Char to the current output stream,Char is either an integer-expression evaluating to an
ASCII value (0 ≤ Char≤ 255) or an atom of one character.

put(+Stream, +Char)
Write Char to Stream.

8Note that Edinburgh Prolog definesfileerrors/0 andnofileerrors/0 . As this does not allow you to switch
back to the old mode I think this definition is better.

SWI-Prolog 4.0 Reference Manual

3.18. PRIMITIVE CHARACTER I/O 73

put byte(+Byte)
Alias for put/1 .

put byte(+Stream, +Byte)
Alias for put/2

put char(+Char)
Alias for put char/1 .

put(+Stream, +Char)
Alias for put/2

put code(+Code)
Alias for put/1 .

put code(+Stream, +Code)
Alias for put/2

tab(+Amount)
WritesAmountspaces on the current output stream.Amountshould be an expression that eval-
uates to a positive integer (see section3.26).

tab(+Stream, +Amount)
WritesAmountspaces toStream.

flush output
Flush pending output on current output stream.flush output/0 is automatically generated
by read/1 and derivatives if the current input stream isuser and the cursor is not at the left
margin.

flush output(+Stream)
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on streamuser. See alsoflush output/[0,1] .

get byte(-Byte)
Read the current input stream and unify the next byte withByte(an integer between 0 and 255.
Byteis unified with -1 on end of file.

get byte(+Stream, -Byte)
Read the next byte fromStream.

get code(-Code)
Read the current input stream and unifyCodewith the character code of the next character.
Char is unified with -1 on end of file. See alsoget char/1 .

get code(+Stream, -Code)
Read the next character-code fromStream.

get char(-Char)
Read the current input stream and unifyChar with the next character as a one-character-atom.
See alsoatom chars/2 . On end-of-file,Char is unified to the atomend of file .

SWI-Prolog 4.0 Reference Manual

74 CHAPTER 3. BUILT-IN PREDICATES

get char(+Stream, -Char)
Unify Char with the next character fromStream as a one-character-atom. See also
get char/2 , get byte/2 andget code/2 .

get0(-Char)
Edinburgh version of the ISOget byte/1 predicate.

get0(+Stream, -Char)
Edinburgh version of the ISOget byte/2 predicate.

get(-Char)
Read the current input stream and unify the next non-blank character withChar. Char is unified
with -1 on end of file.

get(+Stream, -Char)
Read the next non-blank character fromStream.

peek byte(-Byte)
Reads the next input byte likeget byte/1 , but does not remove it from the input stream.

peek byte(+Stream, -Byte)
Reads the next input byte likeget byte/2 , but does not remove it from the stream.

peek code(-Code)
Reads the next input code likeget code/1 , but does not remove it from the input stream.

peek code(+Stream, -Code)
Reads the next input code likeget code/2 , but does not remove it from the stream.

peek char(-Char)
Reads the next input character likeget char/1 , but does not remove it from the input stream.

peek char(+Stream, -Char)
Reads the next input character likeget char/2 , but does not remove it from the stream.

skip(+Char)
Read the input untilChar or the end of the file is encountered. A subsequent call toget0/1
will read the first character afterChar.

skip(+Stream, +Char)
Skip input (asskip/1) onStream.

get single char(-Char)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get0/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc. If SWI-Prolog was started
with the-tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the ASCII code of the newline (10) if the entire line consisted of blank
characters.

at end of stream
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

SWI-Prolog 4.0 Reference Manual

3.19. TERM READING AND WRITING 75

at end of stream(+Stream)
Succeeds after the last character of the named stream is read, orStreamis not a valid input
stream. The end-of-stream test is only available on buffered input stream (unbuffered input
streams are rarely used, seeopen/4).

copy stream data(+StreamIn, +StreamOut, +Len)
CopyLenbytes from streamStreamInto StreamOut.

copy stream data(+StreamIn, +StreamOut)
Copy data all (remaining) data from streamStreamInto StreamOut.

3.19 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates
term to atom/2 , atom to term/3 andsformat/3 provide means for translating atoms and
strings to terms. The predicatesformat/[1,2] andwritef/2 provide formatted output.

There are two ways to manipulate the output format. The predicateprint/[1,2] may be
programmed usingportray/1 . The format of floating point numbers may be manipulated using
the prologflag (seecurrent prolog flag/2) float format .

Reading is sensitive to the prologflagcharacter escapes , which controls the interpretation
of the\ character in quoted atoms and strings.

write term(+Term, +Options)
The predicatewrite term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

quoted(true or false)
If true , atoms and functors that needs quotes will be quoted. The default isfalse .

character escapes(true or false)
If true , andquoted (true) is active, special characters in quoted atoms and strings are
emitted as ISO escape-sequences. Default is taken from the reference module (see below).

ignore ops(true or false)
If true , the generic term-representation (〈functor〉(〈args〉 . . .)) will be used for all terms,
Otherwise (default), operators, list-notation and{} /1 will be written using their special
syntax.

module(Module)
Define the reference module (defaultuser). This defines the default value for thechar-
acter escapes option as well as the operator definitions to use. See alsoop/3 .

numbervars(true or false)
If true , terms of the format$VAR(N) , where〈N〉 is a positive integer, will be written as
a variable name. The default isfalse .

portray(true or false)
If true , the hookportray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See alsoprint/1 . The default
is false . This option is an extension to the ISO writeterm options.

SWI-Prolog 4.0 Reference Manual

76 CHAPTER 3. BUILT-IN PREDICATES

max depth(Integer)
If the term is nested deaper thanInteger, print the remainder as eclipse (. . .). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed for
a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])

Yes

Used by the toplevel and debugger to limit screen output. See also the prolog-flags
toplevel print options anddebugger print options .

write term(+Stream, +Term, +Options)
As write term/2 , but output is sent toStreamrather than the current output.

write canonical(+Term)
Write Termon the current output stream using standard parenthesised prefix notation (i.e. ig-
noring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent to
write term/2 using the optionsignore ops andquoted .

write canonical(+Stream, +Term)
Write Termin canonical form onStream.

write(+Term)
Write Term to the current output, using brackets and operators where appropriate. See
current prolog flag/2 for controlling floating point output format.

write(+Stream, +Term)
Write Termto Stream.

writeq(+Term)
Write Termto the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back withread/1
provided the currently active operator declarations are identical.

writeq(+Stream, +Term)
Write Termto Stream, inserting quotes.

print(+Term)
PrintsTermon the current output stream similar towrite/1 , but for each (sub)term ofTerm
first the dynamic predicateportray/1 is called. If this predicate succeedsprint assumes the
(sub)term has been written. This allows for user defined term writing.

print(+Stream, +Term)
PrintTermto Stream.

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behaviour ofprint/1
on (sub)terms. For each subterm encountered that is not a variableprint/1 first calls

SWI-Prolog 4.0 Reference Manual

3.19. TERM READING AND WRITING 77

portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1 . If portray succeedsprint/1 assumes the term has been written.

read(-Term)
Read the next Prolog term from the current input stream and unify it withTerm. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-fileTermis unified with the atomend of file .

read(+Stream, -Term)
ReadTermfrom Stream.

read clause(-Term)
Equivalent toread/1 , but warns the user for variables only occurring once in a term (sin-
gleton variables) which do not start with an underscore ifstyle check(singleton) is
active (default). Used to read Prolog source files (seeconsult/1). New code should use
read term/2 with the optionsingletons(warning) .

read clause(+Stream, -Term)
Read a clause fromStream. Seeread clause/1 .

read term(-Term, +Options)
Read a term from the current input stream and unify the term withTerm. The reading is con-
trolled by options from the list ofOptions. If this list is empty, the behaviour is the same as
for read/1 . The options are upward compatible to Quintus Prolog. The argument order is ac-
cording to the ISO standard. Syntax-errors are always reported using exception-handling (see
catch/3). Options:

variables(Vars)
Unify Varswith a list of variables in the term. The variables appear in the order they have
been read. See alsofree variables/2 . (ISO).

variable names(Vars)
Unify Vars with a list of ‘Name= Var’, whereNameis an atom describing the variable
name andVar is a variable that shares with the corresponding variable inTerm. (ISO).

singletons(Vars)
As variable names, but only reports the variables occurring only once in theTerm
read. Variables starting with an underscore (‘’) are not included in this list. (ISO).

syntex errors(Atom)
If error (default), throw and exception on a syntax error. Other values arefail , which
causes a message to be printed usingprint message/2 , after which the predicate fails,
quiet which causes the predicate to fail silently anddec10 which causes syntax errors
to be printed, after whichread term/[2,3] continues reading the next term. Using
dec10 , read term/[2,3] never fails. (Quintus, SICStus).

module(Module)
SpecifyModulefor operators,character escapes flag anddouble quotes flag.
The value of the latter two is overruled if the correspondingread term/3 option is
provided. If no module is specified, the current ‘source-module’ is used. (SWI-Prolog).

SWI-Prolog 4.0 Reference Manual

78 CHAPTER 3. BUILT-IN PREDICATES

character escapes(Bool)
Defines how to read\ escape-sequences in quoted atoms. See the prolog-flagscharac-
ter escapes , current prolog flag/2 . (SWI-Prolog).

double quotes(Bool)
Defines how to read ”. . . ” strings. See the prolog-flagsdouble quotes ,
current prolog flag/2 . (SWI-Prolog).

term position(Pos)
UnifiesPoswith the starting position of the term read.Posif of the same format as use by
stream position/3 .

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms if
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input, when reading from the terminal,
they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (").

brace term position(From, To, Arg)
Term of the form{... }, as used in DCG rules.Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail
as | 〈TailTerm〉, Tail is unified with the term-position of the tail, otherwise with the
atomnone .

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above.FFrom andFTo describe
the position of the functor.SubPosis a list, each element of which describes the
term-position of the corresponding subterm.

read term(+Stream, -Term, +Options)
Read term with options fromStream. Seeread term/2 .

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)
Similar to read term/2 using the optionvariable names, but allows for history substi-
tutions.read history/6 is used by the top level to read the user’s actions.Showis the com-
mand the user should type to show the saved events.Help is the command to get an overview
of the capabilities.Specialis a list of commands that are not saved in the history.Promptis the
first prompt given. Continuation prompts for more lines are determined byprompt/2 . A %w
in the prompt is substituted by the event number. See section2.7for available substitutions.

SWI-Prolog callsread history/6 as follows:

read_history(h, ’!h’, [trace], ’%w ?- ’, Goal, Bindings)

prompt(-Old, +New)
Set prompt associated withread/1 and its derivatives.Old is first unified with the current

SWI-Prolog 4.0 Reference Manual

3.20. ANALYSING AND CONSTRUCTING TERMS 79

prompt. On success the prompt will be set toNew if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream isuser.

prompt1(+Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined byprompt/2 .

3.20 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity)
Succeeds ifTermis a term with functorFunctorand arityArity. If Termis a variable it is unified
with a new term holding only variables.functor/3 silently fails on instantiation faults9 If
Termis an atom or number,Functorwill be unified withTermand arity will be unified with the
integer 0 (zero).

arg(?Arg, ?Term, ?Value)
Term should be instantiated to a term,Arg to an integer between 1 and the arity ofTerm.
Value is unified with theArg-th argument ofTerm. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.10

The predicatearg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain error(not less then zero, Arg) if Arg < 0.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns theArg-th argument of the compound termTermwith the given
Value. The assignment is undone if backtracking brings the state back into a position before the
setarg/3 call.

This predicate may be used for destructive assignment to terms, using them as and extra-logical
storage bin.

?Term=.. ?List
List is a list which head is the functor ofTermand the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

9In version 1.2 instantiation faults led to error messages. The new version can be used to do type testing without the
need to catch illegal instantiations first.

10The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog.

SWI-Prolog 4.0 Reference Manual

80 CHAPTER 3. BUILT-IN PREDICATES

numbervars(+Term, +Functor, +Start, -End)
Unify the free variables ofTermwith a term constructed from the atomFunctorwith one argu-
ment. The argument is the number of the variable. Counting starts atStart. End is unified with
the number that should be given to the next variable. Example:

?- numbervars(foo(A, B, A), this_is_a_variable, 0, End).

A = this_is_a_variable(0)
B = this_is_a_variable(1)
End = 2

In Edinburgh Prolog the second argument is missing. It is fixed to be$VAR.

free variables(+Term, -List)
Unify List with a list of variables, each sharing with a unique variable ofTerm. For example:

?- free_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

copy term(+In, -Out)
Make a copy of termIn and unify the result withOut. Ground parts ofIn are shared byOut.
ProvidedIn andOuthave no sharing variables before this call they will have no sharing variables
afterwards.copy term/2 is semantically equivalent to:

copy_term(In, Out) :-
recorda(copy_key, In, Ref),
recorded(copy_key, Out, Ref),
erase(Ref).

3.21 Analysing and constructing atoms

These predicates convert between Prolog constants and lists of ASCII values. The predicates
atom codes/2 , number codes/2 andname/2 behave the same when converting from a con-
stant to a list of ASCII values. When converting the other way around,atom codes/2 will generate
an atom,number codes/2 will generate a number or exception andname/2 will return a number
if possible and an atom otherwise.

The ISO standard definesatom chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Upto version 3.2.x, SWI-Prolog’satom chars/2
behaved, compatible to Quintus and SICStus Prolog, like atomcodes. As of 3.3.x SWI-Prolog
atom codes/2 andatom chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accept all atomic types (atom, number and string).

SWI-Prolog 4.0 Reference Manual

3.21. ANALYSING AND CONSTRUCTING ATOMS 81

atom codes(?Atom, ?String)
Convert between an atom and a list of ASCII values. IfAtomis instantiated, if will be translated
into a list of ASCII values and the result is unified withString. If Atomis unbound andString
is a list of ASCII values, it willAtomwill be unified with an atom constructed from this list.

atom chars(?Atom, ?CharList)
As atom codes/2 , but CharList is a list of one-character atoms rather than a list of ASCII
values11.

?- atom_chars(hello, X).

X = [h, e, l, l, o]

char code(?Atom, ?ASCII)
Convert between character and ASCII value for a single character.12

number chars(?Number, ?CharList)
Similar to atom chars/2 , but converts between a number and its representation as a list
of one-character atoms. Fails with arepresentation error if Numberis unbound and
CharListdoes not describe a number.

number codes(?Number, ?CodeList)
As number chars/2 , but converts to a list of character codes (normally ASCII values) rather
than one-character atoms. In the mode -, +, both predicates behave identically to improve
handling of non-ISO source.

name(?AtomOrInt, ?String)
String is a list of ASCII values describingAtom. Each of the arguments may be a vari-
able, but not both. WhenString is bound to an ASCII value list describing an integer and
Atom is a variableAtom will be unified with the integer value described byString (e.g.
‘name(N, "300"), 400 is N + 100 ’ succeeds).

int to atom(+Int, +Base, -Atom)
Convert Int to an ASCII representation using baseBaseand unify the result withAtom. If
Base6= 10 the base will be prepended toAtom. Base= 0 will try to interpret Int as an ASCII
value and return0’ 〈c〉. Otherwise2 ≤ Base≤ 36. Some examples are given below.

int to atom(45, 2, A) −→ A = 2′101101
int to atom(97, 0, A) −→ A = 0′a
int to atom(56, 10, A) −→ A = 56

int to atom(+Int, -Atom)
Equivalent toint to atom(Int, 10, Atom) .

11Upto version 3.2.x,atom chars/2 behaved as the currentatom codes/2 . The current definition is compliant with
the ISO standard

12This is also calledatom char/2 in older versions of SWI-Prolog as well as some other Prolog implementations.
atom char/2 is available from the librarybackcomp.pl

SWI-Prolog 4.0 Reference Manual

82 CHAPTER 3. BUILT-IN PREDICATES

term to atom(?Term, ?Atom)
Succeeds ifAtomdescribes a term that unifies withTerm. WhenAtom is instantiatedAtom is
converted and then unified withTerm. If Atomhas no valid syntax, asyntax error exception
is raised. OtherwiseTermis “written” on Atomusingwrite/1 .

atom to term(+Atom, -Term, -Bindings)
UseAtomas input toread term/2 using the optionvariable names and return the read
term inTermand the variable bindings inBindings. Bindingsis a list ofName= Var couples,
thus providing access to the actual variable names. See alsoread term/2 . If Atomhas no
valid syntax, asyntax error exception is raised.

atom concat(?Atom1, ?Atom2, ?Atom3)
Atom3forms the concatenation ofAtom1andAtom2. At least two of the arguments must be
instantiated to atoms, integers or floating point numbers. For ISO compliance, the instantiation-
pattern -, -, + is allowed too, non-deterministically splitting the 3-th argument into two parts (as
append/3 does for lists). See alsostring concat/3 .

concat atom(+List, -Atom)
List is a list of atoms, integers or floating point numbers. Succeeds ifAtom can be uni-
fied with the concatenated elements ofList. If List has exactly 2 elements it is equivalent to
atom concat/3 , allowing for variables in the list.

concat atom(?List, +Separator, ?Atom)
Creates an atom just likeconcat atom/2 , but insertsSeparatorbetween each pair of atoms.
For example:

?- concat_atom([gnu, gnat], ’, ’, A).

A = ’gnu, gnat’

This predicate can also be used to split atoms by instantiatingSeparatorandAtom:

?- concat_atom(L, -, ’gnu-gnat’).

L = [gnu, gnat]

atom length(+Atom, -Length)
Succeeds ifAtomis an atom ofLengthcharacters long. This predicate also works for integers
and floats, expressing the number of characters output when given towrite/1 .

atom prefix(+Atom, +Prefix)
Succeeds ifAtom starts with the characters fromPrefix. Its behaviour is equivalent to
?- concat(Prefix , , Atom) , but avoids the construction of an atom for the ‘remain-
der’.

sub atom(+Atom, ?Before, ?Len, ?After, ?Sub)
ISO predicate for breaking atoms. It maintains the following relation:Subis a sub-atom ofAtom
that starts atBefore, hasLencharacters andAtomcontainsAftercharacters after the match.

SWI-Prolog 4.0 Reference Manual

3.22. CLASSIFYING CHARACTERS 83

?- sub_atom(abc, 1, 1, A, S).

A = 1, S = b

The implementation minimalises non-determinism and creation of atoms. This is a very flexible
predicate that can do search, prefix- and suffix-matching, etc.

3.22 Classifying characters

SWI-Prolog offers two comprehensive predicates for classifying characters and character-codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character-sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library library(ctype) providing compatibility to some other Prolog
systems. The predicates of this library are defined in terms ofcode type/2 .

char type(?Char, ?Type)
Tests or generates alternativeTypes orChars. The character-types are inspired by the standard
C <ctype.h> primitives.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C- and
Prolog symbol characters.

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C- and Prolog symbols

ascii
Char is a 7-bits ASCII character (0..127).

white
Char is a space or tab. E.i. white space inside a line.

cntrl
Char is an ASCII control-character (0..31).

digit
Char is a digit.

digit(Weigth)
Char is a digit with valueWeigth. I.e. char type(X, digit(6) yields X = ’6’ .
Useful for parsing numbers.

xdigit(Weigth)
Char is a haxe-decimal digit with valueWeigth. I.e. char type(a, xdigit(X)
yieldsX = ’10’ . Useful for parsing numbers.

SWI-Prolog 4.0 Reference Manual

84 CHAPTER 3. BUILT-IN PREDICATES

graph
Charproduces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lower-case letter.

lower(Upper)
Char is a lower-case version ofUpper. Only true ifChar is lowercase andUpperupper-
case.

to lower(Upper)
Char is a lower-case version ofUpper. For non-letters, or letter without case,Char and
Lowerare the same.

upper
Char is an upper-case letter.

upper(Lower)
Char is an upper-case version ofLower. Only true ifChar is uppercase andLower lower-
case.

to upper(Lower)
Char is an upper-case version ofLower. For non-letters, or letter without case,Char and
Lowerare the same.

punct
Char is a punctuation character. This is agraph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical-tab, newline, etc.).

end of file
Char is -1.

end of line
Charends a line (ASCII: 10..13).

newline
Char is a the newline character (10).

period
Charcounts as the end of a sentence (.,!,?).

quote
Char is a quote-character (" , ’ , ‘).

paren(Close)
Char is an open-parenthesis andCloseis the corresponding close-parenthesis.

code type(?Code, ?Type)
As char type/2 , but uses character-codes rather than one-character atoms. Please note that
both predicates are as flexible as possible. They handle either representation if the argument
is instantiated and only will instantiate with an integer code or one-character atom depend-
ing of the version used. See also the prolog-flagdouble quotes , atom chars/2 and
atom codes/2 .

SWI-Prolog 4.0 Reference Manual

3.23. REPRESENTING TEXT IN STRINGS 85

3.23 Representing text in strings

SWI-Prolog supports the data typestring. Strings are a time and space efficient mechanism to handle
text text in Prolog. Strings are stores as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.

Strings were added to SWI-Prolog based on an early draft of the ISO standard, offerring a mech-
anism to represent temporary character data efficiently. As SWI-Prolog strings can handle 0-bytes,
they are frequently used through the foreign language interface (section5) for storing arbitrary byte-
sequences.

Starting with version 3.3, SWI-Prolog offers garbage collection on the atom-space as well as
representing 0-bytes in atoms. Although strings and atoms still have different features, new code
should consider using atoms to avoid too many representations for text as well as for compatibility to
other Prolog systems. Below are some of the differences:

• creation
Creating strings is fast, as the data is simply copied to the global stack. Atoms are unique and
therefore more expensive in terms of memory and time to create. On the other hand, if the same
text has to be represented multiple times, atoms are more efficient.

• destruction
Backtracking destroys strings at no cost. They are cheap to handle by the garbage collector,
but it should be noted that extensive use of strings will cause many garbage collections. Atom
garbage collection is generally faster.

See also the prolog-flagdouble quotes .

string to atom(?String, ?Atom)
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated.Atomcan also be an integer or floating point number.

string to list(?String, ?List)
Logical conversion between a string and a list of ASCII characters. At least one of the two
arguments must be instantiated.

string length(+String, -Length)
Unify Lengthwith the number of characters inString. This predicate is functionally equivalent
to atom length/2 and also accepts atoms, integers and floats as its first argument.

string concat(?String1, ?String2, ?String3)
Similar to atom concat/3 , but the unbound argument will be unified with a string object
rather than an atom. Also, if bothString1andString2are unbound andString3is bound to text,
it breaksString3, unifying the start withString1and the end withString2as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

sub string(+String, ?Start, ?Length, ?After, ?Sub)
Subis a substring ofStringstarting atStart, with lengthLengthandStringhasAfter characters
left after the match. See alsosub atom/5 .

SWI-Prolog 4.0 Reference Manual

86 CHAPTER 3. BUILT-IN PREDICATES

3.24 Operators

Operators are defined to improve the readibility of source-code. For example, without operators, to
write 2*3+4*5 one would have to write+(*(2,3),*(4,5)) . In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time lead to hard to understand the limits of your
syntax. To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the module in which they are
defined. The module-table of the moduleuser acts as default table for all modules. This global table
can be modified explictly from inside a module:

:- module(prove,
[prove/1
]).

:- op(900, xfx, user:(=>)).

Unlike what many users think, operators and quoted atoms have no relation: defining a atom as an
operator doesnot influence parsing characters into atoms and quoting an atom doesnot stop it from
acting as an operator. To stop an atom acting as an operator, enclose it in braces like this: (myop).

op(+Precedence, +Type, :Name)
DeclareNameto be an operator of typeTypewith precedencePrecedence. Namecan also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedenceis an integer between 0 and 1200. Precedence 0 removes the declaration.Typeis
one of:xf , yf , xfx , xfy , yfx , yfy , fy or fx . The ‘f ’ indicates the position of the functor,
while x andy indicate the position of the arguments. ‘y ’ should be interpreted as “on this
position a term with precedence lower or equal to the precedence of the functor should occur”.
For ‘x ’ the precedence of the argument must be strictly lower. The precedence of a term is 0,
unless its principal functor is an operator, in which case the precedence is the precedence of this
operator. A term enclosed in brackets(...) has precedence 0.

The predefined operators are shown in table3.1. Note that all operators can be redefined by the
user.

current op(?Precedence, ?Type, ?:Name)
Succeeds whenNameis currently defined as an operator of typeTypewith precedencePrece-
dence. See alsoop/3 .

3.25 Character Conversion

Although I wouldn’t really know for what you would like to use these features, they are provided for
ISO complicancy.

char conversion(+CharIn, +CharOut)
Define that term-input (seeread term/3) maps each character read asCharInto the character
CharOut. Character conversion is only executed if the prolog-flagchar conversion is set
to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See alsocurrent char conversion/2 .

SWI-Prolog 4.0 Reference Manual

3.26. ARITHMETIC 87

1200 xfx --> , :-
1200 fx :- , ?-
1150 fx dynamic , multifile , module transparent , discon-

tiguous , volatile , initialization
1100 xfy ; , |
1050 xfy ->
1000 xfy ,
954 xfy \
900 fy \+
900 fx ˜
700 xfx <, =, =.. , =@=, =:= , =<, ==, =\= , >, >=, @<, @=<, @>, @>=,

\= , \== , is
600 xfy :
500 yfx +, - , /\ , \/ , xor
500 fx +, - , ?, \
400 yfx * , / , // , <<, >>, mod, rem
200 xfx **
200 xfy ˆ

Table 3.1: System operators

current char conversion(?CharIn, ?CharOut)
Queries the current character conversion-table. Seechar conversion/2 for details.

3.26 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for floating point and integer arithmetic as appropriate. The integer predicates are as “logical”
as possible. Their usage is recommended whenever applicable, resulting in faster and more “logical”
programs.

The general arithmetic predicates are optionally compiled now (seeset prolog flag/2 and
the -O command line option). Compiled arithmetic reduces global stack requirements and improves
performance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

The general arithmetic predicates all handleexpressions. An expression is either a simple number
or afunction. The arguments of a function are expressions. The functions are described in section3.27.

between(+Low, +High, ?Value)
Low andHigh are integers,High ≥ Low. If Valueis an integer,Low≤ Value≤ High. When
Valueis a variable it is successively bound to all integers betweenLowandHigh.

succ(?Int1, ?Int2)
Succeeds ifInt2 = Int1 + 1. At least one of the arguments must be instantiated to an integer.

plus(?Int1, ?Int2, ?Int3)
Succeeds ifInt3 = Int1 + Int2. At least two of the three arguments must be instantiated to
integers.

SWI-Prolog 4.0 Reference Manual

88 CHAPTER 3. BUILT-IN PREDICATES

+Expr1 > +Expr2
Succeeds when expressionExpr1evaluates to a larger number thanExpr2.

+Expr1 < +Expr2
Succeeds when expressionExpr1evaluates to a smaller number thanExpr2.

+Expr1 =< +Expr2
Succeeds when expressionExpr1evaluates to a smaller or equal number toExpr2.

+Expr1 >= +Expr2
Succeeds when expressionExpr1evaluates to a larger or equal number toExpr2.

