

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

HTML5 Guidelines
for Web Developers

Klaus Förster
Bernd Öggl

Figure 4.9 © 2008 Blender Foundation / www.bigbuckbunny.org

Cover design: Marco Lindenbeck, webwo GmbH, mlindenbeck@webwo.de

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Förster, Klaus, 1964-
 [HTML 5. English]
 HTML5 guidelines for Web developers / Klaus Förster, Bernd Öggl.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-77274-9 (pbk. : alk. paper)
 1. HTML (Document markup language) 2. Internet programming. 3.
 Web site development. I. Öggl, Bernd. II. Title. III. Title: HTML 5
 guidelines for Web developers.
 QA76.625.F6713 2012
 006.7’4—dc23
 2011014135

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-77274-9
ISBN-10: 0-321-77274-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2011

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Susan Brown Zahn

Translator
Almut Dworak

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Project Editor and
Compositor
Mary Sudul, Fastpages

Copy Editor
Anne Marie Walker

Indexer
Jack Lewis

Proofreader
Linda Seifert

www.bigbuckbunny.org

Thanks to Andrea and Sabine—you are wonderful!

This page intentionally left blank

v

Contents

Preface .. xi

About the Authors ... xiii

1 Overview of the New Web Standard ... 1

1.1 How It All Started .. 1
1.2 Time Travel through Historic Events ... 7
1.3 In Medias Res ... 9

1.3.1 What Is New? .. 9
1.3.2 What Has Become Obsolete? .. 13
1.3.3 And What About XHTML? ... 15

1.4 Can I Start Using HTML5 Now? ... 16
Summary ... 18

2 Structure and Semantics for Documents ... 19

2.1 Header with “header” and “hgroup” ... 21
2.2 Content with “article” ... 22
2.3 Footer with “footer” and “nav” .. 24
2.4 Sidebar with “aside” and “section” .. 25
2.5 The Outline Algorithm .. 27
2.6 Figures with “figure” and “figcaption” .. 28
2.7 Text-Level Semantics—More New Tags .. 29

2.7.1 The Elements “ruby,” “rt,” and “rp” .. 30
2.7.2 The “time” Element ... 31
2.7.3 The “mark” Element .. 32
2.7.4 The “wbr” Element .. 32
2.7.5 Elements with Marginal Changes .. 33

Summary ... 35

3 Intelligent Forms ... 37

3.1 New Input Types ... 38
3.1.1 The Input Types “tel” and “search” ... 39

Contentsvi

3.1.2 The Input Types “url” and “email” .. 40
3.1.3 Date and Time with “datetime”, “date”, “month”,

“week”, “time”, and “datetime-local” 40
3.1.4 The Input Types “number” and “range” 40
3.1.5 The Input Type “color” ... 41
3.1.6 The New Input Types in Action .. 41

3.2 Useful Attributes for Forms .. 43
3.2.1 Focusing with “autofocus”.. 43
3.2.2 Placeholder Text with “placeholder” ... 44
3.2.3 Compulsory Fields with “required” ... 44
3.2.4 Even More Attributes for the “input” Element 45

3.3 New Elements .. 47
3.3.1 Displaying Measurements with “meter” 47
3.3.2 Displaying the Progress of a Task with “progress” 50
3.3.3 Lists of Options with “datalist” ... 51
3.3.4 Cryptographic Keys with “keygen” .. 53
3.3.5 Calculations with “output” ... 55

3.4 Client-Side Form Validation ... 57
3.4.1 The “invalid” Event .. 59
3.4.2 The “checkValidity” Function .. 59
3.4.3 Error Handling with “setCustomValidity()” 61
3.4.4 Summary of Validity Checks ... 63
3.4.5 Or Perhaps Better Not to Validate? “formnovalidate” 63

3.5 Example: A Support Form .. 64
Summary ... 68

4 Video and Audio .. 69

4.1 A First Example .. 70
4.2 The “video” Element and Its Attributes .. 71
4.3 Video Codecs ... 73

4.3.1 Ogg: Theora and Vorbis... 75
4.3.2 MPEG-4: H.264 and AAC ... 75
4.3.3 WebM: VP8 and Vorbis .. 76

4.4 Tools for Video Conversion .. 76
4.4.1 FFmpeg ... 76
4.4.2 VLC .. 78
4.4.3 Firefogg ... 79
4.4.4 Miro Video Converter .. 81

Contents vii

4.5 Which Format for Which Browser? .. 82
4.6 Interim Solutions for Older Browsers .. 83

4.6.1 mwEmbed .. 83
4.6.2 html5media .. 85

4.7 Video and Scripting—A Simple Video Player .. 86
4.7.1 Integrating the Video ... 87
4.7.2 Starting and Stopping the Video .. 88
4.7.3 Displaying and Setting the Playback Position 89
4.7.4 Fast Forward and Backward ... 91
4.7.5 Selecting Specific Scenes in the Film ... 93
4.7.6 Set Volume to High, Low, or Mute ... 93
4.7.8 Other Attributes and Methods of the

“HTMLMediaElement” Interface ... 94
4.7.9 The Long List of Media Events ... 98

4.8 And What About Audio? .. 99
Summary ... 105

5 Canvas ... 107

5.1 A First Example .. 108
5.2 Rectangles .. 111
5.3 Colors and Shadows .. 113
5.4 Gradients .. 114
5.5 Paths ... 117

5.5.1 Lines .. 119
5.5.2 Bézier Curves ... 120
5.5.3 Arcs.. 121
5.5.4 Rectangles .. 126
5.5.5 Outlines, Fills, and Clipping Masks.. 127

5.6 Text ... 130
5.6.1 Fonts ... 130
5.6.2 Horizontal Anchor Point ... 132
5.6.3 Vertical Anchor Point .. 133
5.6.4 Drawing and Measuring Text ... 134

5.7 Embedding Images .. 135
5.8 Pixel Manipulation .. 141

5.8.1 Working with the “ImageData” Object 141
5.8.2 Color Manipulation with “getImageData()”,

“createImageData()”, and “putImageData()” 145

viii Contents

5.9 Compositing ... 149
5.10 Patterns .. 152
5.11 Transformations .. 156
5.12 Base64 Encoding with “canvas.toDataURL()” 163
5.13 “save()” and “restore()” ... 165
5.14 Animations ... 166

5.14.1 Animation with Multicolored Spheres 166
5.14.2 Playing a Video with “drawImage()” 169

5.15 Anything Still Missing? .. 173
5.15.1 “isPointInPath(x, y)” .. 173
5.15.2 Accessibility in Canvas? ... 174
5.15.3 Security Aspects ... 175
5.15.4 Browser Support .. 176
5.15.5 Further Links .. 176

Summary ... 177

6 SVG and MathML .. 179

6.1 MathML .. 180
6.2 SVG ... 182
Summary ... 183

7 Geolocation ... 185

7.1 Introduction to Geolocation ... 186
7.1.1 About Geographical Data .. 186
7.1.2 Online Map Services .. 186

7.2 A First Experiment: Geolocation in the Browser 190
7.3 Technical Background of Determining Position 193
7.4 Display of Current Position on OpenStreetMap 194
7.5 Location Tracking with Google Maps .. 196
7.6 Example: Geonotes .. 197

7.6.1 Operation ... 198
7.6.2 Important Code Fragments .. 199

7.7 Browser Support .. 202
Summary ... 203

8 Web Storage and Offline Web Applications ... 205

8.1 Storage .. 206
8.1.1 The “Storage” Interface ... 206
8.1.2 “sessionStorage” .. 208

ixContents

8.1.3 “localStorage” .. 209
8.1.4 The “storage” Event ... 210
8.1.5 Debugging .. 210

8.2 Offline Web Applications .. 212
8.2.1 The Cache Manifest File .. 213
8.2.2 Offline Status and Events .. 214
8.2.3 Debugging .. 217

8.3 Browser Support .. 220
8.4 Example: Click to tick! ... 220

8.4.1 Using the Application: As a Player ... 221
8.4.2 Using the Application: As an Administrator 222
8.4.3 Important Code Fragments .. 223
8.4.4 Expansion Options .. 229

Summary ... 230

9 WebSockets .. 231

9.1 The WebSocket Server .. 233
9.2 Example: A Broadcast Server .. 234

9.2.1 The Broadcast Client ... 235
9.2.2 The Broadcast Server ... 237

9.3 Example: Battleships! .. 239
Summary ... 248

10 Web Workers ... 249

10.1 Introduction to Web Workers... 249
10.2 Search for Leap Years .. 251
10.3 Calculate Altitude Profiles with Canvas .. 253

10.3.1 Important Code Fragments .. 255
Summary ... 259

11 Microdata ... 261

11.1 The Syntax of Microdata ... 263
11.1.1 The Attributes “itemscope” and ”itemprop” 263
11.1.2 The “itemtype” Attribute .. 266
11.1.3 The “itemid” Attribute... 268
11.1.4 The “itemref” Attribute ... 268

11.2 The Microdata DOM API .. 269
Summary ... 271

x Contents

12 Finishing Touches: Some Global Attributes ... 273

12.1 News for the “class” Attribute .. 274
12.2 Defining Custom Attributes with “data-*” .. 275
12.3 The “hidden” Attribute ... 276
12.4 The “classList” Interface ... 276
12.5 Drag and Drop with the “draggable” Attribute 278

12.5.1 Drag and Drop in Combination with the “FileAPI”.............. 284
12.6 The Attributes “contenteditable” and “spellcheck” 288
Summary ... 290

Afterword ... 293

Index ... 295

xi

Preface

In 2010, HTML5 became the buzzword on the web developer scene. Large com-
panies, such as Google, Apple, and Microsoft, began to use the new technology.
The popularity of the catchword HTML5 grew, not least of all because of the
heated debate between Apple and Adobe over whether this would mean the end
of Flash.

In this book, we give you extensive insight into the new possibilities of HTML5.
In addition to the classic specification components, such as video, audio, canvas,
intelligent forms, offline applications, and microdata (to name but a few), this
overview also includes topics in the immediate context of HTML5—for example,
geolocation, web storage, WebSockets, and web workers.

Numerous compact, clear, and practical examples illustrate the new elements
and techniques in HTML5. There is something here for everyone, whether you
decide you want to construct a web log, program your own video and audio play-
er, use the browser as a graphics program, work with geographical data, test to
the limit the capacity of your browser, or prefer to live out your playful nature by
trying a quiz with drag and drop or playing Battleships! with WebSockets. We also
give you plenty of tips and tricks regarding JavaScript and the DOM.

It is to be expected that sooner or later all browsers, in order to remain com-
petitive in the future, will accommodate HTML5. We therefore decided not to
include workarounds and compatibility libraries in most cases. In this book you
will find pure HTML5, supported in our examples by at least one browser, but in
most cases supported already by several manufacturers. For an up-to-date and
complete reference of the new HTML elements, we refer you to the Internet. You
will find the relevant links in the appropriate text passages of this book.

How to Read This Book

How you decide to explore this book is entirely up to you. The individual chap-
ters do not necessarily have to be read consecutively and are designed to be eas-
ily understandable, even if you have not yet read the other chapters. So, you can
read the book in the traditional way, from front to back; alternatively, you can
read it from back to front or in any order, letting your curiosity guide you.

xii Preface

Who This Book Is for

You should definitely have a basic knowledge of HTML, JavaScript, and CSS; a
willingness to work with a different browser for a change, not just the one you are
used to; and above all, a desire to discover something new. Try new ideas, such
as those in this book, or have a look at the companion website where you can
see all the examples in color. Decide what you want to do and, most important,
have fun!

The companion website can be found at http://html5.komplett.cc/welcome.

http://html5.komplett.cc/welcome

xiii

About the Authors

The authors of this book are as versatile and multifaceted as the new web stand-
ard they were brave enough to write about while it was still in development.

Klaus Förster, an open source enthusiast, works at the Department of Geog-
raphy of the University of Innsbruck, Austria. He has attended numerous SVG
Open conferences as speaker, reviewer, and workshop leader, and contributed
SVG modules to the free software projects PostGIS, GRASS GIS, and SpatiaLite.

Bernd Öggl, lecturer and system administrator at the University of Innsbruck,
is the coauthor of a book on PHP and MySQL and has many years of experience
programming web applications.

This page intentionally left blank

1
Overview of the New
Web Standard

As is appropriate for a web standard, the story of HTML5 starts with the World
Wide Web Consortium (W3C), or more precisely, with the W3C Workshop on
Web Applications and Compound Documents in June 2004. But rather unusu-
ally, the development of HTML5 initially took place outside of the W3C, because
the W3C was not at all thrilled with the idea of HTML5 to start with. What had
happened?

1.1 How It All Started

In a joint position paper, Mozilla and Opera demanded that the W3C should
ensure the continued development of HTML, DOM, and CSS as the basis of web
applications of the future. Given the fact that the W3C had already sidelined

1

Chapter 1—Overview of the New Web Standard2

HTML4 six years before and had instead elected to back XHTML, XForms, SVG,
and SMIL, it was hardly surprising that this suggestion was rejected. The re-
sult was very close, with 8 votes in favor and 11 votes against, but the decision
still had far-reaching consequences. In the following years, the development of
HTML5 was to take place in direct competition with the W3C.

Ian Hickson, who at the time supported the position paper, together with the
second Opera representative Håkon Wium Lie and Mozilla’s David Baron, re-
viewed the events in his web log and came to the conclusion:

The issues have been discussed, the positions have been given, everyone
knows where everyone else stands, now it’s time to get down and actually
start doing work.

Referring to recent events, he finishes with these words:

What working group is going to work on extending HTML...

He is referring to the Web Hypertext Applications Technology Working Group
(WHATWG), which was created on June 4, 2004, just two days after the end of
the workshop. The WHATWG describes itself as a loose, unofficial, and open col-
laboration of the browser manufacturers Safari, Opera, and Mozilla, as well as
interested parties. Its aim is to continue development of the HTML standard
and to submit the results of this process to a standards organization to achieve
standardization.

The founding members of the WHATWG include Anne van Kesteren, Brendan
Eich, David Baron, David Hyatt, Dean Edwards, Håkon Wium Lie, Ian Hickson,
Johnny Stenbäck, and Maciej Stachowiak. This select circle of developers from
the browser and HTML community was to shape the fate of HTML5 from then
on, together with the active WHATWG community.

Three specifications were initially on the agenda of Ian Hickson, who took on a
central role as editor: Web Forms 2.0 as advancement of HTML forms; Web Apps
1.0, which focused on application development within HTML; and Web Controls
1.0, a specification centered around interactive widgets. The latter project was
soon abandoned, and Web Forms was integrated into Web Apps at a later time.
The working method of the WHATWG has always been geared toward collabora-
tion with the community; if you look at the homepage (see Figure 1.1), you can
see this very clearly.

1.1 How It All Started 3

Figure 1.1  WHATWG homepage at http://www.whatwg.org

Anyone looking for help with learning or using HTML5 will find answers under
FAQ, Help, and Forums. The Wiki, hidden behind the Volunteer button, is not
quite as helpful yet, because it is geared more toward development issues and
contains little documentation on the HTML5 language. The blog, accessible via
the News button, seemed a little neglected in 2010 too, which was perhaps due
to the fact that the main author, Mark Pilgrim of Google, was at that time busy
writing his own online book, which is freely available at http://diveintohtml5.org
in case you want to take a look. Fortunately, Anne van Kesteren resurrected the
blog in 2011 with reports on developments of the standard—a valuable source for
keeping track of recent changes.

One of the most active areas is the Chat at irc://irc.freenode.org/whatwg, linked
via the IRC button. Here, the WHATWG community meets up with browser
developers and works with them to implement the specification. This is also
the place to have heated debates on matters concerning HTML5, make politi-
cal statements, or tell critics exactly what you think. An imaginary character,
Mr. LastWeek, comments on the events with sometimes hefty blog entries at
http://lastweekinhtml5.blogspot.com in reaction to the publicly accessible IRC
protocols at http://krijnhoetmer.nl/irc-logs, which anyone can not only read,
but also actively comment on. Just click on the yellow box at the end of a line you
deem relevant, exciting, or important to color the line yellow. To scan the most
recent topics, marking entries works quite well.

http://www.whatwg.org
http://diveintohtml5.org
http://lastweekinhtml5.blogspot.com
http://krijnhoetmer.nl/irc-logs

Chapter 1—Overview of the New Web Standard4

Three public mailing lists, linked via the Contribute section, are the main instru-
ments of communication—one for user questions, one for contributions to the
specification, and one for all those working on implementing the specification.
If you do not want to subscribe to the mailing list, you can also access the public
archives where all news items are filed and can be searched or downloaded:

 z help@whatwg.org
http://lists.whatwg.org/listinfo.cgi/help-whatwg.org

 z whatwg@whatwg.org
http://lists.whatwg.org/listinfo.cgi/whatwg-whatwg.org

 z implementors@whatwg.org
http://lists.whatwg.org/listinfo.cgi/implementors-whatwg.org

The specification is also being developed in a public and transparent manner—
more on this topic in a moment; it is not as straightforward as it sounds. In real-
ity, there is not just one specification but several versions of it. But for now, let’s
get back to the history of HTML5.

While the WHATWG was working on renewing HTML, the W3C’s XHTML2 Work-
ing Group set about creating a completely new web. Unlike the WHATWG, which
was aiming to achieve backward compatibility, the XHTML2 Working Group, led
by Steven Pemberton, tried to further develop HTML in a different way.

Instead of FORMS, XFORMS would be used; FRAMES would be replaced by XFRAMES;
and new XML Events would take the place of DOM Events. Each element could
have both a src and an href attribute, and the headers h1, h2, h3, h4, h5, h6 would
be obsolete and be replaced by h in combination with a new section element.
Manual line breaks with br would be realized with l elements; hr would be called
separator; the new nl element would allow navigation lists; and to improve se-
mantic options, you could assign a role attribute with predefined or namespace-
extensible keywords to each element.

A drop of bitterness and the final nail in the coffin of the XHTML2 project was the
lack of support from the browser vendors. The attempted changes were too radi-
cal and did not take existing web content into consideration. Soon, the W3C also
came to realize that this development would not get far. In October 2006, Tim
Berners-Lee, the director of W3C and inventor of the World Wide Web, finally
relented and wrote in his blog:

Some things are clearer with hindsight of several years. It is necessary to
evolve HTML incrementally. The attempt to get the world to switch to XML,
including quotes around attribute values and slashes in empty tags and
namespaces all at once didn’t work.

http://lists.whatwg.org/listinfo.cgi/help-whatwg.org
http://lists.whatwg.org/listinfo.cgi/whatwg-whatwg.org
http://lists.whatwg.org/listinfo.cgi/implementors-whatwg.org

1.1 How It All Started 5

Admitting that XHTML2 had failed to become the new web language, he an-
nounced the creation of a new HTML working group—on a wider scale this time.
The group would involve the browser vendors and would aim at further develop-
ing both HTML and XHTML step by step. In the last paragraph of his blog entry
he emphasizes his conviction that this is the right way to go:

This is going to be a very major collaboration on a very important spec, one
of the crown jewels of web technology. Even though hundreds of people will
be involved, we are evolving the technology which millions going on billions
will use in the future. There won’t seem like enough thankyous to go around
some days. But we will be maintaining something very important and creat-
ing something even better.

In March 2007, the time had come: The new HTML Working Group was formed.
Shortly after it had been announced to the W3C, all members of the WHATWG
were invited to participate in the HTML WG—an offer the WHATWG gratefully
accepted.

A few months later, a vote was taken to decide if the specification drawn up by
the WHATWG should become the basis of the new, joint HTML5 specification. In
contrast to the vote taken during the Workshop in 2004, the result was in favor,
with 43 voting for, 5 voting against, 4 people abstaining, and 1 explicitly reject-
ing. After a delay of three years, the original idea of further developing HTML had
prevailed.

But this was just the beginning: New ways of cooperating had to be found—a task
that proved to be anything but easy because the philosophies of WHATWG and
W3C were only compatible to a limited extent. The fact that the two camps were
not always in agreement was reflected not only in extensive discussion threads in
the W3C’s own archived and publicly accessible public-html mailing list (http://
lists.w3.org/Archives/Public/public-html), but was also evident in the assess-
ment of the HTML5 project’s road map.

Although the W3C assumed in its Charter that HTML5 would reach Recommen-
dation in Q3 of 2010, Ian Hickson of the WHATWG anticipated a much longer
period. The year 2022 has often been suggested, but such a long time span is con-
sidered completely unacceptable by many critics. Yet this time frame may seem
more realistic if you take into account the ambitious aim of HTML5 to replace
the three specifications—HTML4, DOM2 HTML, and XHTML1—and to expand
them significantly, to create a test suite with thousands of tests, and to prescribe
two faultless implementations of the standard as proof of concept.

One look at the decision-policy rules of the HTML WG gives you an inkling of
how complicated the decision-making process of the two groups involved in fur-
ther developing the specification is (http://dev.w3.org/html5/decision-policy/
decision-policy.html). After the XHTML2 Working Group was disbanded in late
2009, the number of critics willing to fully exploit this decision policy increased.

http://lists.w3.org/Archives/Public/public-html
http://lists.w3.org/Archives/Public/public-html
http://dev.w3.org/html5/decision-policy/decision-policy.html
http://dev.w3.org/html5/decision-policy/decision-policy.html

Chapter 1—Overview of the New Web Standard6

As a result, a constantly growing list of so-called Issues is being tracked by the
W3C’s HTML WG (http://www.w3.org/html/wg/tracker/issues). These issues
need to be resolved before declaring Last Call under moderation of the chairs
Sam Ruby, Paul Cotton, and Maciej Stachowiak. On the part of the WHATWG,
Ian Hickson took advantage of a calmer period and was able to temporarily re-
duce his issues list (http://www.whatwg.org/issues/data.html) down to zero,
leading him to announce HTML5 in Last Call to the WHATWG in October 2009.

A visible sign of the complexity of the events is the status of the specification.
With the WHATWG, the main specification is a compact document, whereas in
early 2011 the W3C had eight parts, all counting as part of the HTML5 package.
Two of them are generated directly from the WHATWG version and are marked
with an asterisk; the others are supplements and are in turn not contained in the
WHATWG version.

WHATWG Specification:

 z HTML—Living Standard: http://whatwg.org/html

W3C HTML WG Specifications:

 z HTML5 - A vocabulary and associated APIs for HTML and XHTML *:
http://www.w3.org/TR/html5

 z HTML5 differences from HTML4: http://www.w3.org/TR/html5-diff

 z HTML: The Markup Language Reference:
http://www.w3.org/TR/html-markup

 z HTML+RDFa 1.1: http://www.w3.org/TR/rdfa-in-html

 z HTML Microdata: http://www.w3.org/TR/microdata

 z HTML Canvas 2D Context *: http://www.w3.org/TR/2dcontext

 z HTML5: Techniques for providing useful text alternatives:
http://www.w3.org/TR/html-alt-techniques

 z Polyglot Markup HTML-Compatible XHTML Documents:
http://www.w3.org/TR/html-polyglot

Another WHATWG document exists in which all the WHATWG sections are com-
bined with additional specs for Web Workers, Web Storage, and the Web Sockets
API. This document, Web Applications 1.0—Living Standard, is well suited to
serve as an endurance test for HTML rendering: With more than 5MB of source
code and JavaScript to display the implementation stage of each section, plus
the option of adding direct comments to individual sections, it will stretch any
browser to its limit:

http://www.w3.org/html/wg/tracker/issues
http://www.whatwg.org/issues/data.html
http://www.w3.org/TR/html5
http://www.w3.org/TR/html5-diff
http://www.w3.org/TR/html-markup
http://www.w3.org/TR/rdfa-in-html
http://www.w3.org/TR/microdata
http://www.w3.org/TR/2dcontext
http://www.w3.org/TR/html-alt-techniques
http://www.w3.org/TR/html-polyglot
http://whatwg.org/html

1.2 Time Travel through Historic Events 7

If  you  want  to  go  easy  on  your  browser,  you  could  either  use  the multipage 
version of that document at http://www.whatwg.org/C or add ?slow-browser at 
the end of the URL. That way, dynamic components will be skipped and you end 
up with a static, faster-loading version without interactive elements. 

If you want to keep track of the changes made to the specification, you have
several options. The WHATWG offers a Subversion repository of the complete
specification of which you can create a local copy:

 z svn co http://svn.whatwg.org/webapps webapps

You can also access Commit messages of the individual revisions via Twitter, a
mailing list, or the web interface, the so-called web-apps-tracker:

 z http://twitter.com/WHATWG

 z http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org

 z http://html5.org/tools/web-apps-tracker

Whereas the WHATWG specification changes continuously with each revision,
the W3C drafts are subject to the so-called Heartbeat requirement, which means
that new versions of the W3C specification must be published at regular intervals
of three to four months as Working Drafts. By the time this book is published, the
next heartbeat will probably have occurred, and who knows, maybe even a Last
Call Working Draft will have been announced by the W3C.

If you want to explore the history of HTML5, the Time Travel section offers a
selection of links as portals to milestones and historic events. The article “Why
Apple is betting on HTML 5: a web history” offers a very good summary of the
entire HTML history. It is available at AppleInsider under the shortened URL,
http://bit.ly/2qvA7s.

1.2 Time Travel through Historic Events

Milestones in the development of HTML in selected links include the following:

 z W3C Workshop on Web Applications and Compound Documents (June
2004): http://www.w3.org/2004/04/webapps-cdf-ws/index

 z Position paper by Opera and Mozilla on further development of HTML:
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html

TIP
http://www.whatwg.org/specs/web-apps/current-work/complete.html

http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://www.whatwg.org/
http://www.w3.org/2004/04/webapps-cdf-ws/index
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://svn.whatwg.org/webapps
http://twitter.com/WHATWG
http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org
http://html5.org/tools/web-apps-tracker
http://bit.ly/2qvA7s

Chapter 1—Overview of the New Web Standard8

 z Ian Hickson’s assessment of the workshop in three blog posts:
http://ln.hixie.ch/?start=1086387609&order=1&count=3

 z Creation of the WHATWG is announced two days after the workshop:
http://www.whatwg.org/news/start

 z Blog entry “Reinventing HTML” by Tim Berners-Lee (October 2006):
http://dig.csail.mit.edu/breadcrumbs/node/166

 z Relaunch of the W3C HTML Working Group (March 2007):
http://www.w3.org/2007/03/html-pressrelease

 z Ian Hickson informs the WHATWG community of the relaunch: http://
lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009887.html

 z Official invitation to the WHATWG to sign up for the HTML WG: http://
lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009908.html

 z Ian Hickson congratulates the W3C on the initiative on behalf of the
WHATWG: http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-
March/009909.html

 z HTML Design Principles as basis of HTML5 (November 2007):
http://www.w3.org/TR/html-design-principles/

 z First official HTML5 Working Draft at W3C (January 2008):
http://www.w3.org/2008/02/html5-pressrelease

 z Announcement that the XHTML2 Working Group will be disbanded (July
2009): http://www.w3.org/News/2009#entry-6601

 z WHATWG declares HTML5 at Last Call (October 2009):
http://blog.whatwg.org/html5-at-last-call

 z W3C publishes eight Working Drafts, two of them new (June 2010):
http://www.w3.org/News/2010#entry-8843

 z W3C announces Timeline to Last Call, expecting to reach Last Call end of
May 2011 (September 2010):
http://lists.w3.org/Archives/Public/public-html/2010Sep/0074.html

 z W3C Introduces an HTML5 Logo (January 2011), causing controversy:
http://www.w3.org/News/2011#entry-8992

 z Ian Hickson declares that the WHATWG HTML specification will
henceforth just be known as “HTML” and can be considered a
“living standard” (January 2011):
http://blog.whatwg.org/html-is-the-new-html5

http://www.whatwg.org/news/start
http://dig.csail.mit.edu/breadcrumbs/node/166
http://www.w3.org/2007/03/html-pressrelease
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009887.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009887.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009908.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009908.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009909.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2007-March/009909.html
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/2008/02/html5-pressrelease
http://www.w3.org/News/2009#entry-6601
http://blog.whatwg.org/html5-at-last-call
http://www.w3.org/News/2010#entry-8843
http://lists.w3.org/Archives/Public/public-html/2010Sep/0074.html
http://www.w3.org/News/2011#entry-8992
http://blog.whatwg.org/html-is-the-new-html5
http://ln.hixie.ch/?start=1086387609&order=1&count=3

1.3 In Medias Res 9

1.3 In Medias Res

After the preceding brief trip through the history of HTML5, the time has come
to finally tackle the elements and attributes of HTML5 directly. What could be
more appropriate than the classic Hello world! example? This is what it looks like
in HTML5:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello world! in HTML5</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

Every HTML5 document begins with the document type declaration <!DOCTYPE
html>, and it does not matter if you write it in uppercase or lowercase. The sec-
ond innovation you will notice is the shortened way of specifying the encoding—
<meta charset="UTF-8">. The rest, like html, head, title, or body, you will be fa-
miliar with from HTML4, which leads us to the question: What is really new in
HTML5?

1.3.1 What Is New?

The W3C provides the answer with the specification HTML5 differences from
HTML4, moderated by Anne van Kesteren. In addition to lists of new and ob-
solete elements and attributes, we can also find tips on new or changed APIs,
external parts of the specification, and finally the HTML5 Changelog, which logs
in chronological order how and when individual features have found their way
into or out of the specification: http://www.w3.org/TR/html5-diff/.

The tables contain a lot of detail, but do not give us a very clear overview. Four
wordles are therefore going to guide us through this chapter. They were all cre-
ated using Jonathan Feinberg’s Wordle Applet, which is available free of charge
at http://www.wordle.net. The frequency of the relevant terms is reflected by
the size of the letters for new elements and attributes, and determined by the
number of cross-references connected to the relevant feature in the HTML5
specification. For obsolete elements and attributes, the font size corresponds
to the frequency of online use, as researched by Opera within the MAMA project
What is the Web made of? (http://dev.opera.com/articles/view/mama).

Let’s first take a look at the new elements in the wordle in Figure 1.2. Highlights
are definitely the media types video, audio, and canvas—the latter is, simply put,

http://www.w3.org/TR/html5-diff/
http://www.wordle.net
http://dev.opera.com/articles/view/mama

Chapter 1—Overview of the New Web Standard10

a picture you can program with JavaScript. Many innovations concern struc-
turing elements, for example, article, section, header, hgroup, footer, nav, or
aside. For figures, you have figure with figcaption, and you can show or hide
additional information with details in combination with summary. You can in-
dicate progress with progress, any kind of measurements with meter, and time
and date with time.

We are not likely to come across the elements ruby, rt, and rp in English-
speaking countries very often; they are a typographical annotation system used
mainly in Chinese and Japanese to give guidance on pronunciation. More use-
ful for us is mark for emphasizing terms or wbr to show that a line break could be
inserted at a certain point if necessary.

Some elements tend toward web applications, such as keygen for generating key
pairs for encryption or digital signatures, command for executing commands, or
output as a result of calculations in forms or other parts of a document. As a con-
tainer for option elements, datalist offers nonvisible select lists for form fields.
For listing alternative resources for video and audio elements, there is source—
the browser picks the first known format from this list to play the file. And last
but not least is the frequently used embed element introduced by Netscape, now
in an amended version.

Figure 1.2  New HTML5 elements

1.3 In Medias Res 11

The input element also entails many changes. Here is a brief summary of new
types: You now have several new input types for specifying the date with date-
time, date, month, week, time, and datetime-local. Also, there are types for search
fields (search) and for entering URLs (url), e-mail addresses (email), telephone
numbers (tel), numbers (number) or numeric ranges (range), or colors (color). As
you can see in Figure 1.3, many of the new attributes relate to forms. Thanks to
the form attribute, input elements can be external to the form in question and be,
as it were, linked to the desired form. Attributes, such as min, max, step, required,
pattern, multiple, or autocomplete determine restrictions or conditions for in-
put elements, influence the validation of the entered data with formnovalidate
and novalidate, and offer practical help for filling in forms with placeholder or
autofocus. What happens when the form is submitted can be overwritten in in-
put and button elements with formmethod, formenctype, formtarget, and formac-
tion. The list attribute serves to assign selection lists created with datalist to
the relevant input component.

As security features for iframes, we have sandbox, srcdoc, and seamless. These
isolate the embedded content from the rest of the document. If you want to load
scripts asynchronously, you can use async, and ping opens the list of URLs speci-
fied in the ping attribute in the background whenever you click on a hyperlink.

Figure 1.3  New HTML5 attributes

Chapter 1—Overview of the New Web Standard12

The manifest attribute of the html element seems inconspicuous but has far-
reaching consequences: It paves the way for offline web applications by referring
to the configuration file determining which parts of the page should be made
available offline. The style elements with the attribute scoped can also be useful,
limiting the validity of the specified styles to the area of the superordinate DOM
node and all its child elements. For menu elements, type and label determine the
type of menu (for example, context menu or toolbar), plus its label.

Small but sweet improvements include using the charset attribute in the meta
tag to simplify specifying the encoding; having the option of using li elements
via value to assign explicit list values; specifying a starting point for ol with start;
and finally being able to sort lists in reverse order with reversed.

Some of the global attributes that are valid for all elements have been changed
significantly. This does not apply so much to class, dir, id, lang, style, tab-
index, and title, which are now global in contrast to HTML4, but mainly to the
new attributes that have been added. With contenteditable you can now edit
elements directly; contextmenu enables assigning your own menus, defined as
menu; draggable marks the relevant element as a potential candidate for drag-
and-drop actions; and spellcheck prepares for checking the relevant section for
spelling errors.

Contents that are not or no longer relevant at the time of display can be hid-
den; the attribute role or aria-* can be used to offer additional help for assistive
technologies, such as Screenreader; and the reserved prefix data-* enables you
to define as many of your own attributes as you like.

Another important part of HTML5 is that of new programming APIs, for exam-
ple, the canvas element API, an API for playing audio and video contents, and an
interface for programming offline web applications. Further APIs are devoted to
the topics drag-and-drop, editing documents, or governing the browser history.
The specification even contains some initially exotic-seeming APIs for register-
ing and applying your own protocols or MIME types.

We should also mention that in HTML5 all event handlers are global attributes
and that certain changes were made to the objects HTMLDocument and HTMLEle-
ment. With getElementsByClassName(), you can find all elements with a particular
class attribute; you can manipulate class attributes with the classList API; and
you can now use the method innerHTML with XML documents, too. You can de-
termine which element in the document is currently in focus with activeElement
and hasFocus—both as attributes of the HTMLDocument object, just as with the
method getSelection(), which returns the text currently selected by the user.

1.3 In Medias Res 13

1.3.2 What Has Become Obsolete?

When discussing the innovations in HTML5, we should also determine which
features we should no longer use. The term deprecated is frequently used in oth-
er W3C specifications in this context, but this term is not appropriate in the case
of HTML5. Because HTML5 is backward compatible, such features also have to
be displayed correctly by the browser. For the author of a web page, however, the
specification of differences from HTML4 offers a list of elements and attributes
that should or may no longer be used. The term absent now replaces the term
deprecated.

If you look at the wordle in Figure 1.4, you can see that the elements font and
center are definitely out. They are replaced by more up-to-date CSS solutions,
and the same applies to the elements u, big, strike, basefont, and tt. Now,
iframes replaces frame, frameset, and noframes; instead of acronym you should
now use abbr, instead of dir you should use ul, and isindex is abandoned in fa-
vor of the better options offered by forms. If you are wondering why some of the
elements mentioned do not appear in the wordle, this is due to the fact that they
were used very infrequently and are therefore no longer part of HTML5.

For obsolete attributes, the picture is equally clear. Dominant in the wordle in
Figure 1.5 are width, height, alignment (align, valign), spacing (cellpadding,
cellspacing) , and coloration (bgcolor). They appear mostly in combination
with table, td, or body and are now replaced by CSS, like many of the obsolete
elements.

Figure 1.4  Elements no longer used in HTML5

Chapter 1—Overview of the New Web Standard14

Figure 1.5  Attributes no longer used in HTML5

How do we know in detail which elements and attributes should no longer
be used? It would be very time-consuming to have to keep searching through
the HTML5 differences. A better solution is offered by the HTML5 validator at
http://html5.validator.nu: The validator knows exactly what is right and wrong.
Let’s give it a try: We select Text Field as input mode and replace the line <p></p>
in the preset HTML basic frame with the following wrong markup:

<center>
 <acronym>WHATWG</acronym>
</center>

The error messages this returns look like this—at least at the time of this writing:

1. Error: The center element is obsolete. Use CSS instead.
2. Error: The acronym element is obsolete. Use the abbr element instead.

The link in Use CSS instead leads us directly to the WHATWG Wiki, to the page
Presentational elements and attributes, where we can read details regarding cor-
rect use. The validator also shows syntax errors directly, as you can see in the
next test. Let’s try the following source code:

<!DOCTYPE html><title>

http://html5.validator.nu

1.3 In Medias Res 15

We get another error message in answer—this time with the comment that the
document is not yet complete and therefore invalid:

1. Error: End of file seen when expecting text or an end tag.

If we fix this error by adding the end tag </title>, this error message disappears
as well and we have created the shortest possible HTML5 document:

<!DOCTYPE html><title></title>

Error recognition in the validator is based on one of the key features of HTML5,
the HTML parser. Unlike all previous specifications, it was formulated to the last
detail, and with its 90 pages is about as exciting to read as the local phone book.
From a technical point of view, however, this chapter is essential, because it de-
fines how the HTML5 markup should be parsed and how the document’s DOM
tree should be structured.

Our preceding mini example generates in reality a complete HTML5 DOM tree,
including html, head, and body elements. You can prove this with another tool,
the HTML5 Live DOM Viewer, at http://livedom.validator.nu. Give it a go!

1.3.3 And What About XHTML?

The HTML5 specification basically defines an abstract language for describing
documents and web applications with APIs for interaction, which are represent-
able in an in-memory DOM tree. It does not matter which syntax is used as the
basis for creating this DOM tree—HTML is one of them, and XHTML is another.
What matters is always the result after parsing, which is a valid DOM-HTML tree
in both cases.

So the decision whether to use HTML or XHTML when creating documents is
up to the author. HTML is more widely used, easier to write, more forgiving with
small syntax errors, and requires the MIME type text/html for output. XHTML
follows the strict XML rules (keyword well-formedness) and always has to use an
XML MIME type, such as text/xml or application/xhtml+xml, which was not
the case previously with XHTML 1.1.

The Hello world! example in XHTML5 manages without DOCTYPE but does require
a valid XML declaration instead, which can be wrapped up in the encoding, and
of course it has to be well-formed:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Hello world! in HTML5</title>
 </head>

http://livedom.validator.nu

Chapter 1—Overview of the New Web Standard16

 <body>
 <p>Hello world!</p>
 </body>
</html>

You probably cannot see much difference between this and the HTML version.
That is due to the fact that we have not made full use of the permitted level of
simplification in HTML code for the first Hello world! example. In lazy HTML5,
this markup would have been sufficient:

<!DOCTYPE html>
<meta charset=utf-8>
<title>Hello World! in HTML5</title>
<P>Hello world!

We can leave out quotation marks for attributes if the attribute value does not
contain any spaces or any of the symbols " ' > / =. Tags can be written in up-
percase or lowercase; sometimes they can even be omitted as in the preceding
example. If you are not sure, the validator can once again help you out. Regard-
ing implementation of the new HTML5 parser, Mozilla has taken the lead. Henri
Sivonen’s Parser, which is also the basis of http://validator.nu, is included with
Firefox 4.

1.4 Can I Start Using HTML5 Now?

Yes and no. HTML5 is not finished yet by any stretch of the imagination, but un-
like previous practice, the development of the HTML5 standard is taking place
hand in hand with its implementation. Who would have thought that Internet
Explorer 9 (IE9) would offer SVG and Canvas, or that Google would start offering
HTML5 videos on YouTube? Many of the new features can be used now, provid-
ed you can choose your browser. HTML5 can be used in a company’s internal in-
tranet as well as on your private homepage that only selected friends can access.

With Firefox, Chrome, Opera, and Safari, four great browsers are already sup-
porting a wide range of HTML5, and IE9 has finally ended Microsoft’s long hesi-
tation in supporting web standards in 2011. Browser manufacturers and their
developers are now actively participating in forming the standard. They imple-
ment new specification drafts first in test versions as proof of concept and then
post their feedback and suggestions for improvements in the WHATWG or the
W3C. This makes them important parts of the development cycle. Anything that
cannot be implemented is removed from the specification, whereas other com-
ponents are adapted and finally implemented.

http://validator.nu

1.4 Can I Start Using HTML5 Now? 17

Early adopters of HTML5 are well advised to familiarize themselves with the in-
dividual browser’s release notes, as trends in response to the question What will
come next? will most likely emerge here:

 z https://developer.mozilla.org/en/HTML/HTML5

 z http://www.opera.com/docs/changelogs

 z http://webkit.org/blog

 z http://googlechromereleases.blogspot.com

 z http://ie.microsoft.com/testdrive/info/ReleaseNotes

The timeline of the development of HTML5-relevant specifications in combi-
nation with the milestones of browser releases indicate with their shorter and
shorter release intervals that standardization and implementation are closely
linked (see Figure 1.6).

It will be interesting to see how the two areas continue to develop. You can find
an up-to-date version of the timeline at the following URL:

http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en

Figure 1.6  Timeline of specifications and browser releases

http://www.opera.com/docs/changelogs
http://webkit.org/blog
http://googlechromereleases.blogspot.com
http://ie.microsoft.com/testdrive/info/ReleaseNotes
https://developer.mozilla.org/en/HTML/HTML5
http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en

Chapter 1—Overview of the New Web Standard18

Summary

This chapter begins with a bit of historical background and then provides a high-
level overview of the changes the HTML5 specification brings to web develop-
ment. In addition to a look behind the scenes of the specification development,
our main focus is on the long list of new elements, attributes, and APIs. Two
brief Hello world! examples demonstrate the basic frame of a website encoded in
HTML5 and XHTML5, and last but not least we address the question: Can I start
using HTML5 now? The answer is yes, albeit with minor reservations. But now
we will move on to the practical application of HTML5. Let’s first start with a big
chunk of innovations: more structure and semantics for documents!

2
Structure and Semantics
for Documents

Both the previously mentioned MAMA survey conducted by Opera and Google’s
study of Web Authoring Statistics of 2005 (http://code.google.com/webstats)
conclude that it was common practice at that time to determine the page struc-
ture of web sites with the class or id attribute. Frequently used attribute val-
ues were footer, content, menu, title, header, top, main, and nav, and it therefore
made sense to factor the current practice into the new HTML5 specification and
to create new elements for structuring pages.

The result is a compact set of new structural elements—for example, header,
hgroup, article, section, aside, footer, and nav—that facilitate a clear page
structure without detours via class or id. To illustrate this, we will use a fictitious
and not entirely serious HTML5 blog entry to risk a look ahead to the year 2022
(see Figure 2.1). But please concentrate less on the content of the post and focus
instead on the document structure.

19

http://code.google.com/webstats

Chapter 2—Structure and Semantics for Documents20

Figure 2.1  The fictitious HTML5 blog

Before analyzing the source code of the HTML5 blog in detail, here are a few
important links, for example, to the specification HTML: The Markup Language
Reference—subsequently shortened and referred to as markup specification at
http://www.w3.org/TR/html-markup.

Here, Mike Smith, the editor and team contact of W3C HTML WG, lists each ele-
ment’s definition, any existing limitations, valid attributes or DOM interfaces,
plus formatting rules in CSS notation (if to be applied)—a valuable help that we
will use repeatedly. The HTML5 specification also contains the new structural
elements in the following chapter: http://www.whatwg.org/specs/web-apps/
current-work/multipage/sections.html

The .html and .css files to go with the HTML5 blog are of course also available
online at:

 z http://html5.komplett.cc/code/chap_structure/blog_en.html

 z http://html5.komplett.cc/code/chap_structure/blog.css

At first glance, you can see four different sections in Figure 2.1—a header, the
article, the footer, and a sidebar. All the new structural elements are used in these
four sections. In combination with short CSS instructions in the stylesheet blog.
css, they determine the page structure and layout.

http://www.w3.org/TR/html-markup
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html
http://html5.komplett.cc/code/chap_structure/blog_en.html
http://html5.komplett.cc/code/chap_structure/blog.css

2.1 Header with “header” and “hgroup” 21

2.1 Header with “header” and “hgroup”

In the header we encounter the first two new elements: header and hgroup. Fig-
ure 2.2 shows the markup and the presentation of the header:

<header>

 <hgroup>
 <h1>
 <h2>
 </hgroup>
</header>

Figure 2.2  The basic structure of the HTML5 blog header

The term header as used in the markup specification refers to a container for
headlines and additional introductory contents or navigational aids. Headers are
not only the headers at the top of the page, but can also be used elsewhere in
the document. Not allowed are nested headers or a header within an address or
footer element.

In our case the headline of the HTML5 blog is defined by header in combination
with the logo as an img element and two headings (h1 and h2) surrounded by an
hgroup element containing the blog title and a subtitle.

Whereas it was common practice until now to write the h1 and h2 elements di-
rectly below one another to indicate title and subtitle, this is no longer allowed

Chapter 2—Structure and Semantics for Documents22

in HTML5. We now have to use hgroup for grouping such elements. The overall
position of the hgroup element is determined by the topmost heading. Other ele-
ments can occur within hgroup, but as a general rule, we usually have a combina-
tion of tags from h1 to h6.

We can glimpse a small but important detail from the markup specification: The
guideline is to format header elements as display: block in CSS, like all other
structural elements. This ensures that even browsers that do not know what to
do with the new tags can be persuaded to display the element concerned cor-
rectly. We only need a few lines of code to teach Internet Explorer 8 our new
header element, for example:

<!--[if lt IE 9]>
 <script>
 document.createElement("<header");
 </script>
 <style>
 header { display: block; }
 </style>
<![endif]-->

Of course there is also a detailed JavaScript library on this workaround, and it
contains not only header, but also many other new HTML5 elements. Remy
Sharp makes it available for Internet Explorer at http://code.google.com/p/
html5shim.

In computer language, the term shim describes a compatibility workaround for 
an application. Often, the term shiv is wrongly used instead. The word shiv was 
coined by John Resig, the creator of jQuery, in a post of that title (http://ejohn.
org/blog/html5-shiv).  It remains unknown whether he may in fact have meant 
shim.

As far as CSS is concerned, the header does not contain anything special. The
logo is integrated with float:left, the vertical distance between the two head-
ings h1 and h2 is shortened slightly, and the subtitle is italicized.

2.2 Content with “article”

The article element represents an independent area within a web page, for ex-
ample, news, blog entries, or similar content. In our case the content of the blog
entry consists of such an article element combined with an img element to liven
things up, an h2 heading for the headline, a time and address element for the

NOTE

http://code.google.com/p/html5shim
http://code.google.com/p/html5shim
http://ejohn.org/blog/html5-shiv
http://ejohn.org/blog/html5-shiv

2.2 Content with “article” 23

date it was created and the copyright, plus three paragraphs in which you can
also see q and cite elements for quotations of the protagonists.

Because the content element is now lacking, although it ranked right at the top
in web page analyses by Google and Opera, it did not make it into HTML5 for
some reason. Our blog entry is embedded in a surrounding div (see Figure 2.3).
So nothing stands in the way of adding further articles:

<div>
 <article>

 <h2>
 <address>
 <time>
 </article>
</div>

Figure 2.3  The basic structure of the HTML5 blog content

By definition, the address element contains contact information, which inciden-
tally does not, as is often wrongly assumed, refer only to the postal address, but
simply means information about the contact, such as name, company, and posi-
tion. For addresses, the specification recommends using p. The address element
applies to the closest article element; if there is none, it applies to the whole
document. The time element behaves in a similar way in relation to its attributes
pubdate and datetime, which form the timestamp for our document. You will find
details on this in section 2.7.2, The “time” Element.

Chapter 2—Structure and Semantics for Documents24

If article elements are nested within each other, the inner article should in prin-
ciple have a theme similar to that of the outer article. One example of this kind of
nesting would be, in our case, adding a subarticle to our blog with comments on
the post concerned.

Regarding styling via CSS, we should mention that article once again requires
display: block, that the content width is reduced to 79% via the surrounding div,
and that this div also neutralizes the logo’s float: left with clear: left. The
italicized author information is the result of the default format of address and is
not created via em. The picture is anchored on the left with float: left, the text is
justified with align: justify, and quotations are integrated using the q element.
One interesting detail is that the quotation marks are not part of the markup but
are automatically added by the browser via the CSS pseudo-elements :before
and :after in accordance with the style rules for the q element. The syntax in CSS
notation once more reflects the markup specification:

/* Style rule for the q-element: */
q { display: inline; }
q:before { content: '"'; }
q:after { content: '"'; }

2.3 Footer with “footer” and “nav”

In the footer of our HTML blog, we find two other new structural elements: foot-
er and nav (see Figure 2.4). The former creates the frame, and the latter provides
navigation to other areas of the web page. footer contains additional info on
the relevant section, such as who wrote it (as address of course); are there other,
related pages; what do we need to look out for (copyright, disclaimer); and so on.

Unlike the human body, where the head is usually at the top and the foot at
the bottom, a footer in a document does not always have to be at the end of
the document, but can, for example, also be part of an article element. Not
allowed, however, are nested footer elements or a footer within a header or
address element.

If you want to create navigation blocks to allow page navigation via jump labels
within a document or to external related pages, you can use nav. Just as with
footer, nav can appear in other areas of the document as well, as you will see in
the section 2.4, Sidebar with “aside” and “section”—the only exception being
that you cannot have nav within the address element:

<footer>
 <p>
 <nav>

2.4 Sidebar with “aside” and “section” 25

 <h3>
 <div>
 <a>
 </div>
 </nav>
</footer>

Figure 2.4  The basic structure of the HTML blog footer

As for CSS, our HTML5 blog’s footer has a few special features. For example, the
entire footer is colored in the same light gray as the page background, and only
the links are formatted with background-color: white. The copyright in the first p
requires float: left, and the navigation text-align: right plus the h3 heading
in the nav block are hidden with display: none. Just why there is an h3 element in
there at all will become clear in section 2.5, The Outline Algorithm. To improve
the style of the links, they are surrounded by div tags. And of course we have
display: block for header and nav, plus a reduction of the width in the footer
element to 79%.

2.4 Sidebar with “aside” and “section”

For areas of a page that are only loosely related to the main content and can there-
fore be seen as rather separate entities, we can use the aside element. In our exam-
ple, it creates a classical sidebar on the right with three blocks for Questionnaire,

Chapter 2—Structure and Semantics for Documents26

Login, and Quick Links. If the link list is implemented as nav, as is to be expected,
the two first blocks are embedded in another new element: section.

The section element contains sections of a document that are thematically con-
nected, for example, chapters of an essay or individual tabs of a page constructed
from tabs, typically with a heading. If section is used within footer, it is usually
used for appendices, indices, license agreements, or the like. Generally, it makes
sense to use section if it belonged in a table of contents as well. In our example,
as shown in Figure 2.5, the Questionnaire and the Login are tagged with section,
and the links are tagged as nav as mentioned earlier:

<aside>
 <h2>
 <section>
 <h3><p><input>
 </section>
 <section>
 <h3><label><input>
 </section>
 <nav>
 <h3><a>
 </nav>
</aside>

Figure 2.5  The basic structure of the HMTL5 blog sidebar

2.5 The Outline Algorithm 27

NOTE

For the same reason as with the nav block in the footer (see the following sec-
tion), the sidebar contains a heading h2 directly before the first Questionnaire
block, hidden via CSS with display: none. The sidebar format is float: right
with width: 20% and font-size: 0.9em. The striking feature of the sidebar is the
rounded bottom-right corner, which means it’s time to admit that the HTML5
blog also uses CSS3: The rounded corner is only one of two features used. The
CSS syntax for the class rounded-bottom-right looks like this:

.rounded-bottom-right {
 -moz-border-radius: 0px 0px 20px 0px;
 -webkit-border-radius: 0px 0px 20px 0px;
 border-radius: 0px 0px 20px 0px;
}

The second feature is responsible for the subtle shadow of the four areas and is
defined as follows in the CSS file:

.shadow {
 -moz-box-shadow: 4px 0px 10px -3px silver;
 -webkit-box-shadow: 4px 0px 10px -3px silver;
 box-shadow: 4px 0px 10px -3px silver;
}

The tripling of the CSS command through the prefixes -moz-* and -webkit-* is
conspicuous; it is caused by the fact that CSS3 is not yet in the Candidate Rec-
ommendation phase. Once it enters this stage of the standardization process,
only then will it be ensured that border-radius and box-shadow will no longer be
changed. Until then, the prefixes are maintained to show that the implementa-
tion could still contain small deviations from the standard.

If you want to learn more about these two eagerly awaited features of the 
CSS3 specification, you will find further information here:
 z http://www.w3.org/TR/css3-background/#the-border-radius

 z http://www.w3.org/TR/css3-background/#box-shadow

2.5 The Outline Algorithm

Even if the details for outlining a document sound rather complicated in the
specification, there is a simple idea behind outlining, which is a machine-read-
able summary of the underlying document structure. This structure is deter-
mined by a combination of so-called sectioning content—for example, body,

http://www.w3.org/TR/css3-background/#box-shadow
http://www.w3.org/TR/css3-background/#the-border-radius

Chapter 2—Structure and Semantics for Documents28

article, aside, nav, and section—and heading content, such as h1 to h6 or
hgroup, which provides the proper entries of the outline.

If we check our HTML5 blog with Geoffrey Sneddon’s online HTML5 Outliner
(http://gsnedders.html5.org/outliner), we see the following structure:

1. The HLML5 blog!
 1. Link Block
 1. Questionnaire
 2. Login
 3. Quick Links
 2. Tug of war between W3C and WHATWG enters ...
 3. Navigation

With the italicized entries Link Block and Navigation, we get back exactly those
two headings that were hidden in the layout with display: none. If we had omit-
ted these headings completely, we would have seen the text Untitled Section in
their place. But this way, the structure is complete and the outline is much easier
to read.

Regarding the choice of headings h1 to h6, we should note the following: In prin-
ciple, any sectioning content can start with the heading rank h1, but it does not
have to. In our case the heading ranks reflect the hierarchy in the outline: h1 for
the blog header; h2 for the article title, the link block, and the footer navigation;
and h3 for the other headers. If we tagged everything with h1, we would get the
same outline, but the layout would suffer somewhat and we would need to sort
it out manually in the CSS file.

When using hgroup, you need to remember that the outline only includes the
highest level in the hgroup. That is why you cannot see the subtitle Tips, tricks &
tidbits for today’s web developers in the outline.

Even if there is as yet no browser that directly uses the outline algorithm in any
form, this does not mean that it could not play a more important role in the
future. Automatically generated navigation bars would be a possibility, or the
creation of short, concise summaries, or perhaps improvements for crawlers ex-
tracting relevant content for search engines. Until then it definitely does not hurt
to do some serious thinking about the structure of your document. It is easy to
check the structure, so why not go ahead and do it?

