http://www.calsci.com/Applications.html
Neural Networks at your Fingertips



Every newcomer to the field of artificial neural networks, who wants to build own applications based on own software simulators, faces two major problems: 

· turning the theory of a particular network model into the design for a simulator implementation can be a challenging task, and 

· often it is not obvious how to embed an application into a particular network model. 

The programs on this site deal with both these issues. You will find: 

· ready-to-reuse software simulators for eight of the most popular neural network architectures, 

· coded in portable, self-contained ANSI C, 

· with complete example applications from a variety of well-known application domains. 

Here we go. 

	Network 
	Application 
	Description 

	ADALINE 
Adaline Network 
	Pattern Recognition 
Classification of Digits 0-9 
	The Adaline is essentially a single-layer backpropagation network. It is trained on a pattern recognition task, where the aim is to classify a bitmap representation of the digits 0-9 into the corresponding classes. Due to the limited capabilities of the Adaline, the network only recognizes the exact training patterns. When the application is ported into the multi-layer backpropagation network, a remarkable degree of fault-tolerance can be achieved. 

	BPN 
Backpropagation Network 
	Time-Series Forecasting 
Prediction of the Annual Number of Sunspots 
	This program implements the now classic multi-layer backpropagation network with bias terms and momentum. It is used to detect structure in time-series, which is presented to the network using a simple tapped delay-line memory. The program learns to predict future sunspot activity from historical data collected over the past three centuries. To avoid overfitting, the termination of the learning procedure is controlled by the so-called stopped training method. 

	HOPFIELD 
Hopfield Model 
	Autoassociative Memory 
Associative Recall of Images 
	The Hopfield model is used as an autoassociative memory to store and recall a set of bitmap images. Images are stored by calculating a corresponding weight matrix. Thereafter, starting from an arbitrary configuration, the memory will settle on exactly that stored image, which is nearest to the starting configuration in terms of Hamming distance. Thus given an incomplete or corrupted version of a stored image, the network is able to recall the corresponding original image. 

	BAM 
Bidirectional Associative Memory 
	Heteroassociative Memory 
Association of Names and Phone Numbers 
	The bidirectional associative memory can be viewed as a generalization of the Hopfield model, to allow for a heteroassociative memory to be implemented. In this case, the association is between names and corresponding phone numbers. After coding the set of exemplars, the network, when presented with a name, is able to recall the corresponding phone number and vice versa. The memory even shows a limited degree of fault-tolerance in case of corrupted input patterns. 

	BOLTZMAN 
Boltzmann Machine 
	Optimization 
Traveling Salesman Problem 
	The Boltzmann machine is a stochastic version of the Hopfield model, whose network dynamics incorporate a random component in correspondence with a given finite temperature. Starting with a high temperature and gradually cooling down, allowing the network to reach equilibrium at any step, chances are good, that the network will settle in a global minimum of the corresponding energy function. This process is called simulated annealing. The network is then used to solve a well-known optimization problem: The weight matrix is chosen such that the global minimum of the energy function corresponds to a solution of a particular instance of the traveling salesman problem. 

	CPN 
Counterpropagation Network 
	Vision 
Determination of the Angle of Rotation 
	The counterpropagation network is a competitive network, designed to function as a self-programming lookup table with the additional ability to interpolate between entries. The application is to determine the angular rotation of a rocket-shaped object, images of which are presented to the network as a bitmap pattern. The performance of the network is a little limited due to the low resolution of the bitmap. 

	SOM 
Self-Organizing Map 
	Control 
Pole Balancing Problem 
	The self-organizing map is a competitive network with the ability to form topology-preserving mappings between its input and output spaces. In this program the network learns to balance a pole by applying forces at the base of the pole. The behavior of the pole is simulated by numerically integrating the differential equations for its law of motion using Euler's method. The task of the network is to establish a mapping between the state variables of the pole and the optimal force to keep it balanced. This is done using a reinforcement learning approach: For any given state of the pole, the network tries a slight variation of the mapped force. If the new force results in better control, the map is modified, using the pole's current state variables and the new force as a training vector. 

	ART1 
Adaptive Resonance Theory 
	Brain Modeling 
Stability-Plasticity Demonstration 
	This program is mainly a demonstration of the basic features of the adaptive resonance theory network, namely the ability to plastically adapt when presented with new input patterns while remaining stable at previously seen input patterns. 


