
1

Machine Learning
CS-527A

Artificial Neural Networks

Burchan (bourch-khan) Bayazit
http://www.cse.wustl.edu/~bayazit/courses/cs527a/

Mailing list: cs-527a@cse.wustl.edu

Artificial Neural Networks (ANN)
Neural network inspired by biological nervous systems,

such as our brain

Useful for learning real-valued, discrete-valued or
vector-valued functions.

Applied to problems such as interpreting visual scenes,
speech recognition, learning robot control strategies.

Works well with noisy, complex sensor data such as
inputs from cameras and microphones.

ANN

Inspiration from Neurobiology
A neuron: many-inputs / one-output unit
Cell Body is 5 – 10 microns in diameter

ANN

incoming signals from other neurons determine if the neuron
shall excite ("fire")
Axon turn the processed inputs to outputs.
Synapses are the electrochemical contact between neurons.

ANN

In human brain, approximately 1011 neurons
are densely interconnected.
They are arranged in networks
Each neuron connected to 104 others on
average
Fastest neuron switching time 10-3 seconds
ANN motivation by biological neuron
systems; however many features are
inconsistent with biological systems.

ANN – Short History
McCulloch & Pitts (1943) are generally

recognized as the designers of the first neural
network

Their ideas such as threshold and many simple
units combining to give increased computational
power are still in use today

In the 50’s and 60’s, many researchers worked
on the perceptron

In 1969, Minsky and Papert showed that
perceptrons were limited so neural network
research died down for about 15 years

In the mid 80’s interest revived (Parket and
LeCun)

2

ANN

One Layer Perceptron Two Layer Perceptron

Hopfield Network

Types Neural Network
Architectures

Many kinds of structures, main distinction made between two classes:

a) feed- forward (a directed acyclic graph (DAG): links are unidirectional,
no cycles

- There is no internal state other than the weights.

b) recurrent: links form arbitrary topologies e.g., Hopfield Networks and
Boltzmann machines

Recurrent networks: can be unstable, or oscillate, or exhibit chaotic
behavior e.g., given some input values, can take a long time to
compute stable output and learning is made more difficult….
However, can implement more complex agent designs and can model
systems with state

Perceptron

∑

Xo=1, wo

x1

x2

xn

∑ =

n

i ii xw
0

⎪⎩

⎪
⎨
⎧

−

〉
= ∑ =

otherwise

xwif
o

n

i ii

 1

0 1
0

Perceptron

The perceptron calculates a weighted sum of inputs and
compares it to a threshold. If the sum is higher than the
threshold, the output is set to 1, otherwise to -1.
Learning is finding weights wi

The McCullogh-Pitts model

Input
Output

g = Activation functions for units

Step function
(Linear Threshold Unit)

Sign function Sigmoid function

step(x) = 1, if x >= threshold
0, if x < threshold

sign(x) = +1, if x >= 0
-1, if x < 0

sigmoid(x) = 1/(1+e-x)

Adding an extra input with activation a0 = - 1 and weight
W0,j = t is equivalent to having a threshold at t. This way
we can always assume a 0 threshold.

Perceptron

Mathematical Representation

⎩
⎨
⎧
−

>+++
=

otherwise
xwxwwif

xxxo nno
n 1

0... 1
),...,,(11

21

())sgn(xwxo rrr
⋅= where

⎩
⎨
⎧
−

>
=

otherwise
yif

y
 1

0 1
)sgn({ })1(+∈= nRwwH rr

3

Perceptron

()xo r defines N-dimensional space and (N-1)
dimensional plane.

The perceptron returns 1 for data points lying on one
side of the hyperplane and -1 for data points lying on
the other side.

If the positive and negative examples are separated by
a hyperplane, they are called linearly separable sets of
examples. But it is not always the case.

Perceptron
The equation below describes a (hyper-)plane in the
input space consisting of real valued m-dimensional
vectors. The plane splits the input space into two
regions, each of them describing one class.