2.6 Figures with “figure” and “figcaption”

The elements figure and figcaption do not really count among the structural
elements, but they are still a welcome addition to our options in structuring the
integration of independent pictures, graphics, diagrams, and code lists. Each

http://gsnedders.html5.org/outliner

2.7 Text-Level Semantics—More New Tags 29

figure element can have only one figcaption element. It is up to the author
whether this is placed before or after the figure in question. A brief example with
markup and its browser implementation (see Figure 2.6) could look like this:

<figure>

<figcaption> Three magical sculptures in Niki de Saint
 Phalles Giardino dei Tarocchi near Capalbio in the
 Tuscany region of Italy. The tarot cards from left to right:
 The World (XXI), The Choice (VI), and The Moon (XVIII)</figcaption>
</figure>

Figure 2.6  Example of “figure” with “figcaption”

2.7 Text-Level Semantics—More New Tags

Apart from focusing on clear structures, the HTML5 specification also attaches
importance to semantics and tries to assign each element a certain meaning
on the text level. At the same time, the HTML5 specification determines in
which context the tag concerned can be used and in which it cannot. There are
some new elements and some that have disappeared completely (such as font,
center, and big), and the definitions of others have changed slightly. The fol-
lowing chapter will introduce new and changed elements. Later, in Table 2.2
we will show you the classical applications of all elements that appear in the

Chapter 2—Structure and Semantics for Documents30

specification’s Text-level semantics chapter. Let’s start with the most exotic of
the new elements—ruby.

2.7.1 The Elements “ruby,” “rt,” and “rp”

The term ruby refers to a typographic annotation system, meaning “short runs of
text alongside the base text, typically used in East Asian documents to indicate
pronunciation or to provide a short annotation” (www.w3.org/TR/ruby). Ruby
annotation is used in Chinese and Japanese to show the pronunciation of char-
acters, as you can see in the example on the left in Figure 2.7.

Figure 2.7  Two examples of ruby annotation

The markup for ruby annotations contains the elements ruby, rt, and rp. First,
the expression that will be explained is specified within a ruby element. The ex-
planation is then provided by the following rt element, and in browsers with
ruby support the content of this rt element is positioned above the expression
described. As you can see in the Beijing example, several words in a row can be
annotated this way.

Browsers without ruby support (such as Firefox and Opera) display the individual
components consecutively, which can make the words more difficult to read. Be-
cause it is not necessarily clear that the second word is the explanation of the first
word, a visual separation of the two components is required. That is what the rp
element is for: It enables adding optional parentheses that will only be displayed
if a browser does not know ruby. As you can see in Figure 2.7, Google Chrome can

www.w3.org/TR/ruby

2.7 Text-Level Semantics—More New Tags 31

interpret ruby and visually separate it. A browser without ruby support would
display the examples as 北 běi 京 jěng and HTML N°5 (Web Standard).

2.7.2 The “time” Element

The time element represents either a time in the 24-hour-format or a date in the
Gregorian calendar with optional time and time-zone components. Its purpose
is to give modern date and time specifications in a machine-readable format
within an HTML5 document. Vague time references, such in the spring of 2011
or five minutes before the turn of the millennium, are therefore not allowed.

To ensure machine readability, we can use the attribute datetime, and its attri-
bute value can be specified either as time, date, or a combination of both. The
syntax for specifying the time components is clearly defined in the specification
and is described in Table 2.1.

Table 2.1  The Rules for Timestamps for the “time” Element’s “datetime” Attribute

Component Syntax Example

Date YYYY-MM-DD 2011-07-13

Time with hours hh:mm 18:28

Time with seconds hh:mm:ss 18:28:05

Time with milliseconds hh:mm:ss.f 18:28:05.2318

Date and time T to join date and
time

2011-07-13T18:28

With time zone GMT Z at the end 2011-07-13T18:28:05Z

With time zone as offset +mm:hh / -mm:hh 2011-07-13T18:28:05+02:00

The pubdate attribute is a boolean attribute and indicates that the specified date
applies to the next level article in the hierarchy, and—if there is none—should
be understood as the publication date of the document. If you are using pubdate,
there has to be a datetime element as well. If this is not the case, the section be-
tween the time element’s start tag and end tag must contain a valid date.

Chapter 2—Structure and Semantics for Documents32

NOTE
Be careful when writing boolean attributes in HTML5: true or false are not 
valid attribute values! As soon as the parser discovers the attribute name in 
boolean attributes, it switches to true. So there are three valid notations for 
setting a boolean attribute to true:

<time pubdate>
<time pubdate="">
<time pubdate="pubdate"> (of course you can also omit the quotation marks)

To switch to false, you only have one option: Omit the attribute altogether!

2.7.3 The “mark” Element

The mark element represents a highlighted text segment that is regarded as rel-
evant in a different context. That sounds a bit cumbersome, so we will illustrate
it with some brief examples: If you want to highlight a certain passage of a quota-
tion in particular, you change the original text and almost force a new meaning
onto it. You can use the mark element to add significance to certain words in a
document or code listing as a result of searching for them or in the course of
interpreting the code.

2.7.4 The “wbr” Element

Unsurprisingly, the wbr element enables the browser to insert an optional line
break in long words. For example, inserting a couple of wbr elements in a rather
long word, such as supercalifragilisticexpialidocious, would give the browser the
opportunity to break the word over two lines if the layout requires it:

supercali<wbr>fragilistic<wbr>expialidocious

It depends entirely on the layout whether and where the line break occurs. wbr
only allows a line break, it does not force it. Possible applications would be long
URLs or code listings. Similar to br, wbr is a so-called void element, which means
it must not contain an end tag—a quality it shares with 14 other elements in
HTML5. Here they are

area base br col command embed
hr img input keygen link meta
param source wbr

But of course void elements can contain a slash in the start tag itself (e.g.,

), which is useful with regard to meeting the requirements of valid
XHTML5 documents.

2.7 Text-Level Semantics—More New Tags 33

2.7.5 Elements with Marginal Changes

The list of elements with marginal changes starts with b and i, two tags that no
longer fit into the concept of HTML5, also because of their names: b for bold
and i for italic give definite formatting instructions, and these are not popular
in HTML5. The relevance is now essential, so we should instead use strong and
em as in emphasis to stress the importance of a word. Unfortunately, b and i are
among the most widely used tags, which is why it was impossible to prevent their
use altogether. The solution was a compromise that continues to allow both but
alters their meaning: b now refers to offset text in bold and i to offset text in ital-
ics. But if you want to write clean HTML5, you should avoid using b and i in the
future and instead use strong and em.

Other small changes mean that cite now designates the title of a work and must
explicitly not be used for citing names. small now means not only small print,
but also represents side comments or small print in the sense of legal notices but
without making statements as to their importance. hr now signals a thematic
break, not just a horizontal line to break up the layout.

The specification offers a usage summary of individual tags with examples at the
end of the chapter Text-level semantics. To save you from having to look it up,
here it is in our Table 2.2.

Table 2.2  Usage of Semantic Text Elements

Element Purpose Example

a Hyperlinks Visit my drinks
page.

em Stress emphasis I must say I adore lemonade.

strong Importance This tea is very hot.

small Side comments These grapes are made into wine.
<small>Alcohol is addictive.</small>

s Inaccurate text Price: <s>£4.50</s> £2.00!

cite Titles of works The case <cite>Hugo v. Danielle</cite> is
relevant here.

q Quotations The judge said <q>You can drink water from
the fish tank</q> but advised against it.

dfn Defining
instance

The term <dfn>organic food</dfn> refers to
food produced without synthetic chemicals.

abbr Abbreviations Organic food in Ireland is certified by the <abbr
title="Irish Organic Farmers and Growers
Association">IOFGA</abbr>.

Chapter 2—Structure and Semantics for Documents34

Table 2.2  Usage of Semantic Text Elements (Contd.)

Element Purpose Example

code Computer code The <code>fruitdb</code> program can be used
for tracking fruit production.

var Variables If there are <var>n</var> fruit in the bowl, at
least <var>n</var>÷2 will be ripe.

samp Computer
output

The computer said <samp>Unknown error
-3</samp>.

kbd User input Hit <kbd>F1</kbd> to continue.

sub Subscripts Water is H₂O.

sup Superscripts The hydrogen in heavy water is usually <sup>2
</sup>H.

i Alternative voice Lemonade consists primarily of <i>Citrus
limon</i>.

b Keywords Take a lemon and squeeze it with a
juicer.

mark Highlight Elderflower cordial, with one <mark>part</mark>
cordial to ten <mark>part</mark>s water, stands
a<mark>part</mark> from the rest.

ruby, rt,
rp

Ruby
annotations

<ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

bdi Text directional-
ity isolation

The recommended restaurant is <bdi lang="">
My Juice Café (At The Beach)</bdi>.

bdo Text directional-
ity formatting

The proposal is to write English but in
reverse order. “Juice” would become
“<bdo dir=rtl>Juice</bdo>»

span Other In French we call it <span
lang="fr">sirop de sureau.

br Line break Simply Orange Juice Company
Apopka, FL
32703
U.S.A.

wbr Line breaking
opportunity

www.simply<wbr>orange<wbr>juice.com

www.simply<wbr>orange<wbr>juice.com

2.7 Text-Level Semantics—More New Tags 35

Summary
HTML5 offers a wealth of new structural elements, such as header, hgroup, ar-
ticle, section, aside, footer, and nav. The detailed example at the beginning
of this chapter, the creation of a fictitious blog entry, demonstrates how easily
and intuitively these elements can be used. Instead of anonymous div elements,
which only make sense in combination with the class attributes, we now find
speaking elements—a concept continued with figure and figcaption for inte-
grating images and graphics. From the comprehensive list of HTML5 semantic
text elements plus examples of their usage in Table 2.2, we briefly introduced the
most interesting new elements, such as ruby, rt, and rp for ruby annotations;
time for specifying the time; mark for marking text passages; and wbr for optional
line breaks.

This page intentionally left blank

3
Intelligent
Forms

Whether you want to book a flight, take care of your online banking, or enter
a search term in Google, without forms, none of these services would be usa-
ble. Most of the elements for interactive forms have remained unchanged since
HTML 2.0 arrived in 1995. On one hand this indicates that Tim Berners-Lee’s
design showed great foresight; on the other hand there is now a huge need to
catch up. The HTML5 specification devotes a large section to the topic of forms
and will greatly facilitate any web designer’s work.

Even though browser support is not yet overwhelming at the time of this writing
(so far, it’s only offered by Opera and the developer release of Google Chrome),
the backward compatible syntax means that we can safely use the new form ele-
ments now.

37

Chapter 3—Intelligent Forms 38

3.1 New Input Types

The HTML5 specification enhances the input element by allowing several more
values for the type attribute. The new types, for example, date, color, and range,
enable browser manufacturers to make user-friendly input elements available
and also make it possible for the browser to ensure that the input is of the de-
sired type. If a browser does not recognize the type of the input element, it will
fall back on type=text and display a text field, which is useful in any case. Even
older browsers show this behavior, so there is nothing to stop us from using the
new types right away.

The types for date and time will probably be the most useful. Currently, there are
countless different versions of more or less successful JavaScript calendars avail-
able on the Internet. Entering a date comfortably, be it for booking a flight or a
hotel room, or registering for a conference, is a problem that until now required
manual work. Of course, JavaScript libraries, such as jQuery, offer ready-made
calendars, but this function should really be supported by the browser directly.

At the time of this writing, there is only one desktop browser that includes a
graphic input element for entering the date: Opera. In Figure 3.1 you can see the
open calendar that will be displayed if you click on an input element with the type
date. But let’s tackle things in order: Table 3.1 provides an overview of the new
types; then you can see what they look like in the Opera browser in Figure 3.1.

Table 3.1  New Input Types in HTML5

Type Description Example

tel Text without line breaks +1 234 567890

search Text without line breaks search term

url An absolute URL http://www.example.com

email A valid e-mail address user@host.com

datetime Date and time (always in UTC time
zone)

2010-08-11T11:58Z

date Date without time zone 2010-08-11

month Month without time zone 2010-08

week Year and week in the year without
time zone

2010-W32

time Time without time zone 11:58:00

3.1 New Input Types 39

Type Description Example

datetime-
local

Date and time without timezone 2010-08-11T11:58:22.5

number Number 9999 or 99.2

range Numerical value within a range 33 or 2.99792458E8

color Hexadecimal representation of RGB
values in sRGB color space

#eeeeee

3.1.1  The Input Types “tel” and “search”
tel and search are not significantly different from normal text fields. Both can
contain character chains without line breaks. Even telephone numbers are not
limited to numbers, because phone numbers often contain brackets or the plus
symbol. For tel, the browser could offer suggestions from the local address book,
a situation that is particularly useful with cell phones. The search type was intro-
duced to allow the browser to make the search input consistent with the layout
of the relevant platform. Mac OS X users, for example, are used to seeing search
fields with rounded corners.

Figure 3.1  Opera is already far ahead regarding implementation of new form input types 

Chapter 3—Intelligent Forms 40

3.1.2  The Input Types “url” and “email”
In addition to suggesting options, the browser can also check the syntax for url
and email. Because there are concrete rules for e-mail addresses and Internet
addresses in the form of URLs, the browser can already provide feedback on pos-
sible mistakes during input (more on this topic in section 3.4, Client-side Form
Validation).

3.1.3  Date and Time with “datetime”, “date”, “month”, “week”, 
“time”, and “datetime-local”
Let’s take a closer look at the date and time formats. datetime contains date
and time information; the time zone is always set to UTC. The specification
states that the browser can allow the user to select another time zone, but the
value of the input element has to be converted to UTC. The rules for time in-
formation in the datetime attribute of the time element, which we discussed in
section 2.7.2, The “time” Element, apply here as well—with the only exception
that the string always has to end in a Z, the identifier of UTC.

With date and month, the time and time zone are omitted. As defined in the speci-
fication, the date must be a valid day within the selected month, also taking into
account leap years. Year, month, and day must be separated by a minus charac-
ter; the year has to be at least four digits long and greater than 0. So dates before
Christ (b.c.) cannot be represented in HTML5, in contrast to the somewhat more
extensive international standard ISO 8601.

The type week is represented as a week in a year, and it is mandatory that the
week be preceded by the year. Year and week are once again separated by a mi-
nus character. To ensure that there is no confusion with month, the week must be
preceded by the character W.

datetime-local works the same way as the already described datetime; the only
difference is that there is no timezone specified.

Opera uses a calendar window for selecting the date; the time can be entered
manually or changed via arrow keys (refer to Figure 3.1).

3.1.4  The Input Types “number” and “range”
The types number and range require input that can be converted to a numeri-
cal value; the notation of floating-point numbers (for example, 2.99792458E8) is
valid. Regarding the type range, the specification states that the exact value is not
relevant; this type indicates a range of numbers, not an exact number, and the
user can easily enter it with a slider bar. Both Opera and WebKit-based browsers,
such as Safari or Google Chrome, use a slider bar to represent this type (refer to
Figure 3.1 and see Figure 3.2).

3.1 New Input Types 41

Figure 3.2  The input type “range” in Safari

3.1.5  The Input Type “color”
Once again the developers of Opera lead the way by being the first to program a
graphical input option for the color element. As you can see in Figure 3.1, Opera
(version 11 and later) offers a rectangular field with a choice of frequently used
colors. You can also bring up a color picker along the lines of those you see in
image-editing programs. Sadly, this input element is still not implemented in the
other browsers.

The value of the input element must contain the 8-bit RGB values in hexadeci-
mal notation preceded by a # character. The color blue, for example, would be
written as #0000ff.

3.1.6  The New Input Types in Action
Enough with the theory: Our first example shows you the new elements, one
below the other. Because that’s not very challenging, we will also test each ele-
ment’s function. The trick is that the browser will set the type of an unknown ele-
ment to text, and we can then evaluate those properties in JavaScript:

<script>
 window.onload = function() {
 inputs = document.getElementsByTagName("input");
 for (var i=0; i<inputs.length; i++) {
 if (inputs[i].type == "text") {
 inputs[i].value = "not available";
 }
 }
 }
 </script>

Chapter 3—Intelligent Forms 42

As soon as the web page has finished loading, a loop runs over all input elements
to analyze their type attributes. If the type attribute corresponds to the standard
type text, its value is set to not available. The HTML code for the new input ele-
ments looks like this:

<fieldset>
 <legend>New input types</legend>
 <p><label for=tel>tel</label>
 <input type=tel id=tel name=tel>
 <p><label for=search>search</label>
 <input type=search id=search name=search>
 <p><label for=url>url</label>
 <input type=url id=url name=url>
 <p><label for=email>email</label>
 ...

In Figure 3.3 you can see what the result of this test looks like on an Android
cell phone. The system’s WebKit-based browser (left) pretends to know the types
tel, search, url, and email but does not really help when it comes to entering the
telephone number via the keyboard (center). Opera Mobile in version 10.1 beta
(right) supports url and email, plus the date and time types.

Figure 3.3  Support of new form input types on an Android 2.1 phone with browsers WebKit 
(left, center) and Opera (right)

That is a rather disappointing result for the otherwise so modern Android brows-
er. Results look slightly better on the iPhone: At least the smartphone adapts the
software keyboard, displaying a numeric keyboard when you try to enter a phone
number and adding the @ character on the keyboard for the input type email.

3.2 Useful Attributes for Forms 43

This test works even better with BlackBerry, the operating system of the popular
line of smartphones produced by the Canadian manufacturer Research in Mo-
tion (RIM). As you can see in Figure 3.4, the BlackBerry supports both tel and
number plus date types, and the latter in particular are represented in very at-
tractive graphics. Under the hood we find WebKit at work: The software was ex-
panded to include these functions.

Figure 3.4  The new input types on a BlackBerry smartphone (BlackBerry 9800 simulator)

3.2 Useful Attributes for Forms

Apart from new elements and many new types for the input element, HTML5
also offers several new attributes for form elements.

3.2.1  Focusing with “autofocus”
Years ago, Google surprised many users with a simple trick that made searching
much more convenient: When the page was loaded, the cursor was automati-
cally positioned in the search field. The user was able to enter the search term
directly without having to first activate the input box by clicking with the mouse.
Previously, this was done with a short snippet of JavaScript; in HTML5 you can
now do it with the autofocus attribute:

<input type=search name=query autofocus>

As with all boolean attributes, you can write this attribute as autofocus="autofocus"
(see Chapter 2, section 2.7.2, The “time” Element). The specification states that
only one element in a web page can contain the autofocus attribute.

Chapter 3—Intelligent Forms 44

Older browsers do not have a problem with autofocus, because they simply ig-
nore the unknown attribute. Of course, you only get the benefit of user friendli-
ness with new browsers.

3.2.2  Placeholder Text with “placeholder”
Usability of HTML forms can be further improved with the new placeholder
attribute:

<p><label for=email>Your e-mail address:</label>
<input type=email name=email id=email
 placeholder="user@host.com">
<p><label for=birthday>Your date of birth</label>
<input type=date name=birthday id=birthday
 placeholder="1978-11-24">

The value of placeholder can give the user a quick hint about how to fill in the
field, but it should not be used as an alternative to the label element. It is partic-
ularly useful for fields where a certain data entry format is expected. The browser
displays the hint text within an inactive input field. As soon as the field is acti-
vated and is focused, the text is no longer displayed (see Figure 3.5).

Figure 3.5  The “placeholder” attribute in Google Chrome

3.2.3  Compulsory Fields with “required”
required is a boolean attribute, and its name already says everything about its
function: A form element that this attribute is assigned to must be filled in. If a
required field remains blank when the form is sent, it does not fulfill the require-
ments and the browser must react accordingly. You will find more information
on this in section 3.4, Client-side Form Validation.

3.2 Useful Attributes for Forms 45

3.2.4  Even More Attributes for the “input” Element
The input element has not only been enhanced with new types (section 3.1, New
Input Types), but also with new attributes that enable easier handling of forms
(see Table 3.2).

Table 3.2   New Attributes for the “input” Element

Type Description Attribute

liststring Refers to the ID of a datalist element with
suggestions (see section 3.3.3, Lists of op-
tions with “datalist”)

 list

numeric/date Minimum value of numeric fields and date
fields

 min

numeric/date Maximum value of numeric fields and date
fields

 max

numeric Step size of numeric fields and date fields step

boolean Multiple selection possible multiple

enumerated
(on/off/default)

Automatically inserts saved data into form
fields

 autocomplete

string Regular expression for validating the value pattern

We will come across the list attribute again in section 3.3.3, Lists of Options
with “datalist”. It refers to the datalist element, which offers possible entries as
suggestions.

min, max, and step are not only suitable for numeric fields, but these attributes
can also be used for entering the date and time:

<p><label for=minMax>Decimal number between 0 and 1:</label>
<input type=number name=minMax id=minMax
 min=0 max=1 step=0.1>
<p><label for=minMaxDate>Date in week steps:</label>
<input type=date name=minMaxDate id=minMaxDate
 min=2010-08-01 max=2010-11-11 step=7>
<p><label for=minMaxTime>Time in hour steps:</label>
<input type=time name=minMaxTime id=minMaxTime
 min=14:30 max=19:30 step=3600>

In browsers that support the input type number, the first input element (id=minMax)
is increased each time by a value of 0.1. This works by clicking the arrow keys at
the end of the text field or by pressing the arrow keys on the keyboard. The ele-

Chapter 3—Intelligent Forms 46

ment with the ID minMaxDate jumps forward seven days each time. Opera only
displays those days in the calendar as active that correspond to the week cycle.
For setting this element, Google Chrome offers the same navigation as with the
input type number: two arrow keys that set the date forward or backward seven
days. In the third input element in this example, the step size is set to 3600; this
causes the time to be set one hour forward or one hour backward. Although the
specification states that the input elements for time usually work in minutes,
both Opera and Google Chrome interpret this data as seconds.

We are all familiar with multiple selection from copying files; now this option ex-
ists for browsers as well. If you wanted to load several files on a website at once,
you previously had to provide an input field for each file. The multiple attribute
allows for the marking of several files in the file dialog. The multiple option was
always intended for the select element; using it for input fields of the type email
is new. But as yet (at the time of this writing), none of the commonly used desk-
top browsers can implement this function for email types.

Modern browsers have a function that allows them to save form data to help the
user fill in forms when the form is revisited. This prefilling can be very useful but
would be undesirable for security-sensitive input fields (the specification men-
tions the activation codes for nuclear weapons as an example). The autocomplete
attribute was introduced to allow web developers to govern this behavior. If an
element has the attribute autocomplete="off" assigned to it, that means the in-
formation to be entered is confidential and should not be saved in the browser.
If the form element does not state if autocomplete should be switched on or off,
the default setting is to display suggestions. The autocomplete attribute can also
be applied to the whole form by assigning it to the form element.

The new pattern attribute allows for very flexible input verification. You can
specify a regular expression against which the form field will be checked for a
match. Regular expressions are very powerful but unfortunately not a very easy
method of parsing strings. Imagine you are looking for a character string start-
ing with an uppercase character followed by any number of lowercase letters or
numbers and ending in .txt. Finding it is no problem at all with a regexp (short
for regular expression):

[A-Z]{1}[a-z,0-9]+\.txt

An  introduction  to  regular  expressions would  be  far  beyond  the  scope of  this 
chapter,  so  let’s  assume  for  now  that  you  have  basic  knowledge  of  regular 
expressions  when  you  read  the  following  section.  If  you  are  looking  for  a 
brief  online  introduction  to  regular expressions,  Wikipedia  is  a  good  starting 
point: Browse to http://en.wikipedia.org/wiki/Regular_expression. The website 
http://www.regexe.com gives you the chance to try regular expressions online. 

NOTE

http://www.regexe.com
http://en.wikipedia.org/wiki/Regular_expression

3.3 New Elements 47

When using regular expressions with the pattern attribute you need to remem-
ber that the search pattern always has to apply to the field’s entire content. The
specification also suggests using the title attribute to give the user a hint re-
garding the input format. Opera and Google Chrome display this kind of infor-
mation as a tool tip as soon as the mouse pointer hovers over the field. After all
this theory, here is a brief example:

<p><label for=pattern>Your nickname:</label>
 <input type=text pattern="[a-z]{3,32}"
 placeholder=""johnsmith" name=pattern id=pattern
 title="Only lower case, please; min. 3, max. 32!">

The guideline for the pattern attribute specifies that the character string can only
contain characters between a and z (in lowercase,[a-z]) and that there are at
least 3 and at most 32 characters. Special characters or umlauts are not allowed,
which can be useful for a user name as in the preceding example. If you want to
include certain special characters, for example, the umlauts in the German lan-
guage, you need to include them in the group: [a-zäöüß]. In section 3.4, Client-
side Form Validation, you can find out what happens if the validation fails.

3.3 New Elements

In addition to the new input types and the new attributes mentioned earlier,
the specification also includes new elements for forms. We will discuss these in
the next section. The elements meter and progress create graphical objects that
previously could only be achieved with more or less complicated tricks. Sugges-
tions for text input are offered by datalist, and output provides a placeholder
for the results of calculations. The keygen element has been circulating through
the World Wide Web for a long time but has only reached standardization with
HTML5.

3.3.1  Displaying Measurements with “meter”
The meter element is used to graphically represent a scalar measurement within
a known range. Think, for example, of the fuel gauge in your car: The needle
shows the current level of fuel in your tank as somewhere between 0 and 100
percent. Previously, such graphic representations were usually coded in HTML
with nested div elements, a rather inelegant solution for which the div element
was probably not intended. A status display can also be displayed graphically, as
a picture, through free web services, such as the Google Chart API. You can see all
of these options in the example that follows.

Chapter 3—Intelligent Forms 48

Using the meter element is very simple: You set the desired value via the value
attribute; all other attributes are optional. If you do not set a min and max value,
the browser will use 0 and 1 for these attributes. So, the following meter element
shows a half-full element:

<meter value=0.5></meter>

Apart from value, min, and max are also the attributes low, high, and optimum—
values that the browser can incorporate into the display. Google Chrome (at the
time of this writing, the only browser apart from Opera that is able to represent
the meter element), for example, displays the normally green bar in yellow if the
optimum value is exceeded.

In the following example you can see a graphic representation, showing the per-
centage of the current year that has already passed. The website presents a vi-
sualization of the output in four different ways: as text with a value in percent,
using the new meter element, via nested div elements, and as graphics produced
by the online service of Google’s Chart API. You can see the result in Figure 3.6.

Figure 3.6  The “meter” element and similar options for representing a state

3.3 New Elements 49

The HTML code for this example contains the still empty elements, which are
filled via JavaScript:

<h2>Text</h2>
<p><output id=op></output>
 % of the year has passed.</p>
<h2>The new meter element</h2>
<meter value=0 id=m></meter>
<h2>Nested div elements</h2>
<div id=outer style="background:lightgray;width:150px;" >
<div id=innerDIV> </div></div>
<h2>Google Chart API</h2>

<p id=googleSrc class=tt></p>

For the text output, we use the output element introduced in section 3.3.5, Cal-
culations with “output”. But first the current date is generated in JavaScript, and
the meter element is initialized:

 var today = new Date();
 var m = document.getElementById("m");
 m.min = new Date(today.getFullYear(), 0, 1);
 m.max = new Date(today.getFullYear(), 11, 31);
 // m.optimum = m.min-m.max/2;
 m.value = today;

The variable today contains the number of milliseconds since the start of the
UNIX epoch (on 1.1.1970). To make sure our meter element gets a sensible scale,
we set the min value to January 1 of the current year and the max value accordingly
to December 31. The value of the meter element is set in the last line of the listing;
now the graphical representation is complete. If you activate the optimum value
(in this case the middle of the year), which we left out, you will see the display
change depending on whether you call the script in the first or second half of the
year. The new element is wonderfully simple to use.

Let’s now move on to the other elements on our HTML web page. We want to
assign the percentage of days passed to the output element tagged with the ID
op. With Math.round(), we round up the percentage to the nearest number before
the comma, which is plenty accurate enough for our example:

 var op = document.getElementById("op");
 op.value =
 Math.round(100/(m.max-m.min)*(m.value-m.min));

 var innerDIV = document.getElementById("innerDIV");
 innerDIV.style.width=op.value+"%";
 innerDIV.style.background = "green";

Chapter 3—Intelligent Forms 50

The rest of our example has nothing to do with new HTML5 techniques, but we
still want to explain it for the sake of completeness. The nested div elements
should also be filled with the percentage value. The idea behind this is simple:
A first div area is defined in HTML with a fixed width (here, 150px). Nested into
this element, another div element is displayed as filled with a green background
color along the width of the calculated percentage value—a simple yet very effec-
tive trick. To round things off, we also want to include the Google Chart API. To
use the online service, you have to specify the chart size (chs, in our case 200×125
pixels), the chart type (cht, here, gom, Google-O-Meter), and the chart data (chd,
here, the percentage value op.value):

 var google = document.getElementById("google");
 google.src =
"http://chart.apis.google.com/chart?chs=200x125&cht=gom&chd=t:"+op.
value;
 var gSrc = document.getElementById("googleSrc");
 gSrc.innerHTML = google.src;

3.3.2  Displaying the Progress of a Task with “progress”
progress works in a similar way as the meter element discussed previously ex-
cept that it represents the completion progress of a task. Such tasks could, for
example, be file uploads by the user or downloads of external libraries required
by an application.

To give you a quick example, we do not really want to upload any files or down-
load a lot of data; it is sufficient to set ourselves a task and fulfill it 100 percent.
Our following example defines ten input elements of the type checkbox, and as
soon as they are all activated, we want the progress bar to show 100 %:

<h1>Please activate all the checkboxes</h1>
<form method=get>
 <input type=checkbox onchange=updateProgress()>
 <input type=checkbox onchange=updateProgress()>
<!-- and 8 more -->
 <p>
 Progress: <progress value=0 max=10 id=pb></progress>
</form>

The progress element is initialized with a value of 0 and a maximum value of 10.
As soon as an input element is activated, it calls the function updateProgress(),
which looks like this:

function updateProgress() {
 var pb = document.getElementById("pb");
 var ip = document.getElementsByTagName("input");

3.3 New Elements 51

 var cnt = 0;
 for(var i=0; i<ip.length; i++) {
 if (ip[i].checked == true) {
 cnt++;
 }
 }
 pb.value = cnt;
}

The variable ip contains a NodeList with all input elements. Each of these ele-
ments is tested in the for loop for its condition. If it is activated (checked ==
true), the counter variable cnt increases by 1. To finish, the value of the progress
element is set to the value of the counter variable.

3.3.3  Lists of Options with “datalist”
One long-awaited new function for forms is a drop-down menu to which you can
add your own entries. Because the well-known select element is limited to the
values specified as option elements, web developers used to come up with vari-
ous JavaScript tricks to add expandable selection lists to text fields.

The HTML5 specification now has a very elegant solution to this problem. The
new datalist element was defined to function as a container for the already fa-
miliar option element. Now we can assign to each input element a datalist el-
ement that displays the selection options when needed. Browsers that do not
support the datalist element will only display the empty text field.

Listing 3.1 shows the use of the new element. The input element is defined by
the type text, and the attribute list refers to the id of the datalist element (in
this case, homepages). When the page is loaded, the autofocus attribute positions
the cursor automatically inside the text field (see section 3.2.1, Focusing with
“autofocus”) and ensures, at least with the Opera browser, that the selection list
appears (see Figure 3.7).

Figure 3.7  Opera, representing a “datalist” element

Chapter 3—Intelligent Forms 52

For the option elements within the datalist, you just need to fill the value at-
tribute. Further attributes and a text node are possible but not required for this
use. If the user clicks the Submit button, the content of the text field is prefixed
with the character string http:// and the browser is redirected to the resulting
URL (window.location):

Listing 3.1  The “datalist” element filled with Internet addresses

<form>
 <p>
 <label for=url>Goto</label>
 http://<input type=text id=url name=homepage
 list=hompages autofocus>
 <datalist id=hompages>
 <option value=www.google.com>
 <option value=html5.komplett.cc/welcome>
 <option value=slashdot.org>
 <option value=wired.com>
 </datalist>
 <input type=submit
 onclick="window.location =
 'http://'+document.getElementById('url').value;
 return false;" >
</form>

If you want to equip older browsers with a selection list without duplicating the
HTML code, you can fall back on the following trick. Because browsers support-
ing the datalist element ignore an enclosed select element, they display the
new HTML5 select element. Older browsers, however, display a selection list for
the text field with predefined links, which will be inserted into the text field when
the selection is changed.

As you can see in Listing 3.2, we need to add a text node to the option elements
because the “old” select element does not show the content of the value attri-
bute but instead shows the text:

Listing 3.2   A “datalist” with the fallback for older browsers

<datalist id=hompages>
<select name=homepage
 onchange="document.getElementById('url').value =
 document.forms[0].homepage[1].value" >
 <option value=www.google.com>www.google.com
 <option
 value=html5.komplett.cc/welcome>html5.komplett.cc/welcome
 <option value=slashdot.org>slashdot.org
 <option value=wired.com>wired.com
</select>
</datalist>

3.3 New Elements 53

The onchange event within the select element inserts the current text of the se-
lection menu into the text box (see Figure 3.8).

Figure 3.8  A combination of “input” and “select” elements as fallback for older browsers (here, 
Internet Explorer 8)

3.3.4  Cryptographic Keys with “keygen”
The keygen element has a long history in the Mozilla Firefox browser (included
since version 1.0), but Microsoft still expressed great concern regarding the im-
plementation in HTML5. keygen is used to generate cryptographic keys, which
sounds complicated, and unfortunately, it is just as complicated as it sounds.

Simply put, the idea behind this element is this: The browser creates a pair of
keys, one a public key and the other a private key. The public key is sent off with
the other form data and is then available to the server application, whereas the
private key remains saved in the browser. After this exchange of keys, the serv-
er and browser can communicate in encryption without SSL certificates. This
sounds like a practical solution for those pesky self-signed certificates, which
browsers keep complaining about, but sadly it is not, because the identity of the
server can only be verified through a certificate that has been signed by a trust-
worthy authority, the Certificate Authority (CA).

So if keygen cannot replace SSL, what should the new element be used for? As ex-
plained in the Mozilla documentation, the keygen element helps create a certifi-
cate that the server can sign (signed certificate). To make this step totally secure,
it is usually necessary for the applicant to appear personally before the authority.
Because the issuing of signed certificates is a task for experts, we will briefly de-
scribe this element and its attributes.

Chapter 3—Intelligent Forms 54

The following short HTML document creates a keygen button:

<!DOCTYPE html>
 <meta charset="utf-8">
 <title>keygen Demo</title>
 <form method=post action=submit.html>
 <keygen id=kg challenge=hereismychallenge name=kg>
 <input type=submit>
 </form>

In addition to the familiar attributes, such as autofocus, disabled, name, and form,
the keygen element has two special attributes: keytype and challenge. keytype in
particular is interesting because the browser uses this entry to decide if it sup-
ports this element’s function. Currently, there is only one valid keytype, which is
rsa, a cryptographic system developed in 1977 at the Massachusetts Institute of
Technology (MIT). If no keytype is specified (as in the preceding example), rsa
is used as the default value. The specification also states that a browser does not
have to support any keytype at all, which is probably because of Microsoft’s veto
against this element. The optional challenge attribute increases security during
the key exchange. For further information, please refer to the links in the note at
the end of this section.

If the browser supports the RSA key generation, it can offer a selection list to al-
low the user to select the length, and consequently the security, of the key (see
Figure 3.9).

Figure 3.9  Selecting the key length in Google Chrome

Figure 3.10 shows the result after the form has been sent: The POST variable kg
contains the public key required for encryption (here, rendered in the extremely
useful Firefox add-on Firebug).

3.3 New Elements 55

Figure 3.10 The public key of the “keygen” element, represented in Firebug

If  you have not had much previous experience with cryptography but would   
like  to  find  out  more,  Wikipedia  is  always  a  good  starting  point.  Check 
out  http://en.wikipedia.org/wiki/Public_key_infrastructure  and  http://
en.wikipedia.org/wiki/Challenge-response_authentication.

3.3.5  Calculations with “output”
“The output element represents the result of a calculation.” That is the very short
explanation in the HTML5 specification, and you will find exactly the same text
on most websites describing the new element. It all sounds very sensible, but
what kind of calculations are we dealing with? Why do we need a special element
for them?

As a general rule, these are calculations resulting from input fields on a web-
site. An example familiar to most people would be an electronic shopping cart
where the quantity for each product can be entered in an input field. Via the
optional for attribute, you can determine which fields to include in the calcu-
lation. One or more id attributes of other fields in the document are referenced
in the process.

NOTE

http://en.wikipedia.org/wiki/Public_key_infrastructure
http://en.wikipedia.org/wiki/Challenge-response_authentication
http://en.wikipedia.org/wiki/Challenge-response_authentication

Chapter 3—Intelligent Forms 56

To test the output element, we will program one of these little shopping carts for
three different products. The quantity of each of these products can be changed
via an input field. At the same time, the total number of items and the total price
are displayed under the shopping cart. Figure 3.11 shows a shopping basket with
five items.

Figure 3.11  Two “output” elements show the number of products and the price in total

The code for our example can be explained quickly and simply: To update the
output elements for each change in quantity, we use the form’s oninput event:

<form oninput="updateSum();">
 <table>
 <tr><th>Product<th>Price (US$)<th>Item number
 <tr><td>Keyboard<td class=num id=i1Price>39.50<td>
 <input name=i1 id=i1 type=number min=0 value=0 max=99>
 <tr><td>Mouse<td class=num id=i2Price>26.30<td>

The output elements are defined after the table with the products and refer to the
IDs of the input fields via the for attribute:

<p>Your shopping cart contains <output name=sumProd for="i1 i2 i3"
 id=sumProd></output> items. Total price:
 <output name=sum for=”i1 i2 i3” id=sum></output> US$.

In the JavaScript code, a loop runs over all input elements, adding the quantities
and calculating the total price:

3.4 Client-Side Form Validation 57

function updateSum() {
 var ips = document.getElementsByTagName("input");
 var sum = 0;
 var prods = 0;
 for (var i=0; i<ips.length; i++) {
 var cnt=Number(ips[i].value);
 if (cnt > 0) {
 sum += cnt * Number(document.getElementById(
 ips[i].name+"Price").innerHTML);
 prods += cnt;
 }
 }
 document.getElementById("sumProd").value = prods;
 document.getElementById("sum").value = sum;
}

We get the product price directly from the table by using the innerHTML value
of the relevant table column and converting it to a number with the JavaScript
function Number(). The same applies to the value in the input field (ips[i].
value), because without this conversion, JavaScript would add up the character
strings, which would not produce the desired results. The calculated values are
then inserted into the value attributes of the output elements.

3.4 Client-Side Form Validation

One of the advantages of the new elements and attributes in forms is that the
user can now enter data much more easily (for example, choose the date from a
calendar). Another great advantage is the option of checking the form contents
before the form is submitted and alerting the user of any mistakes. You might say
that kind of checking is rather old hat because it has been around for years. That
is true, but until now this step always had to be done via JavaScript code that
you had to program. Thanks to jQuery and similar libraries, this task has become
much easier and the code is more manageable, but you still must depend on an
external library.

With HTML5, this situation changes fundamentally: You define the parameters
of the input fields in HTML, and the browser checks whether the fields have been
filled in correctly. That is a big step forward and makes many lines of JavaScript
code redundant. This tiny example will convince you:

<form method=get action=required.html>
 <p><label>Your e-mail address:
 <input type=email name=email required></label>
 <p><input type=submit>
 </form>

Chapter 3—Intelligent Forms 58

Figure 3.12 shows what will happen if you submit the form in the preceding list-
ing without specifying an e-mail address. Opera displays the error message: This
is a required field. If you have set the Opera user interface to another language,
the error message appears in the relevant language. Of course, you can also adapt
these error messages with JavaScript; more on this in section 3.4.3.

Figure 3.12  Error message for a blank input field with the “required” attribute (Opera)

But that is not all: The field is defined as the type email, so Opera also returns an
error message if an invalid e-mail address is entered; for example, Please enter a
valid email address (see Figure 3.13).

Figure 3.13  Error message in Opera after entering an invalid e-mail address

3.4 Client-Side Form Validation 59

WebKit-based browsers, such as Google Chrome or Safari, currently support the
validation but do not display an error message. They place a border around the
invalid field and position the cursor in the field to at least provide some indica-
tion that something is not quite right.

Despite all  the euphoria about client-side validation of  form  input, you should 
not forget that this step cannot replace server-side control. A potential attacker 
can bypass these mechanisms with very little technical effort. 

3.4.1  The “invalid” Event
During form validation, elements with an invalid content trigger the event in-
valid. We can use this to react individually to incorrect values:

window.onload = function() {
 var inputs = document.getElementsByTagName("input");
 for (var i=0; i<inputs.length; i++) {
 inputs[i].addEventListener("invalid", function() {
 alert("Field "+this.labels[0].innerHTML
 +" is invalid");
 this.style.border = 'dotted 2px red';
 }, false);
 }
 }

After loading the page, a list of all input elements is generated (as in the ex-
ample in section 3.3.5). An event listener is added to each element and deals
with the error. In our example it opens an alert window, and the element is
marked with a red-dotted border. The label of the input element is used as text
in the alert window.

This approach is not ideal in forms with many input fields. The user must click
the OK button for each incorrect input and then find the appropriate field in the
form and fill in the details again. Sometimes, it would be more useful if the user
could be notified immediately of invalid input while filling in the field. We will
try this in the next section.

3.4.2  The “checkValidity” Function
To trigger the validation of an input element, the checkValidity function for that
element is called. But you can also start “manually” what would normally hap-
pen when the form is submitted:

NOTE

Chapter 3—Intelligent Forms 60

<input type=email name=email
 onchange="this.checkValidity();">

If you enter an invalid e-mail address and move away from the input field (either
with the Tab key or by clicking elsewhere in the browser), the browser (currently,
at least in Opera) returns an error message right away (refer to Figure 3.13). Error
handling becomes even more elegant if we attach a function for checking input
to the onchange event of all input elements:

window.onload = function() {
 var inputs = document.getElementsByTagName("input");
 for (var i=0; i<inputs.length; i++) {
 if (!inputs[i].willValidate) {
 continue;
 }
 inputs[i].onchange = function() {
 if (!this.checkValidity()) {
 this.style.border = 'solid 2px red';
 this.style.background = '';
 } else {
 this.style.border = '';
 this.style.background = 'lightgreen';
 }
 }
 }
}

The familiar loop runs over all input elements, checking first whether the ele-
ment is available for validation. If willValidate does not return the value true,
the loop continues with the next element. Otherwise, an anonymous function is
assigned to the onchange event, calling the checkValidity function. this within
the anonymous function refers to the input element. If the validity check fails, the
element is surrounded with a red border; otherwise, the element’s background
is colored light green. Remember to reset the background color and border to an
empty character string to make sure the browser sets the formatting back to the
default value after the user has corrected an incorrect input. In Figure 3.14 you
can see how the checkValidity function generates an error message as a result
of incorrect time input.

3.4 Client-Side Form Validation 61

Figure 3.14  Opera displays an error message after an incorrect time input (in this case a viola-
tion of the “step” attribute)

If you would like to make error handling more interactive, you can use the new
HTML5 oninput event instead of the onchange event. Unlike onchange, which is
triggered when the field no longer has the focus, oninput is activated after ev-
ery changed character. The oninput event now does what you previously had to
program somewhat laboriously via the keyboard events keyup and keydown. An-
other advantage of oninput is that the event listener needs to be attached only
once to the whole form, not to each input element. So in our preceding example,
you could do without all the JavaScript code and change the form definition as
follows:

<form method=get oninput="this.checkValidity();"
 action=checkValidity.html >

This means you forgo changing the borders and background color, but you sig-
nificantly shorten the source code. An immediate reaction to each keystroke can
be very helpful in some cases, but when filling in a form field, it is usually enough
if the content is checked after the field has been fully completed.

3.4.3  Error Handling with “setCustomValidity()”
If you feel that all the error handling methods introduced earlier are still not
quite enough, you can also program your own function for checking content.
In the following example, we define an input field with the type email, which

Chapter 3—Intelligent Forms 62

ensures that the browser will check for a valid e-mail address. Additionally, we
want to specifically exclude three e-mail domains:

var invalidMailDomains = [
 'hotmail.com', 'gmx.com', 'gmail.com'];

function checkMailDomain(item) {
 for (var i=0; i<invalidMailDomains.length; i++) {
 if (item.value.match(invalidMailDomains[i]+'$')) {
 item.setCustomValidity('E-mail addresses from '
 +invalidMailDomains[i]+' are not accepted.');
 } else {
 item.setCustomValidity('');
 }
 item.checkValidity();
 }
}

Each element in the array invalidMailDomains is compared to the value of the input
element. The JavaScript function match() works with regular expressions, which is
why we add a $symbol to the domain name, to indicate the end of the character
string. If the character strings match, the setCustomValidity function is called and
displays the appropriate error message. If it is not a domain name from the array,
setCustomValidity() is called with an empty character string. Internally, this at-
taches the variable validationMessage to the input element, which Opera then dis-
plays (see Figure 3.15). The concluding call of the checkValidity function triggers
the validity check and leads to the aforementioned error message.

Figure 3.15  Opera displays an error message during manual error handling (checking e-mail 
domain) 

3.4 Client-Side Form Validation 63

3.4.4  Summary of Validity Checks
Table 3.3 shows a summary of all input attributes and validity functions available
for validity checks, and the scenarios where they occur.

Table 3.3  Possible Errors During Validity Checks of Form Fields

Attribute/Function Problem

required No value was entered in the field.

type=email, url The entered value does not match the required type.

pattern The entered value does not match the required pattern.

maxlength The entered value is longer than allowed.

min, max The entered value is too small or too big.

step The required step size of the entered value has been
violated.

setCustomValidity() The additional criteria set for this field are not fulfilled.

3.4.5  Or Perhaps Better Not to Validate? “formnovalidate”
Now that we have spent so much time discussing error handling, we will tell you
how you can sneak past all the rules with the attribute formnovalidate. At first it
may seem a little strange to simply disregard all the laboriously defined rules and
just submit the form without validation. The specification offers a brief expla-
nation that quickly solves the mystery. The typical application for skipping the
validity check is a form that the user cannot or does not want to complete in one
go. By adding the formnovalidate attribute to a submit button, the content that
has been entered so far can be saved for later.

If you submit a form with formnovalidate, the fields already completed are sent 
to the server. The server application is responsible for potentially saving the data 
temporarily.

Imagine, for example, that you want to fill in a support form for your faulty digi-
tal camera. After spending ages filling in all the details about the error that has
occurred, the website asks you for the camera’s serial number. Because you do
not have the camera at hand and you do not want to lose all the information you
have already entered, you click the Save button and can then calmly go looking
for your camera. This button is defined as follows:

NOTE

Chapter 3—Intelligent Forms 64

<p><input type=submit formnovalidate
 value="Save" name=save id=save>

The following example will fully illustrate the idea of the support form.

3.5 Example: A Support Form

In this example, the previously introduced new elements and attributes are used
in a form. A form of this kind could, in an expanded state, be used on the website
of an electronics dealer.

Initially, the client is asked to supply personal details (in this example just the
name, an e-mail address, and a telephone and fax number). The second part of
the form concerns the product’s technical data and defect. The bottom part of
the webpage shows a progress bar that is meant to encourage the user to com-
plete the form (see Figure 3.16).

Figure 3.16  The almost completed support form

3.5 Example: A Support Form 65

The HTML code for the form starts by loading an external JavaScript file and the
already familiar call window.onload:

 <script src="support.js"></script>
 <script>
window.onload = function() {
 initEventListener();
}
 </script>

The initEventListener function runs through all input elements and assigns an
anonymous function to the onchange event, checking the corresponding element
for its validity:

function initEventListener() {
 var inputs = document.getElementsByTagName("input");
 for (var i=0; i<inputs.length; i++) {
 if (!inputs[i].willValidate) {
 continue;
 }
 inputs[i].onchange = function() {
 this.checkValidity();
 }
 }
}

The event listener is only added if the element can check validity. In our example
the two buttons for submitting or saving do not have the option to check valid-
ity and therefore do not get an onchange event. As explained earlier, checking
the individual form fields after they have been filled in is more convenient than
checking the entire form with the oninput event.

To improve the form’s user friendliness, we want to emphasize the elements
marked as required to make it immediately clear to the user which are the most
important fields. Fortunately, we do not have to add an extra style to each element.
CSS3 gives us the new selector :required, which is intended for exactly this case.
The following instruction places an orange border around all required elements:

:required { border-color: orange; border-style: solid; }

The definition of the individual input fields does not contain any great surprises.
E-mail address and phone number have their own types and are required; the
date when the defect occurred has the type date and can therefore be selected
from a calendar window. The two-column layout in the upper part of the web-
page is achieved via adjacent div elements. We still want users who jump to the
next field using the Tab key to fill in the form from top to bottom and not, as

Chapter 3—Intelligent Forms 66

HTML logic would suggest, first fill in the left and then the right column. We can
achieve this with the tabindex attribute, which means that pressing the Tab key
in a field will move the cursor to the field with the next higher tabindex value:

<div style="float:left">
<p><label>Your name
<input tabindex=1 type=text required autofocus
 placeholder="John Smith" name=name></label>
<p><label>Your e-mail address
<input tabindex=3 type=email name=email required></label>
</div>
<div style="float:left;margin-left:10px;">
<p><label>Telephone number
<input tabindex=2 type=tel name=tel required></label>
<p><label>Fax number
<input tabindex=4 type=tel name=fax></label>
</div>

Now the code gets more exciting with the textarea fields. HTML5 does not make
many changes to this type. But as you can see in Figure 3.16, each text field now
has a small graphic display above it, showing how many characters you can still
type into this field. You probably realized it right away: It’s done with the new
meter element, which you already know from section 3.3.1, Displaying Measure-
ments with “meter”:

<p><label>Error message
<textarea placeholder="Lens error. Camera restart."
 name=errmsg required rows=5 cols=50
 title="up to 200 characters">
</textarea></label><meter value=0 max=200
 tabindex=-1></meter>

The meter element is initialized with a maximum value of 200, exactly the value
specified as maximum in the title attribute of the textarea. If a user enters
more characters than the maximum allowed, the meter element turns red, indi-
cating that the text entered is too long. The browser will still submit all the text,
because we have not limited the textarea. So this is more a hint rather than a
strict requirement. The JavaScript function for updating the meter elements is
updateTAMeters() and is executed for all textareas:

function updateTAMeters() {
 var textfs = document.getElementsByTagName(“textarea”);
 for(var i=0; i<textfs.length; i++) {
 textfs[i].labels[0].nextSibling.value =
 textfs[i].textLength;
 }
}

3.5 Example: A Support Form 67

The advantage of the loop is that we can now add any number of textarea ele-
ments, and as long as they have a meter element, they will be updated automati-
cally. To achieve this, we need to resort to a DOM trick: The code printed in bold
in the preceding listing accesses the DOM function nextSibling, a reference to
the next element. Let’s revisit the HTML code for the text field and the status
bar to make things clearer. The textarea element is enclosed by a label element
followed by the desired meter element. To get from the textarea element to the
meter element, we use the text field’s labels property. This is a NodeList array,
and we are interested in the first element (with the index 0), because the follow-
ing element (the nextSibling) is the meter element.

If you look closely, the procedure is not as complicated as it at first looks, but it
has a few snags. If there is a stray whitespace or line break that sneaks in between
the enclosing label element and the meter element, then our status display no
longer works. The nextSibling then becomes a text element, and we can no lon-
ger reach the meter element in the for loop.

Next we want to program the progress display at the end of the form. You prob-
ably guessed that it is a progress element; More interesting is how we can el-
egantly express updating this element in JavaScript. First, here is the HTML code
for the element:

<label>Progress:
 <progress id=formProgress value=0
 tabindex=-1></progress></label>

We assign to the progress element an id, a starting value of 0 (value), and a nega-
tive tabindex, which means that the element is never accessed with the Tab key.
The JavaScript function updateProgress() updates the progress element:

function updateProgress() {
 var req = document.querySelectorAll(":required");
 count = 0;
 for(var i=0; i<req.length; i++) {
 if (req[i].value != '') {
 count++;
 }
 }
 var pb = document.getElementById("formProgress");
 pb.max = req.length;
 pb.value = count;
}

Because the progress bar is only supposed to refer to the elements that are ab-
solutely required, we pass the character string :required to the function query-
SelectorAll(). The result is a NodeList containing only elements that have the
required attribute. A loop is then run over these elements, checking whether the

Chapter 3—Intelligent Forms 68

value attribute matches a nonempty character string. If this condition applies
(in other words, a value has already been entered), the counter variable count is
increased by one value. To finish, the maximum value of the progress element is
set to the number of all required fields and the value to the number of the non-
empty elements.

Two buttons are available for submitting the form: Save and Submit. We have
already discussed the save function in section 3.4.5, Or Perhaps Better to Not
Validate? “formnovalidate”; new in this context is the attribute accesskey:

<p><input accesskey=T type=submit formnovalidate
 value="Save [S]" name=save id=save>
<input accesskey=T type=submit name=submit id=submit
 value="Submit [T]">

Keyboard shortcuts are not new in HTML5, but they have not been used much
so far. One problem with keyboard shortcuts is that they are activated by differ-
ent key combinations on different platforms, so you never quite know which key
you are supposed to press for a particular shortcut. The HTML5 specification
has a suggestion to solve this: The value of the accessKeyLabel should return a
character string that corresponds to the correct value on the platform you are
using. You could then use this value in the button’s label or in its title attribute.
Unfortunately, at the time of this writing, not a single browser was capable of
outputting this character string.

Summary

The information we supply in this chapter explains many of the new options
provided in HTML5 for forms. Better times are ahead for web developers, be-
cause they will no longer need to grapple with JavaScript libraries for common
input elements, such as date and time. In particular, the new form functions will
be of great help when working with mobile devices where text input is usually
much more difficult than on the computer. Form validation in the browser will
also contribute significantly to making the code more transparent and therefore
more manageable. But do not forget that client-side validation does not make
the server application more secure; potential attackers can easily circumvent
these checks.

If this chapter has whet your appetite and you want to try out your freshly ac-
quired knowledge of forms on your own website, go right ahead. The syntax of
the new elements and attributes is built in such a way that even older browsers
will not produce errors. Users of such browsers will not be able to enjoy the full
benefit of the new input elements, but text input is always possible.

4
Video and
Audio

The introduction of YouTube was a quantum leap for displaying videos online.
Before the video platform came along, it was practically impossible for computer
novices to make a video file available to others via the Internet: The files were
usually too big to send via e-mail, and if they did arrive, the likelihood was great
that they could not be played on the recipient’s computer.

YouTube on the other hand offers online storage, allowing you to save the video
files. It also converts the different video formats, so they can be played with the
Adobe Flash Player.

Adobe supports Flash on many operating systems, offering plug-ins for all com-
mon browsers. Browser plug-ins are generally a great idea, but the communica-
tion between plug-in and browser can sometimes be difficult if not impossible.
Also, closed-source plug-ins, such as the Adobe Flash Player, are not very popular

69

Chapter 4—Video and Audio 70

with the browser manufacturers, because they make it much harder to find the
error in case of a crash.

HTML5 wanted to remedy this situation. The necessary new HTML element was
easily found: video. But that was not enough to solve the problem.

