

Statistics and Computing

Series Editors:
J. Chambers
w. Eddy
W. W l e
S. Sheather
L. Tiemey

Springer
Y~rk

Berlin
Heidelberg
Hang Kong
London
Milan
Perfs
Tokyo

Statistics and Computing

Dalgomd: lnboductory Statistics with R.
Gentle.. Elemak ofComputational Stptistics.
OenfIe: Numerical Linear Algebra for Applications m Statistics.
Oentle Random N& omaation and Monte &lo Mahods, 2nd Editim.
Hcr*dwMWwlach: XploRe: An Intnactive Statistical Computing Bnvirommt
RiOUFPN)Iron: me Basics of S and S-Pws, 3rd Edition
Lmge: NNllmrkal Analysis for Statisticians.
b&r: Local Regrnsion and Lilihcd
bRurmcrldh/Fibgemld. Numrical Baycsisn Mcmads Applied to Signal Roassing.
Pluvrallw: VARIOWIN: Softwan for Spatial Data Analysis in 2D.
PinheirOlBau1: Mixed-Effcds Models in S and S - h u s
venabk.dRiy,l~: Modem ~pplied Statistics with S, 4th ~ t l o n .
venabler/Riprey: s ProgmEhg. .
WWnmn: me Ibe of Graphics.

James E. Gentle

Random Number
Generation and
Monte Carlo Methods
Second Edition

With 54 Illustrati~ns

Springer

James H. Gentle
School of Computational Sciences
George Mason University
Fairfax. VA 22030-4444
USA
j gen lle@jiinu.edu

Series Editors:

J. Chambers
Bell Labs, Lucent Techonologies
600 Mountain Avenue
Murray Hill. NJ 07974
USA

S. Sheather
Australian Graduate School

of Management
Universi ty of New South Wales
Sydney, NSW 2052
Australia

W. Eddy
Department of Statistics
Carnegie Mellon Universi ty
Pittsburgh, PA
USA

W, Hardle
Institut fiir Slatistik und Okonnmetrie
Humboldt-University
Spandaucr .Str. I
D-10178 Berlin
Germany

L. Tiemey
Sclool of Statistics and Actuarial Science
Universily of Iowa
lowa City. IA 52242-1414
USA

Library of Congress Cataloging-in-Puhlication Data
Gentle, James E.. 1943--

Random number generation and Monte Carlo methods / James H. Gentle.
p. cm. — (Statistics and computing)

Includes bibliographical references and index
ISBN 0-3S7-OOI78-6 (alk, paper)

1. Monte (,Carlo method. 2. Random number generators. I. Title. [I. Series.
(QA2298 ,(G46 2003
519 .2'82—dc21 2003042437

ISBN 0-387-0017-6 e-ISBN 0-387-21610 Printed on acid-free paper

CO 2003, 3l')'1998 Springer Science Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in pan without the
written permission of the publisher (Springer Science Business Media, Inc., 233 Spring Strcoi, New
York, NY 10013, USA), except for brief excerpts in connection wish reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-
bidden.
The use in (his publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject In proprietary rights.

Printed in the United States of America. (HID

9 S 7 6 5 4 3 2 Corrected second printing, 2005.

springeronline.cnm

SPIN 11016038

To Maria

This page intentionally left blank

Preface

The role of Monte Carlo methods and simulation in all of the sciences has
increased in importance during the past several years. This edition incorporates
discussion of many advances in the field of random number generation and
Monte Carlo methods since the appearance of the first edition of this book in
1998.

These methods play a central role in the rapidly developing subdisciplines
of the computational physical sciences, the computational life sciences, and
the other computational sciences. The growing power of computers and the
evolving simulation methodology have led to the recognition of computation
as a third approach for advancing the natural sciences, together with theory
and traditional experimentation. At the kernel of Monte Carlo simulation is
random number generation.

Generation of random numbers is also at the heart of many standard sta-
tistical methods. The random sampling required in most analyses is usually
done by the computer. The computations required in Bayesian analysis have
become viable because of Monte Carlo methods. This has led to much wider
applications of Bayesian statistics, which, in turn, has led to development of
new Monte Carlo methods and to refinement of existing procedures for random
number generation.

Various methods for generation of random numbers have been used. Some-
times, processes that are considered random are used, but for Monte Carlo
methods, which depend on millions of random numbers, a physical process as a
source of random numbers is generally cumbersome. Instead of “random” num-
bers, most applications use “pseudorandom” numbers, which are deterministic
but “look like” they were generated randomly. Chapter 1 discusses methods
for generation of sequences of pseudorandom numbers that simulate a uniform
distribution over the unit interval (0, 1). These are the basic sequences from
which are derived pseudorandom numbers from other distributions, pseudoran-
dom samples, and pseudostochastic processes.

In Chapter 1, as elsewhere in this book, the emphasis is on methods that
work. Development of these methods often requires close attention to details.
For example, whereas many texts on random number generation use the fact
that the uniform distribution over (0, 1) is the same as the uniform distribu-
tion over (0, 1] or [0, 1], I emphasize the fact that we are simulating this dis-

vii

viii PREFACE

tribution with a discrete set of “computer numbers”. In this case whether 0
and/or 1 is included does make a difference. A uniform random number gen-
erator should not yield a 0 or 1. Many authors ignore this fact. I learned
it over twenty years ago, shortly after beginning to design industrial-strength
software.

The Monte Carlo methods raise questions about the quality of the pseudo-
random numbers that simulate physical processes and about the ability of those
numbers to cover the range of a random variable adequately. In Chapter 2, I
address some issues of the quality of pseudorandom generators.

Chapter 3 describes some of the basic issues in quasirandom sequences.
These sequences are designed to be very regular in covering the support of the
random process simulated.

Chapter 4 discusses general methods for transforming a uniform random de-
viate or a sequence of uniform random deviates into a deviate from a different
distribution. Chapter 5 describes methods for some common specific distribu-
tions. The intent is not to provide a compendium in the manner of Devroye
(1986a) but, for many standard distributions, to give at least a simple method
or two, which may be the best method, but, if the better methods are quite
complicated, to give references to those methods. Chapter 6 continues the de-
velopments of Chapters 4 and 5 to apply them to generation of samples and
nonindependent sequences.

Chapter 7 considers some applications of random numbers. Some of these
applications are to solve deterministic problems. This type of method is called
Monte Carlo.

Chapter 8 provides information on computer software for generation of ran-
dom variates. The discussion concentrates on the S-Plus, R, and IMSL software
systems.

Monte Carlo methods are widely used in the research literature to evaluate
properties of statistical methods. Chapter 9 addresses some of the considera-
tions that apply to this kind of study. I emphasize that a Monte Carlo study
uses an experiment, and the principles of scientific experimentation should be
observed.

The literature on random number generation and Monte Carlo methods is
vast and ever-growing. There is a rather extensive list of references beginning
on page 336; however, I do not attempt to provide a comprehensive bibliography
or to distinguish the highly-varying quality of the literature.

The main prerequisite for this text is some background in what is generally
called “mathematical statistics”. In the discussions and exercises involving mul-
tivariate distributions, some knowledge of matrices is assumed. Some scientific
computer literacy is also necessary. I do not use any particular software system
in the book, but I do assume the ability to program in either Fortran or C
and the availability of either S-Plus, R, Matlab, or Maple. For some exercises,
the required software can be obtained from either statlib or netlib (see the
bibliography).

The book is intended to be both a reference and a textbook. It can be

PREFACE ix

used as the primary text or a supplementary text for a variety of courses at the
graduate or advanced undergraduate level.

A course in Monte Carlo methods could proceed quickly through Chapter
1, skip Chapter 2, cover Chapters 3 through 6 rather carefully, and then, in
Chapter 7, depending on the backgrounds of the students, discuss Monte Carlo
applications in specific fields of interest. Alternatively, a course in Monte Carlo
methods could begin with discussions of software to generate random numbers,
as in Chapter 8, and then go on to cover Chapters 7 and 9. Although the
material in Chapters 1 through 6 provides the background for understanding
the methods, in this case the details of the algorithms are not covered, and the
material in the first six chapters would only be used for reference as necessary.

General courses in statistical computing or computational statistics could
use the book as a supplemental text, emphasizing either the algorithms or the
Monte Carlo applications as appropriate. The sections that address computer
implementations, such as Section 1.2, can generally be skipped without affecting
the students’ preparation for later sections. (In any event, when computer
implementations are discussed, note should be taken of my warnings about
use of software for random number generation that has not been developed by
software development professionals.)

In most classes that I teach in computational statistics, I give Exercise 9.3
in Chapter 9 (page 311) as a term project. It is to replicate and extend a Monte
Carlo study reported in some recent journal article. In working on this exercise,
the students learn the sad facts that many authors are irresponsible and many
articles have been published without adequate review.

Acknowledgments

I thank John Kimmel of Springer for his encouragement and advice on this book
and other books on which he has worked with me. I thank Bruce McCullough
for comments that corrected some errors and improved clarity in a number of
spots. I thank the anonymous reviewers of this edition for their comments and
suggestions. I also thank the many readers of the first edition who informed me
of errors and who otherwise provided comments or suggestions for improving
the exposition. I thank my wife Maŕıa, to whom this book is dedicated, for
everything.

I did all of the typing, programming, etc., myself, so all mistakes are mine.
I would appreciate receiving suggestions for improvement and notice of errors.
Notes on this book, including errata, are available at

http://www.science.gmu.edu/~jgentle/rngbk/

Fairfax County, Virginia James E. Gentle
April 10, 2003

This page intentionally left blank

Contents

Preface vii

1 Simulating Random Numbers from a Uniform Distribution 1
1.1 Uniform Integers and an Approximate

Uniform Density . 5
1.2 Simple Linear Congruential Generators 11

1.2.1 Structure in the Generated Numbers 14
1.2.2 Tests of Simple Linear Congruential Generators 20
1.2.3 Shuffling the Output Stream 21
1.2.4 Generation of Substreams in Simple Linear

Congruential Generators 23
1.3 Computer Implementation of Simple Linear

Congruential Generators . 27
1.3.1 Ensuring Exact Computations 28
1.3.2 Restriction that the Output Be in the

Open Interval (0, 1) . 29
1.3.3 Efficiency Considerations 30
1.3.4 Vector Processors . 30

1.4 Other Linear Congruential Generators 31
1.4.1 Multiple Recursive Generators 32
1.4.2 Matrix Congruential Generators 34
1.4.3 Add-with-Carry, Subtract-with-Borrow, and

Multiply-with-Carry Generators 35
1.5 Nonlinear Congruential Generators 36

1.5.1 Inversive Congruential Generators 36
1.5.2 Other Nonlinear Congruential Generators 37

1.6 Feedback Shift Register Generators 38
1.6.1 Generalized Feedback Shift Registers and Variations . . . 40
1.6.2 Skipping Ahead in GFSR Generators 43

1.7 Other Sources of Uniform Random Numbers 43
1.7.1 Generators Based on Cellular Automata 44
1.7.2 Generators Based on Chaotic Systems 45
1.7.3 Other Recursive Generators 45

xi

xii CONTENTS

1.7.4 Tables of Random Numbers 46
1.8 Combining Generators . 46
1.9 Properties of Combined Generators 48
1.10 Independent Streams and Parallel Random Number Generation . 51

1.10.1 Skipping Ahead with Combination Generators 52
1.10.2 Different Generators for Different Streams 52
1.10.3 Quality of Parallel Random Number Streams 53

1.11 Portability of Random Number Generators 54
1.12 Summary . 55
Exercises . 56

2 Quality of Random Number Generators 61
2.1 Properties of Random Numbers 62
2.2 Measures of Lack of Fit . 64

2.2.1 Measures Based on the Lattice Structure 64
2.2.2 Differences in Frequencies and Probabilities 67
2.2.3 Independence . 70

2.3 Empirical Assessments . 71
2.3.1 Statistical Goodness-of-Fit Tests 71
2.3.2 Comparisons of Simulated Results with

Statistical Models in Physics 86
2.3.3 Anecdotal Evidence . 86
2.3.4 Tests of Random Number Generators Used in Parallel . . 87

2.4 Programming Issues . 87
2.5 Summary . 87
Exercises . 88

3 Quasirandom Numbers 93
3.1 Low Discrepancy . 93
3.2 Types of Sequences . 94

3.2.1 Halton Sequences . 94
3.2.2 Sobol’ Sequences . 96
3.2.3 Comparisons . 97
3.2.4 Variations . 97
3.2.5 Computations . 98

3.3 Further Comments . 98
Exercises . 100

4 Transformations of Uniform Deviates: General Methods 101
4.1 Inverse CDF Method . 102
4.2 Decompositions of Distributions 109
4.3 Transformations that Use More than One Uniform Deviate . . . 111
4.4 Multivariate Uniform Distributions with Nonuniform Marginals . 112
4.5 Acceptance/Rejection Methods 113
4.6 Mixtures and Acceptance Methods 125

CONTENTS xiii

4.7 Ratio-of-Uniforms Method . 129
4.8 Alias Method . 133
4.9 Use of the Characteristic Function 136
4.10 Use of Stationary Distributions of Markov Chains 137
4.11 Use of Conditional Distributions 149
4.12 Weighted Resampling . 149
4.13 Methods for Distributions with Certain Special Properties 150
4.14 General Methods for Multivariate Distributions 155
4.15 Generating Samples from a Given Distribution 159
Exercises . 159

5 Simulating Random Numbers from Specific Distributions 165
5.1 Modifications of Standard Distributions 167
5.2 Some Specific Univariate Distributions 170

5.2.1 Normal Distribution . 171
5.2.2 Exponential, Double Exponential, and Exponential

Power Distributions . 176
5.2.3 Gamma Distribution . 178
5.2.4 Beta Distribution . 183
5.2.5 Chi-Squared, Student’s t, and F Distributions 184
5.2.6 Weibull Distribution . 186
5.2.7 Binomial Distribution . 187
5.2.8 Poisson Distribution . 188
5.2.9 Negative Binomial and Geometric Distributions 188
5.2.10 Hypergeometric Distribution 189
5.2.11 Logarithmic Distribution 190
5.2.12 Other Specific Univariate Distributions 191
5.2.13 General Families of Univariate Distributions 193

5.3 Some Specific Multivariate Distributions 197
5.3.1 Multivariate Normal Distribution 197
5.3.2 Multinomial Distribution 198
5.3.3 Correlation Matrices and Variance-Covariance Matrices . 198
5.3.4 Points on a Sphere . 201
5.3.5 Two-Way Tables . 202
5.3.6 Other Specific Multivariate Distributions 203
5.3.7 Families of Multivariate Distributions 208

5.4 Data-Based Random Number Generation 210
5.5 Geometric Objects . 212
Exercises . 213

6 Generation of Random Samples, Permutations, and
Stochastic Processes 217
6.1 Random Samples . 217
6.2 Permutations . 220
6.3 Limitations of Random Number Generators 220

xiv CONTENTS

6.4 Generation of Nonindependent Samples 221
6.4.1 Order Statistics . 221
6.4.2 Censored Data . 223

6.5 Generation of Nonindependent Sequences 224
6.5.1 Markov Process . 224
6.5.2 Nonhomogeneous Poisson Process 225
6.5.3 Other Time Series Models 226

Exercises . 227

7 Monte Carlo Methods 229
7.1 Evaluating an Integral . 230
7.2 Sequential Monte Carlo Methods 233
7.3 Experimental Error in Monte Carlo Methods 235
7.4 Variance of Monte Carlo Estimators 236
7.5 Variance Reduction . 239

7.5.1 Analytic Reduction . 240
7.5.2 Stratified Sampling and Importance Sampling 241
7.5.3 Use of Covariates . 245
7.5.4 Constrained Sampling . 248
7.5.5 Stratification in Higher Dimensions:

Latin Hypercube Sampling 248
7.6 The Distribution of a Simulated Statistic 249
7.7 Computational Statistics . 250

7.7.1 Monte Carlo Methods for Inference 251
7.7.2 Bootstrap Methods . 252
7.7.3 Evaluating a Posterior Distribution 255

7.8 Computer Experiments . 256
7.9 Computational Physics . 257
7.10 Computational Finance . 261
Exercises . 271

8 Software for Random Number Generation 283
8.1 The User Interface for Random Number Generators 285
8.2 Controlling the Seeds in Monte Carlo Studies 286
8.3 Random Number Generation in Programming Languages 286
8.4 Random Number Generation in IMSL Libraries 288
8.5 Random Number Generation in S-Plus and R 291
Exercises . 295

9 Monte Carlo Studies in Statistics 297
9.1 Simulation as an Experiment . 298
9.2 Reporting Simulation Experiments 300
9.3 An Example . 301
Exercises . 310

A Notation and Definitions 313

CONTENTS xv

B Solutions and Hints for Selected Exercises 323

Bibliography 331
Literature in Computational Statistics 332
World Wide Web, News Groups, List Servers, and Bulletin Boards . . 334
References for Software Packages . 336
References to the Literature . 336

Author Index 371

Subject Index 377

This page intentionally left blank

Chapter 1

Simulating Random
Numbers from a Uniform
Distribution

Introduction

Because many statistical methods rely on random samples, applied statisticians
often need a source of “random numbers”. Older reference books for use in sta-
tistical applications contained tables of random numbers, which were intended
to be used in selecting samples or in laying out a design for an experiment. Sta-
tisticians now rarely use printed tables of random numbers, but occasionally
computer-accessed versions of such tables are used. Far more often, however,
the computer is used to generate “random” numbers directly.

The use of random numbers in statistics has expanded beyond random sam-
pling or random assignment of treatments to experimental units. More common
uses now are in simulation studies of stochastic processes, analytically intrac-
table mathematical expressions, or a population by resampling from a given
sample from that population. Although we do not make precise distinctions
among the terms, these three general areas of application are sometimes called
“simulation”, “Monte Carlo”, and “resampling”.

In engineering and the natural sciences, simulation is used extensively in
studying physical and biological processes. Other common uses of random
numbers are in cryptography. Applications in cryptography require somewhat
different criteria for random numbers than those used in simulation. In this
book, we consider the cryptographic criteria only in passing.

1

2 CHAPTER 1. UNIFORM DISTRIBUTION

Randomness and Pseudorandomness

The digital computer cannot generate random numbers, and it is generally not
convenient to connect the computer to some external source of random events.
For most applications in statistics, engineering, and the natural sciences, this is
not a disadvantage if there is some source of pseudorandom numbers, samples
of which seem to be randomly drawn from some known distribution. There
are many methods that have been suggested for generating such pseudorandom
numbers.

It should be noted that there are two issues: randomness and knowledge
of the distribution. Although, at least heuristically, there are many external
physical processes that could perhaps be used as sources of random numbers—
rather than pseudorandom numbers—there would still be the issue of what is
the distribution of the realizations of that external random process. For random
numbers to be useful in general applications, their distribution must be known.
Other issues to consider for an external process are the independence of consec-
utive realizations and the constancy of the distribution. For random numbers
to be useful, they usually must be identically and independently distributed
(i.i.d.).

The most commonly used generator that is truly random according to gener-
ally accepted understandings of that concept is a substance undergoing atomic
decay. The subatomic particles comprising the decaying substance transmute
into other particles at random points in time. At a macro level (that is, given an
amount of the substance that contains a very large number of atoms), both the-
ory and empirical observations suggest that there are no dependencies among
consecutive events and that the process is constant over sufficiently short time
intervals. (“Sufficiently short” can be several years.) If we can measure the
times between the events, and if the process is stationary, we can form a ran-
dom variable with a known distribution. For observed intervals between events,
s1, s2, . . ., let

X = 1 if s2i−1 < s2i;
= 0 otherwise.

Then, X is a random variable with a Bernoulli distribution with probability
parameter 0.5. This random variable can be transformed easily into other
random variables. For example, a discrete uniform distribution over the set of
all numbers between 0 and 1 that have a d-bit terminating binary representation
can be generated by taking successive realizations of the Bernoulli.

The difficulty in using a generator based on atomic decay of course is mea-
suring the time intervals and inputting those measurements into the computer.
John Walker at his Fourmilab has assembled a radiation source (krypton-85), a
sensor/timer, and a computer to obtain realizations of Bernoulli random vari-
ables. A file containing a random sample can be obtained at

http://www.fourmilab.ch/hotbits/

INTRODUCTION 3

Each sample is generated in response to the user’s request, so the samples are
unique.

Physical processes on the user’s computer can also be used to generate
random data. There are many ways to do this. For example, Davis, Ihaka,
and Fenstermacher (1994) describe a method of using randomness in the air
turbulence of disk drives. Toshiba produces a commercial product, Random
Master, that uses thermal noise in a semiconductor to generate uniform random
sequences. Random Master is packaged as a PCI board compatible with a range
of computer architectures from personal computers to supercomputers.

There are many issues to consider in developing “truly random” generators.
Our interest in this chapter will be in deterministic generators that can be
implemented in ordinary computer programs. The output of such generators is
pseudorandom.

Multiple Recursion

The most useful type of generator of pseudorandom processes updates a cur-
rent sequence of numbers in a manner that appears to be random. Such a
deterministic generator, f , yields numbers recursively, in a fixed sequence. The
previous k numbers (often just the single previous number) determine(s) the
next number:

xi = f(xi−1, · · · , xi−k). (1.1)

The number of previous numbers used, k, is called the “order” of the generator.
Because the set of numbers directly representable in the computer is finite, the
sequence will repeat.

The set of values at the start of the recursion is called the seed. Each time
the recursion is begun with the same seed, the same sequence is generated.

The length of the sequence prior to beginning to repeat is called the period
or cycle length. (Sometimes, it is necessary to be more precise in defining the
period to account for the facts that, with some generators, different starting
subsequences will yield different periods and that the repetition may begin
without returning to the initial state.)

Predictability

Random number generation has applications in cryptography, where the re-
quirements for “randomness” are generally much more stringent than for or-
dinary applications in simulation. In cryptography, the objective is somewhat
different, leading to a dynamic concept of randomness that is essentially one
of predictability: a process is “random” if the known conditional probability of
the next event, given the previous history (or any other information, for that
matter), is no different from the known unconditional probability. (The condi-
tion of being “known” in such a definition is a primitive—undefined—concept.)
This kind of definition leads to the concept of a “one-way function” (see Luby,
1996). A one-way function is a function f such that, for any x in its domain,

4 CHAPTER 1. UNIFORM DISTRIBUTION

f(x) can be computed in polynomial time and, given f(x), x cannot be com-
puted in polynomial time. (“Polynomial time” means that the time required
can be expressed as or bounded by a polynomial in some measure of the size
of the problem.) In random number generation, the function of interest yields
a stream of “unpredictable” numbers; that is, the function f in equation (1.1)
is easily computable but xi−1, given xi, . . . , xi−k , is not easily computable.
The existence of a one-way function has not been proven, but the generator
of Blum, Blum, and Shub (1986) (see page 37) is unpredictable under certain
assumptions.

Boyar (1989) and Krawczyk (1992) consider the general problem of predict-
ing the output of pseudorandom number generators. They define the problem as
a game in which a predictor produces a guess of the next value to be generated
and the generator then provides the value. If the period of the generator is p,
then clearly a naive guessing scheme would become successful after p guesses.
For certain kinds of common generators, Boyar (1989) and Krawczyk (1992)
give methods for predicting the output in which the number of guesses can be
bounded by a polynomial in log p. The reader is referred to those papers for
the details.

A simple approach to unpredictability has been described and implemented
by André Seznec and Nicolas Sendrier. They suggest use of computer system
state information that is available to the user to generate starting values for
pseudorandom number generators. They have developed a system-dependent
method, HAVEGE (for “HArdware Volatile Entropy Gathering and Expan-
sion”), to access the system state for a variety of types of computers. The
number of possible states is very large and on current systems changes at a rate
of over 100 megabits per second. More information on HAVEGE and programs
implementing the method are available at

http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html

A survey of some uses of random numbers in cryptography is available in
Lagarias (1993), and additional discussion of the applications of pseudorandom-
ness in cryptography is provided by Luby (1996).

Terminology Used in This Book

Although we understand that the generated stream of numbers is really only
pseudorandom, in this book we usually use just the term “random”, except
when we want to emphasize the fact that the process is not really random, and
then we use the term “pseudorandom”. Pseudorandom numbers are meant to
simulate random sampling. Generating pseudorandom numbers is the subject
of this chapter. In Chapter 3, we consider an approach that seeks to ensure
that, rather than appearing to be a random sample, the generated numbers are
spread out more uniformly over their range. Such a sequence of numbers is
called a quasirandom sequence.

We use the terms “random number generation” (or “generator”) and “sam-
pling” (or “sampler”) interchangeably.

1.1. AN APPROXIMATE UNIFORM DENSITY 5

Another note on terminology: Some authors distinguish “random numbers”
from “random variates”. In their usage, the term “random numbers” applies
to pseudorandom numbers that arise from a uniform distribution, and the term
“random variates” applies to pseudorandom numbers from some other distrib-
ution. Some authors use the term “random variates” only when those numbers
resulted from transformations of “random numbers” from a uniform distribu-
tion. I do not understand the motivation for these distinctions, so I do not make
them. In this book, “random numbers” and “random variates”, as well as the
additional term “random deviates”, are all used interchangeably. I generally
use the term “random variable” with its usual meaning, which is different from
the meaning of the other terms. Random numbers or random variates simulate
realizations of random variables. I will also generally follow the notational con-
vention of using capital Latin letters for random variables and corresponding
lowercase letters for their realizations.

1.1 Uniform Integers and an Approximate

Uniform Density

In most cases, we want the generated pseudorandom numbers to simulate a
uniform distribution over the unit interval (0, 1) (that is, the distribution with
the probability density function),

p(x) = 1 if 0 < x < 1;
= 0 otherwise.

We denote this distribution by U(0, 1). More generally, we use the notation
U(a, b) to denote the absolutely continuous uniform distribution over the inter-
val (a, b). The uniform distribution is a convenient one to work with because
there are many simple techniques to transform the uniform samples into samples
from other distributions of interest.

Computer Arithmetic

In generating pseudorandom numbers on the computer, we usually first generate
pseudorandom integers over some fixed range and then scale them into the
interval (0, 1). The set of integers available is denoted by II (see page 315
for brief discussions of computer numbers). If the range of the integers is
large enough, the resulting granularity is of little consequence in modeling a
continuous distribution. (“Granularity” refers to the discrete nature of the set
of numbers. The granularity is greater when the distances between successive
numbers in the set are greater.) The granularity of pseudorandom numbers
from good generators is no greater than the granularity of the numbers with
which the computer ordinarily works.

In the standard model for floating-point representation of numbers with base
or radix b and p positions in the significand, we approximate any real number

6 CHAPTER 1. UNIFORM DISTRIBUTION

by
±(d1b

e−1 + d2b
e−2 + · · · + dpb

e−p), (1.2)

which we may write as
±0.d1d2 · · · dp × be,

where each dj is a nonnegative integer less than b, and e is an integer between the
fixed numbers emin and emax inclusive (see Gentle, 1998, pages 7–11 for further
discussion of this representation and the number system that it supports). In
the most common computer systems, b = 2.

We denote the finite subset of the reals, IR, that is representable in this form
as IF. This set, together with two operations that are similar to the addition
and multiplication that determine the field IR, constitutes a rather complicated
object that we also denote by IF. This object is similar to a field, but it is not
one. (Note that we overload symbols to represent both a set and an object that
consists of the set plus some operations.)

In this representation for the elements of a subset of the real numbers, the
smallest and largest numbers in the interval (0, 1) that can be represented are
bemin−p and 1− b−p, respectively. The computer numbers that approximate the
real numbers in the open interval (0, 1) are therefore a finite subset of the closed
interval [bemin−p, 1 − b−p], which is

S = ∪p−1
i=emin

[bi−p, bi+1−p] \ {1}. (1.3)

The number of representable real numbers is finite, and they are not uniformly
distributed over S.

For emin ≤ j ≤ emax − 1, the numbers in the interval [bj , bj+1] are approxi-
mated in the computer by numbers from the discrete set

{bj , bj + bj+1−p, . . . , (b − 1)bj + (b − 1)bj−1 + · · · + (b − 1)bj+1−p, bj+1}.

An ideal uniform generator would produce output such that, for a given
value of e ≤ 0, the distribution of each digit in the representation (1.2) is
independent of the other p − 1 digits and has a discrete uniform distribution
over the set {0, . . . , b − 1}. If X is a random variable whose representation in
the form (1.2) has e = 0 and has independent discrete uniform distributions for
the digits, then

E(X) ≈ 1/2 (1.4)

and
V(X) ≈ 1/12 (1.5)

where E(X) represents the expectation of X , and V(X) represents the variance
of X . The approximations (1.4) and (1.5) are slightly greater than the true
values. If the restriction is added that 0.0 · · · 0 is not allowed, then E(X) = 1/2.
The expectation and variance of a random variable with a U(0, 1) distribution
are 1/2 and 1/12, respectively.

1.1. AN APPROXIMATE UNIFORM DENSITY 7

In numerical analysis, although we may not be able to deal with the num-
bers in the interval (1− b−p, 1), we do expect to be able to deal with numbers
in the interval (0, b−p), which is of the same length. (This is because, usually,
relative differences are more important than absolute differences.) A random
variable such as X above, defined on the computer numbers with e = 0, is not
adequate for simulating a U(0, 1) random variable. Although the density of
computer numbers near 0 is greater than that of the numbers near 1, a good
random number generator will yield essentially the same proportion of numbers
in the interval (0, kε) as in the interval (1−kε, 1), where k is some small number
such as 3 or 4, and ε = b−p, which is a machine epsilon. (The phrase “machine
epsilon” is used in at least two different ways. In general, the machine epsilon
is a measure of the relative spacing of computer numbers. This is just the
difference between 1 and the two numbers on either side of 1 in the set of com-
puter numbers. The difference between 1 and the next smallest representable
number is the machine epsilon used above. It is also called the smallest relative
spacing. The difference between 1 and the next largest representable number
is another machine epsilon. It is also called the largest relative spacing.) If
random numbers on the computer were to be generated by generating the com-
ponents of equation (1.2) directly, we would have to use a rather complicated
joint distribution on e and the ds.

Modular Arithmetic

The standard methods of generating pseudorandom numbers use modular re-
duction in congruential relationships. There are currently two basic techniques
in common use for generating uniform random numbers: congruential methods
and feedback shift register methods. For each basic technique there are many
variations. (Both classes of methods use congruential relationships, but for his-
torical reasons only one of the classes of methods is referred to as “congruential
methods”.)

Both the congruential and feedback shift register methods use modular arith-
metic, so we now describe a few of the properties of this arithmetic. For more
details on general properties, the reader is referred to Ireland and Rosen (1991),
Fang and Wang (1994), or some other text on number theory. Zaremba (1972)
and Fang and Wang (1994) discuss several specific applications of number the-
ory in random number generation and other areas of numerical analysis.

