
Optical Character Recognition using
Neural Networks

Deepayan Sarkar

University of Wisconsin – Madison

ECE 539 Project, Fall 2003



Goal: Optical Character Recognition

The problem of OCR is fairly simple:

• Input: scanned images of printed text

• Output: Computer readable version of input contents

There are several existing solutions to perform this task for

English text. The potential benefits of this approach is its

flexibility, since it makes no prior assumptions on the language of

the text, and it should be possible to extend it to other alphabets.



Tasks involved

From the computational point of view, there are three major

tasks involved in our approach to performing OCR.

• Segmentation Given input image, identify individual glyphs

• Feature Extraction From each glyph image, extract features

to be used as input of ANN. This is the most critical part of this

approach, since it is not at all clear how this can be done

• Classification Train the ANN using training sample. Then,

given new glyph, classify it.



Segmentation

Segmentation is important in two phases of the process.

• Obtaining training samples

The easiest way to obtain training samples is to segment an image and

ask a human supervisor to classify each glyph

• Recognizing new image after training

As a first step for trying to recognize a new input image, it must be

segmented into glyphs. An additional requirement here is to obtain the

glyphs in correct order as well.

To make this easier, the input image is first divided into lines

and then segmented into glyphs (details in project report).



Feature Extraction: Why do it ?

• Segmented glyphs are binary image matrices (very high

dimension)

• MLP needs moderately low-dimensional input feature vector

Unfortunately, there is no obvious way to reduce the dimensional-

ity in a way guaranteed to preserve the distinctiveness of glyphs.



Feature Extraction: How to do it ?

There is no single obvious choice of features. I decided to base

my features on identifiable regular parabolic curves in the image.

Step 1: Obtain boundary of image From image matrix, flag as

boundary points backgroud pixels (0) in the image which have

at least one neighbour in the foreground (1)



Feature Extraction: How to do it ?

Step 2 Loop through each of these boundary points, and figure

out the ‘best’ parabola passing through that point fitting the

boundary locally. For each point, this involves

• Decide the ‘orientation’ of the boundary at that point by

fitting a straight line through points in a small neighbourhood

of that point.



Feature Extraction: How to do it ?

Step 2 Loop through each of these boundary points, and figure

out the ‘best’ parabola passing through that point fitting the

boundary locally. For each point, this involves

• Rotate the image by an angle to make this line horizontal,

and fit a quadratic regression line to the previously identified

neighbouring points.



Feature Extraction: How to do it ?

Step 2 Loop through each of these boundary points, and figure

out the ‘best’ parabola passing through that point fitting the

boundary locally. For each point, this involves

• Determine points in the boundary that are ‘close’ to this

fitted quadratic curve (using a predetermined threshold).

• Update the quadratic curve by refitting it using all the points

thus identified.

• Repeat this update using ‘close’ points 2 more times.



Feature Extraction: How to do it ?

Hope that the curve thus identified closely approximates the

curvature of the boundary at that point. Note that it is perfectly

all right if this doesn’t work as expected for all points, since for

points common to a single curve, it is enough that this works

for at least some of these points.



Feature Extraction: How to do it ?

Step 3: Identify ‘strongest’ curve Determine the three curves

that are the ‘strongest’ in terms of how many points are ‘close’

to those curves. To do this,

• order the points by the number of other boundary points

‘close’ to the best curve through that point

• record the angle of rotation and the quadratic coefficient

of the curve as features (the linear coefficient is close to 0

because of the rotation)



Feature Extraction: How to do it ?

Step 3: Identify ‘strongest’ curve Determine the three curves

that are the ‘strongest’ in terms of how many points are ‘close’

to those curves. To do this,

• We don’t want the same curve to be identified again, so

we leave out all points identified as being ‘close’ to the first

curve, and re-evaluate the ‘strengths’ of the remaining points

based on the remaining points. Again choose the best curve

and record the angle of rotation and the quadratic coefficient

• Repeat this once more to get a total of 6 features



Feature Extraction: How to do it ?