You can download the complete package in a comprehensive .zip file. This file will extract to a directory structure, containing the C source, MS Visual C++ 4.0 makefile, Win32 executable, and the generated output for each of the above mentioned programs. 

These programs have been written by me when I first started educating myself about neural networks back in the 1990's. As a software engineer I preferred a "computational approach" to the field. When I couldn't find anything that suited my needs, I went on to build my own software simulators and put them to use on different applications. Later I realized that this approach might be interesting to like-minded people and thought about using these programs as a framework for a textbook on neural network application building. Before starting to work on the book, I wanted feedback, and the result has been this web site. 

To cut a long story short, the book never got written, but the web site became pretty popular. Over the years it has been of help to many individuals ranging from total newbies to senior researchers who are extremely knowledgeable in the field. Its content has been used in scientific and commercial applications and has served as reference material in various university courses all over the world. At one time it has even been among the top-10 Google search results for "neural networks", right in the middle of all the major universities and research institutions in the field. 

Because of it being so successful I have long given up to try and help all the people emailing me with questions, but as a replacement I finally came up with the idea of a discussion forum. I hope that many people will enjoy helping each other while studying neural networks or trying to get them to work on their own applications. And yes, I guess I am going to write that textbook after retirement ... 

Thanks to everyone for comments and encouragement 
Karsten Kutza 

Where are neural networks going?

A great deal of research is going on in neural networks worldwide. 

This ranges from basic research into new and more efficient learning algorithms, to networks which can respond to temporally varying patterns (both ongoing at Stirling), to techniques for implementing neural networks directly in silicon. Already one chip commercially available exists, but it does not include adaptation. Edinburgh University have implemented a neural network chip, and are working on the learning problem. 

Production of a learning chip would allow the application of this technology to a whole range of problems where the price of a PC and software cannot be justified. 

There is particular interest in sensory and sensing applications: nets which learn to interpret real-world sensors and learn about their environment. 

New Application areas:

Pen PC's

PC's where one can write on a tablet, and the writing will be recognised and translated into (ASCII) text.

Speech and Vision recognition systems

Not new, but Neural Networks are becoming increasingly part of such systems. They are used as a system component, in conjunction with traditional computers.

White goods and toys

As Neural Network chips become available, the possibility of simple cheap systems which have learned to recognise simple entities (e.g. walls looming, or simple commands like Go, or Stop), may lead to their incorporation in toys and washing machines etc. Already the Japanese are using a related technology, fuzzy logic, in this way. There is considerable interest in the combination of fuzzy and neural technologies.

Application of ANN to Memory Designs

· Content-Addressable and Associative Memory: the information is stored, retrieved, and modified based on the data itself, not its arbitrary storage location.

· Error-Correction and Partial-Contents Memory: the memory capable of retrieving the stored information being presented with a noisy or incomplete original sample. 

 Applications for Neural Networks

Neural networks are applicable in virtually every situation in which a relationship between the predictor variables (independents, inputs) and predicted variables (dependents, outputs) exists, even when that relationship is very complex and not easy to articulate in the usual terms of "correlations" or "differences between groups." A few representative examples of problems to which neural network analysis has been applied successfully are:

· Detection of medical phenomena. A variety of health-related indices (e.g., a combination of heart rate, levels of various substances in the blood, respiration rate) can be monitored. The onset of a particular medical condition could be associated with a very complex (e.g., nonlinear and interactive) combination of changes on a subset of the variables being monitored. Neural networks have been used to recognize this predictive pattern so that the appropriate treatment can be prescribed.

· Stock market prediction. Fluctuations of stock prices and stock indices are another example of a complex, multidimensional, but in some circumstances at least partially-deterministic phenomenon. Neural networks are being used by many technical analysts to make predictions about stock prices based upon a large number of factors such as past performance of other stocks and various economic indicators.

· Credit assignment. A variety of pieces of information are usually known about an applicant for a loan. For instance, the applicant's age, education, occupation, and many other facts may be available. After training a neural network on historical data, neural network analysis can identify the most relevant characteristics and use those to classify applicants as good or bad credit risks.

