

ptg6022785

ECLIPSE MODELING PROJECT

A Domain-Specific Language
Toolkit

Richard C. Gronback

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg6022785

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Gronback, Richard C.
Eclipse modeling project : a domain-specific language (DSL) toolkit / Richard C.

Gronback.
p. cm.

ISBN 0-321-53407-7 (pbk. : alk. paper) 1. Computer software—Development.
2. Eclipse (Electronic resource) 3. Programming languages (Electronic computers)
I. Title.

QA76.76.D47G785 2009
005.1—dc22

2008050813

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-53407-1
ISBN-10: 0-321-53407-7
Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.
First printing March 2009

Associate Publisher
Mark Taub

Acquisitions Editor
Greg Doench

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Krista Hansing Editorial
Services, Inc.

Indexer
Erika Millen

Technical Reviewer
Simon Archer

David Orme
Daniel Holt

Publishing Coordinator
Michelle Housley

Cover Designer
Sandra Schroeder

Compositor
Nonie Ratcliff

ptg6022785

Dedicated to my father, Philip Richard Gronback, Sr.
November 2, 1948–December 8, 1997

ptg6022785

This page intentionally left blank

ptg6022785

Contents
Foreword xix

Preface xxi

Acknowledgments xxiii

About the Author xxv

Part I ❍ Introduction 1
Chapter 1 Introduction 3

1.1 About Modeling 3
1.2 Domain-Specific Languages 5

1.2.1 Why Develop a DSL? 6

1.3 Model-Driven Software Development 7
1.4 Software Product Lines and Factories 7
1.5 The Eclipse Modeling Project 8

1.5.1 Abstract Syntax Development 10

1.5.2 Concrete Syntax Development 12

1.5.3 Model Transformation 12

1.5.4 Model Development Tools (MDT) 13

1.5.5 Generative Modeling Technologies 15

1.5.6 Amalgamation 15

1.5.7 Project Interaction 15

1.6 Summary 16

Chapter 2 Modeling Project as a DSL Toolkit 17
2.1 Installation 20
2.2 The Sample Projects 20
2.3 Summary 26

ptg6022785

Part II ❍ Developing Domain-Specific Languages 27
Chapter 3 Developing a DSL Abstract Syntax 29

3.1 DSL Considerations 29
3.2 Eclipse Modeling Framework 31

3.2.1 Ecore Metamodel 32

3.2.2 Runtime Features 33

3.2.3 Code Generation 34

3.2.4 Applying OCL 35

3.2.5 Dynamic Instances 38

3.3 Developing the Mindmap Domain Model 39
3.3.1 Project Setup 40

3.3.2 Creating the Mindmap Domain Model 41

3.3.3 Creating the Mindmap Generator Model 42

3.3.4 Generate and Run 43

3.3.5 Adding OCL 45

3.4 Developing the Requirements Domain Model 47
3.4.1 Requirements Generator Model 48

3.5 Developing the Scenario Domain Model 50
3.6 Developing the Business Domain Model 51
3.7 Summary 54

Chapter 4 Developing a DSL Graphical Notation 55
4.1 Design Considerations 55

4.1.1 Notation Design 56

4.1.2 Filters and Layers 57

4.1.3 Layout 58

4.1.4 Synchronization 59

4.1.5 Shortcuts 59

4.2 Graphical Modeling Framework 59
4.2.1 GMF Runtime Component 60

4.2.2 GMF Tooling Component 61

4.2.3 Customization Options 65

viii Contents

ptg6022785

4.2.4 Dashboard 66

4.2.5 Sample Application Diagrams 67

4.3 Developing the Mindmap Diagram 67
4.3.1 Mindmap Graphical Definition 68

4.3.2 Mindmap Tooling Definition 69

4.3.3 Mindmap Mapping Model 70

4.3.4 Mindmap Generator Model 74

4.3.5 Improving the Mindmap Diagram 76

4.4 Developing a Requirements Diagram 104
4.4.1 Diagram Definition 104

4.4.2 Tooling Definition 107

4.4.3 Mapping Definition 107

4.4.4 Generation 113

4.4.5 ToolTips 114

4.4.6 Integrating EMF and GMF Editors 122

4.5 Developing the Scenario Diagram 145
4.5.1 Graphical Definition 145

4.5.2 Tooling Definition 159

4.5.3 Mapping Definition 161

4.5.4 Generation 166

4.5.5 Generating the Figures Plug-In 168

4.5.6 Diagram Partitioning 171

4.5.7 Database Persistence 177

4.6 Developing the Color Modeling Diagram 181
4.6.1 Diagram Definition 182

4.6.2 Tooling Definition 189

4.6.3 Mapping Definition 190

4.6.4 Generation 201

4.6.5 Gradient Figures 201

4.6.6 Color Preferences 205

4.6.7 Custom Parsers 220

4.7 Summary 225

Contents ix

ptg6022785

Chapter 5 Developing a DSL Textual Syntax 227
5.1 Xtext 228
5.2 TCS 229
5.3 Summary 229

Chapter 6 Developing Model-to-Model Transformations 231
6.1 Transformation Techniques 231
6.2 Model Refactoring 232
6.3 Model Migration 233
6.4 Model Merge 237
6.5 M2M QVT Operational Mapping Language 238

6.5.1 QVT Project 238

6.5.2 QVT OML Editor 240

6.5.3 Metamodel Explorer 240

6.5.4 Launch Configuration 240

6.5.5 Trace Model 242

6.5.6 Leveraging OCL in EMF Models 243

6.5.7 Ant Tasks 243

6.6 Transforming a Mindmap to Requirements 244
6.7 Transforming a Mindmap to XHTML 251

6.7.1 Importing an XSD 252

6.7.2 Creating the mindmap2xhtml QVT 253

6.8 Transforming a Scenario to a Test Case 258
6.9 Transforming a Business Model to Java 264
6.10 Summary 276

Chapter 7 Developing Model-to-Text Transformations 277
7.1 M2T Project 277

7.1.1 Xpand, Xtend, and Workflow Components 278

7.2 Generating CSV Files 281
7.3 Generating Java 282

7.3.1 Using Java Model and Dedicated Template 283

x Contents

ptg6022785

7.3.2 Using the DNC Model with Templates 291

7.4 Generating HTML 297
7.5 Summary 302

Chapter 8 DSL Packaging and Deployment 303
8.1 Deployment Preparation 303

8.1.1 Artwork 304

8.1.2 Developing a User Interface Plug-In 305

8.1.3 Generation Models 310

8.2 Defining a Product 312
8.2.1 Deploying Source 312

8.3 Summary 313

Part III ❍ Reference 315
Chapter 9 Graphical Editing Framework 317

9.1 Draw2d 318
9.1.1 Figures 318

9.1.2 Text 319

9.1.3 Painting 320

9.1.4 Layout 322

9.1.5 Connections and Routing 322

9.1.6 Coordinate Systems 323

9.2 GEF 324
9.2.1 EditParts 325

9.2.2 Creating the Graphical View 326

9.2.3 Editing 331

9.2.4 The EditPart Life Cycle 334

9.2.5 Tools and the Palette 337

9.2.6 Interactions 338

9.3 Summary 352

Contents xi

ptg6022785

Chapter 10 Graphical Modeling Framework Runtime 353
10.1 Overview 353

10.1.1 General Diagram Features 354

10.2 Notation Model 369
10.3 Extensibility Mechanisms 372

10.3.1 Extension-Points 373

10.4 Services 375
10.4.1 ViewService 378

10.4.2 EditPartService 382

10.4.3 EditPolicyService 385

10.4.4 Palette Service 387

10.4.5 Decoration Service 392

10.4.6 IconService 396

10.4.7 MarkerNavigationService 399

10.4.8 ParserService 401

10.4.9 ModelingAssistantService 403

10.4.10 LayoutService 406

10.4.11 ContributionItemService 408

10.4.12 GlobalActionHandlerService 419

10.4.13 ActionFilterService 423

10.4.14 EditorService 427

10.4.15 ElementSelectionService 428

10.4.16 PropertiesService 430

10.4.17 PropertiesModifierService 433

10.4.18 DragDropListenerService 435

10.4.19 TransferAdapterService 438

10.4.20 DiagramEvenBroker Service 441

10.5 Additional Extension-Points 443
10.5.1 ElementTypes 443

10.5.2 ElementTypeBindings 449

10.5.3 LogListeners 452

10.5.4 PropertiesConfigurations 453

xii Contents

ptg6022785

10.5.5 Document Providers 453

10.5.6 RenderedImageFactory 456

10.5.7 ClipboardSupport 457

10.5.8 Pathmaps 458

10.6 Element Creation 459
10.7 Command Infrastructure 462

10.7.1 Command Infrastructure 463

10.7.2 Model Element Command Infrastructure 463

10.8 Developing a Diagram 466
10.8.1 Essential Diagram Elements 466

10.8.2 Configuring the Properties View 476

10.8.3 Connections 479

10.8.4 Comparison to Generated Diagram 485

10.9 Extending Diagrams 486
10.9.1 Scenario Diagram Custom View

and Edit Providers 486

10.9.2 Custom Style 490

10.9.3 Custom EditPolicy 493

10.9.4 Custom Decorator 497

10.10 Beyond GEF and Draw2d 500
10.11 Summary 502

Chapter 11 Graphical Modeling Framework Tooling 503
11.1 Graphical Definition Model 503

11.1.1 The Canvas 506

11.1.2 The Figure Gallery 506

11.1.3 Diagram Elements 516

11.2 Tooling Definition Model 518
11.3 Mapping Model 519

11.3.1 Canvas Mapping 520

11.3.2 Top Node Reference 521

11.3.3 Node Mapping 522

11.3.4 Feature Initialization 527

Contents xiii

ptg6022785

11.3.5 Implementing Side-Affixed Nodes
(Pins and Ports) 528

11.3.6 Link Mapping 529

11.3.7 Audits and Metrics 532

11.4 Generator Model 533
11.4.1 Gen Editor Generator 534

11.4.2 Gen Diagram 536

11.4.3 Gen Link 539

11.4.4 Custom Behavior 539

11.4.5 Open Diagram Behavior 539

11.4.6 Gen Plugin 540

11.4.7 Gen Editor View 540

11.4.8 Gen Navigator 541

11.4.9 Gen Diagram Updater 542

11.4.10 Property Sheet 542

11.4.11 Gen Application 543

11.5 Summary 543

Chapter 12 Graphical Modeling Framework FAQs 545
12.1 General FAQs 545
12.2 Diagramming FAQs 546
12.3 Tooling FAQs 547
12.4 Summary 548

Chapter 13 Query/View/Transformation Operational
Mapping Language 549
13.1 Transformation Declaration 550

13.1.1 In-Place Transformations 553

13.1.2 Extends and Access 553

13.1.3 Intermediate Elements 554

13.1.4 Configuration Properties 555

13.1.5 Renaming Elements 555

13.1.6 Predefined Variables 555

13.1.7 Null 556

xiv Contents

ptg6022785

13.2 Libraries 556
13.3 Mapping Operations 556

13.3.1 Mapping Body 558

13.3.2 Entry Operation 559

13.3.3 Inheritance, Merger, and Disjunction 560

13.4 Helper Operations 562
13.5 Implementing Operations 563

13.5.1 Operations and Iterators 563

13.5.2 Imperative Operations 565

13.5.3 Imperative Iterate Expressions 566

13.5.4 Object Creation and Population 568

13.5.5 Mapping Invocation 570

13.5.6 Resolution Operators 571

13.5.7 Executing Transformations 575

13.6 Library Operations 577
13.6.1 Object Operations 577

13.6.2 Element Operations 578

13.6.3 Model Operations 580

13.6.4 List Operations 582

13.6.5 Numeric Type Operations 583

13.6.6 String Operations 583

13.7 Syntax Notes 593
13.7.1 Comments 593

13.7.2 Strings 594

13.7.3 Shorthand 594

13.7.4 OCL Synonyms 596

13.8 Simple UML to RDBMS Example 596
13.9 Summary 604

Chapter 14 Xpand Template Language 605
14.1 Xpand Language 606

14.1.1 IMPORT 606

14.1.2 DEFINE 607

Contents xv

ptg6022785

14.1.3 EXPAND 608

14.1.4 FILE 612

14.1.5 FOREACH 612

14.1.6 EXTENSION 613

14.1.7 IF 614

14.1.8 PROTECT 615

14.1.9 LET 615

14.1.10 ERROR 616

14.1.11 REM 616

14.1.12 AROUND 617

14.1.13 Type System 619

14.1.14 Expression Language 628

14.1.15 Xtend Language 636

14.1.16 Workflow Engine 641

14.2 Summary 649

Part IV ❍ Appendixes 651
Appendix A Graphical Modeling Framework Key Bindings 653

Appendix B Model-Driven Architecture at Eclipse 661
Implemented Standards 662

Meta-Object Facility (MOF) 662

Unified Modeling Language (UML) 663

Object Constraint Language (OCL) 663

Diagram Interchange (DI) 664

XML Metadata Interchange (XMI) 664

MOF Query/View/Transformation (QVT) 664

MOF Models to Text Transformation Language 664

Human-Usable Textual Notation (HUTN) 665

Business Process Modeling Notation (BPMN) 665

Software Process Engineering Metamodel (SPEM) 666

xvi Contents

ptg6022785

Working Relationship 666
Membership 666

Specification Delivery 667

Specification Compliance 668

Implementations Influencing Specifications 668

Open and Transparent Nature 668

Future Outlook 669

References 671

Index 675

Contents xvii

ptg6022785

This page intentionally left blank

ptg6022785

xix

Foreword

Just like a pearl, the Eclipse Modeling Project has grown organically as layers
around a central core. From the humble beginnings of the Eclipse Modeling
Framework (EMF) (initially part of the Eclipse Tools Project) along with the
Graphical Modeling Framework (GMF) and the Generative Modeling Tools
(GMT) (both initially part of the Eclipse Technology Project), the Modeling
Project coalesced to become one of Eclipse’s most exciting and diverse projects.
The depth and breadth of its technology is vast and even its rate of growth con-
tinues to increase. The Eclipse Modeling Project has truly become a Swiss Army
knife for state-of-the-art model-driven software development.

The sheer volume of useful modeling technologies that the Eclipse Modeling
Project includes makes mastering a significant portion of it a daunting task. Even
determining which specific available technologies are useful for solving any par-
ticular problem is a challenge exacerbated by the fact that, as a rule, the docu-
mentation tends to lag far behind the development work. As such, this book fills
a fundamentally important need in the modeling community: a coherent vision
of how all this powerful technology can be best exploited to build domain spe-
cific languages (DSLs). In other words, the focus of this book is on pragmatic
applications illustrated by way of concrete examples rather than on abstract
modeling concepts and theories. This pragmatic focus reflects that of the
Modeling Project overall—that is, a focus on building powerful frameworks that
real programmers use every day. I’m sure this influential book—with its inter-
esting examples and its excellent reference material—will become a key part of
every toolsmith’s technical arsenal.

EMF provides a sound basis for abstract syntax development and even
includes a crude but effective XML-based concrete syntax. But, that is only the
start of the journey, and the second edition of the Eclipse Modeling Framework
book covers this basic material well. This book effectively picks up where EMF
leaves off with an in-depth exploration of alternative forms of concrete syntax,
particularly graphical syntax, model-to-model transformation (such as Query

ptg6022785

View Transformation Operational Mapping Language), and model-to-text trans-
formation (such as Xpand). It rounds out the DSL picture with a holistic view of
everything it takes to build a complete model-based product line.

It has been my great pleasure and honor to work closely with Richard C.
Gronback as the Modeling Project coleader for the past few years. He has a keen
mind and a sharp wit. This book reflects it well. I’ve learned a great deal from
him, and I’m sure readers of this book will as well.

—Ed Merks, Ph.D.
President, Macro Modeling

xx Foreword

ptg6022785

xxi

Preface

About This Book

This book covers a relatively new collection of technologies that focus on devel-
oping domain-specific languages (DSLs) using the Eclipse Modeling Project,
offering a first look at a range of Eclipse projects that have not yet been covered
in detail within this context. Although the core of these technologies has been
available for several years in the Eclipse Modeling Framework (EMF), diagram
definition and model transformation are emerging technologies at Eclipse. These
are complemented by upcoming textual syntax development frameworks, which
likely will be covered in detail in subsequent editions of this book.

This book delivers a pragmatic introduction to developing a product line
using a collection of DSLs. A model-based, largely generative approach is
designed to accommodate future adjustments to the source models, templates,
and model transformation definitions, to provide customized solutions within
the context of the product line. To illustrate this approach, this book presents a
set of sample projects used to define a requirements product line.

Audience

This book targets developers and architects who want to learn about developing
DSLs using Eclipse Modeling Project technologies. It assumes a basic under-
standing of the Java programming language, Eclipse plug-in development, and
familiarity with EMF. This book’s target audience are those interested in learn-
ing about the Eclipse Graphical Modeling Framework (GMF), Model-to-Model
Transformation (M2M) Query/View/Transformation Operational Mapping
Language (QVT OML), and Model-to-Text Transformation (M2T) Xpand proj-
ect components.

The book is divided into introductory, hands on, and reference sections.
Readers who want an overview of the Eclipse Modeling Project and development
of DSLs in the context of an Eclipse-based product line should read Part I,
“Introduction.” Readers who want to follow along in a tutorial fashion to learn

ptg6022785

how to use the projects listed earlier should read Part II, “Developing Domain-
Specific Languages.” Readers also can reference the sample project solutions in
this section to get an overview of the techniques. Part III, “Reference,” serves as
a resource for readers who want a deeper understanding of Graphical Editing
Framework (GEF), GMF, Xpand, and QVT OML while they are completing Part
II or developing their own DSL-based projects.

Readers who want to experience the benefits of a commercial version of the
technologies presented here can download the Borland Together product. There
they will find enhanced domain modeling, refactoring, diagram development,
transformation authoring and debugging, workflow, and generation capabilities
in a well-integrated DSL Toolkit.

Sample Code

The Modeling Amalgamation Project (Amalgam) at Eclipse holds the sample
code from this book and is available as sample projects in the DSL Toolkit down-
load. This package also includes all the prerequisites required for developing the
sample applications.

Visit the Amalgam project Web site for more information on obtaining the
DSL Toolkit: www.eclipse.org/modeling/amalgam.

Feedback

The examples in this book are maintained within the Modeling Amalgamation
Project at Eclipse. Feedback on their content—and, therefore, this book’s
content—is welcome on the project newsgroup, http://news.eclipse.modeling.
amalgam. Alternatively, feel free to contact the author directly at richard.
gronback@gmail.com.

xxii Preface

www.eclipse.org/modeling/amalgam
http://news.eclipse.modeling.amalgam
http://news.eclipse.modeling.amalgam

ptg6022785

xxiii

Acknowledgments

This book would not have been possible without the help of many great people,
especially because its contents are based almost exclusively on the work of
others. I have worked over the years with a number of terrific people, but this
book all started with a team of exceptional developers that comprised the initial
Borland contingent of the GMF project: Artem Tikhomirov, Alexander “Vano”
Shatalin, Boris Blajer, Dmitry Stadnik, Max Feldman, Michael “Upstairs”
Golubev, and Radek Dvorak. Our small team led the way into the world of
Eclipse contribution from Borland, thanks to the support of our management at
the time, Raaj Shinde and Boz Elloy.

Our colleagues from IBM were also instrumental in the success of GMF and
have been a pleasure to work with over the years. Thanks to Fred Plante,
Anthony Hunter, Christian Damus, Linda Damus, Mohammed Mostafa, Cherie
Revells, and the rest of the GMF runtime team.

I have greatly enjoyed working with Ed Merks, who helped form the top-
level Eclipse Modeling and served as co-leader of its PMC. Thanks also to Kenn
Hussey, Paul Elder, Jean Bezivin, Sven Efftinge, and Frederic Jouault, all on the
PMC representing the breadth of projects within Modeling, for making our proj-
ect the success it has become.

Today the modeling team at Borland has expanded its Eclipse contribution
to other technologies covered in this book. Thanks to Artem for pushing us
toward Xpand, and to the openArchitectureWare team who initially developed
it, particularly Bernd Kolb who was most helpful during the writing of the
Xpand chapter. Thanks to Radek for taking on the task of open sourcing and
improving our QVT Operational Mapping Language implementation, along
with the talented Sergey Boyko and Alexander Igdalov. Thanks to Michael for
taking on the task of developing UML diagrams using GMF for contribution to
the MDT project, along with the excellent help of Sergey Gribovsky and Tatiana
Fesenko. It has been a privilege working with Konstantin Savvin and the rest of
our team in Prague and St. Petersburg over the past few years.

ptg6022785

This book also served as an exercise to develop requirements for our com-
mercial DSL Toolkit—thanks to our current management team, Steve
McMenamin and Pete Morowski, for providing excellent support and encour-
agement. Thanks also to Tom Gullion and Ian Buchanan for being fantastic stew-
ards and product managers for the Together product line.

Thanks again to those who reviewed portions or all of this book and pro-
vided valuable feedback, particularly Karl Frank and Angel Roman. I especially
want to thank Artem Tikhomirov and Alex Shatalin for their support and feed-
back while writing this book. At Addison-Wesley, thanks to Greg Doench for his
support and encouragement during the publishing process, and to Jovana San
Nicolas-Shirley and Krista Hansing for making it readable. And thanks to Ian
Skerret, who introduced me to Greg during EclipseCon 2007 and got the ball
rolling.

On the home front, extra special thanks go to my wife, Pam, and son,
Brandon, who afforded me the time and peace to work evenings and weekends,
even through the winter holiday season of 2007. And finally, I must thank my
parents for providing a strong foundation and the best possible example to
live by.

xxiv Acknowledgments

ptg6022785

About the Author

Richard Gronback is the chief scientist for modeling products at Borland
Software Corporation, where he manages both open source and commercial
product development. Richard represents Borland on the Eclipse Board of
Directors and Planning and Architecture Councils, co-leads the Modeling proj-
ect Project Management Committee (PMC), and leads the GMF and Amalgam
projects. Richard holds a Bachelor of Software Engineering degree in computer
science and engineering from the University of Connecticut. He was a reactor
operator in the U.S. Navy before entering his current career in software.

xxv

ptg6022785

This page intentionally left blank

ptg6022785PART 1

Introduction
This part of the book focuses on the big picture of the Eclipse Modeling Project and the devel-
opment of domain-specific languages (DSLs) using a subset of its technologies. This overview
serves as the basis for understanding how the projects and components work together before
we get our hands dirty in Part II.

1

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 1

Introduction

This book provides an overview of the capabilities of the Eclipse Modeling Project that
you can leverage when working with domain-specific languages (DSLs). First it gives an
introduction to the Eclipse Modeling Project, followed by a discussion of DSLs and their
application in the context of the Modeling project. Although this book does not cover all
projects within Modeling, it includes projects and components that cover the range of
Model-Driven Software Development (MDSD) technologies that you need to start devel-
oping your own DSL and custom tool set. Throughout the book, you will develop a set of
sample applications to cover Modeling project functionality for each topic. Finally, the
book provides a reference section to cover more of the in-depth technical detail of the tech-
nologies and projects that comprise the DSL Toolkit.

1.1 About Modeling

Although we sometimes think of modeling as nothing more than a tool for draw-
ing documentation pictures or for use within the Unified Modeling Language
(UML) (in the case of big “M” modeling), or as purely an academic pursuit,
we can apply modeling to virtually any domain and can use model-driven
approaches to increase productivity and quality, particularly when using them in
a domain-specific manner. This book does not focus on the general topic of mod-
els, modeling, metamodels, meta-metamodels, super-models, model-driven soft-
ware development, and so on; instead, it focuses on these topics as they relate to
using the Eclipse Modeling Project as a DSL Toolkit. In other words, this book
focuses on the practical application of MDSD with what is available today in the
Modeling project. You can find other sources of information on the topics of
modeling, DSLs, and MDSD; I suggest several later in Part III, “References.”

3

ptg6022785

As David Frankel pointed out in Model Driven Architecture: Applying MDA
to Enterprise Computing [45], a critical aspect of the success of MDSD is using
a common metamodel. In our case, Eclipse Modeling Framework’s (EMFs) Ecore
is this metamodel (or meta-metamodel, depending on your perspective).
Beginning with Ecore (and leveraging the facilities of EMF for defining, editing,
querying, and validating models), I describe how a Toolsmith can begin to
develop a DSL. Using several of the other Modeling projects, you will add dia-
gramming, transformation, and generation capabilities to a DSL, resulting in a
full-featured toolset that a Practitioner can use. Throughout the book, I use the
roles Toolsmith and Practitioner to distinguish between those who develop DSL
tools using the Modeling project and those who use these tools in practice.

4 CHAPTER 1 • Introduction

Terminology
Before going further, it’s important to understand some key terminology used in
this book.The structure of a DSL is captured in its metamodel, commonly referred
to as its abstract syntax. A metamodel is just a model that provides the basis for
constructing another model. Although both are models, one is expressed in terms
of the other; in other words, one model is an instance of or conforms to the other.
In this book, a DSL’s abstract syntax is defined using EMF’s Ecore model, which is,
therefore, its metamodel and the model used to define all DSLs in this book. A
model created in terms of our DSL’s abstract syntax is commonly referred to as
an instance model; the DSL is then the metamodel, which makes Ecore the meta-
metamodel.The Ecore model is expressed in terms of itself, but this book doesn’t
give this a name or assign an absolute numbering scheme to the levels, as the
Object Management Group (OMG) does. For our purposes, you can simply think
of Ecore as the metamodel that a Toolsmith uses to define a DSL’s abstract syntax,
leaving the Practitioner to create instance models of the DSL.

The term abstract syntax refers to a metamodel, so it often has a corresponding
concrete syntax in the form of text or diagram notation.These are referred to as
textual concrete syntax and graphical concrete syntax, respectively. A textual syntax
enables users to work with instance models just as they would other text-based
programming languages. A graphical syntax enables users to work with instance
models using a diagram surface; the most popular is the UML. Abstract syntaxes
are defined using Ecore models, which themselves are persisted in XMI format—
this could technically be considered a concrete syntax, although it’s sometimes
called a serialization syntax.

ptg6022785

After defining the DSL’s abstract syntax in terms of Ecore, we can leverage a
variety of the Modeling project’s capabilities that are designed to work with
Ecore models. Nearly everything involved in developing a DSL Toolkit revolves
around EMF’s capabilities, including diagram definitions, transformation defini-
tions, code-generation templates, model serialization and persistence, and more.
In addition, many of these capabilities are developed using EMF models. For
example, Graphical Modeling Framework (GMF) uses a collection of EMF mod-
els (DSLs themselves) in generating domain-specific modeling surfaces. QVT’s
abstract and concrete syntax are defined with EMF models, and so on. Before
going deeper into the individual projects you’ll leverage within the context of this
book, let’s take a step back and look at domain-specific languages and the Eclipse
Modeling Project as a whole.

1.2 Domain-Specific Languages

A DSL is a language designed to be useful for a specific set of tasks. Much has
been written on the general topic of DSLs, with the domain-specific aspect being
the most controversial and reminiscent of discussions regarding “meta-ness.”
Just as metamodel is a relative term to describe a model that is used as the basis
for another model, the term domain-specific is used in a relative sense. Domain
specificity is determined by the designer of the language—in our case, the
Toolsmith.

For example, you might consider the UML to be a general-purpose language
that consists of several domain-specific languages for state machines, structural
definition, use cases, and so on. Others might consider all of UML to be a
domain-specific language covering the domain of software development.
However you look at it, UML is a modeling language that, in the sphere of
MDSD, is used to generate source code in the form of a general-purpose pro-
gramming language. General-to-general mappings typically don’t work well, so
additional specificity is typically applied at one end or both ends. A common
approach is to make the modeling language more specific and target a stable
framework, as in the case of using a UML Profile for developing Java EE appli-
cations. An alternative is to start small, creating your own domain-specific lan-
guage that includes just what you need.

1.2 Domain-Specific Languages 5

ptg6022785

COMMENT

Any plan to standardize a general-purpose model or set of models will
likely continue to fail because humans inherently need to express their own
creativity (Not Invented Here [NIH] syndrome). Furthermore, the level of
investment required to learn a large and complex language, become famil-
iar with the associated tools, and then incorporate them into a develop-
ment process makes the approach too costly for many. Therefore, when
modeling is advantageous but using standards-based modeling languages is
not, the alternative is to use tooling that facilitates the creation of DSLs.

1.2.1 Why Develop a DSL?

Definitions and perspectives aside, why would you choose to develop your own
DSL? Most people prefer to begin with something small and grow it as required,
which is likely how the UML itself got started. The key difference today is that
UML and its associated tooling is now large and complex, whereas tools for rap-
idly developing custom domain-specific products are more readily available.
That said, in the process of creating, maturing, and extending your DSL or fam-
ily of DSLs, you might end up with something akin to UML. The difference is
that you’re using your organization’s family of models, transformation defini-
tions, and generation facilities, which are tailored to your exact needs.

Don’t interpret this the wrong way: My intention is not to disparage UML.
The point is that whether your DSL is defined using the UML or a smaller lan-
guage such as Ecore, you can create a set of tooling around your DSL in a largely
generative manner. Historically, this was not the case: Modelers were forced to
buy expensive, inflexible, closed modeling tools that inevitably required cus-
tomization. Today Toolsmiths can develop custom tooling using the capabilities
of a strong open source foundation provided by the Modeling project. This
changes the playing field for modeling tools and MDSD in general.

Finally, because a library of models and model transformations likely will be
available for reuse, the capability to assemble DSL-based applications that build
on MDSD techniques becomes even more attractive. For example, the GMT proj-
ect [37] has already begun building such a library. Thanks to the use of available
DSLs, along with a growing number of target application frameworks, the result-
ing abstraction gap has sufficiently shrunk to the point at which MDSD is an
increasingly attractive approach to delivering software.

6 CHAPTER 1 • Introduction

ptg6022785

1.3 Model-Driven Software Development

MDSD can make use of many approaches and technologies. The Modeling proj-
ect provides many such technologies for use in MDSD, whether standards based
(such as when using UML2, Object Constraint Language [OCL], and Query/
View/Transformation [QVT] implementations) or non-standards based (such as
when using Xpand, Atlas Transformation Language [ATL], and so on).
Technically, Ecore itself is a “near-standard” implementation of the Essential
Meta-Object Facility (EMOF) metamodel. Discussions continue on aligning
Ecore and EMOF, as well as on the need for a Complete Meta-Object Facility
(CMOF) implementation within Modeling.

Not unlike the early days of domain and object modeling, the current idea of
MDSD is to focus on developing and refining the model of a particular domain
to provide a standard vocabulary for use in development. The key difference is
that, in the context of generative programming techniques, much of the work
that goes into developing a domain model (or DSL) can be used to produce
working software.

Volumes have been written on this subject [41], so I don’t cover it again here;
this book focuses on the practical reality of what can be done in this area using
the Modeling project. Still, it’s worth discussing a couple relevant points: the
OMG’s Model-Driven Architecture initiative (discussed in Appendix B, “Model-
Driven Architecture at Eclipse”) and software product lines, or software factories.

1.4 Software Product Lines and Factories

Perhaps the most compelling reason to leverage the Modeling project as a DSL
Toolkit is related to the development of software product lines. Using the
Modeling project to develop custom DSL tooling still requires significant effort,
so the most likely scenario for adoption is to produce a series of products, each
with a set of defined variation points. Using the facilities of the Modeling proj-
ect to produce a one-off custom DSL-based application is significantly easier
today than it was just a few years ago. However, the effort required to design a
DSL, author transformations and templates, and so on yields a greater return
when a product line is produced. Much has been written on the subject of prod-
uct line engineering, feature models [39], and the related concept of software fac-
tories [40].

The sample applications developed in this book represent a simplistic exam-
ple of how a series of models is used to define various aspects of the software
requirements domain. The process and tooling needed for software requirements
largely depend on the methodology a team uses for development, so require-
ments solutions need to be quite flexible. Traditionally, this has meant providing

1.4 Software Product Lines and Factories 7

ptg6022785

tooling with extensibility points and open application programming interfaces
(APIs), which typically were not powerful enough or stable enough to meet a
wide range of customer requests.

Instead of developing large, complex APIs for client customization needs,
consider the alternative approach of software factories. Give your clients, or per-
haps your services organization, a core set of models, transformations, and code-
generation templates to target a stable underlying application framework such as
Eclipse or Java EE. Developing the domain models to suit clients—or, in the case
of the sample applications here, the process methodology used—means that the
application delivered is designed up front to meet their needs. Selecting variation
points is complemented by customizing the underlying generation facilities to
provide the required functionality. In the case of a true product line, in which the
functionality is largely the same from client to client, the richness of the genera-
tor improves over time to the point that setting top-level parameters (instead of
low-level framework modifications) achieves greater customization. This is where
the promise of model-driven software development lies: a reduced cost of appli-
cation development through domain-specific models or generative techniques.

Today there’s still a long way to go before this vision can be realized. This
book focuses on what is available today and, specifically, what is available to
enable DSL development using the Eclipse Modeling Project, which we cover
next.

1.5 The Eclipse Modeling Project

The Eclipse Modeling Project is a relatively new top-level project at Eclipse. In
contrast, the core of the project, EMF, has been in existence for as long as the
Eclipse platform itself. Today the Modeling project is largely a collection of proj-
ects related to modeling and MDSD technologies. This collection was formed to
coordinate and focus model-driven software development capabilities within
Eclipse. The introduction of the Amalgamation project ushered in the beginnings
of a DSL-focused development environment, although it has a long way to go
before mainstream developers can use it. Documentation certainly lags behind
implementation within Modeling—hence, the need for this book.

The Modeling project is organized logically into projects that provide the fol-
lowing capabilities: abstract syntax development, concrete syntax development,
model-to-model transformation, and model-to-text transformation. A single
project, the Model Development Tools (MDT) project, is dedicated to the sup-
port of industry-standard models. Another project within the Modeling project
focuses on research in generative modeling technologies. These are outside the
scope of this book, except where explicitly referenced.

8 CHAPTER 1 • Introduction

ptg6022785

Figure 1-1 is an image originally proposed as the logo for the Modeling proj-
ect. A better logo was contributed by Gen Nishimura, but this image gives a sense
of the structure of the modeling project and its functional areas. As you can see,
EMF is at the center, providing abstract syntax-development capabilities. EMF
Query, Validation, and Transformation complement the EMF core functionality,
as do Teneo and CDO for database persistence of model instances. Surrounding
the abstract syntax-development components are model-transformation tech-
nologies, both model-to-text (Java Emitter Templates [JET] and Xpand) and
model-to-model (QVT and ATL). Beyond those lie concrete syntax development:
GMF used for graphical representation and Textual Modeling Framework (TMF)
used for textual representation of models. Finally, a series of orbiting projects and
components represent models, capabilities, and research initiatives available from
the Modeling project.

1.5 The Eclipse Modeling Project 9

emf
EMFT

MODEL TO MODELTEXTUAL MODELING FRAMEW
ORK

Q
U

E
R

Y
: V

ALIDATION : TRANSA
C

T
IO

N

MODEL TO TEXT

G
R

APHICAL MODELING FRAMEW
O

R
K

MDDi

MoDisco

XSD

UMLX

U
M

L2

VIATRA2

AMW

MOFScrip
t

O
C

L

ATL

EO
D

M

GEMS

AM3

Figure 1-1 Eclipse Modeling Project

ptg6022785

1.5.1 Abstract Syntax Development

The core of a DSL is its abstract syntax, which is used in the development of
almost every artifact that follows, including graphical concrete syntax, model-to-
model transformations, and model-to-text transformations. Typically, the first
element of a DSL to be developed is its abstract syntax; for this we use the Eclipse
Modeling Framework (EMF).

EMF Project

EMF’s Ecore model serves as the metamodel for defining our DSL. We can fur-
ther refine the structure and semantics of our DSL using Object Constraint
Language (OCL), in addition to providing support for transactions, query, and
validation.

Much has been written on the subject of little languages, domain-specific lan-
guages, language workbenches [29], and so on. Models provide a superior
language-definition format to traditional approaches such as BNF because a
model described in terms of Ecore is more expressive and can have a number of
concrete syntaxes defined for generating textual and graphical editors. Chapter
3, “Developing a DSL Abstract Syntax,” covers the use of EMF in developing a
DSL abstract syntax.

Several components available from the Modeling project extend and com-
plement the core capabilities of EMF. Within EMF are components that provide
query, validation, and transaction features, in addition to an implementation of
Service Data Objects (SDOs). An incubation project named EMF Technology
(EMFT) exists for the sole purpose of providing extensions to the core function-
ality of EMF. When technologies developed within the EMFT project mature suf-
ficiently, they can graduate into EMF itself or another project within Modeling,
or they can become full-fledged projects on their own.

Model Transaction

The Model Transaction component of EMF provides transactional support for
editing EMF models. Managing access to a transactional editing domain enables
multiple clients to read and write models. A transaction workspace integration
allows the transaction layer to work with the Eclipse undoable operations frame-
work. Section 10.7, “Command Infrastructure,” includes more information on
the transaction framework in the context of its use in GMF.

Model Validation

A Model Validation framework complements the transaction framework, to pro-
vide model integrity support. Although EMF core provides basic validation

10 CHAPTER 1 • Introduction

ptg6022785

support, an enhanced Validation Framework component is available to provide
batch and “live” validation of domain model instances. By default, constraints
can be defined in Java and OCL, although additional languages can be provided.
The audit and metric features of GMF for diagrams leverage the Validation
Framework; Section 4.3.5, “Audits and Metrics,” discusses this.

Model Query

As in a database, the contents of a model instance commonly need to be queried.
EMF models can be queried using provided Java APIs, but the Model Query
component of EMF provides OCL- and SQL-like alternatives. Model Query pro-
vides only a programmatic interface, but the Model Search component of the
EMFT project aims to provide integration with the Eclipse Search UI.

Model Search

The Model Search component of the EMFT project provides rich model-search
capabilities and integrates into the familiar Eclipse Search dialog. Model search
provides regular expression- and OCL-based search for EMF and UML2 mod-
els. Search results are provided in the familiar search results view and include
result filtering support.

Model Compare

As with working with source code, working with models within a team inevi-
tably leads to the need for comparison and merge support. The EMF Compare
component of the EMFT project provides generic compare and merge support
for any Ecore-based model. Compare uses the standard Eclipse comparison
framework to provide a familiar environment for comparing two versions of a
model.

Persistence Alternatives

EMF has a flexible resource interface that allows the default XMI serialization to
be replaced with alternatives, including database persistence. One such capability
comes from Teneo, an EMFT project that leverages Hibernate (or Java Data
Objects [JDO]/Java Persistence Objects [JPOX]) to provide object-relational
mapping and persistence for EMF models. CDO is another object-relational map-
ping technology that allows for database persistence; a new component, Java
Content Repository (JCR) Management, allows for the persistence of EMF model
instances in a Java Specification Request (JSR)-170-compliant repository.

1.5 The Eclipse Modeling Project 11

ptg6022785

1.5.2 Concrete Syntax Development

The abstract syntax for a DSL usually must be presented for use by humans, so
one or more concrete syntaxes must be developed. By default, EMF provides
XMI serialization of model instances, but you might want to provide an alterna-
tive serialization syntax as well. You also might choose to define a textual con-
crete syntax used for serialization.

GMF Project

The GMF project provides a graphical concrete syntax. Using GMF, a Toolsmith
can develop the graphical notation for a DSL and map it to the abstract syntax.
These models generate a feature-rich diagram editor. Chapter 4, “Developing a
DSL Graphical Notation,” covers the development of diagrams for DSLs using
GMF.

TMF Project

Those who prefer a textual concrete syntax can use the TMF project. After
extracting grammar from the domain model, you can leverage generators that
target the Eclipse platform to produce high-quality textual editors, complete with
syntax highlighting, code completion, builders, and so on. Chapter 5, “Develop-
ing a DSL Textual Syntax,” covers the development of textual editors for DSLs.

1.5.3 Model Transformation

As satisfying as it is to define a DSL and generate a custom textual or graphical
editing environment, we typically want to produce some output from our
instance models. We include the development of model transformations in the
context of a DSL Toolkit because, without them, the story is incomplete. The
Modeling project provides both model-to-model and model-to-text transforma-
tion components.

Model-to-Model Transformation (M2M) Project

Using the abstract syntax definition of our DSL, we can define model transfor-
mations to produce other models or generate textual output. In the case of the
former, you will develop model-to-model transformations using the QVT
Operational Mapping Language (OML), although the Model-to-Model
Transformation (M2M) project offers alternatives such as ATL and QVT
Relations. You will develop model-to-model transformations using QVT in
Chapter 6, “Developing Model-to-Model Transformations.”

12 CHAPTER 1 • Introduction

ptg6022785

Model-to-Text Transformation (M2T) Project

Alternatives exist within the Modeling project for model-to-text transformation.
Perhaps the most well-known is the Java Emitter Templates (JET) component,
which EMF itself uses. Xpand is an increasingly popular template engine, used
extensively by the GMF project. You will develop model-to-text transformations
using Xpand in Chapter 7, “Developing Model-to-Text Transformations.”

1.5.4 Model Development Tools (MDT)

The MDT project within Modeling does not fall into any previous categoriza-
tion. The focus of this project is to provide so-called big “M” modeling capabil-
ities—that is, those based on industry-standard models, such as those produced
by the OMG.

Currently, MDT consists of several components, each of which I briefly
describe next. Although this book touches on some of these components, the
range of functionality that MDT provides deserves a book of its own. Until such
time, you can find documentation for these components on the Modeling Web
site and wiki pages.

XML Schema (XSD)

An important component within the MDT project that extends the capabilities of
EMF is XSD. Many XSDs are available for application- and industry-standard
models, so it is useful to import them into EMF and work with them as you would
any Ecore model. Special annotations are added to the model created when
importing an XSD, which allows EMF to serialize these model instances as valid
XML documents that conform to their schema definition. Section 6.7.1,
“Importing an XSD,” uses the XSD for XHTML to produce a report using model-
to-model transformation.

UML2

The UML2 component provides an EMF-based implementation of the OMG’s
UML2 metamodel. This component serves as the de facto “reference implemen-
tation” of the specification and was developed in collaboration with the specifi-
cation itself. The UML2 component also provides support for UML Profiles.
Although this component focuses on the implementation of the metamodel, it
provides an enhanced version of the EMF-generated editor. UML2 diagramming
functionality is left to the UML2 Tools component.

Noted that although this book focuses on Ecore as the metamodel for creat-
ing the abstract syntax of DSLs, the UML2 metamodel provides another option.

1.5 The Eclipse Modeling Project 13

ptg6022785

In fact, it provides multiple options because a DSL can be defined using a light-
weight or heavyweight extension of the UML2 metamodel.

UML2 Tools

The UML2 Tools component of MDT provides diagramming to complement the
metamodel implementation provided by the UML2 component. These diagrams
are implemented using the Graphical Modeling Framework and provide an
extensive set of additional examples of how to use GMF’s tooling and runtime.
Not all of the UML2 diagrams are yet provided; the current list includes Class,
Component, Activity, Deployment, Composite Structure, State Machine, and Use
Case.

Object Constraint Language (OCL)

The OCL is commonly used to query and define constraints for models. As you
will see in this book, OCL can also be used in custom templates to provide run-
time behavior, initialize features in models, define model audits and metrics, and
serve as the basis of transformation and expression languages. The OCL com-
ponent of MDT provides the basis of these capabilities and is covered through-
out the book.

By itself, the OCL component of MDT provides an implementation of the
OMG’s OCL 2.0 specification, provides bindings for Ecore and UML2, and
comes with an interactive Console view to allow for testing OCL statements on
model elements.

Business Process Modeling Notation (BPMN2)

The OMG plans to unite the Business Process Modeling Notation (BPMN) and
Business Process Definition Metamodel (BPDM) into a single BPMN2 specifica-
tion. This forthcoming component of MDT plans to provide an implementation
of the underlying metamodel, again similar to the UML2 component.
Diagramming for BPMN is currently provided in the SOA Tools project and
plans to update this support to leverage this metamodel implementation.

Information Management Metamodel (IMM)

This component aims to provide metamodel and profile implementations for the
upcoming IMM specification from the OMG, again similar to the UML compo-
nent. The implementation will be based on EMF’s Ecore metamodel, with inte-
gration and exchange capabilities. The Eclipse DataTools project (DTP) likely
will provide diagramming of data models in the future.

14 CHAPTER 1 • Introduction

ptg6022785

1.5.5 Generative Modeling Technologies

Essentially a top-level project itself, GMT is a project within the Modeling proj-
ect that holds a wide range of research-focused components that deal with mod-
eling and model-driven software-development technologies. The GMT project
serves as an incubator for the Modeling project, where components are free to
exit GMT and become Modeling projects on their own or can be added to
another Modeling project.

For example, the Xpand template engine described in this book originated
with the openArchitectureWare component within GMT but has graduated to
the M2T project. ATL is a model-to-model transformation technology that has
graduated to the M2M project. Similarly, TCS and Xtext are two GMT compo-
nents that form the basis of the new TMF project. This book does not cover the
individual components within GMT; visit the GMT project home page at
www.eclipse.org/gmt to learn more.

1.5.6 Amalgamation

The Modeling Amalgamation Project (Amalgam, for short) was recently added
to Modeling to provide a set of modeling-specific packages to ease download and
installation. These packages enable the user to avoid a series of updates because
Modeling components are fine-grained and maintained on many separate down-
load pages and update sites. Amalgam is also chartered to provide some common
user interface (UI) elements and integrations that would not otherwise be appro-
priately maintained in another project. The examples from this book are avail-
able from Amalgam because they span a range of project capabilities. In fact, the
DSL Toolkit download from Amalgam is specifically configured to be used in the
context of this book’s examples, which you can extract into the Toolsmith’s
workspace as samples.

1.5.7 Project Interaction

As an Eclipse open source project, the Modeling project operates under the
process and guidelines outlined by the Eclipse Foundation. Modeling projects
have contributors from a wide range of organizations, including commercial
enterprises, academic organizations, and individuals. You can interact with proj-
ects at Eclipse in many ways, but you should keep some important things in
mind. First, newsgroups are typically your best source of information, and you
should search them before posting a new question. Using a good newsgroup
reader that has no limits on the amount of history that it maintains locally is

1.5 The Eclipse Modeling Project 15

www.eclipse.org/gmt

ptg6022785

superior to searching via the Web interface, although that works as well. Second
are the project wiki pages, which recently have become far more popular than
the Eclipse Web site for content because they are easier to maintain and facilitate
immediate contribution. Most projects have developer and release engineering
mailing lists, but don’t use these unless you’re a developer on the project. If you
post a question to a mailing list, you’ll likely be directed to the newsgroup.

Contributions are welcome, of course, and they’re best attached to a Bugzilla
in the form of a patch. Guidelines govern contributing patches on the wiki. It’s
best to confer with a developer on the project before contributing code, and
remember that you must follow intellectual property guidelines for all contribu-
tions. If you’re contributing a patch or feature, be sure to include unit tests to
cover the code, when applicable. Finally, remember that contributions come in
various shapes and sizes. Documentation is just as welcome as code because
there’s always a shortage of documentation.

The best starting point for learning more about Eclipse and how to get
involved is to visit the Web site, the wiki, newsgroups, mailing lists, and the new-
comers FAQ page, in particular: www.eclipse.org/home/newcomers.php.

1.6 Summary

As you can see, the Modeling project has a wide array of modeling technologies.
Diversity is an important part of the Eclipse ecosystem, and the Modeling proj-
ect is the poster child of diversity, considering the range of commercial, aca-
demic, and individual contributors to the project. Furthermore, the Modeling
project continues to improve relations with specification organizations, such as
the OMG. This book focuses specifically on using a subset of Modeling project
technologies within the context of creating a DSL Toolkit, but it’s possible to do
much more with what’s provided in Modeling.

On the larger topic of domain-specific languages and model-driven software
development, the rest of this book focuses on providing a view and extended
tutorial of what capabilities exist today. Although the Modeling project has come
a long way from its beginnings with the Eclipse Modeling Framework, it has a
long way to go before the functionality provided by its many components used
together as a DSL Toolkit will rival the richness of the JDT for Java development.
Arguably, no project at Eclipse will ever achieve this lofty goal, but we hope to
provide considerable improvement in Modeling in the next few years. The areas
for improving the JDT are narrowing, and the possibilities and functionality of
modeling are just beginning. So let’s get started.

16 CHAPTER 1 • Introduction

www.eclipse.org/home/newcomers.php

ptg6022785

CHAPTER 2

Modeling Project as a
DSL Toolkit

To discuss using the Modeling project as a DSL Toolkit, this chapter first covers some of
the basics of domain-specific languages, model-driven software development, and the
installation of the requisite modeling project components. In the abstract, a DSL Toolkit
needs to enable a Toolsmith to define the domain model itself, a diagram, a textual nota-
tion, model-to-model transformations, and model-to-text transformations. The Modeling
project provides these through the Eclipse Modeling Framework (EMF), Graphical
Modeling Framework (GMF), Model-to-Model Transformation (M2M), and Model-to-
Text Transformation (M2T), respectively. Used together, they relate as shown in Figure
2-1, with the domain model (abstract syntax) being the basis of all artifacts. Figure 2-1
displays a simple notation for these abstract elements that I use throughout the book.

17

Domain Model

Model-to-Model
Transformation

text{ }

M M

Model-to-Text
Transformation

M T

Textual Syntax
Definition

Diagram
Definition

Figure 2-1 DSL Toolkit artifacts—abstract

Figure 2-2 provides a more concrete example (but still speaks in terms of the
abstract elements) and shows the artifacts used by our Toolsmith in developing
the mindmap application. Note that artifacts the Toolsmith develops might or

ptg6022785

might not be deployed to the Practitioner. For example, Figure 2-2 shows model-
to-text templates used to generate model code and others invoked by the
Practitioner on model instances. A Practitioner might want to alter the output
from an M2M or M2T, so the latter are typically deployed to allow for cus-
tomization. Technically, all DSL artifacts can be deployed for extension and
regeneration.

18 CHAPTER 2 • Modeling Project as a DSL Toolkit

mindmap.ecore

mindmap2xhtml.qvtoxhtml.ecore

M M

mindmap2requirements.qvto

M M

map2csv.xpt

M T

M T

Class.javajet*mindmap.gmfmap

Figure 2-2 Abstract DSL artifacts—Toolsmith

When I discuss the Practitioner’s use of these artifacts, I alter the notation
slightly to indicate instances of each. Specifically, I fill in areas of each notation
element to distinguish an instance from its abstraction, which is “hollow” in
comparison. In the case of Figure 2-3, the Practitioner works with an instance of
the mindmap model through its diagram and can export the model using model
transformations. The first is an M2T template that results in a Comma-Separated
Values (CSV) file. The second produces an HTML report using an Extensible
HTML (XHTML) model. An M2M transformation results in a Requirements
model that can be transformed to HTML using an M2T transformation.

To get an overall picture of what I described previously in the process of
developing a DSL Toolkit, Figure 2-4 represents a general flow. Of course, some
elements are purely optional, and the process is intended to be iterative. Again,
a DSL Toolkit in the context of this book includes the tooling required for devel-
oping of all aspects of a domain-specific language, including model transforma-
tions and code generation. The important point to keep in mind is that models,
transformations, and templates are iteratively developed with the goal of pro-
viding as much generation as practical. We probably won’t see fully generated
applications in the near future, although many aspects of the tooling that you’ll
produce in the context of this book are just that. As the tooling and techniques
improve, complete product lines likely will be mostly generated over time.

ptg6022785

Figure 2-3 Instance DSL artifacts—Practitioner

CHAPTER 2 • Modeling Project as a DSL Toolkit 19

M T

M M

M M M T

#proj
a, b, c.
x, y, z,.

<html>
…
</html>

<html>
…
</html>

sample.mmd

sample.mindmap mindmap2xhtml

mindmap2requirements

mindmap2csv sample.csv

sample.html

sample.htmlrequirements2html

sample.requirements

Create DSL Project

Generate and Test

Package and Deploy

Develop
Domain Model

emf

Develop
Diagram(s)

gmf

Develop M2M
Transformation(s)

m2m

Develop M2T
Transformation(s)

m2t

Develop
Textual Syntax

tmf

Figure 2-4 DSL Toolkit development workflow

As always, the use of the toolkit begins with creating a new project to hold
the DSL artifacts. The Amalgam DSL Toolkit download provides a DSL project
type, although it’s possible to begin with a regular Eclipse plug-in project and add

ptg6022785

the appropriate natures and builders. The structure provided by the DSL project
is not mandatory, but it nicely organizes artifacts into model, diagram, template,
and workflow folders.

Development of the domain model (the DSL abstract syntax) follows and is
stored in its EMF .ecore and .genmodel files. With the domain model available,
the Toolsmith can then create the collection of models used to define a diagram
using GMF, develop transformation definitions using Query/View/Transformation
(QVT) or ATL, develop code (text) generation templates using Xpand or Java
Emitter Templates (JET), and create the artifacts required for generation of a text
editor.

After they are created, the corresponding generator models are used to pro-
duce plug-ins for deployment. Generally, it is not recommended that the DSL
project itself be the target of code generation because doing so would complicate
cleanup and regeneration. The deployment artifacts should also provide actions
to invoke templates and transformations. Standard Eclipse packaging of plug-ins
as features or product definitions can be used to deploy the DSL tooling to a
practitioner’s workbench.

2.1 Installation

Before you can get started using the Modeling project as a DSL Toolkit, you
must install it and configure the sample projects. This book is based on the
Ganymede release of Eclipse (version 3.4), although some references are made to
features found in the Galileo release, due out in June 2009. The easiest way to
get started is to download the DSL Toolkit from the Amalgamation project at
www.eclipse.org/modeling/amalgam/. Alternatively, you can begin with the
Modeling package download from the Eclipse Packaging Project (EPP), available
at www.eclipse.org/epp/ganymede.php. EPP provides a number of preconfigured
Eclipse downloads targeted at Java, Java EE, C/C++, Plug-in Development,
Reporting, and Modeling. The modeling package is defined and maintained by
the Amalgamation and is configured with all of the Eclipse simultaneous release
projects from Modeling, although it doesn’t include everything you need to com-
plete the samples in this book. Therefore, I recommend using the tailor-made
Amalgam DSL Toolkit download. This book identifies additional dependencies
for installation as required.

2.2 The Sample Projects

You can install the sample projects from the Welcome screen of the DSL Toolkit
package or by using the standard example wizard in the New dialog. If the
Amalgam DSL Toolkit is not used, you can get the sample projects from CVS at

20 CHAPTER 2 • Modeling Project as a DSL Toolkit

www.eclipse.org/modeling/amalgam/
www.eclipse.org/epp/ganymede.php

ptg6022785

http://dev.eclipse.org in the /cvsroot/modeling repository under org.eclipse.
amalgam. I recommended that you create the projects in the book from scratch
and develop them along with the content, leaving the extraction of the completed
samples for reference or a quick start. Furthermore, the namespace for the proj-
ects from Amalgam differs from what is described in the book. The book uses
an org.eclipse.dsl.* namespace because it is shorter than the org.
eclipse.amalgam.examples.dsl.* namespace in the provided solutions,
which is a more appropriate namespace to be checked into Eclipse CVS. This
also allows both sets of projects to be located in a single workspace, facilitating
reference to the solution artifacts.

The sample projects in this book are provided in the context of a fictitious
Eclipse Requirements Project (ERP). It is a top-level project, with several projects
built using the Eclipse Modeling Project as a DSL Toolkit. In other words, it’s a
model-based requirements project, consisting of several related models used
throughout the process of requirements elicitation, management, scenario, and
business domain modeling. So in the process of describing how to use the capa-
bilities of one top-level project at Eclipse, I’ll be developing another. Keep in
mind that these are fictitious projects and that certain decisions on their imple-
mentation were made to illustrate the capabilities of the Modeling project and
focus less on developing a usable set of requirements tools, as can be found in
the Eclipse Open Requirements Management Framework (ORMF) and Open
System Engineering Environment (OSEE) projects.

The ERP contains the following four projects, each described here in minor
detail in terms of what capabilities from the DSL Toolkit are illustrated during
their development: the Requirements Elicitation Project (REP), Requirements
Management Project (RMP), Requirement Scenario Project (RSP), and Business
Domain Modeling (BDM) project.

The REP includes a simple mindmap [36] application, used for requirements
elicitation. A mindmap is based on a simple domain model (DSL) and graphical
notation, yet it can be incredibly powerful when used for brainstorming and
organizing topics during the initial phases of a project (any project, not just soft-
ware). A mindmap is also used as the basis of the GMF tutorial online, as an
updated version of that tutorial. Our sample demonstrates the development of
the mindmap domain model and associated diagram. It also illustrates the trans-
formation from the mindmap model to a text document, an HTML report, and
the requirements model of the next project, as seen in Figure 2-5.

The RMP includes an Eclipse rich client application for working with a
requirements DSL, as seen in Figure 2-6. We also develop a diagram to show
traceability, as well as an M2T for reporting requirements information. Require-
ments can be linked to additional detail in scenario diagrams, the next project in
our fictitious ERP.

2.2 The Sample Projects 21

http://dev.eclipse.org

ptg6022785

Figure 2-5 Mindmap DSL artifacts

22 CHAPTER 2 • Modeling Project as a DSL Toolkit

mindmap.ecore

mindmap2xhtml.qvtoxhtml.ecore

M M

mindmap2requirements.qvto

M M

map2csv.xpt

M T

M T

Class.javajet*mindmap.gmfmap

requirements.ecore

TooltipEditPolicy.xpt

M M

requirements2html.xpt

M T

requirements.gmfmap

Figure 2-6 Requirements DSL artifacts

The RSP provides scenario-modeling capabilities using the standard Business
Process Modeling Notation (BPMN), as seen in Figure 2-7. Scenario diagrams
can be used to elicit requirements, in addition to providing dynamic modeling to
enhance our last project. We transform scenario diagrams into Test and Perform-
ance Tools Platform (TPTP) manual test cases using QVT.

The BDM project provides a high-level business domain–modeling capabil-
ity to refine our requirements in the context of business domains, as seen in
Figure 2-8. This DSL is inspired by the Java Modeling in Color with UML book
by Coad, et. al. [46]. It has a diagram similar to that of a UML class diagram,
yet it provides a higher-level abstraction and set of constraints for object model-
ing within the context of a domain-neutral component, as described in the book.
Throughout this book, the terms BDM and color modeling diagram are synony-
mous. We also develop a set of transformation definitions to produce Java
Persistence API (JPA) code from these models.

To wrap up the sample and provide detail for our deployment section, the
RMP project components are deployed as an Eclipse product definition.

ptg6022785

Figure 2-7 Scenario DSL artifacts

2.2 The Sample Projects 23

bpmn.gmfgraphh scerario.ecore

scenario2testsulte.qvto requirements.ecorecommon.ecore
(TPTP)

M M

scenario.gmfmap

dnc.encore oocore.encore

dnc2jee.qvto

M M

jem2java.xpt

M T

dnc2java.xpt

M T

NodeEditPart.xpt*

M T

Class.javajet*

M T

dnc.gmfmap

java.ecore

Figure 2-8 Color modeling DSL artifacts

Extending this set of sample projects involves many possibilities, such as pro-
ducing BPEL from BPMN-based scenario diagrams, transforming business
domain and scenario diagrams to and from their UML counterparts, transform-
ing scenarios to Eclipse cheat sheets, extending the mindmap to display task
information with a diagram better suited for temporal display (such as a Gantt
chart), synchronizing tasks in mindmaps with Bugzilla entries using an M2M,
and so on. All of these come to mind as feasible options using familiar techniques
and a common metamodel by leveraging the Modeling project for DSL and
model-driven software-development techniques. Of course, these extensions are
left as exercises for the reader.

Figures 2-9 through 2-11 illustrate sample application artifacts and how they
relate, using the notation introduced earlier. From the Practitioner’s perspective,
mindmap, scenario, and business models are created and viewed with correspon-
ding diagrams. The requirements model can be produced from a mindmap model
and edited with a diagram and corresponding editor. The mindmap and require-
ments models can produce reports using M2M and M2T transformations.

ptg6022785

Figure 2-9 Mindmap and requirements DSL instances

24 CHAPTER 2 • Modeling Project as a DSL Toolkit

M T

M M

M M M T

#proj
a, b, c.
x, y, z,.

<html>
…
</html>

<html>
…
</html>

sample.mmd

sample.mindmap mindmap2xhtml

mindmap2requirements

mindmap2csv sample.csv

sample.html

sample.htmlrequirements2html

sample.requirements

scenario2testsuite sample.testsuite

M M

sample.scenario

sample.requirements

zip

Figure 2-10 Scenario DSL instance

dnc2jee sample.jem

M M

java

M M

sample.dnc

class {
…
{

*.java

dnc2java

M T
class {
…
{

*.java

Figure 2-11 Color modeling and Java DSL instances

ptg6022785

A scenario model is transformed into a TPTP Manual Test model, for use in
its editor. Scenario models can also be embedded within requirements models.

The business model is transformed first to a Java EMF Model (JEM) and
then to text as Java class files. Alternatively, the business model is transformed
directly to Java classes using Xpand templates.

Figure 2-12 shows a Practitioner’s workspace with each of the artifacts rep-
resented. The four open diagrams in the editor are the mindmap in the upper left,
the scenario in the upper right, the requirements in the lower left, and the color
modeling diagram in the lower right. The outline view shows the content of the
requirements editor, which is also visible using the Selection page in the editor
itself.

2.2 The Sample Projects 25

Figure 2-12 Practitioner’s view of sample projects

The workspace has two projects, with the second being the target of the Java
code generation from the color model instance. The main project contains all the
Practitioner models and generated artifacts, other than Java. The mindmap CSV
output, requirements HTML report, mindmap XHTML report, intermediate
JEM, and TPTP test suite are all found in the org.eclipse.example project.
Also seen is a types.xmi file used by the color business domain model.

ptg6022785

2.3 Summary

In this chapter, we introduced a fictitious set of DSL-based projects that are used
in the context of a product line for examples to follow. As you will see, maxi-
mizing the use of models and model-based technologies for a product line can
lead to increased productivity and enable customization options not found in tra-
ditional methods of product development.

26 CHAPTER 2 • Modeling Project as a DSL Toolkit

ptg6022785PART 1I

Developing Domain-Specific
Languages

This part of the book takes the reader through a series of tutorial-like steps of developing a
product line using domain-specific languages. From abstract syntax developed using Eclipse
Modeling Framework (EMF), to graphical concrete syntax developed using Graphical
Modeling Framework (GMF), to model-to-model transformation using Query/View/
Transformation (QVT), to model-to-text transformation using Xpand, each technology is illus-
trated using a series of sample projects. At the end, we present a chapter that focuses on deploy-
ing the samples.

27

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 3

Developing a DSL Abstract
Syntax

In this chapter, we walk through the development of a domain-specific language (DSL)
using the Eclipse Modeling Framework (EMF) and supporting components. Specifically,
we develop the DSL’s abstract syntax using the Ecore metamodel. But first we cover some
basics on what to consider when creating a DSL and the different implementation strate-
gies you might want to employ when using EMF. Next, we provide an overview of EMF,
leaving detailed information to the book [38] dedicated to this purpose. We cover some
additional components of EMF and Model Development Tools (MDT) that enable you to
further refine DSLs, and we develop a series of domain models for use in the sample
projects.

DISCLAIMER

The domain models developed as samples are constructed to illustrate
certain features of the associated tooling and, as such, should not neces-
sarily be considered “best practices” in some cases.

3.1 DSL Considerations

Many considerations are involved in creating a DSL. Does a model already exist
that is close enough? If so, can an existing model be extended, or is it fixed? Does
the model need to be based on a standard? Does the DSL lend itself to graphical
display and editing? Does the DSL require a textual syntax and editor? Will a

29

ptg6022785

product line be built on the DSL, and perhaps others? Is the Ecore metamodel
expressive enough to suit your needs for a DSL? How can you model dynamic
behavior?

BEST PRACTICE

Leverage existing models, when appropriate. XML Schema Definition (XSD)
and EMF are very popular technologies, and EMF can import just about any
XSD, so search for existing domain models before you reinvent the wheel.
Also consider publishing your domain model if you think that others might
find it useful, if only as part of your application’s API to aid in integration.

A key consideration is the amount of flexibility you need or will tolerate in
the DSL. As you can see in the examples, sometimes a change in the domain
model makes your transformation definitions much easier to write. Also, frame-
works such as GMF have certain limitations—or, rather, were designed with par-
ticular use cases in mind. Your particular style of modeling might not lend itself
well to graphical representation, but a few changes might allow mapping to dia-
gram elements much easier. For example, certain mappings in Query/View/
Transformation (QVT) and template expressions can be facilitated by adding
derived features or methods to the domain model. Complex queries using Object
Constraint Language (OCL) (and, therefore, useful ones in QVT and Xtend) can
be added to the domain model with code generated for their implementation at
runtime. Having a feature available in the model will greatly simplify transfor-
mations and templates that access them.

TIP

Don’t be afraid of modifying your domain model to make working with
templates, transformations, and diagram definitions easier. Unless you’re
using a model that cannot be altered, the Toolsmith will appreciate being
able to make certain design decisions in the domain model to suit the tool-
ing, instead of having to create workarounds or write custom code to use
the tooling with a domain model.

This is not to say that you should let the tooling influence your DSL to an
extent you are not comfortable with. The question is, how do you maintain a
satisfactory level of “purity” in your DSL when considering the additional

30 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

complexity associated with developing and maintaining the other Model-Driven
Software Development (MDSD) artifacts? In general, the more complex the
metamodel (DSL) is, the more complex the transformation definitions, templates,
and diagram definitions are.

A set of conventions and best practices for the definition of DSLs, transfor-
mations, and templates likely will arise, as it has for Java and other popular pro-
gramming languages. With conventions and best practices comes tooling to
support refactorings, static analysis, and cleanup. At this stage of the Modeling
project’s evolution, operations are still quite manual and even error prone. As an
open source project that forms the basis for commercial products, Eclipse even-
tually will see more advanced features pushed down into it, thereby improving
the Toolsmith experience.

3.2 Eclipse Modeling Framework

From the project description, EMF is “a modeling framework and code genera-
tion facility for building tools and other applications based on a structured data
model.” This pretty much sums it up, but there’s a lot to know about EMF. I
highly recommend that you first read, or at least have available, the book on
EMF [38] to better understand its use in the context of this book. Alternatively,
reading through the online documentation and tutorials on EMF should make its
use in this book easy to follow. In other words, the examples in this book only
scratch the surface of what is possible using EMF.

You can create models using EMF in many ways. You can use the provided
editor (a tree with properties view) or import a set of annotated Java classes. An
Ecore diagram is available from the EMFT project. If you have the XSD compo-
nent installed, you can import an XSD file. If you have the Unified Modeling
Language (UML) version 2 (UML2) component installed, you can import a
UML2 model. If you have Graphical Modeling Framework (GMF) installed, you
can use its example Ecore diagram editor. If you download and install Emfatic
[42], you can work in a textual syntax and synchronize with your Ecore model.
In the future, you will be able to design your own concrete textual syntax for
Ecore, or any model, using the Textual Modeling Framework (TMF) project.

Regardless of the method you choose for importing or working with your
domain model, you will find an .ecore file in your workspace—that is, unless
you take a purely programmatic approach. If you open this file in a text editor,
you will see that it is an XML Metadata Interchange (XMI) serialization of your
Ecore-based model. By default, EMF enables you to edit models in a basic (gen-
erated) tree editor with a Properties view. You can easily generate a similar edi-
tor for your own model.

Before getting into more detail, let’s take a look at the Ecore metamodel.

3.2 Eclipse Modeling Framework 31

ptg6022785

3.2.1 Ecore Metamodel

The EMF book describes the Ecore metamodel in detail, but here you find a sim-
plified diagram for reference (Figure 3-1), along with some discussion of the
more relevant aspects used as we develop our DSL abstract syntax. It’s a fairly
simple model, which is part of its strength. In most cases, you can compensate
for the lack of features in Ecore by using some of the more advanced modeling
techniques, which are discussed in the EMF book. A longstanding topic of debate
among EMF users is the lack of an EAssociation class, but we don’t get into that
here.

32 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-1 Ecore model

ptg6022785

Annotations

Sometimes it’s important to add information to a model element for documenta-
tion purposes, or to provide parameters to be considered during transformation
or generation. EAnnotations provide these for all model elements in EMF. An
EAnnotation has a Source field, which serves as a key, and a list of References.
An EAnnotation may have zero or more Details Entry children, which have Key
and Value properties. This simple capability of annotating models is quite flexi-
ble and turns out to be useful for many purposes, including XSD support.

Another particularly useful application of annotations is to declare OCL
constraints, method bodies, and derived feature implementation, as discussed in
Section 3.2.4, “Applying OCL.”

3.2.2 Runtime Features

The EMF runtime includes facilities for working with instances of your models.
No strict dependencies exist on the Eclipse platform for the runtime and gener-
ated model and edit code, so these bundles can be used outside of the Eclipse
workbench. As bundles, they can be deployed in any Equinox OSGi container,
even within a server environment.

The generated code for your model has a dependency on the underlying EMF
runtime components. A significant benefit is gained from the generated Appli-
cation Programming Interface (API) and model implementation working with
the provided runtime features. An efficient observer pattern implementation is
provided to alert listeners to model change events. A generated reflective API
provides an efficient means of working with models dynamically. In fact, EMF
can be used in a purely dynamic fashion, requiring neither an .ecore model nor
code generation. Finally, it’s possible to have static registration of a dynamic
package, but that’s an advanced use case left to the EMF documentation.

When working with model instances, changes can be recorded in a change
model that provides a reverse delta and allows for transaction support. A vali-
dation framework provides for invariant and constraint support with batch pro-
cessing. The Model Transaction and Validation Framework components provide
enhanced transaction and validation support, respectively.

For persistence of models, the EMF runtime provides a default XML seriali-
zation. The persistence layer is flexible, allowing for XMI, Universally Unique
Identifiers (UUIDs), and even a zip option. A resource set consists of one or more
resources, making it possible to persist objects in multiple files, including cross-
containment references. Proxy resolution and demand loading improve perform-
ance when working with large models across resources. Additionally, use of EMF
Technology (EMFT) components Teneo and CDO allow for the persistence of
models to a relational database.

3.2 Eclipse Modeling Framework 33

ptg6022785

The generated editor for EMF models includes a multipage editor and prop-
erties view. Drag-and-drop support is provided, as is copy/paste support. A num-
ber of menu actions are available in the generated editor, including validation
invocation and dynamic instance model creation. Each generated editor comes
with a default creation wizard. Figure 3-2 shows an example of the editor,
including a context menu showing options to create new elements, cut, copy,
paste, delete, validate, and so on.

34 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-2 EMF-generated editor

3.2.3 Code Generation

From an *.ecore (Ecore) model, you need to produce a generator model and
supply additional information required for code generation. An EMF generator
model has a *.genmodel file extension and is essentially a decorator model for
a corresponding *.ecore model. This generator model is fed to Java Emitter
Templates (JETs) that are used to write Java and other files. JET is the Java Server
Pages (JSP)-like technology used by default when generating text from Ecore
models. This book does not cover it in detail, but a tutorial is available online
[51] if you want to know more.

You can customize the existing generation output using custom templates.
Furthermore, you can extract constraint, pre-/post-condition, and body imple-
mentations from OCL annotations for use in generation and invocation at run-
time. This is not a native EMF capability, but you can add it using the MDT OCL
component. You will use this technique in the context of the sample projects.

ptg6022785

When regenerating code, the JMerge component is used to prevent overwrit-
ing user modifications. Generated Java code is annotated with @generated
javadoc style tags to identify it and distinguish it from user code. Removing the
tag or adding NOT after the tag ensures that JMerge will not overwrite the mod-
ified code. Typically, using @generated NOT is preferred because it allows the
Toolsmith to identify code that was generated and modified, as opposed to newly
added code. Note that not all code benefits from merging. Specifically,
plugin.xml and MANIFEST.MF files need to be deleted before an update can
occur.

3.2.4 Applying OCL

Many opportunities arise for using OCL in EMF models. Class constraints,
method bodies, and derived feature implementations can all be provided using
MDT OCL and EMF dynamic templates. The approach of using OCL and cus-
tom templates in this book comes from an Eclipse Corner article [44] and has
been modified only slightly to conform to a similar approach taken to leverage
OCL added to models in QVT, as discussed in Section 6.5.6, “Leveraging OCL
in EMF Models.” The templates are generic and can easily be added to any proj-
ect that needs to provide OCL-based implementations in its generated model
code. It is also worth noting that GMF uses OCL extensively in its models,
employing an EMF Validator to maintain the integrity of its models.

To add an OCL expression to a model element, we begin by adding a nor-
mal EAnnotation. For the Source property, enter http://www.eclipse.org/
2007/OCL. This URI allows our custom templates and QVT engine to recognize
this annotation as OCL, where it can expect to find Details Entry children of
type constraint, derive, or body. Note that the original article [44] used
http://www.eclipse.org/ocl/examples/OCL as the URI.

Depending on the context, add the appropriate Key (EMF constraint key,
derive, or body) to a child Details Entry of the EAnnotation and specify
the OCL in the Value property. For invariant constraints, the OCL annotations
complement the normal EMF constraint annotations by providing implementa-
tion for the validation framework to enforce constraints.

TIP

To test your OCL, it’s helpful to use the Interactive OCL Console with a
dynamic instance of your model, as discussed in Section 1.5.4, “Object
Constraint Language.” Be sure to select the proper model element for the
expression, as well as the proper metalevel in the console.

3.2 Eclipse Modeling Framework 35

http://www.eclipse.org/2007/OCL
http://www.eclipse.org/2007/OCL
http://www.eclipse.org/ocl/examples/OCL

ptg6022785

To invoke the provided OCL at runtime, you must use custom JET templates
for your domain model. The generated code retrieves the OCL statement from
the model element and invokes it, evaluating the result. An alternative to this is
to generate a Java implementation of the OCL during generation and avoid
invoking the OCL interpreter at runtime.

The referenced article covers the details of the custom templates, so they are
not covered here. Also, the templates are included in the book’s sample projects
and are touched upon during the development of the sample projects. For now,
we take a look at just the derived feature implementation, both before and after
using the OCL with a custom template approach. First, consider the default gen-
erated code for a derived reference—in this case, the rootTopics reference from
the MapImpl class in our mindmap example.

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> getRootTopics() {
// TODO: implement this method to return the 'Root Topics'
// reference list
// Ensure that you remove @generated or mark it @generated NOT
// The list is expected to implement
// org.eclipse.emf.ecore.util.InternalEList and
// org.eclipse.emf.ecore.EStructuralFeature.Setting
// so it's likely that an appropriate subclass of
// org.eclipse.emf.ecore.util.EcoreEList should be used.

throw new UnsupportedOperationException();
}

Let’s add the following OCL statement to the derived feature using the pre-
vious convention. Here we see the annotation within the mindmap.ecore model
in its native XMI serialization. Note that this OCL statement could be simplified
by using the parent eOpposite relationship on our Topic’s subtopics reference,
which was added to facilitate the diagram definition of Section 4.3.5, “Subtopic
Figure.”

<eStructuralFeatures xsi:type="ecore:EReference"
name="rootTopics" upperBound="-1" eType="#//Topic" volatile="true"
transient="true" derived="true">
<eAnnotations source="http://www.eclipse.org/2007/OCL">
<details key="derive"
value="let topics : Set(mindmap::Topic) = self.elements->

select(oclIsKindOf(mindmap::Topic))->
collect(oclAsType(mindmap::Topic))->asSet() in

36 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

topics->symmetricDifference(topics.subtopics->
asSet())"/>

</eAnnotations>
</eStructuralFeatures>

Before regeneration, we need to make some changes in the genmodel. To
allow the OCL plug-in to be added to our generated manifest dependencies, we
need to add OCL_ECORE=org.eclipse.ocl.ecore to the Model Plug-in
Variables property of the genmodel root. Also, we need to set the Dynamic
Templates property to true and enter the templates path (such as /org.
eclipse.dsl.mindmap/templates/domain) to the Template Directory
property. After we generate, we can see the following implementation in our
MapImpl class.

private static OCLExpression<EClassifier> rootTopicsDeriveOCL;

private static final String OCL_ANNOTATION_SOURCE =
"http://www.eclipse.org/2007/OCL";

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> getRootTopics() {
EStructuralFeature eFeature =
MindmapPackage.Literals.MAP__ROOT_TOPICS;

if (rootTopicsDeriveOCL == null) {
Helper helper = OCL_ENV.createOCLHelper();
helper.setAttributeContext(MindmapPackage.Literals.MAP, eFeature);

EAnnotation ocl = eFeature.getEAnnotation(OCL_ANNOTATION_SOURCE);
String derive = (String) ocl.getDetails().get("derive");

try {
rootTopicsDeriveOCL = helper.createQuery(derive);

} catch (ParserException e) {
throw new UnsupportedOperationException(e.getLocalizedMessage());

}
}

Query<EClassifier, ?, ?> query =
OCL_ENV.createQuery(rootTopicsDeriveOCL);

@SuppressWarnings("unchecked")
Collection<Topic> result = (Collection<Topic>) query.evaluate(this);

return new EcoreEList.UnmodifiableEList<Topic>(this, eFeature,
result.size(), result.toArray());

}

3.2 Eclipse Modeling Framework 37

ptg6022785

The generated code checks to see if the OCLExpression for this derivation
has been created already; if not, it initializes it by retrieving the statement from
the EAnnotation and its detail with key derive. Then the expression is evalu-
ated and the list of Topic elements is returned.

As mentioned in the article, some improvements could be made to this
approach, but it illustrates the usefulness of adding OCL statements to your EMF
models. It’s not hard to imagine how a significant portion of an application could
be generated from a model adorned with OCL for invariant constraints, method
bodies, and derived features. In GMF, we can see how OCL is used to augment
the diagram-mapping model to provide for constraints, feature initialization,
audit definition, and model metric definition.

BEST PRACTICE

Adding constraints and validation is essential in model-driven software
development. Although you can place validation code within QVT, Xpand
templates, and so on, it’s most useful to ensure that your model instance is
well formed when created, or before moving to a model transformation.

3.2.5 Dynamic Instances

A powerful feature of EMF, and one that is useful to a Toolsmith developing a
new DSL, is the capability to create dynamic instances of a model. The reflective
framework of EMF is leveraged to allow instantiation of a model element with-
out generating code beforehand. This can be done from within the default Ecore
editor by selecting an element and choosing the Create Dynamic Instance
context menu item. The instance is stored in an XMI file within the development
workspace, so the generation or launch of plug-ins is not required to test a model
or, more importantly, to test Xpand templates and QVT transformations under
development. This is one important distinction when comparing JET to Xpand.
Dynamic instances are used in the context of our sample projects.

BEST PRACTICE

Use dynamic instance models for development as much as possible. Xpand
templates, QVT transformations, and the OCL console can all work with
dynamic instance models and avoid making Toolsmiths generate code and

38 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

invoke a runtime instance to test their work. GMF diagrams still require
code generation to develop effectively, although generated diagrams are
capable of working with dynamic instances.

Figure 3-3 is an example of a dynamic instance model for our mindmap
domain model, along with the Properties view. It’s similar in functionality to the
generated EMF editor, although it requires the metamodel to be loaded and
reflected upon, as you can see from the loaded mindmap.ecore resource file.

3.3 Developing the Mindmap Domain Model 39

Figure 3-3 Mindmap dynamic instance model

TIP

You can view any Ecore model using the Sample Reflective Ecore
Model Editor, so there’s little need to generate the EMF .editor plug-in.
This applies to XMI dynamic instances, such as GMF-based diagrams files
where both the domain and notation models are persisted in a single file.
Simply right-click the file and select Open With → Other → Internal
Editors → Sample Reflective Ecore Model Editor.

3.3 Developing the Mindmap Domain Model

We develop a simple mindmap DSL and use it throughout the book to provide
an example of how to use components of the Modeling project as a DSL Toolkit.
This model forms the base of our fictitious Requirements Elicitation Project
(REP).

ptg6022785

This is the beginning of those sections in the book that you can follow in a
tutorial fashion. Solution projects are available to save time, although you should
be able to begin from scratch and produce these solutions on your own. It’s up
to you to follow along or simply review the solutions as we proceed.

Figure 3-4 is a diagram of the basic mindmap DSL we create in this section.
Not much explanation should be required here because you can easily see that a
Map class serves as the container for Topics and Relationships, which both
extend from MapElement. The following sections provide details on setting up
a DSL project and creating this model, along with the other DSL artifacts asso-
ciated with the project.

40 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-4 Mindmap domain model

3.3.1 Project Setup

Before getting started defining our mindmap domain model, we need a new proj-
ect. Although EMF and GMF provide their own project wizards, we use the DSL
Project Wizard provided by the Amalgam project to hold our DSL artifacts. You
can create an equivalent project by starting with a plug-in project and adding the
required dependencies, natures, and builders. The DSL project is also a plug-in
project, as we’ll eventually want to deploy the project to facilitate revisioning and
extension. Furthermore, Xpand and workflow files currently need to be located
in source paths to be developed, so we need a Java project anyway. In the future,
this should not be required.

ptg6022785

For our mindmap project, switch to the DSL perspective and use File → New
→ DSL Project to create a new project named org.eclipse.dsl.mindmap.
The wizard creates a set of folders: /model, /diagrams, /templates,
/transformations, and /workflows. Not all of these folders are required for
each DSL project, but we use them for our mindmap. The wizard also adds
natures and builders for QVT and Xpand/Model Workflow Engine (MWE).

3.3.2 Creating the Mindmap Domain Model

As mentioned earlier, creating an Ecore model involves many starting points. If
we had an existing XML Schema for our domain, we could import it and EMF
would take care of serializing documents conforming to the schema. If we used
the UML2 project and associated the UML2 Tools class diagram to model our
domain, we could import it to create an EMF model. We begin using “classic”
EMF to create our mindmap DSL from scratch.

Typically, we’d begin with File → New → Other → Eclipse Modeling
Framework → Ecore Model (Ctrl+3 → Ecore Model). However, the DSL Toolkit
from Amalgam provides some wizard redefinitions to facilitate DSL development
and defines capability definitions to hide the original UI contributions from var-
ious Modeling projects. To create our model, we select the /model folder and
use the File → New → Domain Model (Ctrl+3 → Domain Model) wizard, which
is really just the GMF Ecore diagram wizard. Name the model and diagram files
mindmap.ecore and mindmap.ecore_diagram, respectively. Optionally, you
can use the Ecore Tools component, available from the EMFT project. It pro-
vides some capabilities beyond those that the GMF example editor provides.

Before we begin to model the domain, we need to set some defaults in our
mindmap Ecore model. First, right-click on the blank diagram surface and select
Show Properties View. This shows the properties for the root package in our new
Ecore model. Each Ecore model has a single root package, under which we can
create a number of additional subpackages. In our case, we set the properties
accordingly: name and Ns Prefix should be set to mindmap; Ns URI should be
set to http://www.eclipse.org/2008/mindmap.

Using Figure 3-4, model the mindmap domain using the palette and
Properties view. It’s a straightforward model to implement, with only a couple
noteworthy items: First, the MapElement class is abstract; second, the
rootTopics relationship is derived, transient, and volatile. We implement this
derived reference using OCL in Section 3.3.5, “Adding OCL.”

The diagram surface has many features to explore, as discussed in Section
10.1, “Overview.” You should note a few things, however, when using the Ecore
diagram to create the mindmap domain model:

3.3 Developing the Mindmap Domain Model 41

http://www.eclipse.org/2008/mindmap

ptg6022785

Aggregation links create a reference with the Containment property set
to true, in contrast with Association links, which are noncontainment
references.

Setting the upper bound property of a link to –1 creates a many relation-
ship and causes the link to be displayed with the familiar 0..* notation.

References with eOpposites are shown in Figure 3-4 as a single connec-
tion, whereas the Ecore diagram shows two separate links.

3.3.3 Creating the Mindmap Generator Model

With our mindmap.ecore model complete, we can validate it and create a gen-
erator model. To validate it, open the model in the Sample Ecore Model Editor
and right-click on the root package. Select Validate and confirm that no errors
exist. If there are errors, correct them and continue. We look into adding valida-
tion for our mindmap model later, which leverages a similar validation frame-
work provided for all Ecore models.

To create mindmap.genmodel, right-click the mindmap.ecore file in
Explorer view and select New → Other → Domain-Specific Language → Domain
Generator Model (Ctrl+3 → Domain Gen). Note that the original EMF wizard
is found in New → Other → Eclipse Modeling Framework → EMF Model
(Ctrl+3 → EMF Model). We started by selecting our mindmap.ecore model,
so the wizard defaults to the same folder and provides the name we want. It also
recognizes that we are importing an Ecore model, but we have to load it our-
selves, curiously. We have only one root package, so we can finish the wizard and
take a look at the generator model properties.

EMF generator models include several properties to consider. For our
mindmap, we need to change only a couple from their default settings. In the
root, change the Compliance Level from 1.4 to 5.0 (if it’s not already set to
5.0) and change the Model Directory to be /org.eclipse.mindmap/src.
(Note that this changes the edit, editor, and tests properties as well.) We need to
manually change the Model Plug-in ID property to org.eclipse.mindmap,
however. In the properties for the Mindmap root package, we need to set the
Base Package property to org.eclipse to match our new plug-in namespace.

This gets us started, so we can move on to code generation. Later, we return
to our mindmap model and add constraints, validation, and other enhancements.

42 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

3.3.4 Generate and Run

The last thing to do is generate our mindmap plug-ins and code. Technically, we
don’t need to generate code at this time because we plan to leverage dynamic
instances as long as we can in the development of our DSLs. However, for those
new to EMF, it’s worthwhile to continue with generation at this point to see how
things work. This is accomplished by right-clicking the root of the mindmap.
genmodel in the editor tree and selecting Generate All. This generates our model
code, edit code, editor code, and test skeletons, each in their own plug-in proj-
ects. We don’t need the generated editor code because a diagram provides our
primary means of working with mindmap instance models. For now, we can con-
tinue by running the generated editor to verify our model and configuration.

To run our plug-ins and test the functionality of our editor, we need to be in
the Plug-in Development Environment perspective to gain access to the appro-
priate Run option. Select Run → Open Run Dialog (Ctrl+3 → Run C) and cre-
ate a new Eclipse Application run configuration named requirements in a
directory named runtime-requirements. Figure 3-5 is an image of this dia-
log. Figure 3-6 shows the Arguments page with some arguments for launching
on Mac OS X. We use this launch configuration throughout our development of
the sample projects, hence the general requirements name.

TIP

If you get tired of adding arguments to your launch configurations each
time you create one, navigate in the Preferences dialog to Plug-In
Development → Target Platform → Launching Arguments and
enter them in the field provided.These values will be copied into any new
launch configuration you create.

Run this configuration to launch a new instance of Eclipse with the new
plug-ins installed. We could trim the plug-in list to launch only those plug-ins we
need for our application. This makes launching faster and keeps us aware of our
underlying plug-in dependencies. In Chapter 8, “DSL Packaging and
Deployment,” we fine-tune our launch settings before creating our product con-
figuration.

3.3 Developing the Mindmap Domain Model 43

ptg6022785

In the runtime workbench, create a new project and follow New → Example
EMF Model Creation Wizards → Mindmap Model, giving it whatever name you
want and selecting Map as the Model Object. The default EMF-generated editor
appears upon finish, ready for you to create new Topic and Relationship
instances within the map.

You again need to open the Properties view to set model element properties
and establish subtopics and relationship links. Notice that validation is available
for our model instances and enforces the basic structural features defined in our
model. For example, we declared 1 for the upper and lower bounds on
source and target references of our Relationship class. Creating a new
Relationship instance in our model and invoking the Validate menu option
brings up a dialog that points out that these required features were not set. As
we enhance our model further, EMF and the Validation Framework will provide
additional validation, as used by GMF for diagram validation.

44 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-5 Requirements launch configuration

ptg6022785

Figure 3-6 Requirements launch configuration arguments

3.3.5 Adding OCL

As you should recall, we added a derived, transient, volatile rootTopics refer-
ence in our Map class. Section 3.2.4, “Applying OCL,” described the basics of
adding OCL and using dynamic templates to generate implementations for
invariant constraints, method bodies, and derived features. The example in that
section covered the rootTopics implementation using OCL and used a set of
dynamic templates that we use in this context as well. At this time, rename the
default templates folder to be a templates-domain source folder in the mindmap
project, and copy the templates provided in the solution into this folder. We’ll
have additional templates later for deployment, so we can separate them into dif-
ferent root folders. Each DSL project that uses OCL to refine its domain model

3.3 Developing the Mindmap Domain Model 45

ptg6022785

will reuse this set of templates. Then return to Section 3.2.4 and configure the
mindmap.ecore model to use OCL to implement the rootTopics feature.

We can leverage OCL in our model in additional places to provide an imple-
mentation and avoid having to modify our generated code. Let’s begin by adding
a method that returns the full set of subtopics for a given Topic.

Finding All Subtopics

Currently, our model has a subtopics reference on each Topic, along with a
method, allSubtopics(), that is intended to return a list of all of a Topic’s
subtopics—that is, its subtopics, all of their subtopics, and so on. All methods
declared in an Ecore model require an implementation to be provided, so we turn
to OCL, where the implementation of this method is trivial, thanks to the non-
standard closure iterator in MDT OCL:

self->closure(subtopics)

We need to add an EAnnotation to the method in our model with Source
equal to http://www.eclipse.org/2007/OCL. A child Details Entry is
added to the annotation with the previous expression as its Value property and
with a Key value of body. When we regenerate our model code, we can see that
our implementation is provided:

/**
* The parsed OCL expression for the body of the
* '{@link #allSubtopics All Subtopics}' operation.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #allSubtopics
* @generated
*/
private static OCLExpression<EClassifier> allSubtopicsBodyOCL;

private static final String OCL_ANNOTATION_SOURCE =
"http://www.eclipse.org/2007/OCL";

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> allSubtopics() {
if (allSubtopicsBodyOCL == null) {

EOperation eOperation =
MindmapPackage.Literals.TOPIC.getEOperations().get(0);

OCL.Helper helper = OCL_ENV.createOCLHelper();

46 CHAPTER 3 • Developing a DSL Abstract Syntax

http://www.eclipse.org/2007/OCL

ptg6022785

helper.setOperationContext(MindmapPackage.Literals.TOPIC,
eOperation);

EAnnotation ocl = eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);
String body = ocl.getDetails().get("body");

try {
allSubtopicsBodyOCL = helper.createQuery(body);

} catch (ParserException e) {
throw new UnsupportedOperationException(e.getLocalizedMessage());

}
}

Query<EClassifier, ?, ?> query =
OCL_ENV.createQuery(allSubtopicsBodyOCL);

@SuppressWarnings("unchecked")
Collection<Topic> result = (Collection<Topic>) query.evaluate(this);

return new BasicEList.UnmodifiableEList<Topic>(result.size(),
result.toArray());

}

Again, here we see the boilerplate OCL code that configures an
OCLExpression if it’s the first invocation, and then it invokes the expression
obtained from the annotation. We leave the mindmap model at this point and
move on to develop the second domain model in our product line.

3.4 Developing the Requirements Domain Model

In a similar fashion to our mindmap model, we create a new org.eclipse.
dsl.requirements DSL project here to hold our requirements model. This
forms the base of our fictitious Requirements Management Project (RMP). We
create the new requirements.ecore model using the Domain Model Wizard
and GMF Ecore diagram, and we complete it to match the diagram and descrip-
tion of Figure 3-7.

Basically, a model contains a collection of RequirementGroups, which con-
tain a number of children groups and Requirements. Requirements have
child references and contain Version and optional Comment elements. A number
of enumerations for Priority, State, Type, and Resolution are also in the
model. A Requirement can also have a number of dependent requirements,
which become the basis for our dependency diagram. Note that the author attrib-
utes are simple strings. We could create a Team model and reference these ele-
ments to assign to our requirements and comments. We also could have a
separate Discussion model to use here and in our mindmap, as a topic might have
an associated discussion thread. Many possibilities exist, but for the purposes of
our sample application, we keep it simple.

3.4 Developing the Requirements Domain Model 47

ptg6022785Figure 3-7 Requirements domain model

3.4.1 Requirements Generator Model

We create a requirements.genmodel in the usual manner, using the new
Domain Generator Model (Ctrl+3 → Domain Gen) wizard and selecting our
requirements.ecore model as the input. We’ll make some adjustments to this
genmodel and to the generated Edit code because we intend to use the generated
EMF editor as part of our solution.

For the display string of a requirement in the editor selection tree, we want
to have it be id (major.minor.service):title, where major, minor, and
service are from the contained Version element. We’ll be using the Properties
view to edit the details of the requirement, so we’ll have plenty of horizontal
space to use in the editor, allowing even longer requirement titles to fit. Another
option is to navigate using the Project Explorer view, but this is narrow and does
not allow for much information display. Furthermore, we’ll have a second tab in
the editor to display a requirements dependency diagram, which will also require
a bit of editor space. To accomplish the task, we’ll select the requirement element
in the genmodel and change its Edit Label Feature to be our id:EString
attribute. Unfortunately, we cannot set two attributes to display for the label, as
we can for GMF diagrams. This means we have to modify the generated code.

48 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

Before generation, we need to check the other properties and make changes
accordingly. As with the mindmap and other models, we want to generate our
model, edit, and editor code to their own projects, so we can change the Model
Plug-in ID and Model Directory properties to be org.eclipse.require-
ments.model. We generate the three plug-ins and open the org.eclipse.
requirements.provider.RequirementItemProvider class from our Edit
plug-in. Modify the getText() method as seen next. Note that if we wanted to
preserve the generated method to allow the label feature of the generator model
to have an effect, we could use the getTextGen() method approach, as described
in the EMF documentation.

/**
* This returns the label text for the adapted class.
* Modified to show id (major.minor.service) : title
*
* @generated NOT
*/
@Override
public String getText(Object object) {
StringBuilder sb = new StringBuilder();
sb.append(((Requirement)object).getId());
sb.append(" (");
Version version = ((Requirement)object).getVersion();
if (version != null) {
sb.append(((Requirement)object).getVersion().getMajor());
sb.append(".");
sb.append(((Requirement)object).getVersion().getMinor());
sb.append(".");
sb.append(((Requirement)object).getVersion().getService());

} else {
sb.append("0.0.0");

}
sb.append(") : ");
sb.append(((Requirement)object).getTitle());
String label = sb.toString();
return label == null || label.length() == 0 ?
getString("_UI_Requirement_type") : label;

}

We’ve eliminated the redundant Requirement prefix from our label because
we’re using a custom icon to distinguish Requirements from Requirement
Groups, Comments, and so on. For our RequirementGroup element, we can
similarly modify the getText() method to display only the name attribute; we
can modify the Comment element to display created, author, and subject.

3.4 Developing the Requirements Domain Model 49

ptg6022785

3.5 Developing the Scenario Domain Model

Because we’re basing the notation for our Scenario diagram on the Business
Process Modeling Notation (BPMN) standard, we could simply use its descrip-
tion of the underlying domain model and semantics to develop our DSL. A bet-
ter approach would have been to find an XSD for BPMN and simply import it
into EMF. Unfortunately, no such schema is published with the specification—
even worse, a new specification from the OMG, the Business Process Definition
Metamodel (BPDM), is slated to provide a domain model for BPMN2. Also
unfortunate is that this specification has no serialized format that we can use and
is overly complicated for our Scenario DSL. This leaves us to create our own sce-
nario model.

In a new org.eclipse.dsl.scenario project, we can create our sce-
nario.ecore model as the base of our fictitious Requirements Scenario Project
(RSP) project. Figure 3-8 is the model to create using our Ecore diagram.

50 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-8 Scenario domain model

Elements of a scenario model are maintained in the Process class, which
itself extends Element. A Connection maintains target and source references
for Elements that are connected in Sequence or Message flows. An
Association also connects elements. Elements come in a variety of types,
including Tasks, Events, DataObjects, and Gateways. These elements all
map in a straightforward manner to notation elements because the model is

ptg6022785

inherently graphical in nature. The model is actually similar to the description
provided in the BPMN specification, although it is a subset.

3.6 Developing the Business Domain Model

Plenty of options exist for developing the domain model that will form the base
of our fictitious Business Domain Modeling (BDM) project. We want something
less complicated than the Unified Modeling Language (UML) model for struc-
tural class modeling, but something expressive enough to generate code either
directly or through an intermediate model. Also, the model should constrain the
user to the supported methodology and domain of business models. For the pur-
poses of this book, the four archetypes described for business domain modeling
in Java Modeling in Color with UML [46] seem like a good option. Figure 3-9 is
a partial image of the Domain-Neutral Component (DNC) model, created with
the editor we develop in Section 4.6, “Developing the Color Modeling
Diagram.” Of course, a black-and-white rendering of a color modeling diagram
in the printed form of this book is not very compelling.

3.6 Developing the Business Domain Model 51

«role»

PartyRole

«moment–interval»

MomentInterval

«description»

PartyDescription

«mi–detail»

MIDetail

«party»

Party

0..1

0..1

0..1 0..–1

Figure 3-9 Color archetypes

Basically, a set of archetypes is used to model moment-interval, role, party,
place, thing, and description elements and their relationships. The relationships
and several described patterns of interaction are provided in the book, which we
want to facilitate in our modeling environment. First, however, we need an
underlying model (a DSL).

This DSL is strongly rooted in a general object-oriented DSL, so we begin
with just that. Figure 3-10 is an oocore.ecore model that we extend to add our

ptg6022785

archetypes and other DNC elements. Why begin with a general object-oriented
DSL? Well, we might decide to use this model as the basis for another DSL in the
future. Why not simply extend Ecore itself, you might ask? Well, it contains ele-
ments that we really don’t need or want, leaving us with all those E-prefixed ele-
ments and their properties. Besides, it’s straightforward to develop our own
object-oriented DSL. We can use the Java EMF Model (JEM) as a transforma-
tion target, giving us a chance to see what a model that extends Ecore is like.

Adventurous types can create a new org.eclipse.dsl.oocore DSL proj-
ect and create the oocore.ecore model, as we have done previously. Complete
the model using Figure 3-10 as a reference. Otherwise, simply copy the
oocore.ecore domain model from the solutions into your project. Finally, cre-
ate a new org.eclipse.dsl.dnc DSL project to hold our dnc.ecore model
that will extend our core model.

52 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-10 Object-oriented core domain model

ptg6022785

With our base model complete, we can create our dnc.ecore model. To ref-
erence our oocore.ecore model in our newly created dnc.ecore model, we
need to use the EMF Load Resource context menu in the default EMF editor.
Fortunately, the dialog that appears now contains options to Browse Registered
Packages, Browse File System, and Browse Workspace. At one time, you needed
to enter platform:/ URIs into the field to load a registered package. In our
case, the oocore.ecore model is easily found in our workspace.

In creating our DNC model (Figure 3-11), several options exist, as always.
You’ve seen that using an enumeration to define the type is one solution, as was
used in the Mindmap domain model’s Relationship class and Type enum.
This approach has some drawbacks, including the loss of polymorphic behavior
in our templates and transformation scripts. To illustrate the differences, let’s go
ahead and create an Archetype abstract class that extends our oocore::Class
class. Each of our archetypes will extend the Archetype class. We also add an
Association class that extends oocore::Reference and add a property to
signify aggregation. Although it is not a true Association class in the UML
sense, it aids us in developing our diagram and hiding some complexities of the
underlying model to the Practitioner. As we develop the diagram and other DSL
artifacts, we’ll revisit this model and refine it as necessary, potentially pulling up
some functionality into the domain model to aid in our color modeling and
model transformations.

3.6 Developing the Business Domain Model 53

Figure 3-11 Domain-neutral component domain model

ptg6022785

3.7 Summary

This chapter explored the capabilities of EMF as the means of describing our
DSL abstract syntax. Although we leave the details of EMF to its own book, we
covered enough to get started developing our sample projects. The benefits of
leveraging a common underlying metamodel and generation capabilities should
become clear as we continue to develop the DSL projects.

At this point, we have starter domain models for our fictitious ERP, plus a
reference to a fifth oocore DSL. We now move on to describing how to create
graphical concrete syntax for those we want to provide diagrams for, under-
standing that we will most likely revisit and enhance the EMF models we created
in this chapter.

54 CHAPTER 3 • Developing a DSL Abstract Syntax

ptg6022785

CHAPTER 4

Developing a DSL
Graphical Notation

In many cases, a domain-specific language (DSL) can be represented using graphical nota-
tion. Of course, not every DSL has such an application, nor is it the case that all aspects
of a single DSL can be sensibly represented in a graphical manner; a combination of
graphical and textual could be the best solution. This chapter explores the capabilities of
the Graphical Modeling Framework (GMF) project, first covering some basics of design-
ing a graphical notation.

4.1 Design Considerations

You must consider many things when selecting a graphical concrete syntax (nota-
tion) for a DSL, including scalability, information density, and semantic inter-
pretation of your notation. You can find many examples, both good and bad,
from existing notations to use as a guide, although some of the best notations
might not yet have been realized, given the restriction that we typically work in
just two dimensions. This section gives you some idea of how to best represent
your DSL using a graphical notation.

RECOMMENDATION

Leverage known notations where possible.With the popularity of several
modeling notations, certain shapes and figures already have meaning to
many people.Also, try not to provide a diagram element when it serves no
purpose in recognition or semantic meaning for the model. Textual ele-
ments (external labels) might be the best way to provide the required
information—and you don’t always have to surround them by a border or
even include an associated graphic.

55

ptg6022785

4.1.1 Notation Design

Most people are familiar with the work of Edward Tufte (/www.edwardtufte.
com/) on the visual display of information. Although Tufte originally focused on
the display of data, many of the concepts he presented can apply to the develop-
ment of a graphical notation for your DSL.

If you’ve read Tufte’s books or attended his lectures, you know that he rec-
ommends that everyone use 30-inch monitors or better. Being confined to an
undersized, low-resolution monitor will kill your dreams of effectively modeling
any domain using a diagramming surface. The human brain is capable of pro-
cessing a large amount of high-density information, more so than we are likely
to display using the current 2D limitations of our underlying Graphical Editing
Framework (GEF) infrastructure. A proposed addition to GEF promises to pro-
vide support for 3D, which should introduce an opportunity to improve, yet
complicate, the current situation.

One of Tufte’s key messages is to not include gratuitous or redundant
notational elements in your display of information. For example, consider the
Unified Modeling Language (UML) use case diagram. Actors are associated with
use cases, yet each actor is represented by a stick figure along with a role name
label. Typically, the stick figure is larger than the label. Why not just have the text
label indicating the role name and a link representing its association? Why do we
need the stick figure at all? Or, if we must have a graphic, why not a simple label
icon? Because the stick figure is typically the same for all actors, no additional
information is conveyed, and because the only other main figure is the use case
oval connected by a line, it would not be hard to distinguish role names from
their associated use cases. The point is, we should strive to eliminate “noise”
when designing a graphical notation. Just because we have nifty tools such as
GMF to produce graphical notations doesn’t mean we should abandon these
basic principles. Arguably, GMF’s default settings should produce “clean” dia-
grams instead of illustrate all its bells and whistles. Another example to consider
when designing your notation is the Ecore diagram and several diagrams like it
that use icons to adorn each attribute and method. In the absence of a distin-
guishing characteristic that indicates visibility, cardinality, or navigability, simply
including an icon for these elements is gratuitous. Icons do provide a degree of
visual appeal (“eye candy”) for the diagram, but there should always be an
option to hide such elements.

The book The UML Profile for Framework Architectures, by Marcus
Fontoura, et al., offers a published example of how to improve the density of
information of a UML class diagram. In the book, an alternative display of inher-
itance information is added to a class to indicate either a flattened or a hierar-
chical representation. Instead of simply adding a static icon for an attribute or

56 CHAPTER 4 • Developing a DSL Graphical Notation

www.edwardtufte.com/
www.edwardtufte.com/

ptg6022785

method, a box is colored and positioned near each feature to denote visibility,
refinement, abstraction, and so on. It’s a powerful visual effect that would be
straightforward to implement using GMF.

Inlining graphics and text is another recommendation from Tufte, inspired at
least in part by Galileo’s records of observed astronomical phenomena. Galileo
included small, text-sized images of his observations within the sentences. Tufte’s
sparklines are another example of inlining graphical information within text. In
designing graphical notations, consider including text and graphics in ways that
leverage this method of enriching the display of information. For example, con-
sider how metric data could be added in the form of a sparkline to a UML class
element.

Color is another powerful aspect to consider when designing a graphical nota-
tion. Today color printers are common, which supports more use of color in nota-
tion, without the redundant use of text or other means of indicating the same
meaning. This book illustrates the use of color in the sample business domain dia-
gram, as inspired by the book Java Modeling in Color with UML, by Peter Coad,
et al. The book quotes Tufte and others in a discussion on the proper use of color,
stressing the importance on its thoughtful application and advising against using
too many colors. In general, two to four colors is best. A gradient range of a sin-
gle color on some diagrams can be effective because it is sometimes difficult to
decide on colors to distinguish elements when there is no natural analog to con-
sider. For example, in the book Object-Oriented Metrics in Practice, by Michele
Lanza and Radu Marinescu, metric values of classes are displayed using degrees
of darkness, making certain elements come to immediate focus. Other measures
determine the relative size and shape, resulting in a powerful visual effect.

In summary, you must consider many aspects when designing a graphical
notation. Many good examples—and many poor examples—exist. Most people
can tell the difference, although you definitely should take into account advice
from Tufte and other recognized experts, along with feedback from your
Practitioners, of course.

4.1.2 Filters and Layers

A diagram that displays all the information about a model isn’t likely very read-
able. We’ve all seen large, complex models with hundreds or thousands of nodes
and links that end up looking like a Rorschach inkblot test. The overview, zoom,
and printing of large wallpaper diagrams can do only so much to help you under-
stand such models. We need ways to filter out information that is unnecessary or
not of interest. UML diagramming tools have some familiar filters, where vari-
ous levels of detail are shown in Class diagrams, for example. Analysis-level

4.1 Design Considerations 57

ptg6022785

detail typically includes only element names, while an implementation view
includes visibility, multiplicity, and type information.

The Mylyn project at Eclipse provides a capability to filter out “noise” in an
Eclipse workspace based on what the developer is actively working on. Tasks are
associated with workspace elements that remain visible, while other elements are
dimmed or hidden altogether. Some discussion regards the application of Mylyn
technology to diagrams, although nothing has yet been developed. Contributions
to this area would be welcome because extending this metaphor to modeling in
general has great potential.

GEF provides layering in diagrams, although not much has been done to
exploit this mechanism to “lift” or “lay down” information on a diagram, as was
done historically with transparencies using overhead projectors and today with
presentation animation effects. We need a more well-defined way of defining dia-
grams of multiple layers, which could come in handy when considering the dec-
oration of models as they move from more abstract to more concrete during
model-driven software-development scenarios. This and other ideas to improve
the filtering and rationing of information presented on a diagram are points to
seriously consider when defining your notation, along with an effective layout
algorithm.

4.1.3 Layout

Arguably, the most important factor in providing usable diagrams is layout.
Layout algorithms are numerous and can be tuned to suit a specific notation,
although sometimes custom layouts must be developed. Keep in mind that fixed
or semifixed layouts might be the best option for certain types of diagrams. Our
mindmap diagram uses an automatic layout because the last thing the
Practitioner wants to do while rapidly brainstorming is stop to adjust the posi-
tion of a topic using the mouse. At the same time, class diagram layouts are fairly
mature but still cannot suit the needs of each modeler, so this requires the capa-
bility to adjust the position of diagram elements. Not many modelers would be
satisfied with a fixed-layout class diagram.

Links cause the difficulty in layout, in most cases. Links that cross are often
considered bad form, yet jumps in links that cross are not a great solution, either.
Consider using ellipses (…) to show that a link exists but is not shown until
selected or after a filter is removed. Another possibility is to make visible certain
types of links during mouseover events, allowing a diagram to easily be viewed
in detail but only when desired.

58 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

4.1.4 Synchronization

Layout can go a long way toward making diagrams more readable and can even
convey semantic information. Keep in mind that diagrams represent a view of the
underlying model. In the case of large, complex models, it’s often best to have
multiple diagrams, or views, of the model. You can use filters to accomplish these
views, as mentioned earlier, or the views can be distinct diagram instances that
the Practitioner creates. The question of synchronicity comes up frequently at
this point because sometimes we want the diagram to update automatically
based on changes to the underlying model, sometimes we want changes to be
made only manually, and sometimes we want a hybrid approach in which ele-
ments on the diagram should update but no new elements should be added. We
explore synchronization options in GMF in Section 11.4.2, “Synchronized.”

4.1.5 Shortcuts

Toward the goal of creating specific views of our model, we often need to create
shortcuts, or aliases, of model elements on diagrams that are essentially imported
from another diagram or model. Support for shortcuts on diagrams is common, as
is the capability to have more than one notation element represent the same under-
lying domain model element. We explore these options as we develop our sample
diagrams. Shortcuts are supported in diagrams generated with GMF and are cov-
ered in Section 11.4.2, “Contains Shortcuts To and Shortcuts Provided For.”

4.2 Graphical Modeling Framework

Before GMF, many had undertaken the task of binding the model aspect of the
GEF’s Model-View Controller (MVC) architecture to an EMF model. An IBM
Redbook was written [43], a sample was provided by the GEF project, and
numerous commercial and academic institutions implemented solutions, some of
which included a generative component. GMF came about as the result of this
need for an easier way to develop graphical editors using GEF and an underly-
ing EMF model.

Today GMF consists of two main components: a runtime and a tooling
framework. The runtime handles the task of bridging EMF and GEF while pro-
viding a number of services and Application Programming Interfaces (API) to
allow for the development of rich graphical editors. The tooling component pro-
vides a model-driven approach to defining graphical elements, diagram tooling,
and mappings to a domain model for use in generating diagrams that leverage
the runtime.

4.2 Graphical Modeling Framework 59

ptg6022785

4.2.1 GMF Runtime Component

GMF has two runtime options. The first is commonly referred to as just the run-
time; the second is referred to as the “lite” runtime. The former provides exten-
sive capabilities for extension, and the latter focuses on providing a small
installation footprint and is largely generative. These two runtimes represent two
distinct philosophies of how to provide a diagramming runtime. Even more fun-
damentally, perhaps, they illustrate two approaches to Model-Driven Software
Development (MDSD) in general.

The full runtime was originally developed as an extensible framework for
creating diagrammatic editors on Eclipse Modeling Framework (EMF) and GEF.
This runtime was originally designed and developed to provide rich extensibility
options for clients. It includes a rich set of APIs, extension-points, a service layer,
and many enhancements to the underlying EMF and GEF runtimes. The full run-
time can be used with or without the tooling and generation features of GMF.
The default target of the tooling and generation component is the full runtime.

Details on the GMF runtime, its APIs, and extension-points are described in
Chapter 10, “Graphical Modeling Framework Runtime.” Although it’s not nec-
essary to understand the inner workings of the GMF runtime during the initial
phase of development using the tooling and generation component, you will
eventually need to provide functionality that goes beyond what is generated.

The GMF Lite Runtime

Whereas the full runtime provides a rich published API, numerous extension-
points, a service provider layer, and more, the lite runtime is just the opposite.
The motivation for the lite runtime was to provide as much of a generated imple-
mentation for diagramming as possible, with a minimal runtime code base. The
current implementation of the lite runtime consists of a single runtime plug-in,
with a single extension-point for supporting diagram shortcuts.

To provide compatibility with GMF diagrams created for the full runtime,
the lite runtime uses the same notation model. In theory, a diagram produced
with an editor generated using the lite runtime option will open in an editor gen-
erated to the full runtime. Some missing features in the lite runtime prevent full
interoperability, but it does work, to an extent.

To target the lite runtime when using the tooling, you must first deselect the
Utilize Enhanced Features of the GMF Runtime and Use IMapMode options
when creating the generator model. When generating diagram code from the gen-
erator model, use the Generate Pure-GEF Diagram Code option.

The lite runtime requires a single org.eclipse.gmf.runtime.lite plug-
in for deployment, along with its dependencies, which include the Eclipse plat-
form core, EMF, GEF, EMF Transaction, and tabbed properties view. Although

60 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

it is not as feature rich as the full runtime, it offers a core set of runtime capa-
bilities, including diagram properties, preferences, shortcuts, and validation. For
tooling, the lite runtime has its own set of Xpand templates for generation, found
in the org.eclipse.gmf.codegen.lite plug-in, available in the GMF
Experimental SDK feature.

4.2.2 GMF Tooling Component

As you will see, GMF was itself developed as a DSL Toolkit. From the beginning,
it was decided that the tooling for GMF would be as model driven and boot-
strapped as possible. In short, a diagram is defined using a collection of models
(DSLs) that drive code generators targeting either the full runtime or the lite run-
time. One of the remaining tasks to complete the story is to use Query/View/
Transformation (QVT) in the transformation from its mapping model to gener-
ation model, to considerably improve the extensibility of GMF’s tooling.

Figure 4-1 illustrates the main components and models used on the tooling
side of GMF. To begin, a GMF project is created and references a domain model.
A graphical definition model designs the figures (nodes, links, compartments,
and so on) that will be used to represent domain model elements on the diagram
surface. A corresponding tooling definition model supports palette tool defini-
tion and other tooling for use in diagramming. The mapping model binds ele-
ments from the graphical and tooling definitions to the domain model. A
transformation from the mapping model to the generator model is followed by
the generation of a diagram plug-in.

Note that it is possible to design and run GMF diagrams without a domain
model, which can be useful for those who want to experiment with notation
design and not be burdened with mapping it to a domain. Each of these models
is described in some detail in the following sections, and Chapter 11, “Graphical
Modeling Framework Tooling,” includes a complete reference for each model.
Following the basic overview of each model, we turn to learning more about
them in the context of developing our sample application diagrams.

Graphical Definition Model

The graphical definition model consists of two parts and defines the graphical
elements found on a diagramming surface. The first part is a Figure Gallery,
which defines figures (shapes, labels, lines, and so on) that the Canvas elements
later reference to define nodes, connections, compartments, and diagram labels.
An important point is that figure galleries can be reused. Many diagrams require
similar-looking elements, such as a rounded rectangle with center label, or con-
nections that are a solid line with open arrowhead decoration on the target end.

4.2 Graphical Modeling Framework 61

ptg6022785

Defining a number of figures and sharing galleries within your organization or
larger community means less time spent reinventing the wheel. For UML2, a set
of figures are defined and available for reuse from the UML2 Tools component
of the Model Development Tools (MDT) project.

62 CHAPTER 4 • Developing a DSL Graphical Notation

Create GMF Project

Develop
Mapping Model

Adjust Generation
Parameters

Package and Deploy

Graphical Definition

Domain Model

Tooling Definition

M M

M T
«X»

Figure 4-1 Graphical Modeling Framework workflow

The mapping model references figures defined in the gmfgraph model. When
the mapping model is transformed to the generator model, figure code is gener-
ated and included within the gmfgen model itself. When code is generated, edit
parts will contain figures as inner classes. This is the default behavior when
working with GMF, although it is not necessarily the recommended approach.

Another lesser-known feature of the graphical definition model is the capa-
bility to export figures to a standalone figure plug-in. This can also satisfy reuse
because these plug-ins can be shared by several diagrams and among a commu-
nity as a binary form of the figure gallery. To create a figure plug-in from a gmf-
graph model, either use the Generate Figures Plug-In context menu action, or
start by creating a new plug-in project and select the Figure Definitions
Converter template in the plug-in project wizard. Section 4.5.5, “Generating the
Figures Plug-In,” covers the use of a standalone figure plug-in.

A complication that arises when using a standalone figures plug-in is that
it creates a “mirror” of the gmfgraph model. This adds one more model to the

ptg6022785

picture that needs to be synchronized, so it’s recommended that you first define
all your figures and generate the plug-in that contains the associated
mirror.gmfgraph model. The mapping model uses the mirrored model instead
of the original graphical definition model. With this approach, the mapping
model passes class name references to the generator model, not actual classes.
The generated code simply references the figure classes in their own plug-in and
is not written out as inner classes within generated edit parts. This process
imposes the additional step of regenerating the figures and mirrored model upon
a change to the graphical definition. A future version of GMF will hopefully do
away with the serialized class method and make generating a standalone figures
plug-in work more seamlessly in the workflow.

To ease the design of figures, a WYSIWYG (what you see is what you get)
style of editor is included in the experimental Software Development Kit (SDK).
It is not complete, but it illustrates the bootstrapping of GMF and a method for
customization using a decorator model described in detail in Section 4.2.3,
“Dynamic Templates.” Use of the graphical model editor is also helpful for
understanding layouts and how they work when composing complex figures.

Tooling Definition Model

Diagrams typically include a palette and other periphery to create and work with
diagram content. The purpose of the tooling definition model is to specify these
elements. The tooling model currently includes elements for the palette, the tool-
bar, and various menus to be defined for a diagram. Unfortunately, in the current
release of GMF, the generator uses only the palette element. If additional capa-
bilities are required until this functionality is completed, advanced properties
view UI elements can be designed using an extension to the generator model and
custom templates, as discussed in Section 4.6.6, “Color Preferences.” Note that
it is also possible to exclude the palette altogether from a diagram definition,
thereby creating a read-only diagram. Of course, the pop-up bars and connection
handles features should be disabled as well in this case.

Mapping Model

Perhaps the most important of all models in GMF is the mapping model. Here,
elements from the diagram definition (nodes and links) are mapped to the
domain model and assigned tooling elements. The mapping model represents the
actual diagram definition and is used to create a generator model. Typically a
one-to-one mapping exists among a mapping model, its generator model, and a
particular diagram.

The mapping model uses Object Constraint Language (OCL) in many ways,
including initializing features for created elements, defining link and node

4.2 Graphical Modeling Framework 63

ptg6022785

constraints, and defining model audits and metrics. Audits identify problems in
the structure or style of a diagram and its underlying domain model instance, and
metrics provide measures of diagram and domain model elements.

Generator Model

As mentioned in the overview, the generator model adds information used to
generate code from the mapping model and is somewhat analogous to the EMF
genmodel. Both can be reproduced and reloaded from their source models,
although the EMF genmodel is a true decorator model. The GMF generator
model is more of a many-to-one model transformation than a decorator model.

As a mapping model is transformed into a generator model, it loses knowl-
edge of the graphical definition and gains knowledge of the runtime notation
model. This minimizes the number of dependencies linked from the generator
model and separates concern among the models. Currently, the transformation is
performed using Java code, but it is planned to be reimplemented using QVT to
give Toolsmiths easier customization, as mentioned earlier.

A trace facility exists in the experimental SDK to aid in generating visual IDs
when new nodes are added and the generator model is updated. A reconciler pre-
serves other user-modified elements in the generator model upon retransforma-
tion from the mapping model. Many of the commonly modified properties are
preserved, although not all of them are, so be aware of this when making changes
to the generator model.

As with EMF, you can use custom code-generation templates in GMF. The
main difference here is that EMF uses Java Emitter Template (JET) as its template
engine, and GMF uses Xpand. Chapter 14, “Xpand Template Language,” covers
Xpand, which also is used throughout Chapter 7, “Developing Model-to-Text
Transformations.” You can find information on how to use dynamic templates
in GMF in Section 4.2.3, “Dynamic Templates,” and in our sample diagram in
Sections 4.3–4.6.

When using the full runtime as a generation target, a number of extension-
points are contributed to in the generated diagram code. You will likely want to
explore the generated plug-in manifest and source code.

TIP

Sometimes you must open and modify GMF definition models in a text edi-
tor.When doing so, add new elements that are part of a list of items to the
end of the list, because GMF models use relative position references. For
example, if you’re copying a figure from one .gmfgraph model to another,
add it after the last descriptors element in the file.

64 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

4.2.3 Customization Options

You can extend the GMF generator in several ways, all of which are analogous
to how you can use and provide for extensibility in your DSL tooling. The next
sections discuss code modification, extension-points, dynamic templates, and
decorator models, and illustrate them in the sample applications.

Code Modification

As GMF utilizes JMerge to protect Toolsmith modifications of generated code
from being overwritten, the same practice of placing NOT after @generated tags
in code can be used as with EMF. Additionally, GMF provides merge capabilities
for plugin.xml and MANIFEST.MF files, which is a nice feature that EMF
should consider adopting.

Extension-Point

When targeting the full runtime for generation, provided extension-points can be
used to extend diagrams generated using the tooling component of GMF. This
approach has the benefit of being completely separate from the generated diagram
and code. For example, a parser provider for our color modeling diagram’s attrib-
ute elements is provided in this manner, as discussed in Section 4.6.7, “Custom
Parsers.” The service-provider aspect of the runtime allows for the addition or
overriding of behavior in diagrams, such as the addition of EditPolicies to an
EditPart, as illustrated in Section 10.9.3, “Custom EditPolicy.”

Dynamic Templates

Also as in EMF, you can leverage dynamic templates to provide customized out-
put from GMF code generators. You can extend or override both the templates
used to generate figure code and the templates used to generate diagram code
using so-called dynamic templates.

GMF uses Xpand extensively. To override a template for diagram generation,
you must put it in the same directory structure (namespace) that GMF uses. The
easiest way to see the templates and their structure is to import the
org.eclipse.gmf.codegen plug-in into your workspace using the Import As
→ Source Project option from the Plug-Ins view. Note also that GMF templates
contain «DEFINE» entries for extraMethods and additions with correspon-
ding «EXPAND»s to allow for extensibility. When using the «AROUND» construct
for aspect-oriented features of Xpand, GMF requires placing these templates
under an /aspects folder below the root in order to be found. GMF recently
added a new “composite template” approach that makes it possible to augment

4.2 Graphical Modeling Framework 65

ptg6022785

an existing template if found in the same namespace, effectively merging its
content with the original. Sections 4.6.5, “Gradient Figures,” and 4.6.6, “Color
Preferences,” describe the use of custom templates with GMF in detail.

Decorator Model

A more advanced—and possibly most conceptually “pure”—method for cus-
tomizing or extending the output of GMF code generators is to use a decorator
model. Basically, the GMF generator model is wrapped in a root XML Metadata
Interchange (XMI) element to allow additional decorator model instances to
coexist and to enable elements of the generator model to reference them. Xpand
templates used to generate diagram code are augmented with custom templates
that are invoked when these references are encountered.

The GMF graphical definition model has a bootstrapped diagram editor to
allow for WYSIWYG-style figure development. It was implemented using cus-
tom templates and also includes a decorator model for use in defining its form-
based properties view. This serves as an example of how to use decorator models
in the context of GMF, but also for any other occasion in the context of using a
DSL Toolkit where extensions are required to an existing model used for gener-
ation. Section 4.6.6, “Color Preferences,” covers the steps in using decorating
models in GMF.

Model Extension

With the addition of the child extenders feature in EMF 2.4, it’s possible to have
your contributed model elements of customizations to the GMF models available
in the default editor. GMF 2.1 has been regenerated with these generator model
settings, thereby allowing your extensions to contribute to GMF editors. The
UML2 Tools project has extensions defined for GMF models and makes use of
this new capability.

4.2.4 Dashboard

GMF comes with a dashboard view that streamlines the workflow of dealing
with its collection of models. The dashboard is available from Window → Show
View → Other → General → GMF Dashboard (Ctrl+3 → gmfd), or you can open
it when creating a new GMF project. Figure 4-2 shows the dashboard used in the
context of the mindmap diagram sample project.

66 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Figure 4-2 GMF Dashboard view

Each model can be selected, created, or edited within the dashboard, includ-
ing EMF *.ecore and *.genmodel models. Invoking GMF and EMF wizards is
accomplished using the hyperlink actions throughout, making the dashboard
helpful not only in understanding the workflow, but also in streamlining the invo-
cation of transformation and generation actions during diagram development.

4.2.5 Sample Application Diagrams

The best way to learn how to use GMF is by example, as with most new tech-
nology. The following sections explore most aspects of GMF-based diagram def-
inition in the context of our sample projects, by design. Comments throughout
should illustrate the techniques for developing diagrams, enumerate their relative
pros and cons, and provide the basis for becoming well versed in GMF tooling.

Because diagramming is central to mindmaps, I pay special attention to this
diagram, particularly layout and other usability elements. The requirements
dependency diagram is similar to the mindmap, but the underlying model struc-
tures are different, so we explore how this impacts our mapping model. The sce-
nario diagram enables us to explore the concept of diagram partitioning. Finally,
our business domain modeling diagram explores compartments, customization,
and more advanced labeling techniques.

4.3 Developing the Mindmap Diagram

Our diagram for the mindmap DSL defined earlier is rather straightforward: It is
a simple “box and line” style of diagram, but one that serves us well in introduc-
ing GMF. We start out with a simple default diagram definition to first understand

4.3 Developing the Mindmap Diagram 67

ptg6022785

the basics, and then we iterate through several enhancements, including layout
and advanced figures.

4.3.1 Mindmap Graphical Definition

Building on Section 3.3, “Developing the Mindmap Domain Model,” you should
have a mindmap DSL project and the generated EMF plug-ins from the mindmap
domain model in your workspace. We put our GMF models in the diagrams
folder, so begin by right-clicking that folder and selecting New → Other →
Models → Graphical Definition Model and naming it mindmap.gmfgraph. If
you’re not using the DSL Toolkit, you’ll find the standard GMF wizard in New
→ Other → Graphical Modeling Framework → Simple Graphical Definition
Model. Use Find in Workspace to quickly locate our mindmap.ecore model and
select Map as the Diagram Element. The next page of the wizard presents ele-
ments discovered within the domain model and a guess at what would be appro-
priate for each: node, link, label, or nothing. Make the dialog look like Figure
4-3 so that we’ll create a node for the Topic element with a label for its name
attribute and link for subtopics, and a link for the Relationship element with
labels for its name and type. Finally, click Finish.

68 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-3 Graphical Definition Wizard

ptg6022785

The model derived from the wizard has a canvas named mindmap, a node
for our Topic element, two connections, and three labels. Each corresponds to an
element in the figure gallery. For now, we don’t modify what the wizard has pro-
duced because we first want to get through the entire process. Later, we’ll come
back and refine the graphical definition.

4.3.2 Mindmap Tooling Definition

Similar to the process of examining the domain model to produce a starter
graphical definition, a wizard enables you to create a tooling definition model,
as seen in Figure 4-4. Begin again by right-clicking the diagrams folder and nav-
igating to New → Other → Models → Tooling Definition Model; name it
mindmap.gmftool, locate the mindmap.ecore model, and select Map as the
Diagram Element. The wizard should correctly determine the required tooling: a
node tool for the Topic element, and link tools for both the Relationship element
and the subtopics relationship within Topic. Deselect the link suggested for the
parent reference.

4.3 Developing the Mindmap Diagram 69

Figure 4-4 Tooling Definition Wizard

With the tooling model open in its editor, you can see that the wizard created
a single tool group and creation tools for each of these. We might want to create
separate groups for links and nodes, but for now we’ll leave the model as is.

ptg6022785

4.3.3 Mindmap Mapping Model

Once again, we use a GMF wizard to get us started. Right-click on the diagrams
folder and select New → Other → Domain-Specific Language → Diagram
Definition to begin creating a GMF mapping model. Note that you can begin a
diagram definition directly from this wizard because it enables you to create a
new palette model and select an existing graphical definition model. Provide the
name mindmap.gmfmap and select Map as the class to represent the canvas.
Accept the default mindmap.gmftool model and select our mindmap.
gmfgraph model on the next page. On the Mapping page, modify the wizard
defaults and move Relationship to the Links list, leaving just Topic in the
Node list. Remove all but subtopics and Relationship from the Links list,
as shown in Figure 4-5.

70 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-5 Mapping Model Wizard

Notice that for each selection of Node and Link, you can change the wizard’s
mapping. A limitation on Nodes exists: The dialog that displays with Change
shows only the mapping for the top-level node, not the node mapping or labels.
Try this now with the Relationship link, setting the Source Feature to the

ptg6022785

source reference and the Target Feature to the target feature. Also ensure
that the proper Tool and Diagram Link are selected. Upon Finish, browse the
mapping model in the editor. Check each property to verify that all are correct,
and use the Validate action from the context menu.

Regarding our two types of links, notice that they illustrate the two most
common methods of providing link mappings for a diagram. The subtopics ref-
erence maps to a link that shows the relationship between Topic elements. In
this case, we need to indicate only the Target Feature in our link mapping,
leaving the other properties blank. The relationship link shows how to map a
link to a domain model class—in this case, our Relationship class. To com-
plete the mapping definition, we need to specify the Element and its Contain-
ment Feature, Source Feature, and Target Feature for the link.