+Expr1 =\= +Expr2
Succeeds when expressionExpr1evaluates to a number non-equal toExpr2.

+Expr1 =:= +Expr2
Succeeds when expressionExpr1evaluates to a number equal toExpr2.

-Numberis +Expr
Succeeds whenNumberhas successfully been unified with the numberExpr evaluates to. If
Expr evaluates to a float that can be represented using an integer (i.e. the value is integer and
within the range that can be described by Prolog’s integer representation),Expr is unified with
the integer value.

Note that normally,is/2 will be used with unbound left operand. If equality is to be tested,
=:=/2 should be used. For example:

?- 1.0 is sin(pi/2). Fails!. sin(pi/2) evaluates to 1.0, but
is/2 will represent this as the integer 1,
after which unify will fail.

?- 1.0 is float(sin(pi/2)). Succeeds, as thefloat/1 function
forces the result to be float.

?- 1.0 =:= sin(pi/2). Succeeds as expected.

3.27 Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described above.
SWI-Prolog tries to hide the difference between integer arithmetic and floating point arithmetic from
the Prolog user. Arithmetic is done as integer arithmetic as long as possible and converted to floating
point arithmetic whenever one of the arguments or the combination of them requires it. If a function
returns a floating point value which is whole it is automatically transformed into an integer. There are
three types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that should evaluate into an integer.
Int An integer.

SWI-Prolog 4.0 Reference Manual

3.27. ARITHMETIC FUNCTIONS 89

In case integer addition, subtraction and multiplication would lead to an integer overflow the
operands are automatically converted to floating point numbers. The floating point functions (sin/1 ,
exp/1 , etc.) form a direct interface to the corresponding C library functions used to compile SWI-
Prolog. Please refer to the C library documentation for details on precision, error handling, etc.

- +Expr
Result= −Expr

+Expr1 + +Expr2
Result= Expr1+ Expr2

+Expr1 - +Expr2
Result= Expr1− Expr2

+Expr1 * +Expr2
Result= Expr1× Expr2

+Expr1 / +Expr2

Result= Expr1
Expr2

+IntExpr1 mod +IntExpr2
Modulo: Result= IntExpr1- (IntExpr1// IntExpr2) × IntExpr2The functionmod/2 is imple-
mented using the C%operator. It’s behaviour with negtive values is illustrated in the table
below.

2 = 17 mod 5
2 = 17 mod -5

-2 = -17 mod 5
-2 = -17 mod 5

+IntExpr1 rem +IntExpr2
Remainder of division:Result= float fractionalpart(IntExpr1/IntExpr2)

+IntExpr1 // +IntExpr2
Integer division:Result= truncate(Expr1/Expr2)

abs(+Expr)
EvaluateExprand return the absolute value of it.

sign(+Expr)
Evaluate to -1 ifExpr < 0, 1 if Expr > 0 and 0 ifExpr = 0.

max(+Expr1, +Expr2)
Evaluates to the largest of bothExpr1andExpr2.

min(+Expr1, +Expr2)
Evaluates to the smallest of bothExpr1andExpr2.

SWI-Prolog 4.0 Reference Manual

90 CHAPTER 3. BUILT-IN PREDICATES

. (+Int, [])
A list of one element evaluates to the element. This implies"a" evaluates to the ASCII
value of the letter ‘a’ (97). This option is available for compatibility only. It will not work
if ‘ style check(+string) ’ is active as"a" will then be transformed into a string object.
The recommended way to specify the ASCII value of the letter ‘a’ is0’a .

random(+Int)
Evaluates to a random integeri for which 0 ≤ i < Int. The seed of this random generator is
determined by the system clock when SWI-Prolog was started.

round(+Expr)
EvaluatesExprand rounds the result to the nearest integer.

integer(+Expr)
Same asround/1 (backward compatibility).

float(+Expr)
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument ofis/2 , the result will be returned as a floating
point number. In other contexts, the operation has no effect.

float fractional part(+Expr)
Fractional part of a floating-point number. Negative ifExpr is negative, 0 ifExpr is integer.

float integer part(+Expr)
Integer part of floating-point number. Negative ifExpr is negative,Expr if Expr is integer.

truncate(+Expr)
TruncateExpr to an integer. Same asfloat integer part/1 .

floor(+Expr)
EvaluatesExprand returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr)
EvaluatesExprand returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same asceiling/1 (backward compatibility).

+IntExpr >> +IntExpr
Bitwise shiftIntExpr1by IntExpr2bits to the right.

+IntExpr << +IntExpr
Bitwise shiftIntExpr1by IntExpr2bits to the left.

+IntExpr \/ +IntExpr
Bitwise ‘or’ IntExpr1andIntExpr2.

+IntExpr /\ +IntExpr
Bitwise ‘and’ IntExpr1andIntExpr2.

+IntExpr xor +IntExpr
Bitwise ‘exclusive or’IntExpr1andIntExpr2.

SWI-Prolog 4.0 Reference Manual

3.27. ARITHMETIC FUNCTIONS 91

\ +IntExpr
Bitwise negation.

sqrt(+Expr)
Result=

√
Expr

sin(+Expr)
Result= sin Expr. Expr is the angle in radians.

cos(+Expr)
Result= cos Expr. Expr is the angle in radians.

tan(+Expr)
Result= tan Expr. Expr is the angle in radians.

asin(+Expr)
Result= arcsin Expr. Resultis the angle in radians.

acos(+Expr)
Result= arccos Expr. Resultis the angle in radians.

atan(+Expr)
Result= arctan Expr. Resultis the angle in radians.

atan(+YExpr, +XExpr)

Result = arctan YExpr
XExpr. Result is the angle in radians. The return value is in the range

[−π . . . π]. Used to convert between rectangular and polar coordinate system.

log(+Expr)
Result= ln Expr

log10(+Expr)
Result= lg Expr

exp(+Expr)
Result= eExpr

+Expr1 ** +Expr2
Result= Expr1Expr2

+Expr1 ˆ +Expr2
Same as **/2. (backward compatibility).

pi
Evaluates to the mathematical constantπ (3.141593).

e
Evaluates to the mathematical constante (2.718282).

cputime
Evaluates to a floating point number expressing theCPU time (in seconds) used by Prolog up
till now. See alsostatistics/2 andtime/1 .

SWI-Prolog 4.0 Reference Manual

92 CHAPTER 3. BUILT-IN PREDICATES

3.28 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return
the result, the arguments before the last are the inputs. Arithmetic functions are added using the
predicatearithmetic function/1 , which takes the head as its argument. Arithmetic functions
are module sensitive, that is they are only visible from the module in which the function is defined and
declared. Global arithmetic functions should be defined and registered from moduleuser . Global
definitions can be overruled locally in modules. The builtin functions described above can be redefined
as well.

arithmetic function(+Head)
Register a Prolog predicate as an arithmetic function (seeis/2 , >/2 , etc.). The Prolog predi-
cate should have one more argument than specified byHead, which it either a termName/Arity,
an atom or a complex term. This last argument is an unbound variable at call time and should
be instantiated to an integer or floating point number. The other arguments are the parameters.
This predicate is module sensitive and will declare the arithmetic function only for the context
module, unless declared from moduleuser . Example:

1 ?- [user].
:- arithmetic_function(mean/2).

mean(A, B, C) :-
C is (A+B)/2.

user compiled, 0.07 sec, 440 bytes.

Yes
2 ?- A is mean(4, 5).

A = 4.500000

current arithmetic function(?Head)
Successively unifies all arithmetic functions that are visible from the context module withHead.

3.29 List Manipulation

is list(+Term)
Succeeds ifTermis bound to the empty list ([]) or a term with functor ‘. ’ and arity 2.

proper list(+Term)
Equivalent tois list/1 , but also requires the tail of the list to be a list (recursively). Exam-
ples:

is_list([x|A]) % true
proper_list([x|A]) % false

SWI-Prolog 4.0 Reference Manual

3.29. LIST MANIPULATION 93

append(?List1, ?List2, ?List3)
Succeeds whenList3 unifies with the concatenation ofList1 andList2. The predicate can be
used with any instantiation pattern (even three variables).

member(?Elem, ?List)
Succeeds whenElemcan be unified with one of the members ofList. The predicate can be used
with any instantiation pattern.

memberchk(?Elem, +List)
Equivalent tomember/2 , but leaves no choice point.

delete(+List1, ?Elem, ?List2)
Delete all members ofList1 that simultaneously unify withElemand unify the result withList2.

select(?Elem, ?List, ?Rest)
SelectElemfrom List leavingRest. It behaves asmember/2 , returning the remaining elements
in Rest. Note that besides selecting elements from a list, it can also be used to insert elements.13

nth0(?Index, ?List, ?Elem)
Succeeds when theIndex-th element ofList unifies withElem. Counting starts at 0.

nth1(?Index, ?List, ?Elem)
Succeeds when theIndex-th element ofList unifies withElem. Counting starts at 1.

last(?Elem, ?List)
Succeeds ifElemunifies with the last element ofList. If List is a proper listlast/2 is deter-
ministic. If List has an unbound tail, backtracking will causeList to grow.

reverse(+List1, -List2)
Reverse the order of the elements inList1and unify the result with the elements ofList2.

flatten(+List1, -List2)
TransformList1, possibly holding lists as elements into a ‘flat’ list by replacing each list with
its elements (recursively). Unify the resulting flat list withList2. Example:

?- flatten([a, [b, [c, d], e]], X).

X = [a, b, c, d, e]

length(?List, ?Int)
Succeeds ifInt represents the number of elements of listList. Can be used to create a list holding
only variables.

merge(+List1, +List2, -List3)
List1 andList2 are lists, sorted to the standard order of terms (see section3.6). List3 will be
unified with an ordered list holding both the elements ofList1 andList2. Duplicates arenot
removed.

13BUG: Upto SWI-Prolog 3.3.10, the definition of this predicate was not according to the de-facto standard. The first two
arguments were in the wrong order.

SWI-Prolog 4.0 Reference Manual

94 CHAPTER 3. BUILT-IN PREDICATES

3.30 Set Manipulation

is set(+Set)
Succeeds ifSetis a proper list (seeproper list/1) without duplicates.

list to set(+List, -Set)
Unifies Setwith a list holding the same elements asList in the same order. Iflist contains
duplicates, only the first is retained. See alsosort/2 . Example:

?- list_to_set([a,b,a], X)

X = [a,b]

intersection(+Set1, +Set2, -Set3)
Succeeds ifSet3unifies with the intersection ofSet1andSet2. Set1andSet2are lists without
duplicates. They need not be ordered.

subtract(+Set, +Delete, -Result)
Delete all elements of set ‘Delete’ from ‘Set’ and unify the resulting set with ‘Result’.

union(+Set1, +Set2, -Set3)
Succeeds ifSet3unifies with the union ofSet1andSet2. Set1andSet2are lists without dupli-
cates. They need not be ordered.

subset(+Subset, +Set)
Succeeds if all elements ofSubsetare elements ofSetas well.

merge set(+Set1, +Set2, -Set3)
Set1andSet2are lists without duplicates, sorted to the standard order of terms.Set3is unified
with an ordered list without duplicates holding the union of the elements ofSet1andSet2.

3.31 Sorting Lists

sort(+List, -Sorted)
Succeeds ifSortedcan be unified with a list holding the elements ofList, sorted to the standard
order of terms (see section3.6). Duplicates are removed. Implemented by translating the input
list into a temporary array, calling the C-library functionqsort(3) usingPL compare()
for comparing the elements, after which the result is translated into the result list.

msort(+List, -Sorted)
Equivalent tosort/2 , but does not remove duplicates.

keysort(+List, -Sorted)
List is a proper list whose elements areKey- Value , that is, terms whose principal functor is
(-)/2, whose first argument is the sorting key, and whose second argument is the satellite data
to be carried along with the key.keysort/2 sortsList like msort/2 , but only compares
the keys. Can be used to sort terms not on standard order, but on any criterion that can be
expressed on a multi-dimensional scale. Sorting on more than one criterion can be done using
terms as keys, putting the first criterion as argument 1, the second as argument 2, etc. The order
of multiple elements that have the sameKey is not changed.

SWI-Prolog 4.0 Reference Manual

3.32. FINDING ALL SOLUTIONS TO A GOAL 95

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2 , but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unifyDelta with one of<, const> or =. If built-in
predicatecompare/3 is used, the result is the same assort/2 . See alsokeysort/2 .14

3.32 Finding all Solutions to a Goal

findall(+Var, +Goal, -Bag)
Creates a list of the instantiationsVar gets successively on backtracking overGoal and unifies
the result withBag. Succeeds with an empty list ifGoal has no solutions.findall/3 is
equivalent tobagof/3 with all free variables bound with the existence operator (ˆ), except
thatbagof/3 fails when goal has no solutions.

bagof(+Var, +Goal, -Bag)
Unify Bagwith the alternatives ofVar, if Goal has free variables besides the one sharing with
Var bagof will backtrack over the alternatives of these free variables, unifyingBag with the
corresponding alternatives ofVar. The construct+Var ˆ Goal tells bagof not to bindVar in
Goal. bagof/3 fails if Goalhas no solutions.

The example below illustratesbagof/3 and thê operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;

No
4 ?- bagof(C, Aˆfoo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;

No
5 ?-

14Please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 4.0 Reference Manual

96 CHAPTER 3. BUILT-IN PREDICATES

setof(+Var, +Goal, -Set)
Equivalent tobagof/3 , but sorts the result usingsort/2 to get a sorted list of alternatives
without duplicates.

3.33 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called
fails. The predicate is called via call/[2..], which implies common arguments can be put in front of
the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).

X = [1, 2, 3]

we will phrase this as “Predicateis applied on . . . ”

checklist(+Pred, +List)
Pred is applied successively on each element ofList until the end of the list orPredfails. In the
latter case thechecklist/2 fails.

maplist(+Pred, ?List1, ?List2)
Apply Predon all successive pairs of elements fromList1 andList2. Fails if Predcan not be
applied to a pair. See the example above.

sublist(+Pred, +List1, ?List2)
Unify List2with a list of all elements ofList1 to whichPredapplies.

3.34 Forall

forall(+Cond, +Action)
For all alternative bindings ofCond Actioncan be proven. The example verifies that all arith-
metic statements in the listL are correct. It does not say which is wrong if one proves wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

3.35 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2] , which is compatible with Edinburgh C-Prolog. The second isformat/[1,2] ,
which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance useformat/[1,2] as this predicate is defined
in C. Otherwise compatibility reasons might tell you which predicate to use.

SWI-Prolog 4.0 Reference Manual

3.35. FORMATTED WRITE 97

3.35.1 Writef

write ln(+Term)
Equivalent towrite(Term), nl.

writef(+Atom)
Equivalent towritef(Atom, []).

writef(+Format, +Arguments)
Formatted write.Format is an atom whose characters will be printed.Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Argumentsthen provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a nemline character (see alsonl/[0,1])
\l Output a line separator (same as\n)
\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character\ is output
\% The character%is output
\nnn where〈nnn〉 is an integer (1-3 digits) the character with

ASCII code〈nnn〉 is output (NB :〈nnn〉 is read asdeci-
mal)

Note that\l , \nnn and\\ are interpreted differently when character-escapes are in effect. See
section2.15.1.

Escape sequences to include arguments fromArguments. Each time a % escape sequence is
found inFormatthe next argument fromArgumentsis formatted according to the specification.

SWI-Prolog 4.0 Reference Manual

98 CHAPTER 3. BUILT-IN PREDICATES

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2 . Mnemonic: old Edinburgh
display/1 .

%p
print/1 the next item (identical to%t)

%n Put the next item as a character (i.e. it is an ASCII value)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform attyflush/0 (no items used)
%Nc Write the next item Centered inN columns.
%Nl Write the next item Left justified inN columns.
%Nr Write the next item Right justified inN columns.N is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalent towritef/2 , but “writes” the result onStringinstead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format)
Equivalent toswritef(String, Format, []).

3.35.2 Format

format(+Format)
Defined as ‘format(Format) :- format(Format, []). ’

format(+Format, +Arguments)
Format is an atom, list of ASCII values, or a Prolog string.Argumentsprovides the arguments
required by the format specification. If only one argument is required and this is not a list of
ASCII values the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (˜), followed by an optional numeric argument, followed
by a character describing the action to be undertaken. A numeric argument is either a sequence
of digits, representing a positive decimal number, a sequence‘ 〈character〉, representing the
ASCII value of the character (only useful for˜t) or a asterisk (*), in when the numeric argu-
ment is taken from the next argument of the argument list, which should be a positive integer.
Actions are:

SWI-Prolog 4.0 Reference Manual

3.35. FORMATTED WRITE 99

˜ Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalent tow.
Compatibility reasons only.

c Output the next argument as an ASCII value. This argument should be an integer in the
range [0, . . . , 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is insertedargumentpositions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same asd, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format%.〈precision〉e.

E Equivalent toe, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().

g Floating point ineor f notation, whichever is shorter.

G Floating point inE or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument todisplayq/1 (canonical write).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument toprint/1 .

q Give the next argument towriteq/1 .

r Print integer in radix the numeric argument notation. Thus˜16r prints its argument
hexadecimal. The argument should be in the range[2, . . . , 36]. Lower case letters are
used for digits above 9.

R Same asr , but uses upper case letters for digits above 9.

s Output a string of ASCII characters or a string (seestring/1 and section3.23) from
the next argument.

t All remaining space between 2 tabs tops is distributed equally over˜t statements between
the tabs tops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the ASCII value of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also˜| and˜+ to set tab stops. A
tabs top is assumed at the start of each line.

| Set a tabs top on the current position. If an argument is supplied set a tabs top on the
position of that argument. This will cause all˜t ’s to be distributed between the previous
and this tabs top.

+ Set a tabs top relative to the current position. Further the same as˜| .

w Give the next argument towrite/1 .

SWI-Prolog 4.0 Reference Manual

100 CHAPTER 3. BUILT-IN PREDICATES

W Give the next two argument towrite term/2 . This option is SWI-Prolog specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format(’˜tStatistics˜t˜72|˜n˜n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

Will output

Statistics

Runtime: 3.45 Inferences: 60,345

format(+Stream, +Format, +Arguments)
As format/2 , but write the output on the givenStream.

sformat(-String, +Format, +Arguments)
Equivalent toformat/2 , but “writes” the result onStringinstead of the current output stream.
Example:

?- sformat(S, ’˜w˜t˜15|˜w’, [’Hello’, ’World’]).

S = "Hello World"

sformat(-String, +Format)
Equivalent to ‘sformat(String, Format, []). ’

3.35.3 Programming Format

format predicate(+Char, +Head)
If a sequencẽc (tilde, followed by some character) is found, the format derivatives will first
check whether the user has defined a predicate to handle the format. If not, the built in format-
ting rules described above are used.Char is either anASCII value, or a one character atom,
specifying the letter to be (re)defined.Head is a term, whose name and arity are used to de-
termine the predicate to call for the redefined formatting character. The first argument to the
predicate is the numeric argument of the format command, or the atomdefault if no argu-
ment is specified. The remaining arguments are filled from the argument list. The example
below redefines̃n to produceArg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

:- format_predicate(n, dos_newline(_Arg)).

dos_newline(Arg) :-
between(1, Ar, _), put(13), put(10), fail ; true.

SWI-Prolog 4.0 Reference Manual

3.36. TERMINAL CONTROL 101

current format predicate(?Code, ?:Head)
Enumerates all user-defined format predicates.Codeis the character code of the format charac-
ter. Headis unified with a term with the same name and arity as the predicate. If the predicate
does not reside in moduleuser , Headis qualified with the definition module of the predicate.

3.36 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability namedNamefrom the termcap library. See termcap(5) for the capability
names. Typespecifies the type of the expected result, and is one ofstring , number or
bool . String results are returned as an atom, number result as an integer and bool results as the
atomon or off . If an option cannot be found this predicate fails silently. The results are only
computed once. Successive queries on the same capability are fast.

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicatesline count/2 and
line position/2 will not have a well defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding informa-
tion in the strings returned bytty get capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

set tty(-OldStream, +NewStream)
Set the output stream, used bytty put/2 andtty goto/2 to a specific stream. Default is
useroutput.

3.37 Operating System Interaction

shell(+Command, -Status)
ExecuteCommandon the operating system.Commandis given to the Bourne shell (/bin/sh).
Statusis unified with the exit status of the command.

On Win32systems,shell/[1,2] executes the command using the CreateProcess() API and
waits for the command to terminate. If the command ends with a&sign, the command is handed
to the WinExec() API, which does not wait for the new task to terminate. See alsowin exec/2
andwin shell/2 . Please note that the CreateProcess() API doesnot imply the Windows
command interpreter (command.exe on Windows 95/98 andcmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only be activated using the com-
mand interpreter. For example:’command.exe /C copy file1.txt file2.txt’

shell(+Command)
Equivalent to ‘shell(Command, 0) ’.

SWI-Prolog 4.0 Reference Manual

102 CHAPTER 3. BUILT-IN PREDICATES

shell
Start an interactive Unix shell. Default is/bin/sh , the environment variableSHELLoverrides
this default. Not available for Win32 platforms.

win exec(+Command, +Show)
Win32 systems only. Spawns a Windows task without waiting for its completion.Showis
eithericonic or normal and dictates the initial status of the window. Theiconic option
is notably handy to start (DDE) servers.

win shell(+Operation, +File)
Win32 systems only. Opens the documentFile using the windows shell-rules for doing so.Op-
eration is one ofopen , print or explore or another operation registered with the shell for
the given document-type. On modern systems it is also possible to pass a URL asFile, opening
the URL in Windows default browser. This call interfaces to the Win32 API ShellExecute().

win registry get value(+Key, +Name, -Value)
Win32 systems only. Fetches the value of a Win32 registry key.Key is an atom formed as a
path-name describing the desired registry key.Nameis the desired attribute name of the key.
Value is unified with the value. If the value is of typeDWORD, the value is returned as an
integer. If the value is a string it is returned as a Prolog atom. Other types are currently not sup-
ported. The default ‘root’ isHKEYCURRENTUSER. Other roots can be specified explicitely as
HKEYCLASSESROOT, HKEYCURRENTUSER, HKEYLOCALMACHINEor HKEYUSERS.
The example below fetches the extension to use for Prolog files (seeREADME.TXTon the Win-
dows version):

?- win_registry_get_value(’HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext).

Ext = pl

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set environment variable.NameandValueshould be instantiated to atoms or integers. The
environment variable will be passed toshell/[0-2] and can be requested usinggetenv/2 .
They also influenceexpand file name/2 .

unsetenv(+Name)
Remove environment variable from the environment.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial implementa-
tion thereof. It provides access to some operating system features and unlike the name suggests,
is not operating system specific. Currently it is the only way to fetch the Prolog command-line
arguments. DefinedCommand’s are below.

SWI-Prolog 4.0 Reference Manual

3.38. FILE SYSTEM INTERACTION 103

system(+Command)
Equivalent to callingshell/1 . Use for compatibility only.

shell(+Command)
Equivalent to callingshell/1 . Use for compatibility only.

shell
Equivalent to callingshell/0 . Use for compatibility only.

cd
Equivalent to callingchdir/1 aschdir(˜) . Use for compatibility only.

cd(+Directory)
Equivalent to callingchdir/1 . Use for compatibility only.

argv(-Argv)
Unify Argv with the list of commandline arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separated by-- . Integer
arguments are passed as Prolog integers, float arguments and Prolog floating point num-
bers and all other arguments as Prolog atoms. New applications should use the prolog-flag
argv .

A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also section2.10.2.

main :-
unix(argv(Argv)),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).

get time(-Time)
Return the number of seconds that elapsed since the epoch of the POSIX, tim representation:
January 1970, 0 hours.Timeis a floating point number. The granularity is system dependent.

convert time(+Time, -Year, -Month, -Day, -Hour, -Minute, -Second, -MilliSeconds)
Convert a time stamp, provided byget time/1 , time file/2 , etc. Year is unified with
the year,Monthwith the month number (January is 1),Day with the day of the month (starting
with 1), Hour with the hour of the day (0–23),Minutewith the minute (0–59).Secondwith the
second (0–59) andMilliSecondwith the milliseconds (0–999). Note that the latter might not
be accurate or might always be 0, depending on the timing capabilities of the system. See also
convert time/2 .

convert time(+Time, -String)
Convert a time-stamp as obtained thoughget time/1 into a textual representation using the
C-library functionctime() . The value is returned as a SWI-Prolog string object (see sec-
tion 3.23). See alsoconvert time/8 .

3.38 File System Interaction

accessfile(+File, +Mode)
Succeeds ifFile exists and can be accessed by this prolog process under modeMode. Mode

SWI-Prolog 4.0 Reference Manual

104 CHAPTER 3. BUILT-IN PREDICATES

is one of the atomsread , write , append , exist , none or execute . File may also
be the name of a directory. Fails silently otherwise.access file(File, none) simply
succeeds without testing anything.

If ‘Mode’ is write or append , this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

existsfile(+File)
Succeeds whenFile exists. This does not imply the user has read and/or write permission for
the file.

file directory name(+File, -Directory)
Extracts the directory-part ofFile. The resultingDirectory name ends with the directory sepa-
rator character/ . If File is an atom that does not contain any directory separator characters, the
empty atom’’ is returned. See alsofile base name/2 .

file basename(+File, -BaseName)
Extracts the filename part from a path specification. IfFile does not contain any directory
separators,File is returned.

samefile(+File1, +File2)
Succeeds if both filenames refer to the same physical file. That is, ifFile1 andFile2 are the
same string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

existsdirectory(+Directory)
Succeeds ifDirectoryexists. This does not imply the user has read, search and or write permis-
sion for the directory.

deletefile(+File)
RemoveFile from the file system.

rename file(+File1, +File2)
RenameFile1 into File2. Currently files cannot be moved across devices.

sizefile(+File, -Size)
Unify Sizewith the size ofFile in characters.

time file(+File, -Time)
Unify the last modification time ofFile with Time. Timeis a floating point number expressing
the seconds elapsed since Jan 1, 1970. See alsoconvert time/[2,8] andget time/1 .

absolutefile name(+File, -Absolute)
Expand Unix file specification into an absolute path. User home directory expansion (˜ and
〈user〉) and variable expansion is done. The absolute path is canonised: references to. and

.. are deleted. SWI-Prolog uses absolute file names to register source files independent of the
current working directory. See alsoabsolute file name/3 .

absolutefile name(+Spec, +Options, -Absolute)
Converts the given file specification into an absolute path.Option is a list of options to guide
the conversion:

SWI-Prolog 4.0 Reference Manual

3.38. FILE SYSTEM INTERACTION 105

extensions(ListOfExtensions)
List of file-extensions to try. Default is ’’ . For each extension,
absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both as..ext or plainext .

access(Mode)
Imposes the condition accessfile(File, Mode). Mode is on of read , write , append ,
exist or none . See alsoaccess file/2 .

file type(Type)
Defines extensions. Current mapping:txt implies [’’] , prolog implies [’.pl’,
’’] , executable implies [’.so’, ’’] , qlf implies [’.qlf’, ’’] anddi-
rectory implies[’’] .

file errors(fail/error)
If error (default), throw andexistence error exception if the file cannot be found.
If fail , stay silent.15

solutions(first/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

is absolutefile name(+File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a ‘/’. For Microsoft based systems this implies the path starts with〈letter〉: . This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute file name/2 andprolog to os filename/2 .

