ARTIFICIAL INTELLIGENCE

CHAPTER 1

Outline

- \diamondsuit Course overview
- \diamond What is Al?
- \diamond A brief history
- \diamondsuit The state of the art
- \diamondsuit Introduction to symbolic programming

Administrivia

Jana Kosecka Office: 417 ST II, e-mail: kosecka@cs.gmu.edu Office hours: Thursday 2-4pm or by appt., 417 ST II TA: Cristian Levcovici

Class home page: http://www.cs.gmu.edu/~kosecka/cs580/ for lecture notes, assignments, exams, grading, office hours, etc.

Assignment 0 (lisp primer) due January 25

Book: Russell and Norvig Artificial Intelligence: A Modern Approach Read Chapters 1 and 2 for this week's material

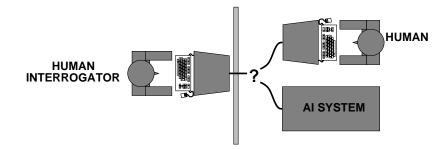
Course overview

- \Diamond intelligent agents
- \diamond search and game-playing
- \Diamond logical systems
- \Diamond planning systems
- \diamond uncertainty—probability and decision theory
- \diamond learning
- \Diamond language
- \Diamond perception
- \diamond robotics
- \diamond philosophical issues

What is AI?

"[The automation of] activities that we associate with human thinking, activ- ities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of mental faculties through the use of computational models" (Charniak+McDermott, 1985)
"The study of how to make computers do things at which, at the moment, peo- ple are better" (Rich+Knight, 1991)	"The branch of computer science that is concerned with the automation of in- telligent behavior" (Luger+Stubblefield, 1993)

Views of AI fall into four categories:


Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Examining these, we will plump for acting rationally (sort of)

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- \diamond "Can machines think?" \longrightarrow "Can machines behave intelligently?"
- \diamondsuit Operational test for intelligent behavior: the Imitation Game

- \diamondsuit Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamond Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not <u>reproducible</u>, <u>constructive</u>, or amenable to <u>mathematical analysis</u>

Thinking humanly: Cognitive Science

1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of <u>logic</u>: <u>notation</u> and <u>rules of derivation</u> for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:

1) Not all intelligent behavior is mediated by logical deliberation

2) What is the purpose of thinking? What thoughts should I have?

Acting rationally

<u>Rational</u> behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

An agent is an entity that perceives and acts

This course is about designing rational agents

Abstractly, an agent is a function from percept histories to actions:

 $f: \mathcal{P}^* \to \mathcal{A}$

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Caveat: computational limitations make perfect rationality unachievable \rightarrow design best program for given machine resources

AI prehistory

Philosophy	logic, methods of reasoning mind as physical system foundations of learning, language, rationality
Mathematics	formal representation and proof algorithms
	computation, (un)decidability, (in)tractability probability
Psychology	adaptation
	phenomena of perception and motor control experimental techniques (psychophysics, etc.)
Linguistics	knowledge representation
	grammar
Neuroscience Control theory	physical substrate for mental activity homeostatic systems, stability simple optimal agent designs

Potted history of AI

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1952–69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning
- 1966–74 AI discovers computational complexity Neural network research almost disappears
- 1969–79 Early development of knowledge-based systems
- 1980-88 Expert systems industry booms
- 1988-93 Expert systems industry busts: "AI Winter"
- 1985–95 Neural networks return to popularity
- 1988– Resurgence of probabilistic and decision-theoretic methods Rapid increase in technical depth of mainstream Al "Nouvelle Al": ALife, GAs, soft computing

State of the art

Which of the following can be done at present?

- \diamond Play a decent game of table tennis
- \diamond Drive along a curving mountain road
- \diamondsuit Drive in the center of Cairo
- \diamondsuit Play a decent game of bridge
- \diamondsuit Discover and prove a new mathematical theorem
- \diamond Write an intentionally funny story
- \diamondsuit Give competent legal advice in a specialized area of law
- \diamond Translate spoken English into spoken Swedish in real time