The basic relation of modular arithmetic is equivalence modulo m, where m
is some integer. This is also called congruence modulo m. Two numbers are
said to be equivalent, or congruent, modulo m if their difference is an integer
evenly divisible by m. For a and b, this relation is written as

a ≡ b modm.

For example, 5 and 14 are congruent modulo 3 (or just “mod 3”); 5 and −1 are
also congruent mod 3. Likewise, 1.33 and 0.33 are congruent mod 1. It is clear
from the definition that congruence is

8 CHAPTER 1. UNIFORM DISTRIBUTION

• symmetric:
a ≡ b modm implies b ≡ a mod m

• reflexive:
a ≡ a mod m for any a

• transitive:
a ≡ b modm and b ≡ c mod m implies a ≡ c mod m;

that is, congruence is an equivalence relationship.
A basic operation of modular arithmetic is reduction modulo m; that is, for

a given number b, find a such that a ≡ b modm and 0 ≤ a < m. If a satisfies
these two conditions, then a is called the residue of b modulo m. The residues
form equivalence classes.

Reduction of b modulo m can also be defined as

a = b − �b/m�m,

where the floor function �·� is the greatest integer less than or equal to the
argument.

From the definition of congruence, we see that the numbers a and b are
congruent modulo m if and only if there exists an integer k such that

km = a − b.

(In this expression, a and b are not necessarily integers, but m and k are.) This
consequence of congruence is very useful in determining equivalence relation-
ships. For example, using this property, it is easy to see that modular reduction
distributes over both addition and multiplication:

(a + b) mod m ≡ a modm + b modm

and
ab mod m ≡ (a mod m) (b mod m).

For a given modulus m, each set of integers that are equivalent modulo m
forms a residue class modulo m. For m = 5, there are five residue classes:

{· · · , −10, −5, 0, 5, 10, · · ·}
{· · · , −9, −4, 1, 6, 11, · · ·}
{· · · , −8, −3, 2, 7, 12, · · ·}
{· · · , −7, −2, 3, 8, 13, · · ·}
{· · · , −6, −1, 4, 9, 14, · · ·}

For any integer m �= 0, there are |m| residue classes, and the union of all |m|
residue classes is the set of all integers. (In the following, we will deal only with
moduli that are positive.) In applications, the residue classes whose members
are relatively prime to m are important. The number of such residue classes is of

1.1. AN APPROXIMATE UNIFORM DENSITY 9

course just the number of positive integers less than m that are relatively prime
to m. The function that assigns to m the number of residue classes (mod m)
that are relatively prime to m is called Euler’s totient function and is denoted
by φ(m). Of the residue classes mod 5, four of them are relatively prime to 5,
and for any prime m, we have φ(m) = m − 1. The totient function plays an
important role in determining the period of some random number generators.

A useful fact that is easy to see is that if p is a prime and e is a positive
integer, then

φ(pe) = pe−1(p − 1). (1.6)

Another useful fact that is a little more difficult to show (see Ireland and Rosen,
1991) is that if n and m are relatively prime, then

φ(nm) = φ(n)φ(m). (1.7)

With these two facts, we can evaluate φ at any positive integer.

Finite Fields

A system of modular arithmetic is usually defined on nonnegative integers.
Modular reduction together with the two operations of the ring results in a
finite field (or Galois field) on a set of integers. The cardinality of the field
is less than or equal to m and is equal to m if and only if m is a prime. We
will denote a Galois field over a set with m elements as IG(m). If m = 5, for
example, a finite field is defined on the set {0, 1, 2, 3, 4} with the addition and
multiplication of the field being defined in the usual way followed by a reduction
modulo 5. If m = 6, however, a finite field can be defined on the set {0, 2, 4},
the set {0, 3}, or the set {0, 1, 5}, again with addition and multiplication being
defined in the usual way followed by a reduction modulo 6.

Simple random number generators based on congruential methods com-
monly use a finite field of integers consisting of the nonnegative integers that
are directly representable in the computer (that is, of about 231 integers).

Modular Reduction in the Computer

Modular reduction is a binary operation, or a function with two arguments. In
the C programming language, the operation is represented as “b%m”. (There
is no obvious relation of the symbolic value of “%” to the modular operation.
No committee passed judgment on this choice before it became a standard
part of the language. Sometimes, design by committee helps.) In Fortran, the
operation is specified by the function “mod(b,m)”, in Matlab by the function
“rem(b,m)”, and in Maple by “b mod m”. There is no modulo function in S-
Plus, but the operation can be implemented using the “floor” function, as was
shown above.

Modular reduction can be performed by using the lower-order digits of the
representation of a number in a given base. For example, taking the two lower-
order digits of the ordinary base-ten representation of a negative integer yields

10 CHAPTER 1. UNIFORM DISTRIBUTION

the decimal representation of the number reduced modulo 100. When numbers
represented in a fixed-point scheme in the computer are multiplied, except for
consideration of a sign bit, the product when stored in the same fixed-point
scheme is the residue of the product modulo the largest representable number.
In a twos-complement representation, if the sign bit is changed, the meaning of
the remaining bits is changed. For positive integers x and y represented in the
fixed-point variables ix and iy in 32-bit twos-complement, the product

iz = ix*iy

contains either xy mod 231 or xy mod 231 − 231, which is negative.
Because the pseudorandom numbers that we wish to generate are between 0

and 1, in some algorithms reduction modulo 1 is used. The resultants are the
fractional parts of real numbers.

Modular Arithmetic with Uniform Random Variables

Modular arithmetic has some useful applications with true random variables
also. An interesting fact, for example, is that if Y is a random variable distrib-
uted as U(0, 1) and

X ≡ (kY + c) mod 1, (1.8)

where k is an integer constant not equal to 0, and c is a real constant, then
X has a U(0, 1) distribution. (You are asked to show this in Exercise 1.4a,
page 57.) Modular arithmetic can also be used to generate two independent
random numbers from a single random number. If

±0.d1d2d3 · · ·

is the representation, in a given base, of a uniform random number Y , then any
subsequence of the digits d1, d2, . . . can be used to form other uniform numbers.
(If the subsequence is finite, as of course it is in computer applications, the
numbers are discrete uniform, but if the subsequence is long enough, the result
is considered continuous uniform.) Furthermore, any two disjoint subsequences
can be used to form independent random numbers.

The sequence of digits d1, d2, . . . can be rearranged to form more than one
uniform variate; for example,

±0.d1d3d5 · · ·

and
±0.d2d4d6 · · · .

The use of subsequences of bits in a fixed-point binary representation of pseudo-
random numbers to form other pseudorandom numbers is called bit stripping.

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 11

1.2 Simple Linear Congruential Generators

D. H. Lehmer in 1948 (see Lehmer, 1951) proposed a simple linear congruential
generator as a source of random numbers. In this generator, each single number
determines its successor by means of a simple linear function followed by a
modular reduction. Although this generator is limited in its ability to produce
very long streams of numbers that appear to be independent realizations of
a uniform process, it is a basic element in other, more adequate generators.
Understanding its properties is necessary in order to use it to build better
generators.

The form of the linear congruential generator is

xi ≡ (axi−1 + c) mod m, with 0 ≤ xi < m; (1.9)

a is called the “multiplier”, c is called the “increment”, and m is called the
“modulus” of the generator. Often, c in equation (1.9) is taken to be 0, and, in
this case, the generator is called a “multiplicative congruential generator”:

xi ≡ axi−1 mod m, with 0 < xi < m. (1.10)

For c �= 0, the generator is sometimes called a “mixed congruential generator”.
The seed for this generator is just the single starting value in the recursion, x0.
A sequence resulting from the recursion (1.9) is called a Lehmer sequence. Each
xi is scaled into the unit interval (0,1) by division by m, that is,

ui = xi/m.

If a and m are properly chosen, the uis will “look like” they are randomly and
uniformly distributed between 0 and 1.

The recurrence in (1.10) for the integers is equivalent to the recurrence

ui ≡ aui−1 mod 1, with 0 < ui < 1.

This recurrence has some interesting relationships to the first-order linear au-
toregressive model

Ui = ρui−1 + Ei,

where ρ is the autoregressive coefficient and Ei is a random variable with a
U(0, 1) distribution (see Lawrance, 1992).

Period

Because xi is determined by xi−1 and since there are only m possible different
values of the xs, the maximum period or cycle length of the linear congruential
generator is m. Also, since xi−1 = 0 cannot be allowed in a multiplicative
generator, the maximum period of the multiplicative congruential generator is
m − 1.

12 CHAPTER 1. UNIFORM DISTRIBUTION

When computing was expensive, values of m used in computer programs
were often powers of 2. Such values could result in faster computer arithmetic.
The maximum period of multiplicative generators with such moduli is m/4,
and, interestingly, this period is achieved for any multiplier that is ± 3 mod 8
(see Knuth, 1998).

The period of a multiplicative congruential generator with multiplier a and
modulus m depends on the smallest positive value of k for which

ak ≡ 1 mod m. (1.11)

This is because when that relationship is satisfied, the sequence begins to re-
peat. The period, therefore, can be no greater than k. The Euler–Fermat
Theorem (see Ireland and Rosen, 1991) states that if a and m are relatively
prime, then aφ(m) ≡ 1 modm, where φ(m) is the Euler totient function. The
period, therefore, can be no greater than φ(m). For a given value of m, we seek
a such that k in equation (1.11) is φ(m). Such a number a is called a primitive
root modulo m. (See Ireland and Rosen, 1991, or other texts on number theory
for general discussions of primitive roots; see Fuller, 1976, for methods to de-
termine whether a number is a primitive root; and see Exercise 1.14, page 59,
for some computations.) If m is a prime, the number of primitive roots modulo
m is φ(m − 1).

For example, consider m = 31 and a = 7, that is,

xi ≡ 7xi−1 mod 31,

and begin with x0 = 19. The next integers in the sequence are

9, 1, 7, 18, 2, 14, 5, 4, 28, 10, 8, 25, 20, 16, 19,

so, of course, at this point the sequence begins to repeat. The period is 15. We
have

715 ≡ 1 mod31,

that is, 7 is not a primitive root modulo 31.
Now consider m = 31 and a = 3, and again begin with x0 = 19. We go

through 30 numbers before we get back to 19. This is because 3 is a primitive
root modulo 31. There are φ(30) = 8 primitive roots modulo 31.

It turns out that m has a primitive root if and only if m is of the form
2e0pe1 , where p is an odd prime, e0 = 0 or 1, and e1 ≥ 1.

For any m, it is of interest to determine an a such that k is as large as
possible for that m. Such a number a is called a primitive element modulo m.
For m of the general form 2e0pe1

1 · · · pet
t , where each pi is an odd prime and each

ei ≥ 0, Knuth (1998) gives minimum values of k in equation (1.11) and various
conditions for a to be a primitive element modulo m. (We quoted one of those
results above: for m = 2e0 , with e0 ≥ 4, k = 2e0−2, and a must be of the form
± 3 mod 8.)

For a random number generator to be useful in most practical simple ap-
plications, the period must be of the order of at least 109 or so, which means

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 13

that the modulus in a linear congruential generator must be at least that large.
The values of the moduli in common use range in order from about 109 to 1015.
Even so, the period of such generators is relatively short because of the speed
with which computers can cycle through the full period and in view of the very
large sizes of some simulation experiments.

Composite Modulus

The bits in the binary representations of the sequences from generators whose
modulus is a power of 2 have very regular patterns. The period of the lowest-
order bit is at most 1 (that is, it is always the same), the period of the next
lowest-order bit is at most 2, the period of the next lowest-order bit is at most 4,
and so on. In general, low-order bits in the streams resulting from a composite
modulus will have periods corresponding to the factors. The small periods
can render a bit-stripping technique completely invalid with random number
generators with a modulus that is a power of 2.

Similar regular patterns occur anytime the modulus has a factor that is a
small prime. If the modulus is even (so the multiplier must be odd), we get
the first two patterns that we mentioned above: the period of the lowest-order
bit is at most 1, and the period of the next lowest-order bit is at most 2. If
the modulus is divisible by 4, the output exhibits these two patterns, plus the
pattern mentioned above for the third-lowest bit.

It is easy to identify other patterns for other composite moduli. If the
modulus is divisible by 3, for example, the lower-order pair of bits will have a
period of at most 3.

Currently, the numbers used as moduli in production random number gen-
erators are usually primes, often Mersenne primes, which have the form 2p − 1.
(For any prime p ≤ 31, numbers of that form are prime except for the three
values p = 11, 23, and 29. Most larger values of p do not yield primes. A large
one that does yield a prime is p = 13 466 917.)

Moduli and Multipliers

A commonly used modulus is the Mersenne prime 231−1, and for that modulus,
a common multiplier is 75 (see the discussion of the “minimal standard” on
page 20). The Mersenne prime 261 − 1 is also used occasionally. The primitive
roots for these two moduli have been extensively studied.

Wu (1997) suggests multipliers of the form ±2q1 ±2q2 because they result in
particularly simple computations yet seem generally to have good properties.
Wu suggests 215 − 210 and 216 − 221 for a modulus of 231 − 1, and 230 − 219

and 242 − 231 for a modulus of 261 − 1. The computational efficiency of such
multipliers results from the fact that multiplication by a multiplier of the form
2q and followed by a modular reduction with a modulus of the form 2p − 1
results in an exchange of the block of the q most significant bits and the block
of the p − q least significant bits. Multipliers of the form suggested by Wu
effectively do this kind of exchange twice and then add the results. L’Ecuyer

14 CHAPTER 1. UNIFORM DISTRIBUTION

and Simard (1999) point out, however, that an operation consisting of two
exchanges of two blocks of bits followed by addition of the results tends to yield
a value whose binary representation has a number of 1s similar to the number
of 1s in the original value. The number of 1s in the binary representation of
a value is called its Hamming weight. L’Ecuyer and Simard (1999) define a
test of independence of Hamming weights of successive values in the output
streams of random number generators and, in applying the test to generators
with multipliers of the form ±2q1±2q2 , find that such generators perform poorly
with respect to this criterion.

1.2.1 Structure in the Generated Numbers

In addition to concern about the length of the period, there are several other
considerations. It is clear that if the period is m, then the output of the gen-
erator over a full cycle will be evenly distributed over the unit interval. If we
ignore the sequential order of a full-period sequence from a congruential gen-
erator, it will appear to be U(0, 1); in fact, the sample would appear too much
like a sample from U(0, 1).

A useful generator, however, must generate subsamples of the full cycle that
appear to be uniformly distributed over the unit interval. Furthermore, the
numbers should appear to be distributionally independent of each other; that
is, the serial correlations should be small.

Unfortunately, the structure of a sequence resulting from a linear congru-
ential generator is very regular. Marsaglia (1968) pointed out that the output
of any congruential generator lies on a simple lattice in a k-space with axes
representing successive numbers in the output. This is fairly obvious upon in-
spection of the algebra of the generator. How bad this is (that is, how much this
situation causes the output to appear nonrandom) depends on the structure of
the lattice. A lattice is defined in terms of integer combinations of a set of
“basis vectors”. Given a set of linearly independent vectors {v1, v2, . . . , vd} in
IRd, a lattice is the set of vectors w of the form

∑d
i=1 zivi, where zi are integers.

The set of vectors {vi} is a basis for the lattice. Figure 1.1 shows a lattice in
two dimensions with basis {v1, v2}.

For an example of the structure in a stream of pseudorandom numbers
produced by a linear congruential generator, consider the output of the genera-
tor (1.10) with m = 31 and a = 3 that begins with x0 = 9. The next integers in
the sequence are shown in Figure 1.2. That sequence then repeats. The period
is 30; we know that 3 is a primitive root modulo 31.

A visual assessment or even computation of a few descriptive statistics does
not raise serious concerns about whether this represents a sample from a discrete
uniform distribution over the integers from 1 to 30 except for the fact that there
are no repeats in the sample. The scaled numbers (the integers divided by 30)
have a sample mean of 0.517 and a sample variance of 0.86. Both of these
values are consistent with the expected values from a U(0, 1) distribution. The

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 15

�������
v1

�
v2

w = 3v1 + v2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1.1: A Lattice in 2-D

27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9,

Figure 1.2: An Output Stream from xi ≡ 3xi−1 mod 31

autocorrelations for lags 1 through 5 are

0.27, 0.16, −0.10, 0.06, 0.07.

Although the lag 1 correlation is somewhat large for a sample of this size, these
values are not inconsistent with a hypothesis of independence.

However, when we plot the successive (overlapping) pairs

(27, 19), (19, 26), (26, 16), . . .

as in Figure 1.3, a disturbing picture emerges. All points in the lattice of pairs
lie along just three lines, each with a slope of 3. (There are also ten lines
with slope − 1

10 and ten lines with slope 2
11 if we count as lines the continua-

tion by “wrapping” modulo 31.) In most applications, we probably would not
use overlapping pairs. Successive nonoverlapping pairs are shown as solid (or
open) circles in Figure 1.3. That pattern appears even less random, as the
nonoverlapping pairs cluster on one line or another.

This pattern is in fact related to the relatively large correlation at lag 1.
Although the correlation may not appear so large for the small sample size,
that large value of the correlation would persist even if we were to increase the
sample size by generating more random numbers because the random numbers
would just repeat themselves. It is easy to see that this kind of pattern results
from the small value of the multiplier. The same kind of problem would also

16 CHAPTER 1. UNIFORM DISTRIBUTION

xi

xi−1

�1 (27,19)

�2

�3 (26,16)
�4

�5

�6

�7 (29,25)

�8 (25,13)

�9

�10

�11 (24,10)

�12

�13 (30,28)

�14 (28,24)

�15 (22,24)

�16

�17

�18

�19

�20

�21

�22

�23

�24

�25 (23,7)

�26

�27 (21,1)

�28

�29

�30

Figure 1.3: Pairs of Successive Numbers from xi ≡ 3xi−1 mod 31

result from a multiplier that is too close to the modulus, such as a = 27, for
example.

There are eight primitive roots modulo 31, so we might try another one, say
12. Let a = 12 and again begin with x0 = 9. The next integers in the sequence
are shown in Figure 1.4.

15, 25, 21, 4, 17, 18, 30, 19, 11, 8, 3, 5, 29, 7, 22, 16, 6, 10, 27, 14, 13, 1, 12, 20, 23, 28, 26, 2, 24, 9.

Figure 1.4: An Output Stream from xi ≡ 12xi−1 mod 31

A visual assessment does not show much difference between this sequence
and the sequence of numbers generated by a = 3 shown in Figure 1.2. The
numbers themselves are exactly the same as those before, so the static properties
of mean and variance are the same. The autocorrelations are different, however.

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 17

For lags 1 through 5, they are

−0.01, −0.07, −0.17, −0.15, 0.03, 0.35.

The smaller value for lag 1 indicates that the structure of successive pairs may
be better, and, in fact, the points do appear better distributed, as we see in
Figure 1.5. There are six lines with slope − 2

5 and seven lines with slope 5
3 .

xi

xi−1

�1 (15,25)

�2

�3

�4
�5

�6

�7

�8

�9

�10

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��
�
�

6.96
���

�

��
	

5.76
��

�

Figure 1.5: Pairs of Successive Numbers from xi ≡ 12xi−1 mod 31

From a visual inspection, we can conclude that a generator with a small
number of lines in any direction does not cover the space well. The generator
with output shown in Figure 1.3 has ten lines with slope − 1

10 but only three
lines with slope 3. Marsaglia (1968) showed that when d overlapping sequences
of the output of a congruential generator with modulus m are plotted as we
have done for d = 2, the points will lie on parallel hyperplanes (parallel lines
in Figures 1.3 and 1.5), and there will be a direction of some hyperplane in
which there will be no more than (d!m)1/k parallel hyperplanes. In the simple

18 CHAPTER 1. UNIFORM DISTRIBUTION

example above, for one modulus there were only three parallel lines, but for the
other modulus there were six, which is close to the bound of seven.

Another quantitative measure of the severity of the lattice structure is the
distance between the lines—specifically, the shortest distance between two sides
of the maximal volume parallelogram formed by four points and not enclosing
any points. The distance between the lines with slope 5

3 is 6.96, as shown in
Figure 1.5. The distance between the lines with slope − 2

5 is 5.76. Dieter (1975)
discusses the general problem of determining the distance between the lattice
lines. We encounter similar structural problems later in this section and discuss
the identification of this kind of structural problem in Section 2.2, page 64.

Figures 1.3 and 1.5 show all of the points from the full period of those
small generators. For a generator with a larger period, we obviously would get
more points; but with a poor generator, all of them could still lie along a small
number of lines.

It is a good idea to view a similar plot for a sample of points from any random
number generator that we plan to use. For example, the S-Plus commands

xunif <- runif(1000)
plot(xunif[1:999],xunif[2:1000])

yield the plot shown in Figure 1.6. There does not appear to be any obvious
pattern in those points generated by the standard S-Plus generator. We discuss
random number generation in S-Plus and R in Section 8.5, page 291.

The two-dimensional patterns are related to the autocorrelation of lag 1,
as we have seen. Autocorrelations at higher-order lags are also of concern.
The lattice structure in higher dimensions is related to, but more complicated
than, simple bivariate autocorrelations. In d dimensions, the lattice structure
of interest is the pattern of the subsequences (xi, . . . , xi+d). Among triplets,
for example, we could observe a three-dimensional lattice on which all of the
points would lie. As in the two-dimensional case, the quality of the lattice
structure depends on how many lattice points are covered and in what order
they are covered. The lattice structure is related to the correlation at a lag
corresponding to the dimension of the lattice, so large correlations of lag 2, for
example, would suggest that a three-dimensional lattice structure would not
cover three-dimensional space well.

Correlations of lag 1 in a sequence produced by a multiplicative congruential
generator will be small if the square of the multiplier is approximately equal
to the modulus. In this case, however, the correlations of lag 2 are likely
to be large, and consequently the three-dimensional lattice structure will be
poor. (In our examples in Figures 1.3 and 1.5, we had a2 ≡ 9 mod 31 and
a2 ≡ 28 mod 31, respectively, so the generator used in Figure 1.5 would have
poor lattice structure in three dimensions.) An example of a generator with
very good two-dimensional lattice structure yet very poor three-dimensional
lattice structure is implemented in the program RANDU, which for many years
was the most widely used random number generator in the world.

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 19

Figure 1.6: Pairs of Successive Numbers from the S-Plus Function runif

The generator in RANDU is essentially

xi ≡ 65539xi−1 mod 231. (1.12)

(RANDU was coded to take advantage of integer overflow and made an adjust-
ment when overflow occurred, so the generator is not exactly the same as equa-
tion (1.12).)

The generator in equation (1.12) can be written to express the relationship
among three successive members of the output sequence:

xi ≡ (65 539)2xi−2 mod 231

≡ (216 + 3)2xi−2 mod 231

≡ (6xi−1 − 9xi−2) mod 231;

that is,
xi − 6xi−1 + 9xi−2 = c231, (1.13)

where c is an integer. Since 0 < xi < 231, all such triplets must lie on no more
than 15 planes in IR3. If a thin slice of a cube is projected onto one face of the
cube, all of the points in the slice would appear in only a small number of linear

20 CHAPTER 1. UNIFORM DISTRIBUTION

regions. (See Exercise 1.7, page 58.) Plots of triples or other tuples in parallel
coordinates can also reveal linear dependencies. See Gentle (2002, page 181)
for a plot of the output of RANDU using parallel coordinates. Huber (1985) and
later Cabrera and Cook (1992) used data generated by RANDU to illustrate a
method of projection pursuit, and their examples expose the poor structure of
the output of RANDU.

Although it had been known for many years that the generator (1.12) had
problems (see Coldwell, 1974), and even the analysis represented by equa-
tion (1.13) had been performed, the exact nature of the problem has sometimes
been misunderstood. For example, as James (1990) states: “We now know that
any multiplier congruent to 5 mod 8 ... would have been better” Being
congruent to 5 mod 8 does not solve the problem. Such multipliers have the
same problem if they are close to 216 for the same reason (see Exercise 1.8,
page 58).

RANDU is still available at a number of computer centers and is used in some
statistical analysis and simulation packages.

The lattice structure of the common types of congruential generators can
be assessed by the spectral test of Coveyou and MacPherson (1967) or by the
lattice test of Marsaglia (1972a). We discuss these types of tests in Section 2.2,
page 64.

1.2.2 Tests of Simple Linear Congruential Generators

Any number of statistical tests can be developed to be applied to the output
of a given generator. The simple underlying idea is to form any transformation
on the subsequence, determine the distribution of the transformation under
the null hypothesis of independent uniformity of the sequence, and perform
a goodness-of-fit test of that distribution. A simple transformation is just to
add successive terms. (Adding two successive terms should yield a triangular
distribution.) We discuss goodness-of-fit tests in Chapter 2, but the reader
familiar with such tests should be able, with a little imagination, to devise chi-
squared tests for uniformity in any dimension, chi-squared tests for triangularity
of sums of two successive numbers, and so on. Tests for serial correlation of
various lags and various sign tests are other possibilities that should come to
mind to anyone with some training in statistics.

For some specific generators or families of generators, there are extensive
empirical studies reported in the literature. For m = 231 − 1, for example, em-
pirical studies by Fishman and Moore (1982, 1986) indicate that different values
of multipliers, all of which perform well under the lattice test and the spectral
test (see Section 2.2, page 64), may yield samples statistically distinguishable
from samples from a true uniform distribution.

Park and Miller (1988) summarize some problems with random number
generators commonly available and propose a “minimal standard” for a linear
congruential generator. The generator must perform “at least as well as” one
with m = 231 − 1 and a = 16807, which is a primitive root.

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 21

This choice of m and a was made by Lewis, Goodman, and Miller (1969) and
is very widely used. (The smallest primitive root of 231−1 is 7, and 75 = 16807 is
the largest power of 7 such that 7px, for the largest value of x (which is 231−2),
can be represented in the common 64-bit floating-point format.) Results of
extensive tests by Learmonth and Lewis (1973) are available for it. It is provided
as one option in the IMSL Libraries. Fishman and Moore (1986) found the value
of 16807 to be marginally acceptable as the multiplier, but there were several
other multipliers that performed better in their battery of tests.

The article by Park and Miller generated extensive discussion; see the “Tech-
nical Correspondence” in the July 1993 issue of Communications of the ACM,
pages 105 through 110. It is relatively easy to program the minimal standard,
as we see in the next section, but the algorithm given by Carta (1990) ostensibly
to implement the minimal standard should be avoided.

Ferrenberg, Landau, and Wong (1992) used some of the generators that meet
the Park and Miller minimal standard to perform several simulation studies in
which the correct answer was known. Their simulation results suggested that
even some of the “good” generators could not be relied on in some simulations.
Vattulainen, Ala-Nissila, and Kankaala (1994) likewise used some of these gen-
erators as well as generators of other types and found that their simulations
often did not correspond to the processes they were modeling. The point is
that the “minimal standard” is minimal.

Sets of random numbers sequentially produced by linear congruential gen-
erators exhibit a certain type of departure from what would be expected in a
random sample if the number of random numbers in the set exceeds approxi-
mately the square root of the period of the generator. (The apparent nonran-
domness is in the distribution of the interpoint distances in lattices of various
dimensions formed by the random numbers, as in Figures 1.3 and 1.5 for two
dimensions. See L’Ecuyer and Hellekalek, 1998, and L’Ecuyer, Cordeau, and
Simard, 2000, for discussions of results of empirical tests on linear congruential
generators.) The useful, “safe” period of the “minimal standard”, therefore,
is less than 50,000. In Section 2.3 beginning on page 71, we further discuss
general empirical tests of random number generators.

Deng and Lin (2000) contend that because of its relatively short period
(even at the full period of 231 − 1, rather than the “safe” period) and its lattice
structure, the “minimal standard” is not acceptable for serious work. They
suggest use of matrix congruential generators (see generators (1.31) and (1.32)
in Section 1.4.2).

1.2.3 Shuffling the Output Stream

MacLaren and Marsaglia (1965) suggest that the output stream of a linear
congruential random number generator be shuffled by using another, perhaps
simpler, generator to permute subsequences from the original generator. This
shuffling can increase the period (because it is no longer necessary for the same
value to follow a given value every time it occurs) and can also break up the

22 CHAPTER 1. UNIFORM DISTRIBUTION

lattice structure. (There will still be a lattice, of course; it will just have a
different number of planes.)

Because a single random number can be used to generate independent ran-
dom numbers (“bit stripping”, see page 10), a single generator can be used to
shuffle itself.

Bays and Durham (1976) describe a method of using a single generator to
fill a table of length k and then using a single stream to select a number from
the table and to replenish the table. After initializing a table T to contain
x1, x2, . . . , xk, set i = k + 1 and generate xi to use as an index to the table.
Then, update the table with xi+1. The method is shown in Algorithm 1.1 to
generate the stream yi for i = 1, 2,

Algorithm 1.1 Bays–Durham Shuffling of Uniform Deviates

0. Initialize the table T with x1, x2, . . . , xk, i = 1, generate xk+i, and set
yi = xk+i.

1. Generate j from yi (use bit stripping or mod k).

2. Set i = i + 1.

3. Set yi = T (j).

4. Generate xk+i, and refresh T (j) with xk+i.

The period of the generator may be increased by this shuffling. Bays and
Durham (1976) show that the period under this shuffling is O(k!c)

1
2 , where c

is the cycle length of the original, unshuffled generator. If k is chosen so that
k! > c, then the period is increased.

For example, with the generator used in Figure 1.3 (m = 31, a = 3, and
beginning with x0 = 9), which yielded the sequence

27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9,

we select k = 8 and initialize the table as

27, 19, 26, 16, 17, 20, 29, 25.

We then use the next number, 13, as the first value in the output stream and
also to form a random index into the table. If we form the index as 13 mod8+1,
we get the sixth tabular value, 20, as the second number in the output stream.
We generate the next number in the original stream, 8, and put it in the table,
so we now have the table

27, 19, 26, 16, 17, 8, 29, 25.

Now, we use 20 as the index to the table and get the fifth tabular value, 17,
as the third number in the output stream. By continuing in this manner to
yield 10,000 deviates and plotting the successive pairs, we get Figure 1.7. The
very bad lattice structure shown in Figure 1.3 has diminished. (Remember that
there are only 30 different values, however.)

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 23

Figure 1.7: Pairs of Successive Numbers from a Shuffled Version of xi ≡
3xi−1 mod 31 (Compare with Figure 1.3)

1.2.4 Generation of Substreams in Simple Linear
Congruential Generators

Sometimes, it is useful to generate separate, independent subsequences with the
same generator. The reason may be that the Monte Carlo experiment is being
run in blocks or it may be because the computations are being performed on a
parallel processing computer system.

