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Abstract

This tutorial gives an introduction to the Matlab Neural Network Toolbox. The elements of matlab
and the neural network toolbox are more easily understood when explained by an example. First
a neural network will be used for a classification task. The second example will be a simple logical
problem.

0.1 Matlab Files for SS07

Here you can find the .m files for the first practical lesson : Introduction to NNT.zip1

Usage

To make full use of this tutorial you have

1. to download the file

nnt intro.zip2 which contains this tutorial and the accompanying Matlab programs.

2. Unzip nnt intro.zip which will generate a subdirectory named
nnt intro where you can find all the Matlab programs.

3. Add the path nnt intro to the matlab search path with a command like
addpath(’C:\Work\nnt intro’)

if you are using a Windows machine or
addpath(’/home/jack/nnt intro’)

if you are using a Unix/Linux machine.

1 The Neural Network Toolbox

The neural network toolbox makes it easier to use neural networks in matlab. The toolbox consists
of a set of functions and structures that handle neural networks, so we do not need to write code
for all activation functions, training algorithms, etc. that we want to use!

The Neural Network Toolbox is contained in a directory called nnet. Type help nnet for a listing
of help topics.

A number of demonstrations are included in the toolbox. Each example states a problem, shows
1Introduction_to_NNT.zip
2http://www.igi.tugraz.at/lehre/CI/tutorials/nnt_intro.zip
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the network used to solve the problem, and presents the final results. Lists of the demos and
applications scripts that are discussed in this guide can be found with help nndemos/.

2 The Structure of the Neural Network Toolbox

The toolbox is based on the network object. This object contains information about everything
that concern the neural network, e.g. the number and structure of its layers, the conectivity
between the layers, etc. Matlab provides high-level network creation functions, like newlin (create
a linear layer), newp (create a perceptron) or newff (create a feed-forward backpropagation
network) to allow an easy construction of. As an example we construct a perceptron with two
inputs ranging from -2 to 2:

>> net = newp([-2 2;-2 2],1)

First the architecture parameters and the subobject structures

subobject structures:

inputs: {1x1 cell} of inputs
layers: {1x1 cell} of layers
outputs: {1x1 cell} containing 1 output
targets: {1x1 cell} containing 1 target
biases: {1x1 cell} containing 1 bias

inputWeights: {1x1 cell} containing 1 input weight
layerWeights: {1x1 cell} containing no layer weights

are shown. The latter contains information about the individual objects of the network. Each
layer consists of neurons with the same transfer function net.transferFcn and net input function
net.netInputFcn, which are in the case of perceptrons hardlim and netsum. If neurons should have
different transfer functions then they have to be arranged in different layers. The parameters
net.inputWeights and net.layerWeights specify among other things the applied learning functions
and their parameters. The next paragraph contains the training, initialization and performance
functions.

functions:

adaptFcn: ’trains’
initFcn: ’initlay’

performFcn: ’mae’
trainFcn: ’trainc’

The trainFcn and adaptFcn are used for the two different learning types batch learning and in-
cremental or on-line learning. By setting the trainFcn parameter you tell Matlab which training
algorithm should be used, which is in our case the cyclical order incremental training/learning
function trainc. The ANN toolbox include almost 20 training functions. The performance func-
tion is the function that determines how well the ANN is doing it’s task. For a perceptron it is the
mean absolute error performance function mae. For linear regression usually the mean squared
error performance function mse is used. The initFcn is the function that initialized the weights and
biases of the network. To get a list of the functions that are available type help nnet. To change
one of these functions to another one in the toolbox or one that you have created, just assign the
name of the function to the parameter, e.g.

>> net.trainFcn = ’mytrainingfun’;

The parameters that concerns these functions are listed in the next paragraph.
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parameters:

adaptParam: .passes
initParam: (none)

performParam: (none)
trainParam: .epochs, .goal, .show, .time

By changing these parameters you can change the default behavior of the functions mentioned
above. The parameters you will use the most are probably the components of trainParam. The
most used of these are net.trainParam.epochs which tells the algorithm the maximum number of
epochs to train, and net.trainParam.show that tells the algorithm how many epochs there should
be between each presentation of the performance. Type help train for more information.

The weights and biases are also stored in the network structure:

weight and bias values:

IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing no layer weight matrices
b: {1x1 cell} containing 1 bias vector

The .IW(i,j) component is a two dimensional cell matrix that holds the weights of the connection
between the input j and the network layer i. The .LW(i,j) component holds the weight matrix for
the connection from the network layer j to the layer i. The cell array b contains the bias vector
for each layer.

3 A Classification Task

As example our task is to create and train a perceptron that correctly classifies points sets belonging
to three different classes. First we load the data from the file winedata.mat

>> load winedata X C

Each row of X represents a sample point whose class is specified by the corresponding element
(row) in C. Further the data is transformed into the input/output format used by the Neural
Network Toolbox

>> P=X’;

where P(:,i) is the ith point. Since we want to classify three different classes we use 3 perceptrons,
each for the classification of one class. The corresponding target function is generated by

>> T=ind2vec(C);

To create the perceptron layer with correct input range type

>> net=newp(minmax(P),size(T,1));

The difference between train and adapt

Both functions, train and adapt, are used for training a neural network, and most of the time both
can be used for the same network. The most important difference has to do with incremental
training (updating the weights after the presentation of each single training sample) versus batch
training (updating the weights after each presenting the complete data set).
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Figure 1: Data set X projected to two dimensions.

