
Simple Programming in MATLAB

Plotting Graphs:

We will plot the graph of the function

y = f(x) = e−1.5x sin(8πx), 0 ≤ x ≤ 1

Plotting a graph using MATLAB involves three steps:

• Create points 0 = x1 < x2 < · · · < xn = 1.

• Compute yi = f(xi), i = 1, 2, · · · , n.

• Draw a polygonal line that connects the points (x1, y1), (x2, y2), · · · , (xn, yn).

(1) Create x-values: We first create a vector x = (x1, x2, · · · , xn) for
n = 5. It could be done in several ways:

(a) We can create the vector manually:

>> x = [0 .25 .5 .75 1] <ret>

x =

0 0.2500 0.5000 0.7500 1.0000

Here x(1) = 0, x(2) = .25, x(3) = .5, x(4) = .75 and x(5) = 1.

(b) We may also use the “do - loop”.

>> n = 5; (ret)
>> h = 1/(n-1); (ret)
>> for k=1:n (shift-ret)

x(k)=(k-1)*h; (shift-ret)
end (shift-ret)

>> x (ret)

x =

0 0.2500 0.5000 0.7500 1.0000

(c) We may also use MATLAB’s linspace command:

>> x = linspace(0,1,5) (ret)

x =

0 0.2500 0.5000 0.7500 1.0000

1

Thus we have created a row vector x of size n (n = 5 in this case).

(2) Compute y-values:

>> y = exp(-1.5*x) .* sin(8*pi*x)

y is a vector, where yi = e−1.5xi sin(8πxi). This step requires some expla-
nation. Here x = [x(1) x(2) · · · x(5)] is a row-vector, i.e., it is a matrix of
size 1× 5.

• -1.5*x is a vector [-1.5*x(1), -1.5x(2), · · · , -1.5x(5)].

• pi is the usual π in MATLAB.

• sin(8*pi*x) is a vector [sin(8*pi*x(1)), sin(8*pi*x(2)), · · · , sin(8*pi*x(5))]

• The operation “ .*” is the vector multiplication operation, which is “component-
wise” multiplication. If a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn). Then
a .* b is the vector (a1b1, a2b2, · · · , anbn). Other standard vector opera-
tions are similar, e.g., a./b is the vector
(a1/b1, a2/b2, · · · , an/bn).

• Based on the discussion, it is clear that y is the vector (y1, y2, · · · , y5)
where yi = f(xi).

(3) Plotting the points (x(i), y(i)):

>> plot(x,y)

This command will produce a graph.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−16

The graph is disappointing. The reason for this strange graph is that we
we took a low value of n. We can take a higher value of n, and repeat all the
commands, which will require a lot of typing. To avoid such situations, we will
create and execute a MATLAB script file, in the next section.

2

Writing MATLAB scripts

A script file is an ASCII file, created by the user, which contains a sequence
of MATLAB commands. This file must be saved with an extention “.m”. They
are also referred to as M files. By typing the name of the script file (without
the ‘.m’ extension) at the command-prompt (>>), we execute the script, i.e.,
execute all the commands sequentially.

Current Directory: The files created in MATLAB are usually stored in
the current directory (folder) of MATLAB. The current directory is displayed
in a window just above the command window. The default current directory
of MATLAB may not be the best place to save a file for proper organization.
For example, we may create a new directory, called “MatlabTutorial”, make
MatlabTutorial as the current directory, and save files in that directory. One
can change the current directory to MatlabTutorial by navigating through the
browse button, located next to the current directory display. A script file may
be executed if it is in the current directory (by changing the MATLAB path,
one can access also other directories).

Creating script file: Select File - New - M-File from the File menu of
MATLAB window. An edit window will appear. Type the appropriate MAT-
LAB commands in the file. In our case, we type the following:

% Script 1; Script to plot a function
n=10;
x=linspace(0,1,n);
y=exp(-1.5*x).*sin(8*pi*x);
plot(x,y)

Now save this script file by selecting File - Save As... frome the File menu of
the edit window. For example, save it as “sc1.m”. Note that we have used n=10,
and have suppressed the output of each command by putting a ‘;’ at the end
of the commands. To execute this script file, we type at the command prompt

>> sc1 (ret)

We get the graph

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

The graph is still not good. We have to increase the value of n. If you have
closed the edit window, open the file sc1.m by selecting File - Open... and the
file sc1.m. Change n=100, save the file, and execute again. We get the following
graph.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

This looks realistic.

If we want to change the function, we can also do that by editing the same
script file.

4

Creating Function files

A function file is just like a script file, but it has well-defined input and
output variables. It is also an M-File. These functions can be used in other
scripts. For example, we used the function

f(x) = e−1.5x sin(8πx)

in the script sc1.m, and typed it explicitly. We can define this function in a
function file as follows: First open an edit window and then type

function y = func1(x);
y = exp(-1.5*x) .* sin(8*pi*x);

Save this small file as ‘func1.m’ (use the same name as the name of the
function while saving). Note that the first line of this function file is the func-
tion definition line, which clearly indicates the name of the function and the
input/output variables. In this function, x is the input variable which could be
either a scalar or vector. The output variable is y; it is scalar if x is scalar, and
it is a vector if x is a vector. The size of y is same as the size of x.