Let’s go through the mapping model in some detail, because it often causes
confusion. Beginning with the Canvas Mapping element, you can see that the
Map domain Element will be represented by the mindmap Diagram Canvas
from our mindmap.gmfgraph model. Similarly, the diagram canvas will have a
Palette, represented by our mindmap.gmftool model’s mindmapPalette
element. Note that the Menu and Toolbar Contributions properties are
blank because GMF has not yet implemented them, as seen in Table 4-1.

Table 4-1 Mindmap Canvas Mapping

Element Property Value

Mapping

Canvas Domain Model Mindmap

Element Map

Palette Palette mindmapPalette

Diagram Canvas Canvas mindmap

For our Topic node, we see in the properties of the Top Node Reference
that new instances of Topic elements are to be maintained in the elements con-
tainment reference of our Map class, as shown in Table 4-2. The Children
Feature property is left blank because we retrieve and store our Topic
elements directly from the elements containment feature.

4.3 Developing the Mindmap Diagram 71

ptg6022785

Table 4-2 Mindmap Topic Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Map.elements : MapElement

Node Mapping Element Topic -> MapElement

Diagram Node Node Topic (TopicFigure)

Tool Creation Tool Topic

Feature Label Mapping Diagram Label Diagram Label TopicName

Features MapElement.name : EString

Below the Top Node Reference mapping is the Node Mapping for the
Topic class itself. The Topic class, which is a subclass of MapElement, is used
for the node’s Element. The Topic node from our mindmap.gmfgraph is used
for the Diagram Node, which we see references the TopicFigure from the
Figure Gallery. Finally, the Node requires a Tool, so we select the Topic
Creation Tool from our palette defined in our mindmap.gmftool model.
Note that the Appearance Style and Context Menu properties are left blank
because GMF has not yet implemented them.

The Topic displays its name using a label, which is defined in the child
Feature Label Mapping element. The Diagram Label property is selected
to the TopicName label in our graphical definition and displays the value of the
Topic’s name:EString attribute. Both the Edit and View Method properties
are set to the default MESSAGE_FORMAT value, meaning that the Java
MessageFormat class provides the underlying implementation for parsing, edit-
ing, and displaying our label. In the case of our Topic label, a single attribute is
displayed, with no other characters required.

With the node mapping complete, let’s look at the subtopics link mapping.
In our domain model, Topics are related to other “sub” Topics using the
subtopics reference. Simple references such as this are straightforward to map in
GMF because we only need to set our Target Feature property to this refer-
ence in our domain model, as seen in Table 4-3. Our next link mapping discusses
the remaining Domain meta information properties. The Diagram Link
and Tool properties are set as you would expect, to the TopicSubtopics
Connection from our graphical definition, and to the TopicSubtopics
Creation Tool in our tooling definition, respectively.

72 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Table 4-3 Mindmap Subtopic Link Mapping

Element Property Value

Mapping

Link Mapping Target Feature Topic.subtopics : Topic

Diagram Link Connection TopicSubtopics

Tool Creation Tool TopicSubtopics

The Relationship Link Mapping is more involved than our
TopicSubtopics Link Mapping because we are mapping a domain class to the
link, not just a reference within a class, as seen in Table 4-4. In this case, the
Relationship class in our domain model is the domain Element, with the
element’s Containment Feature of our Map being where we will store new
Relationship instances created with each link. Using a class to represent a
relationship in our domain model essentially gives us what an EAssociation in
Ecore itself would provide. The Source and Target Feature properties map
in a straightforward manner to our source : Topic and target : Topic
references, respectively. As with the TopicSubtopic link mapping, we map our
Diagram Link and Tool properties to their corresponding graphical and tool-
ing model elements. Again, Appearance Style and Context Menu go unused;
Section 4.5, “Developing the Scenario Diagram,” discusses the Related
Diagrams property.

Table 4-4 Mindmap Relationship Link Mapping

Element Property Value

Mapping

Link Mapping Containment Feature Map.elements : MapElement

Element Relationship -> MapElement

Source Feature Relationship.source : Topic

Target Feature Relationship.target : Topic

Diagram Link Connection Relationship

Tool Creation Tool Relationship

Feature Label Mapping Diagram Label Diagram Label RelationshipName

Features MapElement.name : EString

4.3 Developing the Mindmap Diagram 73

(continues)

ptg6022785

Table 4-4 Mindmap Relationship Link Mapping (continued)

Element Property Value

Feature Label Mapping Diagram Label Diagram Label RelationshipType

Features Relationship.type : Type

Read Only true

View Pattern «{0}»

The graphical wizard created child label figures for our relationship link, but
the mapping wizard does not provide label link mappings. We need to add these
manually before proceeding. Create a new child Feature Label Mapping to
the Relationship Link Mapping and fill in accordingly, for the Relationship
name attribute.

Add another Feature Label Mapping to the link, but this time set it to
Read Only and alter the View Pattern to add <<guillemets>> to the type
name. With the basics of our initial diagram mapping understood, we’re ready
to move on to generation.

4.3.4 Mindmap Generator Model

The last model to create in developing our mindmap diagram is the GMF gener-
ator model. As mentioned, this model is analogous to the EMF genmodel and
contains additional parameters used for generating our diagram plug-in.
Technically, the GMF generator model is a bit more complex and is really the
result of a many-to-one model transformation. To produce our mindmap.
gmfgen model from our mindmap.gmfmap model, right-click the mapping
model and select Create Generator Model to open the wizard. The default name
and location are fine, as is the selection of the mapping model. The
mindmap.genmodel should also be selected by default but could indicate a
warning about the relative date of the genmodel to its ecore model. If required,
reload the genmodel at this time; GMF utilizes references found there for its own
code generation. On the last page of the wizard, leave the defaults as is and click
Finish to complete.

Open the new mindmap.gmfgen model in the editor so we can adjust a cou-
ple of its properties prior to generation. In the Gen Editor Generator prop-
erties, set the Diagram File Extension to mmd in place of the default
mindmap_diagram, as seen in Figure 4-6. Also, we select true for the Same
File For Diagram and Model property. The default behavior persists them
into separate files, which we consider for other diagrams.

74 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Figure 4-6 Mindmap GMF generator model

At this time, we leave the remaining defaults for the generator model and
generate code by right-clicking the mindmap.gmfgen model and selecting
Generate Diagram Code. A new org.eclipse.mindmap.diagram plug-in
appears, and because we already have a launch configuration from our domain
model, all we need to do is run.

A wizard is generated for our mindmap diagram, which we use to create and
populate a simple map. Figure 4-7 is an example of what you can see and do at
this point.

4.3 Developing the Mindmap Diagram 75

Figure 4-7 Mindmap initial diagram

ptg6022785

Now that we’ve proven that we can quickly create a basic diagram to allow
for graphical editing of our DSL, let’s go back and explore in detail more of the
options available using GMF.

BEST PRACTICE

At this point, it’s a good idea to consider how to best work with a collec-
tion of GMF models. EMF has no real refactoring support, per se, so it’s
important to understand that changes to a model with references to
another won’t be propagated as you might expect. However, EMF does
allow you to work on several models within a single resource set, in which
case it does a much nicer job of keeping models in synch. To accomplish
this in GMF, it’s best to work within the mapping model editor. This way,
changes to tooling, gmfgraph, the domain, and the mapping model should
not result in broken models because they are all in the same editor and
resource set.

4.3.5 Improving the Mindmap Diagram

So far, we’ve used the default settings that GMF provides and have established
that everything is working. Now let’s go back and refine our models to get closer
to what we want from our mindmap diagram. The label icons are superfluous,
as are the full rectangles for our subtopics, so let’s begin by improving our nota-
tion elements and regenerating the diagram. Before completing this section, you
might want to review the GMF tooling models described in Chapter 11.

Updating the Graphical Definition

Using our mapping model editor instance and expanding our mindmap.
gmfgraph node, create a new Figure Descriptor named TopicFigure in
the Figure Gallery. To this descriptor, add a child Rounded Rectangle
named TopicFigure. Adjust both the Corner Height and Width properties
to 15. Add a Stack Layout to the Rounded Rectangle to center our label in
the rectangle. Add a child label named TopicNameFigure, and to keep the label
from getting too close to our left and right edges, add an Insets child to the rec-
tangle and set the Left and Right properties to 5. We want to have the default
line color set to blue, but we won’t use the Foreground Color elements
because we want the default color to be reflected in the diagram preferences.

76 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

We set default values in our diagram preferences in Section 4.3.5, “Diagram
Preferences.”

We can delete the original rectangle figure descriptor assigned to the Node
Topic and select our new rounded rectangle descriptor. As with the original
TopicFigure, we need to add a Child Access to the Figure Descriptor
and set its Figure to our TopicNameFigure. In the TopicName Diagram
Label, set the label’s Accessor property to the getFigureTopicNameFigure
Child Access created earlier for the Topic’s name label. The label currently
has its Element Icon property set to true. This is the default, but because the
icon adds no information at this point, it’s just noise; set this property to false,
and do the same for the RelationshipType and RelationshipName labels.
To provide a reasonable default size for our Topic nodes, we add a Default
Size Facet element to its Node element, with a child Dimension element. We
give it a default size of Dx = 80, Dy = 40. That’s it for our Topic node.

We also want to change the look of our relationship links. We want to use a
dashed line and open arrow decoration on the target for our relationships, and
just a solid line with no decoration for our subtopic. Later, we’ll add a circle
decoration to the target of our subtopic link, but that requires writing some
custom code. For now, change the name of our Polyline Decoration to
RelationshipTargetDecoration and select this decoration as the Target
Decoration for our RelationshipFigure. Change the Line Kind of our
RelationshipFigure to LINE_DASH and remove the target decoration from
our Subtopics connection figure.

Table 4-5 shows the current state of the graphical definition; only properties
that changed from their default values are shown.

Table 4-5 Mindmap Relationship Link Mappings

Element Property Value

Canvas Name mindmap

Figure Gallery Name Default

Polyline Decoration Name RelationshipTargetDecoration

Figure Descriptor Name TopicSubtopicsFigure

Polyline Connection Name TopicSubtopicsFigure

Target Decoration unset

Figure Descriptor Name RelationshipFigure

4.3 Developing the Mindmap Diagram 77

(continues)

ptg6022785

Table 4-5 Mindmap Relationship Link Mappings (continued)

Element Property Value

Polyline Connection Name RelationshipFigure

Line Kind LINE_DASH

Target Decoration Polyline Decoration
RelationshipTargetDecoration

Label Name RelationshipNameFigure

Label Name RelationshipTypeFigure

Child Access Figure Label RelationshipNameFigure

Child Access Figure Label RelationshipTypeFigure

Figure Descriptor Name TopicFigure

Rounded Rectangle Name TopicFigure

Corner Height 15

Corner Width 15

Stack Layout

Insets Left, Right 5, 5

Child Access Figure Label TopicNameFigure

Node Name Topic

Figure Figure Descriptor TopicFigure

Default Size Facet

Dimension Dx, Dy 80, 40

Connection Name TopicSubtopics

Figure Figure Descriptor TopicSubtopicsFigure

Connection Name Relationship

Figure Figure Descriptor RelationshipFigure

Diagram Label Name TopicName

Figure Figure Descriptor TopicFigure

Element Icon false

Accessor Child Access getFigureTopicNameFigure

78 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Diagram Label Name RelationshipName

Figure Figure Descriptor RelationshipFigure

Element Icon false

Accessor Child Access
getFigureRelationshipNameFigure

Diagram Label Name RelationshipType

Figure Figure Descriptor RelationshipFigure

Element Icon false

Accessor Child Access
getFigureRelationshipTypeFigure

Updating the Tooling Definition

Expand the mindmap.gmftool node in the mapping model. We want to have
two groups of tools in our palette. The first will have the Topic node creation
tool; the second will have our links, including a stack of tools for our different
types of relationship links (dependency, include, extend). This is a simple matter
to accomplish in our model using copy and paste, with some renaming. The only
special property you need to set is the Stack property to true for our
Relationships Tool Group. Note that if you want to have each group in a
drawer, you must set the Stack property to true. Figure 4-8 shows what your
tool model should look like at this point. Note that if a particular tool should be
the default one available, you must use the Active property to select it. In our
case, the dependency tool is first on the list and is a reasonable default.

4.3 Developing the Mindmap Diagram 79

Figure 4-8 Mindmap GMF tooling model

ptg6022785

Updating the Mapping Definition

The main change we need to make to our mapping definition is to our
Relationship link. Our DSL includes a Type enumeration with three literals:
DEPENDENCY, INCLUDE, and EXTEND. We now have three separate tools for
these relationship types, so we need to create a mapping for each. Begin by mod-
ifying the existing relationship link mapping to be our dependency link, and then
copy/paste the element and adjust for the include and extend mappings. Table
4-6 shows what the dependency mapping looks like after our changes.

Table 4-6 Updated Mindmap Relationship Link Mapping

Element Property Value

Link Mapping Containment Feature Map.elements : MapElement

Element Relationship → MapElement

Source Feature Relationship.source : Topic

Target Feature Relationship.target : Topic

Diagram Link Connection Relationship

Tool Creation Tool Dependency

Constraint Body self.type = Type::DEPENDENCY

Feature Seq Initializer Element Class Relationship → MapElement

Feature Value Spec Feature Relationship.type : Type

Value Expression Body Type::DEPENDENCY

Language ocl

Feature Label Mapping Diagram Label Diagram Label RelationshipName

Features MapElement.name : EString

Feature Label Mapping Diagram Label Diagram Label RelationshipType

Features Relationship.type : Type

View Pattern «{0}»

As you can see, the link mapping now has some additional child elements.
First, we add a Constraint to indicate using OCL that self.type =
Type::DEPENDENCY. This enables us to identify each of our Relationship
mappings so that the generator can create code to distinguish nodes based on
their type attribute. Also, we add a Feature Seq Initializer child element

80 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

along with Feature Value Spec and Value Expression that sets the value
of the type attributes upon link creation.

At this point, we only need to copy/paste the dependency link mapping and
alter the properties accordingly for INCLUDE and EXTEND links. When complete,
validation and update of the generator model from the mapping model, followed
by code regeneration, will enable us to run and test our updated diagram. This
will become a familiar sequence, which begs for the creation of a single action to
streamline the process. The Dashboard view comes in handy for this purpose.

Topic Figure Layout

Before we run the diagram, we need to make some tweaks to the generated code
if we want our Topic name labels to be centered in their rounded rectangle and
wrap. The code we use is from the GeoShapeFigure class in the runtime. In the
TopicEditPart class, adjust the constructor for the inner TopicFigure class
as follows:

/**
* Modified to adjust stack layout
*
* @generated NOT
*/
public TopicFigure() {
this.setLayoutManager(new StackLayout() {
public void layout(IFigure figure) {
Rectangle r = figure.getClientArea();
List children = figure.getChildren();
IFigure child;
Dimension d;
for (int i = 0; i < children.size(); i++) {
child = (IFigure) children.get(i);
d = child.getPreferredSize(r.width, r.height);
d.width = Math.min(d.width, r.width);
d.height = Math.min(d.height, r.height);
Rectangle childRect = new Rectangle(r.x + (r.width - d.width) /
2, r.y + (r.height - d.height) / 2, d.width, d.height);

child.setBounds(childRect);
}

}
});
this.setCornerDimensions(new Dimension(getMapMode().DPtoLP(15),
getMapMode().DPtoLP(15)));
this.setBorder(new MarginBorder(getMapMode().DPtoLP(0),
getMapMode().DPtoLP(5), getMapMode().DPtoLP(0),
getMapMode().DPtoLP(5)));

createContents();
}

4.3 Developing the Mindmap Diagram 81

ptg6022785

To allow our WrapLabel to wrap, we need to slightly modify the
createContents() method as follows:

/**
* Modified to enable text wrapping
*
* @generated NOT
*/
private void createContents() {
fFigureTopicNameFigure = new WrappingLabel();
fFigureTopicNameFigure.setText("");
fFigureTopicNameFigure.setTextWrap(true);
fFigureTopicNameFigure.setAlignment(PositionConstants.LEFT);
this.add(fFigureTopicNameFigure);

}

Figure 4-9 shows our diagram. Note the relationship stack of tools in the
palette and note that the mindmap.ecore literal values for our relationship
Type enum have been changed to lowercase. Alternatively, we could have
changed the case within our label code, or even shortened the literal values to be
just d, e, or i.

82 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-9 Mindmap relationship links

Adding Custom Layout

A major requirement for a mindmap diagram is good layout, preferably auto-
matic. A fixed layout is fine for our needs, although more advanced layout strate-
gies that are pseudo-fixed are possible. Mindmaps should be arranged in a tree,
typically with both left-to-right and right-to-left flows to the sides of the central
Topic. The default layout for GMF-generated diagrams is top-to-bottom. The

ptg6022785

layout we need is similar, if you consider that mainly the orientation of the lay-
out needs to be changed from vertical to horizontal. This is exactly what the
GMF runtime’s LeftRightProvider class provides, so we use it as a starting
point.

We could add the following modifications to our generated diagram plug-in,
but as mentioned earlier, this would make regeneration and maintenance more
difficult. Instead, here we create a new org.eclipse.mindmap.diagram.
custom plug-in project using PDE and put our modifications in this separate
plug-in.

Let’s back up a minute and discuss the big picture of diagram layout and our
needs for the mindmap. You’ve seen that the main toolbar for all GMF diagrams
has a layout button, with a corresponding context menu on the diagram canvas.
The runtime provides these by default for all diagrams, so it’s a matter of adding
our own provider for the layout service to invoke. We begin with the
layoutProviders extension-point and contribute the following to our
plugin.xml manifest. Section 10.4.10, “Layout Service,” discusses the layout
service.

<extension point="org.eclipse.gmf.runtime.diagram.ui.layoutProviders">
<layoutProvider class="org.eclipse.mindmap.diagram.layout.
MindmapDefaultLayoutProvider">
<Priority name="Low"/>

</layoutProvider>
</extension>

We’ve set the priority of our provider to Low, which is one level above
Lowest. Now we need to implement the MindmapDefaultLayoutProvider,
as shown here:

public class MindmapDefaultLayoutProvider extends LeftRightProvider {

public static String DEFAULT_LAYOUT = "Default";

public boolean provides(IOperation operation) {
// enable this provider only on mindmap diagrams
if (operation instanceof ILayoutNodeOperation) {
Iterator<?> nodes = ((ILayoutNodeOperation)

operation).getLayoutNodes().listIterator();
if (nodes.hasNext()) {

View node = ((ILayoutNode) nodes.next()).getNode();
Diagram container = node.getDiagram();
if (container == null ||

!(container.getType().equalsIgnoreCase("mindmap")))
return false;

}

4.3 Developing the Mindmap Diagram 83

ptg6022785

} else {
return false;

}
IAdaptable layoutHint = ((ILayoutNodeOperation)

operation).getLayoutHint();
String layoutType = (String) layoutHint.getAdapter(String.class);

return LayoutType.DEFAULT.equals(layoutType);
}

}

As you can see, our default provider simply extends the runtime-provided
LeftRightProvider and only needs to override the provides() method to
enable our provider for mindmap diagrams. We’ll further modify this provider
later to get the layout we want, but for now, this is all we need to get started.
Besides the need to provide both left-to-right and right-to-left layout of topics
about a centered root, we want to ignore dependency links when performing a
layout. More specifically, we want to lay out topics in a tree structure while
arranging relationship links to avoid topics; relationship links will be optionally
hidden and should not be considered during main layout.

When deployed, this provider replaces the default layout provider that the
menu item and toolbar invoke. Section 4.3.5, “Subtopic Figure,” explores what
is required to programmatically invoke layout on a diagram as we create
subtopics using a keyboard shortcut.

Subtopic Figure

For our notation, we want root Topic elements to be displayed with a rounded
rectangle, and subtopic elements to be displayed with a single underline. Our
domain model has no notion of distinct Topic and subtopic elements, so this
means we end up with two figures for the Topic element that will change
depending on the structure of the elements. Furthermore, we might decide that
n-level subtopic elements should have yet another notation, so we focus on a
solution that is general. Currently, the models of GMF cannot handle this type
of definition, whereby a different figure represents a domain element based on its
state. This is a planned enhancement for GMF, but in the meantime, we begin by
adding a new subtopic figure.

The subtopic figure is a rectangle with only the bottom border drawn,
thereby appearing as an underline for our subtopic name. The makeup of this fig-
ure is somewhat complicated. Table 4-7 details our subtopic figure and node
properties. Note the use of CustomBorder, which uses a provided runtime
figure.

84 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Table 4-7 Mindmap Subtopic Figure

Element Property Value

Figure Gallery Name Default

Figure Descriptor Name SubtopicFigure

Rectangle Name SutopicFigure

Fill false

Outline false

Border Layout

Insets Left 10

Rectangle Name SubtopicNameRectangleFigure

Fill false

Outline false

Border Layout Data Alignment CENTER

Vertical true

Stack Layout

Custom Border Qualified Class Name org.eclipse.gmf.runtime.draw2d.ui.
figures.OneLineBorder

Custom Attribute Name position

Value org.eclipse.draw2d.
PositionConstants.BOTTOM

Label Name SubtopicNameFigure

Insets Bottom, Left 5, 5

Child Access Figure Label SubtopicNameFigure

Node Name Subtopic

Figure Figure Descriptor SubtopicFigure

Default Size Facet

Dimension Dx, Dy 50, 10

Diagram Label Name SubtopicName

Figure Figure Descriptor SubtopicFigure

Accessor Child Access getFigureSubtopicFigure

Element Icon false

4.3 Developing the Mindmap Diagram 85

ptg6022785

Our tooling model does not require changes because we don’t want to allow
for the explicit creation of subtopic nodes; we want to have them visualized
when subtopic links are made. Our mapping model needs a new top-level node
mapping, as shown here along with our original Topic mapping. With two node
mappings for a single domain model element, we need to define a constraint for
each so that the generated code can distinguish between them, as seen in Table
4-8. This is especially important when diagrams are created from existing mod-
els, to remove ambiguity and to allow for the proper notation to be assigned. In
the case of our mindmap, Topic elements with no parent are considered
“root” Topics and use the rounded rectangle figure. Those that have a parent,
which is the eOpposite of the subtopics reference, will be rendered with our
new underline figure.

Table 4-8 Updated Mindmap Node Mappings

Element Property Value

Mapping

Top Node Reference Containment Feature Map.elements : MapElement

Node Mapping Element Topic → MapElement

Diagram Node Node Topic (TopicFigure)

Tool Creation Tool Topic

Constraint Body self.parent = null

Language ocl

Feature Label Mapping Diagram Label Diagram Label TopicName

Features MapElement.name : EString

Top Node Reference Containment Feature Map.elements : MapElement

Node Mapping Element Topic → MapElement

Diagram Node Node SubTopic (SubTopicFigure)

Constraint Body self.parent <> null

Language ocl

Feature Label Mapping Diagram Label Diagram Label SubtopicName

Features MapElement.name : EString

Regenerating our diagram and testing reveals some problems. Although it’s
possible to create subtopic links, the target figure is not immediately updated. If

86 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

we use the provided refresh action by pressing F5, we see that the figure updates
and its location is preserved. If we create a relationship link, the diagram is
refreshed automatically because of the canonical update of the Map itself. We
want the image to automatically update when a subtopic link is created or
removed, and for layout to be invoked when using the palette or an action. As
with most things in GMF, we can solve our problem in many ways.

If we look at our MapCanonicalEditPolicy class, we see the
refreshSemantic() method, which is invoked by our refresh action. The gen-
erated code overrides this method and the isOrphaned() method from
CanonicalConnectionEditPolicy to incorporate knowledge of our map-
ping constraints into the logic. If you look into the code, you’ll see that view ele-
ments that have no corresponding semantic element are deleted, while semantic
elements with no view have one created. As soon as a subtopic connection is
made between two Topics, our constraints prompt the deletion of our target
Topic view because its visual ID no longer matches its semantic constraint. We
could override the methods in this EditPolicy and its superclass to transfer the
location of the original view to the updated view. This is feasible but would
require the copy and paste of a lot of code because many of these methods are
marked as final in the runtime.

Another option is to implement our own connection tool used in the palette
that could invoke a delete-and-create-view-command to update our Topic fig-
ure after link creation. This would not solve our problem of switching the view
back when the subtopic link is removed, although it would be a clean way of
creating an updated figure in the same location. This approach is covered in
the UML2 Tools project, which provides actions to toggle alternative notations
of some UML elements, such as Interface. Specifically, take a look at the
ChangeNotationAction class, in the org.eclipse.uml2.diagram.common
plug-in. There, the original view element’s location is passed to the create-view-
request, to avoid the positioning problem.

We know that the view needs to change when an element is added or
removed from a Topic’s subtopics reference list, so we can watch for events on
this feature and invoke a refresh on our MapCanonicalEditPolicy.
Furthermore, we can add code to the EditPolicy to invoke a diagram layout
when subtopics are added, or when Topics are added or removed from the dia-
gram.

In each of our Topic EditParts, we override the handleEvent
Notification() method and invoke the refresh() method on our
MapCanonicalEditPolicy class, to let the generated code update the view on
our Topic elements.

4.3 Developing the Mindmap Diagram 87

ptg6022785

@Override
protected void handleNotificationEvent(Notification notification) {

int type = notification.getEventType();
Object feature = notification.getFeature();
if (MindmapPackage.eINSTANCE.getTopic_Subtopics().equals(feature) &&
(type == Notification.ADD || type == Notification.REMOVE)) {
CanonicalEditPolicy canonicalEditPolicy = (CanonicalEditPolicy)
getParent().getEditPolicy(EditPolicyRoles.CANONICAL_ROLE);

canonicalEditPolicy.refresh();
if (getParent().getEditPolicy(

EditPolicyRoles.CANONICAL_ROLE) instanceof MapCanonicalEditPolicy) {

((MapCanonicalEditPolicy)canonicalEditPolicy).layout();
}

}
super.handleNotificationEvent(notification);

}

In our MapCanonicalEditPolicy class, we override handleNotifi-
cationEvent() and look for additions or removals from our Map’s elements
feature and invoke a new layout() method. Finally, we modify the
refreshSemantic() method to invoke layout if it’s detected that a new view
was created in the process.

@Override
protected void handleNotificationEvent(Notification event) {

int type = event.getEventType();
Object feature = event.getFeature();
if (MindmapPackage.eINSTANCE.getMap_Elements().equals(feature) &&
(type == Notification.ADD || type == Notification.REMOVE)) {
layout();

}
super.handleNotificationEvent(event);

}

/**
* @generated NOT
*/
protected void refreshSemantic() {
List createdViews = new LinkedList();
createdViews.addAll(refreshSemanticChildren());
List createdConnectionViews = new LinkedList();

createdConnectionViews.addAll(refreshSemanticConnections());
createdConnectionViews.addAll(refreshConnections());

if (createdViews.size() > 1) {
// perform a layout of the container
DeferredLayoutCommand layoutCmd = new
DeferredLayoutCommand(host()
.getEditingDomain(), createdViews, host());

executeCommand(new ICommandProxy(layoutCmd));
}

88 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

createdViews.addAll(createdConnectionViews);
makeViewsImmutable(createdViews);
if (createdViews.size() > 0) {

layout();
}

}

public void layout() {
TransactionalEditingDomain ted =
TransactionUtil.getEditingDomain(getDiagram());

final View diagram = getDiagram();
final AbstractEMFOperation operation = new AbstractEMFOperation(ted,
"Mindmap layout", null) {
protected IStatus doExecute(IProgressMonitor monitor,
IAdaptable info) throws ExecutionException {
LayoutService.getInstance().layout(diagram, LayoutType.DEFAULT);
return Status.OK_STATUS;

}
};
PlatformUI.getWorkbench().getDisplay().asyncExec(new Runnable() {
public void run() {
try {
operation.execute(new NullProgressMonitor(), null);

} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

});
}

This gets us a lot closer to our desired behavior of having a fixed layout.
Certain actions, such as resizing topics manually, represent another opportunity
to update layout. For now, we move on to a new topic.

Custom Connection Figure

Although you can define many figures using the GMF graphical definition
model, some figures require custom code. Additionally, you might want to reuse
existing figures in GMF diagram definitions, as you saw with CustomBorder.
To illustrate this capability, here we use a custom figure for the target decoration
of our subtopic link. This is the source code for a simple circle figure that we’ll
add to a new org.eclipse.mindmap.diagram.figures package in our dia-
gram plug-in:

public class CircleDecoration extends Ellipse implements
RotatableDecoration {
private int myRadius = 5;
private Point myCenter = new Point();
public void setRadius(int radius) {

4.3 Developing the Mindmap Diagram 89

ptg6022785

erase();
myRadius = Math.abs(radius);
bounds = null;
repaint();

}

public void setLineWidth(int width) {
super.setLineWidth(width);

}

public Rectangle getBounds() {
if (bounds == null) {

int diameter = myRadius * 2;
bounds = new Rectangle(myCenter.x - myRadius,
myCenter.y - myRadius, diameter, diameter);

bounds.expand(lineWidth / 2, lineWidth / 2);
}
return bounds;

}

public void setLocation(Point p) {
if (myCenter.equals(p)) {

return;
}
myCenter.setLocation(p);
bounds = null;

}

public void setReferencePoint(Point p) {
// ignore, does not make sense to rotate circle

}
}

To use this figure, we’ll create a new Custom Decoration in our figure
gallery named CircleDecoration with a Qualified Class Name of org.
eclipse.mindmap.diagram.figures.CircleDecoration. In the Source
Decoration property of our TopicSubtopicsFigure, we’ll select this deco-
rator and then regenerate our mindmap.gmfgen model from our mindmap.
gmfmap file.

Adding a Subtopic Action

Adding new subtopics to our mindmap is not very convenient right now. The
mouse and palette are required to first create a Topic and then a connection,
seriously impeding our “brainstorming” ability. We want to use the keyboard as
much as possible to add and insert new Topic elements. Adding keyboard short-
cuts and menu items to elements involves straightforward Eclipse platform code
that we can add to our customization plug-in. Note that here we don’t use the
contributionItemProviders extension-point that the runtime provides

90 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

because of some outstanding issues with keyboard binding at the time of this
writing.

First, we add the object contribution to our org.eclipse.mindmap.
diagram.custom plug-in manifest, as shown. Only our Topic EditPart
classes need the contribution because it makes sense to add a new subtopic only
from the context of an existing Topic. The only nodes on our diagram are either
Topics or Subtopics, so we use their superclass ShapeNodeEditPart for the
objectClass. We’re defining an Insert menu item, with a child Subtopic action.
We could have created a single menu item (Insert → Subtopic), but this gives us
a placeholder for other possible additions, such as Insert → Parent Topic.

<extension point="org.eclipse.ui.popupMenus">
<objectContribution adaptable="false"
id="org.eclipse.mindmap.diagram.ui.objectContribution.TopicEditPart"
objectClass="org.eclipse.gmf.runtime.diagram.ui.editparts.

ShapeNodeEditPart">
<menu
id="MindmapInsert"
label="&Insert"
path="additions">
<separator name="group1"/>

</menu>

<action
class="org.eclipse.mindmap.diagram.part.MindmapCreateSubtopicAction"
definitionId="org.eclipse.mindmap.insertSubtopic"
enablesFor="1"
id="org.eclipse.mindmap.popup.MindmapCreateSubtopicActionID"
label="&Subtopic"
menubarPath="MindmapInsert/group1">

</action>
</objectContribution>

</extension>

The declared action class is MindmapCreateSubtopicAction, which we
have defined next. It enables only a single Topic selection because it doesn’t
make sense to invoke the action for multiple selected Topic elements. Before
diving into the action code, we complete our definition by contributing to the
commands and bindings extension-points.

<extension point="org.eclipse.ui.bindings">
<key
commandId="org.eclipse.mindmap.insertSubtopic"
contextId="org.eclipse.mindmap.diagram.ui.diagramContext"
schemeId="org.eclipse.ui.defaultAcceleratorConfiguration"
sequence="M1+I"/>

</extension>

4.3 Developing the Mindmap Diagram 91

ptg6022785

<extension point="org.eclipse.ui.commands">
<command
id="org.eclipse.mindmap.insertSubtopic"
name="Insert Subtopic"
description="Inserts a new subtopic"
categoryId="org.eclipse.ui.category.edit"/>

</extension>

We’re using the Ctrl+I (Cmd+I on the Mac) key combination to insert new
subtopics, and we’re using the provided edit category for the command. Also
note that we are using the contextId that is declared in our generated diagram
plug-in for use with the F5 diagram refresh action. This is the implementation of
our create subtopic action:

public class MindmapCreateSubtopicAction implements
IObjectActionDelegate {
public final static String ID =
"org.eclipse.mindmap.popup.MindmapCreateSubtopicActionID";

private ShapeNodeEditPart selectedElement;
public void run(IAction action) {

if (selectedElement == null) {
return;

}
CompoundCommand cc = new CompoundCommand("Create Subtopic and
Link");

// create the new topic for the other end
CreateViewRequest topicRequest =
CreateViewRequestFactory.getCreateShapeRequest(
MindmapElementTypes.Topic_2001,
selectedElement.getDiagramPreferencesHint());

MapEditPart mapEditPart = (MapEditPart)
selectedElement.getParent();

Command createTopicCmd = mapEditPart.getCommand(topicRequest);
cc.add(createTopicCmd);

// create the subtopics link command
IAdaptable topicViewAdapter = (IAdaptable) ((List)
topicRequest.getNewObject()).get(0);

CreateConnectionViewAndElementRequest ccver = new
CreateConnectionViewAndElementRequest(
MindmapElementTypes.TopicSubtopics_4001,((IHintedType)
MindmapElementTypes.TopicSubtopics_4001).getSemanticHint(),
selectedElement.getDiagramPreferencesHint());

ICommand createSubTopicsCmd = new
DeferredCreateConnectionViewAndElementCommand(ccver, new

EObjectAdapter((EObject) selectedElement.getModel()),
topicViewAdapter, selectedElement.getViewer());

cc.add(new ICommandProxy(createSubTopicsCmd));
selectedElement.getDiagramEditDomain().getDiagramCommandStack()

.execute(cc);

92 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

// here, update view to subtopic
final EditPartViewer viewer = selectedElement.getViewer();
final EditPart ep = (EditPart) mapEditPart.getChildren()

.get(mapEditPart.getChildren().size()-1);

if (ep != null) {
viewer.setSelection(new StructuredSelection(ep));
viewer.reveal(ep);
Display.getCurrent().syncExec(new Runnable() {

public void run() {
Request der = new Request(RequestConstants.REQ_DIRECT_EDIT);
ep.performRequest(der);

}
});

}
}

public void selectionChanged(IAction action, ISelection selection) {
selectedElement = null;
if (selection instanceof IStructuredSelection) {
IStructuredSelection structuredSelection = (IStructuredSelection)

selection;
if (structuredSelection.getFirstElement() instanceof

TopicEditPart || structuredSelection.getFirstElement()
instanceof Topic2EditPart) {
selectedElement = (ShapeNodeEditPart)
structuredSelection.getFirstElement();

}
}

}
}

Starting at the bottom with the selectionChanged() method, we set our
selectedElement field to be that of the currently selected Topic. The run()
method of our action class does all the work to create the compound command
for creating our new subtopic and associated link, invoking the diagram layout,
and finally activating the in-place editor. The code is fairly straightforward, aside
from the details of what goes on within the DeferredCreateConnection
ViewAndElementCommand when executed. For this, it’s recommended that you
set a breakpoint and follow its execution, if interested, as is the case with much
of the GMF runtime code.

One troubling point of our implementation are the references to
MindmapElementTypes TopicSubtopics_4001 and Topic_2001. These are
generated visual IDs that are produced by the tooling of GMF and are subject to
change, unfortunately. A better solution here is to create custom templates that
would enable us to generate this action and, therefore, eliminate the possibility
that our custom action code will break after some future change to the generated
diagram code. Section 4.4.5, “ToolTips,” covers the use of custom templates for
diagram generation.

4.3 Developing the Mindmap Diagram 93

ptg6022785

Adding Fixed Anchor Locations

By default, connections made between Topics and their subtopics anchor on the
target using one of several anchor points. Although this works well for many dia-
grams, we don’t want this in the mindmap. The situation is helped to an extent
by our automatic layout, which nicely anchors links to the right and left of the
topics, but that’s not quite where we want them in the case of subtopics. Figure
4-10 is a simple example to illustrate the problem before the layout is added. As
you can see, the target decorators are positioned where the default chopbox
anchor point is calculated, using the center of the figure as a reference point. This
applies to the outgoing source end as well.

94 CHAPTER 4 • Developing a DSL Graphical Notation

Topic

Another Subtopic

A Subtopic Another SubSubtopic

A SubSubtopic

Yet Another

Figure 4-10 Mindmap chopbox anchors

Preferably, lines should connect at a fixed point for all Topic elements to the
left of the text at the target end. The source end should have the line connect at
a point to the right of the text. Following are SourceFixedConnection
Anchor and TargetFixedConnectionAnchor classes that you can add to the
generated TopicEditPart and Topic2EditPart classes. A root Topic never
needs a target anchor: After a subtopic connection is made, the figure changes.
We’re going to ignore relationship links from our layout and don’t want them to
be anchored the same as subtopic links, so we’re applying our anchors only to
subtopic connections. The code we use is basically stripped-down versions of the
FixedConnectionAnchor provided with the GEF Logic Diagram example.
First, consider the additions to TopicEditPart:

private ConnectionAnchor sourceAnchor;

@Override
public ConnectionAnchor getSourceConnectionAnchor(ConnectionEditPart

connEditPart) {
if (sourceAnchor == null) {

ptg6022785

sourceAnchor = new SourceFixedConnectionAnchor(getNodeFigure());
}
return sourceAnchor;

}

public class SourceFixedConnectionAnchor
extends AbstractConnectionAnchor {

public SourceFixedConnectionAnchor(IFigure owner) {
super(owner);

}

public Point getLocation(Point reference) {
Point right = getOwner().getBounds().getRight();
Point p = new PrecisionPoint(right.x + 1, right.y - 1);
getOwner().translateToAbsolute(p);
return p;

}
}

The overridden getLocation() method provides the main functionality. To
install on our EditPart, we override getSourceConnectionAnchor(), and in
our Topic2EditPart, we override getSourceConnectionAnchor() as well.

private ConnectionAnchor targetAnchor;
private ConnectionAnchor sourceAnchor;

@Override
public ConnectionAnchor getTargetConnectionAnchor(
ConnectionEditPart connEditPart) {

if (targetAnchor == null) {
targetAnchor = new TargetFixedConnectionAnchor(getNodeFigure());

}
return targetAnchor;

}

@Override
public ConnectionAnchor getSourceConnectionAnchor(
ConnectionEditPart connEditPart) {

if (sourceAnchor == null) {
sourceAnchor = new
SourceFixedConnectionAnchor(getNodeFigure());

}
return sourceAnchor;

}

public class SourceFixedConnectionAnchor extends
AbstractConnectionAnchor {

public SourceFixedConnectionAnchor(IFigure owner) {
super(owner);

}

4.3 Developing the Mindmap Diagram 95

ptg6022785

public Point getLocation(Point reference) {
Point right =
getOwner().getBounds().getBottomRight();

Point p = new PrecisionPoint(right.x + 1, right.y - 1);
getOwner().translateToAbsolute(p);
return p;

}
}

public class TargetFixedConnectionAnchor extends
AbstractConnectionAnchor {

public TargetFixedConnectionAnchor(IFigure owner) {
super(owner);

}

public Point getLocation(Point reference) {
Point left = getOwner().getBounds().getBottomLeft();
Point p = new PrecisionPoint(left.x + 10, left.y - 1);
getOwner().translateToAbsolute(p);
return p;

}
}

Figure 4-11 shows an updated image of our mindmap that, again, uses our
default layout. Clearly, this is an improvement, but we still have some tweaking
to do. Note that although the left-to-right anchor and layout have been imple-
mented, we need to modify the implementation if we are to support right-to-left
layout as well.

96 CHAPTER 4 • Developing a DSL Graphical Notation

Topic

Another Subtopic Yet Another

A Subtopic Another SubSubtopic

A SubSubtopic

Figure 4-11 Mindmap fixed anchors

ptg6022785

Diagram Preferences

Our generated diagram code includes preference settings that are accessible from
the Eclipse preference dialog in a Mindmap Diagram category. Diagram general,
appearance, connection, ruler, grid, and printing preferences are all available
from a set of contributed preference pages. In our generated org.eclipse.
mindmap.diagram.preferences package is code that supports further exten-
sion and enables us to set defaults. For example, if we want all the mindmap
diagram lines to be blue by default, we can adjust our DiagramAppearance
PreferencePage class as follows:

public class DiagramAppearancePreferencePage

extends AppearancePreferencePage {

private static RGB LINE_COLOR = new RGB(90, 140, 255);

/**
* @generated
*/
public DiagramAppearancePreferencePage() {
setPreferenceStore(MindmapDiagramEditorPlugin.getInstance().
getPreferenceStore());

}

public static void initDefaults(IPreferenceStore store) {
AppearancePreferencePage.initDefaults(store);
PreferenceConverter.setDefault(store,
IPreferenceConstants.PREF_LINE_COLOR, LINE_COLOR);

}
}

We can set more preferences and add new preferences. Section 4.6.6, “Color
Preferences,” looks at how to modify code-generation templates to add custom
preferences for the color modeling diagram.

Audits and Metrics

GMF provides the capability to define OCL-based audits and metrics for the
domain and diagram models. Using the mapping definition model, we can define
diagram audits and metrics for both domain and notation model elements.
What’s generated leverages the EMF Validation Framework. To begin, we open
our mindmap.gmfmap model in the editor, right-click on the Mapping element,
and add a new Audit Container child. To the container, add the two audit
rules in Table 4-9.

4.3 Developing the Mindmap Diagram 97

ptg6022785

Table 4-9 Mindmap Audit Definition

Element Property Value

Mapping

Audit Container Description A set of mindmap model audits.

Id mindmap.audits

Name Mindmap Audits

Audit Rule Description Topics should not have subtopic
relationships that form a cycle.

Id cycle

Message A cycle was detected in the subtopics
of this Topic.

Name Subtopic Cycle

Severity WARNING

Use In Live Mode false

Constraint Body not self->closure(subtopics)-
>includes(self)

Language ocl

Domain Element Target Element Topic -> MapElement

Audit Rule Description All Topic elements require a valid name.

Id name

Message Topic has no name.

Name Topic Name

Severity ERROR

Use In Live Mode true

Constraint Body not self.name.oclIsUndefined() and
self.name <> ‘’

Language ocl

Domain Element Target Element Topic -> MapElement

We’ve defined two audits using OCL. The first detects cycles in Topic
subtopic relationships using MDT OCL’s closure() iterator. If the topic is
within the set of all subtopics, a cycle is formed. The Severity of this audit is
set to WARNING and it is not used in Live Mode, meaning that the Practitioner

98 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

must manually invoke the Diagram → Validate menu item to run the audit. The
second audit detects invalid Topic names, which, in this case, are limited to
empty name strings and those that are not initialized. A more elaborate audit
could be created to ensure that valid Topic names are entered. The severity is set
to error and the audit is defined as a “live” audit. This means that it will be
invoked automatically when changes are made to the specified domain element.
As you’ll see in the generator model, an additional option is available to provide
immediate UI feedback: A dialog will pop up to alert the Practitioner that the
change made violates a constraint.

Moving to metric definitions, right-click the Mapping node again and add a
child Metric Container element. Populate the container with the elements
and property settings in Table 4-10.

Table 4-10 Mindmap Metric Definition

Element Property Value

Mapping

Metric Container

Metric Rule Description The number of direct subtopics for the selected
Topic

High Limit 5.0

Key NOS

Low Limit 0.0

Name Number of Subtopics

Value Expression Body self.subtopics->size()

Language ocl

Domain Element Target Element Topic -> MapElement

Metrics are defined with upper and lower limits and are based on the result
of the OCL statement. In this case, we’re counting the number of direct subtopics
of a Topic. We could define another that counts the total number of subtopics
using the closure() iterator we used earlier.

At this point, we can re-create our mindmap.gmfgen model from the map-
ping model and observe new Gen Audit Root and Gen Metric Container
elements. More interesting are the options related to validation in the Gen
Diagram element. Under the Diagram category are the Validation Enabled
and Validation Decorators properties that we set to true here. Also notice

4.3 Developing the Mindmap Diagram 99

ptg6022785

the Live Validation UI Feedback property mentioned earlier. Here we set
this to true as well, just to see the result. In the Providers category are a num-
ber of additional options related to validation and metric priorities and
providers. The Metric Provider Priority property needs to be set to a
value higher than Lowest, so we set it to Medium and regenerate our diagram.

In the runtime, you’ll find Validate and Metrics items in the Diagram
menu. To test our audits and metrics, create a set of Topic elements with
subtopics connecting them in a circle. At this point, our layout should be indica-
tion enough that cycles are a bad idea, as Figure 4-12 illustrates. Ideally, we’d
add a link constraint to prevent cycles altogether. Nevertheless, run the Validate
action and observe in the Problems view the warning of a cycle. Also notice the
warning decorations added to each Topic; each violates the audit.

100 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-12 Mindmap audit violations

Rename one of the Topics to a blank value and observe the live validation
dialog, shown in Figure 4-13.

Invoke our diagram metrics and observe the Mindmap Diagram Metrics
view, listing each Topic and providing the metric value in the NOS column, as
seen in Figure 4-14. Those with values above the upper limit are displayed in red,
and those below the lower limit are displayed in blue.

In our preferences, we now have a Model Validation category with
options for live validation, in case the Practitioner chooses not to have a dialog
pop up on each violation, as seen in Figure 4-15. Each constraint is also listed,
with information on what it checks and the option to disable each, as seen in
Figure 4-16.

ptg6022785

Figure 4-13 Mindmap live validation

4.3 Developing the Mindmap Diagram 101

Figure 4-14 Mindmap metrics

Figure 4-15 Mindmap validation preferences

ptg6022785

Figure 4-16 Mindmap validation constraint preferences

Note that audits and metrics defined using GMF are GMF-specific only
when they’re written against the notation model. Otherwise, the generated code
can be refactored for use in the domain model without a diagram. You will find
the Validation Framework quite useful, particularly considering the extensibility
provided with its declarative nature. You can add other audits and metrics by
augmenting the generated plugin.xml file, or even from another plug-in. This
is how our earlier audits and metrics are declared, not including the decorator
and marker declarations:

<extension point="org.eclipse.emf.validation.constraintProviders">
<?gmfgen generated="true"?>
<category id="mindmap.audits" mandatory="false"

name="Mindmap Audits">
<![CDATA[A set of mindmap model audits.]]>

</category>
<constraintProvider cache="true">

<package namespaceUri="http://www.eclipse.org/2008/mindmap"/>
<constraints categories="mindmap.audits">
<constraint id="cycle"
lang="OCL"
name="Subtopic Cycle"
mode="Batch"
severity="WARNING" statusCode="200">
<![CDATA[not self->closure(subtopics)->includes(self)]]>
<description><![CDATA[Topics should not have subtopic

relationships that form a cycle.]]>
</description>
<message><![CDATA[A cycle was detected in the subtopics of

this Topic.]]>
</message>
<target class="mindmap.Topic"/>

</constraint>

102 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

<constraint id="name"
lang="OCL"
name="Topic Name"
mode="Live"
severity="ERROR" statusCode="200">
<![CDATA[self.name <> ‘’]]>
<description><![CDATA[All Topic elements require a valid

name.]]>
</description>
<message><![CDATA[Topic has no name.]]></message>
<target class="mindmap.Topic"/>

</constraint>
</constraints>

</constraintProvider>
</extension>

<extension point="org.eclipse.emf.validation.constraintBindings">
<?gmfgen generated="true"?>
<clientContext default="false"
id="org.eclipse.mindmap.diagram.DefaultCtx">
<selector class="org.eclipse.mindmap.diagram.providers.
MindmapValidationProvider$DefaultCtx1"/>

</clientContext>
<binding context="org.eclipse.mindmap.diagram.DefaultCtx">
<constraint ref="org.eclipse.mindmap.diagram.cycle"/>
<constraint ref="org.eclipse.mindmap.diagram.name"/>

</binding>
</extension>

<extension id="MetricContributionItemProvider" name="Metrics"
point="org.eclipse.gmf.runtime.common.ui.services.action.
contributionItemProviders">
<?gmfgen generated="true"?>
<contributionItemProvider checkPluginLoaded="true"
class="org.eclipse.mindmap.diagram.providers.MindmapMetricProvider">
<Priority name="Medium"/>
<partContribution

id="org.eclipse.mindmap.diagram.part.MindmapDiagramEditorID">
<partMenuGroup menubarPath="/diagramMenu/" id="validationGroup"/>
<partAction id="metricsAction"

menubarPath="/diagramMenu/validationGroup"/>
</partContribution>

</contributionItemProvider>
</extension>

You can find the generated code corresponding to these contributions in the
classes MindmapMetricProvider and MindmapValidationProvider; both
are in the org.eclipse.mindmap.diagram.providers package. They are
not described in detail here, so take a look at the provided sample code and the
documentation on the EMF Validation Framework for more information.

4.3 Developing the Mindmap Diagram 103

ptg6022785

4.4 Developing a Requirements Diagram

We want a simple diagram that displays requirements so that we can visualize
their relationships and dependencies. We first develop the diagram to be stand-
alone, and then we integrate it as a tab in the generated EMF editor to illustrate
the approach. Eventually, we want the requirements editor to be primarily form
based.

4.4.1 Diagram Definition

Beginning with the Graphical Definition Model Wizard, we create a new
requirements.gmfgraph model in our /diagrams folder of the
org.eclipse.dsl.requirements project. In the wizard, be sure to select the
Model class as the diagram element. Table 4-11 shows the completed model,
indicating values that changed from their default.

Table 4-11 Requirements Figure Definition

Element Property Value

Canvas Name RequirementCanvas

Figure Gallery Name RequirementGallery

Polyline Decoration Name OpenArrow

Figure Descriptor Name Circle

Rectangle Name CircleOuterRectangle

Fill False

Outline False

Stack Layout

Ellipse Name Circle

Label Name CenterLetter

Basic Font Face Name Arial

Height 10

Style BOLD

Margin Border

Insets Left, Top 6, 5

Child Access Figure Rectangle CircleOuterRectangle

104 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Child Access Figure Ellipse Circle

Child Access Figure Label CenterLetter

Figure Descriptor Name SolidLine

Polyline Connection Name SolidLine

Figure Descriptor Name BasicLabel

Label Name BasicLabel

Child Access Figure Label BasicLabel

Figure Descriptor Name DashedLineWithOpenArrow

Polyline Connection Name DashedLineWithOpenArrow

Line Kind LINE_DASH

Target Decoration Polyline Decoration OpenArrow

Foreground Color Value Blue

Figure Descriptor Name RoundedRectangleCenterLabel

Rounded Rectangle Name RoundedRectangleCenterLabel

Corner Height 8

Corner Width 8

Stack Layout

Maximum Size Dx, Dy 50, 20

Minimum Size Dx, Dy 50, 20

Preferred Size Dx, Dy 50, 20

Insets Bottom 5

Left 5

Right 5

Top 5

Label Name CenterLabel

Child Access Figure CenterLabel

Node Name Requirement

Figure Figure Descriptor Circle

Resize Constraint NONE

4.4 Developing a Requirements Diagram 105

(continues)

ptg6022785

Table 4-11 Requirements Figure Definition (continued)

Element Property Value

Default Size Facet

Dimension Dx, Dy 20, 20

Node Name RequirementGroup

Figure Figure Descriptor
RoundedRectangleCenterLabel

Resize Constraint NONE

Default Size Facet

Dimension Dx, Dy 50, 20

Connection Name RequirementChild

Figure Figure Descriptor SolidLine

Connection Name GroupRequirement

Figure Figure Descriptor SolidLine

Connection Name Dependency

Figure Figure Descriptor
DashedLineWithOpenArrow

Connection Name GroupChild

Figure Figure Descriptor SolidLine

Diagram Label Name RequirementTitle

Figure Figure Descriptor BasicLabel

Diagram Label Name RequirementGroupName

Figure Figure Descriptor
RoundedRectangleCenterLabel

Diagram Label Name RequirementType

Figure Figure Descriptor Circle

Note that the Resource Constraint property is set to NONE on both the
Requirement and RequirementGroup nodes. This makes the node nonresiz-
able. Another option to make an element nonresizable is to add org.eclipse.
gef.editpolicies.NonResizableEditPolicy to the Primary Drag
Policy Qualified Class Name property of the corresponding Gen Top
Level Node property in the gmfgen model. Alternatively, you can use the
NonResizableEditPolicyEx class from the GMF runtime.

106 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

A complication here is the label on the RequirementGroup, which,
although nested within a nonresizable figure, causes the figure to grow by default
as the text exceeds the width of the figure. To address this, the children Maximum
Size, Minimum Size, and Preferred Size elements are added to the
Rounded Rectangle to prevent resizing.

Notice that we have “hard-coded” the dependency link blue. Optionally, we
can create a preference for this type of connection to allow the user to modify it,
as you saw in the mindmap diagram Section 4.3.5, “Diagram Preferences.”

4.4.2 Tooling Definition

The tooling definition is straightforward, as always. We need two groups again:
one for Nodes and the other for Links. Because of our numerous connection
types, we need several Link tools, depending on their source and target types.
Figure 4-17 shows the palette model. Here, we are more interested in simply dis-
playing dependency relationships and are not so interested in allowing for the
creation of elements on the diagram, so we could exclude a palette definition
altogether.

4.4 Developing a Requirements Diagram 107

Figure 4-17 Requirements tooling definition

4.4.3 Mapping Definition

The structure of the requirements model differs from that of the mindmap model,
in that children of RequirementGroups and Requirements are maintained in
containment references of the elements, not in containment references of the root
element. Thus, you can see how the mapping differs in this example. Figure 4-18
is our domain model to use as a reference through this discussion.

ptg6022785

Figure 4-18 Requirements domain model

The Canvas Mapping is straightforward, as Table 4-12 shows.

Table 4-12 Requirements Canvas Mapping

Element Property Value

Mapping

Canvas Mapping Domain Element requirements

Element Model

Palette Palette RequirementPalette

Diagram Canvas Canvas RequirementCanvas

For RequirementGroups, we have two mappings. The first represents
groups that are contained in our canvas Model domain element; the second rep-
resents subgroups that are maintained as children of other groups.

108 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

The first mapping uses the groups reference of the Model class as the
Containment Feature. The child Node Mapping is straightforward and listed
in Table 4-13.

Table 4-13 RequirementGroup Node Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Model.groups : RequirementGroup

Node Mapping Element RequirementGroup

Diagram Node Node RequirementGroup
(RoundedRectangleCenterLabel)

Tool Creation Tool Group

Constraint Body parent.oclIsUndefined()

Feature Label Mapping Diagram Label Diagram Label
RequirementGroupName

Features RequirementGroup.id : EString

Notice from the table that we have a Constraint added to this node map-
ping, indicating that the parent reference must be null for this mapping to hold.
We use the OCL expression parent.oclIsUndefined() to accomplish this.
The second RequirementGroup mapping specifies that the parent must be a
RequirementGroup using parent.oclIsTypeOf(requirements::
RequirementGroup). If we had an eOpposite relationship with our Model
class as we do between RequirementGroup and its children, we could have
used parent.oclIsTypeOf(requirements::Model) in the first mapping.

For the first mapping, we specify a Tool, and in the second we rely on a
Link to create a subgroup when drawn between two root groups. The Feature
Label Mapping uses the id attribute, although with a fixed size of our
RequirementGroup node, we expect the label to be truncated in the display.
We’ll add ToolTips later, to allow diagram browsing to reveal the full name
string.

Jumping to the second RequirementGroup mapping, we see in Table 4-14
that no Containment Feature is specified for the node.

4.4 Developing a Requirements Diagram 109

ptg6022785

Table 4-14 Second RequirementGroup Node Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Intentionally not set

Node Mapping Element RequirementGroup

Diagram Node Node RequirementGroup
(RoundedRectangleCenterLabel)

Tool Intentionally not set

Constraint Body parent.oclIsTypeOf(requirements::
RequirementGroup)

Feature Label Mapping Diagram Label Diagram Label
RequirementGroupName

Features RequirementGroup.id : EString

Note that no Tool is specified for this mapping. We’ve specified a node that
uses the same figure as the previous RequirementGroup mapping but that will
be created after a link is drawn between two groups. Note that this is not an
example of the “phantom” node concept discussed in Section 11.3.3,
“References, Containment, and Phantom Nodes.” In this case, all nodes added
to the diagram canvas are legitimate because they’re being held in the Model’s
groups containment reference. We’re just switching the containment feature
from this to the children containment reference of RequirementGroup after
a link is drawn between two groups.

Although we could achieve this change in containment for a node in other
ways, this approach maximizes our use of generated code. We’ve defined con-
straints for each so that the generated code can uniquely specify each view map-
ping for the underlying semantic element. The Feature Label Mapping is the
same as for the first RequirementGroup node mapping.

The Link Mapping for RequirementGroup specifies the children con-
tainment reference for subgroups, when drawn. The rest of the mapping is
straightforward, as Table 4-15 shows.

110 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Table 4-15 RequirementGroup Link Mapping

Element Property Value

Mapping

Link Mapping Target Feature RequirementGroup.children : RequirementGroup

Diagram Link Connection GroupChild

Tool Creation Tool Child Group

Our Requirement node mapping does illustrate the “phantom” node con-
cept. In this case, Requirement elements added to the diagram surface are not
immediately placed in a valid containment reference; the Canvas is mapped to
the Model class, which does not hold Requirements directly. A Requirement
can be contained only in a RequirementGroup or as a child of another
Requirement. So we specify the Top Node Reference with no Containment
Feature, but we create two links that specify each of the two valid contain-
ments, as seen in Table 4-16.

Table 4-16 Requirement Node Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Intentionally not set

Node Mapping Element Requirement

Diagram Node Node Requirement (Circle)

Tool Creation Tool Requirement

Feature Seq Initializer Element Class Requirement

Reference New Element Spec Feature Requirement.version : Version

Feature Seq Initializer Element Class Version

Feature Value Spec Feature Version.major : EInt

Value Expression Body 1

Language ocl

Feature Label Mapping Diagram Label Diagram Label RequirementTitle

Features Requirement.id : EString

4.4 Developing a Requirements Diagram 111

(continues)

ptg6022785

Table 4-16 Requirement Node Mapping (continued)

Element Property Value

Feature Label Mapping Diagram Label Diagram Label RequirementType

Features Requirement.type : Type

Read Only true

View Pattern {0}

As you can see, Node Mapping uses the Feature Seq Initializer ele-
ment to create a new Version instance upon creation of a Requirement and
set its major attribute to 1. This is a nice capability of GMF that would be ben-
eficial in EMF as well. Table 4-16 gives the details of the Requirements Node
Mapping.

The Requirements node has two Feature Label Mappings. The first is for
an external label used to display the Requirement’s id attribute. The second is
a Read Only label used to display the type of the Requirement in the center
of its circle graphic, as Figure 4-19 shows. This works because we changed the
Literal property of each Type enumeration to be a single letter: F in the case
of FUNCTIONAL, N in the case of NONFUNCTIONAL. This is a simple solution,
although it’s trivial to modify the generated code to return the first character or
simply supply a character based on the selected enum.

Now we turn to our two Requirement link mappings. First is the mapping
for Requirements that are maintained in the requirements feature of our
RequirementGroup class, as shown by the Target Feature property setting.
It uses the same Diagram Link we’ll use in the next mapping, but it has its own
Tool, as seen in Table 4-17.

Table 4-17 Requirement Link Mappings

Element Property Value

Mapping

Link Mapping Target Feature requirements : Requirement

Diagram Link Connection GroupRequirement

Tool Creation Tool Group Requirement

Link Mapping Target Feature children : Requirement

Diagram Link Connection RequirementChild

Tool Creation Tool Child Requirement

112 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

The second mapping uses the children containment reference as the
Target Feature and has its own Tool. Our final mapping is for Dependency
links. As you will recall from our graphical definition, these are blue dashed lines
with open arrow head target decorations. We can use them to indicate depend-
ency references between Requirements, as shown in Table 4-18.

Table 4-18 Requirements Dependency Link Mapping

Element Property Value

Mapping

Link Mapping Target Feature dependencies : Requirement

Diagram Link Connection Dependency

Tool Creation Tool Dependency

4.4.4 Generation

As before, we can right-click on our mapping model and select Create Generator
Model to bring up the transformation dialog. The default requirements.
gmfgen in the /diagrams folder is fine, so we proceed to the Select Mapping
Model page, where our requirements.gmfmap model is already loaded. On
the next page, we find that our requirements.genmodel is already selected
and loaded as well. On the final page, we keep the defaults Use IMapMode and
Utilize Enhanced Features of GMF Runtime, and then click Finish.

We now leave the default generation properties for the moment and generate
our diagram plug-in using the Generate Diagram Code option from the file’s con-
text menu. Launching the runtime workspace lets us create a new requirements
diagram using the generated wizard found in the Examples category of the New
(Ctrl+N) dialog. Figure 4-19 is a sample diagram.

You’ll notice right away that creating two RequirementGroup objects on
the diagram, followed by linking these groups using the Child Group tool,
requires pressing F5 to invoke a refresh to see the link. We need to modify the
generated code to invoke a canonical update to avoid this, as we did in our
mindmap with the override of handleNotificationEvent().

4.4 Developing a Requirements Diagram 113

ptg6022785

Figure 4-19 Requirements dependency diagram

4.4.5 ToolTips

Because we have decided not to clutter our dependency view by displaying only
the ID of each Requirement and RequirementGroup, we need to populate a
ToolTip with the Requirement’s title. This provides a convenient way to browse
the diagram with the mouse but not have to select each element and look in the
Properties view to see its information. For now, we just display the title attrib-
ute value in a Label by modifying the createMainFigure() method of the
RequirementEditPart class, as follows:

/**
* Creates figure for this edit part.
*
* Body of this method does not depend on settings in generation model,
* so you may safely remove <i>generated</i> tag and modify it.
*
* @generated NOT
*/
protected NodeFigure createMainFigure() {
NodeFigure figure = createNodePlate();
figure.setLayoutManager(new StackLayout());
IFigure shape = createNodeShape();
figure.add(shape);
contentPane = setupContentPane(shape);

114 CHAPTER 4 • Developing a DSL Graphical Notation

G002

R001

R004 R003 R006

R002

R005

F F

F F

F

F

G001

G003

ptg6022785

String text = ((Requirement) resolveSemanticElement()).getTitle();
Label tooltip = new Label(text);
tooltip.setBorder(new MarginBorder(getMapMode().DptoLP(0),

getMapMode().DptoLP(5), getMapMode().DptoLP(5),
getMapMode().DptoLP(5)));

figure.setToolTip(tooltip);
return figure;

}

This works but suffers from the fact that if the title attribute is modi-
fied, the ToolTip does not reflect the change. We could override
handleNotificationEvent() in our EditPart and update the ToolTip
when changes are made, but a better solution is to leverage a custom
EditPolicy. Furthermore, this is something we’ll potentially need for our
RequirementsGroup because it is also a fixed-size shape that requires selection
and the Properties view currently to get the full text. Instead of continuing to
modify the generated code, this seems like a good opportunity to add a decora-
tor model to our requirements.gmfgen model to specify ToolTips and their
displayed attributes for selected elements. We begin by creating a simple
tooltip.ecore model in the /diagrams folder of our requirements project,
with just a root Model element that contains a collection of ToolTip elements,
which, in turn, contains a number of DisplayElements. The important aspect
of the model is the reference from the ToolTip to the GMF generation model’s
CustomBehaviour class, as shown in Figure 4-20 using a diagram shortcut.

4.4 Developing a Requirements Diagram 115

Figure 4-20 ToolTip model

ptg6022785

We plan to implement a custom EditPolicy for our ToolTip, which is the
standard GEF approach for adding behavior to an EditPart. It might seem like
overkill when you see the actual implementation, but this gives us an opportu-
nity to illustrate this extension approach.

The GMF generator model enables us to define Custom Behaviour ele-
ments as children of Gen Top Level Node elements. We need to add a refer-
ence from our Tooltip class to this element in the GMF generator model. Using
the Load Resource menu followed by the convenient Browse Registered
Packages button brings up the dialog shown in Figure 4-21. It takes a few sec-
onds to populate, but when it does, we select our GMF GenModel from the list.
Be sure to select Runtime Version and not Development Time Version, and then
accept the corresponding warning that models referenced in this manner will not
appear as a root in the editor. Selecting Runtime Version means that references
to this loaded model will use the registered package Namespace URI instead of
a platform:/ URI, as is the case when selecting Development Time Version.

116 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-21 Package Selection dialog

We now create an editpolicy reference from our Tooltip class to the
CustomBehaviour class in the loaded GMF GenModel. To reference the text
we need to display in our ToolTip, we add a reference to the Ecore EAttribute
element. Similar to our earlier procedure, we first use the Load Resource menu
item to add the http://www.eclipse.org/emf/2002/Ecore model to our

http://www.eclipse.org/emf/2002/Ecore

ptg6022785

resource set using the Runtime Version, and we create a new reference to our
ToolTip class named textAttribute of type EAttribute.

In our requirements.gmfgen model, navigate to the Gen Top Level
Node RequirementEditPart element and add a new child Custom Behaviour
element. It’s a simple element, with just Key and Edit Policy Qualified
Class Name properties, which we set to "TooltipPolicy" (the quotation
marks are required) and org.eclipse.requirements.diagram.edit.
policies.RequirementsTooltipEditPolicy, respectively. The parameter
used to install an EditPolicy is a String, which typically comes from constants
defined in either the GMF runtime’s EditPolicyRoles interface or GEF’s
EditPolicy interface. Look at the policy roles defined here before you create
your own. If you reuse a defined constant, you don’t need to wrap it in quotes.

Next, we need to create a Dynamic Instance of our ToolTip model for use in
generating our custom EditPolicy. This is much more convenient than the
alternative, which is to create a tooltip.gen model and generate model code,
followed by deploying that model into the environment. From the Ecore editor,
we right-click our Tooltip element and select Create Dynamic Instance and
select our /diagrams folder for the new Tooltip.xmi model. In the Sample
Reflective Ecore Model Editor, use Load Resource to load our requirements.
genmodel from the workspace. Now we can select the Custom Behaviour ele-
ment that we added previously for our Editpolicy property. This is where the
option of using the Runtime Version in our loading of the GMF GenModel
earlier becomes important, for if we left the reference as platform:/plugin...,
we would not have seen our Custom Behaviour element in the list.

Finally, set the textAttribute property of our Tooltip instance to the
title:EString attribute of our Requirements class, which was loaded into the
resource set when we loaded the requirements.gmfgen model.

TIP

When selecting the title:EString attribute for our textAttribute
reference, we had to select it from a large list of possibilities in the
Properties view, several of which had the required name:Type but with
no indication that it was from our Requirements class. First, to narrow the
list, type title into the field to filter the possibilities. Second, verify that
the proper element was selected by opening the model in a text editor.

4.4 Developing a Requirements Diagram 117

ptg6022785

After we add the Custom Behaviour element to the generation model, the
generated code references the ToolTip class. The GMF generator knows noth-
ing of our custom template, and there’s no way currently to add new template
definitions to the execution environment. We need to create our own workflow
and run a second-generation step to produce the referenced ToolTip
EditPolicy class. Section 14.1.16, “Workflow Engine,” covers workflows, but
for now, just use File → New → Other → Model Transformation → Workflow
Definition to create a tooltip.mwe file in the /workflows folder. Next you can
see the workflow used to invoke our template following the normal GMF dia-
gram generation; it includes a number of model references. As such, it’s necessary
to add the following plug-ins as dependencies of our project in the MANIFEST.MF
file: org.eclipse.gmf.codegen, org.eclipse.gmf.runtime.notation,
and org.eclipse.gmf.validate. Curiously, you also need to add org.
eclipse.core.runtime, org.eclipse.jdt.core, and org.eclipse.
jface.text.

<?xml version="1.0"?>
<workflow>
<property
name="model"
value="platform:/resource/org.eclipse.dsl.requirements/
diagrams/Tooltip.xmi" />

<property name="out"
value="../org.eclipse.requirements.diagram/src" />

<!-- set up EMF for standalone execution -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<RegisterGeneratedEPackage

value="org.eclipse.gmf.codegen.gmfgen.GMFGenPackage"/>
<RegisterGeneratedEPackage
value="org.eclipse.gmf.runtime.notation.NotationPackage"/>

</bean>

<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="${model}" />
<modelSlot value="model" />

</component>

<!-- generate code -->
<component class="org.eclipse.xpand2.Generator">
<metaModel id="mm"
class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>
<expand value="TooltipEditPolicy::Main FOR model" />
<outlet path="${out}">

<postprocessor
class="org.eclipse.xpand2.output.JavaBeautifier" />

118 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

</outlet>
</component>

</workflow>

We need a template named TooltipEditPolicy.xpt that we can place in
a /templates-diagram folder of our org.eclipse.dsl.requirements
project. This folder needs to be added as a source path in the project; as does the
/diagrams folder, we’ve placed our tooltip.ecore model and corresponding
dynamic instance there. Following is the content of the Xpand template file,
which could use some improvement. Chapters 7 and 14 cover Xpand, so we
don’t get into the details here.

«IMPORT tooltip»
«IMPORT gmfgen»
«IMPORT ecore»

«EXTENSION Utils»

«DEFINE Main FOR Model»
«FOREACH tooltips AS tooltip»
«EXPAND EditPolicy FOR tooltip»
«ENDFOREACH»
«ENDDEFINE»

«DEFINE EditPolicy FOR tooltip::Tooltip»
«FILE editpolicy.editPolicyQualifiedClassName.replaceAll("\\.", "/") +

".java"-»
package «packageName(editpolicy.editPolicyQualifiedClassName)»;

import org.eclipse.draw2d.ColorConstants;
import org.eclipse.draw2d.MarginBorder;
import org.eclipse.draw2d.RoundedRectangle;
import org.eclipse.draw2d.Shape;
import org.eclipse.draw2d.StackLayout;
import org.eclipse.draw2d.geometry.Rectangle;
import org.eclipse.draw2d.text.FlowPage;
import org.eclipse.draw2d.text.ParagraphTextLayout;
import org.eclipse.draw2d.text.TextFlow;
import org.eclipse.gef.Request;
import org.eclipse.gef.editpolicies.GraphicalEditPolicy;
import org.eclipse.gef.requests.LocationRequest;
import org.eclipse.requirements.Requirement;
import org.eclipse.requirements.diagram.edit.parts.RequirementEditPart;

public class «className(editpolicy.editPolicyQualifiedClassName)»
extends GraphicalEditPolicy {

4.4 Developing a Requirements Diagram 119

ptg6022785

Shape tooltip;
RequirementEditPart rep;

@Override
public void showTargetFeedback(Request request) {

if (tooltip == null && request instanceof LocationRequest) {
rep = (RequirementEditPart) getHost();
Requirement req = (Requirement)
rep.resolveSemanticElement();

tooltip = new RoundedRectangle();
tooltip.setBackgroundColor(ColorConstants.titleGradient);

tooltip.setLayoutManager(new StackLayout());
tooltip.setBounds(new

Rectangle(getHostFigure().getBounds().getBottomRight().x,

getHostFigure().getBounds().getBottomRight().y, 200, 100));
tooltip.setBorder(new MarginBorder(3));

FlowPage flowPage = new FlowPage();
TextFlow textFlow = new TextFlow();
textFlow.setLayoutManager(new

ParagraphTextLayout(textFlow,
ParagraphTextLayout.WORD_WRAP_TRUNCATE));

flowPage.add(textFlow);
tooltip.add(flowPage);
textFlow.setText(buildText(req));
addFeedback(tooltip);

}
}

private String buildText(Requirement req) {
String title = req.getTitle() == null ? "" :

req.getTitle();
String author = req.getAuthor() == null ? "" :

req.getAuthor();
String text = "Title: " + title + "\n\n" + "Author: " + author;
return text;

}

@Override
public void eraseTargetFeedback(Request request) {
if (tooltip != null) {
removeFeedback(tooltip);
tooltip = null;
rep = null;

}
}

}
«ENDFILE»
«ENDDEFINE»

120 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

The template makes use of an Xtend utility named Utils.ext, whose con-
tents are shown here for those who are interested. Again, later chapters cover the
details of Xpand, Xtend, and Workflow.

String packageName(String fqn) :
fqn.subString(0, (fqn.length - className(fqn).length)-1)

;

String className(String fqn) :
fqn.split(‘\\.’).last()

;

For completeness, this is the content of the Tooltip.xmi file used to com-
plement our GMF generation with a custom EditPolicy that presents
Requirement title and author attributes in a ToolTip on mouseover events:

<?xml version="1.0" encoding="ASCII"?>
<tooltip:Model xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tooltip="http://www.eclipse.org/2008/tooltip"
xsi:schemaLocation="http://www.eclipse.org/2008/tooltip
tooltip.ecore">
<tooltips>
<editpolicy

href="requirements.gmfgen#//@diagram/@topLevelNodes.1/@behaviour.0"/>
<elements name="Title">
<textAttribute
href="../model/requirements.ecore#//Requirement/title"/>

</elements>
<elements name="Author">
<textAttribute
href="../model/requirements.ecore#//Requirement/author"/>

</elements>
</tooltips>

</tooltip:Model>

We can execute the workflow by right-clicking the tooltip.mwe file and
selecting Run As → MWE Workflow. After execution, our new TooltipEdit
Policy is generated into our requirements diagram project. Don’t forget to
regenerate the diagram code from the requirements.gmfgen model as well;
the code required to install our custom editpolicy on the Requirement
EditPart needs to be generated. If we launch the diagram, we can test the
result, as Figure 4-22 shows.

4.4 Developing a Requirements Diagram 121

ptg6022785

Figure 4-22 Requirement ToolTip

4.4.6 Integrating EMF and GMF Editors

For our requirements diagram, we want it to be a page within a multipage edi-
tor rather than a standalone diagram. The reason is that it’s more of a depend-
ency visualization diagram than a requirements editing environment, although it
does have editing capabilities. An Eclipse Corner article [47] provides much of
the detail on how to accomplish integrating EMF and GMF editors this way, so
we imitate that approach here.

Sharing File Extension

To begin, we need to open our requirements.gmfgen model and make some
changes, as shown in Figure 4-23. The Diagram File Extension property
should match the Domain File Extension—in this case, requirements.
Also, we need to change the Same File For Domain And Model property to
true.

122 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-23 Requirements GMF generator model

At this point, regenerate the diagram code and launch the runtime work-
bench. Create a new Requirements Diagram using the GMF-generated wizard
and populate it with some data. Right-click the .requirements file you created
and select Open With → Requirements Model Editor, which is the EMF-
generated editor. You’ll find that the model has two roots: one for the domain

ptg6022785

model and the other for the diagram notation model. Note that if you try to cre-
ate a new Requirements model using the GMF-generated wizard at this point,
you’ll get an error stating “Resource contains no diagram.” Also, if you have an
existing .requirements model in your workspace and attempt to initialize a
diagram for it using the context menu, it will work fine. If you subsequently
reopen this .requirements model in the EMF-generated wizard, you’ll notice
that the diagram notation model has been added as a second model root.

Furthermore, if you open the two editors simultaneously, you will notice the
following behavior. Changes made in the EMF editor do not appear in the dia-
gram until the EMF editor has been saved. As soon as you save the EMF editor,
you’ll notice a dirty marker appear on the diagram editor. Newly added elements
are found in the upper left and require diagram layout. Likewise, the EMF edi-
tor does not see changes made to the diagram until the diagram is saved.
Switching to the EMF editor results in a refresh that collapses the tree, though
no dirty marker appears on this editor. The two editors are at least aware of
changes made to the files they have open, but it’s not quite good enough. Let’s
return to our development workspace and continue.

Sharing an Editing Domain

Although both editors use an EditingDomain, they use their own; the EMF
editor uses an AdapterFactoryEditingDomain, and the GMF editor uses
a TransactionalEditingDomain. We need them to share a single
TransactionEditingDomain, so we must modify the generated EMF editor
code. To use this class, we need to add the org.eclipse.emf.transaction
plug-in to our list of Require-Bundle dependencies in the MANIFEST.MF file.
Now open the org.eclipse.requirements.presentation.Require-
mentsEditor class found in the generated org.eclipse.requirements.
model.editor plug-in. Mark the initializeEditingDomain() method as
@generated NOT, and replace the code that creates a new BasicCommand
Stack with the creation of a new TransactionalEditingDomain; then use its
getCommandStack() method to add the listener. At the bottom of the method,
cast the TransactionalEditingDomain to the expected AdapterFactory
EditingDomain, making the method appear as follows:

/**
* This sets up the editing domain for the model editor.
* Modified to share TransactionalEditingDomain with diagram.
*
* @generated NOT
*/
protected void initializeEditingDomain() {
// Create an adapter factory that yields item providers.

4.4 Developing a Requirements Diagram 123

ptg6022785

adapterFactory = new ComposedAdapterFactory(
ComposedAdapterFactory.Descriptor.Registry.INSTANCE);

adapterFactory.addAdapterFactory(new
ResourceItemProviderAdapterFactory());

adapterFactory.addAdapterFactory(new
RequirementsItemProviderAdapterFactory());

adapterFactory.addAdapterFactory(new
ReflectiveItemProviderAdapterFactory());

TransactionalEditingDomain domain =
TransactionalEditingDomain.Factory.INSTANCE.createEditingDomain();

domain.setID("org.eclipse.requirements.EditingDomain");

// Add a listener to set the most recent command’s affected objects
// to be the selection of the viewer with focus.
domain.getCommandStack().addCommandStackListener(new
CommandStackListener() {
public void commandStackChanged(final EventObject event) {
getContainer().getDisplay().asyncExec(new Runnable() {
public void run() {
firePropertyChange(IEditorPart.PROP_DIRTY);
// Try to select the affected objects.
Command mostRecentCommand = ((CommandStack)
event.getSource()).getMostRecentCommand();

if (mostRecentCommand != null) {
setSelectionToViewer(mostRecentCommand.getAffectedObjects());
}
if (propertySheetPage != null
&& !propertySheetPage.getControl().isDisposed()) {

propertySheetPage.refresh();
}

}
});

}
});

// Create the editing domain with a special command stack.
editingDomain = (AdapterFactoryEditingDomain) domain;

}

Open your requirements.gmfgen model and locate the Editing
Domain ID property in the Editor category of the Gen Diagram
ModelEditPart element part. Set the value of this property to the same ID we
previously set for the TransactionalEditingDomain, as seen in Figure 4-24.

124 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Figure 4-24 Requirements editing domain

With our editors sharing a common editing domain, now we turn to each of
our pages in the multipage editor because they need a reference to this shared
domain. Fortunately, GMF comes with a FileEditorInputProxy class that we can
use to initialize each of the pages. First, we need to add a dependency from our
EMF editor plug-in to our org.eclipse.requirements.diagram plug-in
and re-export all the org.eclipse.gmf.runtime.* plug-ins from the diagram
editor manifest. After this, navigate to the init() method of the
RequirementsEditor class. Mark the method with @generated NOT and mod-
ify accordingly (changes in bold):

/**
* This is called during startup.
* Modified to pass FileEditorInputProxy as input for
* TransactionalEditingDomain support.
*
* @generated NOT
*/
@Override
public void init(IEditorSite site, IEditorInput editorInput) {
IEditorInput input = editorInput;
if (input instanceof IFileEditorInput) {
input = new FileEditorInputProxy((IFileEditorInput) input,
(TransactionalEditingDomain) editingDomain);

}
setSite(site);
setInputWithNotify(input);
setPartName(input.getName());
site.setSelectionProvider(this);
site.getPage().addPartListener(partListener);
ResourcesPlugin.getWorkspace().addResourceChangeListener(
resourceChangeListener, IResourceChangeEvent.POST_CHANGE);

}

4.4 Developing a Requirements Diagram 125

ptg6022785

With our diagram becoming just another page in a multipage editor, we need
to modify its generated code a bit to take into account the passed
FileEditorInputProxy. Open the org.eclipse.requirements.
diagram.part.RequirementsDocumentProvider class and replace all uses
of org.eclipse.ui.part.FileEditorInput with org.eclipse.ui.
IFileEditorInput, with the exception of the method handleElement
Moved(). Don’t forget to mark each section with @generated NOT.

Next, we need to modify the createEmptyDocument() method so that it
uses the passed EditingDomain instead of creating its own. Actually, we have
the original method delegate to a new method that takes an input parameter and
modify the createDocument() method to pass its parameter as follows
(changes in bold):

/**
* @generated NOT
*/
protected IDocument createDocument(Object element) throws CoreException
{
// ...
IDocument document = createEmptyDocument(element);
setDocumentContent(document, (IeditorInput) element);
setupDocument(element, document);
return document;

}

/**
* Modified to use passed EditingDomain
*
* @generated NOT
*/
protected IDocument createEmptyDocument() {
return createEmptyDocument(null);

}

/**
* Use passed EditingDomain from input
*/
protected IDocument createEmptyDocument(Object input) {
DiagramDocument document = new DiagramDocument();
if (input instanceof FileEditorInputProxy) {
FileEditorInputProxy proxy = (FileEditorInputProxy) input;
document.setEditingDomain(proxy.getEditingDomain());

} else {
document.setEditingDomain(createEditingDomain());

}
return document;

}

126 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Refactoring the Editor

Back to our EMF-generated RequirementsEditor, we see that each page is
created as an anonymous subclass of ViewerPane. This causes problems when
trying to integrate our diagram into a page, so we can create an abstract
RequirementsEditorPart class to use as a superclass for converting each
page into its own EditorPart. Create the new class in the org.eclipse.
requirements.presentation package that extends EditorPart and imple-
ments IMenuListener and IEditingDomainProvider as follows:

public abstract class RequirementsEditorPart extends EditorPart

implements IMenuListener, IEditingDomainProvider {

protected RequirementsEditor parentEditor;

public RequirementsEditorPart(RequirementsEditor parent) {
super();
this.parentEditor = parent;

}

protected static String getString(String key) {
return RequirementsEditorPlugin.INSTANCE.getString(key);

}

public EditingDomain getEditingDomain() {
return parentEditor.getEditingDomain();

}

protected BasicCommandStack getCommandStack() {
return ((BasicCommandStack) getEditingDomain().getCommandStack());

}

protected AdapterFactory getAdapterFactory() {
return ((AdapterFactoryEditingDomain) ((FileEditorInputProxy)
getEditorInput()).getEditingDomain()).getAdapterFactory();
}

protected void createContextMenuFor(StructuredViewer viewer) {
MenuManager contextMenu = new MenuManager("#PopUp");
contextMenu.add(new Separator("additions"));
contextMenu.setRemoveAllWhenShown(true);
contextMenu.addMenuListener(this);
Menu menu = contextMenu.createContextMenu(viewer.getControl());
viewer.getControl().setMenu(menu);
getSite().registerContextMenu(contextMenu, new

UnwrappingSelectionProvider(viewer));

int dndOperations = DND.DROP_COPY | DND.DROP_MOVE | DND.DROP_LINK;
Transfer[] transfers = new Transfer[] {
LocalTransfer.getInstance() };

viewer.addDragSupport(dndOperations, transfers, new
ViewerDragAdapter(viewer));

4.4 Developing a Requirements Diagram 127

ptg6022785

viewer.addDropSupport(dndOperations, transfers, new
EditingDomainViewerDropAdapter(getEditingDomain(), viewer));

}

public void doSave(IProgressMonitor monitor) {
// nothing to do here – this is handled by the parent editor

}

public void doSaveAs() {
// nothing to do here – this is handled by the parent editor

}

public void init(IEditorSite site, IEditorInput input) throws
PartInitException {
setSite(site);
setInput(input);

}

public boolean isDirty() {
return getCommandStack().isSaveNeeded();

}

public boolean isSaveAsAllowed() {
return true;

}

public void menuAboutToShow(IMenuManager manager) {
// pass the request to show the context menu to the parent editor
((IMenuListener) parentEditor.getEditorSite()
.getActionBarContributor()).menuAboutToShow(manager);

}

public abstract void setInput(Object input);
}

We actually don’t want to use all of the EMF-generated pages in our multi-
page editor. We’ll use just a selection tree and a diagram, so we can remove the
rest. We create a new SelectionTreeEditorPart that extends our
RequirementsEditorPart and migrate code from its original anonymous sub-
class of ViewerPane from the RequirementsEditor class, as shown here:

public class SelectionTreeEditorPart extends RequirementsEditorPart {

protected TreeViewer viewer;

public SelectionTreeEditorPart(RequirementsEditor parent) {
super(parent);

}

public void setInput(Object input) {
viewer.setInput(input);

}

128 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

public void createPartControl(Composite parent) {
viewer = new TreeViewer(parent, SWT.MULTI);
viewer.setContentProvider(new
AdapterFactoryContentProvider(getAdapterFactory()));

viewer.setLabelProvider(new
AdapterFactoryLabelProvider(getAdapterFactory()));

viewer.setSelection(new
StructuredSelection(getEditingDomain().getResourceSet()

.getResources().get(0)), true);
getEditorSite().setSelectionProvider(viewer);
new AdapterFactoryTreeEditor(viewer.getTree(),
getAdapterFactory());

createContextMenuFor(viewer);
}

public void setFocus() {
viewer.getTree().setFocus();

}
}

We can refactor the RequirementsEditor.createPages() method now
to use our SelectionTreeEditorPart class. As mentioned, we eliminate all
but one of the standard EMF-generated pages, including the parent tree view,
which means that we can eliminate the inner ReverseAdapter
FactoryContentProvider class altogether. Following is our createPages()
method, which initializes the selectionTreeEditorPart class attribute that
we’ll add to the class. We’ll return to this method to add our diagram page later.

/**
* This is the method used by the framework to install your controls.
* Modified to include diagram page and use standalone
* EditorPart classes for each page.
*
* @generated NOT
*/
@Override
public void createPages() {
// Creates the model from the editor input
createModel();

// Only creates the other pages if there is something to be edited
if (!getEditingDomain().getResourceSet().getResources().isEmpty()

&& !(getEditingDomain().getResourceSet().getResources().get(0))
.getContents().isEmpty()) {
try {
int pageIndex;

// Create selection tree viewer page
selectionTreeEditorPart = new SelectionTreeEditorPart(this);
pageIndex = addPage(selectionTreeEditorPart, getEditorInput());
setPageText(pageIndex, getString("_UI_SelectionPage_label"));

4.4 Developing a Requirements Diagram 129

ptg6022785

selectionTreeEditorPart.setInput(getEditingDomain()
.getResourceSet());

} catch (PartInitException e) {
RequirementsEditorPlugin.INSTANCE.log(e);

}

// Removed all remaining pages original generated here

getSite().getShell().getDisplay().asyncExec(new Runnable() {
public void run() {
setActivePage(0);

}
});

}
//. . .

}

Selection Handling

Before we clean up our RequirementsEditor class, we need to fix the selec-
tion handling we disrupted by splitting up the editor. MultiPageEditorPart
already provides a mechanism to handle selection changes, so we can refactor the
code to use it. We add a MultiPageSelectionProvider selection
Provider attribute to the class and initialize it in the constructor. We then set
this instance as the sitewide provider in the init() method, thereby eliminating
the need for the editor to implement ISelectionProvider. Changes are
in bold.

MultiPageSelectionProvider selectionProvider;

private int diagramPageIndex;

/**
* This creates a model editor.
* Modified to initialize selection provider.
*
* @generated NOT
*/
public RequirementsEditor() {
super();
initializeEditingDomain();
selectionProvider = new MultiPageSelectionProvider(this);
selectionProvider.addSelectionChangedListener(new
ISelectionChangedListener()
{
public void selectionChanged(SelectionChangedEvent event) {
setStatusLineManager(event.getSelection());
IEditorPart activeEditor = getSite().getPage().getActiveEditor();
if (selectionProvider.getMultiPageEditor().equals(activeEditor)

130 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

&& getActivePage() == diagramPageIndex) {
diagramEditor.updateSelectionActions();

}
}

});
}

public void init(IEditorSite site, IEditorInput editorInput) {
// . . .
site.setSelectionProvider(selectionProvider);
// . . .

}

The selectionChanged() method calls upon a new updateSelection
Actions() method that we add to our RequirementsDiagramEditor, which
appears here:

public void updateSelectionActions() {
updateActions(getSelectionActions());

}

In the handleActivate() method, we need to leverage the selection
Provider as well (changes in bold):

/**
* Handles activation of the editor or its associated views.
* Modified to use selection provider.
*
* @generated NOT
*/
protected void handleActivate() {
// Recompute the read only state.
if (editingDomain.getResourceToReadOnlyMap() != null) {
editingDomain.getResourceToReadOnlyMap().clear();

// Refresh any actions that may become enabled or disabled.
selectionProvider.setSelection(selectionProvider.getSelection());

}

// . . .
}

Our setCurrentViewer() method becomes much simpler because it no
longer needs to deal with selection handling.

/**
* This makes sure that one content viewer, either the current page or
* the outline view, if it has focus, is the current one.

4.4 Developing a Requirements Diagram 131

ptg6022785

* Modified to remove selection handling.
*
* @generated NOT
*/
public void setCurrentViewer(Viewer viewer) {
if (currentViewer != viewer) {

currentViewer = viewer;
}

}

Finally, we need to refactor our handleContentOutlineSelection()
method.

/**
* This deals with how we want selection in the outline to affect
* the other views.
* Modified to update selection handling.
*
* @generated NOT
*/
public void handleContentOutlineSelection(Iselection selection) {

if (!selection.isEmpty() && selection instanceof
IStructuredSelection) {
List selectedElements = ((IStructuredSelection)
selection).toList();

if (getActiveEditor() == selectionTreeEditorPart) {
// For the selection viewer, select the same selection
selectionProvider.setSelection(new

StructuredSelection(selectedElements));
} else {
// For others, set the input directly.

((RequirementsEditorPart)getActiveEditor())
.setInput(selectedElements.get(0));

}
}

}

Our editor no longer is responsible for being an ISelectionProvider, so
we can eliminate this interface from the implements list and all associated code.
Attributes selectionChangedListener, selectionChangedListeners,
and editorSelection can be removed, along with their associated
methods addSelectionChangedListener(), removeSelectionChanged
Listeners(), getSelection(), and setSelection(). We no longer need
the currentViewerPane or the viewers, so we can remove these (except
currentViewer) as well. We also can remove the setFocus() and isDirty()
methods.

132 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Finally, we can add the diagram to a page in our editor. Back in create
Pages(), enter the following code and corresponding RequirementsDiagram
Editor diagramEditor class attribute:

private RequirementsDiagramEditor diagramEditor;

public void createPages() {
// . . .
try {
int pageIndex;
// . . .
// Create diagram viewer page
diagramEditor = new RequirementsDiagramEditor();
pageIndex = addPage(diagramEditor, getEditorInput());
setPageText(pageIndex, "Diagram");

} catch (PartInitException e) {
RequirementsEditorPlugin.INSTANCE.log(e);

}
// . . .

}

We need to revisit our handleContentOutlineSelection() method to
take into account the diagram page because we want to map the selection to the
proper EditPart on the diagram (changes in bold):

public void handleContentOutlineSelection(ISelection selection) {
if (!selection.isEmpty() && selection instanceof
IStructuredSelection) {
List selectedElements = ((IStructuredSelection)
selection).toList();

if (getActiveEditor() == selectionTreeEditorPart) {
// . . .

} else if (getActiveEditor() == diagramEditor) {
// For diagrams, map to the appropriate EditPart
ArrayList<Object> selectionList = new ArrayList<Object>();
for (Object selectedElement : selectedElements) {
if (selectedElement instanceof EObject) {
String elementID = EMFCoreUtil.getProxyID((EObject)
selectedElement);

selectionList.addAll(
diagramEditor.getDiagramGraphicalViewer()
.findEditPartsForElement(elementID,
IGraphicalEditPart.class));

}
selectionProvider.setSelection(new
StructuredSelection(selectionList));

}
} else {
// . . .

}
}

}

4.4 Developing a Requirements Diagram 133

ptg6022785

If we launch the runtime workbench and open one of our existing
.requirements models, we will see that our editor now has two pages: one the
familiar Selection page, the other our new Diagram page. Although it’s working,
we need to fix a few more items, including the Properties view, which currently
does not respond to diagram selections. Also, you’ll notice that the diagram tool-
bar is missing and that the Outline view has no diagram overview.

Properties View

The explanation for the Properties view not working is obvious. GMF editors use
the tabbed properties by default, but EMF uses the “classic” view. We can update
the RequirementsEditor to implement ITabbedPropertySheet
PageContributor, add method getContributorId(), and update
getPropertySheetPage(). Note that we need to change the type of
propertySheetPage to PropertiesBrowserPage.

/**
* This is the property sheet page.
* Modified to support tabbed properties.
*
* @generated NOT
*/
protected PropertiesBrowserPage propertySheetPage;

/**
* This accesses a cached version of the property sheet.
* Modified to support tabbed properties view.
*
* @generated NOT
*/
public IPropertySheetPage getPropertySheetPage() {
if (propertySheetPage == null) {
propertySheetPage = new PropertiesBrowserPage(this) {
public void setActionBars(IActionBars actionBars) {
super.setActionBars(actionBars);
getActionBarContributor().shareGlobalActions(this, actionBars);
}

};
}

return propertySheetPage;
}

public String getContributorId() {
return diagramEditor.getContributorId();

}

This fixes our diagram page but breaks our tree selection page. The reason
is that the contribution to the *.tabbed.propertySections extension-point

134 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

made in the diagram editor plug-in does not include the raw EMF model types
in our model. We need to add them, as shown here:

<extension
point="org.eclipse.ui.views.properties.tabbed.propertySections">
<?gmfgen generated="false"?>
<propertySections contributorId="org.eclipse.requirements.diagram">

<!-- ... -->
<propertySection

id="property.section.domain"
tab="property.tab.domain"
class="org.eclipse.requirements.diagram.sheet.
RequirementsPropertySection">
<input type="org.eclipse.gmf.runtime.notation.View"/>
<input type="org.eclipse.gef.EditPart"/>
<!-- ... -->
<input type="org.eclipse.requirements.Model"/>
<input type="org.eclipse.requirements.Requirement"/>
<input type="org.eclipse.requirements.RequirementGroup"/>
<input type="org.eclipse.requirements.Comment"/>
<input type="org.eclipse.requirements.Version"/>

</propertySection>
</propertySections>

</extension>

TIP

GMF’s code generation provides merge capabilities for plugin.xml and
MANIFEST.MF files in addition to *.java files, so be sure to mark mod-
ified sections accordingly to prevent overwrite.We changed the generated
attribute of the gmfgen processing instruction to false, with the other
alternative being to remove it altogether. This is analogous to adding
@generated NOT to Java code that is modified.

While we’re here, let’s remove the org.eclipse.ui.editors contribution
from our diagram plug-in manifest because we no longer need it.

Menus and Toolbar

To address the issues with menus and toolbars, we can add two classes pro-
vided in the article to our org.eclipse.requirements.presentation
package: RequirementsMultiPageActionBarContributor and SubAction
BarsExt. These are slightly refactored from the originals and are not covered

4.4 Developing a Requirements Diagram 135

ptg6022785

here. Basically, the first class is a composite ActionBarContributor that han-
dles switching between pages where each has its own contributor. The
second class is a utility class used by the first. To use these classes, we need to
modify two methods—first, the getActionBarContributor() in Require-
mentsEditor:

/**
* Modified to support MultiPageActionBarContributor
*
* @generated NOT
*/
public EditingDomainActionBarContributor getActionBarContributor() {
return (RequirementsActionBarContributor)
((RequirementsMultiPageActionBarContributor) getEditorSite()
.getActionBarContributor()).getTreeSubActionBars().getContributor();

}

In RequirementsEditorPart, we need to modify menuAboutToShow()
as well:

public void menuAboutToShow(IMenuManager manager) {
// pass the request to show the context menu on to the parent editor
((RequirementsActionBarContributor)
((RequirementsMultiPageActionBarContributor) parentEditor

.getEditorSite().getActionBarContributor()).getTreeSubActionBars()
.getContributor()).menuAboutToShow(manager);

}

The new contributor needs to be registered in our editor contribution, replac-
ing the original:

<extension point="org.eclipse.ui.editors">
<editor

id="org.eclipse.requirements.presentation.RequirementsEditorID"
name="%_UI_RequirementsEditor_label"
icon="icons/full/obj16/RequirementsModelFile.gif"
extensions="requirements"
class =

"org.eclipse.requirements.presentation.RequirementsEditor"
contributorClass="org.eclipse.requirements.presentation.

RequirementsMultiPageActionBarContributor">
</editor>

</extension>

Our edit menu actions are still in need of repair. Again, we need to
“upgrade” the EMF-generated editor by having RequirementsEditor

136 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

implement IDiagramWorkbenchPart, with each of its methods delegating to
our diagramEditor:

public Diagram getDiagram() {
return diagramEditor.getDiagram();

}

public IDiagramEditDomain getDiagramEditDomain() {
return diagramEditor.getDiagramEditDomain();

}

public DiagramEditPart getDiagramEditPart() {
return diagramEditor.getDiagramEditPart();

}

public IDiagramGraphicalViewer getDiagramGraphicalViewer() {
return diagramEditor.getDiagramGraphicalViewer();

}

Our diagram plug-in manifest contains contributions to globalAction-
HandlerProviders, each using the ID of the diagram editor. We need to either
modify the IDs to be that of our EMF editor (now multipage), or copy this con-
tribution to the other editor manifest, change the IDs, and make the priorities
higher than the diagram editor. We opt for the second approach here, pasting the
entire globalActionHandlerProviders section into the org.ecilpse.
requiremements.model.editor plugin.xml file, replacing the three
Priorities with Low and changing each of the ViewIds to org.eclipse.
requirements.presentation.RequirementsEditorID.

Creation Wizard

Recall the “Resource contains no diagram” error we received when attempting
to create a new Requirements model using the EMF-generated wizard. The EMF-
generated wizard knows nothing about creating the diagram, which is an
instance of the GMF notation model. We need to modify the performFinish()
method to create and initialize a diagram when the domain model is created
(changes in bold).

/**
* Do the work after everything is specified.
* Modified to include diagram.
*
* @generated NOT
*/
@Override
public boolean performFinish() {

4.4 Developing a Requirements Diagram 137

ptg6022785

try {
// Remember the file.
final IFile modelFile = getModelFile();

// Do the work within an operation.
WorkspaceModifyOperation operation = new WorkspaceModifyOperation()
{
@Override
protected void execute(IprogressMonitor progressMonitor) {
try {
// Create a resource set.
ResourceSet resourceSet = new ResourceSetImpl();

// Get the URI of the model file.
URI fileURI = URI.createPlatformResourceURI(
modelFile.getFullPath().toString(), true);

// Create a resource for this file.
Resource resource = resourceSet.createResource(fileURI);

// Add the initial model object to the contents.
EObject rootObject = createInitialModel();
if (rootObject != null) {
resource.getContents().add(rootObject);

}

// Create the diagram.
Diagram diagram = ViewService.createDiagram(rootObject,
ModelEditPart.MODEL_ID,

RequirementsDiagramEditorPlugin.DIAGRAM_PREFERENCES_HINT);
if (diagram != null) {
resource.getContents().add(diagram);
diagram.setName(fileURI.lastSegment());
diagram.setElement(rootObject);

}

// Save the contents of the resource to the file system.
Map<Object, Object> options = new HashMap<Object, Object>();
options.put(XMLResource.OPTION_ENCODING,
initialObjectCreationPage.getEncoding());

resource.save(options);
} catch (Exception exception) {
RequirementsEditorPlugin.INSTANCE.log(exception);

} finally {
progressMonitor.done();

}
}

};
// . . .

}

We’ll use this Wizard exclusively to create requirements models, so we can
remove the newWizards contribution in our diagram plug-in manifest.

138 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Navigator and Outline

The Project Explorer view in the Resource perspective enables us to drill down
into our .requirements file and navigate its contents. However, if we attempt
to do this, we’ll get ClassCastExceptions in the error log because we have a
diagram contents contribution to the navigatorContent extension-point that
doesn’t know how to handle domain model elements. To fix this issue, we sim-
ply set the activeByDefault property of this contribution to false, as shown
in Figure 4-25. More is involved in making the navigator truly useful, but this at
least avoids the exceptions.

4.4 Developing a Requirements Diagram 139

Figure 4-25 Requirements navigator extension

Our selection trees in the editor and the Outline view both show diagram
content. Later we’ll want to fix the Outline view so that it again gives us the
“bird’s-eye” view of the diagram when the diagram page is selected, but for now
we just filter diagram content from our tree viewers. The process is the same for
both, so we only show the changes made to SelectionTreeEditorPart.
createPartControl() here. The same change needs to be made to
RequirementsEditor.getContentOutlinePage(). As shown here, it’s sim-
ply a matter of adding a ViewerFilter that excludes instances of Diagram
from the view (changes in bold).

@Override
public void createPartControl(Composite parent) {
viewer = new TreeViewer(parent, SWT.MULTI);

ptg6022785

// . . .
ViewerFilter[] outlineFilters = new ViewerFilter[1];
outlineFilters[0] = new ViewerFilter() {

@Override
public boolean select(Viewer viewer, Object parentElement, Object
element) {
return !(element instanceof Diagram);

}
};
viewer.setFilters(outlineFilters);
// . . .

}

At this point, we can run our editor and test its functionality. We still have
some bugs to work out, but it’s largely functional at this point.

Properties Revisited

The default generated properties from both EMF and GMF are simple tables,
with the exception of diagram element properties that use form-based property
sheets. The default is fine for certain property types, but it’s painful to deal with
long text strings such as a requirement’s description property. Even the EMF gen-
erator model’s Property Multiline option is painful because you need to first
open a dialog from the Properties view. In this section, we generate a custom
property sheet tab that we can use to provide a large text area for the description
property.

To begin, open the requirements.gmfgen model and navigate to the
Property Sheet element. Create a new Custom Property Tab element and
populate it according to Table 4-19. Note that we’re interested in only the
Requirement class, so we enter its domain model class and corresponding dia-
gram EditPart class.

Table 4-19 Requirements Custom Property Tab

Element Property Value

Gen Editor Generator

Property Sheet

Custom Property Human Readable Description
Tab Label

Identifier description

Implementation
Class RequirementDescriptionPropertySection

140 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Typed selection filter Generated Types abstractNavigatorItem

Types in selection org.eclipse.requirements.Requirement,
org.eclipse.requirements.diagram.edit.parts.
RequirementEditPart

When we regenerate our diagram, we find the following additions to the
plugin.xml file and the default generated property section class. Note that if
you marked the propertySections element as generated="false" during
the steps to combine editors, you don’t see the new property section. To regen-
erate in this case, set the value to true after backing up the changes and merge
manually afterward.

<extension
point="org.eclipse.ui.views.properties.tabbed.propertyContributor">

. . .
<propertyCategory category="visual"/>
<propertyCategory category="extra"/>

</propertyContributor>
</extension>

<extension point="org.eclipse.ui.views.properties.tabbed.propertyTabs">
. . .
<propertyTab

category="domain"
id="property.tab.domain"
label="%tab.domain"/>

<propertyTab
category="extra"
id="property.tab.description"
label="%tab.description"/>

</propertyTabs>
</extension>

<extension
point="org.eclipse.ui.views.properties.tabbed.propertySections">

<?gmfgen generated="false"?>
. . .
<propertySection

id="property.section.description"
tab="property.tab.description"
class="org.eclipse.requirements.diagram.sheet.
RequirementDescriptionPropertySection">

<input type="org.eclipse.requirements.Requirement"/>
<input type="org.eclipse.requirements.diagram.edit.parts.
RequirementEditPart"/>

<input type="org.eclipse.requirements.diagram.navigator.
RequirementsAbstractNavigatorItem"/>

4.4 Developing a Requirements Diagram 141

ptg6022785

</propertySection>
</propertySections>

</extension>

The generated class extends the runtime’s AdvancedPropertySection
class. This provides the same table style of property view we’re trying to replace,
so we can delete the class content and have it extend the provided
AbstractBasicTextPropertySection class, as shown here. This class pro-
vides a simple text field with code that sets up a forms-based property sheet, just
as we wanted. Some changes we’ve made include the use of a text area and not
a single line text field. Also, we have overridden the unwrap() method to iden-
tify our Requirements class or edit part properly, ensuring that the sheet will
work when selections are made in both the diagram and tree view.

/**
* @generated NOT
*/
public class RequirementDescriptionPropertySection extends
AbstractBasicTextPropertySection {

@Override
protected String getPropertyChangeCommandName() {

return "RequirementDescriptionChangeCommand";
}

@Override
protected String getPropertyNameLabel() {

return "";
}

@Override
protected String getPropertyValueString() {

String description = ((Requirement)
getEObject()).getDescription();

return description == null ? "" : description;
}

@Override
protected void setPropertyValue(EObject object, Object value) {
((Requirement) getEObject()).setDescription((String) value);

}

protected Text createTextWidget(Composite parent) {
Text text = getWidgetFactory().createText(parent,

StringStatics.BLANK,
SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL | SWT.WRAP);

FormData data = new FormData();

142 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

data.left = new FormAttachment(0, 0);
data.right = new FormAttachment(100, 0);
data.top = new FormAttachment(0, 0);
data.bottom = new FormAttachment(100, 0);
data.height = 100;
data.width = 100;

text.setLayoutData(data);
if (isReadOnly()) {
text.setEditable(false);

}
return text;

}

@Override
protected EObject unwrap(Object object) {
if (object instanceof Requirement) {
return (EObject) object;

}
if (object instanceof EditPart) {
Object model = ((EditPart) object).getModel();
return model instanceof
View ? ((View) model).getElement() : null;

}
if (object instanceof View) {

return ((View) object).getElement();
}
if (object instanceof IAdaptable) {
View view = (View) ((IAdaptable) object).getAdapter(View.class);

if (view != null) {
return view.getElement();

}
}
return null;
}

}

Figure 4-26 shows the result. Although we still have some work to do, this
gets us started converting our table view to forms view properties. If you’re inter-
ested in developing a model to define the property sheets and using custom tem-
plates to generate these form-based sheets, take a look at the GMF graphical
definition model editor. This editor provides WYSIWYG editing of figures when
developing diagrams, but it is still in the “experimental” SDK. It also supports the
definition and generation of forms-based property sheets and editors through the
use of a collection of models found in the org.eclipse.gmf.formtk plug-in.

4.4 Developing a Requirements Diagram 143

ptg6022785

Figure 4-26 Requirement description Properties tab

One thing about the Properties view that we notice in our generated GMF
diagrams is that the Properties view cannot handle the selection of multiple dia-
gram elements. For example, try selecting multiple topics in our Mindmap
diagram or selecting multiple requirements in our Requirement diagram. The
Core tab of the Properties view goes blank. To resolve this, open the
RequirementsPropertySection class in our requirements diagram. It’s
located in the org.eclipse.requirements.diagram.sheet package. To
enable multiselection, we need to have the getPropertySource() method
return an instance of EMFCompositePropertySource instead of the generated
PropertySource default. This is the method showing the change:

/**
* Modified to allow for multiselection
* @generated NOT
*/
public IPropertySource getPropertySource(Object object) {
if (object instanceof IPropertySource) {
return (IPropertySource) object;

}
AdapterFactory af = getAdapterFactory(object);
if (af != null) {
IItemPropertySource ips = (IItemPropertySource) af.adapt(object,
IItemPropertySource.class);

if (ips != null) {
return new EMFCompositePropertySource(object, ips,
"Requirements");

}
}
if (object instanceof IAdaptable) {
return (IPropertySource) ((IAdaptable)

144 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

object).getAdapter(IPropertySource.class);
}
return null;

}

This displays the properties of selected items for edit in the Properties view,
but only if they are of the same type. However, we want only properties that
make sense to change on multiple elements at a time to be editable. It doesn’t
make sense to change all the requirement IDs to the same value, for example. We
leave this refinement as a future enhancement and move on to our next diagram.

4.5 Developing the Scenario Diagram

As mentioned already, we want to leverage the BPMN notational elements for
our Scenario diagram. Unfortunately, no BPMN2 diagramming component
exists within MDT, and the BPMN project within the SOA Tools project uses an
older version of GMF and does not generate its figures to a standalone plug-in.
Fortunately, this gives us an opportunity to show how this is done as we develop
this diagram.

4.5.1 Graphical Definition

The BPMN specification defines many notational elements. We start with those
to be used in our scenario diagram, but the idea is to create a figures plug-in that
can be reused as a reusable library for any BPMN-based diagram. To begin, we
create a new org.eclipse.dsl.bpmn project and, within it, a new bpmn.
gmfgraph model in the /diagrams folder. In this case, we’re interested in only
the graphical definition, which we can use to generate a standalone plug-in and
mirrored.gmfgraph model that we’ll be referencing in our scenario diagram
definition.

TIP

Some workflow issues arise when dealing with standalone figure bundles,
so it’s typically easier to first develop the default way using figures gener-
ated and included in the generator model. When the diagram is mostly
completed, generate the figure bundle and load the mirrored.
gmfgraph model into your mapping model to change references.

4.5 Developing the Scenario Diagram 145

ptg6022785

Each of the elements defined in our graphical definition is covered in a later
subsection. Although we could define them all and then do the tooling and map-
ping, it’s typically better to work iteratively. So although in each section it
appears as though it was all done in a waterfall manner, the figures, their tool-
ing, and their mappings actually were all done one or two at a time with many
gmfmap→ gmfgen→ code iterations in between.

Also, notice the use of Figure Ref elements in the graphical definition.
BPMN has several elements that contain common internal notation, so this reuse
capability prevents copying/pasting/updating figures. For example, the envelope
image in Figure 4-27 can appear within three different Event types.

146 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-27 Figures with inner elements

TIP

Notice that myUseLocalCoordinates is set to false by default when
using Figure Ref, so you might want to change it to true if your figure
contains another figure.This was the case with our envelope inner element;
otherwise, it did not appear within the parent circle.

Task and Subprocess

We begin by creating a Task figure, which will be similar to our mindmap Topic
figure, including the modifications we’ll do to fix the stack layout and text wrap-
ping covered in Section 4.3.5, “Topic Figure Layout.” Figure 4-28 shows these
elements, along with their figure and node settings, beginning with a Task.
Table 4-28 shows the detail of the Task figure definition.

Task Subprocess Task with
Border Item

Figure 4-28 Scenario task figures

ptg6022785

Table 4-20 BPMN Task Figure Definition

Element Property Value

Figure Gallery Name BPMN Figures

Figure Descriptor Name NamedRoundedRectangle

RoundedRectangle Name NamedRoundedRectangle

Stack Layout

Minimum Size Dx, Dy 80, 40

Preferred Size Dx, Dy 80,40

Insets Bottom, Left, Right, Top 5, 5, 5, 5

Label Name Name

Child Access Figure Label Name

Node Name Task

Figure Figure Descriptor
NamedRoundedRectangle

We don’t want Task items to be sized below a defined minimum, which is
also the preferred size. As such, we don’t need to set a Default Size Facet
on the node element. As mentioned, Tasks can have border items, as shown in
Figure 4-28. The Affixed Parent Size property used to enable this capabil-
ity is set on the border item itself, as described in Section 4.5.1, “Events.”

A Subprocess is similar to a Task element, with the addition of a small box
with a plus sign located at the bottom center. Additional decorators are defined
in the specification to indicate looping, parallelism, and so on, but these are not
covered here. Table 4-21 defines the Subprocess figure and node.

Table 4-21 BPMN Subprocess Figure Definition

Element Property Value

Figure Gallery Name BPMN Figures

Figure Descriptor Name CollapsedNameRoundedRectangle

Rounded Rectangle Name CollapsedNameRoundedRectangle

Border Layout

Minimum Size Dx, Dy 80, 40

Preferred Size Dx, Dy 80, 40

4.5 Developing the Scenario Diagram 147

(continues)

ptg6022785

Table 4-21 BPMN Subprocess Figure Definition (continued)

Element Property Value

Insets Bottom, Left, Right, Top 0, 5, 5, 5

Rectangle Name NameArea

Fill False

Outline False

Border Layout Data Alignment CENTER

Vertical True

Stack Layout

Label Name ProcessName

Rectangle Name CollapseArea

Fill False

Outline False

Border Layout Data Alignment END

Vertical True

Grid Layout

Insets Bottom, Left, Right, Top 0, 0, 0, 5

Figure Ref Figure Rectangle ExpandBox

Child Access Figure Label ProcessName

Rectangle Name ExpandBox

Fill False

Grid Layout Data Grab Excess Horizontal
Space True

Stack Layout

Maximum Size Dx, Dy 10, 10

Minimum Size Dx, Dy 10, 10

Preferred Size Dx, Dy 10, 10

Insets Bottom, Left, Right, Top 0, 1, 0, –1

148 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Label Name Plus

Text +

Node Name CollapsedSubprocess

Figure Figure Descriptor
CollapsedNamedRoundedRectangle

We need to point out a few things in this graphical definition. First, a Figure
Ref element points to the ExpandBox figure at the root of the Figure
Gallery. The reason for this reference is that we will likely create additional
subprocess figure elements to include decorations for additional types, thereby
allowing reuse of this figure. Note that the plus symbol (+) itself for the box is
an ordinary Label element, not a polyline. Using text elements such as this is not
always a good idea because diagram scaling might not work as desired. Its use
here is illustrative.

Also note the use of layout elements to achieve a text area on top with the
ExpandBox figure centered at the bottom of the Subprocess node. A combina-
tion of Grid, Border, and Stack layouts is used.

TIP

When working with complex figures, it’s helpful to add a line border or fill
to see how layout and placement work. See Section 9.1.3, “Painting,” for
information on how GEF figures are composed.

Gateways

The Gateway item is a simple diamond but is decorated by an internal figure
depending on the type: exclusive, inclusive, or parallel. The exclusive gateway
has no decoration, and the specification has variants we don’t implement here.
The inclusive gateway has a heavy-lined inner circle figure, and the parallel gate-
way has a “plus” sign at its center, as seen in Figure 4-29. Table 4-22 defines each
figure, as well as an image of the exclusive, inclusive, and parallel gateway fig-
ures (from left to right).

4.5 Developing the Scenario Diagram 149

ptg6022785

Figure 4-29 BPMN gateway figure definitions

Table 4-22 BPMN Gateway Figure Definitions

Element Property Value

Figure Gallery Name BPMN Figures

Figure Descriptor Name BasicDiamond

Rectangle Name BasicDiamond

Fill False

Outline False

Stack Layout

Polygon Name Diamond

Template Point X, Y 15, 0

Template Point X, Y 0, 15

Template Point X, Y 15, 30

Template Point X, Y 30, 15

Figure Descriptor Name DiamondPlus

Rectangle Name DiamondPlus

Fill False

Outline False

Stack Layout

Polygon Name Diamond

Template Point Same points as above *

Polyline Name Vertical

Template Point X, Y 15, 8

Template Point X, Y 15, 22

Polyline Name Horizontal

Template Point X, Y 8, 15

Template Point X, Y 22, 15

150 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Figure Descriptor Name DiamondCircle

Rectangle Name DiamondCircle

Fill False

Outline False

Stack Layout

Polygon Name Diamond

Template Point Same points as above *

Rectangle Name HeavyOutlineCircle

Fill False

Outline False

Stack Layout

Insets Bottom, Left, Right, Top 7, 7, 7, 7

Ellipse Name Circle

Line Width 3

Node Name ExclusiveGateway

Figure BasicDiamond

Resize Constraint NONE

Default Size Facet

Dimension Dx, Dy 30, 30

Node Name InclusiveGateway

Figure DiamondCircle

Resize Constraint NONE

Default Size Facet Same as above

Node Name ParallelGateway

Figure DiamondPlus

Resize Constraint NONE

Default Size Facet Same as above

* It should be possible to use a Figure Ref element here to point to a single Diamond figure defini-
tion, as we use elsewhere. At the time of this writing, the generated code is incomplete.

4.5 Developing the Scenario Diagram 151

ptg6022785

Note that the figures are fixed in size, although it would be possible to define
each as scalable figures. Also note that each will be fully generated, with no tem-
plate or code modification.

TIP

Use the Default Size facet of a node element to give it the desired size
upon creation. In the figure definition, you can also set maximum, minimum,
and preferred sizes.

Events

As with Gateways, many flavors of Event notation elements exist, as shown in
Figure 4-30. The basic shape is a circle, with the outline determining its type. A
normal outline (single line) represents a Start Event, and a thick border outline
represents an End Event. A double outline represents an Intermediate Event.
Within the circle, numerous “triggers” are defined in the spec, although only the
definition of a message trigger (envelope) is provided here. Following are exam-
ples of Start, Intermediate, and End Event elements and their corresponding
Message trigger alternatives. Table 4-23 gives figure and node definitions.

152 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-30 BPMN events

Table 4-23 BPMN Event Figure Definitions

Element Property Value

Figure Gallery Name BPMN Figures

Figure Descriptor Name BasicCircle

Rectangle Name BasicCircle

Fill False

Outline False

Stack Layout

ptg6022785

Element Property Value

Ellipse Name Circle

Figure Descriptor Name DoubleCircle

Rectangle Name DoubleCircle

Fill False

Outline False

Stack Layout

Ellipse * Name Circle

Figure Descriptor Name HeavyOutlineCircle

Rectangle Name HeavyOutlineCircle

Fill False

Outline False

Stack Layout

Ellipse Name Circle

Line Width 3

Figure Descriptor Name BasicCircleWithEnvelope

Rectangle Name BasicCircleWithEnvelope

Fill False

Outline False

Stack Layout

Ellipse Name Circle

FigureRef Figure Polyline Envelope

Figure Descriptor Name DoubleCircleWithEnvelope

Same as DoubleCircle above with Fig Ref to Envelope

Figure Descriptor Name HeavyOutlineCircleWithEnvelope

Same as HeavyOutlineCircle above with Fig Ref to Envelope

Polyline Name Envelope

Template Point X, Y 5, 6

Template Point X, Y 14, 6

Template Point X, Y 14, 13

Template Point X, Y 5, 13

4.5 Developing the Scenario Diagram 153

(continues)

ptg6022785

Table 4-23 BPMN Event Figure Definitions (continued)

Element Property Value

Template Point X, Y 5, 6

Template Point X, Y 9, 10

Template Point X, Y 10, 10

Template Point X, Y 14, 6

Node Name StartEvent

Figure Figure Descriptor BasicCircle

Resize Constraint NONE

Default Size Facet

Dimension Dx, Dy 20, 20

Node Name EndEvent

Figure Figure Descriptor HeavyOutlineCircle

Otherwise, same as StartEvent node

Node Name IntermediateEvent

Figure Figure Descriptor DoubleCircle

Otherwise, same as StartEvent node

Node Name MessageStartEvent

Figure Figure Descriptor
BasicCircleWithEnvelope

Otherwise, same as StartEvent node

Node Name MessageIntermediateEvent

Figure Figure Descriptor
DoubleCircleWithEnvelope

Otherwise, same as StartEvent node

Node Name MessageEndEvent

Figure Figure Descriptor
HeavyOutlineCircleWithEnvelope

Otherwise, same as StartEvent node

154 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Node Name BorderedIntermediateEvent

Figure Figure Descriptor DoubleCircle

Affixed Parent Side NSEW

Otherwise, same as StartEvent node

Node Name BorderedMessageIntermediateEvent

Figure Figure Descriptor
DoubleCircleWithEnvelope

Affixed Parent Side NSEW

Otherwise, same as StartEvent node

*Note that the DoubleCircle definition is identical to the BasicCircle. We modify the generated
code in Section 4.5.4, “Intermediate Event Outline,” to draw the second outline.

These figures are fairly straightforward, with the most complex part being
the definition of the Envelope. Note that in addition to reuse of the Envelope
using Figure Ref elements, figure reuse takes place in Node definitions (for
example, as I used in the DoubleCircle node for both the standalone and bor-
der item Intermediate Event).

Connections

BPMN has several connection types, including Association, Message Flow, and
Sequence flow, which are covered here. These are straightforward definitions,
with the exception of the source decoration on the Message Flow—we need to
code it by hand and reference it as a Custom Figure. Figure 4-31 shows images
of each connection we define in Table 4-24: Normal Sequence Flow, Default
Normal Sequence Flow, Association, Directed Association, and Message Flow
(from top to bottom).

4.5 Developing the Scenario Diagram 155

Figure 4-31 BPMN connection types

ptg6022785

Table 4-24 BPMN Connection Figure Definitions

Element Property Value

Figure Gallery Name BPMN Figures

Implementation Bundle org.eclipse.bpmn.figures *

Figure Descriptor Name SolidLineClosedArrow

Polyline Connection Name SolidLineClosedArrow

Target Decoration Polygon Decoration ClosedArrow

Polygon Decoration Name ClosedArrow

Background Color Value black

Template Point X, Y 0, 0

Template Point X, Y –1, 1

Template Point X, Y –1, –1

Template Point X, Y 0, 0

Figure Descriptor Name DashedLineOpenArrow

Polyline Connection Name DashedLineOpenArrow

Target Decoration Polyline Decoration OpenArrow

Line Kind LINE_DASH

Polyline Decoration Name OpenArrow

Template Point X, Y –1, 1

Template Point X, Y 0, 0

Template Point X, Y –1, –1

Figure Descriptor Name DashedLine

Polyline Connection Name DashedLine

Line Kind LINE_DASH

Figure Descriptor Name DashedLineCircleAndHollowPoint

Polyline Conection Name DashedLineCircleAndHollowPoint

Target Decoration Polygon Decoration ClosedArrow

Source Decoration Custom Decoration CircleDecoration

Line Kind LINE_DASH

Polygon Decoration Name ClosedArrow

156 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Background Color Value white

Template Point X, Y 0, 0

Template Point X, Y –1, 1

Template Point X, Y –1, –1

Template Point X, Y 0, 0

Custom Decoration Name CircleDecoration

Qualified Class Name org.eclipse.bpmn.figures.
CircleDecoration

Custom Attribute Name radius

Value 3

Figure Descriptor Name SolidLineSlashAndClosedArrow

Polyline Connection Name SolidLineSlashAndClosedArrow

Source Decoration Polyline Decoration Slash

Target Decoration Polygon Decoration ClosedArrow

Polyline Decoration Slash

Template Point X, Y –2, –1

Template Point X, Y –1, 1

Figure Descriptor Name SimpleLabel

Label Name SimpleLabel

Connection Name Association

Figure Figure Descriptor DashedLine

Connection Name DirectedAssociation

Figure Figure Descriptor
DashedLineOpenArrow

Connection Name NormalFlow

Figure Figure Descriptor
SolidLineClosedArrow

Connection Name Message

Figure Figure Descriptor
DashedLineCircleAndHollowPoint

4.5 Developing the Scenario Diagram 157

(continues)

ptg6022785

Table 4-24 BPMN Connection Figure Definitions (continued)

Element Property Value

Connection Name DefaultNormalFlow

Figure Figure Descriptor
SolidLineSlashAndClosedArrow

Diagram Label Name Name

Figure Figure Descriptor SimpleLabel

* We specify the Implementation Bundle property here as we reference a Custom Figure for
our Message Flow source decorator. This allows the generated code to include the proper plug-in
dependency while we develop the diagram. When the standalone figures plug-in is generated, this value
automatically is entered into the generated mirrored.gmfgraph model, and we separate our custom
code into its own project source path.

Note the Diagram Label and associated Label figure. This label is generic
for all external labeling needs, such as that used by the Normal Flow connec-
tions in the mapping model. This represents another form of reuse because this
single external label is used for connections and our Data Object node, as
shown in the next section.

Data Object

A Data Object in BPMN refers to an artifact that can be associated with a flow
object using an Association link or can be passed with a sequence flow. The nota-
tion is a simple document and uses the traditional dog-ear corner. Figure 4-32
shows an example of the Data Object being used in both directed and nondi-
rected associations; Table 4-25 gives its figure and node definition.

158 CHAPTER 4 • Developing a DSL Graphical Notation

Send Purchase
Order

Purchase Order

PO

Review
Purchase Order

Figure 4-32 BPMN data object

ptg6022785

Table 4-25 BPMN Data Object Figure Definition

Element Property Value

Figure Gallery Name BPMN Figures

Figure Descriptor Name Document

Rectangle Name Document

Fill False

Outline False

Stack Layout

Polygon Name DogEarPage

Template Point X, Y 16, 0

Template Point X, Y 20, 4

Template Point X, Y 20, 25

Template Point X, Y 0, 25

Template Point X, Y 0, 0

Template Point X, Y 16, 0

Template Point X, Y 16, 4

Template Point X, Y 20, 4

Child Access Figure Label SimpleLabel

Node Name DataObject

Figure Figure Descriptor Document

Resize Constraint NONE

Default Size Facet

Dimension Dx, Dy 20, 25

Aside from the list of Template Points, this figure definition is nothing
special. Note the use of Default Size Facet again, as well as NONE for the
Resize Constraint. The default size of a node is 40×40, which would leave
our document within a larger rectangle when selected. Not only does this look
odd, but it also prevents connections from reaching their true target.

4.5.2 Tooling Definition

We have several types of certain tools, so here we exploit the use of stacks in our
scenario diagram palette definition. We also show in our mapping model that we
can reuse a tool to create more than one type of node, even without a stack of

4.5 Developing the Scenario Diagram 159

ptg6022785

tools or a pop-up menu. In this case, the Events that are placed either on the dia-
gram or on the border of a Task use the same tool; the target of the mouse deter-
mines the proper context for the tool, to determine the correct node to create.

BEST PRACTICE

When designing a palette, try not to get too carried away with drawers and
stacks. If all your tools can easily fit into the vertical space expected to be
available given the default height of the diagram, there’s really no need for
drawer functionality. Similarly, stacking tools can be more of a burden to
the user than a benefit, so be sure to test your palette on a Practitioner to
get feedback on its usability.

Figure 4-33 shows our scenario.gmftool model and its generated palette.
A palette with one of its stacked tools expanded is also shown. Creating the
model is straightforward; the only noteworthy step is to set the Stack property
to true for nested Tool Group elements. Note that the palette shows nonde-
fault icons, which are added in Chapter 8, “DSL Packaging and Deployment.”

160 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-33 Scenario palette definition

ptg6022785

TIP

Be sure to not give Tool entries the same name, even when they are in
different groups or stacks. If you do, the generated code will produce mes-
sage strings with the same name. The solution is to alter the generator
model or give unique names to Tool entries in the model and change the
properties file later.

4.5.3 Mapping Definition

The mapping definition for the scenario diagram is fairly straightforward
because the main elements containment reference of the Process class will be
used to store all elements other than border events, which are stored in the events
containment reference of the Task class. Each of these sections follows that of
the graphical definition section and discusses the mapping of each major diagram
element, leaving the particulars to be explored in the supplied sample code. Table
4-26 shows the mappings with details for the Canvas Mapping.

Table 4-26 Scenario Canvas Mapping

Element Property Value

Mapping

Canvas Mapping Domain Model scenario

Element Process -> Element

Palette Palette ScenarioPalette

Diagram Canvas Canvas BPMN

Task and Subprocess

Task mapping is the most complicated because of the border items of a Task,
although it is straightforward, given the mappings we’ve accomplished so far in
the book. Table 4-27 shows the mapping structure.

4.5 Developing the Scenario Diagram 161

ptg6022785

Table 4-27 Scenario Task Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Process.elements : Element

Node Mapping Element Task -> Element

Diagram Node Node Task (NamedRoundedRectangle)

Tool Creation Tool Task

Feature Label Mapping Diagram Label Diagram Label TaskName

Features Element.name : EString

Child Reference Containment Feature Task.events : Event

Node Mapping Element Event -> Element

Diagram Node Node BorderedIntermediateEvent
(DoubleCircle)

Tool Creation Tool Intermediate

Constraint Body eventType = EventType::
INTERMEDIATE and triggerType =
TriggerType::NONE

Feature Seq Initializer Element Class Event -> Element

Feature Value Spec Body EventType::INTERMEDIATE

Feature Event.eventType : EventType

Feature Value Spec Body TriggerType::NONE

Feature Event.triggerType : TriggerType

Child Reference Containment Feature Task.events : Event

Node Mapping Element Event -> Element

Diagram Node Node
BorderedMessageIntermediateEvent
(DoubleCircleWithEnvelope)

Tool Creation Tool Message Intermediate

162 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Constraint Body eventType = EventType::
INTERMEDIATE and triggerType =
TriggerType::MESSAGE

Feature Seq Initializer Element Class Event -> Element

Feature Value Spec Body EventType::INTERMEDIATE

Feature Event.eventType : EventType

Feature Value Spec Body TriggerType::MESSAGE

Feature Event.triggerType : TriggerType

Two Child Reference elements represent the two Event border items:
BorderedIntermediateEvent and BorderedMessageIntermediate
Event. These elements are stored in the Task’s events : Event Containment
Feature. For their Node Mapping, they use their corresponding Node defini-
tion but the same Creation Tool we use for these events when placed on the
diagram surface (Intermediate and Message Intermediate).

