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Suggested Reading

• Neural Networks for Pattern Recognition
– by Christopher Bishop

– This talk will refer to sections in Chris’ book

• Neural Networks: Tricks of the Trade, by Orr &
Müller

• http://research.microsoft.com/~jplatt/hands.ps

3

Machine Learning

• Create statistical models/functions from training data
– These models & functions should perform well on data that

is not in the training set (generalization)

training set learning algorithm

function

or model
input vector useful

result
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Why Machine Learning?

• Learned functions > hand-designed functions
– Accuracy

– Speed

– Memory
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Typical Machine Learning Problems

• Clustering
– Training data contains unlabeled examples

– Map new input vector into cluster membership

• Classification
– Training data contains examples + category labels

– Map new input vector into category

• Regression
– Training data contains examples + real values

– Map new input vector into real valued number
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Examples of Classification

• Text Categorization
– Map e-mail message into spam or not spam

• Handwriting Recognition
– Map handwritten glyph into character code (esp. Chinese!)

• Speech Recognition
– Map sequence of sounds into words

• Optical Character Recognition
– Map pixels into character code

• Etc.
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Why Machine Learning is Hard

• Overfitting
– Try and infer general functions from limited data sets

– You can never put too much data into a learning algorithm

• Curse of Dimensionality
– Input vector spaces tend to be high dimensional

– Fitting functions on high-dimensional spaces can take
exponential number of parameters

• neural networks avoid this (in certain circumstances)

8

Overfitting

• Learning algorithms can find structure that isn’t
really there: finite data size effects

• Example: regression (fitting a function)
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Two-Class Classification

• Make a decision
– which class? c = 0 or 1

– based on continuous input vector = x
– cost of decision: pay $1 if wrong, nothing if correct

• Decision function:
– f (x) = 0 or 1

– expected cost = P(c = 1| x)(1-f ) + P(c = 0 | x) f

• Optimal decision
– f (x) = P(c = 1| x) > P(c = 0 | x) = P(c = 1 | x) > 0.5
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Multi-Class Classification

f (x) = j if P(c = j | x) > P(c = k | x) for k π j

• Other loss functions also possible
– See Bishop, section 1.10

11

Three Types of Classification Learning

1. Learn discrete function f from training set
• Discriminant function

Nearest Neighbor Classifier, Perceptron, Support Vector Machine

2. Learn P(c = j | x) from training set
• Ranking alternatives

• Further post-processing (e.g., word models)

3. Infer P(c = j | x) using Bayes’ rule
• Create density model of each class

• Infer missing data

• Perform temporal inference
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Probability Density

• A probability density over a continuous variable

p(x)
– differential probability over a infintesimal region

[ ]( , ) ( )
b

a

P x a b p x dx∈ = ∫
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Bayes’ Rule

• Two ways of expressing joint probability

p(x,c) = P(c | x) p(x)

p(x,c) = p(x | c) P(c)

( | ) ( )
( | )

( )

p x c P c
P c x

p x
=

posterior

class density model prior
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Fit a Density Model

• Fit a conditional density model to each class
– derive posterior using weighted ratio of densities

x

p(x | c = 0) p(x | c = 1)

P(c = 1 | x )
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Fit Posterior Directly

training examples
x

classifier ( | )P c x

optimization
algorithm

error
metric

training labels
c
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Posterior Fit vs. Bayes Rule

• Fitting posterior often produces more accurate results
– More robust to incorrect models

– Maximize metric related to classification performance,
rather than density model fit

• Using Bayes rule has extra benefits
– Infer missing data

– Perform temporal inference

– Easy incorporation of prior knowledge (Bayes nets)
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Defining an Error Function

training examples
x

classifier ( | )P c x

optimization
algorithm

error
metric

training labels
c
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Some Notation

Classifier has vector of parameters q

nth training example is {xn,cn}

Output of classifier is real value y (yn for nth example)

Probability density of nth training example according to
model

p(xn,cn | q )
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Maximum Likelihood Learning

• Assume training set is drawn independently from
same distribution

• Find q so that training set is most likely
– training set is “true”, so it should be likely under model!