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done case-insensitive too.Extensionmay
be specified with or without a leading dot (.). If an Extensionis generated, it will not have a
leading dot.

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matchingWildCard. The normal Unix wild-
card constructs ‘?’, ‘ * ’, ‘ [...] ’ and ‘{... }’ are recognised. The interpretation of ‘{... }’
is interpreted slightly different from the C shell (csh(1)). The comma separated argument can be
arbitrary patterns, including ‘{... }’ patterns. The empty pattern is legal as well: ‘\{.pl,\} ’
matches either ‘.pl ’ or the empty string.

If the pattern does contains wildcard characters, only existing files and directories are returned.
Expanding a ‘pattern’ without wildcard characters returns the argument, regardless on whether
or not it exists.

Before expanding wildchards, the construct$var is expanded to the value of the environment
variablevar and a possible leading̃character is expanded to the user’s home directory.16.

15Silent operation was the default upto version 3.2.6.
16On Windows, the home directory is determined as follows: if the environment variableHOMEexists, this is used. If

SWI-Prolog 4.0 Reference Manual

106 CHAPTER 3. BUILT-IN PREDICATES

prolog to os filename(?PrologPath, ?OsPath)
Converts between the internal Prolog pathname conventions and the operating-system pathname
conventions. The internal conventions are Unix and this predicates is equivalent to =/2 (unify)
on Unix systems. On DOS systems it will change the directory-separator, limit the filename
length map dots, except for the last one, onto underscores.

read link(+File, -Link, -Target)
If File points to a symbolic link, unifyLink with the value of the link andTargetto the file the
link is pointing to.Targetpoints to a file, directory or non-existing entry in the file system, but
never to a link. Fails ifFile is not a link. Fails always on systems that do not support symbolic
links.

tmp file(+Base, -TmpName)
Create a name for a temporary file.Baseis an identifier for the category of file. TheTmpNameis
guaranteed to be unique. If the system halts, it will automatically remove all created temporary
files.

make directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the processumasksetting).

deletedirectory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

chdir(+Path)
Change working directory toPath.17

3.39 Multi-threading (alpha code)

The features described in this section are only enabled on Unix systems providing POSIX
threads and if the system is configured using the--enable-mt option. SWI-Prolog multi-
theading support is experimental and in some areas not safe.

SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLogor other paralel implementations of the Prolog language. Prolog threads have their own stacks
and only share the Prologheap: predicates, records, flags and other global non-backtrackable data.
SWI-Prolog thread support is designed with the following goals in mind.

• Multi-threaded server applications
Todays computing services often focus on (internet) server applications. Such applications of-
ten have need for communication between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication and thread creation is rela-
tively cheap (A Pentium-II/450 can create and join approx. 10,000 threads per second on Linux
2.2).

the variablesHOMEDRIVEandHOMEPATHexist (Windows-NT), these are used. At initialisation, the system will set the
environment variableHOMEto point to the SWI-Prolog home directory if neitherHOMEnor HOMEPATHandHOMEDRIVE
are defined

17BUG: Some of the file-I/O predicates use local filenames. Usingchdir/1 while file-bound streams are open causes
wrong results ontelling/1 , seeing/1 andcurrent stream/3

SWI-Prolog 4.0 Reference Manual

3.39. MULTI-THREADING (ALPHA CODE) 107

• Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows.

• Natural integration with foreign code
Each Prolog thread runs in a C-thread, automatically making them cooperate withMT-safe
foreign-code. In addition, any foreign thread can create its own Prolog engine for dealing with
calling Prolog from C-code.

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executingGoal. If the
thread is created succesfully, the thread-identifier of the created thread is unified toId. Options
is a list of options. Currently defined options are:

local(K-Bytes)
Set the limit to which the local stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-L commandline option.

global(K-Bytes)
Set the limit to which the global stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-G commandline option.

trail(K-Bytes)
Set the limit to which the trail stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-T commandline option.

argument(K-Bytes)
Set the limit to which the argument stack of this thread may grow. If omited, the limit of
the calling thread is used. See also the-A commandline option.

alias(AliasName)
Associate an ‘alias-name’ with the thread. This named may be used to refer to the thread
and remains valid until the thread is joined (seethread join/2).

detached(Bool)
If false (default), the thread can be waited for usingthread join/2 .
thread join/2 must be called on this thread to reclaim the all resources associated
to the thread. Iftrue , the system will reclaim all associated resources automatically af-
ter the thread finishes. Please not that thread identifiers are freed for reuse after a detached
thread finishes or a normal thread has been joined.

The Goal argument iscopiedto the new Prolog engine. This implies further instantiation of
this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread self(-Id)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias-name
is returned.

SWI-Prolog 4.0 Reference Manual

108 CHAPTER 3. BUILT-IN PREDICATES

current thread(?Id, ?Status)
Enumerates identifiers and status of all currently known threads. Calling
current thread/2 does not influence any thread. See alsothread join/2 . For
threads that have an alias-name, this name is returned inId instead of the numerical thread
identifier.Statusis one of:

running
The thread is running. This is the initial status of a thread. Please note that threats waiting
for something are considered running too.

false
TheGoalof the thread has been completed and failed.

true
TheGoalof the thread has been completed and succeeded.

exited(Term)
TheGoal of the thread has been terminated usingthread exit/1 with Termas argu-
ment.

exception(Term)
TheGoal of the thread has been terminated due to an uncaught exception (seethrow/1
andcatch/3).

thread join(+Id, -Status)
Wait for the termination of thread with givenId. Then unify the result-status (see
thread exit/1) of the thread withStatus. After this call, Id becomes invalid and all re-
sources associated with the thread are reclaimed. See alsocurrent thread/2 .

A thread that has been completed withoutthread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data-structure
represening the exit-status of the thread is retained untilthread join/2 is called on the
thread.

thread exit(+Term)
Terminates the thread immediately, leavingexited (Term) as result-state. The Prolog stacks
and C-thread are reclaimed.

thread at exit(:Goal)
Run Goal after the execution of this thread has terminated. This is to be compared to
at halt/1 , but only for the current thread. These hooks are ran regardless of why the ex-
ecution of the thread has been completed. As these hooks are run, the return-code is already
available throughcurrent thread/2 .

3.39.1 Thread communication

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. In addition, they can send messages to each other. If a threads needs to wait for another
thread until that thread has produced some data, using only the database forces the waiting thread to
poll the database continuously. Waiting for a message suspends the thread execution until the message
has arrived in its message queue.

SWI-Prolog 4.0 Reference Manual

3.39. MULTI-THREADING (ALPHA CODE) 109

thread sendmessage(+ThreadId, +Term)
PlaceTermin the message queue of the indicated thread (which can even be the message queue
of itself (seethread self/1). Any term can be placed in a message queue, but note that
the term is copied to to receiving thread and variable-bindings are thus lost. This call returns
immediately.

thread get message(?Term)
Examines the thread message-queue and if necessary blocks execution until a term that unifies
to Termarrives in the queue. After a term from the queue has been unified unified toTerm, this
term is deleted from the queue and this predicate returns.

Please note that not-unifying messages remain in the queue. After the following has been
executed, thread 1 has the termb(gnu) in its queue and continues execution usingA is gnat .

<thread 1>
thread_get_message(a(A)),

<thread 2>
thread_send_message(b(gnu)),
thread_send_message(a(gnat)),

See alsothread peek message/1 .

thread peek message(?Term)
Examines the thread message-queue and compares the queued terms withTermuntil one unifies
or the end of the queue has been reached. In the first case the call succeeds (possibly instantiat-
ing Term. If no term from the queue unifies this call fails.

thread signal(+ThreadId, :Goal)
Make threadThreadIdexecuteGoalat the first opportunity. In the current implementation, this
implies at the first pass through theCall-port. The predicatethread signal/2 itself places
Goal into the signalled-thread’s signal queue and returns immediately.

Signals (interrupts) do not cooperate well with the world of multi-threading, mainly because
the status of mutexes cannot be guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.

Goal can be any valid Prolog goal, includingthrow/1 to make the receiving thread generate
an exception andtrace/0 to start tracing the receiving thread.

3.39.2 Thread synchronisation

All internal Prolog operations are thread-safe. This implies two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-levelmutexes(calledmonitorsin ADA or critical-sectionsby Microsoft). A mutex is aMUT ual
EXclusive device, which implies at most one thread canholda mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicateaddress/2 , representing the address of a person and we want to change the

SWI-Prolog 4.0 Reference Manual

110 CHAPTER 3. BUILT-IN PREDICATES

address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses (depending on the assert/retract order).

Here is how to realise a correct update:

:- initialization
mutex_create(addressbook).

change_address(Id, Address) :-
mutex_lock(addressbook),
retractall(address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock(addressbook).

mutex create(?MutexId)
Create a mutex. ifMutexIdis an atom, anamedmutex is created. If it is a variable, an anony-
mous mutex reference is returned. There is no limit to the number of mutexes that can be
created.

mutex destroy(+MutexId)
Destroy a mutex. After this call,MutexId becomes invalid and further references yield an
existence error exception.

mutex lock(+MutexId)
Lock the mutex. Prolog mutexes arerecursivemutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked, the mutex becomes
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until to mutex is unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex is created
automatically usingmutex create/1 . This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases usewith mutex/2 , wich provides a safer way for handling prolog-level mutexes.

mutex trylock(+MutexId)
As mutex lock/1 , but if the mutex is held by another thread, this predicates fails immedi-
ately.

mutex unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, apermission error exception is raised.

mutex unlock all
Unlock all mutexes held by the current thread. This call is especially useful to handle thread-
termination usingabort/0 or exceptions. See alsothread signal/2 .

current mutex(?MutexId, ?ThreadId, ?Count)
Enumerates all existing mutexes. If the mutex is held by some thread,ThreadIdis unified with

SWI-Prolog 4.0 Reference Manual

3.40. USER TOPLEVEL MANIPULATION 111

the identifier of te holding thread andCountwith the recursive count of the mutex. Otherwise,
ThreadIdis [] andCountis 0.

with mutex(+MutexId, :Goal)
ExecuteGoal while holdingMutexId. If Goal leaves choicepointes, these are destroyed (as
in once/1). The mutex is unlocked regardless of whetherGoal succeeds, fails or raises an
exception. An exception thrown byGoal is re-thrown after the mutex has been successfully
unlocked. See alsomutex create/2 .

Although described in the thread-section, this predicate is also available in the single-threaded
version, where it behaves simply asonce/1 .

3.39.3 Thread-support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multi-threaded
applications. This library is certainly not complete.

threads
Lists all current threads and their status. In addition, all ‘zombie’ threads (finished threads that
are not detached, nor waited for) are joined to reclaim their resources.

interactor
Create a new console and run the Prolog toplevel in this new console. See also
attach console/0 .

attach console
If the current thread has no console attached yet, attach one and redirect the user streams (input,
output, and error) to the new console window. The console is anxterm application. For this
to work, you should be running X-windows and your xterm should know the-Sccn .

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

?- thread_signal(10, (attach_console, trace)).

3.39.4 Status of the thread implementation

It is assumed that the basic Prolog execution is thread-safe. Various problems are to be expected
though, both dead-locks as well as not-thread-safe code in builtin-predicates.

3.40 User Toplevel Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If the-t toplevel command line option is given this goal
is started instead of entering the default interactive top level (prolog/0).

SWI-Prolog 4.0 Reference Manual

112 CHAPTER 3. BUILT-IN PREDICATES

abort
Abort the Prolog execution and restart the top level. If the-t toplevel command line
options is given this goal is started instead of entering the default interactive top level.

There are two implementations ofabort/0 . The default one uses the exception mechanism
(see throw/1), throwing the exception$aborted . The other one uses the C-construct
longjmp() to discard the entire environment and rebuild a new one. Using exceptions allows
for proper recovery of predicates exploiting exceptions. Rebuilding the environment is safer if
the Prolog stacks are corrupt. Therefore the system will use the rebuild-strategy if the abort was
generated by an internal consistency check and the exception mechanism otherwise. Prolog
can be forced to use the rebuild-strategy setting the prolog flagabort with exception to
false .

halt
Terminate Prolog execution. Open files are closed and if the command line option-tty is not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered usingat halt/1 . halt/0 is equivalent to
halt(0) .

halt(+Status)
Terminate Prolog execution with given status. Status is an integer. See alsohalt/0 .

prolog
This goal starts the default interactive top level. Queries are read from the streamuser input .
See also thehistory prolog flag (current prolog flag/2). Theprolog/0 predicate
is terminated (succeeds) by typing the end-of-file character (On most systems control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the toplevel variable expansion mechanism described in section2.8.

expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in moduleuser , normally not defined.QueryandBindingsrepresents the query read
from the user and the names of the free variables as obtained usingread term/3 . If this
predicate succeeds, it should bindExpandedandExpandedBindingsto the query and bindings
to be executed by the toplevel. This predicate is used by the toplevel (prolog/0). See also
expand answer/2 andterm expansion/2 .

expand answer(+Bindings, -ExpandedBindings)
Hook in moduleuser , normally not defined. Expand the result of a successfully executed
toplevel query.Bindingsis the query〈Name〉 = 〈Value〉 binding list from the query.Expand-
edBindingsmust be unified with the bindings the toplevel should print.

3.41 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.18 All Prolog interaction,
including warnings and tracer output, are written on the protocol file.

18A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 4.0 Reference Manual

3.42. DEBUGGING AND TRACING PROGRAMS 113

protocol(+File)
Start protocolling on fileFile. If there is already a protocol file open then close it first. IfFile
exists it is truncated.

protocola(+File)
Equivalent toprotocol/1 , but does not truncate theFile if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
Succeeds if a protocol was started withprotocol/1 or protocola/1 and unifiesFile with
the current protocol output file.

3.42 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section2.9.

If you have installed XPCE, you can use the graphical frontend of the tracer. This frontend is
installed using the predicateguitracer/0 .

trace
Start the tracer.trace/0 itself cannot be seen in the tracer. Note that the Prolog toplevel treats
trace/0 special; it means ‘trace the next goal’.

tracing
Succeeds when the tracer is currently switched on.tracing/0 itself can not be seen in the
tracer.

notrace
Stop the tracer.notrace/0 itself cannot be seen in the tracer.

guitracer
Installs hooks (seeprolog trace interception/4) into the system that redirects trac-
ing information to a GUI frontend providing structured access to variable-bindings, graphical
overview of the stack and highlighting of relevant source-code.

noguitracer
Reverts back to the textual tracer.

trace(+Pred)
Equivalent totrace(Pred , +all) .

trace(+Pred, +Ports)
Put a trace-point on all predicates satisfying the predicate specificationPred. Ports is a list
of portnames (call , redo , exit , fail). The atomall refers to all ports. If the port is
preceded by a- sign the trace-point is cleared for the port. If it is preceded by a+ the trace-
point is set.

The predicatetrace/2 activates debug mode (seedebug/0). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed as withtrace/0 . Unlike

SWI-Prolog 4.0 Reference Manual

114 CHAPTER 3. BUILT-IN PREDICATES

trace/0 however, the execution is continued without asking for further information. Exam-
ples:

?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.

?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

The predicatedebugging/0 shows all currently defined trace-points.

notrace(+Goal)
Call Goal, but suspend the debugger whileGoal is executing. The current implementation cuts
the choicepoints ofGoal after successful completion. Seeonce/1 . Later implementations
may have the same semantics ascall/1 .

debug
Start debugger. In debug mode, Prolog stops at spy- and trace-points, disables tail-recursion
optimisation and aggressive destruction of choice-points to make debugging information acces-
sible. Implemented by the Prolog flagdebug .

nodebug
Stop debugger. Implementated by the prolog flagdebug . See alsodebug/0 .

debugging
Print debug status and spy points on current output stream. See also the prolog flagdebug .

spy(+Pred)
Put a spy point on all predicates meeting the predicate specificationPred. See section3.4.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specificationPred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction).Ports is one of+Name, -Name,
?Nameor a list of these.+Nameenables leashing on that port,-Namedisables it and?Name
succeeds or fails according to the current setting. Recognised ports are:call , redo , exit ,
fail andunify . The special shorthandall refers to all ports,full refers to all ports except
for the unify port (default).half refers to thecall , redo andfail port.

visible(+Ports)
Set the ports shown by the debugger. Seeleash/1 for a description of the port specification.
Default isfull .

unknown(-Old, +New)
Edinburgh-prolog compatibility predicate, interfacing to the ISO prolog flagunknown . Val-
ues aretrace (meaningerror) and fail . If the unknown flag is set towarning ,
unknown/2 reports the value astrace .

SWI-Prolog 4.0 Reference Manual

3.43. OBTAINING RUNTIME STATISTICS 115

style check(+Spec)
Set style checking options.Specis either+〈option〉, - 〈option〉, ?〈option〉 or a list of such
options.+〈option〉 sets a style checking option,- 〈option〉 clears it and?〈option〉 succeeds or
fails according to the current setting.consult/1 and derivatives resets the style checking
options to their value before loading the file. If—for example—a file containing long atoms
should be loaded the user can start the file with:

:- style_check(-atom).

Currently available options are:

Name Default Description
singleton on

read clause/1 (used byconsult/1) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore.

atom on
read/1 and derivatives will produce an error message on
quoted atoms or strings longer than 5 lines.

dollar off Accept dollar as a lower case character, thus avoiding the
need for quoting atoms with dollar signs. System mainte-
nance use only.

discontiguous on Warn if the clauses for a predicate are not together in the
same source file.

string off Backward compatibility. See the prolog-flagdou-
ble quotes (current prolog flag/2).

3.43 Obtaining Runtime Statistics

statistics(+Key, -Value)
Unify system statistics determined byKey with Value. The possible keys are given in the ta-
ble3.2.

statistics
Display a table of system statistics on the current output stream.

time(+Goal)
ExecuteGoal just like once/1 (i.e. leaving no choice points), but print used time, number of
logical inferences and the average number oflips (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather than the number of passes
through the call- and redo ports of the theoretical 4-port model.

3.44 Finding Performance Bottlenecks

SWI-Prolog offers a statistical program profiler similar to Unix prof(1) for C and some other lan-
guages. A profiler is used as an aid to find performance pigs in programs. It provides information on
the time spent in the various Prolog predicates.

SWI-Prolog 4.0 Reference Manual

116 CHAPTER 3. BUILT-IN PREDICATES

agc Number of atom garbage-collections performed
agcgained Number of atoms removed
agc time Time spent in atom garbage-collections
cputime (User)CPU time since Prolog was started in seconds
inferences Total number of passes via the call and redo ports since Prolog was

started.
heap Estimated total size of the heap (see section2.16.1)
heapused Bytes heap in use by Prolog.
heaplimit Maximum size of the heap (see section2.16.1)
local Allocated size of the local stack in bytes.
localused Number of bytes in use on the local stack.
locallimit Size to which the local stack is allowed to grow
global Allocated size of the global stack in bytes.
globalused Number of bytes in use on the global stack.
globallimit Size to which the global stack is allowed to grow
trail Allocated size of the trail stack in bytes.
trailused Number of bytes in use on the trail stack.
traillimit Size to which the trail stack is allowed to grow
atoms Total number of defined atoms.
functors Total number of defined name/arity pairs.
predicates Total number of predicate definitions.
modules Total number of module definitions.
codes Total amount of byte codes in all clauses.
threads MT-version: number of active threads
threadscreated MT-version: number of created threads
threadscputime MT-version: seconds CPU time used by finished threads

Table 3.2: Keys forstatistics/2

SWI-Prolog 4.0 Reference Manual

3.44. FINDING PERFORMANCE BOTTLENECKS 117

The profiler is based on the assumption that if we monitor the functions on the execution stack on
time intervals not correlated to the program’s execution the number of times we find a procedure on
the environment stack is a measure of the time spent in this procedure. It is implemented by calling a
procedure each time slice Prolog is active. This procedure scans the local stack and either just counts
the procedure on top of this stack (plain profiling) or all procedures on the stack (cumulative
profiling). To get accurate results each procedure one is interested in should have a reasonable number
of counts. Typically a minute runtime will suffice to get a rough overview of the most expensive
procedures.

profile(+Goal, +Style, +Number)
Execute Goal just like time/1 . Collect profiling statistics according to style (see
profiler/2) and show the topNumber procedures on the current output stream (see
show profile/1). The results are kept in the database untilreset profiler/0 or
profile/3 is called and can be displayed again withshow profile/1 . profile/3
is the normal way to invoke the profiler. The predicates below are low-level predicates that can
be used for special cases.

show profile(+Number)
Show the collected results of the profiler. Stops the profiler first to avoid interference from
show profile/1 . It shows the topNumberpredicates according the percentageCPU-time
used.19

profiler(-Old, +New)
Query or change the status of the profiler. The status is one ofoff , plain or cumulative .
plain implies the time used by children of a predicate is not added to the time of the predicate.
For statuscumulative the time of children is added (except for recursive calls). Cumulative
profiling implies the stack is scanned up to the top on each time slice to find all active predicates.
This implies the overhead grows with the number of active frames on the stack. Cumulative
profiling starts debugging mode to disable tail recursion optimisation, which would otherwise
remove the necessary parent environments. Switching status fromplain to cumulative
resets the profiler. Switching to and from statusoff does not reset the collected statistics, thus
allowing to suspend profiling for certain parts of the program.

reset profiler
Switches the profiler tooff and clears all collected statistics.

profile count(+Head, -Calls, -Promilage)
Obtain profile statistics of the predicate specified byHead. Head is an atom for predi-
cates with arity 0 or a term with the same name and arity as the predicate required (see
current predicate/2). Calls is unified with the number of ‘calls’ and ‘redos’ while the
profiler was active.Promilageis unified with the relative number of counts the predicate was
active (cumulative) or on top of the stack (plain). Promilageis an integer between 0 and
1000.

19show profile/1 is defined in Prolog and takes a considerable amount of memory.

SWI-Prolog 4.0 Reference Manual

118 CHAPTER 3. BUILT-IN PREDICATES

3.45 Memory Management

Note: limit stack/2 andtrim stacks/0 have no effect on machines that do not offer dynamic
stack expansion. On these machines these predicates simply succeed to improve portability.

garbagecollect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

garbagecollect atoms
Reclaim unused atoms. Normally invoked afteragc margin (a prolog flag) atoms have been
created.

limit stack(+Key, +Kbytes)
Limit one of the stack areas to the specified value.Key is one oflocal , global or trail .
The limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is
smaller than the currently used value, the limit is set to the nearest legal value above the cur-
rently used value. If the desired value is larger than the maximum, the maximum is taken.
Finally, if the desired value is either 0 or the atomunlimited the limit is set to its maximum.
The maximum and initial limit is determined by the command line options-L , -G and-T .

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the oper-
ating system. Trim stack is a relatively cheap call. It can be used to release memory resources in
a backtracking loop, where the iterations require typically seconds of execution time and very
different, potentially large, amounts of stack space. Such a loop should be written as follows:

loop :-
generator,

trim_stacks,
potentially_expensive_operation,

stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

stack parameter(+Stack, +Key, -Old, +New)
Query/set a parameter for the runtime stacks.Stackis one of local , global , trail or
argument . The table below describes theKey/Valuepairs. Old is first unified with the current
value.

limit Maximum size of the stack in bytes
min free Minimum free space at entry of foreign predicate

This predicate is currently only available on versions that use the stack-shifter to enlarge the
runtime stacks when necessary. It’s definition is subject to change.

SWI-Prolog 4.0 Reference Manual

3.46. WINDOWS DDE INTERFACE 119

3.46 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.20

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

See also section5.4for loading Windows DLL’s into SWI-Prolog.

3.46.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup("DDE Demo")]’).

Yes

4 ?- close_dde_conversation(0).

Yes

For details on interacting withprogman , use the SDK online manual section on the Shell DDE
interface. See also the Prologlibrary(progman) , which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful,Handlemay be used to send transactions to the server. If no willing server is found
this predicate fails silently.

closedde conversation(+Handle)
Close the conversation associated withHandle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

dde request(+Handle, +Item, -Value)
Request a value from the server.Itemis an atom that identifies the requested data, andValuewill
be a string (CF TEXTdata in DDE parlance) representing that data, if the request is successful.
If unsuccessful,Valuewill be unified with a term of formerror(〈Reason〉) , identifying the
problem. This call uses SWI-Prolog string objects to return the value rather then atoms to
reduce the load on the atom-space. See section3.23for a discussion on this data type.

20This interface is contributed by Don Dwiggins.

SWI-Prolog 4.0 Reference Manual

120 CHAPTER 3. BUILT-IN PREDICATES

dde execute(+Handle, +Command)
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde poke(+Handle, +Item, +Command)
Issue aPOKEcommand to the server on the specifiedItem. Command is passed as data of type
CF TEXT.

3.46.2 DDE server mode

The (autoload)library(dde) defines primitives to realise simple DDE server applications in SWI-
Prolog. These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please studylibrary(dde) .

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE request,Templateis of the form:

+Service(+Topic, +Item, +Value)

Serviceis the name of the DDE service provided (likeprogman in the client example above).
Topic is either an atom, indicatingGoal only handles requests on this topic or a variable that
also appears inGoal. ItemandValueare variables that also appear inGoal. Itemrepresents the
request data as a Prolog atom.21

The example below registers the Prologcurrent prolog flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).

Home = ’/usr/local/lib/pl-2.0.6/’

Handling DDEexecute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

Passing aValueargument is not needed as execute requests either succeed or fail. IfGoal fails,
a ‘not processed’ is passed back to the caller of the DDE request.

21Upto version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 4.0 Reference Manual

3.47. MISCELLANEOUS 121

dde unregister service(+Service)
Stop responding toService. If Prolog is halted, it will automatically call this on all open ser-
vices.

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

3.47 Miscellaneous

dwim match(+Atom1, +Atom2)
Succeeds ifAtom1matchesAtom2in ‘Do What I Mean’ sense. BothAtom1andAtom2may
also be integers or floats. The two atoms match if:

• They are identical

• They differ by one character (spy≡ spu)

• One character is inserted/deleted (debug≡ deug)

• Two characters are transposed (trace≡ tarce)

• ‘Sub-words’ are glued differently (existsfile≡ existsFile≡ existsfile)

• Two adjacent sub words are transposed (existsFile≡ fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent todwim match/2 , but unifiesDifferencewith an atom identifying the the differ-
ence betweenAtom1andAtom2. The return values are (in the same order as above):equal ,
mismatched char , inserted char , transposed char , separated and trans-
posed word .

wildcard match(+Pattern, +String)
Succeeds ifString matches the wildcard patternPattern. Pattern is very similar the the Unix
csh pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.〈char1〉- 〈char2〉 indicates a range.
{... } Matches any of the patterns of the comma separated list between the braces.

