
June 10, 2002

An Introduction to
Probabilistic Neural

Networks

Vincent Cheung
Kevin Cannons

Signal & Data Compression Laboratory
Electrical & Computer Engineering

University of Manitoba
Winnipeg, Manitoba, Canada

Advisor: Dr. W. Kinsner

Page 1 of 13

Outline

● Introduction

● Classifier Example

● Theory and Architecture

● Training

● Program Implementations

● Conclusion

Page 2 of 13

What is a PNN?

● A probabilistic neural network (PNN) is
predominantly a classifier
►Map any input pattern to a number of

classifications
►Can be forced into a more general function

approximator

● A PNN is an implementation of a
statistical algorithm called kernel
discriminant analysis in which the
operations are organized into a
multilayered feedforward network with
four layers:
► Input layer
►Pattern layer
►Summation layer
►Output layer

ProgramsTrainingTheoryExampleIntro

Page 3 of 13

Advantages and
Disadvantages

● Advantages
►Fast training process

■ Orders of magnitude faster than
backpropagation

►An inherently parallel structure
►Guaranteed to converge to an optimal

classifier as the size of the representative
training set increases
■ No local minima issues

►Training samples can be added or removed
without extensive retraining

● Disadvantages
►Not as general as backpropagation
►Large memory requirements
►Slow execution of the network
►Requires a representative training set

■ Even more so than other types of NN’s

ProgramsTrainingTheoryExampleIntro

Page 4 of 13

Classification
Theory

● If the probability density function (pdf) of
each of the populations is known, then an
unknown, X, belongs to class “i” if:

fi(X) > fj(X), all j ≠ i

● Other parameters may be included
►Prior probability (h)

■ Probability of an unknown sample being drawn
from a particular population

►Misclassification cost (c)
■ Cost of incorrectly classifying an unknown

►Classification decision becomes:

hicifi(X) > hjcjfj(X), all j ≠ i
(Bayes optimal decision rule)

fk is the pdf for class k

ProgramsTrainingTheoryExampleIntro

Page 5 of 13

PDF Estimation

● Estimate the pdf by using the samples of
the populations (the training set)

● PDF for a single sample (in a population):

● PDF for a single population:

● The estimated pdf approaches the true
pdf as the training set size increases, as
long as the true pdf is smooth







 −

σ
xxW

σ
k1 x = unknown (input)

xk = “kth” sample
W = weighting function
σ = smoothing parameter

∑
=







 −n

k

k

σ
xxW

nσ 1

1 (average of the pdf’s
for the “n” samples in
the population)

(Parzen’s pdf estimator)

ProgramsTrainingTheoryExampleIntro

Page 6 of 13

Weighting Function

● Provides a “sphere-of-influence”
►Large values for small distances between the

unknown and the training samples
►Rapidly decreases to zero as the distance

increases

● Commonly use Gaussian function
►Behaves well and easily computed
►Not related to any assumption about a normal

distribution

● The estimated pdf becomes:

∑
=

−
−

=
n

k

xx k

e
nσ

xg
1

)(
2

2

1)(σ

ProgramsTrainingTheoryExampleIntro

Page 7 of 13

Multivariate Inputs

● Input to the network is a vector

● PDF for a single sample (in a population):

● PDF for a single population:

● Classification criteria:
gi(X) > gj(X), all j ≠ i

2

2

2
2/)2(

1 σ

π

kXX

pp e
σ

−
−

∑
=

−
−

=
i ikn

k

XX

i
ppi e
nσ

Xg
1

2
2/

2

2

)2(
1)(σ

π

X = unknown (input)
Xk = “kth” sample
σ = smoothing parameter
p = length of vector

(average of the pdf’s
for the “ni” samples in
the “ith”population)

∑
=

−
−

=∴
i ikn

k

XX

i
i e

n
Xg

1

2

2

1)(σ (eliminate common factors
and absorb the “2” into σ)

ProgramsTrainingTheoryExampleIntro

Page 8 of 13

Training Set

● The training set must be thoroughly
representative of the actual population for
effective classification
►More demanding than most NN’s
►Sparse set sufficient
►Erroneous samples and outliers tolerable

● Adding and removing training samples
simply involves adding or removing
“neurons” in the pattern layer
►Minimal retraining required, if at all

● As the training set increases in size, the
PNN asymptotically converges to the
Bayes optimal classifier
►The estimated pdf approaches the true pdf,

assuming the true pdf is smooth

ProgramsTrainingTheoryExampleIntro

Page 9 of 13

Training

● The training process of a PNN is
essentially the act of determining the
value of the smoothing parameter, sigma
►Training is fast