Step 4: Finally, add the aspect ratio (width/height) of glyph as

another feature, making a total of 7



Classification

Once the features are extracted, we can go ahead and train a

neural network using the training data for which we already know

the true classes. After training, recognizing a new scanned image

involves

• reading in the image

• segmenting the image into lines

• segmenting each line into glyphs

• classify each glyph by extracting the feature set and using

the already trained neural network to predict its class



Software Implementation

Implemented as an add-on package for a MATLAB-like program-

ming environment called R (http://www.r-project.org). R is

• Popular among statisticians (like me :-))

• Open source, freely downloadable

• Runs on Linux, UNIX, Mac, Windows

http://www.r-project.org


Sample session: Loading OCR package

Once R is started, the OCR package can be loaded by

> library(rocr)



Sample session: Creating Training data

A new collection of glyphs for training can be created, or an

existing one updated, by calling

> updateTrainingSet(imagefile, datafile = "file.rda")

where imagefile is the name of the scanned image which is to be

used to obtain the candidate glyphs, and datafile is the name of

the file on disk used to store this set (so that the same collection

can be used and updated across different sessions).



Sample session: Creating Training data

For each glyph identified in the image, the user is shown an

image of that glyph and prompted to provide a class label for it.

Once the class is specified, the corresponding matrix is added to

the collection along with its class label.

There is also the possibility of not specifying a class, in which

case that glyph is ignored. This is useful for bad (spurious)

segments as well as for very frequent letters that would otherwise

dominate the list.



Sample session: Creating Training data

Problem: Typically, in a sample of actual text, some letters of the

alphabet occur far more than others, and some (especially capital

letters) occur very rarely. This makes collecting a balanced

training set fairly laborious.

For my experiments, I manually classified a sample of 528 glyphs, which had

the following distribution:

‘ , . a A b c d D e f fi g

4 11 15 51 2 4 12 32 1 54 6 1 14

h H i I k l m M n N o O p

22 1 16 7 8 13 14 3 40 1 33 1 6

r s S t T u v w W x y

25 37 1 36 1 13 9 16 3 1 14



Sample session: Extracting Features

To extract the features from the glyphs in the training set, we

can call

> featurelist = featuresFromTrainingData(datafile = "file.rda")

where, as before, datafile is the file on disk that stores

the training glyphs. This stores the features in the variable

featurelist.

Problem: This is currently very slow. However, it should be possible to speed

it up by reimplementing it so that it uses C code internally



Sample session: Training MLP

A neural network can be fit to these training data by

> library(nnet)

> fittednet = fitNeuralNet(featurelist)

which stores the fitted network along with some other informa-

tion in the variable fittednet.



Sample session: OCR new image

After the training is done, a new image can be processed by

calling

> ocrNewImage(imagefile, fnet = fittednet)

where imagefile is the name of the image to be processed, and

fnet is the network to be used. Again, this process is currently

quite slow because of the time required for feature extraction

from each glyph.



Results

Not very impressive :-(



Results: section of OCR’d image



Results: OCR results

[1] "veo etoyels Ioke oer, end net r‘deao,k head fg suhgestion"
very closely together, and that ‘‘deaths’s head ’’ suggestion

[2] "oI gtd genep eaw stsougly markod. serhass lI was scnw"
of his bones very strongly marked. Perhaps it was fan-

[3] "cifol, hmt I thoOphi ihat ha looser lthe a knight of old"
ciful, but I thought that he looked like a knight of old

[4] "wk, was goine into batIta anr snew he Wak geing so he"
who was going into battle and knew he was going to be

[5] "... apxhn I tcit what an enH aorhi.Mwy ans suiie unm"
... again, I felt what an extraordinary and quite un-

[6] "eoaserouk poWer nf attracigHn he had."
conscious power of attraction he had.



Conclusions

• Although results are not good, they are not that bad either,

indicating that the technique is not flawed

• More training data may improve robustness and accuracy

• Speed needs to be improved (via C code) for serious testing

Several other possibilities for improvemnet are discussed in the

project report.


	Goal: Optical Character Recognition
	Tasks involved
	Segmentation
	Feature Extraction: Why do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Feature Extraction: How to do it ?
	Classification
	Software Implementation
	Sample session: Loading OCR package
	Sample session: Creating Training data
	Sample session: Creating Training data
	Sample session: Creating Training data
	Sample session: Extracting Features
	Sample session: Training MLP
	Sample session: OCR new image
	Results
	Results: section of OCR'd image
	Results: OCR results
	Conclusions