In this subsection, we discuss the basic methods for generating separate sub-
streams using a simple linear congruential generator and some of the properties
of such substreams. As we indicated at the beginning of this section, although
the simple linear congruential generator forms the basis for many good random
number generators, by itself it is generally not adequate for serious applications.
In later sections, we discuss various generators based on the simple linear con-
gruential generator, and in Section 1.10, beginning on page 51, we return to the
topic of the present subsection and use these basic methods for other generators
that have longer periods and better properties.

24 CHAPTER 1. UNIFORM DISTRIBUTION

Nonoverlapping Blocks

To generate separate subsequences, it is generally not a good idea to choose two
seeds for the subsequences arbitrarily because we generally have no information
about the relationships between them. In fact, an unlucky choice of seeds could
result in a very large overlap of the subsequences. A better way is to fix the
seed of one subsequence and then to skip a known distance ahead to start the
second subsequence.

The basic equivalence relation of the generator

xi+1 ≡ axi mod m (1.14)

implies
xi+k ≡ akxi mod m.

This provides a simple way of skipping ahead in the sequence generated by
a linear congruential generator. This may be useful in parallel computations,
where we may want one processor to traverse the sequence

xs, xs+1, xs+2, . . . (1.15)

and a second processor to traverse the nonoverlapping sequence

xs+k , xs+k+1, xs+k+2, (1.16)

The seed for the second stream can be generated by

xs+k−1 ≡ bx0 mod m,

where
b ≡ ak mod m. (1.17)

Note that any element in the second sequence (1.16) can be obtained by
multiplication by b of the corresponding element in the first sequence (1.15)
followed by reduction modulo m.

Leapfrogging

Another interesting subsequence that is “independent” of the first sequence is

xs, xs+k, xs+2k , (1.18)

This sequence is generated by

xi+1 ≡ bxi mod m, (1.19)

where b is as before. This method of generating independent streams is called
leapfrogging by k. Different “independent” subsequences can be formed using
various leapfrog distances. (The distances must be chosen carefully, of course.
A minimum requirement is that the distances be relatively prime.) We could

1.2. SIMPLE LINEAR CONGRUENTIAL GENERATORS 25

let one processor leapfrog beginning at xs and let a second processor leapfrog
beginning at xs+1 and using the same leapfrog distance.

If a in equation (1.14) is a primitive root modulo m, then any b in equa-
tion (1.19) can be obtained by some integer k in equation (1.17). For example,
consider the simple generators discussed in Section 1.2.1,

xi ≡ 3xi−1 mod 31

and
xi ≡ 12xi−1 mod 31.

Because
12 ≡ 319xi−1 mod 31, (1.20)

the sequence generated by the second generator (shown on page 16) can be
obtained from the sequence generated by the first generator by repeating the
sequence in Figure 1.2 on page 15 and then taking every nineteenth number.

If the skip distance is relatively prime to the period, then the sequence
formed by leapfrogging will have the same period of the original sequence. If
this is not the case, a sequence formed by leapfrogging is not of full period.
Suppose, for example, that in one of the sequences above, each with period 30,
we choose to take every fifth element. From the sequence in Figure 1.2, we
could form the subsequence

27, 20, 24, 4, 11, 7, 27,

Any other starting point would likewise yield a subsequence with a period of 6.
From equation (1.17), the generator for skipping five elements ahead is

xi ≡ 35xi−1 mod 31,

and 26 is not a primitive root modulo 31. Any of the 30 possible seeds will
generate a subsequence with a period of 6, and there will be five subsequences
that do not overlap.

Given a basic stream from the generator (1.14), Figure 1.8 shows two nonover-
lapping blocks of substreams and two leapfrogged substreams.

Basic stream x1, . . . , xt, . . . , xk, . . . , x(s−1)k+1, . . . , x(s−1)k+t, . . . , xsk, . . . ,
Block 1 x1, . . . , xt, . . . , xk

Block s x(s−1)k+1, . . . , x(s−1)k+t, . . . , xsk

Leapfrogged stream 1 x1, x(s−1)k+1, . . .
Leapfrogged stream t xt, x(s−1)k+t, . . .

Figure 1.8: Nonoverlapping Blocks of Substreams and Leapfrogged Substreams

26 CHAPTER 1. UNIFORM DISTRIBUTION

Lehmer Trees

Frederickson et al. (1984) describe a way of combining linear congruential gen-
erators to form what they call a Lehmer tree, which is a binary tree in which all
right branches or all left branches form a sequence from a Lehmer linear con-
gruential generator. The tree is defined by the two recursions, both of which
are the basic recursion (1.9)

x
(L)
i ≡ (aLxi−1 + cL) mod m

and
x

(R)
i ≡ (aRxi−1 + cR) mod m.

At the (i − 1)th node in the tree, an ordinary Lehmer sequence with seed xi−1

is generated by all right-branch nodes below it. A new sequence is initiated by
taking a left branch to the first node below it and then all right branches from
then on. The question is whether a (finite) sequence of all right-branch nodes
below a given node is independent from the (finite) sequence of all right-branch
nodes below the left-branch node immediately below the given node. (“Inde-
pendent” for these finite subsequences can be interpreted strictly as having no
elements in common.) Frederickson et al. gave conditions on aL, cL, aR, cR, and
m that would guarantee the independence for a fixed length of the sequences.

Correlations Between Substreams

Care is necessary in choosing the seed and the distance to skip ahead. Anderson
and Titterington (1993) show that, for a multiplicative congruential generator,
the correlation between the sequences (xi, . . .) and (xi+k , . . .) is approximately
asymptotically (n1n2)−1, where xi+k = (n1/n2)xi, and n1 and n2 are relatively
prime. Figure 1.9 shows a plot of two subsequences, each of length 100, having
seeds that differ by a factor of 5. The correlation of these two subsequences
is 0.375. (See also Exercise 1.15, page 59.)

This would indicate that when choosing to skip ahead k steps, the seed
should not be a small multiple of, or a small fraction of, k.

Sometimes, instead of “independent” sequences, we may want a sequence
that is strongly negatively correlated with the first sequence. (We call such
sequences “antithetic”. They may be useful in variance reduction; we discuss
them further in Section 7.5, page 239.) If one sequence begins with the seed x0,
and another sequence begins with m−x0, then the ith term in the two sequences
will be xi and m − xi. The sequences are perfectly negatively correlated.

Another pair of sequences that may be of interest are ones that go in reverse
order; that is, if one sequence is

x1, x2, x3, . . . , xk, . . . , (1.21)

then the other sequence is

xk , xk−1, xk−2, . . . , x3, x2, x1, (1.22)

1.3. COMPUTER IMPLEMENTATION 27

Figure 1.9: The Sequences ui and vi Generated by a Good Multiplicative Con-
gruential Generator, Starting at Seeds 999 and 4995, Respectively

If the first sequence is generated by xi+1 ≡ axi mod m, then the second sequence
is generated by yi+1 ≡ byi mod m, where

b ≡ ap−1 mod m,

and p is the period.

1.3 Computer Implementation of Simple Linear

Congruential Generators

There are many important issues to consider in writing computer software to
generate random numbers. Before proceeding to discuss other types of random
number generators, we consider the computer implementation of simple linear
congruential generators of the form (1.10),

xi ≡ axi−1 mod m.

These same kinds of considerations apply to other generators as well.

28 CHAPTER 1. UNIFORM DISTRIBUTION

Requirements for a random number generator computer code include strict
reproducibility and portability. Strict reproducibility means that any stream
produced by the generator can be repeated (to within machine precision on each
element), given the same initial conditions. Portability has meaning within the
context of a set of computer systems and means that the code yields essentially
results over that set of computer systems. We can speak of portability of
executable programs, portability of source code, portability at the user level,
and so on.

As a problem in numerical analysis, the basic recurrence of the linear con-
gruential generator is somewhat ill-conditioned. This is because full precision
must be maintained throughout; if any term in the sequence is not exact in the
last place, all subsequent terms will differ radically from the true sequence.

Relevant background material on fixed-point and floating-point computa-
tions that simulate mathematical operations is covered in Chapter 1 of Gen-
tle (1998).

1.3.1 Ensuring Exact Computations

Because of the number of significant digits in the quantities in this recurrence,
even the novice programmer learns very quickly that special steps may be re-
quired to provide the complete precision required.

If the multiplier a is relatively large, a way of avoiding the need for higher
precision is to perform the computations for xi ≡ axi−1 mod m as

xi ≡ (c(dxi−1 mod m) + exi−1 mod m)mod m, (1.23)

where a = cd + e. The values of c, d, and e are chosen so that all products
are exactly representable. This is possible as long as the available precision is
at least 1.5logbm places in the arithmetic base b. The origins of the idea of
using the decomposition (1.23), like so many of the ideas useful in numerical
computations, are lost in antiquity. The idea has been rediscovered many times.

Even if a is relatively small, as in the Park and Miller (1988) “minimal
standard”, the computations cannot be performed directly in ordinary floating-
point words on computers with 32-bit words. In C, we can use double (fmod),
and in Fortran we can use double precision, as shown in Figure 1.10.

Another way of avoiding the need for higher precision for relatively small
multipliers—that is, multipliers smaller than

√
m (as in the case shown in Fig-

ure 1.10)—is to perform the computations in the following steps. Let

q = �m/a�

and
r ≡ m moda.

1.3. COMPUTER IMPLEMENTATION 29

subroutine rnlcm (dseed, nr, u)
double precision dseed, dm, dmp
real u(*)
data dm/2147483647.d0/, dmp/2147483655.d0/

!(dmp is computer specific)
do 10 i = 1, nr

dseed = dmod (16807.d0*dseed, dm)
u(i) = dseed/dmp

10 continue
end

Figure 1.10: A Fortran Program Illustrating a Congruential Generator for a
Machine with 32-Bit Words

Then,

axi−1 mod m = (axi−1 − �xi−1/q�m) mod m
= (axi−1 − �xi−1/q�(aq + r)) mod m
= (a(xi−1 − �xi−1/q�)q − �xi−1/q�r) mod m
= (a(xi−1 mod q) − �xi−1/q�r) mod m.

(1.24)

For the operations of equation (1.24), L’Ecuyer (1988) gives coding of the
following form:

k = x/q
x = a*(x - k*q) - k*r
if (x < 0) x = x + m

As above, it is often convenient to use the fact that the modular reduction
is equivalent to

xi = axi−1 − m�axi−1/m�.
But in this equivalent formulation, the floor operation must be performed si-
multaneously with the division operation (that is, there can be no rounding
between the operations). This may not be the case in some computing systems,
and this is just another numerical “gotcha” for this problem.

1.3.2 Restriction that the Output Be in the Open
Interval (0, 1)

There is another point that is often overlooked in general discussions of random
number generation. We casually mentioned earlier in the chapter that we want
to simulate a uniform distribution over (0, 1). Mathematically, that is the same
as a uniform distribution over [0, 1]; it is not the same on the computer, however.
Using the methods that we have discussed, we must sometimes be careful to
exclude the endpoints. Whenever the mixed congruential generator is used (i.e.,
c �= 0 in the recurrence (1.9)), we may have to take special steps to handle the

30 CHAPTER 1. UNIFORM DISTRIBUTION

case where xi = 0. For the multiplicative congruential generator (1.10), we do
not have to worry about a 0. In any standard fixed-point and floating-point
computer arithmetic system, if xi ≥ 1, the normalization ui = xi/m will not
yield a 0.

The normalization, however, can yield a 1 whether the generator is mixed
or multiplicative. To avoid that we choose a different normalizer, m̃ (> m).
See the code in Figure 1.10, and see Exercise 1.13, page 59.

1.3.3 Efficiency Considerations

In some computer architectures, operations on fixed-point numbers are faster
than those on floating-point numbers. If the modulus is a power of 2, it may
be possible to perform the modular reduction by simply retaining only the low-
order bits of the product. Furthermore, if the power of 2 corresponds to the
number of numeric bits, it may be possible to use the fixed-point overflow to do
the modular reduction. This is an old trick, which was implemented in many
of the early generators, including RANDU. This trick can also be implemented
using a bitwise “and” operation. (The Fortran intrinsic iand does this.) This
can have the same effect but without causing the overflow. Overflow may be
considered an arithmetic error. A power of 2 is generally not a good modulus,
however, as we have already pointed out.

The fixed-point overflow trick can be modified for doing a modular reduction
for m = 2p − 1. Let

x̃i ≡ (axi−1 + c) mod (m + 1),

and if x̃i < m + 1, then
xi = x̃i;

otherwise,
xi = x̃i − m.

This trick can be implemented three times if the multiplier a is large, and
the representation of equation (1.23) is used.

Some multiplications, especially in fixed-point, are performed more rapidly
if one of the multiplicands is a power of 2. This fact provides another oppor-
tunity for accelerating computations that make use of equation (1.23). The
decomposition of the multiplier a can have two components that are powers
of 2.

1.3.4 Vector Processors

Because a random number generator may be invoked millions of times in a
single program, it is important to perform the operations efficiently. Brophy
et al. (1989) describe an implementation of the linear congruential generator
for a vector processor. If the multiplier is a, the modulus is m, and the vector
register length is k, the quantities

aj ≡ aj mod m, for j = 1, 2, . . . , k,

1.4. OTHER LINEAR CONGRUENTIAL GENERATORS 31

are precomputed and stored in a vector register. The modulo reduction opera-
tion is not (usually) a vector operation, however. For the particular generator
that they considered, m = 231 − 1, and because

x

231 − 1
= x2−31 + x2−62 + . . . ,

they did the modular reduction as ajx− (231−1)�aj2−31x�. For a given xi, the
k subsequent deviates are obtained with a few operations in a vector register.

How to implement a random number generator in a given environment de-
pends on such things as

• the type of architecture (vector, parallel, etc.),

• the precision available,

• whether integer arithmetic is available,

• whether integer overflow is equivalent to modular reduction,

• the base of the arithmetic,

• the relative speeds of multiplication and division,

• the relative speeds of MOD and INT.

The quality of the generator should never be sacrificed in the interest of
efficiency, no matter what type of computer architecture is being used.

1.4 Other Linear Congruential Generators

There are many variations on the basic computer algorithm (1.1),

xi = f(xi−1, · · · , xi−k), (1.25)

for producing pseudorandom numbers. In the simple linear congruential gen-
erator of Lehmer (1951), equation (1.9), f is a simple linear function (that is,
k = 1) combined with a modular reduction. A variation on the simple linear
congruential generator involves shuffling of the output stream. Other variations
of the linear congruential form involve use of k greater than 1:

xi ≡ (aTvi−1 + c) mod m, with 0 ≤ xi < m, (1.26)

where a is a k-vector of constants, and vi−1 is the k-vector (xi−1, · · · , xi−k).
Such a generator obviously requires a k-vector for a seed. Two widely used
linear congruential generators of the form (1.26) with k > 1 are the “mul-
tiple recursive” generators, discussed in Section 1.4.1, in which c = 0 and
the lagged Fibonacci generators, discussed on page 33, in which c = 0, and
a = (0, . . . , 0, 1, 0, · · · , 0, 1).

32 CHAPTER 1. UNIFORM DISTRIBUTION

There are several other variations of the basic congruential generator. Some
maintain linearity but include conditional values of c, such as the add-with-
carry generators discussed in Section 1.4.3. Other variations involve nonlinear
operations, such as the generators discussed in Sections 1.5.1 and 1.5.2. All
of these generators share the fundamental operation of modular reduction that
provides the “randomness” or the “unpredictability”.

In general, the variations that have been proposed increase the complexity
of the generator. For a generator to be useful, however, we must be able to
analyze and understand its properties at least to the point of having some
assurance that there is no deleterious nonrandomness lurking in the output of
the generator. We should also be able to skip ahead in the generator a fixed
distance.

1.4.1 Multiple Recursive Generators

A simple extension of the multiplicative congruential generator is to use multi-
ples of the previous k values to generate the next one:

xi ≡ (a1xi−1 + a2xi−2 + · · ·akxi−k) mod m. (1.27)

When k > 1, this is sometimes called a “multiple recursive” multiplicative
congruential generator. The number of previous numbers used, k, is called the
“order” of the generator. (If k = 1, it is just a multiplicative congruential
generator.)

The period of a multiple recursive generator can be much longer than that
of a simple multiplicative generator. For m a prime, Knuth (1998) has shown
that the maximum period is mk −1 and has given conditions for achieving that
period in terms of a polynomial

f(z) = zk − (a1z
k−1 + · · · + ak−1z + ak) (1.28)

over IG(m). The reader is referred to Knuth (1998, page 29 and following) for a
discussion of the conditions.

Computational efficiency can be enhanced by choosing some of the aj as 0 or
±1. Deng and Lin (2000) propose a “fast multiple recursive generator” in which
only a1 = 1 and all other aj are 0 except for ak. For a given modulus, they
use the criteria of Knuth (1998) under the restriction that a1 = 1 to determine
ak that yields the maximum period. For m = 231 − 1 and k = 2, 3, 4, they
give several such values of ak. They also discuss coding issues for efficiency and
portability.

L’Ecuyer, Blouin, and Couture (1993) study some of the statistical proper-
ties of multiple recursive generators and make recommendations for the mul-
tipliers for some specific moduli, including the common one, 231 − 1. Their
assessment of the quality of the generators is based on the Beyer ratio (see
page 66) and applied for dimensions from 1 to 20. They discuss programming

1.4. OTHER LINEAR CONGRUENTIAL GENERATORS 33

issues for such generators and give code for a short C program for a fifth-order
multiple recursive generator,

xi ≡ (107374182xi−1 + 104480xi−5) mod 231 − 1. (1.29)

Their code is portable and will not return 0 or 1. They also describe how to
skip ahead in multiple recursive generators to form substreams using methods
similar to those discussed in Section 1.2.4.

Kao and Tang (1997b) also tested various full-period multipliers for multiple
recursive generators. They evaluated the lattice structure through dimension 8.
In the tests of Kao and Tang (1997a), multiple recursive generators with fewer
terms than the order of the generator, such as the lagged Fibonacci generator
discussed below, did not perform well. This appears to be a consequence of the
particular generators that they studied rather than a general conclusion. Other
tests of some such generators have not shown this to be a problem.

Lagged Fibonacci

A simple Fibonacci sequence has xi+2 = xi+1 + xi. Reducing the numbers
modm produces a sequence that looks somewhat random but actually does
not have satisfactory randomness properties.

We can generalize the Fibonacci recursion in two ways. First, instead of
combining successive terms, we combine terms at some greater distance apart,
so the lagged Fibonacci congruential generator is

xi ≡ (xi−j + xi−k) mod m. (1.30)

The lagged Fibonacci generator is a simple multiple recursive generator. If
j, k, and m are chosen properly, the lagged Fibonacci generator can perform
well. If m is a prime and k > j, then the period can be as large as mk − 1.
More important, this generator is the basis for other generators such as those
discussed in Section 1.7, page 43.

If the modulus in the lagged Fibonacci generator is a power of 2, say 2p,
the maximum period possible is (2k −1)2p−1. Mascagni et al. (1995) describe a
method of identifying and using exclusive substreams, each with the maximal
possible period.

Another way of generalizing the Fibonacci recursion is to use more general
binary operators instead of addition modulo m. In a general lagged Fibonacci
generator, we start with x1, x2, . . . , xk (“random” numbers) and let

xi = (xi−j ◦ xi−k),

where ◦ is some binary operator, with

0 ≤ xi ≤ m − 1 and 0 < j < k < i.

34 CHAPTER 1. UNIFORM DISTRIBUTION

Moduli in Multiple Recursive Generators

Composite moduli in multiple recursive generators do not necessarily yield out-
put with the same kinds of patterns described on page 13 for singly recursive
generators. A modulus of the form 2e is often acceptable for a multiple recursive
generator, but it is generally advisable to use a prime modulus.

Seeding Multiple Recursive Generators

A multiple recursive generator may require an initial sequence rather than just
a single number for the seed. Altman (1989) has shown that care must be
exercised in selecting the initial sequence for a lagged Fibonacci congruential
generator, but for a carefully chosen initial sequence, the bits in the output
sequence seem to have better randomness properties than those from congru-
ential and Tausworthe generators (page 38). This is an indictment of lagged
Fibonacci generators; the seed should not matter in good generators (although,
in applications, we advocate in Chapter 2 that ad hoc tests be conducted on
the generator with the seed to be used in the application).

1.4.2 Matrix Congruential Generators

A generalization of the scalar linear congruential generator to a generator of
pseudorandom vectors is straightforward:

xi ≡ (Axi−1 + c) mod m, (1.31)

where the xi, xi−1, and c are vectors of length d, and A is a d × d matrix.
The elements of the vectors and matrices are integers between 1 and m − 1.
The vector elements are then scaled into the interval (0, 1) to simulate U(0, 1)
deviates. Such a generator is called a matrix congruential generator. As with
the scalar generators, c is often chosen as 0 (a vector with all elements equal to
0).

Reasons for using a matrix generator are to generate parallel streams of
pseudorandom deviates or to induce a correlational structure in the random
vectors.

Deng and Lin (2000) suggest a fast implementation of the matrix multi-
plicative congruential generator with

A =

a1 −1 0 . . . 0
0 a2 −1 . . . 0
...

...
... · · · ...

0 0 0 . . . −1
−1 0 0 . . . ad

 .

This choice involves computations similar to those in their fast multiple recur-
sive generator.

1.4. OTHER LINEAR CONGRUENTIAL GENERATORS 35

If A is a diagonal matrix, the matrix generator is essentially a set of scalar
generators with different multipliers. For more general A, the elements of the
vectors are correlated. Rather than concentrating directly on the correlations,
most studies of the matrix generators (e.g., Afflerbach and Grothe, 1988) have
focused on the lattice structure. Choosing A as the Cholesky factor of a target
variance-covariance matrix may make some sense, and there may be other sit-
uations in which a matrix generator would be of some value. In Exercise 1.6,
page 58, you are asked to experiment with a matrix generator to study the
correlations. Generally, however, any desired correlational structure should be
simulated by transformations on an independent stream of uniforms, as we dis-
cuss in Section 5.3, page 197, rather than trying to induce it in the congruential
generator.

By analogy with the multiple recursive generator with prime modulus, it
could be guessed that the maximal period of the matrix multiplicative genera-
tor (with c = 0) is md − 1, and indeed that is the case, although the analysis of
the period of the matrix congruential generator is somewhat more complicated
than that of the scalar generator (see Grothe, 1987). It is clear that A should
be nonsingular (within the finite field generated by the modulus), because oth-
erwise it is possible to generate a zero vector at which point all subsequent
vectors are zero.

A straightforward extension of the matrix congruential generator is the mul-
tiple recursive matrix random number generator:

xi ≡ (A1xi−1 + · · ·Akxi−k) mod m. (1.32)

This is the same idea as in the multiple recursive generator for scalars, as
considered above. Also, as mentioned above, computational efficiency can be
enhanced by choosing some of the Aj as 0 matrices, identity (or negative iden-
tity) matrices, or simply scalars (that is, scalar multiples of the identity matrix).
Niederreiter (1993, 1995a, 1995b, 1995d) discusses some of the properties of the
multiple recursive matrix generator.

1.4.3 Add-with-Carry, Subtract-with-Borrow, and
Multiply-with-Carry Generators

Marsaglia and Zaman (1991) describe two variants of a generator that they
called “add-with-carry” (AWC) and “subtract-with-borrow” (SWB). The add-
with-carry form is

xi ≡ (xi−s + xi−r + ci) mod m,

where c1 = 0, and ci+1 = 0 if xi−s + xi−r + ci < m and ci+1 = 1 otherwise.
The c is the “carry”.

Marsaglia and Zaman investigated various values of s, r, and m. For some
choices that they recommended, the period of the generator is of the order of
1043. This generator can also be implemented in modulo 1 arithmetic. Although
this at first appears to be a nonlinear generator (because of the branch), Tezuka

36 CHAPTER 1. UNIFORM DISTRIBUTION

and L’Ecuyer (1992) have shown that sequences resulting from this generator
are essentially equivalent to sequences from linear congruential generators with
very large prime moduli. (In fact, the AWC/SWB generators can be viewed
as efficient ways of implementing such large linear congruential generators.)
The work of Couture and L’Ecuyer (1994) and Tezuka, L’Ecuyer, and Cou-
ture (1994) indicates that the lattice structure in high dimensions may be very
poor.

Marsaglia also described a multiply-with-carry random number generator
that is a generalization of the add-with-carry random number generator. The
multiply-with-carry generator is

xi ≡ (axi−1 + ci) mod m.

Marsaglia suggests m = 232 and an implementation in 64-bit integers. The use
of the lower-order 32 bits results in the modular reduction, as we have seen. The
higher-order 32 bits determine the carry. Couture and L’Ecuyer (1995, 1997)
suggest methods for finding parameters for the multiply-with-carry generator
that yield good sequences.

1.5 Nonlinear Congruential Generators

If the function in the basic congruential recursion (1.1),

xi = f(xi−1, · · · , xi−k),

is linear, not only are the computations simpler and generally faster, but the
analysis of the output is more tractable. Nevertheless, various nonlinear con-
gruential generators have been proposed. More study is needed for most of the
generators mentioned in this section.

1.5.1 Inversive Congruential Generators

Inversive congruential generators, introduced by Eichenauer and Lehn (1986),
use the modular multiplicative inverse (if it exists) to generate the next variate
in a sequence. The inversive congruential generator is

xi ≡ (ax−
i−1 + c) mod m, with 0 ≤ xi < m, (1.33)

where x− denotes the multiplicative inverse of x modulo m, if it exists, or else
it denotes 0. Compare this generator with equation (1.9), page 11.

The multiplicative inverse, x−, of x modulo m is defined for all nonzero x
relatively prime to m by

1 ≡ x−x mod m.

Eichenauer and Lehn (1986), Eichenauer, Grothe, and Lehn (1988), and Nieder-
reiter (1988, 1989) show that the inversive congruential generators have good

1.5. NONLINEAR CONGRUENTIAL GENERATORS 37

uniformity properties, in particular with regard to lattice structure and serial
correlations.

Eichenauer-Herrmann and Ickstadt (1994) introduced the explicit inver-
sive congruential method that yields odd integers between 0 and m − 1, and
Eichenauer-Herrmann (1996) gives a modification of it that can yield all non-
negative integers up to m − 1. The modified explicit inversive congruential
generator is given by

xi ≡ i(ai + b)− mod 2p, i = 0, 1, 2, . . . ,

where a ≡ 2 mod 4, b ≡ 1 mod 2, and p ≥ 4. Eichenauer-Herrmann (1996)
shows that the period is m and the two-dimensional discrepancy (see page 69)
is O

(
m− 1

2 (log m)2
)

for the modified explicit inversive generator.
Although there are some ways of speeding up the computations (see Gor-

don, 1989), the computational difficulties of the inversive congruential genera-
tors have prevented their widespread use. There have been mixed reports of the
statistical properties of the pseudorandom streams produced by inversive con-
gruential generators. Chou and Niederreiter (1995) describe a lattice test and
some results of it for inversive congruential generators. An inversive congruen-
tial generator does not yield regular planes like a linear congruential generator.
Leeb and Wegenkittl (1997) report on several tests of inversive congruential
generators. The apparent randomness was better than that of the linear con-
gruential generators that they tested. The inversive congruential generators did
not perform so well on tests based on spacings reported by L’Ecuyer (1997),
however. The bulk of the evidence currently does not recommend inversive
congruential generators.

1.5.2 Other Nonlinear Congruential Generators

A simple generalization of the linear congruential generator (1.9) is suggested
by Knuth (1998):

xi ≡ (dx2
i−1 + axi−1 + c) mod m, with 0 ≤ xi < m. (1.34)

Higher-degree polynomials could be used also. Whether there is any advantage
in using higher-degree polynomials is not clear. They do have the apparent
advantage of making the generator less obvious.

Blum, Blum, and Shub (1986) proposed a generator based on

xi ≡ x2
i−1 mod m. (1.35)

Their method, however, goes beyond the introduction of just more complicated
transformations in the sequence of integers. They form the output sequence as
the bits b1b2b3 · · ·, where bi = 0, if xi is even, and otherwise bi = 1. Blum,
Blum, and Shub showed that if m = p1p2, where p1 and p2 are distinct primes,
each congruent to 3 mod 4, then the output of this generator is not predictable

38 CHAPTER 1. UNIFORM DISTRIBUTION

in polynomial time without knowledge of p1 and p2. Because of this unpre-
dictability, this generator has important possible uses in cryptography.

A more general congruential generator uses a function g of the previous
value to generate the next one:

xi ≡ g(xi−1) mod m, with 0 ≤ xi < m. (1.36)

Such generators were studied by Eichenauer, Grothe, and Lehn (1988). The
wide choice of functions can yield generators with very good uniformity prop-
erties, but there is none other than the simple linear or inversive ones for which
a body of theory and experience would suggest its use in serious work.

Kato, Wu, and Yanagihara (1996a) consider a function g in equation (1.36)
that combines a simple linear function with the multiplicative inverse in equa-
tion (1.33). Their generator is

xi ≡ (ax−
i−1 + bxi−1 + c) mod m, with 0 ≤ xi < m.

They suggest a modulus that is a power of 2 and in Kato, Wu, and Yanag-
ihara (1996b) derive properties for this generator similar to those derived by
Niederreiter (1989) for the inversive generator in equation (1.33).

Eichenauer-Herrmann (1995) and Eichenauer-Herrmann, Herrmann, and
Wegenkittl (1998) provide surveys of work done on various nonlinear gener-
ators, including the inversive congruential generators.

1.6 Feedback Shift Register Generators

Tausworthe (1965) introduced a generator based on a sequence of 0s and 1s
generated by a recurrence of the form

bi ≡ (apbi−p + ap−1bi−p+1 + · · · + a1bi−1) mod 2, (1.37)

where all variables take on values of either 0 or 1. This is the multiple recursive
generator of equation (1.27). The difference is that we will interpret the bs as
bits and will form them into binary representations of integers.

Because the modulus is a prime, the generator can be related to a polynomial

f(z) = zp − (a1z
p−1 + · · · + ap−1z + ap) (1.38)

over the Galois field IG(2) defined over the integers 0 and 1 with the addition and
multiplication being defined in the usual way followed by a reduction modulo 2.
An important result from the theory developed for such polynomials is that, as
long as the initial vector of bs is not all 0s, the period of the recurrence (1.37)
is 2p − 1 if and only if the polynomial (1.38) is irreducible over IG(2). (An
irreducible polynomial is also sometimes called a primitive polynomial.) It is
easy to see that the maximal period is 2p − 1 because if any p-vector of bs
repeats, all subsequent values are repeated values.

1.6. FEEDBACK SHIFT REGISTER GENERATORS 39

For computational efficiency, most of the as in equation (1.37) should be
zero. For a modulus equal to 2, there is only one binomial that is irreducible,
and it is z + 1, which would yield an unacceptable period. There are, however,
many trinomials and higher-degree polynomials. See Zierler and Brillhart (1968,
1969) for a list of all primitive trinomials modulo 2 up to degree 1000. Kumada
et al. (2000) give additional trinomials.