max ( ) max ( , | )

max ( | , ) ( )

n n
n

n n n
n

L p x c

P c x p x

θ θ

θ

θ θ

θ

=

=

∏
∏
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Minimize Negative Log Likelihood

Maximum of L occurs in same place as max log(L)
– monotonicity of log

max log(L) = min –log(L)

• Best parameter value occurs at

min log ( | , )n n
n

P c x
θ

θ−∑
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Labels Generated by Bernoulli Distribution

• Consider two-class classification (c = 0 or 1)

• Model: output of classifier controls a coin that flips to
determine class

1( | , ) (1 )

(0 | , ) 1

(1| , )

n nc c
n n n n

n n

n n

P c x y y

P x y

P x y

θ
θ
θ

−= −
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=
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Cross-Entropy Error Function

• Our error metric will be

min min log ( | , )

min log (1 ) log(1 )

n n
n

n n n n
n

E P c x

c y c y

θ θ

θ

θ= −

= − + − −

∑

∑
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Outputs will be Probabilities

• Cross-entropy is a proper error score
– For infinite training set

– If output of classifier can represent true probability

– Minimum of score occurs when

• See Bishop, section 6.7
– requires Calculus of Variation

( ) ( 1| )y x P c x= =
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Multi-Class Classification

• N possible disjoint classes
– Example: digit recognition --- a digit is one class from 0-9

• Extra notation
tin := (cn = i) is the ith target for the nth training example

yin is the ith classifier output for the nth training example

• Multinomial model
– Classifier produces N probabilities (which sum to 1)

– Model: roll an N-way die with those probabilities
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Multinomial model

• Maximum likelihood solution (error metric)

also a proper scoring rule

( )
1

( | , ) in
N

t

n n in
i

P c x yθ
=

= ∏

1

min min log
N

in in
n i

E t y
θ θ =

= −∑∑
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Defining an Optimization Algorithm

training examples
x

classifier ( | )P c x

optimization
algorithm

error
metric

training labels
c
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Stochastic Gradient Descent (SGD)

• Simplest possible optimization algorithm

• Loop over each training example
– adjust parameters to improve error metric a little bit

• Only evaluate error on one training example

• Gradient points towards worst possible step

• Negative gradient points to best possible step

n

i

E

θ
∂
∂

1

log
N

n in in
i

E t y
=

= −∑

n

i

E

θ
∂−
∂
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More about SGD

• At every step:

where h is a step size

n
i

i

Eθ η
θ

∂∆ = −
∂

E

q
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Convergence of SGD

• Except En is only an approximation to E

• Stochastic approximation
– or Robbins-Munro procedure

• Converges if step size h decreases with time

• In practice, people use fixed step size

1
nE E=

�

2

0 0

( ) ( )
t t

t tη η
∞ ∞

= =
= ∞ < ∞∑ ∑
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On-line versus Batch Learning

• What about sophisticated optimization algorithms?
– Conjugate gradient

– Quasi-Newton algorithm

• These algorithms require full gradient E for step
– SGD often converges in small number of “epochs”

– SGD much faster for neural nets & large data sets

• Noisy gradient in SGD avoids local minima
– Non-convex optimization (in neural nets)

– Noise acts as “annealing” to avoid poor local minima
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Defining a Classifier

training examples
x

classifier ( | )P c x

optimization
algorithm

error
metric

training labels
c
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Logistic Model

• Two-class classification

• Model: log-odds of P(c | x) depends linearly on x

– log odds a natural way of expressing probability

0
1

( 0 | )
log

( 1| )

d

i i
i

P c x
w x w

P c x =

 = = + = 
∑

( )

0sig

1
sig

1
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i

z

y w x w

z
e−

 = + 
 

=
+

∑

z

sig(z)

q
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Network Diagram for Logistic Model

• Single-layer neural network
– single layer of trainable weights

output = y

weights = wi

inputs = xi

bias input
(always 1)

34

Relationship to Gaussian Densities

• If each class density model is Gaussian
– with same covariance matrix S

• Then, Bayes’ rule will yield a logistic classifier
– linear discriminant analysis

0µ
1µ

w
1

1 0( )w S µ µ−= −� � �

input space x
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SGD applied to Logistic Model

