
Home : Matlab : NNT Tutorial

Select Theme

Introduction to the Matlab
Neural Network Toolbox 3.0

The Matlab Neural Network Toolbox (NNT) is an all-purpose neural
network environment. Everything but the kitchen sink is included,
and most of it has somehow been incorporated in the network
object. Trying to understand this object and its properties can be a
bewildering experience, especially since the documentation is of the
usual Matlab quality (which is a Bad ThingTM).

Note: This tutorial describes version 3.0 of the NNT. The newest
version is 4.0, available since Matlab 6.0 (R12).

The purpose of this document is to try to explain to all those
interested how to build a custom feed-forward network starting from
scratch (i.e. a `blank' neural network object). It consists of the
following sections:

1. Introduction
2. Network Layers

Constructing Layers
Connecting Layers
Setting Transfer Functions

3. Weights and Biases
4. Training Functions & Parameters

The difference between train and adapt
Performance Functions
Train Parameters
Adapt Parameters

5. Conclusion and Change log

INTRODUCTION
Matlab's Neural Network Toolbox (NNT) is powerful, yet at times
completely incomprehensible. This is mainly due to the complexity
of the network object. Even though high-level network creation
functions, like newp and newff, are included in the Toolbox, there
will probably come a time when it will be necessary to directly edit
the network object properties.

Part of my job is teaching a neural networks practicum. Since we

wanted the students to concern themselves with the ideas behind
neural networks rather than with implementation and programming
issues, some software was written to hide the details of the network
object behind a Matlab GUI. In the course of writing this software, I
learned a lot about the NNT. Some of it I learned form the manual,
but most of it I learned through trial-and-error.

And that's the reason I wrote this introduction. In order to save you a
lot of time I already had to spent learning about the NNT. This
document is far from extensive, and is naturally restricted to my
own field of application. Therefore, only feed-forward networks will
be treated. I do think however that reading this can give you a firm
enough background to start building your own custom networks,
relying on the Matlab documentation for specific details.

All Matlab commands given in this document assume the existence
of a NNT network object named `net'. To construct such an object
from scratch, type

>> net = network;

which gives you a `blank' network, i.e. without any properties. Which
properties to set and how to set them is the subject of this
document.

Any errors, omissions etc. are completely my responsibility, so if
you have any comments, questions or hate mail, please send them
to me at portegie@science.uva.nl.

NETWORK LAYERS
The term `layer' in the neural network sense means different things
to different people. In the NNT, a layer is defined as a layer of
neurons, with the exception of the input layer. So in NNT
terminology this would be a one-layer network:

and this would be a two-layer network:

We will use the last network as an example throughout the text.

Each layer has a number of properties, the most important being the
transfer functions of the neurons in that layer, and the function that
defines the net input of each neuron given its weights and the
output of the previous layer.

Constructing Layers

OK, so let's get to it. I'll assume you have an empty network object
named `net' in your workspace, if not, type
>> net = network;

to get one.

Let's start with defining the properties of the input layer. The NNT
supports networks which have multiple input layers. I've never used
such networks, and don't know of anybody who has, so let's set this
to 1:

>> net.numInputs = 1;

Now we should define the number of neurons in the input layer.
This should of course be equal to the dimensionality of your data
set. The appropriate property to set is net.inputs{i}.size, where i is
the index of the input layers. So to make a network which has 2
dimensional points as inputs, type:
>> net.inputs{1}.size = 2;

This defines (for now) the input layer.

The next properties to set are net.numLayers, which not
surprisingly sets the total number of layers in the network, and
net.layers{i}.size, which sets the number of neurons in the ith
layer. To build our example network, we define 2 extra layers (a
hidden layer with 3 neurons and an output layer with 1 neuron),
using:

>> net.numLayers = 2;
>> net.layers{1}.size = 3;
>> net.layers{2}.size = 1;

Connecting Layers

Now it's time to define which layers are connected. First, define to

which layer the inputs are connected by setting
net.inputConnect(i) to 1 for the appropriate layer i (usually the
first, so i = 1).

The connections between the rest of the layers are defined a
connectivity matrix called net.layerConnect, which can have either
0 or 1 as element entries. If element (i,j) is 1, then the outputs of
layer j are connected to the inputs of layer i.

We also have to define which layer is the output layer by setting
net.outputConnect(i) to 1 for the appropriate layer i.

Finally, if we have a supervised training set, we also have to define
which layers are connected to the target values. (Usually, this will
be the output layer.) This is done by setting net.targetConnect(i) to
1 for the appropriate layer i. So, for our example, the appropriate
commands would be

>> net.inputConnect(1) = 1;
>> net.layerConnect(2, 1) = 1;
>> net.outputConnect(2) = 1;
>> net.targetConnect(2) = 1;

Setting Transfer Functions

Each layer has its own transfer function which is set through the
net.layers{i}.transferFcn property. So to make the first layer use
sigmoid transfer functions, and the second layer linear transfer
functions, use
>> net.layers{1}.transferFcn = 'logsig';
>> net.layers{2}.transferFcn = 'purelin';

For a list of possible transfer functions, check the Matlab
documentation.

WEIGHTS AND BIASES
Now, define which layers have biases by setting the elements of
net.biasConnect to either 0 or 1, where net.biasConnect(i) = 1
means layer i has biases attached to it.

To attach biases to each layer in our example network, we'd use

>> net.biasConnect = [1 ; 1];

Now you should decide on an initialisation procedure for the weights
and biases. When done correctly, you should be able to simply
issue a

>> net = init(net);

to reset all weights and biases according to your choices.