The recurrence (1.37) often has the form

bi ≡ (bi−p + bi−p+q) mod 2 (1.39)

resulting from a trinomial. Addition of 0s and 1s modulo 2 is the binary
exclusive-or operation, denoted by ⊕; thus, we may write the recurrence as

bi = bi−p ⊕ bi−p+q . (1.40)

After this recurrence has been evaluated a sufficient number of times, say l
(with l ≤ p), the l-tuple of bs is interpreted as a number in base 2. This is
referred to as an l-wise decimation of the sequence of bs. If l is relatively prime
to 2p − 1 (the period of the sequence of bs), the period of the l-tuples will also
be 2p − 1. In this case, the decimation is said to be proper. Note that the
recurrence of bits is the same recurrence of l-tuples,

xi = xi−p ⊕ xi−p+q , (1.41)

where the xs are the numbers represented by interpreting the l-tuples as binary
notation, and the exclusive-or operation is performed bitwise. The underlying
trinomial is

xp + xr + 1,

where r = p − q. A random number generator built on this recurrence is
sometimes denoted by R(r, p).

As an example, consider the trinomial

x4 + x + 1, (1.42)

and begin with the bit sequence

1, 0, 1, 0.

For this polynomial, p = 4 and q = 3 in the recurrence (1.40). Operating the
generator, we obtain

1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0,

at which point the sequence repeats; its period is 24 − 1. A 4-wise decimation
using the recurrence (1.41) yields the numbers

12, 8, 15, 5, . . .

40 CHAPTER 1. UNIFORM DISTRIBUTION

(in which the 5 required an additional bit in the sequence above). We could
continue in this way to get 15 (that is, 24 − 1) integers between 1 and 15 before
the sequence began to repeat.

As with the linear congruential generators, different values of the as and
even of the starting values of the bs can yield either good generators (i.e., ones
with outputs that seem to be random samples of a uniform distribution) or bad
generators.

This recurrence operation in equation (1.37) can be performed in a feedback
shift register, which is a vector of bits that is shifted, say, to the left, one bit
at a time, and the bit shifted out is combined with other bits in the register to
form the rightmost bit. The operation can be pictured as shown in Figure 1.11,
where the bits are combined using ⊕.

�
�
⊕

1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1

0

0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0

Figure 1.11: One Shift of a Feedback Shift Register

The two sources of bits to shift into the right-hand side of the register are
called “taps”. Thus, Figure 1.11 represents a two-tap generator. The basic idea
of the feedback shift register can of course easily be extended to more than two
taps.

1.6.1 Generalized Feedback Shift Registers and Variations

Feedback shift registers have an extensive theory (see, e.g., Golomb, 1982) be-
cause they have been used for some time in communications and cryptography.

A variation on the Tausworthe generator is suggested by Lewis and Payne
(1973), who call their modified generator a generalized feedback shift register
(GFSR) generator. In the GFSR method, the bits of the sequence from recur-
rence (1.39) form the bits in one binary position of the numbers being generated.
The next binary position of the numbers being generated is filled with the same
bit sequence but with a delay. By using the bit stream from the trinomial
x4 +x+1 and the starting sequence that we considered before, and again form-
ing 4-bit words by putting the bits into a fixed binary position with a delay of 3

1.6. FEEDBACK SHIFT REGISTER GENERATORS 41

between binary positions, we have

1010 = 10
1110 = 14
0011 = 3
0101 = 5
1111 = 15
0001 = 1
0010 = 2
0111 = 7
1000 = 8
1001 = 9
1011 = 11
1100 = 12
0100 = 4
1101 = 13
0110 = 6,

at which point the sequence repeats. Notice that the recurrence (1.41),

xi = xi−p ⊕ xi−p+q ,

still holds, where the xs are the numbers represented by interpreting the l-tuples
as binary notation, and the exclusive-or operation is performed bitwise.

Lewis and Payne (1973) discussed methods of initializing the generator and
gave programs both for the initialization and for the generation. Kirkpatrick
and Stoll (1981) presented a faster way of initializing the generator and devel-
oped a program, R250, implementing a generator with p = 250 and q = 103
(that is, an R(103, 250)). This program is widely used among physicists. Em-
pirical results for this generator are mixed. The generator performed well
in tests reported by L’Ecuyer (1997) and by Kankaala, Ala-Nissila, and Vat-
tulainen (1993), but other tests based on physical simulations have indicated
some problems (see, for example, Ferrenberg, Landau, and Wong, 1992; Selke,
Talapov, and Shchur, 1993; and Ziff, 1998).

Fushimi (1990) has studied GFSR methods in gener and has described some
particular GFSRs that he showed to have good properties both theoretically
and empirically. One particular case studied by Fushimi had p = 521, with
a521 = a32 = 1 (with a slight modification in the definition of the recursion as
xi = xi−3p ⊕ xi−3q). The generator, which is available in the IMSL Libraries,
has a period of 2521−1. This generator also performed well in tests reported by
L’Ecuyer (1997) but not so well in one test by Matsumoto and Kurita (1994).

Ziff (1998) suggests that the problems arising in two-tap shift registers can
be ameliorated by use of four-tap shift registers; that is, generators based on
the recurrence

xi = xi−a ⊕ xi−b ⊕ xi−c ⊕ xi−d.

42 CHAPTER 1. UNIFORM DISTRIBUTION

He shows that four-tap sequences can also be constructed by decimation of
two-tap sequences. See also Compagner (1991, 1995) for further discussion of
multitap rules.

Twisting the Bits

Another way of addressing the problems of two-tap shift registers has been
proposed by Matsumoto and Kurita (1992, 1994). They modify the GFSR in
the recurrence (1.41) by “twisting” the bit pattern in xi−p+q . This is done by
viewing the xs as l-vectors of zeros and ones and multiplying xi−p+q by an l× l
matrix A. The recurrence then becomes

xi = xi−p ⊕ Axi−p+q . (1.43)

They call this a twisted GSFR generator. Matsumoto and Kurita (1994) show
how to choose A and modify the output to achieve good uniformity proper-
ties. They also gave a relatively short C program implementing the method.
Further empirical studies for this generator are needed. The idea of a twisted
GFSR generator is related to the matrix congruential generators discussed in
Section 1.4.2.

The Mersenne Twister

Matsumoto and Nishimura (1998) describe a twisted generator based on the
recurrence (1.43) that has approximately 100 terms in the characteristic poly-
nomial of the matrix A. They give a C program for a version of this generator,
called MT19937, that has a period of 219937−1 and 623-variate uniformity (see
page 63). The Mersenne twister requires a rather complicated initialization pro-
cedure and the one suggested in the 1998 article has some flaws. The authors
maintain a webpage

http://www.math.keio.ac.jp/~matumoto/emt.html

that describes current work on the Mersenne twister and provides links for
code and additional references. This generator is becoming widely used, but
additional empirical studies of it are needed.

Restriction that the Output Be in the Open Interval (0, 1)

In our discussion of computer implementation of congruential generators on
page 29, we mentioned a technique to ensure that the result of the generator is
less than 1. The same technique, of course, works for GFSR generators, but in
these generators we have the additional concern of a 0. By using the obvious
bit operations, which are inexpensive, it is usually fairly easy to prevent 0 from
occurring, however.

1.7. OTHER GENERATORS 43

1.6.2 Skipping Ahead in GFSR Generators

Golomb (1982) noted that the basic recurrence (1.41),

xi = xi−p ⊕ xi−p+q ,

implies
xi = xi−2ep ⊕ xi−2ep+2eq

for any integer e. This provides a method of skipping ahead in a generalized
feedback shift register generator by a fixed distance that is a power of 2. Aluru,
Prabhu, and Gustafson (1992) described a leapfrog method using this relation-
ship and applied it to parallel random number generators. Thus, for k a power
of 2, we have

xi = xi−kp ⊕ xi−k(p−q),

so we can generate a leapfrog sequence for GFSR generators analogous to equa-
tion (1.18) on page 24 for multiplicative congruential generators:

xs, xs+k , xs+2k,

Although there is a dearth of published studies on the correlations among
substreams generated by leapfrogging with a GFSR generator, serious correla-
tions can exist. The same issues discussed on page 26 and illustrated in Fig-
ure 1.9 for leapfrogged substreams from a simple linear congruential generator
are relevant in the case of GFSR generators also.

1.7 Other Sources of Uniform Random

Numbers

Many different mechanisms for generating random numbers have been intro-
duced. Some are simple variations of the linear congruential generator or the
feedback shift register, perhaps designed for microcomputers or some other
special environment. Various companies distribute proprietary random num-
ber generators, perhaps based on some physical process. Marsaglia (1995) uses
some of them, and his assessment of those he used was that they were not of
high quality. (Nevertheless, he combined them with other sources and produced
pseudorandom streams of high quality.)

Digits in the decimal representations of approximations to transcendental
numbers, such as π or e, or simpler irrational numbers, such as

√
2, have of-

ten been suggested as streams of independent discrete uniform numbers (see
Dodge, 1996, for example). A number is said to be normal in base b if, in
its representation in base b, every nonnegative integer less than b occurs with
frequency 1/b and every subsequence of length l occurs with frequency 1/bl, for
any l. It is clear that only irrational numbers can be normal. A number that
is normal in a given base may not be normal in another base. See Bailey and

44 CHAPTER 1. UNIFORM DISTRIBUTION

Crandall (2001) for further discussion of normal numbers. Most statistical tests
of streams from π and e (usually in base 10) have not detected nonzero corre-
lations or departures from uniformity. See Jaditz (2000) and NIST (2000) for
summaries of some tests of the randomness in the expansions of these irrational
numbers. Also see Exercise 2.7 on page 90.

1.7.1 Generators Based on Cellular Automata

John von Neumann introduced cellular automata as a way of modeling biological
systems. A cellular automaton consists of a countable set of fixed sites, each
with a given value chosen from a countable, usually finite, set. In discrete
time steps, the values at all sites are updated simultaneously based on simple
rules that use the values at neighboring sites. If the values at a step i − 1 are
. . . , b

(i−1)
−2 , b

(i−1)
−1 , b

(i−1)
0 , b

(i−1)
1 , b

(i−1)
2 , . . . , the update rule is

b
(i)
j = φ

(
b
(i−1)
j−r , b

(i−1)
j−r+1, . . . , b

(i−1)
j , . . . , b

(i−1)
j+r

)
for some function φ.

We can think of this as a grid of elements b
(i)
j that is filled starting with

the given row b
(1)
1 , . . . , b

(1)
k by following the update rule. Wolfram (1994, 2002)

provides extensive descriptions of ways of constructing cellular automata and
discussions of their properties.

Wolfram (1984) suggested a random number generator using the cellular
automaton in which bj takes on the values 0 and 1, and

b
(i)
j ≡

(
b
(i−1)
j−1 + b

(i−1)
j + b

(i−1)
j+1 + b

(i−1)
j b

(i−1)
j+1

)
mod 2. (1.44)

This is equivalent to a rule on a two-dimensional grid that generates the jth

element in line i from the previous line by taking the element from the previous
line just to the left of the jth element if both the jth element and the element
just to the right of the jth element are both 0; otherwise taking the jth element
in line i to be the opposite of that element just to the left. Wolfram calls this
“rule 30”.

The first line in the grid can be initiated in a random but reproducible
(therefore pseudorandom) manner. Edge effects in equation (1.44) are handled
by assigning 0s to bs having indices that are out of range.

Wolfram describes some ways of mapping a vector of bits to an integer and
then, from a given integer characterized by a finite vector of bits, using the iter-
ation (1.44) to generate a new number. The bs on any line, for example, could
be the bits in the binary representation of an integer. A random number gen-
erator based on the rule 30 cellular automaton is available in the Mathematica
software system.

1.7. OTHER GENERATORS 45

1.7.2 Generators Based on Chaotic Systems

Because chaotic systems exhibit irregular and seemingly unpredictable behav-
ior, there are many connections between random number generators and chaotic
systems. Chaotic systems are generally defined by recursions, just like random
number generators. It is difficult to define useful random processes based on
chaotic systems, but some of the results of chaos theory may have some rele-
vance to the understanding of pseudorandom generators.

Lüscher (1994) relates the Marsaglia–Zaman subtract-with-borrow genera-
tor to a chaotic dynamical system. This relationship allows an interpretation
of the correlational defects of the basic generator as short-term effects and
provides a way for skipping ahead in the generator to avoid those problems.
The Lüscher generator has a long period and performed well in the statistical
tests reported by Lüscher. James (1994) provides a portable Fortran program,
RANLUX, implementing this generator.

1.7.3 Other Recursive Generators

Another family of combination generators with long periods are the so-called
ACORN (additive congruential random number) generators described by Wikra-
maratna (1989). The kth-order ACORN generator yields the sequence

uk,1, uk,2, uk,3, . . .

from the recursions

u0,i = u0,i−1, for i ≥ 1,
uj,i ≡

(
uj−1,i + uj,i−1

)
mod 1, for i ≥ 1, and j = 1, 2, . . . k.

The ACORN generators depend heavily on the starting values uj,0. Wikrama-
ratna (1989) shows that initial values satisfying certain conditions can yield very
long periods for this generator. Although the generator is easy to implement,
the user must be concerned with the proper choice of seeds.

It is easy to modify existing random number generators or to form com-
binations of existing generators, and every year several new generators are
suggested in the scientific literature. The Journal of Computational Physics
and Computer Physics Communications provide new generators in abundance.
For example, one proposed in the former journal is the Chebyshev generator,
defined by Erber, Everett, and Johnson (1979) as

xi = x2
i−1/2,

ui =
1
π

arccos(xi/2).

Although this generator has some desirable qualities, it does not hold up well
in statistical tests. (See other articles in the same journal; for example, Hosack,
1986, and Wikramaratna, 1989.)

46 CHAPTER 1. UNIFORM DISTRIBUTION

Some newly proposed generators merit further study, but the scientist gen-
erally must be very careful in choosing a generator to use. It is usually better
to avoid new generators or ones for which there is not a large body of empirical
evidence regarding their quality.

1.7.4 Tables of Random Numbers

Before the development of reliable methods for generating pseudorandom num-
bers, there were available a number of tables of random numbers that had
been generated by some physical process or that had been constructed by sys-
tematically processing statistical tables to access midorder digits of the data
that they contained. The most widely used of these were the “RAND tables”
(RAND Corporation, 1955), which contain a million random digits generated
by a physical process. The random digits in these tables have been subjected to
many statistical tests, with no evidence that they did not arise from a discrete
uniform distribution over the ten mass points.

Marsaglia (1995) has produced a CD-ROM that contains 4.8 billion random
bits stored in sixty separate files. The random bits were produced by a combi-
nation of two or more deterministic random number (pseudorandom number)
generators and three devices that use physical processes. Some of the files also
have added bit streams from digitized music or pictures.

1.8 Combining Generators

Both the period and the apparent randomness of random number generators
can often be improved by combining more than one generator. The shuffling
methods of MacLaren and Marsaglia (1965) and others, described on page 21,
may use two or more generators in filling a table and shuffling it.

Another way of combining generators is suggested by Collings (1987). His
method requires a pool of generators, each maintaining its own stream. For
each number in the delivered stream, an additional generator is used to select
which of the pool of generators is to be used to produce the number.

The output streams of two or more generators can also be combined directly
in various ways, such as by a linear combination followed by a modulo reduction.
Each generator combined in this way is called a “source” generator. This is one
of the simplest and most widely used ways of combining generators. The most
common ones are two-source and three-source generators.

The generators that are combined can be of any type. One of the early com-
bined generators, developed by George Marsaglia and called “Super-Duper”,
used a linear congruential generator and a Tausworthe generator. See Lear-
month and Lewis (1973) for a description of Super-Duper. Another similar one
that uses a linear congruential generator and two shift register generators is
called “KISS” (see Marsaglia, 1995; it is included on the CD-ROM).

1.8. COMBINING GENERATORS 47

Wichmann/Hill Generator

Wichmann and Hill (1982 and corrigendum, 1984) describe a three-source gen-
erator that is a combination of linear congruential generators. It is easy to
program and has good randomness properties. The generator is

xi ≡ 171xi−1 mod 30269,

yi ≡ 172yi−1 mod 30307,

zi ≡ 170zi−1 mod 30323,

and
ui =

(xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

The seed for this generator is the 3-vector (x0, y0, z0). The generator directly
yields numbers ui in the interval (0,1). The period is of the order of 1012. Notice
that the final modular reduction is equivalent to retaining only the fractional
part of the sum of three uniform numbers (see Exercise 1.4a, page 57).

Zeisel (1986) showed that the Wichmann/Hill generator is the same as a sin-
gle multiplicative congruential generator with a modulus of 27 817 185 604 309.
(The reduction makes use of the Chinese Remainder Theorem; see Fang and
Wang, 1994. See also L’Ecuyer and Tezuka, 1991.)

De Matteis and Pagnutti (1993) studied the higher-order autocorrelations
in sequences from the Wichmann/Hill generator and found them to compare
favorably with those from other good generators. This, together with the ease of
implementation, makes the Wichmann/Hill generator a useful one for common
applications. A straightforward implementation of this generator can yield a 0
(see Exercise 1.17, page 59).

L’Ecuyer Combined Generators

L’Ecuyer (1988) suggests combining k multiplicative congruential generators
that have prime moduli mj , such that (mj −1)/2 are relatively prime, and with
multipliers that yield full periods. Let the sequence from the jth generator be
xj,1, xj,2, xj,3, Assuming that the first generator is a relatively “good” one
and that m1 is fairly large, we form the ith integer in the sequence as

xi ≡
k∑

j=1

(−1)j−1xj,i mod (m1 − 1).

The other moduli mj do not need to be large.
The normalization takes care of the possibility of a 0 occurring in this se-

quence:

ui =
{

xi/m1 if xi > 0,
(m1 − 1)/m1 if xi = 0.

48 CHAPTER 1. UNIFORM DISTRIBUTION

A specific generator suggested by L’Ecuyer (1988) is the following:

xi ≡ 40014xi−1 mod 2147483563,

yi ≡ 40692yi−1 mod 2147483399, (1.45)
zi ≡ (xi − yi) mod 2147483563,

and
ui = 4.656613zi × 10−10.

The period is of the order of 1018. L’Ecuyer (1988) presented results of both
theoretical and empirical tests that indicate that the generator performs well.

Notice that the difference between two discrete uniform random variables
modulo the larger of the ranges of the two random variables is also a discrete
uniform random variable (see Exercise 1.4c, page 57). Notice also that the nor-
malization always yields numbers less than 1 because the normalizing constant
is larger than 2147483563.

L’Ecuyer (1988) gives a portable program for the generator using the tech-
niques that we have discussed for keeping the results of intermediate computa-
tions small (see page 27 and following).

L’Ecuyer and Tezuka (1991) analyze generators of this form and present
one with similar size moduli and multipliers that seems slightly better than the
generator (1.45).

L’Ecuyer (1996, 1999) studied combined multiple recursive random num-
ber generators and concluded that combinations of generators of order greater
than 1 would perform better than the combinations of the simple order 1 gen-
erators. One that he recommends is a two-source combination of third-order
linear congruential generators:

xi ≡ (63308xi−2 − 183326xi−3) mod (231 − 1),
yi ≡ (86098yi−1 − 539608yi−3) mod 2145483479, (1.46)
zi ≡ (xi − yi) mod (231 − 1).

1.9 Properties of Combined Generators

A judicious combination of two generators may improve the apparent random-
ness properties. Because of the finite number of states in any generator, how-
ever, it is possible that the generators will magnify their separate bad proper-
ties. Consider, for example, combining the two streams (1.21) and (1.22) on
page 26. The combined generator in that case would have a period of 1. That,
of course, would be a very extreme case, and it would require extremely bad
luck or extreme carelessness to combine those generators.

Use of combined generators is likely to make the process more difficult to
predict; hence, intuitively, it is likely to make the process more “random”. Of
course, we also are concerned about uniformity. Does the use of combined

1.9. PROPERTIES OF COMBINED GENERATORS 49

generators increase the fidelity of the process to a sample from a uniform dis-
tribution?

We present below two heuristic arguments that sequences from combined
generators are more “random”. See also Marshall and Olkin (1979) for other
discussions of combinations of random variables that may support the use of
combined generators.

A Heuristic Argument Based on the Density
of the Uniform Distribution

Deng and George (1990) and Deng et al. (1997) provide arguments in favor of
using combined generators based on probability densities that are almost con-
stant. They consider sums of random variables whose distributions are “nearly”
uniform and use a variation of the uniformity property of the modular reduc-
tion (1.8) on page 10: the fractional part of the sum of independent random
variables one of which is U(0, 1) is also a U(0, 1) random variable. If Xi are inde-
pendently distributed with probability density functions pi, and |pi(x)−1| ≤ εi

over [0, 1], then for the density pX of the reduced sum, X = (
∑

Xi) mod 1, we
have

|p(x) − 1| ≤
∏

εi

over [0, 1]. This implies that the random variable X is more nearly uniform in
some sense than any of the individual Xi.

Deng and George (1992) also describe several other properties of uniform
variates, some of which characterize the uniform distribution, that might be
useful in improving uniform random number generators.

A Heuristic Argument Based on n-dimensional Lattices

Consider two sequences produced by random number generators over a finite set
S, which without loss we can consider to be the integers 1, 2, 3, . . . , n. A result
due to Marsaglia (1985) suggests that the distribution of a sequence produced
by a one-to-one function from S × S onto S is at least as close to uniform as
the distribution of either of the original sequences.

Let p1, p2, p3, . . . , pn be the probabilities of obtaining 1, 2, 3, . . . , n associ-
ated with the first sequence corresponding to the random variable X , and let
q1, q2, q3, . . . , qn be the corresponding probabilities associated with the second
sequence that are realizations of the random variable Y . The distance of either
sequence from the uniform distribution is taken to be the Euclidean norm of
the vector of differences of the probabilities from the uniform 1/n. Let s be the
vector with all n elements equal to 1/n, and let p be the vector with elements
pi. Then, for example,

d(X) = ‖p− s‖ =

√∑(
pi − 1

n

)2

.

50 CHAPTER 1. UNIFORM DISTRIBUTION

This is similar to the discrepancy measure discussed in Section 2.2, page 64. It
can be thought of as a measure of uniformity. The one-to-one function from
S × S onto S can be represented as the operator ◦:

X
◦ 1 2 3 · · · n
1 z(1,1) z(1,2) z(1,3) · · · z(1,n)

2 z(2,1) z(2,2) z(2,3) · · · z(2,n)

Y 3 z(3,1) z(3,2) z(3,3) · · · z(3,n)

· · · · · · · · · · · · · · · · · ·
n z(n,1) z(n,2) z(n,3) · · · z(n,n)

That is, i ◦ j = z(i,j). In each row and each column, every integer from 1 to n
occurs as the value of some z(i,j) exactly once. The probability vector for the
random variable Z = X ◦ Y is then given by

Pr(Z = k) =
∑

i

Pr(X = i)Pr(Y = j ◦ k),

where j is such that i ◦ j = k. This expression can be written as Mq, where
M is the matrix whose rows mT

i correspond to permutations of the elements
p1, p2, . . . , pn, such that each pj occurs in only one column, and q is the vector
containing the elements qj . Now∑

i

Pr(Y = j ◦ k) = 1,

so each row (and also each column) of M sums to 1, and Ms = s. For such a
matrix M , we have for any vector v = (v1, v2, . . . , vn),

‖Mv‖2 = (
∑

m1ivi)2 + (
∑

m2ivi)2 + · · · (∑mnivi)2

≤ ∑
m1iv

2
i +
∑

m2iv
2
i + · · ·∑mniv

2
i

=
∑

v2
i

= ‖v‖2

(1.47)

(see Exercise 1.18, page 59). Then, we have

d(X ◦ Y) = ‖Mq − s‖
= ‖M(q − s)‖
≤ ‖q − s‖
= d(Y).

Heuristically, this increased uniformity implies greater “uniformity” of the
subsequences of X ◦ Y than of subsequences of either X or Y .

1.10. INDEPENDENT PARALLEL STREAMS 51

Additional Considerations for Combined Generators

If the streams in a combination generator suffer similar irregularities in their
patterns, the combination may not be able to overcome the problems. Com-
bining some generators can actually degrade the quality of the output of both
of them.

We have mentioned the important difference between the ranges [0, 1] and
(0, 1) for the simulated uniform distribution. Combining generators exposes
the naive implementer to this problem anew. Whenever two generators are
combined, there is a chance of obtaining a 0 or a 1 even if the output of each is
over (0, 1); see Exercise 1.17.

1.10 Independent Streams and Parallel Random

Number Generation

We often want to have independent substreams of random numbers. This may
be because we want to use blocking in a simulation experiment or because
we want to combine the results of multiple experiments, possibly performed
on different processors. Blocks are used in simulation experiments in much
the same way as in ordinary experiments: to obtain a better measure of the
underlying variation. In each block or each simulation run, an independent
stream of random numbers is required.

Many of the Monte Carlo methods are “embarrassingly” parallel; they con-
sist of independent computations, at least at some level, that are then averaged.
The main issue for Monte Carlo methods performed in parallel is that the indi-
vidual computations (that is, all computations except the outer averaging loop)
be performed independently. For the random number generators providing data
for parallel Monte Carlo computations, the only requirement over and above
those of any good random number generator is the requirement of independence
of the random number streams.

The methods for generating independent streams of random numbers are of
three types. One type is based on skipping ahead in the stream either by using
different starting points or by a leapfrog method, as discussed in Section 1.2
on page 24 for linear congruential generators and in Section 1.6 on page 43
for GFSR generators. Both kinds of skipping ahead can be done randomly
or at a fixed distance. Neither the congruential generator nor the generalized
feedback register generator has entirely satisfactory methods of skipping ahead
for use in parallel random number generation. As we have already mentioned,
the congruential generator also suffers from a very short period.

Various combination generators overcome the limitations of either the simple
linear congruential generator or the GFSR generator, and combination gener-
ators also can be used effectively in generating independent streams. In Sec-
tion 1.10.1 below, we discuss this kind of method, which involves skipping ahead
or leapfrogging in a combination generator.

52 CHAPTER 1. UNIFORM DISTRIBUTION

The third type of method uses different generators for different substreams,
as discussed in Section 1.10.2 below.

1.10.1 Skipping Ahead with Combination Generators

Both independent streams and long periods can be achieved by a combination
generator in which a simple skip-ahead method is implemented in one of the gen-
erators, either a congruential or a GFSR generator, and the other generator is a
generator with a very long period. Wollan (1992) describes such a method for k
processors that combines a skipping multiplicative congruential generator with
a lagged Fibonacci generator by subtraction modulo 1 of the normalized out-
put. For the skipping congruential generator based on xi ≡ axi−1 mod m, the
seed ajx0 is used for the jth processor, and the recurrence xi ≡ akxi−1 mod m
is used in each processor. The other generator is the same in all processors.
Using a generic long-period generator f , as in equation (1.1), which we assume
returns values in the interval (0, 1), we start the jth stream at wj(0) = ajz0mod
and yj(0), . . . , yj(1−k) and continue the jth stream as

wj(i) ≡ akwj(i−1) mod m,
vj(i) = wj(i)/m,
yj(i) = f(yj(i−1), · · · , yj(i−k)),
xj(i) ≡ (vj(i) − yj(i)) mod 1.

(1.48)

Wollan also allowed a single process to spawn a child process. Both the
parent and the child process begin using a2 in place of a (i.e., the multiplier for
both is a2k when one of the original k processes spawns a new process), and
the child process skips from the current value xi to axi.

The properties of this combination generator depend heavily on the prop-
erties of the generator yi = f(yi−1, · · · , yi−k). Although it is assumed that the
streams of this generator are not identical, they may overlap. The congruential
generator ensures that the final streams do not overlap. If some streams of
f were identical, the final streams would not overlap, but they might display
some of the structural regularities of the congruential generator.

1.10.2 Different Generators for Different Streams

The problem with use of a single generator is that the period of each of the
subsequences is shorter than the period of the underlying generator. Further-
more, we must be concerned about correlations among the subsequences. Use
of different generators for the different streams may be a better approach if we
can devise a method for selecting different generators and if we can ensure that
all of the generators are good ones.

Deng, Chan, and Yuan (1994) propose the use of multiplicative congruential
generators with different multipliers but with the same modulus. The jth stream
is generated by the recursion

xj(i) ≡ ajxj(i−1) mod m. (1.49)

1.10. INDEPENDENT PARALLEL STREAMS 53

All of the multipliers, aj , are primitive elements modulo m, and they are selected
randomly. As we saw in equation (1.20), any primitive root can be obtained
as a power of another, and the power is equivalent to a skip distance in a
leapfrog method. We also saw that the skip distance must be relatively prime
to the period in order for the sequence formed by leapfrogging to have the same
period. Deng, Chan, and Yuan (1994) recommend only primes be used as the
modulo in (1.49), so the period is m − 1. They form the multipliers in the
generator (1.49) by use of another generator that yields random skip distances
that are relatively prime to m − 1. Such distances are generated by use of a
second multiplicative congruential generator,

kj ≡ bkj−1 mod (m − 1), (1.50)

and the corresponding multipliers are generated as

aj ≡ a
kj

0 mod m.

There are several choices to be made in this scheme. The modulus m should
be as large as is practical. To have a large number of different streams, m should
have a large number of primitive roots. This is determined by the Euler totient
function. Furthermore, in order to generate a large number of exponents (skip
distances) to form the primitive roots, the maximum period of a multiplicative
congruential generator with modulus m − 1 (which is composite) should be as
large as possible. This is determined by the so-called Carmichael function (see
Knuth, 1998). Deng, Chan, and Yuan (1994) evaluated these properties for m
of the form 231 − r for r a small positive integer. They found that a value of
r = 69 yielded a prime and that for that choice there were the largest number
of primitive roots and the largest maximum period for a modulus 231 − r− 1 of
any other relatively small value of r. For a given value of m, a primitive root
modulo m is chosen for the multiplier in the generator (1.49), the multiplier in
the generator (1.50) is chosen as a primitive element modulo m − 1, and k0 is
chosen relatively prime to m − 1.

There are other systematic approaches for forming generators with differ-
ent multipliers or for completely different generators in the different streams.
Mascagni and Srinivasan (2000) describe and give C code for a library of gen-
erators that operate in parallel by choosing different generators on different
processors. The library, called SPRNG, includes linear congruential genera-
tors, feedback shift register generators, and lagged Fibonacci generators. More
information, including the code, is available at

http://sprng.cs.fsu.edu

1.10.3 Quality of Parallel Random Number Streams

Assessing the quality of software operating in parallel can be quite difficult.
This is because, for optimal use of parallel processing resources, we do not

54 CHAPTER 1. UNIFORM DISTRIBUTION

control the allocation of tasks to processors. If random number generator sub-
streams are allowed to be utilized in computations based on the progress of
the job (that is, if the process is allowed to spawn new substreams), we cannot
expect strict reproducibility. It is best to control which generators are used in
which process. This can be done by giving to one specific processor the task
of assigning substreams or generators to processes or deciding in advance the
maximum number of processors.