· Monitoring the condition of machinery. Neural networks can be instrumental in cutting costs by bringing additional expertise to scheduling the preventive maintenance of machines. A neural network can be trained to distinguish between the sounds a machine makes when it is running normally ("false alarms") versus when it is on the verge of a problem. After this training period, the expertise of the network can be used to warn a technician of an upcoming breakdown, before it occurs and causes costly unforeseen "downtime."

· Engine management. Neural networks have been used to analyze the input of sensors from an engine. The neural network controls the various parameters within which the engine functions, in order to achieve a particular goal, such as minimizing fuel consumption.

An Example Neural Network: Bank Loans 
Imagine a highly experienced bank manager who must decide which customers will qualify for a loan. His decision is based on a completed application form that contains ten questions. Each question is answered by a number from 1 to 5 (some responses may be subjective in nature). 

Early attempts at "Artificial Intelligence" took a simplistic view of this problem. The Knowledge Engineer would interview the bank manager(s) and decide that question one is worth 30 points, question two is worth 10 points, question three is worth 15 points,...etc. Simple arithmetic was used to determine the applicant's total rating. A hurdle value was set for successful applicants. This approach helped to give artificial intelligence a bad name. 

The problem is that most real-life problems are non-linear in nature. Response #2 may be meaningless if both response #8 and #9 are high. Response #5 should be the sole criterion if both #7 and #8 are low. 

Our ten question application has almost 10 million possible responses. The bank manager's brain contains a Neural Network that allows him to use "Intuition". Intuition will allow the bank manager to recognize certain similarities and patterns that his brain has become attuned to. He may never have seen this exact pattern before, but his intuition can detect similarities, as well as dealing with the non-linearities. He is probably unable (and unwilling) to explain the very complex process of how his intuition works. A complicated list of rules (called "Expert System") could be drawn up but these rules may give only a rough approximation of his intuition. 

If we had a large number of loan applications as input, along with the manager's decision as output, a neural network could be "trained" on these patterns. The inner workings of the neural network have enough mathematical sophistication to reasonably simulate the expert's intuition. 

Another Example: Real Estate Appraisal 
Consider a real estate appraiser whose job is to predict the sale price of residential houses. As with the Bank Loans example, the input pattern consists of a group of numbers. (For example: number of bedrooms, number of stories, floor area, age of construction, neighborhood prices, size of lot, distance to schools, etc.). This problem is similar to the Bank Loans example, because it has many non-linearities, and is subject to millions of possible inputs patterns. The difference here is that the output prediction will consist of a calculated value -- the selling price of the house. 
It is possible to train the neural network to simulate the opinion of an expert appraiser, or to predict the actual selling price. 

Note: 
The above examples use a hypothetical bank manager and real-estate appraiser. Similar examples could use a doctor, judge, scientist, detective, IRS agent, social worker, machine operator or other expert. Even the behavior of some non-human physical process could be modeled. NeuNet Pro includes several sample projects. 

PLATE MILL APPLICATIONS

There are countless examples of neural network applications in the metallurgical field. Some cases regarding the hot rolling of steel are 

· The sizing of slabs for plate rolling.6 

· The modeling of a steel's hot strength of steel based on temperature, strain, strain rate, and effect of chemical composition.7,8 

· The determination of TTT diagrams from the chemical composition of a steel.9 

· Pass-schedule calculation for hot-strip mills.10,11 

· The feasibility of producing particular grades of at a particular steelworks.12 

In order evaluate the performance of neural networks under actual plant conditions at Companhia Siderúrgica Paulista (COSIPA) industrial rolling mills, it was decided to utilize the technique for the off-line modeling of several plate mill processes. In some cases, these processes were already modeled using statistical techniques, permitting a comparison between both approaches. 

All neural networks developed were of the Rummelhart type, with one hidden layer, and trained by the retropropagation method. The networks included a bias neuron in the input layer to improve the modeling capacity of the neuron network.1 

In each case, 80% of the global raw data was reserved for training the network; the remaining 20% was periodically used during the precision evolution check of the neural network. The training step of most of the neural networks studied in this work converged in 60,000 iterations. Evaluation of the neural network was performed by calculating Pearson's correlation coefficient (r) and the standard error of estimate (SEE); dispersion plots were also used. The software used for developing and training the neural networks was NeuralWorks. 

