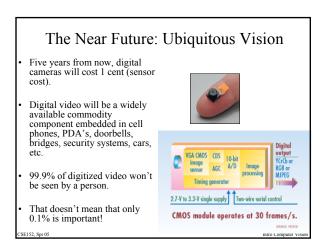

Introduction Introduction to Computer Vision CSE 152 Lecture 1

What is Computer Vision?

- Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images
- Sockman and Shapiro: To make useful decisions about real physical objects and scenes based on sensed images
- Ballard and Brown: The construction of explicit, meaningful description of physical objects from images.
- Forsyth and Ponce: Extracting descriptions of the world from pictures or sequences of pictures"

CSE152 S


Should Computer Vision follow from our understanding of Human Vision? Yes & No

- 1. Who would ever be crazy enough to even try creating machine vision?
- 2. Human vision "works", and copying is easier than creating.
- 3. Secondary benefit in trying to mimic human vision, we learn about it.
- 1. Why limit oneself to human vision when there is even greater diversity in biological vision
- 2. Why limit oneself to biological when there may be greater diversity in sensing mechanism?
- 3. Biological vision systems evolved to provide functions for "specific" tasks and "specific" environments. These may differ for machine systems
- Implementation hardware is different, and synthetic vision systems may use different techniques/methodologies that are more appropriate to computational mechanisms

Intro Computer Vision

Why study Computer Vision?

- · Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - Hollywood special effects
 - face recognition
- Various deep and attractive scientific mysteries
 how does object recognition work?
 - Beautiful marriage of math, biology, physics, engineering
- · Greater understanding of human vision

Applications: touching your life Football · Robotic control Movies Autonomous driving Surveillance • Space: planetary exploration, docking HCI – hand gestures, • Medicine – pathology, American Sign Language surgery, diagnosis Face recognition & Microscopy Biometrics · Military · Road monitoring · Remote Sensing · Industrial inspection E152. Spr 05

Related Fields

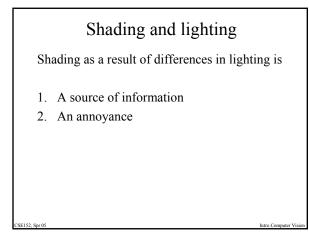
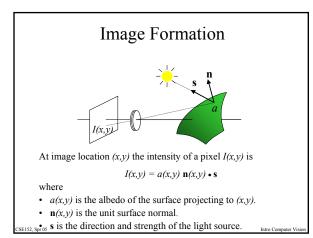
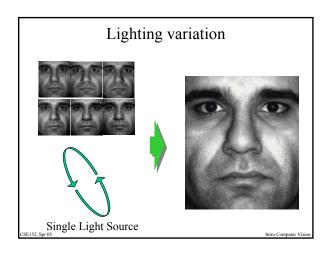

- Image Processing
- · Computer Graphics
- Pattern Recognition
- Perception
- · Robotics
- AI

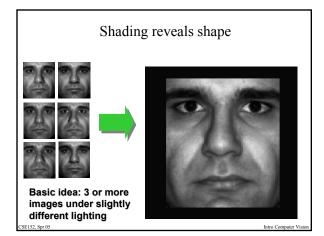
Image Interpretation - Cues

- Variation in appearance in multiple views
 - stereo
 - motion
- · Shading & highlights
- Shadows
- Contours
- Texture
- Blur
- · Geometric constraints
- · Prior knowledge

n


Intro Computer Visio




Illumination Variability

"The variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to change in face identity." -- Moses, Adini, Ullman, ECCV '94

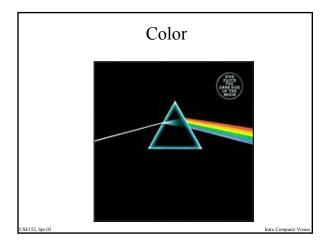
The course

- Part 1: The Physics of Imaging
- Part 2: Early Vision (Segmentation)
- Part 3: Reconstruction (Shape-from-X)
- Part 4: Recognition

