Neural Network Course

John Platt
Microsoft Research

Suggested Reading

* Neural Networks for Pattern Recognition
— by Christopher Bishop
— Thistalk will refer to sectionsin Chris' book

* Neural Networks: Tricks of the Trade, by Orr &
Mdller

« http://research.microsoft.com/~jplatt/hands.ps

Machine Learning

« Create statistical models/functions from training data

— These models & functions should perform well on data that
isnot in the training set (generalization)

training set —'I learning algorithm

function useful

input vector —, s |
or model result

Why Machine Learning?

* Learned functions > hand-designed functions
— Accuracy
— Speed
— Memory

Typical Machine Learning Problems

e Clustering
— Training data contains unlabeled examples
— Map new input vector into cluster membership
* Classification
— Training data contains examples + category labels
— Map new input vector into category
* Regression
— Training data contains examples + rea values
— Map new input vector into real valued number

Examples of Classification

Text Categorization

— Map e-mail message into spam or not spam
Handwriting Recognition

— Map handwritten glyph into character code (esp. Chinese!)
Speech Recognition

— Map seguence of sounds into words
Optical Character Recognition

— Map pixelsinto character code
Etc.

Why Machine Learning is Hard

Overfitting

— Try and infer general functions from limited data sets

— You can never put too much data into alearning algorithm
Curse of Dimensionality

— Input vector spaces tend to be high dimensional

— Fitting functions on high-dimensional spaces can take
exponential number of parameters
« neural networks avoid this (in certain circumstances)

Overfitting

¢ Learning algorithms can find structure that isn’t
really there: finite data size effects

« Example: regression (fitting a function)

Two-Class Classification

* Make adecision

— whichclass?c=0or 1
— based on continuous input vector = x
— cost of decision: pay $1 if wrong, nothing if correct

¢ Decision function:

—-f(x)=0or1
— expected cost = P(c=1|x)(1-f) + P(c=0|x) f

e Optimal decision

—f(x) =P(c=1]x)>P(c=0|x)=P(c=1|x)>05

Multi-Class Classification

f(x)=j if P(c=j|x)>P(c=Kk|x) fork#]

 Other loss functions also possible
— See Bishop, section 1.10

Three Types of Classification Learning

1. Learndiscrete function f from training set

2.

3.

e Discriminant function
Nearest Neighbor Classifier, Perceptron, Support Vector Machine
Learn P(c =j | x) from training set
* Ranking alternatives
» Further post-processing (e.g., word models)
Infer P(c = | x) using Bayes' rule
* Create density model of each class
e Infer missing data
* Perform tempord inference

11

Probability Density

A probability density over a continuous variable

p(x)
— differentia probability over ainfintesimal region

P(xe[a,b]) = t]'p(x)dx

Bayes' Rule

* Two ways of expressing joint probability
p(x.c) = P(c|x) p(x)
p(x.c) = p(x |) P(c)

class density model prior
P c‘)/
p(e]x) = PEIOP(
/ p(X)
posterior

13

Fit a Density Model

« Fit aconditional density model to each class
— derive posterior using weighted ratio of densities

pix[c=0) p(x|c=1)

X

/T Pe=1]x)

Fit Posterior Directly

training examples classifier

L P(c]X)
X

x |

optimization error
algorithm metric
training labels

C

15

Defining an Error Function

training examples classifier
X

optimization|,___| error

algorithm metric

|

training labels
c

- P(cl¥)

17

Posterior Fit vs. Bayes Rule

* Fitting posterior often produces more accurate results
— Morerobust to incorrect models

— Maximize metric related to classification performance,
rather than density model fit

« Using Bayes rule has extra benefits
— Infer missing data
— Perform tempora inference
— Easy incorporation of prior knowledge (Bayes nets)

Some Notation

Classifier has vector of parameters 6
nth training exampleis {x,,c.}
Output of classifier isreal valuey (y, for nth example)

Probability density of nth training example according to
model

PXnCo | €)

Maximum Likelihood Learning

¢ Assumetraining set is drawn independently from
same distribution

* Find @so that training set is most likely
— training set is“true’, so it should be likely under model!

max L(9) = max [| p(x,.c, |6)