■ Orders of magnitude faster than
backpropagation

● Determining Sigma
►Educated guess based on knowledge of the

data
►Estimate a value using a heuristic technique

Nearest Neighbour

Optimum

Matched Filter

C
or

re
ct

 C
la

ss
ifi

ca
tio

ns

Sigma (σ)

ProgramsTrainingTheoryExampleIntro

Page 10 of 13

Estimating Sigma
Using Jackknifing

● Systematic testing of values for sigma
over some range
►Bounding the optimal value to some interval
►Shrinking the interval

● Jackknifing is used to grade the
performance of each “test” sigma
►Exclude a single sample from the training set
►Test if the PNN correctly classifies the

excluded sample
► Iterate the exclusion and testing process for

each sample in the training set
■ The number of correct classifications over the

entire process is a measure of the performance
for that value of sigma

►Not unbiased measure of performance
■ Training and testing sets not independent
■ Gives a ball park estimate of quality of sigma

ProgramsTrainingTheoryExampleIntro

Page 11 of 13

Implementations

● Current Work
►Basic PNN coded in Java

■ Simple examples
Boy/Girl classifier (same as perceptron)
Classification of points in R2 or R3 into the
quadrants

►Multithreaded PNN
■ For parallel processing (on supercomputers)
■ One thread per class

● Future Work
►Artificially create a time series of a chaotic

system and use a PNN to classify its features
in order to reconstruct the strange attractor
■ Further test the classification abilities of PNN
■ Test the PNN’s tolerance to noisy inputs

ProgramsTrainingTheoryExampleIntro

Page 12 of 13

Conclusion

● PNN’s should be used if
►A near optimal classifier with a short training

time is desired
►Slow execution speed and large memory

requirements can be tolerated

● No extensive testing on our
implementation of PNN’s have been done
►Once chaotic time series have been obtained,

we will have more challenging data to work
with

Page 13 of 13

References

[Mast93] T. Masters, Practial Neural Network Recipes in C++, Toronto, ON: Academic
Press, Inc., 1993.

[Specht88] D.F. Specht, “Probabilistic Neural Networks for Classification, Mapping, or
Associative Memory”, IEEE International Conference on Neural Networks, vol. I, pp.
525-532, July 1998.

[Specht92] D.F. Specht, “Enhancements to Probabilistic Neural Networks”, International
Joint Conference on Neural Networks, vol. I, pp. 761-768, June 1992.

[Wass93] P. D. Wasserman, Advanced Methods in Neural Computing, New York, NY:
Van Nostrand Reinhold, 1993.

[Zak98] Anthony Zaknich, Artificial Neural Networks: An Introductory Course. [Online].
http://www.maths.uwa.edu.au/~rkealley/ann_all/ann_all.html (as of June 6, 2002).

Page 14 of 13

Simple Classifier
Example

● Idea behind classification using a PNN

● Three classes or populations
►X, O, and �

● The “?” is an unknown sample and must
be classified into one of the populations

● Nearest neighbour algorithm would
classify the “?” as a � because a �
sample is the closest sample to the “?”
► In other words, with nearest neighbour, the

unknown belongs to the same population as
the closest sample

Page 15 of 13

Simple Classifier
Example

● A more effective classifier would also
take the other samples into consideration
in making its decision

● However, not all samples should
contribute to the classification of a
particular unknown the same amount
►Samples close to the unknown should have a

large contribution (increase the probability of
classifying the unknown as that population)

►Samples far from the unknown should have a
small contribution (decrease the probability of
classifying the unknown as that population)

►A “sphere-of-influence”

Page 16 of 13

Simple Classifier
Example

● What the more effective classifier would
then do is, for each population, calculate
the average of all the contributions made
by the samples in that population

● The unknown sample is then classified as
being a member of the population which
has the largest average

Architecture

Input
Layer

Pattern
Layer

Summation
Layer

Output
Layer

Architecture

∑
=

−
−

=
i ikn

k

XX

i
i e

n
Xg

1

2

2

1)(σ

1

2

3

X11

X12

X21

X22

X31

X32

X33

Input
Layer

Pattern
Layer

(Training Set)

Summation
Layer

Output
Layer

X

y11 =

y12 =

y21

y22

y31

y32

y33

g1(X) =

g2(X)

g3(X)

Output =
Class of
Max(g1, g2, g3)

2

2
11

σ
XX

e
−

−

2
1211 yy +

2

2
12

σ
XX

e
−

−