To distinguish border Events, as they represent instances of the same Event
class from our domain model, we use Constraint and Feature Seq
Initializer elements. As shown in the mapping, both the eventType and
triggerType attributes are specified in the constraint and feature initialization.

The CollapsedSubprocess node is mapped in much the same manner, yet
it has no Child Reference elements. Section 4.5.6, “Subprocess Partition,”
covers how to use the Related Diagrams property of the Node Mapping,
enabling us to double-click on a Process element and open it in a new diagram.

Gateways

All Gateway elements map in a similar manner because they all represent a
Gateway domain element initialized to different GatewayType enumeration lit-
erals. Table 4-28 gives the mapping, where, again, the Top Level Node
Containment Feature is set to our Process elements:Element reference.

4.5 Developing the Scenario Diagram 163

ptg6022785

Table 4-28 Scenario Gateway Mappings

Element Property Value

Mapping

Top Node Reference Containment Feature Process.elements : Element

Node Mapping Element Gateway -> Element

Diagram Node Node ExclusiveGateway
(BasicDiamond)

Tool Creation Tool Exclusive

Constraint Body gatewayType = GatewayType::XOR

Feature Seq Initializer Element Class Gateway -> Element

Feature Value Spec Body GatewayType::XOR

Feature Gateway.gatewayType : GatewayType

Events

Again, we can map each of our Event nodes to their corresponding Event
domain element and add a Constraint and Feature Seq Initializer to
set the eventType and triggerType attributes accordingly. All of the six
Event mappings are done in the same manner, as seen in Table 4-29.

Table 4-29 Scenario Event Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Process.elements : Element

Node Mapping Element Event -> Element

Diagram Node Node StartEvent (BasicCircle)

Tool Creation Tool Start

Constraint Body eventType = EventType::START and
triggerType = TriggerType::NONE

Feature Seq Initializer Element Class Event -> Element

Feature Value Spec Body EventType::NONE

Feature Event.eventType : EventType

Feature Value Spec Body TriggerType::NONE

Feature Event.triggerType::TriggerType

164 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Connections

We must define five Link Mapping elements, with all but the Message Flow
mapping following the pattern given. For Message Flow, only one type exists, so
there is no need to add the child Constraint and Feature Seq Initializer
elements as with the rest. Each link maps to the Connection class in the domain
element, with our usual Containment Feature of the Process
elements:Element reference. A Source Feature and Target Feature are
specified, mapping to the source:Element and target:Element references,
respectively. The appropriate isDirected constraint and initializer are set for
the Association mappings, while the isDefault property is checked or ini-
tialized for the Sequence Flow mappings. Each Link Mapping has an exter-
nal Feature Label Mapping for the name attribute, as seen in Table 4-30.

Table 4-30 Scenario Link Mappings

Element Property Value

Mapping

Link Mapping Containment Feature Process.elements : Element

Element Association -> Connection

Source Feature Connection.source : Element

Target Feature Connection.target : Element

Diagram Link Connection DirectedAssociation

Tool Creation Tool Directed Association

Constraint Body isDirected = true

Feature Seq Initializer Element Class Association -> Connection

Feature Value Spec Body true

Feature Association.isDirected : EBoolean

Data Object

The Data Object mapping is the most basic, with just a Node Mapping for the
DataObject domain element to its corresponding DataObject node and
Creation Tool, along with a Feature Label Mapping for its name:
EString attribute.

4.5 Developing the Scenario Diagram 165

ptg6022785

4.5.4 Generation

As usual, we invoke the transformation from mapping to generator model using
the context menu Create Generator Model on our scenario.gmfmap model. In
the generator model, we change the Diagram File Extension property to
scenario, and we set the Same File For Diagram And Model property to
true, as seen in Figure 4-34.

166 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-34 Scenario GMF generator model

We next generate our scenario diagram plug-in and move on to making some
of the necessary code changes—or you can run the diagram now to see how it
looks.

Border Item Adjustment

Our border item Event nodes are offset by default so that the edge of the node
meets the edge of the parent. For our Event nodes, we want them to straddle the
border, so we must modify the addFixedChild() method of the parent
TaskEditPart class to set the offset to half the diameter of the Event circle fig-
ure. The modified method follows, showing the general EventXEditPart mod-
ification, where X is replaced by the number of each side-affixed event. A better
solution would be to use childEditPart.getSize().width/2 to calculate
the offset. Changes appear in bold.

/**
* Modified to add border offset for overlapping event nodes
*
* @generated NOT
*/
protected boolean addFixedChild(EditPart childEditPart) {
if (childEditPart instanceof TaskNameEditPart) {

ptg6022785

((TaskNameEditPart) childEditPart).setLabel(getPrimaryShape()
.getFigureRoundedRectangleNameLabel());

return true;
}
if (childEditPart instanceof EventXEditPart) {

BorderItemLocator locator = new BorderItemLocator(getMainFigure(),
PositionConstants.NONE);

locator.setBorderItemOffset(new Dimension(getMapMode().DPtoLP(10),
getMapMode().DPtoLP(10)));

getBorderedFigure().getBorderItemContainer().add(
((Event2EditPart) childEditPart).getFigure(), locator);

return true;
}
return false;

}

Figure 4-35 shows the result of the change, showing the before and after
versions.

4.5 Developing the Scenario Diagram 167

A Task Another Task A Task Another Task

Figure 4-35 Task border item

Intermediate Event Outline

Our graphical definition model has no “double line” option, so we need to write
some custom code to create a double outline for our intermediate event. We can
do this in several ways, including nesting figures. It seems easiest to simply over-
ride the outlineShape() method in our generated Ellipse figure. Following
is the modification made to accomplish this, though it won’t work if we have a
line width other than 1. Fortunately, we know that we won’t, because otherwise
we’d take the time to put the additional logic in the templates and provide a
decorator model for our graphical definition model. The following code is found
in the generated Event2EditPart class. After generating the figures plug-in
in Section 4.5.5, “Generating the Figures Plug-In,” you can find the code to
modify in org.eclipse.bpmn.figures.DoubleCircle and associated
DoubleCircleWithEnvelope.

/**
* Modified to draw double outline, assuming lineWidth == 1
*
* @generated NOT
*/

ptg6022785

private void createContents() {
Ellipse circle0 = new Ellipse(){
@Override
protected void outlineShape(Graphics graphics) {
super.outlineShape(graphics);
Rectangle inner = Rectangle.SINGLETON;
inner.width = getBounds().width - 5;
inner.height = getBounds().height - 5;
inner.x = getBounds().x + 2;
inner.y = getBounds().y + 2;
graphics.drawOval(inner);

}
};
this.add(circle0);

}

Figure 4-36 shows an example of our Scenario diagram to this point.

168 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-36 Scenario diagram

4.5.5 Generating the Figures Plug-In

We must generate a standalone figures plug-in for use in our diagram. As men-
tioned earlier, this is the preferred way to develop GMF diagrams, but it comes
at the expense of a slightly complicated workflow. Begin by right-clicking on the
bpmn.gmfgraph model and select Generate Figures Plug-In. Specify the name
org.eclipse.bpmn.figures for the plug-in name and select the Use
IMapMode and Utilize Enhanced Features of GMF Runtime options before
clicking Finish, as seen in Figure 4-37.

ptg6022785

Figure 4-37 Figure Gallery Generator dialog

Upon finishing, you will observe a new plug-in project with generated figures
code and a mirrored.gmfgraph model. If you compare this model to our orig-
inal, you’ll note that it contains identical canvas elements (nodes, connections,
diagram labels), but the figures are all declared as custom with references to their
generated classes.

From now on, when working with figures, you need to regenerate the plug-
in and mirrored.gmfgraph model. The complication here is that the model is
not in the same resource set as your gmfmap model, and changes are not
reflected in referenced elements. This means it’s a good practice to design your
figures up front; if you do make a change, be sure to return to your mapping
model after regeneration and update any references that might have been
impacted. The mapping model references only canvas elements, not elements
within the Figure Gallery, so it is cause for concern only when changing
nodes, compartments, links, and diagram labels.

TIP

Recall from our earlier discussion that working with generated figure plug-
ins introduces the complication of synchronizing with an external
mirrored.gmfgraph model. Currently there’s no way of using GMF to
change elements in a gmfgraph model, regenerate the mirrored.
gmfgraph and figures, and have the changes propagated to the mapping
model within the same resource set. Currently, the best approach when
working with mirrored.gmfgraph models is to remove references

4.5 Developing the Scenario Diagram 169

ptg6022785

from the gmfmap model first, and then update the source gmfgraph and
regenerate the mirror. New elements will appear at the end of the con-
tainment lists and, therefore, not break anything.

At this point, we’re ready to change our scenario.gmfmap model to use
the mirrored.gmfgraph now located in our org.eclipse.bpmn.figures
project. Unfortunately, GMF does not provide a Migrate to Standalone Figures
utility GMF, so we’re left to make the changes manually in a text editor. In our
case, it’s a straightforward search and replace of all bpmn.gmfgraph occur-
rences with platform:/resource/org.eclipse.bpmn.figures/
models/mirrored.gmfgraph; we can use Validate to ensure that we didn’t
make a mistake. Note that we use the platform:/resource/... URI type and
not the usual relative path. If we were referencing a deployed plug-in in our envi-
ronment or target, we’d use platform:/plugin/... instead, which should
make updating this mapping model easy if we deploy these figures.

We have to do a couple more things before we regenerate our diagram.
Recall that we previously had figures generated during the gmfmap → gmfgen
transformation, so our figures are currently located in our EditParts as inner
classes. First, we want to relocate our custom CircleDecoration class into our
new figures plug-in, but in a new src-custom source folder. This makes our
regeneration easier because we don’t have to worry about deleting this custom
class. Also, this class will be available to other diagrams that want to use the dec-
oration for other links. In fact, we can go back to our Mindmap diagram and ref-
erence this decoration. After we copy the class into the /src-custom/org/
eclipse/bpmn/figures folder, our generated figures code will compile with-
out error.

The second thing we do is move the bpmn.gmfgraph model to our gener-
ated figures plug-in. This keeps the original source model near its mirror and
makes the source figures available to those who are creating diagrams and want
to extend them instead of using only the mirror’s custom figure elements. We can
later modify the graphical definition and regenerate the figures code into this
same project.

BEST PRACTICE

When using generated figure plug-ins and mirrored.gmfgraph models,
it’s a good idea to include the original graphical definition in the generated
plug-in for later regeneration and to make it available for source-level reuse
of the figures. Note that subsequent regeneration of the figures plug-in

170 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

onto itself creates a new mirrored.gmfgraph model in the root of the
plug-in, so be sure to move it to its original location in the /models folder
in place of the previous version.

Now that we’ve separated figures from our model, we can re-create our
generator model and regenerate the scenario diagram. Notice that the updated
scenario.gmfgen model no longer contains serialized figures, but references
our org.eclipse.bpmn.figures plug-in, which has been added to our
diagram’s dependency list. At this point, we need to reimplement the changes
we made to our intermediate event figures (DoubleCircle and
DoubleCircleWithEnvelope) in Section 4.5.4, “Intermediate Event Outline.”
And we need to modify our NamedRoundedRectangle and
CollapsedNamedRoundedRectangle figures to adjust the stack layout and
enable text wrapping of our labels, as described in Section 4.3.5, “Topic Figure
Layout.” If you choose to delete the diagram plug-in entirely, you also need to
make the changes to the TopicEditPart for overlapping events in Section
4.5.1, “Graphical Definition.”

4.5.6 Diagram Partitioning

This section covers the two main use cases for diagram partitioning, which the
Related Diagrams property of a Node Mapping supports. First, we simply
allow subprocess elements on our scenario diagram to open a new diagram edi-
tor page where the subprocess will be modeled. Second, we add the capability for
a Requirement element on our requirements dependency diagram to reference
and open a scenario diagram.

Subprocess Partition

It’s as simple as setting the Related Diagrams property in our scenario.
gmfmap model for the Subprocess Node Mapping to its Canvas Mapping for
the subprocess partition to work. In the scenario.genmodel, this results in an
Open Diagram Behaviour element being added to our Gen Top Level Node
for the subprocess node, as shown in Figure 4-38.

These default generated values give us the desired behavior of double-
clicking on a subprocess node to open an new diagram instance in the editor.
After doing so, open the diagram file in a text editor and notice that, for each
partition, a diagram element exists within the file.

4.5 Developing the Scenario Diagram 171

ptg6022785

Figure 4-38 Scenario open diagram edit policy

Looking at our generated policy class, you can see that it uses the
HintedDiagramLinkStyle from the notation model. If you look at the gener-
ated Process2ViewFactory, you can see how this style is added to our
Subprocess view element.

/**
* @generated
*/
protected List createStyles(View view) {
List styles = new ArrayList();
styles.add(NotationFactory.eINSTANCE.createShapeStyle());
{
HintedDiagramLinkStyle diagramFacet = NotationFactory.eINSTANCE
.createHintedDiagramLinkStyle();

styles.add(diagramFacet);
}
return styles;

}

When we define the next partition, it will be to another diagram type, where
the code will include a call to setHint() so that the open diagram action knows
the type of diagram to open.

Requirement to Scenario Partition

It’s slightly more complicated to have a related diagram be of a type other than
the one specifying the partition, but not a lot more. We want to have a scenario
diagram associated with a requirement and opened from the requirement
dependency diagram. To do this, we need to associate a Process element in our
scenario model from our Requirement element. This is necessary for two rea-
sons: The node that has the Related Diagrams property set must be of the
same type as that representing the canvas of the target diagram, and, as such,
there must be a reference into which created domain elements of that type can be
added when elements are added to the diagram.

172 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

NOTE

This example is a bit contrived but illustrates the approach. Typically, this
technique is used if there are multiple views (diagrams) for a single domain
model, such as the UML. Perhaps a better example would be to associate
state characteristics with our business domain model elements and create
a diagram partition for each class to represent its state behavior.

Opening our requirements.ecore model, we use Load Resource to load
our scenario.ecore model into the resource set. To the Requirement class,
right-click and add a new EReference named scenario of type Process. Set
the Containment property to true. Reload the requirements.genmodel and
add a reference to the scenario.genmodel before clicking Finish. Right-click on
the requirements package root in the genmodel and regenerate the model, edit,
and editor code. If you’re interested, launch and test the requirements editor,
adding a new Process to a Requirement instance. If you do, you’ll notice that
no properties exist for the new Process element, which should remind you to
add the org.eclipse.scenario.Process input type to the diagram plug-ins
propertySections contribution. Otherwise, we move on to modify our
requirements diagram definition to allow new scenario diagram partitions.

Beginning with the requirements.gmfgraph model, we now create a new
BasicDiamond figure in our gallery. This is much the same as our
BasicDiamond figure in the bpmn.gmfgraph model, although it’s smaller
because we intend to add it as a side-affixed node to our Requirements circle.
Table 4-31 lists the additions.

Table 4-31 Diamond Figure Definition

Element Property Value

Canvas

Figure Gallery

Figure Descriptor Name BasicDiamond

Rectangle Name BasicDiamond

Fill False

Outline False

4.5 Developing the Scenario Diagram 173

(continues)

ptg6022785

Table 4-31 Diamond Figure Definition (continued)

Element Property Value

Stack Layout

Polygon Name Diamond

Template Point X, Y 5, 0

Template Point X, Y 0, 5

Template Point X, Y 5, 10

Template Point X, Y 10, 5

Node Name Scenario

Affixed Parent Side NSEW

Resize Constraint NONE

Default Size Facet

Dimension Dx, Dy 10, 10

In our requirements.gmftool model, we add a new creation tool in the
Nodes group for the Scenario element by copying another tool and pasting
into the group.

In the mapping model, to select our scenario diagram canvas for the
Related Diagrams reference, we need to use Load Resource again and load
scenario.gmfmap into the resource set. Next, we create a new Child
Reference to our Requirement Node Mapping and set its Containment
Feature property to our new scenario:Process reference. The child Node
Mapping settings are found in Figure 4-39. Unfortunately, when selecting the
Related Diagrams property, a dialog appears with two Canvas Mapping
entries. The scenario canvas should be the second one on the list, but we can do
our usual verification by opening the model in a text editor.

We’re ready to re-create our requirements.gmfgen model using the normal
sequence, but don’t generate the diagram code just yet. Open the generator model
and navigate to the Gen Child Side Affixed Node ProcessEditPart ele-
ment, where you can see the generated Open Diagram Behaviour element. The
Diagram Kind property of the generated Open Diagram Behaviour element
defaults to FIXME put GenEditorGenerator.modelID value here. Simi-
larly, the Editor ID property defaults to FIXME put GenEditorView.id
value here. We replace these with scenario and org.eclipse.
scenario.diagram.part.ScenarioDiagramEditorID, respectively, as
shown in Figure 4-40. Fortunately, these properties are preserved when updating

174 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

the .gmfgen model. Note that if we planned to have multiple open diagram poli-
cies, we’d rename the default OpenDiagramEditPolicy to something such as
OpenScenarioDiagramEditPolicy, to distinguish between them.

4.5 Developing the Scenario Diagram 175

Figure 4-39 Scenario-related diagram mapping

TIP

When working with diagram Styles, be sure to create new elements
when testing their behavior. Existing View elements were initialized and
persisted before new Style code was added to the ViewFactory.

Figure 4-40 Scenario open diagram edit policy

ptg6022785

The string 'scenario' matches the semanticHints attribute of the
Scenario diagram’s provider declaration, as shown next. When the
ViewService is consulted to create the new diagram for the Process element
reference, it uses this hint to create the diagram, as discussed in Section 10.4.1,
“View Service.”

<extension point="org.eclipse.gmf.runtime.diagram.core.viewProviders">
<?gmfgen generated="true"?>
<viewProvider
class="org.eclipse.scenario.diagram.providers.ScenarioViewProvider">
<Priority name="Lowest"/>
<context viewClass="org.eclipse.gmf.runtime.notation.Diagram"
semanticHints="scenario"/>

<context viewClass="org.eclipse.gmf.runtime.notation.Node"
semanticHints=""/>

<context viewClass="org.eclipse.gmf.runtime.notation.Edge"
semanticHints=""/>

</viewProvider>
</extension>

TIP

When testing behavior that initiates on double-click, such as an open dia-
gram edit policy, be sure that the root figure is selected. If you’re not sure,
use the mouse to drag around the element to select it and then double-
click.

In the RequirementsEditor class, we need to add an adapter factory for our
Scenario integration. The following line added to initializeEditingDomain()
does the trick:

adapterFactory.addAdapterFactory(new
ScenarioItemProviderAdapterFactory());

We now can regenerate our diagram code and launch. Add a new Scenario
element to a Requirement in a sample diagram and double-click it. A new dia-
gram should open in an adjacent editor tab, as shown in Figure 4-41.

176 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Figure 4-41 Requirements diagram partition

At the moment, we’re persisting a process model instance within our require-
ments model instance, contained within the associated Requirement instance.
We could set the requirements.genmodel to use Containment Proxies,
which would let us specify a new resource (file) for persisting new Process
instances. This would also let us store these models independently and even ini-
tialize a new standalone scenario diagram for each process. This doesn’t work
out of the box, but you can implement it using custom code.

4.5.7 Database Persistence

As mentioned in the overview of Modeling project components, we can persist
models to other than a local file. Two components within the EMFT project
allow for database persistence of EMF models: Teneo and Connected Data
Objects (CDO). In this section, we use Teneo to persist our scenario diagram and
domain model instance to a Derby database using Hibernate. The process for
persisting both EMF models and GMF diagrams is presented in tutorials linked
from the Teneo Web site, with the latter inspiring the content here.

4.5 Developing the Scenario Diagram 177

ptg6022785

After installing Teneo, we need to create plug-ins in our workspace that wrap
the Hibernate and Derby libraries. This is as simple as adding empty plug-in
projects and dropping the *.jar files from each into a /lib folder and setting
up the manifest to include the archives and expose their packages. It’s also
necessary to add an Eclipse-BuddyPolicy: dependent property in the
Hibernate bundle manifest. In the scenario model plug-in, we can add depend-
encies to these plug-ins and to the org.eclipse.emf.teneo.hibernate
plug-in, reexporting each.

With the dependencies established, we need to create an empty scenario data-
base. The DataTools project makes this simple and is described in the tutorial.
It’s a matter of configuring the Derby-embedded driver and declaring a path to
where the database will reside. When the simple ping works, the database is
ready for Teneo to use.

As in other diagram extensions, we create a separate org.eclipse.
scenario.diagram.db plug-in to hold our additional classes required to enable
database persistence. In the /src directory, we add a teneo.properties file that
will contain the connection string information and Teneo options we need. These
will ultimately be presented in the user interface, but for now we can simply use a
properties file, as shown here. Adjust the driver_class, url, and dialect
properties as necessary to match your environment.

teneo.mapping.inheritance = JOINED
hibernate.connection.driver_class=org.apache.derby.jdbc.EmbeddedDriver
hibernate.connection.url=jdbc:derby:/derby/databases/scenario
hibernate.connection.username=
hibernate.connection.password=
hibernate.dialect=org.hibernate.dialect.DerbyDialect

Because of the GMF notation model’s use of multiple inheritance, Teneo
needs an additional annotations.xml file in the /src folder to map these ele-
ments to a relational store. This shows the contents of the file:

<?xml version="1.0" encoding="utf-8"?>
<persistence-mapping xmlns="http://www.eclipse.org/emft/teneo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<epackage
namespace-uri="http://www.eclipse.org/gmf/runtime/1.0.1/notation">

<eclass name="ShapeStyle">
<entity extends="LineStyle"/>

</eclass>

<eclass name="DiagramStyle">

178 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

<entity extends="PageStyle"/>
</eclass>

<eclass name="ConnectorStyle">
<entity extends="RoutingStyle"/>

</eclass>
</epackage>

</persistence-mapping>

A curious feature in the notation model implementation requires another
change for Teneo to function properly. See bug 159226 in Eclipse Bugzilla and
the GMFEListPropertyHandler class in the sample project for more informa-
tion. Hopefully by the time you read this, the bug will be resolved and the cus-
tom handler will no longer be required.

To initialize Teneo, we create a StoreController class. The class is pro-
vided in the sample project and comes largely from the original tutorial. You can
easily generate this class and the remaining code required to use Teneo in com-
bination with GMF using a decorator to the generator model and custom tem-
plates.

In the StoreController, a URI is defined using the datastore name and
query using the hbxml scheme, which initializes a HibernateXMLResource
class. In this case, our scenario data store is queried to load the Process element
of the domain model and Diagram element of the notation model into the
resource root.

public static final URI DATABASE_URI = URI.createURI(

"hbxml://?dsname=scenario&query1=from Process&query2=from Diagram");

An instance HbSessionDataStore class is created and initialized as shown
next in the contents of our initializeDataStore() method. The EPackages
used include the domain model, the GMF notation model, the Ecore model, and
the Ecore XML type model. The teneo.properties with connection informa-
tion and annotations.xml are also loaded and used in the initialization. This
method and the corresponding closeDataStore() method should be called
from our plug-in Activator’s start() and stop() methods, respectively.

final HbSessionDataStore localDataStore = new HbSessionDataStore();
localDataStore.setName("scenario");
HbHelper.INSTANCE.register(localDataStore);

final EPackage[] ePackages = new EPackage[] {
ScenarioPackage.eINSTANCE, NotationPackage.eINSTANCE,

4.5 Developing the Scenario Diagram 179

ptg6022785

EcorePackage.eINSTANCE, XMLTypePackage.eINSTANCE };
localDataStore.setEPackages(ePackages);

try {
final Properties props = new Properties();
props.load(this.getClass().getResourceAsStream("/teneo.properties"));
props.setProperty(PersistenceOptions.PERSISTENCE_XML,
"/annotations.xml");
localDataStore.setProperties(props);

} catch (IOException e) {
throw new IllegalStateException(e);

}

localDataStore.getExtensionManager()
.registerExtension(EListPropertyHandler.class.getName(),
GMFEListPropertyHandler.class.getName());

localDataStore.initialize();

At this point, we need to write an action that will initialize our models and
open our diagram editor. You can add the code found in the sample class
OpenScenarioDBEditor to a wizard that enables the user to input the connec-
tion string information currently held in the teneo.properties file but for
now is used in a simple action from the main menu. This code and correspon-
ding contribution to the actionSets extension-point found in the sample proj-
ect comes from the original tutorial.

Finally, some slight changes to the diagram editor are required because it
expects to be working with file-based model resources. By overriding the fol-
lowing methods, the editor can accommodate the database resource that Teneo
provides:

@Override
public void setInput(IEditorInput input) {

try {
doSetInput(input, true);

} catch (CoreException x) {
Shell shell = getSite().getShell();
ErrorDialog.openError(shell, x.getMessage(),

x.getMessage(), x.getStatus());
}

// set the resource in the resourcetoreadonly map
final ResourceSet rs = getEditingDomain().getResourceSet();
for (Resource res : rs.getResources()) {
((AdapterFactoryEditingDomain) getEditingDomain())
.getResourceToReadOnlyMap().put(res, Boolean.FALSE);

}
}

@Override

180 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

// implement a simple with no save-as dialogs
public void doSave(IProgressMonitor progressMonitor) {
updateState(getEditorInput());
validateState(getEditorInput());
performSave(false, progressMonitor);

}

At this point, with our database created earlier, we can launch the runtime
instance and open a new diagram using the Database → Open Scenario Diagram
menu. As with the file-based version, you can modify, close, and reopen the dia-
gram. In fact, the two versions continue to function properly, although the data-
base version presents some complications when working with transformations.
With some custom code, you can overcome this by loading and exporting mod-
els from the database to a local file, or by modifying the invocation method for
QVT, as the default launch configuration expects files.

Additional functionality is added to the scenario diagram in Section 10.9,
“Extending Diagrams.”

4.6 Developing the Color Modeling Diagram

Our final sample application diagram is similar to a UML Class diagram, which
gives us an opportunity to explore GMF compartment support for attributes and
operations. We want this business domain modeling diagram to be simple, so we
leave out some features of the UML and even object-oriented programming, such
as navigability and strong aggregation. To begin, we need to consider how to rep-
resent the different archetypes using color. Starting with the figure gallery, we
could create a distinct figure for each archetype and indicate the proper col-
oration. Unfortunately, this “hard-codes” the color and results in a fair amount
of duplication, even if we use the Figure Ref element. We’d prefer a single
archetype figure with a corresponding node in the graphical definition. Further-
more, we’d prefer to give users the opportunity to select the default shade of each
archetype color using diagram preferences.

Concerning the mapping model, we know from our previous diagrams that
adding constraints to node mappings determines their uniqueness and allows the
canonical update of the diagram to function properly. If our domain model used
a simple enumeration type to distinguish archetypes, we could initialize the value
of the archetype’s type enum value using a Feature Seq Initializer. The
problem is that the generated code will generate a figure class for each archetype,
and by using the type enum in the constraint, a change of the value in the
Properties will cause the view to be “orphaned” when the update takes place. A
new view will be created for the element and placed by default in the upper-left
corner of the diagram. This is clearly not what we want.

4.6 Developing the Color Modeling Diagram 181

ptg6022785

Another factor to consider with the enumeration approach is to map a sin-
gle archetype node and hand-code changes in color based on enumeration value
changes. This would greatly reduce the amount of generated code, but it leaves
us wondering how often users would want to change an archetype type. If they
did, the constraints and other factors we attribute to the archetype would have
to change, potentially causing a ripple effect on connections and more. With the
enumeration approach, to prevent users from changing the type, we could make
the type attribute read-only in our EMF genmodel. In our case the domain model
has a specific subclass for each archetype, making mapping straightforward and
eliminating the need to provide feature initialization for each mapping.
Furthermore, the generated code is much easier to deal with when using distinct
subtypes for each archetype. As you’ll see, they generate EditPart names such
as MomentIntervalEditPart instead of a series of ArchetypeEditPart,
Archetype2EditPart, and so on, as is the case when using enumeration liter-
als to distinguish type. We saw this in our Mindmap diagram when the
Relationship class used an enumeration to distinguish among dependency,
include, and extend types.

4.6.1 Diagram Definition

Unlike the previous diagram-definition models that referenced the domain model
when creating a graphical definition, we can simply create a blank dnc.
gmfgraph model in our /diagrams folder of the org.eclipse.dsl.dnc proj-
ect by skipping the pages in the Graphical Definition Wizard that select a model.

As mentioned earlier, we can define a single archetype figure and node to be
used for each of the mappings. Our archetype figures will use compartments for
attributes and operations. Coloration and gradients will be accomplished using
custom templates. Let’s start with our archetype definition, shown in Table 4-32.

Table 4-32 Archetype Figure Definition

Element Property Value

Figure Gallery Name DNC Figures

Figure Descriptor Name ArchetypeFigure

Rounded Rectangle Name ArchetypeFigure

Insets Bottom 5

182 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Rounded Rectangle Name InnerRectangle

Fill False

Outline False

Flow Layout Force Single Line True

Major Alignment CENTER

Major Spacing 0

Match Minor Size True

Minor Alignment CENTER

Minor Spacing 0

Vertical True

Rectangle Name NameArea

Fill False

Outline False

Grid Layout Equal Width True

Num Columns 1

Label Name Name

Grid Layout Data Grab Excess Horizontal Space True

Grab Excess Vertical Space True

Basic Font Height 11

Rectangle Name StereotypeArea

Fill False

Outline False

Grid Layout Equal Width True

Num Columns 1

Minimum Size Dx, Dy 80, 0

Label Name Stereotype

Grid Layout Data Grab Excess Horizontal Space True

Grab Excess Vertical Space True

Basic Font Height 11

4.6 Developing the Color Modeling Diagram 183

(continues)

ptg6022785

Table 4-32 Archetype Figure Definition (continued)

Element Property Value

Child Access Figure Label Name

Child Access Figure Label Stereotype

Figure Descriptor Name BasicRectangle

Rectangle Name BasicRectangle

Figure Descriptor Name ListItemLabel

Label Name ListItemLabel

Insets Left, Top 5, 2

Node Name Archetype

Figure Figure Descriptor ArchetypeFigure

Compartment Name Attributes

Figure Figure Descriptor BasicRectangle

Compartment Name Operations

Figure Figure Descriptor BasicRectangle

Diagram Label Name Stereotype

Figure Figure Descriptor ArchetypeFigure

Element Icon False

Accessor Child Access getFigureStereotype

Diagram Label Name Name

Figure Figure Descriptor ArchetypeFigure

Element Icon False

Accessor Child Access getFigureName

Diagram Label Name ListItem

Figure Figure Descriptor ListItemLabel

Element Icon False

Our archetype figure is similar to a standard class figure. It has a name com-
partment and stereotype, although the placement of the stereotype is below the
name in the case of our color modeling diagram. This is both to be different, and

184 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

the result of a snag with applying gradients (discussed in Section 4.6.5,
“Gradient Figures”). Note that we have defined ListItemLabel with an Inset
element that keeps our attribute and operation compartment list items from
aligning too close to the edge of the outer rectangle. We’ve done similarly in the
outer rectangle, adding an Inset to keep the lowermost operation from being too
close to the bottom of the rounded rectangle. Also note that our ListItem
Diagram Label element has no Accessor selected, leaving its External
attribute as true. Unlike other labels within nodes, selecting the
BasicRectangle as the Diagram Label figure and adding a child accessor to
the ListItemLabel Figure Descriptor causes the generated compartment
to not function properly.

TIP

Compartments require the proper layout in the parent figure in order to
look correct.The parent figure should use a Flow Layout with vertical ori-
entation and force a single line option if the compartments are to be as
typically seen in UML Class nodes.

Also note our use of GridLayout and GridDataLayout elements through-
out. These let us accomplish the layout of our archetype name and its stereotype
label so that they remain centered in our rectangle. Our compartments for attrib-
utes and labels use basic rectangle figures. Note that we don’t bother setting their
fill and outline properties to false because compartment figures defined will
generate an extension of the runtime’s ResizableCompartmentFigure that
takes care of rendering compartments properly. The EditPart generated will
extend ListCompartmentEditPart, and the attribute and operation labels
within these compartments will implement CompartmentEditPart, using
WrappingLabel for the figure. Taking advantage of the runtime’s compartment
support saves us some work because it provides proper layout, collapse, expand,
and filtering functionality.

We also define a package figure and node, which is similar to the Archetype
figure, aside from the fact that it uses a regular outer Rectangle and not a
RoundedRectangle. Also, we’ll later map only one compartment to our pack-
age figure, to list subpackages. Because we have so much potential duplication in
defining this figure, we turn to the Figure Ref element to avoid redundancy, as
shown in Table 4-33.

4.6 Developing the Color Modeling Diagram 185

ptg6022785

Table 4-33 Package Figure Definition

Element Property Value

Figure Gallery Name DNC Figures

Figure Descriptor Name PackageFigure

Rectangle Name PackageFigure

Insets Bottom 5

Figure Ref Figure Rounded Rectangle InnerRectangle

Child Access Figure Label Name

Child Access Figure Label Stereotype

Node Name Package

Figure Figure Descriptor PackageFigure

Compartment Name Packages

Figure Figure Descriptor BasicRectangle

Diagram Label Name PackageName

Figure Figure Descriptor PackageFigure

Accessor Child Access getFigureName

Element Icon False

Clearly, using the graphical definition model’s Figure Ref element saves us
a bit of work and encourages reuse. Moving on to our links, Table 4-34 gives the
definitions of our Association and Aggregation connections. We use the
Generalization link from the provided classDiagram.gmfgraph model,
provided by GMF. We don’t need to reference it here—only in our mapping def-
inition to follow.

Table 4-34 Generalization Link Definition

Element Property Value

Figure Gallery Name DNC Figures

Figure Descriptor Name SolidLineHollowDiamond

Polyline Connection Name SolidLineHollowDiamond

Source Decoration Polygon Decoration DiamondFigure

Polygon Decoration Name DiamondFigure

186 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Background Color Value White

Template Point X, Y –1, –1

Template Point X, Y –2, 0

Template Point X, Y –1, 1

Template Point X, Y 0, 0

Figure Descriptor Name BasicLink

Polyline Connection Name BasicLink

Figure Descriptor Name BasicLabel

Label Name BasicLabel

Connection Name Aggregation

Figure Figure Descriptor SolidLineHollowDiamond

Connection Name Association

Figure Figure Descriptor BasicLink

Diagram Label Name LinkTarget

Figure Figure Descriptor BasicLabel

Diagram Label Name LinkTarget

Figure Figure Descriptor BasicLabel

Element Icon False

Alignment Facet Alignment BEGINNING

Label Offset Facet X, Y 0, –10

These connection definitions are straightforward, although you might have
noticed that we don’t use link name labels in the diagram. We might add them
later, but for now we want to keep our diagram as simple and uncluttered as
possible.

The final elements that require definition at this point are the Annotation
note and link. This time, we use a dashed line connection figure provided in
the GMF classDiagram.gmfgraph model. To reference this or any other
.gmfgraph model, right-click on the editor surface and select Load Resource from
the menu. Enter the URI to the model in the dialog, as shown in Figure 4-42.

4.6 Developing the Color Modeling Diagram 187

ptg6022785

Figure 4-42 Load Resource dialog

Table 4-35 gives the definitions of the annotation note figure and associated
link. When selecting the Figure for the AnnotationLink Connection, you’ll
find the DashedLineConnection now available, along with all other Figure
Descriptors from our loaded classDiagram.gmfgraph model.

Table 4-35 Annotation Figure Definition

Element Property Value

Figure Gallery Name DNC Figures

Figure Descriptor Name AnnotationFigure

Rectangle Name AnnotationFigure

Line Kind LINE_DASH

Flow Layout Force Single Line True

Major Alignment CENTER

Major Spacing 0

Match Minor Size True

Minor Alignment CENTER

Minor Spacing 0

Vertical True

Insets Left, Right 5, 5

Figure Ref Figure Rectangle StereotypeArea

Figure Ref Figure Rectangle NameArea

Child Access Figure Label Stereotype

Child Access Figure Label Name

Node Name Annotation

Figure Figure Descriptor AnnotationFigure

188 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Connection Name AnnotationLink

Figure Figure Descriptor DashedLineConnection

Diagram Label Name AnnotationLabel

Figure Figure Descriptor AnnotationFigure

Accessor Child Access getFigureName

Element Icon False

Notice again the use of the Figure Ref element. This time, we reuse the
stereotype area and name area from our Archetype figure, but we list in reverse
order because we want our Annotation to have a stereotype-like label at the top
of the rectangle, with an area for the key and value below. As you can see, we
chose a dashed line for the link to the annotation as well as for the rectangle out-
line. This lightens the appearance of the note, enabling us to focus on the anno-
tation key and value, not to mention the color archetypes, which are the main
focus points of the diagram overall.

This completes our initial graphical definition for the color modeling dia-
gram. Next, we look at the palette definition.

4.6.2 Tooling Definition

Begin by creating a new dnc.gmftool model in the /diagrams folder using the
provided wizard. You can use the Tooling Definition Model Wizard, as before,
which enables you to derive tooling from the domain model. Or as in the graph-
ical definition wizard, simply skipping the domain model selection pages results
in an empty new model.

For the palette of our color modeling diagram, we group archetypes together
and then stack the moment interval and moment interval detail within the group.
We also stack our three “green” archetypes: party, place, and thing. You’ll find
plug-in points and the package tool in this first tool group because they are main
diagram nodes. Attributes and operations are listed next in their own group, fol-
lowed by a group containing our association, aggregation, and generalization
links. The most infrequently used tools are contained in the last group, where we
put the annotation node and link. Figure 4-43 shows the palette definition next
to an image of the palette itself.

4.6 Developing the Color Modeling Diagram 189

ptg6022785

Figure 4-43 Color modeling palette definition

4.6.3 Mapping Definition

Create a new dnc.gmfmap model in the /diagrams folder using the Diagram
Definition (Ctrl+3 → Diagram Def) Wizard. Select the dnc.ecore model as the
Domain Model and for now select the Archetype class for the canvas mapping.
We can’t select the oocore::Package element at this time because the wizard
does not load the oocore.ecore model when selecting our dnc.ecore model.
In the subsequent pages, select the dnc.gmftool and dnc.gmfgraph models as
our tooling and graphical definition models, respectively. On the Mapping page,
we can see another symptom of the wizard not resolving the oocore.ecore
model. The list of discovered Nodes and Links is not what we expect, unfortu-
nately. For now, just move the Association node to the Link side and remove
the contents of the Links list. We need to correct our Canvas mapping and fin-
ish the remaining nodes manually.

With the dnc.gmfmap model open in the editor, adjust the Canvas
Mapping to be as shown in Table 4-36.

190 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Table 4-36 DNC Canvas Mapping

Element Property Value

Mapping

Canvas Mapping Domain Model dnc

Element Package → PackageableElement

Palette Palette DNC Palette

Diagram Canvas Canvas dnc

We’ll return to our Association link mapping later. At this point, we enter
a new Top Node Reference element to define the mapping for our moment
interval archetype. Complete the mapping for this node according to Table 4-37.
We’ll use this as the basis for all archetype mappings and use the Referenced
Child property to avoid unnecessary duplication. This enables us to point to
another node mapping that is already defined, rather than create another fully
defined node mapping.

Table 4-37 Moment-Interval Archetype Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Package.contents : PackageableElement

Node Mapping Element MomentInterval → Archetype

Diagram Node Node Archetype (Archetype Figure)

Tool Creation Tool Moment-Interval

Feature Label Mapping Diagram Label Diagram Label ArchetypeName

Features NamedElement.name : String

Feature Label Mapping Diagram label Diagram Label Stereotype

Features Archetype.description : String

Read Only True

View Pattern «moment-interval» *

Child Reference Compartment Compartment Mapping <Attributes>

Containment Feature Class.features : Feature

4.6 Developing the Color Modeling Diagram 191

(continues)

ptg6022785

Table 4-37 Moment-Interval Archetype Mapping (continued)

Element Property Value

Node Mapping Element Attribute → StructuralFeature

Diagram Node Diagram Label ListItem

Tool Creation Tool Attribute

Feature Label Mapping Diagram Label Diagram Label ListItem

Features NamedElement.name : String

Child Reference Compartment Compartment Mapping <Operations>

Containment Feature Class.operations : Operation

Node Mapping Element Operation → StructuralFeature

Diagram Node Diagram Label ListItem

Tool Creation Tool Operation

Feature Label Mapping Diagram Label Diagram Label ListItem

Features NamedElement.name : String

View Pattern {0}()

Compartment Mapping Children Child Reference
<features:Attribute/ListItem>

Compartment Compartment Attributes
(BasicRectangle)

Compartment Mapping Children Child Reference
<features:Operation/ListItem>

Compartment Compartment Operations
(BasicRectangle)

* The use of the Feature Label Mapping element for our stereotype
labels in all archetypes, package, and annotation mappings is a workaround for
the fact that it’s not possible to leave the feature blank, or provide a default string
value, if we want to use a regular Label Mapping or Design Label Mapping
element. With the Read Only property set to true and the View Pattern set
to the stereotype string we want displayed, it really doesn’t matter what feature
is mapped, actually. This approach prevents us from having to create multiple
label definitions in our graphical definition model and would likely cause us to
create multiple archetype figure definitions.

Subsequent archetypes are mapped in a similar manner, each using the
Referenced Child property, as mentioned earlier. Table 4-38 shows the

192 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

mapping for the Role archetype; we don’t show the remainder, to save space.
Only the mapped domain Element property of the Node Mapping, Creation
Tool, and stereotype label View Pattern should differ for each archetype.
In the case of the PluginPoint archetype, feature initializers for both the
interface and abstract properties are set to true.

Table 4-38 Role Archetype Mapping

Element Property Value

Mapping

Top Node Reference Containment Package.contents : PackageableElement
Feature

Node Mapping Element MomentInterval → Archetype

Diagram Node Node Archetype (Archetype Figure)

Tool Creation Tool Role

Feature Label Mapping Diagram Label Diagram Label ArchetypeName

Features NamedElement.name : String

Feature Label Mapping Diagram label Diagram Label Stereotype

Features Archetype.description : String

Read Only True

View Pattern «role»

Child Reference Compartment Compartment Mapping <Attributes>

Containment Class.features : Feature
Feature

Referenced Child Node Mapping <Attribute/ListItem>

Child Reference Compartment Compartment Mapping <Operations>

Containment
Feature Class.operations : Operation

Referenced Child Node Mapping <Operation/ListItem>

Compartment Mapping Children Child Reference
<features:Attribute/ListItem>

Compartment Compartment Attributes (BasicRectangle)

Compartment Mapping Children Child Reference
<features:Operation/ListItem>

Compartment Compartment Operations
(BasicRectangle)

4.6 Developing the Color Modeling Diagram 193

ptg6022785

The Package mapping is also quite similar, with the exception that it has
only one compartment mapping and that it makes use of the diagram partition-
ing feature by specifying a Related Diagrams property, as you learned in
Section 4.5.6, “Diagram Partitioning.” Including this mapping feature means
that package elements on the diagram can be double-clicked to open a new dia-
gram canvas to display the contents of the package. See Table 4-39.

Table 4-39 Package Mapping

Element Property Value

Mapping

Top Node Reference Containment Feature Package.contents : PackageableElement

Node Mapping Element Package → PackageableElement

Related Diagrams Canvas Mapping

Diagram Node Node Package (Package Figure)

Tool Creation Tool Package

Feature Label Mapping Diagram Label Diagram Label PackageName

Features NamedElement.name : String

Feature Label Mapping Diagram label Diagram Label Stereotype

Features NamedElement.name : String

Read Only true

View Pattern «package»

Child Reference Compartment Compartment Mapping <Attributes>

Containment Feature Package.contents : PackageableElement

Node Mapping Element Package → PackageableElement

Diagram Node Diagram Label ListItem

Tool Creation Tool Package

Feature Label Mapping Diagram Label Diagram Label ListItem

Features NamedElement.name : String

Compartment Mapping Children Child Reference
<contents:Package/ListItem>

Compartment Compartment Packages (BasicRectangle)

194 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Annotations are mapped next. Note that we’ll again use the “phantom
node” concept here because the annotation link determines the archetype that
will contain the annotation. Although it’s possible to attach annotations to every
model element, we provide for only archetype annotations at this time. Some
complications arise when attaching links to compartment items. Table 4-40
shows the Annotation node and link mappings.

Table 4-40 Annotation Mapping

Element Property Value

Mapping

Top Node Reference Containment Intentionally left blank
Feature

Node Mapping Element Annotation

Diagram Node Node Annotation (AnnotationFigure)

Tool Creation Tool Annotation

Feature Label Mapping Diagram Label Diagram Label AnnotationLabel

Editor Pattern {0} = {1}

Edit Pattern {0} = {1}

Features Annotation.key : String, Annotation.value
: String

View Pattern {0} = {1}

Feature Label Mapping Diagram Label Diagram Label Stereotype

Features Annotation.key : String

Read Only true

View Pattern «annotation»

Link Mapping Target Feature AnnotatedElement.annotations :
Annotation

Diagram Link Connection AnnotationLink

Tool Creation Tool Annotation Link

Now we return to the Association link that the wizard created. Complete
the mapping as shown in Table 4-41, taking note of the initialization of our ele-
ment, including a Java initializer that we’ll need to provide code for later.

4.6 Developing the Color Modeling Diagram 195

ptg6022785

Table 4-41 DNC Association Mapping

Element Property Value

Mapping

Link Mapping Containment Feature features : Feature

Element Association → Reference

Target Feature TypedElement.type : Classifier

Diagram Link Connection Association

Tool Creation Tool Association

Constraint Body self.aggregation = false

Language ocl

Feature Seq Initializer Element Class Association → Reference

Feature Value Spec Feature Association.aggregation : EBoolean

Value Expression Body false

Language ocl

Feature Value Spec Feature Reference.opposite : Reference

Value Expression Body *

Language java

Feature Value Spec Feature Reference.bidirectional : Boolean

Value Expression Body true

Language ocl

Feature Value Spec Feature NamedElement.name : String

Value Expression Body self.opposite.owner.name.toLower()

Language ocl

Feature Label Mapping Diagram Label Diagram Label LinkTarget

Editor Pattern {0}..{1}

Edit Pattern {0}..{1}

Features TypedElement.lowerBound : Integer,
TypedElement.upperBound : Integer

View Pattern {0}..{1}

196 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

* The body of the generated method for a Java initializer can be provided in
the model. Later, we’ll need to set the GenJavaExpressionProvider element’s
injectExpressionBody property to true in our generator model for the fol-
lowing code to appear in our output. Note the use of fully qualified class names,
which the generator cleans up.

org.eclipse.oocore.Reference opposite =

org.eclipse.oocore.OocorePackage.eINSTANCE.getOocoreFactory()

.createReference();
opposite.setOpposite(self);
opposite.setBidirectional(true);
opposite.setType(self.getOwner());
opposite.setName(self.getOwner().getName().toLowerCase());
((org.eclipse.oocore.Class)

self.getType()).getFeatures().add(opposite);
return opposite;

For our Association element, we set a constraint based on the
aggregation property to distinguish these links from our Aggregation links.
We also initialize the aggregation property to false, set the bidirectional
property to true, and create the opposite end Reference using the injected
Java code above; after that, we set the name of the reference to the name of the
opposite. An important side effect of using an Association to create an oppo-
site Reference in this case is that we won’t get a duplicate link drawn, as would
be the case if we specified a Reference type for the link. The reason is that no
link mapping is defined for a plain Reference.

As you can tell, the links in the color modeling diagram remove a lot of the
underlying complexity present in the domain model. Features are initialized to
values that limit the range of modeling capabilities, keeping it simple for the
Practitioner. We can expose more functionality in the future, but for now we will
create bidirectional links and allow for only the specificity of target cardinality.
Our Association class is not as powerful as what the UML provides, but that’s
not the point of this diagram.

TIP

Feature initialization occurs in the order of listing, so if an initialization of a
feature depends on another feature being initialized first, be sure to list
them in the proper order.

4.6 Developing the Color Modeling Diagram 197

ptg6022785

Our Aggregation link is similar to a regular association, except for the ini-
tialization of the aggregation property to true and the hollow diamond decora-
tor at the source end. Another difference is with respect to link constraints,
which here prevents aggregation relationships from being created to archetypes
of differing type. The exception is the most common aggregation relationship in
color models—that is, between a Moment Interval and a Moment Interval
Detail. Table 4-42 shows the mapping.

Table 4-42 Aggregation Link Mapping

Element Property Value

Mapping

Link Mapping Containment Feature Class.features : StructuralFeature

Element Association → Reference

Target Feature TypedElement.type : Classifier

Diagram Link Connection Aggregation

Tool Creation Tool Aggregation

Constraint Body self.aggregation = true

Language ocl

Feature Seq Initializer Element Class Association → Reference

Feature Value Spec Feature Association.aggregation : EBoolean

Value Expression Body true

Language ocl

Feature Value Spec Feature TypedElement.upperBound : EInt

Value Expression Body –1

Language ocl

Feature Value Spec Feature Reference.opposite : Reference

Body Same as body above

Language java

Feature Value Spec Feature Reference.bidirectional : Boolean

Body true

Language ocl

198 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Element Property Value

Feature Value Spec Feature NamedElement.name : String

Body self.opposite.owner.name.toLower()

Language ocl

Feature Label Mapping Diagram Label Diagram Label LinkTarget

Editor Pattern {0}..{1}

Edit Pattern {0}..{1}

Features TypedElement.lowerBound : EInt,
TypedElement.upperBound : EInt

View Pattern {0}..{1}

Link Constraints

Target End Constraint Body *

Language ocl

* Here’s the sad truth about creating a constraint to prevent aggregation
links from targeting types other than the source—or, in the case of moment inter-
vals, other than moment intervals or moment interval details. OCL gives us no
simple solution, such as oppositeEnd.oclIsTypeOf(self). The reason is
that the argument to oclIsTypeOf() must be a type literal, leaving us with this
rather large expression:

(oppositeEnd.oclIsTypeOf(dnc::MomentInterval) and
self.oclIsTypeOf(dnc::MomentInterval))
or
(oppositeEnd.oclIsTypeOf(dnc::MomentInterval) and
self.oclIsTypeOf(dnc::MIDetail))

or
(oppositeEnd.oclIsTypeOf(dnc::Role) and self.oclIsTypeOf(dnc::Role))
or

(oppositeEnd.oclIsTypeOf(dnc::Party) and self.oclIsTypeOf(dnc::Party))
or

(oppositeEnd.oclIsTypeOf(dnc::Place) and self.oclIsTypeOf(dnc::Place))
or

(oppositeEnd.oclIsTypeOf(dnc::Thing) and self.oclIsTypeOf(dnc::Thing))
or

(oppositeEnd.oclIsTypeOf(dnc::Description) and
self.oclIsTypeOf(dnc::Description))

4.6 Developing the Color Modeling Diagram 199

ptg6022785

Regarding Target End Constraint and Source End Constraint ele-
ments, it’s important to realize that these constraints are evaluated based on
mouse position during the act of creating the link. For example, the source end
constraint is evaluated when starting the link, so the context is that element.
The oppositeEnd variable isn’t known yet, so don’t reference oppositeEnd in
a source end constraint. Likewise, the target end constraint is evaluated
when the mouse hovers over a target element when drawing the link. At this
point, the oppositeEnd environment variable has a value.

Our final mapping is for the generalization link, shown in Table 4.43. Recall
that we’ll be using the provided Connection from the classDiagram.
gmfgraph model. Normally, we’d have to load this model using the Load
Resource action, as done before in the graphical definition model. But because
that model includes a reference to the classDiagram.gmfgraph model and is
open in our mapping model resource set, the connection is already available to
our mapping model.

Table 4-43 Generalization Mapping

Element Property Value

Mapping

Link Mapping Containment Feature Class.superclasses : Class

Diagram Link Connection
SolidConnectionWDstClosedArrow

Tool Creation Tool Generalization

Link Constraints

Source End Constraint Body self.superclasses->isEmpty()

Language ocl

Target End Constraint Body *

Language ocl

* As was the case with the Aggregation constraint, this is the verbose OCL constraint for
generalizations:

oppositeEnd <> self and not superclasses->includes(oppositeEnd) and
((oppositeEnd.oclIsTypeOf(dnc::Role) and self.oclIsTypeOf(dnc::Role))
or
(oppositeEnd.oclIsTypeOf(dnc::Party) and self.oclIsTypeOf(dnc::Party))
or
(oppositeEnd.oclIsTypeOf(dnc::Place) and self.oclIsTypeOf(dnc::Place))

200 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

or
(oppositeEnd.oclIsTypeOf(dnc::Thing) and self.oclIsTypeOf(dnc::Thing))
or
(oppositeEnd.oclIsTypeOf(dnc::Description) and
self.oclIsTypeOf(dnc::Description)))

The Link Constraints provide some important functionality to our link
and to the Practitioner’s usability of our diagram. The first constraint allows only
a generalization link to be drawn from an archetype that does not yet have a
superclass. In this manner, we restrict the underlying metamodel to just one
superclass. Also, we prohibit cyclic inheritance by applying a target end con-
straint that checks to see if the oppositeEnd of the link contains the source in its
superclasses list. With that, we disallow generalization to one’s self. Finally, we
prevent generalization relationships between archetypes of different types. In this
approach to domain modeling, generalization is rarely used, and it doesn’t make
sense to inherit from one type of archetype to another.

4.6.4 Generation

At this point, we’re ready to transform our mapping model into the generator
model. Do this as before using the provided right-click menu action and corre-
sponding wizard. If you find that the wizard cannot locate the dnc.genmodel
file, use the Find in Workspace feature to locate the model and continue. Open
the produced dnc.gmfgen model in the editor and change the Same File for
Diagram and Model property to true, and change the Diagram File
Extension property to dnc. Because our diagram allows for the creation of par-
titions to represent packages, it might be convenient to add shortcuts from arche-
types in one package to another. Add the string dnc to the Contains
Shortcuts To property in the Diagram category of the Gen Diagram element
to provide shortcut support. Now we can run the diagram using our same launch
configuration as before. Using the generated wizard, create a new DNC diagram
and test its functionality. There’s no color yet, but all the elements should func-
tion. Notice that you cannot specify a data type for attributes at this time with
the in-place editor. We address how this is done later when we add a custom
parser for attributes in Section 4.6.7, “Custom Parsers.”

4.6.5 Gradient Figures

Our archetypes don’t currently have any color, which is their most significant
attribute. Instead of simply filling in each archetype with a background color, we
use a gradient effect. GEF enables you to add a gradient to a figure but does not

4.6 Developing the Color Modeling Diagram 201

ptg6022785

directly support it. Don’t let that graphical definition model Gradient Facet ele-
ment fool you—it is not yet implemented. Worse, this property is not available
to the figure code-generation templates even if we did try to use it. So we’re left
to find our own way to implement gradients in our archetypes, to give them a
fresh appearance.

The fillShape() method of our archetype figure gives us the place to add
a gradient. Simply overriding this method and adding a call to fillGradient()
does the trick, except that gradients in GEF do not respect the corners of a
RoundedRectangle figure. This effectively reduces our rounded rectangles to
regular rectangles, though with gradient. Instead of spending time figuring how
to implement gradients for rounded rectangles, we can be creative and adjust the
starting point of the gradient to between the archetype name and the stereotype
label. (Recall the hint earlier regarding the placement of these labels?) Not only
does this give us a striking visual appearance, but it also has the effect of nearly
eliminating the problems GEF in respect to the corners: The top no longer has
gradient applied, and it’s faded enough by the bottom to make it hardly notice-
able that it extends beyond the curve. Figure 4-44 is an example of the gradient,
although the archetype does not yet define our foreground color. This illustrates
the reason for the stereotype labels, however. Black-and-white print of our color
diagrams makes it difficult to distinguish the archetypes otherwise. Additionally,
the stereotypes let us distinguish between archetypes of the same color, such as
Party, Place, and Thing, which are all green.

202 CHAPTER 4 • Developing a DSL Graphical Notation

«role»

ARole

«moment–interval»

AMomentInterval

«plugin–point»

IAdapt

«package»

APackage

Figure 4-44 Color archetypes

This is the code modification required to create the effect:

protected void fillShape(Graphics graphics) {
graphics.fillGradient(bounds.x, bounds.y + 24,

bounds.width, bounds.height, true);
}

ptg6022785

COMMENT

As we mentioned earlier, the lowering cost of high-resolution monitors has
made diagramming much more palatable than even a few years ago.
Similarly, the lowering cost of high-resolution color printers will hopefully
encourage more use of color and eliminate redundant visual hints, such as
the earlier stereotype labels. Just recall the advice on the use of color:
Using too many colors is often worse than using none at all.

Now we need to generate this additional code for our archetype figures. We
can leverage GMF’s capability to customize the templates for figure code gener-
ation. In case you’ve missed it each time, the dialog presented when transform-
ing mapping to generator model has a “Provisional” section that gives us the
field to enter the path to our custom templates, as seen in Figure 4-45.

TIP

When using the “provisional” custom figures template feature, be aware
that the field will not remember individual .gmfmap file settings.When you
enter a path to custom templates in this field, it is applied to all
mapping→generator model transformations.

4.6 Developing the Color Modeling Diagram 203

Figure 4-45 Create Generator Model dialog

ptg6022785

The easiest way to get started modifying or augmenting GMF templates is to
bring the appropriate *.codegen plug-in into the workspace. For figures, we’re
interested in the org.eclipse.gmf.graphdef.codegen plug-in, so switching
to the Plug-Ins view of our Plug-In Development perspective, we locate it and
right-click, choosing Import As → Source Project. Browsing the contents of this
plug-in, we discover the /templates/top/Figure.xpt Xpand template. This
template provides an expansion of the Extras::extraMethods «DEFINE»
that looks like just what we need to add our overridden fillShape() method.
The Extras.xpt template contains this «DEFINE» block that we can use to cre-
ate an «AROUND» that will add our method.

«DEFINE extraMethods FOR gmfgraph::Figure-»
«ENDDEFINE»

We create a /templates-figures/aspects/Extras.xpt template in
our org.eclipse.dsl.dnc project. As discussed in Section 4.2.3, “Custom-
ization Options,” GMF uses the convention of prefixing the directory structure
for aspects with a folder named aspects, followed by the original path to the tem-
plate, as defined in the *.codegen project. In this case, we want to provide an
aspect for the Extras.xpt template, which is located directly in the /templates
folder. We’ll use the path /org.eclipse.dsl.dnc/templates-figures/ in
the wizard dialog, as shown in Figure 4-45. When the generator finds the aspects
folder, it will know to add this as an aspect template path.

Following is our template, which, as you can see, uses the polymorphic fea-
ture of Xpand to add our gradient code only for RoundedRectangle figures.
We need to provide the obligatory «DEFINE» for the Figure supertype as well.
Also note that we’re adding a useGradient Boolean to control whether to dis-
play gradients, which we can later hook up to a diagram preferences option.

«IMPORT "http://www.eclipse.org/gmf/2006/GraphicalDefinition"»
«IMPORT "http://www.eclipse.org/emf/2002/Ecore"»

«AROUND extraMethods FOR gmfgraph::Figure-»
«EXPAND gradient-»
«targetDef.proceed()»
«ENDAROUND»

«DEFINE gradient FOR gmfgraph::Figure»«ENDDEFINE»

«DEFINE gradient FOR gmfgraph::RoundedRectangle-»
/**

* @generated
*/
private boolean useGradient = true;

204 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

/**
* @generated
*/
public void setUseGradient(boolean useGradient) {

this.useGradient = useGradient;
}

/**
* @generated
*/
public boolean getUseGradient() {
return useGradient;

}

/**
* @generated
*/

protected void fillShape(org.eclipse.draw2d.Graphics graphics) {
if (useGradient) {
graphics.fillGradient(bounds.x, bounds.y + 24,

bounds.width, bounds.height, true);
}

}
«ENDDEFINE»

We can again transform our mapping model to the generator model, adding
our path to the figure template in the provisional GMFGraph Dynamic
Templates field, and regenerate our diagram code. Recall that figures are serial-
ized within the generator model by default, although we used the standalone fig-
ures method in the Scenario diagram that eliminates the need to regenerate all the
diagram code to see the change. Figure 4-44 shows the result, with the remain-
ing task of assigning the proper color for each archetype, based on its type. We
want to avoid hard-coding this into our figures, which we mentioned when cre-
ating the graphical definition model. Instead, let’s see what is involved in adding
color preferences for each archetype that the Practitioner can change, if desired.

4.6.6 Color Preferences

Basing the color of an archetype on its type is straightforward enough, and you
can most easily accomplish this by overriding the setForegroundColor()
method in each Archetype EditPart class. Recall that the gradient effect goes
from our foreground to background color. For example, this simple implemen-
tation in our MomentIntervalEditPart class causes it to produce the desired
gradient effect:

4.6 Developing the Color Modeling Diagram 205

ptg6022785

@Override
protected void setForegroundColor(Color) {

super.setForegroundColor(new Color(null, 250, 145, 145));
}

We need to do a bit more for the color to be obtained from the diagram pref-
erences, and for diagram elements to respond to changes in the default values.
Plus, we again want to modify our code-generation templates so that these
changes will not be overridden if we forget to add the appropriate @generated
NOT tag, or if we need to delete and regenerate our diagram plug-in entirely.

BEST PRACTICE

Even though it might require a little more effort to implement, adding cus-
tom templates to implement a feature for your diagram is likely worthwhile
if you find yourself regenerating clean diagram plug-ins due to refactorings,
and given the reality of code merge technology limitations.

This time, we need to import the org.eclipse.gmf.codegen plug-in into
our workspace as a source project, just as we did for the org.eclipse.gmf.
graphdef.codegen plug-in earlier. You will find a lot of templates and exten-
sion files in this project, so consider it a resource for understanding how to use
Xpand, not to mention how to modify GMF generation. Another good source of
examples for working with GMF, custom templates, and extensions is the UML2
Tools project. Looking at our generated diagram code, we see that the
DiagramAppearancePreferencePage class is the best location for our arche-
type color preferences. Currently, this page provides default font, line color, and
fill color preferences, among others. We can add another group for archetype
color preferences below the existing group.

As before, we first code our changes manually and then “templify” the
changes in our custom templates. Looking at the AppearancePreferencePage
superclass of this preference page, we see that adding our own group and color
defaults should be straightforward. Using copy and paste, we insert the follow-
ing code into our diagram’s preference page, which started as a simple subclass
designed for extension. Note that we override the addFields() method to
allow for the addition of the archetype color group. To save space, some repeti-
tive code is commented out.

206 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

public class DiagramAppearancePreferencePage

extends AppearancePreferencePage{

private String PINK_COLOR_LABEL =
Messages.AppearancePreferencePage_pinkArchetypeColor_label;

private String YELLOW_COLOR_LABEL =
Messages.AppearancePreferencePage_yellowArchetypeColor_label;

private String GREEN_COLOR_LABEL =
Messages.AppearancePreferencePage_greenArchetypeColor_label;

private String BLUE_COLOR_LABEL =
Messages.AppearancePreferencePage_blueArchetypeColor_label;

private String GRAY_COLOR_LABEL =
Messages.AppearancePreferencePage_grayArchetypeColor_label;

private String ARCHETYPE_GROUPBOX_LABEL =
Messages.AppearancePreferencePage_archetypeColorGroup_label;

public static final String PREF_MI_ARCHETYPE_COLOR =
"Appearance.mi_ArchetypeColor";

public static final String PREF_ROLE_ARCHETYPE_COLOR
"Appearance.role_ArchetypeColor";

public static final String PREF_PPT_ARCHETYPE_COLOR =
"Appearance.ppt_ArchetypeColor";

public static final String PREF_DESC_ARCHETYPE_COLOR =
"Appearance.desc_ArchetypeColor";

public static final String PREF_PIP_ARCHETYPE_COLOR =
"Appearance.pip_ArchetypeColor";

private ColorFieldEditor pinkArchetypeColorEditor = null;
private ColorFieldEditor yellowArchetypeColorEditor = null;
private ColorFieldEditor greenArchetypeColorEditor = null;
private ColorFieldEditor blueArchetypeColorEditor = null;
private ColorFieldEditor grayArchetypeColorEditor = null;

public DiagramAppearancePreferencePage() {
setPreferenceStore(DncDiagramEditorPlugin.getInstance()
.getPreferenceStore());

}

@Override
protected void addFields (Composite parent) {

Composite main = createPageLayout(parent);
createFontAndColorGroup(main);
createArchetypeColorGroup(main);

}

public static void initArchetypeDefaults(IPreferenceStore store) {
PreferenceConverter.setDefault(store, PREF_MI_ARCHETYPE_COLOR,

new Color(null, 250, 145, 145).getRGB());
PreferenceConverter.setDefault(store, PREF_ROLE_ARCHETYPE_COLOR,
new Color(null, 238, 245, 165).getRGB());

PreferenceConverter.setDefault(store, PREF_PPT_ARCHETYPE_COLOR,
new Color(null, 124, 179, 77).getRGB());

PreferenceConverter.setDefault(store, PREF_DESC_ARCHETYPE_COLOR,
new Color(null, 86, 145, 215).getRGB());

4.6 Developing the Color Modeling Diagram 207

ptg6022785

PreferenceConverter.setDefault(store, PREF_PIP_ARCHETYPE_COLOR,
new Color(null, 124, 124, 124).getRGB());

// Override the normal default line color
PreferenceConverter.setDefault(store,
IPreferenceConstants.PREF_LINE_COLOR,
new Color(null, 124, 124, 124).getRGB());

}

protected Composite createArchetypeColorGroup(Composite parent) {
Group group = new Group(parent, SWT.NONE);
group.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
group.setLayout(new GridLayout(3, false));
Composite composite = new Composite(group, SWT.NONE);
GridLayout gridLayout = new GridLayout(3, false);
composite.setLayout(gridLayout);
GridData gridData = new GridData(GridData.FILL_HORIZONTAL);
gridData.grabExcessHorizontalSpace = true;
gridData.horizontalSpan = 3;
composite.setLayoutData(gridData);
group.setText(ARCHETYPE_GROUPBOX_LABEL);

addArchetypeColorFields(composite);

GridLayout layout = new GridLayout();
layout.numColumns = 3;
layout.marginWidth = 0;
layout.marginHeight = 0;
layout.horizontalSpacing = 8;
composite.setLayout(layout);

return group;
}

protected void addArchetypeColorFields(Composite composite) {
pinkArchetypeColorEditor = new ColorFieldEditor(

PREF_MI_ARCHETYPE_COLOR, PINK_COLOR_LABEL, composite);
addField(pinkArchetypeColorEditor);

pinkArchetypeColorEditor.getColorSelector().getButton().
getAccessible().addAccessibleListener(new AccessibleAdapter() {

public void getName(AccessibleEvent e) {
String labelText = pinkArchetypeColorEditor.getLabelText();
labelText = Action.removeMnemonics(labelText);
e.result = labelText;

}
});

// ... Repeat initialization of each ColorFieldEditor

}
}

To provide for localization, we add the strings just referenced to our
Messages class and to the diagram plug-in’s messages.properties file. Note

208 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

that the default values for each archetype color are provided previously, in RGB.
To initialize the preferences, we look to the generated DiagramPreference
Initializer class. We need to have the initializer call our initArchetype
Defaults() method, provided earlier, as shown in the modified implementation
here:

public void initializeDefaultPreferences() {
IPreferenceStore store = getPreferenceStore();
DiagramPrintingPreferencePage.initDefaults(store);
DiagramGeneralPreferencePage.initDefaults(store);
DiagramAppearancePreferencePage.initDefaults(store);

DiagramAppearancePreferencePage.initArchetypeDefaults(store);
DiagramConnectionsPreferencePage.initDefaults(store);
DiagramRulersAndGridPreferencePage.initDefaults(store);

}

These are the additions made to the org.eclipse.dnc.diagram.part.
Messages class:

/**
* @generated
*/
public class Messages extends NLS {

/**
* @generated
*/
static {
NLS.initializeMessages("messages", Messages.class); //$NON-NLS-1$

}

/**
* @generated
*/
private Messages() {
}

public static String
AppearancePreferencePage_archetypeColorGroup_label;

public static String
AppearancePreferencePage_pinkArchetypeColor_label;

public static String
AppearancePreferencePage_yellowArchetypeColor_label;

public static String
AppearancePreferencePage_greenArchetypeColor_label;

public static String
AppearancePreferencePage_blueArchetypeColor_label;

public static String
AppearancePreferencePage_grayArchetypeColor_label;

//. . .
}

4.6 Developing the Color Modeling Diagram 209

ptg6022785

And these are the additions we made to the messages.properties file:

AppearancePreferencePage_archetypeColorGroup_label=Archetype colors
AppearancePreferencePage_pinkArchetypeColor_label=
Pinks (moment-interval, mi-detail):

AppearancePreferencePage_yellowArchetypeColor_label=Yellows (role):
AppearancePreferencePage_greenArchetypeColor_label=
Greens (party, place, thing):

AppearancePreferencePage_blueArchetypeColor_label=Blues (description):
AppearancePreferencePage_grayArchetypeColor_label=Plug-in point:

At this point, we can launch our diagram and see the properties in action,
although they have no effect on the diagram because they’re not incorporated
into our EditPart code yet. Again, using black-and-white images does little to
illustrate the use of color modeling, as seen in Figure 4-46.

210 CHAPTER 4 • Developing a DSL Graphical Notation

Figure 4-46 Archetype color preferences

Turning finally to our EditPart code, we use MomentIntervalEditPart
as our testbed. Adding the following code makes our preferences-based color

ptg6022785

options functional. To begin, we add an inner class, PreferenceProperty
ChangeListener, that will detect a change in the appropriate property and
invoke the updateArchetypeColor() method. To initialize and register this
listener, we override the addNotationalListeners() method.

private PreferencePropertyChangeListener preferenceListener;

protected class PreferencePropertyChangeListener
implements IPropertyChangeListener {
public void propertyChange(PropertyChangeEvent event) {

if (event.getProperty().equals(
DiagramAppearancePreferencePage.PREF_MI_ARCHETYPE_COLOR)) {
updateArchetypeColor();

}
}

}

@Override
protected void addNotationalListeners() {

super.addNotationalListeners();
initPreferenceStoreListener();

}

protected void updateArchetypeColor() {
getFigure().setForegroundColor(getPreferenceColor());
getFigure().repaint();

}

private Color getPreferenceColor() {
IPreferenceStore preferenceStore = (IPreferenceStore)

getDiagramPreferencesHint().getPreferenceStore();
org.eclipse.swt.graphics.RGB archetypeColorPreference =
PreferenceConverter.getColor(preferenceStore,
DiagramAppearancePreferencePage.PREF_MI_ARCHETYPE_COLOR);

return new Color(null, archetypeColorPreference);
}

private void initPreferenceStoreListener() {
preferenceListener = new PreferencePropertyChangeListener();
IPreferenceStore preferenceStore = (IPreferenceStore)
getDiagramPreferencesHint().getPreferenceStore();

preferenceStore.addPropertyChangeListener(preferenceListener);
}

@Override
protected void setForegroundColor(Color color) {

super.setForegroundColor(getPreferenceColor());
}

The overridden setForegroundColor() method and the preference lis-
tener both obtain the appropriate color from the preference store, as shown in

4.6 Developing the Color Modeling Diagram 211

ptg6022785

getPreferenceColor(). All that’s left to do is test the functionality and then
move on to templatizing the code changes. One improvement might be to restrict
the color ranges for each archetype so that they still maintain their pink, yellow,
green, or blue essence.

We begin our GMF diagram template spelunking in the /templates direc-
tory of the imported org.eclipse.gmf.codegen plug-in. We notice right away
that there are three editparts directories: one under /templates/diagram, one
under /templates/impl/diagram, and one under /templates/xpt/dia-
gram. The last one is a legacy structure and should be ignored in favor of the
/templates/impl pattern to distinguish published API vs. non-API templates.
Looking into each and finding a NodeEditPart.xpt template in the first two,
we open each to see the differences. In the /templates/diagram/
editparts/NodeEditPart.xpt template, we see that it delegates to the
/templates/impl/diagram/editparts/NodeEditPart.xpt template for
generation of the class content. What interests us most, however, is the «EXPAND
additions-» expansion near the end of the class. All we need to do is add the
code listed earlier to our archetype EditPart classes, so this looks like a prom-
ising place to start. In fact, this expansion was designed for Toolsmiths to use for
customizing the generated code, and you’ll find many of them in the GMF tem-
plates. The corresponding «DEFINE» block appears at the bottom of the
template and is listed here:

«DEFINE additions FOR gmfgen::GenNode-»
«ENDDEFINE»

TIP

If you need additional extensibility in GMF templates, open a bug to request
the change be made.

We need to create a NodeEditPart.xpt template file in our org.
eclipse.dsl.dnc project in a /templates/aspects/diagram/editparts
folder. Again, we conform to the GMF convention of aspect template placement
so that the generator will invoke our template. We place an «AROUND» block at
the top of the template, as follows:

212 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

«IMPORT "http://www.eclipse.org/gmf/2006/GenModel"»
«EXTENSION Utils»

«AROUND additions FOR gmfgen::GenNode-»
«EXPAND fieldPreferencePropertyChangeListener FOR this-»
«EXPAND PreferencePropertyChangeListener FOR this-»
«EXPAND addNotationalListeners FOR this-»
«EXPAND updateArchetypeColor FOR this-»
«EXPAND getPreferenceColor FOR this-»
«EXPAND initPreferenceStoreListener FOR this-»
«EXPAND setForegroundColorMethod FOR this-»
«ENDAROUND»

As you can see, we’re breaking up the implementation into a series of
«DEFINE» blocks, each corresponding to a method. This is another best practice
for using Xpand, and one you’ll see throughout the GMF templates. Note, how-
ever, that the context for this custom template remains gmfgen::GenNode. This
means that all EditPart classes that are generated for nodes will have these cus-
tomizations added, not only archetypes. Our diagram has two other types of
nodes, package nodes, and annotations. This doesn’t present a problem in our
case because we default all nodes not recognized as archetypes during execution
as the plug-in point archetype. The «EXTENSION» at the top of our template
points to our Util.ext file that contains the logic used, as shown here:

String toPreferenceConstant(ecore::EClass type) :
switch (type.name) {
case "MomentInterval" : "PREF_MI_ARCHETYPE_COLOR"
case "MIDetail" : "PREF_MI_ARCHETYPE_COLOR"
case "Role" : "PREF_ROLE_ARCHETYPE_COLOR"
case "Party" : "PREF_PPT_ARCHETYPE_COLOR"
case "Place" : "PREF_PPT_ARCHETYPE_COLOR"
case "Thing" : "PREF_PPT_ARCHETYPE_COLOR"
case "Description" : "PREF_DESC_ARCHETYPE_COLOR"
default : "PREF_PIP_ARCHETYPE_COLOR"

}
;

You’ll see where this function is invoked shortly, but it’s clear from this how
each archetype is mapped to its corresponding preference constant. The first tem-
plate definition invoked appears next and simply adds a field for our inner
PreferencePropertyChangeListener class. Note the use of the xpt::Common::
generatedMemberComment and xpt::Common::generatedMemberComent
expansions throughout the template, which insert the familiar @generated tags
above class, field, and method declarations.

4.6 Developing the Color Modeling Diagram 213

ptg6022785

TIP

When working with custom templates, be sure to use fully qualified tem-
plate references, particularly when overriding an existing template that
might have been written using local reference paths. If you don’t, you will
receive errors during execution because the template will not be resolved.

«DEFINE fieldPreferencePropertyChangeListener FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment»-»
private PreferencePropertyChangeListener preferenceListener;

«ENDDEFINE»

Next, we define the listener class itself, which, as you can see, needs to access
the fully qualified class name for our generated appearance preference page. This
listener class is the first to use our toPreferenceConstant() function for the
passed archetype.

«DEFINE PreferencePropertyChangeListener FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedClassComment-»
protected class PreferencePropertyChangeListener

implements org.eclipse.jface.util.IPropertyChangeListener {
public void

propertyChange(org.eclipse.jface.util.PropertyChangeEvent event) {
if (event.getProperty().equals(

«EXPAND
xpt::diagram::preferences::AppearancePreferencePage::qualifiedClassName
FOR diagram».«modelFacet.metaClass.ecoreClass.toPreferenceConstant()»))
{

updateArchetypeColor();
}

}
}

«ENDDEFINE»

Note the navigation to the archetype’s Ecore class using modelFacet.
metaClass.ecoreClass in the statement. The structure of the GMF generator
model is important to have handy when writing templates, and you can easily
open it from the imported project, or simply open the QVTO Metamodel
Explorer for navigator view access to the model. As you saw in the utility func-
tion, the name of the class maps to its preference constant, which is inserted in
the generated code so that the EditPart can detect changes to its color preference.
We could use a variation of this logic to avoid generating this color preference
code for non-archetype nodes.

214 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

The rest of the template definition appears here. It’s a straightforward tem-
plating of our handcrafted code, with the only other noteworthy aspect being the
use of toPreferenceConstant() again in the getPreferenceColor defini-
tion block.

«DEFINE addNotationalListeners FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment-»
@Override
protected void addNotationalListeners() {

super.addNotationalListeners();
initPreferenceStoreListener();

}
«ENDDEFINE»

«DEFINE initPreferenceStoreListener FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment-»
private void initPreferenceStoreListener() {

preferenceListener = new
PreferencePropertyChangeListener();

org.eclipse.jface.preference.IPreferenceStore
preferenceStore = (org.eclipse.jface.preference.IPreferenceStore)
getDiagramPreferencesHint().getPreferenceStore();

preferenceStore.addPropertyChangeListener(preferenceListener);
}

«ENDDEFINE»

«DEFINE updateArchetypeColor FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment-»
protected void updateArchetypeColor() {

getFigure().setForegroundColor(getPreferenceColor());
getFigure().repaint();

}
«ENDDEFINE»

«DEFINE getPreferenceColor FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment-»
private org.eclipse.swt.graphics.Color getPreferenceColor() {

org.eclipse.jface.preference.IPreferenceStore
preferenceStore = (org.eclipse.jface.preference.IPreferenceStore)
getDiagramPreferencesHint().getPreferenceStore();

org.eclipse.swt.graphics.RGB archetypeColorPreference =
org.eclipse.jface.preference.PreferenceConverter.getColor(
preferenceStore,
«EXPAND
xpt::diagram::preferences::AppearancePreferencePage::qualifiedClassName
FOR diagram».«modelFacet.metaClass.ecoreClass.toPreferenceConstant()»);

return new org.eclipse.swt.graphics.Color(null,
archetypeColorPreference);

}
«ENDDEFINE»

«DEFINE setForegroundColorMethod FOR gmfgen::GenNode-»
«EXPAND xpt::Common::generatedMemberComment-»

4.6 Developing the Color Modeling Diagram 215

ptg6022785

@Override
protected void setForegroundColor(org.eclipse.swt.graphics.Color

color) {
super.setForegroundColor(getPreferenceColor());

}
«ENDDEFINE»

Moving on to the preference page templates, we find the original
AppearancePreferencePage.xpt template in /templates/xpt/diagram/
preferences. We need to override this template, along with
PreferenceInitializer.xpt, because they were apparently not created
with extensibility in mind, as was the case with the NodeEditPart.xpt
template. This means that we simply copy these two templates into our own
/templates-diagram/xpt/diagram/preferences folder and modify them
to suit our needs. Most of the changes required for the preference page code is
straightforward copy and paste from our earlier handcrafted code, so we don’t
repeat it here. However, we do need to explore how GMF deals with globaliza-
tion because we need to add referenced elements to our generated Messages class
and messages.properties file. Looking at the template files, we find an
Externalizer.xpt template in the /templates/xpt folder in the generator
plug-in. The Externalizer template provides a centralized means by which to gen-
erate the Messages class and properties file. The template is organized in two
main definition blocks, as shown here. Basically, GMF convention is to declare
an i18nAccessors and i18nValues definition in templates that require local-
ization and invoke them from the Fields and Values definitions, respectively.

«DEFINE Fields FOR gmfgen::GenEditorGenerator»
«EXPAND xpt::editor::CreateShortcutAction::i18nAccessors FOR diagram-»
«EXPAND xpt::editor::CreationWizard::i18nAccessors FOR diagram-»
«EXPAND xpt::editor::CreationWizardPage::i18nAccessors FOR diagram-»

. . .
«ENDDEFINE»

«DEFINE Values FOR gmfgen::GenEditorGenerator»
«EXPAND xpt::editor::CreateShortcutAction::i18nValues FOR diagram-»
«EXPAND xpt::editor::CreationWizard::i18nValues FOR diagram-»
«EXPAND xpt::editor::CreationWizardPage::i18nValues FOR diagram-»
. . .
«ENDDEFINE»

We follow suit with our properties preference page by defining similar blocks
for invocation by our overridden Externalizer.xpt template. First, we take a
look at the externalizer, which is placed in our /templates-diagram/
aspects/xpt directory.

216 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

«IMPORT "http://www.eclipse.org/gmf/2006/GenModel"»
«IMPORT "http://www.eclipse.org/emf/2002/Ecore"»

«EXTENSION xpt::ExternalizerUtils»

«AROUND Fields FOR gmfgen::GenEditorGenerator»
«EXPAND
xpt::diagram::preferences::AppearancePreferencePage::i18nAccessors FOR
diagram-»
«targetDef.proceed()-»
«ENDAROUND»

«AROUND Values FOR gmfgen::GenEditorGenerator»
«EXPAND xpt::diagram::preferences::AppearancePreferencePage::i18nValues
FOR diagram-»
«targetDef.proceed()-»
«ENDAROUND»

Here, we create «AROUND» aspects for both the Fields and Values defini-
tions, expand our custom template definitions, and then continue execution of
the original template using targetDef.proceed(). This is a common
approach to extensibility using Xpand. Back in our AppearancePreference
Page.xpt template, we find the definitions.

«DEFINE i18nValues FOR gmfgen::GenDiagram-»
«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_archetypeColorGroup_label",
"Archetype colors")-»

«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_pinkArchetypeColor_label",
"Pinks (moment-interval, mi-detail):")-»

«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_yellowArchetypeColor_label",
"Yellows (role):")-»

«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_greenArchetypeColor_label",
"Greens (party, place, thing):")-»

«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_blueArchetypeColor_label",
"Blues (description):")-»

«EXPAND xpt::Externalizer::messageEntry(
"AppearancePreferencePage_grayArchetypeColor_label",
"Plug-in point:")-»
«ENDDEFINE»

4.6 Developing the Color Modeling Diagram 217

ptg6022785

«DEFINE i18nAccessors FOR gmfgen::GenDiagram-»
«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_archetypeColorGroup_label")-»

«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_pinkArchetypeColor_label")-»

«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_yellowArchetypeColor_label")-»

«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_greenArchetypeColor_label")-»

«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_blueArchetypeColor_label")-»

«EXPAND xpt::Externalizer::accessorField(
"AppearancePreferencePage_grayArchetypeColor_label")-»
«ENDDEFINE»

When the Messages class and messages.properties files are being gener-
ated, each template that requires messages is invoked and the strings are added
to these files. You need to go to the i18nValues blocks for declaring the default
localized string values when using GMF Xpand templates. Two callback expan-
sions are made from the template to messageEntry and accessorField in the
Externalizer.xpt template, as shown here. The first creates a public static
String entry in the generated Messages class file; the second creates a
key=value entry in the messages.properties file.

«DEFINE accessorField(String key) FOR Object»
«EXPAND xpt::Common::generatedMemberComment»

public static String «escapeIllegalKeySymbols(key)»;
«ENDDEFINE»

«DEFINE messageEntry(String key, String message) FOR Object-»
«escapeIllegalKeySymbols(key)»=«escapeIllegalMessageSymbols(message)»
«ENDDEFINE»

Having provided a means by which to produce messages, we now need to
access them in our generated code; this means examining another aspect of
GMF’s Externalizer.xpt template. When a message is accessed in the code
generated, it needs to resolve the Messages class, which means calling back again
to the Externalizer.xpt template so that the fully qualified path can be pro-
vided. Following is the accessorCall definition, used for just this purpose.

218 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

«DEFINE accessorCall(String key) FOR gmfgen::GenEditorGenerator-»
«getAccessorQualifier()».«getAccessorName()».
«escapeIllegalKeySymbols(key)»
«ENDDEFINE»

We use this in our preference page template, as shown here:

«EXPAND xpt::Common::generatedClassComment»
public class «EXPAND className» extends
org.eclipse.gmf.runtime.diagram.ui.preferences.AppearancePreferencePage
{

«EXPAND xpt::Common::generatedMemberComment»
private String PINK_COLOR_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_pinkArchetypeColor_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
private String YELLOW_COLOR_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_yellowArchetypeColor_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
private String GREEN_COLOR_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_greenArchetypeColor_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
private String BLUE_COLOR_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_blueArchetypeColor_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
private String GRAY_COLOR_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_grayArchetypeColor_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
private String ARCHETYPE_GROUPBOX_LABEL =
«EXPAND xpt::Externalizer::accessorCall(
"AppearancePreferencePage_archetypeColorGroup_label") FOR editorGen»;
«EXPAND xpt::Common::generatedMemberComment»
public static final String PREF_MI_ARCHETYPE_COLOR =
"Appearance.mi_ArchetypeColor";
. . .
}

Our final template required to provide full generation of our preferences-
based archetype color feature is the PreferenceInitializer.xpt template.
As mentioned earlier, the only change required to this template is to add an invo-
cation of the initArchetypeDefaults() method, as shown next. This tem-
plate contains a good deal of code that we do not require, but for now we’ll leave
it as is and make our single modification.

4.6 Developing the Color Modeling Diagram 219

ptg6022785

. . .
«EXPAND
xpt::diagram::preferences::GeneralPreferencePage::qualifiedClassName»
.initDefaults(store);

«EXPAND xpt::diagram::preferences::AppearancePreferencePage::
qualifiedClassName».initDefaults(store);

«EXPAND xpt::diagram::preferences::AppearancePreferencePage::
qualifiedClassName».initArchetypeDefaults(store);

«EXPAND xpt::diagram::preferences::ConnectionsPreferencePage::
qualifiedClassName».initDefaults(store);

«EXPAND xpt::diagram::preferences::RulersAndGridPreferencePage::
qualifiedClassName».initDefaults(store);
. . .

We need only to set the Dynamic Templates property of our Gen
Editor Generator root element in our dnc.gmfgen model to true, and
enter a Template Directory path of /org.eclipse.dsl.dnc/
templates-diagram. Regenerating our code should produce code that runs
and, for the first time, renders each archetype according to its default color.
Experiment with the preferences to ensure that they work and to find a set of
RGB values that you find most appealing. Perhaps the best outcome of this tem-
plate exercise, other than a better understanding of how GMF’s code generation
works, is knowing that you can delete and fully generate this feature in your dia-
gram plug-in.

4.6.7 Custom Parsers

A popular feature of class modeling tools is the capability to specify the type after
the name when entering attributes, or even complete method signatures, using
the in-place editor. For our DNC diagram, we begin with the attribute field.
Currently, we enter the name of the attribute using the diagram, but then we need
to drop down to the properties view to select the type, which doesn’t display on
the diagram. We can take two basic approaches to solving the problem. One is
to contribute to the parserProviders extension-point in the diagram or cus-
tom plug-in and implement our own IParserProvider. Another approach is
to use the Feature Label mapping in the dnc.gmfmap model to generate code
that we could modify to complete the implementation. Because we require cus-
tom parsers for our Attribute and Operation labels, we use both approaches,
to illustrate the differences.

220 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

Attribute Parser Provider

For attributes, we want to enter name:Type in the label on the diagram and have
it parsed properly to set the name and dataType fields of the underlying
Attribute domain element. Of course, we want the label to display
name:Type even when changes are made to the underlying model through the
properties view, for example. To begin, we create a new (empty) org.
eclipse.dnc.diagram.custom plug-in to our workspace and contribute to
the parserProviders extension-point, as follows:

<extension

point="org.eclipse.gmf.runtime.common.ui.services.parserProviders">
<ParserProvider

class="org.eclipse.dnc.diagram.providers.AttributeParserProvider">
<Priority name="Low"/>

</ParserProvider>
</extension>

We need to provide the AttributeParserProvider class, which extends
the runtime’s AbstractProvider and implements the IParserProvider
interface. This is the class, which still could use some optimization but works
well enough for now:

public class AttributeParserProvider extends AbstractProvider
implements IParserProvider {

private IParser myParser;

public IParser getParser(IAdaptable hint) {
if (myParser == null) {
myParser = new ISemanticParser() {

public IContentAssistProcessor getCompletionProcessor(IAdaptable
element) {
return null;

}

public String getEditString(IAdaptable element, int flags) {
Attribute attribute = getAttribute(element);
return attribute.getName() != null ? attribute.getName()
+ ":" + (attribute.getDataType() != null ?
attribute.getDataType().getName() : "") : "";

}

public ICommand getParseCommand(IAdaptable element,
final String newString, int flags) {
int index = newString.indexOf(":");
final String name;
final String typeName;

4.6 Developing the Color Modeling Diagram 221

ptg6022785

if (index == 0) {
name = "";
typeName = newString.substring(index + 1);

} else if (index > 0) {
name = newString.substring(0, index).trim();
typeName = newString.substring(index + 1).trim();

} else if (index == -1 && newString.length() > 0) {
name = newString;
typeName = "";

} else {
name = "";
typeName = "";

}

final Attribute attribute = getAttribute(element);
final Datatype dataType = findType(typeName, attribute);

TransactionalEditingDomain editingDomain = TransactionUtil
.getEditingDomain(attribute);

return new AbstractTransactionalCommand(editingDomain, "",
Collections.singletonList(
WorkspaceSynchronizer.getFile(attribute.eResource()))) {

@Override
protected CommandResult doExecuteWithResult(IProgressMonitor
monitor, IAdaptable info) throws ExecutionException {
if (newString.length() == 0) {
return CommandResult.newErrorCommandResult(

"Invalid input");
}
attribute.setName(name);
attribute.setDataType(dataType);
return CommandResult.newOKCommandResult();

}
};

}

private Datatype findType(final String typeName,
final Attribute attribute) {
Datatype type = null;
if (typeName.length() > 0) {
EList<Resource> resources =
attribute.eResource().getResourceSet().getResources();

for (Resource resource : resources) {
for (EObject object : resource.getContents()) {
if (object instanceof org.eclipse.oocore.Package) {

type = findInPackage((org.eclipse.oocore.Package)
object, typeName);

if (type != null) return type;
}

}
}

}
return type;

}

222 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

private Datatype findInPackage(org.eclipse.oocore.Package pkg,
String typeName) {
for (PackageableElement element : pkg.getContents()) {
if (element instanceof Datatype &&

typeName.equals(element.getName())) {
return (Datatype) element;

}
if (element instanceof org.eclipse.oocore.Package) {

return findInPackage((org.eclipse.oocore.Package)
element, typeName);

}
}
return null;

}

public String getPrintString(IAdaptable element, int flags) {
String printString = getEditString(element, flags);
return printString.length() == 0 ? "<<...>>" : printString;

}

public boolean isAffectingEvent(Object event, int flags) {
if (event instanceof Notification) {
Notification emfNotification = (Notification) event;
return !emfNotification.isTouch()
&& (emfNotification.getFeature() ==
OocorePackage.eINSTANCE.getNamedElement_Name() ||
emfNotification.getFeature() ==
OocorePackage.eINSTANCE.getAttribute_DataType());

}
return false;

}

public IParserEditStatus isValidEditString(IAdaptable element,
String editString) {
return ParserEditStatus.EDITABLE_STATUS;

}

private Attribute getAttribute(IAdaptable adaptable) {
return (Attribute) adaptable.getAdapter(EObject.class);

}

public boolean areSemanticElementsAffected(EObject listener,
Object notification) {
if (notification instanceof Notification) {
Notification emfNotification = (Notification) notification;
return !emfNotification.isTouch()
&& (emfNotification.getFeature() ==
OocorePackage.eINSTANCE.getAttribute() ||
emfNotification.getFeature() ==
OocorePackage.eINSTANCE.getDatatype());

}
return false;

}

4.6 Developing the Color Modeling Diagram 223

ptg6022785

public List<EObject> getSemanticElementsBeingParsed(EObject
element) {
List<EObject> result = new ArrayList<EObject>();
if (element instanceof Attribute) {

result.add(element);
}
return result;

}
};}
return myParser;

}

public boolean provides(IOperation operation) {
if (operation instanceof GetParserOperation) {
IAdaptable hint = ((GetParserOperation) operation).getHint();
String visualID = (String) hint.getAdapter(String.class);
return AttributeEditPart.VISUAL_ID ==

DncVisualIDRegistry.getVisualID(visualID)
&& hint.getAdapter(EObject.class) instanceof Attribute;

}
return false;

}
}

Starting at the bottom, we find that the IProvider.provides() method
returns true if the GetParserOperation passed contains a hint that resolves
to the AttributeEditPart’s visual ID and an instance of our Attribute
class. With this parser provider registered as a service provider, its getParser()
method is invoked to supply an implementation of ISemanticParser. The
implementation of the parser is crude, but it functions adequately for our sam-
ple. Notice that it loads all models in the resource set that are looking for
Datatypes to validate against. The idea with types is that a types.oocore, or
similar, is provided and loaded automatically, or users are given the option to
load their own types. The most important aspect of the parser is the
getParseCommand() method. As with all model modifications that take place
within the context of a GMF application, a transactional command is used
within the editing domain to effect the change.

Operation Parser Provider

Our Operation parser provider needs to be slightly more complex than our
Attribute parser provider, given the relative complexity of an Operation sig-
nature. We need to take into account the name of the operation, the return type,
and each parameter name and type. As usual, we surround our parameters with

224 CHAPTER 4 • Developing a DSL Graphical Notation

ptg6022785

parentheses and delimit them with commas. Types are followed by a colon for
both parameters and return type—for example, calculatePriceFor
Quantity(item:Item, qty:Integer):BigDecimal.

For our Attribute example, it was reasonable to implement the parser
provider by hand, given that we had to deal with only two values. For more com-
plex parsing, such as that required for our Operation parser provider, we really
should define a grammar and use a parser generator to do the heavy lifting. In
fact, looking again to the UML2 Tools project for examples, we find that JavaCC
was used to produce parsers for UML operation fields, among others. This book
does not provide the details of the implementation, but they are provided within
the sample projects, including documentation throughout.

4.7 Summary

In this chapter, we explored in some detail the process of working with GMF to
define a series of domain-specific diagrams. As the possible functionality of a dia-
gramming surface may be quite extensive, we covered only some of the most
popular use cases in this chapter, leaving detail about the tooling and runtime
components to Chapter 11 as reference for adding your own functionality.

At this time, we move on to discuss a bit about the development of textual
concrete syntaxes for our domain-specific languages.

4.7 Summary 225

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 5

Developing a DSL Textual
Syntax

You’ve seen how it’s possible to create a graphical concrete syntax using Graphical
Modeling Framework (GMF), but a graphical notation might not always be appropriate or
sufficient for a domain-specific language (DSL). In software development, textual syntaxes
are the most popular and well-supported means by which to work with programming lan-
guages, both general purpose and domain specific. Tools to generate parsers, abstract syn-
tax trees, and semantic analysis are quite mature and plentiful. Frameworks designed to
support editing, refactoring, versioning, comparison, and merging of textual languages are
also common, with Eclipse representing perhaps the most popular on the planet today.

As discussed already, expressing an abstract syntax using metamodels is superior
in many ways to using traditional methods of grammar definition. Fortunately,
it’s possible to combine abstract syntax definition, grammar specification, and
the generation of textual editors that leverage a common underlying framework.
Given the importance of textual syntaxes, their support in a DSL Toolkit is essen-
tial. An attractive goal is to provide support for simultaneous editing of textual
and graphical elements for any language.

In the context of the Modeling project, two components within the Textual
Modeling Framework (TMF) project support the development of textual syn-
taxes for DSLs. Furthermore, as the concept of “language workbenches”
becomes increasingly popular, support continues to grow for the generation of
high-quality textual editors for a provided language grammar. Within Eclipse,
the IDE Meta-Tooling Platform (IMP) project aims to provide such support. In
the future, the components of TMF are expected to use IMP as a complementary
component for developing textual editors for languages based on an underlying
Ecore-based abstract syntax.

227

ptg6022785

At the time of this writing, the TMF project is just underway, and the IMP
project is updating its support to allow for the generation of editors for the
Eclipse 3.3 platform. Unfortunately, much work remains to be done before a
comprehensive chapter on developing a DSL textual syntax can be written that
will not be outdated as soon as it is published. Therefore, this chapter introduces
each of the two TMF components at a high level, leaving details to the sample
projects and a subsequent version of this book. In the meantime, you can visit
the TMF home page and wiki to get the latest information on the development
progress of these important components.

5.1 Xtext

Xtext is a component of TMF that supports the development of a DSL grammar
using an Extended Backus-Naur Form (EBNF)-like language, which can use this
to generate an Ecore-based metamodel, Eclipse-based text editor, and correspon-
ding ANTLR-based parser. Unfortunately, the default nature of Xtext is to begin
with a grammar and produce an Ecore model, rather than begin with an Ecore
model and derive the grammar. Nevertheless, it allows for transformation to and
from an Ecore-based model, thereby providing for interoperability with EMF-
based technologies such as QVT Operational Mapping Language (QVTO) and
Xpand. Additionally, Xtext allows a grammar specification to reference an exist-
ing metamodel by using an import mechanism, which gets us closer to the ideal
case.

The Checks language is used in the context of the generated metamodel to
validate the language semantics. The editor can provide validation to give the
user feedback in the form of error and warning messages, complete with the
expected Eclipse decorators and markers. Alternatively, validation can be pro-
vided during workflow of the model instances in the context of model-to-model
or model-to-text transformation. Furthermore, Xtext registers an EMF
ResourceFactory for the generated DSL file extension, allowing it to read in (but
not write) an instance of the model from the textual syntax.

Although Xtext is capable of generating a functional Eclipse textual editor,
complete with syntax highlighting, code assist, outline view, and so on, it does
not yet use the IMP project. Hopefully, Xtext and its TMF counterpart, Textual
Concrete Syntax (TCS), will provide interoperability with IMP in the future,
thereby supporting the proper separation of concerns and reducing duplicated
effort in the area of textual editor generation.

At the time of this writing, Xtext is available only from the GMT downloads
and includes dependencies to underlying technologies that are incompatible with

228 CHAPTER 5 • Developing a DSL Textual Syntax

ptg6022785

the versions used to develop the samples in this book. Therefore, this book does
not include Xtext examples; you can visit the Xtext component Web site for
examples and additional information.

5.2 TCS

The TCS component of TMF provides an alternative to Xtext in defining a tex-
tual concrete syntax for a DSL. TCS is itself a DSL that facilitates specifying a
textual syntax by linking syntactic information to a metamodel. In doing so, it
allows an Ecore-based model to be used with a TCS model to generate a gram-
mar. Sufficient richness of definition allows TCS to generate both model-to-text
and text-to-model capabilities.

TCS can produce an annotated grammar using an ATL transformation to be
used by the ANTLR parser generator. This provides the injector component for
text-to-model translation. An extractor is derived from the language metamodel
and TCS model and is used to provide model-to-text translation. The extractor
is based on an interpreter that may be used for any language, although it is pos-
sible to generate an extractor per DSL.

As with Xtext, TCS does not yet use the IMP project for production of its
text editor. Instead, TCS uses the Textual Generic Editor (TGE), which builds
upon TCS to provide the editor, outline view, and text-to-model traceability. TCS
does provide a “zoo” of languages that have been defined and are available from
the project Web site.

At the time of this writing, no downloads are available for TCS, although
code is present in the CVS repository. Therefore, this book does not provide
detailed examples or sample projects at this time. When TCS and Xtext mature
and provide integration with IMP, the book’s sample applications likely will
include a textual syntax using one of these components.

5.3 Summary

The ability to define and generate support for textual concrete syntaxes is essen-
tial for the future of DSL tooling. With Xtext and TCS providing the beginnings
of this last major element in our Eclipse DSL Toolkit, look to the TMF project
website and future editions of this book for detailed information on their usage.

Next, we’ll explore model transformation, beginning with model-to-model
transformation using QVT Operational Mapping Language.

5.3 Summary 229

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 6

Developing Model-to-Model
Transformations

A model is often used as the source or target of a Model-to-Model Transformation (M2M).
Within the Modeling project, the M2M project has two components to provide transforma-
tion capabilities: Atlas Transformation Language (ATL) and Query/View/Transformation
(QVT). This book does not cover ATL, but it is similar to QVT. QVT is actually a collec-
tion of three transformation languages, but this book covers only the Operational Mapping
Language (OML). The other languages of QVT are its Relations language and the Core lan-
guage; the Relations language has just released its first build at Eclipse.

6.1 Transformation Techniques

Much has been written on model transformation and translation. Translation
strives to provide semantic equivalence between two models and is beyond the
scope of this book. Instead, I focus on using OML to define transformations
between domain-specific languages (DSLs) and I consider several approaches to
transformation and generation. As with everything, there are implementation
choices to make, each with its pros and cons. In the case of transformation, we
must consider where it makes the best sense to implement mappings between
models. For example, consider the mapping between the notation model Business
Process Modeling Notation (BPMN) and Business Process Execution Language
(BPEL). The BPMN specification defines a mapping, but the Toolsmith must
determine where it’s best to implement it. Imagine the mapping model discussed
earlier in the context of the Graphical Modeling Framework (GMF) as one pos-
sibility. In this case, a graphical definition would represent the elements of
BPMN, and the domain model would be derived from the BPEL XML Schema.

231

ptg6022785

Of course, the expressiveness of the GMF mapping model is insufficient to cap-
ture the complete mapping, leaving the Toolsmith to implement the rest in Java.
The result would be a diagram capable of directly editing a BPEL model.

Another approach would be to create a domain model of BPMN in Eclipse
Modeling Framework (EMF), for example, and map the notation directly to this
model. In the case of BPMN2, this would be the BPDM metamodel. Instances of
the BPMN model would be used in an M2M transformation to produce a BPEL
model instance, with the transformation definition embodying the mapping from
BPMN to BPEL provided in the specification. By creating an instance of the
BPEL model that was derived from the XML Schema, EMF would serialize it as
a valid BPEL document. Otherwise, as is the case for generating Java, an M2M
transformation would result in an instance of a Java model that would have ded-
icated Model-to-Text Transformation (M2T) templates used to generate the
compilation units as files.

Still another option would be to use this BPMN instance as input to model-
to-text templates. In this case, the logic required to map from BPMN to BPEL
would exist within the template language—in the case of Xpand, mostly using its
Xtend language.

Many techniques must be considered when dealing with model transforma-
tion, both model-to-model and model-to-text. Chaining models through a
sequence of transformations is a likely scenario, as is the case in which multiple
input and/or output models are involved. Intermediate models might be required
to overcome certain complexities or adapt one model for use in another prede-
fined transformation. In fact, OML provides the capability to define a meta-
model that can be used on-the-fly within the context of a transformation.

As mentioned, each of these approaches has its pros and cons. The Toolsmith
must determine the appropriate technique based on stated requirements, flexi-
bility, personal preference, maintainability, and other considerations.

6.2 Model Refactoring

Model transformation can be used for model refactoring, specifically through the
use of in-place transformations. Using a transformation defined on a model that
targets the same instance as the input model, it is possible to create complex
refactorings.

The following is a simple example of model refactoring using QVT OML. A
requirements model is passed in and out, as indicated by inout on both the
transformation declaration and the mappings. In this case, requirement groups
and their contained requirements have some of their attributes reset. Each ID
attribute is reset to a sequential number, and each requirement type is set to non-
functional.

232 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

modeltype requirements 'strict'

uses 'http://www.eclipse.org/2008/requirements';

transformation reset(inout model : requirements);

property groupCounter : Integer = 0;
property reqCounter : Integer = 0;

main() {
model.rootObjects()[Model].groups.map resetValues();

}

mapping inout requirements::RequirementGroup::resetValues() {
init {
self.id := 'G' + this.groupCounter.toString();
this.groupCounter := this.groupCounter + 1;
self.requirements.map resetValues();
self.children.map resetValues();

}
}

mapping inout requirements::Requirement::resetValues() {
init {
self.type := Type::NONFUNCTIONAL;
self.id := 'R' + this.reqCounter.toString();
this.reqCounter := this.reqCounter + 1;
self.children.map resetValues();

}
}

COMMENT

Another means by which to apply a pattern-based transformation capabil-
ity to EMF models is by leveraging the Tiger project (http://tfs.cs.tu-berlin.
de/tigerprj/).Although this is not an Eclipse Modeling project, it is a useful
technology that uses graph transformation to map source and target model
patterns to models.

6.3 Model Migration

A consideration when developing a DSL is how to provide a means for clients to
migrate to future versions. Model transformation can provide the mechanism,
particularly if the Toolsmith uses the recommended URI naming scheme that
includes version information (typically a year). This allows the platform to
recognize model versions and enables transformations to be invoked, thereby

6.3 Model Migration 233

http://tfs.cs.tu-berlin.de/tigerprj/
http://tfs.cs.tu-berlin.de/tigerprj/

ptg6022785

updating client models automatically or upon explicit invocation. Of course, this
implies that both versions of the metamodel are deployed using a corresponding
version change so that each can be loaded into the environment. Alternatively,
just the old .ecore could be deployed with the newer one, as long as the trans-
formation can locate both models.

For example, let’s say that our Requirements model was refactored so that a
new abstract ModelElement class were introduced as a superclass for
Requirement and RequirementGroup. With that, our Model class changed its
main containment reference from groups : RequirementGroup to elements
: ModelElement. Furthermore, we combined our RequirementGroup
children : RequirementGroup and requirements : Requirement con-
tainments into a single children : ModelElement relationship. Figures 6-1
and 6-2 are the two models for reference, beginning with the before version.

234 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-1 Requirements domain model

ptg6022785

Figure 6-2 shows the version after the changes mentioned.

6.3 Model Migration 235

Figure 6-2 Modified requirements domain model

To provide for the migration of user models from the original version to the
later version, we could deploy a transformation such as the following QVT.

modeltype old 'strict' uses 'http://www.eclipse.org/2008/requirements';
modeltype new 'strict' uses
➥'http://www.eclipse.org/2008a/requirements';

transformation migrate(in oldModel : old, out newModel : new);

main() {
oldModel.rootObjects()[Model]->map toNew();

}

mapping old::Model::toNew() : new::Model {
title := self.title;
elements += self.groups.map toGroup();

}

mapping old::RequirementGroup::toGroup() : new::RequirementGroup {
name := self.name;
id := self.id;
description := self.description;
children += self.children.map toGroup();

ptg6022785

children += self.requirements.map toRequirement();
}

mapping old::Requirement::toRequirement() : new::Requirement {
id := self.id;
name := self.title;
description := self.description;
type := self.type.toType();
children += self.children.map toRequirement();
priority := self.priority.toPriority();
author := self.author;
created := self.created;
comments += self.comments.map toComment();
version := self.version.map toVersion();
dependencies += self.dependencies.late resolve(new::Requirement);
scenario := self.scenario;
state := self.state.toState();
resolution := self.resolution.toResolution();

}

mapping old::Comment::toComment() : new::Comment {
subject := self.subject;
body := self.body;
author := self.author;
created := self.created;
children += self.children.map toComment();

}

mapping old::Version::toVersion() : new::Version {
major := self.major;
minor := self.minor;
service := self.service;

}

query old::State::toState() : new::State {
var state : new::State := null;
switch {

(self = old::State::NEW) ? state := new::State::NEW;
(self = old::State::REVIEWED) ?
state := new::State::REVIEWED;
(self = old::State::APPROVED) ?
state := new::State::APPROVED;
(self = old::State::RESOLVED) ?
state := new::State::RESOLVED;
else ? assert fatal (false)
with log('State unsupported', self);

};
return state;

}

-- The remaining queries toType(), toPriority(), and toResolution()
➥not shown

236 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

The transformation uses the URIs of the models to distinguish between them.
The details of the transformation definition will become more clear after you
learn more about QVT in the next section and in Chapter 13, “Query/View/
Transformation Operational Mapping Language.” Afterward, you might want
to return to this example.

6.4 Model Merge

QVT Operational Mapping Language is capable of dealing with multiple input
and output models. One application of this is for merging models, as in the fol-
lowing example. Another example is in combining aspects of GMF’s mapping,
tooling, and domain models during transformation to its generator model. This
transformation has been written and is awaiting incorporation into GMF as an
alternative and more flexible means of creating the gmfgen model.

This example does not show the main body of the transformation, but the
signature and main mapping indicate the intent. Here, the contents of an Eclipse
product definition model are merged with the minimal content of an Eclipse
Packaging Project configuration model to output a complete configuration
model for use in producing a package. As shown in the transformation signature,
two input models are defined along with one output model. Alternatively, the
input configuration model could be filled out using the product definition model
content.

modeltype config uses "http://www.eclipse.org/epp/config";
modeltype product uses "http://www.eclipse.org/pde/product";

transformation product2epp(in prod : product, in base : config,
out config : config);

configuration property rcpVersion : String;

main(in inProd : product::Product,
in baseConfig : config::DocumentRoot,
out outConfig : config::ConfigurationType) {

assert fatal (inProd.useFeatures)
with log('Must use feature-based product definition');

outConfig := inProd.map toEPPConfig();
outConfig.updateSites := baseConfig._configuration.updateSites

->first().map toUpdateSites();
outConfig.rootFileFolder := baseConfig._configuration.rootFileFolder
->first().map toRootFileFolder();

outConfig.extensionSite := baseConfig._configuration.extensionSite
->first().map toExtensionSite();

}

6.4 Model Merge 237

ptg6022785

6.5 M2M QVT Operational Mapping Language

OML is an Object Constraint Language (OCL)-based procedural language that
provides a low-level method for defining model-to-model transformations. OCL
provides the “Query” in QVT, and “low-level” refers to the difference between
OML and its high-level counterpart, the QVT Relations language. Much as with
a Java class file, an OML definition (*.qvto file) has a list of imported models,
a main operation, a series of mappings and queries that resemble class methods,
and so on. Aside from the need to be familiar with the OCL and some extensions
added to produce side effects, OML should be fairly easy for most developers to
get started using. Those already familiar with OCL should find it much easier to
use. This section discusses the basic structure of an OML file and the language.

I’ve provided an implementation of the OML as a component of the M2M
project. Here we look at the features of this project before going through a
worked example.

6.5.1 QVT Project

QVT OML provides its own project wizard that installs the appropriate nature
and builder. The DSL Toolkit project wizard from Amalgam also installs the
QVT OML nature and builder. The QVT Operational Project wizard can be
invoked from the Eclipse New dialog (Ctrl+N) in the Model to Model Trans-
formation category. You can specify a source container for transformation loca-
tion within the project structure, with the default being /transforms.
Specifying a source container enables you to place transformation definitions in
any project folder without having to specify the folder in the namespace of the
definition itself, similar to a Java source folder concept.

The project wizard supports the creation of a library or transformation file
during project creation. Otherwise, you can use a QVT Operational Library and
QVT Operational Transformation wizard to add these elements to an existing
QVT project. Figure 6-3 shows the QVT project wizard dialog.

To resolve workspace domain models, a QVT project includes Metamodel
Mappings in its properties, as seen in Figure 6-4. Entries made here allow the
engine to map an NS URI to a physical .ecore model in the workspace. Note
that it’s also possible to use an eclipse platform:/plugin/... or platform:/
resource/... URI directly in a modeltype declaration.

238 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

Figure 6-3 Operational QVT Project Wizard

6.5 M2M QVT Operational Mapping Language 239

Figure 6-4 Metamodel mapping properties

ptg6022785

6.5.2 QVT OML Editor

Eclipse M2M QVT Operational (QVTO) provides an editor for working with
QVT OML (*.qvto) files, with many of the features you’d expect from an
Eclipse-based editor (although there is room for improvement). Code comple-
tion, syntax highlighting, templates, navigation into metamodel browser, error
markers, and more are provided. Figure 6-5 is an example of code completion
available in the editor.

240 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-5 Operational QVT code completion

6.5.3 Metamodel Explorer

Metamodel Explorer view shows a list of registered Ecore models in the platform
and the workspace. It provides a navigation link from the editor to this naviga-
tor. You use the Open Declaration context menu or press F3 with the cursor over
a metamodel element to open Metamodel Explorer (if it is not already open) and
expand the view to the selected element. Figure 6-6 is an image of the view and
shows platform and workspace registered metamodels. Note that the view has a
number of navigation, filtering, and search features. Still, you can imagine a
number of nice features here: actions to create transformations for selected mod-
els, mappings between selected elements, or a diagram for the selected model(s).

6.5.4 Launch Configuration

To run transformations, an Eclipse launch configuration type is added for
Operational QVT. Launch configurations have three tabs for setting launch
parameters: Transformation, Configuration, and Common. The Transformation
tab includes the main properties, as shown in Figure 6-7. This tab specifies the
launch configuration name, transformation module and trace file option, and
input and output transformation parameters.

ptg6022785

Figure 6-6 Metamodel Explorer

6.5 M2M QVT Operational Mapping Language 241

Figure 6-7 Operational QVT launch configuration

ptg6022785

Finally, the Common tab shown in Figure 6-8 includes options for saving the
launch configuration to a file, displaying as a Run favorite menu item, console
encoding, and redirecting standard input and output. Saving the output to a file
can be useful when using the log() feature of Operational QVT because the
default output is to the Console view.

242 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-8 Operational QVT launch configuration—Common tab

6.5.5 Trace Model

Selecting the Generate a Trace File option in the launch configuration produces
a *.qvtotrace file upon execution. Section 13.5.7, “Trace Model,” discusses
the trace model, which contains information on the mapping executions, includ-
ing input and output instance model data.

The trace model comes with its own editor, which enables you to examine
the trace in a tree view, as shown in Figure 6-9.

ptg6022785

Figure 6-9 Operational QVT trace model

6.5.6 Leveraging OCL in EMF Models

As discussed in Section 3.2.4, “Applying OCL,” you can add OCL to annota-
tions in an EMF model and use them during code generation to provide imple-
mentations of constraints, method bodies, and derived features. M2M OML also
can interpret OCL statements in models before generation, which greatly helps
in writing QVT scripts that rely on these features. After being deployed, OCL
statements are invoked on model instances and also are available to deployed
transformations.

6.5.7 Ant Tasks

A set of Ant tasks is also available for invoking QVTO transformations
heedlessly or in a transformation sequence with other M2M or M2T trans-
formations, for example. The following is an example of how the
qvto.interpretedTransformation task is configured. The order of
targeturidef elements matches the order of models defined in the transfor-
mation signature.

<qvto.interpretedTransformation
transformation="/product2epp.qvto"
tracefile="/product2epp.qvtotrace"
resulturiproperty="config">
<targeturidef

targeturi="platform:/resource/example/modeling.product"
/>

6.5 M2M QVT Operational Mapping Language 243

ptg6022785

<targeturidef
targeturi="platform:/resource/example/modeling.config"

/>
</qvto.interpretedTransformation>

TIP

When launching QVT Ant tasks within Eclipse, be sure to select Run in
the Same JRE As the Workspace on the JRE tab of the Ant launch
configuration so that the custom tasks are found.They’re located within the
antTasks.jar file in the org.eclipse.m2m.qvt.oml.runtime
bundle.

6.6 Transforming a Mindmap to Requirements

Returning to our mindmap example, let’s use an instance of our mindmap model
to produce a corresponding requirements model. Looking at the two domain
models developed earlier, we can see that several elements should map nicely.
When we created each DSL, we anticipated transforming from one to the other,
which makes it easier but is not always the case. Using preexisting models or
models that have different purposes does not typically make for such a clean
mapping.

Operational QVT and Amalgam’s DSL Toolkit provide projects with the
appropriate nature and builder, so we don’t need to manually add this nature to
our DSL project. If you want to add transformations to another type of project,
you can do this by opening the .project file in a text editor and adding the fol-
lowing content:

<buildSpec>
<buildCommand>
<name>org.eclipse.m2m.qvt.oml.QvtBuilder</name>
<arguments>
<dictionary>
<key>src_container</key>
<value>transforms</value>

</dictionary>
</arguments>

</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.m2m.qvt.oml.project.TransformationNature</nature>

</natures>

244 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

As mentioned earlier, to have our workspace mindmap.ecore available to
the editor, engine, and metamodel browser, we need to provide a metamodel
mapping. In the project properties of org.eclipse.dsl.mindmap, add an
entry in the Metamodel Mappings section using the Browse button to locate your
mindmap.ecore model in the workspace. Likewise, you need to register the tar-
get requirements.ecore model, similar to what is shown in Section 6.5.1,
“QVT Project.”

Select the /transformations folder in our mindmap DSL project and
invoke the Operational QVT Transformation wizard from File → New → Other
→ Model Transformation → Operational QVT Transformation. Note that when
not using the DSL Toolkit, the wizard is found in File → New → Other → Model
to Model Transformation → Operational QVT Transformation. Create a new
mindmap2requirements.qvto transformation in the selected /transforma-
tions folder and select Finish to complete the wizard.

In the opened editor, you’ll see the skeleton QVT, which is a simple trans-
formation declaration statement with empty main mapping. Fill out this skeleton
with the following to make it more complete:

modeltype mindmap 'strict' uses 'http://www.eclipse.org/2008/mindmap';
modeltype requirements 'strict' uses
'http://www.eclipse.org/2008/requirements';

transformation mindmap2requirements(in inModel:mindmap,
out outModel:requirements);

main()
{

inModel.rootObjects()[Map]->map toRequirementsModel();
}

At the top, we find the transformation declaration, along with model-
type entries for our source and target models. The modeltype declarations
include the strict qualifier, indicating that only models that conform with the
specified URI will be accepted as inputs. The main entry point contains the stan-
dard form for obtaining the root model object and invoking our first mapping
toRequirementsModel(). The use of brackets around the input model’s Map
class is shorthand notation for combined collect and select operations, which
Section 13.5.3, “Imperative Iterate Expressions,” covers. We expect to find a Map
object at the root of our model, which we obtain and use as the input to the map-
ping that returns a requirements Model instance. To begin, let’s just map our

6.6 Transforming a Mindmap to Requirements 245

ptg6022785

Map’s title attribute to the requirement Model’s title attribute, as shown
here:

mapping mindmap::Map::toRequirementsModel() : requirements::Model {
title := self.title;

}

The left part of the assignment represents the object being instantiated by the
mapping, while the keyword self refers to the mappings’s context object type.
To run and test this simple transformation, we have at least a couple options. We
can launch a runtime instance of our workbench, create a new project and
instance model for our Mindmap DSL, and invoke the transformation using a
launch configuration on the imported transformation. Or we can create a
dynamic instance of our mindmap and model in our development workspace and
test the transformation without launching. The second approach is easier, so
begin by opening the mindmap.ecore model in the default EMF editor, right-
clicking on the root element, and selecting Create Dynamic Instance. Save the
instance file as Mindmap.xmi in the /model folder of our mindmap DSL proj-
ect and enter some test instances. Right now, it’s necessary only to set the title of
the Map object.

We need a launch configuration to invoke our QVT transformation on the
Mindmap.xmi instance file. Select the mindmap2requirements.qvto file in
the navigator and, from Run → Open Run Dialog, create a new Operational
QVT Interpreter configuration. Locate our Mindmap.xmi file as the IN model in
Transformation parameters, and specify a new model adjacent to the QVT file in
the /transformations folder, as shown in the dialog image in Section 6.5.4,
“Launch Configuration.”

From the Run menu, execute the transformation and observe the new
requirement model and trace file in the /transformations folder. We’d need
to open the created mindmap.requirements model in our runtime workbench
to use its generated editor, so for now you can simply open it in a text editor to
confirm that the contents look correct. Another option is to use the Sample
Reflective Ecore Model Editor. You can see that our requirements model title
is set, corresponding to the value specified in your Mindmap.xmi model.

Next, we must determine the desired output structure of our requirements
model, given the structure of our input mindmap model. For convenience,
Figures 6-10 and 6-11 show simplified diagrams of each model.

246 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

Figure 6-10 Mindmap domain model

6.6 Transforming a Mindmap to Requirements 247

Figure 6-11 Requirements domain model

ptg6022785

Let’s say that, for each root Topic on the diagram, we want to create a
RequirementGroup. For each subtopic of the root Topic, we will add a
Requirement to the RequirementGroup. Finally, we’ll add a dependency rela-
tionship between Requirement objects so that we have a Relationship
between Topic elements that are of Type::DEPENDENCY. Recalling our require-
ments diagram notation, a RequirementGroup is a rounded rectangle, while
child Requirement objects will be a circle connected with solid lines.
Dependency links will be drawn as dashed lines with open arrow heads.

Figure 6-12 is an example diagram, to give you a better understanding of
where we’re headed with this transformation. Following the transformation, you
can use the generated action to initialize a requirements diagram from our new
model instance, to create the diagram in our runtime workspace.

248 CHAPTER 6 • Developing Model-to-Model Transformations

Another Subtopic

Topic

A Subtopic A SubSubtopic

Another SubSubtopic

Yet Another

R03 R05

R04R01

R02

F F

F F

F

G01

Figure 6-12 Mindmap and requirement diagrams

ptg6022785

Although the two diagrams are similar, the structure of their domain models
is quite different. The subtopics in our mindmap are contained in the canvas ele-
ment (Map::elements) and linked using noncontainment references. In the
requirements model, Requirement and RequirementGroup elements have
children that are contained by their parents. Now let’s take a look at the QVT
that enables us to transform these models. The following is an updated
toRequirementsModel() mapping in our mindmap2requirements transfor-
mation definition.

transformation mindmap2requirements(in inModel : mindmap,

out outModel : requirements);

property dependencies : Set(Relationship) = null;
property reqCtr : Integer = 1;
property grpCtr : Integer = 1;

main() {
inModel.rootObjects()[Map]->map toRequirementsModel();

}

mapping mindmap::Map::toRequirementsModel() : requirements::Model {
init {

this.dependencies := self.dependencies();
}
title := self.title;
groups += self.rootTopics.map toRequirementGroup()->asOrderedSet();

}

Notice that a dependency property is declared at the top of the transfor-
mation and is initialized using a dependencies() query in the main mapping’s
init{} block. Relationship elements are stored within the same containment
feature of our Map as Topic elements, so we can use this query to collect all
those Relationships of type DEPENDENCY for use in our toRequirement()
mapping. This is the dependencies() query:

query mindmap::Map::dependencies() : Set(mindmap::Relationship) {
return self.elements->select(oclIsTypeOf(mindmap::Relationship))

->select(c | c.oclAsType(mindmap::Relationship).type =
mindmap::Type::DEPENDENCY)

->collect(oclAsType(mindmap::Relationship))->asSet();
}

Recall that we implemented the derived rootTopics reference of our Map
class using OCL in Section 3.3, “Developing the Mindmap Domain Model.” We
could use the OCL used to derive the root Topics within this QVT script, but

6.6 Transforming a Mindmap to Requirements 249

ptg6022785

having it implemented in our model makes the script cleaner and eliminates the
need to repeat the code here, in code generation templates, and so on. The root
Topic elements are each mapped to RequirementGroup elements using the fol-
lowing toRequirementGroup() mapping. From the updated transformation
declaration shown previously, you can see two properties used as counters to
generate group and requirement indexes.

mapping mindmap::Topic::toRequirementGroup() :

requirements::RequirementGroup {
init {
result := object requirements::RequirementGroup {
name := self.name;
id := 'G0' + this.grpCtr.toString();
requirements += self.subtopics.map toRequirement();

}
}
end {
this.grpCtr := grpCtr + 1;

}
}

A straightforward map of the Topic name attribute to the
RequirementGroup name attribute is followed by an invocation of the
toRequirement() mapping for each of the subtopic references. This is this final
mapping in our transformation:

mapping mindmap::Topic::toRequirement() : requirements::Requirement {
title := self.name;
children += self.subtopics.map toRequirement();
id := 'R0' + this.reqCtr.toString();
version := object requirements::Version {
major := 1;

};
dependencies += this.dependencies->select(source = self).target.late

resolveIn(mindmap::Topic::toRequirement,
requirements::Requirement);

end {
this.reqCtr := reqCtr + 1;

}
}

The Topic name attribute maps to the Requirement title, as subtopics are
recursively mapped to child Requirements. The Requirement dependencies
reference is populated with Requirement objects created from Topic elements
that are targets of mindmap DEPENDENCY relationships collected earlier. We can-
not guarantee that these Topic elements have been already mapped to

250 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

Requirement objects, so we use late resolveIn to invoke this mapping at the
end of the transformation. The alternative here is to map dependencies in the
end{} block of our main mapping. Section 13.5.5, “Mapping Invocation,” gives
an in-depth discussion of resolution operators in the context of this transformation.
Finally, note that Relationship references between root Topic elements are
missed, which is okay because root Topics are mapped to RequirementGroup
objects that have no dependency relationships.

Before testing this update to the transformation, we need to more completely
populate our Mindmap.xmi dynamic instance model. Add a few Topics to the
Map and include subtopic references, as well as at least one DEPENDENCY
Relationship to test our mappings fully. Figure 6-13 shows a simple test
model instance in our reflective Ecore editor.

6.7 Transforming a Mindmap to XHTML 251

Figure 6-13 Mindmap dynamic instance model

If we deploy the transformation and run it on an actual instance of a
mindmap model, the output will be a requirements model, as expected. However,
combining our EMF and GMF editors for our requirements model (done in
Section 4.4.6, “Integrating EMF and GMF Editors”) required us to persist both
the diagram and domain models within a single file. If we tried to open the result-
ing *.requirements file, we would get an error stating that the file contains no
diagram. Fortunately, the GMF-generated diagram-initialization action takes
care of the problem by initializing the diagram content and peristing the result
within a *.requirements file. When deploying the diagram and transforma-
tion, we want to provide an action that takes care of this step automatically after
the transformation.

6.7 Transforming a Mindmap to XHTML

To provide reporting for our mindmap, we use an xhtml.ecore model to serve
as the target of a model-to-model transformation. This approach complements the
one taken in Section 7.4, “Generating HTML,” where we use Xpand to generate

ptg6022785

HTML from our requirements model. In this case, we also need to import the
XHTML schema into EMF to create our model. EMF then provides serialized
instance models that conform to the schema, thereby producing valid HTML doc-
uments. We’ll be able to work only with model-to-model transformation scripts,
leaving the hassle of dealing with angle brackets for the requirements report.

6.7.1 Importing an XSD

Unfortunately, no XHTML model is present in our Metamodel Explorer view,
even with the WebTools project installed. Nevertheless, a simple search for
“xhtml xsd” on the Internet revealed what we need at www.w3.org/2002/08/
xhtml/xhtml1-strict.xsd.

We start by creating a new org.w3c.xhtml DSL Project and copying the
previous link to the Clipboard; as you will see, you don’t need to download the
model. Right-click the model folder and select New → Other → Domain-Specific
Language → Domain Generator Model (Ctrl+3 → Domain Gen). Name the EMF
generator model xhtml.genmodel and proceed to the next page in the wizard,
where you select the XML Schema model importer. If you don’t see this importer,
you need to install the XSD feature from the EMF or Ganymede update site. The
next page provides a Model URIs field where you paste the URL to the schema,
followed by Load. On the Package Selection page, check the org.w3._1999.
xhtml package in the Root packages table and the XMLNamespace Referenced
generator models table, as shown in Figure 6-14.

252 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-14 New EMF Model dialog

www.w3.org/2002/08/xhtml/xhtml1-strict.xsd
www.w3.org/2002/08/xhtml/xhtml1-strict.xsd

ptg6022785

After Finish, you’ll see xhtml.ecore and xhtml.genmodel in the project,
with the genmodel open in the editor. Select the xhtml root package and change
the Base Package property to org.w3c, replacing the org.w3._1999 derived
from the schema. We use this model only as an example, so we don’t spend time
tweaking the remainder of the generation properties or provide much in terms of
implementation enhancement beyond the defaults. If you’re interested, you can
take some time to browse the Ecore model that can be initialized from the
schema. If you’ve seen HTML, the elements and attributes should look familiar.