1.11 Portability of Random Number
Generators

A major problem with random number generation on computers is that pro-
grams for the same generators on different computers often yield different se-
quences. For programs that make use of random number generators to be
portable, the generator must yield the same sequence in all computer/compiler
environments. It is desirable that the generators be portable to facilitate trans-
fer of research and development efforts. Portability reduces the number of times
that the wheel is reinvented as well as the amount of computer-knowledge over-
head that burdens a researcher. The user can devote attention to the research
problem rather than to the extraneous details of the computer tools used to
address the problem.

The heterogeneous computing environment in which most scientists work
has brought an increased importance to portability of software. Formerly, porta-
bility was a concern primarily for distributors of software, for users who may be
switching jobs, or for computer installations changing or contemplating chang-
ing their hardware. With the widespread availability of personal computers,
all computer users now are much more likely to use (or to attempt to use) the
same program on more than one machine. There are both technical and tactical
reasons for using a micro and a mainframe while working on the same prob-
lem. The technical reasons include the differences in resources (memory, CPU
speed, software) available on micros and mainframes. These differences likely
will continue. As new and better micros are introduced and more software is
developed for them, new and better supercomputers will also be developed.

The availability of the different computers in different working environments
such as home, lab, and office means that using multiple computers on a single
problem can make more efficient use of one’s time. These tactical reasons for
using multiple computers will persist, and it will become increasingly common-
place for a researcher to use more than one computer.

Use of parallel processing can introduce additional concerns of portability
unless we are very careful to control which generators are used in which process.
If we control the assignment of generators to processors, then the issues of
portability for parallel processing are no different from those for single-thread
processing.

1.12. SUMMARY 55

Many programming languages and systems come with built-in random num-
ber generators. The quality of the built-in generators varies widely (see Lewis
and Orav, 1989, for analyses of some of these generators). Generators in the
same software system, such as rand() in stdlib.h of the C programming lan-
guage, may not generate the same sequence on different machines or even in
different C compilers on the same machine. It is generally better to use a ran-
dom number generator from a system such as the IMSL Library, which provides
portability across different platforms.

The algorithms for random number generation are not always straightfor-
ward to implement, as we have discussed on page 27. Algorithms with relatively
small operands, such as in Wichmann and Hill (1982) and the alternate gen-
erator of L’Ecuyer (1988), are likely to be portable and, in fact, can even be
implemented on computers with 16-bit words.

We have mentioned on page 27 several subtle problems for implementing
congruential generators. Other generators have similar problems, such as the 0
and 1 problem, of which most people who have never built generators used in
large-scale simulations are not aware. See Gentle (1981) for further discussion
of the issue of portability.

1.12 Summary

In this chapter, we have discussed several methods for generating a sequence
x1, x2, . . . that appears to be a realization of a simple random sample from a
U(0, 1) distribution (or, alternatively and equivalently for practical purposes,
either a realization of a simple random sample discrete uniform distribution
over the integers 1, 2, . . . , j, where j is some large integer, or else a realization
of a simple random sample from a Bernoulli distribution, which as random bits
would be used as the binary representation of the integers 1, 2, . . . , j). By dis-
cussing so many methods, I have implied that there is a place for various random
number generators. I have made some comments about some methods having
various flaws, but, in general, have not provided much guidance in identifying
superior methods. In Chapter 2, we will discuss various ways of evaluating
random number generators, but even with a number of considerations, we will
not be able to identify a single “best” method.

In most areas of numerical computing, we seek a single algorithm (or perhaps
a “polyalgorithm”, which with little or no user interaction selects a specific
method). In the case of random number generation, however, I believe that
having a variety of “good” methods is desirable.

Each of the methods for pseudorandom number generation is some variation
on the recursion in equation (1.1), coupled with a transformation to the set IF:

xi = f(xi−1, · · · , xi−k),
ui = g(xi, · · · , xi+1−k).

The generator requires the previous k numbers to get each successive one and

56 CHAPTER 1. UNIFORM DISTRIBUTION

so requires a seed that consists of k values. The purpose of g(·) is to produce a
result in (0, 1) ∩ IF.

In many generators, such as the class of linear congruential generators and
related generators, the xi are positive integers less than some number m, that
is, they are elements of II, so the function g(·) is simply

g(xi, · · · , xi+1−k) = xi/m.

(Recall that this operation in the computer must be done with some care.)
In other generators, such as those using feedback shift register methods in

which xi, · · · , xi+1−k are 0s and 1s, g(·) is a rule that forms a number in (0, 1)
by a binary representation using some subset of the 0s and 1s.

The most widely used generators for many years have been those in which
f(·) is a linear congruential function,

xi ≡ (aTxi−1 + c) mod m, with 0 ≤ xi < m,

where a is a k-vector of constants, and xi−1 is the k-vector (xi−1, · · · , xi−k).
In the simple linear congruential generator, k = 1 (and often c = 0, in which
case it is sometimes called the “multiple congruential generator”). The simple
linear congruential generator has several desirable properties, but, because of
its short period and poor uniformity in dimensions greater than 1, it should be
used only in combinations with other generators.

The linear congruential generators with k > 1 (often called “multiple re-
cursive generators”) may have longer periods and generally good uniformity
properties. The fifth-order multiple recursive generator (1.29) has performed
well in many empirical tests.

In many of the better generators, the sequence x0, x1, . . . are j-tuples, and
the function f(·) is a composition of j − 1 sources. We have discussed specific
generators of this type, such as simple shuffled generators and more complicated
combinations of multiple sources. The combination generators may have very
long periods and very good uniformity properties. The two-source combination
of third-order multiple recursive generators (1.46) has performed well in many
empirical tests.

The feedback shift register methods are based on a recurrence f(·) of 0s and
1s of the form of equation (1.37), or equivalently of equation (1.41), in which
an operation of the function y(·) has already been applied to convert tuples of
bits to integers. Prior to converting the bits to integers, a tuple of bits may
be “twisted” by a linear transformation as in equation (1.43). The Mersenne
twister has a very long period and appears to have very good distributional
properties.

Exercises

1.1. (a) In equation (1.3) on page 6, show that S = [bemin−p, 1−b−p] ⊂ (0, 1).

EXERCISES 57

(b) How many computer numbers are there in [bj , bj+1]? Does it matter
what j is?

(c) How many computer numbers are there in S?

(d) How many computer numbers are there in (0, .5)?

(e) How many computer numbers are there in (.5, 1)?

1.2. Given the random variable X in equations (1.4) and (1.5), determine its
exact mean and variance in terms of b and p. Now, add the restriction
X �= 0, and determine its exact mean and variance.

1.3. Use equations (1.6) and (1.7) to evaluate φ(160).

1.4. Modular reduction and uniform distributions.

(a) Let Y be a random variable with a U(0, 1) distribution, let k be a
nonzero integer constant, and let c be a real constant. Let

X ≡ (kY + c) mod 1, with 0 ≤ X ≤ 1.

Show that X has a U(0, 1) distribution. Hint: First, let c = 0 and
consider kY ; then, consider T + c, where T is from U(0, 1).

(b) Prove a generalization of Exercise 1.4a in which the constant c is
replaced by a random variable with any distribution.

(c) Let T be a random variable with a discrete uniform distribution with
mass points 0, 1, . . . , d − 1. Let W1, W2, . . . , Wn be independently
distributed as discrete uniform random variables with integers as
mass points. Show that

T +
n∑

i=1

Wi mod d

has the same distribution as T . (The reduced modulus is used in
this expression, of course.) Hint: First, consider T + W1, and write
(T+W1) mod d as j+kd, where j and k are integers with 0 ≤ j ≤ d−1
(see also L’Ecuyer, 1988).

1.5. Use Fortran, C, or some other programming system to write a program to
implement a generator using a multiplicative congruential method with
m = 213 − 1 and a = 17. Generate 500 numbers xi. Compute the
correlation of the pairs of successive numbers xi+1 and xi. Plot the pairs.
On how many lines do the points lie? Now, let a = 85. Generate 500
numbers, compute the correlation of the pairs, and plot them. Now, look
at the pairs xi+2 and xi. Compute their correlation.

58 CHAPTER 1. UNIFORM DISTRIBUTION

1.6. Now, modify your program from Exercise 1.5 to implement a matrix con-
gruential method[

x1i

x2i

]
≡
[

a11 a12

a21 a22

] [
x1,i−1

x2,i−1

]
mod m

with m = 213 − 1, a11 = 17, a22 = 85, and a12 and a21 variable. Letting
a12 and a21 vary between 0 and 17, generate 500 vectors and compute
their sample variance-covariances. Are the variances of the two elements
in your vectors constant? Explain. What about the covariances? Can you
see any relationship between the covariances and a12 and a21? Is there
any reason to vary a12 and a21 separately? Can a lower triangular matrix
(that is, one with a21 = 0) provide all of the flexibility of matrices with
varying values of a21?

1.7. Write a Fortran or C function to implement the multiplicative congruen-
tial generator (1.12) (RANDU) on page 19.

(a) Generate a sequence xi of length 20,002. For all triplets in your
sequence, (xi, xi+1, xi+2), in which 0.5 ≤ xi+1 ≤ 0.51, plot xi versus
xi+2. Comment on the pattern of your scatterplot. (This is similar
to the graphical analysis performed by Lewis and Orav, 1989.)

(b) Generate a sequence of length 1002. Use a program that plots points
in three dimensions and rotates the axes to rotate the points until
the 15 planes are clearly visible. (A program that could be used for
this is the S-Plus function spin, for example.)

1.8. Using an analysis similar to that leading to equation (1.13) on page 19,
determine the maximum number of different planes on which triplets from
the generator (1.12) would lie if instead of 65 539, the multiplier were
65 541. Determine the number of different planes if the multiplier were
65 533. (Notice that both of these multipliers are congruent to 5 mod 8,
as James, 1990, suggested.)

1.9. Write a Fortran or C function to use a multiplicative congruential method
with m = 231 − 1 and a = 16 807 (the “minimal standard”).

1.10. Write a Fortran or C function to use a multiplicative congruential method
with m = 231 − 1 and a = 950 706 376. Test your program for correctness
(not for statistical quality) by using a seed of 1 and generating ten num-
bers. (This is a multiplier found by Fishman and Moore (1982, 1986) to
be very good for use with the given modulus.)

1.11. Suppose that a sequence is generated using a linear congruential generator
with modulus m beginning with the seed x0. Show that this sequence and
the sequence generated with the seed m − x0 are antithetic. Hint: Use
induction.

EXERCISES 59

1.12. Suppose that a sequence is generated by xi+1 ≡ axi mod m and that a
second sequence is generated by yi+1 ≡ byi mod m, where

b ≡ ac−1 mod m

and c is the period. Prove that the sequences are in reverse order.

1.13. For the generator xi ≡ 16 807xi−1mod(231 − 1), determine the value x0

that will yield the largest possible value for x1. (This seed can be used
as a test that the largest value yielded by the generator is less than 1.
It is desirable to scale all numbers into the open interval (0, 1) because
the numbers from the uniform generator may be used in an inverse CDF
method for a distribution with an infinite range. To ensure that this is the
case, the value used for scaling must be greater than 231 − 1; see Gentle,
1990.)

1.14. In this exercise, use a package that supports computations for number
theory, such as Maple.

(a) Check that the multipliers in Exercises 1.5, 1.8, and 1.13 are all
primitive roots of the respective moduli.

(b) Determine all of the primitive roots of the modulus 213 − 1 of Exer-
cise 1.5.

1.15. Suppose that for one stream from a given linear congruential generator the
seed is 500 and that for another stream from the same generator the seed
is 1000. What is the approximate correlation between the two streams?

1.16. Write a program to implement the cellular automaton (1.44) as a random
number generator producing 32-bit strings. Seed the generator with a lin-
ear congruential generator, and generate 1000 32-bit numbers. Compute
the average Hamming distance between successive numbers. Now, form
integers from the strings in the stream, and plot overlapping pairs as in
Figure 1.3. Do you see any evidence of structure?

1.17. Consider the Wichmann/Hill random number generator (page 47). Be-
cause the moduli are relatively prime, the generator cannot yield an exact
zero. Could a computer implementation of this generator yield a zero?
First, consider a computer that has only two digits of precision. The an-
swer is obvious. Now, consider a computer with a more realistic number
system (such as whatever computer you use most often). How likely is
the generator to yield a 0 on this computer? Perform some computations
to explore the possibilities. Can you make a simple adjustment to the
generator to prevent a 0 from occurring?

1.18. Prove the inequality occurring in the array of equations (1.47) on page 50.
Hint: Define an appropriate random variable W , and then use the fact
that (E(W))2 ≤ E(W 2).

60 CHAPTER 1. UNIFORM DISTRIBUTION

1.19. Write pseudocode for the following random number generators for par-
allel processing computers. Be sure that your generators preserve inde-
pendence of the separate streams. You can assume that the maximum
number of processors, say k, is provided by the user. (What else does the
user provide?)

(a) Write a program implementing the method of Wollan (1.48) using
the “minimal standard” generator to produce independent streams
and the cellular automaton (1.44) as the long-period generator.

(b) Write a program implementing the method of Deng, Chan, and
Yuan (1994) using a modulus of 231 − 1.

(c) Test and compare your generators. Write a brief description com-
paring and contrasting the two methods (not just based on empirical
results of using your generators but considering other issues such as
user interface, quality concerns, etc.).

Chapter 2

Quality of Random Number
Generators

Many Monte Carlo applications routinely require orders of 1015 or more ran-
dom numbers and may use months of computing time on several workstations
running simultaneously. This kind of research work that depends so heavily on
random numbers emphasizes the need for high-quality random number genera-
tors.

An initial consideration for any generator is its period. As the number and
complexity of Monte Carlo studies increase, our requirement for the period of
the generator increases. The minimal standard generator of Park and Miller
(1988) (see page 20) has a period of 231 − 1. As Deng and Lin (2000) argue,
this is no longer sufficient for most serious work. Aside from issues of very large
simulations, we must be concerned about the inability of a random number
generator with a small period to visit all points in a sample space for a very
simple problem such as generating a random sample from a relatively small
population (see Exercise 6.2).

Only random number generators that have solid theoretical properties should
even be considered. In addition, statistical tests should be performed on samples
generated, and only generators whose output has successfully passed a battery
of statistical tests should be used. Even so, often in Monte Carlo applications
it is appropriate to construct ad hoc tests that are sensitive to departures from
distributional properties that are important in the given application. For ex-
ample, in using Monte Carlo methods to evaluate a one-dimensional integral,
autocorrelations of order one may not be as harmful as they would be in eval-
uating a two-dimensional integral.

In many applications, of course, random numbers from other distributions,
such as the normal or exponential, are needed. (We discuss methods for trans-
forming the basic sequence of uniform random numbers into sequences from
other distributions in Chapters 4 and 5.) If the routines for generating ran-
dom deviates from nonuniform distributions use exact transformations from a

61

62 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

uniform distribution, their quality depends almost solely on the quality of the
underlying uniform generator. Because we can never fully assess that quality,
however, it is often advisable to employ an ad hoc goodness-of-fit test for the
transformations that are to be applied.

It is unlikely that a single generator or even a single class of generators
should be chosen as the generator to be used in all applications. Even in a
given application, it is a good idea to use more than one generator and, for
each, to use more than one seed. The different generators and different seeds
provide classification models for a Monte Carlo experiment. Standard analysis-
of-variance methods can be used to ascertain agreement among the blocks of the
experiment (see page 238). The blocks of the Monte Carlo experiment should
not exhibit statistically significant differences. If they do, then what? This is
the basic dilemma in testing random number generators. It may be wise to
replicate the experiment with different random number generators. Spuriously
significant results occur even when the distributional assumptions for a data-
generating process hold, so the practice of just starting over introduces bias
in statistical inference. In Monte Carlo studies, however, we must always be
alert to the possibility that the distributional assumptions do not hold. In
some cases, all that should be done is just to extend the Monte Carlo study,
keeping new data separate from the old in order to continue the assessment of
the quality of the pseudorandom numbers by comparisons of results.

In the paradigm of statistical hypothesis testing, but in a manner different
from other applications of hypothesis testing, it is the null hypothesis that we
hope to accept.

2.1 Properties of Random Numbers

The objective of a uniform random number generator is to produce samples of
any given size that are indistinguishable from samples of the same size from a
U(0, 1) distribution. In evaluating a random number generator, therefore, we
compare various properties of samples from the generator with the correspond-
ing properties of samples from a U(0, 1) distribution.

One-Dimensional Uniform Frequencies

The most obvious properties for comparison are the relative frequencies in cor-
responding sets. What proportion of the output from a random number gen-
erator is in each of the intervals (0.0, 0.1], (0.1, 0.2], . . . , (0.9, 1.0), for example?
Are these close enough to the expected proportion of 0.10 to be acceptable? In
general, if we have a total of n generated points, for any set of intervals with
ni points occurring in the ith interval, the question is whether the observed
relative frequencies, fi = ni/n, are close enough to the expected proportions,
πi, say.

2.1. PROPERTIES OF RANDOM NUMBERS 63

Independence and Its Consequences

Another kind of property to study is the apparent mutual independence of the
variates in the generated stream. There are various ways of approaching inde-
pendence. One is by computing correlations between variates at fixed distances
apart in the stream (that is, autocorrelations of fixed lags). Variates should
exhibit zero autocorrelations at any length of lag. Zero autocorrelations do not
imply independence; rather, they are a consequence of it. Nonzero autocorre-
lations imply lack of independence.

Independence of the variates results in other distributional relationships
among variates in the sequence (for example, the numbers and lengths of sub-
streams that are monotonically increasing or decreasing). Such substreams are
called “runs”. The generator should produce streams with runs that correspond
with what is expected from a U(0, 1) data-generating process.

Order statistics should behave similarly to their expectations. In any given
sample of size n from the generator, the ith order statistic should stochastically
appear to be a beta random variable with parameters i and n − i + 1 (see
page 221). The differences in successive order statistics should stochastically
appear to be ratios of exponential random variables.

d-Variate Uniformity

Any of the independence properties of samples from a U(0, 1) distribution are
equivalent to frequency properties of some multivariate random variable that
has uniform marginals over (0, 1) and a diagonal variance-covariance matrix.
The uniformity properties over various dimensions imply the other properties.

A simple, but useful, approach to form putative d-variate uniform random
variables is to use successive substreams of length d. This is what is done in
Chapter 1 for two dimensions and shown in Figures 1.3 and 1.5 (in those cases,
for a discrete uniform distribution rather than for U(0, 1)). These multivariate
numbers are then compared with properties expected from the true multivariate
uniform distribution. In particular, the observed frequencies of the d-vectors
within equal-sized regions are compared with the constant frequency expected
from a d-variate uniform distribution. The sizes of the regions can be arbitrarily
small, within the limits imposed by the finite computer arithmetic, of course.
If the frequency is as expected, we say that the random number generator, or
a stream that it produces, has the “d-variate uniformity” property. A stream
with this property is also said to be “equidistributed in d dimensions”.

Any of the specific properties mentioned above could be assessed by testing
the d-variate uniformity for d = 1, 2, It is useful, nevertheless, to test
for some of these properties specifically. A specific test is likely to be more
powerful than the simple tests of d-variate uniformity. For example, as we saw
in the discussion beginning on page 14, the distances between points in a stream
generated by a linear congruential generator are not likely to be as we would
expect from a d-variate uniform distribution, so we might devise a specific
test for this property. L’Ecuyer (1998) reported that none of the otherwise

64 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

“good” linear congruential generators that he tested performed satisfactorily
with regard to the distribution of the nearest pairs of points.

2.2 Measures of Lack of Fit

The quality of a random number generator depends on how closely the prop-
erties of the output of the generator match the properties of an independent
and stationary uniform data-generating process. To assess the quality, we need
quantitative measures of differences of the properties of the output stream and
an ideal stream. We call these measures of lack of fit, or, equivalently, of good-
ness of fit.

Some measures of lack of fit, or at least bounds for the measure, can be
computed based on analysis of the algorithm used by the generator. For other
measures, it is necessary to produce a stream of numbers from the generator
and compute the measure based on that particular sample. To decide whether
the measure is acceptable in that case requires statistical testing under the
assumption that the pseudorandom stream is a realization of a random data-
generating process.

2.2.1 Measures Based on the Lattice Structure

For a generator that yields k different values, d-tuples of successive numbers
in the output would ideally fall on kd points uniformly spaced through a d-
dimensional hypercube. As we saw in Section 1.2.1, however, d-tuples of the
output from pseudorandom number generators lie on somewhat restricted lat-
tices in a d-dimensional hypercube.

As we mentioned in Section 1.2.2, it is best to avoid using a significant
proportion of the full period of a generator, so both the lattice of the full
sequence of numbers from a generator and how subsequences are distributed
over the lattice are of interest.

It is instructive again to consider Figures 1.3 and 1.5 (pages 16 and 17),
which show the lattices of the output of the two small generators. In Figure 1.3,
not only is the lattice structure bad (all of the points are on just three lines
that are far apart), but subsequences of points are not distributed well over
the lattice. Notice that in the subsequence of the first five points (formed by
overlapping numbers in the sequence), two pairs of points (1 and 3, and 4 and
5) are very close to each other. In Figure 1.5, on the other hand, both the full
lattice and the first five points are more evenly distributed.

In assessing the lattice structure of the output from a random number gen-
erator, we may consider the full lattice, in which case the distance between
adjacent hyperplanes is of interest, or we may consider a subsequence of the
full period of the generator, in which case the distance between points that are
close together is of interest.

2.2. MEASURES OF LACK OF FIT 65

Distances Between Adjacent Hyperplanes

As we saw heuristically in Section 1.2, the smaller the maximum distance be-
tween the lines (or, in general, hyperplanes) determined by lattices such as those
shown in Figures 1.3 and 1.5, the better the output of the generator covers the
hypercube. Although it is not always easy to identify the lines or hyperplanes
as we did in Section 1.2, in some cases, the maximum distance can be computed
directly from the specification of the algorithm. The spectral test determines
the maximum distance between adjacent parallel hyperplanes defined by the
lattice.

The spectral test for a linear congruential generator does not use the output
of the generator but rather computes values analogous to a discrete Fourier
transform of the output using the recurrence formula of the congruential rela-
tionship itself.

For a linear congruential generator with multiplier a and modulus m, let
δd(m, a) represent the maximum distance between adjacent parallel hyperplanes
in the d-dimensional lattice. Now, for any d-dimensional lattice with m points,
there is a lower bound, δ∗d(m), on δd(m, a) (see Knuth, 1998); hence, a useful
measure for a given multiplier for use with the modulus m is the ratio

Sd(m, a) =
δ∗d(m)

δd(m, a)
. (2.1)

The closer this ratio is to 1, the better the generator is with respect to this
measure.

Coveyou and MacPherson (1967) describe a spectral test method that com-
putes the denominator in equation (2.1). Their method was improved by Di-
eter (1975) and Knuth (1998) and is described in detail on pages 98 through 103
of the latter reference. Hopkins (1983) gives a computer program to implement
the Coveyou/MacPherson test for a full-period linear congruential generator.
(Note that updated versions of the 1983 program are available.)

L’Ecuyer (1988) computes values of Sd(231 − 1, a) for some specific values
of d and a. For example, for the multiplier 16 807 (see Section 1.2), he gives

d 2 3 4 5 6

Sd(231 − 1, 16 807) .34 .44 .58 .74 .65

and for the multiplier 950 706 376 (see Exercise 1.10, page 58), he gives

d 2 3 4 5 6

Sd(231 − 1, 950 706 376) .86 .90 .87 .83 .83

Based on Sd, the latter value of the multiplier appears to be better. The
empirical studies of Fishman and Moore (1982, 1986) also found this value to
be better for use with the given modulus.

66 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

Lengths of Minkowski Reduced Basis Vectors

Beyer, Roof, and Williamson (1971) and Beyer (1972) describe a measure of
the uniformity of the lattice of the output of a random number generator in
terms of the ratio of the shortest vector to the longest vector in the Minkowski
reduced basis of the lattice. A basis for a lattice in IRd is a linearly indepen-
dent generating set of the lattice. Given a set of linearly independent vectors
{v1, v2, . . . , vd} in IRd, a lattice is the set of vectors w of the form

∑d
i=1 zivi,

where zi are integers (see Figure 1.1, page 15). The set of vectors {vi} is a basis
for the lattice. The basis is a Minkowski reduced basis if

‖vk‖ ≤
∥∥∥∥∥

d∑
i=1

zivi

∥∥∥∥∥ , for 1 ≤ k ≤ d,

for all sets of d integers zi such that the greatest common divisor of the set
{zk, zk+1, . . . , zd} is 1. (The symbol ‖v‖ denotes the Euclidean norm of the
vector v.)

The ratio of the length of the shortest vector to the longest length,

‖vd‖
‖v1‖ , (2.2)

is called the Beyer ratio. A large Beyer ratio (close to 1) indicates good unifor-
mity.

It is not easy to compute the Minkowski reduced basis. (In fact, the prob-
lem has been shown to be NP-complete.) Afflerbach and Grothe (1985) give an
algorithm for computing the basis and the Beyer ratio for linear congruential
generators. They used the algorithm up to dimension 20. Eichenauer-Herrmann
and Grothe (1990) give upper bounds for the ratio for linear congruential gen-
erators for higher dimensions.

Other Measures on the Full Lattice

There are various ways that we can assess the uniformity of coverage of the lat-
tice. Basically, the closer the lattice is to a uniform grid of rotated hypercubes,
the more uniform is its coverage.

Another assessment of the badness of the lattice related to the Beyer ratio
is the lattice test of Marsaglia (1972a), which is the ratio of the longest edge
of the smallest parallelepiped in d dimensions to that of the shortest edge.
Atkinson (1980) implemented Marsaglia’s lattice test and illustrated its use on
some generators. Eichenauer and Niederreiter (1988), however, give examples
that show that this lattice test fails to detect some generators with poor lattice
structure.

Distances Between Individual Points

Because in any application we do not use the full sequence of the generator,
we may be interested in properties of the subset of lattice points in the sub-

2.2. MEASURES OF LACK OF FIT 67

sequence used. The nearest point test described by L’Ecuyer, Cordeau, and
Simard (2000) is very sensitive to certain departures from randomness. See
their paper for more details.

2.2.2 Differences in Frequencies and Probabilities

One of the most important properties of a random number generator is the rel-
ative frequencies fi of the output stream over various regions. As we mentioned
earlier, if the frequencies match those of a U(0, 1) distribution in all dimensions
(that is, if the generator has d-variate uniformity for all d), then the other
properties of the uniform distribution follow. An important measure of the
quality of a random number generator, therefore, is how closely the frequencies
over various regions match the probabilities πi of those same regions under a
U(0, 1) distribution. Rather than comparing fi and πi over discrete regions, we
may compare their densities, pn(x) and p(x), over continuous domains. In the
familiar chi-squared tests, we use discrete regions; in the Kolmogorov–Smirnov
and Anderson–Darling tests, we use continuous domains.

There are two major issues here. One is whether to use discrete regions and,
if so, how to form the regions, and the other is how to compare a set of observed
frequencies with probabilities that correspond to the U(0, 1) distribution. The
most obvious way of forming discrete regions is, for d = 1, 2, . . . , to form a
rectangular grid over the d-dimensional unit hypercube. If each axis is divided
into k intervals, the number of cells in the grid is kd. This approach for forming
regions is quickly swamped by the curse of dimensionality. There are many ways
of transforming the output of the random number generator, forming regions
on the transformed values, and determining the probabilities of those regions
for random variables formed by the same transformations applied to a random
sample from the U(0, 1) distribution.

The goodness-of-fit tests discussed in Section 2.3.1 use regions formed in a
variety of ways.

The next major issue is how to compare a set of relative frequencies fi with
a set of probabilities πi. There are two general approaches. One is to form a
summary number from all of the relative frequencies and compare that with
the summary number from all of the probabilities:

s(f1, f2, . . .) − s(π1, π2, . . .).

One such summary number is called “entropy”, which we will discuss below.
Another approach is to measure differences in the individual relative fre-

quencies and probabilities by some function δ(fi, πi) and then to compute a
summary number from that:

g(δ(f1, π1), δ(f2, π2), . . .).

Many familiar statistical goodness-of-fit tests, such as the chi-squared test and
the Kolmogorov–Smirvov test for discrete distributions, are of this form. For the

68 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

chi-squared statistic, the regions are nonoverlapping, δ(fi, πi) = n(fi −πi)2/πi,
and g(·) is just a simple sum. For the Kolmogorov–Smirvov statistic, the regions
form a nested sequence, δ(fi, πi) = |fi−πi|, and g(·) is the maximum. (The more
familiar Kolmogorov–Smirnov test over continuous domains uses |Pn(x)−P (x)|,
and g(·) is a supremum.)

Cumulative Relative Frequencies and Probabilities

For comparing relative frequencies and probabilities over continuous domains,
we compare functions. One of the most fundamental functions characterizing a
probability distribution is the cumulative distribution function, or CDF, which
for the random variable X we denote as PX , or often just as P , and define as

P (x) = Pr(X ≤ x),

where “Pr” represents “probability”. At all points where P is differentiable, its
derivative is the density p(x) mentioned above.

The corresponding function for a given sample of size n is called the empirical
cumulative distribution function, or ECDF, and is denoted as Pn(x). For a
sample of points x1, . . . , xn, the ECDF is

Pn(x) =
1
n

n∑
i=1

I(−∞,x](xi) (2.3)

for the indicator function I(−∞,x](·). We also use “Pn(·)” to denote a similar
function whose argument is a set:

Pn(S) =
1
n

n∑
i=1

IS(xi).

In the context of our previous discussion, the regions of interest for the CDF
and ECDF are the orthants defined by a given d-vector x0 as {x : x ≤ x0}.

The CDF and ECDF are much easier to visualize and understand in the
one-dimensional case. As we see below, one-dimensional CDFs and ECDFs
have applications even when the regions are multidimensional.

Differences in Summary Measures: Entropy

An important property of a data-generating process yielding k discrete values
with discrete probabilities π1, . . . , πk is its entropy, defined as

h = −
k∑

i=1

πi log πi. (2.4)

Letting the πi correspond to the probabilities of various sets in the outcome
space of a U(0, 1) distribution, we can compare the entropy of the stream pro-
duced by the random number generator with the entropy of variables from the

2.2. MEASURES OF LACK OF FIT 69

U(0, 1). The simplest sets to consider are equal-length subintervals of (0, 1), in
which case all of the πis are just equal to the length of the subintervals. (The
maximum entropy for any given k is attained when the probabilities are equal.)