The first thing to do is to set net.initFcn. Unless you have build your
own initialisation routine, the value 'initlay' is the way to go. This
let's each layer of weights and biases use their own initialisation
routine to initialise.

>> net.initFcn = 'initlay';

Exactly which function this is should of course be specified as well.
This is done through the property net.layers{i}.initFcn for each
layer. The two most practical options here are Nguyen-Widrow
initialisation ('initnw', type 'help initnw' for details), or 'initwb', which
let's you choose the initialisation for each set of weights and biases
separately.

When using 'initnw' you only have to set

>> net.layers{i}.initFcn = 'initnw';

for each layer i and you're done.

When using 'initwb', you have to specify the initialisation routine for
each set of weights and biases separately. The most common
option here is 'rands', which sets all weights or biases to a random
number between -1 and 1. First, use

>> net.layers{i}.initFcn = 'initwb';

for each layer i. Next, define the initialisation for the input weights,
>> net.inputWeights{1,1}.initFcn = 'rands';

and for each set of biases
>> net.biases{i}.initFcn = 'rands';

and weight matrices
>> net.layerWeights{i,j}.initFcn = 'rands';

where net.layerWeights{i,j} denotes the weights from layer j to
layer i.

TRAINING FUNCTIONS
& PARAMETERS

The difference between train
and adapt

One of the more counterintuitive aspects of the NNT is the
distinction between train and adapt. Both functions are used for
training a neural network, and most of the time both can be used for

the same network.

What then is the difference between the two? The most important
one has to do with incremental training (updating the weights after
the presentation of each single training sample) versus batch
training (updating the weights after each presenting the complete
data set).

When using adapt, both incremental and batch training can be
used. Which one is actually used depends on the format of your
training set. If it consists of two matrices of input and target vectors,
like

>> P = [0.3 0.2 0.54 0.6 ; 1.2 2.0 1.4 1.5]

P =

 0.3000 0.2000 0.5400 0.6000
 1.2000 2.0000 1.4000 1.5000

>> T = [0 1 1 0]

T =

 0 1 1 0

the network will be updated using batch training. (In this case, we
have 4 samples of 2 dimensional input vectors, and 4 corresponding
1D target vectors).

If the training set is given in the form of a cell array,

>> P = {[0.3 ; 1.2] [0.2 ; 2.0] [0.54 ; 1.4] [0.6 ; 1.5]}

P =

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

>> T = { [0] [1] [1] [0] }

T =

 [0] [1] [1] [0]

then incremental training will be used.

When using train on the other hand, only batch training will be
used, regardless of the format of the data (you can use both).

The big plus of train is that it gives you a lot more choice in training
functions (gradient descent, gradient descent w/ momentum,
Levenberg-Marquardt, etc.) which are implemented very efficiently.
So when you don't have a good reason for doing incremental
training, train is probably your best choice. (And it usually saves
you setting some parameters).

To conclude this section, my own favourite difference between train
and adapt, which is trivial yet annoying, and the reason for which
completely escapes me: the difference between passes and
epochs. When using adapt, the property that determines how
many times the complete training data set is used for training the
network is called net.adaptParam.passes. Fair enough. But, when
using train, the exact same property is now called
net.trainParam.epochs! If anybody can find any sort of ratio
behind this design choice (or better, design flaw), please let me
know!.

Performance Functions

The two most common options here are the Mean Absolute Error
(mae) and the Mean Squared Error (mse). The mae is usually used
in networks for classification, while the mse is most commonly seen
in function approximation networks.

The performance function is set with the net.performFcn property,
for instance:

>> net.performFcn = 'mse';

Train Parameters

If you are going to train your network using train, the last step is
defining net.trainFcn, and setting the appropriate parameters in
net.trainParam. Which parameters are present depends on your
choice for the training function.

So if you for example want to train your network using a Gradient
Descent w/ Momentum algorithm, you'd set

>> net.trainFcn = 'traingdm';

and then set the parameters
>> net.trainParam.lr = 0.1;
>> net.trainParam.mc = 0.9;

to the desired values. (In this case, lr is the learning rate, and mc
the momentum term.)

Check the Matlab documentation for possible training functions and
their parameters.

Two other useful parameters are net.trainParam.epochs, which is
the maximum number of times the complete data set may be used
for training, and net.trainParam.show, which is the time between
status reports of the training function. For example,

>> net.trainParam.epochs = 1000;

>> net.trainParam.show = 100;

Adapt Parameters

The same general scheme is also used in setting adapt
parameters. First, set net.adaptFcn to the desired adaptation
function. We'll use adaptwb (from 'adapt weights and biases'),
which allows for a separate update algorithm for each layer. Again,
check the Matlab documentation for a complete overview of
possible update algorithms.
>> net.adaptFcn = 'adaptwb';

Next, since we're using adaptwb, we'll have to set the learning
function for all weights and biases:
>> net.inputWeights{1,1}.learnFcn = 'learnp';
>> net.biases{1}.learnFcn = 'learnp';

where in this example we've used learnp, the Perceptron learning
rule. (Type 'help learnp', etc.).

Finally, a useful parameter is net.adaptParam.passes, which is the
maximum number of times the complete training set may be used
for updating the network:

>> net.adaptParam.passes = 10;

CONCLUSION
I hope this tutorial will help any of you struggling with the NNT. If
you have any comments or questions, you can e-mail me at
portegie@science.uva.nl.

Updates

October 13, 2000
Corrected some weird typos.

May 11, 2000
Corrected cell array syntax and some spelling errors. (Thanks
to Homera Saeed).

Feb 22, 2000
First Version