6.7.2 Creating the mindmap2xhtml QVT

Our QVT implementation lets us work with workspace Ecore models, so there’s
no need to generate the XHTML model code yet. When we deploy our
mindmap, however, we will need to do so. For now, we’ll create a new
mindmap2xhtml.qvto file in our /transformations folder of the org.
eclipse.dsl.mindmap project. When you’re finished with this, go to the proj-
ect properties and add the local xhtml.ecore file to the QVT Settings →
Metamodel Mappings section so that the editor can resolve the model. Replace
the default transformation content with this starter code:

modeltype mindmap 'strict' uses 'http://www.eclipse.org/2008/mindmap';
modeltype xhtml 'strict' uses 'http://www.w3.org/1999/xhtml';

transformation mindmap2xhtml(in inModel : mindmap,
out outModel : xhtml);

main() {
inModel.rootObjects()[Map]->map toXHTML();

}

mapping mindmap::Map::toXHTML() : xhtml::DocumentRoot {
html += object xhtml::HtmlType {

head := object xhtml::HeadType {

};
_body := object xhtml::BodyType {

};
}

}

So far, so good. Next we discover that there’s no way to declare text between
elements such as <p> or , if we add their element type to the body. QVTO
cannot currently deal with statements such as mixed += 'text'; because
mixed is of type EFeatureMapEntry and cannot be set with a string. A

6.7 Transforming a Mindmap to XHTML 253

ptg6022785

workaround for this is to extend model elements that contain a string within
their serialized output by XMLTypeDocumentRoot. With that, we need to delete
their mixed:EFeatureMapEntry because XMLTypeDocumentRoot declares
one as well. Declaring this eSuperType for the Inline and Flow classes of our
xhtml.ecore model should take care of most elements we need. We’ll add this
supertype to more elements as needed when creating our script. Additionally, we
need to change some attributes to be of type AnySimpleType (for example,
colspan in ThType). A nice feature of the QVTO editor is that it recognizes
model changes on-the-fly, so each update is immediately available.

Now our QVT can use the text:EString attribute of XMLTypeDocument
root, as you can see in this simple test code:

mapping mindmap::Map::toXHTML() : xhtml::DocumentRoot {
html += object xhtml::HtmlType {

head := object xhtml::HeadType {

};
_body := object xhtml::BodyType {
h1 += object xhtml::H1Type {
text += 'test';

};
};

}
}

Continuing now with our mindmap report definition, we declare a property
at the top of the transformation to hold the set of Relationship elements from
our mindmap. The property is initialized in the initialization section of our first
mapping using shorthand [] notation for the usual collect and select operations.
We use the relations property in the Topic’s toContentItem() mapping to list
related Topics and their relationship type.

The main mapping calls the toXHTML() mapping, which takes our Map and
returns our XHTML DocumentRoot. You can see the main structure of the
resulting document here, as the usual <html>, <head>, and <body> elements are
constructed. The body defines a title section, content index, and list of topics, with
the last two calling to their respective toIndexItem() and toContentItem()
mappings. The rest of the transformation follows, with the getType() and
getPriority() queries illustrating the use of the QVT switch construct. It’s
used frequently when dealing with enumeration types because no better alterna-
tive currently exists. Another improvement here would be to incorporate the
string counter functions in QVT to produce index anchors instead of depending
on Topic names, which might not be unique.

254 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

modeltype mindmap 'strict' uses 'http://www.eclipse.org/2008/mindmap';
modeltype xhtml 'strict' uses 'http://www.w3.org/1999/xhtml';

transformation mindmap2xhtml(in inModel : mindmap,
out outModel : xhtml);

property relations : Set(mindmap::Relationship) = null;

main() {
inModel.rootObjects()[Map]->map toXHTML();

}

mapping mindmap::Map::toXHTML() : xhtml::DocumentRoot {
init {

this.relations := self.elements[mindmap::Relationship];
}
html += object HtmlType {

head := object HeadType {
title := object TitleType {
text += self.title + ' Report';

};
};
_body := object BodyType {
h1 += object H1Type {
text += self.title + ' Report';

};
h2 += object H2Type {
text += 'Contents';

};
ul += object UlType {
li += self.rootTopics.map toIndexItem();

};
hr += object HrType {};
div += self.elements[mindmap::Topic].map toContentItem();

};
};

}

query mindmap::Topic::getRelations() : Set(mindmap::Relationship) {
return relations->select(r | r.source = self)->asSet();

}

mapping mindmap::Topic::toIndexItem() : xhtml::LiType {
init {

result := object LiType {
a += object AType {
href := '#' + self.name;
text += self.name;

};
};
if not self.subtopics->isEmpty() then {

result.ul += object UlType {
li += self.subtopics.map toIndexItem();

};

6.7 Transforming a Mindmap to XHTML 255

ptg6022785

} endif;
}

}

mapping mindmap::Topic::toContentItem() : xhtml::DivType {
table += object TableType {
tbody += object TbodyType {
tr += object TrType {
th += object ThType {
align := AlignType::left;
colspan := 4;
a += object AType {
name := self.name;
text += 'Topic: ' + self.name;

};
};

};
tr += object TrType {
td += object TdType {
text += 'Date: ';
text += self.start.repr();

};
td += object TdType {
text += 'Priority: ';
text += self.getPriority();

};
td += object TdType {
text += 'Direct subtopics: ';
text += self.subtopics->size().toString();

};
td += object TdType {
text += 'Total subtopics: ';
text += self.allSubtopics()->size().toString();

};
};
tr += object TrType {
td += object TdType {
align := AlignType::left;
colspan := 4;
text += self.description;

};
};

};
};
end {
if not self.subtopics->isEmpty() then {
result.div += object DivType {
h4 += object H4Type {
text += 'Suptopics';

};
ul += object UlType {
li += self.subtopics.map toListItem();

};
};

} endif;

256 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

var relations : Set(mindmap::Relationship) :=
self.getRelations();

if not relations->isEmpty() then {
result.div += object DivType {
h4 += object H4Type {
text += 'Relationships';

};
ul += object UlType {
li += relations.map toListItem();

};
};

} endif;
result.br += object BrType {};

}
}

mapping mindmap::Relationship::toListItem() : xhtml::LiType {
text += self.getType() + ' relationship to ';
a += object AType {
href := '#' + self.target.name;
text += self.target.name;

};
}

mapping mindmap::Topic::toListItem() : xhtml::LiType {
a += object AType {
href := '#' + self.name;
text += self.name;

};
}

query mindmap::Relationship::getType() : String {
var pri : String := null;
switch {

(self.type = Type::DEPENDENCY) ? pri := 'Dependency';
(self.type = Type::INCLUDE) ? pri := 'Include';
(self.type = Type::EXTEND) ? pri := 'Extend';
else ? assert fatal (false)
with log('Type unsupported', self);

};
return pri;

}

query mindmap::Topic::getPriority() : String {
var pri : String := null;
switch {

(self.priority = Priority::HIGH) ? pri := 'High';
(self.priority = Priority::MEDIUM) ? pri := 'Medium';
(self.priority = Priority::LOW) ? pri := 'Low';
else ? assert fatal (false)
with log('Priority unsupported', self);

};
return pri;

}

6.7 Transforming a Mindmap to XHTML 257

ptg6022785

Figure 6-15 is a sample output report, created from our simple dynamic
instance mindmap model.

258 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-15 Mindmap report

6.8 Transforming a Scenario to a Test Case

As it turns out, the Test and Performance Tools Project (TPTP) uses EMF exten-
sively for its models. After some investigation, it seems we can transform our sce-
nario diagrams into TPTP manual test cases using QVT. One complication to
overcome is that TPTP uses the zip feature of EMF serialization to persist its
models. So after we create a test suite model, we just need to zip the file and
change the file extension to .testsuite to open it with the TPTP editor.
Another complication is that the TPTP project has discontinued development of
the Manual Test feature. To follow along in this section, you need to use the
Europa edition (4.3.0) of the Testing Tools feature, not the Ganymede release. As
a result, this example should be considered purely a reference and is not com-
pleted, given the uncertainty about the target.

ptg6022785

To better understand the model used to back the TPTP Test Suite editor, we
can first create one using the provided wizard and then unzip the file to examine
the contents while referencing the common.ecore model. Here again, the reflec-
tive editor is useful.

TPTP’s models are quite complicated, but we need to use only a small por-
tion of the common.ecore model for our scenario of test suite transformation.
Following is a look at the code for mapping straight from our scenario Task ele-
ments to TPTP manual test steps. The TPTP common model consists of several
packages, hence the multiple metamodel references at the top of the definition.

To follow the transformation definition here, you likely must have the
common.ecore model visible in the Metamodel Explorer or imported into your
workspace. When we got a better understanding of how the model was struc-
tured, the mappings from our input scenario model were fairly straightforward
to compose. The biggest complication, for which no good solution has yet been
achieved, was detecting looping in our input model. QVT is not a suitable lan-
guage for this type of model analysis, so I recommend using a black box
approach using Java. A limited solution is shown here, along with the rest of the
mappings.

transformation scenario2testsuite(in scenarioModel : scenario,

out testSuiteModel : Common_Testprofile::TPFTestSuite);

modeltype scenario uses 'http://www.eclipse.org/2008/scenario';
modeltype Common_Testprofile
uses 'http://www.eclipse.org/hyades/models/common/testprofile.xmi';
modeltype Common_Configuration
uses 'http://www.eclipse.org/hyades/models/common/configuration.xmi';
modeltype Common_Behavior_Fragments
uses
'http://www.eclipse.org/hyades/models/common/behavior/fragments.xmi';
modeltype Common_Behavior_Interactions
uses 'http://www.eclipse.org/hyades/models/common/behavior/

➥interactions.xmi';

main() {
scenarioModel.rootObjects[Process]->map toTestSuite();

}

mapping scenario::Process::toTestSuite() :
Common_Testprofile::TPFTestSuite {
init {

var lifeline := object
Common_Behavior_Interactions::BVRLifeline {

name := '_selfLifeline';
}

}

6.8 Transforming a Scenario to a Test Case 259

ptg6022785

type := 'org.eclipse.hyades.test.manual.testSuite';
persistenceId := 'HyadesFacadeResource';
name := self.name;
description := self.name;
instances += object Common_Configuration::CFGInstance {
classType := result;
lifeline := lifeline;

};
behavior := object Common_Testprofile::TPFBehavior {
name := result.name + '_behavior';
resource := result.name + '.Test';
interaction := object Common_Behavior_Fragments::BVRInteraction {

lifelines += lifeline;
interactionFragments += self.elements.selectGateways().map

toInteractionFragment();
}

};
testCases += self.elements.selectTasks().map toTestCase();
end {
result.testCases.setInstance(result);

}
}

mapping scenario::Gateway::toInteractionFragment() :
Common_Behavior_Fragments::BVRCombinedFragment

when {
self.formsLoop(self)

} {
name := 'Iterate';
interactionOperator := BVRInteractionOperator::loop;
interactionOperands += object

Common_Behavior_Fragments::BVRInteractionOperand {
interactionFragments += self.collectLoopTasks().map

toExecutionOccurrence();
interactionConstraint := object

Common_Behavior_Fragments::BVRInteractionConstraint {
constraint := 'n';

}
}

}

mapping scenario::Task::toExecutionOccurrence() :
Common_Behavior_Interactions::BVRExecutionOccurrence {

name := self.name + ' - invocation';
otherBehavior := self.late
resolveone(Common_Testprofile::TPFBehavior);

}

query scenario::Element::formsLoop(target : scenario::Gateway) :
Boolean {
-- limit to Task elements for now
var tasks : OrderedSet(scenario::Task) :=
self.outgoing.target.selectTasks()->asOrderedSet();

var loop : Boolean := tasks.completesLoop(target)
->includes(true);

260 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

if not loop then {
loop := tasks.formsLoop(target)->includes(true);

} endif;
return loop;

}

query scenario::Task::completesLoop(target : scenario::Gateway) :
Boolean {
self.outgoing.target.selectGateways()->includes(target);

}

query scenario::Gateway::collectLoopTasks() :
OrderedSet(scenario::Task) {
var tasks : OrderedSet(scenario::Task) :=
self.outgoing.target.selectTasks()->asOrderedSet();

var path : OrderedSet(scenario::Task) := null;
var index : Integer := 1;
while (path = null and index <= tasks->size()) {
path := tasks->at(index).followPath(self);
index := index + 1;

};
return path;

}

query scenario::Task::followPath(target : scenario::Gateway) :
OrderedSet(scenario::Task) {
var path : OrderedSet(scenario::Task) := null;
if self.completesLoop(target) then {
path += self->asSet();

} else {
var subTasks : OrderedSet(scenario::Task) :=

self.outgoing.target.selectTasks()->asOrderedSet();
if subTasks->isEmpty() then {

path := null;
} else {
path += self->asSet();
path += subTasks.followPath(target);

} endif;
} endif;
return path;

}

query Common_Testprofile::TPFTestCase::setInstance(inout suite :
Common_Testprofile::TPFTestSuite) {
return suite.instances += object Common_Configuration::CFGInstance {
classType := suite;
lifeline := self.behavior.interaction.lifelines

->asSequence()->last();
};

}

mapping scenario::Task::toTestCase() : Common_Testprofile::TPFTestCase
{

name := self.name;
description := self.documentation;

6.8 Transforming a Scenario to a Test Case 261

ptg6022785

type := 'org.eclipse.hyades.test.manual.testCase';
behavior := self.map toBehavior();

}

mapping scenario::Task::toBehavior() : Common_Testprofile::TPFBehavior {
name := self.name + '_behavior';
interaction := object Common_Behavior_Fragments::BVRInteraction {

lifelines += object
Common_Behavior_Interactions::BVRLifeline {

name := '_selfLifeline';
}

}
}

query scenario::Element::selectGateways() :
OrderedSet(scenario::Gateway) {
return self->select(oclIsTypeOf(scenario::Gateway))
->collect(oclAsType(scenario::Gateway))->asOrderedSet();

}

-- TODO: use collectselect shorthand notation [Task]
query scenario::Element::selectTasks() : OrderedSet(scenario::Task) {
return self->select(oclIsTypeOf(scenario::Task))
->collect(oclAsType(scenario::Task))->asOrderedSet();

}

Figure 6-16 through 6-18 are images of the input model and the resulting
TPTP Manual test case, opened in its own form-based editor. The sequence has
two simple loops, which you can see are transformed to test iterations. Although
this short example is simplified for illustrative purposes, you can see how lever-
aging EMF models for multiple components leads to powerful integration possi-
bilities using QVT and other modeling technologies introduced in this book.

TIP

When creating a dynamic instance model for models such as the scenario,
it’s much easier to diagram one than to use the reflective editor tree and
properties view.To make it easier, launch the runtime workspace and dia-
gram the model; then open it with a text editor and copy the elements
within the root and paste them within the XMI file. Be careful not to copy
over the root element.

262 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

Figure 6-16 Scenario test model

6.8 Transforming a Scenario to a Test Case 263

Figure 6-17 TPTP manual test

ptg6022785
Figure 6-18 TPTP manual test behavior

To simplify the development of this transformation so that the output model
is always zipped up into our *.testsuite file after each execution, a simple
Ant build script and associated builder configuration does the trick nicely. This
is the simple script to be invoked by an Ant builder configuration added to our
org.eclipse.dsl.scenario project properties:

<?xml version="1.0" encoding="UTF-8"?>
<project name="org.eclipse.dsl.scenario" default="main" basedir=".">
<target name="main">
<zip destfile="./out/scenario.testsuite"

filesonly="false"
whenempty="skip" update="false">
<fileset dir="out/">

<include name="**/*.testprofile"/>
</fileset>

</zip>
</target>

</project>

6.9 Transforming a Business Model to Java

When generating Java or another programming language from a model, it’s typ-
ical to use model-to-text technologies, such as Xpand or JET. Ultimately, code-
generation templates are required to output Java from our business domain
model, so a question emerges at this point: Do we bother with an intermediate

264 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

Java model, or do we pass our DNC model straight to Xpand templates for Java
generation? Or should we create a model specific for Java EE? Yet another
option is to define a textual concrete syntax using TMF that provides the model-
to-text transformation. These are general questions you need to consider when
doing Model-Driven Software Development (MDSD), and the answer will vary
depending on your requirements, technology preference, relative efficiency, or
other factors. In this book, we examine two approaches. This section focuses on
the transformation of a Domain-Neutral Component (DNC) model to a Java
domain model. The next chapter looks at the template approach for generating
Java from the DNC domain model. This enables us to examine each approach in
detail and to cover the relative strengths and weaknesses of each.

First, we need a Java domain model. The WebTools project maintains a Java
EMF Model (JEM), which originated in the Visual Editor project. At this point,
you need to install WebTools if you’re not using the DSL Toolkit from Amalgam,
which includes the JEM model in its distribution. Although the model suits our
needs, it also presents some challenges, such as the fact that it extends Ecore
itself. We chose this model instead of implementing our own from scratch, to
illustrate the challenges you might face working with an existing model, where
certain restrictions and workarounds are inevitable. To make it even more
“real,” the version of the model used in this section included an annotation, indi-
cating that it was indeed a work in progress.

The first step is to learn this model. The Metamodel Explorer provides you
with a means to do this, as does the familiar process of importing the project into
your workspace and generating an Ecore diagram, as shown in Figure 6-19. Keep
in mind that this model extends Ecore itself, so what you see in Figure 6-19 is
only the Java extension of our familiar Ecore model.

6.9 Transforming a Business Model to Java 265

Figure 6-19 JEM model

ptg6022785

The first step in transforming our business model to this Java model is to cre-
ate a dynamic instance model from our dnc.ecore model for use in testing the
QVT. The problem we immediately face is that because we have extended our
oocore.ecore model but have not provided an extension of the Package class,
we have no capability to create a container for our test archetypes. The refer-
enced oocore.ecore model opens in the resource set, so we can right-click the
Package class and create a new dynamic instance model; however, when we do
this, we can’t create archetypes. The problem is that we have no references to the
dnc.ecore model in the produced model.xmi file, shown here:

<?xml version="1.0" encoding="ASCII"?>
<oocore:Package xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:oocore="http://www.eclipse.org/2008/oocore"
xsi:schemaLocation="http://www.eclipse.org/2008/oocore
../../org.eclipse.dsl.oocore/model/oocore.ecore">

</oocore:Package>

To work around this problem, we simply need to add xmlns and
schemaLocation for our dnc.ecore model in this file:

<?xml version="1.0" encoding="ASCII"?>
<oocore:Package xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dnc=”http://www.eclipse.org/2008/dnc”
xmlns:oocore="http://www.eclipse.org/2008/oocore"
xsi:schemaLocation="http://www.eclipse.org/2008/dnc dnc.ecore
http://www.eclipse.org/2008/oocore
../../org.eclipse.dsl.oocore/model/oocore.ecore">

</oocore:Package>

Now we can open the model in our reflective editor and add archetypes,
attributes, operations, associations, and references for use in testing. Figure 6-20
shows what the content of our test model.xmi looks like, although it doesn’t indi-
cate that these archetypes were created in the package org.eclipse.example.

With a dynamic instance model to use as input, we can move on to creating
a transformation script to execute and see what the output looks like. The JEM
model comes with no editor of its own, so we can use either the text editor or
our friend the Sample Reflective Ecore Editor to view the output. Using the
Operational QVT Transformation wizard, create a dnc2jee.qvto file in the
org.eclipse.dsl.dnc/transformations directory. Alter the default trans-
formation definition to match the following:

266 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

transformation dnc2jee(in modelIn : dnc, out modelOut : java);

import library Strings;

modeltype dnc uses "http://www.eclipse.org/2008/dnc";
modeltype oocore uses "http://www.eclipse.org/2008/oocore";
modeltype ecore uses "http://www.eclipse.org/emf/2002/Ecore";
modeltype java uses "java.xmi";

main() {
modelIn.rootObjects()[Package]->map toPackage();

}

6.9 Transforming a Business Model to Java 267

«role»

BigDecimal:calculateTotalSales()

Cashier

«party»

Person

«place»

Address

«thing»

Phone

0..1

0..1

0..–1

firstName:String
lastName:String

type:String
countryCode:String
areaCode:String
number:String

street:String
city:String
province:String
country:String
postalCode:String

Figure 6-20 Test color model

The Strings library is imported because we will need it shortly. Each of our
four domain models is declared in modeltype statements at the top of the file,
just above the main mapping that invokes a toPackage() mapping. The pack-
age names are mapped to each other, followed by a series of mappings that con-
vert specific archetypes to Entity or Stateful beans. Finally, subpackages are
processed recursively. The rest of the transformation definition includes com-
ments that should adequately describe how it works.

ptg6022785

/**
* Recursively map each color model package to Java package,
* mapping each Archetype to its respective EJB type.
*/
mapping oocore::Package::toPackage() : java::JavaPackage {

name := self.name;
eClassifiers += self.contents[MomentInterval].map toEntity();
eClassifiers += self.contents[MIDetail].map toEntity();
eClassifiers += self.contents[Role].map toStateful();
eClassifiers += self.contents[Party].map toEntity();
eClassifiers += self.contents[Place].map toEntity();
eClassifiers += self.contents[Thing].map toEntity();
eClassifiers += self.contents[Description].map toEntity();
eSubpackages += self.contents[Package].map toPackage();

}

/**
* A mapping from an Archetype to a Java class that
* is interited by each of the EJB mapping classes.
*/
mapping dnc::Archetype::toClass() : java::JavaClass {
name := self.name;
fields += self.features[Attribute].map toField(result);
methods += self.features[Operation].map toMethod();

}

/**
* A mapping to add obligatory Serializable implements clause
* to each EJB class.
*/
mapping dnc::Archetype::toSerializableClass() : java::JavaClass {
implementsInterfaces += 'java.io.Serializable'.map toClass();

}

/**
* Map an Archetype to a @Stateful session bean, inheriting basic
* class and Serializable features.
*/
mapping dnc::Archetype::toStateful() : java::JavaClass

inherits dnc::Archetype::toClass
merges dnc::Archetype::toSerializableClass {

eAnnotations += toAnnotation('description', self.description, null);
eAnnotations += toAnnotation('annotation', '@Stateful', null);
classImport += 'javax.ejb.Stateful'.map toClass();

}

/**
* Map an Archetype to an @Entity bean, inheriting basic
* class and Serializable features.
*/
mapping dnc::Archetype::toEntity() : java::JavaClass
inherits dnc::Archetype::toClass
merges dnc::Archetype::toSerializableClass {

268 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

eStructuralFeatures += self.features[Association].map
toReference(result);

eStructuralFeatures += self.features[Reference].map
toReference(result);

eAnnotations += toAnnotation('description', self.description, null);
eAnnotations += toAnnotation('annotation', '@Entity', null);
eAnnotations += toAnnotation('annotation', '@Table(name="' +
self.name.toUpperCase() + '")', null);

-- Add id field with getter, no setter
fields += object java::Field {
name := self.name.toLowerCase() + 'Id';
eType := 'int'.map toClass();
javaVisibility := java::JavaVisibilityKind::PRIVATE;
eAnnotations += toAnnotation('annotation', '@Id', null);
eAnnotations += toAnnotation('annotation', '@Column(name="'
+ self.name.toUpperCase() + '_ID")', null);

eAnnotations += toAnnotation('annotation',
'@GeneratedValue(strategy=GenerationType.AUTO)', null);

};
methods += object java::Method {
name := 'get' + self.name.firstToUpper() + 'Id';
eType := 'int'.map toClass();
javaVisibility := java::JavaVisibilityKind::PUBLIC;
source := object java::Statement {

source := 'return ' + self.name.toLowerCase() + 'Id;';
};

};
end {
result.classImport += 'javax.persistence.Entity'.map toClass();
result.classImport += 'javax.persistence.Table'.map toClass();
result.classImport += 'javax.persistence.Column'.map toClass();
result.classImport += 'javax.persistence.Id'.map toClass();
result.classImport += 'javax.persistence.GeneratedValue'.map

toClass();
result.classImport +=
'javax.persistence.GenerationType'.map toClass();

}
}

/**
* Creates reference from association with annotations
*/
mapping dnc::Association::toReference(inout class : java::JavaClass) :

ecore::EReference
when {
not self.opposite.oclIsUndefined() and
self.opposite.owner.isEntity()

} {
name := self.name;
eType := self.type.oclAsType(dnc::Archetype).late
resolveone(java::JavaClass);

lowerBound := self.lowerBound;
upperBound := self.upperBound;

6.9 Transforming a Business Model to Java 269

ptg6022785

end {
if (not self.opposite.oclIsUndefined() and
self.opposite.owner.isEntity()) then {
if (self.upperBound = 1 and

(self.opposite.upperBound = 1 or self.opposite.upperBound = 0))
then {

result.eAnnotations +=
toAnnotation('annotation', '@OneToOne(targetEntity=' +
self.opposite.owner.fullyQualifiedName() + '.class)', null);

class.classImport +=
'javax.persistence.OneToOne'.map toClass();

} endif;

if (self.upperBound = -1 and
(self.opposite.upperBound = 1 or self.opposite.upperBound = 0)) then {

result.eAnnotations +=
toAnnotation('annotation', '@OneToMany(mappedBy="' +
self.owner.name.toLowerCase() + 'Id")', null);

result.eAnnotations +=
toAnnotation('collection', 'type', 'java.util.Collection');

class.classImport +=
'javax.persistence.OneToMany'.map toClass();

} endif;

var columnName : String := null;
if self.name.toLowerCase() <> self.name then {
columnName := self.name.toColumnName();
result.eAnnotations += toAnnotation('annotation',

'@Column(name="' + columnName + '")', null)
} endif;

} endif;
class.methods += self.map toGetter();
class.methods += self.map toSetter();

}
}

/**
* Creates reference/getter/setter from opposite reference
* with annotations
*/
mapping oocore::Reference::toReference(inout class : java::JavaClass) :
ecore::EReference
when {
not self.opposite.oclIsUndefined() and

self.opposite.owner.isEntity() and self.opposite.upperBound = -1
} {
name := self.name;
eType := self.type.oclAsType(dnc::Archetype).late
resolveone(java::JavaClass);
lowerBound := self.lowerBound;
upperBound := self.upperBound;
end {
if self.opposite.upperBound = -1 then {
result.eAnnotations +=

270 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

toAnnotation('annotation', '@ManyToOne', null);
result.eAnnotations +=

toAnnotation('annotation', '@JoinColumn(name="' +
self.opposite.owner.name.toUpperCase() + '_ID")', null);

class.classImport +=
'javax.persistence.ManyToOne'.map toClass();

class.classImport += 'javax.persistence.JoinColumn'.map
➥toClass();

} endif;

var columnName : String := null;
if self.name.toLowerCase() <> self.name then {
columnName := self.name.toColumnName();
result.eAnnotations +=

toAnnotation('annotation', '@Column(name="' + columnName + '")',
➥null)

} endif;
class.methods += self.map toGetter();
class.methods += self.map toSetter();

}
}

/**
* Creates getter method for Reference
*/
mapping oocore::Reference::toGetter() : java::Method {
init {
result := object java::Method {
name := 'get' + self.name.firstToUpper();
eType := self.type.late resolveone(java::JavaClass);
javaVisibility := java::JavaVisibilityKind::PUBLIC;
source := object java::Statement {
source := 'return ' + self.name + ';';

};
};
if (self.lowerBound = 0 or self.lowerBound = 1) and

self.upperBound = -1 then {
result.eAnnotations +=

toAnnotation('collection', 'type', 'java.util.Collection');
} endif;

}
}

/**
* Creates setter method for Reference
*/
mapping oocore::Reference::toSetter() : java::Method {

init {
var parameter := object java::JavaParameter {
eType := self.type.late resolveone(java::JavaClass);
name := self.name;

};
if self.lowerBound = 0 and self.upperBound = -1 then {

parameter.eAnnotations +=

6.9 Transforming a Business Model to Java 271

ptg6022785

toAnnotation('collection', 'type', 'java.util.Collection');
} endif;

}
name := 'set' + self.name.firstToUpper();
eType := 'void'.map toClass();
javaVisibility := java::JavaVisibilityKind::PUBLIC;
source := object java::Statement {
source := 'this.' + self.name + ' = ' + self.name + ';';

};
parameters += parameter;

}

/**
* Creates field/getter/setter for attribute, with @Column
* annotation if required
*/
mapping oocore::Attribute::toField(inout class : java::JavaClass) :
java::Field {
name := self.name;
eType := self.dataType.map toClass();
javaVisibility := self.visibility.toVisibility();
end {
var columnName : String := null;
if self.name.toLowerCase() <> self.name then {
columnName := self.name.toColumnName();
result.eAnnotations += toAnnotation('annotation',

'@Column(name = "' + columnName + '")', null)
} endif;
class.methods += self.map toGetter();
class.methods += self.map toSetter();

}
}

/**
* Creates getter method for field
*/
mapping oocore::Attribute::toGetter() : java::Method {
name := 'get' + self.name.firstToUpper();
eType := self.dataType.map toClass();
javaVisibility := java::JavaVisibilityKind::PUBLIC;
source := object java::Statement {
source := 'return ' + self.name + ';';

};
}

/**
* Creates setter method for field
*/
mapping oocore::Attribute::toSetter() : java::Method {
name := 'set' + self.name.firstToUpper();
eType := 'void'.map toClass();
javaVisibility := java::JavaVisibilityKind::PUBLIC;
parameters += object java::JavaParameter {
eType := self.dataType.map toClass();
name := self.name;

272 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

};
source := object java::Statement {

source := 'this.' + self.name + ' = ' + self.name + ';';
};

}

/**
* Creates method from operation
* TODO: handle parameters
*/
mapping oocore::Operation::toMethod() : java::Method {

name := self.name;
eType := self.type.map toClass();
javaVisibility := self.visibility.toVisibility();
source := object java::Block {
contents += object java::Comment {
source := 'TODO: Implement this method';

};
contents += self.type.map toReturnStatement();

};
}

/**
* Creates default return statement for method
*/
mapping oocore::Classifier::toReturnStatement() : java::Statement {
init {

var statement : String := null;
switch {
(self.oclIsUndefined()) ? statement := '';
(self.oclIsKindOf(oocore::Class)) ? statement := 'return null;';
(self.oclIsTypeOf(oocore::Datatype)) ? statement := 'return ' +

➥self.oclAsType(oocore::Datatype).defaultLiteral + ';';
else ? assert fatal (false) with log('No return type found',

➥self);
};

}
source := statement;

}

/**
* Creates class and packaging with 'library' annotation
*/
mapping String::toClass() : java::JavaClass {
init {
var segment : String := null;
var pkg : java::JavaPackage := null;
var parentPkg : java::JavaPackage := null;
var pos : Integer := 1;
while (self.indexOf('.', pos) <> -1) {

segment := self.substring(pos, self.indexOf('.', pos));
pos := self.indexOf('.', pos) + 2;
pkg := segment.map toPackage();
if parentPkg = null then {

parentPkg := pkg;

6.9 Transforming a Business Model to Java 273

ptg6022785

} else {
parentPkg.eSubpackages += pkg;
parentPkg := pkg;

} endif;
};

}
name := self.substring(self.lastIndexOf('.')+2, self.size());
eAnnotations += toAnnotation('library', null, null);
end {
parentPkg.eClassifiers += result;

}
}

/**
* Creates library class from Java type
*/
mapping oocore::Classifier::toClass() : java::JavaClass {

name := self.name;
-- Datatypes are marked as 'library'
eAnnotations += toAnnotation('library', null, null);
end {
var pack : java::JavaPackage := self._package.map toPackage(null);
pack.eClassifiers += result;

}
}

/**
* Creates JavaPackage from String
*/
mapping String::toPackage() : java::JavaPackage {
name := self;

}

/**
* Creates JavaPackage and adds passed child
*/
mapping oocore::Package::toPackage(child : java::JavaPackage) :
java::JavaPackage {
init {
result := self.name.map toPackage();
result.eSubpackages += child;

if self._package <> null then
self._package.map toPackage(result) endif;

}
}

/**
* Creates ECore annotation for use by template
*/
query toAnnotation(type:String, key:String, value:String) :
ecore::EAnnotation {
return object ecore::EAnnotation {

source := type;
details += object ecore::EStringToStringMapEntry {
key := key;

274 CHAPTER 6 • Developing Model-to-Model Transformations

ptg6022785

value := value;
}

}
}

/**
* Maps visibility to Java types
*/
query oocore::Visibility::toVisibility() : java::JavaVisibilityKind {
if self = oocore::Visibility::PRIVATE then {
return java::JavaVisibilityKind::PRIVATE} else
if self = oocore::Visibility::PUBLIC then {
return java::JavaVisibilityKind::PUBLIC} else
if self = oocore::Visibility::PROTECTED then {
return java::JavaVisibilityKind::PROTECTED}

endif
endif

endif;
return java::JavaVisibilityKind::PACKAGE

}

/**
* Replaces camel case with underscore, e.g. firstName -> FIRST_NAME
*/
query String::toColumnName() : String {
var name : String := '';
var digit : String := '';
var pos : Integer := 1;
while (pos <= self.size()) {
digit := self.substring(pos, pos);
if digit.toLowerCase() <> digit then {
name := name + '_' + digit;

} else {
name := name + digit;

} endif;
pos := pos + 1;

};
return name.toUpperCase();

}

query oocore::Class::isEntity() : Boolean {
return self.oclIsTypeOf(dnc::MomentInterval) or
self.oclIsTypeOf(dnc::MIDetail) or
self.oclIsTypeOf(dnc::Party) or
self.oclIsTypeOf(dnc::Place) or
self.oclIsTypeOf(dnc::Thing) or
self.oclIsTypeOf(dnc::Description);

}

/**
* Returns dot '.' delimited package.Class string
*/
query oocore::Class::fullyQualifiedName() : String {
var fqn : String := self.name;
var pkg : oocore::Package := self._package;
while (not pkg.oclIsUndefined()) {

6.9 Transforming a Business Model to Java 275

ptg6022785

fqn := pkg.name + '.' + fqn;
pkg := pkg._package;

};
return fqn;

}

Figure 6-21 is a sample output model for our test input model. What’s strik-
ing is the size of the model, which seems quite disproportionate, compared to the
concrete syntax of what we’ll produce using our Xpand templates. Nevertheless,
it took little time to produce from our business model and will provide straight-
forward transformation to Java compilation units, as shown in Section 7.3.1,
“Using Java Model and Dedicated Template.”

276 CHAPTER 6 • Developing Model-to-Model Transformations

Figure 6-21 Transformation JEM output model

6.10 Summary

In this chapter, we took a look at the functionality provided by the QVT OML
implementation provided by the Eclipse M2M project. We saw some of the more
popular use cases for M2M, leaving M2Ts using the Xpand component of the
Eclipse M2T project for the next chapter.

ptg6022785

CHAPTER 7

Developing Model-to-Text
Transformations

Working with domain-specific languages (DSLs) in the form of their abstract syntax, con-
crete syntax, and Model-to-Model Transformations (M2M) is great, but what we typically
want to derive is a working software application, a database schema, or even some docu-
mentation from our models. This is where Model-to-Text Transformations (M2T) come
into play. We typically generate code in the form of some general-purpose programming
language such as Java, or even output HTML from our model instances.

As touched upon in Chapter 6, “Developing Model-to-Model Transformations,” consid-
erations must be made when selecting a transformation technology, both M2M and M2T.
Either or both can fulfill your needs, with some form of workflow required in the case of
the latter.

Numerous code-generation technologies are available, both within and outside Eclipse.
Within the Modeling project are several facilities for code generation from models. The
home for most of these components is the M2T project.

7.1 M2T Project

Two main components within the M2T project exist for code generation from
models: Java Emitter Templates (JET) and Xpand. JET is the traditional template
engine that was used with Eclipse Modeling Framework (EMF) and is closely
aligned with Java Server Pages (JSP). It was extracted from EMF and improved
into what’s now referred to as JET2. We don’t cover JET in this book because of
space considerations. Instead, we focus on the capabilities of Xpand as a tem-
plate engine to complement our DSL Toolkit.

277

ptg6022785

It’s worth pointing out that a third option will soon be available from M2T.
The Model to Text Language (MTL) component will provide an implementation
of the OMG’s MOF Model to Text Language standard. Furthermore, Core and
Shared components are planned for M2T, with the goal of providing shared com-
ponents and a framework for the invocation of M2T transformations, regardless
of the language. None of these components were available at the time of this
writing, but future editions of this book might cover them.

7.1.1 Xpand, Xtend, and Workflow Components

Originally from the Generative Modeling Technologies (GMT) project, the
Xpand template engine moved to M2T and is used extensively within the GMF
project. In fact, GMF includes a refactored version of the Xpand engine and edi-
tor for use in GMF until the enhancements added have been incorporated into
Xpand, following its move to the M2T project. More recently, the GMF project
refactored its version of Xpand to remove the use of Xtend and its proprietary
expression language, and replace it with Object Constraint Language (OCL) and
Query/View/Transformation (QVT) Operational Mapping Language. The exam-
ples in this book likely will be refactored to use this version of Xpand in the
future.

Xpand itself has basic syntax but uses an underlying expression language and
Xtend to provide powerful M2T (and even M2M) capabilities. Xpand also can
be used within the context of EMF Technology (EMFT) Workflow component.
This component allows for an Ant-like XML representation of model transfor-
mation invocations that can be chained into a workflow. Because workflow is the
easiest way to invoke Xpand templates for use in code generation, I cover it in
basic detail as well. When using the GMF version of Xpand, Ant tasks can be
used to invoke templates; when combined with Ant tasks provided by M2M
QVTO, these make another viable workflow option.

Wizards available for creating new Xpand and Xtend files are located in the
Model Transformation category when using the Amalgam DSL Toolkit down-
load. Otherwise, they are located in the Xpand and Xtend categories of the New
dialog, respectively. Also present is a wizard for creating Check files, which are
not discussed in the context of this book. Additionally, an action is contributed
to the project right-click menu to add or remove the Xpand/Xtend nature. When
using this action, the following buildCommand and nature is added to your
.project file. Note that DSL Toolkit projects come preconfigured with this
nature and builder.

278 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

<buildCommand>
<name>org.eclipse.xtend.shared.ui.xtendBuilder</name>
<arguments/>

</buildCommand>

<nature>org.eclipse.xtend.shared.ui.xtendXPandNature</nature>

Projects with this nature are identifiable by the small O added to the upper-
right corner of the project icon. Also present in the project properties is an
Xtend/Xpand category, as seen in Figure 7-1. By default, Xtend/Xpand is con-
figured for use with EMF Metamodels, although support exists for UML2 and
other model types as well.

7.1 M2T Project 279

Figure 7-1 Xtend/Xpand project properties

The editor provided with Xpand provides color syntax highlighting, code
completion, and a set of templates for its main elements, as shown in Figure 7-2
and Figure 7-3.

Templates are most commonly invoked with Model Workflow (*.mwe) files.
The workflow component is found in the EMFT project and comes with its own
wizard and editor. The wizard to create a new workflow file is found in New →
Model Transformation → Workflow Definition when using the DSL Toolkit.
Otherwise, it can be found in New → Modeling Workflow Engine → Workflow
File. The editor is not as full featured as the Xpand/Xtend editors, but improve-
ments are planned.

ptg6022785

Figure 7-2 Xpand code templates

280 CHAPTER 7 • Developing Model-to-Text Transformations

Figure 7-3 Xpand code completion

To invoke workflows on templates, you need to add the required dependen-
cies to your project. In the future, this will hopefully not be required, nor will the
use of Java source paths to locate template files and models. For now, however,
the following dependencies are added to the MANIFEST.MF file when creating a
DSL project. When using additional features, such as Java code beautifiers,
you must add org.eclipse.jdt.core, org.eclipse.runtime.core, and
org.eclipse.jface.text, in addition to plug-ins that might contain the
models referenced in the workflow.

Require-Bundle: org.eclipse.emf.ecore;bundle-version="2.4.0",
org.eclipse.xpand;bundle-version="0.7.0",

ptg6022785

org.eclipse.xtend;bundle-version="0.7.0",
org.eclipse.xtend.typesystem.emf;bundle-version="0.7.0",
org.eclipse.emf.mwe.core;bundle-version="0.7.0",
org.eclipse.emf.mwe.utils;bundle-version="0.7.0",
org.apache.commons.cli;bundle-version="1.0.0",
org.apache.commons.lang;bundle-version="2.1.0",
org.eclipse.emf.ecore.xmi;bundle-version="2.4.0",
org.apache.commons.logging;bundle-version="1.0.4",
org.antlr.runtime;bundle-version="3.0.0"

A final note on using Xpand in our sample projects concerns the GMF vari-
ant in your environment. Until the enhancements made to Xpand for GMF are
merged into the new M2T Xpand component, you will find another registered
editor on the right-click Open With menu. Both editors are functional and can
be used to develop Xpand templates. The most visible difference is the capabil-
ity of the GMF version to work with NS URI import statements instead of rely-
ing on source paths in the project. GMF’s Xpand also adds the notion of Xpand
roots, preserved in .xpand-roots files in the workspace. Finally, GMF’s Xpand
leaves the direction of text generated by a template to a particular location to the
workflow, not to FILE directives within a template.

Having completed the preliminary introduction to Xpand, Xtend, and
Workflow elements found in your environment, let’s move on to developing tem-
plates for our sample projects. You can find more information on these tech-
nologies in Chapter 14, “Xpand Template Language.”

7.2 Generating CSV Files

To begin with the simplest example imaginable, we use Xpand here to output a
simple comma-separated values (CSV) file from our mindmap model. The first
step is to create a template in a /templates/deploy source folder of our
org.eclipse.dsl.mindmap project named mindmap2csv.xpt and complete
it with the following text:

«IMPORT mindmap»

«DEFINE Main FOR Map»
«FILE (title == null ? "map" : title) + ".csv"-»
«FOREACH elements.typeSelect(mindmap::Topic) AS topic-»
«topic.name»,«topic.priority»,«topic.start»,«topic.end»
«ENDFOREACH»
«ENDFILE»
«ENDDEFINE»

The template begins with a simple import of our mindmap model and the
definition of a template named Main that operates on a passed-in Map instance,

7.2 Generating CSV Files 281

ptg6022785

located using the source path project settings. The FILE directive creates a new
CSV file with the name equal to the title of our map. Note that the end
<<guillemet>> has a hyphen before it. This indicates that white space should be
stripped from the contents of this element. We need this to ensure that our CSV
file has no leading spaces or empty lines.

The FOREACH directive iterates over our Topic elements, which are distin-
guished from our Relationship elements using the typeSelect(mindmap::
Topic) operation. We refer to each Topic instance during iteration as topic
and access its attributes for output, inserting commas in between.

To invoke this template on our Mindmap.xmi dynamic instance, we need to
configure our project and add the following mindmap2csv.mwe file.

<?xml version="1.0"?>
<workflow>
<property name="model"
value="platform:/resource/org.eclipse.dsl.mindmap/model/Mindmap.xmi"/>
<property name="out" value="out" />

<!— set up EMF for standalone execution —>
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />

</bean>

<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="${model}" />
<modelSlot value="model" />

</component>

<!— generate code —>
<component class="org.eclipse.xpand2.Generator">
<metaModel id="mm"

class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>
<expand value="mindmap2csv::Main FOR model" />
<outlet path="${out}"/>

</component>
</workflow>

The workflow contains two component elements, one for the EMF reader
that knows about our Ecore model and the other for the generator itself. The
StandaloneSetup bean is initialized to the root of the workspace. You can find
information on the workflow engine in Section 14.1.16, “Workflow Engine.”

7.3 Generating Java

As we’ve mentioned previously, you must consider at least two possibilities when
generating Java, or any programming language, from models. The first is to use

282 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

M2M from a source model into a Java model, followed by Java generation using
dedicated templates. The alternative is to pass the source model to a set of tem-
plates designed to output Java code. In the former, the logical mapping from one
model to the other takes place in the mappings of QVT; in the latter, the logic
resides in Xpand and Xtend code throughout the templates and extension files.
Sometimes one approach is superior to the other; as with the two following
examples, both are feasible when transforming our Domain-Neutral Component
(DNC) models to Java Persistence API (JPA) code.

BEST PRACTICE

This might seen obvious, but it’s typically easier to first write code that
works and templify it than to try to work in a template environment from
the beginning.This applies to all text output formats, not just Java.

7.3.1 Using Java Model and Dedicated Template

In this section, we develop the template used to generate Java code from our Java
EMF Model (JEM) instance. We use a single template, which you can see in its
entirety next, followed by the Xtend utilities used by the template.

The Main definition takes a collection of JavaPackage elements. As you
can see in the corresponding workflow file used to invoke the template, the
source model can contain multiple root elements, which explains the use of
Collection. The package definition is invoked for each JavaPackage, which
expands each JavaClass that is not marked with a “library” annotation.
Subpackages are then processed recursively. The jemUtil.ext file contains the
functions used throughout to construct fully qualified class, package, and path
strings.

«IMPORT java»

«EXTENSION templates::java::jemUtil»

«DEFINE Main FOR Collection[java::JavaPackage]»
«EXPAND package FOREACH this.typeSelect(JavaPackage)»

«ENDDEFINE»

«DEFINE package FOR java::JavaPackage-»
«EXPAND class FOREACH javaClasses.select(c |

c.eAnnotations.first().source != ‘library')»
«EXPAND package FOREACH eSubpackages.typeSelect(JavaPackage)»

«ENDDEFINE»

7.3 Generating Java 283

ptg6022785

«DEFINE class FOR java::JavaClass-»
«FILE this.fullyQualifiedPath()-»
«IF javaPackage.isValid()-»
package «javaPackage.fullyQualifiedName()»;
«ENDIF»
«EXPAND import FOREACH classImport-»

/**
«EXPAND classComment FOREACH eAnnotations.select(a | a.source ==

'description').details-»
* @generated
*/
«EXPAND annotation FOREACH eAnnotations.select(a | a.source ==
'annotation').details-»

public class «name» «EXPAND extends FOR this-»
«EXPAND implements FOR this-» {

«EXPAND field FOREACH fields-»

«EXPAND reference FOREACH eReferences-»

«EXPAND method FOREACH methods-»

«EXPAND additions-»
}
«ENDFILE»
«ENDDEFINE»

«DEFINE extends FOR java::JavaClass-»
«IF getSupertype() != null»extends
«EXPAND superClass FOR getSupertype()-»«ENDIF-»
«ENDDEFINE»

«DEFINE implements FOR java::JavaClass-»
«IF implementsInterfaces.size > 0»implements
«EXPAND superClass FOREACH implementsInterfaces SEPARATOR ","-»«ENDIF-»
«ENDDEFINE»

«DEFINE superClass FOR java::JavaClass-»
«fullyQualifiedName(this)-»
«ENDDEFINE»

«DEFINE classComment FOR ecore::EStringToStringMapEntry-»
«IF key == null || key.length == 0-»
* TODO: Enter description of the class here...«ELSE-»
* «key-»
«ENDIF»
«ENDDEFINE»

«DEFINE annotation FOR ecore::EStringToStringMapEntry-»
«key» «value»

«ENDDEFINE»

284 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

«DEFINE field FOR java::Field-»
«EXPAND generatedComment FOR this-»
«EXPAND annotation FOREACH eAnnotations.select(a |
a.source == 'annotation').details-»
«javaVisibility.toString().toLowerCase()» «wrapIfCollection(this)»

«name-»;
«ENDDEFINE»

«DEFINE reference FOR ecore::EReference-»
«EXPAND generatedComment FOR this-»

«EXPAND annotation FOREACH eAnnotations.select(a |
a.source == 'annotation').details-»
private «wrapIfCollection(this)» «name-»;

«ENDDEFINE»

«DEFINE method FOR java::Method-»
«EXPAND generatedComment FOR this-»

«EXPAND annotation FOREACH eAnnotations.select(a |
a.source == 'annotation').details-»
«javaVisibility.toString().toLowerCase()-»

«wrapIfCollection(this)» «name-»(
«EXPAND parameter FOREACH parameters SEPARATOR ','») {

«EXPAND block FOR source»
}

«ENDDEFINE»

«DEFINE parameter FOR java::JavaParameter-»
«wrapIfCollection(this)» «name-»
«ENDDEFINE»

«DEFINE block FOR java::Block-»
«this.source-»
«EXPAND block FOREACH contents-»

«ENDDEFINE»

«DEFINE block FOR java::Comment-»
/*
* «this.source»
*/
«EXPAND block FOREACH contents-»

«ENDDEFINE»

«DEFINE generatedComment FOR Object-»
/**
*@generated
*/

«ENDDEFINE»

«DEFINE import FOR java::JavaClass-»
import «this.fullyQualifiedName() + ";\n"-»
«ENDDEFINE»

«DEFINE additions FOR java::JavaClass-»«ENDDEFINE»

7.3 Generating Java 285

ptg6022785

BEST PRACTICE

Notice the additions definition and its expansion within the class body. This
facilitates extension later using Xpand’s aspect-oriented capability.
Whenever you anticipate that a template might be extended in the future,
it’s a good idea to provide such extensibility points in your templates.

Here’s the jemUtil.ext file that contains the helper functions used earlier:

import java;
import ecore;

String fullyQualifiedName(JavaPackage p) :
p.eSuperPackage == null ? p.name :
fullyQualifiedName(p.eSuperPackage) + '.' + p.name

;

String fullyQualifiedName(JavaClass c) :
let p = fullyQualifiedName(c.ePackage) : p != '' && p !=
'java.lang' ? p + '.' + c.name : c.name

;

String fullyQualifiedName(Void v) : '';

String fullyQualifiedPath(JavaClass c) :
fullyQualifiedName(c.javaPackage).replaceAll('\\.', '/') + "/" +
c.name + ".java"

;

String wrapIfCollection(ETypedElement element) :
let p = element.eAnnotations.select(a | a.source == 'collection')
: p.size > 0 ?
p.first().details.first().value + "<" +
fullyQualifiedName(element.eType) + ">" :
fullyQualifiedName(element.eType)

;

Boolean isValid(JavaPackage package) :
package != null && package.name != null && package.name.length > 0

;

To invoke the template on our Java model, we need to configure a workflow.
In this case, the JEM model is found in the environment and declared using the
RegisterGeneratedEPackage element. Ecore is also required because it is
extended by JEM. Now look at the workflow used for this example.

286 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

<?xml version="1.0"?>
<workflow>
<property name="model" value="org.eclipse.dsl.dnc/out/dnc.jem" />
<property name="out" value="../org.eclipse.example/src-gen" />

<!-- set up EMF for standalone execution -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<RegisterGeneratedEPackage

value="org.eclipse.emf.ecore.EcorePackage"/>
<RegisterGeneratedEPackage

value="org.eclipse.jem.java.JavaRefPackage"/>
</bean>

<!-- load model and store it in slot 'model' -->
<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="platform:/resource/${model}" />
<modelSlot value="model" />
<!-- needed when working with multiple roots in xmi files -->
<firstElementOnly value="false" />

</component>

<!-- generate code -->
<component class="org.eclipse.xpand2.Generator">
<metaModel id="mm"

class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>
<expand value="templates::java::java::Main FOR model" />
<outlet path="${out}">
<postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

</outlet>
</component>

</workflow>

This is the output for our Address archetype, having been transformed from
our original business model into an Entity.

package org.eclipse.example;

import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Column;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;

/**
* TODO: Enter description of the class here...
*
* @generated
*/

7.3 Generating Java 287

ptg6022785

@Entity
@Table(name = "ADDRESS")
public class Address implements java.io.Serializable {

/**
* @generated
*/
private String street;

/**
* @generated
*/
private String city;

/**
* @generated
*/
@Column(name = "POSTAL_CODE")
private String postalCode;

/**
* @generated
*/
private String province;

/**
* @generated
*/
private String country;

/**
* @generated
*/
@Id
@Column(name = "ADDRESS_ID")
@GeneratedValue(strategy = GenerationType.AUTO)
private int addressId;

/**
* @generated
*/
public String getCity() {
return city;

}

/**
* @generated
*/
public void setCity(String city) {
this.city = city;

}

// Remaining getters and setters here...
}

288 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

The Person class generates as follows:

package org.eclipse.example;

import javax.persistence.OneToMany;
import javax.persistence.OneToOne;
import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Column;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;

/**
* TODO: Enter description of the class here...
* @generated
*/
@Entity
@Table(name="PERSON")
public class Person implements java.io.Serializable {

/**
*@generated
*/
@Column(name = "LAST_NAME")
private String lastName;
/**
*@generated
*/
@Column(name = "FIRST_NAME")
private String firstName;
/**
*@generated
*/
@Id
@Column(name="PERSON_ID")
@GeneratedValue(strategy=GenerationType.AUTO)
private int personId;

/**
*@generated
*/
@OneToMany(mappedBy="personId")
private java.util.Collection<org.eclipse.example.Phone> phones;

/**
*@generated
*/
@OneToOne(targetEntity=org.eclipse.example.Address.class)
private org.eclipse.example.Address address;

/**
*@generated
*/

7.3 Generating Java 289

ptg6022785

public java.util.Collection<org.eclipse.example.Phone> getPhones() {
return phones;

}

/**
*@generated
*/
public void setPhones(java.util.Collection<org.eclipse.example.Phone>

phones) {
this.phones = phones;

}

// Remaining getters and setters here...
}

Finally, consider our Phone class, which shows the @ManyToOne opposite to
our @OneToMany in the Person class:

package org.eclipse.example;

import javax.persistence.ManyToOne;
import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Column;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;

/**
* TODO: Enter description of the class here...
* @generated
*/
@Entity
@Table(name="PHONE")

public class Phone implements java.io.Serializable {

/**
*@generated
*/
private String number;
/**
*@generated
*/
@Column(name = "COUNTRY_CODE")
private String countryCode;
/**
*@generated
*/
private String type;
/**
*@generated
*/
@Column(name = "AREA_CODE")

290 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

private String areaCode;
/**
*@generated
*/
@Id
@Column(name="PHONE_ID")
@GeneratedValue(strategy=GenerationType.AUTO)
private int phoneId;
/**
*@generated
*/
@ManyToOne
@JoinColumn(name="PERSON_ID")
private org.eclipse.example.Person owner;

// Remaining getters and setters here...
}

7.3.2 Using the DNC Model with Templates

To compare the approaches to generating Java, we now develop a template that
generates the same code as the approach in the previous section but passes an
instance of our DNC model instead of using an instance of JEM produced by a
QVT. This template handles only Entity beans, although that could easily be
extended to generate Session beans as well.

«IMPORT dnc»

«EXTENSION templates::java::dncUtil»

«DEFINE Main FOR oocore::Package»
«EXPAND package FOREACH contents.typeSelect(oocore::Package)»

«ENDDEFINE»

«DEFINE package FOR oocore::Package-»
«EXPAND entity FOREACH contents.typeSelect(dnc::Archetype).select(a |

a.isEntity())»
«EXPAND package FOREACH contents.typeSelect(oocore::Package)»

«ENDDEFINE»

«DEFINE entity FOR dnc::Archetype-»
«FILE this.fullyQualifiedPath() -»
«IF package.isValid()-»
package «package.fullyQualifiedName()»;
«ENDIF»
import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Column;
import javax.persistence.Id;

7.3 Generating Java 291

ptg6022785

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
«IF !features.typeSelect(dnc::Association).collect(a |
a.upperBound == -1).isEmpty-»
import javax.persistence.OneToMany;«ENDIF»
«IF !features.typeSelect(dnc::Association).collect(a |
a.upperBound == 1).isEmpty-»
import javax.persistence.OneToOne;«ENDIF»
«IF features.typeSelect(oocore::Reference).collect(a |
a.opposite.metaType == dnc::Association && a.opposite.upperBound ==
-1).isEmpty-»

import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;«ENDIF»

/**
* «IF description.length > 0-»«description-»«ELSE»TODO:
Enter description of the class here...«ENDIF»
*
* @generated
*/
@Entity
@Table(name="«EXPAND toColumnName FOR name-»")
public class «name» «EXPAND extends FOR this-»implements
java.io.Serializable«EXPAND implements FOR this-» {

«EXPAND idAttribute FOR this-»
«EXPAND attribute FOREACH features.typeSelect(oocore::Attribute)-»
«EXPAND reference FOREACH features.typeSelect(oocore::Reference)-»
«EXPAND idGetter FOR this-»
«FOREACH features.typeSelect(oocore::StructuralFeature) AS feature-»
«EXPAND getter FOR feature-»
«EXPAND setter FOR feature-»
«ENDFOREACH»

«EXPAND method FOREACH features.typeSelect(oocore::Operation)-»
«EXPAND additions-»
}
«ENDFILE»
«ENDDEFINE»

«DEFINE extends FOR oocore::Class-»
«IF !superclasses.isEmpty»extends «EXPAND superClass FOR

superclasses.select(c | c.interface == false).first()-»«ENDIF-»
«ENDDEFINE»

«DEFINE implements FOR oocore::Class-»
«IF superclasses.select(c | c.interface == true).size > 0», «EXPAND

superClass FOREACH superclasses.select(c | c.interface == true)
SEPARATOR ","-»«ENDIF-»
«ENDDEFINE»

«DEFINE superClass FOR oocore::Class-»
«fullyQualifiedName(this)-»
«ENDDEFINE»

292 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

«DEFINE idAttribute FOR oocore::Class-»
«EXPAND generatedComment FOR this-»

@Id
@Column(name="«name.toUpperCase()-»_ID")

@GeneratedValue(strategy=GenerationType.AUTO)
private int «name.toLowerCase()-»Id;

«ENDDEFINE»

«DEFINE attribute FOR oocore::Attribute-»
«EXPAND generatedComment FOR this-»
«IF name.toLowerCase() != name-» @Column(name="
«EXPAND toColumnName FOR name-»")«ENDIF»

«visibility.toString().toLowerCase()» «dataType.name» «name-»;
«ENDDEFINE»

«DEFINE reference FOR dnc::Association-»
«IF this.type.isEntity()-»
«EXPAND generatedComment FOR this-»
«IF this.upperBound == -1-»
@OneToMany(mappedBy="«this.owner.name.toLowerCase()»Id")
«ELSEIF this.upperBound == 1-»
@OneToOne(targetEntity=«this.opposite.owner.fullyQualifiedName()».class
)«ENDIF»

private «wrapIfCollection(this)» «name-»;
«ENDIF»
«ENDDEFINE»

«DEFINE reference FOR oocore::Reference-»
«IF this.generateReference()-»
«EXPAND generatedComment FOR this-»

@ManyToOne
@JoinColumn(name="«this.owner.name.toUpperCase()»_ID")
private «wrapIfCollection(this)» «name-»;

«ENDIF»
«ENDDEFINE»

«DEFINE idGetter FOR oocore::Class-»
«EXPAND generatedComment FOR this-»

public int get«name.toFirstUpper()»Id() {
return «name.toLowerCase()»Id;

}
«ENDDEFINE»

«REM»Abstract - do nothing, but here to keep Xpand editor happy«ENDREM»
«DEFINE getter FOR oocore::StructuralFeature»
«ENDDEFINE»
«DEFINE setter FOR oocore::StructuralFeature»
«ENDDEFINE»

«DEFINE getter FOR oocore::Attribute-»
«EXPAND generatedComment FOR this-»

public «this.dataType.name» get«name.toFirstUpper()»() {
return «name»;
}

«ENDDEFINE»

7.3 Generating Java 293

ptg6022785

«DEFINE setter FOR oocore::Attribute-»
«EXPAND generatedComment FOR this-»

public void set«name.toFirstUpper()»(«this.dataType.name» «name») {
this.«name» = «name»;
}

«ENDDEFINE»

«DEFINE getter FOR oocore::Reference-»
«IF this.generateReference()-»
«EXPAND generatedComment FOR this-»

public «wrapIfCollection(this)» get«name.toFirstUpper()»() {
return «name»;
}

«ENDIF»
«ENDDEFINE»

«DEFINE setter FOR oocore::Reference-»
«IF this.generateReference()-»
«EXPAND generatedComment FOR this-»

public void set«name.toFirstUpper()»(«wrapIfCollection(this)»
«name») {

this.«name» = «name»;
}

«ENDIF»
«ENDDEFINE»

«DEFINE method FOR oocore::Operation-»
«EXPAND generatedComment FOR this-»

«visibility.toString().toLowerCase()-» «wrapIfCollection(this)»
«name-»(«EXPAND parameter FOREACH parameters SEPARATOR ','») {

//TODO: implement method
}

«ENDDEFINE»

«DEFINE parameter FOR oocore::Parameter-»
«wrapIfCollection(this)» «name-»
«ENDDEFINE»

«DEFINE generatedComment FOR Object-»
/**
*@generated
*/

«ENDDEFINE»

«DEFINE toColumnName FOR String-»
«FOREACH this.toCharList() AS char ITERATOR i-»
«IF i.counter0 == 0-»«char.toUpperCase()-»
«ELSE-»«char.asColumnNameChar()-»«ENDIF-»«ENDFOREACH-»
«ENDDEFINE»

«DEFINE additions FOR dnc::Archetype-»«ENDDEFINE»

294 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

This is the corresponding Xtend utility file dncUtil.ext:

import dnc;
import oocore;

String fullyQualifiedName(Package p) :
p.package == null ? p.name : fullyQualifiedName(p.package) + '.'
+ p.name

;

String fullyQualifiedName(Class c) :
let p = fullyQualifiedName(c.package) : p != '' &&
p != "java.lang" ? p + '.' + c.name : c.name

;

String fullyQualifiedName(Void v) : '';

String fullyQualifiedPath(Class c) :
fullyQualifiedName(c.package).replaceAll('\\.', '/') +
"/" + c.name + ".java"

;

String wrapIfCollection(Reference reference) :
reference.upperBound == -1 ?
"java.util.Collection" + "<" + fullyQualifiedName(reference.type) +

">" :
fullyQualifiedName(reference.type)

;

Boolean isValid(Package package) :
package != null && package.name.length > 0

;

String asColumnNameChar(String s) :
s.toLowerCase() == s ? s.toUpperCase() : '_' + s.toUpperCase()

;

Boolean isEntity(Class c) :
c.metaType == dnc::MomentInterval ||
c.metaType == dnc::MIDetail ||
c.metaType == dnc::Party ||
c.metaType == dnc::Place ||
c.metaType == dnc::Thing ||
c.metaType == dnc::Description

;

// Currently, we only create backward reference for ManyToOne
relationships
Boolean generateReference(oocore::Reference ref) :

ref.type.isEntity() && ref.opposite.metaType == dnc::Association &&
ref.opposite.upperBound == -1

;

7.3 Generating Java 295

ptg6022785

Finally, this the workflow file used to invoke the templates using a test
dynamic instance model. This is the same model that was used to feed the
dnc2jee.qvto transformation.

<?xml version="1.0"?>
<workflow>
<property name="model" value="org.eclipse.dsl.dnc/model/model.xmi" />
<property name="out" value="../org.eclipse.example/src-gen2" />

<!-- set up EMF for standalone execution -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />

</bean>

<!-- load model and store it in slot 'model' -->
<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="platform:/resource/${model}" />
<modelSlot value="model" />

</component>

<!-- generate code -->
<component class="org.eclipse.xpand2.Generator">
<metaModel id="mm"

class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel" />
<expand value="templates::java::dnc2java::Main FOR model" />
<outlet path="${out}">
<postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

</outlet>
</component>

</workflow>

BEST PRACTICE

Note the use of the JavaBeautifier in the generator component’s outlet ele-
ment. Generally, it’s better to rely on code formatters for generated code
than sacrifice readability of the template itself in an effort to generate
nicely formatted output directly. However, it’s often necessary to strike a
balance because the Toolsmith must also be able to understand the code
generated by the template.

Looking back at our two approaches, it’s hard to say that one is better than
the other. The template-only approach seems a bit simpler, but this ultimately
depends on your personal preference and familiarity in working with QVTO and
Xpand/Xtend. I did notice that many similar yet different constructs exist in
OCL/QVTO and Xpand/Xtend. This makes the GMF Xpand engine’s use of

296 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

OCL/QVTO an attractive alternative because you would need to know only one
set of languages for all your transformation needs. Sharing a single set of QVT
libraries for both M2M and M2T would be most welcome.

When we start generating method body content, the template approach with-
out the intermediate Java model likely will be the preferred approach. Even bet-
ter would be the capability for QVT to invoke an Xpand template using one of
its “black box” extension mechanisms. Of course, an enhanced Java model
would be required if the former approach were used because the JEM model
lacks the proper fidelity to create complex statements. In the HTML example, if
the domain model’s serialization syntax is no different from how its instances are
normally consumed, the choice of transformation options becomes more clear. In
the case of HTML, an M2M from a DSL to an XHTML model requires no M2T
to obtain the desired result. In fact, any XSD-based model imported into EMF
provides the same characteristic. Many popular or standard XML Schemas have
already been used to produce Ecore models, enhanced with additional capabili-
ties exposed as derived features and methods.

TIP

Consult the QVTO Metamodel Explorer to see what models are regis-
tered in your environment. A full Eclipse installation contains many regis-
tered models, ranging from Web Service Definition Language (WSDL), to
Enterprise Java Beans (EJB), to data models, to the Unified Modeling
Language (UML). This explorer becomes handy when authoring transfor-
mations when you need to see the model structure and available features.

7.4 Generating HTML

For both our mindmap and requirements DSLs, we want to generate documen-
tation. This can be done at least two ways using the Modeling project. First, sim-
ply use a model instance within templates to output whatever text you
want—plain ASCII, HTML, or whatever. Another approach is to do a M2M to
the model of another document, such as XHTML or another schema-backed for-
mat. The native serialization provided by EMF produces the output document,
so all we need to do is provide the M2M. To assess the pros and cons of each
approach, we use both here.

If you will generate HTML from templates, it makes sense to use JET—that
is, if you’ve done JSP development in the past. However, we use Xpand here to

7.4 Generating HTML 297

ptg6022785

illustrate its use. The following is a basic Xpand template that creates the output
HTML report from a test requirements model. As we reference the scenario
reference from our requirements, we need to link a source folder so that Xpand
can resolve the reference. This is done in the project properties, as shown in
Figure 7-4.

298 CHAPTER 7 • Developing Model-to-Text Transformations

Figure 7-4 Edit Source Folder dialog

«IMPORT requirements»

«DEFINE Main FOR Model»
«FILE (title == null ? "requirements" : title) + ".html"»
<html>
<head><title>«title»</title></head>
<body>
<h1>«title» Report</h1>
«EXPAND index FOR this-»
<hr/>
«EXPAND groupContent FOREACH groups-»
</body>
</html>
«ENDFILE»
«ENDDEFINE»

«DEFINE index FOR Model-»
<h3>Contents</h3>
«EXPAND groupIndex FOREACH groups-»
«ENDDEFINE»

«DEFINE groupIndex FOR RequirementGroup»
«name-»
«IF !requirements.isEmpty-»
«EXPAND requirementIndex FOREACH requirements-»
«ENDIF»
«IF !children.isEmpty-»
«EXPAND groupIndex FOREACH children-»
«ENDIF»

ptg6022785

«ENDDEFINE»

«DEFINE requirementIndex FOR Requirement»
«title»
«IF !children.isEmpty-»
«EXPAND requirementIndex FOREACH children-»
«ENDIF»
«ENDDEFINE»

«DEFINE groupContent FOR RequirementGroup-»
<h3>«name»</h3>
«IF parent != null-»Parent: «parent.name-»«ENDIF»
<p>«description-»</p>
«EXPAND requirementContent FOREACH requirements-»
«EXPAND groupContent FOREACH children-»
«ENDDEFINE»

«DEFINE requirementContent FOR Requirement-»
<table width="100%">
<tr style="background: LightSteelBlue">
<th colspan="4" align="left">
Requirement: «title»</th>

</tr>
<tr style="background: GhostWhite">
<td>ID: «id»</td>
<td colspan="3">«IF parent != null-»Parent:

«parent.title-»«ENDIF»</td>
</tr>
<tr style="background: GhostWhite">
<td>Type: «type == Type::FUNCTIONAL ? "Functional" :

➥"NonFunctional"»
</td>
<td>Version: «version.major == null ? "0" :
version.major».«version.minor == null ? "0" :
version.minor».«version.service == null ? "0" :

version.service»</td>
<td colspan="2">Created: «created»</td>

</tr>
<tr style="background: GhostWhite">
<td>Priority: «priority»</td>
<td>State: «state»</td>
<td>Resolution: «resolution»</td>
<td>Scenario: «scenario == null ? "none" :
scenario.name»</td>

</tr>
<tr style="background: Snow"><td colspan="4">«description-»</td></tr>
</table>
<h4>Dependencies</h4>
«IF !dependencies.isEmpty-»
«FOREACH dependencies AS dependency-»
«dependency.title»
«ENDFOREACH»

«ELSE»There are no dependencies for this requirement.

«ENDIF»
«IF !comments.isEmpty-»

7.4 Generating HTML 299

ptg6022785

<h4>Comments</h4>
<table width="100%">
«EXPAND comment FOREACH comments-»
</table>

«ENDIF»
«EXPAND requirementContent FOREACH children-»
«ENDDEFINE»

«DEFINE comment FOR Comment-»
<tr style="background: LightYellow"><td colspan="2">

By: «author»</td><td>On: «created»</td></tr>

<tr style="background: SeaShell"><td colspan="3">
Subject: «subject»</td></tr>

<tr style="background: Snow"><td colspan="3">«body»</td></tr>
«EXPAND comment FOREACH children-»
«ENDDEFINE»

Figure 7.5 shows a sample generated output from the requirements report.

300 CHAPTER 7 • Developing Model-to-Text Transformations

Figure 7-5 Requirements report

ptg6022785

One thing to note when generating HTML with templates is that you have
to deal with all those pesky angle brackets. The M2M approach benefited from
the fact that we dealt directly with the elements and attributes, without the con-
cern of matching brackets or even having to see them. Then again, we needed to
deal with the abstract syntax that was clearly not created to be “Toolsmith
friendly.” Perhaps the best thing for HTML would be a textual concrete syntax
and generated editor from the TMF project. In addition, it would be nice if our
template editor were aware not only of our template language syntax, but also
of our domain model. Perhaps someday it will be possible to generate hybrid
template editors that can provide this capability.

The following is the workflow definition used to invoke our report template
for this sample. Note the use of the XmlBeautifier postprocessor.

<?xml version="1.0"?>
<workflow>
<property name="model"

value="platform:/resource/org.eclipse.dsl.requirements/
model/Requirements.xmi" />

<property name="out" value="out" />

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<RegisterEcoreFile

value="platform:/resource/org.eclipse.dsl.scenario/
model/scenario.ecore"/>

</bean>

<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="${model}" />
<modelSlot value="model" />

</component>

<component class="org.eclipse.xpand2.Generator">
<metaModel id="mm"

class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>
<expand value="requirements2html::Main FOR model" />
<outlet path="${out}">
<postprocessor class="org.eclipse.xpand2.output.XmlBeautifier"/>

</outlet>
</component>

</workflow>

7.4 Generating HTML 301

ptg6022785

7.5 Summary

In this chapter, we explored the Xpand component of the M2T project and its
complementary workflow component from the EMFT project. Xpand provides
a powerful template language and engine for code generation within the context
of our DSL Toolkit and hereby completes our tour through its main elements.
Next, we’ll explore some of the packaging and deployment topics for our DSLs.

302 CHAPTER 7 • Developing Model-to-Text Transformations

ptg6022785

CHAPTER 8

DSL Packaging and
Deployment

So far, we’ve developed a series of abstract syntax models, diagrams, and model transfor-
mations. After creating a collection of domain-specific language (DSL)-related artifacts, a
Toolsmith needs to test and deploy them to a Practitioner’s workbench. In this chapter, we
explore polishing items, packaging, and deployment options for these artifacts.

Although this book does not cover the topic, it should become obvious that much of the
code you create to deploy DSLs could be generated from yet another DSL defined to
model the aspects of deployment (not to mention building and packaging aspects).
Feature definition, user interface plug-in, transformation invocation actions, and so on are
all potential targets for a set of code-generation templates and corresponding models.
When it comes to product lines, the information captured to select variation points and
options for generating a set of plug-ins that represent a product are ideally captured in
models and leveraged in this manner.

8.1 Deployment Preparation

Before deployment, you must tie up all loose ends. Up to this point, we’ve been
developing our collection of requirements DSLs in a development workspace and
testing in a runtime instance with all plug-ins. Let’s look at a number of check-
list items to make sure our DSLs are generated consistently, in preparation for
feature and product definition.

303

ptg6022785

8.1.1 Artwork

The most impactful thing we can do at this point is add icons and other artwork
to the diagram, edit, and editor plug-ins we’ve generated. The default generated
icons do little to convey meaning, so we can replace them with ones that do—or
just remove them altogether. Remember, just because we can add icons doesn’t
mean we should.

I’m not a graphic artist, so let’s look for another source of icons. Thousands
of icons ship with Eclipse, so we can try to reuse these, although I don’t recom-
mend this for a real product. Before plug-ins were bundled in .jar files, it was
simple to see all the icons that shipped with Eclipse. It’s still easy to do with a
simple Ant script that extracts all *.gif images from each of the **/*.jar files
in the plug-ins directory. Start with a complete install of all Eclipse projects, and
then prepare to scroll through thousands of icons in your file browser.

After collecting some candidate icons, we begin to replace those found in our
generated plug-in projects. This is most easily accomplished by simply renaming
your new icons to match the names found in the /icons/full/obj16/ direc-
tory (or similar directory). Most diagram element icons are found in their corre-
sponding *.model.edit plug-in, and the Diagram Wizard icon is found in
the *.diagram plug-in. In the case of our Requirements editor, we need to
replace the image in its EMF-generated *.editor plug-in. This gets us close, but
some missing ones still will require path information to be entered into our mod-
els. It’s a good idea to back up the plug-in icon directories at this point, to avoid
losing them upon regeneration.

Reference-based links in our diagrams are missing icons because they do not
correspond to a domain model class element, as is the case with our Mindmap
subtopic link. To specify the icon to use for the subtopic link, we can open the
mindmap.gmftool model and navigate to our Subtopic Creation Tool. The
tooling model wizard adds a large and small Default Image element to each
creation tool, which normally points to the corresponding *.edit plug-in icon.
We can delete these children from our Subtopic tool and create a new Small
Icon Bundle Image. For the Bundle property, we can point to our
org.eclipse.mindmap.model.edit plug-in and specify icons/full/
obj16/Subtopic.gif for the Path property. Of course, we need to add this
image to the *.edit plug-in because it was not provided. After this, we can re-
create the mindmap.gmfgen model from the mindmap.gmfmap model and
regenerate the Mindmap diagram. You’ll find the new icon used in the palette,
which just leaves updating the remainder of the tooling models for similar cases.

304 CHAPTER 8 • DSL Packaging and Deployment

ptg6022785

You won’t go this far in the sample projects, but consider adding several
other artwork items to your Eclipse-based product. Welcome pages, splash
images, about dialog images, and more are all possibilities. Look to the branding
topic in the Eclipse help system to find out more information on providing addi-
tional polish to your application.

8.1.2 Developing a User Interface Plug-In

We’ve tested our diagrams in the runtime workbench and our transformations in
the development workbench using dynamic instance models. Now we can create
an org.eclipse.requirements.ui plug-in that will give us a place to define
a Requirements perspective, a project wizard, and the actions and object contri-
butions we need to allow Practitioners to invoke them on their artifacts.

Wizard and Perspective

Using the New → Plug-in Project wizard, create an empty org.eclipse.
requirements.ui plug-in in your workspace. In the Extensions page of the
plug-in manifest editor, create a new contribution to the org.eclipse.
ui.newWizards extension-point. Add a category to this contribution with an
ID of org.eclipse.requirements.wizards.category. We use this ID
later to unite our generated editor wizards under a common category in the New
dialog. Now add the wizard element and name it Requirements Project
Wizard with an ID of org.eclipse.requirements.ui.wizards.id.
Complete the rest of the contribution to match the following—note that it spec-
ifies a Requirements perspective that we define next.

<extension
point="org.eclipse.ui.newWizards">

<category
name="Requirements"
id="org.eclipse.requirements.wizards.category"/>

<wizard
name="%_UI_ProjectWizard_label"
icon="icons/wizard.gif"
category="org.eclipse.requirements.wizards.category"

class="org.eclipse.requirements.ui.wizards.RequirementsProjectWizard"
finalPerspective="org.eclipse.requirements.perspective"

id="org.eclipse.requirements.ui.wizards.id"
project="true">

<description>%_UI_ProjectWizard_description</description>
</wizard>

</extension>

8.1 Deployment Preparation 305

ptg6022785

Using the helper in the editor, or by manually entering into the plugin.xml
tab itself, contribute the following to the org.eclipse.ui.perspectives
and perspectiveExtensions extension-points.

<extension
point="org.eclipse.ui.perspectives">

<perspective
name="%_UI_Perspective_label"
icon="icons/wizard.gif"
class="org.eclipse.requirements.ui.RequirementsPerspective"
id="org.eclipse.requirements.perspective">

<description>%_UI_Perspective_description</description>
</perspective>

</extension>

<extension point="org.eclipse.ui.perspectiveExtensions">
<perspectiveExtension

targetID="org.eclipse.requirements.perspective">
<perspectiveShortcut id="org.eclipse.ui.resourcePerspective"/>
<newWizardShortcut id="org.eclipse.requirements.ui.wizards.id"/>
<actionSet id="org.eclipse.jdt.ui.JavaActionSet"/>
<actionSet id="org.eclipse.debug.ui.launchActionSet"/>
<viewShortcut id="org.eclipse.search.ui.views.SearchView"/>

</perspectiveExtension>
</extension>

We’ve specified a RequirementsProjectWizard and a Requirements-
Perspective in our manifest that we need to implement. The implementations
for each class are not covered here, but are provided in the sample projects.
Consult the Eclipse help system for additional information on wizards and per-
spectives; their details fall outside the scope of this book. The important infor-
mation required is the wizard category ID that we can use with our generator
models in Section 8.1.3, “Generation Models.”

Preferences

Our generated diagram preferences are each given their own root in the
Preferences dialog, but we want them all to fall under a general Requirements
category that will eventually contain more general preferences. To provide a
common category each diagram can leverage, we’ll define a contribution to the
org.eclipse.ui.preferencePages extension-point as follows.

<extension point="org.eclipse.ui.preferencePages">
<page

class="org.eclipse.requirements.preferences.
RequirementsGeneralPreferencePage"

id="org.eclipse.requirements.preferences.category"

306 CHAPTER 8 • DSL Packaging and Deployment

ptg6022785

name="%_UI_PreferencePage_label">
</page>

</extension>

We can use the Quick Fix to have a default implementation provided for our
RequirementsGeneralPreferencePage class, with the important item cur-
rently being the creation of the preference category ID.

Actions

We now have a new perspective and project type for our Requirements product,
along with its four editors and corresponding creation wizard. But we don’t have
a way for the Practitioner to invoke the various transformations defined by the
Toolsmith on each of the instance models that will be created. For this, we can
provide action contributions to invoke the QVT Operational Mapping Language
(QVTO) and Xpand templates on the various artifacts.

The sample projects contain actions to invoke each of our transformations,
although we can improve these a bit. At the time of this writing, QVTO scripts
are not yet available to be invoked by the Modeling Workflow Engine. The
chaining of transformations is a common use case that we could work into our
Java code, although we prefer to define it in a workflow. Furthermore, the cur-
rent action to invoke a QVTO transformation simply uses the standard launch
configuration in a dialog. The most awkward part of the process is that QVTO
expects the root element of the file we invoke the action upon to be its input
model. In the case of diagrams that are persisted in the same file as the domain
model, this means simply picking the proper element within the file using the dia-
log. Still, it could be all done without user intervention, beyond selecting the
input model and specifying the output location.

<extension
point="org.eclipse.m2m.qvt.oml.runtime.qvtTransformation">

<transformation
file="transformations/mindmap2requirements.qvto"
id="org.eclipse.requirements.actions.

TransformMindmap2Requirements.transformationId">
</transformation>
. . .

</extension>

<extension point="org.eclipse.ui.popupMenus">
<objectContribution

id="org.eclipse.requirements.actions.
TransformMindmap2Requirements.id"

nameFilter="*.mmd"
objectClass="org.eclipse.core.resources.IFile">

8.1 Deployment Preparation 307

ptg6022785

<action
label="%TransformMindmap2Requirements_label"
class="org.eclipse.requirements.actions.

TransformMindmap2Requirements"
menubarPath="additions"
enablesFor="1"
id="org.eclipse.requirements.actions.

TransformMindmap2Requirements.actionId">
</action>

</objectContribution>
. . .
<objectContribution

id="org.eclipse.requirements.actions.TransformMindmapToCsv.id"
nameFilter="*.mmd"
objectClass="org.eclipse.core.resources.IFile">

<action
label="%TransformMindmapToCsv_label"
class="org.eclipse.requirements.actions.

TransformMindmapToCsv"
menubarPath="additions"
enablesFor="1"
id="org.eclipse.requirements.actions.

TransformMindmapToCsv.actionId">
</action>

</objectContribution>
</extension>

This is the action code to invoke the mindmap2requirements transformation:

public class TransformMindmap2Requirements implements
➥IObjectActionDelegate {

private IWorkbenchPart targetPart;
private URI fileURI;

public void setActivePart(IAction action, IWorkbenchPart targetPart)
{
this.targetPart = targetPart;

}

public void selectionChanged(IAction action, ISelection selection) {
fileURI = null;
action.setEnabled(false);
if (selection instanceof IStructuredSelection == false ||

selection.isEmpty()) {
return;

}
IFile file = (IFile) ((IStructuredSelection)

selection).getFirstElement();
fileURI = URI.createPlatformResourceURI(

file.getFullPath().toString(), true);
action.setEnabled(true);

}

308 CHAPTER 8 • DSL Packaging and Deployment

ptg6022785

public void run(IAction action) {
try {
EObject source = getInput();
if (source == null) {
String title =

Messages.RunInterpretedTransformationAction_title;
String message =

Messages.RunInterpretedTransformationAction_message;
MessageDialog.openInformation(getShell(), title,

NLS.bind(message, fileURI.toString()));
} else {
URI transfUri = URI.createURI("platform:/plugin/

org.eclipse.requirements.ui/transformations/
mindmap2requirements.qvto"); //$NON-NLS-1$

ArrayList<URI> paramUris = new ArrayList<URI>();
paramUris.add(fileURI);

IWizard wizard = (IWizard) new
RunInterpretedTransformationWizardDelegate(
transfUri, paramUris);

WizardDialog wizardDialog =
new WizardDialog(getShell(), wizard);

wizardDialog.open();
}

} catch (Exception ex) {
handleError(ex);

}
}

private EObject getInput() {
ResourceSetImpl rs = new ResourceSetImpl();
return rs.getEObject(fileURI.appendFragment("/"), true);

}

private void handleError(Throwable ex) {
MessageDialog.openError(getShell(), "Transformation failed",

MessageFormat.format("{0}: {1}",
ex.getClass().getSimpleName(), ex.getMessage()
== null ? "no message" : ex.getMessage()));

}

private Shell getShell() {
return targetPart.getSite().getShell();

}
}

The action used to invoke a workflow for Model-to-Text Transformation
(M2T) is largely the same. The following run() method is an example of how
the two differ.

8.1 Deployment Preparation 309

ptg6022785

public void run(IAction action) {
try {
EObject source = getInput();
if (source == null) {
String title = Messages.RunTransformationAction_title;
String message = Messages.RunTransformationAction_message;

MessageDialog.openInformation(getShell(), title,
NLS.bind(message, file.getFullPath()));

} else {
final URL url = FileLocator.toFileURL(new

URL("platform:/plugin/org.eclipse.requirements.ui/
templates/mindmap2csv.mwe"));

final Map<String, String> properties =
new HashMap<String, String>();

properties.put("model", URI.createPlatformResourceURI(
file.getFullPath().toString(), true).toString());

properties.put("out", Platform.getLocation().toOSString() +
file.getParent().getFullPath());

new WorkflowRunner().run(url.getPath(), new
NullProgressMonitor(), properties, null);

file.getParent().refreshLocal(IResource.DEPTH_ONE, new
org.eclipse.core.runtime.NullProgressMonitor());

}
} catch (Exception ex) {
handleError(ex);

}
}

8.1.3 Generation Models

Let’s revisit each of our generation models, to examine the options we might have
overlooked during development and leverage our new UI plug-in.

We’ve seen that GMF can persist models and diagrams in either separate files
or just one. For our application, we don’t need several diagrams on a single large
model instance, so we’ll set the Same File for Diagram and Model prop-
erty in the Gen Editor Generator element to true for all *.gmfgen models.
Also in this element is the Copyright Text property, which we populate with
the appropriate statement. Likewise, in each EMF *.genmodel file, we enter the
statement in its Copyright Text property of the root element. Note that copy-
right statements are output only on initial generation, forcing a delete and regen-
eration of our existing code. We don’t necessarily need to do this for our samples
because they contain modified code that would need to be preserved and restored
after regeneration.

310 CHAPTER 8 • DSL Packaging and Deployment

ptg6022785

In the Gen Plugin element for each diagram, we set the Name property and
Provider appropriately—in this case, a friendly name for each plug-in and
Eclipse.org for the provider. We also set Printing Enabled to true
because it’s not enabled by default. For the Version property, we leave the
default 1.0.0.qualifier value because the qualifier suffix will be replaced
by a time stamp during export and, eventually, during our headless PDE build.

By default, Graphical Modeling Framework (GMF) places its generated new
diagram wizards in the Examples category. We want each of our requirements
editors to fall under our new requirements category, so we can modify the dia-
gram .gmfgen models to specify org.eclipse.requirements.wizards.
category for the Gen Diagram element’s Creation Wizard Category ID
property, found in the Editor category. Eclipse Modeling Framework (EMF), on
the other hand, places its generated creation wizards in its own Example EMF
Model Creation Wizards category with the ID org.eclipse.emf.ecore.
wizard.category.ID. Unfortunately, the EMF genmodel provides only a
Boolean property either to generate a wizard or not, with no property to specify
the category it should fall under. We don’t expect to change it often, and because
EMF does not overwrite plug-in manifest files upon regeneration, we can make
the change in the generated org.eclipse.requirements.model.editor/
plugin.xml file. Delete the nested category element from the *.newWizards
contribution and change the wizard element’s category attribute to
org.eclipse.requirements.wizards.category.

We created a general preference category for our Requirements product that
we now need to leverage in our generated diagram preferences. Unfortunately, the
Gen Standard Preference Page element in the GMF generator model does
not enable us to specify the parent category. We can produce a decorator model
and custom templates to provide a generated approach, or we can simply add to
each generated plug-in manifest the org.eclipse.requirements.prefer-
ences.category ID as the root page’s category. After doing so, we see
each diagram preferences under a common Requirements group, as shown in
Figure 8-1.

Finally, not all string values can be adjusted in the generator model. This
forces us to make final polish tweaks to the message.properties file in our
generated diagram. For example, our color modeling diagram is called dnc
Diagram in our new diagram wizard. Many of the default namings come from
the underlying domain model—in this case, our dnc package. After using these
and some other polishing items, we’re ready to specify a product definition and
export it for testing and use.

8.1 Deployment Preparation 311

ptg6022785

Figure 8-1 Requirements preferences

8.2 Defining a Product

Using the Product Definition Wizard and associated Help content, we can con-
figure a requirements.product to use for deploying our product for multiple
platforms. We first configure a minimal launch configuration that includes only
those required and use it to configure the product itself. Be careful when select-
ing required plug-ins: The PDE’s Add Required Plug-ins feature does not always
detect all runtime requirements.

We need to download and install the RCP delta pack into our target, to
ensure that we have the different platform launch files available. When this is
complete, we can build our product bundles from the Product Definition editor
and test on the required platforms.

Another option to building a product is to look at Amalgam’s release engi-
neering builder, which comes as another example in the DSL Toolkit. The DSL
Toolkit itself is built using this method, which begins by defining a build model
to account for the parameters required to generate build scripts from a related
product model. This model-driven build approach is in its beginning stages, so I
do not discuss this in detail at this point. The PDE’s build templates could some-
day be Xpand templates, and the entire build process could be driven by a sim-
ple configuration model for each project or component.

8.2.1 Deploying Source

One of the reasons I chose to use a Plug-in Project type for our DSLs will now
become apparent. As you know, the Plug-ins view in Eclipse lets you import any
plug-in into your workspace. If the plug-in was packaged with source code, you

312 CHAPTER 8 • DSL Packaging and Deployment

ptg6022785

can import the plug-in into your workspace in a condition to continue develop-
ment. We can apply the same concept to working with DSLs. If we properly
configure our DSL projects for deployment, clients can import the source of the
deployed DSL into their workspace; modify the domain model, templates, dia-
gram definition, and so on; and regenerate the plug-ins to provide an update.

8.3 Summary

In this chapter, we touched upon the most basic packaging elements to consider
when creating a product for your DSL. Many additional enhancements and
usability issues will need to be resolved, though fall outside the scope of this
book. This concludes the hands-on portion of the book.

8.3 Summary 313

ptg6022785

This page intentionally left blank

ptg6022785PART 1II

Reference
This part of the book provides reference information on the key components used in the
domain-specific language (DSL) Toolkit. Here I introduce Graphical Editing Framework (GEF)
as an underlying element of Graphical Modeling Framework (GMF) and dedicate chapters to
the GMF runtime and tooling components. This part also covers the Query/View
Transformation (QVT) Operational Mapping Language and Xpand template language in chap-
ters that are intended to be used throughout the development of the sample projects in Part II
and later during your own DSL-based development.

315

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 9

Graphical Editing Framework

The Graphical Editing Framework (GEF) is a project with the top-level Eclipse Tools
Project and, as with Eclipse Modeling Framework (EMF), is one of the earliest Eclipse
projects. Because no existing book is dedicated to GEF, this chapter provides an overview
of the framework, based largely on the content available from the GEF documentation.
This book covers GEF only to the extent required to understand Graphical Modeling
Framework (GMF).

GEF consists of two plug-ins: Draw2d (org.eclipse.draw2d) and GEF
(org.eclipse.gef). Draw2d, an extension of Standard Widget Toolkit (SWT),
provides painting and layout functionality. GEF is built on top of Draw2d and
provides an Model-View-Controller (MVC) framework for graphical editors.
Although Draw2d depends on only SWT, GEF builds upon Draw2d and also
supplies integration with the Eclipse platform. Note that the two collectively are
commonly considered GEF and are not distinguished separately. Figure 9-1 is the
Plug-in Development Environment (PDE)’s Plug-In Dependencies view, to illus-
trate the minimal requirements of GEF and Draw2d.

317

ptg6022785

Figure 9-1 GEF dependencies

9.1 Draw2d

Figures lie at the heart of the Draw2d toolkit. Figures can consist of children fig-
ures, which are painted inside the parent’s bounds and arranged by a layout man-
ager. A LightweightSystem coordinates the Canvas with the set of figures by
forwarding nonpaint events from SWT using an EventDispatcher. Paint
events are forwarded to the UpdateManager, which coordinates painting and
layout, as shown in Figure 9-2.

9.1.1 Figures

Because Figures figure so prominently in Draw2d, let’s discuss their general
responsibilities as defined in their extensive API. Following are some highlights;
the rest of this section goes into more detail on their use. Figures are responsible
for the following:

❍ Adding and removing child figures

❍ Adding and removing listeners (for example, coordinate, figure, focus,
key, layout, ancestor, mouse, and property change listeners)

❍ Calculating whether a point falls within the figure bounds (hit testing)

❍ Locating a figure for a given location

❍ Returning the figure’s border, bounds, location, ToolTip, color, font,
transparency, visibility, and so on

318 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Figure 9-2 Draw2d lightweight system

Figure 9-3 illustrates a user interaction scenario to describe how these ele-
ments work together.

9.1.2 Text

In addition to figures, Draw2d has support for text. Labels (org.eclipse.
draw2d.Label) are the primary means, while “rich text” features are also avail-
able in the org.eclipse.draw2d.text package. This allows for wrapping
content such as a paragraph, mixing nontext with text (Tufte would love this!),
supporting bidirectional support, and more.

9.1 Draw2d 319

SWT Canvas LWS

Root Figure Event
Dispatcher

Update
Manager

Content Root

Figure FigureFigure

Figure Canvas

Contents

❍ Accessing the figure’s update and layout manager

❍ Painting and validating

❍ Setting and getting focus

❍ Handling events for structural changes, movement, resizing, and so on

ptg6022785

Figure 9-3 Draw2D interaction sequence

9.1.3 Painting

The following sequence illustrates the process of figure painting.

paint()—This method is declared on the interface and kicks off the
painting process. First, properties are set on the graphics that children
would inherit, including font and background and foreground color. Then
the graphics state is pushed so that just these inherited settings can be
restored when painting children. Next, the following methods are called:

paintFigure()—The figure paints itself, although figures are not
required to paint at all. A simple form of painting is to fill in the bound-
ing box with the figure’s background color.

paintClientArea()—The client area is where children appear. This
method should apply any changes to the graphics that affect only chil-
dren, such as coordinate system modifications and translating the graphics

320 CHAPTER 9 • Graphical Editing Framework

Update
Manager

Root Figure

LWS SWT Event
Dispatcher

Figure
Canvas

Content Root

Figure FigureFigure

5a. Requests Repaint
of Dirty Region

6. Validates Invalid Figures,
Paints Dirty Region

4. Dispatches Figure
Events

5b. Revalidates and
Marks Root as Invalid

2. Listener Notifies1. User Interaction 3. Delegates to

ptg6022785

to the client area. This method also clips the graphics to the region where
children are allowed to appear.

paintChildren()—Now that the client area is set up, children are
painted. After each child paints, the graphics state is restored to the
incoming state so that children do not overwrite the inherited graphics
settings from the parent.

paintBorder()—Finally, the figure paints decorations that should
appear on top of the children. If a border has been set on the figure, it
paints now.

Figures are composed in trees, structurally speaking, so they are painted
by traversing the tree in depth-first order. As an example, consider the tree in
Figure 9-4 and the Z-order depicted in the corresponding image to the right.

9.1 Draw2d 321

6
1

1
2

2
3

1
2 61
2 3336

4

333
44

5

333333333333333533

Figure 9-4 Figure composition

Children within figures cannot paint outside their parent’s bounds. Clipping
occurs while figures are painted and is cumulative for the entire parent hierarchy.
Figure 9-5 is a simple figure hierarchy and shows the result of clipping on its
rendition.

3

1

2

Figure 9-5 Figure clipping

ptg6022785

9.1.4 Layout

Draw2d provides layout using two steps: first by marking figures as invalid if
they need layout, and second by validating “branches” of invalid figures. Layout
occurs all at once because Draw2d employs a deferred update strategy and,
therefore, avoids displaying intermediate states when multiple figures become
invalid.

Draw2d uses the term validation to perform layout. The validate()
method can be extended to perform other functions that require integration with
the update manager. When the validate() method is called, a figure performs
its layout and then validates its children.

Layout requires information on the size of children figures, so methods are
provided for querying minimum, maximum, and preferred sizes. If you know an
available dimension, you can pass it as a hint to a figure when querying, which
instructs the figure to consider the dimension when it returns its size requirements.

If a figure changes so that layout is required, it calls revalidate() to mark
itself as invalid and requesting revalidation on its parent. This continues up the
hierarchy and ends with an entry in the update manager’s list of invalid figures.
The update manager performs top-down layout by first setting the bounds of the
parent and calling validate() on its children.

9.1.5 Connections and Routing

Draw2d provides a connection to form a line between two points. A
PolylineConnection holds source and target ConnectionAnchor elements.
A ConnectionRouter manages end and intermediate points along the line.
Figure 9-6 illustrates a connection and its associated elements.

322 CHAPTER 9 • Graphical Editing Framework

1

2

Endpoint
u

v

Midpoint

Labels placed using
ConnectionLocators

Anchor Location
PolylineDecoration

PolylineConnection

Figure 9-6 Polyline connection

The main difference between a connection and regular figures is that the
ConnectionRouter is responsible for setting its bounds. Specialized routers can

ptg6022785

impose further constraints on a connection’s bounds. Connections are typically
managed by a single router instance and reside in a ConnectionLayer.

Anchors are used to place connection endpoints in either a fixed position or
a calculated position related to some figure. For example, the ChopboxAnchor
determines the point at which the bounds of a figure are intersected by the line
traveling from some reference point to the center of the figure, as seen in
Figure 9-7.

9.1 Draw2d 323

Center

Owner Figure

Anchor Location

Reference

Figure 9-7 Chopbox anchor

Connections can have end decorations, such as arrowheads or labels. A
DelegatingLayout is used to determine the placement of these decorations by
delegating to a Locator. When adding a rotatable PolygonDecoration or
label at the end of a polyline connection, its bounds are extended to allow these
elements to be painted in addition to the line itself.

Connections affect layout because routing must occur before children can be
placed. When validating a connection, a layout algorithm must remember its old
bounds when determining the new, and invalidate the appropriate region in the
update manager. Fortunately, the default implementation does this for you.

9.1.6 Coordinate Systems

Draw2d has two coordinate systems to consider: absolute (inherited) and relative
(local). In the absolute situation (the default), figures can be compared with one
another because they all use the same system. It’s “inherited” in the sense that
when a figure is moved, the children coordinates must be translated by the same
amount. In the relative (local) situation, coordinates are relative to the bounds
area of the parent, except for when the parent has insets. To use local coordi-
nates, the parent overrides useLocalCoordinates() for its children.
Table 9-1, from Draw2d, includes reasons you might choose to use local or
absolute coordinates.

ptg6022785

Table 9-1 Draw2d Coordinate System

Task Absolute Coordinates Relative Coordinates

Translate or move The figure and all its children Only the figure’s bounds must be
a figure must be translated, which can updated. The children move for

be expensive in extreme cases. free.

Hit-test/determine No adjustments to coordinates Some simple math is used to
repaint regions are needed. adjust coordinates and rectangles

to and from the coordinate
system’s origin.

Observe the figure’s A FigureListener can be used A FigureListener and
“location” on the if the entire parent chain is using CoordinateListener must be
Canvas absolute coordinates, but this used. You must call

guarantee is rare. translateToAbsolute on the
figure being observed to get its
canvas coordinates.

Determine the Easy—after the children have Extremely hard—updating the
bounds of a parent been positioned, the parent can parent’s bounds causes the
based on the bounds figure out what its bounds children to “move.”
of the children should be.

9.2 GEF

Whereas Draw2d provides painting and layout on an SWT canvas, GEF provides
the required functionality to edit a model with figures using workbench and
peripheral devices. It does this by implementing the well-known MVC architec-
ture, as seen in Figure 9-8.

Although GEF has its own independent notion of model, EMF often is used to
manage the underlying model. In fact, the GMF project was created precisely to
combine the model aspect of GEF with GMF and build additional capabilities upon
them. The view is largely provided by Draw2d Figures and SWT TreeItems,
which leaves the controller as the main discussion item for this chapter.

NOTE

When discussing GMF, it gets a bit confusing when considering the termi-
nology of GEF. In GMF,View is the main class in a diagram’s notation model;
it holds a reference to the domain model element it represents. Both are
EMF models—together they represent the “model” discussed in the con-
text of GEF.

324 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Figure 9-8 GEF MVC overview

The controller aspect of GEF is responsible for updating the view and trans-
lating UI events into requests from which commands are executed on the under-
lying model. Model elements that are visualized have an associated EditPart,
which act as the controller for the element. EditParts contain a set of
EditPolicy classes, which provide behavior and handle most of the actual edit-
ing of the model. An EditPart’s lifecycle is managed by an EditPartViewer,
which provides the EditPart’s view in either graphical or tree format.

9.2.1 EditParts

Although an EditPart forms the controller bridge between the view and the
model, it typically resembles the structure of both hierarchies. This is because the
model’s hierarchical structure often is represented on a diagram with nested fig-
ures. This is not always the case; sometimes elements in the model are linked by
connections to sibling figure elements on the canvas. Nevertheless, we end up
with three similar object structures in memory representing the model, view, and
controller.

As mentioned, connections remain a special case in which the model and
view do not form complementary object structures. In the case of connections,
they have EditParts of their own and are managed by the source and target
EditParts. A connection’s figure is added to a special layer above the primary
layer.

Two kinds of EditParts exist in GEF: graphical and tree. Graphical
EditParts use Draw2d Figure objects for their view, while TreeEditParts
use SWT TreeItem objects for their view. Both extend from Abstract
EditPart and have the following main responsibilities:

9.2 GEF 325

User Input Actions

Tools

SWT Events Event Handlers

Interaction Boundart

• Menus
• Toolbars
• Keybindings

Requests
Model

View
Commands

Controller

ptg6022785

❍ Create and maintain a view

❍ Create and maintain child EditParts

❍ Create and maintain connection EditParts

❍ Support editing of the model

As the controller, EditParts are responsible for listening to model change
events and updating the view, and also for taking input from a user and updat-
ing the model. We cover both aspects in the following sections, beginning with a
description of how to create the graphical view.

9.2.2 Creating the Graphical View

Let’s say that you have a model created in EMF and figures using Draw2d. Now
it’s time to bring them together in a graphical editor. As indicated in the previous
section, you need to create EditParts for each of the model elements you want
to render in a diagram. But first you need to set up a viewer for the Draw2d
FigureCanvas. Typically, the GEF ScrollingGraphicalViewer is used with
a special root EditPart. This root EditPart does not correspond to a model
element; it provides a context for the remaining EditParts and sets up the
viewer. The ScalableFreeformRootEditPart is typically used, while GMF
provides its own DiagramRootEditPart class to set up printing support and
discrete zoom levels.

Creating EditParts

With a viewer and the root EditPart established, we can populate the view
with content by passing in an EditPartFactory and our model. The
EditPartFactory takes the base model object and creates the appropriate
EditPart and adds it to the root, as seen in Figure 9-9. This EditPart is
known as the contents EditPart; do not confuse it with the “root EditPart,”
which, as stated earlier, has no relationship with the model. The contents
EditPart creates its Figure, which is added to the root Figure.

The contents EditPart creates its children EditParts by passing the
viewer’s factory, which, in turn, is used to create their children, and so on. This
is done by calling getModelChildren() on itself, so the EditPart must know
what model elements require EditParts to be created, although it is the respon-
sibility of the EditPartFactory to create them. Eventually, every model object
will be represented by an EditPart and corresponding Figure in the graphical
viewer. In summary, you need to implement both a contents EditPart that will
set up a diagram’s backdrop figure and an EditPartFactory that is aware of
the model and can create the contents EditPart.

326 CHAPTER 9 • Graphical Editing Framework

ptg6022785

9.2 GEF 327

FiguresModel EditParts

EditPart
Factory Graphical Viewer

Figure 9-9 GEF EditPartFactory

Following is code from the GEF Logic Diagram example’s LogicEditor class,
showing how its GraphicalViewer is set up. Note that I have removed config-
uration code for elements not discussed (such as zoom and action configuration).

protected void configureGraphicalViewer() {
super.configureGraphicalViewer();
ScrollingGraphicalViewer viewer =

(ScrollingGraphicalViewer)getGraphicalViewer();
ScalableFreeformRootEditPart root = new

ScalableFreeformRootEditPart();
viewer.setRootEditPart(root);
viewer.setEditPartFactory(new GraphicalPartFactory());

}

The contents are set in the LogicEditor’s setContents() method:

getGraphicalViewer().setContents(getLogicDiagram());

Looking at the logic diagram’s implementation of EditPartFactory, you
can get a feel for how EditParts are created for corresponding model objects.

public class GraphicalPartFactory implements EditPartFactory {

public EditPart createEditPart(EditPart context, Object model) {
EditPart child = null;

if (model instanceof LogicFlowContainer)
child = new LogicFlowContainerEditPart();

else if (model instanceof Wire)

ptg6022785

child = new WireEditPart();
else if (model instanceof LED)
child = new LEDEditPart();

else if (model instanceof LogicLabel)
child = new LogicLabelEditPart();

else if (model instanceof Circuit)
child = new CircuitEditPart();

else if (model instanceof Gate)
child = new GateEditPart();

else if (model instanceof SimpleOutput)
child = new OutputEditPart();

// Note that subclasses of LogicDiagram have already
// been matched above, like Circuit
else if (model instanceof LogicDiagram)
child = new LogicDiagramEditPart();

child.setModel(model);
return child;

}
}

NOTE

As a point of clarification, the model’s root is LogicDiagram, with a cor-
responding contents EditPart provided by LogicDiagramEditPart.
Having Diagram in the model element name and diagram-related content in
the class seems odd to those used to GMF, which makes a clean separation
between the underlying domain (or semantic) model and the diagram (or
notation) model.The GEF example uses simple serialization to persist both
diagram and “domain” model information into a single file. As you’ll see
when looking at the GMF logic diagram example, it is implemented quite
differently.

Take a look now at the Figure creation for the logic diagram. As men-
tioned, it’s the EditPart’s responsibility to create its Figure and to create its
child EditParts. Looking at our LogicDiagramEditPart, you can see that it
provides a FreeformLayer as the diagram Figure.

protected IFigure createFigure() {
Figure f = new FreeformLayer();
f.setLayoutManager(new FreeformLayout());
f.setBorder(new MarginBorder(5));
return f;

}

328 CHAPTER 9 • Graphical Editing Framework

ptg6022785

As the viewer is populated, each EditPart has its refreshVisuals()
method invoked to update the display of its model information. This method is
also invoked when we start listening to model changes, to reflect changes in the
underlying model in the diagram. Following is the refreshVisuals() method
for our LogicDiagramEditPart. Note the use of the Animation class in the
logic diagram.

protected void refreshVisuals() {
Animation.markBegin();
ConnectionLayer cLayer = (ConnectionLayer)

getLayer(CONNECTION_LAYER);
if ((getViewer().getControl().getStyle() & SWT.MIRRORED) == 0)

cLayer.setAntialias(SWT.ON);

if (getLogicDiagram().getConnectionRouter()
.equals(LogicDiagram.ROUTER_MANUAL)) {

AutomaticRouter router = new FanRouter();
router.setNextRouter(new BendpointConnectionRouter());
cLayer.setConnectionRouter(router);

} else if (getLogicDiagram().getConnectionRouter()
.equals(LogicDiagram.ROUTER_MANHATTAN)) {
cLayer.setConnectionRouter(new
ManhattanConnectionRouter());

} else {
cLayer.setConnectionRouter(new
ShortestPathConnectionRouter(getFigure()));
Animation.run(400);

}

The bulk of the content in the refreshVisuals() method of the diagram
relates to connections on the diagram. This is because children of the diagram
are represented by Figures of their own (typically called nodes) and have asso-
ciated EditParts that are managed through calls to getModelChildren(), as
mentioned earlier. Connections are special EditParts that require some addi-
tional explanation; the next section covers them.

The remaining EditParts in the logic diagram extend from an abstract
LogicEditPart class that provides this general refreshVisuals() method
implementation.

protected void refreshVisuals() {
Point loc = getLogicSubpart().getLocation();
Dimension size= getLogicSubpart().getSize();
Rectangle r = new Rectangle(loc ,size);

((GraphicalEditPart) getParent()).setLayoutConstraint(this,
getFigure(), r);

}

9.2 GEF 329

ptg6022785

Connection EditParts

Although connection EditParts are largely the same as other EditParts, they
are created and managed in a shared manner by their source and target
EditParts. EditParts representing nodes on a diagram must override the
getModelSourceConnections() and getModelTargetConnections()
methods provided by the AbstractGraphicalEditPart class to return the
model object representing the connection. If the corresponding EditPart for a
connection model object has not been created by the node at the other end, GEF
requests its creation from the EditPartFactory. The source node is responsi-
ble for creating the connection figure and adding it to the diagram.

The Figure created by a connection EditPart must implement org.
eclipse.draw2d.Connection and typically is an instance of org.eclipse.
draw2d.PolylineConnection. In fact, the default implementation pro-
vided by AbstractConnectionEditPart.getFigure() returns a new
PolylineConnection. The connection EditPart maintains a reference to the
source and target EditParts and sets its Figure’s anchors by casting these
references to NodeEditPart. Following is the implementation that
AbstractConnectionEditPart provided for getSourceConnection
Anchor(); here, DEFAULT_SOURCE_ANCHOR is an XYAnchor at point (10, 10).
The getTargetConnectionAnchor() method is implemented similarly, set-
ting its default XYAnchor at (100, 100).

protected ConnectionAnchor getSourceConnectionAnchor() {
if (getSource() != null) {
if (getSource() instanceof NodeEditPart) {
NodeEditPart editPart = (NodeEditPart) getSource();
return editPart.getSourceConnectionAnchor(this);

} IFigure f = ((GraphicalEditPart)getSource()).getFigure();
return new ChopboxAnchor(f);

}
return DEFAULT_SOURCE_ANCHOR;

}

To provide sensible anchor positions for your connections to use, it’s important
first to implement NodeEditPart for those nodes that support connections, and
second to provide implementations for getSourceConnectionAnchor() and
getTargetConnectionAnchor() to return appropriate ConnectionAnchors.
Following is the implementation of getSourceConnectionAnchor() for the
LogicEditPart in the logic diagram example. Again, getTargetConnection
Anchor() is implemented similarly.

330 CHAPTER 9 • Graphical Editing Framework

ptg6022785

public ConnectionAnchor getSourceConnectionAnchor(ConnectionEditPart
connEditPart) {
Wire wire = (Wire) connEditPart.getModel();
return getNodeFigure().getConnectionAnchor(wire.getSourceTerminal());

}

The refreshVisuals() of the logic diagram’s WireEditPart looks like
the following.

/**
* Refreshes the visual aspects of this, based upon the model (Wire).
* It changes the wire color depending on the state of Wire.
*/
protected void refreshVisuals() {

refreshBendpoints();
if (getWire().getValue()) {
getWireFigure().setForegroundColor(alive);

} else {
getWireFigure().setForegroundColor(dead);

}
}

At this point, we’ve discussed how a model element can be displayed on a
diagram using Draw2d Figures that are managed by extending GEF’s
AbstractGraphicalEditPart and overriding behavior appropriate for the
element. Next, we look at how to edit model elements through interaction with
the diagram.

9.2.3 Editing

Rendering visual elements related to an underlying model is the easy part.
Providing editing support is more complicated and requires several new concepts
used in GEF. Although EditParts remain the center of this functionality, we dis-
cuss Requests, Commands, and EditPolicies in the context of the discussion.

Requests

You can interact with the underlying model in many ways, so GEF provides an
abstraction of all interaction with the Request class. As stated in its API docu-
mentation, a Request is an object used to communicate with EditParts that
encapsulate the information EditParts need to perform various functions.
Requests are used to obtain commands, show feedback, and perform generic
operations.

9.2 GEF 331

ptg6022785

Tools on the palette, action contributions in the UI, and programmatic inter-
action all create Requests and call upon the EditPart to handle the Request.
The EditPart interface defines several methods that respond to Request
objects, including those listed here.

EditPart getTargetEditPart(Request request);
boolean understandsRequest(Request request);
void showSourceFeedback(Request request);
void eraseSourceFeedback(Request request);
void showTargetFeedback(Request request);
void eraseTargetFeedback(Request request);
Command getCommand(Request request);
void performRequest(Request request);

Before safe editing of the underlying model can take place, it’s important to
know which EditParts are involved and whether they are capable of handling
certain requests. Between those elements selected in the view and those under the
mouse pointer (the target), you can capture this information using the first two
API methods getTargetEditPart() and understandsRequest().

When interacting with the diagram with a mouse—particularly when drag-
ging a node or making connections—it’s important to provide feedback to the
user. The role an EditPart plays in these interactions is important to know
when providing feedback because source and target feedback is typically distinct.
This functionality is provided using the next four API methods shown earlier that
are related to showing/erasing source/target feedback.

EditParts are responsible for returning the appropriate Command for a
given Request, as provided by the getCommand() contract. Commands ulti-
mately operate on the underlying model element within the EditingDomain. If
a particular request cannot be performed, the EditPart returns a null or
nonexecutable Command, which can be rendered in the UI to indicate this to the
user.

Finally, the EditPart might just need to perform a Request. Typically, this
does not result in an underlying model change; instead, it opens a dialog, col-
lapses a compartment, or activates an in-place editor. For these cases, the
performRequest(Request) method is called.

Commands

As mentioned, Commands are the primary means of effecting change in the under-
lying model. Commands encapsulate changes to the model, can be combined with
other commands, and must be executed using a command stack. One of the pri-
mary complications with using GEF and EMF together has been that each frame-
work provides its own command infrastructure. Add to that the platform’s

332 CHAPTER 9 • Graphical Editing Framework

ptg6022785

underlying command infrastructure. One of the primary benefits of using GMF
is a unified command infrastructure that additionally uses the EMF Transaction
API. Section 10.7, “Command Infrastructure,” covers this in detail.

EditPolicies

EditParts delegate the handling of editing to EditPolicy classes, which the
createEditPolicies() method invoked upon EditPart creation installs.
EditPolicies handle specific editing tasks and can be reused across different
EditParts. With the exception of performRequest(), each of the previous
EditPart methods that takes a Request object is delegated to one or more of its
EditPolicies.

As described in the EditPolicy API documentation, an EditPolicy is a
pluggable contribution that implements a portion of an EditPart’s behavior.
EditPolicies contribute to the overall editing behavior of an EditPart. Editing
behavior is defined as one or more of the following: command creation, feedback
management, and delegation/forwarding by collecting contributions from other
EditParts.

In response to a given Request, an EditPolicy can create a derived
Request and forward it to other EditParts. For example, during the deletion
of a composite EditPart, that composite can consult its children for contribu-
tions to the delete command. Then if the children have any additional work to
do, they return additional commands to be executed.

EditPolicies should be used to determine an EditPart’s editing capabilities.
Although it is possible to implement an EditPart so that it handles all editing
responsibility, using EditPolicies is more flexible and object oriented. Using poli-
cies, you can select the editing behavior for an EditPart without being bound
to its class hierarchy, improving code reuse and simplifying code management.
GMF adds the concept of an EditPolicy provider service, where edit policies
can be contributed to an existing diagram for extensibility.

When EditPolicies are installed, they are assigned a role. Roles are simply a
key, with several roles provided as constants in the org.eclipse.gef.
EditPolicy interface. Some examples are CONNECTION_ROLE, CONTAINER_
ROLE, LAYOUT_ROLE, NODE_ROLE, CONNECTION_ENDPOINTS_ROLE, and
COMPONENT_ROLE. Roles become important when an EditPart needs to sub-
stitute policies, and using them is generally good practice. Several EditPolicies are
provided by default in GEF, although you can write many others to handle your
particular editing functionality.

Following is the createEditPolicies() method found in the Logic
DiagramEditPart class, where several provided roles are used in addition to a
custom Snap Feedback role and policy.

9.2 GEF 333

ptg6022785

protected void createEditPolicies(){
super.createEditPolicies();

installEditPolicy(EditPolicy.NODE_ROLE, null);
installEditPolicy(EditPolicy.GRAPHICAL_NODE_ROLE, null);
installEditPolicy(EditPolicy.SELECTION_FEEDBACK_ROLE, null);
installEditPolicy(EditPolicy.COMPONENT_ROLE, new

RootComponentEditPolicy());
installEditPolicy(EditPolicy.LAYOUT_ROLE, new

LogicXYLayoutEditPolicy(
(XYLayout)getContentPane().getLayoutManager()));

installEditPolicy(“Snap Feedback”, new SnapFeedbackPolicy());
}

9.2.4 The EditPart Life Cycle

As mentioned already, an EditPart begins its life when an EditPartFactory
creates it. Specifically, it begins when the EditPartViewer.setContents()
method is invoked; in the case of AbstractEditPartViewer, it calls the fac-
tory’s createEditPart() method on the contents EditPart, which then cre-
ates all children EditParts. The factory sets the EditPart’s model by calling
setModel() before the EditPart is returned.

When examining the life cycle of an EditPart, the AbstractEditPart.
addChild() method provides much of the story:

protected void addChild(EditPart child, int index) {
Assert.isNotNull(child);
if (index == -1) {

index = getChildren().size();
if (children == null)
children = new ArrayList(2);

children.add(index, child);
child.setParent(this);
addChildVisual(child, index);
child.addNotify();

if (isActive())
child.activate();

fireChildAdded(child, index);
}

Adding an EditPart to a Diagram

When EditPart children are created, or whenever the addChild() method is
invoked on the AbstractEditPart class, the setParent() method is called

334 CHAPTER 9 • Graphical Editing Framework

ptg6022785

to establish the hierarchy of EditParts. This is done so that an EditPart can
navigate this hierarchy, if required—for example, when it needs to obtain its
viewer to access its EditPart registry.

Along with setting the parent of an EditPart during addChild(), its
Figure is created by a call to addChildVisual(). Actually, the default imple-
mentation in AbstractGraphicalEditPart calls getFigure(), which calls
the createFigure() method. Your EditPart must implement this abstract
method.

To refresh itself for the first time following its addition to the parent
EditPart, the addNotify() method is invoked. The default behavior of
addNotify() performs the following:

❍ Registers its model in the EditPartViewer’s EditPart registry so that
EditParts can find other EditParts.

❍ Registers its figure in the EditPartViewer’s visual part registry (used for
hit testing).

❍ Registers the EditPart for accessibility, if applicable.

❍ Creates the EditPolicies it needs by invoking createEditPolicies(),
which is abstract and requires implementation by your EditPart. In
turn, the EditPart.installEditPolicy() method is invoked, passing
required EditPolicies and their role.

❍ Invokes addNotify() on its children and then invokes refresh(). The
default implementation of refresh() invokes refreshVisuals() and
refreshChildren(). As you saw earlier in the refreshVisuals()
implementation in LogicEditPart, this method is intended to be overrid-
den by your EditPart because the default implementation does nothing.
The refreshChildren() method is the opposite: The default implemen-
tation should not be overridden and can be computationally expensive.
Therefore, it should be invoked only when required. Following is the API
documentation, to provide more detail on this method and its use.

❍ The final act of addNotify() is to register the EditPart as the source
or target of connections using overridden getSourceConnections()
and getTargetConnections(), respectively, as applicable.

The AbstractEditPart.refreshChildren() method updates its child
EditParts so that they are in sync with their model elements. This method is
called from refresh() and can also be called upon notification from the model.
Take care when calling this method; it can be a performance hit. When possible,
call removeChild(EditPart) and addChild(EditPart, int) instead.

9.2 GEF 335

ptg6022785

Activation is the final step in the process of adding a new EditPart to a dia-
gram in which the EditPart observes changes in the model or supports editing.
For this, the EditPart.activate() method is invoked during creation and
can be invoked later following a call to deactivate(). The following occurs
during activate():

1. The EditPart begins to observe its model. This is done by extending this
method and registering listeners on the model element.

2. The EditPart activates all its EditPolicies using the corresponding
activate() method.

3. The EditPart activates all its children.

4. The EditPart notifies its listeners that it is active.

5. The EditPart activates all its source ConnectionEditParts.

At this point, the EditPart is created and activated, ready for normal use;
it can be selected, provide feedback, respond to requests, return commands, and
so on. The EditPart is deactivated upon deletion of the element or disposal of
its viewer.

EditPart Disposal

To complement the activate() method, EditParts provide a deactivate()
method. This method is also meant to be extended by your EditPart so that lis-
teners registered by activate()can be unregistered. Otherwise, deacti-
vate() undoes all that activate() did, by default.

Although deactivation is guaranteed to occur for viewer disposal, the fol-
lowing also takes place for model element deletion. Because addChild() was
responsible for creating and initializing an EditPart, the AbstractEditPart.
removeChild() method is responsible for the cleanup. This is its implementa-
tion, for reference:

protected void removeChild(EditPart child) {
Assert.isNotNull(child);
int index = getChildren().indexOf(child);
if (index < 0)

return;
fireRemovingChild(child, index);
if (isActive())

child.deactivate();
child.removeNotify();
removeChildVisual(child);
child.setParent(null);
getChildren().remove(child);

}

336 CHAPTER 9 • Graphical Editing Framework

ptg6022785

As you can see, the process is nearly the reverse of the addChild() method.
Listeners are notified that the child is being removed, the deactivate()
method is called, removeNotify() is called, its model and visual are unregis-
tered, its parent is set to null, and its children are removed. The EditPart is also
removed as the source or target of any connections, although the connection
itself is not removed unless both its source and target are set to null.

Note that EditParts are not recycled. Even an Undo operation causes a
new EditPart object to be created, so it’s important to not reference an
EditPart directly with a Command, for example.

9.2.5 Tools and the Palette

Most interaction with GEF objects happens through tools selected from the
palette. Tools themselves function as state machines, responding to SWT events
(mouse and keyboard) to perform actions such as showing or hiding feedback,
updating the cursor, obtaining commands from EditParts, executing com-
mands, and so on. Actually, input flows from the viewer, to the EditDomain, to
the active tool. Only one active tool for all viewers in the EditDomain exists—
typically, the one selected in the palette.

The GEF palette is available as a standalone view (Window → Show View →
Other → General → Palette) or within the editor itself. The palette is an optional
feature, although most GEF applications use it. Figure 9-10 shows the
FlyoutPaletteComposite used in the scenario diagram example.

9.2 GEF 337

Figure 9-10 GEF palette

ptg6022785

9.2.6 Interactions

NOTE

The content in this section is largely copied directly from the GEF pro-
grammer’s guide and is provided here for convenience.

This section discusses the various types of interactions that are included in the
framework and which parts of the framework are involved in supporting the
interaction. An interaction can be anything that affects the model or the UI state.
Many interactions are graphical, but some are not. An interaction can include the
following:

❍ Invoking some action (usually displayed on the toolbar, menu bar, or
pop-up)

❍ Clicking on something

❍ Clicking and dragging something

❍ Hovering over something (pausing the mouse for a certain time)

❍ Dropping something dragged from another source (native drag-and-drop)

❍ Pressing certain keys

This section discusses the participants involved in each interaction and what
they do. This can include the following:

❍ Tools that process input

❍ Actions that are invoked

❍ The IDs and instances of requests that by tools or actions send to
EditParts; IDs are defined on the RequestConstants class

❍ The EditPolicy roles designated to handle specific types of requests—
these are just constants defined on the EditPolicy interface

❍ Any EditPolicy implementations provided in GEF for use with the
interaction

Selection

Table 9-2 details the elements involved in selection interactions.

338 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Table 9-2 Selection Interactions

Tools Requests Edit Policies and Roles Actions

SelectionTool SelectionRequest SelectionEditPolicy SelectAllAction

MarqueeTool DirectEditRequest DirectEditPolicy

SelectEditPartTracker REQ_SELECTION_ SELECTION_
HOVER FEEDBACK_ROLE

REQ_OPEN

*GraphicalViewer REQ_DIRECT_EDIT
KeyHandler

The Selection Tool is the primary tool used in GEF and is often the default
for an application. Although item selection might seem to be the most basic inter-
action, it is actually a complex topic that requires several steps to complete.
Figure 9-11 is a sequence diagram that outlines the selection operation.

The Selection Tool obtains a helper called a DragTracker from an
EditPart or handle below the mouse when a drag occurs. A drag is defined as
a mouse button being pressed, a mouse button being released, and any events
that occur in between. Events are forwarded to the delegate so that the drag can
be handled differently based on where and how the drag originated. For exam-
ple, clicking a handle might result in resizing a shape or moving the end of a con-
nection. Clicking on an EditPart typically drags that part to a new location or
parent.

Ironically, the Selection Tool doesn’t select EditParts. All mouse clicks are
handled as drags. When the Selection Tool receives a mousedown event over a
selectable EditPart, it asks for a drag tracker. The EditPart returns a tracker
derived from SelectEditPartTracker. The tracker also receives the mouse-
down event, as well as any other events, until the mouse button is released. When
the tracker interprets a selection gesture, it modifies the viewer’s selection.
Trackers even handle events such as double-click.

To continue the discussion on the selection interaction, we must first define
selection. Selection is a list of EditParts that an EditPartViewer maintains.
Changes to the selection are made by invoking methods on the viewer, not by
modifying the list directly. The selection is never empty. If the selection is cleared,
the viewer’s contents EditPart becomes the selection. The last EditPart in the
list is considered the primary selection.

9.2 GEF 339

ptg6022785
Figure 9-11 GEF mouse interaction

Closely related to selection is focus. Focus is a single EditPart that the
EditPartViewer maintains. Focus is used when manipulating selection via key-
board. By moving focus, the user can navigate from one EditPart to another
without changing the current selection. The user can add or remove the focused
EditPart from the selection. If focus is not explicitly set, it is the same as the
primary selected part.

Selection Handles

The EditPart is responsible for showing its selected and focused state to the
user. The viewer tells EditParts when they are selected, when they are focused,
or when they have primary selection. Typically, selection is shown by one or more
EditPolicies adding selection handles. In Figure 9-12, ResizableEditPolicy
added the handles. The black handles on the leftmost connection indicate primary
selection.

Because selection handles are related to how a part can be dragged or sized—
which, in turn, is related to the containing figure’s layout manager—usually the
parent part’s EditPolicy installs a policy on the children for displaying the
appropriate handles. For example, an XYLayoutEditPolicy would install a
ResizableEditPolicy on each child of its host EditPart.

340 CHAPTER 9 • Graphical Editing Framework

Viewer EditPartDragTrackerSelectionTool

1: buttonDown

1.1: getDragTracker

1.2: buttonDown

2.1: buttonUp

2.1.1: select part

2: buttonUp

ptg6022785

Figure 9-12 Selection handles

Connections such as WireEditPart in the Logic Example also change its
figure’s line width to help indicate selection. Both EndpointEditPolicy and
BendpointEditPolicy contribute handles for connections.

Selection Targeting and Feedback

For selection to occur, the Selection Tool must first target an EditPart using a
SelectionRequest. In rare cases, an EditPart is not selectable and targeting
“falls through,” hitting the EditPart below. During this continuous mouse tar-
geting, the Selection Tool invokes showFeedback() on the current target
EditPart by passing it a SelectionRequest of type REQ_SELECTION. Most
applications should ignore this request because showing and hiding feedback as
the mouse moves across a diagram can be distracting to the user. For this reason,
an additional feedback request is sent with the type REQ_SELECTION_HOVER
whenever the user pauses the mouse over an EditPart. Often an EditPart dis-
plays a pop-up shell similar to a ToolTip, displaying additional information
about the part. The SELECTION_FEEDBACK_ROLE identifier can be used when
installing policies that show such feedback.

A benefit to using these feedback requests is that the Selection Tool is smart
about asking parts to erase feedback. For example, if the user starts dragging,
you would not want a pop-up message to stay around. Also, selection feedback
does not appear when other tools are active.

Selection Using a DragTracker

When the user actually clicks the mouse, the selection target is asked for a
DragTracker. To allow selection, return a SelectEditPartTracker or its
subclass DragEditPartsTracker, depending on whether dragging is permit-
ted. These trackers modify selection at the appropriate time, taking into consid-
eration the Shift and Ctrl modifier keys.

A tracker should never select the contents EditPart because it should never
be part of a multiple selection. Therefore, it should return either a
DeselectAllTracker or the MarqueeDragTracker. Remember, the selection
is never empty, so the contents part is the selection when no other parts are
selected.

9.2 GEF 341

Sixth

ptg6022785

Other Selection Requests

EditParts might be asked to perform two additional Requests related to selec-
tion. These requests are related to selection, in that they are interactions associ-
ated with clicking the primary mouse button. The first is a double-click, which
is called an open request (REQ_OPEN). This interaction can be used for
EditParts that you can open or expand or that can display a dialog. The other
interaction is called a direct edit (REQ_DIRECT_EDIT). As an example of direct
editing, imagine that a user wants to modify the text of a label. The user must
first select the part and then click it again after it is selected. After a brief delay
(to rule out a double-click), the request is sent.

Selection Actions

GEF provides a SelectAllAction. Given a viewer, this action selects all the
contents part’s children when invoked.

Selection Using the Keyboard

Keyboard selection is supported in graphical viewers by installing a
GraphicalViewerKeyHandler. The key handler receives only key events that
the current tool sends it. The Selection Tool forwards key events necessary for
selection.

Drag trackers are not needed inside GEF’s TreeViewer. The native tree han-
dles selection already, and dragging of TreeItems is processed internally using
native DND.

Basic Model Operations (Delete)

Table 9-3 details the elements involved in delete operations.