The function func1.m can be used in the script sc1.m by slightly changing
the script as follows:

% Script sc2.m; Script to plot a function
% We plot a function in the interval [a,b]
a = 0;
b = 1;
n=100;
x=linspace(a,b,n);
y=func1(x);
plot(x,y)

Save the script as sc2.m. Note that we have used y=func1(x);. Make sure
that func1.m and sc2.m are both in the current directory . Also note that we can
assign other values to the variables a and b (other that 0 and 1 respectively).

In this particular case, we really did not need to define the function func1.m,
as it was a simple function. But functions, used in MATLAB, can be complicated
and it is useful to define functions separately.

5

Taylor Polynomials of ex:

We will write a function that is the nth-degree Taylor polynomial of the
function f(x) = ex. It is well known that this polynomial is given by

n∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·+ xn

n!

The function is defined as follows:

function y = TaylPol(x,n);
l = size(x);
y = ones(l);
term = ones(l);
for k=1:n

term = (term.*x)/k;
y = y + term;

end

Some comments of this function:

• TaylPol is a function of two variables, x and n. Here n is the degree of the
Taylor polynomial. y is the value of the Taylor polynomial at x; x could
be a scalar or a vector and y is a vector of same length.

• The command size(x) gives the size of x when x is considered as a matrix.
In this case, if x is a row-vector with 10 components, then size(x) = [
1 10]. If x is a scalar (a row-vector with one component), then size(x)
= [1 1].

• The command ones(l) is a row vector of size l whose components are 1.

We now write a script which plots ex and its Taylor polynomials of degree
1, 3, and 5 for 0 ≤ x ≤ 4.

% Script sc3.m
% Plot exp(x) and its Taylor polynomials of
% degree 1, 3, and 5 for 0 <= x <= 4
n=400;
x=linspace(0,4,n);
y1=exp(x);
y2 = TaylPol(x,1);
y3 = TaylPol(x,3);
y4 = TaylPol(x,5);
plot(x,y1,’k-’,x,y2,’k--’,x,y3,’k-.’,x,y4,’k:’)

Comments:

• x is a vector of length 400 (note that size(x) = [1 400]). The compo-
nents are uniformly distributed values of x between 0 and 400 (including
0 and 400).

6

• y1 is the row-vector of values of ex, where x is the row-vector of length
400. y2, y3 and y4 are row-vectors of values of the Taylor polynomials
of degree 1, 3, and 4 respectively.

• The plot command plots four plots on the same graph. It first plots (x,y1)
with ’k-’ option where k represents black color, and - represents solid
line. It then plots (x,y2) with ’k--’ option, i.e., black dashed line. The
option ’k-.’ means black dash-dot line, and ’k:’ means black dotted
line.

The script sc3.m is then executed by typing

>> sc3

to get

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

Values of sin x via its Maclaurin series:

We now present the last function of this section which evaluates sin x via its
Maclaurin series;

sin x =
∞∑

k=1

(−1)k+1 x2k−1

(2k − 1)!

This series converges for every value of x. We will find sin x, for a given x,
by “computing the infinite series” in the following sense: We will compute the
partial sum

Sn =
n∑

k=1

(−1)k+1 x2k−1

(2k − 1)!
,

for large enough n, such that

|Sn+1 − Sn| is small.

7

Also the following observation will be useful in writing a MATLAB function
for for this procedure. The (k − 1)th term of the infinite series is

ak−1 = (−1)k x2k−3

(2k − 3)!
.

And thus, thus the kth term can be written as

ak = (−1)k+1 x2k−1

(2k − 1)!
= ak−1

[
(−1)

x2

(2k − 1)(2k − 2)

]

We are now ready to write the function.

function y = sinmac(x)
% x could be a vector
ep = 10 ^ (-14);
l=length(x);
for k=1:l

sl = 0;
sn = x(k);
term = x(k);
con = 1;
pm = 1;
while (abs(sn-sl)>ep)

sl = sn;
con = con+2;
pm = -pm;
term = (term.*(x(k) ^ 2))/(con*(con-1));
sn = sn + term*pm;

end
y(k) = sn;

end

We use the following script to use this function.

x = [.5 pi/4 1.2];
sinmac(x)

The output will be

ans =
0.47942553860420 0.70710678118655 0.93203908596723

8

We can also use the script sc2.m with slight modification.

% Script sc2.m; Script to plot a function
% We plot a function in the interval [a,b]
a = 0;
b = 2*pi;
n=500;
x=linspace(a,b,n);
y=sinmac(x);
plot(x,y)

We get the graph

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Caution: We will later see certain problems with this function.

9