We can also define entropy for a set of points in terms of relative frequencies
in a disjoint covering class of subsets. Consider a set of points x1, . . . , xn and
a collection of sets S1, . . . , Sk. Let ni = #{xj : xj ∈ Si}. If all ni > 0, the
entropy of the set of points xj with respect to the collection of sets Si can be
defined analogously to equation (2.4) by using the relative frequencies fi = ni/n
in place of πi. A different collection of sets would yield a different value of the
entropy.

For any set of points or for any nondegenerate probability distribution,
various collections of sets can be defined, and the entropy of the points and
the entropy of the probability distribution can be defined with respect to each
collection of sets. The differences in the entropy or just the differences in the
relative frequencies and the probabilities provide a measure of the lack of fit of
the point set to the expectations of the probability distribution with respect to
that collection of sets. An overall measure of the lack of fit would have to be
based on various collections of sets.

Sum of Normed Squared Individual Differences: Chi-Squared

The chi-squared statistic is one of the most commonly used measures of differ-
ences between observed relative frequencies fi and hypothesized probabilities
πi. For k regions, the statistic is

χ2
c = n

k∑
i=1

(fi − πi)2

πi
. (2.5)

This measure is heuristically appealing. Under certain restrictive assumptions
about the random sample yielding the fi, the statistic has a chi-squared distri-
bution. Under much less restrictive assumptions, which we can usually reason-
ably assume are satisfied, the statistic has an asymptotic chi-squared distribu-
tion.

Maximum Individual Difference: Discrepancy

This measure is called discrepancy, and it is defined in terms of a measure of the
extreme deviation of the relative frequencies of a given set of points from the
entropy for a uniform distribution for a collection of intervals. The discrepancy
of a set of points S = {x1, x2, . . . , xn} in the unit hypercube is

Dn(S) = sup
J

|Fn(J) − V (J)|, (2.6)

where the supremum is taken over all subintervals J of the unit hypercube,
Fn(J) is the number of points in S ∩ J divided by n, and V (J) is the volume

70 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

of J . The discrepancy is a measure of the uniformity of spread of a given set
of points within another set of points.

For a given generator of points, we may consider the discrepancy of arbitrary
sets of points within a d-dimensional unit hypercube. In that case, we use the
notation D(d).

2.2.3 Independence

Just as important as the correspondence between observed frequencies and theo-
retical probabilities is the lack of systematic patterns in the sequence of variates.
The pseudorandom numbers should appear to be a realization of independent
and identically distributed (i.i.d.) random variables. The simplest measures that
may indicate lack of independence are correlations or covariances between the
variates at fixed lags in the generated sequence:

ak = Cov(xi, xi−k).

Zero correlations or covariances do not imply independence, of course, but they
are necessary conditions for independence.

The i.i.d. condition is equivalent to the equality of probabilities of all trans-
formations in all dimensions, so the methods of Section 2.2.2 can also be used
to assess independence by forming various types of regions for comparisons.

Long-Range Autocorrelations

In general, for most generators, the autocorrelations die out very early (that
is, they become close to zero at very small lags), and then the autocorrelations
grow again at large lags. At a lag equal to the period, the correlation becomes 1,
of course. For some generators, the correlation may become relatively large at
some intermediate lags.

In most cases, the autocorrelations are not large enough to be statistically
significant for samples of reasonable size if the generated sequence were assumed
to arise from a random (instead of pseudorandom) process. The problem in sta-
tistical assessment of long-range autocorrelations is the sample size required for
any meaningful tests. Absent assumptions about short-range autocorrelations,
sequences long enough to compute long-lag autocorrelations from a given start-
ing point are necessary. The fact that the autocorrelations are not statistically
significant does not mean that these systematic autocorrelations would not be
so bad as to invalidate a Monte Carlo study. More discussion of the general
problem of long-range autocorrelations in sequences from multiplicative con-
gruential generators is provided by Eichenauer-Herrmann and Grothe (1989)
and by De Matteis and Pagnutti (1990).

2.3. EMPIRICAL ASSESSMENTS 71

2.3 Empirical Assessments

In addition to analyzing the algorithm itself, we may evaluate a specific gen-
erator by analyzing the output stream that it produces. This approach has
the additional advantage of assessing the program that is actually used, so the
question of whether the program correctly implements the algorithm does not
arise. There are basically two general kinds of properties of a generator to as-
sess: the elements in the set of deviates without regard to the order in which
they were generated (that is, the “static” properties) and the patterns in the
sequence of the deviates (that is, the “dynamic” properties).

An important source of information about the quality of a generator is
specific simulations. Whatever is known about the physics of a problem that is
simulated can be compared with the results of a simulation. It was this kind of
study that led to the discovery of problems with RANDU (see Coldwell, 1974).

Empirical tests of random number generators include both statistical tests
of the output stream and the anecdotal evidence of specific simulations.

2.3.1 Statistical Goodness-of-Fit Tests

In statistical tests of random number generators, the null hypothesis is either
that the elements of a given sequence of real numbers are independently and
identically distributed as U(0, 1) or else that the elements of a given sequence
of bits are independently and identically distributed as Bernoulli with parame-
ter 1/2. The alternative hypothesis is that the sequence does not have that
distribution.

This alternative is uncountably composite. This breadth of possibilities
means that there cannot be a uniformly most powerful test. We need a suite of
statistical tests. Even so, of course, not all alternatives can be addressed.

Statistical Tests for Making Decisions

Another problem with the use of statistical goodness-of-fit tests is that the
paradigm of statistical testing is not appropriate for this application. In most
applications of statistical hypothesis tests, we set up a strawman null hypoth-
esis. A “positive result” is to reject this null hypothesis. We can describe our
decision in terms of a fixed α level that controls the probability of a type I error
or else similarly determine a p-value for the test procedure. In testing random
number generators, we hope for a “negative result”; that is, we do not want to
reject the null hypothesis.

When many tests are performed, however, too many negative results is
evidence that the generated variates are not independent realizations from the
hypothesized distribution. This observation gives rise to a second-order test:
perform a selected goodness-of-fit test many times and then perform a goodness-
of-fit test on either the sample of computed test statistics or on the sample
p-values. We could also perform third-order tests, and so on, ad infinitum.

72 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

Due to the nature of the alternative hypothesis (that is, the ways in which
the null hypothesis may be false), second-order tests may be more powerful for
some alternatives.

Test Statistics and Their Distributions

Any of the measures discussed in Section 2.2, as well as a number of other
statistics, could be used to develop a statistical goodness-of-fit test. In any
goodness-of-fit tests, we must decide what is an extreme value; that is, what is
the stronger evidence that the null hypothesis is not true. Because there are
many ways in which the null hypothesis may not be true, some thought should
be given to the type of test statistic that may be sensitive to various alternative
hypotheses.

The first requirement is that we know the distribution of the test statistic
under the null hypothesis. When a test is applied multiple times in the case
where the null hypothesis is true, the ECDF of the test statistic should corre-
spond to the cumulative CDF of the test statistic in the null case. Figure 2.1
shows a plot of an ECDF and the corresponding ECDF for a test statistic. (This
plot is for a chi-squared test applied to the “minimal standard” generator.)

Figure 2.1: ECDF and Null CDF of a Test Statistic

2.3. EMPIRICAL ASSESSMENTS 73

Another way of comparing a set of observed values of a test statistic with
what would be expected if the null hypothesis is true is to use a q–q plot of the
observed values with the null distribution of the test statistic, as in Figure 2.2.
In a q–q plot, the vertical axis is scaled by the CDF of the null distribution.
The plot in Figure 2.2 is for the same chi-squared test statistics as in Figure 2.1.
Note that the large gap in the quantiles occurs at the point at which the CDF
and ECDF are farthest apart.

Figure 2.2: q–q Plot of Chi-Squared Values

As a second-order test, we could test for whether the observed values of the
test statistic conform to the expected values under the null hypothesis. (Using
a Kolmogorov–Smirnov test, for example, we get a test statistic of 0.1746,
corresponding to the maximum separation in the graphs in Figure 2.1. The
p-value for such a Kolmogorov–Smirnov test statistic is 0.5197.) Under the null
hypothesis, the p-value has a U(0, 1) distribution; hence, we could also (and
equivalently) do a goodness-of-fit test on the observed p-values.

The statistical tests for random number generators are usually goodness-
of-fit tests for various combinations and transformations of the numbers in the
output stream. These tests are of infinite variety. We discuss some of these tests
below. Some tests, such as chi-squared tests and Kolmogorov–Smirnov tests,

74 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

apply directly to the distribution of a random variable and the sample. Other
tests can be based on chi-squared and Kolmogorov–Smirnov tests for various
transformations of the sample.

Chi-Squared Goodness-of-Fit Tests

In a chi-squared goodness-of-fit test, observed counts of events are compared
with counts of occurrences of those events that would be expected under the
null hypothesis to be tested. If the null hypothesis, for example, is that a
random variable has a uniform (0, 1) distribution, we may take 100 observa-
tions on the random variable, count how many are in each of the ten intervals
(0, 0.1], (0.1, 0.2], . . . , (0.9, 1.0), and compare those counts with the expected
numbers, which in this case would be 10 in each interval. If the observed num-
bers are significantly different from the expected numbers, we have reason to
reject the null hypothesis. Formally, we compute, from equation (2.5),

χ2
c =

k∑
i=1

(oi − ei)2

ei
,

where k is the number of intervals (10 in this case), and oi and ei are, re-
spectively, the observed and expected numbers in the ith interval. Under the
hypothesis of independent sampling from a uniform (0, 1) distribution, χ2

c is a
realization of a random variable that has an approximate chi-squared distrib-
ution with k − 1 degrees of freedom. Large values of χ2

c provide evidence that
the observed counts differ by large amounts from the expected counts; that
is, evidence that the hypothesized distribution is not the true one. The test
is performed by computing the probability that a chi-squared random variable
with k−1 degrees of freedom would be as large as the observed value, χ2

c . This
probability, the p-value, can be computed with many software packages. If we
let x take the value of χ2

c , using the S-Plus function pchisq, for example, the
probability is

1− pchisq(x, k− 1);

or, using the IMSL Fortran function chidf, the probability is

1− chidf(x, k− 1).

If the p-value is smaller than some preset value, say 0.05, the null hypothesis is
rejected.

Kolmogorov–Smirnov Tests

A Kolmogorov–Smirnov test (or just “Kolmogorov test”) compares the empiri-
cal cumulative distribution function, or ECDF, with the hypothesized cumula-
tive distribution function, or CDF, P (x).

2.3. EMPIRICAL ASSESSMENTS 75

The comparison of the two functions used by the Kolmogorov–Smirnov test
is based on

sup
x

|Pn(x) − P (x)|, (2.7)

which is the Kolmogorov distance between two probability distributions. (In
this case, one of the probability distributions is the discrete uniform distribution
with probability 1/n at each of the points in the sample.) The discrepancy in
equation (2.6) on page 69 is similar to the Kolmogorov distance except that
differences are not accumulated. In discrepancy, differences in individual cells
are considered. All possible cells are formed, however.

An easy statistical test for a basic random number generator is just a
goodness-of-fit test for uniformity in various dimensions. A test for uniformity
in one dimension is just based on a one-dimensional histogram. For higher
dimensions, the bins are usually made to correspond to groups formed by sub-
sequences of the output of the generator; for example, in two dimensions, each
successive pair of numbers constitutes a single bivariate observation. The dis-
crepancy in equation (2.6) is a multivariate Kolmogorov distance. There are
obviously other ways of forming multivariate observations by grouping variates
in a univariate sequence.

Goodness-of-fit tests can also be performed over subregions of the support
of the distribution. This may be particularly useful when the hypothesized
distribution has infinite support. The tail behavior is often not fit well.

S-Plus and R provide a function ks.gof and the IMSL Fortran Library
provides a subroutine ksone that compute the Kolmogorov–Smirnov statistic
and determine its p-value.

Other Tests Based on |Pn(x) − P (x)|
Other relatively powerful goodness-of-fit tests can be developed based on the
differences in Pn(x) and P (x). A class of such tests is based on the weighted,
integrated quadratic difference∫ ∞

−∞
(Pn(x) − P (x))2w(x)dP (x). (2.8)

When w(x) = 1, this is the Cramér–von Mises statistic, often denoted as W 2.
For

w(x) =
1

P (x)(1 − P (x))
,

this is the Anderson–Darling statistic, usually denoted by A2. The distance
measures in the Anderson–Darling form are different for different distributions.
Because of the denominator in w(x), the Anderson–Darling statistic puts more
weight in the tails of the distribution. Also, because it is specific for the hypoth-
esized distribution, the Anderson–Darling test based on A2 is likely to be more
powerful that the standard Kolmogorov–Smirnov test (see D’Agostino, 1986,

76 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

and Stephens, 1986). For these reasons, it is recommended that the Anderson–
Darling test be used instead of the Kolmogorov–Smirnov test in testing random
number generators.

For a sample of size n in which the ith order statistic is denoted as x(i), the
Anderson–Darling statistic can be computed as

A2 = −n − 1
n

n∑
j=1

(2j − 1)
(

log
(
F (x(j))

)
+ log

(
1 − F (x(n−j+1))

))
. (2.9)

The distribution is much harder to work out, and of course it is different for
different hypothesized distributions and for different sample sizes. Critical val-
ues and p-values for a variety of distributions have been computed. These
computations have been performed in various ways, sometimes by Monte Carlo
estimation (see Chapter 7 and Exercise 7.4 on page 272). Stephens (1986)
gives tables for some common distributions, including the normal and the ex-
ponential. Sinclair and Spurr (1988) have suggested approximations based on
cumulants. More recently, saddlepoint approximations have been used. Un-
fortunately, the Anderson–Darling test is not as widely available in standard
software packages as the Kolmogorov–Smirnov test.

Goodness-of-Fit Tests in Different Regions

After developing basic tests to compare a sample to a hypothesized distribution,
the simplest modification that we can make is to divide the distribution into
different regions and then apply the same tests in the separate regions. If
X ∼ U(0, 1), then, for example,

X |X ∈ (0, .1) ∼ U(0, .1).

The same idea applies to any distribution. Sometimes, it is useful to perform
a test based on |Pn(x)− P (x)|, such as a Kolmogorov–Smirnov test, in various
regions of the distribution because the fit may be better in some regions than
in others. The idea is shown in Figure 2.3.

We may be able to relate regions of the test statistics to specific types of
departure from the null hypothesis. This would be much more meaningful than
just a simple “reject” or “not reject”. As we mentioned before, sometimes a
distribution may not be simulated well in the tails. In using separate tests in
different regions, however, as in any approach in which multiple tests are being
performed, we must be careful in attaching any meaning to a p-value.

Statistical Tests of Stochastic Processes

Dynamic statistical tests are for the independence of the output. These tests
address patterns in the output stream; an example is a test for serial correlation
of various lags. As we indicated above, these patterns would show up in tests
for d-variate uniformity, but specific tests such as we discuss below can be more
powerful.

2.3. EMPIRICAL ASSESSMENTS 77

Figure 2.3: Kolmogorov–Smirnov Tests in Different Regions

Runs Tests

Some of the most effective of the dynamic tests are runs tests. A runs test uses
the number and/or length of successive runs in which the values of the sequence
are either increasing or decreasing. There are different ways to count the runs.
To illustrate one way of counting runs, consider the sequence

1, 5, 4, 1, 3, 1, 3, 4, 7.

There are five different runs in this sequence:

up : 1, 5; down : 5, 4, 1; up : 1, 3; down : 3, 1; up : 1, 3, 4, 7.

The number of runs could be used as a test statistic, but a more powerful test
can be constructed using the lengths of the runs up and/or the runs down. The
lengths of the runs up as shown above are 2, 2, and 4. With small integers such
as in this example, an issue may be how to handle ties (that is, two adjacent
numbers that are equal). This issue is not relevant when the test is applied to
the output of a generator that simulates a continuous uniform distribution.

A more common way of counting the lengths of the runs up (and analo-
gously the runs down) is to identify breakpoints where the sequence no longer

78 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

continues increasing (or decreasing). The lengths of runs are then the lengths
of the subsequences between breakpoints. For the sequence above, we have
breakpoints as indicated below:

1, 5 | 4 | 1, 3 | 1, 3, 4, 7

This gives one run up of length 1; two runs up of length 2; and one run up of
length 4. The runs test (more properly, the runs up test and the runs down
test) is based on the covariance matrix of the random number of runs of each
length. Usually, only runs up to some fixed length, such as 7, are considered.
(Runs greater than that are lumped together; the covariance matrix can be
adjusted to fix the test.) The test statistic is the quadratic form in the counts
with the covariance matrix, which has an asymptotic chi-squared distribution
with degrees of freedom equal to the number of different lengths of runs counted.
Grafton (1981) gives a Fortran program to compute the chi-squared test statistic
for the runs test (with runs of length 1 through 6) and the significance level
of the test statistic. The program is available from statlib as the Applied
Statistics algorithm AS 157.

Serial Test

The serial test is performed on sequences of d bits in a sample of n bits. (There
is more than one version of this test, which differ slightly from one another. We
will describe one that is commonly used in testing random number generators.)
For the n bits b1, . . . , bn in the output stream, for each of the 2d possible patterns
in a substream of d bits, let νi1···id

be the number of times that the pattern
i1, . . . , id appears in the augmented stream b1, . . . , bn, b1, . . . , bd−1. We then
form

Ψ2
d =

2d

n

∑
i1···id

(
νi1···id

− n

2d

)2

=
2d

n

∑
i1···id

ν2
i1···id

− n. (2.10)

Now, form the first backward difference in d,

∆Ψ2
d = Ψ2

d − Ψ2
d−1, (2.11)

and the second backward difference,

∆2Ψ2
d = Ψ2

d − 2Ψ2
d−1 + Ψ2

d−2. (2.12)

Then, under the null hypothesis that the bit stream is a simple random sample
from a Bernoulli distribution with parameter 0.5, ∆Ψ2

d has an asymptotic (in
n) chi-squared distribution with 2d−1 degrees of freedom, and ∆2Ψ2

d has an
asymptotic chi-squared distribution with 2d−2 degrees of freedom. This null
distribution forms the basis for a test called the generalized serial test (see
Kato, Wu, and Yanagihara, 1996b).

2.3. EMPIRICAL ASSESSMENTS 79

Tests of Matrix Ranks

An interesting type of test is based on the ranks of binary matrices (that is,
matrices whose elements are zeros and ones) formed from the output of the
generator. The procedure is to form matrices from bit streams, to determine
the ranks of the matrices, and to compare the observed ranks to what would
be expected based on the distribution of ranks of matrices whose entries are
independent Bernoulli random variables with parameter 1/2. For vectors and
matrices whose elements are members of a Galois field, the ordinary rules of
vector/matrix operations hold, with all operations being defined in terms of the
operations of field. The matrices used in this test are formed from bit streams
and so are based in IG(2).

For an n×m random binary matrix, Kovalenko (1972) gives the probability
function for the rank of the matrix as

p(r) = 2r(n+m−r)−nm
r−1∏
j=0

(1 − 2j−n)(1 − 2i−m)
1 − 2j−r

, for r = 0, . . . ,min(n, m)

(2.13)
(see also Marsaglia and Tsay, 1985). It is easy to determine the rank of a
binary matrix using elementary row or column operations. There is no concern
for rounding, as is the case in computing the rank of a matrix over the field of
the reals. Notice that the probability that the rank of binary matrices is less
than full is nonzero. (That probability is 0 for matrices whose elements are
randomly chosen from dense subsets of IR and is very close to 0 for matrices
whose elements are randomly chosen from IF.)

Most reasonable linear congruential generators pass binary matrix rank
tests. Generalized feedback shift register generators tend to fail the tests be-
cause they tend to generate matrices with full rank; that is, they are “too
independent”.

Test Suites

Different tests are sensitive to different types of departures from the null hy-
pothesis of independent uniformity. We need a set of tests that spans the space
of alternative hypotheses. All that it takes to devise an empirical test is a little
imagination. Tests can be based on familiar everyday random processes such as
occur in gaming. A “poker test”, for example, is a chi-squared goodness-of-fit
test for simulated poker hands. The idea is to devise a scheme to use a random
number generator for simulating deals from a poker deck and then to compare
the sampled frequency of various poker hands with the expected frequency of
such hands. Specific tests for dynamic properties are often more difficult to
construct.

Some important suites of statistical tests for random number generators
are the tests of Fishman and Moore (1982, 1986), the tests of Vattulainen,
Ala-Nissila, and Kankaala (1994, 1995), the DIEHARD tests (Marsaglia, 1985,
1995), the NIST Test Suite (NIST, 2000), and TestU01 (some descriptions in

80 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

L’Ecuyer, 1998). I briefly describe the tests in DIEHARD and the NIST Test
Suite below. The TestU01 suite includes the tests from DIEHARD and NIST,
as well as others, so I recommend use of TestU01. It currently includes over 60
tests. Fishman and Moore’s tests are goodness-of-fit tests on various transfor-
mations of the sample. They applied the tests to linear congruential generators
with the same modulus but different multipliers, 231 − 1, in order to identify
good multipliers for that widely used modulus. The tests of Vattulainen, Ala-
Nissila, and Kankaala are based on physical models (see Section 2.3.2).

Given a set of tests, it is interesting to know to what extent the tests address
the same properties; that is, how independent are the tests from each other.
Banks (1998) used factor analysis to address this question. He applied a number
of tests to a variety of generators and sequences from those generators and then
performed a factor analysis on the results to study the extent of independence
of the tests.

In addition to having a suite of statistical tests for generators, it is useful to
have a suite of generators or data streams. The suite would include a selection of
commonly used generators, a selection of generators or data streams that seem
to satisfy the null hypothesis to the extent that they have been tested, and
some generators or data streams that violate the null hypothesis in prescribed
ways. Marsaglia’s DIEHARD distribution CD includes several generators and
bit streams, and the NIST package also includes “reference” generators. Again,
the TestU01 package is more extensive than either DIEHARD or NIST in this
regard. TestU01 also includes facilities for combining basic generators.

DIEHARD Tests

Marsaglia (1985) describes a battery of eighteen goodness-of-fit tests called
“DIEHARD”. Most of these tests are performed on integers in the interval
(0, 231 − 1) that are hypothesized to be realizations of a discrete uniform dis-
tribution with mass points being the integers in that range.

The “p-values” reported by the DIEHARD tests are not the same as the
usual p-values in goodness-of-fit tests; rather, they are the values of the CDF of
the test statistic. A large “p-value” for a chi-squared test therefore corresponds
to what is usually a small (that is, a significant) p-value. A small “p-value”
reported by a chi-squared test in the DIEHARD suite indicates close agreement
to the expected frequencies. In either case, however, the DIEHARD test would
indicate that the stream generated by the random number generator is suspect.
In one case it would be because the frequencies do not correspond to the the-
oretical ones, and in the other case it would be because the frequencies match
the theoretical ones too well.

Some of the tests report a single “p-value”, while other tests actually perform
the test many times and compare the distribution of the test statistic with the
theoretical distribution of the test statistic under the null hypothesis; that is,
some of the tests are second-order tests.

2.3. EMPIRICAL ASSESSMENTS 81

These tests cover a variety of possibilities for assessing randomness of par-
ticular features exhibited by a sequence of numbers. The tests are:

• birthday spacings test
For this test, choose m birthdays in a year of n days. List the spacings
between the birthdays. If j is the number of values that occur more
than once in that list, then j has an asymptotic Poisson distribution with
mean m3/(4n). Various groups of bits in the binary representation of
the hypothesized uniform integers are used to simulate birthday spacings;
goodness-of-fit tests are performed, yielding CDF values; other groups of
bits are used and tests performed to yield more CDF values; and so on.
Then, a goodness-of-fit test is performed on the CDF values.

• overlapping 5-permutation test
Each set of five consecutive integers can be in one of 120 states for the 5!
possible orderings of five numbers. The test is on the observed numbers
of states and transition frequencies.

• binary rank test for 31 × 31 matrices
The leftmost 31 bits of 31 random integers from the test sequence are
used to form a 31 × 31 binary matrix over the field IG(2). The rank of the
matrix is determined. Each time that this is done, counts are accumulated
for matrices with ranks of 31, 30, 29, and 28 or less. A chi-squared test
is performed for these four outcomes.

• binary rank test for 32 × 32 matrices
This is similar to the test above.

• binary rank test for 6 × 8 matrices
This is similar to the tests above except that the rows of the matrix are
specified bytes in the integer words.

• bit stream test
Using the stream of bits from the random number generator, form 20-bit
words, beginning with each successive bit (that is, the words overlap). The
bit stream test compares the observed number of missing 20-bit words in
a string of 221 overlapping 20-bit words with the approximate distribution
of that number.

• overlapping-pairs-sparse-occupancy test
For this test, two-letter “words” are formed from an alphabet of 1024
letters. The letters in a word are determined by a specified ten bits from
a 32-bit integer in the sequence to be tested, and the bits defining the
letters overlap. The test counts the number of missing words (that is,
combinations that do not appear in the entire sequence being tested).
The count has an asymptotic normal distribution, and that is the basis
for the goodness-of-fit test, when many sequences are used.

82 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

• overlapping-quadruples-sparse-occupancy test
This is similar to the test above. The null distribution of the test statistic
is very complicated; interestingly, a parameter of the null distribution of
the test statistic was estimated by Monte Carlo methods.

• DNA test
This is similar to the tests above except that it uses ten-letter words built
on a four-letter alphabet (the DNA alphabet).

• count-the-1s test on a stream of bytes
This test is based on the binomial (8, 0.5) distribution of 1s in uniform
random bytes. Rather than testing this directly, however, counts of 1s
are grouped into five sets: {0, 1, 2}, {3}, {4}, {5}, and {6, 7, 8}; that is,
if a byte has no 1s, exactly one 1, or exactly two 1s, it is counted in the
first group. Next, overlapping sequences of length 5 are formed, and the
counts of each of the 55 combinations are obtained. A chi-squared test
is performed on the counts. The test takes into account the covariances
of the counts and so is asymptotically correct. If the groups of counts
of 1s are thought of as five letters and the groups of bytes thought of
as five-letter words, the output of the sequence under test is similar to
the typing of a “monkey at a typewriter hitting five keys” (with rather
strange probabilities), so the test is sometimes called the “monkey at a
typewriter test”.

• count-the-1s test for specific bytes
This is similar to the test above.

• parking lot test
This test is based on the results of randomly packing circles of radius 1
about a center located randomly within a square of side 100. The test is
based on the number of “cars parked” (i.e., nonoverlapping circles packed)
after a large number of attempts. The distribution of the test statistic,
and hence its critical values, is determined by simulation.

• minimum distance test
This test is based on the minimum distance between a large number of
random points in a square. If the points are independent uniform, then the
square of the minimum distance should be approximately exponentially
distributed with mean dependent on the length of the side of the square
and the number of points. A chi-squared goodness-of-fit test is performed
on the CDF values of a large number of tests for exponentiality.

• 3-D spheres test
In this test, 4000 points are chosen randomly in a cube of edge 1000. At
each point, a sphere is centered that is large enough to reach the next
closest point. The volume of the smallest such sphere is approximately
exponentially distributed with mean 120π

3 . Thus, the radius cubed is expo-
nential with mean 30. (The mean was obtained by extensive simulation.)

2.3. EMPIRICAL ASSESSMENTS 83

A chi-squared goodness-of-fit test is performed on the CDF values of a
large number of tests for exponentiality.

• squeeze test
This test is performed on floating-point numbers hypothesized to be from
a U(0, 1) distribution. Starting with k = 231, the test finds j, the number
of iterations necessary to reduce k to 1, using the reduction k = �k ∗ U�,
with U from the stream being tested. Such js are found 100,000 times,
and then counts for the number of times j was ≤ 6, 7, . . . , 47,≥ 48 are
used to provide a chi-squared test.

• overlapping sums test
This test is performed on floating-point numbers hypothesized to be from
a U(0, 1) distribution. Sums of overlapping subsequences of 100 uniforms
are tested for multivariate normality by a chi-squared test several times
and then a chi-squared goodness-of-fit test is performed on the CDF values
of the chi-squared tests.

• craps test
This test simulates games of craps and counts the number of wins and
the number of throws necessary to end each game and then performs
chi-squared goodness-of-fit tests on the observed counts.

• runs test
This is the test of runs up and runs down described on page 77.

Source code for these tests is available in a CD-ROM (Marsaglia, 1995) and
at

http://stat.fsu.edu/~geo/diehard.html

The input to the test program is a binary file consisting of the 32-bit (un-
signed) integers produced by the random number generator. Because this is
not the sequence that a random number generation program usually yields,
use of the program often requires complicated conversions. If the output has
been represented as floating-point numbers, it may be impossible to use the
DIEHARD test programs. Also, if the output is signed integers (of 31 bits),
straightforward use of the DIEHARD programs does not give valid statistics.

McCullough (1999) reports results of the DIEHARD tests on the random
number generators in SAS, SPSS, and S-Plus. All three generators performed
poorly on the count-the-1s test on a stream of bytes. S-Plus also did not do
well on the overlapping quadruples test, the DNA test, and the count-the-1s
test for specific bytes.

The NIST Test Suite

The NIST Test Suite, described in NIST (2000), includes sixteen tests. Most
of these tests are performed on sequences of bits that are hypothesized to be
independent realizations of a Bernoulli process.

84 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

The list below indicates the types of tests. Some of these tests are very
similar to tests in the DIEHARD suite. In many cases, the reader should be
able to devise one or more tests of the indicated type. In other cases, a reference
is given in the list below. The tests are:

• frequency test

• frequency tests within blocks

• runs test
(This is based on the lengths of runs of bits.)

• test for longest run of ones in a block

• random binary matrix rank test

• discrete Fourier transform test

• nonoverlapping template matching test

• overlapping template matching test

• Maurer’s universal statistical test
(This is described by Maurer, 1992.)

• Lempel–Ziv complexity test
(This is described by Ziv and Lempel, 1977.)

• linear complexity test

• serial test

• approximate entropy test
(This is based on a sample analog of equation (2.4). The sample fis are
the observed counts in various intervals.)

• cumulative sum test

• random excursions test

• random excursions variant test

Descriptions of these tests, examples of their use, and source code are available
at

http://csrc.nist.gov/rng/

2.3. EMPIRICAL ASSESSMENTS 85

TestU01

The TestU01 suite is very extensive. It includes the tests from DIEHARD and
NIST and several other tests that uncover problems in some generators that
pass DIEHARD and NIST with flying colors. Some of the interesting tests in
TestU01 are based on the distribution of the nearest pairs of points in various
dimensions (see L’Ecuyer, 1998).

TestU01, written in C, is much easier to use than DIEHARD or the NIST
suite. A minimal amount of knowledge of C is required to use TestU01. The
package comes with a number of additional functions, including some standard
generators and utility programs for processing bit streams.