Table 9-3 Delete Operations

Tools Requests Edit Policies and Roles Actions

REQ_DELETE COMPONENT_ROLE DeleteAction

CONNECTION_ROLE

RootComponentEditPolicy

The only universal interaction that all GEF applications should support is
delete. The workbench places a global delete action on the Edit menu, as seen in
Figure 9-13. All applications should register a handler such as the included
DeleteAction.

342 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Figure 9-13 Delete menu

The DeleteAction sends a GroupRequest of type REQ_DELETE to the
viewer’s current selection. All EditParts should have an EditPolicy that
either supports delete or prevents it from occurring.

Every EditPart is either a component or a connection. A component is a
basic EditPart that is the child of a parent. A connection is slightly different
because it is owned by its source and target.

The COMPONENT_ROLE key is used when installing an EditPolicy on a
component EditPart. Applications can extend the provided ComponentEdit
Policy to fill in the commands for deletion. The RootComponentEditPolicy
should be used on the contents EditPart. This policy prevents the diagram itself
from being deleted. Here, root refers to the model root and is not related to the
viewer’s root EditPart.

The CONNECTION_ROLE key is used when installing a policy on a connection
EditPart. Applications can extend the provided ConnectionEditPolicy to
fill in the command for deletion.

These EditPolicies should handle the tasks most closely associated with the
model. In the logic example, this role is responsible for the LED’s increment and
decrement behavior, which adds or subtracts 1 from the LED’s value.

Implementing the command that performs delete can be difficult, especially
when connections are involved. The command must consider whether the object
being deleted has connections or whether children of the object being deleted
have connections, and delete the connections as well. But you don’t want to
delete the same connection twice if both source and target nodes are being
deleted as part of multiple selection. The logic example’s delete command
addresses all these concerns.

9.2 GEF 343

ptg6022785

Creation

Table 9-4 details the elements involved in creation interactions.

Table 9-4 Creation Interactions

Tools Requests Edit Policies and Roles Actions

CreationTool REQ_CREATE CONTAINER_ROLE CopyTemplateAction

Create LAYOUT_ROLE PasteTemplateAction

TREE_CONTAINER_ROLE

ContainerEditPolicy

LayoutEditPolicy

A CreateRequest asks an EditPart to create a new child. The ID
REQ_CREATE identifies the request. Creation can occur through three different
methods: clicking, dragging, or pasting. The request provides the location,
object, and object type being created. A CreationFactory provides the object
and its type. The request hides the factory and provides access to the created
object directly, caching it in case multiple EditPolicies need access to the created
object. In some cases, the request contains a size attribute.

Producing CreateRequests

The creation tool provides a “loaded cursor” mode that attempts to create
an object at the mouse location when clicking. If the mouse is clicked and
dragged, the tool tracks the size of the rectangle defined by the user. The creation
tool can be placed on the palette using a CreationToolEntry. When the mouse
is released, the tool either repeats the process or switches back to the default tool.

Creation can also be performed using native drag-and-drop. The drag source
can be anything, but it is typically the PaletteViewer. A palette entry that
takes a template is added to the palette. The TemplateTransfer is used to
transfer the template, which is just an Object, from the drag source to the drop
target. A TemplateTransferDragSourceListener must be added to the
PaletteViewer. Similarly, the viewer must have a TemplateTransferDrop
TargetListener. Because a template is model specific, the application must
extend the drop target listener to convert the template into a CreationFactory
for the request.

A special palette entry called the CombinedTemplateCreationEntry sup-
ports both the creation tool and drag-and-drop styles of creation.

344 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Consuming CreateRequests

The target EditPart is responsible for showing feedback and returning the com-
mand for creation. GEF provides two types of policies for handling creation. One
type of policy is specific to the view in which creation occurs, either graphical or
tree based. This edit policy corresponds to either the LAYOUT_ROLE or the
TREE_CONTAINER_ROLE.

The other type of edit policy is specific to only the model, in case applica-
tions want to separate the portion that is shared between graphical and non-
graphical creation. In most cases, any kind of shared logic is in the command
implementations, making this type of policy unnecessary.

A LayoutEditPolicy handles the process of creation based on the con-
tainer’s layout manager. For example, if XYLayout is being used, the resulting
Command needs to associate an (x, y, w, h) constraint with the created child.
Layouts that don’t use constraints require that the index of the drop location be
determined. GEF provides abstract policies for the basic layout types.

The TreeContainerEditPolicy supports creation in a tree-based viewer.
The policy is responsible for determining the index of creation and showing
feedback.

The PasteTemplateAction can create objects without requiring the
mouse. This is important for accessibility. The CopyTemplateAction is added
to the palette. When the user invokes this action, an internal mechanism copies
the transfer so that it can be pasted in a viewer. When the paste occurs,
the PasteTemplateAction retrieves the template object, constructs a
CreateRequest, and sends it to the selected EditPart. The mouse location is
not available in this interaction. Paste is enabled only when the selection is
exactly one EditPart.

When a creation command is redone, it must restore the original child that
was created the first time it was executed. If it creates a new object, subsequent
commands will fail upon redo when they try to modify the originally created
child.

Creation Sequence

Using sequence diagrams, let’s look at the sequence of events that occurs when
the creation tool moves over the diagram surface using the mouse in GEF.

As you can see in Figure 9-14, as the mouse moves over the diagram, obtain-
ing a command includes passing a request to the EditPart, which queries its
EditPolicies. The request obtains a new object from its factory, implying that a new
model object is created and loaded into the creation tool as it is moved over the

9.2 GEF 345

ptg6022785

diagram surface. Now we look at what happens when the mouse is clicked on the
diagram surface using another sequence diagram, as shown in Figure 9-15. What’s
not shown in the figure is the CreationTool retrieving the EditDomain and
CommandStack. The CommandStack invokes the CreateCommand execute()
method, which is where the sequence picks up here.

346 CHAPTER 9 • Graphical Editing Framework

getCommand

CreationTool

getTargetEditPart

getTargetRequest

getCreateCommand

getFactory

getCommand

getCommand

getNewObject

Object

EditPart EditPolicy CreateRequest CreationFactory

getNewObject

Object

Figure 9-14 GEF creation sequence

ptg6022785

Figure 9-15 GEF creation sequence—continued

The cached object created in the mouse move operation is added to the con-
tainer in the creation command execution, which triggers through events the cre-
ation of the corresponding EditPart and figure containment hierarchies.

Moving and Resizing

Table 9-5 details the elements involved in moving and resizing interactions.

9.2 GEF 347

CommandStack

execute

addChild

CreateCommand

fireChildAdded

propertyChange

Diagram

createFigure

Figure

EditPart

Figure

createChild

getViewer

createEditPart

GetEditPartFactory

EditPart

DiagramEditPart

addChild

addChildVisual

getFigure

EditPartViewer EditPartFactory

ptg6022785

Table 9-5 Moving and Resizing Interactions

Tools Requests Edit Policies and Roles Actions

DragEditPartsTracker ChangeBoundsRequest LayoutEditPolicy AlignmentAction

ResizeTracker AlignmentRequest ResizableEditPolicy MatchSizeAction

REQ_MOVE ContainerEditPolicy

REQ_ADD

REQ_ORPHAN

REQ_CLONE

REQ_ALIGN

REQ_RESIZE

The DragEditPartsTracker extends basic selection behavior so that the
selected parts can be dragged within their graphical viewer. Dragging the selected
parts results in three potential interactions: move, reparent, and clone. All three
use the ChangeBoundsRequest, which extends GroupRequest to include a
size delta, move delta, and mouse location.

While dragging the selection, if the tracker targets the part’s original parent,
the request is typed as REQ_MOVE. If the target changes, the interaction becomes
a reparent. For a reparent, a request of type REQ_ORPHAN is sent to the old par-
ent, and the new target is sent a request of type REQ_ADD. Pressing the Ctrl key
(Alt on the Mac) always results in a REQ_CLONE, which is sent only to the target
part.

All these requests are related, in that they require the target to process a rec-
tangle and a mouse location. The LayoutEditPolicy is responsible for han-
dling each of these request types. For layouts that use constraints, each part’s
original bounds are taken and modified by the size and move deltas to determine
a new bounds, for which a corresponding constraint is found. For index-based
layouts, the mouse location is used to establish the new index.

A ContainerEditPolicy can optionally contribute additional commands
(not related to the layout) during ADD, ORPHAN, and CLONE requests.

Resizing

Resizing falls under the same category as changing bounds. Note that when resiz-
ing either the top or left sides, the location of the part also changes. Resizing
makes sense only for layouts with constraints, such as XYLayout. The
ResizableEditPolicy adds up to eight resize handles to its host. Clicking the
Selection Tool on one of these resize handles prompts a ResizeTracker to

348 CHAPTER 9 • Graphical Editing Framework

ptg6022785

perform a resize on the selected parts that understand a “resize.” Shift and Ctrl
key modifiers can constrain the resize operation.

The types of handles available on an EditPart depend on the layout man-
ager in which its figure is placed. For example, parts inside a table might have
handles for adjusting insets, padding, column span, or other attributes. Some lay-
outs don’t need handles, but four corner handles should be added just to indicate
selection. Dragging these handles works the same as dragging the part itself.

Because of the relationship between handles and layouts, the parent’s
LayoutEditPolicy should install the PRIMARY_DRAG_ROLE EditPolicy
because it defines abstract methods for this purpose. If a container changes lay-
out managers during editing, typically the layout policy gets swapped with one
for the new layout manager. The new policy then replaces the stale
PRIMARY_DRAG_ROLE policies on each child.

The MatchSizeAction matches the size of the selected parts to the primary
selected part’s size. This action is implemented in a way similar to manually resiz-
ing the individual parts, and it uses the same request and type.

The AlignmentAction uses an AlignmentRequest, which extends
ChangeBoundsRequest. When using a ChangeBoundsRequest, the part’s
current placement in the control (in absolute coordinates) is passed to the request,
which then returns a modified version. Using this pattern, alignment can adjust
each part’s rectangle by different amounts. In most cases, alignment can be
treated no differently from a move. This action aligns all selected parts with one
of the edges of the primary selected part.

Connection Creation

Table 9-6 details the elements involved in connection creation interactions.

Table 9-6 Connection Creation Interactions

Tools Requests Edit Policies and Roles Actions

ConnectionCreation CreateConnectionRequest GraphicalNodeEditPolicy
Tool

ConnectionDrag REQ_CONNECTION_ NODE_ROLE
CreationTool START

REQ_CONNECTION_
END

The ConnectionCreationTool creates a new connection between nodes.
This interaction requires the user to activate the tool (typically using the palette)

9.2 GEF 349

ptg6022785

and then click on two EditParts that support connections. Note that GMF’s
default behavior is a click-drag-release to create a connection. You can abort the
creation by pressing the Esc key. The ConnectionDragCreationTool is simi-
lar, but the interaction is a single mouse drag. This tool can be returned as the
drag tracker from a handle or even an EditPart, in some cases.

The process is separated into two parts. The first part is defining the source
of the connection. The source is a node, but it also can include a specific “port”
on that node. The tool uses a CreateConnectionRequest identified by
REQ_CONNECTION_START to determine the target EditPart and ask it for a
command. However, this is only the first half of creating the connection, so the
command is not complete yet. The tool does not attempt to execute this com-
mand or even ask if it is executable; it only passes information to the target
EditPart.

The second part of the process is to define the target node for the connection.
The tool uses the same request but retypes it as REQ_CONNECTION_END. The
command that the source node returns is now stored on the request and passed
during the second part of the interaction. The target is asked for the final com-
mand that performs the entire creation of the connection. Any command can be
returned at this point, including the command provided upon the request,
updated with the target node information. At this point, enablement is deter-
mined by asking the command if it can be executed. Creation ends by executing
the command.

During the first and second steps, the EditPart being targeted as the source
or target node is asked to show target feedback. The EditPart might visually
highlight various attachment points or simply indicate that it is the target.

The source node EditPart is also asked to show source feedback during
creation. The provided GraphicalNodeEditPolicy can display creation feed-
back. This policy creates a connection feedback figure and sets its anchors using
the NodeEditPart interface. This mix-in interface for GraphicalEditPart
provides anchor points both during creation feedback and when the connection’s
EditPart is created.

The “source” and “target” nodes should not be confused with “source” and
“target” feedback. For feedback, source simply means show the feedback for the
connection, and target means highlight the mouse target element.

Editing Connections

Table 9-7 details the elements involved in connection edit interactions.

350 CHAPTER 9 • Graphical Editing Framework

ptg6022785

Table 9-7 Connection Edit Interactions

Tools Requests Edit Policies and Roles Actions

ConnectionEndpoint ReconnectRequest ConnectionEndpointEditPolicy
Tracker

REQ_RECONNECT_ ENDPOINT_ROLE
SOURCE

REQ_RECONNECT_ GraphicalNodeEditPolicy
TARGET NODE_ROLE

Dragging the endpoints of an existing connection changes its source or tar-
get. This includes changing “ports” on the same node EditPart. This interaction
is called reconnecting.

A connection adds handles at its endpoints by installing a Connection
EndpointEditPolicy with the ENDPOINT_ROLE. Each of these handles returns
a tracker for reconnecting the corresponding end of the connection. This policy
is also responsible for showing the connection’s feedback during the interaction.
This policy does not return commands and, therefore, is not abstract. The recon-
nect command comes from the new target node.

As the source or target endpoint is dragged, the tracker sends source feed-
back requests to the connection and target feedback requests to the current tar-
get, if there is one. The tracker uses a ReconnectRequest typed as either a
source or target reconnect.

The target node’s GraphicalNodeEditPolicy is responsible for showing
target feedback and returning the actual command to perform the reconnect. As
with creation, the target EditPart should implement the NodeEditPart inter-
face, which allows the ConnectionEndpointEditPolicy to snap the feedback
to the node’s anchor(s).

Bending Connections

Table 9-8 details the elements involved in connection bend interactions.

Table 9-8 Connection Bend Interactions

Tools Requests Edit Policies and Roles Actions

ConnectionBendpoint BendpointRequest BendpointEditPolicy
Tracker

REQ_MOVE_ CONNECTION_
BENDPOINT BENDPOINTS_ROLE
REQ_CREATE_
BENDPOINT

9.2 GEF 351

ptg6022785

Certain connection routers accept routing constraints (typically a list of
BendPoints). Install a BendpointEditPolicy using the CONNECTION_BEND-
POINTS_ROLE for editing the connections routing constraints. This EditPolicy
requires a router that takes a list of BendPoints. During selection, the policy
adds normal handles to existing bendpoints on the connection. It adds smaller
handles where the user can create new bendpoints.

Each handle provides a ConnectionBendpointTracker. This tool sends a
BendpointRequest back to the connection EditPart to show feedback and
obtain the command to perform the bend. For existing bendpoints, the request is
typed as REQ_MOVE_BENDPOINT; otherwise, it is REQ_CREATE_BENDPOINT. The
EditPolicy must determine when moving a bendpoint back to its natural
placement should result in its removal.

9.3 Summary

In this chapter, we took a closer look at the GEF. As it’s an underlying compo-
nent of the GMF, it’s important to understand how it works and how they work
together, particularly when you start adding customizations to your domain-spe-
cific diagrams.

352 CHAPTER 9 • Graphical Editing Framework

ptg6022785

CHAPTER 10

Graphical Modeling
Framework Runtime

This chapter describes in detail the Graphical Modeling Framework (GMF) run-
time. Although Chapter 4, “Developing a DSL Graphical Notation,” provides
information on how to use both the tooling and runtime components in the
development of the book’s example projects, this chapter is meant to be a refer-
ence guide on the runtime itself (although it contains examples as well). Where
applicable, this chapter references other Modeling projects and components.

10.1 Overview

The GMF runtime provides a set of frameworks to assist in the development of
Eclipse graphical editors using Eclipse Modeling Framework (EMF) and
Graphical Editing Framework (GEF). You can use the GMF runtime on its own
or as a target of the GMF Tooling generative component. In either case, the run-
time provides the following:

❍ A set of reusable diagramming components, such as action bars, connec-
tion handles, compartments, geometrical shapes, a diagramming toolbar, a
set of diagramming actions, properties view, page setup and print preview,
diagram export to image file, SVG support, border shapes, and system
Clipboard support

❍ A standard notation model for storing diagram information separate from
domain information

❍ A command infrastructure that bridges EMF and GEF

❍ Extensibility options for the notation model, palette, diagram elements,
layout, decorators, and domain model

❍ A service provider infrastructure with priority and policy facilities

353

ptg6022785

As implied by the second bullet, GMF provides a separation of diagram and
domain model. Although both can be persisted in a single file, the runtime pro-
vides for automatic persistence of all notational information (position of ele-
ments, color, font, and so on), requiring the Toolsmith to provide only a domain
model. From the Practitioner’s perspective, it is likely irrelevant that two models
are used under the hood; the Practitioner more likely will use the diagram as the
primary editing interface and will not distinguish between the two. Note, how-
ever, that a diagram can display multiple domains, many diagrams can provide
views of a single domain, or a diagram can even provide multiple visual elements
for the same underlying domain element. The runtime handles all these cases,
which were motivators for keeping visual and domain information persisted
separately.

As we covered in Chapter 9, “Graphical Editing Framework,” a Model-
View-Controller (MVC) architecture is used in the framework. GMF’s runtime
builds upon this architecture, providing significant capabilities, but also intro-
ducing significant complexity. The goal of these enhancements is to provide a
platform for extensibility so that editors can be scalable through plug-in points
and service provider interfaces.

This chapter explores in detail the functionality that the GMF runtime pro-
vides, beginning with a closer look at what a GMF-based diagram offers.

10.1.1 General Diagram Features

This section looks at each of the provided diagram runtime features. Each dia-
gram is provided these features by default, or by making certain property
changes in the gmfgen model if using the tooling component of GMF. Although
some of what’s described here is available from GEF, much of it is provided
by GMF.

Toolbar

Many common diagramming functions are available in the main toolbar. You
can modify the properties of selected diagram elements that display text by using
the toolbar font, font size, bold, and italic toolbar items. To their right, you can
adjust the font color, fill color, and line color for the selected element. Note that
all these functions are also available in the Properties view.

354 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Table 10-1 covers each toolbar function and its options.

Table 10-1 Diagram Toolbar Elements

Tool Description

Rectilinear Style Switches the routing style of the selected link(s) to rectilinear,
Routing which inserts bendpoints to route links at 90° turns. This and

the other routing style options are typically used in conjunc-
tion with the Select All Links function.

Oblique Style Switches the routing style of the selected link(s) to oblique,
Routing which creates direct links between two objects.

Tree Style Routing Applies a tree routing style to the selected link elements. This
is typically used in organizational or hierarchical diagrams,
such as to show inheritance in a class diagram. *

Apply Appearance With multiple elements selected, applies the appearance
Property properties of the first selected item to the rest.

Select All Selects all diagram elements, including nodes and links.

Select All Shapes Selects all diagram node elements.

Select All Links Selects all diagram link elements. This is useful when making
changes to link style, such as from oblique to rectilinear.

Arrange All Arranges all diagram elements according to the active diagram
layout policy. Note that for this to work on the diagram level,
no diagram element should be selected.

Arrange Selected Arranges selected nodes only. This is particularly useful when
working with elements that contain other elements, and when
the nested elements are to be arranged within the parent.

Align Left Aligns the selected elements vertically along the same left edge
location.

Align Center Aligns the selected elements vertically along the same center
line location.

Align Right Aligns the selected elements vertically along the same right
edge location.

Align Top Aligns the selected elements horizontally along the same top
edge location.

10.1 Overview 355

(continues)

ptg6022785

Table 10-1 Diagram Toolbar Elements (continued)

Tool Description

Align Middle Aligns the selected elements horizontally along the same center
line location.

Align Bottom Aligns the selected elements horizontally along the same
bottom edge location.

Auto Size Sizes the selected element to fit its contents, taking into
account the minimum and preferred size dimensions. Typically,
a shape that was manually resized larger has this action
invoked to return it to its default size.

Show Connector Reveals all hidden diagram connection labels.
Labels

Hide Connector Hides all diagram connection labels, which is useful to remove
Labels diagram “noise.”

Name Hides node compartments other than the name (top)
Compartment “compartment.” This is typically used in conjunction with the
Only Select All Shapes feature.

All Restores the visibility of the compartments for the select node
Compartments or nodes.

Zoom A combo box with zoom levels is available, but it can also
accept any user value. Zoom to fit, selection, width, and
height are available.

* Note that for Tree Style Routing to be available in generated diagrams, the Tree Branch property of
the Gen Link must be set to true, as described in Section 11.4.3, “Gen Link.” Also note that although
this routing style can be selected for an individual link in the Properties view when selected, multiple
links must be selected to enable this style using the toolbar.

Properties

Several property pages are associated with diagramming, each displayed with
content relevant for the given context. When the diagram canvas itself is selected,
a Rulers & Grid tab appears with the following options and default settings. The
diagram to the right in Figure 10-1 is being displayed with connection labels hid-
den and with only the name compartment.

356 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-1 Rulers & Grid properties

The Show Ruler option displays a ruler along the left and top edges of the
diagram and provides access to ruler guides, as shown in Figure 10-2. Guides are
added by clicking anywhere in the ruler and are removed by pressing Delete
when active.

10.1 Overview 357

Figure 10-2 Diagram ruler and guide

The guide helps in the alignment of diagram elements, including a “sticky”
feature shown in Figure 10-3. In this case, the Topic and Relationship nodes were
positioned so that their top edge was along the guide. Using the guide handle, the
elements can be moved vertically on the diagram. Note that you also can use
guides vertically.

ptg6022785

Figure 10-3 Alignment using guide

The Grid option is useful for alignment, but it also gives your diagram the
look of having been drawn on graph paper, as shown in Figure 10-4. The Grid
in Front option is turned off in this case. Having the grid over the top of diagram
elements seems an odd choice, but this is the default. The Snap to Shapes option
is useful in aligning elements, in addition to the alignment features of the toolbar
and ruler guide.

358 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-4 Diagram grid

Another useful alignment feature of GEF is activated using the Snap to
Shapes feature. In Figure 10-5, we see a “laser line” appear as we move a shape.
Lines appear for the node edges as well as the center line.

The other tabs available when the diagram canvas is selected are Core and
Appearance, as shown in Figure 10-6. The Core tab displays the domain model
information for the selected element. The name of the selected element appears
at the top of the Properties view, adorned by its icon. The Appearance tab pro-
vides font and color options, similar to what’s found on the toolbar.

ptg6022785

Figure 10-5 Diagram laser alignment

10.1 Overview 359

Figure 10-6 Appearance and Core properties

For diagram elements other than the canvas, only the Core and Appearance
tabs appear, in addition to any custom tabs that you add. When one or more
diagram links are selected, the Appearance tab displays the following additional
properties.

The Smoothness properties add a “humanized” look to links, essentially giv-
ing them a hand-drawn appearance. The oblique routing style routes lines in a
direct manner. Rectilinear inserts 90° bends when routing, and Tree routing com-
bines links when they share a common target. Avoid Obstructions and Closest
Distance are self-explanatory. Jump links provide the option to insert “jumps”
where one line crosses another. Various styles and position options are available,
as shown in Figure 10-7. Generally, line crossing is considered bad form, but it
is sometimes unavoidable. Finally, the Lines and Arrows section enables you to
change the line width, style, and end type of links. Currently, these capabilities
are not available for generated diagrams.

ptg6022785

Figure 10-7 Link properties

Palette

Although the default location for the diagram palette is docked to the right side
of the diagram editor, this is actually an Eclipse view that can be displayed by
itself outside the editor pane, as seen in Figure 10-8. To restore the palette to its
position within the diagram editor, simply close the view. Also note that the
palette can be docked on either the left or right of the diagram, as well as col-
lapsed to free up diagramming real estate. At the time of this writing, the GEF
palette is undergoing some visual enhancements, so your environment might
look somewhat different.

360 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-8 Palette view

ptg6022785

Diagram Menu

The main Diagram menu contains many of the options found on the main tool-
bar and, to an extent, what’s available for the given selection context. Items such
as Font, Fill Color, Line Color, Line Style, Selection, Arrangement, Alignment,
Zoom, and Filters are available. One important action available only from the
Diagram menu is Make Same Size, which you might expect to appear on a con-
text menu or even the toolbar. Table 10-2 lists the options provided.

Table 10-2 Diagram Menu Elements

Item Description

Both Makes the selected elements equal in size (both width and height),
based on the smaller element dimension

Height Adjusts the height dimension of the selected elements to match that
of the smallest

Width Adjusts the width dimension of the selected elements to match that of
the smallest

The Order menu item provides a list of its options, all of which affect the z-
order of the selected element (see Table 10-3). Note that these actions are neces-
sary only to reveal or hide overlapped elements, which is likely a rare situation.

Table 10-3 Order Menu Elements

Item Description

Bring to Front Moves the selected element to the top of the z-order

Send to Back Moves the selected element to the bottom of the z-order

Bring Forward Moves the selected element upward one level in the z-order

Send Backward Moves the selected element downward one level in the z-order

The View menu item provides the capability to toggle the Ruler and Grid and
apply the Snap to Grid functionality (but not Snap to Shapes). Also available is
Page Breaks and Recalculate Page Breaks. The Page Breaks action produces a

10.1 Overview 361

ptg6022785

Figure 10-9 Page breaks

Note that the boundaries correspond to the settings defined in File → Page
Setup, shown in Figure 10-10. A Print Preview option is also available in the File
menu.

362 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-10 Page setup

thick blue border around the diagram contents, with a thin blue line to indicate
the page boundary. Page numbers are also provided, as shown in Figure 10-9.

ptg6022785

Finally, the Filters item has a Sort/Filter Compartment Items option,
although it seems always disabled.

Context Menu

Context menus provide a number of actions relevant to the current selection,
with some of the more important ones covered next. Note that there are also new
grouping capabilities in the runtime, although the generated diagrams do not yet
leverage these.

The Add menu lets the user add a number of shapes, notes, or plain text to
the diagram, each of which is persisted in the diagram file and is not available in
the domain model. Following is a snippet from a diagram file, showing how a
Text element and its style properties are persisted:

<children xmi:type="notation:Node" xmi:id="_Gy85wM5pEdymdqHGKqjE-g"
type="Text">
<children xmi:type="notation:Node" xmi:id="_Gy-H4M5pEdymdqHGKqjE-g"
type="DiagramName">
<element xsi:nil="true"/>

</children>
<children xmi:type="notation:Node" xmi:id="_Gy-H4c5pEdymdqHGKqjE-g"
type="Description">
<element xsi:nil="true"/>

</children>
<styles xmi:type="notation:ShapeStyle"
xmi:id="_Gy85wc5pEdymdqHGKqjE-g"
fontName="Lucida Grande"
description="Some text associated with a class"/>

<element xsi:nil="true"/>
<layoutConstraint xmi:type="notation:Bounds"
xmi:id="_Gy85ws5pEdymdqHGKqjE-g" x="423" y="261"
width="97" height="32"/>

</children>

One of the more well-hidden features that the runtime provides is the capa-
bility to export a diagram as an image file. Although this is not available from
the Eclipse main File menu as you might expect, it is available from File → Save
As Image File on the diagram context menu, along with a Print action. The dia-
log is seen in Figure 10-11. Note that this is a context-sensitive feature; the
selected element or elements appear in the image file. Selecting the canvas pro-
duces an image of the entire diagram.

The supported image file export formats are GIF, BMP, JPEG, JPG, PNG,
and SVG. The Export to HTML option creates a simple HTML page and refer-
ences the produced image.

10.1 Overview 363

ptg6022785

Figure 10-11 Save as Image File dialog

The diagram canvas has a number of other items duplicated in the Diagram
main menu described earlier, but it also has a Show Properties View item that
opens the Properties view, if it is not already open. Note that generated GMF dia-
grams also include a Load Resource option that is the same action available in
generated EMF editors. This enables the user to load another model file into the
resource set. Optionally, generated diagrams include a Create Shortcut menu
item and allow the selection of related diagram elements to be added to the dia-
gram. Section 11.4.2, “Contains Shortcuts To and Shortcuts Provided For,” cov-
ers this capability.

Selected element context menus offer a number of specific menu items,
including the familiar Cut, Copy, and Paste. A Duplicate action is also available.
Finally, two delete menu items are available. Delete from Model is the functional
menu item, while Delete from Diagram is one you would expect to see active in
the case of diagram shortcuts, where only the notational element is to be
removed from the diagram. Additionally, because the default generated diagrams
are synchronized with the domain, the Delete from Diagram option doesn’t make
sense. A synchronization property in the GMF generator model determines the
mode of operation.

Connection Handles

When the mouse is hovered over an element, whether it is selected or not, con-
nection handles appear that you can use to create connections and even to
prompt the user with possible options to create new diagram elements and a cor-
responding connection. Connection handles are shown in Figure 10-12.

364 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-12 Connection handles

Because the diagram is aware of the underlying domain elements, it can pres-
ent the user with a legitimate list of options or allow for the selection of an exist-
ing element, as shown in Figure 10-13.

10.1 Overview 365

Figure 10-13 Connection handle prompts

Choosing the Existing Element option results in a dialog that lists the avail-
able types, as shown in Figure 10-14.

Figure 10-14 Select Domain Model Element dialog

Pop-Up Bars

A pop-up bar also appears when the mouse is hovered over any element, includ-
ing the canvas itself, to present a list of available elements to create in the given
context. A ToolTip is available for each, as shown in Figure 10-15 for the Ecore
diagram.

ptg6022785

Figure 10-15 Pop-up bars

TIP

These pop-up items are handy in some cases, but they often pop up at the
wrong time—the worst case being just as you are about to click on an ele-
ment, leaving you with a new element you didn’t want. Generated diagrams
include options to turn off connection handles and pop-up bars, and you
might consider having them off by default.Another option is to modify the
generated code to allow them to be activated explicitly, such as using
Ctrl+spacebar.

Outline View

In textual editors, the Outline view provides just that: an outline of the file’s con-
tents, as seen in Figure 10-16. Diagram editors provide an outline of domain
model elements, but they also provide an overview of the diagram for use in nav-
igating large diagrams more easily.

366 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-16 Outline view

ptg6022785

Preferences

Although no limit exists for the number and type of preferences you can add, a
number of default preferences are provided. Those discussed here are available
to all generated editors.

Each diagram has its own root entry in the Preferences dialog, although a
family of diagrams, such as the UML, should probably be placed under a com-
mon root. In the root of the diagram preferences are global options for enabling
connection handles, pop-up bars, animated zoom and layout, and anti-aliasing,
as seen in Figure 10-17.

10.1 Overview 367

Figure 10-17 Diagram general preferences

In the Appearance category, options for colors and fonts are available, as
seen in Figure 10-18. Note that changes made to default colors for a diagram
apply to subsequently created elements only. Default connection style is set in the
Connections category, with the options being Oblique and Rectilinear. This page
is not shown because it’s simply a drop-down list.

The Pathmaps page enables you to define a set of path variables for the dia-
gram, as seen in Figure 10-19. Those registered using the org.eclipse.gmf.
runtime.emf.core.PathMap extension-point are shown with a lock icon
because you cannot modify them.

Printing itself is supported only by the GMF runtime for the Windows plat-
form; printing preferences are available for all diagrams. The contents of this
preference page are the same as the page setup options discussed in Section
10.1.1, “Diagram Menu.”

ptg6022785

Figure 10-18 Diagram appearance preferences

368 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-19 Diagram pathmap preferences

Finally, Rulers and Grid preferences are available and enable you to change
the default options for ruler, grid, and snap-to functionality of new diagrams, as
seen in Figure 10-20.

ptg6022785

Figure 10-20 Diagram rulers and grid preferences

10.2 Notation Model

Used by the runtime to manage diagram element, position, and style attributes,
the notation model also allows for persistence of diagrams to the file system. The
notation model provides the link between GEF and EMF, and the GMF dia-
gramming functionality is based on this model. Although it is general in its
design, the notation model borrows some from GEF itself, similar to the tooling’s
graphical definition model.

Figure 10-21 is a diagram of the notation model. As you can see, the View
class has an element reference to EObject. This is how the runtime provides a
link to the domain model (or “semantic” model, as it’s commonly referred to in
the runtime documentation). EditParts will find their model element using this
reference, although indirectly because the View object will be the GEF
EditPart’s “model” element. Typically, code such as ((View) editPart.
getModel()).getElement() is used to access the underlying domain model
from an EditPart.

View is the central class in the notation model, as you can tell from Figure
10-21. It contains the reference to the domain model element being represented
and also does the following:

❍ Acts as the super type for Diagram, Node, and Edge

❍ Maintains a containment reference to children Nodes (transient and
persistent)

10.2 Notation Model 369

ptg6022785

❍ Maintains a reference to the diagram itself

❍ Has type, visibility, and mutable attributes

❍ Maintains a list of all Styles applied to the element

❍ Maintains a list of source and target Edges

The Diagram is the top-level container of views that has a name,
MeasurementUnit, and containment references to all Edges. Note that, as with
View children, Diagram Edges are either transient or persistent and are main-
tained in separate containment references.

A Node element is a View that can be composed in a container view and
that can contain a LayoutConstraint. A layout manager uses a
LayoutConstraint to set the Bounds of the Node’s visuals. The Bounds ele-
ment holds size and position information.

370 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-21 Diagram notation model

ptg6022785

An Edge contains a list of Bendpoint and source/target Anchors. It also
maintains a reference to its source and target View element. Note that
Bendpoint and LayoutConstraint are designed with GEF’s preference for
relative coordinates in mind.

Diagram element appearance properties are handled by a number of Style
model elements, as shown in Figure 10-22.

10.2 Notation Model 371

Figure 10-22 Notation styles

The Style interface provides an abstraction for appearance properties
and has implementations in FontStyle, LineStyle, RoutingStyle,
CanonicalStyle, DrawerStyle, ImageStyle, FillStyle, and so on.
Styles are owned by the View and store properties used to display the shape
and persist this information. One of the design considerations for the notation
model was team collaboration. Separating styles into granular properties makes
conflict merging easier to deal with when multiple modifications to the same
resource occur. Additionally, Styles allow for flexibility as an extension-point
for domain-specific properties and support the possibility of adding new Styles
in future versions of the notation model.

ptg6022785

COMMENT

The notation model is similar in its purpose to the Object Management
Group's (OMG’s) Diagram Interchange (DI) specification, which was devel-
oped to facilitate diagram exchange between Unified Modeling Language
(UML) modeling tools; XML Metadata Interchange (XMI) for UML allows
for the exchange of the model itself.With the introduction of the GMF run-
time model into Eclipse, discussions have taken place regarding the update
of the DI specification to align it with the GMF runtime model.

10.3 Extensibility Mechanisms

As you saw in Chapter 9, building a GEF editor means writing Java code that
extends provided abstract classes and implementing required interfaces. GEF
provides some integration with the Eclipse platform, but it offers no extension-
points and limited hooks for extension. Furthermore, GEF does not require a
clean separation of domain and notation information, although you can imple-
ment your graphical editor in this manner. In short, although GEF is a light-
weight framework that is relatively easy to work with using conventional coding
techniques, the GMF runtime provides a much richer set of extensibility frame-
works and mechanisms that are specifically designed for building graphical edi-
tors for EMF models. As mentioned earlier, this comes at the price of some
additional complexity (the usual trade-off).

As covered in Chapter 9, the main extensibility point of GEF comes with
providing your own EditPartFactory, which the Viewer maintains to create
EditParts, which create EditPolicies. With GMF, EditParts creation is modi-
fied to include a call to a service, where providers are registered and effectively
replace the EditPartFactory concept in GEF. In fact, most aspects of diagram
functionality are wrapped in services, including EditPolicies, views, palette, and
layout. Section 10.4, “Services,” covers the Service layer, along with detail on
each of the provided services.

Although the extensibility of the GMF runtime is beneficial, it comes with
the danger of malicious or malformed extensions that can be contributed to your
diagram and can break its functionality. Also note that the current diagram code
generated with the GMF tooling provides for normal runtime extensibility in a
somewhat limited fashion. Not all extension-points are used because the team
that wrote the tooling and generator did not see the value in contributing to each.
However, the generation tooling is itself flexible, so if you want to alter the

372 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

implementation of a generated diagram, you can do so by overriding or aug-
menting the models and Xpand templates. Furthermore, Bugzilla has an out-
standing request to enhance the generator to provide for diagram extensions.
Two approaches are considered for this extension:

❍ Begin with the existing diagram definition models and provide extensions
that, when regenerated, produce a new diagram that extends the original

❍ Use a set of extension tooling models that target runtime extension-points
opened in the diagram that the Toolsmith can extend

10.3.1 Extension-Points

The GMF runtime provides 27 extension-points for contribution in your dia-
gram, while the tooling provides another 2 for its dashboard and validation. Of
course, not all need to be used. The following sections provide information on
each extension-point, most of which are found in the extension-points Reference
section of the GMF help or can be viewed using PDE’s Show extension-point
Description feature. I provide this here for convenience, plus it contains addi-
tional examples, comments, and usage tips.

Note that every extension-point declaration includes an ATTLIST that is the
same, including point, ID, and name attributes. These details are included in each
schema description and are not reproduced here, to save space. Only the exten-
sion ELEMENT declaration is provided.

<!ELEMENT extension (elements)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

point—The identifier of the extension-point—for example, org.eclipse.
gmf.runtime.common.core.logListeners.

id—The identifier of the extension—for example, logListeners.
name—The name of the extension—for example, %ext.logListeners. (Note

that %-prefixed Strings indicate localized Strings found in corresponding proper-
ties files.)

Additionally, several elements are used in multiple extension-point defini-
tions. I list them here, to avoid duplication throughout this section.

10.3 Extensibility Mechanisms 373

ptg6022785

<!ELEMENT staticMethod (value* , notValue*)>
<!ATTLIST staticMethod
name CDATA #REQUIRED
value CDATA #IMPLIED
notValue CDATA #IMPLIED>

This element specifies a static method to be called by reflection on the class.
The static method has a name and a value. The value can be described by its
String representation (value and notValue) or as an object (value or notValue).
The rules of evaluation are as follows:

❍ The return value String must be in the “value” String set.

❍ The return value String must not be in the “notValue” String set.

❍ The return value object must be in the “value” object set.

❍ The return value object must not be in the “notValue” object set.

name—The name of the Static method. The format should be
PluginID\ClassName.method, followed by an optional parameter set
between parentheses. The parameter set can contain any number of primitive
parameters or %Context(pluginID/className), to use the context object as
a parameter. Other parameter types are not supported. The method name can
contain nested calling separated by a period (.). This is the general format for this
method name:

<,param>*>?).<<,param>*>?)>*

value—A comma-separated list of String representations of the method
return value. The String representation of the value is expected to be one of those
in the list. The syntax to use is the following: <,>* If a comma (,) is expected to
be in one of the Strings, it must be escaped by a forward slash (\). null is
accepted as a String, and it means a null object.

notValue—A comma-separated list of String representations of the method
return value that is not expected (the execution set). The String representation of
the value is expected not to be one of those in the list. The syntax to use is the
following: <,>* If a comma is expected to be in one of the Strings, it must be
escaped by a forward slash (\). null is accepted as a String, and it means a null
object.

<!ELEMENT method (value* , notValue*)>
<!ATTLIST method
name CDATA #REQUIRED
value CDATA #IMPLIED
notValue CDATA #IMPLIED>

374 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

This element specifies a method to be called by reflection on the object. The
method has a name and a value. The value can be described by its String rep-
resentation (value and notValue) or as an object (value or notValue). The
rules of evaluation are the same as those for staticMethod.

<!ELEMENT value (method*)>
<!ATTLIST value
class CDATA #IMPLIED>

This element specifies a descriptor of an object that represents a method’s
returned value. The descriptor can include an optional set of methods to call on
the value object.

class—The fully qualified name of a class/interface that is assignable from
or adaptable to the value object. The name could be followed (between paren-
theses) by the ID of a plug-in whose classloader can load that class. The final syn-
tax is className<(plugin id)>?.

<!ELEMENT notValue (method*)>
<!ATTLIST notValue
class CDATA #IMPLIED>

This element specifies a descriptor of an object that represents a method’s
returned value that is not required. The descriptor can include an optional set of
methods to call on the notValue object.

class—The fully qualified name of a class/interface that is assignable from
or adaptable to the value object. The name can be followed (between paren-
theses) by the ID of a plug-in whose classloader can load that class. The final syn-
tax is className<(plugin id)>?.

10.4 Services

The GMF runtime provides a service layer and a collection of extension-points
for use in contributing service providers. The service layer is designed to handle
multiple providers, including dynamic contributions that reflect changes in run-
time state. Providers can be loaded on demand and are assigned priorities to con-
trol their contribution to the runtime environment. Figure 10-23 illustrates the
runtime services and their dependencies. Although the diagram shows all runtime
extension-points and extensions to points within the runtime, those that are pro-
vided as services have a «service» stereotype in the label. Each service is
described shortly, along with the rest of the extension-points. In the figure, empty

10.4 Services 375

ptg6022785

pins indicate extension-points, while filled pins indicate extensions that are
linked to their corresponding point.

376 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-23 GMF runtime extension-points

Figure 10-24 is a diagram of the org.eclipse.gmf.runtime.common.
core.service package, which contains the key elements of the service infra-
structure and API.

The IProvider interface declares a provides() method for use in deter-
mining the applicability of a service to handle a given operation. As shown in the
IProvider interface, a Provider can have change listeners attached. The
AbstractProvider class implements the IProvider interface and has an
abstract subclass Service, which is provided for clients to extend when creat-
ing new services. The Service class maintains a list of its providers, which are
added with a ProviderPriority and ProviderDescriptor. The following
priorities are defined in the ProviderPriority enumeration and specify the
provider’s relative importance: LOWEST, LOW, MEDIUM, HIGH, or HIGHEST.

In addition to the ProviderPriority, a provider is selected by taking into
account an ExecutionStrategy. This enables you to specify an order during
execution of a given IOperation, which complements the priority. Table 10-4
includes each strategy that the ExecutionStrategy enumeration defines and
its meaning to the Service.

ptg6022785

Figure 10-24 Runtime services core

Table 10-4 Service Execution Strategies

Strategy Description

FIRST Select the provider with the highest priority that is capable of servicing the
request.

LAST Select the provider with the lowest priority that is capable of servicing the
request.

FORWARD Invoke all providers in order of highest to lowest priority that are capable
of servicing the request. The results of each provider are placed in a list of
relative descending order of priority.

REVERSE Invoke all providers in order of lowest to highest priority that are capable
of servicing the request. The results of each provider are placed in a list of
relative increasing order of priority.

10.4 Services 377

ptg6022785

The Provider implements the IOperation interface to fulfill the unit of
work that the Service is designed to provide. The Service invokes the
IOperation’s execute() method on its Providers using the
ExecutionStrategy. The Service can provide the functionality if any of its
registered Providers return true to the provides() operation when passed
the IOperation instance.

Elements declared in the Service extension-point schema are populated by
Providers and loaded using a configuration class. Not shown on the diagram
is the AbstractProviderConfiguration class, which is intended to be sub-
classed to parse service provider descriptors. The ProviderDescriptor typi-
cally maintains an instance of the configuration that is initialized when the
Provider is configured. The Service loads the Provider plug-ins when
required, where its startup() method contains the required static initialization
code.

You also can configure a Service with performance options, such as by
using the Service(boolean optimized) constructor. Passing true causes the
Service to cache providers when first retrieved for a given operation.
Otherwise, the default behavior is to consider all Providers each time an
operation is executed. Another Service(boolean optimized, boolean
optimistic) constructor takes an additional optimistic Boolean parameter
that, if true, causes the Service to trust its cache of Providers. Otherwise, it
validates that the cache contents are still valid for the operation.

The Service–Provider infrastructure that GMF provides is used by many
of its extension-points, as documented shortly. Note that you can use this infra-
structure to create new services for your applications.

10.4.1 ViewService

Recall from the description of the notation model that View was the central ele-
ment that contains the reference for the associated domain element. The
ViewService is responsible for constructing View elements (Diagram, Node,
Edge), typically by returning a ViewFactory class. This factory is responsible
for creating notation view elements, setting Style elements, layout constraints,
child views, and so on. In a similar recursive manner described for diagram cre-
ation in GEF, the ViewService is called with a hint to obtain the proper
provider and factory for element creation.

As shown in Figure 10-25, the ViewService has a corresponding
AbstractViewProvider that provides for a number of operations, including
those used to create diagrams, nodes, and edges. Each diagram requires a view

378 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

provider, which is typically a subclass of AbstractViewProvider. The method
get*ViewClass() takes a hint that allows the custom logic to return the appro-
priate ViewFactory class.

10.4 Services 379

Figure 10-25 ViewService

ViewProviders Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.core.viewProviders
Description: This extension-point defines providers for the view service

(org.eclipse.gmf.runtime.diagram.core.services.ViewService).
The view service is responsible for creating view elements of the diagram nota-
tion model.

ptg6022785

Configuration markup:

<!ELEMENT extension (viewProvider+)>

<!ELEMENT viewProvider (Priority , object* , context*)>
<!ATTLIST viewProvider
class CDATA #REQUIRED>

This element describes a viewProvider. A provider’s description outlines
zero or more objects to be referenced by the provider’s contexts, and then lists
zero or more contexts that the provider supports.

class—The fully qualified name of the viewProvider class, which
must implement org.eclipse.gmf.runtime.diagram.core.providers.
IViewProvider. Typically, a subclass of AbstractViewProvider is specified.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

This element defines the priority of the viewProvider.
name—The priority of the provider. It can be one of the following values:

Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority.

<!ELEMENT object (method* , staticMethod*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element describes an object that is examined by this provider. The object
can have an optional set of methods to call upon.

id—A unique (within the context of this provider XML definition) identifier
for the object.

class—The fully qualified name of a class/interface that is assignable from,
or adaptable to, the object. The name can be followed (between parentheses) by
the ID of a plug-in whose classloader can load that class. The final syntax is
className<(plugin id)>?.

<!ELEMENT context EMPTY>
<!ATTLIST context
viewClass (org.eclipse.gmf.runtime.notation.Node |
org.eclipse.gmf.runtime.notation.Diagram |
org.eclipse.gmf.runtime.notation.Edge)

380 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

elements CDATA #IMPLIED
containerViews CDATA #IMPLIED
semanticHints CDATA #IMPLIED>

This element defines a context supported by the view provider that contains
values for the different hint parameters needed to create views.

viewClass—A fully qualified name of a view class from a list of different
kinds of views created by the view service that the provider can accept in this
context. This field is an enumeration consisting of the qualified class names for
Node, Diagram, and Edge notation elements.

elements—A comma-separated list of object IDs (from the provider XML
definition) that represents elements that this provider can accept in this context.

containerViews—A comma-separated list of object IDs (from the provider
XML definition) that represents container views that this provider can accept in
this context.

semanticHints—A comma-separated list of Strings that represents seman-
tic hints that this provider can accept in this context.

Examples:
Following is an example view provider extension-point contribution, as gen-

erated using the GMF tooling:

<extension-point="org.eclipse.gmf.runtime.diagram.core.viewProviders">
<viewProvider
class="org.eclipse.mindmap.diagram.providers.MindmapViewProvider">
<Priority name="Lowest"/>
<context viewClass="org.eclipse.gmf.runtime.notation.Diagram"

semanticHints="mindmap"/>
<context viewClass="org.eclipse.gmf.runtime.notation.Node"

semanticHints=""/>
<context viewClass="org.eclipse.gmf.runtime.notation.Edge"

semanticHints=""/>
</viewProvider>

</extension>

API information:
The class AbstractViewProvider (though technically not abstract) is pro-

vided as a base implementation that implements the required org.eclipse.
gmf.runtime.diagram.core.providers.IViewProvider interface.

Notes:
The generated diagrams that the GMF tooling provides contribute to the

view provider’s extension-point.
By default, GMF diagrams provide geoshape elements and standard note,

text, and description information. This functionality is provided by the internal

10.4 Services 381

ptg6022785

classes org.eclipse.gmf.runtime.diagram.ui.geoshapes.internal.
providers.GeoshapeViewProvider and org.eclipse.gmf.runtime.
diagram.ui.providers.internal.DiagramViewProvider, respectively.

10.4.2 EditPartService

An EditPartService is used to create EditParts that act as a controller for
the notation view and domain element. A corresponding EditPartProvider
supplies a createGraphicEditPart() method for this purpose, essentially
replacing GEF’s EditPartFactory.createEditPart(View) method. The
main participants in the service are shown in Figure 10-26. The role of
an EditPart in GMF is no different than in GEF, except for the fact that
createGraphicEditPart() returns an instance of IGraphicEditPart. This
GMF runtime interface extends the GEF GraphicalEditPart interface to pro-
vide support for EditParts that use EMF EObject instances as their model.
Again, here model is the View object in the notation model, which maintains a
reference to the domain (semantic) model element. All EditParts used in the
GMF runtime should extend the abstract org.eclipse.gmf.runtime.
diagram.ui.editparts.GraphicalEditPart class. This class provides a
getNotationView() method to return the View model element, in addition to
a resolveSemanticElement() method to return the referenced domain model
element.

Providers are implemented by the Toolsmith, just as EditPartFactory
was supplied using GEF. Providers can provide EditParts for new or exist-
ing model element types, although it’s more efficient to swap out EditPolicies on
an EditPart using the EditPolicyService.

EditPartProviders Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.ui.
editpartProviders

Description: The EditPartService is a factory for EditParts, given a
model and a context. An EditPartProvider extends the service by providing
for new EditParts or existing ones using a different combination of a model
and a context.

Configuration markup:
<!ELEMENT extension (editpartProvider+)>

<!ELEMENT editpartProvider (Priority , object* , context*)>
<!ATTLIST editpartProvider
class CDATA #REQUIRED>

382 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-26 EditPartService

A provider’s description outlines zero or more objects to be referenced by the
provider’s contexts and then lists zero or more contexts that the provider sup-
ports.

class—The fully qualified name of the EditPartProvider class that imple-
ments org.eclipse.gmf.runtime.diagram.ui.internal.services.
editpart.IEditPartProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority.

<!ELEMENT object (method* , staticMethod*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element specifies a descriptor of an object that this provider examines.
The object descriptor can include an optional set of methods to call on the object.

id—A unique (within the context of this provider definition) identifier for
the object.

10.4 Services 383

ptg6022785

class—The fully qualified name of a class/interface that is assignable from,
or adaptable to, the object. The name can be followed (between parentheses) by
the ID of a plug-in whose classloader can load that class. The final syntax is
className<(plugin id)>?.

<!ELEMENT context EMPTY>
<!ATTLIST context
views CDATA #IMPLIED
providesRootEditPart (true | false) "false">

This element defines a context supported by the EditPart provider.
views—A comma-separated list of view object IDs (from the provider XML

definition) that this provider supports in this context.1
providesRootEditPart—true or false for whether this context repre-

sents the root EditPart.

Examples:
Following is an example EditPart provider extension-point contribution

that the GMF tooling provides in generated diagrams:

<extension
point="org.eclipse.gmf.runtime.diagram.ui.editpartProviders">
<editpartProvider

class="org.eclipse.mindmap.diagram.providers.MindmapEditPartProvider">
<Priority name="Lowest"/>

</editpartProvider>
</extension>

API information:
The EditPart provider class that should implement the interface

org.eclipse.gmf.runtime.diagram.ui.internal.services.
editpart.IEditPartProvider. Note that this interface is in an internal
package namespace, meaning that it is not yet public API. An alternative is to
extend the public AbstractEditPartProvider, found in the package org.
eclipse.gmf.runtime.diagram.ui.services.editpart.

Another internal class provided for support of rendered images is
DiagramUIRenderEditPartProvider, which is found in the package
org.eclipse.gmf.runtime.diagram.ui.render.internal.providers.

Notes:
As was the case with the View Service, two providers for the

EditPartService are contributed by the geoshapes and the general diagram

384 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

provider (notes, text, and so on). These are org.eclipse.gmf.runtime.
diagram.ui.geoshapes.internal.providers.GeoshapeEditPart
Provider and org.eclipse.gmf.runtime.diagram.ui.providers.
internal.DiagramEditPartProvider, respectively.

10.4.3 EditPolicyService

As the previous section alluded to, you can install and remove EditPolicies on
EditParts using the EditPolicyService. In fact, clients can contribute new
EditPolicy implementations to existing diagrams without overriding the
EditPart class itself. Figure 10-27 shows the main elements of the service.

Note that GMF’s GraphicalEditPart class overrides (final) the GEF
AbstractEditPart createEditPolicies() method. This override calls
createDefaultEditPolicies() and then invokes the EditPolicyService
to install EditPolicies for the EditPart. Those who want to install EditPolicies
programmatically must do so by overriding createDefaultEditPolicies().

As with all services, the EditPolicyService offers all providers a chance
to install EditPolicies based on their stated priorities. To override an
EditPolicy, install a new one using the same role. To remove an EditPolicy,
contribute it using a null role.

10.4 Services 385

Figure 10-27 EditPolicyService

ptg6022785

EditPolicyProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.ui.editpolicy
Providers

Description: This extension-point defines EditPolicyProviders for the
EditPolicy service. The EditPolicyService allows plug-ins to modify or
enhance the behavior of an EditPart via an EditPolicy without modifying
the EditPolicy code.

Configuration markup:
<!ELEMENT extension (editpolicyProvider+)>

<!ELEMENT editpolicyProvider (Priority , object* , context*)>
<!ATTLIST editpolicyProvider
class CDATA #REQUIRED>

class—The fully qualified name of the EditPolicyProvider class that
implements org.eclipse.gmf.runtime.diagram.ui.services.edit-
policy. IEditPolicyProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority.

<!ELEMENT object (method* , staticMethod*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element defines a descriptor of an object that this provider examines.
The object can have an optional set of methods to call upon.

id—A unique (within the context of this provider XML definition) identifier
for the object.

class—The fully qualified name of a class/interface that is assignable from,
or adaptable to, the object. The name can be followed (between parentheses) by
the ID of a plug-in whose classloader can load that class. The final syntax is
className<(plugin id)>?.

386 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT context EMPTY>
<!ATTLIST context
editparts CDATA #IMPLIED>

This element defines a context that the EditPolicyProvider supports that
contains the EditParts that this provider supports.

editparts—A comma-separated list of EditPart IDs (from the provider
XML definition) that this provider supports.

Examples:
This is an example of a basic EditPolicyProvider extension-point con-

tribution:

<extension
point="org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders">

<editpolicyProvider class=
"org.eclipse.mindmap.diagram.providers.MindmapEditPolicyProvider">

<Priority name="Lowest"/>
</editpolicyProvider>

</extension>

API information:
The fully qualified class should implement the interface org.eclipse.gmf.

runtime.diagram.ui.services.editpolicy.IEditPolicyProvider.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point. EditPolicies are added to generated EditParts within the
createDefaultEditPolicies() method.

10.4.4 Palette Service

You saw in Section 9.2, “GEF,” that configuring a palette is straightforward.
GMF adds a PaletteService to allow for palette definition using extension-
point and service provider implementation, as shown in Figure 10-28.
Contributions can be added or overridden by extender plug-ins, providing
flexibility in palette definition and makeup. The runtime provides a
DefaultPaletteProvider class, which is satisfactory for most diagrams. The
only code that is required is to provide a palette factory, which links creation
tools to model element types.

PaletteProviders can provide drawers, groups, separators, a palette tool,
and template items using the extension-point, as defined next.

10.4 Services 387

ptg6022785

Figure 10-28 Palette service

PaletteProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.ui.paletteProviders
Description: The paletteProvider extension-point allows for full declar-

ative specification of a diagram palette.

Configuration markup:
<!ELEMENT extension (paletteProvider+)>

<!ELEMENT paletteProvider (Priority , editor? , content? ,
contribution*)>
<!ATTLIST paletteProvider
class CDATA
"org.eclipse.gmf.runtime.diagram.ui.providers.DefaultPaletteProvider">

A provider’s description outlines the target context (the editor and the edi-
tor’s content) and zero or more palette contributions in that context.

class—The fully qualified name of the paletteProvider class, which, by
default, is the provided org.eclipse.gmf.runtime.diagram.ui.
providers.DefaultPaletteProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

388 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority. A provider that adds contributions to paths (menus
| groups) that other providers have contributed must have a higher priority than
they do. Similarly, a provider that contributes palette entries that other providers
have predefined must have a higher priority.

<!ELEMENT editor EMPTY>
<!ATTLIST editor
id CDATA #IMPLIED
class CDATA #IMPLIED>

This element specifies the target editor. The editor is not required when pre-
defining palette entries.

id—The published ID of the targeted editor. Although this field is optional,
at least one of the two fields (id and class) must be specified.

class—The fully qualified name of a class/interface that is assignable from
or adaptable to the target editor. The name can be followed (between parenthe-
ses) by the ID of a plug-in whose classloader can load that class. The final syn-
tax is className<(plugin id)>?. Although this field is optional, at least one
of the two fields (id and class) must be specified.

<!ELEMENT content (method* , staticMethod*)>
<!ATTLIST content
class CDATA #IMPLIED>

class—The fully qualified name of a class/interface that is assignable from
or adaptable to the target editor’s content object. The name can be followed
(between parentheses) by the ID of a plug-in whose classloader can load that
class. The final syntax is className<(plugin id)>?.

<!ELEMENT contribution (entry* , predefinedEntry*)>
<!ATTLIST contribution
factoryClass CDATA #IMPLIED>

factoryClass—The fully qualified name of a class that represents the factory
for the contributions. The class must implement the interface org.eclipse.
gmf.runtime.gef.ui.internal.ui.palette.PaletteFactory.

10.4 Services 389

ptg6022785

<!ELEMENT entry (expand?)>
<!ATTLIST entry
kind (drawer|separator|template|tool|stack)
id CDATA #REQUIRED
path CDATA #IMPLIED
label CDATA #IMPLIED
description CDATA #IMPLIED
small_icon CDATA #IMPLIED
large_icon CDATA #IMPLIED
permission (None|HideOnly|Limited|Full)
defineOnly (true | false) >

This element specifies a palette entry that will be contributed to the palette.
kind—The kind of the entry (drawer | stack | separator | tool |

template).
id—A user-defined ID for the entry (unique within a provider).
path—A fully qualified path of contribution. All path IDs should have been

previously defined. Previous means either earlier in the XML file or in another
one with a lower priority (order). If a path ends with a separator ID, the new
entry is appended to the elements following the separator (just before the next
separator, or at the end of the container, if it has no more separators below that
one). If a path ends with a normal entry ID, the new entry is inserted after that
entry. A path is required unless this palette entry is being defined only so that it
can be contributed by another palette provider.

label—The palette entry label (not required for separators).
description—The palette entry description.
small_icon—The palette entry small icon.
large_icon—The palette entry large icon.
permission—The palette entry permission (None | HideOnly | limited |

full).
defineOnly—If true, this palette entry is only being defined; it will not be

contributed. In this case, the path is ignored and not required. When defining a
palette drawer or palette stack, this flag needs to be set only on the palette
drawer or stack, to indicate that all the entries on the drawer are being defined
only. The palette entry can be contributed by another palette extension using a
predefinedEntry.

<!ELEMENT expand (content?)>
<!ATTLIST expand
force (true | false) "false">

This element defines a condition to make palette drawers initially expanded.
force—true or false, used to force expansion.

390 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT predefinedEntry (expand?)>
<!ATTLIST predefinedEntry
id CDATA #REQUIRED
path CDATA #IMPLIED
remove (true | false) >

A descriptor for a palette contribution entry that another plug-in already has
defined and that will now be contributed.

id—The ID given to the palette entry when it was defined. If the palette
entry is in a palette container (the drawer or stack), the ID is considered the full
path of this palette entry.

path—A fully qualified path describing where this palette entry should
appear on the palette. All path IDs should have been previously defined. Previous
means either earlier in the XML file or in another one with a lower priority
(order). If a path ends with a separator ID, the new entry is appended to the ele-
ments following the separator (just before the next separator, or at the end of the
container, if it has no more separators below that one). If a path ends with a nor-
mal entry ID, the new entry is inserted after that entry. The path is not required
if this predefined entry is not being contributed. That is, a predefined entry can
be used to expand an existing drawer or remove an existing entry from the
palette.

remove—If true, an existing entry is removed.

Examples:
Following is a simple palette contribution with a single tool in a single

drawer:

<extension-point="org.eclipse.gmf.runtime.diagram.ui.paletteProviders">
<paletteProvider
class="

org.eclipse.gmf.runtime.diagram.ui.providers.DefaultPaletteProvider">
<Priority name="Highest"/>
<editor

id="org.eclipse.mindmap.diagram.editor.MindmapDiagramEditorID"/>
<contribution
factoryClass="

org.eclipse.mindmap.diagram.providers.MindmapPaletteFactory">
<entry label="Nodes"

kind="drawer"
description="Mindmap diagram nodes"
path="/"
small_icon="icons/obj16/MindmapDiagramFile.gif"
id="nodeDrawer">

<expand>
<content/>

</expand>
</entry>

10.4 Services 391

ptg6022785

<entry label="Topic"
kind="tool"
description="Create a new Topic"
path="/nodeDrawer/"
small_icon="icons/obj16/MindmapDiagramFile.gif"
large_icon=""
id="Topic"/>

</contribution>
</paletteProvider>

</extension>

API information:
The interface org.eclipse.gmf.runtime.diagram.ui.services.

IPaletteProvider should be implemented by the class declared, if the
default org.eclipse.gmf.runtime.diagram.ui.providers.Default
PaletteProvider is not used.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point. Instead, a *PaletteFactory class is generated in the
*.diagram.part package.

10.4.5 Decoration Service

Validation errors, checkout state, or other decorations often need to be applied
to a diagram element. The runtime’s DecorationService supports the addition of
decorator icons on top of figures in a declarative manner and without specific
knowledge of the underlying figure. It does this by using a layer placed above the
shapes, thereby allowing it to even span EditPart hierarchies. Figure 10-29
shows the main elements of the service.

To use this service, you must implement IDecorationProvider, where the
createDecorators() method supports the installation of a custom decoration
or image in a predefined location on the shape.

DecoratorProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.ui.
decoratorProviders

Description: This extension-point defines decorator providers for the
Decorator Service (org.eclipse.gmf.runtime.diagram.ui.services.
decorator). The DecorationService enables clients to decorate diagram ele-
ments with an image or figure.

392 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-29 DecorationService

More specifically, the provider service enables implementors to do the
following:

A provider of the DecorationService can add an adornment to any dia-
gram element.

The decoration is typically an image but can be any sort of graphics object
or figure. A provider of the decoration service is not restricted to any specific
graphic type.

The provider can specify any of the following enumerated locations for a
decoration on a shape, label, or list compartment item: center, north, northeast,
northwest, south, southeast, southwest, east, or west. For a connector, the per-
centage of the distance from the source end of the connector provides a location
for the decoration.

The decoration can be any size that fits within the shape or connector
boundary.

The decoration is justified according to its position on the shape. For exam-
ple, northwest is left-justified with an offset from the top-left side of the shape,
and northeast is right-justified with an offset from the top-right side of the shape.

10.4 Services 393

ptg6022785

Each decoration can either be included in the printed output of the diagram
or not.

If more than one provider adds a decoration to the same location, the deco-
ration from the highest-priority provider appears on top of the other decora-
tion(s).

Configuration markup:
<!ELEMENT extension (decoratorProvider)>

<!ELEMENT decoratorProvider (Priority , object* , context*)>
<!ATTLIST decoratorProvider
class CDATA #REQUIRED>

class—The fully qualified name of the decorator provider class that should
implement the interface org.eclipse.gmf.runtime.diagram.ui.
services.decorator.IDecoratorProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority. A provider at a higher priority takes a chance first at
deciding provision.

If more than one provider adds a decoration to the same location, the deco-
ration(s) from the highest-priority provider appears on top of decoration(s) sup-
plied by lower-priority provider(s).

<!ELEMENT object (method* , staticMethod*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element specifies an object that this provider examines. The object can
have an optional set of methods to call upon.

id—A unique (within the context of this provider XML definition) identifier
for the object.

class—The fully qualified name of a class/interface that is assignable from
or adaptable to the object. The name can be followed (between parentheses) by
the ID of a plug-in whose classloader can load that class. The final syntax is
className<(plugin id)>?.

394 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT context EMPTY>
<!ATTLIST context
decoratorTargets CDATA #IMPLIED>

The context contains a list of objects to be decorated using this provider. The
list defined in decoratorTargets consists of items previously defined in the
XML using the object element.

decoratorTargets—The decoratorTargets is a comma-separated list
of objects that this provider supports. The xml defined object is specified using
its id.

Examples:
An extension to the decorator service requires the implementation of the

IDecorator and IDecoratorProvider interfaces. The following is an exam-
ple decorator service provider extension:

<extension
point="org.eclipse.gmf.runtime.diagram.ui.decoratorProviders">

<decoratorProvider class=
"org.eclipse.gmf.runtime.diagram.ui.providers.MyDecoratorProvider">

<Priority name="Lowest"/>
<object class=

"org.eclipse.gmf.runtime.notation.Node
(org.eclipse.gmf.runtime.notation)"
id="NODE">

<method name="getType()" value="MyNodeType"/>
</object>
<context decoratorTargets="NODE"/>

</decoratorProvider>
</extension>

API information:
For API information, see the classes and interfaces defined in the org.

eclipse.gmf.runtime.diagram.ui.services.decorator package.
Clients that provide an extension to the decorator service need to create

classes that implement the following interfaces:

org.eclipse.gmf.runtime.diagram.ui.services.decorator.IDecorator
org.eclipse.gmf.runtime.diagram.ui.services.decorator.IDecoratorProvider

Notes:
Diagrams generated using the GMF tooling use this extension-point when

audits are defined for a diagram. Audit limit violations cause decoration of the

10.4 Services 395

ptg6022785

diagram element. Additionally, enabling the diagram shortcut feature produces a
generated extension to the decorator provider. Small arrow decorations appear
in the bottom-left corner of shortcutted diagram elements.

A DiagramDecoratorProvider is available in the internal runtime pack-
age org.eclipse.gmf.runtime.diagram.ui.providers.internal. By
default, this provider installs a BookmarkDecorator for the diagram layer.

10.4.6 IconService

The runtime’s IconService allows for the retrieval of an icon based on a hint, such
as the View class or ElementType. The service is simple in its implementation, but
as with all Services, it allows for the substitution of icons for a diagram by con-
tributing a provider of higher priority.

As shown in Figure 10-30, providers need to implement the IIconProvider
interface, as is the case with the shown DiagramIconProvider. The runtime
provides this provider, which handles icons for standard diagram notes and text.
A SharedImages class provides the DiagramIconProvider with its
ImageDescriptors.

396 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-30 IconService

ptg6022785

IconProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.icon
Providers

Description: This extension-point defines icon providers for the icon service
(org.eclipse.gmf.runtime.common.ui.services.icon.IconService).

The icon service supplies an icon for a given element.

Configuration markup:
<!ELEMENT extension (IconProvider)>

<!ELEMENT IconProvider (Priority , Policy? , object* , context*)>
<!ATTLIST IconProvider
class CDATA #REQUIRED>

class—The provider class that must implement interface org.eclipse.
gmf.runtime.common.ui.services.icon.IIconProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—The provider policy class.

<!ELEMENT object (method*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element specifies an object that this provider examines. The object
descriptor can include an optional set of methods to call on the object.

id—A unique (within the context of this provider definition) identifier for
the object.

class—The fully qualified name of a class/interface that is assignable from,
or adaptable to, the object. The name could be followed (between parentheses)

10.4 Services 397

ptg6022785

by the ID of a plug-in whose classloader can load that class. The final syntax is
className(plugin id).

<!ELEMENT context EMPTY>
<!ATTLIST context
elements CDATA #IMPLIED>

This element defines a context that the icon provider supports.
elements—A comma-separated list of element object IDs (from the

provider XML definition) that this provider supports in this context.

Examples:
Following is an example of an icon provider extension, as contributed by

generated code using the GMF tooling:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.iconProviders">
<IconProvider class=

"org.eclipse.requirements.diagram.providers.RequirementsIconProvider">
<Priority name="Low"/>

</IconProvider>
</extension>

This is the Geoshapes contribution:

<extension
id="iconProviders"
name="%ext.iconProviders"
point="org.eclipse.gmf.runtime.common.ui.services.iconProviders">

<IconProvider class=
"org.eclipse.gmf.runtime.diagram.ui.geoshapes.internal.providers.
GeoShapeIconProvider">
<Priority name="Medium"/>
<object class="org.eclipse.gmf.runtime.notation.View

(org.eclipse.gmf.runtime.notation)" id="GeoShape">
<method name="getType()"

value="oval,triangle,rectangle,shadowRectangle,
rectangle3D,roundRectangle,hexagon,octagon,
pentagon,diamond,cylinder,line"/>

</object>
<context elements="GeoShape"/>

</IconProvider>
</extension>

398 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

API information:
The value of the class attribute must be the fully qualified name of a class

that implements org.eclipse.gmf.runtime.common.ui.services.icon.
IIconProvider.

10.4.7 MarkerNavigationService

The MarkerNavigationService and corresponding IMarkerNavigation
Provider interface allow for a service-based implementation of the
gotoMarker() method, as seen in Figure 10-31. Requests made in all editors
are delegated to this Service and provided for based on priority and marker types
supported. The runtime supports three Abstract*MarkerNavigation
Provider classes and a concrete DiagramMarkerNavigationProvider.

10.4 Services 399

Figure 10-31 MarkerNavigationService

MarkerNavigationProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
markerNavigationProviders

ptg6022785

Description: This extension-point facilitates the configuration of providers
for the MarkerNavigationService (org.eclipse.gmf.runtime.
common.ui.services.marker.MarkerNavigationService).

The MarkerNavigationService enables clients to perform the navigation
feedback when the user double-clicks on or “goes to” a marker reference. The
attribute values defined on the marker identify a location or locations in the
resource that are of interest to the user. The feedback associated with navigation
to that location depends on the resource and its associated editors. The feedback
might simply be selecting the appropriate object(s) specified by the marker’s loca-
tion, or the feedback could involve a separate dialog to describe the reason for
the marker (such as errors).

To use the MarkerNavigationService, a client should define its own
marker types and create the marker instances on the appropriate resources.
Markers created on the workspace root are not navigable.

Configuration markup:
<!ELEMENT extension (MarkerNavigationProvider)>

<!ELEMENT MarkerNavigationProvider (Priority , MarkerType+ , Policy?)>
<!ATTLIST MarkerNavigationProvider
class CDATA #REQUIRED>

class—The provider class that is a subclass of org.eclipse.gmf.
runtime.common.core.service.AbstractProvider and implements
org.eclipse.gmf.runtime.common.ui.services.marker.
IMarkerNavigationProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT MarkerType EMPTY>
<!ATTLIST MarkerType
name CDATA #REQUIRED>

400 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

name—The name of the marker type that the provider understands.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—The provider policy class. Provider policies can optionally be speci-
fied to determine whether the providers support a given operation.

Examples:
Following is an example of a marker navigation provider extension, as con-

tributed by the GMF tooling when audits or metrics are defined for a diagram:

<extension-point=
"org.eclipse.gmf.runtime.common.ui.services.markerNavigationProviders">

<MarkerNavigationProvider
class="org.eclipse.mindmap.diagram.providers.
MindmapMarkerNavigationProvider">
<MarkerType name="org.eclipse.mindmap.diagram.diagnostic"/>
<Priority name="Lowest"/>

</MarkerNavigationProvider>
</extension>

API information:
The value of the class attribute must represent a subclass of org.

eclipse.gmf.runtime.common.core.service.AbstractProvider that
implements org.eclipse.gmf.runtime.common.ui.services.marker.
IMarkerNavigationProvider. For convenience, org.eclipse.gmf.
runtime.common.ui.services.marker.IMarkerNavigationProvider.
AbstractMarkerNavigationProvider is provided to be subclassed.

10.4.8 ParserService

When editing Strings on a diagram, the ParserService is responsible for
returning an IParserProvider implementation that can handle Strings for the
passed IAdaptable element. The provided parser itself must implement the
IParser interface, shown in Figure 10-32. Section 4.6.7, “Custom Parsers,”
includes an example of a custom parser that was contributed to the color mod-
eling diagram.

10.4 Services 401

ptg6022785

Figure 10-32 ParserService

ParserProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
parserProviders

Description: This extension-point defines parser providers for the
parser service (org.eclipse.gmf.runtime.common.ui.services.
parser.ParserService). The ParserService supplies and applies text
associated with a given element, as shown in labels modified using an in-place
editor.

Configuration markup:
<!ELEMENT extension (ParserProvider)>

<!ELEMENT ParserProvider (Priority , Policy?)>
<!ATTLIST ParserProvider
class CDATA #REQUIRED>

class—The provider class that implements org.eclipse.gmf.
runtime.common.core.services.parser.IParserProvider.

402 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—The provider policy class.

Examples:
Following is an example of a parser provider extension, as contributed by the

GMF tooling generator. Note that a number of default parsers are also imple-
mented using the generator, as specified in the mapping model:

<extension

point="org.eclipse.gmf.runtime.common.ui.services.parserProviders">
<ParserProvider

class="org.eclipse.mindmap.diagram.providers.MindmapParserProvider">
<Priority name="Lowest"/>
</ParserProvider>

</extension>

API information:
The value of the class attribute must be the fully qualified name of a class

that implements org.eclipse.gmf.runtime.common.core.services.
parser.IParserProvider.

10.4.9 ModelingAssistantService

The GMF runtime provides a number of assistants to improve usability and
extend the gestures used in modeling beyond what GEF provides. The
ModelingAssistantService and corresponding ModelingAssistant
Provider specify methods to be implemented to provide the content of pop-ups
that appear on the diagram surface, as shown in Figure 10-33. An internal
DiagramModelingAssistantProvider is provided to supply assistant func-
tionality for diagram shapes in the form of pop-up bars and connection handles,
as described in Section 10.1.1, “Connection Handles,” and Section 10.1.1, “Pop-
Up Bars.”

10.4 Services 403

ptg6022785

Figure 10-33 ModelingAssistantService

Modeling Assistant Provider Extension-Point

Identifier: org.eclipse.gmf.runtime.emf.ui.
modelingAssistantProviders

Description: This extension-point defines modeling assistant providers for
the ModelingAssistantService. The ModelingAssistantService allows
plug-ins to modify or contribute to the modeling assistant behavior (such as with
connector handles).

Configuration markup:
<!ELEMENT extension (modelingAssistantProvider+)>

<!ELEMENT modelingAssistantProvider (Priority , object* , context*)>
<!ATTLIST modelingAssistantProvider
class CDATA #REQUIRED>

404 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

class—The fully qualified name of the modeling assistant provider
class that implements org.eclipse.gmf.runtime.emf.ui.services.
modelingassistant.IModelingAssistantProvider.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest.

<!ELEMENT object (method*)>
<!ATTLIST object
id CDATA #REQUIRED
class CDATA #IMPLIED>

This element defines an object that this provider examines. The object
descriptor can include an optional set of methods to call on the object.

id—A unique (within the context of this provider definition) identifier for
the object.

class—The fully qualified name of a class/interface that is assignable from,
or adaptable to, the object. The name could be followed (between parentheses)
by the ID of a plug-in whose classloader can load that class. The final syntax is
className<(plugin id)>?.

<!ELEMENT context EMPTY>
<!ATTLIST context
operationId CDATA #IMPLIED
elements CDATA #IMPLIED>

This element defines the context of a modeling assistant provider.
operationId—A String representation of the operation ID in this context

(see IModelingAssistantOperation). If this field is omitted, the provider is
considered for all operation types.

elements—A comma-separated list of object IDs (from the provider XML
definition) that are valid element context(s) for the operation ID in this context
description. If this field is omitted, the provider is considered for all element
types.

10.4 Services 405

ptg6022785

Examples:
Following is an example of what the GMF tooling generates by default:

<extension-point=
"org.eclipse.gmf.runtime.emf.ui.modelingAssistantProviders">
<modelingAssistantProvider
class="org.eclipse.mindmap.diagram.providers.
MindmapModelingAssistantProvider">
<Priority name="Lowest"/>

</modelingAssistantProvider>
</extension>

The generated *ModelingAssistantProvider provides an example of
how to implement a provider for your model types.

API information:
The declared class is one that implements org.eclipse.gmf.runtime.

emf.ui.services.modelingassistant.IModelingAssistantProvider.
For convenience, the abstract class org.eclipse.gmf.runtime.

emf.ui.services.modelingassistant.ModelingAssistantProvider is
provided and supplies basic behavior.

10.4.10 LayoutService

The default toolbar and context menu provided for all GMF-generated diagrams
(those that target the full runtime) have an arrange action. A basic layout algo-
rithm is provided by default and can be overridden by using the LayoutService.
Your domain-specific diagram likely will require a domain-specific layout to com-
plement your notation and enhance its display of information.

The runtime supplies several layout providers for the LayoutService, as
shown in Figure 10-34. Furthermore, the mindmap diagram example in Section
4.3.5, “Adding Custom Layout,” gives an example of a layout provider contri-
bution.

LayoutProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.ui.
layoutProviders

Description: This extension-point defines layout providers for the
LayoutService. The LayoutService allows for the arrangement of diagram
elements according to a specific layout style. Extensions to the service can pro-
vide additional layout behavior. For example, a new provider could implement a
specialized inheritance layout.

406 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-34 Layout service

Configuration markup:
<!ELEMENT extension (layoutProvider)>

<!ELEMENT layoutProvider (Priority)>
<!ATTLIST layoutProvider
class CDATA #REQUIRED>

class—The fully qualified name of the layout provider class. The specified
provider class should implement the interface org.eclipse.gmf.runtime.
diagram.ui.services.layout.ILayoutNodeProvider.

10.4 Services 407

ptg6022785

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The priority of the provider. It can be one of the following values:
Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority. The layout operation is executed on the first provider
(in descending order of priority) that is found to provide the operation.

Examples:
The following is an example of a layout provider extension contribution:

<extension-point="org.eclipse.gmf.runtime.diagram.ui.layoutProviders">
<layoutProvider class=

"org.eclipse.gmf.runtime.diagram.ui.providers.layout.RadialProvider">
<Priority name="Lowest"/>

</layoutProvider>
</extension>

API information:
For API information, see the interfaces defined in the package

org.eclipse.gmf.runtime.diagram.ui.services.layout. Clients that
provide an extension to the layout service need to create a provider class that
implements the org.eclipse.gmf.runtime.diagram.ui.services.
layout.ILayoutNodeProvider interface.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point, which is understandable, given that currently no way exists to
specify diagram layout in a diagram-definition model.

10.4.11 ContributionItemService

The ContributionItemService allows for the addition of items into an
IWorkbenchPart contribution manager for action bars and pop-up menus, but
with the added benefit of specified priority and execution strategy available in all
runtime Services. The IContributionItemProvider interface specifies meth-
ods for these contributions, their update, and their disposal. The corresponding
extension-point allows for these contributions to be made declaratively. An
AbstractContributionItemProvider is provided, along with several con-
crete implementations, including the Diagram and Printing providers shown in
Figure 10-35. These provide most of the generic contributions needed for most
diagrams, including font properties, alignment actions, save, print, and so on.

408 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-35 ContributionItemService

ContributionItemProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
action.contributionItemProviders

Description: This extension-point registers providers that contribute to dif-
ferent workbench parts’ contribution managers. The contributions described in
this extension-point can be for a workbench part’s action bars (referred to as part
contributions) or for a workbench part’s pop-up menu (referred to as pop-up
contributions). This extension-point provides an XML description of contribu-
tions to be read by the described providers. The extension-point provides an
alternative to the following Eclipse extension-points:

org.eclipse.ui.editorActions

org.eclipse.ui.viewActions

org.eclipse.ui.popupMenus (viewerContribution)

However, this extension-point focuses on distinguishing the contribution cri-
teria from the enablement and visibility of the described contributions. The
description of each contribution has the following minimum information:

10.4 Services 409

ptg6022785

❍ Information to create the contribution (such as ID)

❍ Information to perform the contribution (such as path within manager)

❍ Information to consider the contribution (such as target ID, class)

Configuration markup:
<!ELEMENT extension (contributionItemProvider+)>

<!ELEMENT contributionItemProvider (Priority , (partContribution* ,
popupContribution*))>
<!ATTLIST contributionItemProvider
class CDATA #REQUIRED
checkPluginLoaded (true | false) "true">

This element is used to describe a contribution item provider that will con-
tribute actions and toolbar items to a view’s pop-up menus or action bars.

class—The name of a fully qualified class that extends the
org.eclipse.gmf.runtime.common.ui.services.action.
contributionitem. AbstractContributionItemProvider and
org.eclipse.gmf.runtime.common.core.service.IProvider
interfaces.

checkPluginLoaded—Indicates whether the service should consider con-
tributions from this provider only if the declaring plug-in is already loaded
(either true or false). The default value is true.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

This element specifies the priority that this provider has relative to other
ContributionItemProviders that are registered to provide the same kind of
contribution to the same menu or toolbar. All providers have the opportunity to
make their contributions. The provider with the lowest priority is chosen as the
first contributor, while the provider with the highest priority is chosen as the last
contributor. This means that a provider that wants to add contributions to menus
or groups contributed by another provider must have the higher priority so that
the menu or group has already been contributed by the time it is asked to make
its own contributions.

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

410 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT partContribution (partMenu* , partMenuGroup* , partAction* ,

partCustom* , partActionGroup*)>
<!ATTLIST partContribution
id CDATA #IMPLIED
class CDATA #IMPLIED>

This element adds a group of menus, groups, actions, and/or toolbar items
to a workbench part. At least one of the attribute’s ID or class must be specified
for this element.

id—An optional unique identifier of a registered workbench part that is the
target of this contribution.

class—An optional name of a fully qualified class or interface.
Contributions are made to all workbench parts that subclass or implement this
type.

<!ELEMENT popupContribution ((popupStructuredContributionCriteria |
popupTextContributionCriteria | popupMarkContributionCriteria)* ,

popupMenu* , popupMenuGroup* , popupAction* , popupCustom* ,

popupActionGroup* , popupPredefinedItem*)>
<!ATTLIST popupContribution
id CDATA #IMPLIED
class CDATA #IMPLIED>

This element adds a group of menus, groups, actions, and/or custom items to
a context menu. At least one of the attribute’s ID or class must be specified for
this element.

Criteria for the visibility of this group of contributions can be specified by
any number of the same kind of criteria elements, from among these:

popupStructuredContributionCriteria

popupTextContributionCriteria

popupMarkContributionCriteria

id—An optional unique identifier of a registered context menu that is the
target of this contribution. For a given part, there can be one or more context
menus. This ID specifies the one the contributions are for.

class—An optional name of a fully qualified class or interface. Contri-
butions are made to all context menus that subclass or implement this type.

<!ELEMENT partMenu EMPTY>
<!ATTLIST partMenu
id CDATA #REQUIRED

10.4 Services 411

ptg6022785

menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED>

This element adds menu to a workbench part’s action bars.
id—An optional identifier used to reference this menu contribution. It must

be unique within the contribution item provider.
menubarPath—The contribution path of this menu within the part’s menu

bar. The path is a /-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>

The path must start with a /, indicating the root of the contribution man-
ager. Following that could be a submenu_id path that is also /-delimited. The
final token in the path is either a group_id or a contribution_id. If the last
token is a group, the contribution is appended to the end of the group. Other-
wise, the contribution is inserted after the given contribution_id. If the field
is omitted, the contribution does not take place with the menu bar.

toolbarPath—The contribution path of this menu within the part’s tool-
bar. The path is a /-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>

The path must start with a / indicating the root of the contribution manager.
Following that could be a submenu_id path that is also /-delimited. The final
token in the path is either a group_id or a contribution_id.

If the last token is a group, the contribution is appended to the end of the
group. Otherwise, the contribution is inserted after the given contribution_id.
If the field is omitted, the contribution does not take place with the toolbar.

<!ELEMENT partMenuGroup EMPTY>
<!ATTLIST partMenuGroup
id CDATA #REQUIRED
menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED
separator (true | false) "true">

This element specifies a menu group to be contributed to a workbench part’s
action bars. Attributes are the same as described earlier.

<!ELEMENT partAction EMPTY>
<!ATTLIST partAction
id CDATA #REQUIRED

412 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED
global (true | false) "false">

This element specifies an action to be contributed to a workbench part’s
action bars. Attributes are the same as described earlier.

<!ELEMENT partCustom EMPTY>
<!ATTLIST partCustom
id CDATA #REQUIRED
menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED>

This element specifies a custom contribution to a workbench part’s action
bars. Attributes are the same as described earlier.

<!ELEMENT popupMenu EMPTY>
<!ATTLIST popupMenu
id CDATA #REQUIRED
path CDATA "/additionsGroup">

This element specifies a menu to be contributed to a workbench part’s pop-
up menu.

id—The ID of the pop-up menu manager contribution. The ID is unique
within a provider.

path—The contribution path of this menu within the pop-up. The path is a
/-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>
The path must start with a /, indicating the root of the contribution man-

ager. Following that could be submenu_id path that is also /-delimited. The
final token in the path is either a group_id or a contribution_id.

If the last token is a group, the contribution is appended to the end of the
group. Otherwise, the contribution is inserted after the given contribution_id.
If the field is omitted, the contribution does not take place with the pop-up menu.

<!ELEMENT popupMenuGroup EMPTY>
<!ATTLIST popupMenuGroup
id CDATA #REQUIRED
path CDATA "/"
separator (true | false) "true">

This element specifies a menu group to be contributed to a workbench part’s
pop-up menu.

10.4 Services 413

ptg6022785

id—The ID of the pop-up menu group contribution. The ID is unique within
a provider.

path—The contribution path of this menu group within the pop-up menu.
The path is a /-delimited String in the following format:

/<submenu_id/>*

The path must start with a /, indicating the root of the contribution man-
ager. Following that could be a submenu_id path that is also /-delimited. There
should be a / at the end of the path. The menu group is inserted at the end of
the last submenu in the path. If the field is omitted, the contribution does not
take place with the pop-up menu.

separator—A flag indicating whether the menu group is a separator
(true—default) or a group marker (false).

<!ELEMENT popupAction EMPTY>
<!ATTLIST popupAction
id CDATA #REQUIRED
path CDATA "/additionsGroup">

This element specifies an action to be contributed to a workbench part’s pop-
up menu.

id—The ID of the pop-up action contribution. The ID is unique within a
provider.

path—The contribution path of this action within the pop-up. The path is a
/-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>

The path must start with a /, indicating the root of the contribution man-
ager. Following that could be a submenu_id path that is also /-delimited. The
final token in the path is either a group_id or a contribution_id.

If the last token is a group, the contribution is appended to the end of the
group. Otherwise, the contribution is inserted after the given contribution_id.
If the field is omitted, the contribution does not take place with the pop-up menu.

<!ELEMENT popupCustom EMPTY>
<!ATTLIST popupCustom
id CDATA #REQUIRED
path CDATA "/additionsGroup">

414 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

This element specifies a custom contribution to a workbench part’s pop-up
menu.

id—The ID of the pop-up custom contribution. The ID is unique within a
provider.

path—The contribution path of this custom contribution within the pop-up.
The path is a /-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>

The path must start with a /, indicating the root of the contribution man-
ager. Following that could be submenu_id path that is also /-delimited. The
final token in the path is either a group_id or a contribution_id.

If the last token is a group, the contribution is appended to the end of the
group. Otherwise, the contribution is inserted after the given contribution_id.
If the field is omitted, the contribution does not take place with the pop-up menu.

<!ELEMENT popupStructuredContributionCriteria (method* ,

staticMethod*)>
<!ATTLIST popupStructuredContributionCriteria
objectCount CDATA #IMPLIED
objectClass CDATA #IMPLIED
policyClass CDATA #IMPLIED>

This element defines a structured selection contribution criteria for a work-
bench part’s pop-up menu. The criteria can have an optional set of methods to
call on the “selected objects.”

objectCount—The number of objects in the selection that this contribution
applies to.

objectClass—The fully qualified name of a class/interface that is assigna-
ble or adaptable from the classes of objects in the selection. The name could be
followed (between parentheses) by the ID of a plug-in whose classloader can load
that class. This is the final syntax:

className <(plugin id)> ?

policyClass—The fully qualified name of a contribution policy class (that
usually resides in a different plug-in/fragment that is assumed to be loaded), to
determine whether this contribution should be considered. The class must imple-
ment the IPopupMenuContributionPolicy interface.

10.4 Services 415

ptg6022785

<!ELEMENT popupTextContributionCriteria EMPTY>
<!ATTLIST popupTextContributionCriteria
text CDATA #IMPLIED
policyClass CDATA #IMPLIED>

This element defines the text selection contribution criteria for a workbench
part’s pop-up menu.

text—The text in the selection. This is an optional field.
policyClass—The fully qualified name of a contribution policy class (that

usually resides in a different plug-in/fragment that is assumed to be loaded), to
determine whether this contribution should be considered. The class must imple-
ment the IPopupMenuContributionPolicy interface.

<!ELEMENT popupMarkContributionCriteria (method*)>
<!ATTLIST popupMarkContributionCriteria
documentClass CDATA #IMPLIED
policyClass CDATA #IMPLIED>

This element defines a mark selection contribution criteria for a workbench
part’s pop-up menu.

documentClass—The fully qualified name of a class/interface that is
assignable or adaptable from the document of the mark selection. The name
could be followed (between parentheses) by the ID of a plug-in whose classloader
can load that class. This is the final syntax:

className <(plugin id)> ?

policyClass—The fully qualified name of a contribution policy class (that
usually resides in a different plug-in/fragment that is assumed to be loaded), to
determine whether this contributon should be considered. The class must imple-
ment the IPopupMenuContributionPolicy interface.

<!ELEMENT popupActionGroup EMPTY>
<!ATTLIST popupActionGroup
id CDATA #REQUIRED
path CDATA #IMPLIED>

This element defines an action group to be contributed to a workbench part’s
pop-up menu.

id—The ID of the pop-up action group contribution. The ID is unique
within a provider.

path—The contribution path of this action group within the pop-up. The
path is a /-delimited String in the following format:

/<submenu_id/>*<group_id|contribution_id>

416 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

The path must start with a /, indicating the root of the contribution man-
ager. Following that could be a submenu_id path that is also /-delimited.

<!ELEMENT partActionGroup EMPTY>
<!ATTLIST partActionGroup
id CDATA #REQUIRED>

This element defines an action group contribution to a workbench part’s
action bars.

id—The ID of the part action group contribution. The ID is unique within
a provider.

<!ELEMENT popupPredefinedItem EMPTY>
<!ATTLIST popupPredefinedItem
id CDATA #REQUIRED
path CDATA #IMPLIED
remove (true | false)>

This element defines a reference to a previously defined contribution to a
workbench part’s pop-up menu. The referenced contributed must be defined in a
lower-priority provider.

id—The ID of the previously defined pop-up action contribution. The ID
combined with the path is unique within the pop-up menu.

path—The contribution path of this previously defined item within the pop-
up. The path is a /-delimited String in the following format:

/<submenu_id/>*

The path must start with a /, indicating the root of the contribution
manager. Following that could be multiple submenu_id paths that are also
/-delimited.

remove—If true, an existing contribution item is removed.

Examples:
The following is an example of a contribution item provider extension from

the Logic Diagram where group and ungroup functionality is added. Note also
that diagrams generated using GMF’s tooling contribute to this extension-point
for all delete actions.

<extension id="LogicExampleGroupContributionItemProvider"
name="LogicExampleGroupContributionItemProvider"
point="org.eclipse.gmf.runtime.common.ui.services.action.

10.4 Services 417

ptg6022785

contributionItemProviders">
<contributionItemProvider

class="org.eclipse.gmf.runtime.diagram.ui.providers.
DiagramContributionItemProvider">
<Priority name="Low"/>
<popupContribution

class="org.eclipse.gmf.runtime.diagram.ui.providers.
DiagramContextMenuProvider">

<popupStructuredContributionCriteria
objectClass="org.eclipse.gmf.runtime.diagram.ui.
editparts.IPrimaryEditPart"
objectCount="2+">

<method
name="getDiagramEditDomain().getEditorPart()

.getEditorSite().getId()"
value="LogicEditor"/>

</popupStructuredContributionCriteria>
<popupAction path="/formatMenu/miscellaneousGroup"

id="groupAction"/>
</popupContribution>
<popupContribution

class="org.eclipse.gmf.runtime.diagram.ui.providers.
DiagramContextMenuProvider">

<popupStructuredContributionCriteria
objectClass="org.eclipse.gmf.runtime.diagram.ui.
editparts.GroupEditPart">

<method
name="getDiagramEditDomain().getEditorPart()
.getEditorSite().getId()"
value="LogicEditor"/>

</popupStructuredContributionCriteria>
<popupAction path="/formatMenu/miscellaneousGroup"

id="ungroupAction"/>
</popupContribution>

</contributionItemProvider>
</extension>

API information:
The value of the contribution item provider class attribute must be a fully

qualified name of a Java class that implements org.eclipse.gmf.run-
time.common.ui.services.action.contributionitem.IContribu-
tionItemProvider.

For convenience, this can be a subclass of org.eclipse.gmf.runtime.
common.ui.services.action.contributiontem.AbstractContribu-
tionItemProvider.

The order of contribution is given as follows, implying that a contribution
path must fully exist before being used as a path of contribution:

The priority of the provider (lowest first)

The order of the definition within the XML file

418 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

10.4.12 GlobalActionHandlerService

The GlobalActionHandlerService provides a way to handle commonly used
actions by providing an IGlobalActionHandler for an associated IGlobal
ActionHandlerContext. A number of providers are available in the runtime,
each extending the AbstractGlobalActionHandlerProvider class. The
DiagramGlobalActionHandlerProvider uses the DiagramGlobalAction
Handler to provide most of the common diagram behavior, such as cut, copy,
paste, delete, print, and save. Most diagrams contribute this provider, in addition
to DiagramIDEGlobalActionHandlerProvider and DiagramUIRender
GlobalActionHandlerProvider. The main elements of the service are seen in
Figure 10-36.

10.4 Services 419

Figure 10-36 GlobalActionHandlerService

GlobalActionHandlerProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.action.
globalActionHandlerProviders

ptg6022785

Description: This extension-point configures providers for the Global
ActionHandlerService (org.eclipse.gmf.runtime.common.ui.serv-
ices.action.global.GlobalActionHandlerService).

This service provides an extensible way to handle commonly used (global)
actions in different views and editors. These global actions might appear in a
view part context menu or might be predefined retargetable actions. The service
allows different handlers to be used, depending on the nature of the element(s)
selected in the workbench part. Each GlobalActionHandlerProvider regis-
ters itself for actions against a specific element type within a view part.

Configuration markup:
<!ELEMENT extension (GlobalActionHandlerProvider)+>

<!ELEMENT GlobalActionHandlerProvider (Priority , Policy? , ViewId+)>
<!ATTLIST GlobalActionHandlerProvider
id CDATA #REQUIRED
class CDATA #REQUIRED>

This element describes a GlobalActionHandlerProvider that will con-
tribute handlers to a given view or views for one or more retargetable actions.

id—A unique identifier used to reference this provider.
class—The name of a fully qualified class that implements the org.

eclipse.gmf.runtime.common.ui.services.action.global.IGlobal
ActionHandlerProvider and org.eclipse.gmf.runtime.common.core.
service.IProvider interfaces.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

This element specifies the priority that this provider has relative to other
GlobalActionHandlerProviders that are registered to handle the same
global action for the kind of element in the same view. When such a conflict
occurs, the provider with the highest priority is selected to provide the Global
ActionHandler.

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT ViewId (ElementType+)>
<!ATTLIST ViewId
id CDATA #REQUIRED>

420 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

This element specifies a group of global actions that this provider handles for
the specified view and element types.

id—A unique identifier of a registered view.

<!ELEMENT ElementType (GlobalActionId+)>
<!ATTLIST ElementType
class CDATA #IMPLIED>

This element defines the set of global actions that this provider handles when
objects of the specified type are selected.

class—A fully qualified name of the class or interface that at least one
object in the selection must subclass or implement for this provider to be asked
to handle the action(s).

<!ELEMENT GlobalActionId EMPTY>
<!ATTLIST GlobalActionId
actionId CDATA #REQUIRED>

This element describes a global action that this provider will handle.
actionId—The name of a global action that this provider handles. Global

action names are specified in org.eclipse.gmf.runtime.common.ui.
action.global.GlobalActionId.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

This element optionally specifies a policy to use to further determine whether
this provider should be considered to provide a handler for a global action, given
that the view, element type, and action ID all match the specified criteria. To
delay plug-in loading, the recommended strategy for policies is to define them
in a separate package and add Bundle-ActivationPolicy: lazy in the
MANIFEST.MF so that loading the policy class does not load the plug-in.

class—The fully qualified name of the class that implements
org.eclipse.gmf.runtime.common.core.service.IProviderPolicy.

Examples:
The following is an example of the GlobalActionHandlerProvider

extension contributions that are added by default to generated diagrams to han-
dle common actions (such as save, cut, copy, paste, and bookmark):

10.4 Services 421

ptg6022785

<extension-point="org.eclipse.gmf.runtime.common.ui.services.action.
globalActionHandlerProviders">
<GlobalActionHandlerProvider
class="org.eclipse.gmf.runtime.diagram.ui.providers.
DiagramGlobalActionHandlerProvider"

id="requirementsPresentation">
<Priority name="Lowest"/>
<ViewId id="org.eclipse.requirements.diagram.part.
RequirementsDiagramEditorID">
<ElementType
class="org.eclipse.gmf.runtime.diagram.ui.editparts.
IGraphicalEditPart">
<GlobalActionId actionId="delete"/>

</ElementType>
<ElementType
class="org.eclipse.gmf.runtime.diagram.ui.editparts.
DiagramEditPart">
<GlobalActionId actionId="save"/>

</ElementType>
</ViewId>

</GlobalActionHandlerProvider>

<GlobalActionHandlerProvider
class="org.eclipse.gmf.runtime.diagram.ui.providers.
ide.providers.DiagramIDEGlobalActionHandlerProvider"
id="requirementsPresentationIDE">
<Priority name="Lowest"/>
<ViewId id="org.eclipse.requirements.diagram.part.

RequirementsDiagramEditorID">
<ElementType
class="org.eclipse.gmf.runtime.diagram.ui.editparts.
IGraphicalEditPart">
<GlobalActionId actionId="bookmark"/>

</ElementType>
</ViewId>

</GlobalActionHandlerProvider>

<GlobalActionHandlerProvider
class="org.eclipse.gmf.runtime.diagram.ui.render.
providers.DiagramUIRenderGlobalActionHandlerProvider"
id="requirementsRender">
<Priority name="Lowest"/>
<ViewId id="org.eclipse.requirements.diagram.part.
RequirementsDiagramEditorID">
<ElementType
class="org.eclipse.gmf.runtime.diagram.ui.editparts.
IGraphicalEditPart">
<GlobalActionId actionId="cut"/>
<GlobalActionId actionId="copy"/>
<GlobalActionId actionId="paste"/>

</ElementType>
</ViewId>

</GlobalActionHandlerProvider>
</extension>

422 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

API information:
The value of the GlobalActionHandlerProvider class attribute must be

a fully qualified name of a Java class that implements both the org.eclipse.
gmf.runtime.common.ui.services.action.global.IGlobalAction
HandlerProvider and org.eclipse.gmf.runtime.common.core.
service.IProvider interfaces. For convenience, this can be a subclass of
org.eclipse.gmf.runtime.common.ui.services.action.global.
AbstractGlobalActionHandlerProvider. As shown in the example, addi-
tional subclasses of AbstractGloabalActionHandlerProvider exist, such
as DiagramUIRenderGlobalActionHandlerProvider (handles cut, copy,
and paste) and DiagramIDEGlobalActionHandlerProvider (handles
bookmarks).

10.4.13 ActionFilterService

The ActionFilterService provides a service-provider capability to the plat-
form’s IActionFilter functionality. Action filtering allows for a more fine-
grained approach to controlling the contribution of actions to an item in the
workbench. The runtime’s ActionFilterService and corresponding
IActionFilterProvider allow for priority and execution strategy enhance-
ment of action filtering. The DiagramActionFilterProvider is an internal
provider and extends AbstractModelActionFilterProvider as seen in
Figure 10-37.

10.4 Services 423

Figure 10-37 ActionFilterService

ptg6022785

ActionFilterProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
action.actionFilterProviders

Description: This extension-point configures providers for the Action
FilterService (org.eclipse.gmf.runtime.common.ui.services.
action.filter.ActionFilterService).

This service allows ActionFilterProvider attributes to be added to existing
types, as long as they adapt to IActionFilterProvider by returning the
ActionFilterService. These ActionFilterProvider attributes can then be used
inside the objectState element for enablement or visibility of static action contri-
butions (see org.eclipse.ui.popupMenus extension-point). It also permits
the entire workbench selection to be considered so that an action can be enabled
if it is supported on one or more elements in the selection.

The ActionFilterService selects a provider using one of the following criteria:

❍ By provider descriptor—This uses static XML to determine whether a
provider provides the attribute test operation. A given provider can
declare, in XML, that it supports zero or more name/value pairs (attribute
elements); if the name/value of a given action expression matches any of
these, it is assumed to provide the operation.

❍ By provider policy—If no name/value pairs are specified in XML for a
given provider, the service tries to load a policy for the provider (using the
standard mechanism), if one is specified, and asks the policy whether it
provides the operation.

❍ By the provider itself—If no name/value pairs and no policy have been
specified, the service loads the provider itself and asks whether it provides
the operation. Typically, it is preferred to use one of the first two criteria
for providers.

Note that the value attribute is optional. When available in the provider’s
XML, the value is used in conjunction with the name attribute to determine
whether that provider should be considered. When not available, only the name
is used to make the decision. For example, the value attribute for objectState ele-
ments of action expressions is sometimes set to either enablement or visibil-
ity. Some ActionFilterProviders use this information to determine whether the
criteria are being tested to determine enablement or visibility for a contribution.

424 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Configuration markup:

<!ELEMENT extension (ActionFilterProvider)>

<!ELEMENT ActionFilterProvider (Priority , Attribute* , Policy?)>
<!ATTLIST ActionFilterProvider
class CDATA #REQUIRED>

This element describes an ActionFilterProvider that contributes ActionFilter
attributes to be used inside objectState elements for enablement or visibility
of static action contributions.

class—The name of a fully qualified class that implements the org.
eclipse.gmf.runtime.common.ui.services.action.filter.IAction
FilterProvider and org.eclipse.gmf.runtime.common.core.serv-
ice.IProvider interfaces.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

This element specifies the priority that this provider has relative to other
ActionFilterProviders that are registered to handle the same ActionFilter attrib-
ute. When such a conflict occurs, the provider with the highest priority is selected
to provide the ActionFilter.

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT Attribute EMPTY>
<!ATTLIST Attribute
name CDATA #REQUIRED
value CDATA #IMPLIED>

This element describes a new ActionFilter attribute.
name—The name of the ActionFilter attribute, which is used to identify the

provider that should perform the test for objectState elements used in action
enablement or visibility criteria.

value—The optional value of the ActionFilter attribute. When provided, it
is also used to identify the provider that should perform the test for
objectState elements use in action enablement or visibility criteria.

10.4 Services 425

ptg6022785

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #IMPLIED>

This element can specify a policy to determine whether this provider should
be asked to test an ActionFilter attribute. The policy is used only if no attribute
elements are defined for the provider. To delay plug-in loading, the recommended
strategy for policies is to define them in a separate package and add Bundle-
ActivationPolicy: lazy in the MANIFEST.MF so that loading the policy
class does not load the plug-in.

class—The fully qualified name of the class that implements org.
eclipse.gmf.runtime.common.core.service.IProviderPolicy.

Examples:
The following is an example of an ActionFilterProvider extension:

<extension-point="
org.eclipse.gmf.runtime.common.ui.services.action.
➥actionFilterProviders">

<ActionFilterProvider class="
org.eclipse.test.project.ui.providers.action.
AllAreElementsActionFilterProvider">

<Priority name="Highest"/>
<Attribute name="AllAreElements" value="enablement"/>
<Attribute name="AllAreElements" value="visibility"/>

</ActionFilterProvider>
</extension>

API information:
For convenience, the provider can be a subclass of org.eclipse.gmf.

runtime.common.ui.services.action.filter.AbstractActionFilter
Provider. Additionally, org.eclipse.gmf.runtime.emf.ui.services.
action.AbstractModelActionFilterProvider is available and wraps
queries on this provider in the context of a read action using a Transac-
tionalEditingDomain.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.
A LogicActionFilterProvider is used in the logic diagram example,

although it seems to be a temporary workaround for a platform bug. Never-
theless, it illustrates how to filter the Add Circuit and Add Half Adder pop-up
menu contributions from elements that are not ContainerElement types.

426 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

10.4.14 EditorService

The EditorService provides a means by which to open editors using the pri-
ority and execution strategy facilities of the Service layer. It’s a simple API, as
seen in Figure 10-38, that has no implementation example in the runtime or gen-
erated diagram code.

10.4 Services 427

Figure 10-38 EditorService

EditorProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
editorProviders

Description: This extension-point facilitates the configuration of providers
for the EditorService (org.eclipse.gmf.runtime.common.ui.serv-
ices.editor.EditorService). Using this extension-point, providers are reg-
istered to manipulate editors, such as handling how to open an editor on a given
input.

Configuration markup:
<!ELEMENT extension (EditorProvider)>

<!ELEMENT EditorProvider (Priority , Policy?)>
<!ATTLIST EditorProvider
class CDATA #REQUIRED>

ptg6022785

class—Fully qualified String containing the provider class.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The provider priority as a String—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—Fully qualified String containing the provider class.

Examples:
Following is an example of an EditorProvider extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.editorProviders">
<EditorProvider

class="org.eclipse.test.project.providers.
➥MyDiagramEditorProvider">

<Priority name="Lowest"/>
</EditorProvider>

</extension>

API information:
The value of the class attribute must represent a subclass of org.eclipse.

gmf.runtime.common.core.service.AbstractProvider that implements
org.eclipse.gmf.runtime.common.ui.services.editor.IEditor-
Provider.

For convenience, org.eclipse.gmf.runtime.common.ui.services.
editor.AbstractEditorProvider is provided.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.15 ElementSelectionService

The ElementSelectionService and corresponding IElementSelection
Provider interface collect a set of elements matching some criteria. Although it

428 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

is not shown in Figure 10-39, the AbstractElementSelectionProvider uses
an ElementSelectionServiceJob class to run asynchronously in a separate
job, sending matching objects to a listener. The runtime does not supply a con-
crete implementation of the provider, nor does the generated code contribute to
its extension-point, described next.

10.4 Services 429

Figure 10-39 ElementSelectionService

ElementSelectionProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.
elementSelection

Description: This extension-point facilitates the configuration of providers
for the ElementSelectionService (org.eclipse.gmf.runtime.com-
mon.ui.services.elementselection.ElementSelectionService).
Using this extension-point, providers are registered to provide a list of elements
for the element selection composite and element selection dialog.

Configuration markup:
<!ELEMENT extension (ElementSelectionProvider)>

<!ELEMENT ElementSelectionProvider (Priority , Policy?)>
<!ATTLIST ElementSelectionProvider
class CDATA #REQUIRED>

ptg6022785

class—Fully qualified String containing the provider class.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The provider priority as a String—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—The provider policy class. Provider policies can optionally be asso-
ciated with providers to determine whether the providers provide a given
operation.

Examples:
Following is an example of an element selection provider extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.
elementSelectionProviders">
<elementSelectionProvider
class="org.eclipse.uml.ui.internal.providers.selection.
UMLElementSelectionProvider">
<Priority name="Highest"/>

</elementSelectionProvider>
</extension>

API information:
The value of the class attribute must represent a subclass of org.eclipse.

gmf.runtime.common.core.service.AbstractProvider that implements
org.eclipse.gmf.runtime.common.ui.services.elementselec-
tion.AbstractElementSelectionProvider.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.16 PropertiesService

The PropertiesService and corresponding IPropertiesProvider inter-
face collect all property contributions from property source providers and

430 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

assemble them into a property source object. Specifically, each provider con-
tributes an ICompositePropertySource object for a given target. The runtime
provides implementations of IPropertiesProvider in GenericEMF
PropertiesProvider and DiagramPropertiesProvider, as shown in
Figure 10-40.

10.4 Services 431

Figure 10-40 PropertiesService

PropertiesProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.prop-
erties.propertiesProviders

Description: This extension-point facilitates the configuration of providers
for the PropertiesService (org.eclipse.gmf.runtime.common.ui.serv-
ices.properties.PropertiesService). Using this extension-point,
providers are registered to contribute properties to the Eclipse property sheet
view part, given a workbench selection.

Configuration markup:
<!ELEMENT extension (PropertiesProvider)>

<!ELEMENT PropertiesProvider (Priority)>
<!ATTLIST PropertiesProvider
class CDATA #REQUIRED
verifyPluginLoaded (true | false) >

A PropertiesProvider element describes a client-defined PropertiesProvider
object.

ptg6022785

class—The class attribute must contain a fully qualified name of the
PropertiesProvider class. The PropertiesProvider must implement the
org.eclipse.gmf.runtime.common.ui.services.properties.IPrope
rtyProvider interface.

verifyPluginLoaded—The verifyPluginLoaded attribute is used
while testing the applicability of the given provider. If set to true, the service
verifies that the provider’s plug-in is loaded, before running the IProp-
ertyProvider.provides() test. If the declaring plug-in is not loaded,
IPropertyProvider.provides() is not called and the provider then is con-
sidered not applicable. If the declaring plug-in is loaded, the service runs
IPropertyProvider.provides() to determine whether the provider is appli-
cable. When the verifyPluginLoaded attribute is set to false, verification is
not performed and IPropertyProvider.provides() is called regardless of
the plug-in being loaded.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

The Priority element specifies the priority of the provider from Highest
to Lowest. The providers are allowed to contribute to the property source in
order of their priorities, from Highest to Lowest. This ensures the desired
order of contribution and helps to exclude duplicate properties that were already
contributed by others. For example, a provider with Lowest priority, when exe-
cuted, can check whether there are any properties already contributed by any
other providers. If none have been contributed, the provider might want to con-
tribute; if some have been contributed, the provide might want to withdraw from
contribution.

name—Enumeration with the following five values: Highest, High,
Medium, Low, and Lowest.

Examples:
The following is an example of a provider extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.properties.
propertiesProviders">

<PropertiesProvider
verifyPluginLoaded="false"
class="com.examples.MyPropertiesProvider">
<Priority name="Medium"/>

</PropertiesProvider>
</extension>

432 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

API information:
The value of the class attribute must represent a subclass of org.eclipse.

gmf.runtime.common.core.service.AbstractProvider that implements
org.eclipse.gmf.runtime.common.ui.services.properties.IProp-
ertiesProvider.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.17 PropertiesModifierService

The PropertiesModifierService provides the modification of properties
contributed by the PropertiesService. The runtime provides a concrete
implementation of the modifier service with ReadOnlyDiagramProperties
Modifier, as seen in Figure 10-41. Install this provider on diagrams that do not
allow for the editing of properties.

10.4 Services 433

Figure 10-41 PropertiesModifierService

PropertiesModifier Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.prop-
erties.propertyModifiers

ptg6022785

Description: This extension-point facilitates the configuration of modifiers
for the PropertiesService (org.eclipse.gmf.runtime.common.ui.
services.properties.PropertiesService).

Using this extension-point, modifiers are registered to specific property
providers, which contribute properties to the Eclipse property sheet view part.
The role of a modifier is to write-protect and/or set flags for properties provided
by the provider for which this modifier is contributed. The Provider element indi-
cates the associated provider(s). One or more associated providers can exist. If
the modifier is to be attached to all property providers, its Provider’s element
class should be set to *.

You can specify a policy to delay loading the modifier until it is applicable.

Configuration markup:
<!ELEMENT extension (PropertyModifier)>

<!ELEMENT PropertyModifier (Priority , Policy? , Provider+)>
<!ATTLIST PropertyModifier
class CDATA #REQUIRED>

class—Fully qualified String containing the provider class that implements
org.eclipse.gmf.runtime.common.ui.services.properties.IProp-
ertiesModifier.

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—This element specifies the priority that this provider has relative to
other property modifier providers. All providers have the opportunity to make
their contributions. The provider with the lowest priority is chosen as the first
contributor, and the provider with the highest priority is chosen as the last con-
tributor.

<!ELEMENT Policy EMPTY>
<!ATTLIST Policy
class CDATA #REQUIRED>

class—Fully qualified String containing the policy class.

<!ELEMENT Provider EMPTY>
<!ATTLIST Provider
class CDATA #REQUIRED>

434 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

class—Fully qualified String containing the provider class.

Examples:
The following is an example PropertiesModifier extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.properties.
propertyModifiers">
<PropertyModifier class="org.eclipse.test.project.ui.
properties.providers.
ReadOnlyDiagramPropertiesModifier">
<Priority name="Highest"/>
<Provider class="*"/>
</PropertyModifier>
</extension>

API information:
The value of the class attribute must represent a class that implements

org.eclipse.gmf.runtime.common.ui.services.properties.IProp-
ertiesModifier.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.18 DragDropListenerService

The DragDropListenerService works with the IDragDropListener
Provider to provide IDragSourceListener and IDropTargetListener
functionality for a specified context. The runtime supplies an AbstractDrag
DropListenerProvider, leaving the methods getDragSourceListener()
and getDropTargetListener() for implementation, as seen in Figure 10-42.
By default, the provides() method is handled by the ProviderDescriptor
inner class of DragDropListenerService, which extends Service.
ProviderDescriptor. The configuration is loaded from the extension-point
contribution for the provider, as discussed next.

DragDropListenerProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.common.ui.services.dnd.
dragDropListenerProviders

10.4 Services 435

ptg6022785

Figure 10-42 DragDropListenerService

Description: This extension-point registers drag source and drop target lis-
teners for element types within view parts. This extension-point facilitates the
configuration of providers for the DragDropListenerService (org.
eclipse.gmf.runtime.common.ui.services.dnd.core.DragDrop
ListenerService). The providers register listeners for drag-and-drop opera-
tions on specific element types within view parts.

Configuration markup:
<!ELEMENT extension (DragDropListenerProvider)>

<!ELEMENT DragDropListenerProvider (Priority , ViewId+)>
<!ATTLIST DragDropListenerProvider
id CDATA #REQUIRED
class CDATA #REQUIRED>

id—The identifier of the provider—for example, my_dragDropListener
Provider.

class—The provider class. Providers implement service functionality
(operations).

436 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT ViewId (ElementType+)>
<!ATTLIST ViewId
id CDATA #REQUIRED>

id—The target view part ID—for example, org.eclipse.test.
project.ui.views.MyView.

<!ELEMENT ElementType (OperationType+)>
<!ATTLIST ElementType
class CDATA #REQUIRED>

class—The element type within the view part—for example, org.
eclipse.test.providers.MyElement.

<!ELEMENT OperationType (TransferId+)>
<!ATTLIST OperationType
operation (drag|drop) >

operation—The operation type being registered for within the view part—
for example, drag or drop.

<!ELEMENT TransferId EMPTY>
<!ATTLIST TransferId
transferId CDATA #REQUIRED>

transferId—The ID for the transfer agent.

Examples:
The following is an example of the DragDropListenerProvider

extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.dnd.
dragDropListenerProviders">
<DragDropListenerProvider

class="org.eclipse.test.project.ui.internal.providers.dnd.

10.4 Services 437

ptg6022785

DragDropListenerProvider"
id="myExplorerDragDropListenerProvider">
<Priority name="Lowest"/>
<ViewId id="org.eclipse.test.project.ui.views.MyExplorer">

<ElementType
class="org.eclipse.test.project.ui.internal.
providers.myexplorer.MyElement">
<OperationType operation="drag">
<TransferId transferId="selection"/>
<TransferId transferId="customData"/>
<TransferId transferId="file"/>
<TransferId transferId="text"/>
<TransferId transferId="richText"/>

</OperationType>
<OperationType operation="drop"/>

<TransferId transferId="selection"/>
<TransferId transferId="customData"/>

</OperationType>
</ElementType>

</ViewId>
</DragDropListenerProvider>

</extension>

API information:
The value of the class attribute must represent a subclass of org.

eclipse.gmf.runtime.common.core.service.AbstractProvider that
implements org.eclipse.gmf.runtime.common.ui.services.dnd.
core.IDragDropListenerProvider (such as a subclass of org.eclipse.
gmf.runtime.common.ui.services.dnd.core. AbstractDragDrop
ListenerProvider).

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.19 TransferAdapterService

The TransferAdapterService and corresponding ITransferAdapter
|Provider interface allow providers to supply transfer adapters for a specified
transfer ID during drag-and-drop operations. An AbstractTransfer
AdapterProvider is supplied, along with a concrete TransferAdapter
Provider class, as seen in Figure 10-43. Providers work with ITransfer
DropTargetListener and ITransferDragSourceListener implemen-
tations.

438 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-43 TransferAdapterService

TransferAdapterProvider ExtensionPoint

Identifier: org.eclipse.gmf.runtime.common.ui.services.dnd.
transferAdapterProviders

Description: This extension-point registers transfer adapters for drag-and-
drop operations. This extension-point facilitates the configuration of providers
for the TransferAdapterService (org.eclipse.gmf.runtime.com-
mon.ui.services.dnd.core.TransferAdapterService). The providers
register adapters for drag-and-drop operations on specific transfer IDs.

Configuration markup:
<!ELEMENT extension (TransferAdapterProvider)>

<!ELEMENT TransferAdapterProvider (Priority , AdapterType+)>
<!ATTLIST TransferAdapterProvider
id CDATA #REQUIRED
class CDATA #REQUIRED>

id—The identifier of the provider—for example, my_transferAdapter
Provider.

class—The provider class. Providers implement service functionality
(operations).

10.4 Services 439

ptg6022785

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

name—The name of the provider priority—Lowest, Low, Medium, High, or
Highest.

<!ELEMENT AdapterType (TransferId+)>
<!ATTLIST AdapterType
operation (drag|drop) >

operation—The adapter type being registered—for example, drag or drop.

<!ELEMENT TransferId EMPTY>
<!ATTLIST TransferId
id CDATA #REQUIRED>

id—The unique transfer ID for the transfer agent—for example,
customDataTransfer.

Examples:
The following is an example of the TransferAdapterProvider extension:

<extension
point="org.eclipse.gmf.runtime.common.ui.services.dnd.
dragDropListenerProviders">
<DragDropListenerProvider

class="org.eclipse.test.project.ui.internal.providers.dnd.
MyExplorerDNDListenerProvider"
id="myexplorerDragDropListenerProvider">
<Priority name="Lowest"/>
<ViewId id="org.eclipse.test.modeler.ui.views.MyExplorer">
<ElementType

class="org.eclipse.test.project.ui.internal.providers.
explorer.MyElement">
<OperationType operation="drag">

<TransferId transferId="selection"/>
<TransferId transferId="customData"/>
<TransferId transferId="file"/>
<TransferId transferId="text"/>
<TransferId transferId="richText"/>

</OperationType>
<OperationType operation="drop"/>

<TransferId transferId="selection"/>
<TransferId transferId="customData"/>

</OperationType>

440 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

</ElementType>
</ViewId>

</DragDropListenerProvider>
</extension>

API information:
The value of the class attribute must represent a subclass of org.eclipse.

gmf.runtime.common.core.service.AbstractProvider that implements
org.eclipse.gmf.runtime.common.ui.services.dnd.core.ITransfer
AdapterProvider (such as a subclass of org.eclipse.gmf.runtime.
common.ui.services.dnd.core.AbstractTransferAdapterProvider).

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.4.20 DiagramEvenBroker Service

As pointed out in its corresponding extension-point schema documentation, this
is an advanced feature of the runtime; only those who understand its potential
effects should use it. The DiagramEventBrokerService and corresponding
provider allow for the contribution of an event broker for diagrams that replaces
the default, provided by the class DiagramEventBroker. As shown in Figure
10-44, the functionality that the DiagramEventBroker provides is central to
the operation of the event model of the diagram within its editing domain, hence
the reason for the previous warning.

DiagramEventBrokerProvider Extension-Point

Identifier: org.eclipse.gmf.runtime.diagram.core.
diagramEventBrokerProviders

Description: This extension-point is intended to be used only by GMF run-
time experts because changing the diagram event broker could have severe impli-
cations on diagrams that share the same editing domain.

Configuration markup:
<!ELEMENT diagramEventBrokerProvider (Priority , editingDomain+)>
<!ATTLIST diagramEventBrokerProvider
class CDATA #REQUIRED>

10.4 Services 441

ptg6022785

Figure 10-44 DiagramEventBrokerService

class—The fully qualified name of the DiagramEventBrokerService
class.

<!ELEMENT editingDomain EMPTY>
<!ATTLIST editingDomain
ID CDATA #REQUIRED>

This element defines an editing domain to associate with the DiagramEvent
Broker.

ID—The ID of the editing domain

<!ELEMENT Priority EMPTY>
<!ATTLIST Priority
name (Lowest|Low|Medium|High|Highest) >

This element defines the priority of the DiagramEventBrokerService.
name—The priority of the provider. It can be one of the following values:

Lowest, Low, Medium, High, or Highest. Dependencies must be considered
when choosing the priority.

442 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Examples:

<extension
point="org.eclipse.gmf.runtime.diagram.core.
diagramEventBrokerProviders">

<diagramEventBrokerProvider
class="org.eclipse.pde.target.diagram.
MyDiagramEventBrokerProvider">

<Priority name="Highest"/>
<editingDomain

ID="org.eclipse.pde.target.diagram.EditingDomain">
</editingDomain>

</diagramEventBrokerProvider>
</extension>

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point. Furthermore, this service doesn’t appear to be usable.

10.5 Additional Extension-Points

In addition to the extension-points described so far that incorporate the service-
provider infrastructure, the GMF runtime provides a number of additional
extension-points that I define here.

10.5.1 ElementTypes

Identifier: org.eclipse.gmf.runtime.emf.type.core.
elementTypes

Description: The org.eclipse.gmf.runtime.emf.type.core.ele-
mentTypes extension-point defines application specializations of metamodel
types for the following purposes:

To extend (but not replace) the basic metamodel editing behavior for ele-
ments that match such specializations

To contribute icons and display names for such specializations

The elementType specializations can be used for menu or tool palette items
for element creation.

You can extend editing behavior by associating an editHelperAdvice to
a specialization or by contributing an adviceBinding that binds an edit
HelperAdvice to an elementType. Edit HelperAdvice is applied before
and/or after the behavior that the default metamodel editing behavior provides.

10.5 Additional Extension-Points 443

ptg6022785

You can create custom elementTypes by declaring an IElementType
Factory that is responsible for creating all elementTypes declaring the same
“kind” as the factory. Custom parameters can be associated with
elementTypes created this way.

Configuration markup:
<!ELEMENT extension (metamodel* , elementTypeFactory* ,
specializationType*)>

<!ELEMENT metamodel (metamodelType* , specializationType* ,

adviceBinding*)>
<!ATTLIST metamodel
nsURI CDATA #REQUIRED>

This element identifies the metamodel for which a set of elementTypes and
advice bindings are defined. All eClass and eContainmentFeature values specified
in the types must be found within this metamodel.

nsURI—The namespace URI of the metamodel.

<!ELEMENT elementTypeFactory EMPTY>
<!ATTLIST elementTypeFactory
factory CDATA #REQUIRED
kind CDATA #REQUIRED
params CDATA #IMPLIED>

This element contributes a factory that will create elementTypes declar-
ing the same “kind” as the factory. Custom parameters can be associated with
elementTypes created this way.

factory—The fully qualified name of a class that implements the org.
eclipse.gmf.runtime.emf.type.core.IElementTypeFactory.

kind—String identifying the kind of element that this factory will create.
elementTypes will declare the same “kind” String if they want to be created
by this factory.

params—Comma-separated list of custom parameters that this
elementType factory supports. Parameter values are read from the element
Type element and passed to the factory when they are created.

<!ELEMENT metamodelType (param*)>
<!ATTLIST metamodelType
id CDATA #REQUIRED
icon CDATA #IMPLIED
name CDATA #IMPLIED

444 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

eclass CDATA #REQUIRED
edithelper CDATA #IMPLIED
kind CDATA #IMPLIED>

This element defines a new metamodel elementType.
id—The unique identifier for this metamodel elementType.
icon—The path of this metamodel elementType icon, relative to this

plug-in location.
name—The I18N display name for this metamodel elementType.
eclass—The name of an EClass instance from the metamodel specified in

the enclosing metamodel element.
edithelper—The fully qualified name of a class that implements

org.eclipse.gmf.runtime.emf.type.core.edit.IEditHelper.
kind—The kind of element. Identifies the IElementTypeFactory that is

used to instantiate the elementType. If it is not specified, a default factory cre-
ates the element.

<!ELEMENT specializationType (specializes+ , (matcher | enablement)? ,

param* , eContainer?)>
<!ATTLIST specializationType
id CDATA #REQUIRED
icon CDATA #IMPLIED
name CDATA #IMPLIED
edithelperadvice CDATA #IMPLIED
kind CDATA #IMPLIED>

This element defines a new specialization elementType.
id—The unique specialization edit type identifier.
icon—The path of this specialization elementType icon, relative to this

plug-in location.
name—The I18N display name for this specialization elementType.
edithelperadvice—The fully qualified name of a class that implements

org.eclipse.gmf.runtime.emf.type.core.edit.IEditHelperAdvice.
This attribute specifies the class that provides editing advice for elements of this
type. You can contribute editing advice before and/or after the default editing
behavior.

kind—The kind of element. Identifies the IElementTypeFactory that is
used to instantiate the elementType. If it is not specified, a default factory cre-
ates the element.

10.5 Additional Extension-Points 445

ptg6022785

<!ELEMENT adviceBinding ((matcher | enablement)? , eContainer?)>
<!ATTLIST adviceBinding
typeId CDATA #REQUIRED
class CDATA #REQUIRED
inheritance (all|none) "none"
id CDATA #REQUIRED>

This element binds an IEditHelperAdvice with an elementType.
typeId—The elementType identifier.
class—The fully qualified name of a class that implements org.

eclipse.gmf.runtime.emf.type.core.edit.IEditHelperAdvice. This
attribute specifies the class that provides editing advice for elements of this type.
You can contribute editing advice before and/or after the default editing
behavior.

inheritance—Indicates the related elementTypes that should inherit this
advice. Does not apply to specialization types, which always inherit (all).

all—Advice is inherited by all metamodel types whose EClasses are sub-
types of the metamodel type to which it was applied, and to all specializations of
those metamodel types.

none—Advice is not inherited by related metamodel types. It is applied only
to the metatmodel type and its specializations.

id—The unique ID of this advice binding.

<!ELEMENT specializes EMPTY>
<!ATTLIST specializes
id CDATA #REQUIRED>

This element is used to identify another elementType (metamodel or spe-
cialization) that this type specializes.

id—Identifier of the metamodel type or specialization type that this type spe-
cializes in.

<!ELEMENT matcher EMPTY>
<!ATTLIST matcher
class CDATA #REQUIRED>

This element is used to specify the class that will determine whether an exist-
ing model element matches this type.

class—The fully qualified name of a class that implements org.eclipse.
gmf.runtime.emf.type.core.IElementMatcher.

<!ELEMENT eContainer (eContainmentFeature* , (matcher | enablement)?)>

446 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

This element describes the qualities of the container model element for which
this edit helper advice is relevant.

<!ELEMENT eContainmentFeature EMPTY>
<!ATTLIST eContainmentFeature
qname CDATA #REQUIRED>

This element specifies the containment feature for model elements for which
this EditHelper advice is relevant.

qname—The name of the containment feature, qualified by its EClass
name.

<!ELEMENT param EMPTY>
<!ATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED>

This element defines a custom parameter name and value pair.
name—The parameter name.
value—The parameter value.

