
A Neural Support Vector Network Architecture with Adaptive Kernels

Pascal Vincent & Yoshua Bengio
Département d’informatique et recherche opérationnelle

Universit́e de Montŕeal
C.P. 6128 Succ. Centre-Ville, Montr´eal, Québec, Canada, H3C 3J7

{vincentp,bengioy }@iro.umontreal.ca

Submission to IJCNN 2000

Abstract

In the Support Vector Machines (SVM) framework, the positive-definite kernel can be seen as representing a
fixed similarity measure between two patterns, and a discriminant function is obtained by taking a linear combina-
tion of the kernels computed at training examples called support vectors. Here we investigate learning architectures
in which the kernel functions can be replaced by more general similarity measures that can have arbitrary internal
parameters. The training criterion used in SVMs is not appropriate for this purpose so we adopt the simple criteri-
on that is generally used when training neural networks for classification tasks. Several experiments are performed
which show that suchNeural Support Vector Networksperform similarly to SVMs while requiring significantly
fewer support vectors, even when the similarity measure has no internal parameters.

1 Introduction

Many pattern recognition algorithms are based on the notion of a similarity measure, and generalization is obtained
by assigning the same class to similar patterns. In the Support Vector Machines (SVM) framework [3, 11], the
positive-definite kernel represents a kind of fixed similarity measure between two patterns, and adiscriminant
function is obtained by taking a linear combination of the kernels computed at training examples calledsupport
vectors. In this paper we investigate learning architectures in which the kernel functions can be replaced by more
general similarity measures with arbitrary internal parameters that may be optimized jointly with the weights as-
signed to the support-vectors.
Recent work studies adapting a positive-definite kernel based on geometrical considerations after a first SVM opti-
mization run [1]. And [7] investigates ways of using a fixed but not necessarily positive-definite similarity matrix
with SVMs. There is also much previous work on learning similarity measures, e.g, [8] adapts the scale of each
dimension in a euclidean K-nearest-neighbor classifier, and [4, 2] use a convolutional neural network to learn a
similarity measure (respectively for signature verification and thumbprint recognition). In this paper, we consider
the minimization of the sum of “margin losses” over the training examples, wheremargin is the signed distance
of the discriminant function output to the decision surface (as in AdaBoost [10]). We call this type of architecture
“Neural Support Vector Networks” or NSVN. To allow adaptation of parameters inside the kernel, we minimize the
squared loss with respect to the hyperbolic tangent of the discriminant function. This criterion, often used to train
neural networks for classification, can also be framed as a criterion for maximizing this margin. Our experiments
with NSVNs suggest that such architectures can perform similarly to SVMs while requiring significantly fewer
support vectors, even when the similarity measure has no internal parameters.

2 Support Vector Machines and Motivations

We consider pattern classification tasks with training data{(xi, yi)}, with xi ∈ Rn, andyi ∈ {−1,+1} is the class
associated to input patternxi. SVMs [3, 11] use a discriminant function with the following form:

fα,b(x) =
∑

(xi,yi)∈sv
αiyiK(x, xi) + b (1)

wheresv, the set ofsupport vectors, is a subset of the training patterns, andsign(f(x)) gives the class for any
patternx. Parametersα andb are learned by the SVM algorithm, which also finds the set of support vectors, in

K K KK

Linear classifier with
parameters b and α

Mapped input vector x

Kernels with shared
parameters θ

.x+bαoutput =
Linear Classifier

Input vector x:

Support vectors:

θ θ θ θ

f(x)

cost function
being optimized

True class y of x

Figure 1: The Neural Support Vector Network Architecture (dotted path is used only during training)

that it brings theαi of all non-support-vectors down to 0. The kernelK is a function fromRn × Rn to R that
must verify Mercer’s conditions, which amounts to being positive definite. For example we have used the Gaussian