Intro Computer Visio

Part I of Course: The Physics of Imaging · How images are formed - Cameras · What a camera does · How to tell where the camera was located - Light · How to measure light · What light does at surfaces · How the brightness values we see in cameras are determined Color · The underlying mechanisms of color

· How to describe it and measure it


Cameras, lenses, and sensors

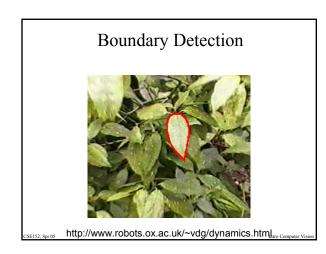
•Pinhole cameras •Lenses ·Projection models •Geometric camera parameters

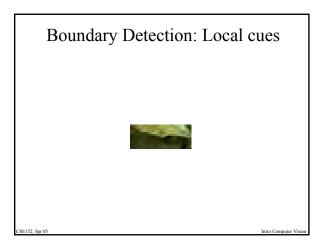
Figure 1.16 The first photograph on record, la table servie, obtained by phore Niepce in 1822. Collection Harlinge-Viollet.

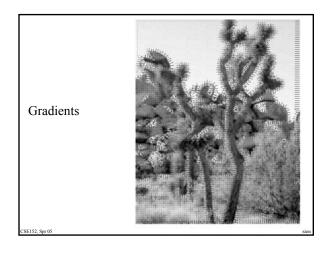
From Computer Vision, Forsyth and Ponce, Prentice-Hall, 2002.

Part II: Early Vision in One Image

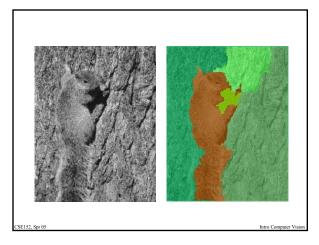
- · Representing small patches of image
 - For three reasons
 - · Sharp changes are important in practice --- known as "edges"
 - · Representing texture by giving some statistics of the different kinds of small patch present in the texture. - Tigers have lots of bars, few spots

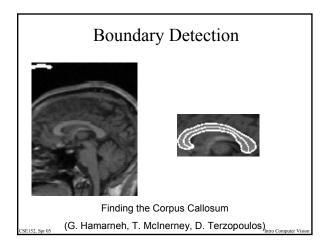

 - Leopards are the other way
 - We wish to establish correspondence between (say) points in different images, so we need to describe the neighborhood of the points

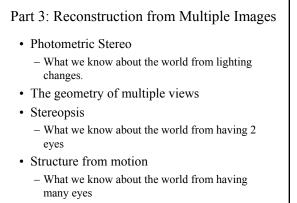

Segmentation

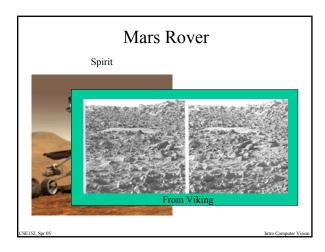

- Which image components "belong together"?
- Belong together \cong lie on the same object
- Cues
 - similar color
 - similar texture
 - not separated by contour
 - form a suggestive shape when assembled

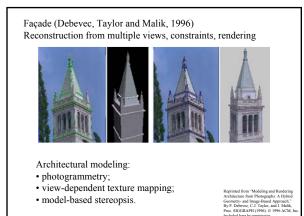
Texture Patterns [Leung, Malik] · Regular texture pattern, repeated texture elements