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%˜]’, ’a_hello.pl%’).

Yes

SWI-Prolog 4.0 Reference Manual

122 CHAPTER 3. BUILT-IN PREDICATES

gensym(+Base, -Unique)
Generate a unique atom from baseBaseand unify it withUnique. Baseshould be an atom. The
first call will return〈base〉1, the next〈base〉2, etc. Note that this is no warrant that the atom is
unique in the system.22

sleep(+Time)
Suspend executionTimeseconds.Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. On most non-realtime operating systems we can only ensure execution is
suspended forat leastTimeseconds.

22BUG: I plan to supply a realgensym/2 which does give this warrant for future versions.

SWI-Prolog 4.0 Reference Manual

Using Modules 4
4.1 Why Using Modules?

In traditional Prolog systems the predicate space was flat. This approach is not very suitable for
the development of large applications, certainly not if these applications are developed by more than
one programmer. In many cases, the definition of a Prolog predicate requires sub-predicates that are
intended only to complete the definition of the main predicate. With a flat and global predicate space
these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has it’s own predicate space. A module
consists of a declaration for it’s name, it’spublic predicatesand the predicates themselves. This
approach allow the programmer to use short (local) names for support predicates without worrying
about name conflicts with the support predicates of other modules. The module declaration also makes
explicit which predicates are meant for public usage and which for private purposes. Finally, using
the module information, cross reference programs can indicate possible problems much better.

4.2 Name-based versus Predicate-based Modules

Two approaches to realize a module system are commonly used in Prolog and other languages. The
first one is thename basedmodule system. In these systems, each atom read is tagged (normally
prefixed) with the module name, with the exception of those atoms that are definedpublic. In the
second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that trans-
form between Prolog data and Prolog predicates. Consider the case where we write:

:- module(extend, [add_extension/3]).

add_extension(Extension, Plain, Extended) :-
maplist(extend_atom(Extension), Plain, Extended).

extend_atom(Extension, Plain, Extended) :-
concat(Plain, Extension, Extended).

In this case we would like maplist to call extendatom/3 in the moduleextend . A name based
module system will do this correctly. It will tag the atomextend atom with the module and maplist
will use this to construct the tagged term extendatom/3. A name based module however, will not only
tag the atoms that will eventually be used to refer to a predicate, butall atoms that are not declared
public. So, with a name based module system also data is local to the module. This introduces another
serious problem:

SWI-Prolog 4.0 Reference Manual

124 CHAPTER 4. USING MODULES

:- module(action, [action/3]).

action(Object, sleep, Arg) :-
action(Object, awake, Arg) :-

:- module(process, [awake_process/2]).

awake_process(Process, Arg) :-
action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method
selectors. Using a name based module system, this code will not work, unless we declare the selectors
public atoms in all modules that use them. Predicate based module systems do not require particular
precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.
Probably it is best to choose for the predicate based approach as novice users will not often write
generic meta-predicates that have to be used across multiple modules, but are likely to write programs
that pass data around across modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.

4.3 Defining a Module

Modules normally are created by loading amodule file. A module file is a file holding amodule/2
directive as its first term. Themodule/2 directive declares the name and the public (i.e. externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, definingreverse/2 .

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

4.4 Importing Predicates into a Module

As explained before, in the predicate based approach adapted by SWI-Prolog, each module has it’s
own predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be added
to a module by loading a module file as demonstrated in the previous section, using assert or by
importingthem from another module.

Two mechanisms for importing predicates explicitly from another module exist. The
use module/[1,2] predicates load a module file and import (part of the) public predicates of
the file. Theimport/1 predicate imports any predicate from any module.

SWI-Prolog 4.0 Reference Manual

4.5. USING THE MODULE SYSTEM 125

usemodule(+File)
Load the file(s) specified withFile just likeensure loaded/1 . The files should all be mod-
ule files. All exported predicates from the loaded files are imported into the context module. The
difference between this predicate andensure loaded/1 becomes apparent if the file is al-
ready loaded into another module. In this caseensure loaded/1 does nothing; usemodule
will import all public predicates of the module into the current context module.

usemodule(+File, +ImportList)
Load the file specified withFile (only one file is accepted).File should be a module file.
ImportList is a list of name/arity pairs specifying the predicates that should be imported from
the loaded module. If a predicate is specified that is not exported from the loaded module a
warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import(+Head)
Import predicateHeadinto the current context module.Headshould specify the source module
using the〈module〉:〈term〉 construct. Note that predicates are normally imported using one of
the directivesuse module/[1,2] . import/1 is meant for handling imports into dynami-
cally created modules.

It would be rather inconvenient to have to import each predicate referred to by the module, includ-
ing the system predicates. For this reason each module is assigned adefault module. All predicates
in the default module are available without extra declarations. Their definition however can be over-
ruled in the local module. This schedule is implemented by the exception handling mechanism of
SWI-Prolog: if an undefined predicate exception is raised for a predicate in some module, the excep-
tion handler first tries to import the predicate from the module’s default module. On success, normal
execution is resumed.

4.4.1 Reserved Modules

SWI-Prolog contains two special modules. The first one is the modulesystem . This module contains
all built-in predicates described in this manual. Modulesystem has no default module assigned to
it. The second special module is the moduleuser . This module forms the initial working space of
the user. Initially it is empty. The default module of moduleuser is system , making all built-in
predicate definitions available as defaults. Built-in predicates thus can be overruled by defining them
in moduleuser before they are used.

All other modules default to moduleuser . This implies they can use all predicates imported into
user without explicitly importing them.

4.5 Using the Module System

The current structure of the module system has been designed with some specific organisations for
large programs in mind. Many large programs define a basic library layer on top of which the actual
program itself is defined. The moduleuser , acting as the default module for all other modules of
the program can be used to distribute these definitions over all program module without introducing
the need to import this common layer each time explicitly. It can also be used to redefine built-in
predicates if this is required to maintain compatibility to some other Prolog implementation. Typically,
the loadfile of a large application looks like this:

SWI-Prolog 4.0 Reference Manual

126 CHAPTER 4. USING MODULES

:- use_module(compatibility). % load XYZ prolog compatibility

:- use_module(% load generic parts
[error % errors and warnings
, goodies % general goodies (li-

brary extensions)
, debug % application specific debugging
, virtual_machine % virtual machine of application
, ... % more generic stuff
]).

:- ensure_loaded(
[... % the application itself
]).

The ‘usemodule’ declarations will import the public predicates from the generic modules into the
user module. The ‘ensureloaded’ directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each other usinguse module/[1,2] as far as
necessary.

In combination with the object-oriented schema described below it is possible to define a neat
modular architecture. The generic code defines general utilities and the message passing predicates
(invoke/3 in the example below). The application modules define classes that communicate using the
message passing predicates.

4.5.1 Object Oriented Programming

Another typical way to use the module system is for defining classes within an object oriented
paradigm. The class structure and the methods of a class can be defined in a module and the explicit
module-boundary overruling describes in section4.6.2can by used by the message passing code to
invoke the behaviour. An outline of this mechanism is given below.

% Define class point

:- module(point, []). % class point, no exports

% name type, default access
% value

variable(x, integer, 0, both).
variable(y, integer, 0, both).

% method name predicate name arguments

behaviour(mirror, mirror, []).

mirror(P) :-
fetch(P, x, X),

SWI-Prolog 4.0 Reference Manual

4.6. META-PREDICATES IN MODULES 127

fetch(P, y, Y),
store(P, y, X),
store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The
figure below indicates how message passing can easily be implemented:

% invoke(+Instance, +Selector, ?ArgumentList)
% send a message to an instance

invoke(I, S, Args) :-
class_of_instance(I, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_arguments(ArgCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.

The construct〈Module〉:〈Goal〉 explicitly callsGoal in moduleModule. It is discussed in more detail
in section3.8.

4.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the dif-
ficulty to find the correct predicate from a Prolog term. The predicate ‘solution(Solution)’ can exist
in more than one module, but ‘assert(solution(4))’ in some module is supposed to refer to the correct
version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all
predicates (e.g. ‘assert(Module, Term)’). Another is to tag the term somehow to indicate which mod-
ule is desired (e.g. ‘assert(Module:Term)’). Both approaches are not very attractive as they make the
user responsible for choosing the correct module, inviting unclear programming by asserting in other
modules. The predicateassert/1 is supposed to assert in the module it is called from and should
do so without being told explicitly. For this reason, the notioncontext modulehas been introduced.

4.6.1 Definition and Context Module

Each predicate of the program is assigned a module, called it’sdefinition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has acontext moduleassigned to it.

The context module is used to find predicates from a Prolog term. By default, this module is the
definition module of the predicate running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call thismoduletransparentin SWI-Prolog. In the ‘using
maplist’ example above, the predicatemaplist/3 is declared moduletransparent. This implies the
context module remainsextend , the context module of addextension/3. This waymaplist/3
can decide to call extendatom in moduleextend rather than in it’s own definition module.

All built-in predicates that refer to predicates via a Prolog term are declared moduletransparent.
Below is the code defining maplist.

SWI-Prolog 4.0 Reference Manual

128 CHAPTER 4. USING MODULES

:- module(maplist, maplist/3).

:- module_transparent maplist/3.

% maplist(+Goal, +List1, ?List2)
% True if Goal can successfully be applied to all succes-
sive pairs
% of elements of List1 and List2.

maplist(_, [], []).
maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-

apply(Goal, [Elem1, Elem2]),
maplist(Goal, Tail1, Tail2).

4.6.2 Overruling Module Boundaries

The mechanism above is sufficient to create an acceptable module system. There are however cases
in which we would like to be able to overrule this schema and explicitly call a predicate in some
module or assert explicitly in some module. The first is useful to invoke goals in some module from
the user’s toplevel or to implement a object-oriented system (see above). The latter is useful to create
and modifydynamic modules(see section4.7).

For this purpose, the reserved term:/2 has been introduced. All built-in predicates that transform
a term into a predicate reference will check whether this term is of the form ‘〈Module〉:〈Term〉’. If so,
the predicate is searched for inModuleinstead of the goal’s context module. The: operator may be
nested, in which case the inner-most module is used.

The special calling construct〈Module〉:〈Goal〉 pretendsGoal is called fromModuleinstead of the
context module. Examples:

?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world

4.7 Dynamic Modules

So far, we discussed modules that were created by loading a module-file. These modules have been
introduced on facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. Example:

?- assert(world_a:consistent),
world_a:unknown(_, fail).

SWI-Prolog 4.0 Reference Manual

4.8. MODULE HANDLING PREDICATES 129

These calls create a module called ‘worlda’ and make the call ‘worlda:consistent’ succeed. Unde-
fined predicates will not start the tracer or autoloader for this module (seeunknown/2).

Import and export from dynamically created world is arranged via the predicatesimport/1 and
export/1 :

?- world_b:export(solve(_,_)). % exports solve/2 from world_b
?- world_c:import(world_b:solve(_,_)). % and import it to world_c

4.8 Module Handling Predicates

This section gives the predicate definitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be a
module file, definingModuleand exporting the predicates ofPublicList. PublicList is a list of
name/arity pairs.

module transparent +Preds
Predsis a comma separated list of name/arity pairs (likedynamic/1). Each goal associated
with a transparent declared predicate will inherit thecontext modulefrom its parent goal.

meta predicate+Heads
This predicate is defined in library(quintus) and provides a partial emulation of the Quintus
predicate. See section4.9.1for details.

current module(-Module)
Generates all currently known modules.

current module(?Module, ?File)
Is true if File is the file from whichModulewas loaded.File is the internal canonical filename.
See alsosource file/[1,2] .

context module(-Module)
Unify Module with the context module of the current goal.context module/1 itself is
transparent.

export(+Head)
Add a predicate to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported withuse module/[1,2] . Note
that predicates are normally exported using the directivemodule/2 . export/1 is meant to
handle export from dynamically created modules.

export list(+Module, ?Exports)
Unifies Exports with a list of terms. Each term has the name and arity of a pub-
lic predicate ofModule. The order of the terms inExports is not defined. See also
predicate property/2 .

SWI-Prolog 4.0 Reference Manual

130 CHAPTER 4. USING MODULES

default module(+Module, -Default)
Succesively unifiesDefault with the module names from which a call inModuleattempts to
use the definition. For the moduleuser , this will generateuser andsystem . For any other
module, this will generate the module itself, followed byuser andsystem .

module(+Module)
The callmodule(Module) may be used to switch the default working module for the inter-
active toplevel (seeprolog/0). This may be used to when debugging a module. The example
below lists the clauses of fileof label/2 in the moduletex .

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_of_label/2).
...

4.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog differ in a number of aspects from the Quin-
tus Prolog module system.

• The SWI-Prolog module system allows the user to redefine system predicates.

• All predicates that are available in thesystem and user modules are visible in all other
modules as well.

• Quintus has the ‘meta predicate/1 ’ declaration were SWI-Prolog has the
module transparent/1 declaration.

The meta predicate/1 declaration causes the compiler to tag arguments that pass module
sensitive information with the module using the:/2 operator. This approach has some disadvantages:

• Changing a metapredicate declaration implies all predicatescalling the predicate need to be
reloaded. This can cause serious consistency problems.

• It does not help for dynamically defined predicates calling module sensitive predicates.

• It slows down the compiler (at least in the SWI-Prolog architecture).

• At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead
introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate
A passes module sensitive information to a predicateB, passing the same information to a module
sensitive system predicate bothA andB should be declared transparent. Using the Quintus approach
only A needs to be treated special (i.e. declared withmeta predicate/1)1. A second problem
arises if the body of a transparent predicate uses module sensitive predicates for which it wants to refer
to its own module. Suppose we want to definefindall/3 usingassert/1 andretract/1 2.
The example in figure4.1gives the solution.

1Although this would make it impossible to callB directly.
2The system version usesrecordz/2 andrecorded/3 .

SWI-Prolog 4.0 Reference Manual

4.9. COMPATIBILITY OF THE MODULE SYSTEM 131

:- module(findall, [findall/3]).

:- dynamic
solution/1.

:- module_transparent
findall/3,
store/2.

findall(Var, Goal, Bag) :-
assert(findall:solution(’$mark’)),
store(Var, Goal),
collect(Bag).

store(Var, Goal) :-
Goal, % refers to context module of

% caller of findall/3
assert(findall:solution(Var)),
fail.

store(_, _).

collect(Bag) :-
...,

Figure 4.1:findall/3 using modules

SWI-Prolog 4.0 Reference Manual

132 CHAPTER 4. USING MODULES

4.9.1 Emulatingmeta predicate/1

The Quintusmeta predicate/1 directive can in many cases be replaced by the transparent dec-
laration. Below is the definition ofmeta predicate/1 as available from library(quintus).

:- op(1150, fx, (meta_predicate)).

meta_predicate((Head, More)) :- !,
meta_predicate1(Head),
meta_predicate(More).

meta_predicate(Head) :-
meta_predicate1(Head).

meta_predicate1(Head) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion_argument(Arg), !,
functor(Head, Name, Arity),
module_transparent(Name/Arity).

meta_predicate1(_). % just a mode declaration

module_expansion_argument(:).
module_expansion_argument(N) :- integer(N).

The discussion above about the problems with the transparent mechanism show the two cases in which
this simple transformation does not work.

SWI-Prolog 4.0 Reference Manual

Foreign Language Interface 5
SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

5.1 Overview of the Interface

A special include file calledSWI-Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the directoryinclude in
the SWI-Prolog home directory (?- current prolog flag(home, Home).). This C-header
file defines various data types, macros and functions that can be used to communicate with SWI-
Prolog. Functions and macros can be divided into the following categories:

• Analysing Prolog terms

• Constructing new terms

• Unifying terms

• Returning control information to Prolog

• Registering foreign predicates with Prolog

• Calling Prolog from C

• Recorded database interactions

• Global actions on Prolog (halt, break, abort, etc.)

5.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in three ways. Usingstatic linking, the extensions, a small
description file and the basic SWI-Prolog object file are linked together to form a new executable.
Usingdynamic linking, the extensions are linked to a shared library (.so file on most Unix systems)

SWI-Prolog 4.0 Reference Manual

134 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

or dynamic-link library (.DLL file on Microsoft platforms) and loaded into the the running Prolog
process.1.

5.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the prolog-flagopen shared object (see
current prolog flag/2). If this prolog-flag yields true,open shared object/2 and re-
lated predicates are defined. See section5.4for a suitable high-level interface to these predicates.

5.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to
pass to the linker may vary from system to system, though the utility programplld described in
section5.7often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved-state is created usingqsave program/[1,2] , an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

5.3 Dynamic Linking of shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems,.dll files on Windows). This interface is portable to Windows as well as to Unix machines
providingdlopen(2) (Solaris, Linux, FreeBSD, Irix and many more) orshl open(2) (HP/UX).
It is advised to use the predicates from section5.4 in your application.

open shared object(+File, -Handle)
File is the name of a.so file (see your C programmers documentation on how to create a
.so file). This file is attached to the current process andHandle is unified with a handle to
the shared object. Equivalent toopen shared object(File, [global], Handle) .
See alsoload foreign library/[1,2] .

On errors, an exceptionshared object (Action, Message) is raised.Messageis the return
value fromdlerror() .

open shared object(+File, +Options, -Handle)
As open shared object/2 , but allows for additional flags to be passed.Optionsis a list of
atoms.now implies the symbols are resolved immediately rather than lazy (default).global
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check
the documentation of dlopen() or equivalent on your operating system. Unsupported flags are
silently ignored.

1The system also contains code to load.o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 4.0 Reference Manual

5.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 135

closeshared object(+Handle)
Detach the shared object identified byHandle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls toPL register foreign() .

5.4 Using the library shlib for .DLL and .so files

This section discusses the functionality of the (autoload) libraryshlib.pl , providing an interface to
shared libraries. This library can only be used if the prolog-flagopen shared object is enabled.

load foreign library(+Lib, +Entry)
Search for the given foreign library and link it to the current SWI-Prolog instance. The library
may be specified with or without the extension. First,absolute file name/3 is used to lo-
cate the file. If this succeeds, the full path is passed to the low-level function to open the library.
Otherwise, the plain library name is passed, exploiting the operating-system defined search
mechanism for the shared library. Thefile search path/2 alias mechanism defines the
aliasforeign , which refers to the directories〈plhome〉/lib/ 〈arch〉 and〈plhome〉/lib , in
this order.

If the library can be loaded, the function calledEntry will be called without arguments. The
return value of the function is ignored.

TheEntry function will normally callPL register foreign() to declare functions in the
library as foreign predicates.

load foreign library(+Lib)
Equivalent toload foreign library/2 . For the entry-point, this function first identifies
the ‘base-name’ of the library, which is defined to be the file-name with path nor extension.
It will then try the entry-pointinstall- 〈base〉. On failure it will try to function install().
Otherwise no install function will be called.

unload foreign library(+Lib)
If the foreign library defines the function uninstall〈base〉() or uninstall(), this function will be
called without arguments and its return value is ignored. Next,abolish/2 is used to remove
all known foreign predicates defined in the library. Finally the library itself is detached from
the process.

current foreign library(-Lib, -Predicates)
Query the currently loaded foreign libraries and their predicates.Predicates is a
list with elements of the formModule:Head, indicating the predicates installed with
PL register foreign() when the entry-point of the library was called.

Figure5.1 connects a Windows message-box using a foreign function. This example was tested
using Windows NT and Microsoft Visual C++ 2.0.

SWI-Prolog 4.0 Reference Manual

136 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say_hello(term_t to)
{ char *a;

if (PL_get_atom_chars(to, &a))
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Figure 5.1: MessageBox() example in Windows NT

5.4.1 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions.\ldots/pl refers to the SWI-Prolog home directory (seecurrent prolog flag/2).
〈arch〉 refers to the architecture identifier that may be obtained usingcurrent prolog flag/2 .

.../pl/runtime/ 〈arch〉/libpl.a SWI-Library
\ldots/pl/include/SWI-Prolog.h Include file
\ldots/pl/include/SWI-Stream.h Stream I/O include file
\ldots/pl/include/SWI-Exports Export declarations (AIX only)
\ldots/pl/include/stub.c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the file\ldots/pl/include/stub.
c may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

/* Copyright (c) 1991 Jan Wielemaker. All rights reserved.
jan@swi.psy.uva.nl

Purpose: Skeleton for extensions
*/

#include <stdio.h>

SWI-Prolog 4.0 Reference Manual

5.5. INTERFACE DATA TYPES 137

#include <SWI-Prolog.h>

extern foreign_t pl_lowercase(term, term);

PL_extension predicates[] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminat-

ing line */
};

int
main(int argc, char **argv)
{ PL_register_extensions(predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

PL_install_readline(); /* delete if not re-
quired */

PL_halt(PL_toplevel() ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it to libpl.a from the runtime
directory and the libraries required by both the extensions and the SWI-Prolog kernel. This may be
done by hand, or using theplld utility described in secrefplld.

5.5 Interface Data types

5.5.1 Typeterm t : a reference to a Prolog term

The principal data-type isterm t . Type term t is what Quintus callsQPterm ref . This name
indicates better what the type represents: it is ahandlefor a term rather than the term itself. Terms
can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the
Prolog environment-stack. A foreign function is passed term references for the predicate-
arguments, one for each argument. If references for intermediate results are needed,
such references may be created usingPL new term ref() or PL new term refs() .
These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited usingPL open foreign frame() and

SWI-Prolog 4.0 Reference Manual

138 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL close foreign frame() /PL discard foreign frame() .
A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term). A

term lives either until backtracking takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after aPL open foreign frame() and
PL discard foreign frame() has been called.

The foreign-interface functions can eitherread, unify or write to term-references. In the this
document we use the following notation for arguments of type termt:

term t +t Accessed in read-mode. The ‘+’ indicates the argument is
‘input’.

term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

• Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

• Created byPL new term ref()
A term created byPL new term ref() is normally used to build temporary terms or be
written by one of the interface functions. For example,PL get arg() writes a reference to
the term-argument in its last argument.

• Created byPL new term refs(int n)
This function returns a set of term refs with the same characteristics asPL new term ref() .
SeePL open query() .

• Created byPL copy term ref(term t t)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figure5.3.

Term-references can safely be copied to other C-variables of type termt, but all copies will always
refer to the same term.

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on thelocal stack. Allocating a
term-reference may trigger a stack-shift on machines that cannot use sparse-memory manage-
ment for allocation the Prolog stacks. The returned reference describes a variable.

term t PL new term refs(int n)
Returnn new term references. The first term-reference is returned. The others aret + 1, t + 2,
etc. There are two reasons for using this function.PL open query() expects the arguments
as a set of consecutive term references andvery time-critical code requiring a number of term-
references can be written as:

pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);

term_t t1 = t0+1;

SWI-Prolog 4.0 Reference Manual

5.5. INTERFACE DATA TYPES 139

...
}

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term asfrom. This function
is commonly used to copy a predicate argument to a term reference that may be written.

void PL reset term refs(term t after)
Destroy all term references that have been created afterafter, includingafter itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See alsoPL open foreign frame() , PL close foreign frame()
andPL discard foreign frame() .

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term references (term t), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

5.5.2 Other foreign interface types

atom t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies that atomA represents the same
text as atomB if-and-only-if A andB are the same pointer.

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

qid t Query Identifier. Used byPL open query() /PL next solution() /PL close query()
to handle backtracking from C.

fid t Frame Identifier. Used byPL open foreign frame() /PL close foreign frame() .

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

SWI-Prolog 4.0 Reference Manual

140 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

foreign t Return type for a C-function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PLretry*() and
PL foreign context*().

install t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

5.6 The Foreign Include File

5.6.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments1, . . . , 〈arity〉 pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of typeforeign t . Deterministic foreign
functions have two alternatives to return control back to Prolog:

voidPL succeed()
Succeed deterministically. PLsucceed is defined asreturn TRUE .

voidPL fail()
Fail and start Prolog backtracking. PLfail is defined asreturn FALSE .

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using thePL FA NONDETERMINISTICattribute
(seePL register foreign()) it is possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function
needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the naturalnumberbelow n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.

In this predicate the function naturalnumberbelow n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

• Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

• Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 141

• Terminate call (PL CUTTED)
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type
control t appended to the argument list for deterministic foreign functions. The macro
PL foreign control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using thePL retry*() macros and extract the handle from the extra
argument using thePL foreign context*() macro.

voidPL retry(long)
The foreign function succeeds while leaving a choice point. On backtracking over this goal the
foreign function will be called again, but the control argument now indicates it is a ‘Redo’ call
and the macroPL foreign context() will return the handle passed viaPL retry() .
This handle is a 30 bits signed value (two bits are used for status indication).

voidPL retry address(void *)
As PL retry() , but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address() .

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above. Note
that the function should be prepared to handle thePL CUTTEDcase and should be aware that
the other arguments are not valid in this case.

longPL foreign context(control t)
Extracts the context from the context argument. In the call type isPL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the lastPL retry() associated with this goal
(both if the call type isPL REDOasPL CUTTED).

void * PL foreign context address(control t)
Extracts an address as passed in byPL retry address() .

Note: If a non-deterministic foreign function returns using PLsucceed or PLfail, Prolog assumes
the foreign function has cleaned its environment.No call with control argumentPL CUTTEDwill
follow.

The code of figure5.2shows a skeleton for a non-deterministic foreign predicate definition.

5.6.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see section5.6.2).

const char* PL atom chars(atomt atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the string
may reside in read-only memory.

SWI-Prolog 4.0 Reference Manual

142 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(term_t a0, term_t a1, foreign_t handle)
{ struct context * ctxt;

switch(PL_foreign_control(handle))
{ case PL_FIRST_CALL:

ctxt = malloc(sizeof(struct context));
...
PL_retry_address(ctxt);

case PL_REDO:
ctxt = PL_foreign_context_address(handle);
...
PL_retry_address(ctxt);

case PL_CUTTED:
free(ctxt);
PL_succeed;

}
}

Figure 5.2: Skeleton for non-deterministic foreign functions

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 143

functor t PL new functor (atomt name, int arity)
Returns afunctor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session.

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

int PL functor arity (functor t f)
Return the arity of the given functor.

Atoms and atom-garbage collection

With the introduction of atom-garbage collection in version 3.3.0, atoms no longer have live as long
as the process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-
threaded version, atom garbage collections are only invoked at thecall-port. In the multi-threaded
version (see section3.39, they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL register atom(atomt atom)
Increment the reference count of the atom by one.PL new atom() performs this automati-
cally, returning an atom with a reference count of at least one.2

void PL unregister atom(atomt atom)
Decrement the reference count of the atom. If the reference-count drops below zero, an assertion
error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));

The latter increments the reference count of the atomtext , which effectively ensures the atom will
never be collected. It is adviced to use the *chars() or *nchars() functions whenever applicable.

5.6.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of typeterm t , an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicatesvar/1 , atom/1 , etc and are calledPL is *() .
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C-type and returnTRUEor FALSEdepending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

2Otherwise asynchronous atom garbage collection might detroy the atom before it is used.