or RBF kernelKσ(x1, x2) = e
−||x1−x2||22

σ2 . Mercer’s conditions are necessary and sufficient for the existence of
an implicit mappingΦ from the input space to an induced Hilbert space, called the kernel-feature space orΦ-
space, such that the kernel actually computes a dot product in thisΦ-space:K(x1, x2) =< Φ(x1),Φ(x2) > This
“kernel trick” allows the straightforward extension of the dot-product based SVM algorithm, originally designed for
finding a margin-maximizinglinear decision surface (hyperplane) in input space, to finding a margin-maximizing
linear decision surface inΦ-space, which typically correspond to anon-lineardecision surface in input space[3].
Themargin that SVM learning maximizes is defined as the orthogonal Euclidean distance between the separating
hyperplane and the nearest of the positive and negative examples, and is motivated by theoretical results that link it
to bounds on the generalization error [11]. SVM learning amounts to solving a constrained quadratic programming
problem inα, the details of which can be found in [3] and [6] for the “soft-margin” error-tolerationg extension,
which adds a complexity control parameterC. Typically, a range of values forC and parameters of the kernel are
tried and decided upon according to performance on a validation set. This approach is a serious limiting factor for
the research on complex kernels with more than one or two parameters. Yet experiments [5] show that the choice
of an appropriateK and parameters can be critical.
Unfortunately, the mathematical formulation of SVMs does not easily allow to incorporate trainable adaptive k-
ernels. In particular it is not clear whether the theoretical considerations underlying SVM training still hold for
kernels with parameters that are not kept fixed during the optimization. Also the positive definitess constraint limits
the choice of possible kernel functions. All these considerations lead us to the design of the architecture described
in the following section.

3 Neural Support Vector Networks

Figure 1 shows the general architecture of a Neural Support Vector Network (NSVN). SVMs and NSVNs yield
decicion functionsf of the same form (see equation 1). Consequently, when using the same fixedK, the function
spaceF being considered by both algorithms is nearly1 identical. However in NSVN training,K does not have to
be a fixed positive-definite kernel, it can be any scalar function of two input objects, and may have parameters that
can be learned. Computing the discriminant functionf on a pointx can be seen as a two-stage process:
1. map inputx into x̃ by computing the values of all support-vector-centered similarity measures forx:
x̃ = Ψ(x) = (Kθ(x, x1),Kθ(x, x2), ...,Kθ(x, xm)) where{x1, x2, ...xm} = sv is the set ofm support vectors
1In NSVN training we don’t usually constrain theαi ’s to be positive, thus we allow a support-vector-centered kernel to “voteagainstits

class”.

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

exp(-m) [AdaBoost]
log(1+exp(-m)) [LogitBoost]

1-tanh(m) [Doom II]

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

classical squared error as a margin cost function
squared error after tanh with 0.65 target

Figure 2: Loss functions of the marginm = yf(x) (horizontal axis). Left: The loss functions used in AdaBoost,
LogitBoost and Doom II. Right: The classical squared error criterion (with±1 target), and squared error after tanh
squashing with±.65 target, expressed as functions of the marginm.

andθ the parameters of the similarity-measure. Let us callΨ-space the resulting space.

2. apply a linear classifier oñx: fθ,α,b(x) =< α, x̃ > +b =< α,Ψ(x) > +b
Suppose first that we are given a fixed set of support vectorssv. Finding a decision functionf ∈ F of the form
of equation 1 amounts to constructing an appropriate linear classifier inΨ space. Notice the difference with SVM
training which finds a margin maximizing linear classifier inΦ-space. While the existence of an implicitΦ-space
requires a positive definite kernel, andΦ may be unknown analytically, aΨ-space can be associated to anyK (even
non-symmetric) for a given set of support, and is defined, precisely, by its mapping.
There are many possible algorithms for constructing a reasonable linear classifier; for instance a linear SVM could
be used (see [7]). In this paper however, we will limit our study to algorithms based on the backpropagation of
error gradients. These allow error gradients to be propagated back to parametersθ of a parameterized similarity
measureKθ, and adapt them on the fly, which was one of our primary design goals. Formally, for a training set
S (of input/output pairs(x, y), with x ∈ X , y ∈ {−1,+1}), a gradient based training algorithm will choose the
parameters of the decision functionfθ,α,b ∈ F that minimize an empirical error defined as the sum of the losses
Q(fθ,α,b(x), y) incurred on each pattern(x, y) ∈ S, withQ : R× {−1,+1} → R. Training consists in searching
for (θ, α, b) which minimize this average empirical loss:

fθ?,α?,b? = arg min
θ,α,b

∑
(xi,yi)∈S

Q(fθ,α,b(xi), yi)

3.1 Margin Loss Functions

With NSVNs, we are no longer maximizing the geometrically inspired SVM margin. [10] use another definition
of marginand relate AdaBoost’s goood performance to the maximization of this margin. The support vector form
of decision functions can to some extent be framed as a linear combination of weak classifiers `a la AdaBoost, each
application of the kernel to a support point providing one possible weak classifier. Formally, having a parameterized
decision functionf(x) whose sign determines the decided class, we define the individualmargin of a given sample
xi with true classyi ∈ {−1,+1} asmi = yif(xi), from which we define a loss functionc(yf(x)) = c(m) =
Q(fθ,α,b(x), y). The algorithm searches for the parameters(θ, α, b) that minimize

∑
(xi,yi)∈S c(mi) wherec(m)

is the margin loss function.
[9] compare the performance of several voting methods that were shown to optimize a margin loss function.Ad-
aBoostuses an exponential (e−m) margin loss function [10].LogitBoostuseslog2(1 + e−2m) andDoom II [9]
approximates a theoretically motivated margin loss with1 − tanh(m). As can be seen in Figure 2 (left), all these
functions encourage large positive margins, and differ mainly in how they penalize large negative ones. In particular
1 − tanh(x) won’t penalize outliers to excess, and proved to work better especially in the case of label noise [9].
These margin loss functions have a problem if the parameters allow arbitrary scaling of the discriminant function
f , which does not change the decision function, so the parameters could grow indefinitely to maximize margins.