Recall

We need to compute and

log (1 ) log(1 )

1

1

n n n

z

i i
i

E c y c y

y
e

z x w b

−

= − − − −

=
+
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w

∂
∂
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b

∂
∂
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Chain Rule
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SGD + Cross-Entropy = Simple

• SGD uses very simple rules:
– First, evaluate the network on a training example to get y

– Then, update using

0

( )

( )
i n i

n

w c y x

w c y

η
η

∆ = −
∆ = −
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Local Learning Rule

update this weight

error from here

input from here
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Single-Layer Softmax

• For multi-class classification

• Need an output non-linearity
– produces values

– values should sum to 1

• Softmax is analogous to sigmoid

• Can arise from a density model (Bishop, section 6.9)

[ ]0,1∈

0

i

j

z

i i ij j iz
j

j

e
y z w x w

e
= = +∑
∑
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Network Diagram
for Single-Layer Softmax

weights = wij

inputs = xj

outputs = yi

41

SGD applied to Single-Layer Softmax

• Use multinomial error

• SGD still has simple local form!

– for derivation, see Bishop, section 6.9

1

log
N

n in i
i

E t y
=

= −∑

0( ) ( )ij in i j i in iw t y x w t yη η∆ = − ∆ = −
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Limitations of One-layer Models

• Discriminant computed by logistic classifier is linear
– cannot solve all possible classification problems
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Pre-Process the Problem Away?

• Compute features, then compute linear function of
features

– f are called basis functions

• If you choose f without looking at data (or problem)
– either require an exponential number of f (in input dim)

– or cannot solve all interesting problems

• Bishop, section 3.5.4

( )j j
j

z w xϕ=∑
�
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Neural Network First Layer

• Compute basis functions adaptively
– reduce curse of dimensionality

• First, compute a set of non-disjoint binary features
– probability of each binary feature is basis function

45

Neural Network Model

• Then, combine features in second layer

outputs yi

second layer weights wij

hidden unit outputs hj

first layer weights ujk

inputs xk

46

Evaluation of NN Model

• Propagate values forward
– load x with input vector

0
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0
1

1
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i
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z & y
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SGD applied to Neural Network

• Step for the same as one-layer caseDwij and Dwi0

jn n n
jk

jk jk j jk

n n i i
ij

ij i j j

hE E E
u

u u h u

E E z z
w

h z h h

η
∂∂ ∂ ∂∆ = − =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂∑

( )n
i in ij j

ij

E
y t w

h
δ∂ = − =

∂ ∑
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Back-Propagation

contains all error info about 2nd layer for 1st layer

• Gradient information flows backwards through
network

• All information is local

dj

S

error from here

weight from here

new error here: dj
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First Layer SGD Step

(1 )j j j
j j k

jk j jk

h dh a
h h x

u da u

∂ ∂
= = −

∂ ∂

(1 )n
jk j j j k

jk

E
u h h x

u
η ηδ∂∆ = − = − −

∂

error at hidden unit j

input k
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Overall Computational Flow

update
wij

update
ujk

51

Variation I

• Non-disjoint outputs

52

Variation II

• More than 2 layers

update

update

update

53

Summary So Far

• Classifiers take input vector, estimate posteriors

• Posteriors can fit directly from training data

• Cross-entropy is a sensible error metric

• Stochastic gradient descent is a good algorithm

• Two-layer neural networks are sensible
– trained via on-line back-propagation

54

Why NN Model?

• Posterior corresponding to Bayes’ rule applied to a
density model
– see Bishop, section 6.7.1

• Can approximate any function

• Reduces curse of dimensionality

• Works well on many problems
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Universality of NN Function

• Two-layer NN can approximate any function
– linear output units (no sigmoid or softmax)

– sufficiently large number of hidden units

• NN can approximate any non-linear discriminant
– sigmoid output units

– sufficiently large number of hidden units

– arbitrary accuracy

56

NN and Curse of Dimensionality

• For regression: neural net function y tries to match
target function f

• Measure error via integrated squared error

• If N = number of hidden units

• Fixed basis functions have denominator Nd/2

| || ( ) |C y dω ω ω= < ∞∫
� � �

�

2| |
C

y f dx
N

− =∫
�

this term independent of input dimensionality
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Tricks of the Trade