4.1 A First Example

We will give you a short example to demonstrate how easy the new HTML5 video
element is to use:

<!DOCTYPE html>
 <title>Simple Video</title>
 <video controls autoplay>
 <source src='videos/mvi_2170.webm' type='video/webm'>
 <source src='videos/mvi_2170.ogv' type='video/ogg'>
 Sorry, your browser is unable to play this video.
 </video>

You can play a video in the browser with remarkably little effort. In Figure 4.1 you
can see the result in Mozilla Firefox. The HTML syntax is almost self-explanatory,
but we will investigate it in more detail in the next section.

Figure 4.1  A video in WebM format in Mozilla Firefox

4.2 The “video” Element and Its Attributes 71

4.2 The “video” Element and Its Attributes

In the preceding example, two attributes are assigned to the video element: con-
trols and autoplay. The attribute controls tells the browser to display control
elements for the video (see Figure 4.1), and autoplay tells the browser to start
playing the video as soon as this is possible.

Like the canvas element (see Chapter 5, Canvas), the video element belongs to
the category embedded content; in other words it is one of the contents that is
not directly connected to HTML. Within the embedded content, you can include
an alternative solution (fallback) in case the browser does not support the video
element. If this happens in our example in section 4.1, A First Example, the text
Sorry, your browser is unable to play this video appears. Additionally, you could
display a still image from the video. But let’s look at the possible attributes of the
video element in more detail (see Table 4.1).

Table 4.1  Attributes of the “video” element

Attribute Value Information

src url The URL for the video to be played. This attribute
is optional and can be replaced with one or more
source elements, as in our example.

poster url The URL for a picture that the browser displays while
the video is loading.

preload none The browser is not supposed to try loading the video
before the Play button is clicked. This saves band-
width.

preload metadata Only the metadata for the video is loaded (for exam-
ple, length of video, author, copyright).

preload auto In this case the entire video is loaded even before the
user clicks the Play button.

autoplay boolean The browser begins playing the video as soon as
enough data has been received.

controls boolean Displays simple control elements for the video. This
does not determine what these elements should look
like; that is mostly up to the browser manufacturers.
The specification suggests several elements, such as
controls for playback and pausing the video, setting
the volume, an option to skip to another point in the
video (provided the content supports it), switching to
full screen, and possible buttons for subtitles.

loop boolean Tells the browser to repeat playback after reaching
the end of the video.

Chapter 4—Video and Audio 72

Table 4.1  Attributes of the “video” element (Contd.)

Attribute Value Information

width in CSS pixels Width of video display

height in CSS pixels Height of video display

audio muted Causes the user agent to override the user’s prefer-
ences, if any, and always defaults the video to muted.

If the video element does not have a src attribute, the browser processes one or
more of the source elements contained within the video element. The attributes
src, type, and media are intended for this purpose (see Table 4.2). In turn, if there
is a source element, you must not specify a src attribute for video.

Table 4.2  Attributes of the ”source” element

Attribute Value Information

src url The URL for the video to be played

type mime-type MIME type of the video. You can add a specifi-
cation of the audio and video codec, for exam-
ple, type='video/webm; codecs="vorbis,vp8"'.
If there are several source elements, the brows-
er uses this attribute (among others) to decide
which video is displayed.

media CSS Media Query The output medium for which the video is
intended

The browser uses two criteria to decide which of the existing source elements will
be displayed: the video’s MIME type and, if present, the media attribute in which
you can specify additional limitations in the form of a CSS media query.

For CSS3, media queries were significantly expanded, so you can now have more
complex instructions in addition to familiar keywords like print, screen, hand-
held, or projection. Here is an example:

media="screen and (min-width: 800px)"

This is where it gets interesting for video output, because depending on the brows-
er size, the video can then be offered at different resolutions. Thanks to this trick,
even mobile devices with smaller display screens and slower Internet connections

4.3 Video Codecs 73

can manage perfectly. A complete example for displaying a video in reduced size
based on media queries looks like this:

<!DOCTYPE html>
 <title>Simple Video</title>
 <video controls autoplay>
 <source src='videos/mvi_2170.webm' type='video/webm'
 media="screen and (min-width: 500px)" >
 <source src='videos/mvi_2170_qvga.webm'
 type='video/webm' media="screen" >
 Sorry, your browser is unable to play this video.
 </video>

Browsers with less than 500 pixels in width for displaying the video will auto-
matically display the smaller video format mvi_2170_qvga.webm.

The  specification of CSS3 Media Queries  is  currently  in  the Editors Draft stage. 
Some details are therefore likely to change. You can look up the current stage of the 
specification on the W3C website at http://dev.w3.org/csswg/css3-mediaqueries.

The second criterion for determining which video will be displayed is the MIME
type. The optional addition of the codecs used lets the browser recognize, even
before loading, whether the video can be decoded. But what are these codecs
about? The following section attempts to shed light on the codec jungle.

4.3 Video Codecs

Modern video formats use a container file where audio and video contents can
be saved separately. This flexible approach has several advantages. For example,
several audio tracks can be saved in one file, allowing the user to switch between
languages (as you would on a video DVD). Figure 4.2 shows the schematic rep-
resentation of a video container file. The way in which audio and video are com-
pressed within this container file is referred to as codec.

NOTE

http://dev.w3.org/csswg/css3-mediaqueries

Chapter 4—Video and Audio 74

Figure 4.2  Schematic representation of a video container format

One bone of contention during the creation of the HTML5 specification was the
definition of allowed audio and video codecs. These debates were caused on one
hand by commercial interests of companies holding patents for certain coding
processes and on the other by the desire to choose a capable and high-quality
format. More precisely, the camp was divided into a group that supported the
patent-protected video codec H.264 and another group (led by the Mozilla team)
calling for the open-source format Ogg Theora. When Ian Hickson realized that
this conflict could endanger the important video element, he decided to take
the definition of the format out of the specification. It is now up to the browser
manufacturers to decide which formats they support and for which formats they
are willing to pay license fees.

Although Mozilla fought vehemently to avoid repeating the same mistake that
was made in the case of the image format GIF for which CompuServe later de-
manded license fees, H.264 seemed to be the favorite in the race for the new,
online video format. But Google did not want to passively await the misery of
potential patent infringements and decided to take care of the problem. By pur-
chasing the video specialist On2 Technologies, which had already developed im-
portant video formats, Google came to own the as yet unpublished codec VP8.
During the Google developer conference, Google-IO 2010, the software giant fi-
nally let the cat out of the bag: The new project WebM, based on the video codec
VP8 and the audio format Ogg Vorbis, was published as an open-source project
on the Internet at http://www.webmproject.org, and was soon after implement-
ed in Firefox and Opera.

In early 2011, Google even went one step further, announcing that support for
the H.264 codec would be removed from future versions of its Chrome browser.
The justification for this surprising step was that Google wants to enable open

http://www.webmproject.org

4.3 Video Codecs 75

innovation, believing that the core techniques of the World Wide Web need to be
based on open standards, which H.264 is not.

After this brief history we will now explain a little more about the individual for-
mats. Don’t worry; we will not discuss the technical details of video compression
at great length. We will just introduce the common formats for the Internet.

4.3.1  Ogg: Theora and Vorbis
When the Fraunhofer society began to demand license fees for the popular MP3
format at the end of the last millennium, the Xiph.Org Foundation developed the
free audio codec Vorbis. Based on the video codec VP3.2, which was released in
2002 (developed by the aforementioned company On2), Xiph also created the
video format Theora. Video and audio are combined in a container format, Ogg,
and the container can contain one or more audio and video tracks. The MIME
type for Ogg video files is video/ogg, and the corresponding filename extension
is .ogv. (The file extension .ogg also works, but according to Xiph.org, we should
avoid it and instead use the more explicit file extension .ogv for Ogg video and
.oga for Ogg audio.)

Do not confuse the Ogg Media container format (file extension .ogm) with the Ogg
container discussed here. The Ogg Media (OGM) container is an extension that
supports a large number of additional video codecs. Initially, this sounds very
useful, but it does lead to some problems: Xiph insists that Ogg should be men-
tioned only in the context of free formats, but this is not the case with Ogg Media,
which can also use patented formats.

4.3.2  MPEG-4: H.264 and AAC
The MPEG-4 (MP4) container is a derivation of the multimedia format Quick-
Time commonly used in Apple operating systems. Like the Ogg container, MP4
can have audio and video tracks; it even goes one step further and can embed
images and text. The most common codecs in MP4 are the patented video codec
H.264 and the audio codec Advanced Audio Coding (AAC). The file extension is
.mp4, and common media types are video/mp4, audio/mp4, and application/mp4.

Apple  created  some  confusion  when  files  with  the  extension  .m4a  started  to 
appear on iPods and other Apple devices. These are MP4 files, but Apple wanted 
the file extension to indicate that it is a pure audio file. Other file extensions used 
are .m4b for audio books and .m4r for iPhone ringtones. 

NOTE

Chapter 4—Video and Audio 76

It was mostly the huge success of Apple’s mobile devices (iPod, iPhone, iPad)
that contributed to the rapid spreading of the MP4 file format. To achieve an
acceptable performance when playing back videos on devices with weak pro-
cessors (such as cell phones), the computer-intensive process is transferred to a
separate chip. This hardware acceleration saves energy and prolongs battery life.

The patent problem regarding the H.264 codec should not be under-
estimated. The type of encoding is patent protected until at least 2028—a veri-
table sword of Damocles hanging over the software manufacturers who could be
required at any time to pay fees for the encoding process.

4.3.3  WebM: VP8 and Vorbis
As mentioned at the beginning of this section, Google caused some excitement
and euphoria by founding the WebM project. The video codec VP8 received very
good feedback in general, and the audio codec Vorbis had already proven suc-
cessful. Google decided to use the open-source format Matroska as a container,
which was already tried and tested as well. But although the Matroska format
supports a number of different codecs, the WebM container only allows for the
video codec VP8 and the audio codec Vorbis.

The standard file extension for WebM videos is .webm, and the corresponding
MIME type is video/webm.

Immediately after Google’s announcement, the browser manufacturers of Mozil-
la Firefox, Opera, and even Microsoft for Internet Explorer announced that they
would support the WebM format. It goes without saying that Google’s browser
Chrome offers support for WebM, so there is only one browser without support
for the new codec (at least at the time of this writing): Apple’s Safari.

4.4 Tools for Video Conversion

Because most peoples’ digital cameras usually do not produce videos in WebM
or Ogg format, the next section introduces different tools for converting videos.
They are all open-source products that run on Windows, Mac OS, and Linux,
except for the Miro Video Converter.

4.4.1  FFmpeg
FFmpeg is sometimes referred to as the Swiss army knife of video conversion.
And rightly so, because the list of audio and video formats that FFmpeg can read
and write is remarkably long. It can also split multimedia files into their compo-
nents; for example, it can strip out only the audio track of a film and then convert

4.4 Tools for Video Conversion 77

it. If you are thinking of adding converted YouTube videos to your MP3 collec-
tion, be warned: The quality of the audio track on YouTube is usually rather dis-
appointing.

Because the developers of FFmpeg did not bother with such trivialities as the
programming of a graphic user interface, the user is expected to be none too shy
about using the command line. If you do not change the FFmpeg default set-
tings, you only need the following function call to convert an existing Flash Video
(FLV) to the WebM format:

$> ffmpeg -i myflashvideo.flv myflashvideo.webm

FFmpeg is also excellent for finding out the format of a video:

$> ffmpeg -i myflashvideo.flv
 ...
 Input #0, flv, from '/tmp/myflashvideo.flv':
 Duration: 00:05:12.19, start: 24.8450, bitrate: 716 kb/s
 Stream #0.0: Video: h264, yuv420p, 480x360 [PAR 1:1
 DAR 4:3], 601 kb/s, 25 tbr, 1k tbn, 49.99 tbc
 Stream #0.1: Audio: aac, 44100 Hz, stereo, s16,
 115 kb/s

In this example, we are dealing with an approximately five-minute long video in
a Flash container in which the video track is saved using the H.264 codec, and the
audio track is in AAC.

Since version 0.6, FFmpeg has supported WebM videos. But the developers were
not satisfied with using the libvpx library available through Google: They reim-
plemented VP8 based on the existing FFmpeg code, hoping to achieve consider-
ably better performance in converting videos.

A significant part of the FFmpeg project is the libavcodec library where support-
ed audio and video formats are saved. Players like vlc, mplayer, or xine use this
library to play or re-encode videos.

The  list  of  parameters  for  FFmpeg  is  practically  endless  and  cannot  be 
reproduced in detail within the scope of this book. If you are interested in finding 
out more, please refer to the excellent FFmpeg Documentation available online 
at http://www.ffmpeg.org/ffmpeg-doc.html.

Table 4.3 shows some important parameters for encoding with FFmpeg.

NOTE

http://www.ffmpeg.org/ffmpeg-doc.html

Chapter 4—Video and Audio 78

Table 4.3  Some important FFmpeg parameters

Parameter Effect

-h Help for all parameters (very long list)

-formats List of all supported file formats

-codecs List of all supported audio and video codecs

-i file Sets file as input file / stream

-f fmt Sets fmt as output format (for example, webm, ogg, or mp4)

-ss start Searches the input medium up to the point start (in seconds)

-t duration Records for duration seconds

-b bitrate Video quality (bitrate, default: 200 kilobits/s)

-r fps Frames per second (default: 25)

-s widthxheight Video size (in pixels, specified in width times height, or spec-
ifications such as vga)

-ab bitrate Audio quality (bitrate, default: 64 kilobits/s)

Thanks to the option of letting FFmpeg work without user interaction, it is par-
ticularly suitable for automatic video conversion.

4.4.2  VLC
For many years, the VideoLan project has been developing the popular media
player VLC, available for various operating systems (Windows, Mac OS, Linux,
and other UNIX variations) with a simple graphic interface. The media player
uses, among others, the libavcodec library of the FFmpeg project and therefore
also supports the WebM format.

VLC does not just play videos of different formats and sources; you also have the
option to convert multimedia content via the menu item Convert / Save. As you
can see in Figure 4.3, you can use predefined profiles for converting to common
formats—a very useful feature.

4.4 Tools for Video Conversion 79

Figure 4.3  Dialog for converting videos in VLC

If you want to set quality and size of the video more precisely, you can open an-
other dialog via Tools.

If you examine VLC more closely, you will discover further interesting functions.
For example, you have the option of capturing the screen as a video (screencast)
so you can record your current work or the option of streaming videos to the Net
via different protocols. Of course, FFmpeg can do that, too, but VLC even has a
GUI on top of that. You can download VLC at http://www.videolan.org for all
common platforms.

4.4.3  Firefogg
If you are not completely comfortable using the command line and you do not
want to install VLC, you can use the Firefox extension Firefogg. After installation,
you can go to http://firefogg.org/make to easily select a video on your computer
and convert it to the Ogg or WebM video format. Firefogg.org only offers the GUI
buttons in this case; the conversion takes place on the local computer. An adapt-
ed version of FFmpeg, downloaded during the Firefogg installation, is working in
the background.

In the menu item Preset you will find defaults for Ogg and WebM video in high
and low quality (see Figure 4.4). You can also conveniently set metadata, such as
title, author, recording date, and copyright, via the user interface.

http://www.videolan.org
http://firefogg.org/make

Chapter 4—Video and Audio 80

Figure 4.4  Settings for video conversion in Firefogg

But Firefogg is more than just a graphic interface for FFmpeg. The extension
comes with a JavaScript library, which makes it very easy for web developers to
implement video uploads for users. The advantage is obvious: Instead of upload-
ing a video format in low compression and then converting it on the server, the
conversion takes place on the client side before the upload. This saves band-
width and computing power on the web server’s side. Wikipedia is also betting
on this concept, so we can hope that the development of Firefogg will continue.

The website http://firefogg.org/dev/chunk_post_example.html shows  in a  few 
lines of source code how the Firefogg JavaScript library works. Firefogg divides 
the upload into 1MB chunks, which means that if the Internet connection fails, 
you do not need to upload the entire video again. 

NOTE

http://firefogg.org/dev/chunk_post_example.html

4.4 Tools for Video Conversion 81

4.4.4  Miro Video Converter
The Miro Video Converter was developed as an offshoot of the Miro Media Player
(http://www.getmiro.com), an innovative open-source audio and video player
available for all common operating systems. The Miro Video Converter is only
available for Windows and Mac OS. Figure 4.5 shows the simple user interface,
which offers selection not only by video codec but also by device (iPad, iPhone,
PlayStation, and Android phones).

Figure 4.5  Video conversion with Miro Video Converter

Load the video file via drag and drop, and FFmpeg starts the conversion. If FFm-
peg should fail for any reason (which can occasionally happen), the FFmpeg
Output button can help: Apart from the exact commands, it also shows all con-
version status messages (see Figure 4.6). A quick Google search for the relevant
error message will usually help you.

http://www.getmiro.com

Chapter 4—Video and Audio 82

Figure 4.6  Troubleshooting during conversion with Miro

4.5 Which Format for Which Browser?

If you want to make videos available online for as many different browsers as
possible, you will currently have to resort to a fallback solution for the video ele-
ment. As shown in Table 4.4, there is no single video format at the moment that
can be displayed by all common browsers. For the correlation of browser ver-
sions and release dates, please refer to the end of the Introduction chapter or
look at the timeline shown on the website at

http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en

http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en

4.6 Interim Solutions for Older Browsers 83

Table 4.4  Codec support in current browsers

Codec Firefox Opera Chrome Safari IE iOS* Android

OGG 3.5 10.50 3.0

MP4 3.0 3.0 2.0

WebM 4.0 10.60 6.0 9**

Flash Plug-In Plug-In Plug-In Plug-In Plug-In 2.2

* Apple’s operating system for mobile devices, such as iPhone, iPad, iPod (since June
2010 iOS, previously iPhone OS).
** According to Microsoft, the WebM codec must be installed in the operating system,
unlike with other browsers.

4.6 Interim Solutions for Older Browsers

Fortunately, not every web developer who wants to cater to different platforms
or browsers has to completely reinvent the wheel. There are several free libraries
online focusing on this problem. Currently, Kaltura’s JavaScript library mwEm-
bed has reached a very good stage of development. Wikipedia uses it to make
video and audio elements available for most platforms. The main focus of this
library is on the Ogg format. If you want to offer WebM and MP4 as well, use of
the html5media library is a good solution.

4.6.1  mwEmbed
The mwEmbed library gained wider recognition mainly through the integra-
tion in Wikipedia. Kaltura, the company behind mwEmbed, offers integration
not only for MediaWiki, the free encyclopedia’s wiki software, but also for ready-
made plug-ins for common CMS and blog software like Drupal or WordPress.

To ensure that even older browsers do not choke on the new HTML5 syntax, this
example adds the elements head and body:

<!DOCTYPE html>
<html>
 <head>
 <title>mwEmbed fallback</title>
 <script type="text/javascript"
 src="http://html5.kaltura.org/js" > </script>
 </head>
 <body>
 <h1>mwEmbed fallback</h1>
 <video controls autoplay>

Chapter 4—Video and Audio 84

 <source src='videos/mvi_2170.mp4' type='video/mp4'>
 <source src='videos/mvi_2170.webm' type='video/webm'>
 <source src='videos/mvi_2170.ogv' type='video/ogg'>
 Sorry, your browser is unable to play this video.
 </video>
 </body>
</html>

The JavaScript library mwEmbed is downloaded directly from the project web-
site (http://html5.kaltura.org/js) and then sorts out how the video can be played.
In any case, a small control bar appears at the bottom edge of the video. Fig-
ure 4.7 shows the reaction of Internet Explorer 8, which does not yet know the
HTML5 video element: To play the Ogg video, it loads the Java applet Cortado.

Figure 4.7  Internet Explorer 8 with Kaltura’s fallback library mwEmbed

If you are not happy with Java applets as replacements for native video in the
browser, you can use the html5media library instead.

http://html5.kaltura.org/js

4.6 Interim Solutions for Older Browsers 85

4.6.2  html5media
The JavaScript library html5media works even more reservedly than mwEmbed
and only takes action if the browser cannot play any of the specified video for-
mats. In that case, it loads the open-source Flash Video Player Flowplayer and
expects an MP4 (H.264) video as input. Unfortunately, the library contains a bug
in the current version, which means that older browsers return a JavaScript error
and output nothing if several source elements are specified:

<!DOCTYPE html>
<html>
 <head>
 <title>html5media fallback</title>
 <script type="text/javascript"
 src="libs/html5media.min.js" > </script>
 </head>
 <body>
 <h1>html5media fallback</h1>
 <video src="videos/mvi_2170.mp4" width=640 height=480
 controls>
 </video>
 </body>
</html>

In this case it is important to specify the width and height; otherwise, the Flow-
player will be displayed with a height of only a few pixels. Figure 4.8 provides an
example.

Figure 4.8  A video in Internet Explorer 8 playing on the free Flowplayer (Flash fallback)

Chapter 4—Video and Audio 86

4.7 Video and Scripting—A Simple Video Player

Not only can you display videos in the browser, you can also control them di-
rectly with JavaScript via the HTMLMediaElement interface. This section shows you
how this works. We will implement a simple JavaScript HTML5 video player with
the following features:

 z Start and stop the video

 z Display and set the playback position on a control bar

 z Fast forward and backward

 z Select specific scenes in the movie

 z Switch volume between high, low, and mute

A suitable video for our video player is easily found: Big Buck Bunny—a roughly
ten-minute long computer-animated cartoon, which is the result of a free film
project, as its URL http://bigbuckbunny.org indicates. The project was initiated
by the Blender Foundation. From October 2007 to April 2008, seven 3D anima-
tion specialists used free software, like Blender, Gimp, Inkscape, or Python, all
running on Ubuntu, to create this film and made it available online under an
open license. A summary of the action, based on the motto funny and furry, can
be found on Wikipedia at http://en.wikipedia.org/wiki/Big_Buck_Bunny. But
our main concern is the video player. Figure 4.9 shows what it will look like.

Figure 4.9  Screen shot of the JavaScript HTML5 video player

http://bigbuckbunny.org
http://en.wikipedia.org/wiki/Big_Buck_Bunny

4.7 Video and Scripting—A Simple Video Player 87

The  video  player’s  HTML  page  with  JavaScript  library  and  CSS  styles  can  be 
found on this book’s companion website at the following links: 

 z http://html5.komplett.cc/code/chap_video/js_videoPlayer_en.html

 z http://html5.komplett.cc/code/chap_video/js_videoPlayer.js

 z http://html5.komplett.cc/code/chap_video/js_videoPlayer.css

4.7.1  Integrating the Video
Most likely, you are already familiar with the HTML code for integrating video.
Apart from the two event handler attributes oncanplay and ontimeupdate, which
will play an important role later on, there is not much new here:

<video preload=metadata
 poster=videos/bbb_poster.jpg
 width=854 height=480
 oncanplay="initControls()"
 ontimeupdate="updateProgress()">
 <source src='videos/bbb_480p_stereo.ogv'
 type='video/ogg;codecs="theora, vorbis"'>
 <!-- further source elements as alternatives -->
 Sorry, your browser is unable to play this video.
</video>

With preload=metadata, we first load only so much of the film that the film du-
ration and at least the first frame are available. During loading, we display the
picture specified in the poster attribute and then the first frame, which, unfortu-
nately, is completely black in our case.

The width and height is specified for demo purposes to reenlarge the original
video—reduced from 854 x 480 to 428 x 240 after downloading—back to 854 x 480
pixels. Why? Well, the reduced version is 39MB and is easier to test than the origi-
nal video at 160MB. Also, explicitly specifying the attributes width and height can
help explain 80% of the short HTMLVideoElement interface. This interface consists
of only four attributes for the video dimensions; an attribute for the poster frame’s
URL, if there is one; and the audio attribute that reflects whether the audio track
is muted or not.

Provided that the variable video contains a reference to our video element, we
have the following attribute values:

 z video.width = 854 (specified width)

 z video.height = 480 (specified height)

NOTE

http://html5.komplett.cc/code/chap_video/js_videoPlayer_en.html
http://html5.komplett.cc/code/chap_video/js_videoPlayer.js
http://html5.komplett.cc/code/chap_video/js_videoPlayer.css

Chapter 4—Video and Audio 88

 z video.videoWidth = 428 (original width)

 z video.videoHeight = 240 (original height)

 z video.poster = URL for bbb_poster.jpg (poster frame)

These few attributes are of course not enough to implement our video player.
And indeed they are only additional elements of the HTMLVideoElement, which
also represents an HTMLMediaElement—the object that contains all the neces-
sary methods and attributes. If you are curious, you can look it up in the speci-
fication at http://www.w3.org/TR/html5/video.html#htmlmediaelement.

The real work starts with oncanplay, because it refers to the JavaScript function
to be executed as soon as the browser can play the video. In our example this
function is initControls() where a reference to the video is created and saved
in the global variable video. In the course of implementing our video player, we
will have to add entries to initControls() a few more times, but for now we only
need the following code:

var video;
var initControls = function() {
 video = document.querySelector("VIDEO");
};

The method document.querySelector() is part of the CSS Selectors API. In the vid-
eo variable it provides a reference to the first video element in the document. This
gives us access to the HTMLMediaElement interface, and we can now start imple-
menting our first feature—starting and stopping playback.

4.7.2  Starting and Stopping the Video
To start and stop playback, we first need a button in the HTML document that
can react to a user clicking it:

<input type=button
 value="▶"
 onclick="playPause(this);">
 id="playButton"

▶ is a character reference to the Unicode symbol BLACK RIGHT-POINT-
ING TRIANGLE, which we can conveniently use as Play button. The function of
starting and stopping playback is contained in playPause(), a callback function
called with every click, which gets passed the button object in the argument this:

http://www.w3.org/TR/html5/video.html#htmlmediaelement

4.7 Video and Scripting—A Simple Video Player 89

var playPause = function(ctrl) {
 if (video.paused) {
 video.play();
 ctrl.value = String.fromCharCode('0x25AE','0x25AE');
 }
 else {
 video.pause();
 ctrl.value = String.fromCharCode('0x25B6');
 }
};

The attribute video.paused tells us if the film is playing or not. It returns true
if the film is paused and false if it is playing. This makes starting and stopping
playback easy. video.start() and video.pause() are the suitable methods that
in turn set video.paused to false or true accordingly.

The button object passed in the argument ctrl is used to change the button to a
Pause or Play button via ctrl.value, depending on the current state. If we were
to assign ▶ directly, this would not have the desired result; instead, the
character string ▶ would be displayed literally as text written on the but-
ton. The correct method of creating Unicode symbols in JavaScript is via String.
fromCharCode(). To this, we pass the desired UTF 16 hexadecimal codes as
strings, separated by commas. Incidentally, the label text on the Pause button is
made up of two BLACK VERTICAL RECTANGLE symbols (▮).

We will need the playButton ID again later on.

4.7.3  Displaying and Setting the Playback Position
To display the current playback position, we use the new input type range, previ-
ously mentioned in Chapter 3, Intelligent Forms:

<input type="range"
 min=0 max=1 step=1 value=0
 onchange="updateProgress(this)"
 id="currentPosition">

The attributes min and max set the permitted value range, and step determines
the interval by which the value will be changed when the user drags the slider.
Applied to our video, min specifies the start and max the end of our film, which
means that we have to set the value max to the total length of the video in seconds.
The right place to do this is initControls(), the right attribute to do it with is
video.duration. So we add the following lines to our initControls() function:

Chapter 4—Video and Audio 90

 curPos = document.getElementById("currentPosition");
 curPos.max = video.duration;

This now gives max the value 596.468017578125, which means the video is about
ten-minutes long. Setting the playback position directly is done in the onchange
event handler callback updateProgress()when the slider is dragged or clicked:

var updateProgress = function(ctrl) {
 video.currentTime = ctrl.value;
};

A single instruction is sufficient here; the attribute video.currentTime not only
reflects the current playback position, but can also be set directly. We get the
suitable value from the slider’s value attribute. To implement the display of the
current playback position in the format MM:SS, we still need the following steps:

1. Add a span element in connection with the slider:

2. Save a reference to the span in the initControls() function and initialize
this variable curTime with the value 0:00:
 curTime = document.getElementById("timePlayed");
 curTime.innerHTML = '0:00';

3. Update the timestamp curTime at each call of updateProgress():
 mm = Math.floor(video.currentTime / 60.0);
 ss = parseInt(video.currentTime) % 60;
 ss = (ss < 10) ? '0'+ss : ss;
 curTime.innerHTML = mm+':'+ss;

We are nearly finished. Only one essential slider feature is still missing: While the
video is playing, it has to stay synchronized with the running time. The solution
lies in the HTML code for integrating the video: ontimeupdate. The specification
states that a timeupdate event should be triggered at intervals of at least 15 and
up to 250 milliseconds during media stream playback. The event handler attri-
bute ontimeupdate determines which callback function is called. If we set it to
updateProgress(), we have found the perfect timer for synchronizing our slider.

Compared to setting the position manually by clicking or dragging the slider, we
now must not change the playback position but instead set the slider and the
time display to the value of video.currentTime. The slightly adapted and thus
final version of our updateProgress() function is shown in Listing 4.1:

4.7 Video and Scripting—A Simple Video Player 91

Listing 4.1  Change and update playback position

var updateProgress = function(ctrl) {
 if (ctrl) {
 video.currentTime = ctrl.value;
 }
 else {
 curPos.value = video.currentTime;
 }
 // Setting the time in format MM:SS
 mm = Math.floor(video.currentTime / 60.0);
 ss = parseInt(video.currentTime) % 60;
 ss = (ss < 10) ? '0'+ss : ss;
 curTime.innerHTML = mm+’:’+ss;
};

The purpose of the if/else block is to find out if updateProgress() was called
with the slider or with ontimeupdate. In the former case, the passed slider object
is assigned to ctrl, and we need to set the playback position to the slider value.
In the latter case, a timeupdate event is present, and we need to set the slider to
the current playback time in the variable curPos.

Now that the playback and controlling the playback position are sorted out, you
have some time to sit back and relax. Take ten minutes off and go explore Big
Buck Bunny with your very own, homemade, and almost finished video player!

4.7.4  Fast Forward and Backward
For these two features, we first need buttons in the HTML document. Their la-
bels will again be Unicode symbols, this time guillemets—angle quotation marks.
The Unicode name describes what they look like: LEFT-POINTING DOUBLE AN-
GLE QUOTATION MARK («) and RIGHT-POINTING DOUBLE ANGLE QUO-
TATION MARK (»). Two event listener attributes start and stop the quick
search, which starts onmousedown and ends onmouseup:

<input type="button"
 value="«"
 onmousedown="fastFwdBwd(-1)"
 onmouseup="fastFwdBwd()">
 <input type="button"
 value="»"
 onmousedown="fastFwdBwd(1)"
 onmouseup="fastFwdBwd()">

Chapter 4—Video and Audio 92

The JavaScript callback fastFwdBwb() is rather short and looks like this:

var fastFwdBwd = function(direct) {
 _pause();
 _play();
 if (direct) {
 video.playbackRate = 5.0 * direct;
 }
};

Two attributes play an important role in speeding up a video. One of them we
can see in our callback function with video.playbackRate. It represents the cur-
rent playback rate. The second one is video.defaultPlaybackRate, a default value
that determines the film’s normal speed as 1.0. For faster playback, we need to
change the playback rate; for example, 2.0 would mean twice as fast, 4.0 would
be four times as fast, and so on. The number and where applicable the minus
sign determines the direction of playback—positive values fast forward, negative
ones rewind.

According to the definition in the specification, the attribute video.playbackRate
must be set to the value of video.defaultPlaybackRate each time video.play() is
called. So as long as we do not crank up the defaultPlaybackRate, we can be sure
that the original speed applies at each restart. To increase the speed, we therefore
only need to change the video.playbackRate.

This makes the implementation of fastFwdBwd() very easy: The video is first
stopped briefly. Then it is played again, and if 1 or -1 is assigned to the variable
direct, the video.playbackRate is set accordingly and the speed is increased.

The functions _pause() and _play() contain code blocks for starting and stopping
the video, previously found in the callback playPause(). With these functions, we
can now not only control playback and pausing by clicking the Play button, but
also directly via the script. To detach the functionality from the Play button, we
need to define a reference to the button in initControl() via getElementById()
and make it available as variable pButton. The split version of playPause() is
shown in Listing 4.2:

Listing 4.2  Starting and stopping the video

var _play = function() {
 video.play();
 pButton.value = String.fromCharCode('0x25AE','0x25AE');
};
var _pause = function() {
 video.pause();
 pButton.value = String.fromCharCode('0x25B6');
};

4.7 Video and Scripting—A Simple Video Player 93

var playPause = function() {
 if (video.paused) {
 _play();
 }
 else {
 _pause();
 }
};

4.7.5  Selecting Specific Scenes in the Film
To select individual scenes, we first need a list with timestamps and titles. A pull-
down menu provides the basis:

<select name="scenes" onchange="selectScene(this)" size=19>
 <option value="0:00" selected>0:00 Opening scene</option>
 <option value="0:23">0:23 Title sequence</option>
 <!-- 17 other entries -->
</select>

The rest is simple and taken care of by the callback selectScene(). We pass it the
selected entry as the argument. Then we convert its timestamp to seconds and
set video.currentTime to the resulting value. The method _play() serves us well
once again and starts playing the video at the desired point:

var selectScene = function(ctrl) {
 arr = ctrl.value.split(":");
 video.currentTime = parseFloat((arr[0]*60)+(arr[1]*1));
 updateProgress();
 _play();
};

4.7.6  Set Volume to High, Low, or Mute
All that’s left is the volume control. Let’s start with a simple exercise—on/off.
Once more, we need a button in the HTML code with a label formed from a Uni-
code symbol, this time BEAMED EIGHTH NOTES (♫):

<input type="button"
 value="♫"
 onclick="mute(this)">

Chapter 4—Video and Audio 94

The mute() function uses the read/write attribute video.muted to switch to mute
or loud, depending on the initial setting. To give the user optical feedback, the
button label is displayed in the CSS color silver when the tone is muted and in
black when the volume is switched on:

var mute = function(ctrl) {
 if (video.muted) {
 video.muted = false;
 ctrl.style.color = 'black';
 }
 else {
 video.muted = true;
 ctrl.style.color = 'silver';
 }
};

Setting the volume is not complicated, either. In addition to the slider as input
type range, we also need to control the label in a span. The basic HTML structure
then looks like this:

<input type="range"
 min=0.0 max=1.0 step=0.1 value=1.0
 onchange="adjustVolume(this)"/>

We define a reference to the span element in initControls(), as before, and use
video.volume to initialize the volume with 100 %:

 curVol = document.getElementById("currentVolume");
 curVol.innerHTML = "100 %";
 video.volume = 1;

The callback function adjustVolume() reacts if the slider is changed. The slider
reflects with min=0 and max=1 the exact value range of video.volume and changes
the volume via step=0.1 in 10% steps if the slider is dragged:

var adjustVolume = function(ctrl) {
 video.volume = ctrl.value;
 curVol.innerHTML = (Math.round(ctrl.value*100))+'%';
};

Our video player is now complete. This practical example has given you the
chance to explore about half of the attributes and methods of the HTMLMediaEle-
ment interface. A few interesting attributes and methods are still missing; we will
look at those next.

4.7 Video and Scripting—A Simple Video Player 95

4.7.8  Other Attributes and Methods of the “HTMLMediaElement” 
Interface
All media elements (including not only video, but also audio) have five attributes
in common, which are shown in the HTMLMediaElement interface. Apart from src
as source of the media stream, there are the boolean attributes autoplay, loop,
and controls, plus preload with its three values none, metadata, and auto. The
code for dynamically creating a video could then look like this:

var video = document.createElement("VIDEO");
video.src = 'videos/bbb_240p_stereo.ogv';
video.autoplay = false;
video.loop = true;
video.controls = true;
video.preload = 'metadata';

But this video is not loaded yet. The loading process only starts with the next
method of the HTMLMediaElement interface, video.load(). To be able to see the
video in the browser, we need to append it to the DOM tree. So we add two lines
to our listing:

video.load();
document.documentElement.appendChild(video);

The dynamic counterpart of the oncanplay attribute of our video player’s video
element is an event listener with event type, callback function, and a flag that
determines if the event should become active in the capture phase or not. Con-
fused? Just use false for the third argument, which activates the event listener
in the bubbling phase instead. If you want to know the details of how the event
order works, look online at http://www.quirksmode.org/js/events_order.html.
Our event listener listens for the event canplay and then immediately starts play-
ing the film:

video.addEventListener("canplay", function() {
 video.play();
}, false);

The HTML version of our brief code example can of course be found online at 
http://html5.komplett.cc/code/chap_video/js_dynamicVideo_en.html.

NOTE

http://www.quirksmode.org/js/events_order.html
http://html5.komplett.cc/code/chap_video/js_dynamicVideo_en.html

Chapter 4—Video and Audio 96

As simple as this example may seem, the processes during loading a media
stream are actually rather complicated. The specification distinguishes between
network state and ready state, devoting two readonly attributes to these two
states in the HTMLMediaElement interface, with several constants for describing
the relevant state.

The attribute networkState is for monitoring the network state. It can be queried
at any time and returns the possible values listed in Table 4.5.

Table 4.5  Constants of the “networkState” attribute

Value Constant Description

0 NETWORK_EMPTY The video/audio has not yet been initialized.

1 NETWORK_IDLE The video/audio source is selected but is not cur-
rently being loaded.

2 NETWORK_LOADING The browser is actively loading the video/audio.

3 NETWORK_NO_SOURCE No suitable source for the video/audio can be
found.

When selecting a suitable source, you need to remember that there are two op-
tions for doing this: either via the src attribute of the relevant element or via sev-
eral source elements from which the browser can choose the most suitable one.
If we are working with several source elements for a video, the question arises as
to how we know which of the offered elements was in fact chosen by the browser.
The answer is in the readonly attribute video.currentSrc. In the screen shot of the
video player, you can see it at the bottom left before the copyright.

Actively asking if media types are supported by the relevant browser or not
can be done not only by the browser when selecting the suitable source ele-
ment, but also by the programmer with a script. The method we use for this is
canPlayType(type) and requires a corresponding media type as an argument.
The answer is probably if the browser is fairly sure that it can play the format,
maybe if the browser is rather skeptical, or '' as an empty character chain if it can
definitely not deal with it.

See  for  yourself what  selection of  common  types canPlayType(type)  returns 
for your browser at http://html5.komplett.cc/code/chap_video/js_canPlayType.
html.

NOTE

http://html5.komplett.cc/code/chap_video/js_canPlayType.html
http://html5.komplett.cc/code/chap_video/js_canPlayType.html

4.7 Video and Scripting—A Simple Video Player 97

The attribute readyState describes which state a media element is currently in. It
has the possible values listed in Table 4.6.

Table 4.6  Constants of the “readyState” attribute

Value Constant Description

0 HAVE_NOTHING No data is available on the current playback
position.

1 HAVE_METADATA Metadata, such as length and dimension, are pres-
ent, but no data can be played yet.

2 HAVE_CURRENT_DATA Data for the current position is available but is not
really enough to begin playback.

3 HAVE_FUTURE_DATA Sufficient data for current and future playback po-
sitions is available to start playback.

4 HAVE_ENOUGH_DATA The browser is sure that it can keep playing the
media stream without interruption if the network
state remains the same.

If anything should really go wrong during loading or playback, an error event is
fired, narrowing down the relevant error in its code attribute:

video.addEventListener("error", function(e) {
 alert(e.code);
}, false);

This callback function therefore returns one of the possible values shown in Ta-
ble 4.7 in e.code.

Table 4.7  Constants in the “code” attribute of the “MediaError” interface

Value Constant Description

1 MEDIA_ERR_ABORTED Loading was aborted by the user.

2 MEDIA_ERR_NETWORK A network error has occurred.

3 MEDIA_ERR_DECODE An error occurred while decoding the
media stream.

4 MEDIA_ERR_SRC_NOT_SUPPORTED The media format is not supported.

Chapter 4—Video and Audio 98

We have nearly reached the end of our journey through the HTMLMediaElement inter-
face. The remaining attributes are:

 z Two boolean attributes for displaying if the browser is currently searching
for other data (seeking) or if the end of the stream has been reached
(ended)

 z An attribute for giving information on the start time of the stream
(initialTime)

 z An attribute that represents the current timeline offset as a Date object
(startOffsetTime)

 z Three attributes for implementing the TimeRanges interface—buffered,
played, and seekable.

The basic idea of TimeRanges is, as its name indicates, recording periods of time:

interface TimeRanges {
 readonly attribute unsigned long length;
 float start(in unsigned long index);
 float end(in unsigned long index);
 };

Using the example of played helps you understand how this works: If we are play-
ing the intro of the Big Buck Bunny video and then click Pause, we get a first time
range consisting of a start and an end time. The corresponding attributes are
played.start(0) and played.end(0), and the number of existing time ranges in
played.length is 1. If we then switch to the eighth chapter and continue playback
there for a bit, we create the next time range with played.start(1) and played.
end(1), and the played.length becomes 2. If two time ranges should overlap,
they are combined into one. All ranges are sorted in the TimeRanges object.

This way we can track which areas of a media stream are buffered, played,
or marked as seekable. A little online example helps visualize the individual
TimeRanges while playing the Big Buck Bunny video—take a look at http://
html5.komplett.cc/code/chap_video/js_timeRanges.html.

4.7.9  The Long List of Media Events
The list of events fired on loading or playing of a media stream at certain times
is long and basically reflects the three main status conditions of the HTMLMedia-
Element interface.

http://html5.komplett.cc/code/chap_video/js_timeRanges.html
http://html5.komplett.cc/code/chap_video/js_timeRanges.html

4.8 And What About Audio? 99

In the network state, we encounter loadstart, progress, suspend, abort, error,
emptied, and stalled, and their names indicate in which network scenarios
they appear. In the ready state are loadedmetadata, loadeddata, waiting, play-
ing, canplay, or canplaythrough, all relating directly to the availability of data
for the current or future playback position. In the playback state are play, pause,
timeupdate, ended, ratechange, and durationchange, and again their names are
as self-explanatory as is the last element we need to mention, volumechange.

When and how each event is used depends entirely on the purpose of your script.
For our video player, we needed only two, oncanplay and ontimeupdate. But if we
wanted to refine the details, we would almost certainly need many others as well.

If you want to read details on the various events, you should refer to the very
helpful Event summary in the specification. There you will find not only a
description of each event, but also indications as to when it is actually fired.
Browse to http://www.w3.org/TR/html5/video.html#mediaevents.

If you want to see media events live in action, go to Philippe Le Hégaret’s HTML5
Video, Media Events, and Media Properties test page at W3C: http://www.
w3.org/2010/05/video/mediaevents.html.

4.8 And What About Audio?

There is not much new to announce about audio in HTML5. Conveniently, video
and audio share the HTMLMediaElement interface, which means that everything
we have told you about scripting and video is also applicable to audio elements.
Understandably, the additional video attributes for width, height, audio, and
poster frame of the HTMLVideoElement interface are omitted. audio elements can
be easily created via a constructor and have a src attribute assigned to them at
the same time:

var audio = new Audio(src);

Following the pattern of our video player, let’s program an audio player for the
Big Buck Bunny soundtrack. Slider, time display, and starting or stopping work
in the same way as in the video example. A new feature is the menu for select-
ing the track: Different audio files are involved plus two buttons for jumping
ahead or backward on the track list. Additionally, we implement looping at the
end of all tracks plus random selection of the next track. You can see the result
in Figure 4.10.

http://www.w3.org/TR/html5/video.html#mediaevents
http://www.w3.org/2010/05/video/mediaevents.html
http://www.w3.org/2010/05/video/mediaevents.html

Chapter 4—Video and Audio 100

Figure 4.10  Screen shot of the JavaScript HTML5 audio player

The individual tracks were extracted from the video’s soundtrack using the free, 
cross-platform,  sound  editor  Audacity  (http://audacity.sourceforge.net).  For 
private use, you can also download the soundtrack without background noises 
for free from the homepage of the score’s composer, Jan Morgenstern, at http://
www.wavemage.com/category/music.

The screen shot of the audio player will look familiar, because the new buttons
once more use certain Unicode symbols for their labels. To be specific, you can
see the symbols listed in Table 4.8.

Table 4.8  Unicode symbols for audio player buttons

Button Entity Unicode Name

Skip back ◃ WHITE LEFT-POINTING SMALL TRIANGLE

Skip forward ▹ WHITE RIGHT-POINTING SMALL TRIANGLE

Loop ↺ ANTICLOCKWISE OPEN CIRCLE ARROW

Shuffle ↝ RIGHTWARDS WAVE ARROW

The pull-down menu also looks familiar, but this time we do not jump to certain
points in the playback time as in the video player; instead, we switch between
whole tracks. The menu and the Skip backward, forward, Loop, and Shuffle but-
tons have this effect of changing from one track to the next, so the script logic
becomes a bit more complicated.

NOTE

http://www.wavemage.com/category/music
http://www.wavemage.com/category/music
http://audacity.sourceforge.net

4.8 And What About Audio? 101

Let’s start with the audio element:

<audio src="music/bbb_01_intro.ogg"
 oncanplay="canPlay()"
 ontimeupdate="updateProgress()"
 onended="continueOrStop()">
</audio>

On loading the page, we set the src attribute to the first track and define three
callbacks. You have already encountered the updateProgress()function, which
moves the slider along and updates the time display (see Listing 4.1). The two
new callbacks are canPlay(), which is called when a track is ready to play, and
continueOrStop(), which decides what to do next at the end of a track. The on-
canplay callback canPlay() is rather short and looks like this:

canPlay = function() {
 curPos.max = audio.duration;
 if (pbStatus.keepPlaying == true) {
 _play();
 }
};

Obviously, curPos.max adapts the slider’s max attribute, just as in the video player,
but what is the subsequent if block all about? The answer is simple: We try to
take the current playback status into account and only keep playing if the player
was already in play mode.

So the status of the Play button determines if the audio player starts playing after
switching to another track. If it is playing, it should keep playing after every track
change, but if it is paused, it should only switch tracks and stay paused. This may
sound complicated, but the implementation in the play button’s callback is easy;
we just add the following code:

pbStatus.keepPlaying =
 (pbStatus.keepPlaying == true) ? false : true;

This alternates the status variable pbStatus.keepPlaying between true and false
with every click, and the correct decision is reached in canPlay().

Chapter 4—Video and Audio 102

To gain a better understanding of the audio player’s structure and functionality, 
look at the HTML, JavaScript, and CSS source code. You can find them online 
at these URLs:

 z http://html5.komplett.cc/code/chap_video/js_audioPlayer_en.html

 z http://html5.komplett.cc/code/chap_video/js_audioPlayer.js

 z http://html5.komplett.cc/code/chap_video/js_audioPlayer.css

Back to our example. With canPlay()and pbStatus.keepPlaying, we now have
control of the situation if the track is ready to play. But how do we manage
switching from one track to the next? As mentioned earlier, there are several op-
tions for this: We can choose via the menu, click the Skip back and Skip forward
buttons, or let the audio player do it automatically at the end of a track as a result
of the settings for the Loop and Shuffle buttons. All of these options have one
thing in common: They need to load a new track, and that is done via the method
loadTrack():

var loadTrack = function(idx) {
 audio.src = 'music/'+tracks.options[idx].value;
 audio.load();
};

Two details need explaining:

1. What is hiding behind the argument idx? Hiding behind idx is the index
of the track to be loaded from the pull-down menu in the variable tracks,
from which we can extract file names.

2. What does the call audio.load() do? As you may have guessed, it starts
loading the new track, which can be played as soon as it has reached the
status canplay.

To keep things simple, we use only Ogg Vorbis audio files in our example. If we 
wanted to offer several versions, we would first need to find the suitable format 
via the method canPlayType() and then load it. Try to add this function to the 
script when you have reached the end of this chapter!

NOTE

NOTE

http://html5.komplett.cc/code/chap_video/js_audioPlayer_en.html
http://html5.komplett.cc/code/chap_video/js_audioPlayer.js
http://html5.komplett.cc/code/chap_video/js_audioPlayer.css

4.8 And What About Audio? 103

loadTrack() is called in various ways. First, when changing tracks directly in the
menu via the onchange event handler changeTrack(this):

changeTrack = function(ctrl) {
 loadTrack(ctrl.options.selectedIndex);
};

Of course it is also called by the Skip forward and Skip backward buttons; their
respective onclick event handler calls the callback function advanceTrack(n)
and passes it the step value in the argument n as well as the desired direction
via the positive or negative sign. The step value is the same in both cases, which
means -1 is skip backward and 1 is skip forward:

advanceTrack = function(n) {
 var idx = tracks.options.selectedIndex + n;
 if (idx < 0) {
 idx = idx + tracks.options.length;
 }
 if (idx > tracks.options.length-1) {
 idx = idx - tracks.options.length;
 }
 tracks.options.selectedIndex = idx;
 loadTrack(idx);
};

The algorithm for determining the new track is simple and consists of two
phases. We first add n to the index of the selected track, and then we deal with
two special cases that may arise from this: If we are currently in the first track
and click Skip backward, the index becomes negative and we therefore have to
keep playing the last track. If we are in the last track and click Skip forward, this
also does not work, so we have to make sure the player selects the first track as
next track.

The advantage of the method advanceTrack() is that we can use it even for the
last two features—looping at the end of the track and random track selection.
First, we quickly need to discuss exactly how the two buttons signal inactive and
active. Switching between the two modes is done via onclick event handlers,
which trigger the callback toggleOnOff(node) and assign the appropriate button
in the argument node:

toggleOnOff = function(node) {
 var cls = node.getAttribute("class");
 node.setAttribute("class",
 (cls == 'off') ? 'on' : 'off'
);
 pbStatus[node.id] = node.getAttribute("class");
};

Chapter 4—Video and Audio 104

As the first line of the function indicates, the status is determined by the button
element’s class attribute, defining the appearance via CSS. The formats for on
and off can be found in the stylesheet js_audioPlayer.css:

.off {
 opacity: 0.2;
}
.on {
 opacity: 1.0;
}

Additionally, the current status of the relevant button is specified in the sta-
tus variable pbStatus[node.id] where the node.id indicates loop or shuffle and
therefore pbStatus.loop or pbStatus.shuffle is assigned on or off. The correct
moment for reacting to this status is always at the end of a track. Now the call-
back function continueOrStop() takes effect:

continueOrStop = function() {
 if (pbStatus.shuffle == 'on') {
 advanceTrack(
 Math.round(Math.random()*tracks.options.length)
);
 }
 else if (tracks.options.selectedIndex ==
 tracks.options.length-1) {
 if (pbStatus.loop == 'on') {
 advanceTrack(1);
 }
 else {
 pbStatus.keepPlaying = false;
 }
 }
 else {
 advanceTrack(1);
 }
};

If we are in shuffle mode, rounding the result of Math.random(), multiplied by the
number of all tracks, generates a random number between 0 and the total number
of tracks. We then advance by this value in advanceTrack(), and it does not matter
by how much we overshoot the target: If we are, for example, in the second-last
track and want to skip forward five positions, the algorithm in advanceTrack()
ensures that the fourth item on the menu is played.

The question “To loop or not to loop?” only ever arises in the last track. If the
corresponding button is set to on mode, we start again from the beginning with
advanceTrack(1); if it is in off mode, we stop here and set pbStatus.keepPlaying
to false. In all other cases we simply go to the next track and start playing it.

Summary 105

At this point we have not only completed our audio player, but also reached the
end of the chapter on video and audio. Many of the features we programmed
manually in the video and audio player are of course also implemented by the
browser and can be activated more easily via the controls attribute. But it still
makes sense to look behind the scenes to discover the options available when
scripting video and audio.

Summary

With video and audio, two important functions that previously required plug-ins
become part of the HTML specification. It is difficult to predict which video co-
dec will eventually prevail, although in light of Google’s commitment in favor of
WebM, we can hope for a patent-free open format.

As the second part of the chapter shows, the HTMLMediaElement Interface
makes video and audio accessible for scripting. Using JavaScript allows for an
interaction that was not possible previously with the available plug-in solutions.

As for every HTML5 topic, there are many more impressive examples to be found
online. Take some time to search and discover them for yourself! By reading this
chapter you have laid the foundation for understanding these new and fascinat-
ing HTML5 features.

This page intentionally left blank

5
Canvas

One of the most interesting and at the same time one of the oldest new HTML5
elements is Canvas. In July 2004, just one month after the WHATWG was formed,
Apple’s David Hyatt presented a proprietary HTML extension named Canvas, an
announcement that caused an uproar among the still young HTML5 movement.
“The real solution is to bring these proposals to the table,” was Ian Hickson’s first
reaction, and after a brief debate, Apple submitted its idea to the WHATWG. This
paved the way for including Canvas in the HTML5 specification, and a first draft
was published in August 2004.

107

Chapter 5—Canvas 108

You can find Apple’s Canvas announcement and Ian Hickson’s reaction at:

 z http://weblogs.mozillazine.org/hyatt/archives/2004_07.html#005913

 z http://ln.hixie.ch/?start=1089635050&count=1

5.1 A First Example

Canvas is, simply put, a programmable picture on which you can draw via a Ja-
vaScript API. In addition to the canvas via the canvas element, we also need a
script element for the drawing commands. Let’s start with the canvas element:

<canvas width="1200" height="800">
 alternative content for browsers without canvas support
</canvas>

The attributes width and height determine the dimension of the canvas element
in pixels and reserve the corresponding amount of space on the HTML page.
If one or both attributes are missing, default values come into effect: 300 pixels
for width and 150 pixels for height. The area between the start and end tag is re-
served for alternative content, which will be displayed if a browser does not sup-
port Canvas. Similar to the alt tag for pictures, this alternative content should
describe the content of the Canvas application or show a suitable screen shot.
Phrases like Your browser does not support Canvas without any further informa-
tion are not very helpful and should be avoided.

Our canvas is now finished. In the next step, we can add the drawing commands
in a script element. A few lines of code are enough to turn our first, and admit-
tedly quite trivial, Canvas example into reality:

<script>
 var canvas = document.querySelector("canvas");
 var context = canvas.getContext('2d');
 context.fillStyle = 'red';
 context.fillRect(0,0,800,600);
 context.fillStyle = 'rgba(255,255,0,0.5)';
 context.fillRect(400,200,800,600);
</script>

Even if we do not yet know anything about the syntax of the Canvas drawing com-
mands, the result in Figure 5.1 will not come as a surprise if you look closely at the
code. We now have a red and a light yellow rectangle with 50% opacity, resulting in
an orange tone where the two rectangles overlap.

NOTE

http://weblogs.mozillazine.org/hyatt/archives/2004_07.html#005913
http://ln.hixie.ch/?start=1089635050&count=1

5.1 A First Example 109

Figure 5.1  Two overlapping rectangles

All figures in this chapter were created as HTML pages using Canvas and can be 
found online either at the URL visible in the screen shot or via the Index page 
of  the  companion  website  at  http://html5.komplett.cc/code/chap_canvas/
index_en.html. Take a look at the source code!