For the 3 previously mentioned voting methods the parametersαi’s are constrained, so that the problem does not
appear. Yet, while it makes perfect sense to constrain

∑
i αi = 1 for instance (AdaBoost), how to constrain kernel

parameters, or even justb, is much less clear.
Now, our experiments suggest that the well known squared loss functions(f(x)− y)2, and(tanh(f(x))− 0.65y)2

often used in neural networks perform rather well, even without constrained parameters. It is interesting to express
them as margin loss functions to see why:

Squared loss: (f(x) − y)2 = (1−m)2

Squared loss aftertanh: (tanh(f(x)) − 0.65y)2 = (0.65− tanh(m))2

Both are illustrated on figure 2 (right). Notice that the squared loss aftertanh has a shape very similar to the margin
loss function used in Doom II, except that it slightly increases for large positive margins, which is why it behaves
well with unconstrained parameters.

3.2 Choice of the set of support vectors

So far in our discussion, we assumed that we were given an appropriate setsv of support vectors. We have not yet
discussed how to choose such a set. The SVM algorithm considers all training data and automatically chooses a
subset as its support vectors by driving the correspondingαi’s down to 0. On the contrary, a simple unconstrained
empirical error minimization procedure that would consider all data is not very likely to lead to many zeroαs. There
are several ways to address this issue:
1. Add a regularization term to the loss function that would push downαi’s and let the algorithm choose its support

set by itself, for instance use a penalty termλ
∑
i |αi|, whereλ allows some control on the number of support

vectors.

2. Use a heuristic to choose the support vectors. For instance we could use the support vectors returned by a SVM,
or use geometric considerations such as points that are closest to points of the other class.

3. Pickm support points at random,m being seen as a capacity control parameter.
One difference with some classical RBF networks is that the support vectors are training examples (not free parame-
ters). Another one is that our ultimate goal is to learn, simultaneously with theα’s, a similarity measure (which may
be more sophisticated than a Mahalanobis distance), that is applied to all the support vectors (whereas generally in
RBFs, there may be a different variance for each cluster).

4 Experimental Results

In a first series of experiments we compared the performance of NSVN (pickingsv at random) and SVM when
using the same fixed kernel. The objective of the experiment was to see if the training criterion that we had set up
could learn the parameters “correctly” in the sense of giving a decision function that performs comparably to SVMs.
The experiments were performed with 5 data sets, four of which were obtained from the UCI Machine Learning
database. All involve only 2-way classification. Each of the data set was split in three approximately equal subsets
for training (choosing the parameters), validation (controlling capacity, either with the box constraintC for SVMs
or with the number of support vectorsm for NSVNs), and out-of-sample testing. The breast cancer (200 train +
200 validation + 283 test) and diabetes (200 train + 200 validation + 368 test) data was normalized according to the
input values in the training set. The ionosphere data (100 train + 100 validation + 151 test) was used as is. For each
of these these we used a Gaussian RBF-Kernel withσ chosen roughly with a few validation-runs on the validation
set. The Corel data (296 train + 295 validation + 296 test) consists of 7x7x7 smoothed histogram counts (to the
power 1

2) for the 3 colors of images from the Corel data set[5]. The task was the discrimination of two types of
images. For this dataset, we used a kernel of the formexp(−||x0.25

1 − x0.25
2 ||1/σ), as suggested in [5]. For the

Wisconsin Breast Cancer database, we also checked how the algorithms performed when 20% label noise (labels
flipped with a probability of 20%) had been added to the training set.
We run SVM optimizations for several values of the complexity-control parameterC. Similarly, we run NSVN
optimizations for several values ofm, each time trying 10 different random choices ofm support vectors and
keeping the one that minimized the average empirical loss(tanh(f(x))−0.65y)2. For both algorithms we retained
the run with lowest error on the validation set, and the results of the comparative experiments are given in table 1.

Note that we also give the average error on the joined test and validation sets which are a bit less noisy (but slightly
biased, although the bias should be similar for both SVM and NSVN).

SVM NSVN
of test valid. #m of test valid.