The tests of TestU01 are grouped into three batteries, “Small Crush”,
“Crush”, and “Big Crush”. The time required to test a single generator with
Big Crush can be over ten hours on an upper-end PC, but Small Crush is two
orders of magnitude faster. (DIEHARD is an order of magnitude faster than
Small Crush. The speed of the test batteries depends on the number of tests
and their complexity.) A reasonable procedure for testing a generator is to
use Small Crush first; if the generator fails, stop; otherwise, use Crush; if the
generator fails, stop; otherwise, use Big Crush.

The code and user’s manual for TestU01 are available from
http://www.iro.umontreal.ca/~lecuyer/

Interpretation of Statistical Tests

Because the empirical tests are statistical tests, the ordinary principles of hy-
pothesis testing apply. The results of a battery of tests must be interpreted
carefully. As Marsaglia (1995) states (sic):

By all means, do not, as a Statistician might, think that a p < .025 or
p > .975 means that the RNG has “failed the test at the .05 level”.
Such p’s happen among the hundreds that DIEHARD produces,
even with good RNG’s. So keep in mind that “p happens”.

Fortunately, a “Statistician” understands statistical hypothesis testing better
than some other testers of random number generators. If the null hypothesis is
true, and if the statistical test is exact, we expect |p| < 0.05 5% of the time.

In some cases, the kind of departure from randomness that a particular
test addresses is obvious; in other cases, however, it is not as clear what kind of
nonrandomness a given test may detect. In addition, the relationships of various
tests to each other are not well-understood. Factor analysis of the tests in the
DIEHARD and NIST suites has shown them to be surprisingly independent,
except on very poor generators, which fail all tests (see Banks, 1998).

86 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

2.3.2 Comparisons of Simulated Results with
Statistical Models in Physics

Another way that random number generators are tested is in their usage in
simulations in which some of the output can be compared with what estab-
lished theory would suggest. There are several physical processes in statistical
mechanics that could be used for testing random number generators. One of
the most widely used models in computational physics is the Ising model (see
Section 7.9). This model can be solved analytically in two dimensions. Vat-
tulainen, Ala-Nissila, and Kankaala (1995) describe a suite consisting of four
tests based on physical models. Two tests use clusters and autocorrelations
from a two-dimensional Ising model. The two others are based on random
walks on lattices.

Ferrenberg, Landau, and Wong (1992) used some of the generators that meet
the Park and Miller (1988) minimal standard (see page 20) to perform several
simulation studies in which the correct answer was known. Their simulation
results suggest that even some of the “good” generators could not be relied on in
some simulations. In complex studies, it is difficult to trace unexpected results
to errors in the computer code or to some previously unknown phenomenon.
Because of sampling error in simulations, there is always a question of whether
results are due to a sample that is unusual. Vattulainen, Ala-Nissila, and
Kankaala (1994) studied the methods of Ferrenberg, Landau, and Wong and
determined that the anomalous results were indeed due to defects in the random
number generator.

Vattulainen, Ala-Nissila, and Kankaala (1994, 1995) conducted further stud-
ies on these generators as well as generators of other types and found that their
simulations often did not correspond to reality. Selke, Talapov, and Shchur
(1993), however, found that the Park–Miller minimum standard generator per-
formed much better than the R250 generator in a specific simulation of particle
behavior. Vattulainen et al. (1995) study eight widely available generators. For
the tests in their study, the Park–Miller minimum standard generator (which is
the default generator in the IMSL Libraries), R250, and G05FAF from the Nag
Library were found to be acceptable. The generally inconclusive results lead us
to repeat the advice given above to employ an ad hoc goodness-of-fit test for
the specific application.

2.3.3 Anecdotal Evidence

The null hypothesis in the statistical tests of random number generators is
that “the generator is performing properly”; therefore, failure to reject is not
confirmation that the generator is a good one. There have been many statistical
studies of the properties of given sets of random number generators. The tests
reported in the literature have often been inconclusive, however.

Every Monte Carlo study in which there is additional information available
about expected results provides evidence about the quality of the random num-

2.5. SUMMARY 87

ber generators used. We call this anecdotal evidence. The first indication that
the RANDU generator had problems came from anecdotal evidence in a simulation
with results that did not correspond to theory (see Coldwell, 1974). Although
statistical measures such as standard deviations are sometimes used in com-
paring simulation results with theoretical results, there is often no attempt to
quantify the probability of a type I error.

2.3.4 Tests of Random Number Generators Used
in Parallel

For parallel random number generators, in addition to the usual concerns about
randomness and correlations within a single stream, we must ensure that the
correlations between streams are small.

A major problem in random number generation in parallel is the inability
to synchronize the computations. This is easy to appreciate even in a sim-
ple case of acceptance/rejection; if one processor must do more rejections than
another, that processor will get behind the other one. Cuccaro, Mascagni,
and Pryor (1994), Vattulainen (1999), and Srinivasan, Mascagni, and Ceper-
ley (2003) describe some approaches for testing parallel random number gener-
ators.

2.4 Programming Issues

In addition to the quality of the algorithm for generation of random numbers,
there are also many issues relating to the quality of the computer implementa-
tion of the random number generator. Because of the limitations of representing
numbers exactly, a computer program rarely corresponds exactly to a mathe-
matical expression. Sometimes, a poor program completely negates the positive
qualities of the algorithm that it was intended to implement. The programming
considerations relevant to implementing a random number generator are often
subtle and somewhat different from those arising in other mathematical soft-
ware (see Gentle, 1990).

To the extent that widely used and well-tested software for random number
generation is available, it should be used instead of software developed ad hoc.
Software for random number generation is discussed in Chapter 8.

2.5 Summary

There are many issues to consider in assessing the quality of a random number
generator. It is easy to state what is desired for the basic uniform generator.
The first desideratum is obvious:

• the output should be essentially indistinguishable from a sample from a
uniform distribution.

88 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

This has nothing to do with how the generator is implemented, whether it is
in a computer program or in some other form. It does, however, have implica-
tions for the period of a deterministic, cyclic pseudorandom number generator
implemented in a computer program. The period should be very long. The
specific meaning of “long” in this context depends on the size of problems in
which random number generators find application. The size of the problems
grows from year to year, thus our criterion for “long” changes.

Another desideratum for a random number generator is not so obvious:

• a sequence should be reproducible on (almost) any computer.

This quality, of course, means that a pseudorandom number generator is to be
preferred to a random one.

There are specific desirable qualities that arise from the use of the random
number generator in the computer:

• neither 0 nor 1 should occur in the simulation of samples from U(0, 1);

• the generator should be efficient in its use of computing resources;

• the generator should be easy to use.

The last two qualities listed above have additional specific implications:

• the generator should not require user input with qualities that are difficult
to assess;

• it should be possible to generate long substreams that do not overlap.

Although, as we have suggested, before using a random number generator, it
is wise to apply ad hoc goodness-of-fit tests that may uncover problems in
that particular application, it is desirable that the quality of the output of the
generator not be dependent on specific transformations or on a specific seed.

The last quality listed above makes the generator more useful in parallel
implementations.

Finally, an additional concern is the quality of the computer program:

• the computer program must faithfully implement the generator.

Bugs in computer programs are all too common, and no matter how good the
underlying algorithm, if the program is incorrect, the generator may not be
good.

Exercises

2.1. Devise a “dice test” (see Marsaglia’s “craps test” in Section 2.3). Your
test should accept the output of a uniform random number generator (you
can assume either discrete or continuous) and simulate the roll of a pair

EXERCISES 89

of dice to obtain a total (i.e., the pairs (1,3), (2,2), (2,2), and (3,1) are
not distinguished). For a specified number of rolls, your test should be a
chi-squared test with 10 degrees of freedom (meaning that the number of
rolls should be greater than some fixed number).
Implement your test in the language of your choice. Then, apply it to
some random number generators (for example, the generator you wrote
in Exercise 1.5, and whatever system random number is available to you,
such as in S-Plus or the IMSL Libraries).
Now, put your dice test in the inner loop of a test program to perform
the test many times, each time retaining the p-value. At the end of the
inner loop, do a chi-squared test on the p-values. Does this testing of the
output of tests make sense? What about testing the output of tests of
the output of tests?

2.2. Write a program for a test for binary ranks. The input to your program
is n, the number of rows, m, the number of columns in the matrices to
be formed and tested, and a vector of 0s and 1s from whose first nm
elements the matrices are to be formed. (It is irrelevant whether you
form the matrices in a row major or column major pattern, but let us say
that the first n elements of the vector become the first column, the next n
elements become the second column, and so on. Another consideration is
the storage format of the input vector. For efficiency, it should be binary,
but for ease of programming, you can use regular fixed-point storage.)
Use elementary row and column operations to diagonalize the matrix (see
Gentle, 1998, page 88 and following, for example). The number of 1s
on the diagonal of the transformed matrix is the rank. For a given size
of matrices and input vector, compute the frequencies of ranks from 1
to min(n, m). Do a chi-squared test that these frequencies match the
expected frequencies from equation (2.13). (You should write a separate
program module to compute the probability mass function.)

(a) Write a brief but clear user document for your test program.
(b) Perform the binary matrix rank test on 31 × 31 matrices produced

by the generator that you wrote in Exercise 1.5. (You may have to
modify the program for the generator slightly to get a bit stream.)
Write a report of your results.

(c) Binary matrices are defined over IG(2). If the elements have inde-
pendent identical discrete uniform distributions (they are Bernoulli
random variables with parameter 1/2), the probability mass function
for the rank of an n×m matrix is given in equation (2.13). Suppose,
instead, that the elements are in IR and have independent identical
U(0, 1) distributions. What is the probability mass function for the
rank of an n × m matrix in that case?

2.3. Sullivan (1993) suggested the following test of a random number gener-
ator. For each of the seeds 1, 2, . . . , N , generate a sequence of length n.

90 CHAPTER 2. QUALITY OF RANDOM NUMBER GENERATORS

Let I represent the index of the maximum element in each sequence. If n
is considerably less than the period of the generator, we would expect I
to be uniformly distributed over the integers 1, 2, . . . , n.
Using N = 100 and n = 10000, perform this test on the “minimal stan-
dard” generator that you wrote in Exercise 1.9. What are your results?
What is wrong with this test?

2.4. Use standard test suites on the “minimal standard” generator that you
wrote in Exercise 1.9. You must prepare the output appropriately for
these test suites.

(a) Obtain Marsaglia’s DIEHARD test suite, and apply all tests to your
implementation of the “minimal standard” generator. Write a clear
and complete report of your tests. (You should describe the genera-
tor, how you prepared its output for input to the DIEHARD tests,
the results of each test, and how you interpret the results.)

(b) Obtain the NIST test package, and apply all tests to your imple-
mentation of the “minimal standard” generator. Write a clear and
complete report of your tests.

(c) Obtain the TestU01 test package, and apply Small Crush to your
implementation of the “minimal standard” generator. Should you
proceed to use Crush on this generator? Write a clear and complete
report of your tests.

2.5. Marsaglia’s distribution of the DIEHARD test suite includes a number
of standard random number generators (some good, some not so good).
Select ten of these generators to test. Some of the DIEHARD tests pro-
duce multiple “p-values”. (Recall the reported “p-value” is the CDF of
the test statistic evaluated at the realized value.) For each test, decide on
just one “p-value” to use, and for each generator that you have chosen,
run each of the DIEHARD tests 20 times and save the “p-values”. This
yields 200 “p-values” for each test.

(a) Analyze relationships among the eighteen tests. Do the different
tests appear to be testing different things?

(b) Perform a multivariate analysis of variance to decide whether the
variation between random number generators is significant.

2.6. Test the Fortran or C RANDU generator that you wrote in Exercise 1.7 of
Chapter 1. Devise any statistical tests you want. (See Section 2.3, and
use your imagination.) Does your generator pass all of your tests? (Do
not answer “no” until you have found a realistic statistical test that RANDU
actually fails.)

2.7. As mentioned in Chapter 1, π seems to be a normal number in any base
(that is, the digits in an approximation of π in any base seem to be

EXERCISES 91

independently and uniformaly distributed). Bailey and Crandall (2001)
give a recursion for the digits in a hexadecimal representation of π. Let
x0 = 0, and, for i = 1, 2, . . .,

xi =
(

16xi−1 +
120i2 − 89i + 16

512i4 − 1024i3 + 712i2 − 206i + 21

)
mod 1.

Then, take di = �16xi� as the ith hexadecimal digit. Apply the Crush
suite of TestU01 to these digits (alternatively, of course, apply the test to
the xs.) Does π appear to be normal in base 16?

2.8. Briefly, for each of the points listed in Section 2.5, beginning on page 87,
how would you rate the following classes or types of generators?

(a) linear congruential generators;

(b) generalized feedback generators;

(c) generators based on cellular automata;

(d) generators based on chaotic systems.

This page intentionally left blank

Chapter 3

Quasirandom Numbers

In statistical applications, there is a fundamental tension in random sampling
between the need for randomness as a basis for making inferences from the
sample and the requirement that the sample be “representative” of the sample
space. In survey sampling, stratification is used to make the sample more
representative and simultaneously reduce sampling variance. This idea can be
extended, but as the number of strata increases, the sample size in each stratum
decreases. In the limit, there is no randomness remaining in the sampling. (See
Section 7.5.2 for discussion of stratification in Monte Carlo applications with
pseudorandom numbers.)

In pseudorandom number generation, we emphasize the simulation of a ran-
dom process. Sometimes, we may be concerned about whether the sample is
representative or whether it is an “outlier”, but our primary concern is that
the process simulate a random process. Because we are simulating a random
process, the results are estimates and are subject to sampling variation just as
a random sampling process would be.

In an attempt to ensure that a random sample is representative, we may
constrain the pseudorandom numbers to have the same mean as the population
or so that other properties match, as we discuss in Section 7.5.4. In this chapter,
we discuss ways of drawing representative samples by systematic traversal of
the sample space.

Some of the properties of expectation and variance of results can carry over
reasonably well to pseudorandom numbers, but any attempt to make a sample
more representative must change our use of the sample variance in making
inferences.

3.1 Low Discrepancy

For a deterministic sequence, instead of the expectation of the estimator, we
might consider its limit, so we might take into account the discrepancy (equa-
tion (2.6), page 69).

93

94 CHAPTER 3. QUASIRANDOM NUMBERS

For pseudorandom numbers generated by any of the methods that we have
discussed, the limit is taken over a cyclic finite set, and the supremum in the
discrepancy is a maximum. Suppose that, instead of the pseudorandom num-
bers resulting from the generators that we have discussed, we explicitly address
the problem of discrepancy. Then, instead of being concerned with E(θ̂), we
might consider

lim
n→∞ θ̂ = lim

n→∞(b − a)
∑

f(yi)
n

.

A moment’s pause, of course, tells us that this kind of limit does not apply to
the real world of computing, with its finite set of numbers. Nevertheless, it is
useful to consider a deterministic sequence with low discrepancy. The objective
is that any finite subsequence fill the space uniformly.

These sequences are called quasirandom sequences.
Quasirandom sequences correspond to samples from a U(0, 1) distribution.

(Contrast this statement with the statement that “pseudorandom sequences
simulate random samples from a U(0, 1) distribution”.) The techniques of
Chapters 4 and 5 can therefore be used to generate quasirandom sequences
that correspond to samples from nonuniform distributions. For the methods
that yield one nonuniform deviate from each uniform deviate, such as the in-
verse CDF method, everything is straightforward. For other methods that use
multiple independent uniform deviates for each nonuniform deviate, the qua-
sirandom sequence may be inappropriate. The quasirandom method does not
simulate independence.

3.2 Types of Sequences

Whereas pseudorandom sequences or pseudorandom generators attempt to sim-
ulate randomness, quasirandom sequences are decidedly not random. The ob-
jective for a (finite) pseudorandom sequence is for it to “look like” a sequence
of realizations of i.i.d. uniform random variables, but for a (finite) quasirandom
sequence the objective is that it fill a unit hypercube as uniformly as possible.
Several such sequences have been proposed, such as van der Corput sequences,
Halton sequences (Halton, 1960), Faure sequences, Sobol’ sequences (Sobol’,
1967, 1976), and Niederreiter sequences (Niederreiter, 1988).

3.2.1 Halton Sequences

A Halton sequence is formed by reversing the digits in the representation of
some sequence of integers in a given base. (This is a generalization of a van
der Corput sequence.) Although this can be done somewhat arbitrarily, a
straightforward way of forming a d-dimensional Halton sequence x1, x2, . . . ,
where xi = (xi1, xi2, . . . , xid), is first to choose d bases, b1, b2, . . . , bd, perhaps
the first d primes. The jth base will be used to form the jth component of each
vector in the sequence. Then, begin with some integer m and

3.2. TYPES OF SEQUENCES 95

1. choosing tmj suitably large, represent m in each base:

m =
tmj∑
k=0

ajk(m)bk
j , j = 1, . . . d,

2. form

xij =
tmj∑
k=0

ajk(m)bk−tmj−1
j , j = 1, . . . d,

3. set m = m + 1 and repeat.

Suppose that, for example, d = 3, m = 15, and we use the bases 2, 3, and
5. We form 15 = 11112, 15 = 1203, and 15 = 305 and deliver the first x as
(0.11112, 0.0213, 0.035) or (0.937500, 0.259259, 0.120000). Continuing in this
way, the first five 3-vectors are shown in Table 3.1. Even in this small example,
we can see how each element in the vectors in the sequence is achieving a uniform
coverage and how the elements are not synchronized. We also note, however,
that larger values of the base yield undesirable monotone subsequences. The
length of the monotone subsequences corresponding to the base bj is obviously
bj because that is the length of a sequence in which the leading digit does not
change.

The Halton sequences are acceptably uniform for lower dimensions, up to
about 10. For higher dimensions, however, the quality of the Halton sequences
degrades rapidly because the two-dimensional planes occur in cycles with de-
creasing periods.

Generalized Halton sequences have been proposed and studied by Braaten
and Weller (1979), Hellekalek (1984), Faure (1986), and Krommer and Ueber-
huber (1994). The basic idea of the Faure sequences is to permute the ajk(m)s
in step 2.

Kocis and Whiten (1997) suggest a “leaped Halton sequence”. In this
method, the cycles of the Halton sequence are destroyed by using only every lth

Halton number, where l is a prime different from all of the bases b1, b2, . . . , bd.

Table 3.1: Three-Dimensional Halton Numbers, Starting with m = 15

m vector in bases 2, 3, and 5 x
15 (0.11112, 0.0213, 0.035) (0.937500, 0.259259, 0.120000)
16 (0.000012, 0.1213, 0.135) (0.031250, 0.592593, 0.320000)
17 (0.100012, 0.2213, 0.235) (0.531250, 0.925926, 0.520000)
18 (0.010012, 0.0023, 0.335) (0.281250, 0.037037, 0.720000)
19 (0.110012, 0.1023, 0.435) (0.781250, 0.370370, 0.920000)

96 CHAPTER 3. QUASIRANDOM NUMBERS

3.2.2 Sobol’ Sequences

A Sobol’ sequence is based on a set of “direction numbers”, {vi}. The vi are

vi =
mi

2i
,

where the mi are odd positive integers less than 2i, and the vi are chosen so that
they satisfy a recurrence relation using the coefficients of a primitive polynomial
in the Galois field IG(2),

f(z) = zp + c1z
p−1 + · · · + cp−1z + cp

(compare equation (1.38), page 38). For i > p, the recurrence relation is

vi = c1vi−1 ⊕ c2vi−2 ⊕ · · · ⊕ cpvi−p ⊕ �vi−p/2p�,

where ⊕ denotes bitwise binary exclusive-or. An equivalent recurrence for the
mi is

mi = 2c1mi−1 ⊕ 22c2mi−2 ⊕ · · · ⊕ 2pcpmi−p ⊕ mi−p.

As an example, consider the primitive polynomial (1.42) from page 39,

x4 + x + 1.

The corresponding recurrence is

mi = 8mi−3 ⊕ 16mi−4 ⊕ mi−4.

If we start with m1 = 1, m2 = 1, m3 = 3, and m4 = 13, for example, we get

m5 = 8 ⊕ 16 ⊕ 1
= 01000(binary) ⊕ 10000(binary) ⊕ 00001(binary)
= 11001(binary)
= 25.

The ith number in the Sobol’ sequence is now formed as

xi = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · · ,

where · · · b3b2b1 is the binary representation of i.
Antonov and Saleev (1979) show that equivalently the Sobol’ sequence can

be formed as
xi = g1v1 ⊕ g2v2 ⊕ g3v3 ⊕ · · · , (3.1)

where · · · g3g2g1 is the binary representation of a particular Gray code evaluated
at i. (A Gray code is a function, G(i), on the nonnegative integers such that
the binary representations of G(i) and G(i + 1) differ in exactly one bit; that

3.2. TYPES OF SEQUENCES 97

is, with a Hamming distance of 1.) The binary representation of the Gray code
used by Antonov and Saleev is

· · · g3g2g1 = · · · b3b2b1 ⊕ · · · b4b3b2.

(This is the most commonly used Gray code, which yields function values
0, 1, 3, 2, 6, 7, 5, 4,) The Sobol’ sequence from equation (3.1) can be gen-
erated recursively by

xi = xi−1 ⊕ vr,

where r is determined so that br is the rightmost zero bit in the binary repre-
sentation of i − 1.

The uniformity of a Sobol’ sequence can be very sensitive to the starting
values, especially in higher dimensions. Bratley and Fox (1988) discuss criteria
for starting values, m1, m2, (The starting values used in the example with
the primitive polynomial above satisfy those criteria.)

3.2.3 Comparisons

Empirical comparisons of various quasirandom sequences that have been re-
ported in the literature are somewhat inconclusive. Sarkar and Prasad (1987)
compare the performance of pseudorandom and quasirandom sequences in the
solution of integral equations by Monte Carlo methods and find no difference in
the performance of the two quasirandom sequences that they studied: the Hal-
ton and Faure sequences. Fox (1986), on the other hand, finds the performance
of Faure sequences to be better than that of Halton sequences. This is supported
by the study by Bratley and Fox (1988), who also find that the performance
of the Sobol’ sequence is roughly the same as that of the Faure sequence. The
empirical results reported in Bratley, Fox, and Niederreiter (1992) show incon-
clusive differences between Sobol’ sequences and Niederreiter sequences. In an
application in financial derivatives, Papageorgiou and Traub (1996) compared
the performance of a generalized Faure sequence with a Sobol’ sequence. They
concluded that the Faure sequence was superior in that problem. Some of the
inferior performace of Sobol’ sequences has been attributed to poor starting
values (see Jäckel, 2002).

3.2.4 Variations

Tezuka (1993) describes an analog of Halton sequences and a generalization of
Niederreiter sequences and then shows that these extensions are related.

Quasirandom sequences that cover domains other than hypercubes have also
been studied. Beck and Chen (1987) review work on low-discrepancy sequences
over various types of regions.

Fang and Wang (1994) defined a type of quasirandom sequence of higher di-
mensions that they called NT-nets (“number theory” nets). Fang and Li (1997)
gave a method for generating random orthogonal matrices based on an NT-net.

98 CHAPTER 3. QUASIRANDOM NUMBERS

Combination generators (see Section 1.8, page 46) for quasirandom se-
quences can also be constructed. Braaten and Weller (1979) describe a method
in which a pseudorandom generator is used to scramble a quasirandom se-
quence. It generally would not be useful to combine another sequence with a
quasirandom sequence except to shuffle the quasirandom sequence. The shuf-
fling generator could be either a quasirandom generator or a pseudorandom
generator, but a pseudorandom generator would be more likely to be effective.
The use of a pseudorandom generator may provide a method of estimating vari-
ances in the results of Monte Carlo studies. When a combination generator is
composed of one or more quasirandom generators and one or more pseudoran-
dom generators, it is called a hybrid generator.

3.2.5 Computations

Halton sequences are easy to generate (Exercise 3.1 asks you to write a pro-
gram to do so). Fox (1986) gives a program for Faure sequences, Bratley and
Fox (1988) give a program for Sobol’ sequences (using Gray codes, as men-
tioned above), and Bratley, Fox, and Niederreiter (1994) give a program for
Niederreiter sequences.

3.3 Further Comments

There are several applications of Monte Carlo methods reported in the literature
that use quasirandom numbers. For example, Shaw (1988) uses quasirandom
sequences instead of the usual pseudorandom sequences for evaluating integrals
arising in Bayesian inference. Do (1991) uses quasirandom sequences in a Monte
Carlo bootstrap. Quasirandom sequences seem to be widely used in applications
in finance. Joy, Boyle, and Tan (1996), empirically comparing the use of Faure
sequences with pseudorandom sequences in valuing financial options of various
types, found that the quasirandom sequences had better convergence rates in
that application.

Variances and Error Bounds

An important property of numerical computations is the rate of convergence.
In a deterministic algorithm, an upper bound on the error can often be given in
terms of some simple expression (usually problem specific, however, so of ques-
tionable utility). These bounds often decrease initially as a function of some
aspect of the number of computations (perhaps the number of iterations or the
number of terms in a series), and the rate of convergence is expressed as a func-
tion of the number of computations. In algorithms that ostensibly use random
sampling (that is, ones using pseudorandom numbers), it may not be possible
to determine an upper bound on the error. The nature of the methods are
fundamentally different. In deterministic algorithms, we approximate a result
using finite truncations of expressions with an infinite number of components.

3.3. FURTHER COMMENTS 99

(The simplest of these finite truncations is due to the finite precision arithmetic
used in the computer.) In random algorithms, estimate a result using a random
sample, and the error depends on the realizations of the random sampling. In
this case, we quantify the “error” in terms of the variance of the estimator.
If the error is taken to be proportional to the standard deviation, it usually
decreases proportionally to the square root of the size of the sample.

Use of quasirandom sequences is more similar to use of a deterministic al-
gorithm than it is to use of pseudorandom sequences. Although in some cases
it is simple to make comparisons between the performance of pseudorandom
and quasirandom sequences, the fundamental difference in the nature of the
error bounds appropriate for Monte Carlo methods and for other numerical
algorithms must be recognized. We comment further on these distinctions in
Section 7.3.

Hickernell (1995) compares a certain type of error bound for quadrature
using pseudorandom and quasirandom sequences and shows that the quasiran-
dom sequences resulted in smaller bounds for errors. Bouleau and Lépingle
(1994), quoting Pagès and Xiao, give comparative sample sizes required by
pseudorandom and Halton and Faure sequences to achieve the same precision
for quadrature in various dimensions from 2 to 20. Precision, in this case, is
approximated using the asymptotic convergence of the quadrature formulas.

Variance is not a meaningful concept in quasirandom sequences because
of the systematic way in which they are formed. In applications, however,
variances may be needed to form confidence regions for results. Ökten (1998)
suggests use of random samples from quasirandom sequences in order to esti-
mate a confidence interval. It is not clear how useful these methods would be
in practice. In most cases, it is better to rely on asymptotic deterministic error
bounds for results computed using quasirandom sequences.

Nonuniform Random Deviates

In many applications of pseudorandom or quasirandom sequences, the simu-
lated or approximated U(0, 1) numbers are transformed into numbers similar
to what might be expected when sampling from a distribution that is not uni-
form (a normal distribution, for example). In Chapter 4, we discuss methods
for these transformations. We see that one of these methods is a direct trans-
formation involving a single uniform deviate to produce a single nonuniform
deviate. For this method, we can use a quasirandom sequence and we get a
quasirandom sequence. In some sense, that sequence also has desirable distrib-
utional properties in the probability space of the transformation. For the other
methods of transforming uniform deviates into nonuniform deviates (that is,
the methods that use more than one uniform deviate to produce one nonuni-
form deviate—the methods most widely used), the patterns in the quasirandom
sequence render the methods invalid.

100 CHAPTER 3. QUASIRANDOM NUMBERS

Further Reading

The texts by Niederreiter (1992) and Tezuka (1995) have extensive discussions
of quasirandom sequences. Jäckel (2002) dissusses some important issues in the
use of quasirandom sequences, particularly the Sobol’ sequences.

Exercises

3.1. Write a subprogram to generate d-dimensional Halton sequences using the
integers m, m+1, . . . , m+n− 1 and using the first d primes as the basis
for each succeeding component of the d-tuples. Your subprogram should
accept as input m, d, n, and possibly the declared first dimension of the
output array. Your subprogram should output an n × d array.

3.2. Use the subprogram from Exercise 3.1 to evaluate the integral∫ 1

0

∫ 2

0

y sin(πx) dy dx

for increasing values of n. How do the errors in your answers depend on
n? (What is the order of the error?)

3.3. Apply the dice test you constructed in Exercise 2.1 to 1000 pairs generated
by the Halton sequence program in Exercise 3.1.

3.4. (a) Write a program to perform a chi-squared goodness-of-fit test of d-
uniformity in the unit hypercube. For an input of n d-vectors, form
nd/(d+1) equal-sized hypercubes by subdividing the unit interval of
each axis into n1/(d+1) equal-sized lengths. Use the counts in the
hypercubes in your chi-squared goodness-of-fit test.

(b) Run the test program you wrote in Exercise 3.4a 100 times on 106

five-dimensional vectors generated by the Halton sequence program
in Exercise 3.1. Make a q–q plot of the 100 computed chi-squared
statistics versus a true chi-squared random variable (of how many de-
grees of freedom?). Does your Halton generator produce acceptable
pseudorandom numbers? Why or why not?

3.5. Design and develop a hybrid combination generator that uses a pseudo-
random number generator, perhaps such as you wrote in Exercise 1.10
of Chapter 1 (page 58), to shuffle the output of a quasirandom number
generator (perhaps the Halton sequence generator in Exercise 3.1). Be
sure to provide appropriate user control to set the initial state of the
combination generator.

3.6. Briefly, for each of the points listed in Section 2.5, beginning on page 87,
how would you rate quasirandom generators? (Compare Exercise 2.8.)

Chapter 4

Transformations of Uniform
Deviates: General Methods

Sampling of random variates from a nonuniform distribution is usually done by
applying a transformation to uniform variates. Each realization of the nonuni-
form random variable might be obtained from a single uniform variate or from
a sequence of uniforms. Some methods that use a sequence of uniforms require
that the sequence be independent; other methods use a random walk sequence,
a Markov chain.

For some distributions, there may be many choices of algorithms for gen-
eration of random numbers. The algorithms differ in speed, accuracy, storage
requirements, and complexity of coding. Some of the faster methods are ap-
proximate, but given the current cost of computing, the speedup resulting from
an additional approximation beyond the approximation resulting from the or-
dinary finite-precision representation is not worth the accuracy loss. All of the
methods that we discuss in this chapter are exact, so any approximation is a
result of the ordinary rounding and truncation necessary in using a computer
to simulate real numbers or infinite sets. Occasionally, a research paper will
contend that the quality of the random numbers generated by some particular
method, such as Box–Muller or the ratio-of-uniforms, is bad, but the quality
ultimately depends only on the quality of the underlying uniform generator. A
particular method, however, may exacerbate some fault in the uniform genera-
tor, and it is always a good idea to conduct a goodness-of-fit test for the specific
distribution of interest. This is an ad hoc test, as we advocate in Chapter 2.