Before we can draw on the canvas, we need to create a reference to it. The first
line in the script does exactly that. In the variable canvas and using the W3C CSS
Selectors API method document.querySelector(), it saves a reference to the first
canvas element found in the document:

var canvas = document.querySelector("canvas");

Apart from the attributes canvas.width and canvas.height, this object, also called
HTMLCanvasElement, has the method getContext(). It allows us to get to the heart
of Canvas, the CanvasRenderingContext2D, by passing 2d as context parameter:

var context = canvas.getContext('2d');

TIP

http://html5.komplett.cc/code/chap_canvas/index_en.html
http://html5.komplett.cc/code/chap_canvas/index_en.html

Chapter 5—Canvas 110

Now we have defined the drawing context and can start drawing the two rect-
angles. Without going into details of the attribute fillStyle or the method fill-
Rect(), the basic procedure for both is the same: Define the fill color and then
add the rectangle:

context.fillStyle = 'red';
context.fillRect(0,0,800,600);
context.fillStyle = 'rgba(255,255,0,0.5)';
context.fillRect(400,200,800,600);

The current Canvas specification only defines a 2D context (see HTML Canvas
2D Context specification at http://www.w3.org/TR/2dcontext) but does not rule
out that others, for example 3D, could follow at a later stage. First initiatives in
this direction have already been launched by the Khronos group: In coopera-
tion with Mozilla, Google, and Opera, they are working on a JavaScript interface
called WebGL based on OpenGL ES 2.0 (http://www.khronos.org/webgl). First
implementations of this emerging standard are present in Firefox, WebKit, and
Chrome.

But back to the 2D context: The possibilities of the CanvasRenderingContext2D in-
terface are manifold and certainly well-suited for creating sophisticated applica-
tions. Figure 5.2 shows a simple bar chart, which will accompany us through an
explanation of the first three features of the drawing context: rectangles, colors,
and shadows.

Figure 5.2  Bar chart with ten horizontal bars

http://www.w3.org/TR/2dcontext
http://www.khronos.org/webgl

5.2 Rectangles 111

5.2 Rectangles

Canvas has four methods for creating rectangles. Three of these we will discuss
now, the fourth we will encounter later in connection to paths:

context.fillRect(x, y, w, h)
context.strokeRect(x, y, w, h)
context.clearRect(x, y, w, h)

The names of these methods are self-explanatory: fillRect()creates a filled
rectangle, strokeRect() a rectangle with border and no filling, and clearRect() a
rectangle that clears existing content like an eraser. The rectangle’s dimensions
are determined by four numerical parameters: origin x/y, width w, and height h.

In Canvas, the coordinate origin is at the top left, which means the x coordi-
nates increase toward the right and the y coordinates toward the bottom (see
Figure 5.3).

Figure 5.3  The Canvas coordinate system

In parallel to the first example, we first define a reference to the canvas element
in our bar chart and then the drawing context. The function drawBars()is re-
sponsible for doing the main job, drawing the horizontal bars. We pass the de-
sired number of bars we want to draw to this function:

Chapter 5—Canvas 112

<script>
var canvas = document.querySelector("canvas");
var context = canvas.getContext('2d');
var drawBars = function(bars) {
 context.clearRect(0,0,canvas.width,canvas.height);
 for (var i=0; i<bars; i++) {
 var yOff = i*(canvas.height/bars);
 var w = Math.random()*canvas.width;
 var h = canvas.height/bars*0.8;
 context.fillRect(0,yOff,w,h);
 context.strokeRect(0,yOff,w,h);
 }
};
drawBars(10);
</script>

Calling this function with drawBars(10) deletes any existing content with clear-
Rect() and then draws the ten filled rectangle outlines in the for loop with fill-
Rect() and strokeRect(). The width w of the bars varies between 0 pixels and the
full width of the canvas element, and is determined randomly via the JavaScript
function Math.random(). The function Math.random() generates a number be-
tween 0.0 and 1.0, and is therefore ideal for producing random values for width,
height, and the position, depending on the canvas dimension. Multiplying with
the corresponding attribute value does the job.

The equally spaced, horizontal arrangement of the bars follows the canvas height.
The spaces between the bars result from multiplying the calculated maximal bar
height h by the factor 0.8.

The canvas width and height can be easily seen in the attributes canvas.width
and canvas.height as mentioned in the first example. Just as easily, we can ac-
cess the HTMLCanvasElement from the drawing context via its attribute context.
canvas and use it to generate new bars with each click on the canvas. Three lines
of code added after the drawBars(10) call are enough:

context.canvas.onclick = function() {
 drawBars(10);
};

We have clarified how the ten bars are drawn, but how do we make them light
gray with black outlines? We will find the answer by looking at the options of as-
signing color in Canvas.

5.3 Colors and Shadows 113

5.3 Colors and Shadows

The attributes fillStyle and strokeStyle serve to specify colors for fills and
lines. The color specification follows the rules for CSS color values and can have
a number of different formats. Table 5.1 shows the available options, using the
color red as an example.

Table 5.1  Valid CSS color values for the color red

Method Color Value

Hexadecimal #FF0000

Hexadecimal (short) #F00

RGB rgb(255,0,0)

RGB (percent) rgb(100%,0%,0%)

RGBA rgba(255,0,0,1.0)

RGBA (percent) rgba(100%,0%,0%,1.0)

HSL hsl(0,100%,50%)

HSLA hsla(0,100%,50%,1.0)

SVG (named color) red

To specify the current fill and stroke color in Canvas, you just need to enter the
appropriate color values as a character string for fillStyle and strokeStyle. In
the bar chart example, we will choose the SVG named color silver as fill and a
semitransparent black outline in RGBA notation. We want all bars to look the
same, so we define the styles before the drawBars() function:

context.fillStyle = 'silver';
context.strokeStyle = 'rgba(0,0,0,0.5)';
var drawBars = function(bars) {
 // code for drawing bars
};

Valid opacity values range from 0.0 (transparent) to 1.0 (opaque) and can be used
as a fourth component in RGB and HSL color space. The latter defines colors not
via their red, green, and blue components, but via a combination of hue, satura-
tion, and lightness.

Chapter 5—Canvas 114

You can find more information on the topic CSS colors with HSL color palettes 
and  a  list  of  all  valid  SVG  color  names  in  the  CSS Color Module Level 3 
specification at http://www.w3.org/TR/css3-color.

If you look closely, you can see shadows behind the bars. These are created by
four additional drawing context attributes:

context.shadowOffsetX = 2.0;
context.shadowOffsetY = 2.0;
context.shadowColor = "rgba(50%,50%,50%,0.75)";
context.shadowBlur = 2.0;

The first two lines determine the shadow offset with shadowOffsetX and
shadowOffsetY, shadowColor assigns its color and opacity, and shadowBlur
causes the shadow to be blurred. As a general rule, the higher the value of
shadowBlur, the stronger the blur effect.

Before moving on to color gradients in the next section, we need to clarify how
the dotted border in the bar chart and the subsequent graphics is achieved. The
answer is very simple: with CSS. Every canvas element can of course also be for-
matted with CSS. You can specify spacing, position, and z-index just as easily as
background color and border. In our example, the following style attribute cre-
ates the dotted border:

<canvas style="border: 1px dotted black;">

5.4 Gradients

In addition to solid colors for fills and lines, Canvas offers two kinds of gradi-
ents: linear and radial gradients. The basic principle of creating gradients in
Canvas is easily demonstrated using the example of a simple gradient from red
to yellow and orange and then to purple (see Figure 5.4).

NOTE

http://www.w3.org/TR/css3-color

5.4 Gradients 115

Figure 5.4  Linear gradient with four colors

First, context.createLinearGradient(x0, y0, x1, y1) creates a CanvasGradient
object and determines the direction of the gradient via the parameters x0, y0, x1,
y1. We still need to specify the color offsets in another step, so we save this object
in the variable linGrad:

var linGrad = context.createLinearGradient(
 0,450,1000,450
);

The method addColorStop(offset, color)of the CanvasGradient object is the
next step and selects the desired colors and offsets on our imaginary gradient
line. Offset 0.0 represents the color at the point x0/y0 and offset 1.0 the color at
the end point x1/y1. All colors in between are divided up according to their offset,
and transitions between the individual stops are interpolated by the browser in
RGBA color space:

linGrad.addColorStop(0.0, 'red');
linGrad.addColorStop(0.5, 'yellow');

Chapter 5—Canvas 116

linGrad.addColorStop(0.7, 'orange');
linGrad.addColorStop(1.0, 'purple');

Colors are specified following the rules for CSS color values and are identified as
SVG named colors in our examples to make it more readable. Our linear gradient
is now finished and can be assigned via fillStyle or strokeStyle:

context.fillStyle = linGrad;
context.fillRect(0,450,1000,450);

Unlike linear gradients, the start and end points of radial gradients are not points,
but circles. So to define a radial gradient, we now need to use the method con-
text.createRadialGradient(x0, y0, r0, x1, y1, r1) (see Figure 5.5).

Figure 5.5  Components of a radial gradient

On the left side of the graphic, you can see the start and end circle, in the middle
the three color stops with offset values, and on the right the final result: a sphere
that appears to glow. A very appealing result is generated by a bit of clear and
simple source code:

5.5 Paths 117

var radGrad = context.createRadialGradient(
 260,320,40,200,400,200
);
radGrad.addColorStop(0.0,'yellow');
radGrad.addColorStop(0.9,'orange');
radGrad.addColorStop(1.0,'rgba(0,0,0,0)');
context.fillStyle = radGrad;
context.fillRect(0,200,400,400);

The shadow effect around the sphere is incidentally created by the last two color
stops, interpolating from orange to transparent black, which means the visible
part of the gradient ends directly at the outer circle.

After this quick trip through the world of colors and gradients, we now move on
to other geometric forms: paths.

5.5 Paths

The process of creating paths in Canvas is comparable to drawing on a piece of
paper: You put the pencil on the paper at one point, draw, lift the pencil off again,
and continue drawing at another point on the paper. The content you draw can
range from simple lines to complex curves or even polygons formed from these.
An initial example illustrates the concept, translating each step of writing the let-
ter A into Canvas path commands:

context.beginPath();
context.moveTo(300,700);
context.lineTo(600,100);
context.lineTo(900,700);
context.moveTo(350,400);
context.lineTo(850,400);
context.stroke();

The results are shown in Figure 5.6.

Chapter 5—Canvas 118

Figure 5.6  The letter A as a path

Let’s look closer at the source code for this example. We can see the three phases
of creating the path:

1. Initialize a new path with beginPath()
2. Define the path geometry with moveTo() and lineTo() calls
3. Draw the lines with stroke()

Each path must be initialized with beginPath() and can then contain any num-
ber of segments. In our example, we have two segments that reproduce the
hand movements when writing through combinations of moveTo() and line-
To(). This creates first the roof shape and then the horizontal line of the letter A.
With stroke(), we then draw the defined path onto the canvas.

The decision whether and when segments of a path will be separated into several
individual paths is entirely dependent on the layout. Each path can only be for-
matted in its entirety. So, if we wanted the horizontal line of the letter A to have a
different color, we would need to define two separate paths.

Let’s look at the main path drawing methods in more detail.

5.5 Paths 119

5.5.1  Lines
To create lines as in our example of the letter A, Canvas offers the method
lineTo():

context.lineTo(x, y)

The effect of the method is shown in Figure 5.7.

Figure 5.7  The path method “lineTo()”

Expressed in words, this means line to point x/y, which means we have to already
have defined a starting point with moveTo() or still have an end point from the
previous drawing step. After drawing the line, the coordinate x/y becomes the
new current point.

In all graphics used to demonstrate the path drawing methods, we have marked 
the starting point x0/y0 in light gray and the new current point in bold type.

NOTE

Chapter 5—Canvas 120

5.5.2  Bézier Curves
Canvas knows two kinds of Bézier curves: quadratic and cubic, the latter incor-
rectly referred to only as bezierCurveTo(). Figure 5.8 illustrates the former, and
Figure 5.9 illustrates the latter.

context.quadraticCurveTo(cpx, cpy, x, y)
context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

Figure 5.8  The path method “quadraticCurveTo()”

5.5 Paths 121

Figure 5.9  The path method “bezierCurveTo()”

To create Bézier curves, we need the current point as a starting coordinate plus a
target coordinate and, depending on the type of curve, one or two control points.
In both cases, the coordinate x/y becomes the new current point after drawing
the curve.

5.5.3  Arcs
Methods for creating arcs are not quite as straightforward. The first method is
defined by two coordinates and a radius:

context.arcTo(x1, y1, x2, y2, radius)

As shown in Figure 5.10, arcTo() creates the new path as follows: A circle with a
given radius is added to the line from x0/y0 to x1/y1 and then to x2/y2, so that
the circle touches the line in exactly two points, the start tangent t1 and the end
tangent t2. The arc between these two points becomes part of the path, and the
end tangent t2 becomes the new current point.

Chapter 5—Canvas 122

Figure 5.10  The path method “arcTo()”

In practice, this method is very useful for rectangles with rounded corners. A re-
usable function will come in handy to do the job shown in Figure 5.11.

5.5 Paths 123

Figure 5.11  Four different rectangles with rounded corners; the circle is an extreme example 
of a rounded rectangle

var roundedRect = function(x,y,w,h,r) {
 context.beginPath();
 context.moveTo(x,y+r);
 context.arcTo(x,y,x+w,y,r);
 context.arcTo(x+w,y,x+w,y+h,r);
 context.arcTo(x+w,y+h,x,y+h,r);
 context.arcTo(x,y+h,x,y,r);
 context.closePath();
 context.stroke();
};
roundedRect(100,100,700,500,60);
roundedRect(900,150,160,160,80);
roundedRect(700,400,400,300,40);
roundedRect(150,650,400,80,10);

The function roundedRect() requires the basic values for the rectangle plus the
radius for rounding. It then draws the desired rectangle with a moveTo() method,
four arcTo() methods, and a closePath() method. You have not yet encountered
the method closePath(): It closes the rectangle by joining the last point back up
to the start point.

Chapter 5—Canvas 124

The second option for creating arcs—the method arc()—seems even more com-
plicated at first glance. In addition to center and radius, we now have to specify
two angles and the direction of rotation:

context.arc(x, y, radius, startAngle, endAngle, anticlockwise)

The center point of the arc in Figure 5.12 is the center of a circle with a given ra-
dius. Originating from this point, the angles startAngle and endAngle create two
handles, intersecting the circle in two points. The direction of the arc between
these two coordinates is determined by the parameter anticlockwise, where 0
means clockwise and 1 counterclockwise.

Figure 5.12  The path method “arc()”

The resulting arc begins in the center of the circle at the point x0/y0, joins this
point in a straight line to the first intersection point spx/spy, and from there draws
an arc to the end point epx/epy, which now becomes the new current point.

The biggest drawback in creating arcs is that all angles must be specified in radi-
ans instead of degrees. So here’s a quick helper to refresh your memory on how
to convert:

5.5 Paths 125

var deg2rad = function(deg) {
 return deg*(Math.PI/180.0);
};

Talking of helper functions, let’s use two more to facilitate drawing circles and
sectors. For circles, we really only need center and radius, the rest will be taken
care of by the function circle():

var circle = function(cx,cy,r) {
 context.moveTo(cx+r,cy);
 context.arc(cx,cy,r,0,Math.PI*2.0,0);
};

Especially for circle diagrams, also called pie charts, specifying the angles in
radians seems hardly intuitive. Our function sector() does the tedious conver-
sion chore for us and allows us to specify start and end angles in degrees:

var sector = function(cx,cy,r,
 startAngle,endAngle, anticlockwise
) {
 context.moveTo(cx,cy);
 context.arc(
 cx,cy,r,
 startAngle*(Math.PI/180.0),
 endAngle*(Math.PI/180.0),
 anticlockwise
);
 context.closePath();
};

Now, just a few lines of code are enough to draw circles and pie charts without
losing track:

context.beginPath();
circle(300,400,250);
circle(300,400,160);
circle(300,400,60);
sector(905,400,250,-90,30,0);
sector(900,410,280,30,150,0);
sector(895,400,230,150,270,0);
context.stroke();

Figure 5.13 shows the result.

Chapter 5—Canvas 126

Figure 5.13  Circles and sectors

5.5.4  Rectangles
The method rect() handles a bit like our helpers, unlike the other methods:

context.rect(x, y, w, h)

In contrast to the previous path drawing methods, the current point x0/y0 is ig-
nored altogether when drawing with rect(); instead, the rectangle is defined via
the parameters x, y, width w, and height h. The origin point x/y then becomes the
new current point after drawing (see Figure 5.14).

5.5 Paths 127

Figure 5.14  The path method “rect()”

5.5.5  Outlines, Fills, and Clipping Masks
If we think back to the three stages of creating a path with initialization—deter-
mining path, geometry, and drawing—we have now reached the third and last
stage: the drawing. Here we decide what the path should look like. In all previ-
ous examples, we chose a simple outline at this point, created via the following
method:

context.stroke()

The line color is determined by the attribute strokeStyle. You can also define the
width of the line (lineWidth), what the ends of the line should look like (lineCap),
and the join between lines (lineJoin) using three other Canvas attributes (the
asterisk indicates default values; we will encounter it repeatedly from now on):

context.lineWidth = [Pixel]
context.lineCap = [*butt, round, square]
context.lineJoin = [bevel, round, *miter]

Figure 5.15 provides examples of the width, end, and join attributes.

Chapter 5—Canvas 128

Figure 5.15  Attributes for determining line styles

The lineWidth is specified in pixels; the default setting is 1.0. As with the two
other line attributes, the line width applies not only to lines and polygons, but
also to rectangles created with strokeRect().

If we want to add a cap to a line with lineCap, we can choose butt, round, or
square; butt is the default value. If we use round, the line gets a round cap by
adding a semicircle at the end of the line with half the lineWidth as a radius. For
square, the semicircle is replaced by a rectangle with a height of half the line
width.

To create beveled line joins, we use the attribute lineJoin with bevel; we can
also round the corners and create mitered joins with miter, which is the default
value. To stop the angle of miter lines from becoming too acute, the specification
provides the attribute miterLimit with a default value of 10.0. This is the ratio of
the length of the tapered point (the distance between the intersection of lines
and point) to half the line width. If the miterLimit is exceeded, the point will be
trimmed, creating the same effect as in bevel.

To fill paths with a color or gradient, we first need to set the appropriate style at-
tribute with fillStyle and then call the following path method:

context.fill()

5.5 Paths 129

This may sound simple but can get very complicated if paths self-intersect or
are nested. In such cases, the so-called non-zero winding number rule takes ef-
fect: It decides whether to fill or not depending on the winding direction of the
subpaths involved.

Figure 5.16 shows the non-zero rule in action. On the left, both circles were drawn
in clockwise direction; on the right, the inner circle was drawn counterclockwise,
leading to the hole in the center.

Figure 5.16  The non-zero fill rule for paths

To help us draw the directional circles, we used the helper from the arc()section,
this time slightly modified: The desired direction is now passed as an argument.
Valid settings for anticlockwise are 0 and 1:

var circle = function(cx,cy,r,anticlockwise) {
 context.moveTo(cx+r,cy);
 context.arc(cx,cy,r,0,Math.PI*2.0,anticlockwise);
};

The code for the circle on the right with the hole in it looks like this:

context.beginPath();
context.fillStyle = 'yellow';

Chapter 5—Canvas 130

circle(900,400,240,0);
circle(900,400,120,1);
context.fill();
context.stroke();

After stroke() and fill(), we need only one other method for drawing paths—
the method

 context.clip().

The explanation is as short as its name: clip() ensures that the defined path is
not drawn but used as a cutout for all other drawing elements. Anything within
the mask remains visible; the rest is hidden. You can reset the mask by creating
another clipping mask using the entire canvas area as geometry. We will encoun-
ter a more elegant method later on, in section 5.13, with save() and restore().

Let’s now move on to the topic of text, a topic to which the specification devotes
only four pages. Could it be that text support in Canvas is not exactly great?

5.6 Text

At first glance, it is probably true that text support in Canvas is not great, because
the options for using text in Canvas are meager and limited to formatting and po-
sitioning simple character strings. There is no running text with automatic line
breaks, nor paragraph formats or the option to select already existing texts.

We are left with three attributes for determining text attributes, two methods for
drawing text, and one method for determining text length of a character string
while taking into account the current format. This does not seem like much, but
if we look more closely, it becomes clear that those four pages of specification are
based on well-thought-out details.

5.6.1  Fonts
The definition of the font attribute simply refers to the CSS specification and
states that context.font is subject to the same syntax as the CCS font shorthand
notation:

context.font = [CSS font property]

In this manner, all font properties can be easily specified in a single string. Table
5.2 lists the individual components and their possible values.

5.6 Text 131

Table 5.2  The components of the CSS “font” property

Property Values

font-style *normal, italic, oblique

font-variant *normal, small-caps

font-weight *normal, bold, bolder, lighter
100, 200, 300, 400, 500, 600, 700, 800, 900

font-size xx-small, x-small, small, *medium,
large, x-large, xx-large, larger, smaller
em, ex, px, in, cm, mm, pt, pc, %

line-height *normal, <number>, em, ex, px, in, cm, mm, pt, pc, %

font-family Font family or generic font family, such as serif, sans-
serif, cursive, fantasy, monospace

When assembling the font attribute, only the properties font-size and font-
family are required. All others are optional, and if omitted, default to the values
marked with an asterisk as shown in Table 5.2. Because Canvas text does not
recognize line breaks, the attribute line-height has no effect and is always
ignored. The cleaned-up pattern for assembling the components is therefore:

context.font = [
 font-style font-variant font-weight font-size font-family
]

Regarding the font-family, the same rules apply as for defining fonts in
stylesheets: You can specify any combination of font families and/or generic
font families. The browser then picks the first known font from that priority list.

You can achieve complete independence from the browser or the relevant plat-
form and its fonts by using webfonts. Once they are integrated into a stylesheet
via @font-face, they are available as font-family in Canvas, too, via the font
name assigned:

@font-face {
 font-family: Scriptina;
 src: url('fonts/scriptina.ttf');
}

Figure 5.17 shows brief examples of valid CSS font attributes and their render-
ing in Canvas. The source of the webfont Scriptina in the preceding example is
http://www.fontex.org—a well-organized collection of free fonts that are avail-
able for download.

http://www.fontex.org

Chapter 5—Canvas 132

Figure 5.17  Font formatting with the “font” attribute

At the time of this writing, no browser supported @font-face without problems.
In Firefox, for example, the webfont Scriptina in the last line only appears in Can-
vas if it is used at least once in the HTML document. The correct implementation
of small-caps is also missing in Firefox, which is why the second to last example
is not displayed correctly either.

5.6.2  Horizontal Anchor Point
The attribute textAlign determines the horizontal anchor point of Canvas texts:

context.textAlign = [
 left | right | center | *start | end
]

The keywords left, right, and center are familiar from the CSS attribute text-
align, whereas start and end are already CSS3 extensions that allow for text di-
rection, depending on the appropriate language. Some languages are written not
from left to right but sometimes from right to left, as for example, Arabic and
Hebrew.

5.6 Text 133

Figure 5.18 presents the horizontal anchor points for writing with textflow ltr
(left to right) and rtl (right to left), demonstrating the effect of directionality on
the attributes start and end.

In the browser, the directionality of a document can be changed via the global 
attribute document.dir:
document.dir = [*ltr | rtl]

NOTE

Figure 5.18  Horizontal anchor points with “textAlign”

5.6.3  Vertical Anchor Point
The vertical anchor point and therefore the baseline on which all glyphs are
aligned is determined by the third and last text attribute, textBaseline:

context.textBaseline = [
 top | middle | *alphabetic | bottom | hanging | ideographic
]

Chapter 5—Canvas 134

The first four textBaseline keywords, top, middle, alphabetic and bottom are
self-explanatory. A hanging baseline is required by Devanagari, Gurmukhi, and
Bengali, three Indian alphabets used for writing the languages Sanskrit, Hindi,
Marathi, Nepali or Panjabi, and Bengali. The group of ideographic writing sys-
tems includes Chinese, Japanese, Korean, and Vietnamese. Figure 5.19 illustrates
the textBaseline vertical anchor points.

Figure 5.19  Vertical anchor points with “textBaseline”

5.6.4  Drawing and Measuring Text
Once font and anchor point have been determined, you only need to draw the
text. Similar to rectangles, you can decide on a fill and/or outline, and you can
even specify the maximum text width with an optional parameter, maxwidth:

context.fillText(text, x, y, maxwidth)
context.strokeText(text, x, y, maxwidth)

Finally, you can measure the text dimension with the method measureText(),
which can at least determine the width while taking into account the current for-
mat. In our example in Figure 5.20, the bottom right value (759) was calculated
using this method:

TextWidth = context.measureText(text).width

5.7 Embedding Images 135

Figure 5.20  “fillText()”, “strokeText()”, and “measureText()”

It is not currently possible to determine the height and origin point of the bound-
ing box, but this may be implemented in a future version of the specification,
together with multiline text layout. The final note in the text chapter of the Can-
vas specification sounds promising: It indicates that in the future, fragments of
documents (e.g., formatted paragraphs) might also find their way into Canvas
via CSS.

The Canvas API offers a multitude of options for working in Canvas with raster-
based formats not only in the future, but right now. In addition to embedding
images and videos, you also have optional reading and writing access to every
pixel on the canvas area. You can read up on how to do this in section 5.8, Pixel
Manipulation.

5.7 Embedding Images

For embedding images, Canvas offers the method drawImage(),which we can in-
voke with three different parameter sets (the method can take three, five, or nine
arguments):

Chapter 5—Canvas 136

context.drawImage(image, dx, dy)
context.drawImage(image, dx, dy, dw, dh)
context.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

In all three cases we need an image, canvas, or video element in the first parameter,
which can be dynamically integrated via JavaScript or statically in the HTML code.
Animated pictures or videos are not rendered in animation but displayed statically
as the first frame or a poster frame if present.

All other arguments of the method drawImage() affect position, size, or cropping
the source image to render in the target canvas. Figure 5.21 shows the graphic
interpretation of the possible position parameters; the prefix s stands for source
and d for destination.

Figure 5.21  Position parameters of the “drawImage()” method

Let’s now compare the individual drawImage() methods using three simple ex-
amples. The common setup is a picture measuring 1200 × 800 pixels, created
dynamically as a JavaScript object (see Figure 5.22):

var image = new Image();
image.src = 'images/yosemite.jpg';

5.7 Embedding Images 137

Figure 5.22  The source image of all “drawImage()” examples

In addition to pixel sizes, which we will encounter in the examples, Figure 5.22
shows the impressive 1000-meter-high rock face of El Capitan in Yosemite Na-
tional Park: The photo was taken from Taft Point. This picture is now drawn
onload onto the 600 × 400 pixel target canvas, using one of the three possible
sets of arguments. The first and simplest option determines the top-left corner
of the image in the target canvas with dx/dy. In our case, this is the position 0/0:

image.onload = function() {
 context.drawImage(image,0,0);
};

Width and height are copied directly from the original image, and because our
image is bigger than the target canvas, it will come as no surprise that we only see
the top-left quarter of Taft Point on our canvas (see Figure 5.23).

Chapter 5—Canvas 138

Figure 5.23  Taft Point in Yosemite National Park

If we want to represent the whole image in the canvas, we also have to specify the
desired width and height in the arguments dw/dh. The browser then takes care of
scaling the image to 600 × 400 pixels. The result is shown in Figure 5.24:

image.onload = function() {
 context.drawImage(image,0,0,600,400);
};

5.7 Embedding Images 139

Figure 5.24  Taft Point with El Capitan in Yosemite National Park

In contrast to the two previous variations of drawImage(), which could have been
realized with CSS as well, the third variation offers completely new possibilities
of working with images. We can now copy any section of the source image (sx, sy,
sw, sh) into the defined area of the target canvas (dx, dy, dw, dh). So nothing stands
in the way of image montage:

image.onload = function() {
 context.drawImage(image,0,0);
 context.drawImage(
 image, 620,300,300,375,390,10,200,250
);
};

The result is shown in Figure 5.25.

Chapter 5—Canvas 140

Figure 5.25  Yosemite National Park postcard

The first drawImage() call returns again the top-left quarter of Taft Point; the sec-
ond extracts the area of El Capitan and draws it as icon into the top-right corner.
Text with shadows completes the rudimentary layout of our postcard.

If you would rather have El Capitan in the foreground and Taft Point as a stamp
at the top right, you just need to slightly modify the drawImage() calls. In our ex-
ample you can do this by clicking on the canvas:

canvas.onclick = function() {
 context.drawImage(
 image,600,250,600,400,0,0,600,400
);
 context.drawImage(
 image,0,0,500,625,390,10,200,250
);
};

This yields the image shown in Figure 5.26.

5.8 Pixel Manipulation 141

Figure 5.26  Yosemite National Park postcard (alternative layout)

This was a brief introduction to the topic drawImage(), using an image as a source.
You will find a detailed example of using the video element as the first parameter
of drawImage() in section 5.14.2, Playing a Video with “drawImage()”, but first
we will discuss how you can get both read and write access to pixel values on the
canvas area.

5.8 Pixel Manipulation

As methods for reading and manipulating pixel values, we have three choices:
getImageData(), putImageData(), and createImageData(). Because all three
contain the term ImageData, we first need to define what this refers to.

5.8.1  Working with the “ImageData” Object
Let’s approach the ImageData object with a 2 × 2 pixel-sized canvas, onto which
we draw four rectangles 1 × 1 pixels big and filled with the named colors navy,
teal, lime, and yellow:

Chapter 5—Canvas 142

context.fillStyle = 'navy';
context.fillRect(0,0,1,1);
context.fillStyle = 'teal';
context.fillRect(1,0,1,1);
context.fillStyle = 'lime';
context.fillRect(0,1,1,1);
context.fillStyle = 'yellow';
context.fillRect(1,1,1,1);

In the next step, we use the method getImageData(sx, sy, sw, sh) to get the
ImageData object. The four arguments determine the desired canvas section as a
rectangle, as shown in Figure 5.27:

ImageData = context.getImageData(
 0,0,canvas.width,canvas.height
);

Figure 5.27  The “ImageData” object

The ImageData object has the attributes ImageData.width, ImageData.height,
and ImageData.data. The latter hides the actual pixel values in the so-called
CanvasPixelArray. This is a flat array with red, green, blue, and alpha values for
each pixel in the selected section, starting at the top left, from left to right and

5.8 Pixel Manipulation 143

top to bottom. The number of all values is saved in the attribute ImageData.
data.length.

Using a simple for loop, we can now read the individual values of the CanvasPix-
elArray and make them visible with alert(). Starting at 0, we work from pixel
to pixel by increasing the counter by 4 after each loop. The RGBA values are the
result of offsets from the current position. Red can be found at counter i, green
at i+1, blue at i+2, and the alpha component at i+3:

for (var i=0; i<ImageData.data.length; i+=4) {
 var r = ImageData.data[i];
 var g = ImageData.data[i+1];
 var b = ImageData.data[i+2];
 var a = ImageData.data[i+3];
 alert(r+" "+g+" "+b+" "+a);
}

Modifying pixel values works exactly the same: We change the Canvas-PixelAr-
ray in-place by assigning new values. In our example, the RGB values are set to
random numbers between 0 and 255 via Math.random(); the alpha component
remains unchanged:

for (var i=0; i<ImageData.data.length; i+=4) {
 ImageData.data[i] = parseInt(Math.random()*255);
 ImageData.data[i+1] = parseInt(Math.random()*255);
 ImageData.data[i+2] = parseInt(Math.random()*255);
}

After this step, the canvas still looks the same. The new colors only become vis-
ible after we write the modified CanvasPixelArray back to the canvas via the
method putImageData(). When calling putImageData(), we can have a maximum
of seven parameters:

context.putImageData(
 ImageData, dx, dy, [dirtyX, dirtY, dirtyWidth, dirtyHeight]
)

The first three attributes are required; in addition to the ImageData object, they
contain the coordinate of the origin point dx/dy, from which the CanvasPix-
elArray is applied via its width and height attributes. The optional dirty pa-
rameters cut out only a specified section of the CanvasPixelArray and write
back only that section with reduced width and height. Figure 5.28 shows our
4-pixel canvas before and after modification, with a list of the relevant values
of the CanvasPixelArray.

Chapter 5—Canvas 144

Figure 5.28  Modifying colors in the “CanvasPixelArray”

You can initialize an empty ImageData object directly via the method
createImageData(). Width and height correspond to the arguments sw/sh or the
dimensions of an ImageData object passed in the call. In both cases, all pixels of
the CanvasPixelArray are set to transparent/black, which is rgba(0,0,0,0):

context.createImageData(sw, sh)
context.createImageData(imagedata)

So we could also create the 2 × 2 pixel modified canvas of Figure 5.28 directly via
createImageData() and draw it via putImageData():

var imagedata = context.createImageData(2,2);
for (var i=0; i<ImageData.data.length; i+=4) {
 imagedata.data[i] = parseInt(Math.random()*255);
 imagedata.data[i+1] = parseInt(Math.random()*255);
 imagedata.data[i+2] = parseInt(Math.random()*255);
}
context.putImageData(imagedata,0,0);

That’s it for now on dry CanvasPixelArray theory. In practice, things get much
more exciting: With getImageData(), putImageData(), createImageData(), and a

5.8 Pixel Manipulation 145

little bit of math, we can even write our own color filters for manipulating images.
We will show you how in the next section.

5.8.2  Color Manipulation with “getImageData()”,  
“createImageData()”, and “putImageData()”
The starting picture for all examples is once again the photo of Yosemite Na-
tional Park, drawn onto the canvas onload via drawImage(). In a second step,
we define the original CanvasPixelArray via getImageData() and then modify
it in the third step. In a for loop, each pixel’s RGBA values are calculated fol-
lowing a mathematical formula and inserted into a CanvasPixelArray created
previously via createImageData(). At the end we write it back to the canvas with
putImageData().

Listing 5.1 provides the basic JavaScript frame of all filters used in Figure 5.29.
The function grayLuminosity() is not part of the code example but will be ad-
dressed later, together with the other filters:

Listing 5.1  Basic JavaScript frame for color manipulation

var image = new Image();
image.src = 'images/yosemite.jpg';
image.onload = function() {
 context.drawImage(image,0,0,360,240);
 var modified = context.createImageData(360,240);
 var imagedata = context.getImageData(0,0,360,240);
 for (var i=0; i<imagedata.data.length; i+=4) {
 var rgba = grayLuminosity(
 imagedata.data[i+0],
 imagedata.data[i+1],
 imagedata.data[i+2],
 imagedata.data[i+3]
);
 modified.data[i+0] = rgba[0];
 modified.data[i+1] = rgba[1];
 modified.data[i+2] = rgba[2];
 modified.data[i+3] = rgba[3];
 }
 context.putImageData(modified,0,0);
};

The server icon in the bottom-right corner of Figure 5.29 indicates that if you are 
using Firefox as your browser, this example can only be accessed via a server 
with http:// protocol. We will explain  the  reasons  in section 5.15.3, Security 
Aspects.

NOTE

Chapter 5—Canvas 146

Figure 5.29  Color manipulation with “getImageData()” and “putImageData()”

For converting the color to shades of gray, the documentation of the free, image-
editing program GIMP offers three formulae in the chapter Desaturate (see the
web link http://docs.gimp.org/en/gimp-tool-desaturate.html) with which you
can calculate the shade of gray via Lightness, Luminosity, or average lightness
(Average). If we implement these calculations with JavaScript, we get our first
three color filters:

var grayLightness = function(r,g,b,a) {
 var val = parseInt(
 (Math.max(r,g,b)+Math.min(r,g,b))*0.5
);
 return [val,val,val,a];
};

var grayLuminosity = function(r,g,b,a) {
 var val = parseInt(
 (r*0.21)+(g*0.71)+(b*0.07)
);
 return [val,val,val,a];
};

var grayAverage = function(r,g,b,a) {
 var val = parseInt(

http://docs.gimp.org/en/gimp-tool-desaturate.html

5.8 Pixel Manipulation 147

 (r+g+b)/3.0
);
 return [val,val,val,a];
};

With grayLuminosity(), we are using the second formula in Figure 5.29, replac-
ing the RGB component of each pixel with the new calculated value. In this and
all following calculations, we must not forget that RGBA values can only be inte-
gers; the JavaScript method parseInt() makes sure of it.

The algorithm for sepiaTone() was taken from an article by Zach Smith, titled
How do I ... convert images to grayscale and sepia tone using C#? (see the short-
ened web link http://bit.ly/a2nxI6):

var sepiaTone = function(r,g,b,a) {
 var rS = (r*0.393)+(g*0.769)+(b*0.189);
 var gS = (r*0.349)+(g*0.686)+(b*0.168);
 var bS = (r*0.272)+(g*0.534)+(b*0.131);
 return [
 (rS>255) ? 255 : parseInt(rS),
 (gS>255) ? 255 : parseInt(gS),
 (bS>255) ? 255 : parseInt(bS),
 a
];
};

Adding up the multiplied components can lead to values larger than 255 in each
of the three calculations; in this case, 255 is inserted as a new value.

Inverting colors is very easy with the filter invertColor(): You simple deduct
each RGB component from 255:

var invertColor = function(r,g,b,a) {
 return [
 (255-r),
 (255-g),
 (255-b),
 a
];
};

The filter swapChannels() modifies the sequence of the color channels. We first
need to define the desired order as the fourth parameter in an array, where 0 is
red, 1 is green, 2 is blue, and 3 is the alpha channel. To swap channels, we use the
array rgba with the corresponding starting values and then return it in the new
order. So changing from RGBA to BRGA, as in our example, can be achieved via
order=[2, 0, 1, 3]:

http://bit.ly/a2nxI6

Chapter 5—Canvas 148

var swapChannels = function(r,g,b,a,order) {
 var rgba = [r,g,b,a];
 return [
 rgba[order[0]],
 rgba[order[1]],
 rgba[order[2]],
 rgba[order[3]]
];
};

The last method, monoColor(), sets each pixel’s RGB component to a particu-
lar color, using the starting pixel’s gray value as an alpha component. When the
function is called, the fourth parameter defines the desired color as an array of
RGB values—in our case, blue with color= [0, 0, 255]:

var monoColor = function(r,g,b,a,color) {
 return [
 color[0],
 color[1],
 color[2],
 255-(parseInt((r+g+b)/3.0))
];
};

The filters we have introduced here are still rather simple, changing the color
values of individual pixels without taking into account the neighboring pixels. If
you factor these into the calculation, you can achieve more complex methods,
such as sharpen, unsharp mask, or edge detection.

Discussing such filters in detail would go beyond the scope of this book. If you 
want  to  explore  more,  check  out  Jacob  Seidelin’s  Pixastic Image Processing
Library (http://www.pixastic.com/lib). More than 30 JavaScript filters, available 
free under the Mozilla Public License, are just waiting to be discovered.

In the meantime, let’s turn to Thomas Porter and Tom Duff, two Pixar Studios
gurus who created a sensation back in 1984 with their article on alpha blending
techniques. The digital compositing techniques they described not only earned
them a prize at the Academy of Motion Picture Arts and Sciences, but also found
their way into the Canvas specification.

NOTE

http://www.pixastic.com/lib

5.9 Compositing 149

5.9 Compositing
The possibilities of compositing in Canvas are many and varied, but you will
only find a few good examples of their use on the Internet. Most are limited to
presenting the methods per se, and to start with, that’s what we will do, too. Fig-
ure 5.30 shows valid keywords of the globalCompositeOperation attribute, their
Porter-Duff equivalent (in italics, with A,B), and the result after drawing.

First, we draw the blue rectangle as background, then we set the desired com-
posite method, and finally we add the red circle. So for the first method, source-
over, which is also the default value of the globalCompositeOperation attribute,
the code looks like this:

context.beginPath();
context.fillStyle = 'cornflowerblue';
context.fillRect(0,0,50,50);
context.globalCompositeOperation = 'source-over';
context.arc(50,50,30,0,2*Math.PI,0);
context.fillStyle = 'crimson';
context.fill();

The image looks like that shown in Figure 5.30.

Figure 5.30  Values of the “globalCompositeOperation” attribute

Chapter 5—Canvas 150

The circle is the source (A); the rectangle is the destination (B). Let’s use the Porter-
Duff terms to explain the different methods, because they are much more intui-
tive and describe more precisely what is going on.

With source-over, we draw A over B; with source-in, only that part of A that is
in B; with source-out, only that part of A that is outside of B; and with source-
atop, we draw both A and B but only the part of A that overlaps B. The second
line reverses the whole thing, so we do not need to explain it again.

The method lighter adds colors in the overlapping area, which makes it lighter.
copy eliminates B and only draws A, and xor removes the intersection of A and
B. The question mark indicates that vendor-specific composting operations are
also allowed, similar to the getContext() method.

Unfortunately, compositing is not yet fully implemented in any browser, which
makes it difficult to sensibly present all methods. We will pick two and take a look
at some examples for using the operations destination-in and lighter.

If we use destination-in to combine image and text, we can achieve a cutout
effect, as shown in Figure 5.31. First, we draw the image with drawImage(), set
the compositing method, and then insert the text with a maximum width of 1080
pixels. The text formatting corresponds to a font-size of 600 px with a text an-
chor point at the center top and a 60 pixel border with round line caps and joins:

context.drawImage(image,0,0,1200,600);
context.globalCompositeOperation = 'destination-in';
context.strokeText('HTML5',600,50,1080);

5.9 Compositing 151

Figure 5.31  Compositing operation “destination-in” with image and text

The light gray text is again written with the default compositing method source-
over and therefore not affected by the effect. Currently, it is not possible to define
several texts as cutout at the same time because of the already mentioned short-
fall in browser implementation.

Our second example uses the method lighter, expanding the previously men-
tioned options for color manipulation in images. With lighter, Figure 5.32 com-
bines the Yosemite picture with 16 rectangles in the named standard colors,
offering a CPU-friendly alternative to the color filter monoColor() mentioned in
section 5.8.2, Color Manipulation with “getImageData()”, “createImageData()”,
and “putImageData()”. So we could implement the example used in that section
differently and achieve a similar result:

context.drawImage(img,0,0,210,140);
context.globalCompositeOperation = 'lighter';
context.fillStyle = 'blue';
context.fillRect(0,0,210,140);

Chapter 5—Canvas 152

Figure 5.32  Compositing operation “lighter” with 16 base colors

We will encounter the compositing operator destination-out once more in the
mirror effect in Figure 5.37 in section 5.11, Transformations. Let’s first turn to
user-defined patterns in Canvas.

5.10 Patterns

To create user-defined patterns for fills and lines, the specification offers the
method createPattern(). Similar to drawImage(), it accepts both image elements
and canvas or video elements as input, defining the type of pattern repetition in
the parameter repetition:

context.createPattern(image, repetition)

Permitted values of the repetition argument are, as with the CSS specification’s
background-color attribute, repeat, repeat-x, repeat-y, and no-repeat. If we
again use the 16 named basic colors, we can use a few lines of code to create
checkered patterns, each with two pairs of colors (see Figure 5.33).

5.10 Patterns 153

Figure 5.33  Checkered pattern in eight color combinations

The pattern is created as an in-memory canvas with a 20 × 20 pixel width and four
10 × 10 pixel squares. Illustrated using the example of the green pattern, this step
looks as follows:

var cvs = document.createElement("CANVAS");
cvs.width = 20;
cvs.height = 20;
var ctx = cvs.getContext('2d');
ctx.fillStyle = 'lime';
ctx.fillRect(0,0,10,10);
ctx.fillRect(10,10,10,10);
ctx.fillStyle = 'green';
ctx.fillRect(10,0,10,10);
ctx.fillRect(0,10,10,10);

We then define the canvas cvs as a repeating pattern using createPattern(), as-
sign it to the attribute fillStyle, and use it to fill the square:

context.fillStyle = context.createPattern(cvs,'repeat');
context.fillRect(0,0,220,220);

Chapter 5—Canvas 154

Patterns are anchored to the coordinate origin and applied starting from that
point. If we were to begin fillRect() in the preceding example ten pixels to the
right, at 10/0 instead of at 0/0, the first color in the top-left corner would be green
instead of lime.

In addition to user-defined canvas elements, we can also use images as sources
of patterns. Figure 5.34 shows an example using createPattern() to fill the back-
ground, to create a pattern for the title text, and to cut out individual sections
of the familiar Yosemite picture. The two other pictures, pattern_107.png and
pattern_125.png, are part of the Squidfingers pattern library, where you have
the choice of nearly 160 other appealing patterns to download: http://www.
squidfingers.com/patterns.

Figure 5.34  Pattern using images as a source

Let’s first look at how the background is created:

var bg = new Image();
bg.src = 'icons/pattern_125.png';
bg.onload = function() {
 context.globalAlpha = 0.5;
 context.fillStyle = context.createPattern(bg,'repeat');
 context.fillRect(0,0,canvas.width,canvas.height);
};

http://www.squidfingers.com/patterns
http://www.squidfingers.com/patterns

5.10 Patterns 155

The first two lines create a new Image object, setting its src attribute to the image
pattern_125.png in the folder icons. Just as with drawImage(), we need to make
sure that the image is really loaded before defining the pattern. The function
bg.onload() contains the real code for generating the repeating pattern, which
we apply at 50% opacity to the whole canvas area. With the same procedure, we
fill the title text Yosemite! with the image pattern_107.png.

For the overlapping image sections, we simply enter the whole Yosemite photo
yosemite.jpg as the pattern and then work in a for loop through the input array
extents, which contains the x-, y-, width-, and height-values of the sections we
want. By calling fillRect(), the relevant image area is shown as fill pattern and
receives an additional border with strokeRect():

var extents = [
 { x:20,y:50,width:120,height:550 } // and 7 others ...
];
var image = new Image();
image.src = 'images/yosemite.jpg';
image.onload = function() {
 context.fillStyle = context.createPattern(
 image,'no-repeat'
);
 for (var i=0; i<extents.length; i++) {
 var d = extents[i]; // short-cut
 context.fillRect(d.x,d.y,d.width,d.height);
 context.strokeRect(d.x,d.y,d.width,d.height);
 }
};

Three different images are used in Figure 5.34, and all three must be fully loaded
before they can be used, so we need to nest the three onload functions. This en-
sures that we can control the correct order during drawing. The pseudo-code for
a possible nesting looks like this:

// create all images
bg.onload = function() {
 // draw background
 image.onload = function() {
 // add image cutouts
 pat.onload = function() {
 // fill title with pattern
 };
 };
};

The only option to avoid this kind of nesting would be to link all involved images
in the page’s HTML code as hidden img elements via visibility:hidden and to
reference them with getElementById() or getElementsByTagName() after loading
the page in window.onload().

Chapter 5—Canvas 156

Before moving on to another section of the Canvas specification, Transforma-
tions, we should mention that when using a video element as the source of cre-
atePattern(), the first frame of the video or the poster frame, if present, is used
as a pattern, similar to the drawImage() method.

5.11 Transformations

Canvas transformations manipulate the coordinate system directly. When mov-
ing a rectangle, you are not only moving the actual element, but also shifting the
whole coordinate system and only then redrawing the rectangle. The three basic
transformations are scale(), rotate(), and translate(), as shown in Figure 5.35.

Figure 5.35  The basic transformations “scale()”, “rotate()”, and “translate()”

context.scale(x, y)
context.rotate(angle)
context.translate(x, y)

For scaling via scale(), we need two multiplicands as arguments for the size
change of the x and y dimension, rotations using rotate() require the angle of
clockwise rotation in radiant, and moving via translate() defines offsets in x- und
y-directions in pixels. If combining these methods, the individual transformations

5.11 Transformations 157

must be carried out in reverse order: In terms of JavaScript code, they basically
must be read from back to front.

To first scale and then rotate, we write:

context.rotate(0.175);
context.scale(0.75,0.75);
context.fillRect(0,0,200,150);

If we want to rotate first and then translate, the JavaScript code would have to be:

context.translate(100,50);
context.rotate(0.175);
context.fillRect(0,0,200,150);

You need to be careful in any case where rotations are involved, because they are
always carried out with the origin 0/0 as the center of rotation. The rule of thumb
is that rotate() is usually the last action. Figure 5.36 shows an example using all
three basic methods, depicting our Yosemite image from a different perspective
as a kind of ski jump.

Figure 5.36  Rotate, scale and move

Chapter 5—Canvas 158

Listing 5.2 shows the very short source code in Figure 5.36.

Listing 5.2  Source code of the transformations shown in Figure 5.36

image.onload = function() {
 var rotate = 15;
 var scaleStart = 0.0;
 var scaleEnd = 4.0;
 var scaleInc = (scaleEnd-scaleStart)/(360/rotate);
 var s = scaleStart;
 for (var i=0; i<=360; i+=rotate) {
 s += scaleInc;
 context.translate(540,260);
 context.scale(s,s);
 context.rotate(i*-1*Math.PI/180);
 context.drawImage(image,0,0,120,80);
 context.setTransform(1,0,0,1,0,0);
 }
};

As soon as the image is loaded, we define the angle of rotation rotate as 15°, the
start and end scaling scaleStart as 0.0 and scaleEnd as 4.0, and derived from this
the increment for scaling scaleInc with the aim of achieving the end scale 4.0
within a full rotation. In the for loop we then rotate the image counterclockwise
by 15° each time, scale it from 0.0 to 4.0, and set its top-left corner to the coordi-
nate 540/260.

So why do we have the method setTransform() at the end of the for loop?

Apart from the basic transformations scale(), rotate(), and translate(), Can-
vas offers two other methods for changing the coordinate system and therefore
the transformation matrix: transform() and setTransform(), which were already
mentioned in Listing 5.2:

context.transform(m11, m12, m21, m22, dx, dy);
context.setTransform(m11, m12, m21, m22, dx, dy);

Both have the arguments m11, m12, m21, m22, dx, and dy in common, representing
the transformation properties listed in Table 5.3.

5.11 Transformations 159

Table 5.3  Components of a Canvas matrix transformation

Component Content

m11 Scale in x-axis

m12 Horizontal shear

m21 Vertical shear

m22 Scale in y-axis

dx Translate along x-axis

dy Translate along y-axis

The main difference between them is that transform() changes the current
transformation matrix via multiplication, whereas setTransform() overwrites
the existing matrix with the new one.

The three basic methods could also be formulated as attributes of transform()
or setTransform() and are basically nothing else than convenient shortcuts for
corresponding matrix transformations. Table 5.4 lists these attributes and oth-
er useful matrices for flipping (flipX/Y) and skewing (skewX/Y). The angles for
skewing are again specified in radiant.

Table 5.4  Matrices of basic transformations and other useful transformation methods

Method Transformation Matrix (m11, m12, m21, m22, dx, dy)

scale(x, y) x,0,0,y,0,0

rotate(angle) cos(angle),sin(angle), -sin(angle), cos(angle),0,0

translate(x, y) 1,0,0,1,x,y

flipX() -1,0,0,1,0,0

flipY() 1, 0, 0, -1, 0, 0

skewX(angle) 1,0,tan(angle),1,0,0

skewY(angle) 1,tan(angle),0,1,0,0)

Before further exploring Canvas transformations using a detailed example,
we should mention that both getImageData() and putImageData() are not af-
fected by transformations, according to the specification. The call getImageDa-
ta(0,0,100,100) always gets the 100 × 100 pixel square in the top-left corner of
the canvas regardless of whether the coordinate system was translated, scaled,

Chapter 5—Canvas 160

or rotated. The same goes for putImageData(imagedata,0,0), where the top-left
corner serves as an anchor point for applying the content of imagedata.

Let’s move on to the example where we will apply all mentioned transformation
methods. Figure 5.37 shows the appealing result—a collage of three image sec-
tions of our Yosemite picture with mirror effect in pseudo-3D.

Figure 5.37  Photo collage with mirror effect in pseudo-3D

Let’s start by punching out the three square sections for Taft Point, Merced River,
and El Capitan. The result will be saved in the array icons:

var icons = [
 clipIcon(image,0,100,600,600),
 clipIcon(image,620,615,180,180),
 clipIcon(image,550,310,400,4];

The function clipIcon() takes care of clipping and adapting the size of the dif-
ferently sized image portions. In this function, we first create a new in-memory
canvas with a size of 320 × 320 pixels, onto which we then copy the appro-
priately reduced (or enlarged) icon with drawImage() before adding a 15-pixel
white border:

5.11 Transformations 161

var clipIcon = function(img,x,y,width,height) {
 var cvs = document.createElement("CANVAS");
 var ctx = cvs.getContext('2d');
 cvs.width = 320;
 cvs.height = 320;
 ctx.drawImage(img,x,y,width,height,0,0,320,320);
 ctx.strokeStyle = '#FFF';
 ctx.lineWidth = 15;
 ctx.strokeRect(0,0,320,320);
 return cvs;
};

In a second step, we create the reflection effect for each of these three image sec-
tions and save it in the array effects:

var effects = [];
 for (var i=0; i<icons.length; i++) {
 effects[i] = createReflection(icons[i]);
}

The main work is done in the function createReflection(), the slightly modi-
fied code of which has been taken from a blog post in Charles Ying’s blog about
art, music, and the art of technology about the iPhone’s CoverFlow effect (see the
shortened web link http://bit.ly/b5AFW6):

var createReflection = function(icon) {
 var cvs = document.createElement("CANVAS");
 var ctx = cvs.getContext('2d');
 cvs.width = icon.width;
 cvs.height = icon.height/2.0;

 // flip
 ctx.translate(0,icon.height);
 ctx.scale(1,-1);
 ctx.drawImage(icon,0,0);

 // fade
 ctx.setTransform(1,0,0,1,0,0);
 ctx.globalCompositeOperation = "destination-out";
 var grad = ctx.createLinearGradient(
 0,0,0,icon.height/2.0
);
 grad.addColorStop(0,'rgba(255,255,255,0.5)');
 grad.addColorStop(1,'rgba(255,255,255,1.0)');
 ctx.fillStyle = grad;
 ctx.fillRect(0,0,icon.width,icon.height/2.0);
 return cvs;
};

http://bit.ly/b5AFW6

Chapter 5—Canvas 162

In createReflection() we first use another in-memory canvas to flip the lower
half of the image section passed in icon. Thinking back to the shortcuts for trans-
formation matrices, we could achieve flipping via the matrix for flipY(). But in
this case we use another option of creating reflection, using the method scale(),
where scale(1,-1) corresponds to the method flipY() and scale(-1,1) corre-
sponds to the method flipX(). The fade-out effect is achieved via a gradient from
semitransparent white to opaque white, placed over the icon using the composit-
ing method destination-out.