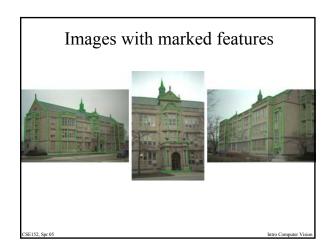

- · Segment image based on texture
- · Surface shape from texture pattern

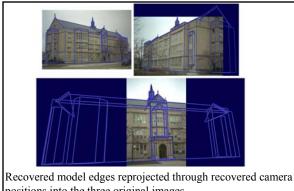


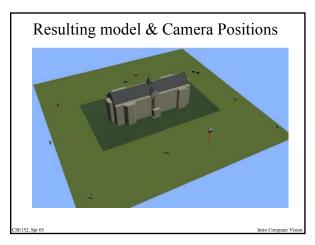


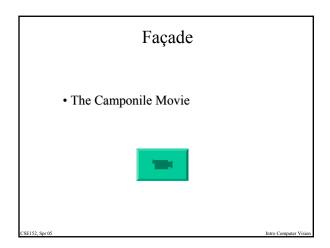


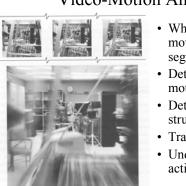






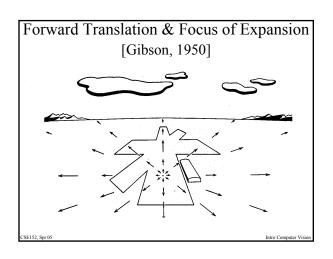


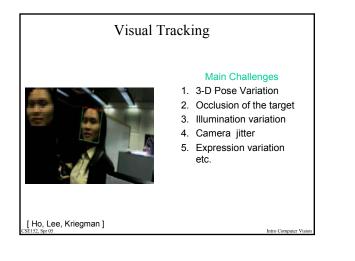


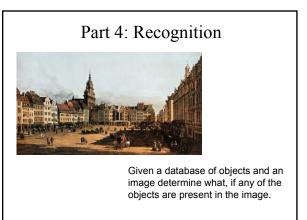


positions into the three original images

SE152. Spr 05

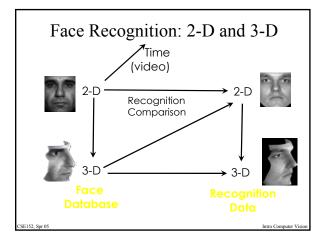



Video-Motion Analysis


- Where "things" are moving in image segmentation.
- Determining observer motion (egomotion)
- Determining scene structure
- Tracking objects
- Understanding activities & actions

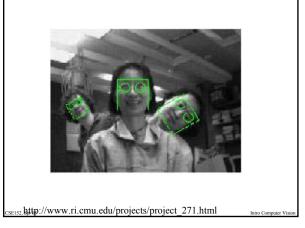
Tracking

- Use a model to predict next position and refine using next image
- Model:
 - simple dynamic models (second order dynamics)
 - kinematic models
 - etc.
- Face tracking and eye tracking now work rather well


Recognition Challenges

- Within-class variability
- Different objects within the class have different shapes or different material characteristics
- Deformable
- Articulated
- Compositional
- Pose variability:
 - 2-D Image transformation (translation, rotation, scale)
 3-D Pose Variability (perspective, orthographic projection)
- Lighting
 - Direction (multiple sources & type)
 - Color
 - Shadows
- Occlusion partial
- Clutter in background -> false positives

Face Detection: First Step



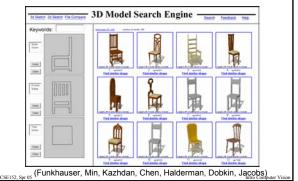
Object Recognition: 2-D Image-based

• Some objects are 2D patterns

- e.g. faces

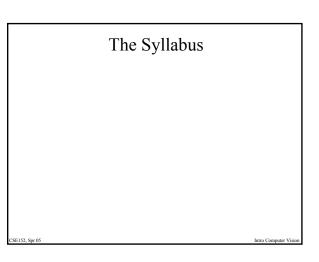
- Build an explicit pattern matcher
 - discount changes in illumination by using a parametric model
 - changes in background are hard
 - changes in pose are hard

Model-Based Vision



- · Given 3-D models of each object
- Detect image features (often edges, line segments, conic sections)
- Establish correspondence between model & image features
- Estimate pose

SE152, Spr 05


• Consistency of projected model with image.

Object Classes: Chairs

Announcements

- Class Web Page is up: – http://www.cs.ucsd.edu/classes/sp05/cse152/
- Assignment 0: "Getting Started with Matlab" (to be posted soon), due 4/7/05
- Read Chapters 1 Trucco & Verri