• Pre-processing of inputs

• Choice of non-linearity

• Weight initialization

• Prevention of Overfitting

58

Single Layer Linear Regression

output = y

weights = wi

inputs = xi

i i
i

y w x=∑
2

1
( ) ( ) ( ) ( )
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i

E n t n w n x n
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Stability Analysis

• Assume training data is drawn independently

( )

( )
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j
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Decay of the Error Eigenvectors

where is the expected error at example n

Decompose R into eigenvectors:

( )
( ) ( )
( )

opt opt

opt

( 1) ( )

( )

( 1) ( )

w n w w n w

w n w

n n

η ηγ
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� � � � �

� �

� �
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� � �

� �
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Maximum Step Size

SGD converges if

where li= eigenvalue of R.

• minimize eigenvalue spread for best performance

• speed of convergence depends on

max

2
|1 | 1iηλ η

λ
− < ⇒ <

w
�

max

1

λ

min

1

λ

contours
of E

min max/λ λ
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Zero Mean Inputs are Good

• Decompose input to net into zero mean xi and mean m

• Eigenvector of all ones has eigenvalue m2N
– which is HUGE

• Make sure inputs have close to zero mean
– subtract off mean input before applying to network

( )( ) 2
i j i jx x x xµ µ µ= + + = +R 1
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Sparse Inputs are Good

• Represent categorical inputs to net as 1 of N code

• Example: one input attains discete letter values A-G
– Convert into 7 different inputs

0 0 0 0 1 0 0

A B C D E F G

• Good eigenvalue spread

• Sparse computation of is fast

• Can also quantize continuous variables

i i
i

w x∑

64

Unit Variance Inputs are Good

• Make sure inputs to net have roughly same scale (1)
– improves eigenvalue spread

65

Uncorrelated Inputs are Good

• Principal Component Analysis before input to net
– perform Singular Value Decomposition on training data

• see Numerical Recipes, chapter 2

– Rotate and scale inputs so that R is the identity matrix

– Eigenvalue spread: 0!

– Does not affect computational ability

66

Reduce Number of Inputs through PCA

• PCA computes eigenvalues and eigenvectors of R

• Remember:

• g is estimated from data

• Small eigenvalues in R lead to big eigenvalues in R-1

– weight vector will blow up: overfitting!

• Discard PCA input dimensions with small eigenvalue
– Reduce size of network: reduces overfitting

1
optw γ−= R

� �
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Tanh Hidden Units are Good

• What about correlations between hidden units?
– Want zero mean for hidden units

• For value of z close to zero:

• Use tanh(z) rather than sig(z):

• No change in computational ability
– just scale in weights and shift in bias

1
0.5

1 z
h

e−= =
+

2

2
tanh( ) 1 2sig(2 ) 1

1 zz z
e−= − = −

+
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Weight Initialization

• If you start all weights = 0, then gradient = 0 �
– If h = 0 and w = 0, then Dw = 0 and d = 0

• Need to initialize some weights to Gaussian random
non-zero values
– sensitive to initial conditions�

• Initialize all but first-layer weights to non-zero
– Causes d to start out with slight non-zero values

• Weight should be small enough to keep network in
linear regime

69

Effect of Weight Initialization

• Find splits of data into randomly assigned halves
– BP will change split assignment if it doesn’t make sense

• First layer weights will not span null space of R

1

2

1

1

1

1
1

3

2

2

2
2

333

444
4

4 4
input space

5555
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Overfitting

• Neural network can fit an overly complicated
function to the training data
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MAP Learning

• Find parameters q that are most likely given data D
– different from parameters that make data most likely

( | ) ( )
max ( | ) max

( )

max log ( | ) log ( )

min log ( | ) log ( )

P D P
P D

P D

P D P

P D P

θ θ

θ

θ

θ θθ

θ θ

θ θ

=

= +

= − −

usual data
likelihood term

regularizer

prior over
parameters
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Regularization

• Regularizer penalizes models that
– have unusual parameter settings

– are too wiggly

– are too complex
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Weight Decay

• Prior: weights should not be insanely large
– weights are derivatives inside neural network

( )

2

2

( ) exp
2

log ( )
2
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i
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αθ θ

αθ θ θ
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penalize large weights
quadratically
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θ
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∂= − −
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Hold Out Set

• How do you set a?