0 wxw 0

m

1i
ii =+∑

=

x2

C1

C2
x1

decision
boundary

w1x1 + w2x2 + w0 = 0

decision
region for C1

w1x1 + w2x2 + w0 >= 0

Perceptron Learning

iii www Δ+←

() ii xotw −=Δ η t is the target output, o is the output generated by the
perceptron and η is a positive constant known as the
learning rate.

We have either (-1) or (+) as the output and inputs are either 0 or 1
There are 4 cases
•The output is suppose to be +1 and perceptron returns +1
•The output is suppose to be -1 and perceptron returns -1
•The output is suppose to be +1 and perceptron returns -1
•The output is suppose to be -1 and perceptron returns +1

If Case 1 or 2, do nothing since the perceptron returns right result
If Case 3 w0+w1x1+w2x2+….+wnxn>0 we need to increase the weights so that

the left side of the equation will become greater than 0
If Case 4, the weights must be decreased

So we can use following update rule that satisfies this

Perceptron Learning

For each training data <x,t>∈D

Find o=o(x)

update each weight wi=Δwi+wi where Δwi=(t-o)xi

Learning AND function

(1,1)

(1,0)

(0,1)

(0,0)

Input 1

Input 2

Training Data:
(0,1,0)
(0,0,0)
(1,0,0)
(1,1,1)

Learning AND function

w1 w0

w2

1

w0=-1
w1=0.6
w2=0.6

4

Learning AND function

Output space for AND gate

(1,1)

(1,0)

(0,1)

(0,0)

w0+w1*x1 + w2*x2=0

Input 1

Input 2

Training Data:
(0,1,0)
(0,0,0)
(1,0,0)
(1,1,1)

Limitations of the Perceptron

Only binary input-output values
Only two layers
Separates the space linearly

Only two layers

Minsky and Papert (1969) showed that
a two-layer Perceptron cannot
represent certain logical functions
Some of these are very fundamental, in
particular the exclusive or (XOR)
Do you want coffee XOR tea?

Learning XOR

(1,1)

(1,0)

(0,1)

(0,0)

Input 1

Input 2

Not Linearly Separable

Learning XOR

(1,1)

(1,0)

(0,1)

(0,0)

Input 1

Input 2

Not Linearly Separable

Solution to Linear Inseparability

•Use another training rule (delta rule)

•Backpropagation

5

ANN

Gradient Descent and the Delta Rule
Delta Rule designed to converge
examples that are not linearly
separable.
Uses gradient descent to search the
hypothesis space of possible weight
vectors to find the weights that best fit
the training examples.

Gradient Descent

(w1,w2)

(w1+Δw1,w2 +Δw2)

Define an error function based on target concepts and NN output
The goal is to change weights so that the error will be reduces

Gradient Descent

Training error of a hypothesis:

() ()∑
∈

−=
Dd

dd otwE 2

2
1

D is the set of training examples,
Td is the target output for training example d,
and od is the output of the linear unit for training example d.

How to find Δw?

Derivation of the Gradient Descent Rule

() ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=∇
nw

E
w
E

w
EwE ,...,,

10

r Direction of the steepest descent along the
error surface

www rrr
Δ+← where ()wEw rr

∇−=Δ η
The negative sign is present as we want to go in the direction that decreases E.

For the ith component:

iii www Δ+← where

iw
Ew

∂
∂

−=Δ η

() ()∑∑
∈∈

−
∂
∂

=−
∂
∂

=
∂
∂

Dd
dd

iDd
dd

ii

ot
w

ot
ww

E 22

2
1

2
1

() () () ()
i

dd

Dd
dd

Dd i

dd
dd

i w
xwtot

w
otot

w
E

∂
⋅−∂

−=
∂
−∂

−=
∂
∂ ∑∑

∈∈

rr

2
2
1

()()∑
∈

−−=
∂
∂

Dd
iddd

i

xot
w
E Where idx is the single input component xi for

for training example d

()∑
∈

−=Δ
Dd

idddi xotw ηHence

How to find Δw? Gradient-Descent Algorithm

Each training example is a pair of the form
tx,r where

xr is the vector of input values, and t is the target output value and
η is the learning rate (e.g. 0.5)
Initialize each wi to some small random value
Until the termination condition is met, Do
– Initialize each to zero.
– For each in training examples, Do

