NN Lab1perceptron

Laboratory Session–perceptron Learning.

You will be asked to enter Matlab code into the command window so that we can get moving. Many of these commands will be re-visited in later labs for you to get to understand them better. At least part of the purpose of the lab work is to help you develop Matlab knowledge and incidentally improve your programming skills.

Resources mentioned in the text will be available on the module website. You should copy these resources to a folder of your own on the H drive or elsewhere where you have write permission.

Learning outcomes

You will have experimented with classification by a perceptron.

You will be have created a network with the matlab NNTool and will know how to save this network.
Starting matlab

Start Matlab by double clicking the program icon or navigating from the windows start button depending on how your desktop has been configured.

You should see a command window and a cursor flashing at the command prompt (>>).

The first thing you always want to do is set the current directory to an area where you are allowed to write to. The drop down box just above the command window has a browse button next to it – browse to the C:\ drive and create a place for your NN laboratory work.

In what follows bold italic (or red if you have a colour print out) is what you should type at the command prompt.

Entering and calculating with matrices

Matlab is suited to working with arrays of numbers called matrices.We hope that you are familiar with it in the previous lab sessions. Just to revise,
We can enter a matrix as follows and Matlab will respond.

a=[1 2; 4 5]

Now enter

b= [1 3;2 4]

You should have seen two square arrays of numbers appear – one after each command entry. Confirm you know what is happening by predicting the output from

c=[1 2; 3 4; 5 6]

There are add and multiply operations on matrices which should have been mentioned in a lecture. Look at the output from the following.

a+b

a * b

You can probably guess how add works (but probably not guess about *).

Lets have a new matrix c

c=[1 2 3; 3 4 5]

We can't always multiply matrices if they are incompatible in size. Lets try to multiply c*a

c * a

We can get a * c though
a*c

Remember the compatibility rules for matrices from previous mathematics courses. We will not be multiplying matrices by hand but will need to understand the link between matrices and neural nets – which we explore further below. Understanding the compatibility rules for * will be important.

You can select rows or columns within a matrix easily in matlab

c(1,:)

gives the first row and

c(:,2)

gives the second column.

This ability to pick rows and columns out is very useful. You can also pick out multiple columns and rows.

If you want to transpose your columns and rows (quite a common thing to do) you can do it as follows

c=c’

Perceptron Demos

Before starting the demos recall what a perceptron can do – in certain circumstances it can learn to classify a set of inputs by firing a 1 when given certain inputs and firing a 0 when given the others. Remember that a (two input) perceptron is associated with a line.

1
We will use the demos to get a view of what the perceptron can do and how Matlab trains one. Do not simply click and go – think about what is going on and talk to your tutor to make sure that you follow what is happening.

Use the matlab start button > toolboxes > neural network > demos

to open the neural net toolbox and go to the demos. Now expand the perceptron folder to see the demos.

We will look at each of the following perceptron demos in turn.

Decision boundaries

Make sure that you know what the decision is by reading the text on the window before moving anything! Red circles are wrongly classified. Move the "handles" to change the boundary line. How does the line relate to the weight/bias values? [See lecture notes if you cannot determine the relationship]

As the line is moved the w and b values change. When the line separates the white dots from the black dots there are no red circles – everything is correctly classified.

Perceptron learning rule

This demo shows single and multiple steps in training a perceptron to recognize some input. Before starting to follow the learning rule through click the random button a few times. Now set the radio button choice to bias rather than no bias and repeat the randomisation a few times. Can you work out what the practical difference is between bias and no bias? Check your answer with your instructor(s). From now on make sure you are using bias. Work through pressing the learn button to take one step at a time watching what happens. After the first problem is solved randomise the weights/bias and run through a learning session using the train button (you might need to click it more than once to finish). What is the significance of the green flashing? Again check with your instructor(s).
ANS: When there is no bias all the lines go through the origin – when we allow bias the line can be anywhere. This extra freedom helps the perceptron classify more data correctly
ANS: The perceptron learning rule says learn from one data point at a time – the green flashing point is the one that is currently being used to learn from. This means that if the point is already correctly classified there will be no change to the line this time. If it is wrongly classified the line willchange to be a better candidate separating line.

Now add a new white dot to the problem by dragging and dropping a dot onto the graph. Create an insoluble problem with 3 white dots and one black dot using what you know about perceptrons from the lecture.

ANS: A black dot in the middle of a triangle of white dots is one insoluble problem – these are not linearly separable
We will not look at the other demos but they show some useful matlab code – if you want to see some of the innards you could look at them in your own time.

Creating networks with the NNTool

2
We will now create and train a perceptron to recognise the following function.

	x1
	x2
	function

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

The match between input pattern and output pattern is given by the following:

Input pattern: [0 0 1 1; 0 1 0 1];

Matching output pattern: [0 1 1 1].

Our first job is to get the information into matlab via the command window.

Type

p = [0 0 1 1; 0 1 0 1]

in the command window;

Type

t = [0 1 1 1]

in the command window.

Do you understand the correspondence between input and output that we want our percptron to learn? Confirm this with your Instructor(s).
ANS: We are trying to associate the four input patterns with the corresponding four target patterns
Open the Neural Network toolbox [matlab start > toolboxes > neural network > NNTool] and click on NNTool. If you have any difficulty following the instructions given below you could read the help on the NNTool.