Now we have defined the individual image sections and can start drawing. A
black/white gradient with almost complete black in the center of the gradient
creates the impression of 3D space, in which we then place the three images:

var grad = context.createLinearGradient(
 0,0,0,canvas.height
);
grad.addColorStop(0.0,'#000');
grad.addColorStop(0.5,'#111');
grad.addColorStop(1.0,'#EEE');
context.fillStyle = grad;
context.fillRect(0,0,canvas.width,canvas.height);

The center picture of Merced River is the easiest to position via setTransform();
we can then draw it with a reflection effect:

context.setTransform(1,0,0,1,440,160);
context.drawImage(icons[1],0,0,320,320);
context.drawImage(effects[1],0,320,320,160);

The width of the El Capitan image on the right is scaled by 0.9 to achieve a better
3D effect. The result is skewed by 10° downward via the matrix for skewY() and
positioned to the right of the center:

context.setTransform(1,0,0,1,820,160);
context.transform(1,Math.tan(0.175),0,1,0,0);
context.scale(0.9,1);
context.drawImage(icons[2],0,0,320,320);
context.drawImage(effects[2],0,320,320,160);

Drawing the Taft Point image on the left is a bit more complicated. After skewing,
the top-left corner of our section forms the anchor point; we then have to skew
upward by 10° and then move the result downward again. Pythagoras’ theorem
will help us determine the required dy value: It results as tangent of the rotation
angle in radians multiplied by the length of the cathetus corresponding to the
width of the icon, so Math.tan(0.175)*320. We also have to compensate for scal-
ing the image width by 0.9 by shifting it to the right by 320*0.1:

5.12 Base64 Encoding with “canvas.toDataURL()” 163

context.setTransform(1,0,0,1,60,160);
context.transform(1,Math.tan(-0.175),0,1,0,0);
context.translate(320*0.1,Math.tan(0.175)*320);
context.scale(0.9,1);
context.drawImage(icons[0],0,0,320,320);
context.drawImage(effects[0],0,320,320,160);

We have now completed our most difficult Canvas example so far. The result is
quite impressive, so we should probably save it as JPEG or PNG file. Unlike the
other browsers, Firefox makes it easy for you—just right-click on the canvas to
save your creation. If you click on View Image, a bizarre and very, very, very long
URL address appears, starting with data:image/png;base64..., which takes us
straight to the next section—canvas.toDataURL().

5.12 Base64 Encoding with “canvas.toDataURL()”

Base64 describes a method of encoding binary data as ASCII strings. In Canvas it
is used to turn the canvas content, which only really exists as raster in memory,
into a processable data: URL. The method to achieve this is

canvas.toDataURL(type, args)

We pass the MIME type of the desired output format as type using either image/
png or image/jpeg. The former is the default encoding format and is also used if
we omit type or specify a format with which the browser cannot cope. Any ad-
ditional parameters can be accommodated by the optional argument args—for
example, the image quality if selecting image/jpeg with valid numbers between
0.0 and 1.0.

The result of toDataURL() is a base64-encoded string. In the case of the 2 × 2 pixel
canvas in the named colors navy, teal, lime, and yellow of Figure 5.27, it looks
as follows:


AAAAIAAAACCAYAAABytg0kAAAAF0lEQVQImQXBAQEAAA
CCIKb33ADLFql0PuYIemXXHEQAAAAASUVORK5CYII=

These encoded strings can get rather long. The base64 version of our photo col-
lage with the reflection effect, for example, has no less than 1,298,974 characters
and would fill 325 pages of this book (with each page containing 50 lines of 80
characters each)!

So what is toDataURL()used for? Why convert binary image data to charac-
ter strings? The answer is simple: With toDataURL(), we can make the fleeting

Chapter 5—Canvas 164

in-memory canvas permanently available in HTML, enabling the user or an ap-
plication to save it.

The first use of toDataURL() is copying a Canvas graphic into an HTMLImageEle-
ment. This becomes possible because the src attribute can also be a data: URI.
The necessary code is short and requires an empty image in addition to a dy-
namically created canvas:

<!DOCTYPE html>
<title>Copy canvas onto image</title>

<script>
 var canvas = document.createElement("CANVAS");
 canvas.width = 200;
 canvas.height = 200;
 var context = canvas.getContext('2d');
 context.fillStyle = 'navy';
 context.fillRect(0,0,canvas.width,canvas.height);
 document.images[0].src = canvas.toDataURL();
</script>

The crucial line in the listing is printed in bold and shows how easy it is to copy—
define the reference to the first image in the document and specify its src attri-
bute as canvas.toDataURL(). As a result, we get a regular img element, which we
treat just like any other image in the browser and can save as PNG.

With a simple onclick handler on the canvas element, we demonstrate the next
use of toDataURL()—directly assigning the resulting data: URI as URL, but this
time the output is not as PNG, but as JPEG:

document.images[0].onclick = function() {
 window.location = canvas.toDataURL('image/jpeg');
};

The disadvantages of this method are that the URL can get painfully long some-
times (remember the 1.3 million characters?), and the fact that images in this
format do not end up in the cache and therefore must be created anew with
every call. Other potential applications of toDataURL() are with localstorage or
XMLHttpRequest, allowing saving and accessing existing Canvas graphics both
on the client side and server side. toDataURL() also serves us well for creating
CSS styles with background-image or list-style-image where we can insert it as
url() value.

5.13 “save()” and “restore()” 165

5.13 “save()” and “restore()”

Our journey through CanvasContext2D is nearly at an end. Only two methods are
left to explain: context.save() and context.restore(). Without them, we could
probably not manage any complex Canvas graphics; if you had a quick glance at
the figures’ source code, you would probably agree. To help you better under-
stand the methods context.save() and context.restore(), we need to recapitu-
late first.

By defining the drawing context with canvas.getContext('2d'), all attributes are
assigned default values, which then have a direct effect when drawing:

context.globalAlpha = 1.0;
context.globalCompositeOperation = 'source-over';
context.strokeStyle = 'black';
context.fillStyle = 'black';
context.lineWidth = 1;
context.lineCap = 'butt';
context.lineJoin = 'miter';
context.miterLimit = 10;
context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context.shadowBlur = 0;
context.shadowColor = 'rgba(0,0,0,0)';
context.font = '10px sans-serif';
context.textAlign = 'start';
context.textBaseline = 'alphabetic';

At the same time, the coordinate system is initialized with the identity matrix,
and a clipping mask is created, which comprises the entire canvas area:

context.setTransform(1, 0,0,1,0,0);
context.beginPath();
context.rect(0,0,canvas.width,canvas.height);
context.clip();

If we change attributes, transformations, or clipping masks, they remain valid
until we change them again. In more complicated graphics, it is easy to lose track
of all these changes. This is where context.save() and context.restore() be-
come useful.

With context.save(), we can create a snapshot at any time, which saves the cur-
rently set attributes and transformations while taking into account the current
clipping mask. Later, we can easily access this snapshot with context.restore().
The specification mentions the stack of drawing states in this context, because
snapshots can also be nested.

Chapter 5—Canvas 166

This technique is excellent where transformations or clipping masks are con-
cerned. And for shadow effects, it is much easier to reset the four shadow com-
ponents back to their default values with context.save() and context.restore()
than setting each component individually. For the animations we will discuss
next, context.save() and context.restore() are practically indispensable.

5.14 Animations

Unlike SVG or SMIL animations, Canvas animations are done purely manually.
The ingredients are a function for drawing plus a timer calling it in regular inter-
vals. JavaScript offers window.setInterval() for this purpose; the rest is up to the
imagination of the Canvas programmer.

5.14.1  Animation with Multicolored Spheres
This is our animation premiere: Spheres of different colors appear in random
places on the canvas, fade slowly, and are covered by other spheres. The anima-
tion speed should correspond to an adult’s resting pulse of about 60 beats per
minute. As an additional feature, we want to be able to stop or restart the anima-
tion by clicking on the canvas.

About 50 lines of JavaScript code are sufficient. But before turning to the analysis
of Listing 5.3, let’s look at a static screen shot of the result in Figure 5.38.

5.14 Animations 167

Figure 5.38  Animation with multicolored spheres

Listing 5.3  JavaScript code for animation with multicolored spheres

var canvas = document.querySelector("canvas");
var context = canvas.getContext('2d');
var r,cx,cy,radgrad;

var drawCircles = function() {
 // fade existing content
 context.fillStyle = 'rgba(255,255,255,0.5)';
 context.fillRect(0, 0,canvas.width,canvas.height);

 // draw new spheres
 for (var i=0; i<360; i+=15) {
 // random position and size
 cx = Math.random()*canvas.width;
 cy = Math.random()*canvas.height;
 r = Math.random()*canvas.width/10.0;

 // define radial gradient
 radgrad = context.createRadialGradient(
 0+(r* 0.15),0-(r* 0.25),r/3.0,
 0,0,r
);
 radgrad.addColorStop(0.0,'hsl('+i+',100%,75%)');
 radgrad.addColorStop(0.9,'hsl('+i+',100%,50%)');

Chapter 5—Canvas 168

 radgrad.addColorStop(1.0,'rgba(0,0,0,0)');

 // draw circle
 context.save();
 context.translate(cx,cy);
 context.beginPath();
 context.moveTo(0+r,0);
 context.arc(0,0,r,0,Math.PI*2.0,0);
 context.fillStyle = radgrad;
 context.fill();
 context.restore();
 }
};
drawCircles(); // draw first set of spheres

// start/stop animation at pulse speed
var pulse = 60;
var running = null;
canvas.onclick = function() {
 if (running) {
 window.clearInterval(running);
 running = null;
 }
 else {
 running = window.setInterval(
 "drawCircles()",60000/pulse
);
 }
};

After defining canvas, context, and some other variables, the proper work starts
with the function drawCircles(). A semitransparent white rectangle fades exist-
ing content from previous drawCircles() calls, and then the for loop draws new
spheres. The position of each sphere and its radius are randomized once again
with Math.random(), placing the center in each case into the canvas area and lim-
iting the radius to a tenth of the canvas width.

To make sure the circles look like spheres, we create a radial gradient. Its ge-
ometry consists in a light spot at the top right and the total circle. The choice of
increment of the for loop reflects the desire to have colors in HSL color space
as colorStops of the gradient. With each loop, the color angle increases by 15°,
causing the color change from red to green to blue and back to red.

We can then in each case derive pairs of matching colors from the lightness:
The first one represents the light spot and the second one the darker color near
the sphere’s edge. The third call of addColorStop() causes the very edges of the
sphere to fade to transparent black. We create a total of 24 spheres in this way; to
make things clearer, the spheres’ color pairs are shown in Figure 5.39.

5.14 Animations 169

Figure 5.39  HSL colors for multicolored spheres animation

Then the sphere is drawn as a circle with the defined gradient. Embedding in
context.save() and context.restore() ensures that the temporary displace-
ment with translate() is not applied to the subsequent circles. Now the func-
tion drawCircles() is complete, and we can draw a first set of spheres and then
move on to the timer.

About 15 lines are sufficient to implement starting and stopping the animation
via an onclick event listener. With the first click on the canvas, we start the ani-
mation with window.setInterval() and save the unique interval ID in the vari-
able running. Times are specified in milliseconds for window.setInterval(), so
we need to convert the beats per minute accordingly in the variable pulse.

Once the animation is running, the unique interval ID is assigned to the vari-
able running, and with the next click, we can interrupt it using window.
clearInterval(running). If we then set running back to null, the next click on
the canvas signals: no animation is running. In this case, we restart and the fun
starts over.

5.14.2  Playing a Video with “drawImage()”
As you already know from section 5.7, Embedding Images, an HTMLVideoElement
can also be used as a source for drawImage(). But if you are hoping that videos
embedded in this way will play automatically, you will be disappointed, because
the logic for this must be implemented fully in JavaScript. This is not difficult,
as you can see from the final Canvas animation example—an extension of our
Yosemite National Park postcard in Figure 5.25. Instead of the static image sec-
tion with El Capitan, we now place a dynamic video into the top-right corner,
offering a 360° panoramic view from Taft Point. While the video is playing, ten
small snapshots of the running video appear as a gallery along the bottom of the
canvas. After the end of the video, you can see the picture shown in Figure 5.40.

Chapter 5—Canvas 170

Figure 5.40  Yosemite National Park video postcard

The video was kindly provided by YouTube user pos315, converted to WebM via 
ffmpeg,  and  reduced  to 320 × 240 pixels.  You can see  the original online at 
http://www.youtube.com/watch?v=NmdHx_7b0h0.

Unlike images, which up to now have always found their way into the canvas via
the JavaScript method new Image(), we integrate the panoramic view directly
into the HTML page as a video element. As additional attributes, we need pre-
load, oncanplay as an event listener to give us the point in time when we can lay
out the postcard and prepare for starting and stopping, and a style instruction
for hiding the embedded original video. We only use the original video to copy
the current video frame onto the canvas in brief intervals during playing. The
alternative text for browsers without video support gives a quick reference to the
content of the video:

<video src="videos/yosemite_320x240.webm"
 preload="auto"
 oncanplay="init(event)"
 style="display:none;"
>

NOTE

http://www.youtube.com/watch?v=NmdHx_7b0h0

5.14 Animations 171

Panoramic view of Yosemite Valley from Taft Point
</video>

To ensure that the function init(event) as a reference in the oncanplay attribute
really exists, we set the script element before our video element. The schemat-
ic structure of this central function, which implements both the layout and the
function of the video postcard, looks like this:

var init = function(evt) {
 // save reference to video element
 // create background image
 image.onload = function() {
 // draw background image
 // add title
 // draw first frame
 canvas.onclick = function() {
 // implement starting and stopping
 // copy video frames while playing
 // create icons at regular intervals while playing
 };
 }
};

The reference to the video object of the video element can be found in evt.tar-
get, and we save it in the variable video. As before, we create a new background
image via new Image(), and as soon as the image is fully loaded, we continue
drawing the background and title. The steps up to this point probably do not re-
quire further explanation, but perhaps we should explain drawing the first frame:

context.setTransform(1,0,0,1,860,20);
context.drawImage(video,0,0,320,240);
context.strokeRect(0,0,320,240);

We first position the coordinate system at the top-right corner with setTrans-
form(), and then draw the first frame with a border using draw-Image(). This
procedure will later be repeated over and over while playing, and it is crucial
that the HTMLVideoElement video of the drawImage() method always offers the
image of the current frame.

Stopping, starting, and then copying the current frames of the original video
running in the background, as well as creating scaled-down image sections, is
implemented via the function canvas.onclick() by clicking on the canvas. List-
ing 5.4 shows the JavaScript code needed to do all that:

Chapter 5—Canvas 172

Listing 5.4  Code for animating the video postcard

var running = null;
canvas.onclick = function() {
 if (running) {
 video.pause();
 window.clearInterval(running);
 running = null;
 }
 else {
 var gap = video.duration/10;
 video.play();
 running = window.setInterval(function () {
 if (video.currentTime < video.duration) {
 // update video
 context.setTransform(1,0,0,1,860,20);
 context.drawImage(video,0,0,320,240);
 context.strokeRect(0,0,320,240);
 // update icons
 var x1 = Math.floor(video.currentTime/gap)*107;
 var tx = Math.floor(video.currentTime/gap)*5;
 context.setTransform(1,0,0,1,10+tx,710);
 context.drawImage(video,x1,0,107,80);
 context.strokeRect(x1,0,107,80);
 }
 else {
 window.clearInterval(running);
 running = null;
 }
 },35);
 }
};

As in the first animation example, the variable running contains the unique in-
terval ID of window.setInterval() and allows for controlling the animation. If a
value is assigned to running, we pause the hidden video with video.pause(), stop
copying frames by removing the interval, and set running back to null. Other-
wise, we start the video with video.play() at the first or next click and copy the
current video frame onto the canvas in the callback function of the interval ev-
ery 35 milliseconds. We continue the whole process until the video has finished
playing or the canvas is clicked again. The two attributes video.currentTime and
video.duration of the video object in the variable video can help check whether
the current playback position is still less than the total time of the video.

Drawing the copied video at the top right happens in parallel to drawing the first
frame. For the strip of mini snapshots, we use the total length of the video and the
desired number of snapshots to calculate the interval gap after which we need to
shift the anchor point x1 further right with a small gap tx. As long as x1 has the
same value, the animation in the reduced-size image keeps running . If x1 is shift-
ed to the right, the last frame remains static and the animation continues running

5.15 Anything Still Missing? 173

from the new position. After about 40 seconds of playing time, the video is over,
ten new mini snapshots have been drawn, and we can restart the sequence all
over again by clicking on the canvas.

That’s it for now for our video postcard. But before we can finish this chapter, we
need to mention a few more topics.

5.15 Anything Still Missing?

The next section describes the method isPointInPath() and considers aspects of
accessibility and security in Canvas. The chapter concludes with a quick update
on the improved level of browser support and a selection of links for all those
who want to find out more about Canvas.

5.15.1  “isPointInPath(x, y)”
As you can guess from the method’s name, isPointInPath() returns either true
or false, depending on whether the point specified by the coordinates x/y is in-
side or outside of the current path. A brief example demonstrates the application
of this method; in this case, it returns true in alert():

context.beginPath();
context.rect(50,50,100,100);
alert(
 context.isPointInPath(75,75)
);

One practical use of isPointInPath() is for determining if the user has clicked
on a particular area of the canvas. All we need for this is an onclick event han-
dler, which uses the mouse position in clientX/clientY and the position of the
canvas element in offsetLeft/offsetTop to calculate the current x/y position in
relation to the canvas area:

canvas.onclick = function(evt) {
 context.beginPath();
 context.rect(50,50,100,100);
 alert(
 context.isPointInPath(
 evt.clientX - canvas.offsetLeft,
 evt.clientY - canvas.offsetTop
)
);
};

Chapter 5—Canvas 174

Unfortunately, isPointInPath() does not allow for path transformations: Even if
we had moved the coordinate system 200 pixels to the right before issuing the be-
ginPath() instruction, clicking on the coordinate 75/75 would still return true. It
does, however, take the non-zero fill rule into account when determining inside/
outside; as already indicated for the two code examples, the path to be tested does
not necessarily have to be drawn with fill() or stroke().

5.15.2  Accessibility in Canvas?
The question mark in this section heading is deliberate: Canvas is definitely still
lacking with regard to accessibility. This is partly due to the fact that during the
conception of Canvas, accessibility was given hardly any attention, and partly
due to the nature of the issue—raster-based formats without DOM are innately
anything but accessible.

In the context of the HTML5 specification, SVG with its DOM would probably
be better suited for realizing accessible content. But practice proves that even
big projects, such as the web-based code editor Skywriter (https://mozillalabs.
com/skywriter), use Canvas instead of SVG for the sake of performance, which
really breaks the basic rule stated at the beginning of the HTML5 specification’s
Canvas section: Authors should not use the canvas element in a document when a
more suitable element is available.

The second requirement, demanding that when authors use the canvas element,
they must also provide content that, when presented to the user, conveys essential-
ly the same function or purpose as the bitmap canvas, also does not hold true in
reality. The area between the canvas start tag and end tag would be intended for
such alternatives but is usually only used to specify fallback content for browsers
without Canvas support.

For interactive Canvas applications, the HTML Canvas 2D Context specifica-
tion also suggests including focusable HTML elements in the fallback content,
for example, an input element for each focusable area of the canvas. Authors
should use the method drawFocusRing() to mark with a ring those areas of the
canvas that currently have the focus in fallback. The example listed in the speci-
fication in this context, with a couple of checkboxes that are meant to be kept
synchronous in the fallback and canvas area via drawFocusring(), demonstrates
how complicated the whole thing is and leads us to suspect that this is not the
best solution.

Since July 2009, the Canvas Accessibility Task Force has been trying to remedy
the unsatisfactory situation. They are investigating potential improvements of
focus and cursor management. The first lot of suggestions are on the table, be-
ing discussed intensely, and may well find their way into the specification in one
form or another.

But until that happens, we will just have to deal with it: Accessibility—please hold!

https://mozillalabs.com/skywriter
https://mozillalabs.com/skywriter

5.15 Anything Still Missing? 175

5.15.3  Security Aspects
From a security point of view, accessing images and their content (pixels) via
scripts in other domains is especially problematic in Canvas. The specification
refers to this as information leakage and tries to counter this leakage with the
origin-clean flag.

The concept of origin-clean is two-stage and mainly based on certain method
calls and attribute assignments setting the origin-clean flag from true to false
during a running script. If getImageData() or todataURL() are called in such a
case, the script aborts with a SECURITY_ERR exception.

The main protagonists are drawImage(), fillStyle, and strokeStyle. They con-
tribute to a redefinition of the origin-clean flag whenever images or videos from
another domain, or canvas elements that are not origin-clean themselves, come
into play.

Assuming that the variable image contains a reference to the WHATWG logo at
http://www.whatwg.org/images/logo and the script is not running on the WHAT-
WG server, the following drawImage() call sets the origin-clean flag to false:

context.drawImage(image,0,0);

If we use the logo as a pattern, the properties fillStyle and strokeStyle have
the same result—origin-clean becomes false:

var pat = context.createPattern(image);
context.fillStyle = pat;
context.strokeStyle = pat;

Each call of getImageData() or toDataURL() from that point on will invariably re-
sult in the script being terminated.

In the Firefox browser, this mechanism is handled even more restrictively:
Any images loaded via the file:// protocol are classified as not origin-clean.
So what is the consequence for our chapter? All graphics with a server icon in
the bottom-right corner do not work in Firefox if they are opened locally via
file:// ; instead, they can only be displayed by a web server.

http://www.whatwg.org/images/logo

Chapter 5—Canvas 176

If you do not want to install an Apache server and you have access to Python, you 
can use just one line to start a rudimentary web server in the current directory at 
port 8000 and then address the content of this directory in the browser via the 
url http://localhost:8000:

python -m SimpleHTTPServer

5.15.4  Browser Support
The current versions of Firefox as well as Safari, Chrome, and Opera support a
large part of the Canvas specification. If you want to see Canvas in IE, you will
have to use IE9, which offers hardware-accelerated support for Canvas. This
makes workarounds for IE8 such as Google’s Chrome Frame Plugin (http://
code.google.com/chrome/chromeframe) or the JavaScript shim explorercanvas
(http://code.google.com/p/explorercanvas) obsolete.

As you would expect, there are slight differences in the degree to which those
browsers that already support Canvas have implemented it. A useful source
for determining the degree of implementation is the Canvas Testsuite by Phil-
ip Taylor with approximately 800 tests and a table of test results for the main
browsers at http://philip.html5.org/tests/canvas/suite/tests.

All examples in this Canvas chapter were created with Firefox, as you can see in
the screen shots. At the time of this writing, all examples worked fine in Firefox
except for the representation of fonts in small-caps. Safari, Opera, IE9, and
Chrome also score quite well with our examples—Safari and Opera more so than
IE9 and Chrome.

Because every new release of the common browsers can result in improvements
regarding Canvas implementation, regularly updated details of how the exam-
ples in our book run in different browsers are provided in the Canvas index on
the companion website at http://html5.komplett.cc/code/chap_canvas/index_
en.html.

5.15.5  Further Links
A good starting point for exploring Canvas is a portal describing itself as Home
to applications, games, tools and tutorials that use the HTML 5 <canvas> ele-
ment at http://www.canvasdemos.com; it offers a series of interesting links.
Worth a look is also the extensive Canvas tutorial in Mozilla’s developer center
at https://developer.mozilla.org/en/canvas_tutorial and http://hacks.mozilla.
org/category/canvas, a blog of the Mozilla community focusing on advanced
application examples.

TIP

http://www.canvasdemos.com
https://developer.mozilla.org/en/canvas_tutorial
http://hacks.mozilla.org/category/canvas
http://hacks.mozilla.org/category/canvas
http://code.google.com/chrome/chromeframe
http://code.google.com/chrome/chromeframe
http://code.google.com/p/explorercanvas
http://philip.html5.org/tests/canvas/suite/tests
http://html5.komplett.cc/code/chap_canvas/index_en.html
http://html5.komplett.cc/code/chap_canvas/index_en.html

Summary 177

If you want to get into the details of Canvas, your best bet is the Canvas specifica-
tion. The current version of the two documents can be found at:

 z http://www.w3.org/TR/html5/the-canvas-element.html

 z http://www.w3.org/TR/2dcontext

If you prefer an interactive version with stages of implementation and the op-
tion of leaving comments directly or reporting errors on the individual sections,
go to the WHATWG at http://www.whatwg.org/specs/web-apps/current-work/
multipage/the-canvas-element.html.

Summary

Our journey through the world of Canvas has come to an end. It was a long way
from drawing two overlapping rectangles in red and yellow to programming a
video postcard. You learned how to work with colors, create shadow effects, and
draw lines, Bézier curves, arcs, rectangles, and clipping masks. We spent quite
some time exploring the key features of Canvas—manipulating images and cre-
ating appealing effects by combining pixel manipulation methods with patterns,
transformations, and compositing. We even dared to hand-code animations.
But although this chapter is the longest in the book, it can only provide a small
glimpse into the myriad possibilities offered through Canvas. Many other im-
pressive examples are waiting to be discovered on the Internet—go explore!

http://www.w3.org/TR/html5/the-canvas-element.html
http://www.w3.org/TR/2dcontext
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

This page intentionally left blank

6
SVG and MathML

Just two paragraphs are devoted to the vector standard SVG and the Mathemati-
cal Markup Language MathML in the HTML5 specification. Yet the integration of
these two XML dialects is another milestone on the way toward web applications
of the future. Whereas MathML delights primarily the science sector, everyone
profits from SVG: Incorporating a standardized vector format into the browser is
long overdue. The topic SVG alone fills entire books and would be far beyond the
scope of this book, just as a detailed guide to MathML would not be appropriate
here either. So in this chapter, we will only discuss the integration of SVG and
MathML in an HTML5 document.

Prerequisite for using SVG and MathML in HTML5 is of course the implemen-
tation of both components in the browser. In addition, the parser also has to
recognize svg and math elements and be able to pass their values to the layout
engine to be represented as a graphic. At the time of this writing, only Firefox 4

179

Chapter 6—SVG and MathML 180

fulfilled all the requirements. Figure 6.1 shows the result using the example of
three MathML formulae with corresponding SVG graphics.

Figure 6.1  MathML and SVG in action

6.1 MathML

To explain the necessary markup, let’s use the example with the circle: In List-
ing 6.1 you can see the source code for the formula to calculate the radius r of a
circle with a given area A.

Listing 6.1  MathML markup and formula for circle radius with given area

<math>
 <mrow>
 <mi>r</mi>
 <mo>=</mo>
 <msqrt>
 <mfrac>
 <mrow>
 <mi>A</mi>
 </mrow>
 <mrow>
 <mn>Π</mn>
 </mrow>
 </mfrac>
 </msqrt>
 </mrow>
</math>

6.1 MathML 181

Each MathML block within an HTML5 document begins with <math> and ends
with </math>. In between, you have optional tags for defining the formula—in
our case, six different ones, introduced in the order in which they appear in
Table 6.1.

Table 6.1  The MathML tags of Listing 6.1 and their meaning

Element Name Purpose

mrow row Element for grouping expressions

mi i for identifier Variable, function name, or constant

mo o for operator Operators such as equal, plus, minus, or
multiplication sign

msqrt sqrt for square root Square root expression

mfrac frac for fraction Fractions, division

mn n for number Number

The element mrow for grouping expressions appears three times: once for the
whole expression and then twice more for distinguishing between numerator
and denominator in the division mfrac. Radius r and area A are represented
as mi elements, the equals sign is represented as a mo element, and the root
expression is formed with a msqrt element. For pi we use the mn element in
combination with the MathML entity Π—one of more than 2,000 MathML
entities, which we could also have written as Unicode symbol Π (GREEK
CAPITAL LETTER PI).

The table for converting the named MathML entities to Unicode characters can 
be found  in  the MathML specification at http://www.w3.org/TR/REC-MathML/
chap6/byalpha.html.

The formula for calculating the diagonal of the square in Figure 6.1 contains
another entity as a multiplication sign, × (as Unicode symbol ×
MULTIPLICATION SIGN), and for squaring the rectangle sides a, b in the center
example, we use the msup element (sup for superscript).

Of course, these three MathML examples only show the tip of the iceberg. Start-
ing points for exploring the world of MathML can be found on the following
websites. Do not miss the MathML Basics examples on the Mozilla project demo
page. You will be surprised to see that writing complicated formulas is made pos-
sible by MathML! Check out these websites to learn more about MathML:

NOTE

http://www.w3.org/TR/REC-MathML/chap6/byalpha.html
http://www.w3.org/TR/REC-MathML/chap6/byalpha.html

Chapter 6—SVG and MathML 182

 z MathML specification: http://www.w3.org/TR/MathML

 z W3C Math working group: http://www.w3.org/Math

 z Planet MathML: http://www.w3.org/Math/planet

 z MathML Demos: http://www.mozilla.org/projects/mathml/demo

6.2 SVG

To the right of the relevant MathML formula, you can see the corresponding SVG
graphic that illustrates the formula’s components. Let’s again stick with the ex-
ample of the circle and look at the SVG code in Listing 6.2 for the circle graphic
in Figure 6.1.

Listing 6.2  The SVG source code for the circle graphic

<svg width="100" height="100">
 <circle cx="50" cy="50" r="45"
 fill="none" stroke="black" />
 <path d="M 50 50 h 45"
 stroke="black" stroke-dasharray="5,5"/>
</svg>

At the beginning of the SVG block, we now have <svg> and at the end </svg>.
In contrast to MathML, the start tag also specifies the width and height of the
graphic, reserving the corresponding amount of space on the HTML page. The
circle is a circle element with the center cx/cy and the radius r. The attributes
fill and stroke determine what the circle looks like.

The dashed line to indicate the radius is created via a path element whose
geometry data is determined in its d attribute. Similar to the canvas element,
SVG allows not only lines, but also complex curves in open or closed form as
polygons. The syntax for geometry instructions in the d attribute uses numbers
for coordinates plus letters for identifying the path type, which follows the rel-
evant abbreviation: So, d="M 50 50 h 45" means Move to point 50/50 and then
draw a horizontal line to the right with a length of 45.

The square and rectangle demonstrate that other notations are also possible.
Capital letters indicate absolute movements; lowercase letters indicate relative
movements. The square’s diagonal is created with d="M 10 90 L 90 10". That
would be the equivalent of Move to point 10/90 and then draw a line to point
90/10. The rectangle’s diagonal is done with d="M 5 80 l 90 -75", which means
Move to point 5/80 and then draw a line from there to the point located 90 pixels
to the right and 75 pixels up.

http://www.w3.org/TR/MathML
http://www.w3.org/Math
http://www.w3.org/Math/planet
http://www.mozilla.org/projects/mathml/demo

Summary 183

The dashed lines for the circle radius and the diagonals for the square and rect-
angle are created by the attribute stroke-dasharray, a feature that is unfortu-
nately missing in the Canvas specification. Its attribute value determines the
switch between draw line and insert space, and the switching process is repeated
until the line is finished. For more complicated patterns, any number of values
separated by commas can be entered.

Last but not least, the geometric forms square and rectangle are two rect ele-
ments with x, y, width, and height attributes, which means we have covered all
elements and attributes appearing in the SVG code of the graphics. Of course,
the same applies here as with MathML: This is just the tip of the iceberg, and
this time really just the tiniest top bit of it. Beneath, geometric shapes of all kinds
are lurking, as are mighty path drawing methods, text layouts, transformations,
freely definable coordinate systems, filters, gradients, symbols, masks, patterns,
compositing, clipping, scripting, styling, and even animations.

If you want to dive more deeply into the topic SVG, you should definitely invest
in a book on SVG. The following links offer further opportunities to start explor-
ing the topic online:

 z The SVG specification: http://www.w3.org/TR/SVG11

 z An SVG Primer for Today’s Browsers: http://www.w3.org/Graphics/SVG/
IG/resources/svgprimer.html

 z W3C SVG Working Group: http://www.w3.org/Graphics/SVG

 z Learn SVG: The Web Graphics Standard: http://www.learnsvg.com

Summary

With the arrival of IE9, all browsers finally offer native SVG support, after ten
years of vector standard. We hope the same will apply to MathML; its integration
in the HTML5 specification will play its part, just as it did with SVG. As essential
components of the new web platform, MathML, and especially SVG, will cer-
tainly play an even more important role in the future.

http://www.w3.org/TR/SVG11
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html
http://www.w3.org/Graphics/SVG
http://www.learnsvg.com

This page intentionally left blank

7
Geolocation

The Geolocation API was removed from the core of the HTML5 specification and
is, according to the W3C nomenclature, just in its early stages. But it is already
largely implemented, particularly in mobile browsers. One reason for the rapid
implementation is most likely because the interface is short and abstract: Only
three JavaScript calls cover the whole range of functions. The specification does
not state how the browser has to determine locations, only the format in which
the result should be returned.

After a brief introduction regarding the nature of geographical data, we will dem-
onstrate the new functions using several brief examples. If you try our examples
on a smartphone, you will quickly experience that Aha! Effect.

185

Chapter 7—Geolocation 186

7.1 Introduction to Geolocation

This section introduces you to the basics of geolocation. It covers geographical
data and online map services.

7.1.1 About Geographical Data

You may already have come across a coordinate in the format N47 16 06.6
E11 23 35.9. The position is specified in degrees-minutes-seconds. In this exam-
ple, the desired location is at a latitude of 47 degrees, 16 minutes, and 6.6 seconds
north, and a longitude of 11 degrees, 23 minutes, and 35.9 seconds east. These
kinds of coordinates are referred to as geographical coordinates. Unfortunately,
the great drawback with these values is that they are very difficult to calculate
with, not just because we are used to thinking in decimal numbers. Because the
coordinates specify a position on the spheroid Earth, the curvature of the plan-
et’s surface has to be taken into account when calculating distances.

To simplify the situation, projected coordinates are used in practice. The spher-
oid Earth is divided into strips where the linear distance between points can be
measured. Many countries use their own coordinate system, adapted to local
requirements. In Austria, for example, data is referenced in the Bundesmelde-
netz, a Cartesian coordinate system. All common coordinate systems have a
numeric identifier, the EPSG code (administrated by the European Petroleum
Survey Group).

Obviously, the Geolocation API cannot take into account every existing coordi-
nate system. The x and y coordinates are therefore not projected but are speci-
fied in geographical coordinates in decimal degrees. The standard specifies the
widely used World Geodetic System 1984 (WGS84) as a geodetic reference system.
It basically describes the underlying reference ellipsoid. The y value is specified
in meters above this ellipsoid. Any point on or near Earth can be described with
sufficient accuracy using this system.

7.1.2 Online Map Services

To represent geographical data in a browser, you have several options: SVG is
very well suited due to its flexible coordinate system, and data can be drawn as
a raster image using canvas. The easiest solution is to use an existing JavaScript
library. Of the free libraries available online, we will look closer at Google Maps
and OpenStreetMap. Microsoft’s map service Bing Maps can only be used after
registering, so we will not discuss it here.

The two libraries introduced in this chapter use a mixture of raster and vector
data for display. To enable faster loading times, the raster images are subdivided

7.1 Introduction to Geolocation 187

into tiles and calculated in advance for all zoom levels, allowing for step-by-step
image construction. Vector information is displayed, depending on the browser,
in SVG or in the Microsoft specific VML format for Internet Explorer.

7.1.2.1  Google Maps

Google Maps is undoubtedly the most widely used map service on the Internet.
Many companies use the free service to cartographically represent their location.
But Google Maps can do much more than place position markers on a map. As
you can see from the website http://maps.google.com/help/maps/casestudies,
more than 150,000 websites use Google Maps, including large companies, such
as the New York Times.

The library’s current version, V3, is very different from earlier versions: To use it,
you no longer need an API key (so registration with Google is not required), and
the library was optimized for use on mobile devices. As is so often the case with
Google products, programming is very straightforward. For a simple road map of
Central Europe, you need only a few lines of HTML and JavaScript, as shown in
Listing 7.1:

Listing 7.1  Road map of Central Europe with Google Maps

<html>
 <head>
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true">
 </script>
 <script type="text/javascript">
 window.onload = function() {
 var map =
 new google.maps.Map(document.getElementById("map"),
 { center: new google.maps.LatLng(47,11),
 zoom: 7,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
);
 }
 </script>
 <body>
 <div id="map" style="width:100%; height:100%"></div>

When loading the library, you must specify the sensors parameter. If it is set to
true, the device can determine its position and inform the application. This is
particularly useful for mobile devices (such as smartphones with GPS). Once the
entire page is loaded (window.onload), a new object with the type google.maps.
Map is created, whose constructor receives as its first parameter the HTML ele-
ment provided for displaying the map. The second parameter determines a list
of options of what is displayed on the map and how. In this case, the center of the

http://maps.google.com/help/maps/casestudies

Chapter 7—Geolocation 188

map is set to 47 degrees north and 11 degrees east with a zoom level of 7 (zoom
level 0 is equivalent to a view of the whole Earth), and the map type is specified
as road map via the constant google.maps.MapTypeId.ROADMAP.

Because  the map object’s  constructor  contains  a  reference  to  the  content  of   
the  HTML  page,  it  can  only  be  called  once  the  website  is  loaded;  that  is,  at
window.onload.

7.1.2.2  OpenStreetMap/OpenLayers

OpenStreetMap was introduced in 2004 with the ambitious aim of becoming
a comprehensive and free platform for geodata worldwide. Following the suc-
cessful method adopted by Wikipedia, it was supposed to be easy for users to
record geographical elements in their surrounding area and save them online.
Considering the difficulty of editing geodata, the current state of the project is
impressive. Thousands of users have uploaded their GPS data to the platform
openstreetmap.org or corrected and commented on data on the website. Also,
existing geodata with a suitable license was integrated into the database (for ex-
ample, the US TIGER data and the Landsat 7 satellite images).

Several tools were created in association with the project, with which you can
download data from the OpenStreetMap servers and – provided you have per-
mission – upload and save that data to the server. The open interface makes it
easy for software developers to integrate their products into the system.

A significant factor in the success of OpenStreetMap is the simple option for web
developers to integrate maps into their websites through the OpenLayers proj-
ect. This JavaScript library is not limited to OpenStreetMap but can definitely
show its strength through this interaction. With OpenLayers, you can also ac-
cess maps by Google, Microsoft, Yahoo, and countless other geographic services
(based on the standards WMS and WFS).

A mini example of a road map in Central Europe with OpenLayers and Open-
StreetMap is provided in Listing 7.2:

Listing 7.2  Road map of Central Europe with OpenStreetMap and OpenLayers

<!DOCTYPE html>
 <html>
 <head>
 <title>Geolocation - OpenLayers / OpenStreetMap</title>
 <script src=
 "http://www.openlayers.org/api/OpenLayers.js"></script>
 <script src=
 "http://www.openstreetmap.org/openlayers/OpenStreetMap.js">

NOTE

7.1 Introduction to Geolocation 189

 </script>
 <script>
 window.onload = function() {
 var map = new OpenLayers.Map("map");
 map.addLayer(new
 OpenLayers.Layer.OSM.Osmarender("Osmarender"));
 var lonLat = new OpenLayers.LonLat(11, 47).transform(
 new OpenLayers.Projection("EPSG:4326"),
 map.getProjectionObject()
);
 map.setCenter (lonLat,7);
 }
 </script>
 <body>
 <div id="map" style="top: 0; left: 0; bottom: 0;
 right: 0; position: fixed;"></div>
 </body>
</html>

For this example, we need to load both the JavaScript library of openlayers.org
and the library of openstreetmap.org. Similar to Google Maps, an HTML div ele-
ment is assigned to the OpenLayers.Map object for representation, and a layer of
the type Osmarender is added—the standard map view of OpenStreetMap (OSM).
Here, a special feature of OpenStreetMap comes into play: As mentioned in sec-
tion 7.1.1, About Geographical Data, three-dimensional information must be
projected to be displayed in 2D on the screen. Although Google Maps does not
harass the user with these details and you simply specify the x and y coordinates
in decimal degrees, OpenLayers asks you to first project data in decimal degrees
into the relevant coordinate system. Internally, OpenLayers (just like Google
Maps, Yahoo! Maps, and Microsoft Bing Maps) creates the map representation
with a projection, the so-called Spherical Mercator (EPSG code 3785). In Spheri-
cal Mercator, coordinates are managed in meters instead of decimal degrees,
which is why the degree values used here must be converted to the coordinate
system used in the map (determined with the function map.getProjectionOb-
ject()) with the call transform() and specify the EPSG code of the desired pro-
jection (EPSG:4326).

If you use DOCTYPE at the beginning of the document, as is correct with HTML5, 
the HTML element in which the map is displayed must contain a position of fixed 
or absolute. Otherwise,  the OpenLayers  library displays nothing.  Interestingly, 
this  limitation  does  not  apply  if  no DOCTYPE  is  included. More  information  on 
this topic can be found in a posting on the mailing list at http://openlayers.org/
pipermail/users/2009-July/012860.html.

WARNING

http://openlayers.org/pipermail/users/2009-July/012860.html
http://openlayers.org/pipermail/users/2009-July/012860.html

Chapter 7—Geolocation 190

7.2 A First Experiment: Geolocation in the Browser

To test your browser’s geolocation function, you just need the JavaScript code in
Listing 7.3:

Listing 7.3  Function for outputting position with “navigator.geolocation”

function $(id) { return document.getElementById(id); }
window.onload = function() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 function(pos) {
 $("lat").innerHTML = pos.coords.latitude;
 $("lon").innerHTML = pos.coords.longitude;
 $("alt").innerHTML = pos.coords.altitude;
 },
 function() {},
 {enableHighAccuracy:true, maximumAge:600000}
);
 } else {
 $("status").innerHTML =
 'No Geolocation support for your Browser';
 }
 }

The first line of the listing defines an auxiliary function $, allowing for an abbre-
viated notation of the function document.getElementById() (similar to an alias).
This trick was taken from the familiar jQuery library and is very convenient for
our example, because the elements that need to be filled are marked with an ID
attribute on the website. As in the previous examples (see Listings 7.1 and 7.2),
window.onload ensures that the content of the website is fully loaded before refer-
ences to HTML elements are set. The first if query checks if the browser supports
the Geolocation API. If that is not the case, an appropriate message is written into
the element with the ID status. Otherwise, the actual function for determining
position is activated: navigator.geolocation.getCurrentPosition().

According to the specification, the browser has to ask when calling this function
if you want it to locate your current position and share it on the website. Fig-
ure 7.1 shows the relevant dialog box in Mozilla Firefox.

7.2 A First Experiment: Geolocation in the Browser 191

Figure 7.1  Mozilla Firefox asks for permission to share your location

Three arguments are passed to the function call:

 z A function to be executed after the position has successfully been
determined (success callback)

 z A function that can react to errors if the position could not be determined
(error callback)

 z Value pairs influencing how the position is determined

According to the specification, the two latter arguments are optional; the success
callback always has to be specified. So as not to impede the JavaScript sequence,
getCurrentPosition() has to be executed asynchronously in the background,
and the relevant callback function can only be called once the position is known
or an error has occurred.

In this very short example, both callback functions are implemented as anony-
mous functions; errors are not considered. The value pair enableHighAccuracy:
true tells the browser to calculate the position as accurately as possible. On an
Android cell phone, this setting causes activation of the internal GPS sensor
(more on this in section 7.3, Technical Background of Determining Position).
Finally, maximumAge specifies the time in milliseconds during which an already
determined position can be reused. After that time, the position has to be rede-
termined—in our case, every ten minutes.

After successfully determining the position, the variable pos of the success call-
back in the so-called Position interface contains coordinate data (pos.coords)
plus a timestamp in milliseconds since 1970 (pos.timestamp). Figure 7.2 shows
the available attributes and their respective values, if present.

Chapter 7—Geolocation 192

Figure 7.2  Geographic position output in Mozilla Firefox

In addition to latitude, longitude, and altitude, pos.coords also includes in-
formation about the accuracy of the position (accuracy, altitudeAccuracy) plus
possible speed and direction (heading). Whereas Google Chrome is limited to the
attributes required in the specification, Firefox (here, version 3.6) outputs quite a
lot of additional information—even address details (see Listing 7.4), showing an
extract of the result of JSON.stringify(pos):

Listing 7.4  Extract from the result of JSON.stringify(pos) for Firefox 3.6

{"coords":
..// ...
 "address":
 {"streetNumber":"6","street":"Postgasse",
 "premises":null,"city":"Murnau am Staffelsee",
 "county":"Garmisch-Partenkirchen","region":"Bavaria",
 "country":"Germany","countryCode":"DE",
 "postalCode":"82418","contractID":"",
 "classDescription":"wifi geo position address object",
 // ...
 },
 // ...
}

The browser offers a remarkable amount of information! Where it all comes from
will be explained in the following section.

7.3 Technical Background of Determining Position 193

7.3 Technical Background of Determining Position

If you access the website http://www.google.com from abroad, you may be
surprised to find that you are automatically redirected to the relevant Google
domain of the country you are in. This works even if your browser is not geolo-
cation capable: Google uses a simple trick and locates your whereabouts via the
IP address.

Browsers supporting the Geolocation API can achieve a significantly greater ac-
curacy by making use of other technical options. The following four methods are
currently in use:

1. In PCs with wired Internet connections, the position is located via the
IP address. This way of determining position is rather inaccurate, as you
would expect.

2. The position can be determined much more precisely if there is a wireless
LAN connection. Google has collected data worldwide from public and
private WLANs.

3. If the hardware has a mobile communications chip (for example, in
a smartphone), it tries to calculate the position within the mobile
communications network.

4. If the hardware also has a GPS sensor, the position can be determined
even more accurately. GPS is a satellite-based positioning system and can
achieve accuracy to the meter range even with cheap sensors, provided the
conditions are favorable (outside of buildings, unobstructed horizon, etc.).

Only the GPS sensor works offline; methods 1–3 require Internet access and
are implemented through a server location service. These services are available
from Google (Google Location Service, used in Firefox, Chrome, and Opera) and
another American company, Skyhook Wireless (used in Safari and early versions
of Opera).

But how do the service providers get the location information of wireless and
mobile networks? In parallel with the photos taken by Google for the service
Street View, the Google Street View vehicles also save information on public and
private WLANs. The revelation, in spring 2010, that these vehicles collected not
only the MAC address and SSID of the WLAN, but also user data, shed a bad light
on Google, resulting in several public apologies.

But that is not all: If the browser has access to the information on a mobile net-
work or wireless LAN router, this data is sent with every call of the service. For
Google, this concerns mainly mobile communication devices with the Android
operating system; Skyhook profits from the iPhone users. The combination of
the described methods leads to a very large data set of geodata available to these
two service providers and is continuously updated through crowdsourcing (even
if the users as data providers do not know anything about it).

http://www.google.com

Chapter 7—Geolocation 194

Firefox has a very useful extension in the add-on Geolocater, which is
particularly helpful for developing applications. It allows for entering
locations that Firefox returns when the Geolocation API is called. You
can select the location via a pull-down menu without having to resort
to Google’s online service. You can download this useful add-on at
https://addons.mozilla.org/en-US/firefox/addon/14046.

7.4 Display of Current Position on OpenStreetMap

In the following example, the current location is represented on a map of Open-
StreetMap and indicated with a marker. You can see different layers and the
OpenStreetMap navigation bar. Figure 7.3 shows the OpenStreetMap’s Mapnik
layer with the position marker in the center of the browser.

TIP

Figure 7.3  Current location using OpenLayers and OpenStreetMap
© OpenStreetmap contributors, CC-BY-SA

https://addons.mozilla.org/en-US/firefox/addon/14046

7.4 Display of Current Position on OpenStreetMap 195

Just as in section 7.1.2, Online Map Services, the data of the OpenStreetMap proj-
ect is represented using the OpenLayers library. After the two required JavaScript
files are loaded, the map is initialized in this example and the desired control
elements are added:

 // Initialize map and add navigation
 var map = new OpenLayers.Map ("map");
 map.addControl(new OpenLayers.Control.Navigation());
 map.addControl(new OpenLayers.Control.PanZoomBar());

In addition to the navigation element with the four arrows, we attach the zoom
bar to the map variable (map). We then create the selection element for the vari-
ous layers (Control.LayerSwitcher) and add several layers to the map. The func-
tion call of map.addLayers() receives an array of newly created map objects:

 // Layer selection with four map types
 map.addControl(new OpenLayers.Control.LayerSwitcher());
 map.addLayers([
 new OpenLayers.Layer.OSM.Mapnik("Mapnik"),
 new OpenLayers.Layer.OSM.Osmarender("Osmarender"),
 new OpenLayers.Layer.OSM.CycleMap("CycleMap")
]);

To finish, the map gets a layer for the marker:

 var markers = new OpenLayers.Layer.Markers("Markers");
 map.addLayer(markers);

The success callback after successfully determining the position looks like this:

 function(pos) {
 var ll = new OpenLayers.LonLat(
 pos.coords.longitude,
 pos.coords.latitude).transform(
 new OpenLayers.Projection("EPSG:4326"),
 map.getProjectionObject()
);
 map.setCenter (ll,zoom);
 markers.addMarker(
 new OpenLayers.Marker(
 ll,new OpenLayers.Icon(
 'http://www.openstreetmap.org/openlayers/img/marker.png')
)
);
 },

Chapter 7—Geolocation 196

As you already know from section 7.1.2, Online Map Services, the coordinates
from the geographical coordinate system (lat/lon) must be converted to the
Spherical Mercator system. Finally, the marker ll is placed on the determined
location; the relevant icon for the marker is loaded directly off the OpenStreet-
MapThe Geolocation specification includes another call, particularly suitable
for moving objects: navigator.geolocation.watchPosition(). The next example
demonstrates how a change in location can be represented graphically using the
Google Maps API.

7.5 Location Tracking with Google Maps

Our quick example only makes sense if used on mobile devices. Of course, you
can “get things moving” artificially for demo purposes, but you will most likely
only get a real sense of achievement once you manage to determine your loca-
tion accurately via GPS and using a browser while on the move. A crucial com-
ponent of the following experiment was an Android smartphone showing the
HTML page during a trip down the highway.

As you can see in Figure 7.4, the last five locations determined on Google Maps
are marked on the map. As soon as the user leaves the map area represented on
the screen, the map is centered around the next point.

Figure 7.4  Google Maps API on an Android cell phone

Calling the Geolocation API is once again done in window.onload and looks like
this:

 var watchID = navigator.geolocation.watchPosition(
 moveMe, posError, {enableHighAccuracy: true}
);

7.6 Example: Geonotes 197

The real work takes place in the function moveMe():

function moveMe(position) {
 latlng = new google.maps.LatLng(
 position.coords.latitude,
 position.coords.longitude);
 bounds = map.getBounds();
 map.setZoom(16);
 if (!bounds.contains(latlng)) {
 map.setCenter(latlng);
 }
 if (marker.length >= maxMarkers) {
 m = marker.shift();
 if (m) {
 m.setMap();
 }
 }
 marker.push(new google.maps.Marker({
 position: latlng, map: map,
 title: position.coords.accuracy+"m lat: "
 +position.coords.latitude+" lon: "+
 position.coords.longitude
 }));
 }

The variable latlng is created as a LatLng object from the Google Maps API, and
the current coordinates are passed to this object. If the current location is out-
side of the represented area (!bounds.contains(latlng)), the map is re-centered
over the current point. Both the array marker and the variable maxMarkers at the
beginning of the script are defined as global and assigned the value 5. If the array
marker contains more than five elements, the first element is removed from the
array with the shift function and then deleted from the map by calling setMap()
without any further parameters. Finally, a new object of the type marker is added
to the array in the current location.

7.6 Example: Geonotes

The idea for this example originated during a trip abroad with a new smartphone:
The program is a digital travel diary that automatically adds geographical coordi-
nates to each entry and can display all entries on a map. The high data-roaming
charges in Europe soon made it necessary to integrate another technology re-
lated to HTML5—Web Storage—to keep costs down. Via the Web Storage API,
the entries are stored locally in persistent memory, allowing the application to
function even without an existing data connection. For a detailed explanation of
the Web Storage API, see Chapter 8, Web Storage and Offline Web Applications.

Chapter 7—Geolocation 198

7.6.1 Operation

The application has a very simple structure (see Figure 7.5): In the text box (top
left) you can enter your diary notes. The new HTML5 placeholder attribute lets
the browser show an invitation to enter a new message. If you have already en-
tered notes, the area on the right displays a map section of Google Maps. Under-
neath is the list of entries, including not just the message text, but also location,
time of entry, and distance to current location. You also have the option of delet-
ing messages or displaying the location enlarged on Google Maps. As you can see
in Figure 7.5, the enlarged representation indicates the location with a marker
typical for Google. The circle around the location marker indicates the accuracy
of the determined location.

Because you tend not to constantly change location while developing an ap-
plication, the Firefox add-on Geolocater, introduced in section 7.3, Technical
Background of Determining Position, comes in handy. You have the option of
saving several locations in the add-on, allowing you to test the application while
at home. Ideally though, the application would be used on a smartphone with
GPS support. Both Android-based cell phones and the iPhone fulfill the neces-
sary requirements.

Figure 7.5  Notes with additional geographic information

7.6 Example: Geonotes 199

To be able to test the application right away, you can use the demo data. These
entries are partly made up and partly actual entries recorded by the author while
developing the application.

7.6.2 Important Code Fragments

The HTML code for the application offers several div container elements, which
will later house the messages (id='items') and the map (id='map'). As mentioned
previously, the textarea element contains the new placeholder attribute, which
can make applications much more user friendly. The relevant onclick event lis-
tener is directly assigned to the three button elements:

<body>
 <h1>Geonotes</h1>
 <div class='text_input'>
 <textarea style='float:left;margin-right:30px;'
 placeholder='Your message here ...'
 cols="50" rows="15" id="note"></textarea>
 <div class='map' id='map'></div>
 <div style='clear:both;' id='status'></div>
 <button style='float:left;color:green;' id='save'
 onclick='saveItem()'>Save</button>
 <button onclick='drawAllItems()'>Draw all items on
 map</button>
 <button onclick='importDemoData()'>Import Demo Data
 </button>
 </div>
 <div class='items' id='items'></div>

The JavaScript code is much more interesting than the few lines of HTML code.
It defines an auxiliary function and three global variants:

function $(id) { return document.getElementById(id); }
 var map;
 var my_pos;
 var diaryItem = { id: 0, pos: 0, ts: 0, msg: ‘’ }

You have already encountered the function $ in section 7.2, A First Experiment:
Geolocation in the Browser. It saves you a lot of typing effort here, too, and makes
the code easier to read. The variable map serves as a reference to the HTML area,
which will accommodate the Google Maps representation. my_pos is required for
calculating the distance and contains the current location from which the script
is called. diaryItem represents the structure of the individual entries. Each diary
entry is assigned an ID (id), information on the current position (pos), a time-
stamp (ts) , and the message entered into the text field (msg).

Chapter 7—Geolocation 200

As soon as the page is fully loaded, the current location is determined and exist-
ing entries are displayed:

window.onload = function() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 function(pos) {
 my_pos = pos;
 showItems();
 },
 posError,
 { enableHighAccuracy: true, maximumAge: 60000 }
);
 }
 showItems();
 if (localStorage.length > 0) {
 drawAllItems();
 }
}

The option enableHighAccuracy is activated to call getCurrentPosition(). The
maximum time for reusing an already determined position is one minute. If the
position is successfully determined, the previously defined global variable my_pos
is assigned the values of the just determined position and then the function show-
Items() is called. An error in determining the position leads to calling the func-
tion posError(), a function that outputs the corresponding error message in a
dialog window. If the number of elements in the localStorage is greater than 0,
the function drawAllItems() is executed as well, displaying existing entries on
Google Maps.