Input the instance to the unit and compute the output o
For each linear unit weight wi, Do

For each linear unit weight wi, Do

iwΔ
tx,r

xr

() iii xotww −+Δ←Δ η

iii www Δ+←

6

Training Strategies

Online training:
– Update weights after each sample

Offline (batch training):
– Compute error over all samples

Then update weights

Online training “noisy”
– Sensitive to individual instances
– However, may escape local minima

Example: Learning addition
Goal: Learn binary addition: i.e.:
(0+0)=0,(0+1)=1,(1+0)=1,(1+1)=10

1

2

3

I

II

X1

X2

Output Layer

Hidden Layer

Input Layer

1

1

1

1

1
W11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

I

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

Training Data

0,0
0,1
1,0
1,1

Inputs Target Concept

0,0
0,1
0,1
1,0

Activation Function

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

First find the outputs OI, OII
In order to do this, propagate the
inputs forward.
First find the outputs for the
neurons of hidden layer

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

Then find the outputs of the
neurons of hidden layer

7

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

Now propagate back the errors.
In order to do that first find the
errors for the output layer, also
update the weights between
hidden layer and output layer

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

And backpropagate the errors to
hidden layer.

W10

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

And backpropagate the errors to
hidden layer.

Example: Learning addition

1

2

3

I

II

X
1

X
2

1

1

1

1

1W
11

W 12

W10

W20

W
21

W
31

W22

W
32 W30

WI0

WII0

WI1

W I2

W I3

W
II1

WII2

W II3

WII2

Finally update weights!!!!

Importance of Learning Rate
0.01

1

50

Generalization of the
Backpropagation

8

Backpropagation Using
Gradient Descent

Advantages
– Relatively simple implementation
– Standard method and generally works well

Disadvantages
– Slow and inefficient
– Can get stuck in local minima resulting in

sub-optimal solutions

Local Minima

Local
Minimum

Global Minimum

Alternatives To Gradient
Descent

Simulated Annealing
– Advantages

Can guarantee optimal solution (global
minimum)

– Disadvantages
May be slower than gradient descent
Much more complicated implementation

Alternatives To Gradient
Descent

Genetic Algorithms/Evolutionary
Strategies
– Advantages

Faster than simulated annealing
Less likely to get stuck in local minima

– Disadvantages
Slower than gradient descent
Memory intensive for large nets

Alternatives To Gradient
Descent

Simplex Algorithm
– Advantages

Similar to gradient descent but faster
Easy to implement

– Disadvantages
Does not guarantee a global minimum

Enhancements To Gradient
Descent

Momentum
– Adds a percentage of the last movement to

the current movement

9

Enhancements To Gradient
Descent

Momentum
– Useful to get over small bumps in the error

function
– Often finds a minimum in less steps
– Δwji(t) = -η*δj*xji + α*wji(t-1)

Backpropagation Drawback

Slow convergence

Increase learning rates?

improve

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

Bias

Hard to characterize
Smooth interpretation between data
points

Overfitting

Use a validation set, keep the weights
for most accurate learning
Decay weights
Use several networks and use voting

K-fold cross validation:
1. Divide input set to K small sets
2. For k=1..K
3. use Setk as validation set, and the remaining as the test set
4. find the number of iterations ik to optimal learning for this set
5. Find the average of number of iterations for all sets
6. Train the network with that number of iterations….

