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BACK-PROPAGATION NEURAL NETWORK
Three-layer back-propagation neural network
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Example: Vacations Back-
Propagation Learning
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Back-Propagation Learning
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Example: Trained NN
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Consider the XOR Truth Table

Input 1 Input 2 Output
i1 i2 o4

0 0 0
0 1 1
1 0 1
1 1 0
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For i1 = i2 = 0
o1 = o2 = 0

o3 =
0

1

⎧
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IFa3 ≤ 0.02

IFa3 > 0.02

3 2 1 3 2a = w o + w o× × a3 = 1x0 +1x0 = 0

o3 = 0

Example 1   (i1, i2) = (0, 0)
o4 = 0
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o  = 0

a4= w 1 o1+ w 5 o3+ w 4 o2= -1 0 + 2 0 + 1
= 0

× × × × × × 0
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Example 2     (i1, i2) = (1, 0)
o4 = 1

o1 = 1, o2 = 0

a = w o + w o3 2 1 3 2 = 1x1 +1x0 = 1× ×

o3 = 1
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o  = 1

a4= w 1 o1+ w 5 o3+ w 4 o2= -1 1+ 2 1 + -1
= 1

× × × × × × 0
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i =
1

1 + e
− α ( Weight ×Input− θ∑ )o

where:
α
θ

⎧
⎨
⎩

the degree of fuzziness ( constant during training )
the threshold level ( its value changes )

Fuzzy (Sigmoid) Activation Function
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Backpropagation Learning: Basic 
Concepts 1
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Backpropagation Learning: Basic 
Concepts 2

δ = 0.5 ∑
k=1

n
(tk - o k) 2

δk = error occurring in the output layer k 
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The Back-Propagation Learning Algorithm

Step 1. Weight initialization
Set all weights and node thresholds to small random numbers.

Step 2. Calculation of output levels
(a) The output level of an input neuron is determined by the instance presented to

the network.
(b) The output level o j of each hidden and output neuron is determined

= 

where wij is the weight from input oi , is a constant, is the node threshold, 

and f is a  sigmoid function.

oj = f( w jioi − θ j )∑ 1
1 + e−α ( w ijoi −θ j )∑

α θ j

(1)
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Step 3. Weight training
(a) The error gradient (gradient of the activation function x error of the neuron output) 

is completed as follows:
For the output neurons:

where dj is the desired (target) output activation and oj is the actual output 
activation at output neuron j.
For the hidden neurons:

where is the error gradient at neuron k to which a connection points from
hidden neuron j.

(b) The weight adjustment is computed as

where is a trial-independent learning rate (0< <1) and is the error gradient at
neuron j.

δ j = oj(1− oj )(dj − oj )

δ j = oj(1− o j ) δk
k
∑ wkj

δ k

Δwji = ηδ jo i

η η δ j

(2)

(3)

(4)
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(c) Start with the output neuron and work backward to the hidden layers recursively.  
Adjust  weights by

where wji(t) is the weight from neuron i to neuron j at iteration t and is the 

weight adjustment.

(d) Perform the next iteration (repeat Steps 2 and 3) until the error criterion is met, 
i.e., the algorithm converges.  An iteration includes: presenting an instance,
calculating activation levels, and modifying weights.

wji (t +1) = wji(t) + Δw ji

Δwji

(5)
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Example
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Back-Propagation Network for Learning the XOR
Function with Randomly Generated Weights
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Step 1. The weights are randomly initialized as follows: w13 = 0.02, w14 = 0.03, w12 =
0.02, w23 = 0.01, w 24 = 0.02

Step 2. Calculation of activation levels:: Consider a training instance (the fourth row 
from the XOR table) with the input vector = (1, 1) and the desired output = 0.
From the figure, 

o3 = i3 = 1
o4 = i4 = 1

From equation (1) for = 1 and = 0

o2 = = 0.678

α θj

1 / [1+ e−(1×0.01+1×0.02)]

o1 = = 0.5091 / [1+ e−(0.678× (−0.02) +1×0.02+1×0.03) ]
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δ1 = 0.678(1 − 0.678)(0 − 0.678) = -0.148
Δ w13 = 0.3(-0148)× 1 = -0.044

w13 = 0.02-0.044 = -0.024

δ2 = 0.678(1− 0.678)(-0.148)(−0.02) = 0.0006

Eq. 2 δ j = oj(1− oj )(dj − oj )

Eq. 2

Eq. 5

δ j = oj(1− o j ) δk
k
∑ wkj

From Δwji = ηδ jo i Δ w23 = 0.3× 0.0006× 1 = 0.00018

w23 = 0.01 + 0.00018 = 0.01018From w ji ( t + 1) = w ji (t) + Δw ji

Eq. 4 Δwji = ηδ jo i

w ji ( t + 1) = w ji (t) + Δw ji

Step 3. Weight training :  Assume the learning rate = 0.3δ   
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The Previous Network with New Weights
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4.98

5.62

5.60

-11.30

4.98
o3 = 1
o4 = 0

1 / [1 + e − (1× 5.62 + 0 × 5 .62 ) ]o
2 = = 0.9964

o 1 = = 0.99991 / [1 + e
− (1× 4. 98 ) + 0 × 4 .98 − 11 .30 × 0 .9964 )

]