• Simplest method: hold out set

• Split training set into train (70%) and hold out (30%)
• For a series of different a:

– Train NN on training subset

– Test NN on hold out set

• Choose a which maximizes performance on hold out

• Retrain NN on entire training set with optimal a

75

Performance Curve

Error

log a

training error

testing error

76

Better Weight Decay

• Want to fit a scaled or shifted function if you scale or
shift inputs or outputs of net

– and do not put prior on biases

• See Bishop, section 9.2.2 for derivation

2 2
1 2

, ,
jk ij

j k i j

u wα α+∑ ∑
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Analysis of Weight Decay

SGD applied to linear regression:

1
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Adding Noise to Inputs

• At every step of SGD, add random noise to inputs:

Applicable to any SGD, not just linear regression
– noise variance is much more intuitive than a

2

2 1
noise

( 1) ( ) ( )( ) ( )

( 1) (1 ) ( ) ( ) ( )
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i i j j j i i
j
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R I
� �
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Domain-Specific Noise is Good

• At SGD step, add domain-specific noise to input:

• Makes network robust to likely distortions of input

• This helps a lot

• Can be done analytically: tangent-prop by Simard
– Bishop, section 8.7.1

80

Early Stopping is Good

• When do you stop back-propagation?
– use hold-out set to monitor performance

Error

training time

training error

testing error

81

Early Stopping Specifics

• Save net which yields best hold out performance

• If hold out performance does not improve in N
epochs
– stop

• Note: only need to perform learning once, not
multiple times!

82

Why Early Stopping Works

• Early stopping is similar to weight decay
– see Bishop, exercise 9.1

• Weight decay softly erases small eigenvalues in H
• So does early stopping

– large eigenvalues decay quickly
– small eigenvalues decay slowly

0

1

1 1
( )

2 2

( )

T T T

T
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E w E b w w w w w
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…

�

�
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Convolutional Neural Networks

• Using raw signals as inputs yields huge networks
– one second of sound = 16000 inputs

– one video frame = 640*480 inputs

• Also, you want to “spot” objects in signals
– translation invariance

• Solution: convolutional neural networks

84

Use Convolutions

• Instead of dot product followed by sigmoid (or tanh):

• Use convolution to get shift-invariant output:
0
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Network Diagram for Convolution

x(t)

y(t)

86

Multiple Inputs

• Convolutional Layer can take multiple inputs

0
1 0

( ) ( )
M N

jk j
j k

z t w x t k w
= =

= − +∑∑

xj(t)

y(t)
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Time-Delay Neural Network (TDNN)

• Stack multiple convolutional layers to perform non-
linear filtering

x(t)

hj(t)

y(t)

88

Backprop for Convolutional Layer

• Analogous to standard case, with more indices

,

above

below above

,
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Targets for CNNs

• Your belief that an object in at that time/position

• More sophisticated target generation:
– “Soft-OR” or “Integrated Segmentation and Recognition”

– Bootstrap generation of targets

– Keeler and Rumelhart, NIPS 3

1
( | , )P c x t

�

t
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2D Convolutional Layers

• Can extend to 2D convolutional layers

input image

feature images

output imagevalues near 1:
object detected

layers of
learned

convolutional
kernels
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Examples

• Find a hand in an image using CNNs
– http://research.microsoft.com/~jplatt/hands.ps

• Recognize handwritten optical digits
– http://www.research.att.com/~yann/publis/psgz/lecun-

bengio-94.ps.gz

• Recognize handwritten characters from tablet
– Chap 13 in “Neural Networks: Tricks of the Trade”

• Combine HMMs and Neural Networks
– ftp://ftp.dcs.shef.ac.uk/share/spandh/pubs/renals/icassp92.p

s.gz
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Summary of Second Half

• Analysis of SGD linear regression yields many tricks

• Regularization is important
– early stopping

– domain-specific noise

• Convolutional Neural Networks
– useful for recognizing signals