SWI-Prolog 4.0 Reference Manual

144 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functionsPL ge t*() also validate the
type and thus the two sections below are equivalent.

if (PL_is_atom(t))
{ char *s;

PL_get_atom_chars(t, &s);
...;

}

or

char *s;
if (PL_get_atom_chars(t, &s))
{ ...;
}

PL VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.

PL ATOM A Prolog atom.
PL STRING A Prolog string.
PL INTEGER A Prolog integer.
PL FLOAT A Prolog floating point number.
PL TERM A compound term. Note that a list is a compound term

./2 .

The functions PLis 〈type〉 are an alternative to PL term type() . The test
PL is variable(term) is equivalent to PL term type(term) == PL VARIABLE, but
the first is considerably faster. On the other hand, using a switch overPL term type() is faster
and more readable then using an if-then-else using the functions below. All these functions return
eitherTRUEor FALSE.

int PL is variable(term t)
Returns non-zero ifterm is a variable.

int PL is atom(term t)
Returns non-zero ifterm is an atom.

int PL is string(term t)
Returns non-zero ifterm is a string.

int PL is integer(term t)
Returns non-zero ifterm is an integer.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 145

int PL is float(term t)
Returns non-zero ifterm is a float.

int PL is compound(term t)
Returns non-zero ifterm is a compound term.

int PL is functor (term t, functor t)
Returns non-zero ifterm is compound and its functor isfunctor. This test is equivalent to
PL get functor() , followed by testing the functor, but easier to write and faster.

int PL is list(term t)
Returns non-zero ifterm is a compound term with functor ./2 or the atom[] .

int PL is atomic(term t)
Returns non-zero ifterm is atomic (not variable or compound).

int PL is number(term t)
Returns non-zero ifterm is an integer or float.

Reading data from a term

The functionsPL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier overa. See alsoPL atom chars() and
PL new atom() . If there is no need to access the data (characters) of an atom, it is ad-
vised to manipulate atoms using their handle. As the atom is referenced byt, it will live
at least as long ast does. If longer live-time is required, the atom should be locked using
PL register atom() .

int PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string ins. It is explicitly not allowed to
modify the contents of this string. Some built-in atoms may have the string allocated in read-
only memory, so ‘temporary manipulation’ can cause an error.

int PL get string chars(term t +t, char **s, int *len)
If t is a string object, store a pointer to a 0-terminated C-string ins and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

int PL get chars(term t +t, char **s, unsigned flags)
Convert the argument termt to a 0-terminated C-string.flagsis a bitwise disjunction from two
groups of constants. The first specifies which term-types should converted and the second how
the argument is stored. Below is a specification of these constants.BUF RING implies, if the
data is not static (as from an atom), the data is copied to the next buffer from a ring of 16 buffers.
This is a convenient way of converting multiple arguments passed to a foreign predicate to C-
strings. If BUFMALLOC is used, the data must be freed using free() when not needed any
longer.

SWI-Prolog 4.0 Reference Manual

146 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

CVT ATOM Convert if term is an atom
CVT STRING Convert if term is a string
CVT LIST Convert if term is a list of integers between 1 and 255
CVT INTEGER Convert if term is an integer (using%d)
CVT FLOAT Convert if term is a float (using%f)
CVT NUMBER Convert if term is a integer or float
CVT ATOMIC Convert if term is atomic
CVT VARIABLE Convert variable to print-name
CVT WRITE Convert any term that is not converted by any of the

other flags usingwrite/1 . If no BUF * is provided,
BUF RING is implied.

CVT ALL Convert if term is any of the above, except for
CVT VARIABLE andCVT WRITE

BUF DISCARDABLE Data must copied immediately
BUF RING Data is stored in a ring of buffers
BUF MALLOC Data is copied to a new buffer returned bymalloc(3)

int PL get list chars(+term t l, char **s, unsigned flags)
Same asPL get chars(l, s, CVT LIST—flags) , providedflags contains no of theCVT *
flags.

int PL get integer(+term t t, int *i)
If t is a Prolog integer, assign its value overi. On 32-bit machines, this is the same as
PL get long() , but avoids a warning from the compiler. See alsoPL get long() .

int PL get long(term t +t, long *i)
If t is a Prolog integer, assign its value overi. Note that Prolog integers have limited value-
range. Ift is a floating point number that can be represented as a long, this function succeeds as
well.

int PL get pointer(term t +t, void **ptr)
In the current system, pointers are represented by Prolog integers, but need some manip-
ulation to make sure they do not get truncated due to the limited Prolog integer range.
PL put pointer() /PL get pointer() guarantees pointers in the range of malloc() are
handled without truncating.

int PL get float(term t +t, double *f)
If t is a float or integer, its value is assigned overf.

int PL get functor (term t +t, functor t *f)
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
overf. See alsoPL get name arity() andPL is functor() .

int PL get name arity (term t +t, atom t *name, int *arity)
If t is compound or an atom, the functor-name will be assigned overnameand the arity over
arity. See alsoPL get functor() andPL is functor() .

int PL get module(term t +t, modulet *module)
If t is an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it overmodule,.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 147

int PL get arg(int index, termt +t, term t -a)
If t is compound and index is between 1 and arity (including), assigna with a term-reference to
the argument.

int PL get arg(int index, termt +t, term t -a)
Same asPL get arg() , but no checking is performed, nor whethert is actually a term, nor
whetherindexis a valid argument-index.

Exchanging text using length and string

All internal text-representation of SWI-Prolog is represented usingchar * plus length and allow
for 0-bytesin them. The foreign library supports this by implementing a *nchars() function for each
applicable *chars() function. Below we briefly present the signatures of these functions. For full
documentation consult the *chars() function.

int PL get atom nchars(term t t, unsigned int len, char **s)

int PL get list nchars(term t t, unsigned int len, char **s)

int PL get nchars(term t t, unsigned int len, char **s, unsigned int flags)

int PL put atom nchars(term t t, unsigned int len, const char *s)

int PL put string nchars(term t t, unsigned int len, const char *s)

int PL put list ncodes(term t t, unsigned int len, const char *s)

int PL put list nchars(term t t, unsigned int len, const char *s)

int PL unify atom nchars(term t t, unsigned int len, const char *s)

int PL unify string nchars(term t t, unsigned int len, const char *s)

int PL unify list ncodes(term t t, unsigned int len, const char *s)

int PL unify list nchars(term t t, unsigned int len, const char *s)

In addition, the following functions are available for creating and inspecting atoms:

atom t PL new atom nchars(unsigned int len, const char *s)
Create a new atom asPL new atom() , but from length and characters.

SWI-Prolog 4.0 Reference Manual

148 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

const char * PL atom nchars(atomt a, unsigned int *len)
Extract text and length of an atom.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* variable for the ele-
ments */

term_t list = PL_copy_term_ref(l); /* copy as we need to write */

while(PL_get_list(list, head, list))
{ char *s;

if (PL_get_atom_chars(head, &s))
Sprintf("%s\n", s);

else
PL_fail;

}

return PL_get_nil(list); /* test end for [] */
}

int PL get list(term t +l, term t -h, termt -t)
If l is a list and not[] assign a term-reference to the head toh and to the tail tot.

int PL get head(term t +l, term t -h)
If l is a list and not[] assign a term-reference to the head toh.

int PL get tail (term t +l, term t -t)
If l is a list and not[] assign a term-reference to the tail tot.

int PL get nil (term t +l)
Succeeds if represents the atom[] .

An example: definingwrite/1 in C

Figure5.3shows a simplified definition ofwrite/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is calleddisplay/1 , because it mimics closely the
behaviour of this Edinburgh predicate.

5.6.4 Constructing Terms

Terms can be constructed using functions from thePL put *() andPL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 149

foreign_t
pl_display(term_t t)
{ functor_t functor;

int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:

case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:

PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;

case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;

case PL_TERM:
{ term_t a = PL_new_term_ref();

PL_get_name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);

if (n > 1)
Sprintf(", ");

pl_display(a);
}
Sprintf(")");
break;

default:
PL_fail; /* should not happen */

}

PL_succeed;
}

Figure 5.3: A Foreign definition ofdisplay/1

SWI-Prolog 4.0 Reference Manual

150 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments forPL call() and PLopenquery.

void PL put variable(term t -t)
Put a fresh variable in the term. The new variable lives on the global stack. Note that the initial
variable lives on the local stack and is lost after a write to the term-references. After using this
function, the variable will continue to live.

void PL put atom(term t -t, atomt a)
Put an atom in the term reference from a handle. See alsoPL new atom() and
PL atom chars() .

void PL put atom chars(term t -t, const char *chars)
Put an atom in the term-reference constructed from the 0-terminated string. The string itself
will never be references by Prolog after this function.

void PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL put string nchars() .

void PL put string nchars(term t -t, unsigned int len, const char *chars)

Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section5.6.18.

void PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term-reference.

void PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

void PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

void PL put float(term t -t, double f)
Put a floating-point value in the term-reference.

void PL put functor (term t -t, functor t functor)
Create a new compound term fromfunctorand bindt to this term. All arguments of the term
will be variables. To create a term with instantiated arguments, either instantiate the arguments
using thePL unify *() functions or usePL cons functor() .

void PL put list(term t -l)
Same asPL put functor(l, PL newfunctor(PLnewatom(”.”), 2)) .

void PL put nil (term t -l)
Same asPL put atom chars(”[]”) .

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 151

void PL put term(term t -t1, termt +t2)
Maket1 point to the same term ast2.

void PL cons functor (term t -h, functor t f, . . .)
Create a term, whose arguments are filled from variable argument list holding the same number
of term t objects as the arity of the functor. To create the termanimal(gnu, 50) , use:

term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();

PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, PL_new_functor(PL_new_atom("animal"), 2),

a1, a2);

After this sequence, the term-referencesa1anda2may be used for other purposes.

void PL cons functor v(term t -h, functor t f, term t a0)
Creates a compound term likePL cons functor() , but a0 is an array of term references
as returned byPL new term refs() . The length of this array should match the number of
arguments required by the functor.

void PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell inl from the head and tail. The code below creates a list of atoms from
a char ** . The list is built tail-to-head. ThePL unify *() functions can be used to build
a list head-to-tail.

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

PL_put_nil(l);
while(--n >= 0)
{ PL_put_atom_chars(a, words[n]);

PL_cons_list(l, a, l);
}

}

Note thatl can be redefined within aPL cons list call as shown here because operationally
its old value is consumed before its new value is set.

5.6.5 Unifying data

The functions of this sectionsunify terms with other terms or translated C-data structures. Except for
PL unify() , the functions of this section are specific to SWI-Prolog. They have been introduced
to make translation of old code easier, but also because they provide for a faster mechanism for

SWI-Prolog 4.0 Reference Manual

152 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

returning data to Prolog that requires less term-references. Consider the case where we want a foreign
function to return the host name of the machine Prolog is running on. Using thePL get *() and
PL put *() functions, the code becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, buf);

}

PL_fail;
}

UsingPL unify atom chars() , this becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
return PL_unify_atom_chars(name, buf);

PL_fail;
}

int PL unify (term t ?t1, termt ?t2)
Unify two Prolog terms and return non-zero on success.

int PL unify atom(term t ?t, atomt a)
Unify t with the atoma and return non-zero on success.

int PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created fromcharsand return non-zero on success.

int PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed fromchars.

void PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated stringchars. The data will
be copied. See alsoPL unify string nchars() .

void PL unify string nchars(term t ?t, unsigned int len, const char *chars)
Unify t with a Prolog string object created from the string created from thelen/charspair. The
data will be copied. This interface can deal with 0-bytes in the string. See also section5.6.18.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 153

int PL unify integer(term t ?t, long n)
Unify t with a Prolog integer fromn.

int PL unify float(term t ?t, double f)
Unify t with a Prolog float fromf.

int PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See alsoPL put pointer() and
PL get pointer() .

int PL unify functor (term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fails. Not that this function does not create a term if the argument is
already instantiated.

int PL unify list(term t ?l, term t -h, termt -t)
Unify l with a list-cell (./2). If successful, write a reference to the head of the list toh and
a reference to the tail of the list int. This reference may be used for subsequent calls to this
function. Suppose we want to return a list of atoms from achar ** . We could use the
example described byPL put list() , followed by a call toPL unify() , or we can use
the code below. If the predicate argument is unbound, the difference is minimal (the code based
on PL put list() is probably slightly faster). If the argument is bound, the code below
may fail before reaching the end of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.

foreign_t
pl_get_environ(term_t env)
{ term_t l = PL_copy_term_ref(env);

term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if (!PL_unify_list(l, a, l) ||

!PL_unify_atom_chars(a, *e))
PL_fail;

}

return PL_unify_nil(l);
}

int PL unify nil (term t ?l)
Unify l with the atom[] .

int PL unify arg(int index, termt ?t, termt ?a)
Unifies theindex-thargument (1-based) oft with a.

SWI-Prolog 4.0 Reference Manual

154 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments ofPL FUNCTOR.

PL ATOMatom t
Unify the argument with an atom, as inPL unify atom() .

PL INTEGERlong
Unify the argument with an integer, as inPL unify integer() .

PL FLOATdouble
Unify the argument with a float, as inPL unify float() . Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.

PL STRINGconst char *
Unify the argument with a string object, as inPL unify string chars() .

PL TERMterm t
Unify a subterm. Note this may the return value of aPL new term ref() call to get
access to a variable.

PL CHARSconst char *
Unify the argument with an atom, constructed from the Cchar * , as in
PL unify atom chars() .

PL FUNCTORfunctor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL LIST int length, . . .
Create a list of the indicated length. The following arguments contain the elements of the
list.

For example, to unify an argument with the termlanguage(dutch) , the following skeleton
may be used:

static functor_t FUNCTOR_language1;

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1);
}

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 155

foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);

init_constants();
}

int PL chars to term(const char *chars, termt -t)
Parse the stringcharsand put the resulting Prolog term intot. charsmay or may not be closed
using a Prolog full-stop (i.e. a dot followed by a blank). ReturnsFALSE if a syntax error
was encountered andTRUEafter successful completion. In addition to returningFALSE, the
exception-term is returned int on a syntax error. See alsoterm to atom/2 .

The following example build a goal-term from a string and calls it.

int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();

term_t g = PL_new_term_ref();
BOOL rval;

if (PL_string_to_term(goal, g))
rval = PL_call(goal, NULL);

else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

}

...
call_chars("consult(load)");
...

char * PL quote(int chr, const char *string)
Return a quoted version ofstring. If chr is ’\’’ , the result is a quoted atom. Ifchr is ’"’ ,
the result is a string. The result string is stored in the same ring of buffers as described with the
BUF RING argument ofPL get chars() ;

In the current implementation, the string is surrounded bychr and any occurence ofchr is
doubled. In the future the behaviour will depend on thecharacter escape prolog-flag.
Seecurrent prolog flag/2 .

SWI-Prolog 4.0 Reference Manual

156 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

5.6.6 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argument tocall/1 and nextPL call() is used to call Prolog.
This system is simple, but does not allow to inspect the different answers to a non-deterministic goal
and is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL open query() , PL next solution() andPL cut query() or PL close query() .
This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the typepredicate t .

predicate t PL pred(functor t f, modulet m)
Return a handle to a predicate for the specified name/arity in the given module. This function
always succeeds, creating a handle for an undefined predicate if no handle was available.

predicate t PL predicate(const char *name, int arity, const char* module)
Same aPL pred() , but provides a more convenient interface to the C-programmer.

void PL predicate info(predicatet p, atomt *n, int *a, modulet *m)
Return information on the predicatep. The name is stored overn, the arity overa, while
m receives the definition module. Note that the latter need not be the same as speci-
fied with PL predicate() . If the predicate was imported into the module given to
PL predicate() , this function will return the module where the predicate was defined.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., but it isnot allowed to open multiple
queries and start generating solutions for each of them by callingPL next solution() . Be sure
to call PL cut query() or PL close query() on any query you opened before opening the
next or returning control back to Prolog.

qid t PL open query(modulet ctx, int flags, predicatet p, termt +t0)

Opens a query and returns an identifier for it. This function always succeeds, regardless whether
the predicate is defined or not.ctx is thecontext moduleof the goal. WhenNULL, the context
module of the calling context will be used, oruser if there is no calling context (as may happen
in embedded systems). Note that the context module only matters formoduletransparentpred-
icates. Seecontext module/1 andmodule transparent/1 . Thep argument specifies
the predicate, and should be the result of a call toPL pred() or PL predicate() . Note
that it is allowed to store this handle as global data and reuse it for future queries. The term-
referencet0 is the first of a vector of term-references as returned byPL new term refs(n) .

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 157

PL Q NORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the error.3

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many
calls to hook-predicates to avoid tracing the hooks. An example isprint/1 calling
portray/1 from foreign code.

PL Q CATCHEXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL exception() .

PL Q PASSEXCEPTION
As PL Q CATCHEXCEPTION, but do not invalidate the exception-term while calling
PL close query() . This option is experimental.

The example below opens a query to the predicate isa/2 to find the ancestor of for some name.

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);

static predicate_t p;

if (!p)
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_NORMAL, p, a0);
...

}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value isTRUEif a solution
was found, orFALSE to indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

void PL cut query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
qid, allowing for a new call toPL open query() in this context.

void PL closequery(qid)
As PL cut query() , but all data and bindings created by the query are destroyed.

int PL call predicate(modulet m, int flags, predicatet pred, termt +t0)
Shorthand forPL open query() , PL next solution() , PL cut query() , generat-
ing a single solution. The arguments are the same as forPL open query() , the return value
is the same asPL next solution() .

3Do not pass the integer 0 for normal operation, as this is interpreted asPL Q NODEBUGfor backward compatibility
reasons.

SWI-Prolog 4.0 Reference Manual

158 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL call(term t, modulet)
Call term just like the Prolog predicateonce/1 . Termis called in the specified module, or in
the context module if modulet = NULL. ReturnsTRUEif the call succeeds,FALSEotherwise.
Figure5.4shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

5.6.7 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the call.PL close query() allows for destructing the data,
while leaving the term-references. The calls below may be used to destroy term-references and data.
See figure5.4for an example.

fid t PL open foreign frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

void PL closeforeign frame(fid t id)
Discard all term-references created after the frame was opened. All other Prolog data is retained.
This function is called by the kernel whenever a foreign function returns control back to Prolog.

void PL discard foreign frame(fid t id)
Same asPL close foreign frame() , but also undo all bindings made since the open and
destroy all Prolog data.

void PL rewind foreign frame(fid t id)
Undo all bindings and discard all term-references created since the frame was created, but does
not pop the frame. I.e. the same frame can be rewinded multiple times, and must eventually be
closed or discarded.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

5.6.8 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL strip module(term t +raw, modulet *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct〈module〉: 〈rest〉 this
function will makeplain a reference to〈rest〉 and fill module * with 〈module〉. For further
nested module constructs the inner most module is returned viamodule *. If raw is not a
module constructarg will simply be put inplain. If module * is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 159

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();

term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;
}

Figure 5.4: Calling Prolog

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);
...

atom t PL module name(modulet)
Return the name ofmoduleas an atom.

module t PL new module(atomt name)
Find an existing or create a new module with name specified by the atomname.

5.6.9 Prolog exceptions in foreign code

This section discussesPL exception() , PL throw() and PL raise exception() , the
interface functions to detect and generate Prolog exceptions from C-code.PL throw()
and PL raise exception() from the C-interface to raise an exception from foreign
code. PL throw() exploits the C-function longjmp() to return immediately to the innermost
PL next solution() . PL raise exception() registers the exception term and returns
FALSE. If a foreign predicate returns FALSE, while and exception-term is registered a Prolog ex-
ception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL exception() may be used after a call toPL next solution() fails, and returns a term
reference to an exception term if an exception was raised, and 0 otherwise.

SWI-Prolog 4.0 Reference Manual

160 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

If a C-function, implementing a predicate calls Prolog and detects an exception us-
ing PL exception() , it can handle this exception, or return with the exception.
Some caution is required though. It isnot allowed to call PL close query() or
PL discard foreign frame() afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (seearithmethic function/1).

If PL next solution() succeeds, the result is analysed and translated to a number, after
which the query is closed and all Prolog data created afterPL open foreign frame() is de-
stroyed. On the other hand, ifPL next solution() fails and if an exception was raised, just
pass it. Otherwise generate an exception (PL error() is an internal call for building the standard
error terms and callingPL raise exception()). After this, the Prolog environment should be
discarded usingPL cut query() andPL close foreign frame() to avoid invalidating the
exception term.

static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;

fid_t fid = PL_open_foreign_frame();
qid_t qid;
int rval;

qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av);

if (PL_next_solution(qid))
{ rval = valueExpression(av+arity-1, r);

PL_close_query(qid);
PL_discard_foreign_frame(fid);

} else
{ term_t except;

if ((except = PL_exception(qid)))
{ rval = PL_throw(except); /* pass exception */
} else
{ char *name = stringAtom(f->proc->definition->functor->name);

/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}

PL_cut_query(qid); /* donot destroy data */
PL_close_foreign_frame(fid); /* same */

}

return rval;
}

int PL raise exception(term t exception)
Generate an exception (asthrow/1) and returnFALSE. Below is an example returning an

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 161

exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get_atom_chars(to, &s))
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref();

PL_unify_term(except,
PL_FUNCTOR, PL_new_functor(PL_new_atom("type_error"), 2),

PL_CHARS, "atom",
PL_TERM, to);

return PL_raise_exception(except);
}

}

int PL throw (term t exception)
Similar to PL raise exception() , but returns using the C longjmp() function to the in-
nermostPL next solution() .

term t PL exception(qid t qid)
If PL next solution() fails, this can be due to normal failure of the Prolog call, or because
an exception was raised usingthrow/1 . This function returns a handle to the exception term
if an exception was raised, or 0 if the Prolog goal simply failed.4.

5.6.10 Foreign code and Prolog threads

If SWI-Prolog has been build to support multi-threading (see section3.39), all foreign-code linked to
Prolog should be thread-safe (reentrant) or guarded in Prolog usingwith mutex/2 from simulta-
neous access from multiple Prolog threads. On Unix systems, this generally implies the code should
be compiled with the-D REENTRANTflag passed to the compiler. Please note that on many Unix
systems not all systemcalls and library-functions are thread-safe. Consult your manual for details.

If you are using SWI-Prolog as an embedded engine in a multi-threaded application you can
access the Prolog engine from multiple threads by creating anenginein each thread from which you
call Prolog. Without creating an engine, a thread can only use functions that do not use theterm t
type (for examplePL new atom()).

Please note that the interface below will only work if threading in your application is based
on the same thread-library as used to compile SWI-Prolog.

4This interface differs in two ways from Quintus. The calling predicates simp,y signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL next solution() interface, as a handle to the query is required

SWI-Prolog 4.0 Reference Manual

162 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL thread self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog
engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL thread attach engine(PL threadattr t *attr)
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine
the reference count of the engine is incremented. Theattr argument can beNULL to create a
thread with default attributes. Otherwise it is a pointer to a structure with the definition below.
For any field with value ‘0’, the default is used.

typedef struct
{ unsigned long local_size; /* Stack sizes (K-bytes) */

unsigned long global_size;
unsigned long trail_size;
unsigned long argument_size;
char * alias; /* alias name */

} PL_thread_attr_t;

The structure may be destroyed afterPL thread attach engine() has returned. If an
error occurs, -1 is returned. If this Prolog is not compiled for multi-threading, -2 is returned.

int PL thread destroy engine()
Destroy the Prolog engine in the calling thread. Only takes ef-
fect if PL thread destroy engine() is called as many times as
PL thread attach engine() in this thread. ReturnsTRUE on success andFALSE
if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.
The engine is automatically destroyed if the thread finishes, regardless how many times
PL thread attach engine() has been called.

5.6.11 Miscellaneous

Term Comparison

int PL compare(term t t1, termt t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3 .

int PL samecompound(term t t1, termt t2)
YieldsTRUEif t1 andt2 refer to physically the same compound term andFALSEotherwise.

Recorded database

In some applications it is useful to store and retreive Prolog terms from C-code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 163

Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functionsPL recorded() andPL erase() are the only func-
tions that can operate on the stored term.

Two groups of functions are provided.The first group (PL record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record t PL record(term t +t)
Record the termt into the Prolog database asrecorda/3 and return an opaque handle to the
term. The returned handle remains valid untilPL erase() is called on it.PL recorded()
is used to copy recorded terms back to the Prolog stack.

void PL recorded(record t record, termt -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. See alsoPL record() andPL erase() .

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed byPL record external()) provides the same functionality, but
the returned data has properties that enable storing the data on an external device. It has been designed
to make it possible to store Prolog terms fast an compact in an external database. Here are the main
features:

• Independent of session
Records can be communicated to another Prolog session and made visible using
PL recorded external() .

• Binary
The representation is binary for maximum performance. The returned data may contain 0-bytes.

• Byte-order independent
The representation can be transferred between machines with different byte-order.

• No alignment restrictions
There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

• Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

• Stable
The format is designed for future enhancements without breaking compatibility with older
records.

SWI-Prolog 4.0 Reference Manual

164 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

char * PL record external(term t +t, unsigned int *len)
Record the termt into the Prolog database asrecorda/3 and return an opaque handle to the
term. The returned handle remains valid untilPL erase() is called on it.

It is allowed to copy the data and usePL recorded external() on the copy. The user
is responsible for the memory management of the copy. After copying, the original may be
discarded usingPL erase external() .

PL recorded external() is used to copy such recorded terms back to the Prolog stack.

int PL recorded external(const char *record, termt -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy mul-
tiple instances at any time to the Prolog stack. See alsoPL record external() and
PL erase external() .

int PL eraseexternal(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

5.6.12 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section3.10. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, handleSIG SEGV
for guarding the Prolog stacks. If the application whishes to handle this signal too, it should use
PL signal() to install its handler after initialisating Prolog. SWI-Prolog will passSIG SEGVto
the user code if it detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions should callPL signal()
for its installation.

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

5.6.13 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error)
stream. Please note that new code should consider usingPL raise exception() to raise a Prolog
exception. See also section3.9.

int PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output fromformat,

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 165

PL ACTION TRACE Start Prolog tracer (trace/0). Requires no arguments.
PL ACTION DEBUG Switch on Prolog debug mode (debug/0). Requires no

arguments.
PL ACTION BACKTRACE Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. Seehalt/1 .

PL ACTION ABORT Generate a Prolog abort (abort/0). This call does not
return. Requires no arguments.

PL ACTION BREAK Create a standard Prolog break environment (break/0).
Returns after the user types the end-of-file character. Re-
quires no arguments.

PL ACTION GUIAPP Win32: Used to indicate the kernel that the application is
a GUI application if the argument is not 0 and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on
a GUI application and simply prints the error and exits
otherwise.

PL ACTION WRITE Write the argument, achar * to the current output
stream.

PL ACTION FLUSH Flush the current output stream. Requires no arguments.