You can now see a GUI which will allow you to set up a network – in our case a perceptron. We want to import data from the workspace so click the import button in the Networks and data box. You are then given a choice of where to import from – we want the workspace. Select p and import these values as inputs. Now repeat to import t as targets. When done you return to the GUI and see p and t in the correct panes.

Click on "new network". Leave the name as is but choose perceptron from the drop down list as the network type and create a perceptron network..Get the input range from input p and leave the other values in the GUI as they are. Click to "create". Back at the NNTool gui select your network in the network pane and then click on the "adapt" button in the networks box. You need to set the inputs and outputs in the window (p, t respectively) and then set the adapt parameters (how many passes through the data – leave at 1 for now). Then clicking "adapt network" will make the network follow the adapt rule when altering weights and biases. Go back to the manager and view the output and error values to see if the training has worked. If the training has not worked try "adapt network" again. How many times do you have to run through the data to get the network to recognise the patterns? By doing 3 passes at a time you could have shortened the process – remember this is a controllable parameter when you construct a network. The adapt process for percptrons was described in the lecture.
Now that we have a network that works we might want to keep it – we don't want to create it every time. How can we do this? Export it to the workspace as a first step. Highlight the network in the network manager and then click the "export" button –then highlight again and click "export" again.

Now that we have the network in the workspace we can check that it works directly by using the sim function. The sim function evaluates the effect of a network on a set of input data – we will use it frequently when we have a trained network to calculate the network output with new data.

Type

sim(network1,p)

in the command window and check the result against t.

ANS: The result should have been [0 1 1 1] – it should have learned the pattern
Now if we save the workspace we keep the network – do this. Perhaps call your work Lab1.mat. If ever you want to get the session back you can just open it from the matlab file menu. We will do so in the next session.
If you click the workspace tab in the top left hand pane of the matlab window you can see all your variables. These can be inspected by double clicking on them. Click on each in turn to make sure that they contain what you expect.

Importing and exporting data and saving files:

Use the file menu to import the workspace that you saved last time. This gives access to all the data we had last time. Notice that you will lose any data you had before the import.

The matrix p is not a big matrix – but it might be and we might want to save it to a file

save ‘myData.txt’ p -ascii

Look at this file to see what you have got. This is a useful option if you want to do some processing with matlab but use the output with another program. It can be useful to manipulate data etc. in excel and then process in matlab before passing back to excel (or the other way around).

Using save to keep part of the workspace can be useful as well

save data network1

will keep the network in the file data.mat.

We can load files as well – be careful with the quote marks. They are essential.

z=load('myData.txt')

The connection between neural nets and matrices (in matlab)

Your workspace should still contain network1 and the input output pairs held in p (inputs) and t (target outputs) because you imported them from the last lab.

p(1) and t(1) are an input target pair (let’s remind ourselves what they look like)

p(1)

t(1)

Open the NNtool and import network1 into the tool and view it via the view button on the network manager (highlight network1 first). This picture contains lots of information. Identify the places on the picture where the following information is provided

The network expects a 2 place input vector

The network has a layer which consists of 1 neuron which uses the hardlim transfer function.

We can access the internal pieces of this network

w=network1.IW{1,1}

b=network1.b{1}

Now we can compute with the matrix values that are there – but first notice how many rows there are in w and compare to the number of neurons in the perceptron layer. Compare the number of columns in w with the input size.

Check that

hardlim(w*[1;2] +b)

sim(network1,[1;2])

have the same output as each other.

Let us get some more data into our workspace and create a new network to make sure we have the complete idea.

We will choose input vectors of size 3

p= [1 2 3 4 5;2 3 4 5 6; -4 -4 -5 -10 7]

and outputs of size 2 (so we need a perceptron layer with two perceptrons when we create the network)

t= [0 1 1 0 1;1 0 0 1 0]

Delete all the old information in the network manager and import the new p and t values. Create and train a neural network (network2) which learns this input - output pattern (remember to create a perceptron network and that you need 2 neurons)

View your network and look at the matrix values associated with it. Again check the relationship between the number of rows in w and the number of neurons in the network and the number of columns in w and the size of the input vector.

w=network1.IW{1,1}

b=network1.b{1}

Now compare

hardlim(w*p(:,1) +b)

with

sim(network1,p(:,1))

Check that network1 computes the same value on p(:,x) as hardlim(w*p(:,x) +b)) does for each column of p.

Useful neural net functions

	function name
	action/use

	adapt
	allows a nn to adapt

	adaptParam.passes
	the number of passes for which the network adapts

	hardlim
	hardlimit function

	adaptwb
	adapts causing weight and bias changes according to learning parameters

	init
	initialises the network according to network spec

	initzero
	initialises with zero weights and biases

	learnp
	perceptron learning function

	learnParam.lr
	the learning rate

	learnpn
	normalised perceptron learning function

	logsig
	log sigmoid transfer function

	newff
	creates new feed forward network

	learnwh
	widrow-hoff learning function

	newlin
	creates a new linear network or layer

	newlind
	designs anew linear layer

	newp
	creates a new perceptron

	newrb
	creates new radial basis network

	purelin
	linear transfer function

	sim
	simulates a network

	train
	trains a neural network

	trainParam.epochs
	the number of epochs for which to train

To get help for any of these functions type

>>help "name"

at the matlab command prompt or possibly

>>help network/"name"

if the first option doesn't provide information.

