Entropy

Entropy

• Calculate entropy of a list of examples

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

• Build a decision tree from a list of examples

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

- Build a decision tree from a list of examples
- Classify a new example using a decision tree

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

- Build a decision tree from a list of examples
- Classify a new example using a decision tree
- No need to calculate information gain

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

- Build a decision tree from a list of examples
- Classify a new example using a decision tree
- No need to calculate information gain

Ensemble Classifiers

Entropy

- Calculate entropy of a list of examples
- No conditional entropy or information gain

Decision Trees

- Build a decision tree from a list of examples
- Classify a new example using a decision tree
- No need to calculate information gain

Ensemble Classifiers

Explain bagging and random forests

Unsupervised Learning

Unsupervised Learning

Understand k-Means clustering

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

Given a list of examples

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

- Given a list of examples
- Classify a new example

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

- Given a list of examples
- Classify a new example

k-Nearest Neighbor

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

- Given a list of examples
- Classify a new example

k-Nearest Neighbor

• Given a list of examples, a distance metric, and k

Unsupervised Learning

Understand k-Means clustering

Naive Bayes

- Given a list of examples
- Classify a new example

k-Nearest Neighbor

- Given a list of examples, a distance metric, and k
- Classify a new example

Support Vector Machines

Support Vector Machines

Given a 2D diagram

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Neural Networks

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Neural Networks

• Given a neural network and inputs

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Neural Networks

- Given a neural network and inputs
- Feed activation forward to produce outputs

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Neural Networks

- Given a neural network and inputs
- Feed activation forward to produce outputs

Document Classification

Support Vector Machines

- Given a 2D diagram
- Draw maximum margin separating hyperplane
- Identify support vectors

Neural Networks

- Given a neural network and inputs
- Feed activation forward to produce outputs

Document Classification

Explain intuition behind TF-IDF