Table 5.1:PL action() options

followed by a ‘] ’ and a newline. Then start the tracer.format and the arguments are the
same as forprintf(2) . Always returnsFALSE.

5.6.14 Environment Control from Foreign Code

int PL action(int, ...)
Perform some action on the Prolog system.int describes the action, Remaining arguments
depend on the requested action. The actions are listed in table5.1.

5.6.15 Querying Prolog

C type PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the infor-
mation required.int describes what information is wanted. The options are given in table5.2.

5.6.16 Registering Foreign Predicates

int PL register foreign(const char *name, int arity, foreignt (*function)(), int flags)
Register a C-function to implement a Prolog predicate. After this call returns successfully a
predicate with namename(a char *) and arityarity (a C int) is created. As a special case,
namemay consist of a sequence of alpha-numerical characters followed by the colon (:). In

SWI-Prolog 4.0 Reference Manual

166 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL QUERYARGC Return an integer holding the number of arguments given
to Prolog from Unix.

PL QUERYARGV Return a char ** holding the argument vector given to Pro-
log from Unix.

PL QUERYSYMBOLFILE Return a char * holding the current symbol file of the run-
ning process.

PL MAXINTEGER Return a long, representing the maximal integer value rep-
resented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal integer value.
PL QUERYVERSION Return a long, representing the version as10, 000×M +

100×m + p, whereM is the major,m the minor version
number andp the patch-level. For example,20717 means
2.7.17 .

Table 5.2:PL query() options

this case the name uptil the colon is taken to be the destination module and the rest of the name
the predicate name.

When called in Prolog, Prolog will callfunction. flags forms bitwise or’ed list of options for
the installation. These are:

PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA TRANSPARENT Predicate is module transparent
PL FA NONDETERMINISTIC Predicate is non-deterministic. See alsoPL retry() .
PL FA VARARGS Use alternative calling convention.

void PL load extensions(PL extension *e)
Register foreign predicates from a table of structures. This is an alternative to
multiple calls to PL register foreign() and simplifies code that wishes to use
PL register extensions() as an alternative. The typePL extension is defined as:

typedef struct _PL_extension
{ char *predicate_name; /* Name of the predicate */

short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

void PL register extensions(PL extension *e)
The functionPL register extensions() behaves asPL load extensions() , but
is the only PL* function that may be calledbefore PL initialise() . The predicates are
registeredinto the moduleuser after registration of the SWI-Prolog builtin foreign predicates
and before loading the initial saved state. This implies thatinitialization/1 directives
can refer to them.

Here is an example of its usage:

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 167

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }
};

main(int argc, char **argv)
{ PL_register_extensions(predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

...
}

5.6.17 Foreign Code Hooks

For various specific applications some hooks re provided.

PL dispatch hook t PL dispatch hook(PL dispatchhook t)
If this hook is not NULL, this function is called when reading from the terminal. It is sup-
posed to dispatch events when SWI-Prolog is connected to a window environment. It can re-
turn two values:PL DISPATCHINPUT indicates Prolog input is available on file descriptor
0 or PL DISPATCHTIMEOUTto indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

void PL abort hook(PL abort hook t)
Install a hook whenabort/0 is executed. SWI-Prologabort/0 is implemented using C
setjmp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog toplevel is reinvoked. The type
PL abort hook t is defined as:

typedef void (*PL_abort_hook_t)(void);

int PL abort unhook(PL abort hook t)
Remove a hook installed withPL abort hook() . ReturnsFALSE if no such hook is found,
TRUEotherwise.

void PL on halt(void (*f)(int, void *), void *closure)
Register the functionf to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined on your operating system)
and theclosureargument passed to thePL on halt() call. See alsoat halt/1 .

SWI-Prolog 4.0 Reference Manual

168 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL agc hook t PL agc hook(PL agc hook t new)
Register a hook with the atom-garbage collector (seegarbage collect atoms/0 that is
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,
NULL is returned. The argument of the called hook is the atom that is to be garbage collected.
The return value is anint . If the return value is zero, the atom isnot reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t
install()
{ old = PL_agc_hook(atom_hook);
}

install_t
uninstall()
{ PL_agc_hook(old);
}

5.6.18 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

• Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

• Opaque packed Prolog data
Data can also be represetented in a foreign structure and stored on the Prolog stacks using
PL put string nchars() and retrieved usingPL get string chars() . It is gener-
ally good practice to wrap the string in a compound term with arity 1, so Prolog can identify the
type.portray/1 rules may be used to streamline printing such terms during development.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 169

• Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

The choice may be guided using the following distinctions

• Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the choosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

• How big is the data
Is effient encoding required? For examine, a boolean aray may be expressed as a compound
term, holding integers each of which contains a number of bits, or as a list oftrue andfalse .

• What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

• What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accesibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See section5.6.1.

Examples for storing foreign data

In this section, we wull outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. In the
second example, we look at handling a ‘netmask’. Finally, we discuss the outline of the DDE interface.

Integer sets with not-to-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bitvectors. This can be done in Prolog, using a compound term holding integer arguments. Especially
if the integers are kept below the maximum tagged integer value (seecurrent prolog flag/2),
this representation is fairly space-efficient (wasting 1 word for the functor and and 7 bits per integer
for the tags). Arithmetic can all be performed in Prolog too.

SWI-Prolog 4.0 Reference Manual

170 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are natrually expressed using string objects. If the string is wrapped in
bitvector/1 , lower-bound of the vector is 0, and the upperbound is not defined, an implemen-
tation for getting and putting the setes as well as the union predicate for it is below.

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvector1;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvector1))

{ term_t a = PL_new_term_ref();

PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if (PL_unify_functor(out, FUNCTOR_bitvector1))

{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);
}

PL_fail;
}

static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;

int l1, l2;

if (get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2))

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 171

if (s3)
{ int n;

int ml = min(l1, l2);

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < l1; n++)
s3[n] = s1[n];

for(; n < l2; n++)
s3[n] = s2[n];

return unify_bitvector(u, l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);

FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}

Netmask’s are used with TCP/IP configuration. Suppose we have an application dealing with rea-
soning about a network configuration. Such an application requires communicating netmask struc-
tures from the operating system, reasoning about them and possibly communicate them to the user.
A netmask consists of 4 bitmasks between 0 and 255. C-application normally see them as an 4-byte
wide unsigned integer. SWI-Prolog cannot do that, as integers are always signed.

We could use the string approach outlined above, but this makes it hard to handle these terms
in Prolog. A better choice is a compound termnetmask/4 , holding the 4 submasks as integer
arguments.

As the implementation is trivial, we will omit this here.

The DDE interface (see section3.46) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and destroys ahandle.
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest aproach is to usingPL unify pointer() and

SWI-Prolog 4.0 Reference Manual

172 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL get pointer() . This approach is fast and easy, but has the drawbacks of (untyped) point-
ers: there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.
dde channel(〈Pointer〉)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

5.6.19 Embedding SWI-Prolog in a C-program

As of version 2.1.0, SWI-Prolog may be embedded in a C-program. To reach at a compiled C-program
with SWI-Prolog as an embedded application is very similar to creating a statically linked SWI-Prolog
executable as described in section5.4.1.

The file\ldots/pl/include/stub.c defines SWI-Prologs default main program:

int
main(int argc, char **argv)
{ if (!PL_initialise(argc, argv))

PL_halt(1);

PL_install_readline(); /* delete if you don’t want read-
line */

PL_halt(PL_toplevel() ? 0 : 1);
}

This may be replaced with your own main C-program. The interface functionPL initialise()
must be called before any of the other SWI-Prolog foreign language functions described in this chap-
ter. PL initialise() interprets all the command-line arguments, except for the-t toplevel
flag that is interpreted byPL toplevel() .

int PL initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the boot QLF file, loads the system and
personal initialisation files, runs theat initialization/1 hooks and finally runs the
-g goal hook.

Special consideration is required forargv[0] . OnUnix, this argument passes the part of the
commandline that is used to locate the executable. Prolog uses this to find the file holding the
running executable. TheWindows version uses this to find amoduleof the running executable.
If the specified module cannot be found, it tries the modulelibpl.dll , containing the Prolog
runtime kernel. In all these cases, the resulting file is used for two purposes

• See whether a Prolog saved-state is appended to the file. If this is the case, this state will
be loaded instead of the defaultboot.prc file from the SWI-Prolog home directory. See
alsoqsave program/[1,2] and section5.7.

• Find the Prolog home directory. This process is described in detail in section5.8.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 173

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise.5

In most cases,argc andargv will be passed from the main program. It is allowed to create
your own argument vector, providedargv[0] is constructed according to the rules above. For
example:

int
main(int argc, char **argv)
{ char *av[10];

int ac = 0;

av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;

if (!PL_initialise(ac, av))
PL_halt(1);

...
}

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prolog’sbin directory to yourPATHand either pass
a module holding a saved-state, or"libpl.dll" asargv[0] .

int PL is initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. ReturnsFALSE if Prolog is not initialised
andTRUEotherwise. If the engine is initialised andargc is notNULL, the argument count used
with PL initialise() is stored inargc. Same for the argument vectorargv.

void PL install readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog toplevel
should normally delete this line, shrinking the Prolog kernel significantly.

int PL toplevel()
Runs the goal of the-t toplevel switch (defaultprolog/0) and returns 1 if successful,
0 otherwise.

void PL cleanup(int status)
This function performs the reverse ofPL initialise() . It runs thePL on halt() and
at halt/1 handlers, closes all streams (except for the ‘standard I/O’ streams which are
flushed only), deallocates all memory and restores all signal handlers. Thestatusargument
is passed to the various termination hooks and indicates theexit-status.

This function allows deleting and restarting the Prolog system in the same process. Use it with
care, asPL initialise() is a costly function. Unix users should consider using exec()
(available as part of the clib package,).

5BUG: Various fatal errors may cause PLinitialise to callPL halt(1) , preventing it from returning at all.

SWI-Prolog 4.0 Reference Manual

174 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

void PL halt(int status)
Cleanup the Prolog environment usingPL cleanup() and calls exit() with the status argu-
ment.

5.7 Linking embedded applications using plld

The utility programplld (Win32: plld.exe) may be used to link a combination of C-files and Prolog
files into a stand-alone executable.plld automates most of what is described in the previous sections.

In the normal usage, a copy is made of the default embedding template\ldots/pl/include/
stub.c . The main() routine is modified to suit your application.PL initialise() must
be passed the program-name (argv[0]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command-line may be modified. Next,plld
is typically invoked as:

plld -o output stubfile.c [other-c-or-o-files] [plfiles]

plld will first split the options into various groups for both the C-compiler and the Prolog compiler.
Next, it will add various default options to the C-compiler and call it to create an executable holding
the user’s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create a saved
state from the provided Prolog files and finally, it will attach this saved state to the created emulator
to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-ccC-compiler
Compiler for.c files found on the commandline. Default is the compiler used to build SWI-
Prolog (seecurrent prolog flag/2) (Win32: cl.exe).

-c++ C++-compiler
Compiler for C++ sources (extensions.cpp , .cxx , .cc or .C) files found on the command-
line. Default isc++ or g++ if the C-compiler isgcc) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a
new kernel holding additional foreign predicates on machines that do not support the shared-
library (DLL) interface, or if building the state cannot be handled by the default procedure used
by plld . In the latter case the state is created seperately and appended to the kernel using
cat 〈kernel〉 〈state〉 > 〈out〉 (Win32: copy /b 〈kernel〉+〈state〉 〈out〉)

SWI-Prolog 4.0 Reference Manual

5.7. LINKING EMBEDDED APPLICATIONS USING PLLD 175

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately followingpl-options is used as separator and translated to spaces when the argument
is built. Example:-pl-options,-F,xpce passed-F xpce as additional flags to Prolog.

-ld-options ,. . .
Passes options to the linker, similar to-pl-options .

-cc-options,. . .
Passes options to the C/C++ compiler, similar to-pl-options .

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By default,-lpl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-L library-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

-g | -I include-directory | -D definition
These options are passed to the C-compiler. By default, the include directory containing
SWI-Prolog.h is passed.plld adds two additional* -D def flags:

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

*.o | *.c | *.C | *.cxx | *.cpp
Passed as input files to the C-compiler

.pl |.qlf
Passed as input files to the Prolog compiler to create the saved-state.

*
I.e. all other options. These are passed as linker options to the C-compiler.

5.7.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the applicationcalc and define it in the filescalc.c
andcalc.pl . The Prolog file is simple:

SWI-Prolog 4.0 Reference Manual

176 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figure5.5.
The application is now created using the following command-line:

% plld -o calc calc.c calc.pl

The following indicates the usage of the application:

% calc pi/2
1.5708

5.8 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved-state has been added to the executable (see
qsave program/[1,2] and section5.7).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds.

1. If the environment variableSWI HOMEDIR is defined and points to an existing directory, use
this.

2. If the environment variableSWIPL is defined and points to an existing directory, use this.

3. Locate the primary executable or (Windows only) a component (module) thereof and check
whether the parent directory of the directory holding this file contains the fileswipl . If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

4. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL initialise()), SWI-Prolog gives up. If a state is attached, the current working directory is
used.

Thefile search path/2 aliasswi is set to point to the home directory located.

5.9 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Figure5.6shows the
C-source file, figure5.7 illustrates compiling and loading of foreign code.

SWI-Prolog 4.0 Reference Manual

5.9. EXAMPLE OF USING THE FOREIGN INTERFACE 177

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAXLINE];

char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if (n != 1)

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if (!PL_initialise(1, plav))
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;

PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 5.5: C-source for the calc application
SWI-Prolog 4.0 Reference Manual

178 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;

char *s, *q;
int rval;

if (!PL_get_atom_chars(u, &s))
return PL_warning("lowercase/2: instantiation fault");

copy = malloc(strlen(s)+1);

for(q=copy; *s; q++, s++)
*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_chars(l, copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}

Figure 5.6: Lowercase source file

SWI-Prolog 4.0 Reference Manual

5.9. EXAMPLE OF USING THE FOREIGN INTERFACE 179

% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% pl
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- load_foreign_library(lowercase).

Yes
2 ?- lowercase(’Hello World!’, L).

L = ’hello world!’

Yes

Figure 5.7: Compiling the C-source and loading the object file

SWI-Prolog 4.0 Reference Manual

180 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

5.10 Notes on Using Foreign Code

5.10.1 Memory Allocation

SWI-Prolog’s memory allocation is based on themalloc(3) library routines. Foreign applications
can safely usemalloc(3) , realloc(3) and free(3) . Memory allocation usingbrk(2) or
sbrk(2) is not allowed as these calls conflict withmalloc(3) .

5.10.2 Debugging Foreign Code

Statically linked foreign code or embedded systems can be debugged normally. Most modern envi-
ronments provide debugging tools for dynamically loaded shared objects or dynamic load libraries.
The following example traces the code of lowercase usinggdb(1) in a Unix environment.

% gcc -I/usr/local/lib/pl-2.2.0/include -fpic -c -g lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% gdb pl
(gdb) r
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

?- load_foreign_library(lowercase).
<type Control-C>
(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase
(gdb) continue
?- lowercase(’HELLO’, X).

5.10.3 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

5.10.4 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the

SWI-Prolog 4.0 Reference Manual

5.10. NOTES ON USING FOREIGN CODE 181

Quintus or SICStus interfaces, defining all foreign-predicate arguments of type+term . SWI-Prolog
explicitly uses typefunctor t , while Quintus and SICStus uses〈name〉 and〈arity〉. As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))

ThePL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL open foreign frame() /PL close foreign frame() combination is
lacking from both other Prologs. SICStus hasPL new term refs(0) , followed by
PL reset term refs() that allows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 4.0 Reference Manual

Generating Runtime
Applications 6
This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part is theemulator,
which is machine dependent. The second part is theresource archive, which contains the compiled
program in a machine-independent format, startup options and possibly user-definedresources, see
resource/3 andopen resource/3 .

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is toconcatenatethe two parts. This can be achieved using external commands
(Unix: cat , Windows: copy), or using thestand alone option toqsave program/2 . The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using the-x commandline switch.

qsaveprogram(+File, +ListOfOptions)
Saves the current state of the program to the fileFile. The result is a resource archive contain-
ing a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on thestand alone option, the resource is headed by the emulator, a
Unix shell-script or nothing.

ListOfOptionsis a list of 〈Key〉 = 〈Value〉 or 〈Key〉(〈Value〉) pairs. The available keys are
described in table6.1.

Before writing the data to file,qsave program/2 will run autoload/0 to all required
autoloading the system can discover. Seeautoload/0 .

Provided the application does not require any of the Prolog libraries to be loaded at runtime, the
only file from the SWI-Prolog development environment required is the emulator itself. The
emulator may be built in two flavours. The default is thedevelopment emulator. Theruntime
emulatoris similar, but lacks the tracer.

If the optionstand alone(on) is present, the emulator is the first part of the state. If the
emulator is started it will test whether a boot-file (state) is attached to the emulator itself and
load this state. Provided the application has all libraries loaded, the resulting executable is
completely independent of the runtime environment or location where it was build.

See also section2.10.2.

qsaveprogram(+File)
Equivalent toqsave program(File, []) .

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

SWI-Prolog 4.0 Reference Manual

183

Key Option Type Description
local -L K-bytes Size (Limit) of local stack
global -G K-bytes Size (Limit) of global stack
trail -T K-bytes Size (Limit) of trail stack
argument -A K-bytes Size (Limit) of argument stack
goal -g atom Initialisation goal
toplevel -t atom Prolog toplevel goal
init file -f atom Personal initialisation file
class atom If runtime , only read resources from the state

(default). If kernel , lock all predicates as sys-
tem predicates Ifdevelopment , save the pred-
icates in their current state and keep reading re-
sources from their source (if present). See also
resource/3 .

autoload bool If true, runautoload/0 first
map file File to write info on dump
op save/standard Save operator declarations?
standalone bool Include the emulator in the state
emulator file Emulator attached to the (stand-alone) executable.

Default is the running emulator.

Table 6.1:〈Key〉 = 〈Value〉 pairs forqsave program/2

This predicate is used byqsave program/[1,2] to ensure the saved state will not depend
on one of the libraries. The predicateautoload/0 will find all direct references to predicates.
It does not find predicates referenced via meta-predicates. The predicate log/2 is defined in the
library(quintus) to provide a quintus compatible means to compute the natural logarithm of a
number. The following program will behave correctly if its state is executed in an environment
where the library(quintus) is not available:

logtable(From, To) :-
From > To, !.

logtable(From, To) :-
log(From, Value),
format(’˜d˜t˜8|˜2f˜n’, [From, Value]),
F is From + 1,
logtable(F, To).

However, the following implementation refers to log/2 through the meta-predicate
maplist/3 . Autoload will not be able to find the reference. This problem may be fixed
either by loading the module libtary(quintus) explicitly or userequire/1 to tell the system
that the predicate log/2 is required by this module.

logtable(From, To) :-
findall(X, between(From, To, X), Xlist),

SWI-Prolog 4.0 Reference Manual

184 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

maplist(log, Xlist, SineList),
write_table(Xlist, SineList).

write_table([], []).
write_table([I|IT], [V|VT]) :-

format(’˜d˜t˜8|˜2f˜n’, [I, V]),
write_table(IT, VT).

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates shouldnot be saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

6.1 Limitations of qsaveprogram

There are three areas that require special attention when usingqsave program/[1,2] .

• If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section6.2for details.

• If the program uses directives (:- goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed withinitialization/1 .

• Database references as returned byclause/3 , recorded/3 , etc. are not preserved and may
thus not be part of the database when saved.

6.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.

To complicate the matter even further there are various ways of loading foreign code:

• Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

• Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source-filemyextension defining the instal-
lation functioninstall() .

If this file is compiled into a shared library,load foreign library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
defineinstall() as the predicateinstall/0 :

SWI-Prolog 4.0 Reference Manual

6.3. USING PROGRAM RESOURCES 185

static foreign_t
pl_install()
{ install();

PL_succeed;
}

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminat-

ing line */
};

Now, use the following Prolog code to load the foreign library:

load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.

load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).

:- initialization load_foreign_extensions.

The path aliasforeign is defined byfile search path/2 . By default it searches the di-
rectories〈home〉/lib/ 〈arch〉 and 〈home〉/lib . The application can specify additional rules for
file search path/2 .

6.3 Using program resources

A resourceis very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resourcearchiveof a saved-state (seeqsave program/2).

A resource has anameand aclass. The sourcedata of the resource is a file. Resources
are declared by declaring the predicateresource/3 . They are accessed using the predicate
open resource/3 .

Before going into details, let us start with an example. Short texts can easily be expressed in
Prolog sourcecode, but long texts are cumbersome. Assume our application defines a command ‘help’
that prints a helptext to the screen. We put the content of the helptext into a file calledhelp.txt .
The following code implements our help command such that help.txt is incorperated into the runtime
executable.

resource(help, text, ’help.txt’).

help :-
open_resource(help, text, In),

SWI-Prolog 4.0 Reference Manual

186 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

copy_stream(In, user_output),
close(In).

copy_stream(In, Out) :-
get0(In, C),
copy_stream(C, In, Out).

copy_stream(-1, _, _) :- !.
copy_stream(C, In, Out) :-

put(Out, C),
get0(In, C2),
copy_stream(C2, In, Out).

The predicatehelp/0 opens the resource as a Prolog stream. If we are executing this from the
development environment, this will actually return a stream to thegelp.txt itself. When executed
from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

6.3.1 Predicates Definitions

resource(+Name, +Class, +FileSpec)
This predicate is defined as a dynamic predicate in the moduleuser . Clauses for it may be
defined in any module, including the user module.Nameis the name of the resource (an atom).
A resource name may contain any character, except for $ and :, which are reserved for internal
usage by the resource library.Classdescribes the what kind of object is stored in the resource.
In the current implementation, it is just an atom.FileSpecis a file specification that may exploit
file search path/2 (seeabsolute file name/2).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

Dynamic rules are useful to turn all files in a certain directory into resources, without specifying
a resources for each file. For example, assume thefile search path/2 icons refers to
the resource directory containing icon-files. The following definition makes all these images
available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).

resource(Name, image, XpmFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, ’/*.xpm’, Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).

SWI-Prolog 4.0 Reference Manual

6.4. FINDING APPLICATION FILES 187

open resource(+Name, ?Class, -Stream)
Opens the resource specified byNameandClass. If the latter is a variable, it will be unified to
the class of the first resource found that has the specifiedName. If successful,Streambecomes
a handle to a binary input stream, providing access to the content of the resource.

The predicateopen resource/3 first checksresource/3 . When succesful it will open
the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to theresource/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

6.3.2 Theplrc program

The utility programplrc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Unixar program. The basic command is:

% plrc option resource-file member ...

The options are described below.

l
List contents of the archive.

x
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the options--class= classand
--encoding= encodingmay appear. They affect the class and encoding of subsequent files.
The initial class isdata and encodingnone .

d
Delete named members from the archive.

This command is also described in thepl(1) Unix manual page.

6.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. Thefile search path/2
mechanism in combination with the-p alias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the toplevel directory of your application. We will
call this directorygnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directory.swi is a predefined alias for this directory. The following is a useful default definition
for the search path.

SWI-Prolog 4.0 Reference Manual

188 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

user:file_search_path(gnatdir, swi(gnat)).

The application should locate all files using absolutefile name. Suppose gnatdir contains a filecon-
fig.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
(absolute_file_name(gnatdir(’config.pl’), ConfigFile)

-> consult(ConfigFile)
; format(user_error, ’gnat: Cannot lo-

cate config.pl˜n’),
halt(1)
).

6.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environment in/usr/
local/lib/rt-pl-3.2.0 . A user wants to installgnat , but gnat will look for its configuration
in /usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.

The user decides to install the gnat runtime files in/users/bob/lib/gnat . For one-time
usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/bob/lib/gnat

6.5 The Runtime Environment

6.5.1 The Runtime Emulator

The sources may be used to built two versions of the emulator. By default, thedevelopment emulator
is built. This emulator contains all features for interactive development of Prolog applications. If the
system is configured using--enable-runtime , make(1) will create aruntime versionof the
emulator. This emulator is equivalent to the development version, except for the following features:

• No input editing
The GNU library-lreadline that provides EMACS compatible editing of input lines will
not be linked to the system.

• No tracer
The tracer and all its options are removed, making the system a little faster too.

• No profiler
profile/3 and friends are not supported. This saves some space and provides better perfor-
mance.

• No interrupt
Keyboard interrupt (Control-C normally) is not rebound and will normally terminate the appli-
cation.

SWI-Prolog 4.0 Reference Manual

6.5. THE RUNTIME ENVIRONMENT 189

• current prolog flag(runtime, true) succeeds
This may be used to verify your application is running in the runtime environment rather than
the development environment.

• clause/[2,3] do not work on static predicates
This prolog-flag inhibits listing your program. It is only a very limited protection however.

The following fragment is an example for building the runtime environment in\env{HOME}/
lib/rt-pl-3.2.0 . If possible, the shared-library interface should be configured to ensure it can
serve a large number of applications.

% cd pl-3.2.0
% mkdir runtime
% cd runtime
% ../src/configure --enable-runtime --prefix=$HOME
% make
% make rt-install

The runtime directory contains the components listed below. This directory may be tar’ed and shipped
with your application.

README.RT Info on the runtime environment
bin/ 〈arch〉/pl The emulator itself
man/pl.1 Manual page for pl
swipl pointer to the home directory (.)
lib/ directory for shared libraries
lib/ 〈arch〉/ machine-specific shared libraries

SWI-Prolog 4.0 Reference Manual

Hackers corner A
This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

A.1 Examining the Environment Stack

prolog current frame(-Frame)
Unify Framewith an integer providing a reference to the parent of the current local stack frame.
A pointer to the current local frame cannot be provided as the predicate succeeds deterministi-
cally and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute(+Frame, +Key, -Value)
Obtain information about the local stack frameFrame. Frameis a frame reference as obtained
throughprolog current frame/1 , prolog trace interception/4 or this predi-
cate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated withFramefails. Fails if the frame has no alternative frame.

has alternatives
Value is unified withtrue if Framestill is a candidate for backtracking.false other-
wise.

goal
Valueis unified with the goal associated withFrame. If the definition module of the active
predicate is notuser the goal is represented as〈module〉: 〈goal〉. Do not instantiate
variables in this goal unless youknow what you are doing!

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See alsonth clause/3 and
clause property/2 .

level
Valueis unified with the recursion level ofFrame. The top level frame is at level ‘0’.

parent
Valueis unified with an integer reference to the parent local stack frame ofFrame. Fails
if Frameis the top frame.

SWI-Prolog 4.0 Reference Manual

A.2. INTERCEPTING THE TRACER 191

context module
Valueis unified with the name of the context module of the environment.

top
Valueis unified withtrue if Frameis the top Prolog goal from a recursive call back from
the foreign language.false otherwise.

hidden
Valueis unified withtrue if the frame is hidden from the user, either because a parent has
the hide-childs attribute (all system predicates), or the system has no trace-me attribute.

pc
Valueis unified with the program-pointer saved on behalve of the parent-goal if the parent-
goal is not owned by a foreign predicate.

argument(N)
Value is unified with theN-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently ifN is out of range.