= max [T P(c, 1%,,6) (%)

19

Minimize Negative Log Likelihood

Maximum of L occurs in same place as max log(L)
— monotonicity of log

max log(L) = min—og(L)
* Best parameter value occurs at

min -2 1ogP(c, |x,.6)

Labels Generated by Bernoulli Distribution

 Consider two-class classification (c = 0 or 1)

* Model: output of classifier controls a coin that flipsto
determine class

P(C, | %,,0) =y (1-y,)"™
PO]x,,0)=1-y,
P[x,.0) =Y,

21

Outputs will be Probabilities

« Cross-entropy isaproper error score
— For infinite training set
— If output of classifier can represent true probability
— Minimum of score occurs when

y(x)=P(c=1|x)

* SeeBishop, section 6.7
— requires Calculus of Variation

23

Cross-Entropy Error Function

¢ Our error metric will be

rrgnE:rrgn—anlog P(c, | x,.0)

Multi-Class Classification

* N possible digjoint classes

— Example: digit recognition --- a digit is one class from 0-9
» Extranotation

t, := (c, = i) istheith target for the nth training example

Yin istheith classifier output for the nth training example
* Multinomial model

— Classifier produces N probabilities (which sum to 1)

— Model: roll an N-way die with those probabilities

Multinomia model

P(c, I>a1,6')=l_%[(ym)t‘”

* Maximum likelihood solution (error metric)

N
rrgnE:n’]gln_zztin IOQyin

n i=1

also a proper scoring rule

25

Defining an Optimization Algorithm

training examples classifier P(c|x)
X
optimization |, | error
algorithm metric

|

training labels
c

Stochastic Gradient Descent (SGD)

» Simplest possible optimization algorithm
« Loop over each training example

— adjust parameters to improve error metric alittle bit
« Only evaluate error on one training example

N
En = _Z tin lOg Yin
i=1
e Gradi ent%% points towards worst possible step

* Negative gradient-aa% points to best possible step

27

More about SGD

o At every step:

Convergence of SGD

Except E, is only an approximation to E

1
<En> = Z E

Stochastic approximation
— or Robbins-Munro procedure

Converges if step size 17 decreases with time
D)= D rt)<e
t=0 t=0

In practice, people use fixed step size

29

On-line versus Batch Learning

» What about sophisticated optimization algorithms?
— Conjugate gradient
— Quasi-Newton algorithm
» These agorithms require full gradient E for step
— SGD often convergesin small number of “epochs’
— SGD much faster for neural nets & large data sets
» Noisy gradient in SGD avoids local minima
— Non-convex optimization (in neural nets)
— Noise acts as “annealing” to avoid poor local minima

Defining a Classifier

training examples classifier P(c|x)

X I

optimization|,___| error
algorithm metric
training labels
c

31

Logistic Model

» Two-class classification
* Model: log-odds of P(c | x) depends linearly on x

6

PCc=0|X)) &

log| === [= D WX +w,
Plc=1]x)) =

— log odds a natural way of expressing probability

. sig(2)

y=sig| > WX +w,

. 1

Slg(Z)_1+e’Z z

Network Diagram for Logistic Model

output =y

weights = w;

biasinput ¢)
(always 1) Q Qmputs:xi

» Single-layer neural network
— single layer of trainable weights

Relationship to Gaussian Densities

« If each class density model is Gaussian
— with same covariance matrix S

» Then, Bayes' rulewill yield alogistic classifier
— linear discriminant analysis

SGD applied to Logistic Model

Recall
E, =-¢,logy—(1-c,)log(l-y)
1
Y=1re?
z=3 Xw+b

% nd &
We need to compute ™ and ™

W W= Sl ~ fi,)
input space x 2
Chain Rule

9, _0E 9z 0E _OE dy

oW 0z Jw dz dy dz

JE, ¢, 1-c, dy e’

Zn__ n = =y(1—

oy y " 1-y dz (1+e€?)? ya-y)

ok, _

BZ - y Cn

9z _ 9z _y

oW ow,

SGD + Cross-Entropy = Simple

¢ SGD usesvery simplerules:

— Then, update using

— First, evaluate the network on atraining example to get y

For multi-class classification

Need an output non-linearity
— produces values
— values should sumto 1

Softmax is analogous to sigmoid
el
Y=< Z =ZW.,-XJ- + W
PICK j
j

Can arise from a density model (Bishop, section 6.9)

39

AW =17(C, = Y)%
Aw, =7(c, -)
Single-Layer Softmax

SGD applied to Single-Layer Softmax

» Use multinomial error
N
E,=-) t,logy,
i=1

» SGD still has simplelocal form!
Aw, = n(t, - yi)Xj AW, =1(t, — V)

— for derivation, see Bishop, section 6.9

41

Local Learning Rule

error from here

d/é

update this weight
A-/

;

input from here

Network Diagram
for Single-Layer Softmax

Q O Q outputs =y,

weights = w;

0000

inputs = x;

Limitations of One-layer Models

« Discriminant computed by logistic classifier islinear
— cannot solve al possible classification problems

o
e o
0® Lo o
o
o
o °
Bpo '..o

42

Pre-Process the Problem Away?

« Compute features, then compute linear function of
features N
z= z W, (%)

— garecdled bas‘sjfunctions

« If you choose ¢ without looking at data (or problem)
— either require an exponentia number of ¢ (in input dim)
— or cannot solve al interesting problems

« Bishop, section 3.5.4

Neural Network Model

* Then, combine featuresin second layer

45

Neural Network First Layer

« Compute basis functions adaptively
— reduce curse of dimensionality

 First, compute a set of non-digoint binary features
— probability of each binary feature is basis function

%)
OO0

Evaluation of NN Model

 Propagate values forward
— load x with input vector

g :zujkxk +Ujp
k=1
1

1+e®
z = wh +w,
j=1

h

]

et

SGD applied to Neural Network

* Step for Aw; and Aw,, the same as one-layer case

pu - Bo O3B, 0N
x ou,, ou, oh, duy

E_yE B,

oh <z oh, oh "

JE,
ahj :Z(yi _tin)\Nlj :51

47

Back-Propagation

¢ contains all error info about 2nd layer for 1st layer

m error from here
wei ght frfm here>
®

new error here: &

 Gradient information flows backwards through
network
e Allinformation islocal

First Layer SGD Step

o, dh, aa,

i I =h (1-h
au, ~da, o,
input k
oE, /
Ay === = =06y (1= X,
Uj NI

error at hidden unit j

49

Overall Computational Flow

update
Ui

Variation |

» Non-digoint outputs

51

Variation Il

¢ Morethan 2 layers

update

52

Summary So Far

« Classifierstake input vector, estimate posteriors
* Posteriors can fit directly from training data
» Cross-entropy is a sensible error metric
* Stochastic gradient descent is a good agorithm
» Two-layer neural networks are sensible

— trained via on-line back-propagation

Why NN Model?

« Posterior corresponding to Bayes' rule applied to a
density model
— see Bishop, section 6.7.1
 Can approximate any function
* Reduces curse of dimensionality
* Workswell on many problems

Universality of NN Function

* Two-layer NN can approximate any function
— linear output units (no sigmoid or softmax)
— sufficiently large number of hidden units
* NN can approximate any non-linear discriminant
— sigmoid output units
— sufficiently large number of hidden units
— arbitrary accuracy

NN and Curse of Dimensionality

 For regression: neural net function y tries to match
target function f

e Measure error viaintegrated squared error
o If C =f|a‘)|| y(@) |[dd < N = number of hidden units

C
—fPdx="
fly=tF =<

/

thisterm independent of input dimensionality
* Fixed basis functions have denominator N9/2

Tricks of the Trade

* Pre-processing of inputs
 Choice of non-linearity

* Weight initialization
 Prevention of Overfitting

57

Single Layer Linear Regression

output =y

y=2 wx
E(n):%[t(n)—Zw.(n)x(n)j

Q inputs = x;

w.(n+1)=wi(n)+n[t(n)—zwi(n)x,(n)jx(n)

weights=w;

Stability Analysis

« Assumetraining datais drawn independently

<w.(n+1)>:<vw(n)>+77[% 2R >j
7 =(xt
RJ :<)§Xi>
(W(n+1) = (1 -7R){(W(n))+ny
Wopt = R7177

59

Decay of the Error Eigenvectors

(W(n+1) ~ iy,) = (1 = 7R) (W(N)) ~ Wy, + 77
I—77R)W)y — (I —17R) W,
(E(n+1))=(1 -nR){&(n))
where (£(n)) isthe expected error at examplen
Decompose R into eigenvectors: R = VAV

\7kT <‘§(n+1)> = (\7kT _”ﬂkaT)<§(n)>
= [1-nA)V, (£(n))

10

Maximum Step Size

SGD convergesif 1-74 k1 = n< 2

where 4= eigenvalue of R.