C S.V. error +test S.V. error +test

Breast Cancer 15 35 3.5% 3.5% 20 2.8% 3.7%
Noisy Breast Cancer 0.1 149 3.5% 3.7% 10 4.5% 4.1%
Diabetes 0.5 123 23.0% 24.1% 5 24.2% 24.3%
Ionosphere 3 59 6.6% 5.9% 45 7.2% 5.9%
Corel 20 197 12.8% 11.3% 150 12.5% 11.3%

Table 1: Comparison of number of support vectors and error rates obtained with SVM and NSVN. As can be seen,
NSVN performs comparably to SVM, often with far fewer support vectors.

Our next experiment aimed at showing that the NSVN architecture was, indeed, able to learn a useful similarity-
measureK that is not necessarily positive-definite, together with the weights of the support-vectors. For this,
we used a traditional multilayer perceptron (MLP) with one hidden layer, sigmoid activation, and a single output
unit, as our similarity measureK(x1, x2). The input layer receives the concatenation of the two inputsx1 and
x2, and the MLP performs the similarity computation, which can be stated asKw0,b0,w1,b1(x1, x2) = tanh(b1 +
w1.sigmoid(b0 + w0.(x1, x2)))
This was tried on the Breast-Cancer data, using 3 hidden units and the same training procedure as previously
described (different values ofm, 10 random trials each). It achieved 3.0% error on the test-set and 3.1% error error
on the combined validation and test set, with 30 support vectors. This shows that, although the parameters of the
similarity measure were initialized at random, NSVN training was able to find values appropriate for the requested
classification task.

5 Conclusion and Future Work

We have proposed a new architecture that is inspired from SVMs but is driven by the objective of being able to
learna similarity function that is not necessarily a positive definite kernel.
In the process, we have uncovered a link between the loss functions typically used in neural network training and
the kind ofmargincost functions optimized by AdaBoost and similar algorithms, and outlined the differences with
the geometrically-inspiredmargin maximized by SVM learning. Moreover, we have shown experimentally that
both approaches perform comparably, in terms of expected errors, which may suggest that the “support-vector kind
of architecture” (which determines the form of discriminant functions that are considered) may be responsible for
their good performance, and not only the particular kind of margin-maximization that is used.
Several experiments on classification data sets showed that the proposed algorithm, when used with the same fixed
Kernel, performs comparably to SVM, often with substantially fewer support-vectors (chosen at random!), which
is in itself interesting, as it allows an equally substantial improvement in terms of speed.
But more important, we have defined a framework that opens the way to the exploration of more interesting adaptive
similarity measure than the fixed positive-definitie kernels typically used with SVM. Trainable parametric similarity
measures can now be used, that were designed to incorporate prior knowledge specific to the task at hand (such as
those proposed in [4, 2]).
A large number of open questions remain though, in particular regarding the merits of various margin cost function,
or the way to choose the set of support vectors...

Acknowledgements
The authors would like to thank Olivier Chapelle, Patrick Haffner and L´eon Bottou for helpful discussions, as well
as the NSERC Canadian funding agency, and the IRIS network for support.

References
[1] S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions.Neural Networks, 1999.

to appear.

[2] P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition.Neural Computation, 5(3):402–418, 1993.

[3] B. Boser, I. Guyon, and V. Vapnik. An algorithm for optimal margin classifiers. InFifth Annual Workshop on Computa-
tional Learning Theory, pages 144–152, Pittsburgh, 1992.

[4] J. Bromley, J. Benz, L. Bottou, I. Guyon, L. Jackel, Y. LeCun, C. Moore, E. Sackinger, and R. Shah. Signature veri-
fication using a siamese time delay neural network. InAdvances in Pattern Recognition Systems using Neural Network
Technologies, pages 669–687. World Scientific, Singapore, 1993.

[5] O. Chapelle, P. Haffner, and V. Vapnik. Svms for histogram-based image classification.IEEE Transactions on Neural
Networks, 1999. accepted, special issue on Support Vectors.

[6] C. Cortes and V. Vapnik. Soft margin classifiers.Machine Learning, 20:273–297, 1995.

[7] T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on pairwise proximity data. In12th Annual
Conference on Neural Information Processing Systems (NIPS’98), 1999.

[8] D.G. Lowe. Similarity metric learning for a variable-kernel classifier.Neural Computation, 7(1):72–85, 1995.

[9] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In S. A. Solla, T. K. Leen, and K-R.
Mller, editors,Advances in Neural Information Processing Systems 12. The MIT Press, 2000. Accepted for Publication.

[10] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods.The Annals of Statistics, to appear, 1998.

[11] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New-York, 1995.

