Machine Learning CS-527A Artificial Neural Networks Burchan (bourch-khan) Bayazit *http://www.cse.wustl.edu/~bayazit/courses/cs527a/ Mailing list: cs-527a@cse.wustl.edu* Artificial Neural Networks (ANN) Neural network inspired by biological nervous systems, such as our brain Useful for learning real-valued, discrete-valued or vector-valued functions. Applied to problems such as interpreting visual scenes, speech recognition, learning robot control strategies. Works well with noisy, complex sensor data such as inputs from cameras and microphones.

ANN

- \bullet In human brain, approximately 10¹¹ neurons are densely interconnected.
- They are arranged in networks
- \bullet Each neuron connected to 10⁴ others on average
- \bullet Fastest neuron switching time 10 3 seconds
- ANN motivation by biological neuron systems; however many features are inconsistent with biological systems.

Types Neural Network **Architectures**

Many kinds of structures, main distinction made between two classes:

a) <u>feed- forward</u> (a directed acyclic graph (DAG): links are unidirectional,
no cycles

- There is no internal state other than the weights.

b) recurrent: links form arbitrary topologies e.g., Hopfield Networks and Boltzmann machines

Recurrent networks: can be unstable, or oscillate, or exhibit chaotic behavior e.g., given some input values, can take a long time to compute stable output and learning is made more difficult…. However, can implement more complex agent designs and can model systems with state

Perceptron

 $o(\vec{x})$ defines N-dimensional space and (N-1) dimensional plane.

The perceptron returns 1 for data points lying on one side of the hyperplane and -1 for data points lying on the other side.

If the positive and negative examples are separated by a hyperplane, they are called linearly separable sets of examples. But it is not always the case.

Perceptron

The equation below describes a (hyper-)plane in the input space consisting of real valued m-dimensional vectors. The plane splits the input space into two regions, each of them describing one class.

Limitations of the Perceptron

- Only binary input-output values
- Only two layers
- Separates the space linearly

- Minsky and Papert (1969) showed that a two-layer Perceptron cannot represent certain logical functions
- Some of these are very fundamental, in particular the exclusive or (XOR)
- Do you want coffee XOR tea?

ANN

Gradient Descent and the Delta Rule

- Delta Rule designed to converge examples that are not linearly separable.
- Uses gradient descent to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples.

Gradient Descent

Training Strategies

- Online training: – Update weights after each sample
- Offline (batch training):
	- Compute error over all samples
		- Then update weights
- Online training "noisy"
	- Sensitive to individual instances
	- However, may escape local minima

Backpropagation Using Gradient Descent

- Advantages
	- Relatively simple implementation
	- Standard method and generally works well
- Disadvantages
	- Slow and inefficient
	- Can get stuck in local minima resulting in sub-optimal solutions

Alternatives To Gradient **Descent**

- Simulated Annealing
	- Advantages
		- Can guarantee optimal solution (global minimum)
	- Disadvantages
		- May be slower than gradient descent
		- Much more complicated implementation

Alternatives To Gradient **Descent**

- Genetic Algorithms/Evolutionary **Strategies**
	- Advantages
		- Faster than simulated annealing
		- Less likely to get stuck in local minima
	- Disadvantages
		- Slower than gradient descent
		- Memory intensive for large nets

Alternatives To Gradient **Descent**

- Simplex Algorithm
	- Advantages
		- Similar to gradient descent but faster
		- Easy to implement
	- Disadvantages
		- Does not guarantee a global minimum

Enhancements To Gradient **Descent**

- Momentum
	- Adds a percentage of the last movement to the current movement

Enhancements To Gradient **Descent**

- Momentum
	- Useful to get over small bumps in the error function
	- Often finds a minimum in less steps
	- Δ $w_{ji}(t)$ = -η*δ_j* x_{ji} + $\alpha^* w_{ji}(t-1)$

Backpropagation Drawback

Bias

- Hard to characterize
- Smooth interpretation between data points

Overfitting

- Use a validation set, keep the weights for most accurate learning
- Decay weights
- Use several networks and use voting

K-fold cross validation: 1. Divide input set to K small sets 2. For k=1..K

-
-
- 3. use Set_k as validation set, and the remaining as the test set
4. find the number of iterations i_k to optimal learning for this set
5. Find the average of number of iterations for all sets
- *6. Train the network with that number of iterations….*

Despite its popularity backpropagation has some disadvantages

- Learning is slow
- New learning will rapidly *overwrite* old representations, unless these are interleaved (i.e., repeated) with the new patterns
- This makes it hard to keep networks up-todate with new information (e.g., dollar rate)
- This also makes it very implausible from as a psychological model of human memory

Good points

- Easy to use
	- Few parameters to set
	- Algorithm is easy to implement
- Can be applied to a wide range of data
- Is very popular
- Has contributed greatly to the 'new connectionism' (second wave)

- Learning often takes a **long time** to converge – Complex functions often need hundreds or thousands of epochs
- The net is essentially a **black box**
	- If may provide a desired mapping between input and output vectors (*x, y*) but does not have the information of why a particular *x* is mapped to a particular *y.*
	- It thus cannot provide an intuitive (e.g., causal) explanation for the computed result.
	- This is because the hidden units and the learned weights do not have a semantics. What can be learned are operational parameters, not general, abstract knowledge of a domain
- Gradient descent approach only guarantees to reduce the total error to a **local minimum**. (*E* may be be reduced to zero)
	- Cannot escape from the local minimum error state
	- Not every function that is represent able can be learned
- **Deficiencies of BP Nets Exercise 2018** How bad: depends on the shape of the error surface. Too many valleys/wells will make it easy to be trapped in local minima
	- Possible remedies:
		- Try nets with different # of hidden layers and hidden units (they may lead to different error surfaces, some might be better than others)
		- •Try different initial weights (different starting points on the surface)
		- **•Forced escape from local minima by random perturbation (e.g.,** simulated annealing)
	- **Generalization** is not guaranteed even if the error is reduced to zero
		- Over-fitting/over-training problem: trained net fits the training samples perfectly (E reduced to 0) but it does not give accurate outputs for inputs not in the training set
	- Unlike many statistical methods, there is no theoretically well-founded way to **assess the quality** of BP learning
	- What is the confidence level one can have for a trained BP
	- net, with the final E (which not or may not be close to zero)

NETtalk (Sejnowski & Rosenberg, 1987) Killer Application

- The task is to learn to pronounce English text from examples.
- Training data is 1024 words from a side-by-side English/phoneme source.
- Input: 7 consecutive characters from written text presented in a moving window that scans text.
- Output: phoneme code giving the pronunciation of the letter at the center of the input window.
- Network topology: 7x29 inputs (26 chars + punctuation marks), 80 hidden units and 26 output units (phoneme code). Sigmoid units in hidden and output layer.

11