Examples:
<metamodel nsURI="http://www.eclipse.org/emf/2002/Ecore">

<metamodelType
id="org.eclipse.gmf.runtime.emf.type.core.eobject"
icon="icons/eobject.gif"
name="%EObject"
eclass="EObject"
edithelper="org.eclipse.gmf.runtime.emf.type.core.
EObjectEditHelper">

</metamodelType>

<specializationType
id="org.eclipse.gmf.runtime.emf.type.core.special"
icon="icons/special.gif"
name="%Special"
edithelperadvice="org.eclipse.gmf.runtime.emf.type.core.
SpecialEditHelperAdvice">
<specializes

id="org.eclipse.gmf.runtime.emf.type.core.eobject"/>
<matcher

class="org.eclipse.gmf.runtime.emf.type.core.
specialMatcher"/>

</specializationType>

<specializationType
id="org.eclipse.gmf.runtime.emf.type.core.special2"
icon="icons/special2.gif"
name="%Special2"

10.5 Additional Extension-Points 447

ptg6022785

edithelperadvice="org.eclipse.gmf.runtime.emf.type.
core.Special2EditHelperAdvice">
<specializes id="org.eclipse.gmf.runtime.emf.type.

core.eobject"/>
<eContainer>

<enablement>
<test property="special2"

value="special2Value"/>
</enablement>

</eContainer>
<enablement>

<test property="special2" value="special2Value"/>
</enablement>

</specializationType>

<specializationType
id="org.eclipse.gmf.runtime.emf.type.core.customType"
icon="icons/customType.gif"
name="%CustomType"
kind="org.eclipse.gmf.runtime.emf.type.core.
CustomElementKind"
edithelperadvice="org.eclipse.gmf.runtime.emf.type.
core.CustomEditHelperAdvice">
<specializes

id="org.eclipse.gmf.runtime.emf.type.core.eobject"/>
<param

name="customParameter1"
value="value1">

</param>
<param

name="customParameter2"
value="value2">

</param>
</specializationType>

<adviceBinding
id="org.eclipse.gmf.runtime.emf.type.core.advisedType"
typeId="org.eclipse.gmf.runtime.emf.type.core.eobject"
class="org.eclipse.gmf.runtime.emf.type.core.
advisedTypeEditHelperAdvice"
applyToSubtypes="false">
<eContainer>

<enablement>
<test property="advised" value="advisedValue"/>

</enablement>
</eContainer>

</adviceBinding>
</metamodel>

<elementTypeFactory
factory="org.eclipse.gmf.runtime.emf.type.core.
CustomElementTypeFactory"
kind = "org.eclipse.gmf.runtime.emf.type.core.CustomElementKind"
params = "customParameter1, customParameter2">

</elementTypeFactory>
</extension>

448 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

API information:
See the org.eclipse.gmf.runtime.emf.type.core package in the

org.eclipse.gmf.runtime.emf.type.core plug-in for the API description.
Figure 10-45 shows the main elements of this service.

10.5 Additional Extension-Points 449

Figure 10-45 ElementTypes

10.5.2 ElementTypeBindings

Identifier: org.eclipse.gmf.runtime.emf.type.core.element
TypeBindings

Description: This extension-point allows clients of the GMF extensible type
registry to define “client contexts” that describe the objects that they are inter-
ested in editing, and to bind them to ElementTypes and advice that they want
to have applied to these objects.

ptg6022785

Configuration markup:
<!ELEMENT extension (clientContext* , binding*)>
<!ELEMENT clientContext (enablement | matcher)>
<!ATTLIST clientContext
id CDATA #REQUIRED>

This element defines a client context, representing a class of objects that a
client wants to edit using a set of ElementTypes and advice.

A client context can declare an <enablement> expression that matches
model elements that are included in the context. Where that is not sufficient, an
alternative is to define a matcher class using a <matcher> element.

id—The unique ID of the client context.

<!ELEMENT matcher EMPTY>
<!ATTLIST matcher
class CDATA #REQUIRED>

This element specifies the class that determines whether an existing model
element matches this client context.

class—The fully qualified name of a class that implements
org.eclipse.gmf.runtime.emf.type.core.IElementMatcher.

<!ELEMENT binding (elementType* , advice*)>
<!ATTLIST binding
context CDATA #REQUIRED>

This element defines a binding between a client context and one or more
ElementTypes or advice. The context itself can be declared by the same plug-
in or by a different plug-in.

You can specify the constraints to be bound by any number of nested
<elementType> and/or <advice> elements to reference multiple Element
Types and/or advice.

context—References the ID of a context that is bound to one or more
ElementTypes or advice.

<!ELEMENT elementType EMPTY>
<!ATTLIST elementType
ref CDATA #IMPLIED
pattern CDATA #IMPLIED>

This element defines an ElementType or a pattern of ElementType IDs in
a client context <binding>.

450 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

ref—References the ID of an ElementType to bind the client context to.
You cannot use this attribute in conjunction with the pattern attribute.

pattern—The pattern of ElementType IDs to be bound. Patterns are reg-
ular expressions that match unique identifiers. See the Java documentation for
java.util.regex.Pattern for further details. You cannot use this attribute
in conjunction with the ref attribute.

<!ELEMENT advice EMPTY>
<!ATTLIST advice
ref CDATA #IMPLIED
pattern CDATA #IMPLIED>

This element defines an advice or a pattern of advice IDs in a client context
<binding>.

ref—References the ID of an advice to bind the client context to. You can-
not use this attribute in conjunction with the pattern attribute.

pattern—The pattern of advice IDs to be bound. Patterns are regular
expressions that match unique identifiers. See the Java documentation for
java.util.regex.Pattern for further details. You cannot use this attribute
in conjunction with the ref attribute.

Examples:
Consider this example of a context that includes only EObjects from the

logic example’s editing domain:

<extension-point="org.eclipse.gmf.runtime.emf.type.core.
elementTypeBindings">
<clientContext

id="org.eclipse.gmf.examples.runtime.diagram.logic">
<enablement>

<test
property="org.eclipse.gmf.runtime.emf.core.editingDomain"
value="org.eclipse.gmf.examples.runtime.diagram.
logicEditingDomain"/>

</enablement>
</clientContext>

</extension>

This is an example of binding a single advice to the logic context:

<extension-point="org.eclipse.gmf.runtime.emf.type.core.
elementTypeBindings">
<binding

context="org.eclipse.gmf.examples.runtime.diagram.logic"/>
<advice ref="org.eclipse.gmf.runtime.diagram.core.advice.

10.5 Additional Extension-Points 451

ptg6022785

notationDepdendents"/>
</binding>

</extension>

Consider this example of binding multiple elementTypes and advice to the
logic context:

<extension-
point="org.eclipse.gmf.runtime.emf.type.core.elementTypeBindings">

<binding
context="org.eclipse.gmf.examples.runtime.diagram.logic"/>

<elementType pattern="logic.*"/>
<advice pattern="logic.*"/>

</binding>
</extension>

10.5.3 LogListeners

Identifier: org.eclipse.gmf.runtime.common.core.logListeners
Description: This extension-point defines listeners for the Eclipse logging

facility.

Configuration markup:
<!ELEMENT extension (LogListener)>

<!ELEMENT LogListener EMPTY>
<!ATTLIST LogListener
class CDATA #REQUIRED>

class—The listener class.

Examples:
The following is an example of a LogListener contribution:

<extension point="org.eclipse.gmf.runtime.common.core.logListeners">
<LogListener

class="org.eclipse.mindmap.listeners.MindmapLogListener"/>
</extension>

API information:
The value of the class attribute must be the fully qualified name of a class

that implements org.eclipse.core.runtime.ILogListener.

452 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.
This extension-point is not contributed to in the runtime itself, and the only

implementations of the ILogListener interface are found in PlatformLog
Writer and StatusManagerLogListener.

10.5.4 PropertiesConfigurations

Identifier: org.eclipse.gmf.runtime.common.core.
propertiesConfiguration

Description: This extension-point defines plug-in-specific Strings in external
properties files so that clients of the plug-in can refer to these Strings without
loading the plug-in itself. (Loading of the plug-in is deferred.)

Configuration markup:
<!ELEMENT extension (PropertiesConfiguration+)>
<!ELEMENT PropertiesConfiguration EMPTY>
<!ATTLIST PropertiesConfiguration
path CDATA #REQUIRED>

path—The relative path to a properties file.

Examples:
The following is an example of a PropertiesConfiguration contri-

bution:

<extension
point="org.eclipse.gmf.runtime.common.core.propertiesConfiguration">
<PropertiesConfiguration path="plugin.properties"/>

</extension>

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.5.5 Document Providers

Identifier: org.eclipse.gmf.runtime.diagram.ui.resources.
editor.documentProviders

Description: This extension-point defines mappings between file types and
documentProviders, or between types of editor inputs and document

10.5 Additional Extension-Points 453

ptg6022785

providers that editors can use. DocumentProviders must implement the inter-
face org.eclipse.gmf.runtime.diagram.ui.editor.IDocumentPro-
vider. Editor inputs must be an instance of org.eclipse.ui.IEditor
Input.

Configuration markup:
<!ELEMENT extension (provider*)>

<!ELEMENT provider EMPTY>
<!ATTLIST provider
extensions CDATA #IMPLIED
inputTypes CDATA #IMPLIED
class CDATA #REQUIRED
id CDATA #REQUIRED
documentType CDATA
"org.eclipse.gmf.runtime.diagram.ui.editor.IDocument">

extensions—A comma-separated list of file extensions.
inputTypes—A comma-separated list of qualified editor input class names

that must implement org.eclipse.ui.IEditorInput.
class—The qualified name of the document provider class that must imple-

ment the interface org.eclipse.ui.texteditor.IDocumentProvider.
id—The unique ID of this provider.
documentType—org.eclipse.gmf.runtime.diagram.ui.editor.

IDocument

Examples:
This example registers org.eclipse.ui.examples.javaeditor.

JavaDocumentProvider as the default provider for files with the extension
.jav:

<extension
point="org.eclipse.gmf.runtime.diagram.ui.resources.
editor.documentProviders">
<provider

extensions=".jav"
class="org.eclipse.ui.examples.javaeditor.JavaDocumentProvider"
id="org.eclipse.ui.examples.javaeditor.JavaDocumentProvider">

</provider>
</extension>

This example registers org.eclipse.gmf.runtime.diagram.ui.
resources.editor.FileDocumentProvider as the default provider for all
editor inputs that are an instance of org.eclipse.ui.IStorageEditor
Input.

454 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<extension
point="org.eclipse.gmf.runtime.diagram.ui.resources.editor.
documentProviders">
<provider

inputTypes="org.eclipse.ui.IStorageEditorInput"
class="org.eclipse.gmf.runtime.diagram.ui.resources.editor.
FileDocumentProvider"
id="org.eclipse.gmf.runtime.diagram.ui.resources.editor.
FileDocumentProvider">

</provider>
</extension>

API information:
DocumentProviders registered for a file extension have precedence over

those registered for input types. DocumentProviders must implement the inter-
face org.eclipse.ui.texteditor.IDocumentProvider. Editor inputs
must be instance of org.eclipse.ui.IEditorInput. Figure 10-46 is a dia-
gram of the IDocumentProvider interface and its implementations provided by
the runtime.

10.5 Additional Extension-Points 455

Figure 10-46 DocumentProvider

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point, but they do provide an implementation of IDiagramDocument
Provider and extend AbstractDocumentProvider.

ptg6022785

10.5.6 RenderedImageFactory

Identifier: org.eclipse.gmf.runtime.draw2d.ui.render.
renderedImageFactory

Description: This extension-point defines an image type to allow autodetec-
tion of an image buffer. The image type can instantiate a RenderedImage,
which can subsequently be rendered using the ScalableImageFigure class. In
the extension-point, the client points to a factory class that is created imple-
menting the RenderedImageType interface. The RenderedImageFactory
static class calls the extension-point to compile a list of image types to query.
When the client calls the RenderedImageFactory to retrieve the proper
RenderedImage, it asks each type whether it can handle the particular image
buffer. If the type autodetects the image buffer, the type instantiates and returns
a RenderedImage object.

Configuration markup:
<!ELEMENT extension (factory)>
<!ELEMENT factory EMPTY>
<!ATTLIST factory
class CDATA #REQUIRED>

class—Name of the image factory, such as the provided org.eclipse.
gmf.runtime.draw2d.ui.render.factory.RenderedImageFactory.

Examples:
An extension to the renderedImageFactory would require implementa-

tion of the RenderedImageType interface. The following is an example contri-
bution to the renderedImageFactory extension, as found in the runtime
plug-in org.eclipse.gmf.runtime.draw2d.ui.render.awt:

<extension
point="org.eclipse.gmf.runtime.draw2d.ui.render.
renderedImageFactory">
<factory

class="org.eclipse.gmf.runtime.draw2d.ui.render.awt.
internal.svg.SVGImageType">

</factory>
</extension>

API information:
For API information, see the classes and interfaces defined in the org.

eclipse.gmf.runtime.draw2d.ui.render and org.eclipse.gmf.run-
time.draw2d.ui.render.factory packages.

456 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Clients that provide an extension to the renderedImageFactory exten-
sion-point must create classes that implement the following interfaces:

org.eclipse.gmf.runtime.draw2d.ui.render.RenderedImage
org.eclipse.gmf.runtime.draw2d.ui.render.factory.RenderedImageType

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.5.7 ClipboardSupport

Identifier: org.eclipse.gmf.runtime.emf.clipboard.core.clip-
boardSupport

Description: Providers of EMF metamodels can contribute extensions to pro-
vide support for copying EMF objects to and pasting them from the system
Clipboard. ClipboardSupport allows extensions to implement fairly complex
metamodel-specific semantics for copy/paste operations, where some relation-
ships between model elements need special treatment.

Configuration markup:
<!ELEMENT extension (factory+)>
<!ELEMENT factory EMPTY>
<!ATTLIST factory
nsURI CDATA #REQUIRED
class CDATA #REQUIRED
priority (lowest|low|medium|high|highest) "medium">

This element registers an implementation of the IClipboardSupportFactory
interface that can create objects that provide metamodel-specific copy/paste
semantics for EMF objects.

nsURI—Namespace URI identifying the EPackage for which the extension
provides an IClipboardSupportFactory implementation. The EPackage
represents an EMF metamodel.

class—The fully qualified name of a class implementing the IClipboard
SupportFactory interface. This class is loaded and instantiated only when
needed to copy an EMF object to the Clipboard or when pasting from the
Clipboard.

priority—Indicates the priority, relative to other factories registered for
the same metamodel. The default is medium. This attribute is deprecated; a new
context-based approach will be devised soon.

10.5 Additional Extension-Points 457

ptg6022785

Examples:
To register a ClipboardSupport factory for the EMF Library example

model, follow this:

<extension
point="org.eclipse.gmf.runtime.emf.clipboard.core.
clipboardSupport">
<factory

nsURI="http:///org/eclipse/emf/examples/library.ecore"
class="com.example.emf.library.clipboard.
LibraryClipboardSupportFactory">

</factory>
</extension>

API information:
Classes registered on this extension-point must implement the org.

eclipse.gmf.runtime.emf.clipboard.core.IClipboardSupportFact
ory interface. A support factory is responsible for creating IClip-
boardSupports for the packages on which it is registered on this extension-
point.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.5.8 Pathmaps

Identifier: org.eclipse.gmf.runtime.emf.core.Pathmaps
Description: Extension-point for the definition of pathmap variables.

Pathmap variables allow for the portability of URIs, in similar fashion to path
Eclipse’s core path variables. The actual location indicated by a URI depends on
the runtime binding of the path variable. Thus, different environments can work
with the same resource URIs even though the resources are stored in different
physical locations.

Configuration markup:
<!ELEMENT extension (pathmap)>

<!ELEMENT pathmap EMPTY>
<!ATTLIST pathmap
name CDATA #REQUIRED
plugin CDATA #IMPLIED
path CDATA #REQUIRED>

458 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

This element specifies a pathmap variable to be registered with the runtime.
name—The variable name.
plugin—The plug-in that contains the path, if different from the plug-in

that defines the extension.
path—The path, relative to the plug-in location (as indicated by the plug-in

attribute, if specified, or the current plug-in, if not).

Examples:
This example illustrates the definition of a pathmap to locate libraries in the

UML2 project. Using this pathmap, you can use URIs such as the following to
reference UML2 library resources: pathmap://UML2_LIBRARIES/Ecore.
library.uml2.

<extension
id="UML2Libraries"
name="UML2 Libraries"
point="org.eclipse.gmf.runtime.emf.core.Pathmaps">

<pathmap
name="UML2_LIBRARIES"
plugin="org.eclipse.uml2.resources"
path="libraries">

</pathmap>
</extension>

API information:
This extension-point has no associated API.

Notes:
Diagrams generated using the GMF tooling do not currently use this

extension-point.

10.6 Element Creation

With the basics of the notation model and services under our belt, let’s bring it
together and compare how GMF’s runtime differs from what we learned about
GEF in Chapter 9. We look at element creation because it is the most funda-
mental use case and nicely illustrates how GMF differs from GEF. You might
want to compare Figure 10-47 and the following description of GMF element
creation with that of GEF element creation covered in Section 9.2.6,
“Interactions.”

This initial sequence for element creation is similar to GEF, with the major
difference being GMF’s use of a CreationEditPolicy that uses a compound

10.6 Element Creation 459

ptg6022785

Figure 10-47 Element creation

Now let’s consider the mouse click on the diagram surface, which is covered
by Figures 10-48 and 10-49. First, we see that the compound command loaded
into the creation tool is executed to create the domain and notation view ele-
ments. Note that the domain element is created first and then passed to the
ViewService for notation element creation, leveraging the registered provider
and corresponding ViewFactory.

460 CHAPTER 10 • Graphical Modeling Framework Runtime

command to create both the domain (semantic) element and the view element
that references it. Using the command infrastructure in GMF ensures that undo
and redo are handled in a generic fashion and eliminates the need for orphan ele-
ment creation.

ptg6022785

Figure 10-48 Create command

10.6 Element Creation 461

When the domain element was created earlier, notification of the event went
to its corresponding EditPart. This is done within the context of a write action
so that undo/redo is possible. The EditPart then invokes refreshChildren(),
which causes the creation of the corresponding EditPart and Figure for the
child. Similar to the ViewService, an EditPartService finds the appropriate
provider to obtain the corresponding EditPart.

ptg6022785

Figure 10-49 EditPart creation

10.7 Command Infrastructure

The GMF runtime’s command infrastructure involves two aspects. The first
relates to commands that do not modify underlying EMF model elements (recall
that GMF uses EMF for both domain and notation, or diagram, models), such
as those used for opening a diagram, copying an image, and so on. The second
aspect is used to effect changes in the underlying EMF models and leverages the
EMF Transaction component.

462 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

10.7.1 Command Infrastructure

The heart of GMF’s command infrastructure for non-model-modifying com-
mands is the AbstractCommand class, found in the org.eclipse.gmf.
runtime.common.core.command package. AbstractCommand extends the
platform’s AbstractOperation class, which provides general undoable/
redoable command functionality.

Figure 10-50 is a diagram of the org.eclipse.gmf.runtime.common.
core.command package.

10.7 Command Infrastructure 463

Figure 10-50 Core commands

10.7.2 Model Element Command Infrastructure

One of the main motivators for starting the GMF project was the need to pro-
vide a standardized way to work with GEF and EMF command infrastructures.
Solutions to this problem had been covered in documentation, a GEF example,

ptg6022785

and many independently developed applications. GMF uses the EMF Trans-
action component for commands that impact the underlying model elements,
which is built upon the platform’s command infrastructure.

The heart of command support for undoable operations on model elements
is AbstractTransactionalCommand, which has a number of provided sub-
classes, as shown in Figure 10-51, and is found in the package org.eclipse.
gmf.runtime.emf.commands.core.command. Look to the org.eclipse.
gmf.runtime.diagram.core.commands and *.diagram.ui.commands
packages for many common commands for use in diagrams, such as these:

AddCommand

CreateDiagramCommand

DeleteCommand

GroupCommand and UngroupCommand

RemoveBookmarkCommand

SetConnectionAnchorsCommand

SetConnectionEndsCommand

SetPropertyCommand

CreateCommand

DeferredCreateConnectionView
Command

DeferredLayoutCommand

Commands have corresponding requests and are often invoked by a user
Action. The DiagramAction abstract class is provided and has a number of sub-
classes to cover most diagram actions. Many of these are internal classes, but
they can be examined to better understand how to use the command infrastruc-
ture of the diagram runtime. Figure 10-52 shows the DiagramAction class and
a number of its available subclasses.

464 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-51 Transactional commands

10.7 Command Infrastructure 465

ptg6022785

Figure 10-52 Diagram actions

10.8 Developing a Diagram

This section explores how to construct a diagram from scratch using the runtime
functionality, without the generator. We build a mindmap diagram so that we can
more easily compare with the code generated when using the tooling side of
GMF, as outlined in Section 4.3, “Developing the Mindmap Diagram.” The first
step is to create the minimal working editor, to which we’ll add properties sup-
port, diagram preferences, action bars, and so on.

10.8.1 Essential Diagram Elements

To begin, we create a new Plug-in Project in our workspace named
org.eclipse.mindmap.diagram.pure, or a similar but necessarily different

466 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

name from one that might have been created earlier. Note that you also need to
have the mindmap model and edit projects in the workspace. When using the
new Plug-in Project Wizard, select the option that indicates that the plug-in will
make contributions to the user interface (UI), but don’t use any of the provided
templates. When finished, you’ll have a basic plug-in with activator class that
extends AbstractUIPlugin.

Diagram Editor

Using the plug-in manifest editor, add a new contribution to the org.eclipse.
ui.editors extension-point. You can do this from the Extensions tab using the
UI, or you can create it directly into the plugin.xml using its Text Editor tab. We
need to supply only the basic information for ID, class, extension, matching
strategy, and contributor class, as shown here:

<extension point="org.eclipse.ui.editors">
<editor

id="org.eclipse.mindmap.diagram.editor.MindmapDiagramEditorID"
name="%editorName"
icon="icons/obj16/MindmapDiagramFile.gif"
extensions="mmd"
default="true"
class="org.eclipse.mindmap.diagram.editor.MindmapDiagramEditor"
matchingStrategy="org.eclipse.gmf.runtime.diagram.ui.
resources.editor.parts.DiagramDocumentEditorMatchingStrategy"
contributorClass="org.eclipse.mindmap.diagram.editor.
MindmapDiagramActionBarContributor">

</editor>
</extension>

Use the provided quick fix support in the editor to add new classes where
required, beginning with the editor class. In the wizard, indicate that the editor
should extend org.eclipse.gmf.runtime.diagram.ui.resources.
editor.parts. DiagramDocumentEditor. This superclass offers almost all
the basic functionality we need, so the only content to add at this point is an ID
field and getter. Note that the ID matches the ID field in our earlier plug-in man-
ifest. If we plan to share the editing domain for this editor, we must enter the
appropriate extension-point contribution and ID with getter in the editor code as
well. We explore the sharing of editing domains in Section 4.4, “Developing a
Requirements Diagram.”

public class MindmapDiagramEditor extends DiagramDocumentEditor {

public MindmapDiagramEditor() {
super(true);

10.8 Developing a Diagram 467

ptg6022785

}

public static final String ID =
"org.eclipse.mindmap.diagram.editor.MindmapDiagramEditorID";

@Override
public String getContributorId() {
return MindmapDiagramEditorPlugin.ID;

}
}

Notice in our manifest that we declare that DiagramDocumentEditor
MatchingStrategy provides our editor’s matching strategy. This class is pro-
vided along with our editor’s superclass by the GMF runtime and is sufficient for
our needs as is. However, we must implement our own contributor class. To do
this, we again use the quick fix and create a class to extend DiagramActionBar
Contributor, provided by the runtime in the org.eclipse.gmf.
runtime.diagram.ui.parts package. We need to override two methods, as
shown here. The superclass uses the contribution item service to initialize a
default set of action bars that are useful for most diagrams.

public class MindmapDiagramActionBarContributor

extends DiagramActionBarContributor {

@Override
protected Class<MindmapDiagramEditor> getEditorClass() {

return MindmapDiagramEditor.class;
}

@Override
protected String getEditorId() {

return MindmapDiagramEditor.ID;
}

}

Domain Model

We must register each of the domain model elements used in our diagram within
an org.eclipse.gmf.runtime.emf.type.core.elementTypes contribu-
tion, declaring our mindmap model NS URI as the metamodel.

<extension point="org.eclipse.gmf.runtime.emf.type.core.elementTypes">
<metamodel nsURI="http://www.eclipse.org/2008/mindmap">

<metamodelType
id="org.eclipse.mindmap.diagram.Map"

468 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

icon="icons/obj16/MindmapDiagramFile.gif"
name="Map"
eclass="Map"
kind="org.eclipse.gmf.runtime.emf.type.core.IHintedType">
<param name="semanticHint" value="Map"/>
</metamodelType>
<metamodelType
id="org.eclipse.mindmap.diagram.Topic"
icon="icons/obj16/MindmapDiagramFile.gif"
name="Topic"
eclass="Topic"

kind="org.eclipse.gmf.runtime.emf.type.core.IHintedType">
<param name="semanticHint" value="Topic"/>

</metamodelType>
</metamodel>

</extension>

Note that both the Map and Topic classes from our domain model are reg-
istered as metamodelType elements with unique ID, name, eclass, and
IHintedType kind attributes. The semanticHint parameter for each
metamodelType supports the mapping of each type with its corresponding
View and EditPart, as you will see in our viewProviders and
editpartProviders extensions. Later, you’ll see how these metamodel ele-
ments are mapped to palette tools and, therefore, diagram graphical elements.
First, we need to complement our elementTypes contribution with an enumer-
ator that returns an IElementType instance for each of our declared
metamodelType IDs, as shown here in our MindmapElementTypes class.
IElementType is an interface that the GMF runtime uses to define types that
are displayed, created, edited, and destroyed. Each type has an associated icon,
display name, EClass, and EditHelper, and they all return an edit command
when provided an edit request.

public class MindmapElementTypes extends AbstractElementTypeEnumerator
{

public static final IElementType MAP =
getElementType("org.eclipse.mindmap.diagram.Map");

public static final IElementType TOPIC =
getElementType("org.eclipse.mindmap.diagram.Topic");

}

We need to add extension parser support for the diagram’s notation model.
The runtime provides one, so we simply declare a contribution using the
GMFResourceFactory class for our editor extension mmd type.

10.8 Developing a Diagram 469

ptg6022785

<extension point="org.eclipse.emf.ecore.extension_parser">
<parser

type="mmd"
class="org.eclipse.gmf.runtime.emf.core.resources.GMFResourceFactory">

</parser>
</extension>

Palette Definition

To create diagram elements, we need to define a palette. We can do this in a
largely declarative manner using the paletteProviders extension-point.
Following, we define a palette provider for our mindmap that uses the runtime’s
DefaultPaletteProvider class and is associated with our editor using its ID.
Note that the Practitioner can customize the palette.

<extension point="org.eclipse.gmf.runtime.diagram.ui.paletteProviders">
<paletteProvider

class=
"org.eclipse.gmf.runtime.diagram.ui.providers.DefaultPaletteProvider">

<Priority name="Highest"/>
<editor
id="org.eclipse.mindmap.diagram.editor.MindmapDiagramEditorID"/>
<contribution

factoryClass="org.eclipse.mindmap.diagram.providers.
MindmapPaletteFactory">

<entry id="nodeDrawer"
label="Nodes"
kind="drawer"
description="Mindmap diagram nodes"
path="/"
small_icon="icons/obj16/MindmapDiagramFile.gif">

<expand>
<content/>

</expand>
</entry>
<entry id="Topic"

label="Topic"
kind="tool"
description="Create a new Topic"
path="/nodeDrawer/"
small_icon="icons/obj16/MindmapDiagramFile.gif"/>

</contribution>
</paletteProvider>

</extension>

We’ve declared a factory class MindmapPaletteFactory that we need to
implement, along with a node drawer entry with a single Topic tool. Following
is the implementation of our factory class, which extends the inner class

470 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

PaletteFactory.Adapter provided by the runtime. Note the aforementioned
reference to the IElementType for our Topic domain element being passed as
a constructor argument to the GMF runtime’s CreationTool class.

public class MindmapPaletteFactory extends PaletteFactory.Adapter {

@Override
public Tool createTool(String toolId) {
if (toolId.equals("Topic")) {

return new CreationTool(MindmapElementTypes.TOPIC);
}
return null;

}
}

View Definition

As you learned earlier, the creation tool of the palette first creates a domain ele-
ment and then views using the view service. For this, we need to contribute to
the org.eclpse.gmf.runtime.diagram.core.viewProviders extension-
point. Below, we declare the contribution and our MindmapViewProvider
class, which we will need to implement.

<extension point="org.eclipse.gmf.runtime.diagram.core.viewProviders">
<viewProvider
class="org.eclipse.mindmap.diagram.providers.MindmapViewProvider">

<Priority name="Lowest"/>
</viewProvider>

</extension>

Our MindmapViewProvider extends the provided AbstractView
Provider and overrides the getNodeViewClass() and getDiagramView
Class() methods. These methods use the semanticHint parameters to return
the appropriate ViewFactory classes for the Topic node diagram, respectively.

public class MindmapViewProvider extends AbstractViewProvider {

private final Map<String, Class<?>> diagramMap = new
HashMap<String,

Class<?>>();
{
diagramMap.put(MindmapDiagramEditor.ID,

DiagramViewFactory.class);
}

10.8 Developing a Diagram 471

ptg6022785

private final Map<String, Class<?>> nodeMap = new HashMap<String,
Class<?>>();
{
nodeMap.put("Topic", TopicViewFactory.class);

}

@Override
protected Class getDiagramViewClass(IAdaptable semanticAdapter,

String diagramKind) {
return diagramMap.get(diagramKind);

}

@Override
protected Class getNodeViewClass(IAdaptable semanticAdapter,

View containerView, String semanticHint) {
Class clazz = null;
if (semanticHint != null && semanticHint.length() > 0) {
clazz = nodeMap.get(semanticHint);

}
return clazz;

}
}

Note that as an alternative to using the semanticHint obtained from the
elementType contribution in our plug-in manifest, we could use the
getSemanticEClass(semanticAdapter) method to resolve the semantic ele-
ment. Of course, we’d then have to modify our Map storage to use the EClass
as the key, as shown here:

private final Map<EClass, Class<?>> nodeMap = new HashMap<EClass,
Class<?>>();
{
nodeMap.put(MindmapPackage.eINSTANCE.getTopic(),

TopicViewFactory.class);
}

@Override
protected Class getNodeViewClass(IAdaptable semanticAdapter,

View containerView, String semanticHint) {
return nodeMap.get(getSemanticEClass(semanticAdapter));

}

The TopicViewFactory extends the provided AbstractShapeView
Factory but provides no additional capabilities. The provided DiagramView
Factory suffices for our mindmap’s diagram view class.

At this point, we have registered IElementTypes that correspond to our
domain model elements and are referenced by our creation tools in our palette.
When creating a Topic on the diagram, the creation tool invokes a compound

472 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

command that creates our domain element instance and passes it to the view
service. The view service uses our registered MindmapViewProvider and
obtains our TopicViewFactory based on the provided semanticHint.

For further clarification on how the runtime knows to create a new Topic
object and store it in the proper feature in our Map class, let’s take a closer look
at the compound command that the creation tool uses and see how it works.
First, we need to cover our EditPart definition.

EditPart Definition

We must define our EditParts for the diagram, which are provided by con-
tributing to the org.eclipse.gmf.runtime.diagram.ui.editpart
Providers extension-point. As with our view provider, we declare a provider
class that we need to implement.

<extension
point="org.eclipse.gmf.runtime.diagram.ui.editpartProviders">
<editpartProvider class=

"org.eclipse.mindmap.diagram.providers.MindmapEditPartProvider">
<Priority name="Lowest"/>

</editpartProvider>
</extension>

The implementation of our MindmapEditPartProvider is similar to that
of our ViewProvider, with a HashMap that contains our shape EditPart
classes keyed by their semanticHint, which is available from the passed View
using the getType() method. For now, we have only a single entry for our
Topic element. Our diagram EditPart is simply the default DiagramEdit
Part class that the runtime provides.

public class MindmapEditPartProvider extends AbstractEditPartProvider {

private final Map<String, Class<?>> diagramMap = new HashMap<String,
Class<?>>();
{

diagramMap.put(MindmapDiagramEditor.ID, DiagramEditPart.class);
}

private final Map<String, Class<?>> shapeMap = new HashMap<String,
Class<?>>();
{

shapeMap.put("Topic", TopicEditPart.class);
}

@Override
protected Class getDiagramEditPartClass(View view) {

10.8 Developing a Diagram 473

ptg6022785

return diagramMap.get(view.getType());
}

@Override
protected Class getNodeEditPartClass(View view) {
return shapeMap.get(view.getType());

}
}

Here again, we could replace the use of the semanticHint as the key by the
EClass of the element. The EClass can be resolved from the View using the
provided getReferencedElementEClass() method, as shown here:

private final Map<EClass, Class<?>> shapeMap = new HashMap<EClass,

Class<?>>();
{
shapeMap.put(MindmapPackage.eINSTANCE.getTopic(),

TopicEditPart.class);
}

@Override
protected Class getNodeEditPartClass(View view) {
Class clazz = null;
final EClass eClass = getReferencedElementEClass(view);
clazz = shapeMap.get(eClass);
return clazz;

}

Taking a look at the provided DiagramEditPart class, you can see in its
createDefaultEditPolicies() method that it installs a CreationEdit
Policy. When our creation tool is selected in the palette, the Topic
IElementType is set on the tool. When the mouse hovers over the diagram, the
installed CreationEditPolicy on the DiagramEditPart receives a
CreateViewAndElementRequest and returns a CompositeCommand contain-
ing a SemanticCreateCommand. Because we haven’t specified the containment
feature of our Map class in which to hold new Topic objects, the runtime uses
the PackageUtil.findFeature() method to discover one. In our case, only
one is appropriate: the elements containment reference. If there were multiple
options, or if we wanted to explicitly declare the containment feature, we could
provide our own EditPolicy that would set the containment feature on the
request before creating the command. Or we could add an EditHelper for the
Map class that would return the proper containment feature by overriding the
getDefaultContainmentFeature() method.

474 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

The getNodeEditPartClass() method is passed a View object that, in
turn, is passed to the getReferencedElementEClass() method of the super-
class. The View object’s element EClass is resolved and returned for use in
retrieving the proper EditPart class from the shapeMap.

As you can see, we need to provide a TopicEditPart class. As usual, we
extend a class provided by the runtime that offers most of the functionality we
need. In this case, our TopicEditPart extends ShapeNodeEditPart and over-
rides createNodeFigure() to return a DefaultSizeNodeFigure with a
child RoundedRectangle to provide the main figure.

public class TopicEditPart extends ShapeNodeEditPart {

public TopicEditPart(View view) {
super(view);

}

@Override
protected NodeFigure createNodeFigure() {

final NodeFigure figure = new
DefaultSizeNodeFigure(getMapMode()
.DPtoLP(40), getMapMode().DPtoLP(40));
figure.setLayoutManager(new StackLayout());
figure.add(new TopicFigure());
return figure;

}

public class TopicFigure extends RoundedRectangle {
public TopicFigure() {
this.setCornerDimensions(new

Dimension(getMapMode().DPtoLP(10), getMapMode().DPtoLP(10)));
}

}
}

Continuing from the last section, when a new Topic domain element and
view are created, the diagram’s EditPart receives the notification event and
refreshes its children. As a View notification event, there is not yet an EditPart
for the new domain element, so it invokes the EditPartFactory to create a
new one and add it to its list of children. As you can see from the earlier
TopicEditPart class, a new RoundedRectangle figure is created and dis-
played on the diagram.

New Diagram Wizard

To test our diagram, we need a wizard to create and initialize a new diagram
editor instance. First, we contribute to the org.eclipse.ui.newWizards
extension-point declaring a new MindmapDiagramCreationWizard that

10.8 Developing a Diagram 475

ptg6022785

extends the provided org.eclipse.gmf.runtime.diagram.ui.
resources.editor.ide.wizards.EditorCreationWizard.

<extension point="org.eclipse.ui.newWizards">
<wizard

category="org.eclipse.ui.Examples"
class=

"org.eclipse.mindmap.diagram.wizards.MindmapDiagramCreationWizard"
icon="icons/obj16/MindmapDiagramFile.gif"
id="org.eclipse.mindmap.diagram.wizards.MindmapCreationWizardID"
name="%newWizardName">
<description>%newWizardDesc</description>

</wizard>
</extension>

You can see the implementation of the wizard in the provided sample code.
Basically, the wizard provides a location and name selection page, with the option
of separating the diagram and domain model into distinct files. By default, the two
models are persisted into the same file, which our MindmapDiagramEditor ini-
tializes and opens.

If we launch the runtime workbench and test our diagram thus far, we can
see that we can create a diagram using this wizard and add Topic elements to
the diagram. We cannot set any properties yet, so we’ll configure those next.

10.8.2 Configuring the Properties View

To configure a properties view for our diagram, we leverage the platform’s
tabbed properties extension-points. As shown shortly, org.eclipse.ui.
views.properties.tabbed propertyContributor, propertyTabs, and
propertySections extension-points are used to provide basic domain model
properties for our diagram.

For the propertyTab contribution, we assign the org.eclipse.
mindmap.diagram contributor ID that will be referenced in the remaining con-
tributions. A propertyTab element in the domain category is declared, for
which we’ll configure a propertyContributor here:

<extension point="org.eclipse.ui.views.properties.tabbed.propertyTabs">
<propertyTabs contributorId="org.eclipse.mindmap.diagram">

<propertyTab
category="domain"
id="property.tab.domain"
label="%tab.domain"/>

</propertyTabs>
</extension>

476 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

The label provider is declared to be the MindmapSheetLabelProvider
class, which we need to implement. The contributor ID and category match our
propertyTabs definition. Following the extension-point contribution is the
implementation of the label provider, which extends DecoratingLabel
Provider and mainly consists of unwrapping methods to adapt our underlying
EMF models.

<extension point=
"org.eclipse.ui.views.properties.tabbed.propertyContributor">
<propertyContributor

contributorId="org.eclipse.mindmap.diagram"
labelProvider=
"org.eclipse.mindmap.diagram.sheet.MindmapSheetLabelProvider">

<propertyCategory category="domain"/>
</propertyContributor>

</extension>

public class MindmapSheetLabelProvider extends DecoratingLabelProvider
{

public MindmapSheetLabelProvider() {
super(new AdapterFactoryLabelProvider(

MindmapDiagramEditorPlugin.getInstance().
getItemProvidersAdapterFactory()), null);

}

@Override
public String getText(Object element) {
final Object selected = unwrap(element);
return super.getText(selected);

}

@Override
public Image getImage(Object element) {
return super.getImage(unwrap(element));

}

private Object unwrap(Object element) {
if (element instanceof IStructuredSelection) {

return unwrap(((IStructuredSelection)
element).getFirstElement());

}
if (element instanceof EditPart) {
return unwrapEditPart((EditPart) element);

}
if (element instanceof IAdaptable) {
final View view = (View) ((IAdaptable)

element).getAdapter(View.class);
if (view != null) {
return unwrapView(view);

}

10.8 Developing a Diagram 477

ptg6022785

}
return element;

}

private Object unwrapEditPart(EditPart p) {
if (p.getModel() instanceof View) {

return unwrapView((View) p.getModel());
}
return p.getModel();

}

private Object unwrapView(View view) {
return view.getElement() == null ? view : view.getElement();

}
}

As you can see, we need to add an AdapterFactory for our plug-in, which
can be configured in our MindmapDiagramEditorPlugin class, as shown here:

private ComposedAdapterFactory adapterFactory;
@Override
public void start(BundleContext context) throws Exception {

super.start(context);
instance = this;
adapterFactory = createAdapterFactory();

}

protected ComposedAdapterFactory createAdapterFactory() {
final List<AdapterFactoryImpl> factories = new

ArrayList<AdapterFactoryImpl>();
factories.add(new MindmapItemProviderAdapterFactory());
factories.add(new ResourceItemProviderAdapterFactory());
factories.add(new ReflectiveItemProviderAdapterFactory());
return new ComposedAdapterFactory(factories);

}

public AdapterFactory getItemProvidersAdapterFactory() {
return adapterFactory;

}

The propertySections contribution appears here, along with the imple-
mentation of our MindmapPropertySection class. Input types are declared to
be GEF EditPart types because they will be selected on our diagram. The
implementation of MindmapPropertySection is standard for most diagrams
and can be seen in generated code for the mindmap diagram.

478 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

<extension
point="org.eclipse.ui.views.properties.tabbed.propertySections">

<propertySections contributorId="org.eclipse.mindmap.diagram">
<propertySection

id="property.section.domain"
tab="property.tab.domain"
class=
"org.eclipse.mindmap.diagram.sheet.MindmapPropertySection">
<input type="org.eclipse.gef.EditPart"/>

</propertySection>
</propertySections>

</extension>

We can easily configure additional provided property tabs and content con-
tribution. Take a look at generated diagram code to see the contribution of visual
property tabs and content for diagram appearance, rulers, grid, and so on.

10.8.3 Connections

We need to provide linking between Topic elements to establish subtopic rela-
tionships. We begin by extending our paletteProviders contribution to
include a link drawer and tool, as seen here:

<entry id="linkDrawer"
label="%palette.link.drawer.label"
kind="drawer"
description="%palette.link.drawer.desc"
path="/"
small_icon="icons/obj16/Link.gif">

<expand>
<content/>

</expand>
</entry>
<entry id="Subtopic"

label="%palette.link.label"
kind="tool"
description="%palette.link.desc"
path="/linkDrawer/"
small_icon="icons/obj16/Link.gif"/>

Next, we revisit our MindmapPaletteFactory to add the corresponding
tool for this palette entry. This time, we use the ConnectionCreationTool,
passing our soon-to-be-created SUBTOPIC element type.

public Tool createTool(String toolId) {
if (toolId.equals("Topic")) {

return new CreationTool(MindmapElementTypes.TOPIC);

10.8 Developing a Diagram 479

ptg6022785

}
if (toolId.equals("Subtopic")) {
return new ConnectionCreationTool(MindmapElementTypes.SUBTOPIC);

}
return null;

}

In our MindmapElementTypes class, we add the new type, referencing an ID
that we’ll next add to our elementTypes extension.

public class MindmapElementTypes extends AbstractElementTypeEnumerator
{
public static final IElementType MAP =

getElementType("org.eclipse.mindmap.diagram.Map");
public static final IElementType TOPIC =

getElementType("org.eclipse.mindmap.diagram.Topic");
public static final IElementType SUBTOPIC =

getElementType("org.eclipse.mindmap.diagram.Subtopic");
}

<extension point="org.eclipse.gmf.runtime.emf.type.core.elementTypes">
<metamodel nsURI="http://www.eclipse.org/2008/mindmap">

<!-- ... -->
<specializationType

id="org.eclipse.mindmap.diagram.Subtopic"
icon="icons/obj16/Link.gif"
name="Subtopic"
kind="org.eclipse.gmf.runtime.emf.type.core.IHintedType">
<param name="semanticHint" value="Subtopic"/>
<specializes

id="org.eclipse.gmf.runtime.emf.type.core.null"/>
</specializationType>

</metamodel>
</extension>

The important point to note is that we’ve added a specializationType
entry for our Subtopic element. The reason is that it represents a reference ele-
ment in an existing element type, not an EClass itself. Our Relationship ele-
ment in the mindmap model is a full EClass and is declared using the
elementType element, as is the case with our Map and Topic. Note also that
the specializes element declares an ID of org.eclipse.gmf.runtime.emf.
type.core.null. This is the ID used in cases such as this, where the
specializationType is represents a reference element. As before, we include
the semanticHint parameter, which we’ll see used in our
MindmapViewProvider.

480 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

We know from Section 10.6, “Element Creation” that the semantic elements
are created first when creating elements in our diagram. And, since our subtopic
link represents a subtopics relationship element of our Topic class, we should
consider adding a SemanticEditPolicy to our TopicEditPart in order to
create the appropriate CreateRelationshipCommand for the subtopic link. If
we were using GEF alone, we would use the installEditPolicy() method to
do this; in GMF, we could use createDefaultEditPolicies(). However, we
have an editpolicyProvider extension-point and Service in GMF that we can
configure for this purpose, without requiring us to modify our TopicEditPart.
Below is the contribution to the extension-point we will add to our plugin.xml
file.

<extension
point="org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders">
<editpolicyProvider
class=
"org.eclipse.mindmap.diagram.providers.MindmapEditPolicyProvider">
<Priority name="Lowest"/>
</editpolicyProvider>
</extension>

Our MindmapEditPolicyProvider class follows. We override the
createEditPolicies() method to reinstall the new TopicSemanticEdit
Policy on our TopicEditPart. We use the provides() method that declares
this offering.

public class MindmapEditPolicyProvider extends AbstractProvider

implements IEditPolicyProvider {

public void createEditPolicies(EditPart editPart) {
if (editPart instanceof TopicEditPart) {

editPart.installEditPolicy(EditPolicyRoles.SEMANTIC_ROLE, new
TopicSemanticEditPolicy());

}
}

public boolean provides(IOperation operation) {
if (operation instanceof CreateEditPoliciesOperation) {
CreateEditPoliciesOperation op =

(CreateEditPoliciesOperation)operation;
if (op.getEditPart() instanceof TopicEditPart) {
return true;

}
}
return false;

}
}

10.8 Developing a Diagram 481

ptg6022785

For the implementation of the TopicSemanticEditPolicy class, we
need only override the getSemanticCommand() method and check for an
incoming CreateRelationshipRequest, returning a properly configured
SubtopicCreateCommand wrapped in an ICommandProxy. We compare the ele-
ment type of the request against our Subtopic element type, along with the val-
ues for source and target to return the proper command. Looking at our
SubtopicCreateCommand, we find the logic that determines whether the
returned command is executable.

public class SubtopicCreateCommand extends EditElementCommand {

private final EObject source;
private final EObject target;

public SubtopicCreateCommand(CreateRelationshipRequest request,
EObject source, EObject target) {
super(request.getLabel(), null, request);
this.source = source;
this.target = target;

}

public boolean canExecute() {
if (source == null && target == null) {
return false;

}
if (source != null && !(source instanceof Topic)) {
return false;

}
if (target != null && !(target instanceof Topic)) {
return false;

}
if (target == source) {

return false;
}
return true;

}

protected CommandResult doExecuteWithResult(
IProgressMonitor monitor,
IAdaptable info) throws ExecutionException {
if (!canExecute()) {

throw new ExecutionException(
"Invalid arguments in create link command");

}
if (getSource() != null && getTarget() != null) {
getSource().getSubtopics().add(getTarget());

}
return CommandResult.newOKCommandResult();

}

protected Topic getSource() {

482 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

return (Topic) source;
}

protected Topic getTarget() {
return (Topic) target;

}
}

From canExecute(), we see that if the request source and target do not
conform to the appropriate type (Topic, in this case), false is returned. A
false is also returned if the target Topic is the same as the source Topic
because it doesn’t make sense for a Topic to be a subtopic of itself. Other vali-
dation could take place here, such as ensuring that the target is not already found
in the source’s subtopics reference.

The command extends the provided EditElementCommand, and we see
how the target is added to the subtopics reference in doExecuteWithResult().
Now that we understand how the underlying semantic command is provided and
validated against the model, it’s time to look at the View and EditPart aspects
of our Subtopic link.

Our MindmapViewProvider must be augmented to deal with edge views.
We can add another Map for diagram edges and initialize it with the provided
ConnectionViewFactory class, keyed to our Subtopic semantic hint, as
shown here:

public class MindmapViewProvider extends AbstractViewProvider {

private final Map<String, Class<?>> edgeMap = new HashMap<String,
Class<?>>();
{

edgeMap.put("Subtopic", ConnectionViewFactory.class);
}

// . . .

@Override
protected Class getEdgeViewClass(IAdaptable semanticAdapter,

View containerView, String semanticHint) {
Class clazz = null;
if (semanticHint != null && semanticHint.length() > 0) {

clazz = edgeMap.get(semanticHint);
}
return clazz;

}
}

10.8 Developing a Diagram 483

ptg6022785

In our MindmapEditPartProvider, we similarly add a Map and override
getEdgeEditPart() to return our new SubtopicEditPart class.

public class MindmapEditPartProvider extends AbstractEditPartProvider {

private final Map<String, Class<?>> edgeMap = new HashMap<String,
Class<?>>();
{

edgeMap.put("Subtopic", SubtopicEditPart.class);
}

// . . .

@Override
protected Class getEdgeEditPartClass(View view) {

return (Class) edgeMap.get(view.getType());
}

}

Finally, we add our SubtopicEditPart, which simply returns a new
PolylineConnectionEx as our link figure.

public class SubtopicEditPart extends ConnectionNodeEditPart {

public SubtopicEditPart(View view) {
super(view);

}

@Override
protected Connection createConnectionFigure() {

if (getModel() == null) {
return null;

}

Connection connection = new PolylineConnectionEx();
return connection;

}
}

At this point, we can draw Topic rectangles and solid links between them to
signify subtopic relationships, as shown in Figure 10-53. Without labels to indi-
cate our Topic names on the diagram, it’s still not terribly useful. Providing
usable labels requires a bit of work that we’d rather generate, so let’s move to the
next section and compare this manual implementation of a simple mindmap with
that generated by the tooling component. For another example of contributing a
parser provider for labels, see Section 4.6.7, “Custom Parsers.”

484 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Figure 10-53 Basic mindmap diagram

10.8.4 Comparison to Generated Diagram

Now that we’ve manually created a diagram using the GMF runtime, let’s com-
pare the result with what the tooling component of GMF is generating. If we
define a simple mindmap graphical, tooling, mapping, and generator model (see
Section 4.3.4, “Mindmap Generator Model”), we can observe what is generated
with what was created above by hand. Note that what’s described below is only
for a simple mapping of the Topic element to a node, subtopics relationship
mapped to a link, and topic name label. No advanced options (such as printing
support, shortcuts, audits, metrics, and so on) were selected, which would cause
even more to be generated.

The generated diagram contributes extensions to a number of runtime exten-
sion-points, including contributionItemProviders, globalAction
HandlerProviders, iconProviders, parserProviders, viewProviders,
editpartProviders, elementTypes, elementTypeBindings, and
modelingAssistantProviders. Notably missing are the editpolicy
Providers and paletteProviders contributions. The tooling team did not
think these were necessary, opting instead to add generated EditPolicy contri-
butions directly in EditParts and generating a PaletteFactory implementa-
tion from the gmftool model directly. Figure 10-54 shows the runtime
extension-points contributed to by the initial mindmap diagram defined in
Chapter 4.

In addition to providing labels with parser providers for in-place editing, the
generated diagram provides diagram preferences, generic navigator support, link
reorientation commands, diagram initialization from an existing domain model
instance, a diagram update command, and several other features. For larger dia-
grams with many domain elements and diagram representation, clearly, begin-
ning with the tooling models and generating the base implementation is the

10.8 Developing a Diagram 485

ptg6022785

preferred approach. For more information on producing diagrams using the
tooling and extending the generative approach, see Chapter 4 and Chapter 11,
“Graphical Modeling Framework Tooling.”

486 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-54 Mindmap generated extension-point contributions

10.9 Extending Diagrams

You learned in Section 4.3.5, “Adding Custom Layout,” that it’s possible to
extend an existing diagram through the use of a customization plug-in. In this
case, we were able to add a custom layout to our Mindmap diagram, along with
an Insert Subtopic action using standard Eclipse UI contribution techniques. In
Section 4.6.7, “Custom Parsers,” we similarly were able contribute a custom
parser for attributes in our Color Modeling diagram. In this section, we continue
the extension story and demonstrate how to add custom figures to an existing
diagram. Specifically, we add an SVG version of the BPMN Intermediate Event
node for use in our Scenario diagram.

10.9.1 Scenario Diagram Custom View and Edit Providers

We begin by creating a new plug-in project named org.eclipse.sce-
nario.diagram.custom in our workspace. Add a dependency to our
org.eclipse.scenario.diagram plug-in, along with org.eclipse.
gmf.runtime.diagram.ui and org.eclipse.gmf.runtime.draw2d.
ui.render. To override the default View and EditPart providers in the

ptg6022785

generated diagram, we need to contribute our own providers and implementa-
tion classes in our customization plug-in. Beginning in the Extensions tab of our
plug-in manifest editor, add a new viewProviders and editpartProviders
extensions to match what’s shown here. Notice that the Priority of both
providers is set to Medium, thereby ensuring that they will override our gener-
ated providers, which are set to Lowest.

<plugin>
<extension

point="org.eclipse.gmf.runtime.diagram.core.viewProviders">
<viewProvider

class="org.eclipse.scenario.diagram.custom.providers.
ScenarioViewProvider">
<Priority name="Medium"/>
<context viewClass="org.eclipse.gmf.runtime.notation.Node"
semanticHints=""/>

</viewProvider>
</extension>
<extension

point="org.eclipse.gmf.runtime.diagram.ui.editpartProviders">
<editpartProvider

class="org.eclipse.scenario.diagram.custom.providers.
ScenarioEditPartProvider">
<Priority name="Medium"/>

</editpartProvider>
</extension>

</plugin>

We need to provide our two classes specified. The ScenarioViewProvider
appears next and overrides the getNodeViewClass() method to return an
IntermediateEventImageViewFactory class when the passed element’s
visual ID matches that of our Event2EditPart. This is the EditPart that rep-
resents the Intermediate Event nodes on our diagram, although we should proba-
bly return to our scenario.gmfgen model and give each Event a more
descriptive name. This is the default naming scheme that the GMF generator
applies when a single domain element represents multiple elements in the diagram.

TIP

The default Export-Package list in the MANIFEST.MF of a generated
diagram plug-in includes only the *.edit.parts, *.part, and
*.providers packages. If you expect that your diagram will be extended,
such as in the manner described here, you must export additional packages
before shipping your diagram.

10.9 Extending Diagrams 487

ptg6022785

public class ScenarioViewProvider extends AbstractViewProvider {

@Override
protected Class getNodeViewClass(IAdaptable semanticAdapter, View

containerView, String semanticHint) {
if (containerView == null) {
return null;

}

EObject semanticElement = getSemanticElement(semanticAdapter);
int nodeVID =

ScenarioVisualIDRegistry.getNodeVisualID(containerView,
semanticElement);

if (nodeVID == Event2EditPart.VISUAL_ID) {
return IntermediateEventImageViewFactory.class;

}
return null;

}
}

Technically, our ViewFactory is not required right now, but later we can
override the decorateView() method to add custom style information. For
now, simply create this class in a *.custom.factories package and extend the
generated Event2ViewFactory class.

Our new ScenarioEditPartProvider class follows, with its override of
method getNodeEditPartClass(). If the passed View’s domain model ele-
ment is an instance of Event and its type is INTERMEDIATE, we return our
IntermediateEventImageEditPart class.

public class ScenarioEditPartProvider extends AbstractEditPartProvider {

@Override
protected Class getNodeEditPartClass(View view) {

if (view.getElement() instanceof Event && ((Event)
view.getElement()).getEventType().getValue() ==
EventType.INTERMEDIATE_VALUE) {

return IntermediateEventImageEditPart.class;
}
return super.getNodeEditPartClass(view);

}
}

Our new EditPart class extends our Event2EditPart original and over-
rides the createNodeShape() method. As you can see here, an ievent.svg
file is used to represent our intermediate event node, and it is located in an
/images folder. Following is the EditPart code, followed by the ievent.svg

488 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

file content. As you can see, we added a gradient effect to our SVG so that we
can distinguish this figure from the original.

public class IntermediateEventImageEditPart extends Event2EditPart {

public IntermediateEventImageEditPart(View view) {
super(view);

}

protected IFigure createNodeShape() {
URL url = FileLocator.find(Activator.getDefault().getBundle(),

new Path("images" + IPath.SEPARATOR + "ievent.svg"), null);
return new
ScalableImageFigure(RenderedImageFactory.getInstance(url),
true, true, true);

}
}

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="20" height="20" version="1.1"
xmlns="http://www.w3.org/2000/svg">
<defs>

<linearGradient id="blue_white" x1="0%" y1="0%"
x2="100%" y2="0%">

<stop offset="0%"
style="stop-color:rgb(0,0,255);stop-opacity:1"/>
<stop offset="100%" style="stop-color:rgb(255,255,255);
stop-opacity:1"/>

</linearGradient>
</defs>
<circle cx="10" cy="10" r="9" style="fill:white; stroke:black;

stroke-width:1"/>
<circle cx="10" cy="10" r="7" style="fill:url(#blue_white);

stroke:black; stroke-width:1"/>
</svg>

If we launch our runtime instance, you’ll see that our new intermediate event
figure is displayed in place of our original figure. This very simple extension
shows the usefulness of the service provider framework of the runtime for
modifying an existing diagram. However, our Practitioner might prefer the orig-
inal figure or would like to switch between the two. We’ll add this capability
through a menu action on our figure, allowing us to demonstrate the
contributionItemProviders extension-point.

10.9 Extending Diagramss 489

ptg6022785

10.9.2 Custom Style

To add an action that facilitates the switching of figures for our intermediate
event, we need someplace to store the current state. Clearly, the underlying
domain model is an inappropriate place to store information regarding the visual
display of its information, which leaves us with the runtime’s notation model. As
we saw from the discussion in Section 10.2, “Notation Model,” the Style element
can be extended to store the additional information we need. While we’re at it,
we’ll add a field to store a URL to allow hyperlinking from our notation element
to an external source.

TIP

Adding a new Style is one approach, but note that the View element of
the runtime’s notation model extends ecore::EModelElement and,
therefore, is capable of holding EAnnotation elements. So instead of
adding a new style, we could just create a new annotation on our View
element and use that to hold additional information. In fact, the generated
diagrams use this approach for shortcut decorators.

In a new /model folder within our custom diagram plug-in, we can create a
style.ecore Ecore model. We’ only need to create a single class named
CustomStyle with default:EBoolean and hyperlink:EString attributes.
Using Load Resource we’ll browse the registered models and select our GMF
runtime notation model, identified by its NS URI of http://www.eclipse.
org/gmf/runtime/1.0.1/notation. Our CustomStyle class needs to
extend the Style class in the notation model. Create an EMF generator model
named style.genmodel and set the Base Package property of the style pack-
age to org.eclipse.scenario.diagram.custom. Generating the model
code only to our custom diagram plug-in enables us to move forward with imple-
menting our action for switching figures. In our plugin.xml file, we’ll create a
new extension to the contributionItemProviders extension-point.

<extension point="org.eclipse.gmf.runtime.common.ui.services.action.
contributionItemProviders">
<contributionItemProvider

class="org.eclipse.scenario.diagram.custom.providers.
ContributionItemProvider">
<Priority name="Medium"/>
<popupContribution

class="org.eclipse.gmf.runtime.diagram.ui.providers.

490 CHAPTER 10 • Graphical Modeling Framework Runtime

http://www.eclipse.org/gmf/runtime/1.0.1/notation
http://www.eclipse.org/gmf/runtime/1.0.1/notation

ptg6022785

DiagramContextMenuProvider">
<popupStructuredContributionCriteria

objectClass="org.eclipse.scenario.diagram.custom.edit.parts.
IntermediateEventImageEditPart" />

<popupAction path="/additions"
id="displayDefaultFigureAction"/>

</popupContribution>
</contributionItemProvider>

</extension>

The ContributionItemProvider class declared in the extension is shown
next. It extends the abstract provider supplied by the runtime and returns a new
DisplayDefaultFigureAction class that we’ll add to the *.diagram.cus-
tom.actions package. The action extends the provided BooleanProperty
Action class, leaving us with just an ID field and initialization to add.

public class ContributionItemProvider extends
AbstractContributionItemProvider {

protected IAction createAction(String actionId,
IWorkbenchPartDescriptor partDescriptor) {
if (actionId.equals(DisplayDefaultFigureAction.ID)) {
return new

DisplayDefaultFigureAction(partDescriptor.getPartPage());
}
return super.createAction(actionId, partDescriptor);

}
}

public class DisplayDefaultFigureAction extends BooleanPropertyAction {

static public final String ID = "displayDefaultFigureAction";

public DisplayDefaultFigureAction(IWorkbenchPage workbenchPage) {
super(workbenchPage, PackageUtil.getID(

StylePackage.eINSTANCE.getCustomStyle_Default()),
"Display default image");

setId(ID);
setText("Display default image");

setToolTipText("Use the default image display
for this element");

}
}

We need to add the org.eclipse.gmf.runtime.diagram.ui.actions
plug-in to our dependencies list. The ID declared in our extension matches the
ID field in our action class, which uses the ID of our default:EBoolean attrib-
ute of our CustomStyle class. We’re also declaring that the contribution item

10.9 Extending Diagrams 491

ptg6022785

menu is applicable for our custom EditPart class added earlier, with ‘Display
default image’ added to its context menu. Returning to our ViewFactory class,
we’ll add the following overrides to decorate the view with our new
CustomStyle.

public class IntermediateEventImageViewFactory extends
Event2ViewFactory {

@Override
protected void decorateView(View containerView, View view, IAdaptable
semanticAdapter, String semanticHint, int index, boolean persisted) {
super.decorateView(containerView, view, semanticAdapter,

semanticHint, index, persisted);
CustomStyle style = (CustomStyle)

view.getStyle(StylePackage.eINSTANCE.getCustomStyle());
style.setDefault(false);

}

@Override
protected List createStyles(View view) {
List styles = super.createStyles(view);
styles.add(StyleFactory.eINSTANCE.createCustomStyle());
return styles;

}
}

Our EditPart must be aware of the new Style element to create the
appropriate figure. Additionally, as our action will set our default:EBoolean
attribute in the CustomStyle, we’ll need to respond to this event and update
our model accordingly by overriding handleNotificationEvent().

public class IntermediateEventImageEditPart extends Event2EditPart {

public IntermediateEventImageEditPart(View view) {
super(view);

}

protected IFigure createNodeShape() {
CustomStyle style = (CustomStyle) getNotationView().getStyle(

StylePackage.eINSTANCE.getCustomStyle());
if (style == null || style.isDefault()) {

return super.createNodeShape();
}
URL url = FileLocator.find(Activator.getDefault().getBundle(),

new Path("images" + IPath.SEPARATOR + "ievent.svg"), null);
return new ScalableImageFigure(

RenderedImageFactory.getInstance(url), true, true, true);
}

protected void handleNotificationEvent(Notification notification) {

492 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Object feature = notification.getFeature();
if (StylePackage.eINSTANCE.getCustomStyle_Default()

.equals(feature)) {
handleMajorSemanticChange();

} else {
super.handleNotificationEvent(notification);
}

}
}

At this point, we can launch our runtime workspace and test our new action.
At this point, we can launch our runtime workspace and test our new action.
Figure 10-55 is an image of our SVG figure and the menu item that allows us to
restore the original figure for display.

10.9 Extending Diagrams 493

Figure 10-55 SVG image menu

10.9.3 Custom EditPolicy

We now add a custom EditPolicy to take advantage of the hyperlink:
EString attribute on our CustomStyle notation element. We’ll add the fol-
lowing contribution to the editpolicyProviders extension-point.

<extension
point="org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders">

<editpolicyProvider
class="org.eclipse.scenario.diagram.custom.providers.
ScenarioEditPolicyProvider">
<Priority name="High"/>

</editpolicyProvider>
</extension>

ptg6022785

The implementation of our provider appears next. For EditParts that are
instances of our custom IntermediateEventImageEditPart, we install an
OpenHyperlinkEditPolicy and assign it to the OPEN_ROLE. Therefore,
double-click events on our node will trigger this new EditPolicy.

public class ScenarioEditPolicyProvider extends AbstractProvider

implements IEditPolicyProvider {

public void createEditPolicies(EditPart editPart) {
if (editPart instanceof IntermediateEventImageEditPart) {
editPart.installEditPolicy(EditPolicyRoles.OPEN_ROLE,
new OpenHyperlinkEditPolicy());

}
}

public boolean provides(IOperation operation) {
if (operation instanceof CreateEditPoliciesOperation) {
CreateEditPoliciesOperation op =

(CreateEditPoliciesOperation) operation;
if (op.getEditPart() instanceof IntermediateEventImageEditPart)
{
return true;

}
}
return false;

}
}

The OpenHyperlinkEditPolicy follows, where the override of
getOpenCommand() will return a Command that, when executed, opens the
value of our hyperlink String in the underlying operating system’s registered pro-
gram—in this case, a browser for http:// Strings.

public class OpenHyperlinkEditPolicy extends OpenEditPolicy {

protected Command getOpenCommand(Request request) {
return new Command("OpenHyperlinkCommand") {
public void execute() {

IGraphicalEditPart gep = (IGraphicalEditPart) getHost();
CustomStyle style = (CustomStyle)

gep.getNotationView().getStyle(
StylePackage.eINSTANCE.getCustomStyle());

if (style != null) {
String location = style.getHyperlink();
Program.launch(location);

}
}

};
}

}

494 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

The problem we face now is that there’s no default way to access the custom
style properties in our diagram. The standard properties view shows only domain
model information, although the navigator gives us a read-only view of the
CustomStyle and its property. We could extend our properties view to include
our custom notation elements, or we could simply add another action that pops
up a dialog to allow the Practitioner to enter a hyperlink. Because we already dis-
cussed custom property sheets in Section 4.4.6, “Properties Revisited,” we take
the second approach here.

To add a new context menu item on the node, we return to our
contributionItemProviders extension contribution and add another entry.
The setHyperlinkAction will be adjacent to our displayDefault
FigureAction in the menu.

<popupContribution class="org.eclipse.gmf.runtime.diagram.ui.providers.
DiagramContextMenuProvider">
<popupStructuredContributionCriteria objectClass=

"org.eclipse.scenario.diagram.custom.edit.parts.
IntermediateEventImageEditPart"/>

<popupAction path="/additions" id="setHyperlinkAction"/>
</popupContribution>

We need to augment the createAction() method in our Contribution
ItemProvider for this new action ID, as shown here:

public class ContributionItemProvider extends
AbstractContributionItemProvider {

protected IAction createAction(String actionId,
IWorkbenchPartDescriptor partDescriptor) {
if (actionId.equals(DisplayDefaultFigureAction.ID)) {
return new

DisplayDefaultFigureAction(partDescriptor.getPartPage());
}
if (actionId.equals(SetHyperlinkAction.ID)) {

return new SetHyperlinkAction(partDescriptor.getPartPage());
} return super.createAction(actionId, partDescriptor);

}
}

Finally, we need to implement the SetHyperlinkAction. We extend the
runtime’s PropertyChangeAction and initialize it with our hyperlink property
ID, action ID, and text. Overriding the doRun() method lets us present the
Practitioner with an InputDialog to provide the URL, which we use to update
our target Request. We should probably add validation code, but this is fine for
our contrived example.

10.9 Extending Diagrams 495

ptg6022785

public class SetHyperlinkAction extends PropertyChangeAction {

static public final String ID = "setHyperlinkAction";

public SetHyperlinkAction(IWorkbenchPage workbenchPage) {
super(workbenchPage, PackageUtil.getID(

StylePackage.eINSTANCE.getCustomStyle_Hyperlink()),
"Set hyperlink...");

setId(ID);
setText("Set hyperlink...");
setToolTipText("Set a navigable hyperlink on this element");

}

@Override
protected void doRun(IProgressMonitor progressMonitor) {

String value = (String)
getOperationSetPropertyValue(getPropertyId());

ChangePropertyValueRequest request =
(ChangePropertyValueRequest) getTargetRequest();

final InputDialog inputDialog = new
InputDialog(Display.getCurrent().getActiveShell(),
"Hyperlink", "Enter the URL:", value, null);

if (InputDialog.OK == inputDialog.open()) {
request.setValue(inputDialog.getValue());

} else {
return;

}
super.doRun(progressMonitor);

}

@Override
protected Object getNewPropertyValue() {
String value = (String)

getOperationSetPropertyValue(getPropertyId());
if (value != null) {

return value;
}
return null;

}
}

BEST PRACTICE

By extending the PropertyChangeAction class, we’ve violated an
Eclipse plug-in development best practice. The class is abstract and
extended by public classes within the runtime, but it is itself located in an
.internal. package namespace.The right thing to do would be extend
from its public superclass DiagramAction and reimplement the func-
tionality we need from PropertyChangeAction, or submit a bug to the
GMF project and ask that the class be made an API.

496 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

Launching again to test our new action and dialog, we find that it works as
desired, as shown in Figure 10-56. We are able to enter a new hyperlink value
using the menu item, which marks the diagram as dirty, as we expect. A double-
click of the node opens our Web browser to the specified address.

10.9 Extending Diagrams 497

Figure 10-56 Hyperlink dialog

10.9.4 Custom Decorator

Continuing our tour of runtime extensibility, we now look at how to add a dec-
orator to our event node to indicate to the Practitioner whether a hyperlink has
been added. Currently, a double-click of an event does nothing if no hyperlink
has been set, but there’s no way to know that one has been set by looking at the
diagram. We want a small decorator near the node that indicates that it has a
hyperlink set. We can use the decorator service in our customization plug-in to
accomplish the task. To begin, we contribute the following extension to our
plugin.xml file:

<extension
point="org.eclipse.gmf.runtime.diagram.ui.decoratorProviders">
<decoratorProvider

class="org.eclipse.scenario.diagram.custom.providers.
LinkDecoratorProvider">
<Priority name="Lowest"/>

</decoratorProvider>
</extension>

ptg6022785

Our LinkDecoratorProvider class appears next. It extends the
AbstractProvider and implements the IDecoratorProvider. In both the
provides() and createDecorators() methods, we use the getDecorator
TargetNode() static method on our LinkDecorator class, which is listed
below our provider code.

public class LinkDecoratorProvider extends AbstractProvider implements
IDecoratorProvider {

public static final String HYPERLINK_DECORATOR_ID = "hyperlink";

public boolean provides(IOperation operation) {
if (false == operation instanceof CreateDecoratorsOperation) {

return false;
}
IDecoratorTarget decoratorTarget =
((CreateDecoratorsOperation) operation).getDecoratorTarget();
return
LinkDecorator.getDecoratorTargetNode(decoratorTarget) != null;

}

public void createDecorators(IDecoratorTarget decoratorTarget) {
Node node =
LinkDecorator.getDecoratorTargetNode(decoratorTarget);
if (node != null) {

decoratorTarget.installDecorator(HYPERLINK_DECORATOR_ID, new
LinkDecorator(decoratorTarget));

}
}

}

public class LinkDecorator extends AbstractDecorator {

private static final Image LINK;

static {
URL url = FileLocator.find(Activator.getDefault().getBundle(),

new Path("images" + IPath.SEPARATOR + "link.gif"), null);
ImageDescriptor imgDesc = ImageDescriptor.createFromURL(url);
LINK = imgDesc.createImage();

}

public LinkDecorator(IDecoratorTarget decoratorTarget) {
super(decoratorTarget);

}

static public Node getDecoratorTargetNode(IDecoratorTarget
decoratorTarget) {
CustomStyle style = null;
View node = (View) decoratorTarget.getAdapter(View.class);
if (node != null && node.eContainer() instanceof Diagram) {

style = (CustomStyle)
node.getStyle(StylePackage.eINSTANCE.getCustomStyle());

if (style != null) {

498 CHAPTER 10 • Graphical Modeling Framework Runtime

ptg6022785

return (Node) node;
}

}
return null;

}

public void refresh() {
removeDecoration();
Node node = getDecoratorTargetNode(getDecoratorTarget());

if (node != null) {
CustomStyle style = (CustomStyle)

node.getStyle(StylePackage.eINSTANCE.getCustomStyle());
if (style != null) {

boolean linked = style.getHyperlink() !=
null && style.getHyperlink().length() > 0;

if (linked) {

setDecoration(getDecoratorTarget().addShapeDecoration(
LINK, IDecoratorTarget.Direction.NORTH_EAST, 1, false));

}
}

}
}

private NotificationListener notificationListener = new
NotificationListener() {

public void notifyChanged(Notification notification) {
refresh();

}
};

public void activate() {
IGraphicalEditPart gep = (IGraphicalEditPart)

getDecoratorTarget().getAdapter(IGraphicalEditPart.class);
assert gep != null;

DiagramEventBroker.getInstance(
gep.getEditingDomain()).addNotificationListener(
gep.getNotationView(),
StylePackage.eINSTANCE.getCustomStyle_Hyperlink(),
notificationListener);

}

public void deactivate() {
removeDecoration();

IGraphicalEditPart gep = (IGraphicalEditPart)
getDecoratorTarget().getAdapter(IGraphicalEditPart.class);

assert gep != null;
DiagramEventBroker.getInstance(
gep.getEditingDomain()).removeNotificationListener(
gep.getNotationView(), notificationListener);

}
}

10.9 Extending Diagrams 499

ptg6022785

A static initializer loads our link image, which is just the Eclipse internal Web
browser icon. The getDecoratorTargetNode() method returns the View
node if it contains our CustomStyle added earlier. The refresh() method is
responsible for installing the decorator on the node if the hyperlink property of
our custom style is present. The decorator is added to the top-right corner of the
node, as shown in Figure 10-57. Notice also from the code that a
NotificationListener invokes the refresh() method, while the acti-
vate() and deactivate() methods add and remove the listener for our
Custom Style hyperlink property, respectively.

500 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-57 Figure decorator

10.10 Beyond GEF and Draw2d

In a number of places, the GMF runtime extends GEF. In this section, we look
into the org.eclipse.gmf.runtime.*gef* and *draw2d* packages to see
what additional layouts, figures, and so on are available from GMF. Some of
these classes possibly will move into GEF in the future, and some of the elements
currently found in *.internal.* namespaces might become public. Either way,
they provide a good source of additional capabilities and inspiration for creating
your own GEF elements.

Figure 10-58 is a diagram of the org.eclipse.gmf.runtime.draw2d.
ui.figures package. You’ve seen some of these elements in our generated and
custom code, such as the OneLineBorder and WrappingLabel classes.

ptg6022785

Figure 10-58 GMF runtime Draw2d figures

The FigureUtilities class is helpful when manipulating figures, convert-
ing between Color, RGB, and Integer values. Additional figures are available in
the internal package, with those ending in *Ex providing Hi-Metric-enabled GEF
alternatives. A number of other classes found in the *.draw2d.ui plug-in deal
with Hi-Metric units, including the IMapMode interface. In the text package,
extensions to the GEF text classes provide capabilities such as underlining,
strikethrough, and truncation.

You saw some of the org.eclipse.gmf.runtime.draw2d.render and
*.render.awt plug-ins in Section 10.9.1, “Scenario Diagram Custom View and
Edit Providers,” with the addition of an SVG figure. These plug-ins have image
render factories, converters, and utilities.

10.10 Beyond GEF and Draw2d 501

ptg6022785

The org.eclipse.gmf.runtime.gef.ui plug-in contains a number of
public figures and palette customization classes. You can see the figures in Figure
10-59, and many additional figures are found in the corresponding *.inter-
nal.* package, including CircleFigure, DiamondFigure, and OvalFigure.

502 CHAPTER 10 • Graphical Modeling Framework Runtime

Figure 10-59 GMF runtime GEF figures

10.11 Summary

In this chapter, we took a look into the GMF runtime and its many provided
services and APIs. We also included a discussion of how to start from scratch
developing a diagram with the runtime and how to extend diagrams produced
by the tooling or others. Next, we take a closer look at the generative GMF tool-
ing component.

ptg6022785

CHAPTER 11

Graphical Modeling
Framework Tooling

This chapter covers each of the Graphical Modeling Framework (GMF) models in detail
and is intended to be used as an Application Programming Interface (API) reference and
usage guide. Each of the tooling models is described as exposed in the user interface
instead of than by strict Ecore representation, to provide a more usable reference section.

11.1 Graphical Definition Model

The GMF graphical definition model (gmfgraph.ecore) is designed to be
generic, although its constructs closely resemble that of the Graphical Editor
Framework (GEF) project. Conceivably, GMF could target alternative graphical
frameworks or technologies (such as Scalable Vector Graphics [SVG]), even
though today it targets only GEF.

You can think of the graphical definition model as having three “layers”:
First, figures define visual representations of diagram elements. Second, figure
descriptors and accessors reference figures in the first layer for use in the next.
Third, diagram elements are defined for use in the mapping model and can con-
tain element-specific layout information. These three layers provide flexibility in
the graphical definition model because reuse is allowed throughout. Figures can
be reused to construct other figures, figure descriptors can be used by multiple
diagram elements, and the same diagram element can be used in multiple
mappings.

Figure 11-1 illustrates the first two layers in the model. A Figure
Descriptor maintains a containment reference to a figure, which can be either

503

ptg6022785

a RealFigure or a figure reference (FigureRef). A FigureDescriptor also
can contain a number of ChildAccess elements, which, in turn, reference a fig-
ure. A FigureRef maintains a reference to a RealFigure, which can contain a
number of children figures.

504 CHAPTER 11 • Graphical Modeling Framework Tooling

Figure 11-1 Graphical definition model—figures

Figure 11-2 illustrates the third layer and completes the previous figure. A
Canvas contains a number of FigureGallery elements, which contain descrip-
tors and figures. The Canvas also contains elements that represent diagram sur-
face nodes, connections, compartments, and labels.

Looking at Figure 11-2 for reference, a FigureGallery contains
FigureDescriptor and RealFigure elements. Both of these contain Figure
elements, which can be either FigureRef or RealFigure elements. A
FigureRef is a placeholder that references a RealFigure and provides a way
to reuse figures in the gallery. Figures defined with a FigureDescriptor can
be accessed using a ChildAccess element. The accessor is a method or field
name.

Note that the CustomFigure element can contain a FigureAccessor that
contains a RealFigure. This enables you to nest custom figures in the figure

ptg6022785

hierarchy because the provided method in the accessor returns an instance of the
figure (as long as the custom figure declares such a method). Custom figures can
be nested within other figures or can have other figures nested within them using
provided accessor methods.

Consider the case of a label figure within another figure, such as a rectangle.
A Figure Descriptor element is created in the Gallery and contains a
Rectangle figure and a Child Access element with a reference to the nested
Label figure. Generated figure code will contain a getter of the same name as
the value of the Child Access element’s accessor property. By default, this will
be getFigure plus the name of the referenced child Figure.

11.1 Graphical Definition Model 505

Figure 11-2 Graphical definition model—canvas

The graphical definition model has its own code-generation templates, which
are invoked either during the creation/recreation of the GMF generator model or
to generate a standalone figures plug-in. The model and its code-generation tem-
plates are found in the org.eclipse.gmf.graphdef and org.eclipse.
gmf.graphdef.codegen plug-ins, respectively. Also found in the org.
eclipse.gmf.graphdef plug-in are some standard models that contain figure

ptg6022785

definitions for basic, class diagram, and state machine diagram elements. Of
course, the UML2 Tools project provides an extensive set of additional example
GMF models.

In most cases, you can define custom elements for a graphical definition and
specify any existing classes that you developed previously using GEF. Or you
might want to code certain figures by hand and reference them in your graphical
definition model. You can also use this capability when generating standalone
figure plug-ins; the produced mirrored.gmfgraph model will contain refer-
ences to custom elements generated from the original graphical definition model.
Section 4.5.5, “Generating the Figures Plug-In,” illustrates the technique of using
a standalone figure plug-in.

11.1.1 The Canvas

At the root of every graphical definition model is the Canvas. This root element
has a name property and containment references to one or more Figure
Galleries, Nodes, Connections, Compartments, and Labels. Note the dis-
tinction between figures and diagram elements. In a GMF graphical definition, a
Figure is defined within a Figure Gallery, which is then referenced by Node,
Connections, Compartment, and Label diagram elements, via Figure
Descriptors and Accessors. These diagram elements are siblings to Figure
Gallery elements, although they can reference figure definitions from other
graphical definition models. The idea is to promote reuse of figure definitions
without adding the complexity of yet another GMF model.

11.1.2 The Figure Gallery

As mentioned, a Canvas can contain a number of Figure Gallery elements,
which, in turn, contain figures, figure descriptors, and an optional implementa-
tion bundle property.

TIP

Be careful not to name your Canvas the same as any of the contained
Figure Gallery elements because this will cause a name clash.This will
be detected during validation of the graphical definition model, but it will
result in exceptions when trying to load the Canvas mapping in the

506 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

mapping definition model. Validation is performed upon transformation
from the mapping model to generator model, or when invoked manually
from the context menu.

The implementation bundle property is currently used only when generating
standalone figure plug-ins. The idea is that the Figure Gallery entry in the
mirrored diagram definition indicates the plug-in where custom figures are found
and referenced. Upon generation, these bundle names are added to the
Require-Bundle list of the generated plug-in so that custom figures whose
fully qualified names are specified can be resolved.

A Figure Descriptor has a name and describes a figure by holding a ref-
erence to a Figure and its accessors, if any. Figure descriptors enable figure gal-
leries to be reused with figures nested within other figures without an explicit
reference to their parent.

TIP

Note that the code-generation templates use the Figure Descriptor
name when generating the figure code. Typically, the descriptor and its
figure are given the same name, although it’s fine to omit the name on the
figure.

A Figure Descriptor contains a single Figure, while a Figure
Gallery can contain a number of Figure elements. A Figure Descriptor
can use a Figure Reference as its figure, but these are not allowed as con-
tained elements of a Figure Gallery. A Figure Reference element merely
holds a reference to another figure to allow for reuse.

Figures come in a variety of flavors and are typically generated as
org.eclipse.draw2d.Figure subclasses. Note that it is also possible to
define a figure to be used in a GMF diagram using SVG.

As you can see from the context menu on a Figure Descriptor, you can
specify many types of figures. Each of these is described shortly, along with its
individual properties. Because they all extend from the Figure element, they share
a number of common properties, covered first.

Each Figure can be assigned the properties in Table 11-1.

11.1 Graphical Definition Model 507

ptg6022785

Table 11-1 Figure Properties

Property Description

Name The name of the figure.

Foreground Color The color of the figure’s outline. Color can be specified using RGB
values or using a set of color constants.

Background Color The color of the figure’s background, or the area inside the outline.

Size The initial dimension (width and height) of the figure.

Maximum Size The maximum dimension (width and height) of the figure.

Minimum Size The minimum dimension (width and height) of the figure.

Preferred Size The preferred dimension (width and height) of the figure.

Font The name, size, and style (normal, bold, italic) of a font used for
figure text.

Insets The bottom, top, left, and right inset values for the figure, used
with a Margin Border.

Border A decoration on a figure with corresponding Insets elements used to
determine how its children are positioned. See the upcoming
“Borders” section for more information on the types of borders
available.

Location The location of the figure’s top-left corner.

Shape Figures

A number of shape figures share a common set of properties, listed in Table 11-2.
These properties correspond to org.eclipse.draw2d.Shape class properties.

Table 11-2 Shape Figure Properties

Property Description

Outline A Boolean property that indicates whether to draw the figure’s outline

Fill A Boolean property that indicates whether to fill the figure with the
specified background color

Line Width The width of the outline

Line Kind The style of line used for the figure’s outline: solid, dash, dot, dash-dot,
dash-dot-dot, or custom

508 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Property Description

XOR Fill A Boolean property that indicates whether an XOR-based fill is used in
the figure

XOR Outline A Boolean property that indicates whether an XOR-based outline is used
for the figure

Rectangle and Rounded Rectangle

Rectangle and Rounded Rectangle are two popular shape figures. These
generate subclasses of org.eclipse.draw2d.Rectangle and Rounded
Rectangle, respectively. The Rounded Rectangle has two additional proper-
ties for corner width and corner height.

Ellipse

An Ellipse is another popular shape that, when generated, extends org.
eclipse.draw2d.Ellipse. To create a circle, create a Size child element with
equal width and height values.

Polyline and Polygon

A Polyline is a shape (although not a regular shape) that contains a series of
points (x,y values) to define subclasses of org.eclipse.draw2d.Polyline. A
Polygon is a Polyline that is closed and can be filled. A Polygon generates a
subclass of org.eclipse.draw2d.Polygon. A ScalablePolygon is a
Polygon that autosizes to fill the available bounds.

Note that, in the case of a Polygon, the first and last points automatically
are closed to form the Polygon, so there’s no need to explicitly list the start point
at the end.

Template Point

Polygons are specified using a series of points. Children TemplatePoint ele-
ments of a Polygon draw a shape in the order they are added. It is helpful to
have a piece of graph paper handy when designing Polygons. As an example,
the points to draw a diamond decoration for use on a Polyline connection
would be (0,0) (–2,1) (–4,0) (–2,–1).

Polyline Connection

A Polyline Connection is a special type of Polyline that can contain source
and target end Decoration figures. Decorations come with three options:
Polyline, Polygon, and Custom. In addition to Polyline Connection, a

11.1 Graphical Definition Model 509

ptg6022785

Custom Connection exists and can be set to any fully qualified figure class
name. A number of custom attributes can be added to the custom class as well.

Borders

A number of border types are available, including Line Border, Margin
Border, Compound Border, and Custom Border.

Line Border

A Line Border has additional properties for color and width, and a Margin
Border has a child Insets property, as mentioned earlier. A Compound
Border has child inner and outer Border elements. Finally, a Custom Border
is simply a custom figure class that you can set to any fully qualified class name
with custom attribute properties.

Margin Border

You can add a Margin Border to figures where space is desired between the
outside edge and the children figures. An Insets element is added to the border
to specify bottom, left, top, and right margins.

Compound Border

When you want to add more than one border to a figure, you can use a
Compound Border. An inner and outer border (Line, Margin, Compound, or
Custom) can be added to produce a great number of border effects. For exam-
ple, if a Compound Border consists of an outer margin border and an inner line
border, an inset line can be drawn inside a figure.

Custom Border

If you have a custom coded border class, you can enter its fully qualified name
in a Custom Border element.

Labels

A Label figure has an additional Text property, used to set the default text
value. A Label produces a generated org.eclipse.gmf.runtime.draw2d.
ui.figures WrappingLabel class. This class does not extend the
org.eclipse.draw2d.Label class, but it provides wrapping of the label’s text
at a given width and alignment.

510 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Layout

Each figure also has layout properties for its Layout and Layout Data. A num-
ber of Layout classes are available, with corresponding Layout Data where
appropriate. As usual, a Custom Layout element is available for those who
want to specify a custom class name.

Flow Layout

Flow Layout corresponds to GEF’s org.eclipse.draw2d.FlowLayout class
and is used to arrange children of a figure in rows or columns. A number of
options are available for Flow Layout, as presented in Table 11-3.

Table 11-3 Flow Layout Properties

Property Description Default

Vertical (Orientation) A Boolean property that determines whether the False
components should be laid out vertically
(true) or horizontally (false).

Force Single Line Causes the generation of a ToolbarLayout, False
which allows elements to be compressed
(resized) so that they fit into a single
row/column.

Match Minor Size In a horizontal layout, figures will have False
the same height. In a vertical layout,
figures will have the same width.

Major Alignment The alignment used for a row/column. BEGINNING
[BEGINNING | CENTER | END | FILL]

Major Spacing The spacing in pixels between elements 5
running parallel to the layout orientation.

Minor Alignment The alignment used for elements within BEGINNING
a row/column. [BEGINNING | CENTER
| END | FILL]

Minor Spacing The spacing in pixels between elements 5
within a row or column.

For example, Figure 11-3 shows what the default Flow Layout settings pro-
duce using a simple Rectangle that can accept children Rectangles. When the
Vertical property is set to true, the children are added vertically, not hori-
zontally, as shown.

11.1 Graphical Definition Model 511

ptg6022785

Figure 11-3 Flow layout

When changing the Force Single Line property to true, the generated
org.eclipse.draw2d.ToolbarLayout causes the elements to shrink as more
are added so that they fit on a single row. Note that they will not shrink below
their Minimum Size property, if set.

Setting the Major Alignment property to CENTER instead of the default
BEGINNING (top/left) for Major Alignment centers the inner elements either
horizontally or vertically, depending on the Vertical setting. No difference
exists between CENTER and FILL; both generate code that uses FlowLayout.
ALIGN_CENTER.

Stack Layout

A Stack Layout causes elements to be added on top of one another, in the
order they are added. This works well with one element to center it in another,
as was the case with our Topic and Task labels in the mindmap and scenario
diagrams, respectively.

XY Layout

XY Layout enables you to place an element wherever you want. A diagram can-
vas typically has an XY Layout, as does the rectangle in Figure 11-4 where three
inner rectangles are positioned arbitrarily.

512 CHAPTER 11 • Graphical Modeling Framework Tooling

Figure 11-4 XY layout

ptg6022785

Border Layout

Border Layouts allow for the placement of inner elements in the following
locations: top, bottom, left, right, and center. In terms of GMF graphical defini-
tion properties, the values in Table 11-4 correspond to these options.

Table 11-4 Border Layout Properties

Border Layout Data Alignment Vertical

CENTER CENTER true | false

TOP BEGINNING true

BOTTOM END true

LEFT BEGINNING false

RIGHT END false

In Figure 11-5, a Border Layout is used on the outer rectangle, which also
has a margin border to provide spacing between its outer edge and the inner ele-
ments. Additional rectangles are added to the top, bottom, left, and right loca-
tions. A rectangle is also added in the center position and has a compound border
to achieve the (outer) margin border and (inner) line border. Each of these rec-
tangles has child Border Layout Data elements with alignment and vertical
property settings.

11.1 Graphical Definition Model 513

Figure 11-5 Border layout

Grid Layout

The Grid Layout is a powerful layout, although with additional complexity
required to configure. Each figure added to a parent that uses Grid Layout
provides its own Grid Layout Data. The Grid Layout itself has just two

ptg6022785

properties: Equal Width and Num Columns. The first indicates whether the
columns in the grid are of equal width. The second determines the number of
columns. When figures are added to a grid layout, they are laid out in columns,
with new rows being added when this number is met.

Grid Layout Data elements have a number of properties, summarized in
Table 11-5.

Table 11-5 Grid Layout Properties

Property Values Description

Grab Excess true | false Determines whether the cell should be widened
Horizontal Space to fit the remaining space. Default is false.

Grab Excess true | false Determines whether the cell should be made tall
Vertical Space enough to fit the remaining space. Default is

false.

Horizontal BEGINNING | Determines how a figure is positioned
Alignment CENTER | END | horizontally within a cell. Default is CENTER.

FILL Note that in horizontal alignment,
BEGINNING is LEFT and END is RIGHT.
FILL resizes the figure.

Horizontal Indent Integer Specifies the number of pixels of indentation on
the left side of the cell. Default is 0.

Horizontal Span Integer Specifies the number of column cells that the
figure will occupy. Default is 1.

Vertical Alignment BEGINNING | Determines how a figure is positioned vertically
CENTER | END | within a cell. Default is CENTER. Note that in
FILL vertical alignment, BEGINNING is TOP and

END is BOTTOM. FILL resizes the figure.

Vertical Span Integer Determines the number of row cells that the fig-
ure will occupy. Default is 1.

Figure 11-6 is an example of using Grid Layout to arrange figures within
a rectangle.

In this example, four figures are arranged using grid data elements within a
rectangle that uses grid layout settings equal width = true, number of
columns = 2, as follows:

❍ The hollow circle uses horizontal and vertical alignment of END, with hor-
izontal span = 2. As you can see, it’s situated at the bottom right of the
top row.

514 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

❍ The filled circle is added next and thus is put into the second row. It has
default horizontal and vertical span values of 1, and it uses horizontal and
vertical alignment values of END. As such, it is situated again at the bot-
tom right of its cell.

❍ The hollow square uses horizontal and vertical alignment values of
BEGINNING, placing it at the upper left of its cell.

❍ The filled square uses a horizontal and vertical span of 2, with vertical
alignment CENTER. Its horizontal alignment is set to BEGINNING and has
a horizontal indent of 20. This causes it to be situated the same distance
from the left edge of its cell, but centered vertically. You can see this and
other layout effects clearly when comparing the left and right images
above where the parent rectangle is resized.

11.1 Graphical Definition Model 515

Figure 11-6 Grid layout

Combining Layouts in Complex Figures

You also likely will combine layouts when designing complex figures. The sam-
ple diagrams in this book and the UML2 Tools project provide many examples

ptg6022785

of how to use various layouts to achieve the desired arrangement of your figure
elements. Specifically, the color modeling diagram archetype figures defined in
Section 4.6.1, “Diagram Definition,” illustrate how to use labels, nested rectan-
gles, and compartments.

11.1.3 Diagram Elements

Before Figures can be used in a diagram, they must be referenced by a Diagram
Element. These are siblings of Figure Gallery elements in the graphical def-
inition model and, therefore, are children of the Canvas element. Note that dia-
gram elements can reference the same Figure—or, put another way, each node
on a diagram does not need to have distinct figures. Figures can be reused within
the same graphical definition or from another graphical definition model.

In addition to a figure reference, a diagram element can contain Visual
Facets. A Visual Facet is a way to add information to a diagram element for
use in generation. Five types of visual facets exist: General, Alignment,
Gradient, Label Offset, and Default Size. A General facet enables you to
add arbitrary information, leaving it up to the template author to make use of
the data.

Alignment facets are currently used only for diagram labels used with links,
where constants from org.eclipse.draw2d.ConnectionLocation can be
specified (MIDDLE = Alignment.CENTER, TARGET = Alignment.END,
SOURCE = Alignment.BEGINNING).

Gradient is an unused facet, but it has a direction property and can be used
in custom templates.

Label Offset specifies an initial offset that a label is created in relation to
its figure, when a label is external to the node.

Default Size is useful in initializing a new element on a diagram to a cer-
tain set of dimensions. The code generated for this facet is in the
createNodePlate() method of the node edit part, whereas the Preferred
Size property of a figure sets its dimension of the figure itself. In other words,
a figure can be nested within other figures, while a Node created as a diagram
element that references a figure represents what is created on the diagram.
Therefore, the default size facet on a node determines the initial size of a diagram
element. Of course, if this facet on the node and the top-level figure has a pre-
ferred dimension that is larger, it is created at that size.

Nodes

In addition to the name, figure, and facets properties that all diagram elements
share, nodes have the following properties: Resize Constraint, Affixed

516 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Parent Side, and Content Pane. The Resize Constraint gives options of
how the node is allowed to be resized, with the default being NSEW, which allows
it to be resized using all eight points (each of the handles shown when selected).
Affixed Parent Side is used primarily for port-type elements that are nodes
attached to the side of another node. The default value for this property is NONE.
The Content Pane property is currently not used.

TIP

With some modification, you can leverage the Content Pane in the gen-
erated code.The intention is to allow a Figure to specify child elements.
In the generated EditPart, locate the setupContentPane() method
and mark it @generated NOT to prevent overwriting on regeneration.

if (nodeShape instanceof <GeneratedFigure>) {
nodeShape = ((<GeneratedFigure>)nodeShape)
.<figureAccessorName>();

}

Introduce code such as this to assign the proper child Figure using the
generated accessor.

Diagram Labels

Diagram Label extends Node in the graphical definition model and, therefore,
has all of its properties. Additionally, it has the following properties: Element
Icon, Accessor, External, and Container. Element Icon is a Boolean
property that indicates whether the label uses an icon image to complement its
text. The Accessor obtains the figure instance from the parent EditPart. An
External label does not require such an Accessor because the figure is not
contained within another—for example, link labels are always external.
Therefore, the External property is set to false automatically if an accessor is
selected for a Diagram Label.

Connections

Connections are simple diagram elements that have no additional properties.
The figure reference, a name, and whatever facets you chose to add as children
are sufficient to define a connection.

11.1 Graphical Definition Model 517

ptg6022785

Compartments

A Compartment is defined as a diagram element, although it is always contained
within another element, unlike connections, nodes, and (external) labels.
Additional properties available for compartments are Accessor, Collapsible,
and Needs Title.

Collapsible is a Boolean property that determines whether the compart-
ment will have a handle that, when clicked, collapses and expands the compart-
ment. The Needs Title property determines whether a string label is placed
above the compartment. The title given to the compartment is the name of the
Compartment element itself, but you can change this in the generator model.

An important aspect of using compartments is to set the proper layout on the
container. It’s best to specify a Flow Layout using CENTER alignment, Vertical
orientation, and Force Single Line equal to true for compartments that
have list items. Of course, it’s possible not to define a layout at all, as it is possi-
ble to use just a labeled container as the compartment figure.

TIP

Keep in mind a couple things when dealing with collapsible compartments.
First, the default size facet mentioned earlier helps keep a reasonable
shrunken size of your node because one or two items added to a list in a
compartment won’t likely stretch the node beyond the default 40×40 size
of a node plate. In this case, collapsing the compartment hides the list
items, but the node itself does not shrink, as you might expect. Setting the
default size facet to, say, 40×15 gives you the desired effect. Second, recall
that, when manually resized, a node no longer collapses down, but it
respects the sizing the user selected. To restore the node to autosizing,
select it and use the Auto Size button on the diagram’s main toolbar.

11.2 Tooling Definition Model

The Tooling model is one of GMF’s simplest models, mainly because it is not yet
complete. Primarily, the tooling model defines a diagram’s palette—that is, the
creation tools for creating nodes and links.

At the root of a tooling definition model is the Tool Registry. This ele-
ment contains the Palette and any number of Menus and shared Action
elements. At this time, GMF generates only code for Palette elements. The
remaining elements are left to future versions of GMF.

518 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

A Palette element has a Title and a Description, although these
strings appear only in the generated user interface for creation tools. A Default
element determines the active entry to be displayed when a stack of palette tools
is configured.

You can add a number of elements to the palette: Icon Images, Palette
Separator, Tool Group, Palette, Standard Tool, Creation Tool, and
Generic Tool. At the palette level, the icon image selections are not used. Also
not currently used are the Palette, Standard Tool, and Generic Tool ele-
ments. This leaves Tool Group and Separator as valid elements to choose
from.

A Tool Group is meant to hold Creation Tool entries that make sense to
group together. Typically, a Nodes group and a Links group are created. The
Active and Stack properties of a tool group are typically used together, but
they require a parent tool group to work properly. This means that there must
be a Tool Group element with its own child Tool Group. This second Tool
Group must have its Stack property set to true. In this case, the tool selected
as the palette’s Active tool appears at the top of this stacked group by default.
If the Collapsible property is set, the “drawer” feature of the generated GEF
palette is enabled and the group collapses into a named drawer.

You can add a Separator anywhere between tool entries, resulting in a hor-
izontal line in the generated palette. This can be helpful in large groupings of
tools where a logical separation makes it easier to find tools but doesn’t warrant
separate groups or drawers.

A Creation Tool has image child elements. Specifically, there are large and
small icon images that you can specify as either default or custom (bundle). If the
default icons are used, the generator uses the same icons as specified for the ele-
ment it creates. These typically are picked up from the Eclipse Modeling
Framework (EMF) edit code icons. If the bundle icon elements are used, the bun-
dle and path to the icon to be used must be entered. For example, if you want to
use the wrench icon used for the GMF tooling model root as an image icon for
your palette, you would enter org.eclipse.gmf.tooldef.edit for the
Bundle property and icons/full/obj16/GMFToolModelFile.gif for the
Path property.

11.3 Mapping Model

The mapping model is the heart of GMF models and itself represents a dia-
gram. Until now, graphical definition and tooling models have been separate and
available for reuse. A mapping model is transformed to one or more generator
models that drive templates for code generation.

11.3 Mapping Model 519

ptg6022785

Although we do not cover this in detail, you might have noticed while using
GMF that a fair amount of validation takes place when transforming to the gen-
erator model. If you look at the gmfmap.ecore model in the org.eclipse.
gmf.map plug-in, you will notice a number of OCL constraints defined for ele-
ments in the model.

The root of the model is the Mapping element, which can take a number of
elements as children: Top Node Reference, Link Mapping, Canvas
Mapping, Audit Container, Metric Container, and Generic Style
Selector. GMF does not yet leverage the Generic Style Selector.

Figure 11-7 shows the mapping model, to aid in the discussion that follows.

520 CHAPTER 11 • Graphical Modeling Framework Tooling

Figure 11-7 Mapping model

11.3.1 Canvas Mapping

The Canvas Mapping element is required and represents the diagram canvas.
The mapping wizard populates this element with the selected Domain Model
(EPackage), its root Element (EClass), the Diagram Canvas from a graphi-
cal definition model, and the Palette from the tooling definition model. GMF
does not yet use the Menu and Toolbar Contributions elements.

ptg6022785

11.3.2 Top Node Reference

A Top Node Reference represents elements that are created on the diagram
surface. This element contains a Child reference to a single Node Mapping.
Elements must be contained somewhere in the corresponding domain model
when they are instantiated as diagram elements. The Containment Feature
property specifies where to add these new objects and, by default, where to
retrieve them.

A common pattern in modeling involves having a single containment refer-
ence for a generic type that is used to store model objects, while a derived attrib-
ute of a specific type is used to retrieve objects. As an example, consider the
mindmap domain model used in this book, shown again in Figure 11-8 for
convenience.

11.3 Mapping Model 521

Figure 11-8 Mindmap model

Here, an elements containment reference is used to hold all MapElement
objects in the Map. To obtain a list of root Topic objects, a derived rootTopics
reference is provided and implemented using OCL (refer back to Section 3.3.5,
“Adding OCL”).

In some models, you might find it necessary to specify both the
Containment Feature and a Children Feature for a Top Node

ptg6022785

Reference element. By specifying both, the generated code knows both where
to store newly created elements and where to retrieve existing elements.

11.3.3 Node Mapping

Each Top Node Reference and Child Reference contains a single Node
Mapping. A Node Mapping element binds a Diagram Node, Tool, and domain
model Element together. A number of properties and child elements are avail-
able to a Node mapping, so let’s start with the basics.

The domain Element is the EClass from the domain model that this node
mapping represents. Likewise, the Diagram Node is the node from the graphi-
cal definition used to display the graphical concrete syntax for this node. Finally,
the Tool is the creation tool from the tooling definition that is used to create the
node from the palette. As you might have predicted, GMF does not yet use the
Appearance Style and Context Menu.

TIP

You can assign the same palette tool to multiple nodes. This results in a
pop-up menu of the mapped nodes appearing when you use the tool, giv-
ing you the choice to select the proper element. It’s not clear whether this
is a better approach than using multiple palette tools, particularly consid-
ering that they can be stacked.When constraints are applied to each ele-
ment that the tool can create so that no ambiguity exists for the target, no
pop-up will appear when only one possibility exists, as was the case in the
scenario diagram.

The Related Diagrams element maps to a Canvas Mapping so that this
diagram node can be used to navigate to another diagram. This concept is known
as diagram partitioning. It’s rather straightforward to use this feature to create
partitioned diagrams, or diagrams where a node maps to its own Canvas and
thereby allows composite domain elements to be displayed on their own Canvas.
For example, consider an Ecore or Unified Modeling Language (UML) diagram
in which the package element is represented as a Canvas and can be created in
a hierarchy. A package node is related to the diagram’s Canvas; by default,
double-clicking on a package opens a new diagram surface. The UML2 Tools

522 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

project uses this feature, as does the Ecore diagram that GMF provides. Both use
cases for using diagram partitioning are covered in Section 4.5.6, “Diagram
Partitioning.”

On the Canvas, a number of Top Node Reference elements can be added.
The root object of your DSL maps to the Canvas, so top nodes on your diagram
typically map to a Containment Feature of the root object. This setting tells
the diagram where to store newly created objects to the domain model instance,
but sometimes another feature is used to retrieve children for display. In this case,
the Children Feature property is set, although for most models, it’s not nec-
essary. In Section 11.3.3, “References, Containment, and Phantom Nodes,” we
discuss how it is also possible to show elements that are not contained in the root
object as top nodes on the Canvas, using a concept known as “phantom” nodes
and connectors.

To a Top Node Reference, we can add a Node Mapping to define a
domain element, its Node from the graphical definition, and its creation tool
from our palette. You can add several elements to a Node Mapping. The most
popular is a Feature Label Mapping. With this property, a Diagram Label
from the graphical definition can be mapped to an attribute (or collection of
attributes) from the domain element specified in the node mapping. An example
in Figure 11-9 from our dnc.gmfmap model shows the mapping of our attribute
label.

11.3 Mapping Model 523

Figure 11-9 Feature label mapping

In this case, we are using three of our Attribute properties from the
domain model: name, lowerBound, and upperBound. We’ve also specified that,
using the MESSAGE_FORMAT method of parsing in-place edits of our label, it
should display the name, a space, and then the lower- and upper-bound proper-
ties in square brackets, separated by a comma. Note that the default values you

ptg6022785

set in your domain model are important to how a new element is initially dis-
played on the diagram. Without specifying default values for the lower- and
upper-bound properties, our label displays “[null,null]” and is not very user-
friendly.

TIP

In the mapping model, order matters.This is obvious in feature initializers,
but it might not be obvious in the case of node labels. For example, if a
node has two labels, the top of which is read-only (for example, with a
stereotype label), the default generated code does not allow the second
label (for example, the node’s name) to be activated with the in-place edi-
tor when the node is created on the diagram. So reverse the order of the
label mappings to achieve the desired effect.

References, Containment, and Phantom Nodes

We’ve taken a look at how to map nodes to containment references using Top
Level and Child Node elements in our mapping model. If your domain model
has a straightforward mapping to a graphical display, particularly with respect
to containment versus noncontainment references, you will have no problems.
However, if you want to create a node on the diagram surface (a Top Level
Node) but the domain element it represents is not a contained element of the ele-
ment used for the Canvas, you can see a problem. How do we indicate where to
store the created element represented by this node in the domain model instance?

We need to provide a link from this node to the element representing the
domain element that has the containment reference for objects of this type. The
problem is, we typically create nodes and then link them to other elements using
a link tool. So for a short period of time, we have a so-called “phantom” element
represented on our diagram surface that does not yet have a home. If you look
at your domain model instance after creating this type of node, you’ll see that the
underlying domain element instance is held in the root of the model—that is,
until it is connected with a link to the contained element. The solution in this case
is to leave the Containment Feature property of the node mapping blank and
indicate the containment feature as the Target Feature of the corresponding
Link Mapping. Figure 11-10 is an example of our requirements model and its
Link Mapping for Requirement children.

524 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Figure 11-10 Requirements model

Table 11-6 Link Mapping

Element Property Value

Mapping

Link Mapping Target Feature children : Requirement

Diagram Link Connection RequirementChild

Tool Creation Tool Child Requirement

On our diagram, we want to display RequirementGroup elements both as
root elements on the diagram and as children elements, whereby a link indicates
the containment of these elements in a RequirementGroup instance, not the
Model instance representing the canvas. The problem is, because both are of the
same type, the generated code from the GMF tooling cannot determine the
proper node to use, particularly when initializing a diagram from an existing
domain instance without a tip. To provide the tip, we can add a constraint to our
root RequirementGroup node definition to check that its eOpposite parent is
null; only root elements won’t have a parent reference. In OCL, this would be
parent.oclIsUndefined().

In summary, a Toolsmith must be aware of how elements are created and
their storage within domain model instances when creating diagram mapping
definitions. Phantom nodes provide a solution when we do not want to represent
a containment relationship in a domain model as a containment representation
on a diagram. Inner nodes and compartments provide a straightforward way to
represent contained elements on a diagram, but can we indicate noncontainment
references in a domain model using these containment visual representations?
It’s possible, but it requires some code modification. To store a child diagram ele-
ment in a separate model container, locate the generated xxxCreateCommand.
doDefaultElementCreation() method and modify it so that the newly
created element is stored in an appropriate place in the domain model, along

11.3 Mapping Model 525

ptg6022785

with a corresponding reference. The diagram must be updated as well, to reflect
the change.

Node Constraints

A Constraint child element can be added to a Node Mapping, usually to dis-
tinguish between types in case a containment reference holds several (sub)types.
Constraints can be defined in Object Constraint Language (OCL), Java, reg-
exp, and nregexp. The context of the constraint is the domain element selected
in the node mapping.

Primarily, constraints provide hints to the generator so that code is written
to obtain the proper visual ID for a node. A visual ID is an integer that the gen-
erator assigns to a node. At runtime, type checks are augmented by constraint
evaluation to return the proper visual ID where there would otherwise be ambi-
guity. Note that this feature becomes important when initializing a diagram from
an existing instance of a domain model. Normally, there is a user to eliminate
ambiguity when diagramming by selecting the proper node tool from the palette.
This also is useful when performing diagram updates with semantic refresh
because these constraints are checked when comparing view and domain ele-
ments, as discussed in Section 4.3.5, “Subtopic Figure.”

An example should make this point clear. Consider the Ecore metamodel and
the following relationship between EDataType and EEnum. Both are
EClassifiers and are held in the eClassifiers containment reference of
EPackage, as shown in Figure 11-11. When creating node mappings for each of
these, the eClassifiers reference is used as the Containment Feature.
With mappings to distinct creation tools in the palette, and with each node map-
ping’s Element property set to distinct EClasses, the diagram supports the cre-
ation of both EDataType and EEnum elements. However, when trying to
determine the correct visual ID when pulling objects out of the eClassifiers
reference, instances of EEnum are ambiguous because they also appear as
EDataType. So which edit part visual ID to return?

Using a constraint on the node mapping for the EDataType that verifies (in
OCL) that it is not oclIsKindOf(ecore::EEnum) removes the ambiguity in
a straightforward manner. Alternative solutions exist, but this one falls into a
general pattern of using OCL to more precisely define mappings in GMF, as you
will see later.

Another use of constraints on a node is to distinguish between nodes that
represent the same domain element but might have an attribute set when initial-
ized. This is commonly the case with classes that have an enumerated type set to
a value. These go hand in hand with feature sequence initializers, which are
covered next.

526 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Figure 11-11 EClassifier model

11.3.4 Feature Initialization

Certain attributes of the underlying domain element might need to be initialized
to some value when a node is added to a diagram. To accomplish this, we can
use a Feature Seq Initializer child element on the Node Mapping. The
feature initialization is shown in Figure 11-12. It’s also possible to initialize new
reference elements and their attributes, as shown in the initialization of the
Requirement element and its Version in Section 4.4.3, “Mapping Definition.”
Another common application of initialization is in naming elements placed on a
diagram, such as archetypes on our color modeling diagram of Section 4.6,
“Developing the Color Modeling Diagram.” If we added an OCL statement to
the initializer such as the following, each new archetype would be created with
the name ClassX, where X is the number of elements in the package: "Class"
+ container.childElements->size().

As mentioned earlier, feature initialization is commonly used in conjunction
with a node Constraint element. The constraint specifies the state of an object
to distinguish it from other instances, and it is required for the generator to pro-
duce a diagram that works when several nodes are mapped to the same diagram
element.

11.3 Mapping Model 527

ptg6022785

Figure 11-12 Feature initialization model

11.3.5 Implementing Side-Affixed Nodes (Pins and Ports)

As mentioned in the section on the graphical definition model, the Affixed
Parent Side property of a Node diagram element triggers the generation of a
side-affixed node. In fact, this is the only property that you need to set, aside
from the normal child/parent node mappings. As an example, we create a fixed-
size rectangle to attach to all sides of a parent rectangle below.

For the port itself, we’ve created a simple figure. The Node diagram element
that uses this figure has the Affixed Side Parent property set to NSEW, which
allows the port to float around all four sides of our parent rectangle. It also has
a Default Size Facet with the dimension 10×10. (The normal default size
of 40×40 is a bit large for a port/pin.) The parent is just a simple rectangle fig-
ure with Default Size Facet set to 80×80. The mapping to achieve this is
straightforward as well—just a simple top-level node mapped to our simple rec-
tangle and a child reference mapping the port node. A basic containment rela-
tionship exists in the domain model between the parent and child (port)
elements. Figure 11-13 is an image of the port (side-affixed node) in action.

528 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Figure 11-13 Side-affixed node

Looking at the generated code, you’ll find that the edit part for the parent
rectangle extends AbstractBorderedShapeEditPart and installs
BorderItemSelectionEditPolicy on its child to restrict movement around
the border. The port edit part extends AbstractBorderItemEditPart and
installs a NonResizableEditPolicy, so it’s not necessary to set Max/Min/
Preferred dimensions on the figure. Note that this approach applies to exter-
nal labels as well.

11.3.6 Link Mapping

To map a Connection from the graphical definition to a domain model and
palette creation tool, use the Link Mapping element. Four major use cases are
supported for link mappings: design links, domain element references, links rep-
resenting domain class elements, and phantom node links.

Note that it’s possible to create links that do not map to domain elements,
so-called design links. In this case, simply select a palette tool and diagram link,
leaving all properties for the domain empty. Links created this way can be made
between all top-level nodes on the diagram, although they represent no domain
model information.

Links create connections between elements on the diagram and can represent
several types of reference relationships found in a domain model. Regular refer-
ences are the most typical use for links on a diagram and are the most straight-
forward to implement. Links can also represent full-fledged domain (EClass)
elements, with source and target references. As mentioned already, containment
references can be represented using links to top-level nodes on a diagram using
the “phantom node” concept. We explore each of these in turn here.

In the case of a normal EReference between two elements, a link mapping
simply requires specifying the target. Consider the following example, where
Topic is linked to itself by a normal (noncontainment) subtopics reference, as
seen in Figure 11-14. To create a link mapping to represent this relationship as a
connection between two nodes on a diagram, the mapping properties are as indi-
cated. The only property in the Domain Meta Information category that
needs to be set is the Target Feature. The generator and runtime can infer the
appropriate node types that are valid by specifying only this property.

11.3 Mapping Model 529

ptg6022785

Figure 11-14 Simplified mindmap model

Table 11-7 Subtopic Link Mapping

Element Property Value

Mapping

Link Mapping Target Feature subtopics : Topic

Diagram Link Connection TopicSubtopics

Tool Creation Tool TopicSubtopics

If a link is to be used to indicate a containment reference, we set the proper-
ties as discussed in the phantom node discussion of Section 11.3.3, “References,
Containment, and Phantom Nodes.”

When a domain element (EClass) is used to represent a relationship, more
information is required in the mapping definition. In this case, the generator
needs to create code that knows where to store the new instance of the class rep-
resenting the link, as well as what features on this class to initialize with refer-
ences to the source and target. Consider the Connection element in our scenario
model, shown in Figure 11-15.

Connection has source and target references to the Element class,
which have corresponding eOpposite relationships outgoing and incoming.
Table 11-8 shows how this type of link is mapped. Because Connection is itself
an Element, it is stored in the elements containment reference within
Process, which, in this case, represents the Canvas. The mapping is for our
Association class, which is the Element itself being mapped and representing

530 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

the link. The Source Feature and Target Feature map directly to our
source and target references.

11.3 Mapping Model 531

Figure 11-15 Connection model

Table 11-8 Connection Link Mapping

Element Property Value

Mapping

Link Mapping Containment Feature elements : Element

Element Association -> Connection

Source Feature source : Element

Target Feature target : Element

Diagram Link Connection DirectedAssociation

Tool Creation Tool Directed Association

Constraint Body isDirected = true

Feature Seq Initializer Element Class Association -> Connection

Feature Value Spec Body true

Feature isDirected : EBoolean

ptg6022785

Notice from the mapping that the link also has a Constraint and Feature
Seq Initializer element. Constraints specify conditions for which the
underlying relationship is valid, or remove ambiguity if multiple links are
mapped for a single element. In this case, the isDirected property is set to
true. The initializer mapping element that follows sets the property itself. The
language defaults to OCL, and the expression is simply true.

A link can also have a label mapping. Naturally, the label will be of the
“external” variety, able to be associated with an end of the link, as specified in
the graphical definition model. Table 11-9 is our dependency link mapping from
Section 4.3.5, “Updating the Mapping Definition,” where two link mappings are
required: one for the link name and the other for the stereotype.

Table 11-9 Relationship Link Mapping

Element Property Value

Link Mapping Containment Feature elements : MapElement

Element Relationship → MapElement

Source Feature source : Topic

Target Feature target : Topic

Diagram Link Connection Relationship

Tool Creation Tool Dependency

Feature Label Mapping Diagram Label Diagram Label RelationshipName

Features name : EString

Feature Label Mapping Diagram Label Diagram Label RelationshipType

Features type : Type

View Pattern «{0}»

11.3.7 Audits and Metrics

The root of the mapping model allows for the creation of an Audit Container
and a Metric Container, as shown in Figure 11-16. An Audit Container
contains audit rules or child containers. An audit rule has several properties,
including name, ID, message, description, severity, and whether to use “live”
mode. The alternative to live is batch, in which the Practitioner must explicitly
run audits on models. An audit rule requires two child elements: a constraint, or
the rule itself defined in OCL, Java, regexp, or nregexp, and a context. The

532 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

context can be a domain element, domain attribute, diagram element, notation
model element, or metric rule.

11.4 Generator Model 533

Figure 11-16 Audits and metrics model

You can find examples of applying audits and metrics in the mindmap dia-
gram, in Section 4.3.5, “Audits and Metrics.”

11.4 Generator Model

The GMF generator model is the largest model used in GMF and the one most
likely to be extended to provide customizations, probably using a decorator
model. Much of the model doesn’t need to be covered in detail because most ele-
ments are simply Gen-prefixed elements from the input models. These elements
are created and populated by GMF Mapping model to Generator model

ptg6022785

transformation. This transformation is currently implemented in Java code but
might eventually be implemented in QVT Operational Mapping Language (OML).

GMF provides merge functionality to help in reconciling changes made to the
generator model when retransforming from the mapping model. The
Experimental Software Development Kit (SDK) provides a trace facility that
helps maintain generated visual IDs consistent between regenerations. We rec-
ommend that you use these facilities if you plan to make changes or augment the
generator model in any way.

The generator model has references to the EMF generator model for use in
generating the diagram code. The figures used in the diagram are either serialized
into fields in the generator model during the transformation from gmfmap to
gmfgen, or they are referenced by class name from their corresponding generated
figure plug-in.

Following are descriptions of the major elements of the generator model,
with particular attention given to those that the Toolsmith most likely will
change before generation.

11.4.1 Gen Editor Generator

This element is the root of the generator model and contains general properties
and child elements for the generated diagram editor. Following is a description
of each.

Copyright Text

Use this property to enter the copyright statements you want to appear at the top
of your generated source code. Note that you do not need to enter the comment
markers, such as /*, */, //, <!--, or -->. These are added automatically,
and the generated source code respects the line breaks you enter in the multiline
dialog.

Note that copyright statements are added to Java and plugin.xml files
only, not to .properties files or the OSGi bundle manifest (MANIFEST.MF).
Also be aware that, thanks to current merge limitations, changes to this property
do not affect existing files. Delete all files and regenerate if you want the copy-
right text updated.

Diagram File Extension

This is the file extension registered with the org.eclipse.ui.editors
extension-point contribution in the generated diagram plug-in manifest. By
default, it is the name of the domain model with _diagram appended. The
extension you choose should be unique, if possible.

534 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Domain File Extension

This is the file extension registered with the associated domain generator model.
It is used for the pop-up menu UI contribution that invokes the generated dia-
gram initialization feature, the New Diagram Wizard, and so on.

Domain Gen Model

This is a reference to the domain generator model. It is used primarily for the
domain model element property tester, which requires knowing the accessor
methods for the classes.

Dynamic Templates and Template Directory

When the Dynamic Templates property is set to true, the path specified in the
Template Directory invokes the dynamic (custom) templates located there
when diagram code is generated. Note that the path should begin from the work-
space root, so templates located in a /templates directory of plug-in org.
eclipse.demo would be entered as /org.eclipse.demo/templates. Also,
it is possible to enter any valid Uniform Resource Identifier (URI) into this
field—for example, file:/c:/path, platform:/resource/org.eclipse.
dsl.mindmap/templates.

Model ID

By default, this is the value of the domain model name that identifies the gener-
ated diagram. As with the file extension property, this value should be unique to
the environment. If multiple diagrams are defined for a single domain model,
alter this property to make it unique; by default, it gets the same value as the
first one.

This property creates the IDs and other names used to identify the diagram
elements, such as the globalActionHandlerProviders extension-point con-
tributions. It also identifies related diagrams when using the Shortcuts
Provided For property (discussed later).

Package Name Prefix

As you can guess, this property forms the base package for generated diagram
code.

Same File for Diagram and Model

By default, GMF creates a diagram in its own resource and references domain
elements stored in a separate file. This is the preferred method, where domain

11.4 Generator Model 535

ptg6022785

and diagram (notation) information are separate, and thus allows for several dia-
grams (views) to be made for the same domain model instance.

Setting this Boolean property to true alters the generated diagram wizard
code to persist the domain model within the same resource (file) as the diagram
model. An XML Metadata Interchange (XMI) element serves as the root, with
child elements for the domain and diagram (notation).

This property is also used in the template for generating the initialize dia-
gram code. If the Initialize xxx Diagram is invoked on a domain model, using the
Domain File Extension, the model content is copied into a file ending in the
Diagram File Extension and persisted in the same file as the notation data.

11.4.2 Gen Diagram

This element contains properties and children related to the diagram itself. The
rest of the properties relate to supporting elements, such as the generated plug-
in, view, and navigator.

Many of the properties for the diagram are strictly names for generated
classes and packages. This element includes names for edit parts, edit policies,
edit commands, edit helpers, and so on. The remaining properties are listed next,
along with the child elements of Gen Diagram.

Contains Shortcuts To and Shortcuts Provided For

Diagrams can have elements from other model instances placed as shortcuts on
their Canvas, but only if the related diagrams are known at generation time. You
should consider two properties here: Contains Shortcuts To and Shortcuts
Provided For.

Adding the file extension of a domain model to the Contains Shortcuts
To property makes elements of that model type appear as shortcuts on your dia-
gram. Note that there must be a top-level node mapping for the selected element
in a deployed GMF diagram definition before a shortcut can be placed on the
diagram.

When this property is populated, a generated Create Shortcut To action
on the diagram invokes a chooser dialog to allow the selection of model elements
to be shortcut. Only those file types specified will be visible, and their content
validated before selection will be permitted.

Most commonly, Toolsmiths will want a set of diagrams of the same type to
allow shortcuts for each other’s elements. Adding the Model ID of the related
diagram in the Shortcuts Provided For property enables elements of that
diagram to be added to the diagram.

536 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

Synchronized

This property determines the behavior of the diagram at runtime with respect to
the state of its corresponding domain model. A synchronized diagram (default)
updates automatically to reflect changes in the underlying domain model
instance. For example, a package diagram node that contains classes will be
updated automatically to reflect the addition of new classes to the package auto-
matically. Note that default generated code from GMF does not synchronize a
diagram when changes are made in another editing domain until the changes are
saved—for example, if the model is also open in the EMF-generated editor and
is modified but not yet saved. It’s also possible to share the same editing domain
among diagram editors that operate on the same underlying domain model, as is
often the case with UML diagramming tools. You can find the process for accom-
plishing this on the GMF wiki. Section 4.4.6, “Integrating EMF and GMF
Editors,” covers sharing EMF and GMF editors when both use the same editing
domain.

You can initially create a nonsynchronized diagram using the initialize dia-
gram action for a given domain model, but it will not be updated to reflect
changes in the model. More specifically, canonical updates occur, but the creation
of new diagram elements that correspond to newly created elements in the under-
lying domain model does not occur. Labels and compartment items for existing
diagram elements will reflect changes in their underlying domain properties.

You can also take a mixed approach, in which some diagrams are synchro-
nized and others are not; this is another common use case for UML diagramming
tools.

Units

This property refers to the unit of measure used to render the diagram in the dis-
play. The valid values are Himetric and Pixel. A Himetric unit is equal to
1/100 mm on any display. A Pixel can vary depending on the display resolution.

Validation Decorators and Validation Enabled

When validation is enabled for use with diagram audits and metrics, validation
decorators can also be enabled to allow decoration of diagram elements. Setting
Validation Enabled to true causes the generation of _ValidationProvider
and _MarkerNavigationProvider classes for invoking the EMF validation
framework and providing resource markers, respectively. Setting Validation
Decorators to true causes the _ValidationDecoratorProvider class to be
generated, which handles decorating diagram elements with validation errors.

11.4 Generator Model 537

ptg6022785

Along with these properties, this section of the generator model has provider
priority elements. By default, many of these are set to Lowest priority, which,
unfortunately, might not allow them to be activated at runtime. For example, set
the Validation Decorator Provider Priority to Medium if you aren’t
seeing decorators for audit violations. For metrics, set the Metric Provider
Priority to something higher than Lowest. As mentioned in the runtime sec-
tion, these providers are part of an extensibility framework that gives custom
providers priority over the default or generated providers, according to the exe-
cution strategy that the service defines.

Creation Wizard Category ID and Icon Path

By default, GMF generates the Diagram Creation Wizard, sets it to the org.
eclipse.ui.Examples category, and provides a standard icon. If you want to
put your wizard in a custom category, specify it here, but be sure to use a valid
category ID. Otherwise, you might find your wizard in the “Other” category.

Similarly, you can provide an alternative relative path to use a different icon.
If you’d prefer to reuse the EMF wizard icon for the diagram wizard, enter
{reuseEMFIcon} in the field. Note that this also impacts the file icon used in
the navigator. Of course, you could just replace the generated icon with one you
prefer and leave the filename and path set to the default.

Editing Domain ID

A unique identifier for the diagram is its editing domain, which uses its own
resource set. Generated diagrams are given an instance of an editing domain for
each open editor, so, by default, they cannot share instances of model elements
that are open in another open diagram. You can alter the generated code so that
several diagrams can share a single domain model instance.

Visual ID

The Visual ID is a number used to represent a diagram metaelement where vari-
ous types are being edited within a single editor. Generally, you do not need to
modify this value except when using a shared editing domain, as described earlier.

Without Domain

You can generate diagrams where no underlying domain model is mapped, in
which case this property is true. This is useful when you want to experiment
with notations or refine your figures.

538 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

11.4.3 Gen Link

To enable Tree Style Routing for links, you must set the Tree Branch
property to true. This causes the generated EditPart for the link to implement
ITreeBranchEditPart and allow for tree-style link routing, as described in
Section 10.1.1, “Toolbar.”

11.4.4 Custom Behavior

The Gen Diagram and child Gen Node and Gen Link elements can have a
Custom Behavior child element, which enables the Toolsmith to add custom
behavior to the parent element. Note that these elements are not created by
default as part of the transformation from the mapping model, but they are fea-
tures to be added by the Toolsmith.

From the description of GEF’s Edit Policy concept in Section 9.2.3,
“EditPolicies,” we know that they are the mechanism for adding behavior to a
diagram element. A Custom Behavior element simply allows for a Key and
Edit Policy Qualified Class Name to be entered. The generator then adds
the necessary code to install this EditPolicy. Of course, it’s up to the Toolsmith
to code the policy.

Another feature of Custom Behavior is to remove an Edit Policy that
is already installed. To do this, simply enter the key of the policy and leave the
class name blank. This signals the generator to enter the code to uninstall this
policy. This is particularly useful for removing some of the default-installed poli-
cies available from the GMF runtime. For example, the diagram connection han-
dles can be uninstalled using the key org.eclipse.gmf.runtime.
diagram.ui.editpolicies.EditPolicyRoles. CONNECTION_HANDLES_
ROLE.

11.4.5 Open Diagram Behavior

The related diagram property of the mapping model allows elements to open
other diagrams through a mapping to their Canvas. Specifying the Related
Diagrams property in the mapping results in an Open Diagram Behavior ele-
ment being added to the generator model and an OpenDiagramEditPolicy
class being generated. This functionality is illustrated in Section 4.5.6, “Diagram
Partitioning.”

11.4 Generator Model 539

ptg6022785

11.4.6 Gen Plugin

The Gen Plugin element contains properties for generating the diagram plug-
in itself. Table 11-10 describes each of these properties. Gen Plugin has no
child elements.

Table 11-10 Gen Plugin Properties

Property Description

ID The unique plug-in ID assigned to the generated diagram plug-in. It
must be unique in the workspace because it will also be the name of the
generated plug-in.

Name The textual name of the generated plug-in. Technically, this string
appears in the plugin.properties localization file, while %pluginName
will appear in the MANIFEST.MF file.

Printing Enabled Setting this value to true (default is false) generates the code required for
Print and Print Preview functionality for the diagram.

Provider The name of the generated plug-in provider. Again, the String is
generated to the plugin.properties file, with %providerName in the
MANIFEST.MF file.

Required Plugin A list of additional plug-in IDs that the generated diagram depends
Identifiers upon. For example, you can add custom figures found in a generated

figure plug-in here.

Version The version number of the generated plug-in, including version qualifier
suffix by default. The suffix is replaced by the PDE build (from the
workspace, or headless) to a value that reflects changes made since the
last build.

11.4.7 Gen Editor View

The generated diagram editor has properties defined in this element.

Icon Path

Alter this property if you want to use a different icon for the editor, which is
viewed in the navigator. As mentioned earlier for the diagram wizard icon, you

540 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

can use the string {reuseEMFIcon} to force the use of the EMF editor icon.
Again, the easiest way to use your own icon is to simply replace the generated
one with a custom one using the default name and location.

ID

This is the unique ID used for the diagram editor, which is registered in the plug-
in manifest as an eclipse.ui.editors contribution. This ID should be unique
if you are working with several diagrams for the same domain model.