1
A
contour:
of E
1

-
* minimize eigenvalue spread for best performance
« speed of convergence dependson 4,/ .

61

Zero Mean Inputs are Good

» Decompose input to net into zero mean x; and mean u

R =<(>g +u)(x, +,u)>=<>ng>+,u21

« Eigenvector of all ones has eigenvalue 12N
— whichisHUGE
* Make sure inputs have close to zero mean
— subtract off mean input before applying to network

Sparse Inputs are Good

* Represent categorical inputsto net as 1 of N code
« Example: one input attains discete letter values A-G
— Convert into 7 different inputs
0 0 0 0 1 0 0
A B C D E F G
» Good eigenvalue spread
* Sparse computation of wa isfast
 Can also quantize continuous variables

Unit Variance Inputs are Good

» Make sure inputs to net have roughly same scale (1)
— improves eigenval ue spread

Uncorrelated Inputs are Good

« Principal Component Analysis before input to net
— perform Singular VValue Decomposition on training data
« see Numerical Recipes, chapter 2
— Rotate and scale inputs so that R is the identity matrix
— Eigenvalue spread: 0!
— Does not affect computational ability

Reduce Number of Inputs through PCA

* PCA computes eigenvalues and eigenvectors of R
* Remember: .

W, =R

opt

* y isestimated from data
» Small eigenvaluesin R lead to big eigenvaluesin R

— weight vector will blow up: overfitting!

* Discard PCA input dimensions with small eigenvalue

— Reduce size of network: reduces overfitting

11

Tanh Hidden Units are Good

« What about correlations between hidden units?
— Want zero mean for hidden units

+ For value of z close to zero: <h>:<1+1e_z>=0_5

* Usetanh(2) rather than sig(2):

tanh(z) = 1+2 -1=2sig(22)-1

e

» No changein computational ability
— just scalein weights and shift in bias

67

Weight Initialization

« If you start all weights = 0, then gradient=0®
—Ifh=0andw=0,thenAw=0and §=0

* Need to initialize some weights to Gaussian random

non-zero values

— sengitive toinitia conditions @

Initialize all but first-layer weights to non-zero

— Causes d'to start out with slight non-zero values

* Weight should be small enough to keep network in
linear regime

Effect of Weight Initialization

 Find splits of datainto randomly assigned halves
— BPwill change split assignment if it doesn’t make sense

« First layer weights will not span null space of R

69

Overfitting

» Neura network can fit an overly complicated
function to the training data

\
e

MAP Learning

» Find parameters @that are most likely given data D
— different from parameters that make data most likely

P(D|O)P(6) ,f;;’n‘g’js
P(D)
=max logP(D |6)+logP(8)

6

=min —logP(D|8)-logP(6)
—

m(;a\x P(9|D):m?x

0

usual data regularizer
likelihood term

71

Regularization

* Regularizer penalizes models that
— have unusual parameter settings
— aretoowiggly
— aretoo complex

12

Weight Decay

 Prior: weights should not be insanely large
— welghts are derivatives insde neural network

P(6)= ap(—%ZQZJ
‘ penalize large weights

~logP(6) = %ng‘:ﬂﬁ quadratically

A6 =—77[8E" +a—g]

26, 96

oE
=-n—_t-n0b,
96, N

Hold Out Set

* How doyou set 0?