A.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +PC, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as described byAction. Otherwise the
normal Prolog debugger actions are performed.

Port is one ofcall , redo , exit , fail or unify . Frame is an integer reference to the
current local stack frame.PC is the current value of the program-counter, relative to the start
of the current clause, or 0 if it is invalid, for example because the current frame runs a for-
eign predicate, or no clause has been selected yet.Action should be unified with one of the
atomscontinue (just continue execution),retry (retry the current goal) orfail (force the
current goal to fail). Leaving it a variable is identical tocontinue .

Together with the predicates described in section3.42and the other predicates of this chapter
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

SWI-Prolog 4.0 Reference Manual

192 APPENDIX A. HACKERS CORNER

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level according toNew. New is
an integer, or the special atomvery deep (meaning don’t skip). The ‘skip level’ is a global
variable of the Prolog system that disables the debugger on all recursion levels deeper than the
level of the variable. Used to implement the trace options ‘skip’ (sets skip level to the level of
the frame) and ‘up’ (sets skip level to the level of the parent frame (i.e. the level of this frame
minus 1).

prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer in the module
user to list the currently called predicate. This hook may be defined to list only relevant clauses
of the indicatedGoal and/or show the actual source-code in an editor. See alsoportray/1
andmultifile/1 .

A.3 Hooks using theexception/3 predicate

This section describes the predicateexception/3 , which may be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actually ahookpredicate. Excep-
tions are handled by the ISO predicatescatch/3 andthrow/1 . They all frames created after the
matchingcatch/3 to be discarded immediately.

The predicateexception/3 is called by the kernel on a couple of events, allowing the user to
alter the behaviour on some predefined events.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions.
Currentlyexception/3 is only used for trapping undefined predicates. Future versions might
handle signal handling, floating exceptions and other runtime errors via this mechanism. The
values forExceptionare described below.

undefined predicate
If Exceptionis undefined predicate Contextis instantiated to a termName/Arity.
Name refers to the name andArity to the arity of the undefined predicate.
If the definition module of the predicate is notuser, Context will be of the
form 〈Module〉: 〈Name〉/ 〈Arity〉. If the predicate fails Prolog will generate an
esistence error exception. If the predicate succeeds it should instantiate the last
argument either to the atomfail to tell Prolog to fail the predicate, the atomretry to
tell Prolog to retry the predicate orerror to make the system generate an exception. The
actionretry only makes sense if the exception handler has defined the predicate.

A.4 Readline Interaction

The following predicates are available ifcurrent prolog flag(readline, true) suc-
ceeds. They allow for direct interaction with the GNU readline library. See alsoreadline(3)

rl read init file(+File)
Read a readline initialisation file. Readline by default reads˜/.inputrc . This predicate may
be used to read alternative readline initialisation files.

SWI-Prolog 4.0 Reference Manual

A.4. READLINE INTERACTION 193

rl add history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

SWI-Prolog 4.0 Reference Manual

Glossary of Terms B
anonymous [variable]

The variable_ is called theanonymousvariable. Multiple occurrences of_ in a singletermare
notshared.

arguments
Arguments areterms that appear in acompound term. A1 and a2 are the first and second
argument of the termmyterm (A1, a2).

arity
Argument count (is number of arguments) of acompound term.

assert
Add aclauseto apredicate. Clauses can be added at either end of the clause-list of apredicate.
Seeassert/1 andassertz/1 .

atom
Textual constant. Used as name forcompoundterms, to represent constants or text.

backtracking
Searching process used by Prolog. If a predicate offers multipleclausesto solve agoal, they are
tried one-by-one until onesucceeds. If a subsequent part of the prove is not satisfied with the
resultingvariable binding, it may ask for an alternativesolution(= binding of the variables),
causing Prolog to reject the previously chosenclauseand try the next one.

binding [of a variable]
Current value of thevariable. See alsobacktrackingandquery.

built-in [predicate]
Predicate that is part of the Prolog system. Built in predicates cannot be redefined by the user,
unless this is overruled usingredefine system predicate/1 .

body
Part of aclausebehind theneckoperator (:-).

clause
‘Sentence’ of a Prolog program. Aclauseconsists of aheadandbodyseparated by theneck
operator (:-) or it is afact. For example:

parent(X) :-
father(X, _).

SWI-Prolog 4.0 Reference Manual

195

Expressed “X is a parent if X is a father of someone”. See alsovariableandpredicate.

compile
Process where a Prologprogramis translated to a sequence of instructions. See alsointerpreted.
SWI-Prolog always compiles your program before executing it.

compound [term]
Also calledstructure. It consists of a name followed byN arguments, each of which areterms.
N is called thearity of the term.

context module
If a term is referring to apredicatein a module, thecontext moduleis used to find the target
module. The context module of agoal is the module in which thepredicateis defined, unless
this predicateis module transparent, in which case thecontext moduleis inherited from the
parentgoal. See alsomodule transparent/1 .

dynamic [predicate]
A dynamicpredicate is a predicate to whichclausesmay beasserted and from whichclauses
may beretracted while the program is running. See alsoupdate view.

exported [predicate]
A predicateis said to beexportedfrom a moduleif it appears in thepublic list. This im-
plies that the predicate can beimportedinto another module to make it visible there. See also
use module/[1,2] .

fact
Clausewithout abody. This is called a fact because interpreted as logic, there is no condition
to be satisfied. The example below statesjohn is a person.

person(john).

fail
A goal is said to haved failed if it could not beproven.

float
Computers cripled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in other languages than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name andarity of acompoundterm. The termfoo (a, b, c) is said to be a term
belonging to the functorfoo/3 . foo/0 is used to refer to theatomfoo .

goal
Question stated to the Prolog engine. Agoal is either anatomor a compoundterm. A goal
succeeds, in which case thevariablesin thecompoundterms have abindingor fails if Prolog
fails to prove thegoal.

SWI-Prolog 4.0 Reference Manual

196 APPENDIX B. GLOSSARY OF TERMS

hashing
Indexingtechnique used for quick lookup.

head
Part of aclausebefore theneckinstruction. This is an atom orcompoundterm.

imported [predicate]
A predicateis said to beimportedinto a moduleif it is defined in anothermoduleand made
available in thismodule. See also chapter4.

indexing
Indexing is a technique used to quickly select candidateclausesof a predicatefor a specific
goal. In most Prolog systems, including SWI-Prolog, indexing is done on the firstargument
of the head. If this argument is instantiated to anatom, integer, float or compoundterm with
functor, hashingis used quickly select allclausesof which the first argument mayunify with
the first argument of thegoal.

integer
Whole number. On most current machines, SWI-Prolog integers are represented
as ‘32-bit signed values’, ranging from -2147483648 to 2147483647. See also
current prolog flag/2 .

interpreted
As opposed tocompiled, interpreted means the Prolog system attempts to prove agoal by
directly reading theclausesrather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

meta predicate
A predicatethat reasons about otherpredicates, either by calling them, (re)defining them or
queryingproperties.

module
Collection of predicates. Each module defines a name-space for predicates.built-in predicates
are accessible from all modules. Predicates can be published (exported) andimportedto make
their definition available to other modules.

module transparent [predicate]
A predicatethat does not change thecontext module. Sometimes also called ameta predicate.

multifile [predicate]
Predicate for which the definition is distributed over multiple source-files. See
multi file/1 .

neck
Operator (:-) separatingheadfrom bodyin aclause.

operator
Symbol (atom) that may be placed before itsoperant (prefix), after itsoperant (postfix) or
between its twooperants(infix).

In Prolog, the expressiona+b is exactly the same as the canonical term+(a,b) .

SWI-Prolog 4.0 Reference Manual

197

operant
Argumentof anoperator.

precedence
The priority of an operator. Operator precedence is used to interpreta+b*c as
+(a, *(b,c)) .

predicate
Collection ofclauseswith the samefunctor(name/arity). If a goal is proved, the system looks
for a predicatewith the same functor, then usedindexingto select candidateclausesand then
tries theseclausesone-by-one. See alsobacktracking.

priority
In the context ofoperatorsa synonym forprecedence.

program
Collection ofpredicates.

property
Attribute of an object. SWI-Prolog defines various* propertypredicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prove aqueryusing the availablepredicates.

public list
List of predicatesexported from amodule.

query
Seegoal.

retract
Remove aclausefrom apredicate. See alsodynamic, update viewandassert.

shared
Two variablesare calledsharedafter they areunified. This implies if either of them isbound,
the other is bound to the same value:

?- A = B, A = a.

A = a,
B = a

singleton [variable]
Variableappearing only one time in aclause. SWI-Prolog normally warns for this to avoid you
making spelling mistakes. If a variable appears on purpose only once in a clause, write it as_
(seeanonymous) or make sure the first character is a_. See also thestyle check/1 option
singletons .

solution
Bindingsresulting from a successfullyproven goal.

SWI-Prolog 4.0 Reference Manual

198 APPENDIX B. GLOSSARY OF TERMS

structure
Synonym forcompoundterm.

string
Used for the following representations of text: a packed array (see section3.23, SWI-Prolog
specific), a list of character codes or a list of one-characteratoms.

succeed
A goal is said to havesucceededif it has beenproven.

term
Value in Prolog. Aterm is either avariable, atom, integer, float orcompoundterm. In addition,
SWI-Prolog also defines the typestring

transparent
Seemodule transparent.

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).

A = a,
B = b

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves when adynamic predicateis changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visible to thegoal, in
modern systems including SWI-Prolog, the runninggoal is not affected. Only newgoals‘see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. Afterbinding a variable, it cannot be
modified. Backtrackingto a point in the execution before the variable was bound will turn it
back into a variable:

?- A = b, A = c.
No
?- (A = b; true; A = c).
A = b ;
A = _G283 ;
A = c ;
No

See alsounify.

SWI-Prolog 4.0 Reference Manual

Summary C
C.1 Predicates

The predicate summary is used by the Prolog predicateapropos/1 to suggest predicates from a
keyword.

! /0 Cut (discard choicepoints)
! /1 Cut block. Seeblock/3
, /2 Conjunction of goals
-> /2 If-then-else
*-> /2 Soft-cut
. /2 Consult. Also list constructor
; /2 Disjunction of goals. Same as|/2
</2 Arithmetic smaller
=/2 Unification
=.. /2 “Univ.” Term to list conversion
=:= /2 Arithmetic equal
=</2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\= /2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+ /1 Negation by failure. Same asnot/1
\= /2 Not unifyable
\== /2 Not identical
\=@=/2 Not structural identical
ˆ /2 Existential quantification (bagof/3 , setof/3)
| /2 Disjunction of goals. Same as;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolutefile name/2 Get absolute path name
absolutefile name/3 Get absolute path name with options
accessfile/2 Check access permissions of a file

SWI-Prolog 4.0 Reference Manual

200 APPENDIX C. SUMMARY

append/1 Append to a file
append/3 Concatenate lists
apply/2 Call goal with additional arguments
apropos/1 library(online help) Show related predicates and manual sections
arg/3 Access argument of a term
arithmeticfunction/1 Register an evaluable function
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attachconsole/0 Attach I/O console to thread
at endof stream/0 Test for end of file on input
at endof stream/1 Test for end of file on stream
at halt/1 Register goal to run athalt/1
at initialization/1 Register goal to run at start-up
atom/1 Type check for an atom
atomchars/2 Convert between atom and list of characters
atomcodes/2 Convert between atom and list of ASCII values
atom length/2 Determine length of an atom
atomprefix/2 Test for start of atom
atomto term/3 Convert between atom and term
atomic/1 Type check for primitive
autoload/0 Autoload all predicates now
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
block/3 Start a block (‘catch’/‘throw’)
break/0 Start interactive toplevel
call/1 Call a goal
call/[2..] Call with additional arguments
call sharedobject function/2 UNIX: Call C-function in shared (.so) file
call with depthlimit/3 Prove goal with bounded depth
callable/1 Test for atom or compound term
catch/3 Call goal, watching for exceptions
charcode/2 Convert between atom and ASCII value
charconversion/2 Provide mapping of input characters
char type/2 Classify characters
charactercount/2 Get character index on a stream
chdir/1 Change working directory
checklist/2 Invoke goal on all members of a list
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clauseproperty/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
closeddeconversation/1 Win32: Close DDE channel

SWI-Prolog 4.0 Reference Manual

C.1. PREDICATES 201

closesharedobject/1 UNIX: Close shared library (.so file)
compare/3 Compare, using a predicate to determine the order
compiling/0 Is this a compilation run?
compound/1 Test for compound term
atomconcat/3 Append two atoms
codetype/2 Classify a character-code
concatatom/2 Append a list of atoms
concatatom/3 Append a list of atoms with separator
consult/1 Read (compile) a Prolog source file
contextmodule/1 Get context module of current goal
converttime/8 Break time stamp into fields
converttime/2 Convert time stamp to string
copy streamdata/2 Copy all data from stream to stream
copy streamdata/3 Copy n bytes from stream to stream
copy term/2 Make a copy of a term
currentarithmeticfunction/1 Examine evaluable functions
currentatom/1 Examine existing atoms
currentcharconversion/2 Query input character mapping
currentflag/1 Examine existing flags
currentforeign library/2 library(shlib) Examine loaded shared libraries (.so files)
currentformat predicate/2 Enumerate user-defined format codes
currentfunctor/2 Examine existing name/arity pairs
currentinput/1 Get current input stream
currentkey/1 Examine existing database keys
currentmodule/1 Examine existing modules
currentmodule/2 Examine existing modules
currentmutex/3 Examine existing mutexes
currentop/3 Examine current operator declarations
currentoutput/1 Get the current output stream
currentpredicate/2 Examine existing predicates
currentsignal/3 Current software signal mapping
currentstream/3 Examine open streams
currentthread/2 Examine Prolog threads
ddecurrentconnection/2 Win32: Examine open DDE connections
ddecurrentservice/2 Win32: Examine DDE services provided
ddeexecute/2 Win32: Execute command on DDE server
dde registerservice/2 Win32: Become a DDE server
dde request/3 Win32: Make a DDE request
ddepoke/3 Win32: POKE operation on DDE server
ddeunregisterservice/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debugging/0 Show debugger status
defaultmodule/2 Get the default modules of a module
delete/3 Delete all matching members from a list
deletedirectory/1 Remove a folder from the file system
deletefile/1 Remove a file from the file system
discontiguous/1 Indicate distributed definition of a predicate

SWI-Prolog 4.0 Reference Manual

202 APPENDIX C. SUMMARY

dwim match/2 Atoms match in “Do What I Mean” sense
dwim match/3 Atoms match in “Do What I Mean” sense
dwim predicate/2 Find predicate in “Do What I Mean” sense
dynamic/1 Indicate predicate definition may change
edit/1 Edit a file
ensureloaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
exception/3 (hook) Handle runtime exceptions
existsdirectory/1 Check existence of directory
existsfile/1 Check existence of file
exit/2 Exit from named block. Seeblock/3
expandanswer/2 Expand answer of query
expandfile name/2 Wildcard expansion of file names
expandfile searchpath/2 Wildcard expansion of file paths
expandgoal/2 Compiler: expand goal in clause-body
expandquery/4 Expanded entered query
expandterm/2 Compiler: expand read term into clause(s)
explain/1 library(explain) Explain argument
explain/2 library(explain) 2nd argument is explanation of first
export/1 Export a predicate from a module
export list/2 List of public predicates of a module
fail/0 Always false
fail/1 Immediately fail named block. Seeblock/3
currentprolog flag/2 Get system configuration parameters
file basename/2 Get file part of path
file directoryname/2 Get directory part of path
file nameextension/3 Add, remove or test file extensions
file searchpath/2 Define path-aliases for locating files
fileerrors/2 Do/Don’t warn on file errors
findall/3 Find all solutions to a goal
flag/3 Simple global variable system
flatten/2 Transform nested list into flat list
float/1 Type check for a floating point number
flush output/0 Output pending characters on current stream
flush output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format predicate/2 Programformat/[1,2]
free variables/2 Find unbound variables in a term
functor/3 Get name and arity of a term or construct a term
garbagecollect/0 Invoke the garbage collector
garbagecollect atoms/0 Invoke the atom garbage collector
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream

SWI-Prolog 4.0 Reference Manual

C.1. PREDICATES 203

get0/1 Read next character
get0/2 Read next character from a stream
get byte/1 Read next byte (ISO)
get byte/2 Read next byte from a stream (ISO)
get char/1 Read next character as an atom (ISO)
get char/2 Read next character from a stream (ISO)
get code/1 Read next character (ISO)
get code/2 Read next character from a stream (ISO)
get singlechar/1 Read next character from the terminal
get time/1 Get current time
getenv/2 Get shell environment variable
goal expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
guitracer/0 Install hooks for the graphical debugger
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
hashterm/2 Hash-value of ground term
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
include/1 Include a file with declarations
index/1 Change clause indexing
initialization/1 Initialization directive
int to atom/2 Convert from integer to atom
int to atom/3 Convert from integer to atom (non-decimal)
integer/1 Type check for integer
interactor/0 Start new thread with console and toplevel
intersection/3 Set intersection
is/2 Evaluate arithmetic expression
is absolutefile name/1 True if arg defines an absolute path
is list/1 Type check for a list
is set/1 Type check for a set
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library directory/1 (hook) Directories holding Prolog libraries
limit stack/2 Limit stack expansion
line count/2 Line number on stream
line position/2 Character position in line on stream
list to set/2 Remove duplicates
listing/0 List program in current module
listing/1 List predicate
load files/2 Load source files with options
load foreign library/1 library(shlib) Load shared library (.so file)
load foreign library/2 library(shlib) Load shared library (.so file)

SWI-Prolog 4.0 Reference Manual

204 APPENDIX C. SUMMARY

make/0 Reconsult all changed source files
makedirectory/1 Create a folder on the file system
makefat filemap/1 Win32: Create file containing non-FAT filenames
makelibrary index/1 Create autoload file INDEX.pl
maplist/3 Transform all elements of a list
member/2 Element is member of a list
memberchk/2 Deterministicmember/2
merge/3 Merge two sorted lists
mergeset/3 Merge two sorted sets
messagehook/3 Interceptprint message/2
messageto string/2 Translate message-term to string
metapredicate/1 Quintus compatibility
module/1 Query/set current type-in module
module/2 Declare a module
moduletransparent/1 Indicate module based meta predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutexcreate/1 Create a thread-synchronisation device
mutexdestroy/1 Destroy a mutex
mutex lock/1 Become owner of a mutex
mutex trylock/1 Become owner of a mutex (non-blocking)
mutexunlock/1 Release ownership of mutex
mutexunlock all/0 Release ownership of all mutexes
name/2 Convert between atom and list of ASCII characters
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprotocol/0 Disable logging of user interaction
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as\+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth0/3 N-th element of a list (0-based)
nth1/3 N-th element of a list (1-based)
nth clause/3 N-th clause of a predicate
number/1 Type check for integer or float
numberchars/2 Convert between number and one-char atoms
numbercodes/2 Convert between number and ASCII values
numbervars/4 Enumerate unbound variables of a term using a given base
on signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)

SWI-Prolog 4.0 Reference Manual

C.1. PREDICATES 205

openddeconversation/3 Win32: Open DDE channel
opennull stream/1 Open a stream to discard output
openresource/3 Open a program resource as a stream
opensharedobject/2 UNIX: Open shared library (.so file)
opensharedobject/3 UNIX: Open shared library (.so file)
peekbyte/1 Read byte without removing
peekbyte/2 Read byte without removing
peekchar/1 Read character without removing
peekchar/2 Read character without removing
peekcode/1 Read character-code without removing
peekcode/2 Read character-code without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour ofprint/1
portrayclause/1 Pretty print a clause
predicateproperty/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print message/2 Print message from (exception) term
print messagelines/3 Print message to stream
profile/3 Obtain execution statistics
profile count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive toplevel
prolog currentframe/1 Reference to goal’s environment stack
prolog edit:locate/2 Locate targets foredit/1
prolog edit:locate/3 Locate targets foredit/1
prolog edit:edit source/1 Call editor foredit/1
prolog edit:edit command/2 Specify editor activation
prolog edit:load/0 Loadedit/1 extensions
prolog file type/2 Define meaning of file extension
prolog frameattribute/3 Obtain information on a goal environment
prolog list goal/1 Hook. Intercept tracer ’L’ command
prolog load context/2 Context information for directives
prolog skip level/2 Indicate deepest recursion to trace
prolog to os filename/2 Convert between Prolog and OS filenames
prolog traceinterception/4 library(user) Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used byread/1
properlist/1 Type check for list
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged

SWI-Prolog 4.0 Reference Manual

206 APPENDIX C. SUMMARY

put/1 Write a character
put/2 Write a character on a stream
put byte/1 Write a byte
put byte/2 Write a byte on a stream
put char/1 Write a character
put char/2 Write a character on a stream
put code/1 Write a character-code
put code/2 Write a character-code on a stream
qcompile/1 Compile source to Quick Load File
qsaveprogram/1 Create runtime application
qsaveprogram/2 Create runtime application
read/1 Read Prolog term
read/2 Read Prolog term from stream
readclause/1 Read clause
readclause/2 Read clause from stream
readhistory/6 Read using history substitution
readlink/3 Read a symbolic link
readterm/2 Read term with options
readterm/3 Read term with options from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefinesystempredicate/1 Abolish system definition
renamefile/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
resetprofiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
reverse/2 Inverse the order of the elements in a list
samefile/2 Succeeds if arguments refer to same file
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select/3 Select element of a list
set input/1 Set current input stream from a stream
setoutput/1 Set current output stream from a stream
setprolog flag/2 Define a system feature
set stream/2 Set stream attribute
set streamposition/2 Seek stream to position
set tty/2 Set ‘tty’ stream
setarg/3 Destructive assignment on term

SWI-Prolog 4.0 Reference Manual

C.1. PREDICATES 207

setenv/2 Set shell environment variable
setof/3 Find all unique solutions to a goal
sformat/2 Format on a string
sformat/3 Format on a string
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
showprofile/1 Show results of the profiler
sizefile/2 Get size of a file in characters
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl addhistory/1 Add line to readline(3) history
rl readinit file/1 Read readline(3) init file
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
sourcefile/1 Examine currently loaded source files
sourcefile/2 Obtain source file of predicate
sourcelocation/2 Location of last read term
spy/1 Force tracer on specified predicate
stackparameter/4 Some systems: Query/Set runtime stack parameter
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
streamproperty/2 Get stream properties
string/1 Type check for string
string concat/3 atom concat/3 for strings
string length/2 Determine length of a string
string to atom/2 Conversion between string and atom
string to list/2 Conversion between string and list of ASCII
style check/1 Change level of warnings
subatom/5 Take a substring from an atom
sublist/3 Determine elements that meet condition
subset/2 Check subset relation for unordered sets
substring/5 Take a substring from a string
subtract/3 Delete elements that do not meet condition
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tell/1 Change current output stream
telling/1 Query current output stream
term expansion/2 (hook) Convert term before compilation
term to atom/2 Convert between term and atom
threadat exit/1 Register goal to be called at exit
threadcreate/3 Create a new Prolog task
threadexit/1 Terminate Prolog task with value
threadget message/1 Wait for message

SWI-Prolog 4.0 Reference Manual

208 APPENDIX C. SUMMARY

threadjoin/2 Wait for Prolog task-completion
threadpeekmessage/1 Test for message in queue
threadself/1 Get identifier of current thread
threadsendmessage/2 Send message to another thread
threadsignal/2 Execute goal in another thread
threads/0 List running threads
throw/1 Raise an exception (seecatch/3)
time/1 Determine time needed to execute goal
time file/2 Get last modification time of file
tmp file/2 Create a temporary filename
told/0 Close current output
trace/0 Start the tracer
trace/1 Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim stacks/0 Release unused memory resources
true/0 Succeed
tty get capability/3 Get terminal parameter
tty goto/2 Goto position on screen
tty put/2 Write control string to terminal
ttyflush/0 Flush output on terminal
union/3 Union of two sets
unify with occurscheck/2 Logically sound unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unloadforeign library/1 library(shlib) Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
usemodule/1 Import a module
usemodule/2 Import predicates from a module
var/1 Type check for unbound variable
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait for input/3 Wait for input with optional timeout
wildcard match/2 Csh(1) style wildcard match
win exec/2 Win32: spawn Windows task
win shell/2 Win32: open document through Shell
win registryget value/3 Win32: get registry value
with mutex/2 Run goal while holding mutex
write/1 Write term
write/2 Write term to stream
write ln/1 Write term, followed by a newline
write canonical/1 Write a term with quotes, ignore operators
write canonical/2 Write a term with quotes, ignore operators on a stream
write term/2 Write term with options
write term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream

SWI-Prolog 4.0 Reference Manual

C.1. PREDICATES 209

writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream

SWI-Prolog 4.0 Reference Manual

210 APPENDIX C. SUMMARY

C.2 Arithmetic Functions

* /2 Multiplication
** /2 Power function
+/2 Addition
- /1 Unary minus
- /2 Subtraction
/ /2 Division
// /2 Integer division
/\ /2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
. /2 List of one character: character code
\ /1 Bitwise negation
\/ /2 Bitwise or
ˆ /2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
e/0 Mathematical constant
exp/1 Exponent (basee)
float/1 Explicitly convert to float
float fractionalpart/1 Fractional part of a float
float integerpart/1 Integer part of a float
floor/1 Largest integer below argument
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
max/2 Maximum of two numbers
min/2 Minimum of two numbers
mod/2 Remainder of division
random/1 Generate random number
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root
tan/1 Tangent

SWI-Prolog 4.0 Reference Manual

C.2. ARITHMETIC FUNCTIONS 211

xor/2 Bitwise exclusive or

SWI-Prolog 4.0 Reference Manual

212 APPENDIX C. SUMMARY

C.3 Operators

$ 1 fx Bind toplevel variable
ˆ 200 xfy Predicate
ˆ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1100 xfy Predicate

SWI-Prolog 4.0 Reference Manual

C.3. OPERATORS 213

discontiguous 1150 fx Predicate
dynamic 1150 fx Predicate
moduletransparent 1150 fx Predicate
multifile 1150 fx Predicate
volatile 1150 fx Predicate
initialization 1150 fx Predicate
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head:- body. separator

SWI-Prolog 4.0 Reference Manual

Bibliography

[Anjewierden & Wielemaker, 1989]A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT
Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

[BIM, 1989] BIM Prolog release 2.4. Everberg, Belgium, 1989.

[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable Prolog compiler. In
L. M. Pereira, editor,Proceedings of the Login Programming
Workshop 1983, Lisabon, Portugal, 1983. Universidade nova de
Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1986.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.Programming in Prolog.
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

[Deransartet al., 1996] P. Deransart, A. Ed-Dbali, and L. Cervoni.Prolog: The Stan-
dard. Springer-Verlag, New York, 1996.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie.The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[OKeefe, 1990] R. A. OKeefe.The Craft of Prolog. MIT Press, Massachussetts,
1990.