Generate as Eclipse Editor

By default, GMF generates a diagram that is an Eclipse editor. Alternatively, the
lite runtime enables the Toolsmith to generate a diagram that functions in an
Eclipse view.

11.4.8 Gen Navigator

The Gen Navigator element and children generate support for the common
navigator (Package Explorer view). This allows diagram content—and, option-
ally, domain model content—to be displayed below the file in the navigator.
Most of the properties of this element are ID and class names that need no expla-
nation; the rest are described here.

Generate Domain Model Navigator

As mentioned, GMF also allows the content of a diagram’s domain model to be
exposed in the Project Explorer. The default value is true. When working with
several generated diagrams for a single domain model, only one of the editors
should have a value of true for this property. Otherwise, duplicate domain
model structures will be observed in the navigator.

Gen Navigator Child Reference

This child element has properties that affect how diagram elements are displayed
in the tree; see Table 11-11. By default, GMF generates logical groups for incom-
ing and outgoing diagram links, including subelements for link source and target
references.

11.4 Generator Model 541

ptg6022785

Table 11-11 Gen Navigator Child Reference Properties

Property Description

Group Icon A relative path to the icon used to represent the logical group, typically
displayed as a folder.

Group Name The name given to a logical group. If this property is empty, child
elements are displayed directly below the parent element. Note that
each Gen Navigator Child Reference element has Parent and Child
properties.

Hide If Empty A Boolean property to filter empty logical groups from the navigator.

Reference Type A number of options exist for how the notation model tree is traversed:
children, out_target, in_source, and default.

11.4.9 Gen Diagram Updater

This element has properties to specify the names of the generated updater, com-
mands, and descriptors. A _DiagramUpdater is generated and contains a
number of static methods that can list all semantic children of a diagram element,
in addition to diagram link information. The class is used by generated
_CanonicalEditPolicy classes and the _NewDiagramFileWizard (for non-
synchronized diagrams) for updating a diagram based on actual domain model
content. The updater is also a handy utility class that can be used in custom code
that needs to query model elements.

11.4.10 Property Sheet

GMF provides support for the enhanced tabbed properties view now available in
the platform. The Property Sheet element and its children define the default
properties sheet support, which is intended to be extended by the Toolsmith. One
approach to extending property sheet support is to use a decorator model and
custom templates, as shown in the gmfgraph editor itself.

The Package Name and Label Provider Class Name properties are
straightforward. Note that if the property Caption for the Sheet is false,
no label provider is generated. By default, the caption shows the name of the
underlying domain element, if any.

The Read Only property is false by default but can be set to true if the
Toolsmith wants all properties to be displayed but not editable by the
Practitioner. Note that individual properties can be set to read-only by using the
domain generator model’s Property Type property set to Readonly.

542 CHAPTER 11 • Graphical Modeling Framework Tooling

ptg6022785

If you’d rather have no property sheet for the diagram, simply remove the
Property Sheet element from the generator model.

Standard Property Tab

GMF comes with standard tabs: Diagram, Advanced, and Appearance. These
display diagram notation information, such as ruler, grid, line color, and type set-
tings.

Custom Property Tab

GMF generates a Core property sheet to display the selected element’s domain
properties in the familiar grid view. A child Typed Selection Filter is
responsible for controlling which elements the tab displays. Section 4.4.6,
“Properties Revisited,” describes custom property tabs.

11.4.11 Gen Application

When the RCP option is selected when transforming between the mapping and
generator models, a Gen Application element is created. This element and its
children provide the information required to generate an RCP-based application.

11.5 Summary

In this chapter, we took a deeper look into the GMF tooling component. While
there is plenty left for the reader to discover within the models, templates, and
code provided with GMF, this chapter should give you enough to get started
developing your own diagrams. In the next chapter, we cover some of the most
popular FAQs about GMF.

11.5 Summary 543

ptg6022785

This page intentionally left blank

ptg6022785

CHAPTER 12

Graphical Modeling
Framework FAQs

Graphical Modeling Framework (GMF) is such an extensive framework and tooling infra-
structure that many questions often appear on the newsgroup. Some have been collected
into FAQ content on the GMF wiki pages, but here you find a collection of the most com-
monly asked questions about how to use GMF. Where possible, the answer references
information within the book and its sample projects.

12.1 General FAQs

The FAQs in this section relate to general topics on GMF, the project.

How do I get started with GMF?
Aside from reading this book, you can find a number of wiki pages at

http://wiki.eclipse.org/Graphical_Modeling_Framework that contain informa-
tion on a wide range of GMF topics. Many tutorials on both the tooling side of
GMF and its runtime have been posted, along with FAQs, new and noteworthy
documents, and more.

What advantages does GMF offer over Graphical Editing Framework (GEF)?
GMF simplifies the integration of EMF as the underlying model for a GEF

diagram. With that, it provides a separate notation model that is used to segre-
gate the domain from diagram information. A number of services, extension-
points, and APIs are provided with GMF to make developing diagrams easier
than if you had started with GEF alone. Add to this the capability to define dia-
grams using a series of models and generate a large portion of the diagram code

545

http://wiki.eclipse.org/Graphical_Modeling_Framework

ptg6022785

using the GMF tooling Software Development Kit (SDK). You can find discus-
sions on the differences between GEF and GMF throughout Chapter 9,
“Graphical Editing Framework”; Chapter 10, “Graphical Modeling Framework
Runtime”; and Chapter 11, “Graphical Modeling Framework Tooling.”

What are the prerequisites for GMF?
GMF depends on GEF, Eclipse Modeling Framework (EMF), the EMF

Transaction and Validation components, Model Development Tools Object
Constraint Language (MDT OCL) , and, when working with Scalable Vector
Graphics (SVG) figure support, Apache Batik and Xerces. Furthermore, the
Eclipse Packaging Project and Modeling Amalgam projects provide downloads
that include GMF and all its dependencies.

How can I contribute to GMF?
Okay, so this isn’t a frequently asked question—but since it’s here…. The

best way to contribute to GMF or any Eclipse project is to interact with project
Committers in the newsgroup and, after reaching an agreement, apply a patch to
a Bugzilla item. All contributions must go through Bugzilla, must be in the for-
mat of a CVS patch, and should have unit tests associated with the functionality
or fix.

12.2 Diagramming FAQs

The FAQs in this section relate to figures—how to change them dynamically,
alter their properties, and so on.

How do I change the figure of an existing element dynamically?
You can change the figure of an EditPart by configuring requests and exe-

cuting commands to first remove the existing view element and add the new one;
you must save the location information so that the new element is positioned
properly. This is done within the UML2 Tools project. A different approach relies
on the underlying diagram refresh method and layout invocation in Section
4.3.5, “Subtopic Figure.” Yet another approach is to use the runtime’s extensi-
bility features, as illustrated in the scenario diagram customization of Section
10.9.1, “Scenario Diagram Custom View and Edit Providers.”

How can I change a figure’s appearance based on a preference change?
The basic process involves adding a PreferencePropertyChange

Listener to the EditPart by overriding the addNotationalListeners()
method and invoking the change on the corresponding figure when the corre-
sponding PropertyChangeEvent is sent. Section 4.6.6, “Color Preferences,”
outlines an example of this.

546 CHAPTER 12 • Graphical Modeling Framework FAQs

ptg6022785

How can I change a property of a figure when a domain property changes?
The most straightforward approach is to override the handleNotifi-

cationEvent() method in the EditPart and determine whether the change
was on the domain property of interest. If so, update the corresponding figure
accordingly. Section 4.3.5, “Subtopic Figure,” gives an example of a domain
change being detected to invoke diagram layout.

How can I make my figure nonresizable?
Using code, you install a NonResizeableEditPolicy for the

EditPolicy.LAYOUT_ROLE. To accomplish this in the definition model, set the
Resize Constraint of the Node element to NONE and provide a Default Size
Facet, as illustrated in Section 4.5.1, “Gateways.”

What does canonical mean in the context of GMF?
In terms of the runtime, canonical refers to the capability of a container to

maintain its children views in synchronization with their underlying domain ele-
ments. For example, consider a compartment within a Class element in a UML
diagram. New elements added to the underlying domain model are synchronized
with the compartment view automatically. In this case, the compartment is a
canonical container and keeps track of changes to its children.

Why can’t I see elements I place on the diagram?
This can happen when you use certain versions of Linux that might not have

the Cairo graphics library installed or that have Windows 2000 without the
GDI+ library. The selection border for elements typically is shown, so try using
Select All (Ctrl+A) to verify this. If this is your issue, install the missing libraries.
You can also disable anti-aliasing for the diagram to resolve the problem; this
option is available in the preferences of your diagram.

12.3 Tooling FAQs

The FAQs in this section relate to using the GMF Tooling models for diagram
generation.

How do I modify the output of the generation templates?
You can modify the templates for both figure generation and diagram code

using the extensibility options provided by the underlying Xpand model-to-text
framework. This book explores each of these techniques. See Section 4.2.3,
“Customization Options,” for a general overview and Sections 4.6.5, “Gradient
Figures,” and 4.6.6, “Color Preferences,” for specific examples.

12.3 Tooling FAQs 547

ptg6022785

Do I have to use the tooling component to use GMF?
No. As described in Section 10.8, “Developing a Diagram,” you can develop

a diagram manually using the provided extension-points and APIs. Using the
tooling to get started is generally recommended because you can generate a lot
of the code you need to write from its models.

How can I include a diagram as one page in a multipage editor?
The process for doing this is currently long and involved, although it even-

tually might become easier if the generation of both EMF and GMF is modified
to facilitate this common request. You can refer to an Eclipse Corner article on
this topic (see Section 4.4.6, “Integrating EMF and GMF Editors”).

How can I get nodes to stick to the border of a parent?
In the Node element of the graphical definition model, set the Affixed Parent

Side property to something other than NONE. Based on the Node mapping for
the parent, or the domain element that has a containment reference that holds
instances of the child, the generated EditPart has a BorderItemSelection
EditPolicy installed for its EditPolicy.LAYOUT_ROLE. Section 4.5.6,
“Requirement to Scenario Partition,” illustrates this.

Why does GMF have its own version of Xpand?
Historically, GMF adopted Xpand to replace Java Emitter Templates (JET)

as the primary template engine, but Xpand had some IP cleanliness issues. The
GMF team refactored Xpand to use the LALR Parser Generator (LPG) parser
generator, in addition to some other enhancements. Currently, additional refac-
toring is underway to replace Xtend with Object Constraint Language
(OCL)/QVT Operational (QVTO), so this variant of Xpand likely will migrate
to the Model-to-Text Transformation (M2T) project as a distinct, though simi-
lar, alternative to the original Xpand. Furthermore, the Xpand team is working
to implement its next version, based on Xtext.

12.4 Summary

In this chapter, we look into some typical FAQs about the GMF runtime and
tooling. While not exhaustive, many other FAQs can be found on the project
website.

548 CHAPTER 12 • Graphical Modeling Framework FAQs

ptg6022785

CHAPTER 13

Query/View/Transformation
Operational Mapping Language

The Meta-Object Facility (MOF) Query/View/Transformation (QVT) specification
includes three languages: the Relations language, the Core language, and the Operational
Mapping Language (OML). The first two are related, in that the Relations language is
transformed into the Core language for “execution.” The Relations language is a high-
level, declarative language that is intended to be more user-friendly than low-level, imper-
ative languages. It can support complex pattern matching between objects, creating a trace
file implicitly that allows for bidirectional transformation.

The Core language is semantically equivalent to the Relations language but is
defined at a lower level of abstraction. Therefore, transformations written in
Core are more verbose than those written in Relations. Trace models must be
defined explicitly, unlike in Relations, where they are derived from the transfor-
mation definition.

Both the Relations language and OML are currently under development
within the Model-to-Model Transformation (M2M) project. At the time of this
writing, only the OML is available, so it is the focus of this book. Note also that
this book focuses on aspects of OML that have an implementation available, but
it also discusses some aspects of the language that are planned to be supported
in the future.

The OML is intended to provide an imperative alternative, which can be
invoked from the Relations and Core languages in a “black-box” manner. OML
makes extensive use of Object Constraint Language (OCL), which this book does
not cover in detail. As with Eclipse Modeling Framework (EMF), OCL is cov-
ered by a book of its own, which is recommended reading before, or in parallel

549

ptg6022785

with, this book. This chapter covers the extensions to OCL added in the QVT
spec.

OML is an imperative language that most programmers will find familiar. The
language is used to define unidirectional transformations, although a second trans-
formation can always be written to provide bidirectionality. It can provide imple-
mentations of mappings for the Core or Relations languages when declarative
approaches prove difficult, which is known as a hybrid approach. Transforma-
tions defined exclusively using OML are known as operational mappings.

As you will see in the language description that follows and throughout the
examples in this book, you can write equivalent QVT scripts in many ways. The
decisions made by the transformation author to use particular techniques and
constructs will be determined by experience, style preference, reusability, and
maintainability factors. As the language and tooling support matures, features
for navigation, refactoring, and optimization of QVT scripts are expected to
improve the experience of working with QVT from its current state.

13.1 Transformation Declaration

A QVT transformation is defined in a file that includes a transformation signa-
ture and main mapping to serve as an entry point. One or more modeltype dec-
larations can also be included to explicitly define the metamodels used in the
transformation. Following is a transformation declaration with modeltype and
main mapping elements:

modeltype UML uses
simpleuml('http://www.eclipse.org/examples/1.0.0/simpleuml');

modeltype RDB uses rdb('http://www.eclipse.org/examples/1.0.0/rdb');

transformation uml2rdb(in uml:UML, out rdb:RDB) {

-- The main entry point of the transformation
main() {
-- Standard model element access and mapping invocation
uml.objects()[Class]->map class2table();

}
}

As you can see, a transformation definition is much like a class declaration,
with import statements, a signature, and a main() mapping entry point. The
analogy between operational QVT and object-oriented languages is accurate:
Transformations are instantiated and have properties and (mapping) operations.
Note that the mappings of the transformation are enclosed within curly braces
following the transformation signature. This is not required if the file has only

550 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

one transformation, in which case the transformation declaration is terminated
by a semicolon. At the time of this writing, QVT Operational (QVTO) currently
supports only one transformation per file, so the previous syntax would result in
a compiler error. Instead, declare transformations as follows:

transformation uml2rdb(in uml:UML, out rdb:RDB);

Each model parameter is associated with an MOF extent. The transforma-
tion itself can be considered a class that is instantiated, causing the initialization
of the parameter extents. Output parameters are initialized to empty model
extents. All are accessible using the this variable, which refers to the transfor-
mation instance itself. When instantiating objects, the model extent can be
declared to remove ambiguity when multiple models of the same type are in use.
This is done using the @ sign followed by the name, as shown here:

transformation mindmap2requirements(in inModel : mindmap,

out oneModel : requirements, out outModel2 : requirements);

main() {
object Model@oneModel {
}

}

The modeltype declaration assigns an alias to a metamodel used in the con-
text of the transformation. The uses part of the declaration specifies the model
name and registered URI that the environment uses to resolve the MOF meta-
model definition. In the case of Eclipse QVT OML, MOF is equivalent to EMF’s
Ecore metamodel. Therefore, URIs used here are those found in the NS URI field
of packages registered in EMF. To see a list of the models registered in the envi-
ronment, use the Metamodel Explorer view provided by the M2M OML com-
ponent. It’s also possible to specify modeltypes using Eclipse platform:/
plugin and platform:/resource Uniform Resource Identifiers (URIs).

Note that it’s not necessary to place the URI within parentheses following the
model name. The following is equivalent to our Unified Modeling Language
(UML) modeltype declaration earlier:

modeltype UML uses 'http://www.eclipse.org/examples/1.0.0/simpleuml';

You also can simply state the model name, which, in the case of M2M OML,
corresponds to the EMF registered package. This allows some flexibility because
several versions of a model could be registered in the environment, but it also can

13.1 Transformation Declaration 551

ptg6022785

cause some conflicts because you cannot guarantee that the model name is
unique. Technically, the NS URI is no guarantee of uniqueness, but it gives a
much higher degree of confidence. Following is another modeltype declaration
that uses just the model name:

modeltype UML uses simpleuml;

A modeltype declaration can also include a strict qualifier. By default,
model types are effective and flexible, in that they allow the transformation to
work with similar model types. For example, slight version changes of a meta-
model might not impact a QVT definition, so the effective declaration allows
these instances to be processed. If the transformation author requires a specific
metamodel to be used, adding strict before the uses clause provides the
required enforcement. For example, this is a fully qualified modeltype declara-
tion using strict compliance:

modeltype UML 'strict' uses

simpleuml('http://www.eclipse.org/examples/1.0.0/simpleuml');

You also can restrict the model type using a where clause. For example, the
following declaration imposes the restriction that a model must have at least one
Class. This capability allows for a degree of validation of input models without
executing the transformation.

modeltype UML uses

simpleuml('http://www.eclipse.org/examples/1.0.0/simpleuml') where

{self.ownedElements->closure(oclIsKindOf(UML::Class))->size() > 0};

Currently, the M2M QVTO implementation produces a warning that meta-
model conditions are not supported.

NOTE

The use of closure() in the previous statement is nonstandard.
Although QVT extends standard OCL libraries, this is not a QVT function.
The closure iterator is provided by MDT’s OCL component and works
nicely in this case.

552 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

The previous signature states that the uml2rdb transformation will take as
an input a uml model instance of type UML and return an rdb model instance of
type RDB. From the modeltype statements, we know that these map to models
found in our environment by name or URI. Parameters have a direction (in, out,
or inout), an identifier, and a type. Parameters that are designated as in param-
eters are not changed, those designated as inout are updated (these are some-
times referred to as in-place transformations), and those designated as out are
assigned the newly created result. Note that it’s possible to have abstract trans-
formations, where the main() mapping is disallowed.

13.1.1 In-Place Transformations

It is possible to invoke a transformation for the purpose of modifying an exist-
ing model. Potential uses for this capability are model cleansing, refactoring, or
refinement. Section 6.2, “Model Refactoring,” provides an example of an
in-place transformation. Part of this example is provided again here:

transformation requirements2requirements(inout model : requirements);

property groupCounter : Integer = null;
property reqCounter : Integer = null;

mapping main(inout req : requirements::Model@model) {
-- ...

}

mapping inout requirements::RequirementGroup::resetValues() {
-- ...

}

The key to using QVT for in-place transformations is to use inout declara-
tions in the transformation signature, main mapping, and mapping definitions
that modify the model.

13.1.2 Extends and Access

A transformation can extend another transformation or library. For example,
suppose that we have a BaseUml2Rdb transformation and UmlUtil library that
we want to extend. Furthermore, we want to access a typeUtil library. To indi-
cate this, we simply add the following extends and access keywords with
transformation names to the end of our signature. In the case of extension, map-
ping definitions can override those in the extended transformation.

13.1 Transformation Declaration 553

ptg6022785

transformation uml2rdb(in uml:UML, out rdb:RDB)
extends BaseUml2Rdb
extends library UmlUtil
access library typeUtil;

At this time, M2M OML does not support access and extension of transfor-
mations and libraries. The M2M project does not yet have a Relations language
implementation, so it also does not yet support the refines keyword.

13.1.3 Intermediate Elements

OML supports the definition of intermediate classes and properties, which
can be helpful in some transformation definitions. Essentially, the definition of
an intermediate class and associated property allows for metamodel exten-
sion in the context of the transformation. The example used in the specification
follows; here, a LeafAttribute class is defined to help with mapping complex
type attributes to relational database columns. An intermediate property
allows for the storage of LeafAttributes in a Sequence, accessible as a fea-
ture of the Class element.

intermediate class LeafAttribute {
name : String;
kind : String;
attr : Attribute;

};

intermediate property Class::leafAttributes : Sequence(LeafAttribute);

Elsewhere in the transformation, the leafAttributes property can be
accessed in the same manner as any other feature of the metamodel. For example:

self.leafAttributes := self.attribute->map attr2LeafAttrs();

Unfortunately, intermediate classes are not yet implemented in Eclipse M2M
OML. Intermediate properties are supported and can be a Tuple type, providing
somewhat of a workaround for the lack of intermediate classes, as shown next.
Another workaround is to define an intermediate class in a separate *.ecore
model and use it within the context of the transformation.

intermediate property UML::Class::leafAttributes :

Sequence(Tuple(name:String, kind:String, attr:Attribute));

554 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

13.1.4 Configuration Properties

External properties might need to be passed into a transformation, which you
can accomplish using a configuration property declaration. For example,
say that you are transforming a model into a Java model and need to specify the
package namespace, but it’s not a property in the source model. Assuming that
you know this value at invocation time, it can be passed to the transformation
and set in a configuration property. A name and type are required, as shown in
the following example.

configuration property namespace : String;

Using Eclipse OML, the launch configuration dialog has a Configuration tab
that is aware of all configuration property entries in the specified transformation.
Values entered are passed into the executing transformation instance to initialize
the corresponding properties.

13.1.5 Renaming Elements

Sometimes a clash arises between the name of elements in a metamodel and, say,
keywords in OML. In this case, the rename facility can provide an alternative
naming in the context of the transformation. In the following example, the
library attribute of the java::Class element is renamed to lib to avoid a
clash with the library keyword:

rename java::Class.lib = 'library';

This feature of the QVTO implementation is not generally required because
name clashes are handled automatically by prefixing the element with an under-
score. So using the previous example, the library element would be accessed as
_library within the transformation.

13.1.6 Predefined Variables

Within the context of a transformation definition, a number of predefined vari-
ables are available. You can access the transformation itself, or the instance
thereof, using the this variable. You can therefore use this to access configu-
ration properties, mappings, helpers, and so on. For example, to reference a
property defined at the transformation level, you can access it as follows:

this.dependencies := mmap.dependencies();

13.1 Transformation Declaration 555

ptg6022785

As you will see shortly, within the context of a mapping or query, the con-
textual parameter is accessed using the self variable. The final predefined vari-
able, also discussed in detail soon, is the result variable, which accesses the
result parameter or tuple of a mapping or helper.

13.1.7 Null

Within the context of a transformation, the literal null complies to any type and
is used to mean the absence of value. It can be used as the return of an opera-
tion, either explicitly or implicitly. From OCL, the type OclAny also represents
an object of any type, while the type OclVoid represents an undefined value and
conforms to all types. The OclAny operation oclIsUndefined returns true when
its argument is undefined.

13.2 Libraries

Often you can reuse query, mapping, and type definitions in transformations.
When this is the case, they are defined in library modules and imported as dis-
cussed earlier using access or extends statements in a transformation signa-
ture. Using access implies import semantics, whereas extends implies
inheritance semantics.

The main differences between a library and a transformation are that no
main entry point is defined for execution in a library and that models listed in
its signature are those it operates on, not parameters. Following is a library def-
inition UmlRdbUtil that operates on UML model instances, extends the
UmlUtil library, and accesses the RdbUtil library:

library UmlRdbUtil(UML)
extends UmlUtil
access RdbUtil;

Note that QVT defines a standard library StdLib that is implicitly imported
in every transformation definition. This is similar in concept to the java.
lang.* package, which is imported automatically in every Java class.

13.3 Mapping Operations

OML mapping operations are the refinement of a relation and provide the fun-
damental behavior of transformations. Mappings take one or more source model
elements and return one or more target model elements. Following is the general

556 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

syntax of a mapping operation, where <direction> is one of in, out, or inout.
A mapping is either contextual, as seen here, where X represents the type and
prefixes the mapping name, or noncontextual, where the input parameter is
explicitly declared, as in mapping XtoR(in x : X) : R.

mapping <direction> X::name
(<direction> p1:P1, <direction> p2:P2) : r1:R1, r2:R2

when { ... }
where { ... }

{
init { ... }
population { ... }
end { ... }

}

A mapping has a name, which, by convention, follows either an X::<input_
element>2<output_element>() or X::to<output_element>() pattern,
where X represents the input element type. The mapping name is prefixed by the
fully qualified input element, separated by double colons. This is standard OCL
namespace syntax. The input object is referenced using self within the mapping.
Note that a mapping can be declared as abstract.

Parameters are comma separated and indicate direction in|out|inout fol-
lowed by name and type information. Input parameters cannot be modified,
while inout parameters can be updated. The out parameter receives a new value
but cannot be newly created if a previous mapping invocation for the input
instance has been processed. The following example specifies a single input
parameter named targetType and conforms to the type UML::DataType. In
this case, UML is defined by a modeltype declaration at the top of the trans-
formation.

The result is declared following a single colon after the parameter list. In the
following example, the return conforms to the type RDB::TableColumn, where
RDB is also defined by a modeltype declaration. Note that it’s possible to have
multiple results for a mapping. The result keyword is used to reference the
return object, or tuple, in the case of multiple result objects.

mapping UML::Property::primitiveAttribute2column(in targetType :

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
isPrimaryKey := self.isPrimaryKey();
name := self.name;

. . .
}

13.3 Mapping Operations 557

ptg6022785

Before the mapping body are optional when and where sections, both of
which evaluate contained Boolean expressions. The when clause acts as either a
precondition or guard, while the where clause acts as a post-condition. In the
previous example, the input Property object is validated as being primitive using
a call to the isPrimitive() query. If the when clause evaluates to false, the
mapping is not executed and a return object is not created (null is returned). If
the mapping is invoked using strict semantics (xmap), the mapping is not exe-
cuted and an exception is thrown. Currently, M2M OML does not support the
where clause.

13.3.1 Mapping Body

Within the body of the mapping, marked by open and closing curly braces, are
optional init, population, and end blocks. These are optional, in that init
and end blocks are not required, and the population section is implied as the
remaining area within the mapping body itself. The specification describes situ-
ations when it is required to use an explicit population section, but it’s not gen-
erally used.

The init section is where computation can take place to initialize variables,
explicit setting of output parameters, and so on before the effective instantiation
of the mapping output. A possible use for init is to instantiate an object that is
a subtype of that defined as the result in the mapping definition. The output
values are set in the population section, and finalization of computation occurs
in the end section before the mapping returns.

You can consider yet another section to exist implicitly between the init
and population section where return objects that are not initialized are instan-
tiated. What’s important to realize here is that if you want to assign an existing
object to a return parameter, you must do this in the init section. The end block
is a finalization section for placing additional code that must be invoked before
the mapping operation returns.

Execution Semantics

To better understand a mapping operation’s execution semantics, consider the
following sequence:

1. When resolved, a mapping is executed with all parameters passed as a
tuple. This includes the context parameter (first) and the result parameter
(last).

2. All out parameters are initialized to null, while all input parameters are
passed by reference.

558 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

3. The type compliance of all parameters and evaluation of the when clause
takes place. If failure occurs, null is returned.

4. If the guard succeeds, the trace is consulted to see whether the mapping
has previously been satisfied for the given input. If so, the out parameters
are populated using the previous result and are returned. Otherwise, the
mapping body is entered.

5. The expressions found in the init section (if present) are executed in
sequence.

6. Following init, the “implicit instantiation” section is entered, where all
output objects are initialized, if still null. Collection types are initialized
with empty collections, and trace data is recorded for the mapping.

7. Each expression in the population section is executed in sequence, typi-
cally operating on the out or inout objects.

8. The end section expressions are then executed in sequence.

The execution semantics change when a mapping inherits, merges, or is a dis-
junction of another mapping, as described in Section 13.3.3, “Inheritance,
Merger, and Disjunction.”

return

During execution of a mapping operation or helper, you can control the flow
using explicit return statements. If a value is provided, it is assigned to the
result object of the mapping.

13.3.2 Entry Operation

A special form of mapping, known as the entry operation, is marked with the
main keyword. There can be only one main per transformation—or, in the case
of abstract transformations, no main operation at all. If used without mapping,
this entry point takes no parameters and has no init, population, or end
block. A main can be used with the mapping keyword and combines the aspects
of the transformation entry point and those of a regular mapping operation.
Following is a main that does not declare that it’s a mapping operation. The out-
put is assigned the result of the toRequirementsModel() mapping. As you can
see, QVTO allows parameters in main operations, although it’s technically not
allowed in the specification.

13.3 Mapping Operations 559

ptg6022785

main(in mmap : mindmap::Map@inModel, out req :

requirements::Model@outModel) {
req := mmap.map toRequirementsModel();

}

An example of using main without parameters follows. Strictly speaking,
this is what all main() operations should look like. In most cases, the in model
parameter is accessed directly and is used to invoke the mapping operation. The
rootObjects() operation is available on all Model objects. The use of brack-
ets in the statement is an example of the collectselect statement shorthand.

transformation mindmap2requirements(in inModel : mindmap,

out outModel : requirements);

main() {
inModel.rootObjects()[Map]->map toRequirementsModel();

}

13.3.3 Inheritance, Merger, and Disjunction

Mappings can extend other mappings through inheritance, can have their result
merged with the result of another mapping, or can be executed based on the suc-
cess of their guard conditions. Each of these is discussed next, along with how
they impact the execution semantics at runtime.

inherits

Mapping operations can inherit from other mapping operations. During execu-
tion, the inherited mapping is invoked after the initialization section of the inher-
iting mapping. This includes the implicit instantiation section. The effect of this
is that output parameters are non-null when the inherited mapping is invoked.

Following is an example of inherits used in the context of our dnc2jee.
qvto transformation found in Section 6.9, “Transforming a Business Model to
Java.”

mapping dnc::Archetype::toClass() : java::JavaClass {
name := self.name;
fields += self.getAttributes().map toField(result);
methods += self.getOperations().map toMethod();

}

560 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

mapping dnc::Archetype::toSerializableClass() : java::JavaClass
inherits dnc::Archetype::toClass {
implementsInterfaces += 'java.io.Serializable'.map toClass();

}

mapping dnc::Archetype::toStateful() : java::JavaClass
inherits dnc::Archetype::toSerializableClass {

eAnnotations += toAnnotation('description', self.description, null);
eAnnotations += toAnnotation('annotation', '@Stateful', null);
classImport += 'javax.ejb.Stateful'.map toClass();

}

In this example, toStateful() inherits from toSerializableClass(),
which, in turn, inherits from toClass().

merges

Sometimes a mapping operation produces multiple outputs or results in an object
that is the logical combination of other defined mappings. By allowing for the
merging of mapping operations, the language of the transformation more closely
approximates a natural language. In terms of execution semantics, the merged
mappings are invoked following the end of the merging mapping. All mappings,
including out, are passed to the merged mapping.

We can modify our previous inherits example to include merges for the
serializable aspect of the stateful class. In this case, a stateful bean is a class that
also is serializable.

mapping dnc::Archetype::toClass() : java::JavaClass {
name := self.name;
fields += self.getAttributes().map toField(result);
methods += self.getOperations().map toMethod();

}

mapping dnc::Archetype::toSerializableClass() : java::JavaClass {
implementsInterfaces += 'java.io.Serializable'.map toClass();

}

mapping dnc::Archetype::toStateful() : java::JavaClass
inherits dnc::Archetype::toClass
merges dnc::Archetype::toSerializableClass {

eAnnotations += toAnnotation('description', self.description, null);
eAnnotations += toAnnotation('annotation', '@Stateful', null);
classImport += 'javax.ejb.Stateful'.map toClass();

}

13.3 Mapping Operations 561

ptg6022785

Disjunction

Another option when structuring mappings is to specify several mappings from
which the first that satisfies its guard conditions (type and when clause) is exe-
cuted. This is done by specifying a list of mappings after the disjuncts key-
word in the mapping declaration.

During execution, each guard is executed in a series until one is satisfied. The
first successful disjuncted mapping is executed. If none of those listed satisfies the
conditions, null is returned. Following is an example adopted from the specifi-
cation, for illustration:

mapping uml::Feature::convertFeature () : java::Element
disjuncts convertAttribute, convertOperation, convertConstructor {}

mapping uml::Attribute::convertAttribute : java::Field {
name := self.name;

}

mapping uml::Operation::convertConstructor : java::Constructor
when {self.name = self.namespace.name} {
name := self.name;

}

mapping uml::Operation::convertOperation : java::Constructor
when {self.name <> self.namespace.name} {
name := self.name;

}

13.4 Helper Operations

Although I’ve mentioned mapping and query operations, I’ve not made a for-
mal distinction between these two constructs. According to the QVT specifica-
tion, a query is a special kind of helper operation. But unlike a query, a
helper may have side effects on the parameters passed into it.

Queries are intended to simplify expression writing in mapping operations
because complex queries are not required to be implemented within an expres-
sion. The main restriction on queries is that they cannot create or update object
instances, other than for predefined and intermediate types. A query is an oper-
ation that has no side effects.

A mapping operation does not return a new instance of the specified model
object for a given input instance upon subsequent invocations, based on its trace
model. Instead, it returns a reference to the previously mapped instance. With a
helper operation, the result is always a new instance.

562 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

This query operation returns all objects of type Topic from the elements ref-
erence of a Map instance:

query mindmap::Map::getTopics() : Sequence(mindmap::Topic) {
return self.elements->select(oclIsTypeOf(mindmap::Topic))
->collect(oclAsType(mindmap::Topic));

}

In queries, it’s possible to define and assign local variables. For example, the fol-
lowing query returns a dot-delimited fully qualified name for a class based on its
package namespace:

query oocore::Class::fullyQualifiedName() : String {
var fqn : String := self.name;
var pkg : oocore::Package := self._package;
while (not pkg.oclIsUndefined()) {
fqn := pkg.name + '.' + fqn;
pkg := pkg._package;

};
return fqn;

}

13.5 Implementing Operations

Within mapping and query operations, objects are created, initialized, passed as
parameters, returned as parameters, and more. Although much of the syntax you
will use within mapping and query bodies is OCL, QVT provides additional
features. This section covers essential OCL and QVT operations, mapping and
query invocation, object creation, and population.

13.5.1 Operations and Iterators

All the common OCL operations and iterators form the basis of QVT, with
imperative versions provided to support side effects and strict semantics.

select

The select() operation comes from OCL and allows for the filtering of col-
lections to work with a subset. The conditional argument provides for the spec-
ification of the filter and can have an optional iterator variable. Following is an
example of select in which all objects of type mindmap::Topic are returned
from the elements collection:

13.5 Implementing Operations 563

ptg6022785

elements->select(oclIsTypeOf(mindmap::Topic))

The select operation has a shorthand notation that uses square brackets, as
shown here. This expression is equivalent to the previous one.

elements[oclIsTypeOf(mindmap::Topic)]

collect

The collect() operation comes from OCL and allows for the creation of one
collection from another, typically of different element types. The resulting col-
lection is flattened; collectNested() and QVT’s xcollect() can be used
when nested collections are required. collect() is commonly used to gather
the elements of a class into a new collection, as illustrated here:

topics->collect(t | t.name);

Here, topics represents a collection of Topic elements, which have a name
attribute of type String. Therefore, the result of this collect() operation is a
collection of Strings representing the name attribute values of each Topic element
in topics. This can be written without the iterator variable as simply this:

topics->collect(name);

Collect() also has a shorthand notation, where a dot (.) can be used in
lieu of the ->collect() syntax. This makes the previous statement even more
simply stated as follows:

topics.name;

It’s common to find select() and collect() used together to obtain a
collection of commonly typed elements from a reference that can contain multi-
ple subtypes. For example, consider the elements reference in the Map class
that is of type MapElement. Two subtypes exist: Topic and Reference. To obtain
just the Topic elements, use the following expression:

564 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

var topics : Sequence(Topic) :=
self.elements->select(oclIsTypeOf(Topic)->collect(oclAsType(Topic));

-- using shorthand, the following is equivalent:
var topics : Sequence(Topic) :=
self.elements[oclIsTypeOf(Topic)].oclAsType(Topic);

13.5.2 Imperative Operations

QVTO provides a number of imperative operations, including forEach,
forOne, while, and switch. Additionally, imperative versions of OCL are
available. This section describes each and provides examples of their use.

forEach

The forEach imperative loop expression executes the loop for all the elements
in the collection for which the conditional expression holds. QVTO currently
does not support this expression.

forOne

The forOne imperative loop expression executes the loop for only the first ele-
ment in the collection that satisfies the conditional expression. QVTO currently
does not support this expression.

while

The while control expression iterates on an expression until its condition is
false. You can terminate a while using a break, or you can direct execution to
the beginning of the next iteration at any point using the continue expression.
Following is an example of a while loop used to create a table name from a class
name:

/**
* Replaces camel case with underscore, e.g. firstName -> FIRST_NAME
*/
query String::toColumnName() : String {
var name : String := '';
var digit : String := '';
var pos : Integer := 1;
while (pos <= self.size()) {
digit := self.substring(pos, pos);
if digit.toLowerCase() <> digit then {

13.5 Implementing Operations 565

ptg6022785

name := name + '_' + digit;
} else {
name := name + digit;

} endif;
pos := pos + 1;

};
return name.toUpperCase();

}

switch

The switch imperative expression evaluates condition-based alternatives. It is
popular when dealing with enumeration types, as shown in the following exam-
ple. Note that the more familiar case syntax is also available, in addition to
what’s shown here.

query mindmap::Topic::getPriority() : String {
var pri : String := null;
switch {

(self.priority = Priority::HIGH) ? pri := 'High';
(self.priority = Priority::MEDIUM) ? pri := 'Medium';
(self.priority = Priority::LOW) ? pri := 'Low';
else ? assert fatal (false)
with log('Priority unsupported', self);

};
return pri;

}

In the example, the priority is evaluated against the enumeration literal, with
a String returned for each match. If no matches are found, the else statement
invokes a fatal assertion to terminate execution and log the appropriate message.

13.5.3 Imperative Iterate Expressions

A set of six imperative iterate expressions are available: xcollect, collect
One, collectselect, collectselectOne, xselect, and selectOne. Each
of these iterates over the source collection to populate the target using iterator
variables, a body, and a condition expression. These are similar to their OCL
counterparts but can be interrupted using break, continue, raise, and return
expressions. Perhaps the most important difference is that null values are not
included in the result set.

The xcollect imperative iterate expression is similar to its collect
counterpart, but with the important distinction that it does not flatten the result.
This makes it more comparable to the OCL collectNested() operation. This

566 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

means that xcollect can return nested collections such as {1, {2, 3}}, which
collect would otherwise return as {1, 2, 3}.

As for the collection types xcollect operates on and returns, Sets and
Bags result in a Bag, while OrderedSets and Sequences result in a Sequence.
In both cases, duplicates are possible.

You can think of the collectselect imperative iterate expression as a sin-
gle loop combination of collect and select, where null values are removed from
the result. The remaining iterators are self-explanatory.

The type of objects contained within the results of these iterators depends on
the use of its conditional, if specified. When a Type is specified as the conditional,
it is evaluated using the Boolean oclIsKind(Type) and returns a sequence
casted to the specified Type.

Shorthand notation is available for these imperative expressions, as
described in the following examples. Notice that the shorthand is also available
to operations, as shown in the last two examples.

-- An example of collectselect
self.elements->collectselect(i; a=i.name | a.startsWith('A'));

-- An equivalent collectselect using shorthand notation
self.elements->name[a | a.startsWith('A')];

-- An equivalent collectselect shorthand without a target variable
self.elements->name[startsWith('A')];

-- An example of xcollect
self.elements->xcollect(a | a.name);

-- An equivalent xcollect using shorthand notation
self.elements->name;

-- An example of xselect
self.elements->xselect(Topic);

-- An equivalent xselect using shorthand notation
self.elements[Topic];

-- An example of collectselect shorthand with an operation
main() {
inModel.rootObjects()[Map].map toRequirementsModel();

}

-- An example of collectselectOne shorthand using '!'
main() {
inModel.rootObjects()![Map].map toRequirementsModel();

}

13.5 Implementing Operations 567

ptg6022785

13.5.4 Object Creation and Population

As mentioned earlier, a mapping invocation implicitly creates an instance of the
declared return type or types. The features of instantiated elements are set using
the assignment operator (:=), as shown earlier with the name := self.name
statement. Although this works for mappings of simple attributes of the same
type, more complex mappings necessarily require more complex expressions.
Note that a second assignment operator (+=) is available for adding to collec-
tions.

To create an object within the context of an operation, use the object key-
word. Following is a basic object expression that creates an instance of
PrimitiveDataType and assigns it to the type reference in the TableColumn
object created by the mapping:

type := object RDB::datatypes::PrimitiveDataType {
name := 'int';

};

In fact, the entire body of a mapping can be contained within an object
block, as shown in the complete mapping definition. This is not necessary, how-
ever, because the return type of the mapping is enough to determine what the
body is instantiating.

mapping UML::Property::primitiveAttribute2column(in targetType:

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
object RDB::TableColumn {
isPrimaryKey := self.isPrimaryKey();
name := self.name;
type := object RDB::datatypes::PrimitiveDataType {

name := umlPrimitive2rdbPrimitive(self.type.name);
};

}
}

A common use of object is to initialize variables in the init section. For exam-
ple, the following snippet has a variable primitiveType assigned to an object
that was created and initialized using the umlPrimitive2rdbPrimitive()
query, which is later used to set the TableColumn’s type reference.

568 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

mapping UML::Property::primitiveAttribute2column(in targetType:

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
init {
var primitiveType : RDB::datatypes::PrimitiveDataType :=

object RDB::datatypes::PrimitiveDataType {
name := umlPrimitive2rdbPrimitive(self.type.name);

};
}
isPrimaryKey := self.isPrimaryKey();
name := self.name;
type := primitiveType;

}

As stated earlier, objects that are created are first checked for existence. If
they are null, a new object of the stated type is instantiated and initialized in
the order of the statements in the body. If the object already exists, its contents
are updated according to the statements in the body. This implies that update
semantics are used in object statements where an object has already been instan-
tiated. Consider this example:

mapping UML::Property::primitiveAttribute2column(in targetType:

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
init {
result := object RDB::TableColumn {
isPrimaryKey := self.isPrimaryKey();
type := object RDB::datatypes::PrimitiveDataType {
name := umlPrimitive2rdbPrimitive(self.type.name);

};
};

}
name := self.name;

}

This example shows the use of the result keyword, in addition to the inlin-
ing of mapping operations. By default, the returned model instance of a mapping
is assigned to the result, which we’re explicitly setting here in the init section.
We’re then updating the result in the mapping body to set the name property.
Technically, the implicit instantiation section that exists between the init sec-
tion and the population section (or the mapping body, in this case) recognizes
the existence of the instantiated result and incorporates update semantics.

13.5 Implementing Operations 569

ptg6022785

If you examine the output of this mapping, you’ll find that isPrimaryKey
and type are both set correctly during the init, while the name of the returned
instance is simply updated in the mapping body without instantiating a new
TableColumn. Similarly, access to the result is available in the end{} block, as
shown next. Here again, update semantics are in effect in both the body and end
blocks because there is an implicit instantiation of the return object.

mapping UML::Property::primitiveAttribute2column(in targetType:

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
name := self.name;

end {
result.isPrimaryKey := self.isPrimaryKey();
result.type := object RDB::datatypes::PrimitiveDataType {

name := umlPrimitive2rdbPrimitive(self.type.name);
};

}
}

Another reason to explicitly create an object is for assignment to return
parameters where more than one is defined for a mapping. Consider this example:

mapping X::toYZ() : y:Y, z:Z {
object y:Y {
};
object z:Z {
};

}

13.5.5 Mapping Invocation

When invoking a mapping, use either the map or xmap keyword, where xmap
represents invocation with strict semantics. The map keyword is used after a dot
(.) or alternatively after an arrow (->) when using the collect shorthand. When
invocated, as long as the mapping can be resolved using the actual context and
the guard conditions are satisfied (if present), the trace is consulted to look for
target instances produced from the given source object. If present, the relation
holds and the previous result is returned. Otherwise, the mapping body is
executed.

In this first example, the input is being mapped using nonstrict semantics to
a requirements Model using the more popular form of invocation.

570 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

main(in mmap : mindmap::Map@inModel, out req :

requirements::Model@outModel) {
req := mmap.map toRequirementsModel();

}

mapping mindmap::Map::toRequirementsModel() : requirements::Model {
. . .

}

If we simply change map to xmap, we change the invocation semantics to
strict. In this case, if the called mapping has a when clause that is not satisfied,
an exception is thrown. Using map, the mapping simply returns null.

main(in mmap : mindmap::Map@inModel, out req :

requirements::Model@outModel) {
req := mmap.xmap toRequirementsModel();

}

Both map and xmap can be called using an arrow instead of the dot notation.
This implies that the mapping operation is the body of an xcollect imperative
collect construct.

13.5.6 Resolution Operators

OML provides resolve, resolveone, resolveIn, and resolveoneIn reso-
lution operators that reference trace data to resolve created objects, or objects
used as the source of an object creation, in the case of their inverse variants.
These can be useful to update or reference objects created from executed map-
pings. We cover each of these in turn, along with their late versions, which are
designed to improve transformation efficiency.

resolve

The most fundamental resolution operator is resolve. It returns an object cre-
ated from a mapping operation. The resolve operator can take no arguments,
a type argument, or a Boolean type condition. Consider an example of each:

source->resolve(); -- select any object
source->resolve(Type); -- select only Type instances
-- select Type instances where the name attribute equals 'aName'

source->resolve(t:Type | t.name = 'aName');

13.5 Implementing Operations 571

ptg6022785

The type returned from a resolve operation matches that provided, or a col-
lection (Sequence) of the type. If no type is specified, OclAny is the result type.
Technically, the specification calls for a return type of Object, but the current
QVTO implementation returns its subclass OclAny.

TIP

The conditional version of resolve can result in a performance advantage
over filtering the results because it avoids intermediate collection creation.

Let’s consider our mindmap-to-requirements transformation to describe the
resolve functions. As you might recall, a mindmap has a collection of Relation-
ship elements that are mapped to Requirement dependency references when the
type of Relationship is of Type::DEPENDENCY. To create this mapping, we first
need to obtain the Requirement object that was created from the source Topic
in the Relationship. For this, we can use the following sourceReq variable
assignment:

mapping mindmap::Relationship::toDependency()
when { self.type = mindmap::Type::DEPENDENCY }

{
init {
var sourceReq : requirements::Requirement :=
self.source.resolve(requirements::Requirement)->any(true);

}
...
}

This mapping is invoked from the end block of our main mapping, so all
Topic to Requirement mappings are completed. In this case, the resolve oper-
ation returns all Requirement objects that were created from the Topic object ref-
erenced in our source reference. We know that there is a one-to-one mapping
in this case, so we can filter the resulting Sequence using any(true).

Having obtained the Requirement mapped from the source Topic in our
Relationship, we now need to find the Requirement object created from the
Topic referenced by the target reference and add it to our collection of
sourceReq dependencies. We can accomplish this using another resolve oper-
ation. Although resolve returns all possible mappings, we know that only one
will be possible.

sourceReq.dependencies +=

self.target.resolve(requirements::Requirement);

572 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

resolveone

When we’re interested in only the first suitable result when using resolve, we can
use the resolveone alternative. If no suitable results are found, a null is
returned.

Returning to our example, although resolve worked in the last case, we
can improve it a bit by specifying that we want only the first result. So combin-
ing the two fragments and replacing resolve with resolveone, we have the
following equivalent version:

mapping mindmap::Relationship::toDependency()
when { self.type = mindmap::Type::DEPENDENCY }

{
init {

var sourceReq : requirements::Requirement :=
self.source.resolveone(requirements::Requirement);

sourceReq.dependencies +=
self.target.resolveone(requirements::Requirement);

}
}

resolveIn and resolveoneIn

If we want to further restrict the possible results to objects created by a specific
mapping, we can use the resolveIn and resolveoneIn variants. These take
an additional argument to represent the qualified identifier of the mapping. If
multiple mappings have the same name with different signatures, an ambiguity
error is reported.

In the case of our mindmap-to-requirements mapping, we have only one
mapping that produces Requirement objects from Topic objects, but if there are
more in the future, we can restrict those resolved by specifying the current map-
ping as follows:

var sourceReq : requirements::Requirement :=
self.source.resolveoneIn(mindmap::Topic::toRequirement,
requirements::Requirement);

sourceReq.dependencies +=
self.target.resolveoneIn(mindmap::Topic::toRequirement,
requirements::Requirement);

inv

Sometimes we’re interested in the inverse resolution, or finding the source object
that was used in a mapping to create or update an object. By prefixing the resolve

13.5 Implementing Operations 573

ptg6022785

operators with inv, we can achieve the inverse—for example, invresolve,
invresolveone, invresolveIn, and so on.

late

When performing transformations, resolving objects that were not yet created
during the execution of a mapping might require more than one pass over a
model. To solve this problem, you can modify resolution operators with a late
operator to defer evaluation until the end of the transformation. This technique
is always used with assignment operators, where a null assignment is created
until resolution is completed. Use transformation properties instead of local vari-
ables so that they are valid when the transformation ends.

Keep in mind that the left side of a late resolution statement is not re-
executed along with the right-side deferred statement. This means that you can-
not expect to use the result of the deferred assignment in a later expression. For
example, the following assignment of the variable p is not the result of the
resolve operation; the result is null because that was assigned during the nor-
mal execution.

mapping mindmap::Topic::toRequirement() : requirements::Requirement {
parent := self.parent.late resolve(requirements::Requirement)
->asSet();

end {
var p := result.parent->asOrderedSet();

}
}

Furthermore, late resolutions are invoked sequentially at the end of the
transformation in the order they were encountered during normal execution.
Don’t rely on the result of a late resolution that might not have been executed.

As we mentioned earlier, invoking our example mapping from the end block
ensures that we can resolve Requirement objects created from our Topic objects.
We can alter this approach using the late resolution operator, which defers res-
olution until the end of the transformation and provides the same outcome.
Following is an example of this approach:

property dependencies : Set(Relationship) = null;

mapping main(in mmap : mindmap::Map, out req : requirements::Model) {
init {
this.dependencies := mmap.dependencies();
. . .

}
}

574 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

mapping mindmap::Topic::toRequirement() : requirements::Requirement {
title := self.name;
children += self.subtopics.map toRequirement();
dependencies += this.dependencies
->select(source = self).target.late

resolveIn(mindmap::Topic::toRequirement,
requirements::Requirement);

}

Here we’ve reworked our example a bit to illustrate late resolveIn. A
dependencies property is declared in the transformation and initialized in our
main mapping using a query that selects all Relationships of Type::DEPEN-
DENCY (not shown). When mapping our Topic elements to Requirement ele-
ments, we add to the Requirement’s dependencies list those Requirements that
were resolved using the toRequirement() mapping, where the Topic is speci-
fied as the target of the Relationship and where the current Topic is the source.
During execution, all Topics might not yet have been processed, so late enables
us to avoid a second pass. Section 6.6, “Transforming a Mindmap to
Requirements,” fully explains this example.

Note that although it’s legal to combine the inv variant with a late opera-
tor, it doesn’t make much sense to do so. This is because the source object would
always be available using a non-late resolve operation.

13.5.7 Executing Transformations

Some things that occur during execution of a QVT script are more clear when
we have a debugger, trace model, or log facility. This section discusses the exe-
cution facilities that are available in the QVTO runtime. Unfortunately, no
debugger is yet available from M2M QVTO.

Trace Model

Execution of a transformation results in one or more target models and a corre-
sponding trace model. The trace model contains a recording of each mapping,
including input model element and target model element instance data. The trace
model is consulted during execution and for reconciliation during subsequent
transformation, to allow for model update semantics.

When an object is created within a transformation, an entry in a trace file is
made. When using M2M OML, you’ll find a .qvtotrace model file created
when you execute a transformation, as specified in the launch configuration. Feel
free to examine this model to better understand its contents and how it works.

13.5 Implementing Operations 575

ptg6022785

Log

To output information on transformation execution to the environment, a log
expression is provided and has the following syntax. This expression is helpful
when debugging QVT scripts or for understanding how they work.

log(message, [object], [level]) [when condition];

Only the first argument is required, but the output also can include a reference
to the relevant object and a level. The conditional is also optional and can refer-
ence the relevant object. For example:

init {
log('Input map:', mmap, 3) when mmap.elements->size() > 0;

}

Using M2M QVT OML, this outputs to the console the toString() result of
the mmap object, prefixed by Level 3 - and the String Input map:, as shown
here:

Level 3 - Input map:, data:

org.eclipse.emf.ecore.impl.DynamicEObjectImpl@6fa74a (eClass:

org.eclipse.emf.ecore.impl.EClassImpl@d467a6 (name: Map)

(instanceClassName: null) (abstract: false, interface: false))

The level value has no strict meaning in QVT for log messages, and M2M
QVT OML allows any integer value, leaving it up to the user to specify and inter-
pret levels.

Log output in M2M QVT OML is displayed in the Eclipse Console view.
Optionally, the launch configuration can redirect the output to a file, as discussed
in Section 6.5.4, “Launch Configuration.”

Assert

If a condition needs to be checked during transformation execution, you can use
the assert expression and combine it with the log expression to output infor-
mation. You can assign severity to an assertion with the levels warning, error,
or fatal, with error being the default. If a fatal severity is declared, the

576 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

transformation execution terminates if the assertion fails. This is the general syn-
tax of the assert expression:

assert [severity] condition [with log]

For example, the following assertion checks whether a Topic element’s name
attribute begins with an underscore and logs a message if it does:

init {
assert warning (not name.startsWith('_')) with
log('Topic name begins with underscore', name);

}

Note that the surrounding parentheses are required per the grammar pro-
vided in the spec, although this is not shown in Section 8.2.2, “AssertExp.”

The default output is the severity level prefixed by ASSERT and followed by
failed at <line_number>, with optional log output shown here:

ASSERT [warning] failed at (UknownSource:27) :

Topic name begins with underscore, data: _A sub-subtopic

Transformation Composition

You can invoke one transformation from another transformation using the
transform() operation. At this time, transformation composition is not avail-
able in QVTO.

13.6 Library Operations

An implicitly imported library for all QVT transformations is the Stdlib library.
This section covers the types and operations defined in this library. Some opera-
tions that are not currently available are not covered here or are indicated as such.
For a complete list of standard library features, refer to the QVT specification.

13.6.1 Object Operations

A couple operations are defined for use on Objects.

repr

Object::repr() : String

13.6 Library Operations 577

ptg6022785

Returns a String representation of an object, similar to the Java toString()
method. This is handy in log() statements.

asOrderedTuple

Object::asOrderedTuple() : OrderedTuple(T)

Converts objects not already ordered into an ordered Tuple. This operation
is not yet implemented.

13.6.2 Element Operations

In addition to MOF (Ecore) reflective operations, several operations are available
on all Elements.

_localId

Element::_localId() : String

Returns a local internal identifier. This operation is not currently imple-
mented.

_globalId

Element::_globalId() : String

Returns a global internal identifier. This operation is not currently imple-
mented.

metaClassName

Element::metaClassName() : String

Returns the name of the metaclass. For example, where self is of type
mindmap::Map, the output of the following log() operation is Map.

log(self.metaClassName());

subobjects

Element::subobjects() : Set(Element)

Returns all immediate children objects of the Element.

578 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

allSubobjects

Element::allSubobjects() : Set(Element)

Recursively returns all children objects of the Element.

subobjectsOfType

Element::subobjectsOfType(OclType) : Set(Element)

Returns all immediate children objects of the Element that are of the specified
type.

allSubobjectsOfType

Element::allSubobjectsOfType(OclType) : Set(Element)

Recursively returns all children objects of the Element that are of the speci-
fied type.

subobjectsOfKind

Element::subobjectsOfKind(OclType) : Set(Element)

Returns all immediate children objects of the Element that are of the speci-
fied kind (type plus subtypes).

allSubobjectsOfKind

Element::allSubobjectsOfKind(OclType) : Set(Element)

Recursively returns all children objects of the Element that are of the speci-
fied kind (type plus subtypes).

clone

Element::clone() : Element

Creates a new instance copy of the model element. The clone is placed in the
first model extent. The copy is of only the first-level object, not subobjects. For
cloning subobjects as well, see deepclone.

13.6 Library Operations 579

ptg6022785

deepclone

Element::deepclone() : Element

Creates a new instance copy of the model element, including subobjects.

markedAs

Element::markedAs(value:String) : Boolean

An operation that is defined for each model type. It can determine whether
an element is marked, as is the case when accessing an MOF::Tag. This opera-
tion is not currently implemented.

markValue

Element::markValue() : Object

An operation used to return the value associated with a marked element.
This operation is not currently implemented.

stereotypedBy

Element::stereotypedBy(String) : Boolean

An operation used to determine whether an element is stereotyped. This
operation is not currently implemented.

stereotypedStrictlyBy

Element::stereotypedStrictlyBy(String) : Boolean

An operation similar to stereotypedBy(), except that the base stereotype
is not considered. This operation is not currently implemented.

13.6.3 Model Operations

Model objects that are declared in a transformation signature are available to be
accessed throughout the transformation definition. A number of operations are
available on these objects and are covered here.

M2M QVT OML provides access to the Ecore features available on the
Model objects as well. It’s possible to access a model’s eAnnotations property

580 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

or eContainer() method, for example. For a list of what’s available in Ecore,
refer to EMF documentation [38].

objects

Model::objects() : Set(Element)

Returns a list of objects in the model extent, or a flattened set of all objects
contained in the passed model instance.

objectsOfType

Model::objectsOfType(OclType) : Set(Element)

Returns a list of objects from the set of flattened model objects that are of
the specified type. Following is an example in which objects of type
mindmap::Map are selected from the input model:

inModel.objectsOfType(mindmap::Map).map toRequirementsModel();

rootObjects

Model::rootObjects() : Set(Element)

Returns a list of objects found at the root of the model—that is, those not
contained within any other model object. In the case of typical Ecore models, this
is a single model object. In the case of XMI files, there can be multiple root
objects. In the case of XSD-based model instances, the root object is the
DocumentRoot object.

removeElement

Model::removeElement (Element) : Void

Removes an object from the model, including all links to other objects. This
can be useful when cleaning up a model created when intermediate or unwanted
objects exist.

asTransformation

Model::asTransformation(Model) : Transformation

13.6 Library Operations 581

ptg6022785

Casts a model that complies to the QVT metamodel to a transformation
instance, for invocation of dynamically defined transformations. This operation
is not yet implemented.

copy

Model::copy() : Model

Creates a new instance of a model from an existing model, including all
objects in the model extent. This operation is not yet implemented.

createEmptyModel

static Model::createEmptyModel() : Model

Creates and initializes a model of the specified type. This operation is
intended for use when creating intermediate models within a transformation.
This operation is not yet implemented.

13.6.4 List Operations

QVT provides a number of list operations, in addition to the collection oper-
ations that OCL provides.

add

List(T)::add(T) : Void

Adds an element to the end of a mutable list of this type of element. A syn-
onym operation is append(). This operation is not yet implemented.

prepend

List(T)::prepend(T) : Void

Adds an element to the beginning of a mutable list of this type of element.
This operation is not yet implemented.

insertAt

List(T)::insertAt(T, int:Integer) : Void

582 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

Inserts an element into a mutable list of this type of element at the specified
index location. This operation is not yet implemented.

joinfields

List(T)::joinfields(sep:String, begin:String, end:String) : String

Creates a String of list items separated by sep that is prefixed by begin and
suffixed by end Strings. This operation is not yet implemented.

asList

Set(T)::asList() : List(T)
OrderedSet(T)::asList(T) : List(T)
Sequence(T)::asList(T) : List(T)
Bag(T)::asList(T) : List(T)

Converts a collection from the specified type into an equivalent mutable List.
This operation is not yet implemented.

13.6.5 Numeric Type Operations

Only one operation defined in the specification for use on numeric types. Beyond
the range() operation, M2M QVT OML provides additional operations that
are covered here.

range

Integer::range (start:Integer, end:Integer) : List(Element)

Returns the list of Integers in the range between the passed start and end
Integers. This operation is not currently implemented.

toString

Integer::toString() : String

Returns a String of the Integer value.

13.6.6 String Operations

QVT builds upon OCL, so the normal OCL String operations are available
within your scripts and are described in the OCL specification. Additionally, the
following Strings are available in the standard library.

13.6 Library Operations 583

ptg6022785

format

String::format (value:Object) : String

Similar to the Java format() method and the C printf() function, this
operation prints a message substituting parameters %s (String), %d
(Integer), and %f (Float) with a value. If multiple parameters are declared,
a Tuple is passed as the value, with its elements used for substitution.
Additionally, a Dictionary can be used for the value, in which case the format of
the parameter is %(key)s, where key is looked up in the Dictionary.

This operation is not currently implemented.

size

String::size () : Integer

Returns the number of characters in the String. A synonym operation
length() is called out in the specification but is not implemented in M2M QVT
OML. Following is an example of size() and its output from within a log
expression where toString() is used to convert the Integer:

log('This string has 29 characters'.size().toString());
result: 29

substringBefore

String::substringBefore (match : String) : String

Returns the substring that appears in the character sequence before the
sequence to match passed as a parameter. If no match is found, the entire String
is returned.

log('test'.substringBefore('s'));
result: te

substringAfter

String::substringAfter (match : String) : String

584 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

Returns the substring that appears in the character sequence after the
sequence to match passed as a parameter. If no match is found, an empty String
is returned.

log('test'.substringAfter('s'));
result: t

toLower

String::toLower () : String

Returns a String with all characters from the original converted to their low-
ercase equivalents. For example, the following String outputs what follows to the
console:

log('RemovE tHe UpPerCaSe ChAracterS'.toLower());
result: remove the uppercase characters

Note that M2M QVT OML provides a synonym operation toLowerCase()
as well.

toUpper

String::toUpper () : String

Returns a String with all characters from the original converted to their
uppercase equivalents. For example, the following String outputs what follows
to the console:

log('RemovE tHe LoWerCaSe ChAracterS'.toLower());
result: REMOVE THE LOWERCASE CHARACTERS

Note that M2M QVT OML provides a synonym operation toUpperCase()
as well.

firstToUpper

String::firstToUpper () : String

13.6 Library Operations 585

ptg6022785

Converts the first character in a String to its uppercase equivalent, as shown
here:

log('test'.firstToUpper());
result: Test

lastToUpper

String::lastToUpper () : String

Converts the last character in the String to its lowercase equivalent, as shown
here:

log('test'.lastToUpper());
result: test

indexOf

String::indexOf (match : String) : Integer

Returns the index of the first character found in the match String on the tar-
get String. If the match is not found, -1 is returned. Following is an example with
corresponding log output.

var s : String := 'Find me in the string';
log(s.indexOf('me').toString());
result: 5

Note that M2M QVT OML provides another variant of this operation not
listed in the specification:

String::indexOf(match : String, startIndex : Integer) : Integer

Following is an example of this version of indexOf(), which provides the
index of the first character in the match String after the startIndex argument
position. In this case, the second me String begins at index 17:

var s : String := 'Find me and then me in the string';
log(s.indexOf('me', 6).toString());

result: 17

586 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

endsWith

String::endsWith (match : String) : Boolean

Returns true if the String terminates with the match String provided as an
argument. Following is an example of an assertion that looks for sentences end-
ing without a period and logs a warning if found:

var sentence : String := 'I end without a period';
assert warning (sentence.endsWith('.'))

with log('Sentence ends without a period', sentence);

startsWith

String::startsWith (match : String) : Boolean

Returns true if the String begins with the match String provided as an argu-
ment. Following is an example of an assertion that looks for sentences beginning
with whitespace and logs a warning if found:

var sentence : String := ' I start with a space.';
assert warning (not sentence.startsWith(' '))

with log('Sentence starts with a space', sentence);

trim

String::trim () : String

Returns a String with leading and trailing whitespace removed. Note that the
sentence variable in the previous startsWith() example could be corrected
using trim():

sentence.trim();

normalizeSpace

String::normalizeSpace() : String

13.6 Library Operations 587

ptg6022785

This operation goes one step further than the trim() operation by remov-
ing excess whitespace within a String and also removing leading and trailing
whitespace. Whitespace sequences are replaced by a single space in the returned
String.

log('A sentence with extra spaces '.normalizeSpace());
result: A sentence with extra spaces

replace

String::replace (m1:String, m2:String): String

Returns a String with all occurrences of String m1 replaced with String m2.
Following is an example of package . (dot) notation replaced with directory path
delimiters (/). (Note the escape character before the dot:

var pkg : String := 'org.eclipse.mindmap';
log('Converted package to path', pkg.replace('\.', '/'));

The specification indicates that replace() will work on all occurrences, but
we see here that only the first is replaced:

Converted package to path, data: org/eclipse.mindmap

Eclipse M2M QVT OML provides a replaceAll() operation that does
what we expect:

var pkg : String := 'org.eclipse.mindmap';
log('Converted package to path', pkg.replaceAll('\.', '/'));

Now we get what we wanted in the console output:

Converted package to path, data: org/eclipse/mindmap

If we had not used the escape character in the first example, the output
would have been this:

Converted package to path, data: /rg.eclipse.mindmap

588 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

match

String::match (matchpattern:String) : Boolean

Returns true if the regex matchpattern is found in the String. If the pattern
is not found, it returns false. The following example outputs true.

log('xxxy'.match('x*y').repr());

equalsIgnoreCase

String::equalsIgnoreCase (match:String) : Boolean

Returns true if the String is the same as the match String, without taking
case into account. Returns false otherwise. The following example outputs
true.

log('a simple test'.equalsIgnoreCase('A Simple Test').repr());

find

String::find (match:String) : Integer

Returns the index of the start of the substring that equals the match String,
or -1 otherwise. The following example returns 10.

log('find the x character'.find('x').repr());

rfind

String::rfind (match:String) : Integer

Returns the index of the start of the substring beginning from the right that
equals the match String, or -1 otherwise. The following example returns 10.

log('find the x character'.rfind('x').repr());

13.6 Library Operations 589

ptg6022785

isQuoted

String::isQuoted (s:String) : Boolean

Returns true if the String begins and ends with the argument String, and
returns false otherwise. The following example returns true.

log('"is quoted?"'.isQuoted('"').repr());

quotify

String::quotify (s:String) : String

Returns a String that begins and ends with the argument String. The follow-
ing example outputs the String "quote me".

log('quote me'.quotify('"'));

unquotify

String::unquotify (s:String) : String

Returns a String that has the argument String removed from the beginning
and end of the String, if it’s found. Otherwise, it returns the content of the source
String. The following example returns the String do not quote me.

log('"do not quote me"'.unquotify('"'));

matchBoolean

String::matchBoolean (s:String) : Boolean

This non-case-sensitive operation returns true if the String is true, false,
0, or 1. The following example outputs true true.

log('true'.matchBoolean(true).repr() + ' ' +

'0'.matchBoolean(false).repr());

matchInteger

String::matchInteger (i:Integer) : Boolean

590 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

Returns true if the String represents an Integer. The following example out-
puts true.

log('0'.matchInteger(0).repr());

matchFloat

String::matchFloat (f:Float) : Boolean

Returns true if the String represents a Float. The following example outputs
true.

log('0.117'.matchFloat(0.117).repr());

matchIdentifier

String::matchIdentifier(s:String) : Boolean

Returns true if the String represents an alphanumeric word. The following
example returns false.

log('a8s(c'.matchIdentifier('').repr());

asBoolean

String::asBoolean() : Boolean

Returns a Boolean value if the String can be interpreted as a Boolean and
null otherwise. The following returns false.

log('0'.asBoolean().repr());

asInteger

String::asInteger() : Integer

13.6 Library Operations 591

ptg6022785

Returns an Integer value if the String can be interpreted as an Integer, and
null otherwise. The following example returns 99.

log('99'.asInteger().toString());

asFloat

String::asFloat() : Float

Returns a Float value if the String can be interpreted as a Float, and null
otherwise. The following example returns 99.9.

log('99.9'.asFloat().toString());

startStrCounter

String::startStrCounter (s:String) : Void

Creates and initializes a counter with the String. When used with the fol-
lowing counterparts, this operation can provide a convenient means to create
indexes. The following example outputs 0, 1, 0, 1 for the sequence of counter
operations.

var index : String := 'index';
String.startStrCounter(index);
log(String.getStrCounter(index).toString());
log(String.incrStrCounter(index).toString());
index.restartAllStrCounter();
log(String.getStrCounter(index).toString());
log(String.incrStrCounter(index).toString());
log(index.addSuffixNumber());

getStrCounter

String::getStrCounter (s:String) : Integer

Returns the current value of the counter associated with the String. See the
example in startStrCounter() for its usage.

592 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

incrStrCounter

String::incrStrCounter (s:String) : Integer

Increments the value of the counter associated with the String. See the exam-
ple in startStrCounter() for its usage.

restartAllStrCounter

String::restartAllStrCounter () : Void

Resets all String counters. See the example in startStrCounter() for its
usage.

addSuffixNumber

String::addSuffixNumber () : String

Appends the current value of the counter associated with the String to the
String. This operation can generate unique internal names. See the example in
startStrCounter() for its usage.

13.7 Syntax Notes

The OML language has many of the same syntax features as programming lan-
guages such as Java, plus a number of shorthand notations. This section covers
these, along with variations from the specification as implemented by M2M
QVT OML.

13.7.1 Comments

The QVT specification defines three comment styles. Only two are supported:

-- A single line comment to end of the current line
// A single line comment style that is not supported
/*
* A multiple line comment style that is
* similar to Java.
*/

13.7 Syntax Notes 593

ptg6022785

13.7.2 Strings

Literal Strings are delimited by either single or double quotation marks, accord-
ing to the specification. M2M QVT OML supports only single quote marks:

var s1 : String := 'a string';

Literal Strings that fit in multiple lines can be notated as a list of literal
Strings. In the specification, they do not require the concatenation operator +,
although M2M QVT OML requires this. For example:

var s : String := 'This string is split ' +
'across two lines';

Escape sequences are provided and are the same as those found in the Java
language. Table 13-1 lists the supported escape sequences.

Table 13-1 QVT Escape Sequences

Escape Sequence Unicode Value Name

\ b \u0008 Backspace BS

\ t \u0009 Horizontal Tab HT

\ n \u000a LineFeed LF

\ f \u000c Form Feed FF

\ r \u000d Carriage Return CR

\ “ \u0022 Double Quote “

\ ‘ \u0027 Single Quote ‘ (Note: not currently supported)

\ \ \u005c Backslash \

13.7.3 Shorthand

Repeatedly typing lengthy operation names in a QVT script, such as oclIsKind
Of(), is tiresome. In addition, superfluous text hinders readability. To address
this issue, QVT provides a number of shorthand notations.

594 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

❍ The oclIsKindOf() operation is used frequently, and you can substitute
the unary # operator for it. Typing #Topic is equivalent to typing
oclIsKindOf(Topic). This shorthand notation is not currently
supported.

❍ The oclIsTypeOf() operation is also commonly used, and you can sub-
stitute the unary ## operator for it. Typing ##Topic is equivalent to
typing oclIsTypeOf(Topic). This shorthand notation is not currently
supported.

❍ You can substitute the unary * operator for the stereotypedBy()
operation. Typing *aStereotype is equivalent to typing
stereotypedBy("aStereotype"). The multiplication operator brings
up no ambiguity because of the type involved (String vs. Float/Integer).
This shorthand notation is not currently supported.

❍ You can substitute the unary % operator for the format() operation.
Typing 'the name is %s\n' % name is the equivalent to typing
'the name is %s\n'.format(name). Again, ambiguity is eliminated
because of the type involved. This shorthand notation is not currently
supported.

❍ Instead of using the single equals sign (=) equality operator, you can use
the more familiar double equals sign (==) for comparison operations.
* This shorthand notation is not currently supported.

❍ You can replace the not-equal operator <> with the familiar != operator.
* This shorthand notation is not currently supported.

❍ You can use the binary operator + for String concatenation, thereby
replacing 'append'.concat('me') with 'append' + 'me'. Again,
ambiguity is eliminated by the type involved (String vs. Integer/Float).

❍ When adding to lists, you can replace the add() operation with the
binary operator +=—for example, allSubtopics +=
topic.subtopics().

* Note that using == and != shorthand notation requires a directive com-
ment at the top of the source file. This makes the traditional OCL operators =
and <> illegal within the file. Following is an example directive comment
(although it seems that use-contemporary-syntax would be a more fitting name):

-- directive: use-traditional-comparison-syntax

13.7 Syntax Notes 595

ptg6022785

13.7.4 OCL Synonyms

For each of the ocl-prefixed operations and types available from OCL, QVT
provides a synonym operation that drops the ocl. For example, you can use
isKindOf() in QVT in addition to the traditional oclIsKindOf(). Note that
this support is not yet part of the M2M QVT OML implementation.

Table 13-2 lists synonyms for predefined OCL operations.

Table 13-2 OCL Operators

Type Operator Operation

String + concat

Integer + plus

- (binary) minus

- (unary) unaryminus

* multiply

/ divide

Real + plus

- (binary) minus

- (unary) unaryminus

* multiply

/ divide

13.8 Simple UML to RDBMS Example

The QVT specification uses a simplified UML and relational database meta-
model to illustrate the capabilities of QVT. Both a Relations language and OML
solution are provided in the spec, with the latter found in Appendix A. The
example provided in M2M QVTO is significantly different from the one in the
specification, although an updated one is under development as the implementa-
tion matures. For example, to implement the specification’s example, M2M
QVTO first needs to support intermediate classes.

The OML implementation from the M2M project includes this transforma-
tion as a sample project, which is available at New → Examples → QVT
Transformation (Operational) → SimpleUML to RDB Transformation Project.
The wizard also creates a launch configuration.

596 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

The models used in the transformation are installed as part of the QVTO
examples feature. To see the structure of the models, you can use the Metamodel
Explorer (Window → Show View → Other → Operational QVT → Metamodel
Explorer), or you can obtain the Ecore models themselves from the Eclipse CVS
repository and render a diagram. Alternatively, placing the cursor on the
modeltype declaration at the top of the Simpleuml_to_Rdb.qvto file and
pressing F3 opens the Metamodel Explorer and selects the model in the tree.

The M2M QVTO example Simple UML model is slightly more complicated
than the one in the specification, but it remains simpler than the actual UML
metamodel.

The rdb.ecore model provided in the sample is much more complex than
the model used in the specification. The example model includes additional
datatypes, views, and constraints subpackages.

The sample project also includes an instance of the Simple UML model to
allow for invocation of the script. To run, expand the Run button on the main
toolbar and select the SimpleUML to RDB launch configuration. A Simpleuml_
to_Rdb.rdb model appears in the root of the sample project. You can open this
and the source pim.simpleuml model to compare input and output results in
the context of the discussion to follow.

The mapping between these two models is straightforward. Although the
OML has no graphical notation, the notation used to describe the Relational
implementation can be helpful in understanding the mapping. In fact, you could
use GMF to implement a similar notation and diagram for QVTO. This exercise
is left to you, with the suggestion that you consider contributing the solution to
the M2M project.

Let’s begin with the transformation declaration. Both the Simple UML and
RDBMS models are declared using modeltype statements at the top of the file,
along with the transformation declaration itself. Note that there is no strict
qualifier in the modeltype statements, leaving you free to modify the model and
reuse this script—that is, as long as you don’t change it so that it breaks the
script. Also, no where clauses restrict our input model from being passed to the
transformation.

modeltype UML uses
'http://www.eclipse.org/qvt/1.0.0/Operational/examples/simpleuml';

modeltype RDB uses
'http://www.eclipse.org/qvt/1.0.0/Operational/examples/rdb';

transformation Simpleuml_To_Rdb(in uml : UML, out RDB);

Notice that the sample uses a shorter notation for the uses clause, compared
to the version in the specification, opting to not surround the URI with the model

13.8 Simple UML to RDBMS Example 597

ptg6022785

name. Also, the sample uses the URI declared by the models in their EMF regis-
tration, which align better with the EMF convention. It would be possible to
import each model into the project and add Metamodel Mappings in the project
properties and assign the original URI, as shown next. The only other difference
is the model names, which, in this case, reflect the names assigned in the Ecore
models.

modeltype UML uses simpleuml("omg.qvt-samples.SimpleUML");
modeltype RDBMS uses rdb("omg.qvt-samples.SimpleRDBMS");
transformation Uml2Rdb(in srcModel:UML,out RDBMS);

Looking at the transformation declaration, because only one transforma-
tion is defined in the file, no braces are required to surround its contents. Note
also that a name is assigned to the input UML model but not to the RDBMS out-
put model.

The entry point of a QVTO transformation is its main mapping. As you can
see here, the UML::Model class is passed in as the root object, and the out
parameter instantiates and returns an RDB::Model object. Both the input and
output parameters are given a name to be accessed by within the body of the
mapping.

main(in model: UML::Model, out rdbModel: RDB::Model) {
rdbModel:= model.map model2RDBModel();

}

In the body, the rdbModel output is assigned the results of the
model2RDBModel() mapping, which is invoked by appending .map to the
model element, indicating that it will be passed as the input to the mapping.

The model2RDBModel() mapping is straightforward and could have been
folded into the main mapping. The name of the UML model is mapped to the
name of the RDB model, and the UML::Model element is passed to the pack-
age2schemas query.

mapping UML::Model::model2RDBModel() : RDB::Model {
name := self.name;
schemas := self.package2schemas();

}

The package2schemas() query returns an OrderedSet of Schema
objects, which are created from the package and its subpackages. In the body of
the query, the UML::Package is mapped to an RDB::Schema object by the
package2schema() mapping. The result is unioned with a mapping of

598 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

subpackages, recursively obtained with calls to package2schemas() for each
subpackage.

query UML::Package::package2schemas() : OrderedSet(RDB::Schema) {
self.map package2schema()->asSequence()->
union(self.getSubpackages()->collect(package2schemas()))
->asOrderedSet()

}

Looking at the package2schema() mapping, you can see our first when
clause in the script. We want to map UML Package elements to RDB Schema ele-
ments only if they contain persistent classes. The hasPersistentClasses()
query can determine this; you can see it here along with the isPersistent()
query it uses. As you can see, a class is persistent if it contains a stereotype equal
to the String 'persistent'.

query UML::Package::hasPersistentClasses() : Boolean {
ownedElements->exists(

let c : UML::Class = oclAsType(UML::Class) in
c.oclIsUndefined() implies c.isPersistent())

}

query UML::ModelElement::isPersistent() : Boolean {
stereotype->includes('persistent')

}

The mapping from package to schema involves selecting and collecting
all the UML::Class instances from the package and invoking the
persistentClass2table() mapping.

mapping UML::Package::package2schema() : RDB::Schema
when { self.hasPersistentClasses() }

{
name := self.name;
elements := self.ownedElements->select(oclIsKindOf(UML::Class))->
collect(oclAsType(UML::Class).map persistentClass2table())
->asOrderedSet()

}

The persistentClass2table() mapping appears next. A when clause
eliminates classes that are not persistent using the same query that was used ear-
lier to determine whether a package contained at least one persistent class. The
name of the table is mapped from the name of the class. The columns of the table
are created by the class2columns() query and sorted by name. Primary keys
are created using the class2primaryKey() mapping, while foreign keys are
created using the class2foreignKeys() query.

13.8 Simple UML to RDBMS Example 599

ptg6022785

mapping UML::Class::persistentClass2table() : RDB::Table
when { self.isPersistent() }

{
name := self.name;
columns := self.class2columns(self)->sortedBy(name);
primaryKey := self.map class2primaryKey();
foreignKeys := self.class2foreignKeys();

}

The class2columns() query combines the results of the
dataType2columns() and generalizations2columns() for the class
passed as a parameter, returning the union as an ordered set.

query UML::Class::class2columns(targetClass: UML::Class) :

OrderedSet(RDB::TableColumn) {
self.dataType2columns(targetClass)->
union(self.generalizations2columns(targetClass))
->asOrderedSet()

}

The dataType2columns() query combines the results of queries that create
columns from primitive, enumeration, relationship, and association attributes,
rejecting those that are undefined.

query UML::DataType::dataType2columns(in targetType : UML::DataType) :

OrderedSet(RDB::TableColumn) {
self.primitiveAttributes2columns(targetType)->
union(self.enumerationAttributes2columns(targetType))->
union(self.relationshipAttributes2columns(targetType))->
union(self.assosiationAttributes2columns(targetType))
->reject(c|c.oclIsUndefined())->asOrderedSet()

}

The generalizations2columns() query uses the class2columns()
query on the general class, rejects those undefined, and returns an ordered set.

query UML::Class::generalizations2columns(targetClass : UML::Class) :

OrderedSet(RDB::TableColumn) {
self.generalizations->collect(g |

g.general.class2columns(targetClass))
->reject(c|c.oclIsUndefined())->asOrderedSet()

}

600 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

The primitiveAttributes2columns() query simply invokes the
primitiveAttribute2column query for each attribute, returning the results
as an ordered set.

query UML::DataType::primitiveAttributes2columns(in targetType:

UML::DataType) : OrderedSet(RDB::TableColumn) {
self.attributes->collect(a |
a.primitiveAttribute2column(targetType))->asOrderedSet()

}

Primitive types are filtered using the isPrimitive() query in the when
clause, which checks to see that the targetType parameter is of type
UML::PrimitiveType. The column’s isPrimaryKey property is set using the
isPrimaryKey() query, which checks to see that a stereotype is present equal
to the String "primaryKey". The name of the primitive type passed in is used
as the column name, and the type is set to a PrimitiveDataType object whose
name is initialized by the umlPrimitive2rdbPrimitive() query. This query
uses a simple String comparison of basic types.

mapping UML::Property::primitiveAttribute2column(in targetType:

UML::DataType) : RDB::TableColumn
when { self.isPrimitive() }

{
isPrimaryKey := self.isPrimaryKey();
name := self.name;
type := object RDB::datatypes::PrimitiveDataType { name :=

umlPrimitive2rdbPrimitive(self.type.name); };
}

query UML::Property::isPrimitive() : Boolean {
type.oclIsKindOf(UML::PrimitiveType)

}

query UML::Property::isPrimaryKey() : Boolean {
stereotype->includes('primaryKey')

}

query umlPrimitive2rdbPrimitive(in name : String) : String {
if name = 'String' then 'varchar' else

if name = 'Boolean' then 'int' else
if name = 'Integer' then 'int' else

name
endif

endif
endif

}

13.8 Simple UML to RDBMS Example 601

ptg6022785

When mapping enumeration attributes to columns, the enumeration
Attributes2columns() query invokes the enumerationAttribute2col-
umn() mapping for each attribute. A when clause checks that the passed prop-
erty is an enumeration using the isEnumeration() query, which checks that its
type attribute is of type UML::Enumeration.

Again, the isPrimaryKey property is set using the isPrimaryKey() query,
and the name attributes are directly mapped. The column’s type is set to a new
PrimitiveDataType object initialized with a name of 'int'.

query UML::DataType::enumerationAttributes2columns(in targetType:

UML::DataType) : OrderedSet(RDB::TableColumn) {
self.attributes->collect(map
enumerationAttribute2column(targetType))->asOrderedSet()

}

mapping UML::Property::enumerationAttribute2column(in targetType:
UML::DataType) : RDB::TableColumn
when { self.isEnumeration() }

{
isPrimaryKey := self.isPrimaryKey();
name := self.name;
type := object RDB::datatypes::PrimitiveDataType { name := 'int'; };

}

query UML::Property::isEnumeration() : Boolean {
type.oclIsKindOf(UML::Enumeration)

}

Relationships are mapped to columns using the relationshipAttributes
2columns() query. Unlike the primitive and enumeration types, which map to
simple columns, relationships involve the creation of foreign keys. The input
targetType parameter is passed to the relationshipAttribute
2foreignKey() mapping, where a when clause checks that it is a relationship
type using the isRelationship() query. In this case, valid relationships are
data types that are persistent.

Looking closer at our relationshipAttributes2columns() query, after
the collection of ForeignKey elements, those that are undefined are rejected.
From this collection, the TableColumn objects from each includedColumns
attribute of the foreign keys are collected and returned in an ordered set.

query UML::DataType::relationshipAttributes2columns(in targetType:

UML::DataType) : OrderedSet(RDB::TableColumn) {
self.attributes->collect(map
relationshipAttribute2foreignKey(targetType))->reject(a |

602 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

a.oclIsUndefined())->
collect(includedColumns)->asOrderedSet();

}

To create a ForeignKey object from a DataType that is a Relationship, first
the key’s name is set to the relationship name prefixed with FK. The included
Columns attribute is set using the dataType2primaryKeyColumns query,
which passes a Boolean value equal to the result of the isIdentifying() query.
This query looks for a stereotype String equal to identifying.

Finally, the referredUC property is set using a late resolveoneIn
class2primaryKey() mapping. Using late means the mapping will be
invoked at the end of the transformation, which allows for the resolution of
objects that might not yet be created. Using resolveoneIn returns a primary
key object that has previously been created by the type attribute of the passed in
property. This is accomplished by examining the trace model that is created dur-
ing the transformation and avoids creating duplicate object instances.

mapping UML::Property::relationshipAttribute2foreignKey(in targetType:

UML::DataType) : RDB::constraints::ForeignKey
when { self.isRelationship() }

{
name := 'FK' + self.name;
includedColumns :=
self.type.asDataType().dataType2primaryKeyColumns(self.name,
self.isIdentifying());
referredUC := self.type.late
resolveoneIn(UML::Class::class2primaryKey,
RDB::constraints::PrimaryKey);

}

query UML::Property::isRelationship() : Boolean {
type.oclIsKindOf(UML::DataType) and type.isPersistent()

}

To create primary key columns from data types, two parameters are passed
in addition to the data type: a prefix String for the column name and a Boolean
to set the isPrimaryKey property. The body is a little complicated. First the
dataType2columns() query is called, and those that are primary keys are
selected. Then a collection based on TableColumn objects created using passed
parameters is returned as an ordered set.

query UML::DataType::dataType2primaryKeyColumns(in prefix : String,

in leaveIsPrimaryKey : Boolean) : OrderedSet(RDB::TableColumn) {

13.8 Simple UML to RDBMS Example 603

ptg6022785

self.dataType2columns(self)->select(isPrimaryKey)->
collect(c | object RDB::TableColumn {
name := prefix + '_' + c.name;
domain := c.domain;
type := object RDB::datatypes::PrimitiveDataType {

name := c.type.name;
};
isPrimaryKey := leaveIsPrimaryKey

})->asOrderedSet()
}

query UML::Property::isIdentifying() : Boolean {
stereotype->includes('identifying')

}

mapping UML::Class::class2primaryKey() : RDB::constraints::PrimaryKey {
name := 'PK' + self.name;
includedColumns :=
self.resolveoneIn(UML::Class::persistentClass2table,
RDB::Table).getPrimaryKeyColumns()

}

The final mapping for our data types to columns is the association
Attributes2columns() query. First, attributes that are persistent association
types are selected. Columns that are mapped to columns are collected and
returned as an ordered set.

query UML::DataType::assosiationAttributes2columns(targetType :

UML::DataType) : OrderedSet(RDB::TableColumn) {
self.attributes->select(isAssosiation())->
collect(type.asDataType().dataType2columns(targetType))
->asOrderedSet()

}

query UML::Property::isAssosiation() : Boolean {
type.oclIsKindOf(UML::DataType) and not type.isPersistent()

}

13.9 Summary

In this chapter, we explored the QVT Operational Mapping Language in detail, as
supported by the current release of the M2M QVTO component. Improved sup-
port of the Operational language is expected, along with the introduction of sup-
port for the Relations language in subsequent releases. In the next chapter, we take
a deeper look at the Xpand template language for model-to-text transformation.

604 CHAPTER 13 • Query/View/Transformation Operational Mapping Language

ptg6022785

CHAPTER 14

Xpand Template Language

From model instances, it’s common to generate code, text files, reports, and so on.
Query/View/Transformation Operational Mapping Language (QVT OML) provides our
language for Model-to-Model Transformation (M2M), and we turn to Xpand to provide
for Model-to-Text Transformation (M2T). Alternative choices exist within the M2T proj-
ect, namely Java Emitter Templates (JET) and the new Model to Text Language (MTL)
component.

JET is the default M2T technology that EMF itself uses, but other projects within Eclipse
have found success and discovered advantages to using Xpand. JET borrows heavily from
Java Server Pages (JSP), but Xpand has a significantly different syntax to offer those who
might not be fond of JSP. This is not to say that JET is not worth consideration as the
default template technology in your DSL Toolkit; this book just does not cover it.
Hopefully a future book will include details on using JET.

Xpand itself has minimal syntax and relies on the Xtend language and underlying expres-
sion language and type system to complete its syntax and semantics. Xpand also provides
aspect-oriented capabilities, which lends to its extensibility features. Invoking Xpand tem-
plates is primarily done through the EMFT Modeling Workflow (MWE) component. This
chapter covers all these topics, in addition to example code throughout to illustrate
Xpand’s capabilities.

One important note about the future of Xpand is important at this point. Two versions of
Xpand exist within the Modeling project. I cover the traditional Xpand here, and a refac-
tored version will soon be available in the context of the Graphical Modeling Framework
(GMF) project. This version uses OCL and QVT OML as the expression language and
will be invoked primarily from Java or Ant files. The latter represents an attractive work-
flow alternative to MWE, particularly because QVT OML also provides Ant integration.
For now, however, let’s continue our coverage of the Xpand language.

605

ptg6022785

14.1 Xpand Language

Xpand templates are written in text files that end with an .xpt extension. An
Eclipse editor is provided for authoring templates, complete with syntax high-
lighting, code completion, and code templates. As guillemets (French quotation
marks, « and ») are used as delimiters in the language, it’s important to first con-
figure your environment to the right encoding. For PC installations of Eclipse,
use UTF-8 encoding; ISO-8859-1 works on Mac OS X. Furthermore, learn to use
Ctrl+< and Ctrl+> on the PC to type guillemots (Alt+| and Alt+Shift+|
work on the Mac). Alternatively, you can use an empty «» template by pressing
Ctrl+spacebar.

Regarding the use of guillemets, when outputting text into a file, you can
remove trailing whitespace by adding a hyphen before the closing guillemot:
«...-».

With the preliminaries out of the way, let’s take a look at the Xpand language
itself. Each of the following sections covers the main elements of the language:
«IMPORT», «DEFINE», «EXPAND», «FILE», «FOREACH», «EXTENSION», «IF»,
«PROTECT», «LET», «ERROR», and «REM».

14.1.1 IMPORT

At the top of an Xpand template, metamodel imports are listed using the
«IMPORT» statement. The concept of importing is similar to import statements
in Java and modeltype statements in OML. As with modeltype statements,
imports in Xpand let you declare metamodels by either their package or their
registered Eclipse Modeling Framework (EMF) Namespace URI (NS URI)
Uniform Resource Identifier (URI). In the case of their package, discovery of
models along the containing project’s source path resolves the model declared.

This is a simple import statement for the Ecore metamodel:

«IMPORT ecore»

Alternatively, the import below uses the NS URI method, available in the
GMF Xpand implementation.

«IMPORT "http://www.eclipse.org/emf/2002/Ecore"»

After a metamodel is imported, you can reference its elements throughout the
template without fully qualifying their names. Xpand currently does not have the
flexibility to assign an alias for use within the template, as you saw with QVT
OML.

606 CHAPTER 14 • Xpand Template Language

ptg6022785

14.1.2 DEFINE

Although an .xpt file is called a template file, in Xpand, the content of a
«DEFINE» block is considered the template. This book uses the word template
to reference both. A «DEFINE» block represents a fragment that is expanded in
the context of executing the template. A «DEFINE» block has a name and
optional list of parameters, along with a FOR clause that specifies the applicable
element of the metamodel. An «ENDDEFINE» tag terminates the «DEFINE»
block. This is the general syntax for a «DEFINE» statement:

«DEFINE templateName (parameterList) FOR MetaClass»
. . .
«ENDDEFINE»

This is a simplistic template that describes «DEFINE» and other Xpand ele-
ments. It takes a mindmap instance and produces a Comma-Separated Values
(CSV) file.

«IMPORT mindmap»

«DEFINE Main FOR Map»
«FILE title + ".csv"-»
«FOREACH elements.typeSelect(Topic) AS topic-»
«topic.name»,«topic.start»,«topic.end»
«ENDFOREACH»
«ENDFILE»
«ENDDEFINE»

The «DEFINE» statement includes the name Main and indicates that the
mindmap model’s Map class is the metamodel element used in the definition.
This example passes no parameters. Within the body of the «DEFINE» block,
output text is placed, along with other Xpand statements. I explain the contents
of the example in detail shortly, but it’s not hard to see that an output file is cre-
ated and will contain a series of Topic attributes separated by commas. Consider
this sample output:

A Topic,Tue Nov 20 10:16:00 EST 2007,Fri Nov 23 12:46:20 EST 2007
A Subtopic,Wed Jun 20 00:00:00 EDT 2007,Sat Aug 09 00:00:00 EDT 2008
Another Topic,Sun Sep 09 00:00:00 EDT 2007,Wed Dec 12 00:00:00 EST 2007
Another Subtopic,Sat Dec 01 00:00:00 EST 2007,
Tue Jan 01 00:00:00 EST 2008
A SubSubtopic,Mon Oct 22 00:00:00 EDT 2007,Sat Dec 08 00:00:00 EST 2007

14.1 Xpand Language 607

ptg6022785

When invoking a template, Xpand uses fully qualified namespaces, includ-
ing directory structures, the .xpt filename, and the «DEFINE» name. If this
example template were in a file named mindmap2csv.xpt within the folder
/templates/deploy, this «DEFINE» would be addressed as deploy::
mindmap2csv::Main from another template or the workflow used to execute the
template. This assumes that the /templates folder is set to a source path in the
project properties, or, in the case of GMF, that it is the folder specified as the
dynamic templates location.

14.1.3 EXPAND

The «EXPAND» statement directs execution to another «DEFINE» template block
or expands it, similar to invoking a subroutine. This is the general syntax for an
«EXPAND» statement:

«EXPAND definitionName [(parameterList)] [FOR expression |

FOREACH expression [SEPARATOR expression]]»

The definitionName must be a fully qualified namespace, including the
filename and path, unless it’s a «DEFINE» within the same file. In that case, a
simple name is sufficient. When referencing a «DEFINE» block outside the file, it
might be more convenient to add the appropriate IMPORT statement to the tem-
plate file. For example, let’s say we wanted to modify our simple
mindmap2csv.xpt template to output a CSV file for Relationship elements, in
addition to the one for Topic elements. Our original «DEFINE» would then
include two «EXPAND» statements, as shown here. In this case, the Topic version
of the template is located in a directory /topic relative to a project source path
in a file named topic.xpt with a main «DEFINE». The relationship template is
structured similarly.

«IMPORT mindmap»

«DEFINE Main FOR Map»
«EXPAND topic::topic::Main FOR this»
«EXPAND relationship::relationship::Main FOR this»
«ENDDEFINE»

Alternatively, if the topic and relationship folders were located below our
/template root folder, we could add IMPORT statements to our template and
shorten our «EXPAND» statements slightly.

608 CHAPTER 14 • Xpand Template Language

ptg6022785

«IMPORT mindmap»
«IMPORT topic»
«IMPORT relationship»

«DEFINE Main FOR Map»
«EXPAND topic::csv FOR this»
«EXPAND relationship::csvFile FOR this»
«ENDDEFINE»

Note that each «EXPAND» statement explicitly includes FOR this, meaning
that the context of the enclosing «DEFINE» is passed along. Technically, we
could have eliminated FOR this altogether. An alternative is to pass another ele-
ment, such as a list of Topic or Relationship elements. In the following exam-
ple, the Relationship elements are filtered out and passed to a «DEFINE» that
takes a list.

«DEFINE Main FOR Map»
«EXPAND topic::csv»
«FILE title + "-relations.csv"-»
«EXPAND relationship::csv FOR elements.typeSelect(Relationship)-»
«ENDFILE»
«ENDDEFINE»

«DEFINE csv FOR List[mindmap::Relationship]»
«FOREACH this AS relation-»
«relation.name»,«relation.type.toString()»,«relation.source.name»,
«relation.target.name»
«ENDFOREACH»
«ENDDEFINE»

Another option would be to have a «DEFINE» that accepts a single
Relationship element, enabling us to use a FOREACH clause in the «EXPAND»
to iterate over the collection:

«EXPAND relationship::csv FOREACH elements.typeSelect(Relationship)»

«DEFINE csv FOR Relationship»
«relation.name»,«relation.type.toString()»,«relation.source.name»,
«relation.target.name»
«ENDDEFINE»

As you can see, we can accomplish the same result in many ways using
Xpand, as is the case for most languages. Before we describe how to accomplish
this using polymorphism, let’s look at the final feature of our «EXPAND» state-
ment: the SEPARATOR.

14.1 Xpand Language 609

ptg6022785

Suppose we wanted to simply output a comma-separated list of Topic names
instead of the details of each Topic element. We could use the SEPARATOR fea-
ture of «EXPAND» to accomplish this, as shown in the following example. A nice
feature of SEPARATOR is that it places a comma (or specified separator) between
each element, with no trailing separator at the end of the list. Note the judicious
use of the hyphenated closing guillemet (-»), to avoid whitespace in the output.

«DEFINE Main FOR Map»
«FILE "topics.csv"-»
«EXPAND topicList FOREACH elements.typeSelect(Topic) SEPARATOR ","»
«ENDFILE»
«ENDDEFINE»

«DEFINE topicList FOR Topic-»
«this.name-»
«ENDDEFINE»

This is a sample output of the Topic list:

A Topic,A Subtopic,Another Topic,Another Subtopic,A SubSubtopic

Polymorphism

Xpand templates include polymorphism support for metaclasses declared in
«DEFINE» blocks. If a metaclass has two subclasses and each has its own
«DEFINE» block, template execution invokes the proper «DEFINE» to match the
instance.

Let’s refactor our mindmap2csv template to take advantage of this capabil-
ity. We can do this in two steps, just to illustrate more completely. First, we mod-
ify the template as shown here:

«IMPORT mindmap»

«DEFINE Main FOR Map»
«EXPAND csvFile(title) FOR elements.typeSelect(Topic)»
«EXPAND csvFile(title) FOR elements.typeSelect(Relationship)»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR List[mindmap::MapElement]»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR List[mindmap::Topic]»
«FILE title + "-topics.csv"-»
«FOREACH this AS topic-»
«topic.name»,«topic.start»,«topic.end»

610 CHAPTER 14 • Xpand Template Language

ptg6022785

«ENDFOREACH»
«ENDFILE»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR List[mindmap::Relationship]»
«FILE title + "-relations.csv"-»
«FOREACH this AS relation-»
«relation.name»,«relation.type.toString()»,«relation.source.name»,
«relation.target.name»
«ENDFOREACH»
«ENDFILE»
«ENDDEFINE»

As you can see, this is not quite polymorphism at its best, but it is a working
example that illustrates the proper dispatching of «DEFINE» statements based on
type—in this case, a list of a particular type. This example also illustrates the use
of parameters: The title from the Map is passed to both MapElement subclass
«DEFINE» blocks for use in creating their output files.

Also note that an empty «DEFINE» for a list of MapElement types is pro-
vided. This seems to be an Xpand limitation; without a «DEFINE» for the super-
class, Xpand could not properly invoke the subclass «DEFINE» blocks.

Even better is the next example, where true polymorphism is used in place of
the explicit typeSelect() filtering. Notice that the FILE statements specify
outlets now. This is because it’s possible to set an append attribute to an outlet;
otherwise, each invocation of csvFile would create a new file. Outlets are spec-
ified in the workflow file that invokes this template and are covered in detail
later.

«IMPORT mindmap»

«DEFINE Main FOR Map»
«EXPAND csvFile(title) FOREACH elements-»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR MapElement»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR Topic»
«FILE title + "-topics.csv" TOPIC_OUTLET-»
«name»,«start»,«end»
«ENDFILE»
«ENDDEFINE»

«DEFINE csvFile(String title) FOR Relationship»
«FILE title + "-relations.csv" RELATIONS_OUTLET-»
«name»,«type.toString()»,«source.name»,«target.name»
«ENDFILE»
«ENDDEFINE»

14.1 Xpand Language 611

ptg6022785

As you can see, this is a much nicer use of polymorphism, although our
obligatory «DEFINE» for the MapElement still exists. If you’re curious, consider
this portion of the workflow file that sets up the outlets and invokes this
template:

<outlet path="${out}"/>
<outlet name="RELATIONS_OUTLET" path="out" append="true"/>
<outlet name="TOPIC_OUTLET" path="out" append="true"/>
<expand value="mindmap2csv::Main FOR model"/>

14.1.4 FILE

The previous sections have already covered most of how «FILE» works, so if
you’ve skipped to this section, you might want to go back and read up the
EXPAND topic. This is the syntax for «FILE»:

«FILE expression [OUTLET_NAME]»
. . .
«ENDFILE»

As you’ve seen, you can possibly combine strings and model element values
using + to form the «FILE» name, or expression. A previous example used the
title of the Map element combined with the string -topics.csv.

OUTLET_NAME is optional and corresponds to a named <outlet/> element
defined in a workflow file. One way to think about this is to consider the use of
outlets as named streams. In fact, future versions of Xpand might provide more
formal support for the named stream concept. The GMF version of Xpand relies
on the stream concept because the output files used for persistence are deter-
mined externally in Java code. This feature should become available in M2T
Xpand in the future, where file output likely will be specified within the work-
flow instead of within the Xpand template itself.

14.1.5 FOREACH

When working with collection types, it is often necessary to iterate through their
contents. You’ve already seen FOREACH used within an EXPAND statement for this
purpose. However, frequently iteration is required within «DEFINE» blocks,
which is where «FOREACH» comes into play.

612 CHAPTER 14 • Xpand Template Language

ptg6022785

«FOREACH expression AS varName [ITERATOR iterName]

[SEPARATOR expression]»
. . .
«ENDFOREACH»

The expression can be any collection element within the current context
or a statement that results in a collection. Within the block, each element in the
collection is accessed using the varName you provide. The body of the FOREACH
block can contain other Xpand statements, including nested FOREACH elements.
A special Xpand-provided iterator is accessible by name within the block if the
ITERATOR is specified. A common use for the ITERATOR is to access its counter
for outputting a numerical sequence within the body of the statement. As you
saw earlier, you can declare a SEPARATOR and insert it between elements in the
collection. Section 14.1.13, “Type System,” covers the full list of features that an
iterator offers.

To illustrate the use of an ITERATOR, consider this «DEFINE» block:

«DEFINE NumberedCsvFile FOR Map»
«FILE "numbered-" + title + "-topics.csv"-»
«FOREACH elements.typeSelect(Topic) AS topic ITERATOR i-»
«i.counter0»,«topic.name»,«topic.start»,«topic.end»
«ENDFOREACH»
«ENDFILE»
«ENDDEFINE»

In this case, we’re prefixing each line in our output CSV file with an
index obtained by our iterator’s counter0 property. The output looks like the
following.

0,A Topic,Tue Nov 20 10:16:00 EST 2007,Fri Nov 23 12:46:20 EST 2007
1,A Subtopic,Wed Jun 20 00:00:00 EDT 2007,Sat Aug 09 00:00:00 EDT 2008
2,Another Topic,Sun Sep 09 00:00:00 EDT 2007,
Wed Dec 12 00:00:00 EST 2007
3,Another Subtopic,Sat Dec 01 00:00:00 EST 2007,
Tue Jan 01 00:00:00 EST 2008
4,A SubSubtopic,Mon Oct 22 00:00:00 EDT 2007,

Sat Dec 08 00:00:00 EST 2007

14.1.6 EXTENSION

Xpand supports the extension of the underlying metamodel through the
«EXTENSION» statement. Declaring an «EXTENSION» import in a template

14.1 Xpand Language 613

ptg6022785

means that additional features of the metamodel can be added using the Xtend
language. This is analogous to QVT’s use of libraries.

For example, consider the rootTopics derived feature added to the mindmap
model in Section 3.3.5, “Adding OCL.” We explicitly extended the metamodel
and provided an implementation using OCL. The same type of extension can be
provided using Xtend and made available to our Xpand templates. Consider the
following implementation of rootTopics in a file named util.ext.

import mindmap;

List[Topic] rootTopics(Map mindmap) :
let topics = mindmap.elements.typeSelect(mindmap::Topic) :
topics.without(topics.subtopics)

;

When used within a template, this extension can be declared at the top of the
file and used within the body as if it were part of the metamodel itself. The only
difference between the use of rootTopics() in our extension and the
rootTopics element in the model is the parentheses used in the former. This
example shows the use of both:

«IMPORT mindmap»

«EXTENSION util»

«DEFINE Main FOR Map»
«EXPAND csvFile(title) FOREACH this.rootTopics()»
«EXPAND csvFile(title) FOREACH this.rootTopics»
«ENDDEFINE»

14.1.7 IF

As you might expect, Xpand supports conditional expansion using the «IF» if
statement. «ELSE» and «ELSEIF» statements complement the «IF» block. This
is the general syntax of the «IF» statement:

«IF expression»
. . .

[«ELSEIF expression»]
. . .

[«ELSE»
. . .]

«ENDIF»

614 CHAPTER 14 • Xpand Template Language

ptg6022785

This is an example of «IF» and «ELSE» from the ProperySection.xpt
template used in GMF’s diagram generation:

«IF createLabel() && isExpandable()-»
«EXPAND createControls(name()+"Control") FOREACH contents-»
«name()».setClient(«name()»Control);
«name()».addExpansionListener(getExpansionListener(«parentVar»));

«ELSE-»
«EXPAND createControls(name()) FOREACH contents-»

«ENDIF»

14.1.8 PROTECT

To mark sections of generated code that are designated for user modification,
Xpand provides a «PROTECT» statement. During regeneration, these regions
are protected from being overwritten. This is the general syntax for «PROTECT»
statements:

«PROTECT CSTART expression CEND expression ID expression (DISABLE)?»
. . .

«ENDPROTECT»

The CSTART and CEND expressions should be valid comment markers for the
target language—for example, /* and */ for Java comments. The ID expression
should be unique for the execution of the generator. By default, a protected
region is enabled, but you can disable it by adding the DISABLED keyword.

To use protected regions, you must configure a resolver in your workflow
file.

EMF uses the recommended approach for dealing with user-modified code,
and JMerge follows this upon regeneration. To use this approach, insert
@generated JavaDoc comments above class, field, and method declarations.
Removing this tag and modifying it (such as by adding NOT to the end, as in
@generated NOT) signifies that the block should not be overwritten.

14.1.9 LET

Sometimes it’s convenient to create a local variable for use in your template. The
«LET» statement enables you to bind an expression to a variable name using the
following syntax:

14.1 Xpand Language 615

ptg6022785

«LET expression AS varName»
. . .
«ENDLET»

Statements using the variable are nested within the block. For example, if we
wanted to use a «LET» statement for our Topic CSV filename, we could refactor
our template as shown next. When accessing «LET» or metamodel elements
within a body, simply place the name within guillemets, as in «fileName».

«LET title + "-topics.csv" AS fileName»
«FILE fileName TOPIC_OUTLET-»
«name»,«start»,«end»
«ENDFILE»
«ENDLET»

14.1.10 ERROR

You can terminate the execution of a template by inserting an «ERROR» state-
ment. The expression will be used as the message of an XpandException,
which is thrown if the «ERROR» is processed. Note that it’s typically best to val-
idate input model elements before executing templates, so using the «ERROR»
statement is rarely required. This is the general syntax:

«ERROR expression»

This simple example reports when the passed Map class has no title set:

«DEFINE Main FOR Map»
«IF title == null || title == ''-»
«ERROR 'No title'»
«ELSE»
...
«ENDIF»
«ENDDEFINE»

14.1.11 REM

Comments can be added to templates to provide documentation using the «REM»
statement. «REM» tags cannot be nested. They follow this general syntax:

«REM»Text comment here...«ENDREM»

616 CHAPTER 14 • Xpand Template Language

ptg6022785

14.1.12 AROUND

One of the more powerful features used in Xpand templates is the aspect-
oriented capabilities provided by the «AROUND» statement. Using «AROUND», you
can augment templates noninvasively. This is convenient when you want to aug-
ment the capabilities of templates that you cannot or do not want to modify, or,
in the case of multiple products generated in a product line, when you seek to
avoid conditionals throughout your MDD artifacts. This is the general syntax of
«AROUND»:

«AROUND fullyQualifiedDefinitionName(parameterList)? FOR Type»
. . .
«ENDAROUND»

The aspect-oriented part is in the point cut fullyQualifiedDefinition
Name, which can contain wildcards (*). For example, mindmap::topic2csv::
csvFile can provide a fully qualified name, while mindmap::topic* can
match templates that begin with mindmap::topic.

Similarly, parameter types can be specified in our point cut. Types specified
are matched to their definition parameter type or super type. The wildcard (*)
can be used in parameter lists as well. For example, you can use
mindmap::topic2csv::csv(String name) or mindmap::topic2csv::
csv(String name,*) if there might be additional parameters.

Consider some examples of «AROUND» definitions.
To match all templates:

«AROUND *(*) FOR Object»

To match all templates ending in topic and with any number of parameters:

«AROUND *topic(*) FOR Object»

To match all templates in the mindmap namespace that have no parameters
for MapElement types (including subclasses):

«AROUND mindmap::* FOR MapElement»

To match all templates with a single String parameter:

«AROUND *(String s) FOR Object»

14.1 Xpand Language 617

ptg6022785

To match all templates with at least one String parameter:

«AROUND *(String s,*) FOR Object»

You can call the underlying definition using proceed() on the implicit vari-
able targetDef. The original parameters are passed to the underlying defini-
tion, but you can modify this with the advice beforehand. You can achieve total
control over the parameters passed using proceed(Object target, List
params), although no type checking occurs when you do so.

Let’s take a look at a simple example of using «AROUND». Consider this por-
tion of a previous version of the mindmap2csv file template:

«DEFINE Main FOR Map»
«FILE title + "-topics.csv"-»
«EXPAND listElements FOR elements.typeSelect(Topic)»
«ENDFILE»
«ENDDEFINE»

«DEFINE listElements FOR List[mindmap::Topic]-»
«FOREACH this AS topic-»
«EXPAND csv FOR topic-»
«ENDFOREACH»
«ENDDEFINE»

«DEFINE csv FOR Topic-»
«name»,«start»,«end»
«ENDDEFINE»

Here, the Topic elements are expanded into CSV line entries where their
name, start date, and end date values are written. Let’s assume that it’s legal to
enter a comment at the top of a CSV file to describe each entry, preceded by a #
sign. If we weren’t given access to the template, or if we did not want to modify
it, we could use «AROUND» to noninvasively add a comment line before each
Topic line in our output. This is a new .xpt file with an «AROUND» statement
that lets us do just that:

«IMPORT mindmap»

«AROUND templates::mindmap2csv::listElements FOR List[mindmap::Topic]-»
Topic Name, Start Date, End Date
«targetDef.proceed()»
«ENDAROUND»

Using the qualified name of the «DEFINE» that we want to augment instructs
the generator that this block will be executed in its stead, stating that it should
output a simple comment line and then proceed with the original statement using

618 CHAPTER 14 • Xpand Template Language

ptg6022785

targetDef.proceed(). It’s possible to place the proceed() in the beginning,
thereby providing before advice. To execute the template so that the generator
knows about our advices, we can modify our workflow file. Section 14.1.16,
“Aspects,” covers this, so for now we just show the new output.

Topic Name, Start Date, End Date
A Topic,Tue Nov 20 10:16:00 EST 2007,Fri Nov 23 12:46:20 EST 2007
A Subtopic,Wed Jun 20 00:00:00 EDT 2007,Sat Aug 09 00:00:00 EDT 2008
Another Topic,Sun Sep 09 00:00:00 EDT 2007,Wed Dec 12 00:00:00 EST 2007
Another Subtopic,Sat Dec 01 00:00:00 EST 2007,
Tue Jan 01 00:00:00 EST 2008
A SubSubtopic,Mon Oct 22 00:00:00 EDT 2007,Sat Dec 08 00:00:00 EST 2007

In general, the aspect-oriented capabilities of Xpand (and Xtend and
Workflow) are key to providing flexibility in your MDD artifacts. Knowing these
capabilities when writing templates helps to keep a fine-grained approach to
«DEFINE» blocks and even inserts extensibility points. These are all recom-
mended practices in general and are exemplified by these capabilities.

14.1.13 Type System

Before moving on to the expression language and Xtend language description,
it’s important to understand the underlying type system. You’ve seen the List type
used in the preceding Xpand examples, so let’s cover this and the rest in detail.

Type System API Documentation

This section provides basic information on the properties and operations avail-
able for each of the underlying type system elements, as seen in Table 14-1 and
Table 14-2.

Table 14-1 Object Properties

Type Name Description

Type metaType Returns this object’s meta type. This can be useful when
dealing with enumeration types, as in this example:

Boolean isEntity(Class c) :
c.metaType == dnc::MomentInterval ||
c.metaType == dnc::MIDetail ||
c.metaType == dnc::Party ||
c.metaType == dnc::Place ||
c.metaType == dnc::Thing ||
c.metaType == dnc::Description

;

14.1 Xpand Language 619

ptg6022785

Table 14-2 Object Operations

Return Type Name Description

Boolean < (Object) Less than.

Boolean != (Object) Not equal to.

Boolean >= (Object) Greater than or equal to.

Boolean <= (Object) Less than or equal to.

Boolean > (Object) Greater than.

Integer compareTo Compares this object with the specified object for order.
(Object) Returns a negative integer, a zero, or a positive integer

when this object is less than, equal to, or greater than the
specified object, respectively.

Boolean == (Object) Equality.

String toString () Returns the String representation of this object. (Calls
Java’s toString() method.)

The super type of String is Object.

Table 14-3 String Properties

Type Name Description

Integer length The length of this String

Table 14-4 String Operations

Return Type Name Description

String toUpperCase () Converts all the characters in this String to uppercase
using the rules of the default locale (from Java).

String toLowerCase () Converts all the characters in this String to lowercase
using the rules of the default locale (from Java).

List split (String) Splits this String around matches of the given regular
expression (from Java 1.4).

String trim () Returns a copy of the String, with leading and trailing
whitespace omitted (from Java 1.4).

String + (Object) Concatenates two strings.

620 CHAPTER 14 • Xpand Template Language

ptg6022785

Return Type Name Description

String replaceAll Replaces each substring of this String that matches the
(String, String) given regular expression with the given replacement.

String subString Returns a portion of the String beginning at the index
(Integer, Integer) defined by the first parameter, through the index

defined by the second parameter. If no second parame-
ter is provided, the remainder of the String is returned.

Boolean endsWith (String) Tests whether this String ends with the specified suffix.

Integer asInteger () Returns an Integer object holding the value of the
specified String (from Java 1.5).

Boolean contains (String) Tests whether this String contains the specified
substring.

String toFirstUpper () Converts the first character in this String to uppercase
using the rules of the default locale (from Java).

String toFirstLower () Converts the first character in this String to lowercase
using the rules of the default locale (from Java).

String replaceFirst Replaces the first substring of this String that matches
(String, String) the given regular expression with the given

replacement.

Boolean startsWith (String) Tests whether this String starts with the specified
prefix.

List toCharList () Splits this String into a List[String] containing Strings
of length 1.

Boolean matches (String) Tells whether this String matches the given regular
expression (from Java 1.4).

The supertype of Integer is Real.

Table 14-5 Integer Operations

Return Type Name Description

Boolean <= (Object) Less than or equal to.

Integer + (Integer) Add.

Integer * (Integer) Multiply.

Boolean > (Object) Greater than.

14.1 Xpand Language 621

(continues)

ptg6022785

Table 14-5 Integer Operations (continued)

Return Type Name Description

List upTo (Integer, Returns a list of integers starting with the value of
Integer) the target expression, up to the value of the first param-

eter, incremented by the second parameter—for exam-
ple, 1.upTo(10, 2) evaluates to {1,3,5,7,9}.

Boolean != (Object) Not equal to.

Integer / (Integer) Divide.

Integer - () Negate.

List upTo Returns a list of integers starting with the value of
(Integer) the target expression, up to the value of the specified

integer, incremented by 1—for example, 1.upTo(5)
evaluates to {1,2,3,4,5}.

Boolean < (Object) Less than.

Integer - (Integer) Subtract.

Boolean == (Object) Equals.

Boolean >= (Object) Greater than or equal to.

The superclass of Boolean is Object.

Table 14-6 Boolean Operations

Return Type Name Description

Boolean ! () Not equal

The supertype of Real is Object.

Table 14-7 Real Operations

Return Type Name Description

Boolean == (Object) Equal to

Boolean != (Object) Not equal to

Boolean <= (Object) Less than or equal to

Real / (Real) Divide

Boolean < (Object) Less than

622 CHAPTER 14 • Xpand Template Language

ptg6022785

Return Type Name Description

Real * (Real) Multiply

Boolean > (Object) Greater than

Real - () Negate

Real - (Real) Subtract

Boolean >= (Object) Greater than or equal to

Real + (Real) Add

The supertype of Collection is Object. Note that Set is a subclass of
Collection but offers no properties or operations beyond that of Collection.

Table 14-8 Collection Properties

Type Name Description

Integer size Returns the size of this Collection

Boolean isEmpty Returns true if this Collection is empty

Table 14-9 Collection Operations

Return Type Name Description

Collection remove (Object) Removes the specified element from this
Collection, if contained, and returns this
Collection.

Set toSet () Converts this collection to a Set.

List toList () Converts this collection to a List.

Boolean containsAll Returns true if this collection contains each
(Collection) element contained in the specified collection; oth-

erwise, returns false. Returns this Collection.

Collection removeAll (Object) Removes all elements contained in the specified
collection from this Collection, if contained, and
returns this Collection.

Collection addAll (Collection) Adds all elements to the Collection and returns
this Collection.

String toString (String) Concatenates each contained element (using
toString()), separated by the specified String.

14.1 Xpand Language 623

(continues)

ptg6022785

Table 14-9 Collection Operations (continued)

Return Type Name Description

Boolean contains (Object) Returns true if this collection contains the speci-
fied object; otherwise, returns false. Returns this
Collection.

Set intersect (Collection) Returns a new Set, containing only the elements
contained in this and the specified Collection.

Set without (Collection) Returns a new Set, containing all elements from
this Collection without the elements from the
specified Collection.

List flatten () Returns a flattened List.

Set union (Collection) Returns a new Set, containing all elements from
this and the specified Collection.

Collection add (Object) Adds an element to the Collection and returns this
Collection.

Table 14-10 List Operations

Return Type Name Description

Object last () Returns the last Object in the List

Object first () Returns the first Object in the List

Integer indexOf (Object) Returns the index of the specified Object in the List

Object get (Integer) Returns the Object at the specified index

List withoutLast () Returns the list without its last Object

List withoutFirst () Returns the list without its first Object

The supertype of Type is Object.

Table 14-11 Type Properties

Type Name Description

String name The name of the Object

Set superTypes The Set of Object supertypes

Set allProperties The Set of all Object Properties

624 CHAPTER 14 • Xpand Template Language

ptg6022785

Type Name Description

Set allFeatures The Set of all Object Features

Set allOperations The Set of all Object Operations

Set allStaticProperties The Set of all Object StaticProperties

String documentation The Object documentation

Table 14-12 Type Operations

Return Type Name Description

Property getProperty (String) Returns a Property that matches the provided
name

Operation getOperation Returns an Operation that matches the provided
(String, List) name and List of parameters

StaticProperty getStaticProperty Returns the StaticProperty that matches the
(String) provided name

Feature getFeature Returns the Feature of the provided name and
(String, List) Type

Boolean isAssignableFrom Returns true if the Type is assignable from the
(Type) specified Type

Boolean isInstance (Object) Returns true if the specified Object is an
instance

Object newInstance () Returns a new instance of the Object

The supertype of Feature is Object.

Table 14-13 Feature Properties

Type Name Description

Type owner The owner of the Feature

Type returnType The return Type of the Feature

String documentation The documentation of the Feature

String name The name of the Feature

The supertype of Property is Feature.

14.1 Xpand Language 625

ptg6022785

Table 14-14 Property Operations

Return Type Name Description

Void set (Object, Object) Sets the first Object to the second Object

Object get (Object) Returns the Object specified

The supertype of Operation is Feature.

Table 14-15 Operation Operations

Return Type Name Description

Object evaluate Evaluates the Operation and provided parameters
(Object, List)

List getParameterTypes () Returns a List of parameter Types for the
Operation

The supertype of StaticProperty is Feature.

Table 14-16 StaticProperty Operations

Return Type Name Description

Object get () Returns the static value

The supertype of AdviceContext is Object.

Table 14-17 AdviceContext Properties

Type Name Description

List paramNames The List of parameter names

String name The name of the AdviceContext

List paramTypes The List of parameter Types

List paramValues The List of parameter values

626 CHAPTER 14 • Xpand Template Language

ptg6022785

Table 14-18 AdviceContext Operations

Return Type Name Description

Object proceed () Evaluates the extension

Object proceed (List) Evaluates the extension with List of Objects

The supertype of Definition is Object.

Table 14-19 Definition Properties

Type Name Description

List paramNames List of the parameter names

List paramTypes List of the parameter types

Type targetType Type of the target definition

String name Name of the target definition

Table 14-20 Definition Operations

Return Type Name Description

String toString () Returns a String of Definition Type, name, and
parameters

Void proceed (Object, List) Evaluates the extension and parameters

Void proceed ()

The supertype of Iterator is Object.

Table 14-21 Iterator Properties

Type Name Description

Boolean firstIteration A Boolean property that signals that this is the first
iteration

Boolean lastIteration A Boolean property that signals that this is the last iteration

Integer counter1 An incrementing Integer value starting at 1

Integer elements An Integer value indicating the number of elements in the
collection

Integer counter0 An incrementing Integer value starting at 0

14.1 Xpand Language 627

ptg6022785

14.1.14 Expression Language

To provide support for metamodel element access, aggregation, and iteration,
Xpand uses an underlying expression language. This language is also available
within Xtend, and this section covers it. You’ve already seen uses of this expres-
sion language, such as in the typeSelect() function used in our earlier exam-
ple template.

The syntax of the expression language is a mixture of OCL and Java. On one
hand, this is good because it’s familiar to many. On the other hand, it’s not OCL.
The underlying implementation does not leverage the MDT OCL project, as does
QVT OML, which is also based on OCL. To provide side effects, QVTO itself
could be used in place of Xtend/OCL in Xpand, which is exactly the approach
that the forthcoming Xpand variant from GMF takes.

General Syntax

Let’s begin with some of the basics of accessing properties, invoking operations,
and so on. Following are examples that should form a self-explanatory basis of
the expression language.

To access a property of a model element, use a simple dot notation:

modelElement.name

To access an operation defined in the model, use a dot notation with paren-
theses:

modelElement.anOperation()

To perform basic arithmetic, use the usual suspects:

(1 + 1 * 2) / 4

Boolean logic is specified using Java-like constructs and semantics:

! ((text.startsWith('t') && text.length > 0) | | ! false)

Literals and Special Operators for Built-In Types

Several literals exist for built-in types, each of which is described next.

628 CHAPTER 14 • Xpand Template Language

ptg6022785

Object
Naturally, no literals exist for Object, but there are two operators:

obj1 == obj2 // equals
obj1 != obj2 // not equals

Void
The only possible instance of Void is the null reference. Therefore, just one lit-
eral exists: null.

Type Literals
The literal for types is simply the name of the type—for example:

String // the type string
my::special::Type // evaluates to the type 'my::special::Type'

The literal for static properties (also known as enumeration literals) is simi-
lar to type literals:

my::Color::RED

Two different literal syntaxes are used for Strings (with the same semantics):

'a String literal'
"a String literal"

For Strings, the expression language supports the plus operator that is over-
loaded with concatenation:

'The element ' + element.name + ' is ' + element.state

The Boolean literals are true and false.
These are the Boolean operators:

true && false // AND
true || false // OR
! true // NOT

14.1 Xpand Language 629

ptg6022785

The syntax for Integer and Real literals is as expected:

5 // Integer
4456 // Integer
8.9 // Real
0.95 // Real

Additionally, common arithmetic operators are used:

1 + 2 // addition
4 – 3 // subtraction
2 * 3 // multiplication
3 / 7 // divide
- 32 // unary minus operator

Finally, the well-known compare operators are defined:

4 > 5 // greater than
4 < 5 // smaller than
4 >= 5 // greater than or equal
4 <= 5 // smaller than or equal

Collections

A literal exists for lists:

{1,2,3,4} // a List with four integers

No other special concrete syntax is used for collections. If you need a Set,
you must call the toSet() operation on the List literal:

{1,2,4,4}.toSet() // a Set with 3 Integers

As with OCL, the expression language defines several special operations on
collections. These operations are not members of the type system, so they cannot
be used in a reflective manner.

select

Sometimes an expression yields a large collection, but one is interested in only a
special subset of the collection. The expression language has special constructs to
specify a selection out of a specific collection. These are the select() and

630 CHAPTER 14 • Xpand Template Language

ptg6022785

reject() operations. The select() operation is analogous to the OCL
select() operation and specifies a subset of a collection as follows:

collection.select(v | boolean-expression-with-v)

Select returns a sublist of the specified collection. The list contains all ele-
ments for which the evaluation of boolean-expression-with-v results in
true. For example:

{1,2,3,4}.select(i | i >= 3) // returns {3,4}

typeSelect

A special version of a select expression is the typeSelect() expression. The
metaclass name is provided as the argument.

collection.typeSelect(classname)

typeSelect() returns a sublist of the specified collection that contains only
objects that are an instance of the specified class. For example:

elements.typeSelect(mindmap::Topic)

reject

The reject operation is similar to the select operation, but with reject we get the
subset of all the elements of the collection for which the expression evaluates to
false. The reject syntax is identical to the select syntax:

collection.reject(v | boolean-expression-with-v)

For example:

{1,2,3,4}.reject(i | i >= 3) // returns {1,2}

collect

As shown in the previous section, the select() and reject() operations
always result in a subcollection of the original collection. Sometimes we want to
specify a collection that is derived from another collection but that contains

14.1 Xpand Language 631

ptg6022785

objects not in the original collection (it is not a subcollection). The collect oper-
ation does this using the same syntax as the select and reject expressions:

collection.collect(v | expression-with-v)

collect() iterates over the target collection and evaluates the given expres-
sion on each element. In contrast to select, the evaluation result is collected in
a list. When the iteration is finished, the list with all results is returned. For exam-
ple, if the name property of the objects in the collection elements is a String, a
list of Strings is returned:

elements.collect(e | e.name) // returns a list of Strings

Navigation through many objects is common, so a shorthand notation for
collect() makes the expressions more readable. This is just as in OCL, so
instead of using:

self.employee.collect(e | e.birthdate)

You can simply write this:

self.employee.birthdate

In general, when a property is applied to a collection of Objects, it automat-
ically is interpreted as a collect() over the members of the collection with the
specified property.

forAll

Often a Boolean expression must be evaluated for all elements in a collection.
The forAll() operation enables you to specify a Boolean expression that must
be true for all objects in a collection for the operation to return true:

collection.forAll(v | boolean-expression-with-v)

The result of forAll() is true if boolean-expression-with-v is true
for all the elements contained in the collection. If boolean-expression-
with-v is false for one or more of the elements in the collection, the expres-
sion evaluates to false.

632 CHAPTER 14 • Xpand Template Language

ptg6022785

For example:

{3,4,500}.forAll(i | i < 10) // evaluates to false

exists

Often you need to know whether there is at least one element in a collection for
which a Boolean is true. The exists() operation enables you to specify a
Boolean expression that must be true for at least one object in a collection:

collection.exists(v | boolean-expression-with-v)

The result of the exists() operation is true if boolean-expression-
with-v is true for at least one element of collection. If the boolean-expres-
sion-with-v is false for all elements in collection, then the complete
expression evaluates to false.

For example:

{3,4,500}.exists(i | i < 10) // evaluates to true

sortBy

If you want to sort a list of elements, you can use the function sortBy(). The
list processed using sortBy is sorted by the results of the given expression.

For example:

elements.sortBy(e | e.name)

In the example, the list of elements is sorted by the name of the element.
Note that no Comparable type exists in the expression language. If the values
returned from the expression are instances of java.util.Comparable, the
compareTo() method is used; otherwise, toString() is invoked and the result
is compared.

Consider some more examples. (The following expressions return true.)