The showItems function assembles a string of all entries and assigns it to the
HTML element with the ID items:

function showItems() {
 var s = '<h2>'+localStorage.length+' Items for '
 +location.hostname+'</h2>';
 s+= '';
 var i_array = getAllItems();
 for (k in i_array) {
 var item = i_array[k];
 var iDate = new Date(item.ts);
 s+= '';
 s+= '<p class="msg">'+item.msg+'</p>';
 s+= '<div class="footer">';
 s+= '<p class="i_date">'+iDate.toLocaleString();
 +'</p>';
 ...
 $('items').innerHTML = s+'';

7.6 Example: Geonotes 201

The variable i_array is filled with the result of the function getAllItems(), which
reads the localStorage, returns the contents as objects in an array, and sorts the
objects by date:

function getAllItems() {
 var i_array = [];
 for (var i=0;i<localStorage.length;i++) {
 try {
 var item = JSON.parse(
 localStorage.getItem(localStorage.key(i))
);
 i_array.push(item);
 } catch (err) {
 continue; // skip this entry, no valid JSON data
 }
 }
 i_array.sort(function(a, b) {
 return b.ts - a.ts
 });
 return i_array;
 }

The call localStorage.getItem() gets an element from the persistent memory,
converting it to a JavaScript object via the function JSON.parse. The require-
ment is that the object be converted to a string with JSON.stringify during sav-
ing (see the following code listing). To avoid the script being aborted due to any
items in local storage that are not JSON encoded, the instruction is enclosed in
a try/catch block. The objects are added to the end of the array i_array with
i_array.push() and sorted by date in the next step. To tell the JavaScript func-
tion sort which criteria it should sort by, it is expanded with an anonymous
function. The variable ts allows temporal sorting of the objects. It contains the
numbers of milliseconds since 1.1.1970, a value created via the JavaScript func-
tion new Date().getTime(). If the anonymous function returns a negative value,
a is arranged after b; for a positive value, a comes before b.

We still need to answer the question about how new entries are created and
saved. The function saveItem() takes care of this, initializing a local variable d to
which we assign the structure diaryItem:

function saveItem() {
 var d = diaryItem;
 d.msg = $('note').value;
 if (d.msg == '') {
 alert("Empty message");
 return;
 }
 d.ts = new Date().getTime();
 d.id = "geonotes_"+d.ts;

Chapter 7—Geolocation 202

 if (navigator.geolocation) {
 $('status').innerHTML = ''
 +'getting current position / item unsaved';
 navigator.geolocation.getCurrentPosition(
 function(pos) {
 d.pos = pos.coords;
 localStorage.setItem(d.id, JSON.stringify(d));
 $('status').innerHTML =
 'item saved. Position'
 +' is: '+pos.coords.latitude
 +','+pos.coords.longitude+'';
 showItems();
 },
 posError,
 { enableHighAccuracy: true, maximumAge: 60000 }
);
 } else {
 // alert("Browser does not support Geolocation");
 localStorage.setItem(d.id, JSON.stringify(d));
 $('status').innerHTML =
 "Browser does not support Geolocation/item saved.";
 }
 showItems();
 }

If the text field is empty (d.msg = ''), a corresponding dialog appears and the
function is terminated with return. Otherwise, the timestamp is set to the cur-
rent millisecond, and the entry’s ID is assembled from the string geonotes_ and
the timestamp. If several applications should access the localStorage from one
server, the string prefix can help to distinguish the data. After the position has
been successfully determined, the variable pos within the diaryItem object is
filled with coordinates and the appropriate meta information, and then saved as
a JSON string in the localStorage via JSON.stringify().

If the browser does not support the Geolocation API, the application saves the
text anyway and points out that there is no support. The final call of showItems()
ensures that the list of messages is updated.

7.7 Browser Support

As mentioned previously, the functions for determining location offer many new
possibilities, especially for use on mobile devices. The most important mobile
platforms at the time of this writing are products by Apple (iPhone, iPad, iPod)
and Android cell phones. Both Google’s browser (standard on the Android plat-
form) and Safari (for Apple devices) support the Geolocation API.

Summary 203

Desktop browsers also offer a good level of support. Safari and Google Chrome
include the required functions from version 5 and later; Firefox has been Geo-
location-capable since version 3.5. Opera integrates the function in its browser
in version 10.60 and later. Only Microsoft still fails to offer support for any kind
of geolocation in the browser, and unfortunately, this even applies to the mo-
bile platform Windows Phone 7.

Summary

In this chapter you encounter the new geolocation functions, which open amaz-
ing new possibilities, especially for mobile devices. With the rapid spread of
smartphones, location-based services are becoming available to more and more
people. They make it easy for users on the move to gather information, be it find-
ing the nearest cash machine or the best public transport connection. At the mo-
ment, these tasks are still carried out by special apps that have to be developed
and constantly updated separately for each mobile operating system. By imple-
menting the Geolocation API, such functions can in the future be handled by the
browser.

This page intentionally left blank

8
Web Storage and
Offline Web Applications

The greater complexity of web applications leads to an increase in the network
bandwidth used. Although the capacity of data lines continues to increase as
well, ways need to be found to optimize these transmissions by reducing them.
Up until now, there was only one standardized method of storing information
on the client side: cookies. Given that each cookie belonging to a website is
transmitted fully from the client to the server with each call of the site, cookies
should not be excessively large. In addition, web servers limit the maximum size
of HTTP request fields, for example, to 8KB in the Apache server’s default setting.

The solutions suggested by the WHATWG fall into two categories, which are
both discussed in this chapter. On one hand, the WHATWG envisions a “Storage
interface” with persistent storage for sessions and storage that is not restricted
to one session. On the other hand, controlled by a central configuration, files
can be defined that the browser stores locally to be able to access them even

205

Chapter 8—Web Storage and Offline Web Applications 206

without a network connection. Both approaches are very straightforward and
simple, yet robust.

8.1 Storage

A structured client-side storage that exceeds the meager cookie limit has long
been requested as an extension of the World Wide Web. Adobe integrated a func-
tion for storing data locally in the Flash Player with version 6, calling this tech-
nique Local Shared Object (LSO). The default setting of LSOs is 100KB, but it
can swell to 10MB if required (after confirmation by the user). The problem with
LSOs, often also referred to as Flash cookies, is that they can only be used with
Flash and therefore fall outside the browser’s security model. Even if a user de-
letes all his browser cookies, a website can still track the user via Flash cookies.
According to Wikipedia, more than half of the top websites on the Internet use
Flash cookies to analyze user behavior.

The WHATWG has recorded its deliberations on the subject in its Web Storage
document. Although Web Storage was removed from the core of the HTML5
specification, it is still most definitely related to it. Currently, the W3C specifica-
tion is still at the Editor’s Draft stage, but because the implementation has been
stable in all common browsers for some time (see section 8.3, Browser Support),
significant future changes are unlikely.

The  current  version  of  the W3C’s Web Storage  specification  can  be  found  at 
http://dev.w3.org/html5/webstorage. 

The WHATWG version is available at http://www.whatwg.org/specs/web-apps/
current-work/complete/webstorage.html.

8.1.1 The “Storage” Interface

The “Storage” interface defines the common attributes and access methods of
the persistent storage. Regardless of whether it is a sessionStorage or a localStor-
age object, both contain the methods or attributes presented in Table 8.1.

NOTE

http://www.whatwg.org/specs/web-apps/current-work/complete/webstorage.html
http://www.whatwg.org/specs/web-apps/current-work/complete/webstorage.html
http://dev.w3.org/html5/webstorage

8.1 Storage 207

Table 8.1  Methods and attributes of the “Storage interface”

Attribute/Method Return Value Description

length integer Number of key/value pairs associated
with this object (read-only access)

key(n) DOMString Name of the key in position n

getItem(key) data Value of the given key (a DOMString)

setItem(key,data) void Saves the value data of the key

removeItem(key) void Deletes the content of the key

clear() void Deletes all key/value pairs of this
object

Similar to cookies, the Storage interface manages key/value pairs, where the key
has the type DOMString. According to the W3C DOM specification, DOMStrings
are strings encoded in UTF-16, which means you could even use special charac-
ters as key values, for example the German umlauts (ü, ö, ä). You could, but usu-
ally it is advisable not to; instead, it is better to use only characters and numbers
from the US-ASCII character set. Even an empty string is a legal key but is usually
not chosen on purpose. If an already existing key is used in the function setItem,
the existing value is replaced by the new one.

Apart from setItem() and getItem(), the Web Storage API also offers another ac-
cess method, which is often easier to read. If you, for example, want to save the
key currentTemp with the value 18 in localStorage, the following line is enough:

localStorage.currentTemp = 18;

Not surprisingly, the value can also be read back this way:

alert(localStorage.currentTemp);

If localStorage contains an unknown number of items, the “Storage interface”
method key works well:

 for (var i=0;i<localStorage.length;i++) {
 var item =
 localStorage.getItem(localStorage.key(i));
 alert("Found item "+item);
 }

The specification states that values can be of any type, but the current browser
implementations save all values as strings. To save complex data types such as

Chapter 8—Web Storage and Offline Web Applications 208

arrays or objects, they have to be converted to strings first. An elegant way of do-
ing this is via the JSON library:

JSON.stringify(itemsObject)

How much disk space the browser should reserve for the website is only hinted
at in the specification. The recommended limit for the storage space that can be
used per origin is 5MB (see section 8.1.3, “localStorage”). The current browser
implementations adhere to this recommendation.

8.1.2 “sessionStorage”

One problem with using cookies is that the cookie is directly connected to the
website and is independent of the browser window. The problem can become
acute in the following example: A web shop saves the desired shopping cart in
a cookie on the browser. If you open a second browser window while shopping
and start shopping under a different name in that window, the products in the
original window may change as well.

Although cookies can apply to several windows, the validity of sessionStorage is
limited to the current browser window, which can be desirable in many cases. Fig-
ure 8.1 shows the difference between the two approaches using a simple example.

Figure 8.1  Two windows demonstrating the difference between “sessionStorage” and cookies

8.1 Storage 209

The central part of the JavaScript code for the example in Figure 8.1 looks
like this:

 window.onload = function() {
 var currDate = new Date();
 sessionStorage.setItem("currenttime",
 currDate.toLocaleString());
 document.cookie =
 "currenttime="+currDate.toLocaleString();
 updateHTML();
 }
 function updateHTML() {
 document.getElementById("currenttime").innerHTML =
 sessionStorage.getItem("currenttime");
 document.getElementById("currtimeCookie").innerHTML
 = getCookie("currenttime");
 }

As soon as the website is loaded (window.onload function), the current date (in-
cluding the time) is saved in both sessionStorage and the cookie. The updateHTML
function inserts the relevant values in two HTML elements on the website. If the
website is opened in two different browser windows, opening the second win-
dow will overwrite the cookie variable currenttime. If you then call the updateHT-
ML function in the first window, the contents of sessionStorage and cookie differ.

In the specification, sessionStorage is assigned to the top-level browsing context.
Simply put, this context can be seen as an opened browser window or an opened
tab within a browser window. A nested browsing context would be, for example,
an iframe within an HTML document. The browser also must ensure that each
website has access only to its own sessionStorage and cannot read the contents of
other websites. If this context is no longer accessible (the browser window or tab
were closed), the browser can permanently delete the associated data.

8.1.3 “localStorage”

In contrast to sessionStorage, localStorage refers only to the origin of the website,
not to the browser context. The origin is derived from the URL and consists of
the used scheme in lowercase (for example, http), the server name (also in lower-
case), and the port. If the port is not explicitly stated, the scheme’s default port is
used (for HTTP, it would be 80). The origin of the URL http://www.google.com/
about consists of the three values http, www.google.com, and 80.

This means that the origin in the form mentioned in the preceding paragraph
is the same for all websites on a server. Security issues ensue for web-hosting
forms, which host all users under one domain, for example, Google’s free ser-
vice sites.google.com. Because the different homepages are all in the same di-
rectory, http://sites.google.com/site, different users have access to the same

http://www.google.com/
www.google.com
http://sites.google.com/site

Chapter 8—Web Storage and Offline Web Applications 210

localStorage. The specification suggests that in such environments, localStorage
should not be used.

8.1.4 The “storage” Event

Every data change in the storage fires a storage event. The storage event offers
read access to the key, the value before and after the change, the script’s URL
that caused the change, and a reference to the storage object where the change
was made.

The implementation of the storage event in current browsers can only be de-
scribed as rather experimental. In Firefox 3.6, for example, the event is fired, but
it does not contain the expected values. In Firefox 4 Beta 3, the event handler
function was not started. Internet Explorer 8 does not know the standard call
for attaching an event handler, window.addEventListener; instead, you have to
use window.onstorage. The expected event then has to be read from the global
window.event. The third Beta version of Internet Explorer 9 did not react to either
event handler. Even Safari 5 did not show results for the storage event. Only Op-
era (version 10.60) and Google Chrome (version 6) returned the expected data for
the storage event.

8.1.5 Debugging

While developing a web application, being able to see the current content of
the persistent storage is very helpful. It is possible to fetch individual elements
via getItem() and display them in an alert() window, but sometimes you just
want to see the items listed as a simple table. Different browsers offer different
options.

Firefox does not have its own graphic interface for displaying storage content; you
need to use a free add-on. Firebug has been renowned among web developers
for years as an indispensable extension of the Firefox browser and naturally also
masters localStorage and sessionStorage. To look at the storage, you only need to
enter the word localStorage or sessionStorage in the console, and the JavaScript
object appears, containing the current values of the storage (see Figure 8.2). If
you want to see the storage content without the Firebug add-on, you can also
use the internal information in Firefox. The data is saved in the background in a
SQLite database (version 3), which can be displayed with the command-line tool
sqlite3. A graphic interface for SQLite is also available as a Firefox add-on: the
brilliant sqlite-manager. The SQLite database file is in the Firefox profile direc-
tory and has the name webappsstore.sqlite.

8.1 Storage 211

Figure 8.2  The Firefox add-on Firebug displaying “sessionStorage”

You can download the Firefox add-ons from these Internet addresses:

 z Firebug: http://getfirebug.com

 z sqlite-manager: http://code.google.com/p/sqlite-manager

Apple’s Safari offers an integrated debugging option, which first needs to be en-
abled in the Advanced Preferences. After activation, Safari shows a new Develop
menu with a console that can display the storage content, just like Firebug.

Google Chrome and Opera also have integrated developer tools, allowing for very
convenient access to all website elements. In both browsers, the Storage menu
offers a clear and detailed list of localStorage, sessionStorage, and Cookies. In the
table you can also add values, change them, or delete them (see Figure 8.3).

NOTE

http://getfirebug.com
http://code.google.com/p/sqlite-manager

Chapter 8—Web Storage and Offline Web Applications 212

Figure 8.3  Opera displaying Developer Tools

Even Internet Explorer 9 offers Developer Tools. Apart from the DOM tree, CSS
properties, a script debugger, and network profiling, there is a browser console
that works in a similar way to that in Firebug, Safari, Chrome, and Opera.

The latest browser versions really excel regarding the functions of their developer 
tools. Not only can cookies, sessionStorage, and localStorage be scrutinized, but 
these tools are also a big help in many other areas of web development.

8.2 Offline Web Applications

To make applications run completely without network access, HTML, Java-
Script, and multimedia files must be reliably saved on the client machine. Up un-
til now, all browsers had certain functions for caching content, but there was no
standardized access to this content. The HTML5 specification took this problem
to heart and devoted a section to Offline Web applications. They agreed on an in-
dependent offline memory, controllable with a simple configuration. A file with
the ending .appcache contains the elements to be saved in the offline memory. It
is integrated in the html tag as a manifest attribute:

<!DOCTYPE html>
 <html manifest="menu.appcache">
 <head>

NOTE

8.2 Offline Web Applications 213

The content of a cache manifest file can look like this:

CACHE MANIFEST
menu.html
menu.js
menu_data.js

The file structure is very simple. It does not have an XML structure, or syntax as
you know it from the Windows .ini files, but is a simple text file. In the simplest
case, all items listed in the file are transferred to the offline memory and only
updated when the .appcache file changes. Every file referencing the manifest
with the html element is automatically cached, even though the specification
suggests listing the file once more explicitly. Let’s have a closer look at this con-
figuration file.

8.2.1 The Cache Manifest File

The cache manifest file must be a text file encoded with the character set UTF-8,
and the first line must contain the string CACHE MANIFEST. The web server also has
to use the MIME type text/cache-manifest when it outputs the file.

If required, three special keywords can appear in the .appcache file, each intro-
ducing a separate section. Here is a quick example:

CACHE MANIFEST
menu.html
menu.js

login requires network connection
NETWORK:
login.php

FALLBACK:
/ /menu.html

CACHE:
style/innbar.css

After the already familiar beginning of the file is a comment line starting with the
symbol #. The string NETWORK: marks the beginning of a new section. Data in this
section is put on a whitelist and always has to be fetched from the network. In
the preceding example, it is the file login.php, because we want the login check
in our example to be possible only online.

The FALLBACK section is applied if the browser is offline and the desired item can-
not be accessed because it is not present in the offline cache. In this example, the

Chapter 8—Web Storage and Offline Web Applications 214

desired item is defined with the lowest level of the web server (/) and therefore
applies to all files on this server simultaneously. Instead of an inaccessible re-
source, we want to display the file menu.html.

Finally, the configuration file also contains the entry CACHE:, introducing another
section of content to be saved. In this example, the stylesheet style/innbar.css
could just as well be listed at the very top of the configuration file, and we could
omit the CACHE section altogether.

The specification describes an interesting special case in which the cache mani-
fest file contains the following:

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

With this trick, you can construct something like a complete offline cache of
HTML pages on a web server: Each file referencing the cache manifest is saved
locally when first loaded and only fetched from the server if the manifest chang-
es. The FALLBACK section redirects all queries about HTML pages not found in the
cache to the page /offline.html. The section NETWORK with the joker symbol (*) is
required to display the page correctly even if the browser is online.

8.2.2 Offline Status and Events

Via the application programming interface (API) for Offline Web applications,
web developers have the option of checking the status of the offline storage and
can change it manually if necessary. The status queries refer to the constant sta-
tus assigned to the object window.applicationCache. Its numeric content relates
to the meanings presented in Table 8.2.

Table 8.2  Meaning of constants for application cache status

Value Name Meaning

0 UNCACHED The page is not in the cache. This can be due to
the fact that the page is not meant to be saved
offline or has not yet been downloaded.

1 IDLE The browser has downloaded the latest version
of the offline storage.

2 CHECKING The browser is checking whether the cache
manifest has changed.

8.2 Offline Web Applications 215

Value Name Meaning

3 DOWNLOADING After a changed cache manifest was found, the
browser downloads the new cache content.

4 UPDATEREADY The browser has downloaded all necessary con-
tent for the cache but is not yet using the new
cache.

5 OBSOLETE The cache is marked as obsolete if the cache
manifest file cannot be loaded. The browser
should then delete the cache.

To retrieve the current values of the constant, you just need to enter its name in
the browser console: window.applicationCache.status. This outputs the corre-
sponding numeric value, similar to Figure 8.2. To be able to control application
cache behavior, the browser triggers certain events, which can be retrieved in the
programming:

window.applicationCache.addEventListener("progress",
 function(e) {
 alert("New file downloaded");
 }, false);

The progress event, for example, is fired for each newly loaded file. In that case, an
alert window appears for every downloaded file. Table 8.3 shows a list of all events.

Table 8.3  The events for “Offline Web applications”

Name Description

checking The browser is checking whether there is a new version of the
cache manifest.

noupdate There is no new cache manifest on the server.

downloading The browser is downloading a version of the files to be saved. The
event is also fired when the files are downloaded the first time.

progress The event is called for each file to be downloaded.

cached All elements for the cache have been downloaded.

updateready All elements for the cache have been redownloaded (the cache
manifest file was changed).

obsolete The cache manifest file could not be loaded.

error An error occurred on downloading the elements for the cache.
The error can occur for several reasons, for example, a faulty
entry in the cache manifest file.

Chapter 8—Web Storage and Offline Web Applications 216

The error event can be especially useful when trying to locate errors. A file listed
in the cache manifest that cannot be found fires this event in the browser. The
browser aborts any script execution from this point on, a situation in which you
probably would not think of first during debugging. More on debugging can be
found in section 8.2.3, Debugging.

The JavaScript API offers two additional methods for the cache: update() and
swapCache(). With these methods you can update the cache without reloading
the page, for example, via an Update button. The following HTML fragment cre-
ates the button:

<button onclick="window.applicationCache.update();">
 update applicationCache</button>

We handle the updateready event in the JavaScript code:

 window.applicationCache.addEventListener("updateready",
 function(e) {
 window.applicationCache.swapCache();
 alert("New Cache in action");
 }, false);

As soon as the update has been successfully downloaded, the function swap-
Cache() overwrites the old cache with the updated version. The update function
first checks the cache manifest file. If it has not changed, no update takes place
regardless of whether individual files for the cache have changed or not. The same
result as clicking the button with the mouse can be achieved by reloading the page.

There can be situations in which manual or automatic control of the cache can
be appropriate, for example, for a monitor without user interaction displaying
current news in a public space. The cache can be updated in the background via
a continuously repeating function (setInterval()). The system can then display
HTML pages reliably with or without network access.

The specification prescribes another attribute that indicates whether the brows-
er is online or offline. window.navigator.onLine is meant to return the value false
if the browser is set to not access the network or is sure that network access will
fail. In all other cases, the variable returns true.

Even if the value of window.navigator.onLine is true, this does not automatically 
mean  that  the  browser  has  access  to  the  Internet.  The  browser  can  also  be 
online  in  private  networks  without  necessarily  being  connected  to  the  public 
Internet.

NOTE

8.2 Offline Web Applications 217

Modern browsers have a function for changing to offline mode. In Mozilla
Firefox, for example, this function can be found in the File menu as Work Offline.
If the browser changes from online to offline mode, the event offline is fired;
vice versa, the event is online is fired:

window.addEventListener("online", function() {
 alert("You are now online");
}, false);
window.addEventListener("offline", function() {
 alert("You are now OFFLINE");
}, false);

This brief example creates an alert window as soon as the browser changes its
online state. Offline-capable applications can use these events to load updated
data from the server or copy locally saved data to the server.

8.2.3 Debugging

You have probably had the same problem as many web developers at one stage
or another: You spend ages changing line by line of source code, but although
the page is reloaded in the browser each time, the result remains unchanged.
On the way from server to browser are many places where the web content
can be stored temporarily. This is a desirable improvement in many cases and
helps to conserve bandwidth but is also the cause of many lost hours of sleep
for web developers.

The bad news is that Offline Web applications make this problem even more
complicated. By adding an additional cache component, there are now even
more places where elements can be updated or not updated. A structured ap-
proach to solving this problem is essential and can save you a lot of time.

You first need to ensure that the web server really does output the cache mani-
fest in the current version. Look at the server log files, as in this example of the
Apache web server:

::1 - - [26/Jul/2010:14:50:46 +0200] "GET
/code/chap_storage/menu.appcache HTTP/1.1" 200 491
"-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US)
AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.472.0
Safari/534.3"
::1 - - [26/Jul/2010:14:50:46 +0200] "GET
/code/chap_storage/menu.appcache HTTP/1.1" 304 253
"-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US)
AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.472.0
Safari/534.3"

Chapter 8—Web Storage and Offline Web Applications 218

The HTTP status code 200 means that the file was fully processed; 304, however,
means that the file remains unmodified and is not reprocessed.

The next debugging options are integrated in the browsers. Here, the status is
different in each browser; the most convenient tools can currently be found in
Firefox and Google Chrome.

Google Chrome tracks the current state of the applicationCache object in the De-
veloper Tools console. Figure 8.4 shows a first call of the page during which the
browser creates the offline storage. Then, all related documents are download-
ed, with the progress event being fired each time (see also, section 8.2.2, Offline
Status and Events). Reloading the page creates the noupdate event because the
cache manifest file has not been modified. Chrome lists the events very clearly
in order.

Figure 8.4  Google Chrome status messages for offline storage

The developers of Mozilla Firefox integrated information about the cache di-
rectly in the browser. Under the address about:cache?device=offline, Firefox
displays all elements in this cache as a list. If the browser is in offline mode, you
can get even more detailed info on each element, such as the location of the file
on the hard disk (see Figure 8.5).

8.2 Offline Web Applications 219

Figure 8.5  Firefox information on an element in the offline cache

For the browser to reload the cache manifest, its content first needs to be modi-
fied. It is not enough to resave the file with the same content or update the date
of the last modification with the UNIX command touch. When developing ap-
plications, this leads to developers adding a character in a commented out line
only to then delete it again for a repeated reload request—a situation justifiable
during developing, but the question remains how this could be automated in a
productive environment.

If you use version control, such as Subversion, for your web applications, you
may have just thought of keywords, such as ID or revision, which Subversion au-
tomatically replaces in case of a modification. But such a keyword is also only
changed in the cache manifest file if its content has changed—so that’s another
dead end. One possible aid would be a script that reads the version of the direc-
tory when distributing the new application version and writes it into the cache
manifest. The prerequisite would be that all contents in the directory belong to
the cache. A shell command for UNIX could look like this:

SVNV=$(svnversion -n) && \
 sed -e "s/^## svn.*/## svn repo version $SVNV/" \
 -i menu.appcache

It replaces an existing comment line with the Subversion version of the current
directory.

Chapter 8—Web Storage and Offline Web Applications 220

8.3 Browser Support

Support for Web Storage is present in all current browsers. Even Inter-
net Explorer offers this function in version 8 and later. If you need to sup-
port older versions of Internet Explorer, you can use an Open Source JavaS-
cript library for sessionStorage; it emulates the session storage using a trick.
For further information and the download, see http://code.google.com/p/
sessionstorage.

Unfortunately, Internet Explorer does not have any support for offline applica-
tions. Even in the upcoming version 9 these functions are not provided. Table
8.4 offers an overview of browser versions implementing Web Storage and offline
apps. To see the connection between browser version and date, look at the Time-
line at the end of the Introduction chapter, or go to the companion website at
http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en.

Table 8.4  Web Storage and offline web applications support in different browsers

Firefox Opera Chrome Safari IE

Web Storage 3.0 10.50 3.0 4.0 8.0

Offline Apps 3.5 10.60 4.0 4.0

8.4 Example: Click to tick!

To finish the chapter, we will use an example to illustrate the two techniques in-
troduced here in combination. Click to tick! is a learning game that finds places
or other geographical features using an unlabeled map. On this map, the player
tries to mark a target as accurately as possible by clicking on the map with the
mouse. The more hits per round, the more points the player will score in the
final scoring.

To allow children to play the game on the iPad during a long car journey, the
required resources, such as images, JavaScript, and HTML files, are saved in the
cache for offline use (see section 8.2, Offline Web Applications). The list with top
scores is saved in localStorage (section 8.1, Storage) to ensure that this informa-
tion is not lost, even when the computer is switched off. Once the computer can
reconnect to the Internet, the new score can be uploaded to the server, a func-
tion discussed in section 8.4.4, Expansion Options. Via an interface, the browser
also checks if there are new game objectives and downloads these to the com-
puter if necessary.

http://code.google.com/p/sessionstorage
http://code.google.com/p/sessionstorage
http://html5.komplett.cc/code/chap_intro/timeline.html?lang=en

2218.4 Example: Click to tick!

By applying the new techniques associated with HTML5, we created an indepen-
dent program that uses the browser as a kind of runtime environment. Hardware
as well as software and the operating system of the device become secondary; the
browser is the central component for executing the program. Modern operating
systems, such as Google’s ChromeOS or Palm’s webOS, count on this technique.
By using the offline storage and the .appcache file, the program is equipped with
an automatic update function—a true joy for developers.

Figure 8.6 shows the game in action: In this round, six out of eight places were
successfully located in downtown Paris. Not bad!

Figure 8.6  The program “Click to tick!” during a game

8.4.1 Using the Application: As a Player

When starting the application, the browser loads the playing area on the left with
an interactive map section containing the targets to be located. On the right, the
browser displays a selection list with the available games and the current score.
If the user has played the game before, he or she can also see the maximum per-
centage scored and the number of games played. As you can see in Figure 8.6,
the game also shows whether the browser is currently connected to the Internet
or not. If Internet access is possible, a button for updating the game is visible
(Check for new games!).

Chapter 8—Web Storage and Offline Web Applications 222

In the course of the game, the user is asked to find specific places and can click
on the map to guess the location of the desired place. In response to each mouse
click, a little flag appears on the map, marking the location the user clicked on. At
the same time, a circle marks the correct target location. The flag and the circle
have the same color and are drawn transparently onto the map. If both symbols
overlap, the target was correctly marked and the task was solved. The target is
added to the list of targets found and ticked off with a check mark for a correct
answer or an X symbol for an incorrect answer. This list also uses the same colors
as on the map (refer to Figure 8.6).

Once all questions have been answered, the program rewards the user with
praise or encourages the user to do better next time. The comments are based on
the percentage of correct answers scored. The user can then choose a new game
from the selection menu or reload the page to try the current game again.

8.4.2 Using the Application: As an Administrator

As mentioned previously, the game has a mode where you can define new targets
(click2tick_creator.html). This admin interface loads the familiar map view of
Google Maps and allows you to set the zoom factor, choose a map section, and
then define several points on the map. Before you can start placing the points,
you need to fixate the map section via the Record button. For each point, a line
of JavaScript code is displayed on the right side of the browser, listing the coordi-
nates in pixels and an identifier for the relevant point.

This part of the page is declared as contenteditable, so the identifiers can be
modified directly in the HTML page (see Figure 8.7, the bordered area on the
right). After all points have been marked and the identifiers adapted, the admin-
istrator has to copy the JavaScript code and save it in a JavaScript file, which is
then referenced in the game’s HTML code in the head area. More details on how
this works can be found in the introductory text of the admin site.

2238.4 Example: Click to tick!

Figure 8.7  Creating a new game using the administration interface

The last step for making the new game offline-capable is to enter the created
JavaScript file into the appcache file. To find the correct address for the static
Google Maps map, you need to call the game once with the debug option. This is
easily done by adding the following string to the URL of the administration site:
?debug=1. In this mode, the URL of the active image is displayed below the play-
ing area.

If you are interested in finding out more about the fascinating interplay between 
Google Maps API, Canvas, and JavaScript  in  the administration  interface,  look 
at the source code at http://html5.komplett.cc/code/chap_storage/click2tick_
creator.html.

8.4.3 Important Code Fragments

The following sections explain the most important parts of the Click to tick!
game. We begin with the HTML code, move on to the manifest instructions, and
finally work out the JavaScript part.

8.4.3.1  The HTML Code for the Game

The HTML code for the game Click to tick! is rather clear. Less than 50 lines of
well-formatted code form the basic structure of the application, as shown in List-
ing 8.1. Of course, the application logic resides not in the HTML code, but in the

NOTE

http://html5.komplett.cc/code/chap_storage/click2tick_creator.html
http://html5.komplett.cc/code/chap_storage/click2tick_creator.html

Chapter 8—Web Storage and Offline Web Applications 224

approximately 300-line long JavaScript file. It is primarily the placeholders for
the elements to be filled that are encoded in HTML:

Listing 8.1  Extract of the HTML code for the game “Click to tick!”

<!DOCTYPE html>
 <html manifest=click2tick.appcache>
 <head>
 <meta charset="utf-8">
 <title>Click to tick!</title>
 <link rel="stylesheet" media="all"
 href="click2tick.css">
 <script src="click2tick.js"></script>
 <script src="click2tick_game0001.js"></script>
 <script src="click2tick_game0002.js"></script>
 ...
 <div id="map">
 <fieldset>
 <legend>Map</legend>
 <canvas>This game requires a canvas capable browser/canvas>
 </fieldset>
 <p id=mapUrl></p>
 </div>
 <div id="controls">
 <fieldset>
 <legend>Questions</legend>
 <p>Choose a game:
 <select id=selGame name=games></select></p>
 <ul id="gameResults">
 <h3 id="curQuestion"></h3>
 </fieldset>
 <fieldset>
 <legend>Status</legend>
 <p>You are </p>
 <p id="localStorage"></p>
 <p id="updateButton"><input type=button onclick="location.reload();"
 value="Check for new games!"></p>
 </fieldset>
 </div>

The listing starts with the familiar DOCTYPE definition and the subsequent refer-
ence to the appcache file where the content to be saved is referenced. For each
game, a dedicated JavaScript file is loaded—here, for example, the file named
click2tick_game0001.js.

In the second part of the listing you see a canvas element, a strong indication
that this is the interactive playing area. The select element with the ID selGame is
still empty but will contain the list of all active games when the game is started.
The other HTML elements with the IDs gameResults, curQuestion, onlineStatus,
and localStorage are placeholders, which will also later be filled by JavaScript

2258.4 Example: Click to tick!

functions. The button labeled Check for new games! reloads the website via lo-
cation.reload and automatically checks if the manifest file has been modified.

8.4.3.2  The Manifest File

After the obligatory first line, the cache manifest contains references to the HTML
code, the JavaScript file, and the stylesheet. Then, the corresponding JavaScript
file and the static map of Google Maps are referenced for each game:

CACHE MANIFEST

application files
click2tick.html
click2tick.js
click2tick.css

gamedata
Downtown Paris
click2tick_game0001.js
http://maps.google.com/maps/api/staticmap?sensor=false&maptype=satellite
&size=640x480¢er=48.864721,2.3105226&zoom=14

Although the map call for the Google Maps map consists of a dynamic URL, the
resulting image is saved in offline storage and correctly loaded even without net-
work access if called. Figure 8.8 shows successful loading of three games into the
application cache.

Figure 8.8  Google Chrome Developer Tools loading the offline cache

Chapter 8—Web Storage and Offline Web Applications 226

8.4.3.3  JavaScript Functions of the Game

The HTML part of our example was not very exciting, but the JavaScript part of
the game is much more interesting. The previously mentioned window.onload
function initializes a new object game with the type click2tick and then calls the
init function of this object:

 window.onload = function() {
 var game = new click2tick();
 game.init();
 };

To keep the JavaScript code as flexible as possible, the entire game function is
wrapped in a library (GameLib), made accessible with all functions as global object:

(function () {
 var GameLib = function () {
 var elem = {};
 var image, canvas, context;
 ...
 };
 // expose object
 window.click2tick = GameLib;
}());

In the second-to-last line of the listing, the window object is assigned the GameLib
class with the new name click2tick. The init function of this class loads the
existing games, initializes the canvas element, and starts the first game (see List-
ing 8.2):

Listing 8.2  The init function for the GameLib library

 this.init = function() {
 // build game-selection pulldown
 var o = ''
 for (var i=0; i<gamedata.length; i++) {
 o += addOpt(i,gamedata[i].title);
 }
 _get('selGame').innerHTML = o;
 _get('selGame').options.selectedIndex = 0;
 _get('selGame').onchange = function() {
 startGame(this.value);
 };

 // define empty image used for map later
 image = new Image();

 canvas = document.querySelector("CANVAS");
 context = canvas.getContext('2d');

2278.4 Example: Click to tick!

 canvas.onclick = function(evt) {
 checkPosition(evt);
 };
 ...
 startGame(0);
 };

The functions addOpt() and _get() will probably be new to you. These are two
auxiliary functions; addOpt() serves to assemble the string for a new option ele-
ment, and _get() allows efficient access to the elements in the DOM tree (via
their ID). The HTML element with the ID selGame is the selection list of all games.
This list is set to the first element with selectedIndex = 0. If another item in this
list is selected, the startGame function is activated with this new value.

An event handler for the mouse click event is assigned to the canvas element and
calls the checkPosition function. Then the first game is started.

Because many functions of the GameLib are designed to ensure that the game
runs properly and are not directly connected with Web Storage or the offline
cache, we will not describe them in great detail here. If you are curious, you can
peek at the source code for the JavaScript library click2tick.js. But more relevant
for our offline chapter is the JavaScript code involving the Storage interface with
localStorage: We will use it when saving a game:

// store basic data in localStorage, add hostname
// and timestamp
var ts = new Date().getTime();
var id = "click2tick_"+game.store.gid+"_"+ts;
game.store.hostname = location.hostname;
game.store.ts = ts;
localStorage.setItem(id, JSON.stringify(game.store));

To ensure the keys in localStorage are unique, they are created by combining
a prefix string (click2tick), a game ID (game.store.gid), and a timestamp (ts)
connected by an underline (_).

The game.store structure is saved as a value with all results in the form of a JSON
string. The following listing shows the value after five out of eight questions have
been correctly answered at the end of the game. The key for the following entry
is click2tick_0001_1281026695083 (see also Figure 8.8):

{ "gid":"0001","game":"Downtown Paris",
 "questions":8,"correct":5,"percent":63,
 "hostname":"html5.komplett.cc", "ts":1281026695083
 }

Chapter 8—Web Storage and Offline Web Applications 228

The timestamp ts is the time in milliseconds since 1.1.1970. Now that the values
are saved in localStorage, you can give appropriate feedback to the user if the
user tries the game again:

// get collected data
var games_done = [];
var max_percent = 0;
for (var i=0;i<localStorage.length;i++) {
 var key = localStorage.key(i);
 if (key.substring(0, 9) == "click2tick") {
 var item = JSON.parse(localStorage.getItem(key));
 if (item.gid == game.store.gid) {
 games_done.push(item);
 max_percent = Math.max(max_percent, item.percent);
 }
 }
}

// show collected data
var s = '';
if (games_done.length == 0) {
 s += 'You have not played this game before.';
}
else {
 s += 'You have played this game '+
 (games_done.length+1)+' times
';
 s += 'Your best hit rate till now: '+
 max_percent+"%\n";
}
_get('localStorage').innerHTML = s;

The for loop runs over all items found in localStorage. For each element, the key
is determined and checked if it starts with the string click2tick. This check en-
sures that any elements saved by another application of this website are skipped
in localStorage.

We then use the JSON.parse function to convert valid elements into JavaScript
objects. If the game ID matches the ID of the current game (item.gid == game.
store.gid), the object is added to the array games_done and checked if its hit rate
is higher than the highest previous one (Math.max). A string s is then assembled,
giving details on the number of games played and the maximum percentage. As
you can see in Figure 8.5, the game also indicates whether the browser is online
or offline. This is relevant for our application because the player cannot look for
new games and updates while in offline mode:

var setOnlineStatus = function() {
 if (navigator.onLine) {
 _get('onlineStatus').innerHTML = 'Online';
 _get('onlineStatus').className = 'online';

2298.4 Example: Click to tick!

 _get('updateButton').style.visibility = 'visible';
 }
 else {
 _get('onlineStatus').innerHTML = 'Offline';
 _get('onlineStatus').className = 'offline';
 _get('updateButton').style.visibility = 'hidden';
 }
}

A check of the variable navigator.online (see section 8.2.2, Offline Status and
Events) decides if the button for updating the application will be displayed. To
ensure the online status is always up-to-date, event listeners are defined for both
switching to and from offline mode:

// control online-status
window.addEventListener("online", function() {
 setOnlineStatus();
}, false);
window.addEventListener("offline", function() {
 setOnlineStatus();
}, false);

8.4.4 Expansion Options

To make the game more attractive, you could try adding the following optional
expansions:

 z Select difficulty level. The valid area of objects is defined in pixels in the
image. The default setting of 15 pixels is suitable for average difficulty. You
could make this area variable via an input field using the new HTML5 form
element range. The level of difficulty would of course have to be taken into
account in the high score list.

 z Incorporate variable sizes/shapes of target. Because the objects to
be located often have different sizes, an additional parameter for each
target object might be conceivable, specifying the radius of the area to be
searched. If a circle is not accurate enough as a target object, you could
integrate other geometric forms as targets.

 z Include score by distance. You could incorporate the distance to the target
into the scoring: the closer a player’s mouse click was to the desired target
on the map, the higher the score the player gets for being right.

 z Add online high score. An extension in connection to offlineStorage would
be integrating the application into an online high score list. You would
require an application with access to the database on the web server.

Chapter 8—Web Storage and Offline Web Applications 230

 z Combine with Geolocation API. This expansion takes our example a bit
further: After locating the player’s current position with sufficient accuracy
(see Chapter 7, Geolocation), a corresponding Google Maps map section
could be loaded. The player’s task would then be to find his own location
on the map as accurately as possible. In this variation, the game is no
longer offline-capable but is definitely suitable for mobile devices.

Summary

In this chapter you encountered two different types of client-side storage: web
storage, a structured storage for reading and writing web applications, and of-
fline storage, temporarily saving entire web applications or parts of them on the
client side.

The chapter concluded with a programming example, the game Click to tick!,
demonstrating the strengths of the offline cache and localStorage. By using the
two new techniques, we created an application that could run on the web brows-
er but was still fully functional without Internet access. The automatic update
function was the icing on the cake. The user did not have to worry about installa-
tion, nor did the user need administrator rights.

9
WebSockets

The Hypertext Transfer Protocol (HTTP) is just great. Together with FTP, SMTP,
IMAP, and many others, it is part of the large family of text-based protocols exe-
cuted in the TCP/IP Application Layer. In these protocols, client and server com-
municate via messages in text form. The following listing demonstrates how easy
it is to “speak” HTTP with a web server:

user@host:~> telnet www.google.com 80
Trying 209.85.135.103...
Connected to www.l.google.com.
Escape character is ‚^]'.
GET /search?q=html5 HTTP/1.0

To run a Google search for the term html5, we first connect to www.google.com on
the port reserved for HTTP, port 80. The request has three parts: In the first part

231

www.google.com

Chapter 9—WebSockets 232

GET determines the method for the request; in this case we want to get informa-
tion from the server. The second part is the URI; here, we call the script search
with the parameter q=html5. In the third part we specify the protocol version 1.0.

The server promptly replies with the following information:

HTTP/1.0 200 OK
Cache-Control: private, max-age=0
Date: Fri, 28 Jan 2011 08:29:43 GMT
Expires: -1
Content-Type: text/html; charset=ISO-8859-1
...

<!doctype html><head><title>html5 - Google Search</title>
....

The first block of the message, the header, contains meta information separated
by an empty line from the following payload data (note how Google is already
using the new DOCTYPE). This gives us almost everything we need to program our
very own browser. Joking aside, the simplicity of the protocol is decisive for the
quick success and widespread use of HTTP. The header lines are nearly endlessly
expandable, making the protocol future-proof.

Each request is a closed issue after it has been answered. So, an HTML page
referencing a stylesheet and five images needs seven connections to load. This
means that a connection is established seven times, and each time metadata
and payload is transmitted. In version 1.1 of HTTP, this behavior was somewhat
improved by the keepalive function (new TCP connections do not need to be
created every time), but the meta information for each object is transmitted
separately. To track a user’s session, you need to resort to other tools (sessions,
cookies), because HTTP has not integrated this function.

These considerations provide the starting points for developing a new protocol,
which is by no means meant to replace HTTP but can complement it. The Web-
Sockets protocol transports data without meta information in a constant stream,
simultaneously from the server to the client and vice versa (full duplex).

Web applications that promptly show small changes in the browser can espe-
cially profit from this new method. Examples of such applications are a chat
program, the display of stock exchange prices, or online games. What was pre-
viously only possible via proprietary plug-ins or unpleasant JavaScript tricks is
now codified in a standardized protocol (as an IETF draft) and an associated API
(currently as an Editor’s Draft with the W3C). Both were still in a very early stage
at the time of this writing; however, both the WebKit engine (and thus Google
Chrome and Safari) and the Beta version of Mozilla Firefox contain a functioning
implementation.

We do not want to penetrate the depths of the WebSocket protocol, because the
communication on the protocol level is taken care of by the browser anyway.

9.1 The WebSocket Server 233

However, we will provide a few comments to clarify: Although an HTTP request in-
volves sending several header lines back and forth, WebSockets only use two bytes
for this. The first byte shows the start of a message; the second contains the length
of the message. This is a saving (of bytes transferred and bandwidth) with dramatic
consequences when you have to manage many users accessing the site at short
intervals.

If  you want  to  know more  about  the  details  of  the WebSocket  protocol,  read 
the relevant Internet Draft on the WHATWG website at http://www.whatwg.org/
specs/web-socket-protocol.

Interesting statistics regarding the advantages of WebSockets in different ap-
plications can be found in the article at http://soa.sys-con.com/node/1315473:
The authors even go so far as to refer to WebSockets as a quantum leap in scal-
ability for the web.

9.1 The WebSocket Server

Client-side support for WebSockets is integrated in modern browsers. But we
are still missing one component: the WebSocket server. Although the protocol
specification is not set in stone at the moment, there is already a surprising selec-
tion of software products available. You can choose a server depending on your
preference, be it Java, PHP, Perl, or Python (of course, all products are still in the
test stage).

For this book, we chose a special solution. With node.js is a JavaScript interpreter
capable of running without a browser. The code developed by Google under the
name V8 is working in the background. Because we used JavaScript exclusively
for all previous programming in this book, it made sense to write the server using
JavaScript as well.

There are currently no finished binary packets of node.js, so the installation re-
quires some manual work. With UNIX-type operating systems, the installation is
usually straightforward; for Windows, you still have to resort to the UNIX emula-
tion cygwin.

For  a more  detailed  description  regarding  the  installation  of node.js,  see  the 
project’s website at http://nodejs.org.

NOTE

NOTE

http://www.whatwg.org/specs/web-socket-protocol
http://www.whatwg.org/specs/web-socket-protocol
http://soa.sys-con.com/node/1315473
http://nodejs.org

Chapter 9—WebSockets 234

node.js does not yet contain a WebSocket server, but help is available on the In-
ternet. At http://github.com/miksago/node-websocket-server, you will find a
small library implementing the current specification of the WebSocket protocol
for the server. The three JavaScript files of the node-websocket-server are simply
copied into a subdirectory and loaded with the following lines:

var ws = require(__dirname + '/lib/ws'),
 server = ws.createServer();

From this point on, the variable server contains a reference to the WebSocket
server object. We still need to specify a port for the server:

server.listen(8887);

To start the server, we call the JavaScript file with the node.js interpreter:

node mini_server.js

Our minimal WebSocket server is now running and accepts connections at port
8887. But that is all our server can do for the moment. A more sensible applica-
tion is developed in the following example, which we will use to investigate the
individual components in more detail.

9.2 Example: A Broadcast Server

For our first little example, we want to communicate with a WebSocket that
transmits entered text to all clients with an active connection to the socket. This
is not a real Internet chat application but is well suited to the purpose of testing
the interactivity of WebSockets. Figure 9.1 shows how four interconnected cli-
ents exchange messages with each other.

http://github.com/miksago/node-websocket-server

9.2 Example: A Broadcast Server 235

Figure 9.1  Four connections to the WebSocket broadcast server

9.2.1 The Broadcast Client

In the HTML code we just need a text field for entering the message to be sent. To
demonstrate the capabilities of WebSocket, we want every character to be sent
to all connected users immediately. To achieve this, we use the oninput event of
the text field and call the sendmsg() function for each keystroke, which we will
analyze later on:

<h2>Broadcast messages</h2>
<textarea accesskey=t oninput="sendmsg();"
 onfocus="select()" rows=5 cols=40 id=ta
 placeholder="Please insert your message">
</textarea>
<div id=broadcast></div>
<p id=status><p id=debug>

The JavaScript section starts with a definition of the previously encountered $()
function, loaned from the jQuery library. As soon as the whole document is load-
ed, the WebSocket is initialized and assigned to the variable ws. In our example,
we use the server html5.komplett.cc on the special port 8887. The server is speci-
fied via a URL, and the protocol is abbreviated with ws://. Similar to the SSL
encoded HTTPS, there is also an encoded channel for WebSockets, called with
wss:// as the protocol. For our example, we stick with the uncoded variation.
The path specified in the URL (/bc) is not relevant for our WebSocket server, be-
cause the server on this port has the sole purpose of serving this example (more
about the server in section 9.2.2, The Broadcast Server):

Chapter 9—WebSockets 236

function $(a) { return document.getElementById(a); }

var ws, currentUser, ele;
window.onload = function() {
ws = new WebSocket("ws://html5.komplett.cc:8887/bc");
ws.onopen = function() {
 $("status").innerHTML = 'online';
 $("status").style.color = 'green';
 ws.onmessage = function(e) {
 var msg;
 try {
 msg = JSON.parse(e.data);
 } catch (SyntaxError) {
 $("debug").innerHTML = "invalid message";
 return false;
 }

If the connection is successfully established, the WebSocket’s onopen event is ac-
tivated. The anonymous function in our example writes the string online in green
into a status line at the end of the HTML document. For each message received
by the WebSocket, it activates the onmessage event. The data attribute of the vari-
able e available for this function contains the payload sent by the server. In our
example, the data is converted into a JavaScript object via JSON.parse, which
means that the server has to send a JSON string (details on this will follow later in
this section). If the conversion is unsuccessful, the function is terminated and an
appropriate error message appears on the HTML page.

A valid message contains a JavaScript object with user name (user), message text
(text) , and the color in which the message is to be displayed (color). As you can
see in Figure 9.1, each user is writing on his own line and in his own color. The
server assigns colors to users; assigning a new line is implemented on the cli-
ent. The subsequent if query checks if the last message is from the same user
as the previously received message. If that is the case, the innerHTML value of the
variable ele is assigned the received text. If it is a different user or this is the first
message, a new paragraph with the name ele is created and added to the div ele-
ment with the ID broadcast. The variable currentUser is then set to the value of
the current user:

 if (currentUser == msg.user) {
 ele.innerHTML = msg.text;
 } else {
 ele = document.createElement("p");
 $("broadcast").appendChild(ele);
 ele.style.color = msg.color;
 ele.innerHTML = msg.text;
 currentUser = msg.user;
 }
 };
};

9.2 Example: A Broadcast Server 237

function sendmsg() {
 ws.send($("ta").value);
}
ws.onclose = function(e){
 $("status").innerHTML = 'offline';
 $("status").style.color = 'red';
};
window.onunload = function(){
 ws.close();
};

The sendmsg() function fired with every keystroke within the text field sends the
entire content of the text field to the WebSocket.

If the connection to the WebSocket is terminated for any reason (for example,
due to an absent network connection or server problems), the WebSocket object
fires the close event and consequently the onclose function. In our example, we
set the status line to offline in red. When leaving the site (window.onunload), we
explicitly close the WebSocket, logging out of the server.

9.2.2 The Broadcast Server

To complete the example, we still need the server component. As mentioned
earlier, we use the node.js runtime and the node-websocket-server for the Web-
Socket examples in this book. This makes sense didactically because we do not
need to switch to another programming language. After all, the server code is
meant to be easily understandable for you as well.

Similar to the client, the server works based on events. Each established connec-
tion and each received message fires a connection or message event, respectively,
to which we react in the JavaScript code. At the beginning of the script, we load
the node-websocket-server library, located in the directory lib/ under the name
ws.js. A new WebSocket object is assigned to the variable server:

var ws = require(__dirname + '/lib/ws'),
 server = ws.createServer();
var user_cols = {};
server.addListener("connection", function(conn) {
 var h = conn._server.manager.length*70;
 user_cols[conn.id] = "hsl("+h+",100%,30%)";
 var msg = {};
 msg.user = conn.id;
 msg.color = user_cols[conn.id];
 msg.text = "A new user has entered the chat";
 conn.broadcast(JSON.stringify(msg));

Chapter 9—WebSockets 238

The first event handler (connection) handles the new connections. As in Chap-
ter 8 in the section 8.5, Example: Click to tick!, we assign the color for the user
step by step in HSL, jumping ahead for each new user by 70 degrees (the num-
ber of users can be retrieved via the array conn._server.manager). The colors are
saved in the variable user_cols with the connection ID (conn.id) as an index. The
variable msg is furnished with the created color and the notification that a new
user has entered; then it is sent as a JSON string via the method conn.broadcast.
This method is a function of the node-websocket-server and broadcasts messag-
es to all clients except the one who fired the current event, which is exactly what
we want in this case: All users are informed that a new user has entered the chat:

 conn.addListener("message", function(message) {
 var msg = {};
 message = message.replace(/</g, "<");
 message = message.replace(/>/g, ">");
 msg.text = message;
 msg.user = conn.id;
 msg.color = user_cols[conn.id];
 conn.write(JSON.stringify(msg));
 conn.broadcast(JSON.stringify(msg));
 });
});

The second function reacting to the message event replaces the start and end
characters for HTML tags in the passed string (message) to ensure that no script
code or similar tricks can be smuggled in. A reliable application would have to
check input even more thoroughly to protect against possible attacks. After all,
the message is broadcast to all clients and displayed in their browsers, a nearly
ideal attack scenario. As in the connection event, a local variable msg is filled with
the desired content and sent as a JSON string. But here, it happens twice: first
with the write() method to the actual user and then with the broadcast()meth-
od to all other users.

The WebSocket server is almost finished. We are still missing an event handler
for closed connections and the actual start of the server:

server.addListener("close", function(conn) {
 var msg = {};
 msg.user = conn.id;
 msg.color = user_cols[conn.id];
 msg.text = "A user has left the chat";
 conn.broadcast(JSON.stringify(msg));
});
server.listen(8887);

9.3 Example: Battleships! 239

As with the connection event, all users receive a message in the close event as
well. In this case, they are told that a user has left the conference. Then the server
is bound to port 8887 and receives queries from that point on.

That was an initial, very brief example. In the next section we will develop a game
that makes even better use of the advantages of WebSockets.

9.3 Example: Battleships!

A more detailed websocket example is devoted to a popular strategy game for
which you would normally only need paper and pencil—Battleships! The rules
are easy to explain: Each player places ten ships of different sizes on a play area
sized ten-by-ten spaces. The ships are not allowed to be touching, can be ar-
ranged horizontally or vertically, and are two to five spaces long. You distribute
them following the rule: 1×5, 2×4, 3×3, and 4×2 spaces per ship. The player who
is first to finish arranging his or her ships can start the game by choosing one
of the opponent’s spaces. If the space chosen contains only water, it’s the op-
ponent’s turn next; if that space contains a ship or part of a ship, the player can
keep guessing. You continue in this way until all parts of all ships have been hit,
and the ships have been sunk.

For converting Battleships! to HTML5, we require an HTML file on the client
with a JavaScript library and a CSS stylesheet; on the server we use node-web-
socket-server, which we already mentioned in section 9.1, The WebSocket
Server. All files relevant for the application can be found on the companion
website at these links:

 z http://html5.komplett.cc/code/chap_websockets/game_en.html

 z http://html5.komplett.cc/code/chap_websockets/game_en.js

 z http://html5.komplett.cc/code/chap_websockets/game.css

 z http://html5.komplett.cc/code/chap_websockets/ws/game_server.js

The game is shown in Figure 9.2.

http://html5.komplett.cc/code/chap_websockets/game_en.html
http://html5.komplett.cc/code/chap_websockets/game_en.js
http://html5.komplett.cc/code/chap_websockets/game.css
http://html5.komplett.cc/code/chap_websockets/ws/game_server.js

Chapter 9—WebSockets 240

Figure 9.2  The game “Battleships!” in action

In the HTML code, control elements and game dialogs are defined as form ele-
ments, visible or hidden depending on the game phase. Four of them are mes-
sage windows, displayed centered with position:fixed as an invitation to play,
rejection of the invitation, and congratulations or commiserations at the end
of the game. The other forms contain the login mask, two game areas for the
player’s own and the opponent’s ships, a digitalization component for placing
the ships in the desired orientation, plus a list of currently logged-in users and
their status.

