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Recap: McCulloch-Pitts Neuron

• This vastly simplified model of real neurons is also known as a Threshold 

Logic Unit:

1. A set of synapses (i.e. connections) brings in activations from other 

neurons

2. A processing unit sums the inputs, and then applies a non-linear 

activation function

3. An output line transmits the result to other neurons
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Networks of McCulloch-Pitts Neurons

One neuron can’t do much on its own. Usually we will have many neurons 

labelled by indices k, i, j and activation flows between via synapses with 

strengths wki, wij: 
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The Perceptron

We can connect any number of McCulloch-Pitts neurons together in 
any way we like

An arrangement of one input layer of McCulloch-Pitts neurons feeding 
forward to one output layer of McCulloch-Pitts neurons is known as 
a Perceptron.
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Implementing Logic Gates with MP Neurons

We can use McCulloch-Pitts neurons to implement the basic logic 
gates (e.g. AND, OR, NOT).

It is well known from logic that we can construct any logical function 
from these three basic logic gates. 

All we need to do is find the appropriate connection weights and neuron 
thresholds to produce the right outputs for each set of inputs.

We shall see explicitly how one can construct simple networks that 
perform NOT, AND, and OR.
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Implementation of Logical NOT, AND, and OR
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Problem: Train network to calculate the appropriate weights and thresholds in 

order to classify correctly the different classes (i.e. form decision boundaries
between classes).
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Decision Surfaces

Decision surface is the surface at which the output of the unit is 
precisely equal to the threshold, i.e. ∑wiIi=θ

In 1-D the surface is just a point:
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Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates
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Decision Boundary for XOR

The difficulty in dealing with XOR is rather obvious. We need two straight 

lines to separate the different outputs/decisions:

I1

I2

011

101

110

000

outI2I1

XORXOR

I1

I2

Solution: either change the transfer function so that it has more than one 

decision boundary, or use a more complex network that is able to generate 

more complex decision boundaries. 
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ANN Architectures

Mathematically, ANNs can be represented as weighted directed graphs. The 

most common ANN architectures are:

Single-Layer Feed-Forward NNs: One input layer and one output layer of 

processing units. No feedback connections (e.g. a Perceptron)

Multi-Layer Feed-Forward NNs: One input layer, one output layer, and one or 

more hidden layers of processing units. No feedback connections (e.g. a 

Multi-Layer Perceptron)

Recurrent NNs: Any network with at least one feedback connection. It may, or 

may not, have hidden units

Further interesting variations include: sparse connections, time-delayed 

connections, moving windows, …
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Examples of Network Architectures

Single Layer Multi-Layer Recurrent

Feed-Forward Feed-Forward Network
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Types of Activation/Transfer Function

Threshold Function
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The Threshold as a Special Kind of Weight

The basic Perceptron equation can be simplified if we consider that the 
threshold is another connection weight:
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The Perceptron equation then becomes
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So, we only have to compute the weights.
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Example: A Classification Task

A typical neural network application is classification. Consider the simple example of 

classifying trucks given their masses and lengths:

How do we construct a neural network that can classify any Lorry and Van?

Lorry95.0

Lorry815.0

Lorry710.0

Lorry63.0

Van52.0

Van52.0

Van45.0

Lorry520.0

Lorry610.0

ClassLengthMass
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Cookbook Recipe for Building Neural Networks

Formulating neural network solutions for particular problems is a multi-stage 
process:

1. Understand and specify the problem in terms of inputs and required 
outputs

2. Take the simplest form of network  you think might be able to solve your 
problem

3. Try to find the appropriate connection weights (including neuron
thresholds) so that the network produces the right outputs for each input 
in its training data

4. Make sure that the network works on its training data and test its 
generalization by checking its performance on new testing data

5. If the network doesn’t perform well enough, go back to stage 3 and try 
harder

6. If the network still doesn’t perform well enough, go back to stage 2 and 
try harder

7. If the network still doesn’t perform well enough, go back to stage 1 and 
try harder

8. Problem solved – or not
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Building a Neural Network (stages 1 & 2)

For our truck example, our inputs can be direct encodings of the masses and 

lengths. Generally we would have one output unit for each class, with 

activation 1 for ‘yes’ and 0 for ‘no’. In our example, we still have one output 

unit, but the activation 1 corresponds to ‘lorry’ and 0 to ‘van’ (or vice versa). 

The simplest network we should try first is the single layer Perceptron. We 

can further simplify things by replacing the threshold by an extra weight as 

we discussed before. This gives us:

1 Mass Length
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Training the Neural Network (stage 3)

Whether our neural network is a simple Perceptron, or a much 
complicated multi-layer network, we need to develop a systematic 
procedure for determining appropriate connection weights.

The common procedure is  to have the network learn the appropriate 
weights from a representative set of training data.

For classifications a simple Perceptron uses decision boundaries (lines 
or hyperplanes), which it shifts around until each training pattern is 
correctly classified.

The process of “shifting around” in a systematic way is called learning. 

The learning process can then be divided into a number of small steps.
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Supervised Training

1. Generate a training pair or pattern:

- an input x = [ x1 x2 … xn]

- a target output ytarget (known/given)

2. Then, present the network with x and allow it to generate an 
output y

3. Compare y with ytarget to compute the error

4. Adjust weights, w, to reduce error

5. Repeat 2-4 multiple times
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Perceptron Learning Rule

1. Initialize weights at random

2. For each training pair/pattern (x, ytarget)

- Compute output y

- Compute error, δ=(ytarget – y)

- Use the error to update weights as follows:

∆w = w – wold=η*δ*x or wnew = wold + η*δ*x

where η is called the learning rate or step size and it determines how 
smoothly the learning process is taking place.

3. Repeat 2 until convergence (i.e. error δ is zero)

The Perceptron Learning Rule is then given by

wnew = wold + η*δ*x

where

δ=(ytarget – y)