» Simplest method: hold out set

 Split training set into train (70%) and hold out (30%)
» For aseries of different o

— Train NN on training subset
— Test NN on hold out set

¢ Choose o which maximizes performance on hold out
* Retrain NN on entire training set with optimal o

Performance Curve

Error

testing error

raining error

log o

75

Better Weight Decay

» Want to fit ascaled or shifted function if you scale or
shift inputs or outputs of net

YIRES]
jik ij

— and do not put pri or on biases ’
» See Bishop, section 9.2.2 for derivation

Analysis of Weight Decay

SGD applied to linear regression:
w(n+D =W.(n)+?7(t(n)—ZW,(n)X,(n)J>ﬁ (n)—naw (n)

(W(n+1) = (A-7na) <w.(n)>+n[x -YR(w, (n)>]

Wy = (R+al)'7

77

Adding Noiseto Inputs

» At every step of SGD, add random noise to inputs:
W.(n+1):\/\/.(n)+77(t—ZW, (M(x; +§,)}(>ﬂ +&)
]

(w(n+D)= (1—na)<w.(n>>+n(x ~S(R +0%6,)(w, (n>>}
WI'IOIE = (R +O_2I)717

Applicable to any SGD, not just linear regression
— noise variance is much more intuitive than

13

Domain-Specific Noiseis Good

* At SGD step, add domain-specific noise to input:

b bAbS

» Makes network robust to likely distortions of input

e Thishelpsalot

¢ Can be done analytically: tangent-prop by Simard
— Bishop, section 8.7.1

79

Early Stopping is Good

* When do you stop back-propagation?
— use hold-out set to monitor performance

Error

testing error

training error

training time

Early Stopping Specifics

» Save net which yields best hold out performance

« If hold out performance does not improvein N
epochs
— stop

» Note: only need to perform learning once, not
multiple times!

81

Why Early Stopping Works

« Early stopping is similar to weight decay
— see Bishop, exercise 9.1
E(W) = E0+BTW+%WTHW+%O:WTW...
Wio = (H+01) 0"
* Weight decay softly erases small eigenvaluesin H
* So does early stopping

— large eigenvalues decay quickly
— small eigenvalues decay slowly

Convolutional Neural Networks

« Using raw signals as inputs yields huge networks
— one second of sound = 16000 inputs
— one video frame = 640*480 inputs

 Also, you want to “spot” objectsin signals
— trandation invariance

« Solution: convolutional neural networks

Use Convolutions

* Instead of dot product followed by sigmoid (or tanh):
_ 1
y 1+e*
Z=3 WX +W,
» Useconvolution to ggflshift—i nvariant output:
1
t)=—
YO=r—
z(t) =Y wx(t—k)+b
k=0

14

Network Diagram for Convolution

y(t)

(1)

Time-Delay Neural Network (TDNN)

 Stack multiple convolutional layers to perform non-
linear filtering

y(t)

R

(1)

87

Targets for CNNs

* Your belief that an object in at that time/position

P(c|X,t)

t
* More sophisticated target generation:

— “Soft-OR” or “Integrated Segmentation and Recognition”
— Bootstrap generation of targets

— Keeler and Rumelhart, NIPS 3

89

Multiple Inputs

¢ Convolutional Layer can take multiple inputs

M N
Z(t) =23 Wy X, (t—K) +w,
j=1 k=0

y(t)

%(t)

Backprop for Convolutional Layer

» Analogous to standard case, with more indices

2(0)= Y W (t-) U
jk
AWy =Y 820X, (t—k)
S (1) = 3 8t + k)w
ik
I (t)

2D Convolutional Layers

» Can extend to 2D convolutional layers

values near 1: -

output image
object detected
layers of
learned)
convolutional feature images
kernels

i % ; input image

90

15

Examples

¢ Find ahand in animage using CNNs

— http://research.microsoft.com/~jplatt/hands.ps
Recognize handwritten optical digits

— http://www.research.att.com/~yann/publis/psgz/lecun-
bengio-94.ps.gz

Recognize handwritten characters from tablet
— Chap 13in “Neura Networks: Tricks of the Trade”
Combine HMMs and Neural Networks
— ftp://ftp.dcs.shef.ac.uk/share/spandh/pubs/renal s/icassp92.p
s.gz

91

Summary of Second Half

Analysis of SGD linear regression yields many tricks
Regularization isimportant

— early stopping

— domain-specific noise
Convolutional Neural Networks

— useful for recognizing signals

92

16