On loading the page, the login mask appears and you are asked to enter your
nickname (see Figure 9.3). Two special users are available for testing the applica-
tion, test1 and test2, for which the ships are positioned automatically, and player
test1 can always start the game. The auxiliary page test_game.html is a good way
to observe the game from both players’ viewpoints. Here you can log in under
two different user names via embedded iframe elements, so you can play against
yourself, as it were. The advantage is that you always win and are able to fol-
low the application’s game logic more easily. This testing page can be found at
http://html5.komplett.cc/code/chap_websockets/game_test_en.html.

http://html5.komplett.cc/code/chap_websockets/game_test_en.html

9.3 Example: Battleships! 241

Figure 9.3  Start page of the “Battleships!” game

If you click OK after logging in, the connection to the WebSocket server is cre-
ated. Its tasks are limited to exchanging messages between players and updating
the user list. The user list shows each user with a connection ID, nickname, and
current game status.

All messages are sent as JSON strings and fall roughly into two categories: The
first one comprises messages sent to all users, concerning changes in the game
status of individual players. The second category comprises private messages ex-
changed only between users currently playing a game together. For this purpose,
we had to add the additional method writeclient() to the connection library of
the node-websocket-server, passing messages only to the desired user.

Immediately after login, your own game area appears. Just as the opponent’s
game area, it consists of ten-by-ten button elements whose value attributes re-
flect the grid position and have values between 1,1 (top left) and 10,10 (bottom
right). Each button has a class attribute that can be changed several times in the
course of the game. The CSS stylesheet contains the classes presented in Table
9.1 (relevant to the gameplay).

Table 9.1  Gameplay-related CSS classes in the game area

Class CSS Formatting

.empty background-color: #EEE

.ship background-color: slategray

.water background-color: lightblue

.hit background-color: salmon; pointer-events: none

.destroyed background-color: darkseagreen; pointer-events: none

Chapter 9—WebSockets 242

Before we can start digitalizing the ships, we need to find a partner so we can
play. This is done by selecting a player from the list of logged-in users and
clicking the button Invite Player to send that user an invitation to play. The
callback function of this button locates the player ID and sends an invitation
message to the WebSocket server:

this.invitePlayer = function() {
 var opts = document.forms.loggedin.users.options;
 if (opts.selectedIndex != -1) {
 wsMessage({
 task : 'private',
 request : 'invite',
 client : opts[opts.selectedIndex].value
 });
 }
};

The called function wsMessage() directs the message in JSON format to the serv-
er. It can also contain additional steps, such as checking the validity of the mes-
sage or similar steps:

var wsMessage = function(msg) {
 game.websocket.send(JSON.stringify(msg));
};

The variable game in this code listing represents the central game object, and
contains all variables relevant to the game. On the server, the invitation is iden-
tified as a private message, the sender’s data is added, and then the message is
sent to the selected player.

With the server in game_server.js, it would look like this:

else if (msg.task == 'private') {
 msg.from = USERS[conn.id];
 conn.writeclient(JSON.stringify(msg),msg.client);
}

This user is presented with a little window asking to play a game with you (see
Figure 9.4). If the user declines, you receive the answer No thanks, not now; if
the user accepts, the user list is hidden and the digitalization component for
placing the ships is displayed. Let’s first look at the code for inviting someone
to play. On the client, we see it as part of the onmessage callback function for all
server messages:

game.websocket.onmessage = function(e) {
 var msg = JSON.parse(e.data);
 if (msg.request == 'invite') {
 var frm = document.forms.inviteConfirm;

9.3 Example: Battleships! 243

 var txt = ''+msg.from.nick+'';
 txt += 'wants to play a game with you.';
 txt += 'Accept?';
 frm.sender.previousSibling.innerHTML = txt;
 frm.sender.value = msg.from.id;
 frm.sendernick.value = msg.from.nick;
 frm.style.display = 'inline';
 }
};

Figure 9.4  The dialog box inviting you to a new game

So the ID and nickname of the person who sends the invite are contained in the
form inviteConfirm, and the message window can be displayed. When the other
player clicks on Yes or No, the appropriate response is sent back to the inviter via
the server and once again lands in the onmessage callback:

 else if (msg.request == 'confirm') {
 if (msg.choice == true) {
 wsMessage({
 task : 'setPlaying',
 client : msg.from.id
 });
 prepareGame(msg.from.id,msg.from.nick);
 document.forms.loggedin.style.display = 'none';
 }
 else {
 show('nothanks');
 window.setTimeout(function() {
 hide('nothanks');
 document.forms.users.style.display = 'inline';
 }, 2000);
 }
 }

Chapter 9—WebSockets 244

If the invitation to play was answered with Yes, the server is informed that the
two players are now playing together, the game is prepared, and the selection list
of logged-in players is hidden. If the answer was No, only the message No thanks,
not now is displayed for two seconds.

As a direct consequence of the server message We are now playing together, other
steps follow, such as the update of the player status object on the server, which
then informs all users that the two players involved are not currently available
for other games.

For the server in game_server.js, it would look as follows:

 var setBusy = function(id) {.
 USERS[id].busy = true;
 var msg = {task:'isPlaying',user:USERS[id]};
 conn.broadcast(JSON.stringify(msg));
 conn.write(JSON.stringify(msg));
 };
...
 else if (msg.task == 'setPlaying') {
 setBusy(conn.id);
 setBusy(msg.client);
 }

Back in the client, this message is caught in the onmessage callback and the locally
kept list of logged-in players is updated. The result of this update is that both
players can no longer be selected, because their option elements are deactivated
via a disabled attribute:

 else if (msg.task == 'isPlaying') {
 var opts = document.forms.loggedin.users.options;
 for (var i=0; i<opts.length; i++) {
 if (opts[i].value == msg.user.id) {
 opts[i].disabled = 'disabled';
 }
 }
 }

If both players agree that they want to play together, they can start placing the
ships. If you are logged in as user test1 or test2, your ships are already prepared
for you; if not, a pull-down menu pops up, allowing you to digitalize your flotilla
via five buttons. Select whether to arrange each ship in a horizontal or vertical
orientation, and then click on the desired ship type and place the ship onto the
play area in the desired place by clicking once more.

The relevant fields are formatted to represent ships via a CSS class ship and
are recorded in three JavaScript variables. The variable game.ships.isShip re-
members the designated positions, and the variable game.ships.parts records

9.3 Example: Battleships! 245

the fields belonging to each ship as an array of arrays. A copy of these arrays
is worked through successively in the variable game.ships.partsTodo during the
game and only contains ten empty arrays at the end of the game for the losing
player, because the relevant position is deleted for each hit.

With each newly placed ship, the label of the relevant button is updated as well,
showing how many ships of this type are still available. It disappears once all
ships of this type have been placed. Once all ships are placed, the entire form
disappears and a message is sent to the opponent: Ready to start the game!

if (game.ships.parts.length == 10) {
 document.forms.digitize.style.display = 'none';
 game.me.grid['1-1'].parentNode.style.pointerEvents =
 'none';
 wsMessage({
 task : 'private',
 request : 'ready',
 client : game.you.id
 });
 game.me.ready = true;
}

Who comes first, goes first is the motto, so the player who is the quickest to place
all his ships can begin the game. The slower player has to bite the bullet and
suffer the first attack on his fleet. To allow each player to attack the opponent’s
ships, a second play area is displayed after both players have placed their ships.

The game logic for attacking and sinking ships is implemented fully on the cli-
ent side. The server only distributes the game moves as private messages to both
players involved. Each click on an active play field calls the reveal function:

this.reveal = function(evt) {
 wsMessage({
 task : 'private',
 request : 'challenge',
 field : evt.target.value,
 client : game.you.id
 });
};

The server transmits the message to the opponent’s side, which then checks
whether the field the other player clicked on contains part of a ship or not:

else if (msg.request == 'challenge') {
 var destroyed = 0;
 if (game.ships.isShip[msg.field]) {
 game.me.grid[msg.field].setAttribute("class","hit");

Figure 9.5 shows the game in demo mode.

Chapter 9—WebSockets 246

Figure 9.5  “Battleships!” in demo mode

In case of a hit (isShip is true) , the relevant button on the player’s own play area
is assigned the class hit, coloring it red according to the stylesheet instruction.
If a ship is hit but is not yet completely destroyed, the opponent receives an ap-
propriate message:

wsMessage({
 task : 'private',
 request : 'thisFieldIs',
 result : 'hit',
 field : msg.field,
 client : game.you.id
});

If the request part of the message is thisFieldIs, the field is treated accordingly
for the opponent:

else if (msg.request == 'thisFieldIs') {
 if (msg.result == 'water') {

9.3 Example: Battleships! 247

 game.you.grid[msg.field].setAttribute("class",
 msg.result);
 deactivateField();
 }
 else if (msg.result == 'hit') {
 game.you.grid[msg.field].setAttribute("class",
 msg.result);
 }
...

From the attacker’s point of view, the answer hit marks the field he clicked on in
red. If the answer is destroyed, all fields belonging to that ship are turned from
red to green to show it was hit and destroyed. At the same time, in the play area
of the attacked player, his hit position is marked in red. In the case of destroyed,
all previously red ship sections are turned blue to show that the attacked ship
was destroyed and has been replaced by blue blocks, or water. So, the more blue
you can see on your play area, the worse the situation; the more green in the op-
ponent’s play area, the better the chance of victory.

If the answer is water, it is now the attacked player’s turn to retaliate (the
deactivateField() function prevents further actions). The game continues
back and forth until one of the two players has destroyed all of the opponent’s
ships and is declared the winner. Marking the status of your own and enemy
ships is done via CSS formats for each button element, as mentioned previ-
ously. The turn-taking between players is possible because the opposing game
area for the currently inactive player is deactivated with pointer-events:none
and opacity:0.2.

After the end of the game, both players are separated again; their status is reset
to Available to play, and the next invitation can be issued. In the current version,
Battleships! does not yet allow for playing several consecutive games with the
same player; perhaps you would like to try implementing this new feature? An-
other good idea might be a Logout button, and if you are feeling really brave, you
could implement a multiplayer mode. There are many options for developing
this application further. You are only limited by your imagination!

The example demonstrates in an impressive way the new options offered by the
WebSocket protocol for developing interactive applications. Our examples dealt
with interaction between users. But a feature you could easily implement would
be the WebSocket server getting information from the Internet, processing it,
and then sending it to the connected users. The previously mentioned applica-
tion for broadcasting current stock market prices would be a good example of
this. Another possible scenario would be displaying new messages received in
Twitter. The advantages are obvious: The client is notified of news via the mes-
sage event, and the data stream between client and server is very lean, conserv-
ing network bandwidth.

Chapter 9—WebSockets 248

Summary

With WebSockets, a new protocol has stepped onto the WWW stage. By no means
does this spell the end of the Hypertext Transfer Protocol. The WebSocket proto-
col was developed for special applications where bidirectional communication
between client and server with little overhead is required.

Both the server-side and the client APIs are very easy to program, as you can
see from our first example of a rudimentary chat application. A full-blown, mul-
tiuser, online game is presented in our final example, Battleships!. Here, too, the
communication between client and server can be programmed with a few lines
of JavaScript code, and less code always means less risk of errors.

The introduction of WebSockets makes it easy to program web applications that
previously could only be realized very laboriously via XMLHttpRequests or by
constantly reloading web pages. Large amounts of rapidly changing data can
then be monitored through one website; stock exchange data is just one example.

10
Web Workers

If you have already been experimenting a bit with JavaScript, you may have come
across a browser message similar to this: A script on this page may be busy, or it
may have stopped responding. This could be the result of a programming error,
perhaps an endless loop. But what should you do if your JavaScript does not have
an error and the calculation is just taking a bit longer than usual? This is where
web workers come in.

10.1 Introduction to Web Workers

To ensure that long calculations on the client side do not block the browser, a
worker can work in the background and inform the calling script about the status
of its calculations via messages. Workers have no access to DOM APIs, the window

249

Chapter 10—Web Workers 250

object, and the document object. What at first seems like a great limitation is in
fact very sensible on closer inspection. If scripts running in parallel access the
same resources and change them, very complex situations can arise as a result.
The strict isolation of the workers and their communication via messages makes
the JavaScript code more secure.

The start of a new worker is relatively labor intensive for the operating system,
and each worker takes up more memory space than executing the same func-
tions without workers. The advantages are obvious nevertheless: The browser
remains able to react, and complicated calculations can be carried out in paral-
lel, leading to a potential increase in speed for modern hardware.

When created, each worker receives the script containing the code for the worker:

var w = new Worker("calc.js");

The script, in this case calc.js, contains JavaScript code that is executed when
the worker is called. Optionally, the worker contains an event handler for the
message event, reacting to requests by the calling script. In practice, this supplies
the worker with data for calculations and triggers the computing process:

addEventListener('message', function(evt) {
 // evt.data contains the data passed

The data transfer from the calling script to the worker and vice versa takes place
via the postMessage() function. To supply the worker w with data, the following
call is suitable:

w.postMessage(imgData);

JavaScript objects can be passed to the postMessage() call and converted to JSON
strings internally by the browser. The important point is that this data is copied
with every call, which can mean a considerable loss of speed in the case of large
amounts of data.

As mentioned earlier, workers have no access to the window object. Exceptions are
the functions of the WindowTimers interface: setTimeout()/clearTimeout() and
setInterval()/clearInterval() can also be used within a worker. And workers
can load external scripts, which is why the importScripts() function was intro-
duced. One or more JavaScript files can be passed to this function (separated by
commas), which the worker loads and can then use.

The worker also has read access to the location object, where the href attribute
returns an absolute URL to the running worker. Via the XMLHttpRequest, work-
ers can communicate with web services.

10.2 Search for Leap Years 251

For web workers, the specification distinguishes between Dedicated Workers and
Shared Workers; the second category, Shared Workers, is able to receive messag-
es from different scripts and send their own messages to various scripts. In this
chapter, we will only address the first variety, Dedicated Workers; for information
on Shared Workers, please refer to the relevant sections in the specification at

http://dev.w3.org/html5/workers/#shared-workers-introduction.

Because this specification on web workers is still in an early stage and the exist-
ing implementations in WebKit and Firefox are still incomplete, we will omit a
detailed description of the API and instead present you with two introductory
examples of the way web workers function.

10.2 Search for Leap Years

Both prime numbers and the Fibonacci sequence have already been calculat-
ed sufficiently with web workers (you can easily find the relevant examples via
Google). We want to turn to another, similarly exciting, task. In the first example,
we will search for leap years since 1.1.1970. Because this task would only take a
few fractions of a second on modern hardware and would not demonstrate the
capabilities of web workers, we will make it difficult for our program. It is sup-
posed to check for very short time spans (seconds or minutes) if it is February
29 and therefore a leap year. A selection for the step size of the time span is re-
quired, because different hardware will execute the program at different speeds.
Figure 10.1 shows the output on a weak CPU after several seconds.

Figure 10.1  Web worker searching for leap years

http://dev.w3.org/html5/workers/#shared-workers-introduction

Chapter 10—Web Workers 252

Clicking the Start button executes the startCalc() function. This reads the step
value set in the option field and then initializes the web worker worker with the
script date_worker.js:

var opts = document.forms.stepForm.step.options;
startCalc = function() {
 var step = opts[opts.selectedIndex].value;
 var w = new Worker('date_worker.js');
 w.postMessage(step);

The call of the postMessage() function to which the selected step size is passed
communicates with the event listener for the message event in the script date_
worker.js. Now the worker starts working:

addEventListener('message', function(evt) {
 var today = new Date();
 var oldMonth = -1;
 for (var i=0; i<today; i+=Number(evt.data)*1000) {
 var d = new Date(i);
 if (d.getDate() == 29 && d.getMonth() == 1
 && d.getHours() == 12 && d.getMinutes() == 0) {
 postMessage(d.toLocaleString());
 }
 if (d.getMonth() != oldMonth) {
 postMessage("y "+d.getFullYear()+"-"
 +(d.getMonth()+1));
 oldMonth = d.getMonth();
 }
 }
}, false);

A for loop in the worker runs from the second 0 to the current date (today), con-
verting the value passed by postMessage() to a number via the Number() function
and then multiplying it by 1000 to get the step size. Access to the postMessage()
data takes place via the data attribute, which you have already encountered in the
previous chapter about WebSockets. Multiplying by 1000 is necessary because
the variable today contains the current value in milliseconds, not in seconds. If a
date in the loop is recognized as February 29, the worker sends a message to the
calling script and passes the day as a formatted string.

To indicate the current progress of the calculation, the program sends another
message as soon as the loop reaches a new month. This message starts with the
string "y " and also contains the year and the month. The following listing shows
how the calling script distinguishes this message from a leap year notification:

w.onmessage = function(evt) {
 if (evt.data.substr(0,2) == "y ") {

10.3 Calculate Altitude Profiles with Canvas 253

 $("y").innerHTML = evt.data.substr(2);
 } else {
 $("cnt").innerHTML += "Leap year: "+evt.data+"\n";
 }
}

The substr() function extracts the first two characters of the variable evt.data
and compares them to the value "y ". In the case of a match, the field for display-
ing the date is updated; otherwise, the date is added as a new line to the field with
the ID cnt. As in many other examples, we use the $() function as an abbrevia-
tion for the document.getElementById() call.

If the worker takes too long to run (for example, if your computer does not com-
pute fast enough), you can force the process to end by clicking the Stop button.
This stops the worker via the terminate() function; thereafter, the Start button is
reactivated after being inactive during the computation:

stopCalc = function() {
 w.terminate();
 $("start").removeAttribute("disabled");
}

The next, more extensive example shows how several workers can work in paral-
lel and carry out a more practical computation than the previous one.

10.3 Calculate Altitude Profiles with Canvas

Among the areas where web workers are particularly useful is undoubtedly the
client-side analysis of audio, video, and image files. In our example, we use a
PNG file showing the area of Tyrol, Austria, with a special feature: The image’s
alpha channel contains the altitude information of the area. You can find this
image online at

http://html5.komplett.cc/code/chap_workers/images/topo_elevation_alpha.png.

Via canvas we can not only read the color values, but also the alpha channel val-
ues (see Chapter 5, Canvas), allowing us to carry out computations regarding
the region. One simple example for such a computation is an altitude profile,
extracting the altitude value for each point along a certain line.

The profiles in our example consist of several sections, and we can set both the
number of the sections and the number of profiles via text fields on the website.
This is necessary to be able to adapt the computation to computers of differ-
ent speeds. The individual profile sections result from randomly chosen points
within the picture. We want the program to display a progress bar during the

http://html5.komplett.cc/code/chap_workers/images/topo_elevation_alpha.png

Chapter 10—Web Workers 254

computation and to output the calculated minimum and maximum altitude
along the profile. Once all sections have been calculated, the program returns
the number of points found. The website displays the number of points as well
as the time it took to calculate the profile. It would make sense to send the entire
altitude profile back to the calling program as a result, but if many sections are
used, the profile takes up a lot of memory space and slows down the program
considerably. This would not achieve the desired demo effect. Figure 10.2 shows
two profiles being calculated in parallel using web workers.

Figure 10.2  Web workers calculating two altitude profiles simultaneously

If we are creating more than one profile, we can let the web workers carry out
the calculations in parallel, whereas an analysis without web workers always has
to be done sequentially. On modern hardware, where the operating system has
multiple core processors available on the CPU, this means that the browser can
divvy up the workload between the different cores. Figure 10.3 shows this situ-
ation on a system with four CPU cores. Although the call with web workers uses
two cores to 100 percent capacity (at about 30 seconds), we can see in the sec-
ond case that without web workers only one CPU core is used to its full capacity
(at 15 seconds). The result is a marginally faster computation with web workers,
with the browser reacting to input during the computation and continually up-
dating the progress bar.

10.3 Calculate Altitude Profiles with Canvas 255

Figure 10.3  CPU usage in calculations with and without web workers

10.3.1  Important Code Fragments
To compare how the script behaves with and without web workers, you can call
the program with both methods. You first need to integrate the external Java-
Script file containing the code for the worker (canvas_profile.js) into the head
of the calling website. From that point on, the onmessage function is globally
available—but more on the worker code shortly. Let’s start with the HTML code
for the program:

<script src="canvas_profile.js"></script>
...
<h1>Calculate elevation profiles with Web Workers</h1>
<p>Number of profiles <input type=number id=profiles
 size=2 oninput="updateProgressBars();" value=2>
Number of sections in profile
<input type=number id=parts value=500 size=4
 oninput="updateProgressBars();">
</p>
<h3>Start
<input type=button onclick="calcProfiles(true)"
 value="with"> or
<input type=button onclick="calcProfiles(false)"
 value="without"> Web Workers
</h3>

Each time the content of the two input fields of the type number are changed, they
cause the function updateProgressBars() to be called. In it, the progress bar and
the placeholders for the results output are created. The two buttons with and
without start the calculation of the altitude profiles.

Chapter 10—Web Workers 256

In the JavaScript code, we first extract the altitude values from the PNG image. To
do this, we load the image into a new canvas element:

var canvas = document.createElement("CANVAS");
canvas.width = 300;
canvas.height = 300;
var context = canvas.getContext('2d');
var image = document.querySelector("IMG");
context.drawImage(image,0,0);
// document.querySelector(“BODY”).appendChild(canvas);
var elev =
context.getImageData(0,0,canvas.width,canvas.height).data;
var alpha = [];
for (var i=0; i<elev.length; i+=4) {
 alpha.push(elev[i+3]);
}

In the variable image, the only img element on the website is loaded and then drawn
onto the newly created canvas element. Neither the image nor the canvas is vis-
ible on the website, because the img element is marked with display:none and the
canvas is never attached to the DOM tree. If you activate the commented-out line
in the preceding code, you can see the canvas at the end of the page. As you know
from Chapter 5, Canvas, the getImageData() function produces an array with the
color and alpha channel values of the canvas (in each case four entries per pixel).
Because only the alpha channel values are relevant for our example, we extract
them from the array via the for loop. This data reduction is sensible because each
worker receives a copy of the array. If we are starting four workers in parallel, the
memory usage increases linearly with each worker.

The calcProfiles() function then starts the calculation with or without workers,
depending on whether true or false is passed to the function:

calcProfiles = function(useWorker) {
 USE_WORKER = useWorker;
 startTime = new Date();
 for (var i=0; i<PROFILES; i++) {
 var imgData = {
 id : i,
 alpha: alpha,
 parts : PARTS,
 height : canvas.height,
 width : canvas.width
 }

The variable PROFILES contains the value of the relevant input field and controls
how often the central for loop is run. The imgData variable is created with the
altitude values of the image (alpha), the number of sections (PARTS), the canvas
height (height), and canvas width (width), plus an ID (id), with the latter being

10.3 Calculate Altitude Profiles with Canvas 257

required as reference for the profiles. Then the program logic divides itself into
the part working with web workers and the part without web workers:

if (USE_WORKER) {
 imgData.useWorker = true;
 var worker = new Worker('canvas_profile.js');
 worker.postMessage(imgData);
 worker.onmessage = function(evt){
 if (evt.data.task == 'update') {
 progress.item(evt.data.id).value = evt.data.status*i;
 } else if (evt.data.task == 'newMin') {
 $('progDivMin'+evt.data.id).innerHTML = evt.data.min;
 } else if (evt.data.task == 'newMax') {
 $('progDivMax'+evt.data.id).innerHTML = evt.data.max;
 } else {
 showResults(evt);
 }
 };
}
else {
 imgData.useWorker = false;
 showResults(
 onmessage({data:imgData})
);
 progress.item(i).value = PARTS;
}

In the first case, a new worker is created and activated with postMessage(). The
entire data structure of the imgData variable is passed to it. Then an event listener
is defined, which receives four different message types. Messages of the type up-
date will update the progress bar, and newMin and newMax reset the relevant alti-
tude values on the website. All other messages call the showResult() function,
which works out the time of the calculation and displays it with the number of
points on the altitude profile.

If the call is to be started without workers, the onmessage() function of the ex-
ternal JavaScript file is started, with the imgData variable wrapped into the data
attribute of a JavaScript object. This is useful because the postMessage() call in
the worker also wraps data into such a structure, and we therefore do not need to
further adapt the external code.

The external JavaScript file canvas_profile.js starts with the onmessage() function.
In the notation shown here, this function has a double purpose: as an event han-
dler for the worker’s message event and also as a global function, which we can call
without a worker. In it, the random points for the individual sections are created:

onmessage = function(evt) {
...
 var p1 = [Math.round(Math.random()*(evt.data.width-1)),

Chapter 10—Web Workers 258

 Math.round(Math.random()*(evt.data.height-1))];
 for (var i=1; i<evt.data.parts; i++) {
 var p2 = [Math.round(Math.random()*(evt.data.width-1)),
 Math.round(Math.random()*(evt.data.height-1))];
 var len = Math.sqrt((Math.pow(p2[0]-p1[0],2)
 +Math.pow(p2[1]-p1[1],2)));
 var profile = [];
 for (var j=0; j<len-1; j++) {
...
 var h = getHeight([x,y]);

The length in pixels (len) between the two random points (p1 and p2) is calcu-
lated via the Pythagorean theorem, using the JavaScript function Math.sqrt() (for
the square root) and Math.pow() (for squaring). Then a second loop runs over all
pixels along this route and extracts the altitude value from the array:

 var getHeight = function(p) {
 var pos = ((parseInt(p[1])*evt.data.width) +
 parseInt(p[0]));
 return evt.data.alpha[pos] * equidistance;
 };

To determine the desired position within the one-dimensional array of alpha
channel values, we need to multiply the y-value by the canvas width and then add
the x-value. The attentive reader will have noticed another detail: Before return-
ing the determined value, it is multiplied by the variable equidistance. The rea-
son is that we can only save 256 different values per channel in an 8-bit image file.
But the area around Innsbruck, Austria, has an altitude difference of more than
256 meters, so the altitude in this PNG image is specified in steps of 20 meters.

If a new minimum value along a profile line is found, the calling script is notified
accordingly:

if (h < min) {
 min = h;
 if (evt.data.useWorker) {
 postMessage({task:'newMin',min:min,id: evt.data.id});
 }
}

The same applies of course for new maximum values. At the end of each loop
over all sections, the progress bar is updated, and as soon as all sections have
been calculated, the result, wrapped in the variable d, is sent back to the main
script. If the script is executed as a worker, the data is sent with postMessage(),
without a worker, the result is returned to the calling function with return:

Summary 259

if (evt.data.useWorker) {
 postMessage({task:'update', status:i, id:evt.data.id});
}
...
if (evt.data.useWorker) {
 postMessage(d);
}
else {
 return {data:d};
}

The client-side analysis of image data conserves server capacity and network
bandwidth. Provided there is suitable hardware equipment on the client side,
this could give users the option of digitalizing altitude profiles on an image with
an alpha channel and then graphically representing these in realtime.

If this has whet your appetite for web workers, please do not forget that using
workers requires more resources than scripts working without workers. Data
transfer with messages between a worker and the calling script is especially slow-
er than in a script with direct access to the resources.

Summary

This chapter introduced the concept of scripts running parallel in the browser. In
desktop applications these are known as threads; in the browser they are called
web workers. Access to the elements of the website is subject to certain restric-
tions, but information can comfortably be exchanged between the calling script
and the individual workers through the concept of message passing.

Web workers are particularly useful for large web applications where processes
are running in the background and should not block user input. Think for exam-
ple of automatic saving while you are working on a document or coloring source
code while you create it, as demonstrated by Mozilla’s Web Editor Ace.

This page intentionally left blank

11
Microdata

Saturday, October 9th 2010, just before half past eight in the evening. Pat Meth-
eny steps onto the stage of the sold-out Community Theater in Morristown, NJ. The
stage is decorated with a Persian rug and heavy red drapes. In the background
we spot a piano, two vibraphones, various small instruments, and several strange
objects resembling organ pipes, pharmaceutical jars, or rocket launchers.

The setting seems rather strange, because the long-time companions of the
ingenious guitarist are missing: no Antonio Sanchez on the drums, no Steve
Rodby on the bass, and no Lyle Mays on the piano. Instead of the Pat Metheny
Group in flesh and blood, we now see an army of machines, small hammers, and
LEDs which are activated in turn to bring the surrogate human artists to life. By
the time we have listened to the obligatory solo on the 42-string guitar, just as
the red curtain is lifting, the whole dimension of the enterprise Orchestrion hits
home: This will be a fascinating evening full of awe and wonder.

261

Chapter 11—Microdata 262

This could be the beginning of a fictitious review of a concert in an equally fic-
titious blog: two paragraphs full of information, filtered and combined auto-
matically by the reader whilst reading. The event is defined in terms of time and
location; objects, instruments, and events on stage are recognized and people
mentioned in the text are identified as a matter of course as musicians with their
respective instruments. The human brain is trained to filter information effi-
ciently. Computers are not and require help to filter information. This help basi-
cally boils down to marking and correlating the relevant information.

Which information is relevant depends entirely on what we want to filter out of
the text. For a diary it would be the name of the event, its time, and place; for an
address book, the contact details of the musicians; and for searching for new CDs
to add to your music collection, you need the names of the artists and bands.
One option for offering the quintessence of a text in the relevant context and
in machine-readable form is microdata—a very young and emotionally debated
feature of HTML5.

In the eyes of many critics, microdata stands in direct competition with RDFa,
the Resource Description Framework, another option of embedding metadata.
Its close connection to XHTML makes it especially difficult to fit in with the con-
cept of HTML5, which lacks the namespaces used abundantly in RDFa. The result
of the tug-of-war between the two approaches is, not surprisingly, two specifica-
tions, with microdata present both as an integrated WHATWG version and as a
W3C stand-alone version, whereas RDFa can only be found in the W3C. The links
to the specifications are

 z http://www.w3.org/TR/microdata

 z http://www.whatwg.org/specs/web-apps/current-work/multipage/links.
html#microdata

 z http://www.w3.org/TR/rdfa-in-html

The a in RDFa stands for attributes, which brings us to the feature both tech-
niques have in common. Both RDFa and microdata use a set of attributes to de-
fine metadata. In RDFa, this metadata is present as a triple of subject, predicate,
and object. As explained in Wikipedia with regard to the Resource Description
Framework, the subject denotes the resource (Pat Metheny), the predicate de-
notes traits or aspects of the resource (musician), and the object expresses a rela-
tionship between the subject and the object (Orchestrion). With microdata, the
information ends up as name-value pairs, such as Pat Metheny : musician or Pat
Metheny : Orchestrion. Which of the two approaches will ultimately prevail is un-
certain. Both techniques have advantages and disadvantages, and could also co-
exist. But because microdata can already be integrated seamlessly into HTML5,
we will concentrate on microdata in this chapter.

http://www.w3.org/TR/microdata
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata
http://www.w3.org/TR/rdfa-in-html

11.1 The Syntax of Microdata 263

11.1 The Syntax of Microdata

If we take the text at the beginning of the chapter and add a few links, an image,
and the signature of the blog author, we end up with a complete, fictitious blog
entry, as shown in Figure 11.1. It will accompany us through an explanation of
the microdata syntax.

Figure 11.1  Screen shot of fictitious blog entry about Pat Metheny’s Orchestrion Tour

11.1.1 The Attributes “itemscope” and ”itemprop”

We first need to define the area relevant for microdata. Structuring elements are
suitable, as are container elements, such as div or p. In our example, we chose
an article element, which encloses the entire blog entry. The required attribute
for defining the scope starts with item—just as the other four microdata attri-
butes—has the type boolean, and is called, rather logically, itemscope:

<article itemscope>
...
</article>

The itemscope defines a new group of name-value pairs, also called items in
the specification. The corresponding values are supplied by itemprop attributes,

Chapter 11—Microdata 264

where prop means properties. If we want to mark all musicians in the text as
musicians, we therefore require four itemprop attributes, which we insert in
a suitable place. If no suitable elements are readily available, we first need to
create them as a span or div element. So “Pat Metheny” becomes “Pat
Metheny” in the HTML code, an addition that does not affect the text
layout and allows us to specify an itemprop attribute for the span element. Un-
like itemscope, itemprop is not a boolean attribute, but defines the name of the
corresponding property via its attribute value:

<article itemscope>
... Pat Metheny steps onto the stage ...
... Antonio Sanchez on the drums ...
... Steve Rodby on the bass ...
... Lyle Mays on the piano ...
</article>

Our first microdata example is now complete, and the question arises as to how
this metadata could be interpreted by a search engine spider that indexes the
blog entry. Philip Jägenstedt’s Live Microdata viewer, from now on referred to
as microdata viewer, helps us visualize the data structure. This is an online ap-
plication where we can copy code fragments with microdata content into a text
field, making hidden microdata visible in JSON notation. You should probably
save the link http://foolip.org/microdatajs/live as a bookmark: You will need it
for testing all code examples.

To  avoid  having  to  painstakingly  retype  the  example  texts,  all  HTML  code 
fragments  in  this  chapter are available as a plain  text  file  online  so  they  can 
easily be copied into the microdata viewer. The individual fragments are listed in 
the same order as they appear in the chapter. The link to the file is http://html5.
komplett.cc/code/chap_microdata/fragments_en.txt.

If we copy the second HTML fragment from the file fragments_en.txt into Philip
Jägenstedt’s microdata viewer, the JSON notation shows the following structure:

{
 "items":[{
 "properties":{
 "musician":["Pat Metheny",
 "Antonio Sanchez",
 "Steve Rodby",
 "Lyle Mays"
]
 }
 }
]
}

TIP

http://foolip.org/microdatajs/live
http://html5.komplett.cc/code/chap_microdata/fragments_en.txt
http://html5.komplett.cc/code/chap_microdata/fragments_en.txt

11.1 The Syntax of Microdata 265

At first glance, the many curly and square brackets may seem confusing, but
they disclose the metadata structure very clearly if you look closer. Each entry
(“items”) consists of an array of properties (“properties”), which are in turn made
up of name-value pairs with the name of the property (“musician”) and the corre-
sponding values (“Pat Metheny,” “Antonio Sanchez,” “Steve Rodby,” “Lyle Mays”)
as an array.

Some HTML elements automatically define the value of the specified property
as soon as an itemprop attribute is assigned to them. Let’s use the blog entry’s
descriptive picture to test the microdata viewer and give it an itemprop attri-
bute image:

<article itemscope>

</article>

This automatically gives us the value of the src attribute as the value for the prop-
erty image. In addition to the img element, there are a number of other elements
to which this behavior applies. You can see them in Table 11.1.

Table 11.1  Elements with special “itemprop” values

Attribute Element(s)

src audio, embed, iframe, img, source, video

href a, area, link

datetime time

content meta

data object

Let’s turn back to the spider, which is now indexing our microdata-filled blog.
It won’t know what to make of the items musician and image. The reason is be-
cause we have defined our own microdata terms that have meaning only to us.
To be able to use microdata sensibly, we need standardized dialects that can be
comprehended by our spider, just as by an intelligent mail program that auto-
matically extracts e-mail addresses encoded as microdata if you drag a URL into
its address book, or by a diary able to recognize diary dates by the same method.

Chapter 11—Microdata 266

11.1.2 The “itemtype” Attribute

We do not have far to go during our search for standardized dialects. The WHAT-
WG’s Microdata specification already contains three of them: vCard for contact
information, vEvents for dates of events, and a third one for specifying licenses
of a work. A multitude of other dialects can be found in the microformats com-
munity at http://microformats.org. But in contrast to microdata, these dialects
are defined in the microformats scheme, making lavish use of class and rel at-
tributes for determining metadata structure.

With the attribute itemtype, you determine that the existing microdata follows a
standardized vocabulary. As an attribute value, itemtype expects a URL for the
corresponding standard. vCard and vEvent reflect the close link between micro-
data and microformats, because both profiles in the specification refer directly
to microformats.org:

 z http://microformats.org/profile/hcard

 z http://microformats.org/profile/hcalendar#vevent

Let’s try to code a vEvent for the concert in our blog entry. We need to add the
correct itemtype and then specify the itemprop attributes in accordance with the
hCalendar specification:

<article itemscope
 itemtype=http://microformats.org/profile/hcalendar#vevent>
 <time itemprop=dtstart
 datetime="2010-10-09T20:30:00-04:00">
 Saturday, October 9th 2010, just before half past eight in the
evening
 </time> ...
 Community Theater in
 Morristown, NJ...
 Orchestrion ...
</article>

If we copy this microdata fragment into the microdata viewer, we can see an-
other output option next to the JSON notation, this time in iCal format, which
could be seamlessly imported into your own calendar:

BEGIN:VCALENDAR
PRODID:jQuery Microdata
VERSION:2.0
BEGIN:VEVENT
DTSTAMP;VALUE=DATE-TIME:20101227T205755Z
DTSTART;VALUE=DATE-TIME:20101009T2030000400
LOCATION:Community Theater
LOCATION:Morristown\, NJ

http://microformats.org
http://microformats.org/profile/hcard
http://microformats.org/profile/hcalendar#vevent

11.1 The Syntax of Microdata 267

SUMMARY:Orchestrion
END:VEVENT
END:VCALENDAR

The conversion of microdata to the iCal format is based on Philip Jägenstedt’s
JavaScript library microdatajs, which is also the core of the microdata viewer.
You can download it from http://gitorious.org/microdatajs.

On this occasion we can also write the license for this library as a microdata
structure. The rules for the vocabulary are in the WHATWG version of the mi-
crodata specification in the section Licensing works and require as an itemtype
the URL http://n.whatwg.org/work plus the keywords work, title, author, and
license as itemprop attributes:

<div itemscope itemtype=http://n.whatwg.org/work>
<a itemprop=work
 href="http://gitorious.org/microdatajs">
 microdatajs by
Philip Jägenstedt
<a itemprop=license
 href=http://creativecommons.org/licenses/publicdomain/>
 (Public Domain)
</div>

The next example shows how microdata dialects can be used in combination. As
part of a concert review, it makes sense to code the event as vEvent and the au-
thor of the review as vCard. The technique for nesting dialects is quite simple. If
we want to define the itemProp attribute reviewer in the hReview dialect as vCard,
we just have to add an itemScope attribute with the itemType of the vCard dialect
to the same element and then add the desired entries of the vCard. The same
applies for embedding vEvent into hReview and can be tested with the following
code fragment in the microdata viewer:

<article itemscope
 itemtype=http://microformats.org/wiki/hreview>
 <div
 itemprop=item itemscope
 itemtype=http://microformats.org/profile/hcalendar#vevent>
 Orchestrion,
 <time itemprop=dtstart
 datetime="2010-10-09T20:30:00-04:00">October 9th 2010
 </time>:
 </div>
 A fascinating evening
 rated with 5 stars out of 5 stars.
 <div itemprop=reviewer itemscope
 itemtype=http://microformats.org/profile/hcard>
 Nicos Thassofilakas,

http://gitorious.org/microdatajs
http://n.whatwg.org/work

Chapter 11—Microdata 268

 openWeb.cc
 </div>
</article>

11.1.3 The “itemid” Attribute

As soon as a microdata structure has an itemtype attribute, items in the dialect
used can be tagged with unique IDs via the itemid attribute. Examples of such
IDs are the ISBN (International Standard Book Number) for books, the EAN (Eu-
ropean Article Number) for identifying products, and the ASIN (Amazon Stan-
dard Identification Number) for orders within Amazon.

Valid values for the itemid attribute are URLs, including Uniform Resource
Names (URN) with the prefix urn:. Using a fictitious vocabulary for describing
books, the tablature of Pat Metheny’s solo album One Quiet Night could be iden-
tified via its unique ISBN number:

<div itemscope
 itemtype=http://vocab.example.net/book
 itemid="urn:isbn:978-0634066634">
One Quiet Night by
Pat Metheny
(<time itemprop=pubdate datetime=2005-04-01>2005</time>,
88 pages)
</div>

11.1.4 The “itemref” Attribute

Often, it is not possible to accommodate all desired microdata information
within one container element. With our blog entry, the itemscope attribute goes
with the surrounding article element, and all associated itemProp attributes
are within the article. If you want to include itemProp attributes outside of the
article elements, you can use itemref attributes. Separated by commas, they
contain a list of IDs of elements also to be searched for microdata contents. The
connection between the itemscope attribute and a container element can then
be removed completely:

<article>
 <div id=location>
 Pat Metheny
 </div>
 <div id=intro>
 Antonio Sanchez
 Steve Rodby

11.2 The Microdata DOM API 269

 Lyle Mays
 Pat Metheny Group
 </div>
</article>
<div itemscope itemref="location intro"></div>

In this example, the two paragraphs of the blog entry are divided into two div
elements with the IDs location and intro. Within these div elements, the indi-
vidual musicians are identified as members of the band Pat Metheny Group via
itemprop attributes. The itemscope attribute is outside of the article and refers via
the itemref attribute to the IDs of those areas where the actual information can
be found. In complicated microdata structures, this option can be very useful.

11.2 The Microdata DOM API

As you would expect, the microdata structure of a document can also be explored
via JavaScript via the microdata DOM API.

Accessing all top-level microdata items (that is, those items that have an item-
scope attribute and are not part of another item) takes place via the method
document.getItems(). It returns as a result a DOM-NodeList of elements found
in the order in which they appear in the DOM tree. If we are only after items of a
particular type, we could pass a list of desired itemtype attributes, separated by
commas, in the getItems() call:

var allNodes = document.getItems();
var vCards = document.getItems(
 'http://microformats.org/profile/hcard'
);

Each element of the resulting NodeList allows access to the additional micro-
data attributes present for each element. Table 11.2 lists the attribute names
and their content.

Table 11.2  Attributes of a top-level microdata item

Attribute Content

itemScope Value of itemscope attribute

itemType Value of itemtype attribute, if present

itemId Value of itemid attribute, if present

itemRef Value of itemref attribute, if present

Chapter 11—Microdata 270

Starting from the relevant top-level item, we can then work towards the prop-
erties defined with itemprop. We find these in item.properties, the so-called
HTMLPropertiesCollection, which allows access to the name-value pairs of each
property via additional interfaces. The elements are sorted according to their
position in the DOM tree. Table 11.3 shows the required attributes and meth-
ods, and their content.

Table 11.3  Attributes and methods of “HTMLPropertiesCollection”

Attribute/Method Content

length Number of elements in a collection

item(index) Element in a collection at position index

namedItem(name) Collection consisting of the elements whose
itemprop attribute has the value name

namedItem(name).values Array with the contents of all itemprop attributes
whose value is name

names DOMStringList of all itemprop attribute values in
the collection

names.length Number of itemprop attribute values

names.item(index) Name of itemprop attribute value at position
index

names.contains(name) Boolean attribute for testing if the string name is
present as an itemprop attribute value

The last attribute in the microdata DOM API is itemValue. It allows access to the
content of elements that have an itemprop attribute. If an element in a variable
elem is a container—for example, article, div, or span—then elem.itemValue
represents the text content that can also be changed.

You need to be careful if nested items are involved, because then the element
concerned also has an itemscope attribute and the content of the element has to
be interpreted independently, almost as a top-level item. The specification takes
this into account and requires that in this case elem.itemValue makes a new item
object available.

A second and last special case concerns HTML elements, which you have already
encountered as elements with special status in the section on itemprop attributes.
a, src, time, meta, and object belong to this category and assign their href, src,
datetime, content, or data attribute to elem.itemValue, in contrast to the usual
practice. The list of all representatives in this category are found in Table 11.1.

Summary 271

Summary

In this chapter we take a closer look at the syntax of microdata, a mechanism to
add semantic markup to documents using a variety of global attributes. Starting
with the boolean attribute itemscope that marks the area relevant for microdata
and defines a new, empty group of name-value pairs— the so-called items—we
then move on to the itemprop attribute that actually defines the name of the cor-
responding property via its attribute value.

We use the itemtype attributes to denote standardized vocabularies like vCard for
contact information or vEvents for dates of events and itemid attributes to tag
items in these dialects with unique IDs, such as ISBN or EAN numbers. Last but
not least we finish the topic of microdata attributes with itemref, enabling us to
specify a comma-separated list of element IDs also to be searched for microdata
contents. A walk through the Microdata DOM API concludes this chapter and
shows how you can easily access your microdata structure via JavaScript.

Unfortunately, no browser supports microdata at the time of this writing, so
the only way to explore the many examples shown in this chapter is with Phil-
ip Jägenstedt’s Live Microdata viewer, which is available at http://foolip.org/
microdatajs/live. We can only wait and see if and when microdata will eventu-
ally become established.

http://foolip.org/microdatajs/live
http://foolip.org/microdatajs/live

This page intentionally left blank

12
Finishing Touches:
Some Global Attributes

In this last chapter, we will look at some seemingly insignificant global attributes
of the HTMLElement interface. Our leitmotif in this chapter will be the develop-
ment of a simple game that requires putting terms in a particular order follow-
ing given criteria, similar to the preliminary round of the popular TV show Who
Wants to Be a Millionaire. We call our game 1- 2-3-4! It involves the capital cities
of the 27 EU member states. Can you put the capital cities in order by number of
inhabitants? Do you know which city is farther north, south, west, or east? If not,
you probably will by the end of this chapter.

273

Chapter 12—Finishing Touches:Some Global Attributes 274

The game will consist of an HTML part, a script part, and a CSS part. All three 
components  are  of  course  available  online  for  experimenting  and  inspecting. 
Here are the links:
 z http://html5.komplett.cc/code/chap_global/1234_en.html

 z http://html5.komplett.cc/code/chap_global/1234.js

 z http://html5.komplett.cc/code/chap_global/1234.css

12.1 News for the “class” Attribute

We first turn to a new DOM method of the HTMLElement interface, which allows
us easy access to elements by the content of their respective class attribute:
document.getElementsByClassName(). Its use could hardly be simpler and looks
like this:

var questions = document.getElementsByClassName('q');

This gives us a list ordered by position in the DOM tree of all elements whose
class attribute contains the value q. If this list happens to consist of li elements
with the names of the capital cities, the first step toward implementing our game
is done: A live reference to the game objects is set in the variable questions. It
reflects the current status of the individual li elements:

<li id=de class=q>Berlin
<li id=at class=q>Vienna
<!-- and 25 others -->

Access to the individual li elements can happen in two ways: either via the offset
in the list or via a name, by which we do not mean the node content but the value
of the existing id or name attribute:

questions.item(1).innerHTML => Vienna
questions.namedItem(‘de’).innerHTML => Berlin

The length of the list can be found in questions.length, which means the offset
for item(i) values can be between 0 and questions.length-1. Instead of an id at-
tribute, elements with name attributes, for example form, can also be searched via
namedItem(str) for values in this attribute.

If you want to search for several classes, you only need to pass the desired values
during the method call, separated by spaces. Using the fictitious example of a
fruit shop, searching for fruit defined as red or apple as their I like criteria could
be successful with the following instruction:

NOTE

http://html5.komplett.cc/code/chap_global/1234_en.html
http://html5.komplett.cc/code/chap_global/1234.js
http://html5.komplett.cc/code/chap_global/1234.css

12.2 Defining Custom Attributes with “data-*” 275

var mmm = document.getElementsByClassName('red apple');

This helps us find all red fruit, all apples, and of course also a red apple.

12.2 Defining Custom Attributes with “data-*”
Previously, it was not possible in HTML to freely define custom attributes within
your application, but now the HTML specification offers a mechanism to achieve
exactly that: the data-* attribute. Its use could not be simpler and only requires
that the desired attribute has the prefix data-. There are few limitations for nam-
ing the attribute: It must be at least one character long and may not contain any
uppercase letters. Using the data entry of one of the 27 capital cities of our game
as an example, the data attributes for number of inhabitants, geographical loca-
tion, and associated country could look like this:

<li id=at class=q
 data-pop=1705080
 data-geo-lat=48.20833
 data-geo-lng=16.373064
 data-country='Austria'>Vienna

So how can you access your custom attributes? One option would be the classi-
cal method with getAttribute() and setAttribute(), but the specification has
something better to offer: the dataset property. It allows for retrieving and set-
ting all data attributes of an element via element.dataset:

var el = q.namedItem('at');
var pop = el.dataset.pop; // 1705080
var lat = el.dataset.geoLat; // 48.208
var lng = el.dataset.geoLng; // 16.373
var ctr = el.dataset.country; // Austria
// and two years later perhaps ...
el.dataset.pop = 1717034;

By the time you read the third line, which contains el.dataset.geoLat, it will
have become clear that hyphens have a special significance with data attributes;
why else would data-geo-lat suddenly turn into dataset.geoLat. Hyphens are
replaced by the next letter converted to uppercase—the special term for this way
of capitalizing is called CamelCase. Now you know why no uppercase letters are
allowed in data attributes: They could result in unexpected problems when re-
placing hyphens.

Unfortunately, support for element.dataset has not progressed well as yet. At the
time of this writing, only WebKit had implemented the dataset DOM property in
its Nightly builds. The game uses Remy Sharp’s html5-data.js as a workaround
for this shortcoming, a JavaScript shim that at least enables the reading of data
attributes. For setting, we must resort to the good old setAttribute() method.

Chapter 12—Finishing Touches:Some Global Attributes 276

12.3 The “hidden” Attribute

In the HTML Working Group, the hidden attribute caused a great stir. It managed
to reach ISSUE status with a following Straw Poll for Objections and only got its
final blessing through a decision of the HTML Working Group chairmen. The
critics mainly claimed that hidden is superfluous. We will shortly demonstrate
that the hidden attribute can indeed be useful, because selecting the questions
for our game will be done via hidden. The algorithm is quickly explained: We first
hide all items with hidden and then reveal four randomly selected items again.
The relevant JavaScript code looks like this:

var showRandomNItems = function(q,n) {
 var show = [];
 for (var i=0; i<q.length; i++) {
 q.item(i).hidden = true;
 show.push(i);
 }
 show.sort(function() {return 0.5 – Math.random()});
 for (var i=0; i<n; i++) {
 q.item(show[i]).hidden = false;
 }
};

As arguments, we pass the list with li elements in the variable q and the desired
number of elements to be shown in n to the function showRandomNItems(). We then
hide all items with hidden=true and fill a new array with the indices of 0 – q.length.
This array is then put in random order, and the desired number n of capital cities
is revealed again.

12.4 The “classList” Interface

With getElementsByClassName(), we have already encountered the first option of
working with the global class attribute. The classList interface is another one,
allowing us to manage all values of a class attribute in a so-called DOMTokenList
via the methods item(), contains(), add(), remove(), and toggle(). Let’s again
use the example of the class attribute of a product in our fictitious fruit shop:

<li class="red apple">

Via li.classList, we then have the following properties:

li.classList.length => 2
li.classList.item(0) => red

12.4 The “classList” Interface 277

li.classList.item(1) => apple
li.classList.contains('red') => true
li.classList.contains('apple') => true
li.classList.contains('organic') => false

If we forgot to attach the organic label during pricing, we can assign it afterward
to our red organic apple:

li.classlist.add('organic')
li.classList.item(2) => organic

The banana on the next shelf that traveled all the way from Ecuador has wrongly
been categorized as organic; we can easily fix that mistake:

banana.classList.remove('organic')

For bread, fresh in the morning and not quite as fresh in the evening, we could
insert toggle() for showing the relevant state:

// freshly baked in the morning
bread.classlist.add('fresh')
// late afternoon
bread.classList.toggle('fresh')
bread.classList.contains('fresh') => false
// and the next morning after the new delivery
bread.classList.toggle('fresh')
bread.classList.contains('fresh') => true

In the 1-2-3-4! game we will use classList for displaying correct or wrong for
the selected order. Before turning to the core of the game, the drag-and-drop
function, we will quickly adapt the game’s layout and add four areas to the left
of the city list where the cities can be sorted. All four li elements get the class a
for answer during the selection, analog to q for question, and Unicode symbols
for numbering in the range ૘ to ૛—so-called DINGBAT NEGATIVE
CIRCLED DIGITS:

<li class=a>❶
<li class=a>❷
<li class=a>❸
<li class=a>❹

With a few additional CSS formats, we finalize the static basic version of the
game. Figure 12.1 shows the basic layout. The online version can be found at
http://html5.komplett.cc/code/chap_global/1234_static_en.html.

http://html5.komplett.cc/code/chap_global/1234_static_en.html

Chapter 12—Finishing Touches:Some Global Attributes 278

Figure 12.1  Static basic layout of the 1-2-3-4! game

As  you  can  see  in  the  title  bar  in  Figure  12.1,  the  screen  shot  was  created 
with a beta version of Firefox 4, because only  that browser version meets the 
requirements of the game. With the exception of data-*, for which we use Remy 
Sharp’s  JavaScript  shim  as  mentioned  earlier,  all  necessary  attributes  and 
methods are implemented in this version.

12.5 Drag and Drop with the “draggable” Attribute

Drag and drop in the browser is really nothing new. This function has been pres-
ent in Internet Explorer (IE) since 1999, in version 5.0 at that time. Based on the
IE implementation, drag and drop was then included in the specification in 2005
and is now available in all common browsers, with the exception of Opera.

The checklist for the implementation of a classic drag-and-drop operation, as
used in the game for sorting the cities by number of inhabitants, involves the
following tasks:

1. Selecting elements that can be dragged
2. Determining data to be dragged along in the background as soon as the

drag-and-drop operation is started

NOTE

12.5 Drag and Drop with the “draggable” Attribute 279

3. Deciding where the dragged element can be dropped
4. Extracting the data as soon as the user ends the drag-and-drop operation

on a valid target object

We can fulfill the first task with the global draggable attribute. Via draggable=true
it marks the relevant element as a candidate for dragging to another position.
Two HTML elements are by default defined as draggable: the img element and
the a element, provided it has an href attribute, which made it possible previ-
ously to drag links or images on the desktop and save them easily. If we wanted
to prevent drag and drop in these elements, we could use draggable=false.

To prepare an entry in the city list for drag and drop, we first need to add the
draggable attribute and set it to true:

<li id=be draggable=true>Brussels

Drag-and-drop operations are not an end unto themselves but a means to an
end: Their purpose is to transfer information from one place to another. Which
information this is must be determined at the start of the drag operation in ques-
tion, which is why we add a dragstart event handler to each item in our city list.
It calls the callback function startDrag() and passes it the so-called DragEvent in
the argument event:

<li id=be draggable=true
 ondragstart="startDrag(event)">Brussels

This DragEvent plays a central role in drag and drop, because its readonly attri-
bute dataTransfer gives us access to the DataTransfer interface of the drag-and-
drop API, where all necessary methods and attributes of drag and drop are avail-
able. One of these methods is setData(format, data). This determines which
data is to be dragged along in the background when dragging from A to B. In our
case, it is the ID in the format text. With this we will later be able to access the
original data:

var dragStart = function(evt) {
 evt.dataTransfer.setData('text',evt.target.id);
};

From this point on, the list item can be dragged—where we will drop it remains
open. It would be helpful to have a droppable attribute available in parallel to the
draggable attribute, but this is not the case, which is why we require no less than
three events for successful dropping: dragenter, dragover, and drop. Strangely
enough, two of them must be aborted in order for the third and most important
event to be fired. The HTML code for one of the list items on the left of the game,
where the cities are arranged, shows us which ones they are

Chapter 12—Finishing Touches:Some Global Attributes 280

<li ondragenter="return false;"
 ondragover="return false;"
 ondrop="drop(event)">❶

The two events dragenter and dragover exist primarily to signal: You can drop
here! In our case, they are immediately aborted with return false. If we were to
use two callback functions, we could offer additional user feedback, for example:
You can drop here! for dragenter or Are you sure you got it right? for dragover. To
abort the event in the callback function, we do not use return false, but instead
use evt.preventDefault(). The effect is the same; it fires the drop event.