Despite its popularity backpropagation has
some disadvantages

Learning is slow
New learning will rapidly overwrite old
representations, unless these are interleaved
(i.e., repeated) with the new patterns
This makes it hard to keep networks up-to-
date with new information (e.g., dollar rate)
This also makes it very implausible from as a
psychological model of human memory

Good points

Easy to use
– Few parameters to set
– Algorithm is easy to implement

Can be applied to a wide range of data
Is very popular
Has contributed greatly to the ‘new
connectionism’ (second wave)

10

Learning often takes a long time to converge
– Complex functions often need hundreds or thousands of

epochs
The net is essentially a black box
– If may provide a desired mapping between input and

output vectors (x, y) but does not have the information of
why a particular x is mapped to a particular y.

– It thus cannot provide an intuitive (e.g., causal)
explanation for the computed result.

– This is because the hidden units and the learned weights
do not have a semantics. What can be learned are
operational parameters, not general, abstract knowledge
of a domain

Gradient descent approach only guarantees to reduce
the total error to a local minimum. (E may be be
reduced to zero)
– Cannot escape from the local minimum error state
– Not every function that is represent able can be learned

Deficiencies of BP Nets – How bad: depends on the shape of the error surface. Too
many valleys/wells will make it easy to be trapped in local
minima

– Possible remedies:
Try nets with different # of hidden layers and hidden units (they
may lead to different error surfaces, some might be better than
others)
Try different initial weights (different starting points on the
surface)
Forced escape from local minima by random perturbation (e.g.,
simulated annealing)

Generalization is not guaranteed even if the error is
reduced to zero
– Over-fitting/over-training problem: trained net fits the training

samples perfectly (E reduced to 0) but it does not give
accurate outputs for inputs not in the training set

Unlike many statistical methods, there is no theoretically
well-founded way to assess the quality of BP learning
– What is the confidence level one can have for a trained BP

net, with the final E (which not or may not be close to zero)

Kohonen

Every neuron of the output layer is connected with every neuron of the input layer. While learning, the closest
neuron to the input data (the distance between its weights and the input vector is minimum) and its neighbors
(see below) update their weights. The distance is defined as follows:

The formula for the Kohonen map tends to bring the connections closer to the input data:

Kohonen

For each training data
Find the winner neuron using

Update the weights of the neighbors

Kohonen Maps Kohonen Maps

The input x is given to
all the units at the same

time

11

Kohonen Maps

The weights
of the winner unit

are updated
together with the weights of

its neighborhoods

NETtalk (Sejnowski & Rosenberg, 1987)
Killer Application

The task is to learn to pronounce English text from
examples.
Training data is 1024 words from a side-by-side
English/phoneme source.
Input: 7 consecutive characters from written text
presented in a moving window that scans text.
Output: phoneme code giving the pronunciation of
the letter at the center of the input window.
Network topology: 7x29 inputs (26 chars +
punctuation marks), 80 hidden units and 26 output
units (phoneme code). Sigmoid units in hidden and
output layer.

NETtalk (contd.)

Training protocol: 95% accuracy on training set after
50 epochs of training by full gradient descent. 78%
accuracy on a set-aside test set.
Comparison against Dectalk (a rule based expert
system): Dectalk performs better; it represents a
decade of analysis by linguists. NETtalk learns from
examples alone and was constructed with little
knowledge of the task.

Steering an Automobile
ALVINN system [Pomerleau 1991,1993]
– Uses Artificial Neural Network

Used 30*32 TV image as input (960 input node)
5 Hidden node
30 output node

– Training regime: modified “on-the-fly”
A human driver drives the car, and his actual steering angles are
taken as correct labels for the corresponding inputs.
Shifted and rotated images were also used for training.

– ALVINN has driven for 120 consecutive kilometers at
speeds up to 100km/h.

Steering an Automobile-
ALVINN network Voice Recognition

Task: Learn to discriminate between
two different voices saying “Hello”

Data
– Sources

Steve Simpson
David Raubenheimer

– Format
Frequency distribution (60 bins)

12

Network architecture

– Feed forward network
60 input (one for each frequency bin)
6 hidden
2 output (0-1 for “Steve”, 1-0 for “David”)

Presenting the data

Steve

David