{'C','B','A'}.sortBy(e | e) == {'A','B','C'}
{'AAA','BB','C'}.sortBy(e | e.length) == {'C','BB','AAA'}
{5,3,1,2}.sortBy(e | e) == {1,2,3,5}

14.1 Xpand Language 633

ptg6022785

Ternary Expression

Conditional expressions come in two different flavors. The first one is the ter-
nary expression, with this syntax:

condition ? thenExpression : elseExpression

For example:

name != null ? name : 'unknown'

switch

The second conditional expression is the switch expression, with this syntax:

switch (expression) {
(case expression : thenExpression)*
default : catchAllExpression

}

The default part is mandatory because switch is an expression; therefore, it
needs to evaluate to something in any case. This is an example from GMF, found
in GenModelUtils.ext:

String getClassifierAccessorName(genmodel::GenClassifier gc) :
switch (gc.getEcoreClassifier().name) {

case "Class" : "Class_"
case "Name" : "Name_"
default : gc.getEcoreClassifier().name

}
;

Boolean expressions have an abbreviation:

switch {
case booleanExpression : thenExpression
default : catchAllExpression

}

Chain Expression

Expressions and functional languages should be as free of side effects as possible.
But sometimes side effects are necessary. In some cases, expressions don’t have a

634 CHAPTER 14 • Xpand Template Language

ptg6022785

return type (that is, the return type is Void). If you need to call such operations,
you can use the chain expression, with this syntax:

anExpression -> anotherExpression -> lastExpression

Each expression is evaluated in sequence, but only the result of the last
expression is returned. For example:

person.setName('test') -> person

This chain expression sets the name of the person first, before it returns the
person object itself.

Create Expression

The create expression instantiates new objects of a given type:

new Topic

Let Expression

The let expression lets you define local variables. The syntax is as follows:

let v = expression : expression-with-v

This is especially useful together with a chain and a create expression. For
example:

Topic newTopic() :
let t = new Topic : t.setName('A topic') -> t

;

Casting

The expression language is statically type checked, although sometimes it’s nec-
essary to perform a cast. The syntax for casts is very Java-like:

((String)unTypedList.get(0)).toUpperCase()

14.1 Xpand Language 635

ptg6022785

14.1.15 Xtend Language

The Xtend language is commonly used with Xpand templates to provide reusable
operations and simple expressions by extending the underlying metamodels.
Xtend is based on the expression language covered in the previous section and is
also used for model transformation definition. We limit our use of Xtend in the
scope of this book to its use in Xpand templates because we rely on the QVT
OML for model transformation.

Xtend files have an .ext file extension and corresponding editor in Eclipse.
They are typically arranged in libraries and imported by Xpand templates using
the «EXTENSION» statement.

Xtend Syntax

The syntax for Xtend is simplistic because most of an extension file’s content is
made up of the underlying expression language syntax.

Import

The import keyword is used at the top of a file and indicates the name space of
different types used within the extension file. As usual, double colon (::) char-
acters delimit elements in the namespace, and a semicolon ends the statement.
For example, the following import statement imports our mindmap model
namespace.

import mindmap;

No support exists for wildcard or static imports in Xtend, so the following
examples are incorrect:

import org::eclipse::*; // incorrect
import mindmap::Map; // also incorrect

Extension Import

It is possible to import another extension file using the «EXTENSION» keyword
at the top of the file. Again, fully qualified namespace declaration is required.
Following is an example.

extension org::eclipse::mindmap::Util; // full path with no *.ext

636 CHAPTER 14 • Xpand Template Language

ptg6022785

If you want to export an extension used in a file with your own extensions,
add the reexport keyword to the end of the extension statement.

extension org::eclipse::mindmap::Util reexport;

Comments

Comments in Xtend come in two flavors: single line and multiline. Single-line
comments are like those in Java: two forward slashes (//) demark the start of a
comment that goes until the end of the line.

// An example single line comment

A multiline comment is also like comments in Java, with /* marking the start
and */ marking the end of comments that can span multiple lines.

/*
* A multi-line comment.
*/

Extensions

The basic syntax for an extension expression indicates an optional return type,
extension name, parameter list, and expression body following a single colon and
terminated with a semicolon. Following is the general syntax.

ReturnType expressionName(ParamType1 param1, …) : expression-body;

Consider this simple example that returns a standard setter method name for
a passed element:

String setterName(NamedElement element) : 'set' +

element.name.toFirstUpper();

Extension Invocation

You can invoke an extension in two ways. The first is by passing the element
instance as a parameter, as shown here:

setterName(myFeature);

14.1 Xpand Language 637

ptg6022785

The implicit first parameter represents the element instance, so we can use
the “member syntax” to seemingly invoke an extension on the instance. This
gives us more of the feeling that we’re truly extending the underlying metamodel.
This is an equivalent example to the first:

myFeature.setterName();

Remember that even though we’re seemingly extending the metamodel, these
extensions are not available using reflection and cannot be used for specializa-
tion of metamodel operations. During evaluation, an operation matched in the
metamodel takes precedence in execution.

Type Inference

It’s not strictly required that a return type be declared because the type can be
inferred from the expression and depends on its context of use. For example,
consider this expression:

asList(Object o) : {o};

When invoking this extension and passing an Integer, as shown next, it has
the static type List[Integer]. So the use of upTo() is statically type safe.

asList(55).get(0).upTo(60);

Recursion

One exception to the rule regarding type declaration is with recursive expres-
sions. Because the type cannot be inferred, it must be stated explicitly, as shown
in this example:

String fullyQualifiedName(JavaPackage p) :
p.eSuperPackage == null ? p.name :
fullyQualifiedName(p.eSuperPackage) + '.'
+ p.name

;

Consider another example from GMF’s xpt::editor::palette::Utils
extensions:

638 CHAPTER 14 • Xpand Template Language

ptg6022785

private List[gmfgen::ToolGroup] collectSubGroups(gmfgen::ToolGroup

group) :
let rv = group.entries.typeSelect(gmfgen::ToolGroup) :
rv.addAll(rv.collect(g| g.collectSubGroups()).flatten())

;

Cached Extensions

If you expect to have an extension called multiple times for a given set of param-
eters, you might want to have the result cached for performance reasons. This is
accomplished by adding the cached keyword to the expression, as in this exam-
ple from GMF’s xpt::navigator::Utils extensions:

cached List[gmfgen::GenCommonBase]

getNavigatorContainerNodes(gmfgen::GenNavigator navigator) :
getNavigatorNodes(navigator).select(n |
getChildReferencesFrom(navigator, n).size() > 0)

;

Private Extensions

If you do not want to expose an extension outside its file, you can add the
private keyword, as shown in this example from GMF’s xpt::navigator::
Utils extensions:

private List[gmfgen::GenCommonBase]

getNavigatorNodes(gmfgen::GenNavigator navigator) :
let diagram = navigator.editorGen.diagram :
{ diagram }
.addAll(diagram.topLevelNodes)
.addAll(diagram.childNodes)
.addAll(diagram.links)
.addAll(diagram.compartments)
.typeSelect(gmfgen::GenCommonBase)

;

Java Extensions

Sometimes you need to call a Java method. The JAVA keyword provides the
means by which to declare that a Java public static method is called. This is the
general syntax for defining a Java public static method:

Type aJavaExtension(ParamType param, …) :
JAVA package.Type.staticMethod(package.Type, …)

;

14.1 Xpand Language 639

ptg6022785

Following is an example from GMF’s xpt::EMFUtils extensions:

String toStringLiteral(String strValue) :
JAVA org.eclipse.gmf.internal.codegen.util.EmfUtils.toStringLiteral(
java.lang.String)

;

Xtend Examples

The first example provides the same functionality we expressed in our mindmap
model using OCL. Although the derived feature for rootTopics was created
and annotated with OCL to provide the value, this snippet of Xtend completes
the story by showing what otherwise we would need to do to accomplish the
same thing if we had not “pulled up” the capability into our metamodel. This is
an extension that returns the list of root Topic elements from a Map:

import mindmap;

cached List[mindmap::Topic] rootTopics(Map mindmap) :

let topics = mindmap.elements.typeSelect(mindmap::Topic) :

topics.without(topics.subtopics)

;

To compare, this is the OCL we added to the metamodel after creating a
derived, transient, volatile rootTopics reference in our Map class:

let topics : Set(mindmap::Topic) = self.elements
->select(oclIsKindOf(mindmap::Topic))
->collect(oclAsType(mindmap::Topic))->asSet() in
topics->symmetricDifference(topics.subtopics->asSet())

Finally, this is the QVT we used in our transformation from mindmap root
Topic to RequirementGroup objects:

var topics : Set(mindmap::Topic) := mmap.elements
->select(oclIsTypeOf(mindmap::Topic))
->collect(oclAsType(mindmap::Topic))->asSet();

var rootTopics : Set(mindmap::Topic) := topics
->symmetricDifference(topics.subtopics->asSet());

As you can see, the three are similar. Because QVT OML is based on OCL,
it’s understandably the same syntax as the OCL annotation. And because Xtend

640 CHAPTER 14 • Xpand Template Language

ptg6022785

borrows from OCL, it is similar except where without is used instead of
symmetricDifference(), and where typeSelect() is used instead of
select()->collect().

In the context of our mindmap2csv Xpand template, you can see the use of
our rootTopics() extension here. In this case, only the root Topic elements of
our Map will be written out in CSV format.

«DEFINE csvFile FOR Map»
«EXPAND csvFile(title) FOREACH this.rootTopics()-»
«ENDDEFINE»

Chapter 7, “Developing Model-to-Text Transformations,” has additional
examples of Xtend and Xpand usage.

14.1.16 Workflow Engine

Although it is possible to invoke Xpand templates using Java and even Ant, the
“native” method is to use the Model Workflow Engine (MWE) component of
EMF Technology (EMFT). The workflow engine uses configuration files, which
are Ant-like XML files executed using the Eclipse launcher. Note that this section
concentrates on using the workflow engine in the context of Xpand templates
only. Although additional capabilities exist, such as constraint checking and
Xtend-based model transformation, they fall outside the scope of this book.

Properties

Workflow configuration files support Ant-like properties. The following exam-
ple would set a model property that could be used as ${model} elsewhere in the
workflow. The use of full URIs, such as platform:/resource/... shown here,
is recommended practice.

<property name="model"

value="platform:/resource/org.eclipse.dsl.mindmap/model/Map.xmi"/>

Note that properties passed into a workflow invocation via Java or Ant over-
ride those defined in the workflow itself. This is a convenient means by which to
develop and later deploy a workflow when the environment of execution
changes.

14.1 Xpand Language 641

ptg6022785

EMF Setup

When using EMF models, configuring a bean element with the Standalone
Setup class is required in the workflow. A number of elements are available to
be used within the StandaloneSetup component, as described next.

platformUri

This element points to the platform, and, in most cases, the value used is simply
../, as shown in the following example. In a project in which the .ecore file is
within a source path of the project and uses a local dynamic instance model as
input, this is all that setup requires.

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />

</bean>

uriMap

The uriMap element enables you to specify a map from the package’s registered
NS URI to another URI, such as a platform:/resource/... URI. For exam-
ple, working with a mindmap instance model, not a local dynamic instance
model that references an *.ecore model, you can map its NS URI to a work-
space *.ecore model for resolution, as follows:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<uriMap

from="http://www.eclipse.org/2008/mindmap"
to="platform:/resource/org.eclipse.dsl.mindmap/model/mindmap.ecore"/>

</bean>

RegisterGeneratedEPackage

Models in the environment that have contributed to the EMF generated_
package extension-point can be referenced using the RegisterGenerated
EPackage element. The package element’s class attribute of the contribution is
used as the value, as shown here:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<RegisterGeneratedEPackage
value="org.eclipse.jem.java.JavaRefPackage"/>

</bean>

642 CHAPTER 14 • Xpand Template Language

ptg6022785

In this example, the Java EMF Model (JEM) is referenced by its gener-
ated_package, as shown here in its plugin.xml file:

<extension point="org.eclipse.emf.ecore.generated_package">
<package

uri="java.xmi"
class="org.eclipse.jem.java.JavaRefPackage" />

</extension>

RegisterEcoreFile

To explicitly register a metamodel using its .ecore file, use the
RegisterEcoreFile element. In this example, the mindmap.ecore file is ref-
erenced from another project in the workspace:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<RegisterEcoreFile value=

"platform:/resource/org.eclipse.dsl.mindmap/model/mindmap.ecore"/>
</bean>

Note that it is possible to use any valid URI scheme in the value attribute.
For example, if you want to reference a file within a *.jar file, declare the path
as follows:

<RegisterEcoreFile value="jar:/file:/my.jar!/model/my.ecore"/>

ExtensionMap

If the EMF extension_parser extension-point is to be used to load a model,
you can use the ExtensionMap element, as shown here. Also shown is the con-
tribution from the corresponding model plugin.xml file.

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
<platformUri value="../" />
<ExtensionMap from="gmfgen"

to="org.eclipse.gmf.internal.codegen.util.GMFGenResource$Factory"/>
</bean>

<extension point="org.eclipse.emf.ecore.extension_parser">
<parser type="gmfgen" class=
"org.eclipse.gmf.internal.codegen.util.GMFGenResource$Factory"/>

</extension>

14.1 Xpand Language 643

ptg6022785

Reader

A Reader must be configured and populated with the input model instance for
use in the Generator component. The default org.eclipse.emf.mwe.utils.
Reader has a number of nested elements, which are covered next. At a mini-
mum, a Reader is configured with a uri and modelSlot element to indicate
where to load the model from and which slot to populate, respectively. Following
is an example:

<component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="${model}" />
<modelSlot value="model" />

</component>

uri

The uri element contains the path to the model to be loaded. As mentioned in
the previous properties section, this is a path that is typically expressed using a
uri value. It’s common to set a property to this value so that it can be substi-
tuted with a runtime parameter during deployment.

modelSlot

The modelSlot element defines the default model slot that is used in the expand
element of our Generator element. Typically, the uri element is used to populate
this slot with a model instance, as in the previous example.

firstElementOnly

Set this element’s value attribute to false if the input model has multiple root
elements that require processing. The default for EMF models is to have a single
root element, so the default value for this element is true, meaning that it does
not normally need to be defined. However, sometimes multiple roots are present
and should be passed to the template, as is the case in GMF when diagram and
domain models are persisted in the same file.

Xpand Component

A predefined workflow component provided with Xpand is the org.eclipse.
xpand2.Generator class. The use of this component is complemented by
workflow properties, metamodel references, and model readers. Following is a
basic configuration that was used to invoke our earlier template examples that
produced CSV files from our mindmap model.

644 CHAPTER 14 • Xpand Template Language

ptg6022785

<?xml version="1.0"?>
<workflow>

<!-- Specify model and output locations -->
<property name="model" value=
"platform:/resource/org.eclipse.dsl.mindmap/model/Mindmap.xmi"/>
<property name="out" value="out" />

<!-- Configure EMF and specify platform location -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">

<platformUri value="../" />
</bean>

<!-- Configure model reader to populate model slot -->
<component class="org.eclipse.emf.mwe.utils.Reader">

<uri value="${model}" />
<modelSlot value="model" />

</component>

<!-- Configure Xpand generator for EMF metamodel invocation -->
<component class="org.eclipse.xpand2.Generator" id="generate">

<metaModel id="mm" class=
"org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>

<expand value="mindmap2csv::Main FOR model" />
<outlet path="${out}"/>

</component>
</workflow>

The comments throughout make this workflow example fairly straight-
forward. The bean element for org.eclipse.mwe.emf.StandaloneSetup
supports the registration of Ecore models using URIs, generated packages, and
those models in our project source path, such as our mindmap.ecore model.

An org.eclipse.mwe.emf.Reader is then configured to fill our model
slot with our dynamic instance. In the Generator component that follows, this
slot is referenced by name in the «EXPAND» element. Note that an «EXPAND» ele-
ment in a workflow takes in its value attribute an «EXPAND» expression, minus
the «EXPAND» keyword (as it is provided by the element name). Note also the
assignment of the ID attribute. When we discuss the use of aspects with Xpand
in Section 14.1.16, “Aspects,” you’ll see that this is a required attribute.

BEST PRACTICE

To allow for the execution of a workflow that adds extensibility to your
Xpand templates using «AROUND» elements, be sure to specify an ID
attribute of the workflow org.eclipse.xpand2.Generator compo-
nent.

14.1 Xpand Language 645

ptg6022785

Before invoking the template with the «EXPAND» element, a metaModel is
declared and uses the org.eclipse.m2t.type.emf.EmfRegistryMeta
Model class. The outlet directs our template result to the out directory, rela-
tive to the project location. Each of the elements and their properties are
described next.

metaModel

The metaModel element takes an ID and class attribute, with the default class
being org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel for
working with EMF models.

expand

The expand element determines the template that is invoked and the model ele-
ment that is passed. These are specified in the value attribute, which contains an
Xtend expression that is the same as an «EXPAND» expression in an Xpand tem-
plate, without the «EXPAND» statement itself. In the previous example, the Main
definition is invoked in the mindmap2csv.xpt template file, passing the model
slot, which is populated with our Mindmap.xmi dynamic instance.

Outlet

The outlet element of the Xpand generator component provides five attributes:
name, append, overwrite, path, and fileEncoding.

Additionally, we set up outlet elements to direct the output of the template.
We covered earlier the concept of named outlets, as shown with the RELA-
TIONS_OUTLET and TOPIC_OUTLET declarations. Note that we are specifying
that the output should be appended with append="true" because the default is
false. An overwrite flag is also available and is set to true by default. In our
example, the default outlet points to the path /out, which is created in the root
of the containing project (if it doesn’t already exist). «FILE» statements that do
not specify an outlet write to the default location.

Postprocessor
Although it’s possible to write your templates so that they produce nicely for-
matted output, code formatters are available for most languages and can be
invoked using the postprocessor element within the outlet element. It’s
likely more important for your templates to be readable, so leveraging a format-
ter for your generated output gives you the benefit of both readable templates
and generated code.

646 CHAPTER 14 • Xpand Template Language

ptg6022785

Xpand workflow provides two beautifiers, specified using org.eclipse.
xpand2.output.JavaBeautifier and org.eclipse.xpand2.output.
XmlBeautifier. You enter these into your Generator elements, as shown in the
following example:

<outlet path="src-gen">
<postprocessor class="org.eclipse.m2t.xpand.output.JavaBeautifier"

configFile="config/org.eclipse.jdt.core.prefs"
</outlet>

The Java post-processor uses the JDT’s code formatter and picks up prefer-
ences as long as they are found in the classpath. To create a preferences file for
use in your post processor, enable project-specific settings in Preferences → Java
→ Code Style → Formatter and save the file into the path specified in your
configFile attribute.

The XML post-processor provides default support for .xml, .xsl, .wsdd,
and .wsdl file extensions. Use the fileExtensions attribute to add alternate
extensions.

If you are generating something other than Java or XML, you can create
your own post-processor by implementing the org.eclipse.m2t.xpand.
output.PostProcessor interface. When deploying the provided or custom
processors, be sure to include the required dependencies to your plug-in.

Aspects

To use the aspect-oriented features of Xpand or Xtend when invoking the gen-
erator, you need to configure them in your workflow. As you might recall from
Section 14.1.12, “AROUND,” which covered using «AROUND» in templates, the
workflow used to leverage aspects must be made aware of them. Following is
the workflow file used to invoke the mindmap2csv.xpt template, including the
advices defined in aspects::mindmap2csv.xpt:

<?xml version="1.0"?>
<workflow>

<cartridge file="mapsample.mwe" inheritAll="true"/>

<component class="org.eclipse.xpand2.GeneratorAdvice"
id="reflectionAdvice" adviceTarget="generate">

<advices value="aspects::mindmap2csv"/>
</component>

</workflow>

14.1 Xpand Language 647

ptg6022785

This workflow file simply invokes the original, as defined in the cartridge
element. The GeneratorAdvice component is configured to use
reflectionAdvice and targets our component with ID equal to generator,
which is the ID attribute of the Generator component defined in the original
workflow. The advices contributed are defined in the child advices element,
which points to our aspects::mindmap2csv template.

Java Invocation

A WorkflowRunner class is provided to allow for invocation at the command
line or from within an Eclipse application. The syntax for the command line fol-
lows, where –p lets you override properties.

java org.eclipse.emf.mwe.WorkflowRunner

–pbasedir=/base path/workflow.mwe

To invoke from within Eclipse, a Map of properties and a Map of slot contents
are required, along with a String path to the workflow file. Following is the
run() method signature:

public boolean run(final String workFlowFile,
final ProgressMonitor theMonitor,
final Map<String, String> theParams,
final Map<String, ?> externalSlotContents)

For example:

Map<String, String> properties = new HashMap<String, String>();
properties.put("model", modelURI);
properties.put("out", outputDirectory);
new WorkflowRunner().run(workflowFile.getPath(),
new NullProgressMonitor(), properties, null);

Note that the contents of the properties map override those defined in the
workflow, and you can pass a model already in memory as a slot content. Also
note that the ProgressMonitor and NullProgressMonitor shown here are
workflow classes, not Eclipse platform classes.

Section 8.1.2, “Actions,” includes a complete example of Java invocation in
a deployed plug-in.

648 CHAPTER 14 • Xpand Template Language

ptg6022785

Using Ant with Workflow

It is possible to invoke a workflow and pass it parameters using Ant. Following
is a simple example to illustrate the basic configuration:

<target name='generate'>
<taskdef name="workflow"

classname="org.eclipse.emf.mwe.core.ant.WorkflowAntTask"/>
<workflow file='path/workflow.mwe'>

<param name='baseDir' value='/base/'/>
</workflow>

</target>to i

14.2 Summary

In this chapter, we looked closer at the Xpand template language, including its
underlying expression and Xtend languages. We also learned how to invoke a
template for generating text using the Model Workflow Engine.

14.2 Summary 649

ptg6022785

This page intentionally left blank

ptg6022785PART 1V

Appendixes
This part of the book contains additional reference and background information. Specifically,
this part provides a Graphical Modeling Framework (GMF) runtime set of keyboard shortcuts
and a discussion on how the Eclipse Modeling Project and the Object Management Group’s
Model-Driven Architecture (MDA) initiative come together.

651

ptg6022785

This page intentionally left blank

ptg6022785

APPENDIX A

Graphical Modeling Framework Key Bindings

The Graphical Modeling Framework (GMF) runtime provides many convenient
keyboard bindings and diagram-manipulation options using both the keyboard
and mouse. This table comes from the GMF’s Help documentation and is copied
here for convenience.

Table A-1 Cycling between the Diagram Editor and Palette

Keyboard
Current State Key(s) Description New State

Diagram name in Tab Navigates to the palette Palette in focus
focus

Palette in focus Tab Navigates to the palette Palette Minimize
Minimize button. button in focus

Palette Minimize Tab Navigates to the palette Palette item in focus
button in focus items.

Palette item in Tab Navigates to the Diagram Diagram Editor in
focus Editor and places focus focus

on any selected item.

Diagram Editor Shift+Tab Navigates to the palette Palette item in
in focus items. The last palette item focus

used is selected; otherwise,
it defaults to the Select
option.

Palette item in Shift+Tab Navigates to the palette Palette Minimize
focus Minimize button. button in focus

653

(continues)

ptg6022785

Table A-1 Cycling between the Diagram Editor and Palette (continued)

Keyboard
Current State Key(s) Description New State

Palette Minimize Shift+Tab Navigates to the palette. Palette in focus
button in focus

Palette in focus Shift+Tab Navigates to the Diagram Diagram name in
Editor. focus

Table A-2 Palette Item Navigation

Keyboard
Current State Key(s) Description New State

Drawer in focus Spacebar Collapses or expands the Drawer in focus
selected drawer in the
palette

Palette item in Spacebar Selects the current palette Palette item in focus
focus item in focus

Palette item in Up/down Moves the focus between Palette item in focus
focus arrow the palette items

Shape palette item Enter Creates a new shape on New shape selected in
in focus the diagram diagram

Connection palette Enter Creates a new connection New connection
item in focus between the two selected selected in diagram

items in the diagram

Palette item in Tab Tab—Navigates to the Diagram Editor in
focus diagram focus with Select

Palette tool

Palette item in Escape Esc—Deselects Enabled
focus the palette item

Stack palette item Alt+down Makes the stack pop-up Stack pop-up list in
in focus arrow list appear focus

Stack pop-up list Up/down Navigates between the Stack pop-up list in
in focus arrow available palette tools on focus

the stack

Stack pop-up list Enter Selects an item from the Selected palette item
in focus pop-up list

654 APPENDIX A • GMF Key Bindings

ptg6022785

Table A-3 Diagram Navigation

Keyboard
Current State Key(s) Description New State

Selected diagram Alt+down Selects shape in diagram Selected shape
arrow

Selected diagram Arrow keys Cycles through the shapes Selected shape
that exist in the selected
diagram

Selected diagram Shift+arrow Multiselects shapes on Selected shapes
keys the diagram

Selected diagram Shift+F10 Invokes the context menu Diagram context menu
for the shape

Table A-4 Shape Navigation

Keyboard
Current State Key(s) Description New State

Selected shape Shift+F10 Invokes the context Shape context menu
menu for the shape.

Selected shape . (period) Cycles through the Selected shape handle
following handles: position
handle, 8 side and corner
size handles, position handle
(clockwise rotation).

Selected shape Shift+. Cycles through the following Selected shape handle
(period) handles: position handle,

eight side and corner size
handles, position handle
(counterclockwise rotation).

Selected shape / Selects any available Selected connection
(forward connection. Navigates
slash) clockwise among the

existing connections.

Selected shape \ Selects any available Selected connection
(backslash) connection. Navigates

counterclockwise among
the existing connections.

APPENDIX A • GMF Key Bindings 655

(continues)

ptg6022785

Table A-4 Shape Navigation (continued)

Keyboard
Current State Key(s) Description New State

Selected shape Alt+down Selects the shape Shape compartment
arrow compartment. selected

Selected shape Ctrl+spacebar Deselects the selected Shape outline
shape by showing the
shape in an outline.

Selected shape Arrow keys Changes shape size or Shaded shape
handle position. A shaded shape

is displayed showing the
new size or position.

Selected shape Ctrl+arrow Changes shape size or Shaded shape
handle keys position respecting the

aspect ratio. A shaded shape
is displayed showing the
new size or position.

Selected shape Shift+arrow Changes shape size or Shaded shape
handle keys position respecting the

shape’s center. A shaded
shape is displayed showing
the new size or position.

Selected shape Ctrl+shift+ Changes shape size or Shaded shape
handle arrow keys position respecting the

aspect ratio and shape’s
center. A shaded shape is
displayed showing the new
size or position.

Selected shape Escape Deselects the selected Selected shape
handle shape handle.

Selected shape Enter Accepts the current Selected shape
shaded shape.

Selected shape Escape Reverts to the original Selected shape
shape size or position.

Selected shape Alt+down Selects a compartment Compartment selected
arrow within the shape.

Compartment Up/down Navigates between the Compartment selected
selected arrow available compartments.

656 APPENDIX A • GMF Key Bindings

ptg6022785

Keyboard
Current State Key(s) Description New State

Compartment Alt+down Selects the shape Compartment item
selected arrow compartment items. The selected

first compartment item is
selected.

Compartment Alt+up arrow Deselects the compartment Selected shape
selected and selects the shape.

Compartment Alt+up arrow Deselects the compartment Compartment selected
item selected item and selects the

compartment.

Compartment Up/down Navigates between the Compartment item
item selected arrow available compartment selected

items.

Table A-5 Connection Navigation

Keyboard
Current State Key(s) Description New State

Selected Shift+F10 Invokes the context menu Connection context
connection for the connection. menu

Selected Alt+down Cycles through all the Selected connection
connection arrow connection labels. A label

connection label is selected
when the four corner size
handles are shown. Connection
labels are navigable in the
same way that shapes are.

Selected Alt+up Deselects the connection label Selected connection
connection arrow and selects the connection.
label

Selected Arrow keys Deselects the connection and Selected shape
connection selects the shape.

Selected Ctrl+spacebar Deselects the selected connection Connection outline
connection by showing the connection in

an outline.

APPENDIX A • GMF Key Bindings 657

(continues)

ptg6022785

Table A-5 Connection Navigation (continued)

Keyboard
Current State Key(s) Description New State

Selected . (period) Cycles through the endpoints, Selected endpoint,
connection or Shift+. bendpoints, and midpoints of bendpoint, or

(period) a connection. midpoint

Selected Arrow keys Allows the connection Selected connection
endpoint endpoint to be moved to a

new shape.

Move cursor Arrow keys Moves the connection Selected bendpoint
over bendpoint bendpoint.

Move cursor Enter Accepts the current location. Selected connection
over bendpoint

Move cursor Escape Reverts to the original location. Selected connection
over bendpoint

Add bendpoint Arrow keys Moves the new bendpoint. Selected bendpoint
cursor

Add bendpoint Enter Accepts the new bendpoint. Selected connection
cursor

Add bendpoint Escape Removes the bendpoint. Selected connection
cursor

To navigate to the Properties View: Press Ctrl+F7 and choose the Properties
View, or Select Show Properties View from the context menu of a diagram,
shape, or connection.

658 APPENDIX A • GMF Key Bindings

ptg6022785

Table A-6 Properties View Navigation

Keyboard
Current State Key(s) Description New State

Selected Shift+Tab Cycles through the fields in the Properties tab
properties property section and eventually highlighted
field highlights the currently active

properties tab. Shift+Tab cycles
through the UI of the Properties
view.

Properties Tab Cycles through the fields in the Selected properties
tab highlighted property sections of the active tab. field

Tab cycles through the UI of the
Properties view in the opposite
direction of Shift+Tab.

Properties Up/down Move focus among tabs in Properties tab
tab highlighted arrow Properties view. highlighted

APPENDIX A • GMF Key Bindings 659

ptg6022785

This page intentionally left blank

ptg6022785

APPENDIX B

Model-Driven Architecture (MDA) at Eclipse

The OMG has defined a set of standards for use in what it calls Model-Driven
Architecture (MDA). Although the approach of MDA is more or less the same
as most other approaches to a general model-driven software development,
MDA requires technologies that implement the stated OMG standards. The
Modeling project provides support for many of these standards, so using the
Modeling project for MDA is definitely an option. However, where standards
compliance is not a requirement, or where you need a capability for which no
implementation yet exists, the Modeling project provides a range of alternatives.

As stated in its charter,

the importance of supporting industry standards is critical to the success
of the Modeling project, and to Eclipse in general. The role of the
Modeling project in the support of industry standards is to enable their
creation and maintenance within the Eclipse community. Furthermore, as
standards bodies such as the Object Management Group (OMG) have a
strong modeling focus, the Modeling project needs to facilitate communi-
cation and outreach through its PMC and project contributors to foster a
good working relationship with external organizations.

When the OMG introduced MDA to the world in 2001, Eclipse was an
incipient community. In the past seven years, MDA and Eclipse have experienced
success while concurrently undergoing changes in focus, positioning, and appli-
cability to the world of software development. Eclipse is no longer “just a Java
IDE,” and MDA is now based on a more complete set of specifications, making
it much more well defined than seven years ago.

661

ptg6022785

Although the Eclipse Modeling Project makes little mention of MDA proper,
it is nonetheless supported to a large degree, as discussed shortly. In fact, Eclipse
has significantly contributed to the success and realization of MDA, providing an
open source platform and de facto reference implementations for many of the
MDA specifications. Unfortunately, this has been done with minimal collaboration
with the OMG. Improved collaboration likely will increase the success of both
organizations as they strive to increase the adoption of model-driven development.

Implemented Standards

The Eclipse Modeling Project is a top-level Eclipse project that is logically
structured into projects that provide abstract syntax definition, concrete syntax
development, Model-to-Model Transformation (M2M), and Model-to-Text
Transformation (M2T). Additionally, the Model Development Tools (MDT)
project focuses on providing implementations of industry-standard metamodels
and exemplary tools for developing models based on those metamodels. This
range of functionality provides its community with a full range of model-driven
software development (MDSD) capabilities, many of which conform to pub-
lished MDA specifications.

Although the top-level Modeling project is the primary location for MDA-
related activity at Eclipse, other projects within Eclipse have modeling-related
technology and specification implementations. For example, the Software
Process Engineering Model (SPEM) [4] is implemented as part of the Eclipse
Process Framework (EPF) [5] project, while BPMN diagramming [18] is pro-
vided by the SOA Tools project [19].

It’s also worth pointing out that the Eclipse Modeling Project provides alter-
native technologies for several of the OMG’s MDA specifications. These are
discussed shortly because they are popular technologies with strong user com-
munities. In most cases, their implementations precede the corresponding OMG
specification.

Altogether, these projects fulfill most of the MDA vision, while certainly ful-
filling general MDSD and domain-specific language (DSL) tooling requirements.
The following is a list of the relevant MDA specifications and their implementa-
tion status within Eclipse. This is not an exhaustive list of MDA specifications,
but these are the most relevant within the current scope of the Eclipse Modeling
Project.

Meta-Object Facility (MOF)

We cannot overstate the importance of having a common underlying metamodel,
provided by the Meta-Object Facility (MOF) [11] specification. MOF—or, more

662 APPENDIX B • Model-Driven Architecture (MDA) at Eclipse

ptg6022785

specifically, EMOF (Essential MOF)—is closely aligned with the Ecore meta-
model of the Eclipse Modeling Framework (EMF) [12] and forms the basis of
most Modeling project technologies.

The topic of aligning the Ecore metamodel with the EMOF specification has
been ongoing for years and will likely continue because the implications of align-
ment are not trivial. EMF is such a popular technology used within many Eclipse
projects and commercial products that changing its structure and API is not a
viable solution. As has been discussed, updating the EMOF specification to align
with Ecore might be a better solution.

Although EMF forms the bedrock of nearly every Modeling project, room
for improvement still exists. Discussions are ongoing in the areas of large-scale
models, metamodel enhancements, alternative persistence mechanisms, and so
on. When considering the evolution of EMF and all Eclipse open source projects,
it’s important to keep in mind that it is contribution based. EMF itself consists
of a small team that must maintain and preserve its current client base.

Unified Modeling Language (UML)

Unified Modeling Language (UML) [6] is implemented within the UML2 com-
ponent of the Model Development Tools (MDT) project [8] and currently con-
forms to the 2.1 version of the specification. This implementation of the UML2
metamodel is based on EMF and has been part of Eclipse for quite some time.

Diagramming capabilities for the UML2 metamodel implementation are now
provided by the MDT project’s UML2 Tools component. These diagrams are gen-
erated using the Eclipse Graphical Modeling Framework (GMF) project, itself an
example of model-driven software development using Eclipse technologies.

Both the metamodel and diagramming components provide support for the
definition of UML Profiles. Profiles play an important role in MDA and in the
definition of UML-based DSLs. Although no UML Profiles are available at
Eclipse today, they could be implemented and provided to the community in the
future. Ideally, a catalog of profiles and other MDA artifacts would be con-
tributed to and maintained by the community for general consumption.

Object Constraint Language (OCL)

Object Constraint Language (OCL) [9] is an important element of Model-Driven
Architecture (MDA) and is used in several Modeling projects. OCL is provided
as a component of the Model Development Tools (MDT) project, with a com-
plementary OCL Tools component coming in the near future. The OCL imple-
mentation conforms to the 2.0 version of the specification and has bindings to
both Ecore and the UML2 metamodel implementations.

Implemented Standards 663

ptg6022785

Diagram Interchange (DI)

UML Diagram Interchange (DI) [16] is not currently provided at Eclipse, but it
has prompted many questions from the community regarding its implementa-
tion, particularly with the introduction of UML diagramming from the MDT
project.

The team that designed and implemented the notation model for the GMF
runtime found this specification to be insufficient. It has been suggested that the
DI specification be revised to align with the GMF notation model because the
original version of the specification was not broadly adopted and because GMF
is so popular.

A related topic is the Diagram Definition RFP [24], which itself was inspired
by the mapping that GMF provides between Ecore models, their notation ele-
ments, and their tooling. This RFP will help bridge the current gap in modeling
specifications from the OMG.

XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) [13] is supported by EMF and is used by the
UML2 project and others. EMF also can read serialized EMOF models, in addi-
tion to several other format import options, including XML Schema Definition
(XSD).

MOF Query/View/Transformation (QVT)

Query/View Transformation (QVT) [14] is part of the M2M project [15] and
currently provides an implementation of the QVT Operational Mapping
Language (OML). The QVT Relations and Core languages are also being imple-
mented within M2M.

The M2M project provides another model-to-model transformation technol-
ogy with its Atlas Transformation Language (ATL) component. ATL was a con-
tender among responses to the QVT RFP and has fostered a large and successful
community of its own.

MOF Models to Text Transformation Language

MOF2Text is being implemented within the MOFScript [26] component of the
Generative Modeling Technologies (GMT) project. This is a recent specification
and implementation in an area that has no shortage of alternative technologies.

664 APPENDIX B • Model-Driven Architecture (MDA) at Eclipse

ptg6022785

Java Emitter Templates (JET) [27] originated as EMF’s code-generation
framework and borrows heavily from Java Server Pages (JSP). JET is undergoing
an update to enhance its capabilities, and it resides within the M2T project.

Xpand [28] is an increasingly popular template-based M2T component that
provides an alternative syntax and expression language to JET. Xpand provides
additional extension capabilities and continues to be enhanced via community
contributions.

JET and Xpand are well used within the community. Although MOF2Text is
relatively new and unproven, the benefits it might offer likely will prompt the
reimplementation of existing templates. Nonetheless, a MOF2Text contribu-
tion exists within the Modeling project for those looking for a specification-
compliant M2T solution.

Human-Usable Textual Notation (HUTN)

Human-Usable Textual Notation (HUTN) [17] is not currently implemented, but
it relates to the proposed Textual Modeling Framework (TMF) project [30]
within Modeling. A great deal of interest in tooling for the support of textual
concrete syntaxes for modeling languages has arisen, particularly as the interest
in DSLs and “language workbenches” [28] has grown.

The TMF proposal states that it will allow for the definition of concrete tex-
tual syntaxes for abstract syntaxes defined using EMF. A full-featured textual
editor will be generated, likely targeting the capabilities of the proposed IDE
Meta-Tooling Platform (IMP) [31] project. Therefore, TMF will provide com-
plementary concrete syntax to the graphical concrete syntax that the Graphical
Modeling Framework (GMF) project provides.

Business Process Modeling Notation (BPMN)

The SOA Tools Project at Eclipse provides Business Process Modeling Notation
(BPMN) diagramming, mainly for the purpose of generating BPEL [34]. The dia-
gramming is based on GMF, and the underlying model is based on EMF, thereby
making this project compatible with other Modeling technologies.

Because BPMN provides no well-defined metamodel, the introduction of the
Business Process Definition Metamodel (BPDM) [32] will hopefully lead to a
new contribution of this capability at Eclipse. As standards-based model imple-
mentations, the implementation of the BPDM metamodel and BPMN diagram-
ming for working with these models would fall within the scope of the MDT
project.

Implemented Standards 665

ptg6022785

Software Process Engineering Metamodel (SPEM)

As mentioned, the Eclipse Process Framework supports Software Process
Engineering Metamodel (SPEM) [4]. Although SPEM is mentioned in the list of
MDA specifications, no real requirement specifies its use in the application of
MDA. Within Eclipse, currently no connection exists between EPF and the
Modeling project, aside from the fact that the SPEM metamodel is implemented
using EMF.

Working Relationship

To date, very little formal communication has taken place between the OMG and
the leadership of the Eclipse Modeling Project regarding a working relationship.
Lately, the most promising discussions have been with respect to a series of sym-
posia, to be held at EclipseCon [35] and during OMG technical meetings. The
focus of these events will be to discuss individual specification implementations
and ways the two organizations can strive for more constructive cooperation.

The current situation raises a number of questions about the nature of the
relationship, which hopefully these meetings can address. The relationship could
remain informal, with no explicit commitment or expectation that implemen-
tations found in the Modeling project must represent so-called “reference imple-
mentations” of OMG standards, as described in OMG Specification and
Products [3].

In the past, specifications such as UML have suffered from interoperability
issues among vendors who had different interpretations or implementation goals.
The introduction of XMI, well-defined compliance levels, DI specification, and
so on were meant to improve the situation but have largely failed to deliver and
now compound the problem. Developing a reference implementation in parallel
with the specification can identify ambiguities and defects earlier and can serve
the larger community by delivering a platform upon which to implement com-
mercial products.

That said, the UML2 implementation at Eclipse is the de facto reference
implementation for the UML2 specification, and its development exemplifies the
model we would like to achieve with the OMG for all implemented standards
within Eclipse. Only through communication and feedback between imple-
menters and specification authors can our respective communities be best served.

Membership

Currently, the Eclipse Foundation is a member of the OMG, and the OMG is a
member of the Eclipse Foundation. This is a start, but it raises the question of

666 APPENDIX B • Model-Driven Architecture (MDA) at Eclipse

ptg6022785

what level of interaction and commitment this brings, particularly because
corporate members of each are often involved in and provide contributions to
both of these organizations.

What are the best techniques for aligning standards organization activities
with reference implementation project team activities? Should members be
required to participate in both contribution areas, where applicable? What does
it really mean for the Eclipse Foundation to be a member of the OMG, and vice
versa? What role would the Foundation representative have within the context
of the OMG, and how would this person coordinate with fellow members from
the Eclipse community? What if members have competing goals? Are there new
working models that would be more productive—and perhaps have never before
explored in this context?

Specification Delivery

Specifications with defined metadata should be delivered in a serialized format,
preferably XMI. The standard RFP template requires this for new specifications,
but it has not been mandated or required for all specifications currently pub-
lished by the OMG.

Graphical notations (concrete syntax) are typically provided by drawings
and natural language descriptions. Although these are typically sufficient for
describing the elements, they are not as precise as they could be and must be
manually implemented for use in modeling tools.

The delivery of specifications in formats that are machine consumable, par-
ticularly if used as inputs to generative tooling frameworks, should be an obvi-
ous benefit to those involved in specification, implementation, and consumption
of these technologies. This includes metamodel constraints, which should be seri-
alized and interpreted by the underlying tooling. Currently, no standard way
exists for EMF to define constraints (such as OCL) or interpret constraints on
models even if they were provided.

The UML specification contains domain (abstract) syntax and semantics,
OCL constraints, and graphical (concrete) syntax, accompanied by natural lan-
guage description and mapping to the domain. It would seem reasonable for
specifications to be delivered in a manner that describes the abstract model sep-
arately from the concrete syntax and that uses a mapping definition. This
approach provides proper separation of concerns and supports the generation of
graphical editors for various domain models.

As mentioned previously, the RFP for Diagram Definition should address the
issue, which leaves the graphical notation definition issue. Should graphical nota-
tions be defined in term of a graphical definition metamodel, SVG, or another
standard?

Working Relationship 667

ptg6022785

With respect to mapping definitions—for example, the myriad mappings
from UML2 Profiles to Information Management Metamodel (IMM) (among
others)—should QVT be provided as part of these specifications?

Specification Compliance

A generally provided set of conformance criteria must be met when implement-
ing a specification. With improved collaboration between implementation and
specification organizations, some level of minimum compliance level can be
expected, to provide a proper reference implementation. In some cases today,
implementations at Eclipse are well aligned, or nearly aligned, with OMG spec-
ifications. For example, the Eclipse UML2 project provides a compliant imple-
mentation of the UML 2.1 metamodel using the nearly EMOF-compliant Eclipse
EMF project.

Should implementations be required to provide the highest level of compli-
ance to defined specification acceptance criteria? Or is a “best effort” approach
adequate? What actions can or should be taken to provide specification align-
ment or conformance?

Implementations Influencing Specifications

As indicated previously, in some cases, existing implementations are close to a
specification yet are not fully compliant. With a large existing client base on a
high-quality, open source implementation, why not align a specification with the
implementation? For example, consider the previously mentioned case of EMF’s
Ecore model being not quite aligned with the EMOF specification.

A precedent exists for this type of influence between an open source imple-
mentation and OMG specification in the UML. The DI and Diagram Definition
RFP are two more areas where this type of cooperation can be mutually benefi-
cial.

Most often, specifications are themselves driven from implementations,
although typically from a commercial vendor. Wouldn’t an open source approach
to implementations influencing specifications be a more equitable solution? This
leads us directly to the next topic.

Open and Transparent Nature

In the case of Eclipse, contributions are done in the open, with an emphasis on
meritocracy as the basis for achieving more responsibility within the community.

668 APPENDIX B • Model-Driven Architecture (MDA) at Eclipse

ptg6022785

Transparency is essential to the open source process at Eclipse, yet this is some-
what different from the specification development process at the OMG [21].
Perhaps this is an area in which the two organizations can influence one another.

If the development of a reference implementation were done in the open, it
follows that the developing version of the specification itself must be available.
Otherwise, there would need to be a serial process of first developing the speci-
fication, publishing it, and then implementing it, which eliminates the benefits of
validating the specification while developing an implementation in parallel.

Can the process of developing standards be done in a more open and trans-
parent manner, with an emphasis on addressing the needs of a developing refer-
ence implementation? Alternatively, could Eclipse support a model whose source
is not open until it reaches a required level of alignment with ongoing specifica-
tion work?

Future Outlook

In summary, the promise of MDA can be realized to a large extent today using
the capabilities provided by the Eclipse Modeling Project. As MDA encompasses
a collection of specifications that align well with the implementation goals of the
Eclipse Modeling Project, the future of delivering a solid open source infrastruc-
ture for MDA tooling seems bright.

Practically speaking, many challenges remain before realizing the statement
in the Modeling project’s charter related to its relationship with standards bod-
ies such as the OMG. A relationship that is too informal will not likely yield the
desired results, whereas a relationship that is strictly defined and enforced will
likely limit the progress of implementation. The right balance will clearly benefit
both of these organizations, their members, and, ultimately, the customers of
standards-based commercial products.

Future Outlook 669

ptg6022785

This page intentionally left blank

ptg6022785

References

[1] Object Management Group (OMG), www.omg.org.

[2] Eclipse Modeling Project, www.eclipse.org/modeling.

[3] OMG Specification and Products, www.omg.org/gettingstarted/
specsandprods.htm#SpecProd.

[4] Software Process Engineering Metamodel (SPEM) specification,
www.omg.org/technology/documents/modeling_spec_catalog.
htm#SPEM.

[5] Eclipse Process Framework (EPF), www.eclipse.org/epf/.

[6] Unified Modeling Language (UML) specification, www.omg.org/
technology/documents/modeling_spec_catalog.htm#UML.

[7] Eclipse UML2 Project, www.eclipse.org/uml2.

[8] Eclipse Model Development Tools (MDT) Project,
www.eclipse.org/mdt.

[9] Object Constraint Language (OCL) specification, www.omg.org/
technology/documents/modeling_spec_catalog.htm#OCL.

[10] EMF Technology OCL Project, www.eclipse.org/emft/projects/ocl#ocl.

671

www.omg.org
www.eclipse.org/modeling
www.omg.org/gettingstarted/specsandprods.htm#SpecProd
www.omg.org/gettingstarted/specsandprods.htm#SpecProd
www.omg.org/technology/documents/modeling_spec_catalog.htm#SPEM
www.omg.org/technology/documents/modeling_spec_catalog.htm#SPEM
www.eclipse.org/epf/
www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
www.eclipse.org/uml2
www.eclipse.org/mdt
www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
www.eclipse.org/emft/projects/ocl#ocl

ptg6022785

[11] Meta-Object Facility (MOF) specification, www.omg.org/technology/
documents/modeling_spec_catalog.htm#MOF.

[12] Eclipse Modeling Framework (EMF) Project, www.eclipse.org/emf.

[13] XML Metadata Interchange (XMI) specification, www.omg.org/
technology/documents/modeling_spec_catalog.htm#XMI.

[14] MOF Query/View/Transformation (QVT) specification, www.omg.org/
technology/documents/modeling_spec_catalog.htm#MOF_QVT.

[15] Eclipse Model-to-Model Transformation (M2M) Project,
www.eclipse.org/proposals/m2m.

[16] UML Diagram Interchange (DI) specification, www.omg.org/
technology/documents/modeling_spec_catalog.htm#UML_DI.

[17] UML Human-Usable Textual Notation (HUTN) specification, www.
omg.org/technology/documents/modeling_spec_catalog.htm#HUTN.

[18] Business Process Modeling Notation (BPMN) specification,
www.omg.org/technology/documents/bms_spec_catalog.htm#BPMN.

[19] Eclipse SOA Tools Project (STP), www.eclipse.org/stp.

[20] Eclipse Graphical Modeling Framework (GMF) Project, www.eclipse.
org/gmf.

[21] OMG Technology Adoption Process, www.omg.org/gettingstarted/
processintro.htm.

[22] Model to Text Transformation (M2T) Project, www.eclipse.org/
modeling/m2t/.

[23] Architecture-Driven Modernization (ADM), http://adm.omg.org/.

[24] Diagram Definition RFP, www.omg.org/techprocess/meetings/
schedule/Diagram_Definition_RFP.html#RFP_Issued.

[25] Business Process Definition Metamodel, http://doc.omg.org/dtc/
2007-07-01.

[26] MOFScript component, www.eclipse.org/gmt/mofscript/.

[27] Java Emitter Templates (JET), www.eclipse.org/modeling/m2t/
?project=jet.

[28] Xpand template engine, www.eclipse.org/modeling/m2t/?project=xpand.

[29] Language Workbenches, http://martinfowler.com/articles/
languageWorkbench.html.

672 References

www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
www.eclipse.org/emf
www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI
www.omg.org/technology/documents/modeling_spec_catalog.htm#XMI
www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF_QVT
www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF_QVT
www.eclipse.org/proposals/m2m
www.omg.org/technology/documents/modeling_spec_catalog.htm#UML_DI
www.omg.org/technology/documents/modeling_spec_catalog.htm#UML_DI
www.omg.org/technology/documents/modeling_spec_catalog.htm#HUTN
www.omg.org/technology/documents/modeling_spec_catalog.htm#HUTN
www.omg.org/technology/documents/bms_spec_catalog.htm#BPMN
www.eclipse.org/stp
www.eclipse.org/gmf
www.eclipse.org/gmf
www.omg.org/gettingstarted/processintro.htm
www.omg.org/gettingstarted/processintro.htm
www.eclipse.org/modeling/m2t/
www.eclipse.org/modeling/m2t/
www.omg.org/techprocess/meetings/schedule/Diagram_Definition_RFP.html#RFP_Issued
http://adm.omg.org/
www.omg.org/techprocess/meetings/schedule/Diagram_Definition_RFP.html#RFP_Issued
http://doc.omg.org/dtc/2007-07-01
http://doc.omg.org/dtc/2007-07-01
www.eclipse.org/gmt/mofscript/
www.eclipse.org/modeling/m2t/?project=jet
www.eclipse.org/modeling/m2t/?project=jet
www.eclipse.org/modeling/m2t/?project=xpand
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

ptg6022785

[30] Textual Modeling Framework (TMF) Proposal, www.eclipse.org/
proposals/tmf.

[31] IDE Meta-tooling Platform (IMP) Proposal, http://www.eclipse.rog/
proposals/imp.

[32] Business Modeling Definition Metamodel (BPDM), http://doc.omg.org/
dtc/2007-07-01.

[33] Catalog of OMG Domain Specifications, www.omg.org/technology/
documents/domain_spec_catalog.htm.

[34] Business Process Execution Language, http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html.

[35] EclipseCon 2008, www.eclipsecon.org/2008.

[36] Mindmap, http://en.wikipedia.org/wiki/Mind_map.

[37] GMT Zoos, www.eclipse.org/gmt/am3/zoos/.

[38] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose, Eclipse Modeling Framework (Boston, MA:
Addison-Wesley, 2004).

[39] Krysztof Czarnecki and Ulrich Eisenecker, Generative Programming:
Methods, Tools, and Applications (Boston, MA: Addison-Wesley,
2000).

[40] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent, Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools (Indianapolis, IN: Wiley, 2004).

[41] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki, Model-Driven
Software Development: Technology, Engineering, Management
(London, UK: Wiley, 2006).

[42] Emfatic, www.alphaworks.ibm.com/tech/emfatic

[43] IBM Redbook: Eclipse Development Using the Graphical Editing
Framework and the Eclipse Modeling Framework, www.redbooks.
ibm.com/abstracts/sg246302.html.

[44] Christian W. Damus, “Implementing Model Integrity in EMF with
MDT OCL,” www.eclipse.org/articles/article.php?file=Article-
EMF-Codegen-with-OCL/index.html.

[45] David S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing (Indianapolis, IN: Wiley, 2003).

References 673

www.eclipse.org/proposals/tmf
www.eclipse.org/proposals/tmf
http://www.eclipse.rog/proposals/imp
http://www.eclipse.rog/proposals/imp
http://doc.omg.org/dtc/2007-07-01
http://doc.omg.org/dtc/2007-07-01
www.omg.org/technology/documents/domain_spec_catalog.htm
www.omg.org/technology/documents/domain_spec_catalog.htm
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
www.eclipsecon.org/2008
http://en.wikipedia.org/wiki/Mind_map
www.eclipse.org/gmt/am3/zoos/
www.alphaworks.ibm.com/tech/emfatic
www.redbooks.ibm.com/abstracts/sg246302.html
www.redbooks.ibm.com/abstracts/sg246302.html
www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html
www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html

ptg6022785

[46] Peter Coad, Eric Lefebvre, and Jeff De Luca, Java Modeling in Color
with UML: Enterprise Components and Process (Upper Saddle River,
NJ: Prentice Hall, 1999).

[47] Volker Wegert and Alexander Shatalin, “Integrating EMF and GMF
Generated Editors,” www.eclipse.org/articles/article.
php?file=Article-Integrating-EMF-GMF-Editors/index.html.

[48] Martin Taal, “Using Teneo Hibernate in a Graphical Framework
Editor,” www.elver.org/hibernate/gmftutorial/tutorial1.html.

[49] Tony Clark, Paul Sammut, and James Willans, Applied Metamodelling:
A Foundation for Language Driven Development, Second Edition
(Sheffield, UK: Ceteva, 2008), www.ceteva.com/docs/
Applied%20Metamodelling%20 (Second%20Edition).pdf.

[50] Graphical Editing Framework (GEF) project, www.eclipse.org/gef
Programmer’s Guide to Draw2d/GEF: http://help.eclipse.org/
help33/topic/org.eclipse.gef.doc.isv/guide.html.

[51] Remko Popma, “JET Tutorial Part 1 (Introduction to JET),”
www.eclipse.org/articles/Article-JET/jet_tutorial1.html.

674 References

www.eclipse.org/articles/article.php?file=Article-Integrating-EMF-GMF-Editors/index.html
www.eclipse.org/articles/article.php?file=Article-Integrating-EMF-GMF-Editors/index.html
www.elver.org/hibernate/gmftutorial/tutorial1.html
www.ceteva.com/docs/Applied%20Metamodelling%20(Second%20Edition).pdf
www.ceteva.com/docs/Applied%20Metamodelling%20(Second%20Edition).pdf
www.eclipse.org/gef
http://help.eclipse.org/help33/topic/org.eclipse.gef.doc.isv/guide.html
http://help.eclipse.org/help33/topic/org.eclipse.gef.doc.isv/guide.html
www.eclipse.org/articles/Article-JET/jet_tutorial1.html

ptg6022785

Index

Symbols
:= (assignment operator), 568
« » (guillemets), 606
+= (assignment operator), 568

A
absolute coordinates (Draw2d), 323-324
abstract syntax

definition of, 4
developing with EMF (Eclipse Modeling

Framework)
Model Compare, 11
Model Query, 11
Model Search, 11
Model Transaction, 10
Model Validation, 10
persistence alternatives, 11

AbstractCommand class, 463
AbstractEditPart (GEF), 325
AbstractProviderConfiguration class, 378
AbstractTransactionalCommand, 464
access keyword, 553
accessorCall() function, 219
ActionFilterProvider extension-point, 424-426
ActionFilterService, 423-426
actions. See also specific actions

selection actions, 342
subtopic actions, 90-93
for user interface plug-ins, 307-310

activate() method, 336
add() operation, 582

addChild() method, 334-335
addChildVisual() method, 335
addFields() method, 206
addFixedChild() method, 166
addNotationalListeners() method, 211, 546
addNotify() method, 335
addSuffixNumber() operation, 593
AdviceContent operations, 627
AdviceContent properties, 626
Aggregation Link Mapping (color modeling

diagram), 198-200
aliases. See shortcuts
Align Bottom toolbar element, 356
Align Center toolbar element, 355
Align Left toolbar element, 355
Align Middle toolbar element, 356
Align Right toolbar element, 355
Align Top toolbar element, 355
AlignmentAction, 349
All Compartments toolbar element, 356
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
Amalgam, 15
Amalgamation project, 20
anchors, 94-96, 323
annotations

annotation figure definition (color
modeling diagram), 188-189

Annotation Mapping (color modeling
diagram), 195

in Ecore metamodel, 33

675

ptg6022785

676 Index

Ant, 649
Ant tasks, OML and, 243-244
Appearance properties (diagrams), 358-359
AppearancePreferencePage class, 206
AppearancePreferencePage.xpt template,

216-217
Apply Appearance Property toolbar

element, 355
archetype figure definition (color modeling

diagram), 182-184
AROUND statement (Xpand), 617-619
Arrange All toolbar element, 355
Arrange Selected toolbar element, 355
artifacts (DSL Toolkit)

abstract elements, 17
Practitioner, 18-19
Toolsmith artifacts, 17-18

artwork, adding to products, 304-305
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578
aspects (Xpand), 647-648
assert expression, 576-577
assignment operator (:=), 568
assignment operator (+=), 568
asTransformation() operation, 582
ATL (Atlas Transformation Language), 231
AttributeParserProvider class, 221-224
audits

audits and metrics model, 532-533
for mindmap diagram, 97-103

Auto Size toolbar element, 356

B
Background Color property (figures), 508
BDM (Business Domain Modeling), 22
bending connections (GEF), 351-352
Boolean operations, 622
Border Layout, 513
Border property (figures), 508

borders
Border Layout, 513
Compound Border, 510
Custom Border, 510
Line Border, 510
Margin Border, 510

Both command (Diagram menu), 361
BPDM (Business Process Definition

Metamodel), 50, 665
BPEL, mapping with BPMN, 231
BPMN (Business Process Modeling

Notation), 50, 665
BPMN2, 14
mapping with BPEL, 231

Bring Forward command (Order menu), 361
Bring to Front command (Order menu), 361
business domain model, 51-53
Business Domain Modeling (BDM), 22
Business Process Modeling Notation. See BPMN

C
cached extensions (Xtend), 639
canExecute() method, 483
canonical containers, 547
Canvas, 505-506
Canvas Mapping, 520

mindmap diagram, 71
requirements diagram, 108

casting, 635
chain expression, 634-635
Checks language, 228
ChopboxAnchor (Draw2d), 323
class2columns() query, 600
classes. See specific classes
clipboardSupport extension-point, 457-458
clipping in Draw2d, 321
clone() operation, 579
Coad, Peter, 57
code generation

in EMF, 34-35
for mindmap domain model, 43-45

code modification, GMF customization
options, 65

collapsible compartments, 518
collect() operation, 564, 631-632

ptg6022785

Index 677

collections, 630
operations, 623-624
properties, 623

collectselect imperative iterate expression, 567
color in graphical notations, 57
color modeling diagram, 22, 181-182

annotation figure definition, 188-189
archetype figure definition, 182-184
color preferences, 205-220

addNotationalListeners() method, 211
DiagramAppearancePreferencePage

class, 207-208
getPreferenceColor() method, 211
initializeDefaultPreferences()

method, 209
initPreferenceStoreListener()

method, 211
Messages class, 209
messages.properties file, 210
NodeEditPart.xpt template file, 212,

215-216
preference page templates, 216-220
PreferencePropertyChangeListener

class, 211, 214
setForegroundColor() method, 211
setForegroundColor() method,

overriding, 205
toPreferenceConstant() function, 213
updateArchetypeColor() method, 211

custom parsers, 220
AttributeParserProvider class, 221-224
OperationParserProvider class,

224-225
generalization link definition, 186-187
generation, 201
gradient figures, 201-205
mapping definition

Aggregation Link Mapping, 198-200
Annotation Mapping, 195
DNC Association Mapping, 195-197
DNC Canvas Mapping, 190
Generalization Mapping, 200-201
Moment-Interval Archetype Mapping,

191-192
Package Mapping, 194
Role Archetype Mapping, 193

package figure definition, 185-186
tooling definition, 189

CombinedTemplateCreationEntry, 344
combining layouts, 515
comma-separated values (CSV) files, generating,

281-282
command infrastructure (GMF runtime),

462-464
commands. See specific commands
comments

OML, 593
Xtend, 637

Compartments, 518
compliance, specification compliance, 668
COMPONENT_ROLE key, 343
Compound Border, 510
concrete syntax development, 4, 12

GMF (Graphical Modeling Framework).
See GMF runtime; GMF Tooling

TMF (Textual Modeling Framework), 12
configuration properties (transformations), 555
configureGraphicalViewer() method, 327
connection bend interactions (GEF), 351-352
connection creation interactions (GEF), 349-350
connection edit interactions (GEF), 350-351
connection EditParts, 330-331
Connection figures, creating for scenario

diagram, 155-158
connection handles (diagrams), 364-365
connection navigation, 657-658
ConnectionBendpointTracker, 352
ConnectionCreationTool (GEF), 349
ConnectionEndpointEditPolicy, 351
ConnectionRouter (Draw2d), 322
Connections, 517

bending, 351-352
creating, 349-350, 479-484
in Draw2d, 322-323
editing, 350-351

constraints, node constraints, 526
ContainerEditPolicy, 348
containers, canonical, 547
Contains Shortcuts To property (Gen

Diagram), 536
context menus, 363-364

ptg6022785

678 Index

contributing to GMF (Graphical Modeling
Framework), 546

contributionItemProvider extension-point,
409-418

ContributionItemService
contributionItemProvider extension-point,

409-418
overview, 408

coordinate systems in Draw2d, 323-324
copy() operation, 582
Copyright Text property (Gen Editor

Generator), 534
Core language (QVT), 231, 549
Core properties (diagrams), 358
create expression, 635
createDecorators() method, 498
createDefaultEditPolicies() method, 385, 474
createEditPart() method, 334
createEditPolicies() method, 333-335, 385, 481
createEmptyDocument() method, 126
createEmptyModel() operation, 582
createFigure() method, 328
createGraphicEditPart() method, 382
createMainFigure() method, 114
createNodePlate() method, 516
createPages() method, 129-130
createPartControl() method, 139
creation interactions (GEF)

CreateRequests
consuming, 345
producing, 344

creation sequence, 345-347
Creation Wizard, 137-138
Creation Wizard Category ID property (Gen

Diagram), 538
CSV (comma-separated values) files, generating,

281-282
Custom Behavior element, 539
Custom Border, 510
custom EditPolicy, 493-497
custom figures, 89-90
custom layout, 82-84
custom parsers (color modeling diagram), 220

AttributeParserProvider class, 221-224
OperationParserProvider class, 224-225

Custom Property Tab (requirements
diagram), 140

custom style, 490-493
customization options (GMF)

code modification, 65
decorators, 66, 497-500
dynamic templates, 65-66
extension-points, 65
model extensions, 66

D
dashboard view (GMF), 66-67
Data Object figure, creating for scenario

diagram, 158-159
Data Object Mapping (scenario diagram), 165
database persistence, 177-181
dataType2columns() query, 600
dataType2primaryKeyColumns() mapping,

603-604
deactivate() method, 336-337
deactivating EditParts, 336-337
declaring extension-points, 373-375
decorateView() method, 488
DecorationService

decoratorProvider extension-point,
392-396

overview, 392
decoratorProvider extension-point, 392-396
decorators, custom, 66, 497-500
deepclone() operation, 580
Default Size (diagram elements), 516
DEFINE statement (Xpand), 607-608
definition operations, 627
definition properties, 627
DelegatingLayout (Draw2d), 323
delete interactions (GEF), 342-343
DeleteAction, 342
dependencies (GEF), 318
deploying DSLs, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305-310

ptg6022785

Index 679

designing graphical notations, 56-57
developing DSLs, 6
development workflow (DSL Toolkit), 18-20
DI (Diagram Interchange), 664
diagram editor, 467-468

cycling between diagram editor and
palette, 653-654

Diagram File Extension property (Gen Editor
Generator), 534

Diagram Interchange (DI), 664
Diagram Label, 517
Diagram menu commands, 361
DiagramAppearancePreferencePage class,

207-208
DiagramDecoratorProvider, 396
diagramEventBrokerProvider extension-point,

441-443
DiagramEventBrokerService extension-point,

441-443
DiagramRootEditPart (GEF), 326
diagrams. See also specific diagrams

adding EditParts to, 334-336
connection handles, 364-365
constructing from scratch

compared to generated diagrams,
485-486

connections, 479-484
diagram editor, 467-468
domain model, 468-469
EditPart definition, 473-475
New Diagram Wizard, 475-476
palette definition, 470-471
properties view, configuring, 476-479
view definition, 471-473

context menus, 363-364
diagram elements

Compartment, 518
Connection, 517
Diagram Label, 517
Node, 516-517
overview, 516

Diagram menu, 361
extending

custom decorator, 497-500
custom EditPolicy, 493-497
custom style, 490-493

scenario diagram custom view and
edit providers, 486-489

figures
changing appearance based on prefer-

ence changes, 546
changing dynamically, 546
changing properties of, 547
making nonresizable, 547
viewing elements on diagrams, 547

including in multipage editors, 548
navigation, 655
Order menu, 361
Outline view, 366
Palette view, 360
partitioning, 171, 522

Requirements diagram partition,
172-177

subprocess partitions, 171-172
pop-up bars, 365
preferences, 367-368
properties

Appearance properties, 358-359
Core properties, 358
Rulers & Grid properties, 356-358

toolbar elements, 354-356
View menu, 361-363

dialogs. See specific dialogs
disjunction in mapping operations, 562
disjuncts keyword, 562
DNC Association Mapping (color modeling

diagram), 195-197
DNC Canvas Mapping (color modeling

diagram), 190
documentProviders extension-point, 453-455
doExecuteWithResult() method, 483
Domain File Extension property (Gen Editor

Generator), 535
Domain Gen Model property (Gen Editor

Generator), 535
domain models, 108, 468-469. See

also metamodels
best practices, 30
business domain models, 264-276
business DSL, 51-53
creating DSLs, 29-31
dynamic instance models, 262

ptg6022785

680 Index

dynamic instances, 38-39
Ecore models, 39
importing, 31
mindmap DSL, 39-40

code generation, 43-45
creating, 41-42
generator model, creating, 42
OCL, adding, 45-47
project setup, 40-41
running, 43-45
transformation to requirements

domain model, 244-251
transformation to XHTML, 251-258

OCL in, 35-38
requirements DSL, 47-49
scenario DSL, 50-51
synchronizing, 59, 76

doRun() method, 495
downloading DSL Toolkit, 20
DragDropListenerProvider extension-point,

436-438
DragDropListenerService, 436-438
DragTracker, 341
Draw2d, 318

connections and routing, 322-323
coordinate systems, 323-324
figures, 318-319
interaction sequence, 320
layout, 322
LightweightSystem, 318-319
painting, 320-321
text, 319
UpdateManager, 318

DSL Instances
Java DSL Instances, 24-25
mindmap and requirements DSL

Instances, 23-24
scenario DSL Instances, 24-25

DSL Project Wizard, 40
DSL Toolkit

abstract elements, 17
BDM (Business Domain Modeling), 22
development workflow, 18-20
downloading, 20
Java DSL Instances, 24-25

mindmap and requirements DSL
Instances, 23-24

Practitioner, 18-19
Practitioner’s view of sample projects, 25
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22
scenario DSL Instances, 24-25
Toolsmith artifacts, 17-18

DSLs
business DSL, 51-53
creating, 29-31
definition of, 5
developing, 6
graphical notation. See graphical notation
mindmap DSL, 39-40

code generation, 43-45
creating, 41-42
generator model, creating, 42
OCL, adding, 45-47
project setup, 40-41
running, 43-45
transformation to requirements

domain model, 244-251
transformation to XHTML, 251-258

object-oriented, 51
packaging and deployment, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305-310

requirements DSL, 47-49
scenario DSL, 50-51
textual syntaxes

overview, 227-228
TCS (Textual Concrete Syntax), 229
Xtext, 228-229

dynamic instance models, 38-39, 262
dynamic templates, 65-66
Dynamic Templates property (Gen Editor

Generator), 535

ptg6022785

Index 681

E
EAnnotations, 33
Eclipse Packaging Project (EPP), 20
Eclipse Requirements Project (ERP)

BDM (Business Domain Modeling), 22
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22

Ecore metamodel, 32-33, 39
edit providers, 486-489
Edit Source Folder dialog, 298
editing. See GEF (Graphical Editing Framework)
Editing Domain ID property (Gen

Diagram), 538
EditingDomain, sharing, 123-126
EditorProvider extension-point, 427-428
editors, QVT OML editor, 240
EditorService, 427-428
EditPartFactory, 326-327, 372
editpartProvider extension-point, 382-385
EditParts (GEF), 325-326

AbstractEditPart, 325
adding to diagram, 334-336
connection EditParts, 330-331
creating, 326-329
deactivating, 336-337
definition, 473-475
DiagramRootEditPart, 326
EditPartFactory, 326-327, 372
GraphicalEditParts, 325
lifecycle, 334-337
ScalableFreeformRootEditPart, 326
TreeEditParts, 325

EditPartService, 382-385
EditPolicies, 333-334, 493-497
editpolicyProvider extension-point, 386-387
EditPolicyService, 385-387
element creation (GMF runtime), 459-461
element operations (OML)

allSubobjects(), 579
allSubobjectsOfKind(), 579
allSubobjectsOfType(), 579
clone(), 579

deepclone(), 580
_globalId(), 578
_localId(), 578
markedAs(), 580
markValue(), 580
metaClassName(), 578
stereotypedBy(), 580
stereotypedStrictlyBy(), 580
subobjects(), 578
subobjectsOfKind(), 579
subobjectsOfType(), 579

elements. See specific elements
ElementSelectionProvider extension-point,

429-430
ElementSelectionService, 428-430
elementTypeBindings extension-point, 449-451
elementTypes extension-point, 443-449
Ellipse, 509
EMF (Eclipse Modeling Framework)

code generation, 34-35
domain models, importing, 31
dynamic instances, 38-39
Ecore metamodel, 32-33
editor, integrating with

requirements diagram
refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

Model Compare, 11
Model Query, 11
Model Search, 11
Model Transaction, 10
Model Validation, 10
OCL in, 35-38
overview, 10
persistence alternatives, 11
runtime features, 33-34

EMOF (Essential MOF), 663
End Events, 152
endsWith() operation, 587
entry operations (mapping operations), 559-560
enumerationAttributes2columns() query, 602
EPP (Eclipse Packaging Project), 20
equalsIgnoreCase() operation, 589

ptg6022785

682 Index

ERP (Eclipse Requirements Project)
BDM (Business Domain Modeling), 22
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22

ERROR statement (Xpand), 616
escape sequences, 594
Essential MOF (EMOF), 663
Event figures, creating for scenario diagram,

152-154
Event Mapping (scenario diagram), 164
execute() method, 378
executing transformations

assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

execution semantics (mapping operations),
558-559

ExecutionStrategy, 376
exists() operation, 633
expand element, 646
EXPAND statement (Xpand), 608-612
exporting figures, 62
expression language (Xpand)

casting, 635
chain expression, 634-635
collect() operation, 631-632
collections, 630
create expression, 635
exists() operation, 633
forAll() operation, 632
let expression, 635
literals, 628-630
reject() operation, 631
select() operation, 630
sortBy() operation, 633
switch expression, 634
ternary expression, 634
typeSelect() operation, 631

expressions. See specific expressions
extending diagrams

custom decorator, 497-00500
custom EditPolicy, 493-497

custom style, 490-493
scenario diagram custom view and edit

providers, 486-489
extends keyword, 553
extensibility mechanisms (GMF), 372-373. See

also extension-points
Extensible Markup Language (XML), 664
extension keyword, 636
EXTENSION statement (Xpand), 613-614
extension-points

ActionFilterProvider, 424-426
clipboardSupport, 457-458
contributionItemProvider, 409-418
declaring, 373-375
decoratorProvider, 392-396
diagramEventBrokerProvider, 441-443
documentProviders, 453-455
DragDropListenerProvider, 436-438
EditorProvider, 427-428
editpartProvider, 382-385
editpolicyProvider, 386-387
ElementSelectionProvider, 429-430
elementTypeBindings, 449-451
elementTypes, 443-449
GlobalActionHandlerProvider, 420-423
GMF customization options, 65
IconProvider, 397-399
layoutProvider, 406-408
logListeners, 452-453
MarkerNavigationProvider, 400-401
modelingAssistantProvider, 404-406
overview, 373-375
paletteProvider, 388-392
ParserProvider, 402-403
Pathmaps, 459
perspectiveExtensions, 306
perspectives, 306
preferencePages, 306
propertiesConfiguration, 453
PropertiesProvider, 431-433
PropertyModifier, 434-435
renderedImageFactory, 456-457
TransferAdapterProvider extension-point,

439-441
viewProvider, 379-382

ExtensionMap element, 643

ptg6022785

Index 683

extensions (Xtend)
cached extensions, 639
extension invocation, 637-638
Java extensions, 639
private extensions, 639

Externalizer.xpt template, 216-218
extractor (TCS), 229

F
factories, 7-8
feature initialization, 527-528
feature properties, 625
Figure Gallery, 61, 504

Border Layout, 513
Compound Border, 510
Custom Border, 510
custom figures, 89-90
Ellipse, 509
figure properties, 507-508
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
Margin Border, 510
overview, 506-507
Polygon, 509
Polyline, 509
Polyline Connection, 509
Rectangle, 509
Rounded Rectangle, 509
Stack Layout, 512
subtopic figures, 84-89
TemplatePoint, 509
XY Layout, 512

figure plug-ins, 62
FigureDescriptor, 503
FigureRef, 504
figures, 318-319

Border Layout, 513
changing appearance based on preference

changes, 546
changing dynamically, 546
changing properties of, 547

in color modeling diagram
annotation figure definition, 188-189
archetype figure definition, 182, 184
generalization link definition, 186-187
package figure definition, 185-186

Compound Border, 510
Custom Border, 510
Ellipse, 509
exporting, 62
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
making nonresizable, 547
Margin Border, 510
Polygon, 509
Polyline, 509
Polyline Connection, 509
properties

common properties, 507-508
Flow Layout figure properties, 511
shape figure properties, 508

Rectangle, 509
Rounded Rectangle, 509
in scenario diagram, 145-146

Connection figures, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

Stack Layout, 512
TemplatePoint, 509
viewing elements on diagrams, 547
XY Layout, 512

FigureUtilities class, 501
FILE statement (Xpand), 612
Fill property (shape figures), 508
fillGradient() method, 202
fillShape() method, 202
filters in graphical notations, 57-58
find() operation, 589
findFeature() method, 474
FIRST service execution strategy, 377
firstElementOnly element, 644
firstToUpper() operation, 586

ptg6022785

684 Index

fixed anchor locations, 94-96
Flow Layout, 511-512
Font property (figures), 508
Fontoura, Marcus, 56
forAll() operation, 632
Force Single Line property (Flow Layout

figure), 511
forEach loop expression, 565
FOREACH statement (Xpand), 612-613
Foreground Color property (figures), 508
format() operation, 584
forOne loop expression, 565
FORWARD service execution strategy, 377
Frankel, David, 4

G
Gateway figure, creating for scenario diagram,

149-152
Gateway Mapping (scenario diagram), 163-164
GEF (Graphical Editing Framework)

Commands, 332
connection interactions

connection bend interactions, 351-352
connection creation interactions,

349-350
connection edit interactions, 350-351

creation interactions
connection creation interactions,

349-350
consuming CreateRequests, 345
creation sequence, 345-347
producing CreateRequests, 344

delete interactions, 342-343
dependencies, 318
editing support

Commands, 332
EditPolicies, 333-334
Requests, 331-332

EditParts, 325-326
AbstractEditPart, 325
adding to diagrams, 334-336
connection EditParts, 330-331
creating, 326-329
deactivating, 336-337

DiagramRootEditPart, 326
EditPartFactory, 326-327
GraphicalEditParts, 325
lifecycle, 334-337
ScalableFreeformRootEditPart, 326
TreeEditParts, 325

EditPolicies, 333-334
graphical view

ScrollingGraphicalViewer, 326
setting up, 327-328

Model-View-Controller (MVC)
architecture, 324-325

moving and resizing interactions, 347-349
overview, 317
palette, 337
Requests, 331-332
selection interactions

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

tools, 337
Gen Application element, 543
Gen Diagram

Contains Shortcuts To property, 536
Creation Wizard Category ID property,

538
Editing Domain ID property, 538
Icon Path ID property, 538
Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Updater element, 542
Validation Decorators property, 537
Validation Enabled property, 537
Visual ID property, 538
Without Domain property, 538

Gen Editor Generator
Copyright Text property, 534
Diagram File Extension property, 534
Domain File Extension property, 535
Domain Gen Model property, 535

ptg6022785

Index 685

Dynamic Templates property, 535
Model ID property, 535
Package Name Prefix property, 535
Same File for Diagram and Model

property, 535-536
Template Directory property, 535

Gen Editor View element, 540-541
Gen Link, 539
Gen Navigator element, 541-542
Gen Plugin element, 540
generalization link definition (color modeling

diagram), 186-187
Generalization Mapping (color modeling

diagram), 200-201
generalizations2columns() query, 600
Generate as Eclipse Editor property (Gen Editor

View), 541
Generate Domain Model Navigator property

(Gen Navigator), 541
generating

color modeling diagram, 201
CSV files, 281-282
HTML with templates (M2T project),

297-301
Java files

with DNC model with templates,
291-297

with Java model and dedicated
template, 283-291

requirements diagram, 113
scenario diagram

border item adjustment, 166-167
figures plug-in generation, 168-171
GMF generator model, 166
intermediate event outline, 167-168

generation models, 310-311
Generative Modeling Technologies (GMT), 15
generator model, 64

Custom Behavior, 539
Gen Application, 543
Gen Diagram

Contains Shortcuts To property, 536
Creation Wizard Category ID

property, 538
Editing Domain ID property, 538
Icon Path property, 538

Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Validation Decorators property, 537
Visual ID property, 538
Without Domain property, 538

Gen Diagram Updater, 542
Gen Editor Generator

Copyright Text property, 534
Diagram File Extension property, 534
Domain File Extension property, 535
Domain Gen Model property, 535
Dynamic Templates property, 535
Model ID property, 535
Package Name Prefix property, 535
Same File for Diagram and Model

property, 535-536
Template Directory property, 535

Gen Editor View, 540-541
Gen Link, 539
Gen Navigator, 541-542
Gen Plugin, 540
mindmap diagram example, 74-76
mindmap generator model, 42
Open Diagram Behavior, 539
overview, 533-534
Property Sheet, 542-543
requirements generator model, 48-49

getActionBarContributor() method, 136
getCommand() method, 332
getContributorId() method, 134
getDecoratorTargetNode() method, 498-500
getDragSourceListener() method, 435
getDropTargetListener() method, 435
getModelChildren() method, 326
getModelSourceConnections() method, 330
getModelTargetConnections() method, 330
getNodeEditPartClass() method, 475, 488
getNotationView() method, 382
getParseCommand() method, 224
getParser() method, 224
getPreferenceColor() method, 211
getPropertySheetPage() method, 134
getReferencedElementEClass() method, 475
getSemanticCommand() method, 482
getSemanticEClass() method, 472

ptg6022785

686 Index

getSourceConnectionAnchor() method, 330
getStrCounter() operation, 592
getTargetConnectionAnchor() method, 330
getTargetEditPart() method, 332
GlobalActionHandlerProvider extension-point,

420-423
GlobalActionHandlerService, 419-423
_globalId() operation, 578
GMF (Graphical Modeling Framework)

runtime, 12, 55, 59. See also GMF Tooling
advantages of, 545
canonical containers, 547
color modeling diagram, 181-182

annotation figure definition, 188-189
archetype figure definition, 182-184
color preferences, 205-220
custom parsers, 220-225
generalization link definition, 186-187
generation, 201
gradient figures, 201-205
mapping definition, 190-201
package figure definition, 185-186
tooling definition, 189

command infrastructure, 462-464
contributing to, 546
customization options

code modification, 65
decorator models, 66
dynamic templates, 65-66
extension-points, 65
model extensions, 66

dashboard view, 66-67
diagram creation

compared to generated diagrams,
485-486

connections, 479-484
diagram editor, 467-468
domain model, 468-469
EditPart definition, 473-475
New Diagram Wizard, 475-476
palette definition, 470-471
properties view, configuring, 476-479
view definition, 471-473

diagram extension
custom decorator, 497-500
custom EditPolicy, 493-497

custom style, 490-493
scenario diagram custom view and

edit providers, 486-489
diagram structure

connection handles, 364-365
context menus, 363-364
Diagram menu, 361
Order menu, 361
Outline view, 366
Palette view, 360
pop-up bars, 365
preferences, 367-368
properties, 356-359
toolbar elements, 354-356
View menu, 361-363

editor, integrating with
requirements diagram
refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

element creation, 459-461
extension-points

ActionFilterProvider, 424-426
clipboardSupport, 457-458
contributionItemProvider, 409-418
declaring, 373-375
decoratorProvider, 392, 394-396
diagramEventBrokerProvider, 441-443
documentProviders, 453-455
DragDropListenerProvider, 436-438
EditorProvider, 427-428
editpartProvider, 382-385
editpolicyProvider, 386-387
ElementSelectionProvider, 429-430
elementTypeBindings, 449-451
elementTypes, 443-447, 449
GlobalActionHandlerProvider,

420-423
IconProvider, 397-399
layoutProvider, 406-408
logListeners, 452-453
MarkerNavigationProvider, 400-401
modelingAssistantProvider, 404-406
overview, 373-375
paletteProvider, 388-392
ParserProvider, 402-403

ptg6022785

Index 687

Pathmaps, 459
propertiesConfiguration, 453
PropertiesProvider, 431-433
PropertyModifier, 434-435
renderedImageFactory, 456-457
TransferAdapterProvider, 439, 441
viewProvider, 379-382

extensibility mechanisms, 372-373
figures

changing appearance based on
preference changes, 546

changing dynamically, 546
changing properties of, 547
making nonresizable, 547
viewing elements on diagrams, 547

key bindings
connection navigation, 657-658
cycling between diagram editor and

palette, 653-654
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

mindmap diagram improvements
audits and metrics, 97-103
custom figures, 89-90
custom layout, 82-84
fixed anchor locations, 94-96
graphical definition model, 76-79
mapping definition model, 80-81
preferences settings, 97
subtopic actions, 90-93
subtopic figures, 84-89
tooling definition model, 79
topic figure layout, 81-82

nodes, sticking to border of parent, 548
notation model, 369-372
online resources, 545
overview, 353-354
prerequisites, 546
requirements diagram

Creation Wizard, 137-138
diagram definition, 104-107
domain model, 108
EMF and GMF editor integration,

122-130

generation, 113
mapping definition, 107-113
menus and toolbar, 135-137
navigator extension, 139
Outline view, 139-140
properties, 140-145
Properties view, 134-135
selection handling, 130-134
tooling definition, 107
ToolTips, 114-121

runtime component, 60-61
scenario diagram

Data Object Mapping, 165
database persistence, 177-181
diagram partitioning, 171-177
Event Mapping, 164
figures plug-in generation, 168-171
Gateway Mapping, 163-164
generation, 166-168
graphical definition, 145-159
Link Mapping, 165
mapping definition, 161
Task Mapping, 161-163
tooling definition, 159-161

services
ActionFilterService, 423-426
ContributionItemService, 408-418
DecorationService, 392, 394-396
DiagramEventBrokerService, 441-443
DragDropListenerService, 435-438
EditorService, 427-428
EditPartService, 382-385
EditPolicyService, 385-387
ElementSelectionService, 428-430
GlobalActionHandlerService,

419-423
IconService, 396-399
LayoutService, 406-408
MarkerNavigationService, 399-401
ModelingAssistantService, 403-406
overview, 375-376
PaletteService, 387-392
ParserService, 401-403
PropertiesModifierService, 433-435
PropertiesService, 430-433
Service class, 376

ptg6022785

688 Index

service execution strategies, 376-377
TransferAdapterService, 438-441
ViewService, 378-382

templates, modifying output of, 547
tooling component, 61-62

FAQs, 547-548
generator model, 64, 74-76
graphical definition model, 61-63,

68-69, 76-79
mapping model, 63-64, 70-74, 80-81
tooling definition model, 63, 69, 79

Xpand, 548
GMF (Graphical Modeling Framework) Tooling.

See also GMF runtime
generator model

Custom Behavior, 539
Gen Application, 543
Gen Diagram, 536-538
Gen Diagram Updater, 542
Gen Editor Generator, 534-536
Gen Editor View, 540-541
Gen Link, 539
Gen Navigator, 541-542
Gen Plugin, 540
Open Diagram Behavior, 539
overview, 533-534
Property Sheet, 542-543

graphical definition model
Canvas, 505-506
diagram elements, 516-518
Figure Gallery. See Figure Gallery
figures, 504
overview, 503

mapping model
audits and metrics, 532-533
Canvas Mapping, 520
feature initialization, 527-528
Link Mapping, 529-532
Node Mapping, 522-526
overview, 519-520
side-affixed nodes (pins and

ports), 528-529
Top Node Reference, 521-522

tooling definition model, 518-519
GMT (Generative Modeling Technologies), 15

gotoMarker() method, 399
Grab Excess Horizontal Space property (Grid

Layout figure), 514
Grab Excess Vertical Space property (Grid

Layout figure), 514
Gradient (diagram elements), 516
gradient figures, 201-205
graphical concrete syntax, 4
graphical definition model, 61-63

Canvas, 505-506
diagram elements

Compartment, 518
Connection, 517
Diagram Label, 517
Node, 516-517
overview, 516

Figure Gallery, 504
Border Layout, 513
Compound Border, 510
Custom Border, 510
Ellipse, 509
figure properties, 507-508
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
Margin Border, 510
overview, 506-507
Polygon, 509
Polyline, 509
Polyline Connection, 509
Rectangle, 509
Rounded Rectangle, 509
Stack Layout, 512
TemplatePoint, 509
XY Layout, 512

figures, 504
mindmap diagram example, 68-69, 76-79
overview, 503
of scenario diagram, 145-146

Connection figure, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

ptg6022785

Index 689

Graphical Editing Framework. See GEF
Graphical Modeling Framework. See GMF

runtime; GMF Tooling
graphical notations. See also GMF (Graphical

Modeling Framework)
design recommendations, 56-57
filters/layers, 57-58
layout, 58
links in, 58
selecting, 55
shortcuts in, 59
synchronization with domain models, 59

graphical view (GEF)
ScrollingGraphicalViewer, 326
setting up, 327-328

GraphicalEditParts (GEF), 325
GraphicalNodeEditPolicy, 350-351
GraphicalViewerKeyHandler, 342
gratuitous graphics, avoiding, 56
Grid Layout, 513-515
Group Icon property (Gen Navigator Child

Reference), 542
Group Name property (Gen Navigator Child

Reference), 542
guillemets (« »), 606

H
handleActivate() method, 131
handleContentOutlineSelection() method,

132-133
handleNotificationEvent() method, 547
hasPersistentClasses() query, 599
Height command (Diagram menu), 361
helper operations (OML), 562-563
Hide Connector Labels toolbar element, 356
Hide If Empty property (Gen Navigator Child

Reference), 542
Horizontal Alignment property (Grid Layout

figure), 514
Horizontal Indent property (Grid Layout

figure), 514
Horizontal Span property (Grid Layout

figure), 514

HTML, generating with templates (M2T
project), 297-301

HUNT (Human-Usable Textual Notation), 665

I
Icon Path property

Gen Diagram, 538
Gen Editor View, 540

IconProvider extension-point, 397-399
IconService, 396-399
ID property

Gen Editor View, 541
Gen Plugin, 540

IDiagramWorkbenchPart interface, 137
IDragDropListenerProvider interface, 435
IF statement (Xpand), 614-615
IGlobalActionHandler interface, 419
IGlobalActionHandlerContext interface, 419
IGraphicEditPart interface, 382
IIconProvider interface, 396
IMM (Information Management

Metamodel), 14
imperative iterate expressions (OML), 566-567
imperative operations (OML), 565-566

forEach loop expression, 565
forOne loop expression, 565
switch expression, 566
while loop expression, 565-566

import keyword, 606, 636
importing

domain models, 31
XSD, 252-253

in-place transformations, 553
incrStrCounter() operation, 593
indexOf() operation, 586
Information Management Metamodel

(IMM), 14
inheritance in mapping operations, 560-561
inherits keyword, 560-561
initArchetypeDefaults() method, 209, 219
initializeDataStore() method, 179
initializeDefaultPreferences() method, 209
initializeEditingDomain() method, 123
initPreferenceStoreListener() method, 211

ptg6022785

690 Index

injector (TCS), 229
inline graphics, 57
insertAt() operation, 583
Insets property (figures), 508
installEditPolicy() method, 335
instance models, 4
instances, 4
integer operations, 621-622
interactions (GEF)

connection bend interactions, 351-352
connection creation interactions, 349-350
connection edit interactions, 350-351
creation interactions, 344

consuming CreateRequests, 345
creation sequence, 345-347
producing CreateRequests, 344

delete interactions, 342-343
moving and resizing interactions, 347-349
overview, 338
selection interactions

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

interfaces
IDiagramWorkbenchPart, 137
IDragDropListenerProvider, 435
IGlobalActionHandler, 419
IGlobalActionHandlerContext, 419
IGraphicEditPart, 382
IIconProvider, 396
IOperation, 378
IParser, 401
IPropertiesProvider, 430
IProvider, 376
ISemanticParser, 224

intermediate elements, 554
Intermediate Events, 152
inv prefix, 573
invoking

extensions, 637-638
Java, 648
mappings, 570-571

IOperation interface, 378
IParser interface, 401
IPropertiesProvider interface, 430
IProvider interface, 376
ISemanticParser interface, 224
isPrimitive() query, 601
isQuoted() operation, 590
iterator properties, 627

J
Java

business domain model transformations
to, 264-276

DSL Instances, 24-25
extensions (Xtend), 639
files, generating

with DNC model with templates,
291-297

with Java model and dedicated
template, 283-291

JEM (Java EMF Model), 265
JETs (Java Emitter Templates), 34, 665
invocation, 648

Java Modeling in Color with UML (Coad, et al),
22, 57

JavaBeautifier, 296
JEM (Java EMF Model), 265
jemUtil.ext file, 283-286
JETs (Java Emitter Templates), 34, 665
joinfields() operation, 583

K
key bindings (GMF)

connection navigation, 657-658
cycling between diagram editor and

palette, 653-654
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

keyboard selection (GEF), 342
keyboard shortcuts, adding to elements, 90-93
keywords. See specific keywords

ptg6022785

Index 691

L
Label Offset (diagram elements), 516
labels, 510

Diagram Label, 517
Label Offset (diagram elements), 516

Lanza, Michele, 57
LAST service execution strategy, 377
lastToUpper() operation, 586
late operator, 574-575
launch configurations

arguments, 43
in OML, 240-242

layers in graphical notations, 57-58
LayoutEditPolicy, 345
layoutProvider extension-point, 406-408
layouts

Border Layout, 513
combining, 515
custom layout, 82-84
with Draw2d, 322
Flow Layout, 511-512
of graphical notations, 58
Grid Layout, 513-515
Stack Layout, 512
of topic figures, 81-82
XY Layout, 512

LayoutService, 406-408
LET statement, 615-616, 635
libraries. See Stdlib
lifecycle of EditParts, 334-337
LightweightSystem (Draw2d), 318-319
Line Border, 510
Line Kind property (shape figures), 508
Line Width property (shape figures), 508
Link Mapping, 529-532
Link Mapping (scenario diagram), 165
links in graphical notations, 58
lists, 624
lite runtime (GMF), 60-61
Literal Strings, 594
literals (Xpand), 628-630
Load Resource dialog, 188
_localId() operation, 578
Location property (figures), 508
log expression, 576
logListeners extension-point, 452-453

loops
forEach loop expression, 565
forOne loop expression, 565
while loop expression, 565-566

M
M2M (Model-to-Model Transformation), 12-13
M2T (Model-to-Text Transformation) project

CSV files, generating, 281-282
HTML, generating, 297-301
Java files, generating with DNC model

with templates, 291-297
dncUtil.ext file, 295
Entity bean template, 291-294
workflow file, 296

Java files, generating with Java model and
dedicated template, 283-291
Address type output, 287-288
jemUtil.ext file, 283-286
Person class, 289-290
Phone class, 290-291
workflow, 286-287

overview, 277
Xpand, 278-281
Xtend, 278-281

main keyword, 559
Major Alignment property (Flow Layout

figure), 511
Major Spacing property (Flow Layout

figure), 511
map keyword, 570
mapping definition

Aggregation Link Mapping, 198-200
Annotation Mapping, 195
DNC Association Mapping, 195-197
DNC Canvas Mapping, 190
Generalization Mapping, 200-201
Moment-Interval Archetype Mapping,

191-192
Package Mapping, 194
requirements diagram mapping

definition, 107-113
Canvas mapping, 108
Requirement link mappings, 112

ptg6022785

692 Index

Requirement node mapping, 111-112
RequirementGroup link mapping, 110
RequirementGroup node mapping,

109-110
Requirements Dependency link

mappings, 113
Role Archetype Mapping, 193
of scenario diagram

Data Object Mapping, 165
Event Mapping, 164
Gateway Mapping, 163-164
Link Mapping, 165
Task Mapping, 161-163

mapping model, 63-64
audits and metrics, 532-533
Canvas Mapping, 520
feature initialization, 527-528
Link Mapping, 529-532
mindmap diagram example, 70-74, 80-81
Node Mapping, 522-524

containment, 524
node constraints, 526
phantom nodes, 524-526
references, 524

overview, 519-520
side-affixed nodes (pins and ports),

528-529
Top Node Reference, 521-522

mapping operations (OML). See
also transformations

BPMN and BPEL, 231
disjunction, 562
entry operations, 559-560
execution semantics, 558-559
inheritance, 560-561
invoking mappings, 570-571
mapping body, 558
merger, 561
return statement, 559
syntax, 556-558

Margin Border, 510
Marinescu, Radu, 57
markedAs() operation, 580
MarkerNavigationProvider extension-point,

400-401
MarkerNavigationService, 399-401

markValue() operation, 580
Match Minor Size property (Flow Layout

figure), 511
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
MatchSizeAction, 349
Maximum Size property (figures), 508
MDA (Model-Driven Architecture)

implemented standards
Business Process Modeling

Notation, 665
Diagram Interchange, 664
Extensible Markup Language, 664
Human-Usable Textual Notation, 665
Meta-Object Facility, 662-663
MOF Models to Text Transformation

Language, 664
Object Constraint Language, 663
overview, 662
Query/View/Transformation, 664
Software Process Engineering

Metamodel, 666
Unified Modeling Language, 663

overview, 661-662
working relationship

implementations influencing
specifications, 668

membership, 666-667
open and transparent nature, 668-669
specification compliance, 668
specification delivery, 667-668

MDSD (Model-Driven Software Development)
metamodels, 3-4
overview, 7

MDTs. See Model Development Tools
menuAboutToShow() method, 136
menus

adding to elements, 90-93
requirements diagram, 135-137

merges keyword, 561
merging

in mapping operations, 561
models, 237

ptg6022785

Index 693

Messages class, 209
messages.properties file, 210
Meta-Object Facility (MOF), 662-663
metaClassName() operation, 578
metaModel element, 646
Metamodel Explorer view, 240-241
metamodels, 3-4, 32-33. See also domain models
methods. See specific methods
metrics for mindmap diagram, 97-103
migration of models, 233-237
mindmap and requirements DSL Instances,

23-24
mindmap domain model, 39-40

code generation, 43-45
creating, 41-42
generator model for, 74-76
generator model, creating, 42
graphical definition model for, 68-69,

76-79
improvements to

audits and metrics, 97-103
custom figures, 89-90
custom layout, 82-84
fixed anchor locations, 94-96
graphical definition model, 76-79
mapping definition model, 80-81
preferences settings, 97
subtopic actions, 90-93
subtopic figures, 84-89
tooling definition model, 79
topic figure layout, 81-82

mapping model for, 70-74, 80-81
OCL, adding, 45-47
project setup, 40-41
running, 43-45
tooling definition model for, 69, 79
transformations

to requirements domain model,
244-251

to XHTML, 251-258
mindmap2csv.mwe file, 282
mindmap2csv.xpt template, 281
mindmap2requirements transformation,

308-309
Minimum Size property (figures), 508

Minor Alignment property (Flow Layout
figure), 511

Minor Spacing property (Flow Layout
figure), 511

Model Compare (EMF), 11
Model Development Tools (MDT), 662

BPMN2, 14
IMM (Information Management

Metamodel), 14
OCL (Object Constraint Language), 14
UML2, 13
UML2 Tools, 14
XSD (XML Schema), 13

Model Driven Architecture: Applying MDA to
Enterprise Computing (Frankel), 4

Model-Driven Architecture. See MDA
Model-Driven Software Development.

See MDSD
model extensions, 66
Model ID property (Gen Editor Generator), 535
model merge, 237
model migration, 233-237
model operations (OML)

add(), 582
asList(), 583
asTransformation(), 582
copy(), 582
createEmptyModel(), 582
insertAt(), 583
joinfields(), 583
objects(), 581
objectsOfType(), 581
prepend(), 582
removeElement(), 581
rootObjects(), 581

Model Query (EMF), 11
model refactoring, 232-233
Model Search (EMF), 11
Model Transaction (EMF), 10
model transformations. See transformations
Model Validation (EMF), 10
Model-to-Model Transformation (M2M), 12-13
Model-to-Text Transformation project. See

M2T project
Model-View-Controller (MVC) architecture,

324-325

ptg6022785

694 Index

model2RDBModel() mapping, 598
Modeling Amalgamation Project, 15
modeling, overview of, 3-5
modelingAssistantProvider extension-point,

404-406
ModelingAssistantService, 403-406
models. See specific models
modelSlot element, 644
modeltype declaration, 550-553
MOF (Meta-Object Facility), 662-663
MOF2Text, 664
Moment-Interval Archetype Mapping (color

modeling diagram), 191-192
monitor size for graphical notations, 56
moving and resizing interactions (GEF), 347-349
MultiPageSelectionProvider, 130-131
MVC (Model-View-Controller) architecture,

324-325

N
Name Compartment Onl toolbar element, 356
Name property (figures), 508
navigation

connection navigation, 657-658
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

Navigator Child Reference property (Gen
Navigator), 541-542

navigator extension (requirements diagram), 139
New Diagram Wizard, 475-476
NodeEditPart.xpt template file, 212, 215-216
Nodes, 516-517

node constraints, 526
Node Mapping, 86, 522-524

containment, 524
node constraints, 526
phantom nodes, 524-526
references, 524

sticking to border of parent, 548
nonresizable figures, creating, 547
NonResizeableEditPolicy, 547
normalizeSpace() operation, 588

notation model, 369-372
notations. See graphical notations
null in transformation declarations, 556
number type operations (OML), 583

O
Object Constraint Language (OCL), 14, 663
object keyword, 568
object operations (OML), 578
object-oriented DSLs, 51
Object-Oriented Metrics in Practice (Lanza and

Marinescu), 57
objects. See also specific objects

creating, 568-570
operations, 620
populating, 568-570

objects() operation, 581
objectsOfType() operation, 581
Oblique Style Routing toolbar element, 355
OCL (Object Constraint Language), 14, 663

adding to mindmap domain model, 45-47
in EMF, 35-38
OML and, 243
testing, 35

OMG
MDA (Model-Driven Architecture).

See MDA
working relationship

implementations influencing
specifications, 668

membership, 666-667
open and transparent nature, 668-669
specification compliance, 668
specification delivery, 667-668

OML (Operational Mapping Language)
Ant tasks and, 243-244
comments, 593
described, 238
element operations, 580
helper operations, 562-563
imperative iterate expressions, 566-567
imperative operations, 565-566

forEach loop expression, 565
forOne loop expression, 565

ptg6022785

Index 695

switch expression, 566
while loop expression, 565-566

launch configurations, 240-242
libraries, 556
mapping invocation, 570-571
mapping operations

disjunction, 562
entry operations, 559-560
execution semantics, 558-559
inheritance, 560-561
mapping body, 558
merger, 561
return statement, 559
syntax, 556-558

Metamodel Explorer view, 240-241
model operations, 580
object creation and population, 568-570
OCL statements and, 243
OCL synonyms, 596
operations and iterators

collect() operation, 564
select() operation, 563

overview, 550
QVT OML editor, 240
QVT Operational Project wizard, 238-239
resolution operators

inv prefix, 573
late, 574-575
resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

shorthand, 594-595
Std library

add() operation, 582
addSuffixNumber() operation, 593
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578
asTransformation() operation, 582
clone() operation, 579

copy() operation, 582
createEmptyModel() operation, 582
deepclone() operation, 580
endsWith() operation, 587
equalsIgnoreCase() operation, 589
find() operation, 589
firstToUpper() operation, 586
format() operation, 584
getStrCounter() operation, 592
_globalId() operation, 578
incrStrCounter() operation, 593
indexOf() operation, 586
insertAt() operation, 583
isQuoted() operation, 590
joinfields() operation, 583
lastToUpper() operation, 586
_localId() operation, 578
markedAs() operation, 580
markValue() operation, 580
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
metaClassName() operation, 578
normalizeSpace() operation, 588
objects() operation, 581
objectsOfType() operation, 581
prepend() operation, 582
quotify() operation, 590
range() operation, 583
removeElement() operation, 581
replace() operation, 588
repr() operation, 578
restartAllStrCounter() operation, 593
rfind() operation, 589
rootObjects() operation, 581
size() operation, 584
startStrCounter() operation, 592
startsWith() operation, 587
stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
subobjects() operation, 578
subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
substringAfter() operation, 585

ptg6022785

696 Index

substringBefore() operation, 584
toLower() operation, 585
toString() operation, 583
toUpper() operation, 585
trim() operation, 587
unquotify() operation, 590

strings, 594
trace model, 242-243
transformation declarations

access keyword, 553
configuration properties, 555
extends keyword, 553
in-place transformations, 553
intermediate elements, 554
modeltype declaration, 550-553
null, 556
predefined variables, 555
renaming elements, 555

transformation execution
assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

UML to RDB Transformation Project,
596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599
isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns()

query, 601
relationshipAttribute2foreignKey()

mapping, 603

relationshipAttributes2columns()
query, 602

transformation declaration, 597
open and transparent nature, 668-669
Open Diagram Behavior element, 539
Operational Mapping Language. See OML
OperationParserProvider class, 224-225
operations (OML). See specific operations
operators

inv prefix, 573
late, 574-575
resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

Order menu commands, 361
org.eclipse.gmf.runtime.draw2d.render

plug-ins, 501
org.eclipse.gmf.runtime.gef.ui plug-in, 502
outlet element, 646
Outline property (shape figures), 508
Outline view (diagrams), 139-140, 366
outlineShape() method, 167
overwriting user code modifications,

avoiding, 35

P
package figure definition (color modeling

diagram), 185-186
Package Mapping (color modeling

diagram), 194
Package Name Prefix property (Gen Editor

Generator), 535
Package Selection dialog, 116
package2schema() query, 599
package2schemas() query, 598
packaging DSLs, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

ptg6022785

Index 697

paint() method, 320
paintBorder() method, 321
paintChildren() method, 321
paintClientArea() method, 320
paintFigure() method, 320
painting with Draw2d, 320-321
palette

cycling between diagram editor and
palette, 653-654

definition, 470-471
GEF (Graphical Editing Framework)

palette, 337
palette item navigation, 654
Palette view (diagrams), 360

paletteProvider extension-point, 388-392
PaletteService, 387-392
ParserProvider extension-point, 402-403
ParserService, 401-403
partitioning. See diagram partitioning
PasteTemplateAction, 345
Pathmaps extension-point, 459
performFinish() method, 137-138
performRequest() method, 333
persistence

database persistence, 177-181
persistence alternatives (EMF), 11

persistentClass2table() query, 599
Person class, 289-290
perspectiveExtensions extension-point, 306
perspectives extension-point, 306
phantom nodes, 524-526
Phone class, 290-291
platformUri element, 642
Plug-in Project wizard, 305-306
plug-ins, developing

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

policies. See specific policies
Polygon, 509
Polyline, 509
Polyline Connection, 322, 509
polymorphism, Xpand support for, 610-612
pop-up bars (diagrams), 365
populating objects, 568-570

postprocessor element, 646-647
Practitioner (DSL Toolkit), 18-19
predefined variables, 555
preference page templates (color modeling

diagram), 216-220
PreferenceInitializer.xpt template, 219
preferencePages extension-point, 306
PreferencePropertyChangeListener class,

211, 214
preferences

diagrams, 367-368
mindmap diagram improvements, 97
user interface plug-ins, 306-307

Preferred Size property (figures), 508
prepend() operation, 582
primitiveAttributes2columns() query, 601
Printing Enabled property (Gen Plugin), 540
private extensions (Xtend), 639
product line engineering, 7-8
project interaction, 15-16
project setup, mindmap DSL, 40-41
properties

of diagrams
Appearance properties, 358-359
Core properties, 358
Rulers & Grid properties, 356-358

of figures
common properties, 507-508
Flow Layout figure properties, 511
shape figure properties, 508

of Gen Diagram
Contains Shortcuts To property, 536
Creation Wizard Category ID

property, 538
Editing Domain ID property, 538
Icon Path property, 538
Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Validation Decorators property, 537
Validation Enabled property, 537
Visual ID property, 538
Without Domain property, 538

of Gen Editor Generator
Copyright Text, 534
Diagram File Extension, 534

ptg6022785

698 Index

Domain File Extension, 535
Domain Gen Model, 535
Dynamic Templates, 535
Model ID, 535
Package Name Prefix, 535
Same File for Diagram and Model,

535-536
Template Directory, 535

of Gen Editor View
Generate as Eclipse Editor, 541
Icon Path, 540
ID, 541

of Gen Navigator
Generate Domain Model

Navigator, 541
Navigator Child Reference, 541-542

of Gen Plugin
ID, 540
Printing Enabled, 540
Provider, 540
Required Plugin Identifiers, 540
Version, 540

of requirements diagram, 140-145
Custom Property Tab, 140
Property tab, 144
RequirementDescriptionProperty

Section class, 142-143
of workflow configuration files, 641
transformation configuration

properties, 555
Properties View, 134-135, 476-479, 658-659
propertiesConfiguration extension-point, 453
PropertiesModifierService, 433-435
PropertiesProvider extension-point, 431-433
PropertiesService, 430-433
property operations, 626
Property Sheet element, 542-543
Property tab (requirements diagram), 144
PropertyModifier extension-point, 434-435
PROTECT statement (Xpand), 615
Provider property (Gen Plugin), 540
ProviderPriority, 376
provides() method, 224, 376, 498

Q
Query/View/Transformation. See QVT
quotify() operation, 590
QVT (Query/View/Transformation), 664.

See also transformations
Core language, 549
OML (Operational Mapping Language).

See OML
Operational Project wizard, 238-239
Relations language, 549

QVTO scripts, 307

R
range() operation, 583
RDBMS, UML to RDB Transformation Project,

596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599
isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns() query, 601
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns()

query, 602
transformation declaration, 597

Reader (Xpand), 644
real operations, 622
Rectangle, 509
Rectilinear Style Routing toolbar element, 355
recursion (Xtend), 638-639
refactoring editors, 127-130
refactoring models, 232-233

ptg6022785

Index 699

Reference Type property (Gen Navigator Child
Reference), 542

refines keyword, 554
refresh() method, 335, 500
refreshChildren() method, 335
refreshVisuals() method, 329-331, 335
RegisterEcoreFile element, 643
RegisterGeneratedEPackage element, 642-643
reject() operation, 631
Relations language (QVT), 231, 549
relationship link mapping (mindmap diagram),

73-74, 77-80
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns() query, 602
relative coordinates (Draw2d), 323-324
REM statement (Xpand), 616
removeChild() method, 335-336
removeElement() operation, 581
renaming elements, 555
*.render.awt plug-ins, 501
renderedImageFactory extension-point, 456-457
REP (Requirements Elicitation Project), 21
replace() operation, 588
repr() operation, 578
Requests (GEF), 331-332

CreateRequests
consuming, 345
producing, 344

selection requests, 342
Required Plugin Identifiers property (Gen

Plugin), 540
Requirement link mappings (requirements

diagram), 112
Requirement node mapping (requirements

diagram), 111-112
Requirement Scenario Project (RSP), 22
RequirementDescriptionPropertySection class,

142-143
RequirementGroup link mapping (requirements

diagram), 110
RequirementGroup node mapping (requirements

diagram), 109-110
Requirements Dependency link mappings

(requirements diagram), 113

requirements diagram
Creation Wizard, 137-138
diagram definition, 104-107
domain model, 108
EMF and GMF editor integration

refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

generation, 113
mapping definition, 107-113

Canvas mapping, 108
Requirement link mappings, 112
Requirement node mapping, 111-112
RequirementGroup link mapping,

110
RequirementGroup node mapping,

109-110
Requirements Dependency link

mappings, 113
menus and toolbar, 135-137
navigator extension, 139
Outline view, 139-140
partition, 172-177
properties, 140-145

Custom Property Tab, 140
Property tab, 144
RequirementDescriptionProperty

Section class, 142-143
Properties view, 134-135
selection handling, 130-134
tooling definition, 107
ToolTips, 114-121

requirements domain model, 47-48
generator model, creating, 48-49
transformations from mindmap domain

model, 244-251
Requirements Elicitation Project (REP), 21
Requirements Management Project (RMP), 21
requirements.product, configuring, 312
RequirementsEditorPart class, 127-128
RequirementsGeneralPreferencePage class, 307
ResizableEditPolicy, 348
resizing interactions (GEF), 347-349
resolution operators (OML)

inv prefix, 573
late, 574-575

ptg6022785

700 Index

resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

resolve operator, 571-572
resolveIn operator, 573
resolveone operator, 573
resolveoneIn operator, 573
resolveSemanticElement() method, 382
resources, GMF (Graphical Modeling

Framework) resources, 545
restartAllStrCounter() operation, 593
result keyword, 569
return statement, 559
revalidate() method, 322
REVERSE service execution strategy, 377
rfind() operation, 589
RMP (Requirements Management Project), 21
Role Archetype Mapping (color modeling

diagram), 193
roles of EditPolicies, 333
rootObjects() method, 560, 581
Rounded Rectangle, 509
routing in Draw2d, 322-323
RSP (Requirement Scenario Project), 22
Rulers & Grid properties (diagrams), 356-358
run() method, 309-310, 648
running mindmap domain model, 43-45
runtime, EMF, 33-34
runtime, GMF. See GMF runtime

S
Same File for Diagram and Model property

(Gen Editor Generator), 535-536
Sample Reflective Ecore Model Editor, 39
ScalableFreeformRootEditPart (GEF), 326
scenario diagram, 145

custom view, 486-489
Data Object Mapping, 165
database persistence, 177-181
diagram partitioning

Requirements diagram partition,
172-177

subprocess partitions, 171-172

Event Mapping, 164
Gateway Mapping, 163-164
generation

border item adjustment, 166-167
figures plug-in generation, 168-171
GMF generator model, 166
intermediate event outline, 167-168

graphical definition, 145-146
Connection figures, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

Link Mapping, 165
mapping definition, 161
Task Mapping, 161-163
tooling definition, 159-161
transformations to test cases, 258-264

scenario domain model, 50-51
scenario DSL Instances, 24-25
ScenarioEditPartProvider class, 488
scripts, QVTO scripts, 307
ScrollingGraphicalViewer (GEF), 326
Select All Links toolbar element, 355
Select All Shapes toolbar element, 355
Select All toolbar element, 355
select() operation, 563, 630
SelectAllAction, 342
selecting graphical notations, 55
selection handling (requirements diagram),

130-134
selection interactions (GEF)

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

Selection Tool (GEF), 339
selectionProvider attribute

(MultiPageSelectionProvider), 130-131
SelectionTreeEditorPart class, 128
Send Backward command (Order menu), 361

ptg6022785

Index 701

Send to Back command (Order menu), 361
serialization syntax, 4
Service class, 376
services

ActionFilterService, 423-426
ContributionItemService, 408-418
DecorationService, 392-396
DiagramEventBrokerService, 441-443
DragDropListenerService, 435-438
EditorService, 427-428
EditPartService, 382-385
EditPolicyService, 385-387
ElementSelectionService, 428-430
GlobalActionHandlerService, 419-423
IconService, 396-399
LayoutService, 406-408
MarkerNavigationService, 399-401
ModelingAssistantService, 403-406
overview, 375-376
PaletteService, 387-392
ParserService, 401-403
PropertiesModifierService, 433-435
PropertiesService, 430-433
Service class, 376
service execution strategies, 376-377
TransferAdapterService, 438-441
ViewService, 378-382

setContents() method, 327, 334
setCurrentViewer() method, 131
setForegroundColor() method, 205, 211
setModel() method, 334
setParent() method, 334
setupContentPane() method, 517
shape figures

Ellipse, 509
Polygon, 509
Polyline, 509
Polyline Connection, 509
properties, 508
Rectangle, 509
Rounded Rectangle, 509
TemplatePoint, 509

shape navigation, 655-656
SharedImages class, 396
sharing EditingDomain, 123-126
shortcuts in graphical notations, 59

Shortcuts Provided For property (Gen
Diagram), 536

shorthand (QVT), 594-595
Show Connector Labels toolbar element, 356
side-affixed nodes (pins and ports), 528-529
simplicity in graphical notations, 56
Size property (figures), 508
size() operation, 584
software factories, 7-8
Software Process Engineering Metamodel

(SPEM), 666
software product lines, 7-8
sortBy() operation, 633
source, deploying, 312-313
specifications

compliance, 668
implementations influencing

specifications, 668
specification delivery, 667-668

SPEM (Software Process Engineering
Metamodel), 666

Stack Layout, 512
StandaloneSetup class

ExtensionMap element, 643
platformUri element, 642
RegisterEcoreFile element, 643
RegisterGeneratedEPackage element,

642-643
uriMap element, 642

Start Events, 152
startStrCounter() operation, 592
startsWith() operation, 587
startup() method, 378
statements. See specific statements
StaticProperty operations, 626
StdLib library, 556

add() operation, 582
addSuffixNumber() operation, 593
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578

ptg6022785

702 Index

asTransformation() operation, 582
clone() operation, 579
copy() operation, 582
createEmptyModel() operation, 582
deepclone() operation, 580
element operations, 580
endsWith() operation, 587
equalsIgnoreCase() operation, 589
find() operation, 589
firstToUpper() operation, 586
format() operation, 584
getStrCounter() operation, 592
_globalId() operation, 578
incrStrCounter() operation, 593
indexOf() operation, 586
insertAt() operation, 583
isQuoted() operation, 590
joinfields() operation, 583
lastToUpper() operation, 586
_localId() operation, 578
markedAs() operation, 580
markValue() operation, 580
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
metaClassName() operation, 578
normalizeSpace() operation, 588
objects() operation, 581
objectsOfType() operation, 581
prepend() operation, 582
quotify() operation, 590
range() operation, 583
removeElement() operation, 581
replace() operation, 588
repr() operation, 578
restartAllStrCounter() operation, 593
rfind() operation, 589
rootObjects() operation, 581
size() operation, 584
startStrCounter() operation, 592
startsWith() operation, 587
stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
subobjects() operation, 578

subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
substringAfter() operation, 585
substringBefore() operation, 584
toLower() operation, 585
toString() operation, 583
toUpper() operation, 585
trim() operation, 587
unquotify() operation, 590

stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
StoreController class, 179
string operations (OML), 594, 620

addSuffixNumber(), 593
asBoolean(), 591
asFloat(), 592
asInteger(), 592
endsWith(), 587
equalsIgnoreCase(), 589
find(), 589
firstToUpper(), 586
format(), 584
getStrCounter(), 592
incrStrCounter(), 593
indexOf(), 586
isQuoted(), 590
lastToUpper(), 586
match(), 589
matchBoolean(), 590
matchFloat(), 591
matchIdentifier(), 591
matchInteger(), 591
normalizeSpace(), 588
quotify(), 590
replace(), 588
restartAllStrCounter(), 593
rfind(), 589
size(), 584
startStrCounter(), 592
startsWith(), 587
substringAfter(), 585
substringBefore(), 584
toLower(), 585
toUpper(), 585
trim(), 587
unquotify(), 590

ptg6022785

Index 703

styles, custom, 490-493
subobjects() operation, 578
subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
Subprocess figure, creating for scenario

diagram, 147-149
subprocess partitions, 171-172
substringAfter() operation, 585
subtopic actions, mindmap diagram

improvements, 90-93
subtopic figures, mindmap diagram

improvements, 84-89
subtopic link mapping (mindmap diagram), 73
switch expression, 566, 634
Synchronized property (Gen Diagram), 537
synchronizing domain models, 59, 76
synonyms (OCL), 596

T
Task figure, creating for scenario diagram,

146-147
Task Mapping (scenario diagram), 161-163
TCS (Textual Concrete Syntax), 4, 229
Template Directory property (Gen Editor

Generator), 535
TemplatePoint, 509
templates

dynamic templates, 65-66
mindmap2csv.xpt, 281
modifying output of, 547

TemplateTransferDragSourceListener, 344
Teneo, 177-180
ternary expression, 634
Test and Performance Tools Project (TPTP),

258-264
test cases, transforming scenarios to, 258-264
testing OCL, 35
text

Draw2d support for, 319
with inline graphics, 57

Textual Concrete Syntax (TCS), 4, 229
Textual Generic Editor (TGE), 229
Textual Modeling Framework (TMF), 12, 665

textual syntaxes for DSLs
overview, 227-228
TCS (Textual Concrete Syntax), 4, 229
Xtext, 228-229

TGE (Textual Generic Editor), 229
Tiger project, 233
TMF (Textual Modeling Framework), 12, 665
toLower() operation, 585
toolbars

elements, 354-356
requirements diagram, 135-137

tooling component (GMF), 61-62
FAQs, 547-548
generator model, 64, 74-76
graphical definition model, 61-63,

68-69, 76-79
mapping model, 63-64, 70-74, 80-81
tooling definition model, 63, 69, 79

tooling definition, 63, 518-519
of color modeling diagram, 189
of mindmap diagram example, 69, 79
of scenario diagram, 159-161
of requirements diagram, 107

tools, GEF (Graphical Editing Framework)
tools, 337

Toolsmith artifacts (DSL Toolkit), 17-18
ToolTips, 114-121
Top Node Reference, 521-522
topic figure layout, 81-82
topic mapping (mindmap diagram), 72
TopicEditPart class., 475
toPreferenceConstant() function, 213-214
toRequirementsModel() method, 559
toStateful() method, 561
toString() operation, 583
toUpper() operation, 585
TPTP (Test and Performance Tools Project),

258-264
trace model, 242-243, 575
TransactionalEditingDomain, 123-130
TransferAdapterProvider extension-point,

439-441
TransferAdapterService, 438-441
transform() operation, 577

ptg6022785

704 Index

transformations
business domain models to Java, 264-276
executing

assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

implementation techniques, 231-232
M2M (Model-to-Model

Transformation), 12-13
M2T (Model-to-Text

Transformation) project
CSV fies, generating, 281-282
HTML, generating, 297-301
Java files, generating with DNC model

with templates, 291-297
Java files, generating with Java model

and dedicated template, 283-291
overview, 277
Xpand, 278-281
Xtend, 278-281

mindmap domain model
to requirements domain model,

244-251
to XHTML, 251-258

mindmap2requirements, 308-309
for model merge, 237
for model migration, 233-237
for model refactoring, 232-233
OML transformation declarations

access keyword, 553
configuration properties, 555
extends keyword, 553
in-place transformations, 553
intermediate elements, 554
modeltype declaration, 550-553
null, 556
predefined variables, 555
renaming elements, 555

scenario diagrams to test cases, 258-264
transformation composition, 577

transparent nature, 668-669
Tree Style Routing toolbar element, 355
TreeContainerEditPolicy, 345
TreeEditParts (GEF), 325

trim() operation, 587
Tufte, Edward, 56
types

API documentation
AdviceContent operations, 627
AdviceContent properties, 626
Boolean operations, 622
collection operations, 623-624
collection properties, 623
definition operations, 627
definition properties, 627
feature properties, 625
integer operations, 621-622
iterator properties, 627
list operations, 624
object operations, 620
object properties, 619
operation operations, 626
property operations, 626
real operations, 622
StaticProperty operations, 626
string operations, 620
string properties, 620
type operations, 625
type properties, 624

type inference (Xtend), 638
type operations, 625
type properties, 624

typeSelect() operation, 631

U
UML (Unified Modeling Language), 663

UML to RDB Transformation Project,
596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599

ptg6022785

Index 705

isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns()

query, 601
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns()

query, 602
transformation declaration, 597

UML2, 13
UML2 Tools, 14

The UML Profile for Framework Architectures
(Fontoura, et al), 56

umlPrimitive2rdbPrimitive() method, 568
UmlRdbUtil library, 556
UmlUtil library, 556
Unified Modeling Language (UML), 663
Units property (Gen Diagram), 537
unquotify() operation, 590
updateArchetypeColor() method, 211
UpdateManager (Draw2d), 318
updating model versions, 233-237
uri element, 644
uriMap element, 642
user code modifications, avoiding

overwriting, 35
user interaction sequence (Draw2d), 320
user interface plug-ins, developing

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

V
validate() method, 322
validation, 38
Validation Decorators property (Gen

Diagram), 537
Validation Enabled property (Gen

Diagram), 537
variables, predefined, 555
Version property (Gen Plugin), 540

versions of models, updating, 233-237
Vertical Alignment property (Grid Layout

figure), 514
Vertical property (Flow Layout figure), 511
Vertical Span property (Grid Layout figure), 514
View menu commands, 361-363
viewing Ecore models, 39
viewProvider extension-point, 379-382
views

definition, 471-473
scenario diagram custom view, 486-489

ViewService, 378-382
Visual Facets (diagram elements), 516
Visual ID property (Gen Diagram), 538

W
while loop expression, 565-566
Width command (Diagram menu), 361
Without Domain property (Gen Diagram), 538
wizards

Creation Wizard, 137-138
New Diagram Wizard, 475-476
Plug-in Project wizard, 305-306

workflow engine (Xpand), 641
Ant, 649
aspects, 647-648
EMF setup

ExtensionMap element, 643
platformUri element, 642
RegisterEcoreFile element, 643
RegisterGeneratedEPackage

element, 642-643
uriMap element, 642

Java invocation, 648
properties, 641
Reader, 644
Xpand component, 644-647

expand element, 646
metaModel element, 646
outlet element, 646
postprocessor element, 646-647

ptg6022785

706 Index

X-Y-Z
xcollect imperative iterate expression, 566
XHTML, transforming mindmap domain

model to, 251-258
xmap keyword, 570
XML (Extensible Markup Language), 664
XML Schema (XSD), 13
XOR Fill property (shape figures), 509
XOR Outline property (shape figures), 509
Xpand, 665

AROUND statement, 617-619
DEFINE statement, 607-608
ERROR statement, 616
EXPAND statement, 608-612
expression language, 628

casting, 635
chain expression, 634-635
collect() operation, 631-632
collections, 630
create expression, 635
exists() operation, 633
forAll() operation, 632
let expression, 635
literals, 628-630
reject() operation, 631
select() operation, 630
sortBy() operation, 633
switch expression, 634
ternary expression, 634
typeSelect() operation, 631

EXTENSION statement, 613-614
FILE statement, 612
FOREACH statement, 612-613
in GMF (Graphical Modeling

Framework), 548
IF statement, 614-615
IMPORT statement, 606
LET statement, 615-616
M2T (Model-to-Text Transformation)

project, 278-281
overview, 605-606
polymorphism support, 610-612
PROTECT statement, 615
REM statement, 616
type system, 619-627

workflow engine
Ant, 649
aspects, 647-648
EMF setup, 642-643
Java invocation, 648
properties, 641
Reader, 644
Xpand component, 644-647

Xtend
cached extensions, 639
comments, 637
examples, 640-641
extension invocation, 637-638
extension keyword, 636
extensions, 637
import keyword, 636
Java extensions, 639
overview, 636
private extensions, 639
recursion, 638-639
type inference, 638

Xpand component, 644-647
expand element, 646
metaModel element, 646
outlet element, 646
postprocessor element, 646-647

XSD (XML Schema), 13, 252-253
Xtend

cached extensions, 639
comments, 637
examples, 640-641
extension invocation, 637-638
extension keyword, 636
extensions, 637
import keyword, 636
Java extensions, 639
M2T (Model-to-Text Transformation)

project, 278-281
overview, 636
private extensions, 639
recursion, 638-639
type inference, 638

Xtext, 228-229
XY Layout, 512

Zoom toolbar element, 356

ptg6022785

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: informit.com/aw

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at informit.com/register

ptg6022785

www.informIT.com/learn

ptg6022785

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

ptg6022785

Your purchase of Eclipse Modeling Project includes access to a free online edition for
45 days through the Safari Books Online subscription service. Nearly every Addison-
Wesley Professional book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: HMEBAAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Home Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: Introduction
	Chapter 1 Introduction
	1.1 About Modeling
	1.2 Domain-Specific Languages
	1.3 Model-Driven Software Development
	1.4 Software Product Lines and Factories
	1.5 The Eclipse Modeling Project
	1.6 Summary

	Chapter 2 Modeling Project as a DSL Toolkit
	2.1 Installation
	2.2 The Sample Projects
	2.3 Summary

	Part II: Developing Domain-Specific Languages
	Chapter 3 Developing a DSL Abstract Syntax
	3.1 DSL Considerations
	3.2 Eclipse Modeling Framework
	3.3 Developing the Mindmap Domain Model
	3.4 Developing the Requirements Domain Model
	3.5 Developing the Scenario Domain Model
	3.6 Developing the Business Domain Model
	3.7 Summary

	Chapter 4 Developing a DSL Graphical Notation
	4.1 Design Considerations
	4.2 Graphical Modeling Framework
	4.3 Developing the Mindmap Diagram
	4.4 Developing a Requirements Diagram
	4.5 Developing the Scenario Diagram
	4.6 Developing the Color Modeling Diagram
	4.7 Summary

	Chapter 5 Developing a DSL Textual Syntax
	5.1 Xtext
	5.2 TCS
	5.3 Summary

	Chapter 6 Developing Model-to-Model Transformations
	6.1 Transformation Techniques
	6.2 Model Refactoring
	6.3 Model Migration
	6.4 Model Merge
	6.5 M2M QVT Operational Mapping Language
	6.6 Transforming a Mindmap to Requirements
	6.7 Transforming a Mindmap to XHTML
	6.8 Transforming a Scenario to a Test Case
	6.9 Transforming a Business Model to Java
	6.10 Summary

	Chapter 7 Developing Model-to-Text Transformations
	7.1 M2T Project
	7.2 Generating CSV Files
	7.3 Generating Java
	7.4 Generating HTML
	7.5 Summary

	Chapter 8 DSL Packaging and Deployment
	8.1 Deployment Preparation
	8.2 Defining a Product
	8.3 Summary

	Part III: Reference
	Chapter 9 Graphical Editing Framework
	9.1 Draw2d
	9.2 GEF
	9.3 Summary

	Chapter 10 Graphical Modeling Framework Runtime
	10.1 Overview
	10.2 Notation Model
	10.3 Extensibility Mechanisms
	10.4 Services
	10.5 Additional Extension-Points
	10.6 Element Creation
	10.7 Command Infrastructure
	10.8 Developing a Diagram
	10.9 Extending Diagrams
	10.10 Beyond GEF and Draw2d
	10.11 Summary

	Chapter 11 Graphical Modeling Framework Tooling
	11.1 Graphical Definition Model
	11.2 Tooling Definition Model
	11.3 Mapping Model
	11.4 Generator Model
	11.5 Summary

	Chapter 12 Graphical Modeling Framework FAQs
	12.1 General FAQs
	12.2 Diagramming FAQs
	12.3 Tooling FAQs
	12.4 Summary

	Chapter 13 Query/View/Transformation Operational Mapping Language
	13.1 Transformation Declaration
	13.2 Libraries
	13.3 Mapping Operations
	13.4 Helper Operations
	13.5 Implementing Operations
	13.6 Library Operations
	13.7 Syntax Notes
	13.8 Simple UML to RDBMS Example
	13.9 Summary

	Chapter 14 Xpand Template Language
	14.1 Xpand Language
	14.2 Summary

	Part IV: Appendixes
	Appendix A: Graphical Modeling Framework Key Bindings
	Appendix B: Model-Driven Architecture at Eclipse
	Implemented Standards
	Working Relationship
	Future Outlook

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