This brings us to the last task of the checklist, extracting previously set data and
implementing the game logic with the ondrop event. We again pass the DragEvent
in the argument event to the callback function drop() and then use getData() to
access the ID saved at dragstart:

var drop = function(evt) {
 var id = evt.dataTransfer.getData('text');
 var elemQ = questions.namedItem(id);
 var elemA = evt.target;
 elemA.setAttribute("data-id",id);
 elemA.setAttribute("data-pop",elemQ.dataset.pop);
 elemA.innerHTML = elemQ.innerHTML;
 // continue game logic
};

Via the ID, we can use questions.namedItem(id) to directly access the source ob-
ject, store its number of inhabitants as a data attribute in the target object, and
use its city name as a label. The two variables elemQ and elemA are shortcuts for
the two li elements involved. Remember that Remy Sharp’s JavaScript shim for
data attributes unfortunately works only for read access, so we use the familiar
elamA.setAttribute("data-id",id) for saving the values instead of the more el-
egant elemA.dataset.id=id .

As part of the game logic, the two buttons concerned are also deactivated at
this point and visual feedback is given—in both cases via CSS classes, which we
can conveniently add via classList.add(). The additional items in the function
drop() are

elemQ.classList.add('qInactive');
elemA.classList.add('aInactive');

The corresponding formats in the CSS stylesheet are as follows:

.qInactive {
 pointer-events: none;

12.5 Drag and Drop with the “draggable” Attribute 281

 color: #AAA;
 background-color: #EEE;
 border-color: #AAA;
}
.aInactive {
 pointer-events: none;
 background-color: hsl(60,100%,85%);
 border-color: hsl(60,100%,40%);
}

At this point in the game, we check whether all cities have been assigned in the
order of their number of inhabitants. Correct answers are highlighted in green.
Incorrect answers are removed and can then be arranged once more. For the
color change in correct answers, we again use classList.add(); the correspond-
ing CSS format looks like this:

.aCorrect {
 background-color: hsl(75,100%,85%);
 border-color: hsl(75,100%,40%);
}

As soon as all answers are correct, the player is congratulated on his or her suc-
cess, and if the player clicks the restart button, four other randomly selected
cities are offered for another game. If a user finds numbers of inhabitants too
tedious, the user can select two other game modes from the pull-down menu:
arranging the cities by geographical location from North to South or East to West.
For details on the JavaScript and CSS implementation, see these links:

 z http://html5.komplett.cc/code/chap_global/1234.js

 z http://html5.komplett.cc/code/chap_global/1234.css

You can see the completed game in action in Figure 12.2. If you would like to
expand the game, you can go right ahead and implement an expansion Select
number of cities! The static list on the left should then be generated dynamically.
Have fun!

Let’s get back to our original topic, drag and drop. After this simple and prac-
tical example, several details are still open—for example, three other events
available for drag and drop operations: drag, dragend, and dragleave. During
dragging, a drag event is created at an interval of 350 ms (±200 ms); dropping
creates a dragend event. The third event, dragleave, concerns the target object
and occurs when leaving a potential drop zone.

http://html5.komplett.cc/code/chap_global/1234.js
http://html5.komplett.cc/code/chap_global/1234.css

Chapter 12—Finishing Touches:Some Global Attributes 282

Figure 12.2  The game “1-2-3-4!” in action

The DataTransfer object also provides interesting methods and attributes—for
example, the method setDragImage(element, x, y) with which we can display
a custom image during dragging to provide feedback. A similar effect can be
achieved with addElement(element), but this time we can drag along not just an
image, but whole sections of a page as a feedback indicator.

With dataTransfer.types, we can return a DOMStringList of all formats and their
values that were assigned with setData() at the startdrag event. In our game this
list was short and contained only one item with the ID in the format text, inter-
preted automatically by the browser as text/plain. The format is not completely
restricted to using MIME types; the specification also allows formats that do not
correspond to a MIME type. So we could have used all data attributes with speak-
ing names as a format. Using the example of the ID and the number of inhabit-
ants, this would look as follows:

 evt.dataTransfer.setData('id',evt.target.id);
 evt.dataTransfer.setData('pop',evt.target.dataset.pop);

Retrieving them at a later time would then have been easier via getData('id') or
getData('pop').

12.5 Drag and Drop with the “draggable” Attribute 283

When dragging elements with microdata attributes, all values are automatically
taken along as a JSON character string. You can access them easily via
getData('application/microdata+json').

If we decide to remove certain formats from the list during the drag-and-drop
operation, we can use the method clearData(format) to delete the specified for-
mat. If we omit format altogether, all existing formats are deleted.

The two DataTransfer attributes effectAllow and dropEffect sound promising,
hinting at appealing optical effects during dragging and dropping. On closer
inspection it becomes clear that they only serve to control the appearance of
the cursor while entering the drop zone. Permitted keywords for dropEffect are
copy, link, move, and none. They add a plus symbol, link symbol, arrow, or noth-
ing (if none is selected) to the cursor during the dragenter event. With a small
application (see Figure 12.3), you can test the behavior of your browser online at
http://html5.komplett.cc/code/chap_global/dropEffect_en.html.

TIP

Figure 12.3  Test application of the “dataTransfer.dropEffect”

The value of the dropEffect attribute can be changed in any phase of the drag-
and-drop action, but it must always correspond to the value specified previ-
ously in effectAllow. In addition to copy, link, move, and none, effectAllow also

http://html5.komplett.cc/code/chap_global/dropEffect_en.html

Chapter 12—Finishing Touches:Some Global Attributes 284

permits combinations, such as copyLink, copyMove, or linkMove, marking both
components as valid. Via the keyword all, you can also allow all effects.

Before we move on to the next section, here are a few closing thoughts on se-
curity issues with drag and drop: Data in the DataTransfer object is only made
available to the script again at the drop event. So, while dragging a document
from A to B, data is prevented from being intercepted by a malicious document
C. For the same reason, the drop event must be explicitly triggered by the user by
dropping the object, not automatically by the script. Even the script-controlled
moving of the window underneath the mouse position must not fire a dragStart
event; otherwise, sensitive data could be dragged into malicious third-party doc-
uments against the user’s will.

Drag and drop in the browser opens a wealth of new possibilities. If you are
looking for an impressive example of combining drag and drop with Canvas, lo-
calStorage, offline cache, and other techniques associated with HTML5, such as
XMLHttpRequest or the FileAPI, do not miss Paul Rouget’s blog, an HTML5 offline
image editor and uploader application, with its four-minute video. Even though
it is only meant to be a showcase for features in Firefox 3.6, it does show in an
impressive manner what is already possible now. Check it out at http://hacks.
mozilla.org/2010/02/an-html5-offline-image-editor-and-uploader-application.

Now, we’ll look closer at one aspect of this demo, introducing you to drag and
drop in a document and extracting data from the dragged file via the FileAPI.

12.5.1 Drag and Drop in Combination with the “FileAPI”

Figure 12.4 shows a screen shot of the application we will develop in this section
based on drag and drop and the FileAPI. It allows us to drag locally saved images
taken with a digital camera or a mobile device directly into the browser and then
make parts of their EXIF information visible. The necessary files are again avail-
able online at:

 z http://html5.komplett.cc/code/chap_global/extract_exif_en.html

 z http://html5.komplett.cc/code/chap_global/extract_exif.js

 z http://html5.komplett.cc/code/chap_global/extract_exif.css

 z http://html5.komplett.cc/code/chap_global/lib/exif.js

 z http://html5.komplett.cc/code/chap_global/images/senderstal.jpg

http://hacks.mozilla.org/2010/02/an-html5-offline-image-editor-and-uploader-application
http://hacks.mozilla.org/2010/02/an-html5-offline-image-editor-and-uploader-application
http://html5.komplett.cc/code/chap_global/extract_exif_en.html
http://html5.komplett.cc/code/chap_global/extract_exif.js
http://html5.komplett.cc/code/chap_global/extract_exif.css
http://html5.komplett.cc/code/chap_global/lib/exif.js
http://html5.komplett.cc/code/chap_global/images/senderstal.jpg

12.5 Drag and Drop with the “draggable” Attribute 285

Figure 12.4  Drag and drop in combination with “FileAPI”

Let’s begin by preparing the drop zone. You can see it on the right in the
screen shot of Figure 12.4. It consists of the Unicode symbol PREVIOUS PAGE
(⎗), some CSS instructions, and the event listener attributes required for
drag and drop:

<div ondragenter="return false;"
 ondragover="return false;"
 ondrop="drop(event)">⎗</div>

As soon as an image is dragged from the desktop to this area, the dropped image
can be accessed in the callback function drop() via the dataTransfer object:

var drop = function(evt) {
 var file = evt.dataTransfer.files[0];
};

From now on we are within the FileAPI, because the attribute files represents
a so-called FileList object that is an array of all file objects involved in the cur-
rent drag-and-drop operation. Although the demo by Paul Rouget allows the
loading of several images simultaneously, you can only drop one image at a time
into the drop zone in our example. So the reference to this file is always to be
found in files[0].

Chapter 12—Finishing Touches:Some Global Attributes 286

For the thumbnail of the image, we use a data: URI as a src attribute, created via
the FileAPI, as discussed in Chapter 5, Canvas (see section 5.12, Base64 encod-
ing with “canvas.toDataURL()”). We first define a new FileReader object, and
then load the image asynchronously into the memory via readAsDataURL(). At the
end of the loading process, we assign the resulting data: URI to the image as a
src attribute. The relevant JavaScript code is short and clear:

var dataURLReader = new FileReader();
dataURLReader.onloadend = function() {
 imgElem.src = dataURLReader.result;
 imgInfo.innerHTML = file.name+' ('+_inKb(file.size)+')';
}
dataURLReader.readAsDataURL(file);

The width of the thumbnail is specified in the CSS stylesheet as width: 250px;
the height is adjusted automatically by the browser. The text below the image
reflects the FileAPI attributes file.name and file.size. The byte information in
file.size must be divided by 1024 to convert the file size to kilobytes. The auxil-
iary function _inKb() does this for us and also adds the characters KB at the end
of the calculated value.

For reading the EXIF information, the file must be in binary form. Similar to rea-
dAsDataURL(), we now use readAsBinaryString() and get our desired result in
the onload callback. This does not yet allow us to access the EXIF data, because
the data is hiding somewhere in the binary code and needs to be extracted first.
We want to thank Jacob Seidelin for his JavaScript implementation for reading
EXIF data, which made this example possible.

The version of exif.js used  in  this example  is not  the original version by Jacob 
Seidelin, but instead is a slightly adapted version by Paul Rouget. You can find 
both versions online in the relevant demos at these URLs:

 z http://www.nihilogic.dk/labs/exif

 z http://demos.hacks.mozilla.org/openweb/FileAPI

A single line is now sufficient to find the existing EXIF information as key-value
pairs via the function findEXIFinJPEG(). In a for loop, this list is then processed
and converted into table rows with the auxiliary function _asRow(), and the result
is added to the result table in the variable exifInfo:

var binaryReader = new FileReader();
binaryReader.onload = function() {
 var exif = findEXIFinJPEG(binaryReader.result);

NOTE

http://www.nihilogic.dk/labs/exif
http://demos.hacks.mozilla.org/openweb/FileAPI

12.5 Drag and Drop with the “draggable” Attribute 287

 for (var key in exif) {
 exifInfo.innerHTML += _asRow(key,exif[key]);
 }
};
binaryReader.readAsBinaryString(file);

As you can see in the screen shot in Figure 12.4, only selected EXIF info is listed
in our example. Apart from information about camera type, date and time, ex-
posure time, ISO speed, use of flash, or image dimensions, there are even GPS
coordinates that were recorded by the camera when taking the picture. A glance
at the coordinates and the image name reveals the location: the Senderstal valley
near the Kalkkögel in the Stubai Alps (southwest of Innsbruck, Tyrol, Austria).
The prominent peak in the center of the image is called Schwarzhorn.

If you want to display all EXIF information of your own images while testing the 
application  shown  in  Figure  12.4,  you  simply  need  to  remove  the  comment 
characters from the item //showTags = '*' in the file extract_exif.js!

Although the FileAPI specification is rather short, it offers several interesting fea-
tures. In addition to the already familiar methods for reading files in binary mode
or as data: URI , you have the option of reading text files via readAsText(). The
onprogress event serves as user feedback for implementing a progress display
during loading, and if loading takes too long, you can also abort it with abort().
Additionally, the FileAPI can also be used for forms via <input type=file>.

The same applies here as for drag and drop: If you want to implement more com-
plex applications, you will have to study the details in the specification. The rel-
evant contents for the FileAPI and drag and drop can be found at these links:

 z http://www.w3.org/TR/FileAPI

 z http://www.w3.org/TR/html5/dnd.html

After this excursion into the world of the FileAPI, there are still two interesting
global attributes that we want to mention in this chapter. Similar to drag and
drop, they open up a new and unknown world, only encountered previously
through word-processing programs. Who would have thought a few years ago
that the content of an HTML page could be edited directly in the browser and the
spelling checked immediately?

TIP

http://www.w3.org/TR/FileAPI
http://www.w3.org/TR/html5/dnd.html

Chapter 12—Finishing Touches:Some Global Attributes 288

12.6 The Attributes “contenteditable” and
“spellcheck”

HTML pages can be made editable via the contenteditable attribute, but of
course the changes occur only in memory. For filling in an online form be-
fore printing it, this can be very useful, and there are surely fields of applica-
tion within the intranet as well, especially if amended content is written back
with scripts. We do not want to go quite that far in this section; instead, we will
merely demonstrate how contenteditable can be activated. The syntax in the
HTML code is simple:

<p contenteditable=true>
 Text to be edited ...
</p>

The editable area is highlighted by clicking on the paragraph, and a flashing cur-
sor appears in the text. You can then use hotkeys or the context menu to cut,
paste, copy, or delete content, just as in a text editor, and all actions can also be
undone step by step. If we want to also activate the spell check, we need to add
the attribute spellcheck and set it to true:

<p contenteditable=true spellcheck=true>
 Text to be edited ...
</p>

The specification does not define how the spell check should be carried out in
detail; this is up to the individual browser. Using the example of Firefox 3.6, Fig-
ure 12.5 shows what such an implementation could look like. The example is of
course also available for testing online at http://html5.komplett.cc/code/chap_
global/edit_page_en.html.

http://html5.komplett.cc/code/chap_global/edit_page_en.html
http://html5.komplett.cc/code/chap_global/edit_page_en.html

12.6 The Attributes “contenteditable” and “spellcheck” 289

Figure 12.5  Editing a page with the spell checker in Firefox 3.6

The screen shot in Figure 12.5 shows how misspelled words as well as unknown
words are indicated with red wavy lines. The context menu allows you to switch to
another language, install new dictionaries, and even correct mistakes by choosing
from suggestions. Unknown words can also be added to a personal dictionary.

In Firefox, personal dictionaries are located in the user’s profile folder and are
named persdict.dat. Even though the file extension suggests otherwise, these
files are pure text documents with one word per line. Unfortunately, entries from
personal dictionaries are not yet listed during correction, at least with Firefox 3.6.

At the time of this writing, no browser had implemented the spellcheck attribute
without errors. It seems that browsers view all text areas of a page as natural
candidates for spell checking and always allow checking in the context menu
without taking into account the spellcheck attribute. The attempt to exclude the
CSS code from spell checking via spellcheck=false was unsuccessful in all of the
browsers tested.

Figure 12.6 shows that not only text components, but also CSS styles and even
images can be made editable.

Chapter 12—Finishing Touches:Some Global Attributes 290

Figure 12.6  “Live” editing of styles and image sizes

The editing options for images are as yet not very impressive. Firefox allows for at
least changing the image size by dragging eight available anchor points. The idea
of changing styles live within a style element is more exciting. This idea comes
from Anne van Kesteren who first demonstrated this effect via a simple trick (see
http://bit.ly/dtnyIJ). As with Anne van Kesteren’s example, the style element in
our application is first made visible with display:block and then editable with
contenteditable=true. The result is astonishing. Changes become effective im-
mediately. In our case, after changing the CSS instruction for the code element,
the corresponding objects appear in the named color teal with font-size 180%.
Try it out!

Summary

Seven selected global attributes, some of them new, and their JavaScript APIs
are the focus of the final chapter of this book. We encounter five of them in more
detail while developing our 1-2-3-4! game. The starting point is a new method for
the class attribute: the classList interface. It drastically simplifies manipulat-
ing the individual class components. The same applies to the dataset property,

0321772741BOOK.indb 290 5/31/11 3:38 PM

http://bit.ly/dtnyIJ

Summary 291

enabling easier management of custom, user-defined attributes that are marked
with the special prefix data-*.

Our game incorporates the highly controversial hidden attribute, plus one of
the key features of HTML5: drag and drop. The draggable attribute, a handful of
events, and the DataTransfer interface enable not only dragging and dropping
elements within a browser, but also interaction with the underlying operating
system. The impressive example for reading EXIF information of digital images
uses this feature and introduces the FileAPI.

The final section of the chapter demonstrates that text content and even CSS
formats of an HTML5 page can be directly edited in the browser. To avoid spell-
ing errors during editing, the spellcheck attribute can be used to activate spell
checking in the browser, complete with a dictionary. Could HTML5 be on its way
to turning into a full-blown office package?

This page intentionally left blank

Afterword

The development of HTML5 is progressing rapidly. The specification is amended
and improved daily, angles and corners are smoothed, superfluous components
are removed, and if necessary, new features are added. The driving force behind
this process is an active community of representatives of WHATWG, W3C, the
browser manufacturers, interested individuals, and of course Ian Hickson, the
disputatious editor of the specification, whose decisions quite often lead to heat-
ed debates.

If he has his way, the HTML standard of the future will be developed as a “living
standard” continuously and without a version number. Instead of descriptions,
such as HTML5, HTML6, or HTML-Next, we would then simply use the term
HTML. The implementation of the specification should take place in parallel to
its development—a wish that has already been fulfilled in practice, because al-
though the specification is not yet completely final, many of its components are
already implemented in the main browsers.

293

 Afterword 294

If the guidelines of the HTML Working Group of the W3C are fulfilled, HTML5
will probably reach Last Call status in May 2011, by which time it should be clear-
er which features become part of the final web standard in the eyes of the W3C
and which do not. Nevertheless, experimental features of the WHATWG specifi-
cation could potentially find their way into the final version of the standard, pri-
marily the track element for video subtitles or audio with WebVTT (Web Video
Text Tracks) as a format for specifying these. The device element, too, allowing
websites access to input devices such as microphones or video cameras, is a po-
tential candidate for being incorporated into the specification at some time in
the future.

A solution is urgently required to the unsolved questions regarding accessibility
in Canvas, audio, and video, and a decision must be made whether microdata,
RDFa, or even both have a place in the final version of the specification. Harmo-
nizing the various versions of the specification at W3C and WHATWG is also long
overdue.

HTML—with or without the 5 at the end—is most definitely a work in progress
and comes one step closer each day to achieving its goal of becoming the de
facto standard for the Internet of the future. If during your journey through
this book you should stumble across any inconsistencies or even errors, please
let us know. The companion website to this book at http://html5.komplett.cc/
welcome offers plenty of space for comments, feedback, and ideas, in accor-
dance with the join-in spirit of the HTML specification. We look forward to
your visit!

http://html5.komplett.cc/

Index

295

Symbols & Numerics
@font-face, webfont, 131
૘ - ૛ (DINGBAT NEGATIVE

CIRCLED DIGITS 1-4), 277
« (LEFT-POINTING DOUBLE ANGLE

QUOTATION MARK), 91
» (RIGHT-POINTING DOUBLE ANGLE

QUOTATION MARK), 91
× (MULTIPLICATION SIGN), 181
Π (GREEK CAPITAL LETTER PI), 181
↝ (RIGHTWARDS WAVE ARROW), 100
↺ (ANTICLOCKWISE OPEN CIRCLE

ARROW), 100
⎗ (PREVIOUS PAGE), 285
▮ (BLACK VERTICAL RECTANGLE), 89
▶ (BLACK RIGHT-POINTING

TRIANGLE), 88
▹ (WHITE RIGHT-POINTING SMALL

TRIANGLE), 100

◃ (WHITE LEFT-POINTING SMALL
TRIANGLE), 100

♫ (BEAMED EIGHTH NOTES), 93
Π (MathML entity), 181
× (MathML entity), 181
$(), auxiliary function, 190, 253
2D context, 110
3D context, 110
8-bit image file, 258

A
abort, event, 99
abort(), method (FileAPI), 287
accessibility, Canvas, 174
accesskey, attribute (form elements), 68
accessKeyLabel, attribute (form elements), 68
add(), method (DOMTokenList), 276
addColorStop(), method (drawing context), 115
addElement(), method (DataTransfer), 282

Index296

address, element, 23
after, CSS pseudo element, 24
all, keyword (effectAllow attribute), 284
alpha channel, 253, 256
alphabetic, keyword (textBaseline

attribute), 133
Android, 42, 191
animations, Canvas, 166-173
Apple, 76, 107
arc(), method (drawing context), 124, 129
arcs, Canvas, 121-126
arcTo(), method (drawing context), 121-123
article, element, 22-24

nesting, 24
aside, element, 25-27
Audacity, sound editor, 100
audio, 99-105

new Audio() constructor, 99
autocomplete, attribute (input element),

45-46
autofocus, attribute (form elements),

43-44, 51
autoplay, attribute

HTMLMediaElement, 94-95
video element, 71

B
b, element, 33
backward compatibility, 13
Baron, David, 2
Base64 encoding, Canvas, 163-164
before, CSS pseudo element, 24
beginPath(), method (drawing context),

117-118
Berners-Lee, Tim, 4, 37
bevel, keyword (lineJoin attribute), 128
Bézier curves, Canvas, 120-121
bezierCurveTo(), method (drawing context),

120-121
Big Buck Bunny, 86
BlackBerry, 43
Blender Foundation, 86
boolean attributes, valid, 31-32, 94-98, 263-265
border-radius, CSS, 27
bottom, keyword (textBaseline attribute), 133
box-shadow, CSS, 27
broadcast server, 234-239
browser support,

Canvas, 176
HTML5, 16-17

buffered, attribute (HTMLMediaElement), 98
butt, keyword (lineCap attribute), 128

C
cache manifest file, 213-214
CACHE, cache manifest, 214
canplay, event, 99
canplaythrough, event, 99
canPlayType(), method (HTMLMediaElement), 96
canvas

attribute (HTMLCanvasElement), 112
element, 107-108

Canvas, 107
Testsuite, 176

CanvasGradient, interface, 114-117
CanvasPixelArray, interface, 141-145
CanvasRenderingContext2D, interface, 109
Cascading Style Sheets (CSS)

formatting in canvas, 114
media queries, 72-73
opacity, 247
pointer-events, 247
required, 65

center, keyword (textAlign attribute), 132
challenge, attribute (keygen element), 54
charset, attribute (meta element), 9, 12
checkValidity(), method (forms), 59-61
Chrome Frame Plugin, 176
Chrome, browser, 16
circle, element (SVG), 125-126, 182
cite, element, 33
class, global attribute, 274
classList, DOMTokenList, 276-278
clearData(), method (DataTransfer), 283
clearRect(), method (drawing context),

111-112
clip(), method (drawing context), 130
clipping masks, Canvas, 130
close, event, 237, 239
closePath(), method (drawing context), 123
codecs, video, 73-76
color manipulation of images, Canvas, 113-117,

145-148
color, input type, 41
colors

HSL color space, 113
RGB color space, 113
RGBA color space, 113

compositing, Canvas, 149-152
connection, event, 237
container file, video, 73-76
contains()

method (DOMStringList), 270
method (DOMTokenList), 276

Index 297

contenteditable, global attribute, 12, 222,
288-290

controls, attribute,
HTMLMediaElement, 94-95
video element, 71

cookies, 205-206
coordinate origin, canvas, 111
copy, keyword,

dropEffect attribute, 283
effectAllow attribute, 283
globalCompositeOperation attribute, 150

copyLink, keyword (effectAllow attribute), 284
copyMove, keyword (effectAllow attribute), 284
Cotton, Paul, 6
createImageData(), method (drawing

context), 144-148
createLinearGradient(), method (drawing

context), 115
createPattern(), method, 152-156

canvas as source, 153
image as source, 154
video as source, 156

currentSrc, attribute (HTMLMediaElement), 96
currentTime, attribute (HTMLMediaElement), 90
cx, attribute (SVG circle element), 182
cy, attribute (SVG circle element), 182

D
d, attribute (SVG path element), 182
data

URI, result of readAsDataURL() (FileAPI), 286
URL, Canvas, 163

data-*, global attribute, 275, 278
data, attribute (ImageData), 142
datalist, element, 51-53
dataset, property (data attribute), 275
dataTransfer, attribute (DataTransfer), 279,

282-284
DataTransfer, interface (drag&drop), 279
date input, Opera, 38
date, input type, 40
datetime

attribute (time element), 31
input type, 40

datetime-local, input type, 40
Dedicated Workers, 251
defaultPlaybackRate, attribute

(HTMLMediaElement), 92
deprecated, elements and attributes, 13
destination-atop, keyword

(globalCompositeOperation attribute), 149
destination-in, keyword

(globalCompositeOperation attribute), 149

destination-out, keyword
(globalCompositeOperation attribute), 149

destination-over, keyword
(globalCompositeOperation attribute), 149

development stage, HTML5, 16
device, element, 294
document structure, outline algorithm, 27-28
document type declaration, 9
document, object, 250
document.dir, 133
document.getElementsByClassName(), 274
document.getItems(), method (Microdata

DOM API), 269
document.querySelector(), 88, 109
document.querySelectorAll(), 67
<!DOCTYPE html>, 9
DOM-NodeList, microdata, 269
DOMString, 207
DOMStringList, interface, 270
DOMTokenList, interface, 276
drag, event, 281
drag&drop, 278

API, 279
combination with FileAPI, 284
MicroData & JSON, 283
security issues, 284

dragend, event, 281
dragenter, event, 279
draggable, global attribute, 278-284
dragleave, event, 281
dragover, event, 279
dragstart, event, 279
drawFocusRing(), method

(HTMLCanvasElement), 174
drawImage(), method, 135-141

3 parameters, 137
5 parameters, 138
9 parameters, 139
position parameters, 136

drawing context, 109-110
Canvas (=CanvasRenderingContext2D), 110
default values of attributes, 165

drop, event, 279
dropEffect, attribute (DataTransfer), 283-284
Drupal, 83
Duff, Tom, 148
duration, attribute (HTMLMediaElement), 89
durationchange, event, 99

E
Edwards, Dean, 2
effectAllow, attribute (DataTransfer), 283
Eich, Brendan, 2

Index298

em, element, 33
email, input type, 40
embedded content, 71
embedding images, Canvas, 135-141
emptied, event, 99
enableHighAccuracy, attribute

(PositionOptions interface), 191, 200
end

attribute (TimeRanges), 98
keyword (textAlign attribute), 132

ended
attribute (HTMLMediaElement), 98
event, 99

EPSG (European Petroleum Survey Group)
code, Geolocation, 186

error, event, 99
examples

animation with multicolored spheres in
Canvas, 166

bar chart with canvas, 111
Battleships, 239
calculate altitude profiles, 253
chat application, 234
checkered pattern with basic colors, 152
Click to tick!, Web storage, 220
color filters in Canvas, inverting, 147
color filters in Canvas, mono color, 148
color filters in Canvas, sepia, 147
color filters in Canvas, shades of gray, 146
color filters in Canvas, swap channels, 147
color variations with compositing in

Canvas, 151
copying a Canvas graphic into an
HTMLImageElement, 164

CoverFlow effect with Canvas, 161
current position, Geolocation, 194
drag&drop example for reading EXIF

information with FileAPI, 285
drag&drop game 1-2-3-4! (capital cities of

27 EU member states), 273
Figure with figure and figcaption, 29
Geonotes, 197
helper function for circles in Canvas, 125
helper function for converting radians in

degrees, 124
helper function for directional circles in

Canvas, 129
helper function for sectors in Canvas, 125
image montage with Canvas, 139
JavaScript HTML5 audio player, 100
JavaScript HTML5 video player, 86
linear gradient in Canvas, 115
live editing of CSS styles and image sizes, 290

MathML markup, formula for circle
radius, 180

microdata example with several container
elements and itemref, 268

microdata examples, combining hReview,
vEvent, and vCard, 267

microdata Licensing works example, 267
microdata vEvent example with iCal

output, 266
modifying RGBA values in images with

Canvas, 143
pattern with images as source in Canvas, 154
picture collage with mirror effect in pseudo

3D, 160
playing a video in Canvas with
drawImage(), 169

position tracking, 196
radial gradient in Canvas, 116
reading RGBA values in images with

Canvas, 143
rounded corners in Canvas, 122
search for leap years, 251
SVG graphic, circle radius, 182
test application for displaying EXIF

information, 287
test application for drop effects with

drag&drop, 283
text clipping effect with composition in

Canvas, 150
The fictitious HTML5 blog, 20
the three basic Canvas transformations in

combination, 157
EXIF data, reading with JavaScript, 284-287
exif.js, 286
explorercanvas, 176

F
FALLBACK, cache manifest, 213
Feinberg, Jonathan, 9
FFmpeg, 76-80
figcaption, element, 28-29
figure, element, 28
file, input type, use with FileAPI, 284-287
FileAPI, 285
FileList, sequence (FileAPI), 285
files, attribute (FileAPI), 285
fill, attribute (SVG), 182
fill, Canvas, 128
fillRect(), method (drawing context), 111
fillStyle, attribute (drawing context), 113-

114
fillText(), method (drawing context), 134
Firefogg, 79-80

Index 299

Firefox, add-ons,
Firebug, 210
Geolocater, 194
sqlite-manager, 210

Firefox, browser, 16
Flash, 69

Flash cookies, 206
Flash Player, 206

flipping, Canvas, 159, 162
Flowplayer, 85
font, attribute (drawing context), 13, 130-132
fonts, Canvas, 130-132
footer, 24-25
footer, element, 24-25
form validation, 57
formnovalidate, attribute (form elements),

63-64, 68
forms, 37

G
geographical coordinates, 186
Geolocation, 185

browser support, 202-203
crowdsourcing, 193
position tracking, example, 196-197
raster and vector data, 186

getContext(), method
(HTMLCanvasElement), 109

getCurrentPosition(), method (Geolocation),
190, 200

getData(), method (DataTransfer), 280
getImageData(), method (drawing context),

142, 145-148
global attributes, 273-274
globalAlpha, attribute (drawing context), 154
globalCompositeOperation, attribute (drawing

context), 149-152
Google Location Service, 193
Google Maps, 186-188, 225

API V3, 187
Google Street View, 193
GPS (Global Positioning System), 188, 193, 196

coordinates, Exif, 287
gradients, Canvas, 114
Gregorian calendar, 31

H
H.264, video codec, 74-76
hanging, keyword (textBaseline

attribute), 133
HAVE_CURRENT_DATA, constant

(HTMLMediaElement), 97

HAVE_ENOUGH_DATA, constant
(HTMLMediaElement), 97

HAVE_FUTURE_DATA, constant
(HTMLMediaElement), 97

HAVE_METADATA, constant
(HTMLMediaElement), 97

HAVE_NOTHING, constant (HTMLMediaElement), 97
hCalendar, 266
header, element, 21-22
heading content, outline algorithm, 28
height, attribute,

canvas element, 108
HTMLVideoElement, 87
ImageData, 142
svg element, 182
SVG rect element, 183

Hello World! example,
HTML5, 9
HTML5 minimal, 16
XHTML5, 15

hgroup, element, 21-22
outline algorithm, 28

Hickson, Ian, 2, 74, 107, 293
hidden, global attribute, 276
high, attribute (meter element), 48
historic events, 7
horizontal anchor point, Canvas, 132-133
hr, element, 33
HSL, 238
HTML code, simplification, 16
HTML pages editable, 288
HTML parser, 15
HTML Working Group (HTML WG), 5-7

heartbeat requirement, 7
mailing list, 5

HTML5 (Hypertext Markup Language 5),
DOM Live Viewer, 15
parser, SVG & MathML, 179
validator, 14
Video, Media Events and Media Properties, 99

html5-data.js, 275
html5media, 85
html5shim, 22
HTMLMediaElement, interface, 88-89
HTMLPropertiesCollection, interface, 270
HTMLVideoElement, interface, 87
HTTP (Hypertext Transfer Protocol), 231-233
Hyatt, David, 2, 107

I
i, element, 33
ideographic, keyword (textBaseline

attribute), 133

Index300

IE9, browser, 16
iframe, element, 240
ImageData, interface, 141-145
importScripts(), method (web workers), 250
input, element, 38-43
invalid, event, 59
iPhone, 76
isPointInPath(), method

(HTMLCanvasElement), 173-174
item(), method,

DOMStringList, 270
DOMTokenList, 276
NodeList, 274

itemid, attribute (microdata), 268
itemprop, attribute,

microdata, 263
special elements, 265

itemref, attribute (microdata), 268-269
itemscope, attribute (microdata), 263-265
itemtype, attribute (microdata), 266-268
itemValue, attribute (Microdata DOM API), 270

J
Jägenstedt, Philip, 264, 267
JavaScript error message, 249
jQuery, 57
JSON (JavaScript Object Notation), 201, 236

K
keepalive, HTTP, 232
Kesteren, Anne van, 2p., 9, 290
keyboard shortcuts, 68
keygen, element, 53
keytype, attribute (keygen element), 54

L
label, element, 44
Last Call, 7

W3C, 294
WHATWG, 6

left, keyword (textAlign attribute), 132
Le Hégarets, Philippe, 99
length, attribute,

CanvasPixelArray, 142-143
DOMStringList, 270
NodeList, 274
TimeRanges, 98

libavcodec, 77
Lie, Håkon Wium, 2
lighter, keyword (globalCompositeOperation

attribute), 149-152
lineCap, attribute (drawing context), 128

lineJoin, attribute (drawing context), 128
lines, Canvas, 119
lineTo(), method (drawing context), 119
lineWidth, attribute (drawing context), 128
link, keyword,

dropEffect attribute, 283
effectAllow attribute, 283

linkMove, keyword (effectAllow attribute), 284
Live Microdata Viewer, 264
load(), method (HTMLMediaElement), 95
loadeddata, event, 99
loadedmetadata, event, 99
loadstart, event, 99
Local Shared Object (LSO), 206
localStorage, 206, 209-210
localStorage, object (Geolocation), 200
location, object, 250
loop, attribute,

HTMLMediaElement, 94-95
low, attribute (meter element), 48
ltr, keyword (document.dir), 133

M
MAMA survey, Opera, 9, 19
manifest, attribute (html element), 212
mark, element, 32
math, element (MathML), 181
MathML, 179-180

entities, 181
starting points, 181
tags, 181

Matroska, container format, 76
max, attribute,

meter element, 48
measureText(), method (drawing context),

134-135
MEDIA_ERR_ABORTED, constant

(HTMLMediaElement), 97
MEDIA_ERR_DECODE, constant

(HTMLMediaElement), 97
MEDIA_ERR_NETWORK, constant

(HTMLMediaElement), 97
MEDIA_ERR_SRC_NOT_SUPPORTED, constant

(HTMLMediaElement), 97
MediaEvents, 98-99
message, event, 236, 250
meta information, HTTP, 232
meter, element, 47-50, 66-67
microdata, 261

DOM API, 269-270
JSON notation, 264
nesting dialects, 267

Index 301

specifications, 262
syntax, 263-269
viewer, 264

microdatajs, 266-267
microformats, 266
middle, keyword (textBaseline attribute), 133
MIME type, video, 73
min, attribute, 45-46

meter element, 48
Miro Video Converter, 81-82
miter, keyword (lineJoin attribute), 128
miterLimit, attribute (drawing context), 128
month, input type, 40
Morgenstern, Jan, 100
move, keyword,

dropEffect attribute, 283
effectAllow attribute, 283

moveTo(), method (drawing context), 117-118
-moz-border-radius, CSS, 27
-moz-box-shadow, CSS, 27
MPEG-4 (MP4), 75-76

MIME type, 75
Mr. LastWeek, 3
muted, attribute (HTMLMediaElement), 93-94
mwEmbed, 83-84

N
name, attribute (FileAPI), 286
namedItem(), method,

NodeList, 274
nav, element, 24-25
navigation block, 24
network state, video, 95-96
NETWORK_EMPTY, constant

(HTMLMediaElement), 96
NETWORK_IDLE, constant (HTMLMediaElement), 96
NETWORK_LOAD, constant (HTMLMediaElement), 96
NETWORK_NO_SOURCE, constant

(HTMLMediaElement), 96
NETWORK, cache manifest, 213
networkState, attribute (HTMLMediaElement), 96
new element, summary, 9
new programming APIs, summary, 12
new types of input elements, summary, 11
no-repeat, keyword (createPattern()

method), 152
node-websocket-server, 234, 237
node.js, 233-234
non-zero fill rule, Canvas, 129, 174
none, keyword,

dropEffect attribute, 283
effectAllow attribute, 283

number, input type, 40

O
obsolete attributes, summary, 13-15
obsolete elements, summary, 13-15
offline status, 214
offline Web applications, 212

debugging, 217-219
events, 215

Ogg, 75
Ogg Media (OGM), 75, 79-80
Ogg Theora, video codec, 74-75
Ogg video, MIME type, 75

oncanplay, event, 87-88
onchange, event, 61
oninput, event, 61, 65, 235
onLine, attribute (navigator object), 216
onprogress, event (FileAPI), 287
ontimeupdate, event, 87-88, 90
open, event, 236
OpenLayers, 188-189, 195
OpenStreetMap, 186, 188-189, 194-196
Opera, browser, 16
optimum, attribute (meter element), 48
origin, 209
origin-clean flag, Canvas, 175
outline

algorithm, 27-28
HTML5, 27-28

outlines, Canvas, 127-130
outlook, 293
output, element, 49, 55-57

P
path, element (SVG), 182
paths,

Canvas, 117
SVG, 182

patterns, Canvas, 152-156
pause, event, 99
pause(), method (HTMLMediaElement), 89
paused, attribute (HTMLMediaElement), 89
Pilgrim, Mark, 3
pixel manipulation, Canvas, 141-145
placeholder, attribute (form elements), 44, 198
play, event, 99
playback state, video, 99
playbackRate, attribute (HTMLMediaElement), 92
played, attribute (HTMLMediaElement), 98
playing, event, 99
PNG file, 253
Porter, Thomas, 148
Position interface, 191-192
position paper Mozilla & Opera, 1

Index302

poster, attribute, 71
HTMLVideoElement, 88

postMessage(), method (web workers), 250
preload, attribute, 71

HTMLMediaElement, 95
preventDefault(), 280
progress

element, 50-51, 67-68
event, 99

progress bar, 253
properties, attribute (Microdata DOM

API), 270
pubdate, attribute (datetime element), 31-32
putImageData(), method (drawing context),

143-144

Q
q, element, 24
quadraticCurveTo(), method (drawing

context), 120
Quicktime , 75

R
r, attribute (SVG circle element), 182
radians, angle, 124-126
range, input type, 40-41, 89
ratechange, event, 99
RDFa (Resource Description Framework), 262
readAsBinaryString(), method (FileAPI), 286
readAsDataURL(), method (FileAPI), 286
readAsText(), method (FileAPI), 287
ready state, video, 96
readyState, attribute (HTMLMediaElement), 95-97
rect, element (SVG), 183
rect(), method (drawing context), 126-127
rectangles, canvas, 111
rectangles, Canvas paths, 126-127
release notes, browser manufacturers, 17
remove(), method (DOMTokenList), 276
repeat-x, keyword (createPattern()

method), 152
repeat-y, keyword (createPattern()

method), 152
repeat, keyword (createPattern()

method), 152
required, attribute (form elements), 44
Resig, John, 22
restore(), method (HTMLCanvasElement),

165-166
reversed, attribute (ol element), 12
right, keyword (textAlign attribute), 132
roadmap, HTML5, 5

rotate(), method (drawing context), 156-160
Rouget, Paul, 286
round

keyword (lineCap attribute), 128
keyword (lineJoin attribute), 128

rounded corners, CSS, 27
rp, element, 30-31
rt, element, 30-31
rtl, keyword (document.dir), 133
ruby annotation, 30-31
ruby, element, 30-31
Ruby, Sam, 6

S
Safari, browser, 2, 16
save(), method (HTMLCanvasElement), 165-166
scale(), method (drawing context), 156-163
search, input type, 39
section, element, 25
sectioning content, outline algorithm, 27-28
security aspects, Canvas, 175-176
seekable, attribute (HTMLMediaElement), 98
seeking, attribute (HTMLMediaElement), 98
Seidelin, Jacob, 286
semantics,

documents, 19
text level, usage examples, 33
text-level, 29

session, 205
sessionStorage, 206, 208-212
setCustomValidity(), method (forms), 61-63
setData(), method (DataTransfer), 279
setDragImage(), method (DataTransfer), 282
setTransform(), method (drawing context),

158-163
shadowBlur, attribute (drawing context), 114
shadowColor, attribute (drawing context), 114
shadowOffsetX, attribute (drawing context), 114
shadowOffsetY, attribute (drawing context), 114
shadows, Canvas, 113-114
Shared Workers, 251
Sharp, Remy, 22, 275, 280
sidebar, 25-27
Sivonen, Henri, 16
size, attribute (FileAPI), 286
skewing, Canvas, 159, 162
slider bar, forms, 40
small, element, 33
Smith, Mike, 20
Sneddon, Geoffrey, 28
source-atop, keyword

(globalCompositeOperation attribute), 150

Index 303

source-in, keyword
(globalCompositeOperation attribute), 150

source-out, keyword
(globalCompositeOperation attribute), 150

source-over, keyword
(globalCompositeOperation attribute), 149

specifications, 6
Canvas, 177
FileAPI, 287
HTML5 differences from HTML4, 9
The Markup Language, 20
W3C HTML5, 6
Web Apps 1.0, 2
Web Controls 1.0, 2
Web Forms 2.0, 2
WHATWG, complete, 6-7
WHATWG, HTML5, 6-7

spell check, 288
spellcheck, global attribute, 12, 288-290
square, keyword (lineCap attribute), 128
src, attribute,

HTMLMediaElement, 95
SSL certificates, 53
Stachowiak, Maciej, 2, 6
stalled, event, 99
start,

attribute (TimeRanges), 98
keyword (textAlign attribute), 132

start(), method (HTMLMediaElement), 89
startTime, attribute (HTMLMediaElement), 98
Stenbäck, Johnny, 2
storage, event, 210
Storage interface, 206

accessing elements, 207
disk space, 208

String.fromCharCode(), 89
stroke, attribute (SVG), 182
stroke(), method (drawing context), 117-118,

127-130
strokedasharray, attribute (SVG), 183
strokeRect(), method (drawing context),

111-112
strokeStyle, attribute (drawing context),

113-114
strokeText(), method (drawing context),

134-135
strong, element, 33
structure, documents, 19
suspend, event, 99
SVG (Scalable Vector Graphics), 179-180

browser support, 183
further information, 183

svg, element (SVG), 182

swapCache(), method (Web storage), 216

T
tabindex, attribute (form elements), 66
Taylor, Philip, 176
tel, input type, 39
terminate(), method (web workers), 253
text, Canvas, 130-135

drawing, 134
maximum width, 134
measuring width, 134

textAlign, attribute (drawing context), 132-133
textBaseline, attribute (drawing context),

133-134
Theora, video codec, 75
time, element, 31-32
timeline, specifications & browser releases, 17
TimeRanges, interface, 98
timestamps, syntax of datetime-attribute, 31, 93
timeupdate, event, 90, 99
toDataURL(), method, 163-164

as src attribute of an image, 164
other uses, 164

toggle(), method (DOMTokenList), 276
top-level browsing context, 209
top, keyword (textBaseline attribute), 133
track, element, 294
transform(), method (drawing context), 158
transformations, Canvas, 155-163

order, 156
transformation matrix, 158

translate(), method (drawing context),
156-163

types, DOMStringList (DataTransfer), 282
typographic annotation system, 30-31

U
Unicode symbols

ANTICLOCKWISE OPEN CIRCLE ARROW
(↺), 100

BEAMED EIGHTH NOTES (♫), 93
BLACK RIGHT-POINTING TRIANGLE

(▶), 88
BLACK VERTICAL RECTANGLE (▮),

89
DINGBAT NEGATIVE CIRCLED DIGITS 1-4

(૘ - ૛), 277
GREEK CAPITAL LETTER PI (Π), 181
LEFT-POINTING DOUBLE ANGLE

QUOTATION MARK («), 91
MULTIPLICATION SIGN (×), 181
PREVIOUS PAGE (⎗), 285

Index304

Unicode symbols (Contd.)
RIGHT-POINTING DOUBLE ANGLE

QUOTATION MARK (»), 91
RIGHTWARDS WAVE ARROW

(↝), 100
WHITE LEFT-POINTING SMALL TRIANGLE

(◃), 100
WHITE RIGHT-POINTING SMALL

TRIANGLE (▹), 100
Uniform Resource Name, 268
update(), method (Web storage), 216
url, input type, 40
urn (Uniform Resource Name), 268
UTC, time zone, 40

V
vCard, 266-268
vertical anchor point, Canvas, 133-134
vEvent, 266-268
video,

browser support, 82-85
conversion, 76-82
fallback, 71, 83
patent problem, 76
playing in Canvas, 169-173
scripting, 86

video, element, 71-73
videoHeight, attribute (HTMLVideoElement), 88
VideoLan project, 78-79
videoWidth, attribute (HTMLVideoElement), 88
VLC (VideoLan Client), 78-79
void elements, 32
volume, attribute (HTMLMediaElement), 93-94
volumechange, event, 99
Vorbis, audio codec, 75-76
VP8, video codec, 74-77

W
W3C Workshop on Web Applications and

Compound Documents, 1-8
waiting, event, 99
watchPosition(), method (Geolocation), 196
wbr, element, 32
Web Authoring Statistics, Google, 19
Web Hypertext Applications Technology

Working Group (WHATWG), 2
web server, start locally with Python, 176
Web Storage, 197, 205

browser support, 220
debugging, 210-212

Web Video Text Tracks, 294
web workers, 249

event handler, 250

start, 250
work in parallel, 254

webfonts, use in Canvas, 131
WebGL, 110
-webkit-border-radius, CSS, 27
-webkit-box-shadow, CSS, 27
WebM, 74, 76

browser support, 76
MIME type, 76

WebSockets,
full duplex, 232
port, 234
server, 233-234
SSL, 235
URL, 235

WebVTT, 294
week, input type, 40
WGS84 (World Geodetic System 1984),

Geolocation, 186
WHATWG (Web Hypertext Applications

Technology Working Group), 2
Chat, 3
IRC protocols, 3
subversion repository, 7
web-apps-tracker, 7
working method, 2

width, attribute,
canvas element, 108
HTMLVideoElement, 87
ImageData, 142
svg element, 182
SVG rect element, 183

willValidate, form API, 60
window, object, 249
window.onload, 188
WindowTimers interface, 250
Wordle Applet, 9
Wordpress, 83
worker, object, 250

X
x, attribute (SVG rect element), 183
XHTML, 15-16
XHTML2, 4-5
Xiph.Org Foundation, 75
XMLHttpRequest, 250
xor, keyword (globalCompositeOperation

attribute), 149-150

Y
y, attribute (SVG rect element), 183
YouTube, 69, 77

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

15_0321772741_Index.indd 305 5/31/11 3:43 PM

Your purchase of HTML5 Guidelines for Web Developers includes access to a free
online edition for 45 days through the Safari Books Online subscription service. Nearly
every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: QZBJPXA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

SFOE_Forster_7x9.125.indd 1 5/17/11 10:23 AM

www.informit.com/safarifree

	Contents
	Preface
	About the Authors
	1 Overview of the New Web Standard
	1.1 How It All Started
	1.2 Time Travel through Historic Events
	1.3 In Medias Res
	1.3.1 What Is New?
	1.3.2 What Has Become Obsolete?
	1.3.3 And What About XHTML?

	1.4 Can I Start Using HTML5 Now?
	Summary

	2 Structure and Semantics for Documents
	2.1 Header with “header” and “hgroup”
	2.2 Content with “article”
	2.3 Footer with “footer” and “nav”
	2.4 Sidebar with “aside” and “section”
	2.5 The Outline Algorithm
	2.6 Figures with “figure” and “figcaption”
	2.7 Text-Level Semantics—More New Tags
	2.7.1 The Elements “ruby,” “rt,” and “rp”
	2.7.2 The “time” Element
	2.7.3 The “mark” Element
	2.7.4 The “wbr” Element
	2.7.5 Elements with Marginal Changes

	Summary

	3 Intelligent Forms
	3.1 New Input Types
	3.1.1 The Input Types “tel” and “search”
	3.1.2 The Input Types “url” and “email”
	3.1.3 Date and Time with “datetime”, “date”, “month”, “week”, “time”, and “datetime-local”
	3.1.4 The Input Types “number” and “range”
	3.1.5 The Input Type “color”
	3.1.6 The New Input Types in Action

	3.2 Useful Attributes for Forms
	3.2.1 Focusing with “autofocus”
	3.2.2 Placeholder Text with “placeholder”
	3.2.3 Compulsory Fields with “required”
	3.2.4 Even More Attributes for the “input” Element

	3.3 New Elements
	3.3.1 Displaying Measurements with “meter”
	3.3.2 Displaying the Progress of a Task with “progress”
	3.3.3 Lists of Options with “datalist”
	3.3.4 Cryptographic Keys with “keygen”
	3.3.5 Calculations with “output”

	3.4 Client-Side Form Validation
	3.4.1 The “invalid” Event
	3.4.2 The “checkValidity” Function
	3.4.3 Error Handling with “setCustomValidity()”
	3.4.4 Summary of Validity Checks
	3.4.5 Or Perhaps Better Not to Validate? “formnovalidate”

	3.5 Example: A Support Form
	Summary

	4 Video and Audio
	4.1 A First Example
	4.2 The “video” Element and Its Attributes
	4.3 Video Codecs
	4.3.1 Ogg: Theora and Vorbis
	4.3.2 MPEG-4: H.264 and AAC
	4.3.3 WebM: VP8 and Vorbis

	4.4 Tools for Video Conversion
	4.4.1 FFmpeg
	4.4.2 VLC
	4.4.3 Firefogg
	4.4.4 Miro Video Converter

	4.5 Which Format for Which Browser?
	4.6 Interim Solutions for Older Browsers
	4.6.1 mwEmbed
	4.6.2 html5media

	4.7 Video and Scripting—A Simple Video Player
	4.7.1 Integrating the Video
	4.7.2 Starting and Stopping the Video
	4.7.3 Displaying and Setting the Playback Position
	4.7.4 Fast Forward and Backward
	4.7.5 Selecting Specific Scenes in the Film
	4.7.6 Set Volume to High, Low, or Mute
	4.7.8 Other Attributes and Methods of the “HTMLMediaElement” Interface
	4.7.9 The Long List of Media Events

	4.8 And What About Audio?
	Summary

	5 Canvas
	5.1 A First Example
	5.2 Rectangles
	5.3 Colors and Shadows
	5.4 Gradients
	5.5 Paths
	5.5.1 Lines
	5.5.2 Bézier Curves
	5.5.3 Arcs
	5.5.4 Rectangles
	5.5.5 Outlines, Fills, and Clipping Masks

	5.6 Text
	5.6.1 Fonts
	5.6.2 Horizontal Anchor Point
	5.6.3 Vertical Anchor Point
	5.6.4 Drawing and Measuring Text

	5.7 Embedding Images
	5.8 Pixel Manipulation
	5.8.1 Working with the “ImageData” Object
	5.8.2 Color Manipulation with “getImageData()”, “createImageData()”, and “putImageData()”

	5.9 Compositing
	5.10 Patterns
	5.11 Transformations
	5.12 Base64 Encoding with “canvas.toDataURL()”
	5.13 “save()” and “restore()”
	5.14 Animations
	5.14.1 Animation with Multicolored Spheres
	5.14.2 Playing a Video with “drawImage()”

	5.15 Anything Still Missing?
	5.15.1 “isPointInPath(x, y)”
	5.15.2 Accessibility in Canvas?
	5.15.3 Security Aspects
	5.15.4 Browser Support
	5.15.5 Further Links

	Summary

	6 SVG and MathML
	6.1 MathML
	6.2 SVG
	Summary

	7 Geolocation
	7.1 Introduction to Geolocation
	7.1.1 About Geographical Data
	7.1.2 Online Map Services

	7.2 A First Experiment: Geolocation in the Browser
	7.3 Technical Background of Determining Position
	7.4 Display of Current Position on OpenStreetMap
	7.5 Location Tracking with Google Maps
	7.6 Example: Geonotes
	7.6.1 Operation
	7.6.2 Important Code Fragments

	7.7 Browser Support
	Summary

	8 Web Storage and Offline Web Applications
	8.1 Storage
	8.1.1 The “Storage” Interface
	8.1.2 “sessionStorage”
	8.1.3 “localStorage”
	8.1.4 The “storage” Event
	8.1.5 Debugging

	8.2 Offline Web Applications
	8.2.1 The Cache Manifest File
	8.2.2 Offline Status and Events
	8.2.3 Debugging

	8.3 Browser Support
	8.4 Example: Click to tick!
	8.4.1 Using the Application: As a Player
	8.4.2 Using the Application: As an Administrator
	8.4.3 Important Code Fragments
	8.4.4 Expansion Options

	Summary

	9 WebSockets
	9.1 The WebSocket Server
	9.2 Example: A Broadcast Server
	9.2.1 The Broadcast Client
	9.2.2 The Broadcast Server

	9.3 Example: Battleships!
	Summary

	10 Web Workers
	10.1 Introduction to Web Workers
	10.2 Search for Leap Years
	10.3 Calculate Altitude Profiles with Canvas
	10.3.1 Important Code Fragments

	Summary

	11 Microdata
	11.1 The Syntax of Microdata
	11.1.1 The Attributes “itemscope” and ”itemprop”
	11.1.2 The “itemtype” Attribute
	11.1.3 The “itemid” Attribute
	11.1.4 The “itemref” Attribute

	11.2 The Microdata DOM API
	Summary

	12 Finishing Touches: Some Global Attributes
	12.1 News for the “class” Attribute
	12.2 Defining Custom Attributes with “data-*”
	12.3 The “hidden” Attribute
	12.4 The “classList” Interface
	12.5 Drag and Drop with the “draggable” Attribute
	12.5.1 Drag and Drop in Combination with the “FileAPI”

	12.6 The Attributes “contenteditable” and “spellcheck”
	Summary

	Afterword
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