Adapt

First, set net.adaptFcn to the desired adaptation function. We’ll use adaptwb (from ’adapt weights
and biases’), which allows for a separate update algorithm for each layer. Again, check the Matlab
documentation for a complete overview of possible update algorithms.

>> net.adaptFcn = ’trains’;

Next, since we’re using trains, we’ll have to set the learning function for all weights and biases:

>> net.inputWeights{1,1}.learnFcn = ’learnp’;
>> net.biases{1}.learnFcn = ’learnp’;

where learnp is the Perceptron learning rule. Finally, a useful parameter is net.adaptParam.passes,
which is the maximum number of times the complete training set may be used for updating the
network:
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>> net.adaptParam.passes = 1;

When using adapt, both incremental and batch training can be used. Which one is actually used
depends on the format of your training set. If it consists of two matrices of input and target
vectors, like

>> [net,y,e] = adapt(net,P,T);

the network will be updated using batch training. Note that all elements of the matrix y are one,
because the weights are not updated until all of the trainings set had been presented.

If the training set is given in the form of a cell array

>> for i = 1:length(P), P2{i} = P(:,i); T2{i}= T(:,i); end
>> net = init(net);
>> [net,y2,e2] = adapt(net,P2,T2);

then incremental training will be used. Notice that the weights had to be initialized before the
network adaption was started. Since adapt takes a lot more time then train we continue our
analysis with second algorithm.

Train

When using train on the other hand, only batch training will be used, regardless of the format
of the data (you can use both). The advantage of train is that it provides a lot more choice in
training functions (gradient descent, gradient descent w/ momentum, Levenberg-Marquardt, etc.)
which are implemented very efficiently. So for static networks (no tapped delay lines) usually train
is the better choice.

We set

>> net.trainFcn = ’trainb’;

for batch learning and

>> net.trainFcn = ’trainc’;

for on-line learning. Which training parameters are present depends in general on your choice for
the training function. In our case two useful parameters are net.trainParam.epochs, which is the
maximum number of times the complete data set may be used for training, and net.trainParam.show,
which is the time between status reports of the training function. For example,

>> net.trainParam.epochs = 1000;
>> net.trainParam.show = 100;

We initialize and simulate the network with

>> net = init(net);
>> [net,tr] = train(net,P,T);

The trainings error is calculated with

>> Y=sim(net,P);
>> train_error=mae(Y-T)

train_error =
0.3801

So we see that the three classes of the data set were not linear seperable. The best time to stop
learning would have been
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>> [min_perf,min_epoch]=min(tr.perf)

min_perf =
0.1948

min_epoch =
703

Figure 2: Performance of the learning algorithm train over 1000 epochs.

4 A Simple logical problem

The task is to create and train a neural network that solves the XOR problem. XOR is a function
that returns 1 when the two inputs are not equal,
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Construct a Feed-Forward Network

To solve this we will need a feedforward neural network with two input neurons, and one output
neuron. Because that the problem is not linearly separable it will also need a hidden layer with
two neurons.To create a new feed forward neural network use the command newff. You have to
enter the max and min of the input values, the number of neurons in each layer and optionally
the activation functions.

>> net = newff([0 1; 0 1],[2 1],{’logsig’,’logsig’});

The variable net will now contain an untrained feedforward neural network with two neurons in
the input layer, two neurons in the hidden layer and one output neuron, exactly as we want it.
The [0 1; 0 1] tells matlab that the input values ranges between 0 and 1. The ’logsig’,’logsig’
tells matlab that we want to use the logsig function as activation function in all layers. The first
parameter tells the network how many nodes there should be in the input layer, hence you do
not have to specify this in the second parameter. You have to specify at least as many transfer
functions as there are layers, not counting the input layer. If you do not specify any transfer
function Matlab will use the default settings.

First we construct a matrix of the inputs. The input to the network is always in the columns of
the matrix. To create a matrix with the inputs ”1 1”, ”1 0”, ”0 1” and ”0 0” we enter:

>> input = [1 1 0 0; 1 0 1 0]

input =
1 1 0 0
1 0 1 0

Further we construct the target vector:

>> target = [0 1 1 0]

target =
0 1 1 0

Train the Network via Backpropagation

In this example we do not need all the information that the training algorithms shows, so we turn
it of by entering:

>> net.trainParam.show=NaN;

Let us apply the default training algorithm Levenberg-Marquardt backpropagation trainlm to our
network. An additional training parameters is .min grad. If the gradient of the performance is less
than .min grad the training is ended. To train the network enter:

>> net = train(net,input,target);

Because of the small size of the network, the training is done in only a second or two. Now we
simulate the network, to see how it reacts to the inputs:

>> output = sim(net,input)

output =

0.0000 1.0000 1.0000 0.0000

That was exactly what we wanted the network to output! Now examine the weights that the
training algorithm has set
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>> net.IW{1,1}

ans =
11.0358 -9.5595
16.8909 -17.5570

>> net.LW{2,1}

ans =
25.9797 -25.7624

5 Graphical User Interface

A graphical user interface has been added to the toolbox. This interface allows you to:

• Creat networks

• Enter data into the GUI

• Initialize, train, and simulate networks

• Export the training results from the GUI to the command line workspace

• Import data from the command line workspace to the GUI

To open the Network/Data Manager window type nntool.
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