[Pereira, 1986] F. Pereira.C-Prolog User’s Manual, 1986.

[Qui, 1997] Quintus Prolog, User Guide and Reference Manual. Berkham-
sted, UK, 1997.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro.The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

[Warren, 1983] D. H. D. Warren. The runtime environment for a prolog compiler
using a copy algorithm. Technical Report 83/052, SUNY and
Stone Brook, New York, 1983. Major revision March 1984.

SWI-Prolog 4.0 Reference Manual

Index

’MANUAL’ library, 21
-lpl library, 175
-lreadlinelibrary, 188
=:= /2, 88
/\ /2, 90
=\= /2, 88
| /2, 52
, /2, 52
! /0, 51
! /1, 59
/ /2, 89
. /2, 90
=/2, 50
==/2, 50
>=/2, 88
>/2, 88
ˆ /2, 91
// /2, 89
-> /2, 52
=</2, 88
<</2, 90
</2, 88
- /1, 89
- /2, 89
\= /2, 50
\ /1, 91
\== /2, 50
\+ /1, 52
\/ /2, 90
+/2, 89
** /2, 91
>>/2, 90
; /2, 52
*-> /2, 52
=@=/2, 50
\=@=/2, 50
@>=/2, 51
@>/2, 51
* /2, 89
@=</2, 51
@</2, 51
=.. /2, 79

PL get arg(),147
call/1

cut in,51

abolish/1,12, 61
abolish/2,61, 135
abolish/[1

2], 31
abort/0,19, 25, 32, 69, 110, 112, 165, 167
abs/1,89
absolutefile name/2,104
absolutefile name/3,104
absolutefile name/2,15, 42, 44, 105, 186
absolutefile name/3,29, 33, 41, 44, 104, 105,

135
absolutefile name/[2

3], 44
accessfile/2, 103
accessfile/2, 33, 105
acos/1,91
address/2,109
Alpha

DEC,12
append/1,67, 68
append/3,82, 93
apply/2,53
apropos/1,21, 199
arg/3,79
arithmethicfunction/1,160
arithmeticfunction/1,92
arithmeticfunction/1,92
asin/1,91
assert/1,42, 43, 60–64, 127, 130, 194
assert/2,62, 66
asserta/1,20, 43, 61
asserta/2,62
assertz/1,61, 194
assertz/2,62
at endof stream/0,74
at endof stream/1,75
at halt/1,46
at initialization/1,46

SWI-Prolog 4.0 Reference Manual

216 INDEX

at endof stream/[0
1], 70

at halt/1,46, 108, 112, 167, 173
at initialization/1,46, 172
atan/1,91
atan/2,91
atom/1,49, 143
atomchar/2,81
atomchars/2,13, 81
atomcodes/2,81
atomconcat/3,82, 207
atom length/2,82
atomprefix/2,82
atomto term/3,82
atomchars/2,31, 41, 73, 80, 81, 84
atomcodes/2,14, 31, 41, 80, 81, 84
atomconcat/3,82, 85
atom length/2,31, 85
atomto term/3,75
atomic/1,49
attachconsole/0,111
attachconsole/0,111
autoload/0,43, 182, 183

backcomplibrary, 12, 14
bagof/3,95, 96, 199
between/3,87
block/3,59, 199, 202
break/0,19, 25, 111, 165

call/1,13, 45, 49, 51, 53, 54, 114, 156, 215
call/2,53
call/[2-6], 53
call sharedobject function/2,135
call with depthlimit/3, 53
call with depthlimit/3, 53, 54
callable/1,49
catch/3,12, 13, 54, 55, 59, 77, 108, 192, 208
ceil/1,90
ceiling/1,90
charcode/2,81
charconversion/2,86
char type/2,83
charcode/2,41
charconversion/2,32, 87
char type/2,84
charactercount/2,72

chdir/1,103, 106
check/0,43
checkold select/0,14
checklist/2,96
checkselectlibrary, 14
clause/2,66
clause/3,62, 66, 67, 184
clause/[2

3], 31, 189
clauseproperty/2,67
clauseproperty/2,44, 190
clib

package,173
close/1,70
close/2,70
closeddeconversation/1,119
closesharedobject/1,135
codetype/2,84
codetype/2,83
commandline

arguments,20
compare/3,51, 95, 162
compiling/0,46
compound/1,49
concatatom/2,82
concatatom/3,82
concatatom/2,82
consult/1,16, 17, 26, 41–43, 46, 47, 64, 77,

115
contextmodule/1,129
contextmodule/1,129, 156
converttime/2,103
converttime/8,103
converttime/2,103
converttime/8,103
converttime/[2

8], 104
copy streamdata/2,75
copy streamdata/3,75
copy term/2,80
copy term/2,80
cos/1,91
cputime/0,91
ctypelibrary, 83
currentarithmeticfunction/1,92
currentatom/1,64
currentcharconversion/2,87

SWI-Prolog 4.0 Reference Manual

INDEX 217

currentflag/1,65
currentforeign library/2,135
currentformat predicate/2,101
currentfunctor/2,65
currentinput/1,71
currentkey/1,65
currentmodule/1,129
currentmodule/2,129
currentmutex/3,110
currentop/3,86
currentoutput/1,71
currentpredicate/2,65
currentprolog flag/2,28
currentsignal/3,58
currentstream/3,14, 70, 106
currentthread/2,108
currentatom/1,64
currentcharconversion/2,86
currentinput/1,45
currentpredicate/2,117
currentprolog flag/2, 14, 19, 20, 28, 34, 37,

41, 50, 54, 75, 76, 78, 112, 115, 120,
134, 136, 155, 169, 174, 196

currentsignal/3,58
currentstream/3,70
currentthread/2,108

DCG,42, 59
ddecurrentconnection/2,121
ddecurrentservice/2,121
ddeexecute/2,120
ddepoke/4,120
dde registerservice/2,120
dde request/3,119
ddeunregisterservice/1,121
debug/0,24, 26, 55, 113, 114, 165
debugging

exceptions,54
debugging/0,114
DEC

Alpha,12
defaultmodule/2,130
delete/3,93
deletedirectory/1,106
deletefile/1, 104
discontiguous/1,63, 64
display/1,98, 148, 149

display/[1
2], 12

displayq/1,99
displayq/[1

2], 12
dld, 134
dup/2,14
dup stream/2,14
dup stream/2,14
dwim match/2,121
dwim match/3,121
dwim predicate/2,66
dwim match/2,66, 121
dynamic/1,32, 60, 63–65, 129

e/0,91
edit/1,15, 34, 43, 47, 48, 205
edit source/1,48
Emacs,20
emacs/swiprolog library, 15
ensureloaded/1,43
ensureloaded/1,26, 41, 43, 125
erase/1,62, 66
exception/3,34, 192
exceptions

debugging,54
existsdirectory/1,104
existsfile/1, 104
existsfile/1, 33
exit/2,59
exp/1,89, 91
expandanswer/2,112
expandfile name/2,105
expandfile searchpath/2,44
expandgoal/2,46
expandquery/4,112
expandterm/2,45
expandanswer/2,112
expandfile name/2,33, 102
expandgoal/2,31, 45
expandterm/2,45, 46, 59
explainlibrary, 202
explain/1,22
explain/2,22
export/1,129
export list/2, 129

SWI-Prolog 4.0 Reference Manual

218 INDEX

fail/0, 51
fail/1, 59
feature/2,14
file basename/2,104
file directoryname/2,104
file nameextension/3,105
file searchpath/2,33, 43
file basename/2,104
file searchpath/2, 17, 20, 42–44, 135, 176,

185–187
fileerrors/0,72
fileerrors/2,33, 72
findall/3,95, 130, 131
flag/3,31, 62, 65
flatten/2,93
float/1,49, 88, 90
float fractionalpart/1,90
float integerpart/1,90
float integerpart/1,90
floor/1,90
flush output/0,73
flush output/1,73
flush output/0,73
flush output/1,56
flush output/[0

1], 69, 73
foo/0,195
foo/3,195
forall/2, 45, 96
format/1,56, 98
format/2,98, 100
format/3,56, 100
format/[1

2], 30, 75, 96, 202
format/[2

3], 37
format predicate/2,100
free variables/2,80
free variables/2,77
functor/3,8, 49, 79

garbagecollect/0,118
garbagecollect atoms/0,118
garbagecollect atoms/0,168
gensym/2,122
get/1,74
get/2,74

get0/1,69, 74
get0/2,74
get byte/1,73
get byte/2,73
get char/1,73
get char/2,74
get code/1,73
get code/2,73
get singlechar/1,74
get time/1,103
get byte/1,74
get byte/2,74
get byte/[1

2], 41
get char/1,73, 74
get char/2,74
get char/[1

2], 41
get code/1,74
get code/2,74
get code/[1

2], 41
get singlechar/1,19, 32
get time/1,103, 104
getenv/2,102
GNU-Emacs,20
go/0,18
goal expansion/2,34, 45
goal expansion/2,45, 46
Graphics,9
ground/1,49, 63
GUI, 9
guitracer/0,15, 113

halt/0,25, 112
halt/1,112, 165, 200
halt/[0

1], 46
hashterm/2,63
hashterm/2,63
help/0,21, 186
help/1,21
helpidx library, 21
hooks,33

ignore/1,53
immediate

SWI-Prolog 4.0 Reference Manual

INDEX 219

update view,63
import/1,124, 125, 129
include/1,41, 43
index/1,63, 64, 66
initialization/1,46, 134, 166, 184
install/0,184
int to atom/2,81
int to atom/3,81
integer/1,49, 90
interactor/0,71, 111
intersection/3,94
is/2,31, 88, 90, 92
is absolutefile name/1,105
is list/1, 92
is set/1,94
is list/1, 92

keysort/2,94, 95

last/2,93
leash/1,24, 114
length/2,93
library directory/1,33, 43
library directory/1,34, 35, 42
likes/2,16
limit stack/2,118
limit stack/2,118
line count/2,72
line position/2,72
line count/2,101
line position/2,101
list to set/2,94
listing/0,48
listing/1,25, 48
load files/2,42
load foreign library/1,135
load foreign library/2,135
load files/1,34
load files/2,42
load foreign library/1,184
load foreign library/2,135
load foreign library/[1

2], 43, 134
log/1,91
log10/1,91
logical

update view,63

main/0,28
make/0,8, 34, 43
makedirectory/1,106
makelibrary index/1,35
makelibrary index/1,34
maplist/3,96, 127, 183
max/2,89
member/2,25, 66, 93, 204
memberchk/2,93
memory

layout,37
merge/3,93
mergeset/3,94
messagehook/3,33, 56
messageto string/2,56
messagehook/3,13, 55, 56
messageto string/2,56
metapredicate/1,129, 132
metapredicate/1,130, 132
min/2,89
mod/2,89
module/1,130
module/2,45, 124, 129
moduletransparent/1,129
moduletransparent/1,65, 130, 156, 195
msort/2,94
multi file/1, 196
multifile/1, 47, 63–65, 192
mutexcreate/1,110
mutexdestroy/1,110
mutex lock/1,110
mutex trylock/1,110
mutexunlock/1,110
mutexunlock all/0, 110
mutexcreate/1,110
mutexcreate/2,111
mutex lock/1,110

name/2,80, 81
netmask/4,171
nl/0, 72
nl/1, 72
nl/[0

1], 97
nodebug/0,114
nofileerrors/0,72
noguitracer/0,113

SWI-Prolog 4.0 Reference Manual

220 INDEX

nonvar/1,49
noprotocol/0,113
nospy/1,24, 114
nospyall/0,114
not/1,45, 53, 199
notrace/0,113
notrace/1,114
nth0/3,93
nth1/3,93
nth clause/3,66
nth clause/3,67, 190
number/1,49
numberchars/2,14, 81
numbercodes/2,81
numberchars/2,14, 41, 81
numbercodes/2,14, 41, 80
numbervars/4,80

on signal/3,57
on signal/3,13, 57, 58
once/1,53, 111, 114, 115, 158
online help library, 200
op/3,14, 40, 63, 75, 86
open/3,33, 68, 69
open/4,11, 40, 68–70, 75
openddeconversation/3,119
opennull stream/1,69
openresource/3,187
opensharedobject/2,134
opensharedobject/3,134
openresource/3,13, 182, 185, 187
opensharedobject/2,29, 134
operator

and modules,86

package
clib, 173

peekbyte/1,74
peekbyte/2,74
peekchar/1,74
peekchar/2,74
peekcode/1,74
peekcode/2,74
peekbyte/[1

2], 41
peekchar/[1

2], 41

peekcode/[1
2], 41

phrase/2,60
phrase/3,60
pi/0, 91
PL aborthook(),167
PL abortunhook(),167
PL action(),165
PL agchook(),168
PL atomchars(),141
PL atomnchars(),148
PL call(), 158
PL call predicate(),157
PL charsto term(),155
PL cleanup(),173
PL closeforeign frame(),158
PL closequery(),157
PL compare(),162
PL consfunctor(),151
PL consfunctor v(), 151
PL conslist(), 151
PL context(),158
PL copy term ref(), 139
PL cut query(),157
PL discardforeign frame(),158
PL dispatchhook(),167
PL erase(),163
PL eraseexternal(),164
PL exception(),161
PL fail(), 140
PL foreign context(),141
PL foreign contextaddress(),141
PL foreign control(),141
PL functor arity(), 143
PL functor name(),143
PL get arg(),147
PL get atom(),145
PL get atomchars(),145
PL get atomnchars(),147
PL get chars(),145
PL get float(),146
PL get functor(),146
PL get head(),148
PL get integer(),146
PL get list(), 148
PL get list chars(),146
PL get list nchars(),147

SWI-Prolog 4.0 Reference Manual

INDEX 221

PL get long(),146
PL get module(),146
PL get namearity(), 146
PL get nchars(),147
PL get nil(), 148
PL get pointer(),146
PL get string chars(),145
PL get tail(), 148
PL halt(),174
PL initialise(),172
PL install readline(),173
PL is atom(),144
PL is atomic(),145
PL is compound(),145
PL is float(),145
PL is functor(),145
PL is initialised(),173
PL is integer(),144
PL is list(), 145
PL is number(),145
PL is string(),144
PL is variable(),144
PL load extensions(),166
PL modulename(),159
PL new atom(),141
PL new atomnchars(),147
PL new functor(),143
PL new module(),159
PL new term ref(), 138
PL new term refs(),138
PL next solution(),157
PL on halt(),167
PL openforeign frame(),158
PL openquery(),156
PL pred(),156
PL predicate(),156
PL predicateinfo(), 156
PL put atom(),150
PL put atomchars(),150
PL put atomnchars(),147
PL put float(),150
PL put functor(),150
PL put integer(),150
PL put list(), 150
PL put list chars(),150
PL put list nchars(),147
PL put list ncodes(),147

PL put nil(), 150
PL put pointer(),150
PL put string chars(),150
PL put string nchars(),147, 150
PL put term(),151
PL put variable(),150
PL query(),165
PL quote(),155
PL raiseexception(),160
PL record(),163
PL recordexternal(),164
PL recorded(),163
PL recordedexternal(),164
PL registeratom(),143
PL registerextensions(),166
PL registerforeign(),165
PL resetterm refs(),139
PL retry(),141
PL retry address(),141
PL rewind foreign frame(),158
PL samecompound(),162
PL signal(),164
PL strip module(),158
PL succeed(),140
PL term type(),144
PL threadattachengine(),162
PL threaddestroyengine(),162
PL threadself(),162
PL throw(),161
PL toplevel(),173
PL unify(), 152
PL unify arg(),153
PL unify atom(),152
PL unify atomchars(),152
PL unify atomnchars(),147
PL unify float(),153
PL unify functor(),153
PL unify integer(),153
PL unify list(), 153
PL unify list chars(),152
PL unify list nchars(),147
PL unify list ncodes(),147
PL unify nil(), 153
PL unify pointer(),153
PL unify string chars(),152
PL unify string nchars(),147, 152
PL unify term(),154

SWI-Prolog 4.0 Reference Manual

222 INDEX

PL unregisteratom(),143
PL warning(),164
plus/3,53, 87
portray/1,26, 30, 33, 75–77, 157, 168, 192
portrayclause/1,48
portrayclause/1,48
predicateproperty/2,65
predicateproperty/2,129
predsort/3,95
preprocessor/2,46
print/1,30, 75–77, 98, 99, 157, 205
print/2,76
print/[1

2], 75
print message/2,56, 204
print messagelines/3,56
print message/2,13, 33, 55, 56, 77
print messagelines/3,13, 56
profile file,17
profile/3,117, 188
profile count/3,117
profiler/2,117
prolog/0,19, 29, 54, 111, 112, 130, 173
prolog currentframe/1,190
prolog edit:edit command/2,34, 48
prolog edit:edit source/1,34, 48
prolog edit:load/0,48
prolog edit:locate/2,47
prolog edit:locate/3,34, 47
prolog file type/2,44
prolog frameattribute/3,190
prolog list goal/1,34, 192
prolog load context/2,44
prolog skip level/2,192
prolog to os filename/2,106
prolog traceinterception/4,34, 191
prolog currentframe/1,190
prolog edit:edit command/2,48
prolog edit:edit source/1,47
prolog edit:locate/3,47, 48
prolog file type/2,41, 44
prolog frameattribute/3,67
prolog load context/2,45
prolog to os filename/2,105
prolog traceinterception/4,113, 190
prompt/2,78, 79
prompt1/1,79

properlist/1, 92
properlist/1, 94
protocol/1,113
protocola/1,113
protocolling/1,113
put/1,72, 73
put/2,72, 73
put byte/1,73
put byte/2,73
put char/1,73
put code/1,73
put code/2,73
put byte/[1

2], 41
put char/1,73
put char/[1

2], 41
put code/[1

2], 41

qcompile/1,42, 46, 47
qsaveprogram/1,182
qsaveprogram/2,182, 183
qsaveprogram/2,12, 28, 29, 182, 185
qsaveprogram/[1

2], 12, 13, 20, 27, 30, 46, 134, 172, 176,
183, 184

quintuslibrary, 14, 129, 132

random/1,90
read/1,30, 31, 37, 69, 73, 76–78, 115, 205
read/2,77
readclause/1,77
readclause/2,77
readhistory/6,78
readlink/3, 106
readterm/2,77
readterm/3,78
readclause/1,77, 115
readhistory/6,78
readterm/2,22, 31, 77, 78, 82
readterm/3,77, 86, 112
readterm/[2

3], 77
reconsult/1,42
recorda/2,62
recorda/3,62, 65, 163, 164

SWI-Prolog 4.0 Reference Manual

INDEX 223

recorded/2,62
recorded/3,62, 130, 184
recordz/2,62, 130
recordz/3,62
redefinesystempredicate/1,61
redefinesystempredicate/1,11, 194
rem/2,89
renamefile/2, 104
repeat/0,51, 54
require/1,43, 183
resetprofiler/0,117
resetprofiler/0,117
resource/3,13, 34, 182, 183, 185–187
retract/1,42, 43, 60, 61, 63, 64, 130
retractall/1,60, 61
reverse/2,93, 124
rl addhistory/1,193
rl readinit file/1, 192
round/1,90

samefile/2, 104
see/1,13, 67–69
seeing/1,67, 68, 106
seek/4,70, 71
seen/0,68
select/3,14, 93
set feature/2,14
set input/1,71
setoutput/1,71
setprolog flag/2,33
set stream/2,71
set streamposition/2,71
set tty/2, 101
set feature/2,14
set input/1,71
setprolog flag/2,14, 22, 28, 87
set stream/2,69
setarg/3,79
setenv/2,48, 102
setof/3,96, 199
sformat/2,100
sformat/3,75, 100
shell/0,102, 103
shell/1,48, 101, 103
shell/2,101
shell/[0-2],102
shell/[1

2], 101
shlib library, 201, 203, 208
showprofile/1,117
showprofile/1,117
sign/1,89
sin/1,89, 91
sizefile/2, 104
skip/1,74
skip/2,74
sleep/1,122
sort/2,94–96
sourcefile/1, 44
sourcefile/2, 44
sourcelocation/2,45
sourcefile/2, 47, 66
sourcefile/[1

2], 129
sourcelocation/2,45
spy/1,24, 32, 114
sqrt/1,91
stack

memory management,37
stackparameter/4,118
startup file,17
statistics/0,115
statistics/2,91, 115, 116
streamproperty/2,70
streamposition/3,69, 71, 78
streamproperty/2,71
string/1,49, 99
string concat/3,85
string length/2,85
string to atom/2,85
string to list/2, 85
string concat/3,82
style check/1,115
style check/1,37, 39, 64, 197
subatom/5,82
substring/5,85
subatom/5,85
sublist/3,96
subset/2,94
subtract/3,94
succ/2,87
swi edit library, 48
swi help library, 21
swritef/2,98

SWI-Prolog 4.0 Reference Manual

224 INDEX

swritef/3,98

tab/1,73
tab/2,73
tan/1,91
tell/1, 13, 67–69
telling/1,67, 68, 106
term expansion/2,34, 45
term to atom/2,82
term expansion/2,34, 42, 45, 47, 112
term position/3,70
term to atom/2,75, 155
threadat exit/1,108
threadcreate/3,107
threadexit/1,108
threadget message/1,109
threadjoin/2, 108
threadpeekmessage/1,109
threadself/1,107
threadsendmessage/2,109
threadsignal/2,109
threadexit/1,108
threadjoin/2, 107, 108
threadpeekmessage/1,109
threadself/1,109
threadsignal/2,109, 110
threads/0,111
throw/1, 12, 23, 54, 59, 108, 109, 112, 160,

161, 192
time/1,91, 115, 117
time file/2, 104
time file/2, 103
tmp file/2, 106
told/0,68
trace/0,24, 109, 113, 114, 165
trace/1,32, 113
trace/2,113
tracing/0,113
trim stacks/0,118
trim stacks/0,29, 118
true/0,31, 51, 54
truncate/1,90
tty get capability/3,101
tty goto/2,101
tty put/2,101
tty get capability/3,101
tty goto/2,101

tty put/2,101
ttyflush/0,73, 98

unify with occurscheck/2,50
union/3,94
unix, 33
unix/1,14, 102
unknown/2,34, 64, 114, 129
unloadforeign library/1,135
unsetenv/1,102
update view,63
URL, 102
usemodule/1,125
usemodule/2,125
usemodule/2,34
usemodule/[1

2], 26, 41–43, 124–126, 129, 195
userlibrary, 205
user profile file,17
utf-8, 40

var/1,11, 49, 143
visible/1,114
volatile/1,184

wait for input/3,71
wait for input/3,72
wildcard match/2,121
win exec/2,102
win registryget value/3,102
win shell/2,102
win exec/2,101
win shell/2,101
Window interface,9
windows,33
with mutex/2,111
with mutex/2,110, 161
write/1,30, 76, 82, 98, 99, 146, 148
write/2,76
write canonical/1,76
write canonical/2,76
write ln/1, 97
write term/2,75
write term/3,76
write canonical/[1

2], 12
write term/2,24, 30, 50, 75, 76, 98, 100
write term/3,33

SWI-Prolog 4.0 Reference Manual

INDEX 225

write term/[2
3], 12

writef/1, 97
writef/2, 15, 37, 75, 97, 98
writef/[1

2], 96
writeq/1,76, 98, 99
writeq/2,76

X11, 9
xor/2,90
XPCE,9

SWI-Prolog 4.0 Reference Manual

	Introduction
	SWI-Prolog
	Other books about Prolog

	Status
	Compliance to the ISO standard
	Should you be using SWI-Prolog?
	The XPCE GUI system for Prolog
	Release Notes
	Version 1.8 Release Notes
	Version 1.9 Release Notes
	Version 2.0 Release Notes
	Version 2.5 Release Notes
	Version 2.6 Release Notes
	Version 2.7 Release Notes
	Version 2.8 Release Notes
	Version 2.9 Release Notes
	Version 3.0 Release Notes
	Version 3.1 Release Notes
	Version 3.3 Release Notes
	Version 3.4 Release Notes
	Version 4.0 Release Notes

	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Executing a query

	The user's initialisation file
	Initialisation files and goals
	Command line options
	GNU Emacs Interface
	Online Help
	Query Substitutions
	Limitations of the History System

	Reuse of toplevel bindings
	Overview of the Debugger
	Compilation
	During program development
	For running the result

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	Garbage Collection
	Syntax Notes
	ISO Syntax Support

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names

	Built-in predicates
	Notation of Predicate Descriptions
	Character representation
	Loading Prolog source files
	Quick load files

	Listing and Editor Interface
	Verify Type of a Term
	Comparison and Unification or Terms
	Standard Order of Terms

	Control Predicates
	Meta-Call Predicates
	ISO compliant Exception handling
	Debugging and exceptions
	The exception term
	Printing messages

	Handling signals
	Notes on signal handling

	The `block' control-structure
	DCG Grammar rules
	Database
	Update view
	Indexing databases

	Declaring predicates properties
	Examining the program
	Input and output
	Input and output using implicit source and destination
	Explicit Input and Output Streams
	Switching Between Implicit and Explicit I/O

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Analysing and constructing atoms
	Classifying characters
	Representing text in strings
	Operators
	Character Conversion
	Arithmetic
	Arithmetic Functions
	Adding Arithmetic Functions
	List Manipulation
	Set Manipulation
	Sorting Lists
	Finding all Solutions to a Goal
	Invoking Predicates on all Members of a List
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Terminal Control
	Operating System Interaction
	File System Interaction
	Multi-threading (alpha code)
	Thread communication
	Thread synchronisation
	Thread-support library(threadutil)
	Status of the thread implementation

	User Toplevel Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Obtaining Runtime Statistics
	Finding Performance Bottlenecks
	Memory Management
	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	Using Modules
	Why Using Modules?
	Name-based versus Predicate-based Modules
	Defining a Module
	Importing Predicates into a Module
	Reserved Modules

	Using the Module System
	Object Oriented Programming

	Meta-Predicates in Modules
	Definition and Context Module
	Overruling Module Boundaries

	Dynamic Modules
	Module Handling Predicates
	Compatibility of the Module System
	Emulating meta_predicate/1

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?

	Dynamic Linking of shared libraries
	Using the library shlib for .DLL and .so files
	Static Linking

	Interface Data types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	Calling Prolog from C
	Discarding Data
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Foreign code and Prolog threads
	Miscellaneous
	Catching Signals (Software Interrupts)
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in a C-program

	Linking embedded applications using plld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Memory Allocation
	Debugging Foreign Code
	Name Conflicts in C modules
	Compatibility of the Foreign Interface

	Generating Runtime Applications
	Limitations of qsave_program
	Runtimes and Foreign Code
	Using program resources
	Predicates Definitions
	The plrc program

	Finding Application files
	Passing a path to the application

	The Runtime Environment
	The Runtime Emulator

	Hackers corner
	Examining the Environment Stack
	Intercepting the Tracer
	Hooks using the exception/3 predicate
	Readline Interaction

	Glossary of Terms
	Summary
	Predicates
	Arithmetic Functions
	Operators