After accuracy, the next most important criterion is speed. The speed of
a random number generation algorithm has two aspects: the setup time and
the generation time. In most cases, the generation time is the more important
component to optimize. Whenever the setup time is significant, the computer
program can preserve the variables initialized, so that if the function is called
again with the same parameters, the setup step can be bypassed. In a case of
relatively expensive setup overhead, a software system may provide a second

101

102 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

function for the same distribution with less setup time.
The two other criteria mentioned above, storage requirements and complex-

ity of coding, are generally of very little concern in selecting algorithms for
production random number generators.

Another important issue is whether the algorithm can be implemented in a
portable manner, as discussed in Section 1.11.

The methods discussed in this chapter are “universal” in the sense that
they apply to many different distributions. (Some authors call these “black
box” methods.) Some of these methods are better than others for a particular
distribution or for a particular range of the distribution. These techniques are
used, either singly or in combination, for particular distributions. We discuss
these methods in Chapter 5.

Some of these methods, especially those that involve inverting a function,
apply directly only to univariate random variables, whereas other methods ap-
ply immediately to multivariate random variables.

The descriptions of the algorithms in this chapter are written with an em-
phasis on clarity, so they should not be incorporated directly into program code
without considerations of the efficiency. These considerations generally involve
avoiding unnecessary computations. This may mean defining a variable not
mentioned in the algorithm description or reordering the steps slightly.

4.1 Inverse CDF Method

For the random variable X , the cumulative distribution function, or CDF, is
the function PX defined by

PX (x) = Pr(X ≤ x),

where Pr(A) represents the probability of the event A. Two important proper-
ties are immediately obvious: the CDF is nondecreasing, and it is continuous
from the right.

Continuous Distributions

If X is a scalar random variable with a continuous CDF PX , then the random
variable

U = PX(X)

has a U(0, 1) distribution. (This is easy to show; you are asked to do that in
Exercise 4.1, page 159.) This fact provides a very simple relationship with a
uniform random variable U and a random variable X with distribution function
P :

X = P−1
X (U). (4.1)

Use of this straightforward transformation is called the inverse CDF technique.
The reason it works can be seen in Figure 4.1; over a range for which the

4.1. INVERSE CDF METHOD 103

Figure 4.1: The Inverse CDF Method to Convert a Uniform Random Number
to a Number from a Continuous Distribution

derivative of the CDF (the density) is large, there is more probability of realizing
a uniform deviate.

The inverse CDF relationship exists between any two continuous (nonsin-
gular) random variables. If X is a continuous random variable with CDF PX

and Y is a continuous random variable with CDF PY , then

X = P−1
X (PY (Y))

over the ranges of positive support. Use of this kind of relationship is a match-
ing of “scores” (that is, of percentile points) of one distribution with those of
another distribution. In addition to the uniform distribution, as above, this
kind of transformation is sometimes used with the normal distribution.

Whenever the inverse of the distribution function is easy to compute, the
inverse CDF method is a good one. It also has the advantage that basic relation-
ships among a set of uniform deviates (such as order relationships) may result
in similar relationships among the set of deviates from the other distribution.

Because it is relatively difficult to compute the inverse of some distribution
functions of interest, however, the inverse CDF method is not as commonly used
as its simplicity might suggest. Even when the inverse P−1 exists in closed form,
evaluating it directly may be much slower than use of some alternative method
for sampling random numbers. On the other hand, in some cases when P−1

does not exist in closed form, use of the inverse CDF method by solving the
equation

P (x) − u = 0

may be better than the use of any other method.

104 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Discrete Distributions

The inverse CDF method also applies to discrete distributions, but of course we
cannot take the inverse of the distribution function. Suppose that the discrete
random variable X has mass points

m1 < m2 < m3 < . . .

with probabilities
p1, p2, p3, . . .

and with the distribution function

P (x) =
∑

i�mi≤x

pi.

To use the inverse CDF method for this distribution, we first generate a real-
ization u of the uniform random variable U . We then deliver the realization of
the target distribution as x, where x satisfies the relationship

P (x(−)) < u ≤ P (x), (4.2)

where x(−) is a value arbitrarily close to, but less than, x. Alternatively, we
have

x = min{t, s.t. u ≤ P (t)}. (4.3)

This is illustrated in Figure 4.2.

Figure 4.2: The Inverse CDF Method to Convert a Uniform Random Number
to a Number from a Discrete Distribution

4.1. INVERSE CDF METHOD 105

An example of a common and very simple application of the inverse CDF
technique is for generating a random deviate from a Bernoulli distribution with
parameter π, as in Algorithm 4.1. The probability function for the Bernoulli
distribution with parameter π is

p(x) = πx(1 − π)1−x, for x = 0, 1, (4.4)

where 0 < π < 1.

Algorithm 4.1 Generating a Bernoulli Deviate by the Inverse CDF

1. Generate u from a U(0, 1) distribution.

2. If u < π, then
2.a. deliver 0;

otherwise,
2.b. deliver 1.

Without loss of generality, we often assume that the mass points of a discrete
distribution are the integers 1, 2, 3, The special case in which there are k
mass points and they all have equal probability is called the discrete uniform
distribution, and the use of the inverse CDF method is particularly simple: the
value is �uk�.

The evaluation of the inverse CDF involves a search. Rather than starting
the search at some arbitrary point, it is usually more efficient to start it at some
point with a higher probability of being near the solution. Either the mean or
the mode is usually a good place to begin the search, which then proceeds up
or down as necessary.

Table Lookup

Using the inverse CDF method for a general discrete distribution is essentially a
table lookup; it usually requires a search for the x in equation (4.2). The search
may be performed sequentially or by some tree traversal. Marsaglia (1963),
Norman and Cannon (1972), and Chen and Asau (1974) describe various ways
of speeding up the table lookup. Improving the efficiency of the table-lookup
method is often done by incorporating some aspects of the urn method, in which
the distribution is simulated by a table (an “urn”) that contains the mass points
in proportion to their population frequency. In the urn, each pi is represented
as a rational fraction ni/N , and a table of length N is constructed with ni

pointers to the mass point i. A discrete uniform deviate, �uN�, is then used as
an index to the table to yield the target distribution.

The method of Marsaglia implemented by Norman and Cannon (1972) in-
volves forming a table partitioned in such a way that the individual partitions
can be sampled with equal probabilities. In this scheme, the probability pi

associated with the ith mass point is expressed to a precision t in the base b as

pi ≈
t∑

j=1

dijb
−j , (4.5)

106 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

with 0 ≤ dij < b. We assume that there are n mass points. (We frequently
assume a finite set of mass points when working with discrete distributions.
Because we can work with only a finite number of different values on the com-
puter, it does not directly limit our methods, but we should be aware of any
such exclusion of rare events and in some cases must modify our methods to be
able to model rare events.) Let

P0 = 0,

Pj = b−j
n∑

i=1

dij for j = 1, 2, . . . , t,

N0 = 0,

Nk = b−j
k∑

j=1

n∑
i=1

dij for k = 1, 2, . . . , t.

Now, form a partitioned array and, in the jth partition, store dij copies of i
(remember that the mass points are taken to be the integers; they could just as
well be indexes). The jth partition is in locations Nj−1 +1 to Nj . There are Nt

storage locations in all. Norman and Cannon (1972) show how to reduce the size
of the table with a slight modification to the method. After the partitions are
set up, Algorithm 4.2 generates a random number from the given distribution.

Algorithm 4.2 Marsaglia/Norman/Cannon Table Lookup for
Sampling a Discrete Random Variate

1. Generate u from a U(0, 1) distribution, and represent it in base b to t
places:

u =
t∑

j=1

djb
−j .

2. Find m such that
m−1∑
j=0

Pj ≤ u <

m∑
j=0

Pj .

3. Take as the generated value the contents of location

m∑
j=1

djb
m−j −

bm
m−1∑
j=0

Pj − Nm−1

+ 1.

4.1. INVERSE CDF METHOD 107

In this algorithm, the jth partition is chosen with probability Pj . The
probability of the ith mass point is

Pr(X = i) =
t∑

j=1

Pr(jth partition is chosen) ×

Pr(i is chosen from jth partition)

=
t∑

j=1

Pj
dij∑n

k=1 dkj

=
t∑

j=1

b−j
n∑

i=1

dij
dij∑n

k=1 dkj

=
t∑

j=1

dijb
−j

≈ pi.

Norman and Cannon (1972) give a program to implement this algorithm that
forms an equivalent but more compact partitioned array.

Chen and Asau (1974) give a hashing method using a “guide table”. The
guide table contains n values gi that serve as indexes to the n mass points in
the CDF table. The ith guide value is the index of the largest mass point whose
CDF value is less than i/n:

gi = max∑
j

k=1
pk<i/n

j.

After the guide table is set up, Algorithm 4.3 generates a random number from
the given distribution.

Algorithm 4.3 Sampling a Discrete Random Variate Using the Chen
and Asau Guide Table Method

1. Generate u from a U(0, 1) distribution, and set i = �un�.
2. Set x = gi + 1.

3. While
∑x

k=1 pk > u, set x = x − 1.

Efficiency of the Inverse CDF for Discrete Distributions

Rather than using a stored table of the mass points of the distribution, we
may seek other efficient methods of searching for the x in equation (4.2). The
search can often be improved by knowledge of the relative magnitude of the
probabilities of the points. The basic idea is to begin at a point with a high
probability of satisfying the relation (4.2). Obviously, the mode is a good place
to begin the search, especially if the probability at the mode is quite high.

108 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

For many discrete distributions of interest, there may be a simple recursive
relationship between the probabilities of adjacent mass points:

p(x) = f(p(x − 1)) for x > x0,

where f is some simple function (and we assume that the mass points differ by
1, and x0 is the smallest value with positive mass). In the Poisson distribution
(see page 188), for example,

p(x) = θp(x − 1)/x for x > 0.

For this case, Kemp (1981) describes two approaches. One is a “build-up search”
method in which the CDF is built up by the recursive computation of the mass
probabilities. This is Algorithm 4.4.

Algorithm 4.4 Build-Up Search for Discrete Distributions

0. Set t = p(x0).

1. Generate u from a U(0, 1) distribution, and set x = x0, px = t, and
s = px.

2. If u ≤ s, then
2.a. deliver x;

otherwise,
2.b. set x = x + 1, px = f(px), and s = s + px, and return to step 2.

The second method that uses the recursive evaluation of probabilities to
speed up the search is a “chop-down” method in which the generated uniform
variate is decreased by an amount equal to the CDF. This method is given in
Algorithm 4.5.

Algorithm 4.5 Chop-Down Search for Discrete Distributions

0. Set t = p(x0).

1. Generate u from a U(0, 1) distribution, and set x = x0 and px = t.

2. If u ≤ px, then
2.a. deliver x;

otherwise,
2.b. set u = u−px, x = x+1, and px = f(px), and return to step 2.

Either of these methods could be modified to start at some other point, such
as the mode.

4.2. DECOMPOSITIONS OF DISTRIBUTIONS 109

Interpolating in Tables

Often, for a continuous random variable, we may have a table of values of the
cumulative distribution function but not have a function representing the CDF
over its full range. This situation may arise in applications in which a person
familiar with the process can assign probabilities for the variable of interest yet
may be unwilling to assume a particular distributional form. One approach
to this problem is to fit a continuous function to the tabular values and then
use the inverse CDF method on the interpolant. The simplest interpolating
function, of course, is the piecewise linear function, but second- or third-degree
polynomials may give a better fit. It is important, however, that the interpolant
be monotone. Guerra, Tapia, and Thompson (1976) describe a scheme for
approximating the CDF based on an interpolation method of Akima (1970).
Their procedure is implemented in the IMSL routine rngct.

Multivariate Distributions

The inverse CDF method does not apply to a multivariate distribution, although
marginal and conditional univariate distributions can be used in an inverse
CDF method to generate multivariate random variates. If the CDF of the
multivariate random variable (X1, X2, . . . , Xd) is decomposed as

PX1X2...Xd
(x1, x2, . . . , xd) =

PX1(x1)PX2|X1(x2|x1) · · ·PXd|X1X2...Xd−1(xd|x1, x2, . . . , xd−1)

and if the functions are invertible, the inverse CDF method is applied sequen-
tially using independent realizations of a U(0, 1) random variable, u1, u2, . . . , ud:

x1 = P−1
X1

(u1),

x2 = P−1
X2|X1

(u2),
.

xd = P−1
Xd|X1X2...Xd−1

(ud).

The modifications of the inverse CDF for discrete random variables described
above can be applied if necessary.

4.2 Decompositions of Distributions

It is often useful to break up the range of the distribution of interest using one
density over one subrange and another density over another subrange. More
generally, we may represent the distribution of interest as a mixture distribu-
tion that is composed of proportions of other distributions. Suppose that the
probability density or probability function of the random variable of interest,

110 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

p(·), can be represented as

p(x) =
k∑

j=1

wjpj(x), (4.6)

where the pj(·) are density functions or probability functions of random vari-
ables, the union of whose support is the support of the random variable of
interest. We require

wj ≥ 0

and
k∑

j=1

wj = 1.

The random variable of interest has a mixture distribution.
If the pj are such that the pairwise intersections of the supports of the

distributions are all null, the mixture is a stratification.
To generate a random deviate from a mixture distribution, first use a single

uniform to select the component distribution, and then generate a deviate from
it. The mixture can consist of any number of terms. To generate a sample of
n random deviates from a mixture distribution of d distributions, consider the
proportions to be the parameters of a d-variate multinomial distribution. The
first step is to generate a single multinomial deviate, and then generate the
required number of deviates from each of the component distributions.

Any decomposition of p into the sum of nonnegative integrable functions
yields the decomposition in equation (4.6). The nonnegative wi are chosen to
sum to 1.

For example, suppose that a distribution has density p(x), and for some
constant c, p(x) ≥ c over (a, b). Then, the distribution can be decomposed into
a mixture of a uniform distribution over (a, b) with proportion c(b − a) and
some leftover part, say g(x). Now, g(x)/(1 − c(b − a)) is a probability density
function. To generate a deviate from p:

with probability c(b − a),
generate a deviate from U(a, b);

otherwise,

generate a deviate from the density
1

1 − c(b − a)
g(x).

If c(b − a) is close to 1, we will generate from the uniform distribution most
of the time, so even if it is difficult to generate from g(x)/(1 − c(b − a)), this
decomposition of the original distribution may be useful.

Another way of forming a mixture distribution is to consider a density sim-
ilar to equation (4.6) that is a conditional density,

p(x|y) = yp1(x) + (1 − y)p2(x),

4.3. USE OF MORE THAN ONE UNIFORM DEVIATE 111

where y is the realization of a Bernoulli random variable, Y . If Y takes a value
of 0 with probability w1/(w1 + w2), then the density in equation (4.6) is the
marginal density. This conditional distribution yields

pX(x) =
∫

pX,Y (x, y) dy

=
∑

y

pX|Y =yPr(Y = y)

= w1p1(x) + w2p2(x),

as in equation (4.6).
More generally, for any random variable X with a distribution parameter-

ized by θ, we can think of the parameter as being the realization of a random
variable Θ. Some common distributions result from mixing other distributions;
for example, if the gamma distribution is used to generate the parameter in a
Poisson distribution, a negative binomial distribution is formed. Mixture dis-
tributions are often useful in their own right; for example, the beta-binomial
distribution (see page 187) can be used to model overdispersion.

4.3 Transformations that Use More than One

Uniform Deviate

Methods for generating random deviates by first decomposing the distribution
of interest require the use of more than one uniform deviate for each deviate
from the target distribution. Most other methods discussed in this chapter
also require more than one uniform deviate for each deviate of interest. For
such methods we must be careful to avoid any deleterious effects of correlations
in the underlying uniform generator. An example of a short-range correlation
occurs in the use of a congruential generator,

xi ≡ axi−1 mod m,

when xi−1 is extremely small. In this case, the value of xi is just axi−1 with
no modular reduction. A small value of xi−1 may correspond to some extreme
intermediate value in one of the constituent distributions in the decomposition
of the density in equation (4.6). Because xi = axi−1, when xi is used to
complete the transformation to the variate of interest, it may happen that the
extreme values of that variate do not cover their appropriate range.

As a simple example, consider a method for generating a variate from a
double exponential distribution. One way to do this is to use one uniform
variate to generate an exponential variate (using one of the methods that we
discuss below) and then use a second uniform variate to decide whether to
change the sign of the exponential variate (with probability 1/2). Suppose
that the method for generating an exponential variate yields an extremely large
value if the underlying uniform variate is extremely small. (The method given

112 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

by equation (5.10) on page 176 does this.) If the next uniform deviate from the
basic generator is used to determine whether to change the sign, it may happen
that all of the extreme double exponentials generated have the same sign.

Many such problems arise because of a poor uniform generator; a particular
culprit is a multiplicative congruential generator with a small multiplier. Use of
a high-quality uniform generator generally solves the problem. A more conser-
vative approach may be to use a different uniform generator for each uniform
deviate used in the generation of a single nonuniform deviate. For this to be
effective, each generator must be of high quality, of course.

Because successive numbers in a quasirandom sequence are constructed so
as to span a space systematically, such sequences generally should not be used
when more than one uniform deviate is transformed into a single deivate from
another distribution. The autocorrelations in the quasirandom sequence may
prevent certain ranges of values of the transformations from being realized.

A common way in which uniform deviates are transformed to deviates from
nonuniform distributions is to use one uniform random number to make a deci-
sion about how to use another uniform random number. The decision is often
based on a comparison of two floating-point numbers. In rare cases, because of
slight differences in rounding to a finite precision, this comparison may result in
different decisions in different computer environments. The different decisions
can result in the generation of different output streams from that point on. Our
goal of completely portable random number generators (Section 1.11) may not
be achieved when comparisons are made between two floating-point numbers
that might differ in the least significant bits on different systems.

4.4 Multivariate Uniform Distributions with

Nonuniform Marginals

Suppose that pX is a continuous probability density function, and consider the
set

S = {(x, u), s.t. 0 ≤ u ≤ pX(x)}. (4.7)

Let (X, U) be a bivariate random variable with uniform distribution over S. Its
density function is

pXU (x, u) = IS(x, u). (4.8)

The conditional distribution of U given X = x is U(0, pX(x)), and the condi-
tional distribution of X given U = u is also uniform with density

pX|U (x|u) = I{t, s.t. pX (t)≥u}(x).

The important fact, which we see by integrating u out of the density in
equation (4.8), is that the marginal distribution of X has density pX .

This can be seen in Figure 4.3, where the points are uniformly distributed
over S, but the marginal histogram of the x values corresponds to the density
pX .

4.5. ACCEPTANCE/REJECTION METHODS 113

Figure 4.3: Support of a Bivariate Uniform Random Variable (X, U) Having a
Marginal with Density p(x)

These facts form the basis of methods of generating random deviates from
various nonuniform distributions. The effort in these methods is expended in
getting the bivariate uniform points over the region S. In most cases, this is
done by generating bivariate points uniformly over some larger region and then
rejecting those points that are not in the region S.

This same approach is valid if the random variable X is a vector. In this
case, we would identify a higher-dimensional region S with a scalar u and a
vector x corresponding respectively to a scalar uniform random variable and
the vector random variable X .

4.5 Acceptance/Rejection Methods

To generate realizations of a random variable X , an acceptance/rejection method
makes use of realizations of another random variable Y having probability den-
sity gY similar to the probability density of X , pX . The basic idea is that selec-
tive subsamples from samples from one distribution are stochastically equivalent
to samples from a different distribution. The acceptance/rejection technique is
one of the most important methods in random number generation, and it occurs
in many variations.

114 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Majorizing the Density

In the basic form of the method, to generate a deviate from a distribution
with density pX , a random variable Y is chosen so that we can easily generate
realizations of it and so that its density gY can be scaled to majorize pX using
some constant c; that is, so that cgY (x) ≥ pX(x) for all x. The density gY is
called the majorizing density, and cgY is called the majorizing function. The
majorizing function is also called the “envelope” or the “hat function”. The
majorizing density is also sometimes called the “trial density”, the “proposal
density”, or the “instrumental density”.

There are many variations of the acceptance/rejection method. The method
described here uses a sequence of i.i.d. variates from the majorizing density. It
is also possible to use a sequence from a conditional majorizing density. A
method using a nonindependent sequence is called a Metropolis method (and
there are variations of these, with their own names, as we see below).

Unlike the inverse CDF method, the acceptance/rejection method applies
immediately to multivariate random variables, although, as we will see, the
method may not be very efficient in high dimensions.

Algorithm 4.6 The Acceptance/Rejection Method to Convert
Uniform Random Numbers

1. Generate y from the distribution with density function gY .

2. Generate u from a U(0, 1) distribution.

3. If u ≤ pX(y)/cgY (y), then
3.a. take y as the desired realization;

otherwise
3.b. return to step 1.

It is easy to see that the random number delivered by Algorithm 4.6 has a
density pX . (In Exercise 4.2, page 160, you are asked to write the formal proof.)
The pairs (u, y) that are accepted follow a bivariate uniform distribution over
the region S in equation (4.7).

Figure 4.4 illustrates the functions used in the acceptance/rejection method.
(Figure 4.4 shows the same density used in Figure 4.3 with a different scaling
of the axes. The density is the beta distribution with parameters 3 and 2. In
Exercise 4.3, page 160, you are asked to write a program implementing the
acceptance/rejection method with the majorizing density shown.)

The acceptance/rejection method can be visualized as choosing a subse-
quence from a sequence of independently and identically distributed (i.i.d.)
realizations from the distribution with density gY in such a way that the sub-
sequence has density pX , as shown in Figure 4.5.

If we ignore the time required to generate y from the dominating density
gY , the closer cgY (x) is to pX(x) (that is, the closer c is to its lower bound
of 1), the faster the acceptance/rejection algorithm will be. The proportion of

4.5. ACCEPTANCE/REJECTION METHODS 115

Figure 4.4: The Acceptance/Rejection Method to Convert Uniform Random
Numbers

acceptances to the total number of trials is the ratio of the area marked “A”
in Figure 4.4 to the total area of region “A” and region “R”. Because pX is a
density, the area of “A” is 1, so the relevant proportion is

1/(r + 1), (4.9)

where r is the area between the curves. This ratio only relates to the efficiency
of the acceptance; other considerations in the efficiency, of course, involve the
amount of computation necessary to generate from the majorizing density.

The random variable corresponding to the number of passes through the
steps of Algorithm 4.6 until the desired variate is delivered has a geometric
distribution (equation (5.21) on page 189, except beginning at 1 instead of 0)
with parameter

π = 1/(r + 1).

Selection of a majorizing function involves the principles of function ap-
proximation with the added constraint that the approximating function be a

i.i.d. from gY yi yi+1 yi+2 yi+3 · · · yi+k · · ·
accept? no yes no yes · · · yes · · ·

i.i.d. from pX xj xj+1 · · · xj+l · · ·

Figure 4.5: Acceptance/Rejection

116 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.6: Normal (0, 1) Density with a Normal (0, 2) Majorizing Density

probability density from which it is easy to generate random variates. Often, gY

is chosen to be a very simple density, such as a uniform or a triangular density.
When the dominating density is uniform, the acceptance/rejection method is
similar to the “hit-or-miss” method (see Exercise 7.2, page 271).

The acceptance/rejection method can be used for multivariate random vari-
ables, in which case the majorizing distribution is also multivariate. For higher
dimensions, however, the acceptance ratio (4.9) may be very small. Consider
the use of a normal with mean 0 and variance 2 as a majorizing density for a
normal with mean 0 and variance 1, as shown in Figure 4.6. A majorizing den-
sity like this with a shape more closely approximating that of the target density
is more efficient. (This majorizing function is just chosen for illustration. An
obvious problem in this case would be that if we could generate deviates from
the N(0, 2) distribution, then we could generate ones from the N(0, 1) distribu-
tion, and we would not use this method.) In the one-dimensional case, as shown
in Figure 4.6, the acceptance region is the area under the lower curve, and the
rejection region is the thin shell between the two curves. The acceptance pro-
portion (4.9) is 1/

√
2. (Note that c =

√
2.) In higher dimensions, even a thin

shell contains most of the volume, so the rejection proportion would be high. In
d dimensions, use of a multivariate normal with a diagonal variance-covariance
matrix with all entries equal to 2 as a majorizing density to generate a multi-
variate normal with a diagonal variance-covariance matrix with all entries equal
to 1 would have an acceptance proportion of only 1/

√
d.

4.5. ACCEPTANCE/REJECTION METHODS 117

Figure 4.7: The Acceptance/Rejection Method with a Squeeze Function

Reducing the Computations in Acceptance/Rejection:
Squeeze Functions

A primary concern in reducing the number of computations in the accep-
tance/rejection method is to ensure that the proportion of acceptances is high;
that is, that the ratio (4.9) is close to one. Two other issues are the diffi-
culty in generating variates from the majorizing density and the speed of the
computations to determine whether to accept or to reject.

If the target density, p, is difficult to evaluate, an easy way of speeding up
the process is to use simple functions that bracket p to avoid the evaluation of
p with a high probability. This method is called a “squeeze” (see Marsaglia,
1977). This allows quicker acceptance. The squeeze function is often a linear
or piecewise linear function. The basic idea is to do pretests using simpler
functions. Most algorithms that use a squeeze function only use one below the
density of interest. Figure 4.7 shows a piecewise linear squeeze function for
the acceptance/rejection setup of Figure 4.4. For a given trial value y, before
evaluating pX(y) we may evaluate the simpler s(y). If u ≤ s(y)/cgY (y), then
u ≤ pX(y)/cgY (y), so we can accept without computing pX(y). Pairs (y, u)
lying in the region marked “Q” allow for quick acceptance.

The efficiency of an acceptance/rejection method with a squeeze function
depends not only on the area between the majorizing function and the target
density, as in equation (4.9), but also on the difference in the total area of the
acceptance region, which is 1, and the area under the squeeze function (that
is, the area of the region marked “Q”). The closer this area is to 1, the more
effective is the squeeze. These ratios of areas relate only to the efficiency of the

118 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

acceptance and the quick acceptance. Other considerations in the efficiency,
of course, involve the amount of computation necessary to generate from the
majorizing density and the amount of computation necessary to evaluate the
squeeze function, which, it is presumed, is very small.

Another procedure for making the acceptance/rejection decision with fewer
computations is the “patchwork” method of Kemp (1990). In this method,
the unit square is divided into rectangles that correspond to pairs of uniform
distributions that would lead to acceptance, rejection, or lack of decision. The
full evaluations for the acceptance/rejection algorithm need be performed only
if the pair of uniform deviates to be used are in a rectangle of the latter type.

For a density that is nearly linear (or nearly linear over some range), Mar-
saglia (1962) and Knuth (1998) describe some methods for efficient generation.
These methods make use of simple methods for generating from a density that
is exactly linear. Use of an inverse CDF method for a distribution with a den-
sity that is exactly linear over some range involves a square root operation, but
another simple way of generating from a linear density is to use the maximum
order statistic of a sample of size two from a uniform distribution; that is, inde-
pendently generate two U(0, 1) variates, u1 and u2, and use max(u1, u2). (Order
statistics from a uniform distribution have a beta distribution; see Section 6.4.1,
page 221.) Following Knuth’s development, suppose that, as in Figure 4.8, the
density over the interval (s, s + h) is bounded by two parallel lines,

l1(x) = a − b(x − s)/h

and
l2(x) = b − b(x − s)/h.

Consider the density p(x) shown in Figure 4.8. Algorithm 4.7, which is
Knuth’s method, yields deviates from the distribution with density p. Notice
the use of the maximum of two uniform deviates to generate from an exactly
linear density. By determining the probability that the resulting deviate falls in
any given interval, it is easy to see that the algorithm yields deviates from the
given density. You are asked to show this formally in Exercise 4.8, page 161.
(The solution to the exercise is given in Appendix B.)

Algorithm 4.7 Sampling from a Nearly Linear Density

1. Generate u1 and u2 independently from a U(0, 1) distribution. Set u =
min(u1, u2), v = max(u1, u2), and x = s + hu.

2. If v ≤ a/b, then
2.a. go to step 3;

otherwise,
2.b. if v > u + p(x)/b, go to step 1.

3. Deliver x.

4.5. ACCEPTANCE/REJECTION METHODS 119

Figure 4.8: A Nearly Linear Density

Usually, when we take advantage of the fact that a density is nearly linear, it
is not the complete density that is linear, but rather the nearly linear density is
combined with other densities to form the density of interest. The density shown
in Figure 4.8 may be the density over some interval (s, s+h) so

∫ s+h

s p(x) dx =
p < 1. (See the discussion of mixtures of densities in Section 4.2.)

For densities that are concave, we can also very easily form linear majorizing
and linear squeeze functions. The majorizing function is a polygon of tangents
and the squeeze function is a polygon of secants, as shown in Figure 4.9 (for the
density p(x) = 4

3 (1−x2) over [−1, 1]). Any number of polygonal sections could
be used in this approach. The tradeoffs involve the amount of setup and house-
keeping for the polygonal sections and the proportion of total rejections and the
proportion of easy acceptances. The formation of the majorizing and squeeze
functions can be done adaptively or sequentially, as we discuss on page 151.

Acceptance/Rejection for Discrete Distributions

There are various ways that acceptance/rejection can be used for discrete distri-
butions. One advantage of these methods is that they can be easily adapted to
changes in the distribution. Rajasekaran and Ross (1993) consider the discrete
random variable Xs such that

Pr(Xs = xi) = psi

=
asi

as1 + as2 + · · · ask
, i = 1, . . . , k.

(If
∑k

i=1 asi = 1, the numerator asi is the ordinary probability psi at the mass
point i.) Suppose that there exists an a∗

i such that a∗
i ≤ asi for s = 1, 2, . . . and

120 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.9: Linear Majorizing and Squeeze Functions for a Concave Density

b > 0 such that
∑k

i=1 asi ≥ b for s = 1, 2, Let

a∗ = max{a∗
i },

and let
Psi = asi/a∗ for i = 1, . . . , k.

The generation method for Xs is shown in Algorithm 4.8.

Algorithm 4.8 Acceptance/Rejection Method for Discrete
Distributions

1. Generate u from a U(0, 1) distribution, and let i = �ku�.
2. Let r = i − ku.

3. If r ≤ Psi, then
3.a. take i as the desired realization;

otherwise,
3.b. return to step 1.

Suppose that for the random variable Xs+1, ps+1,i �= psi for some i. (Of
course, if this is the case for mass point i, it is also necessarily the case for some
other mass point.) For each mass point for which the probability changes, reset
Ps+1,i to as+1,i/a∗ and continue with Algorithm 4.8.

Rajasekaran and Ross (1993) also gave two other acceptance/rejection type
algorithms for discrete distributions that are particularly efficient for use with
distributions that may be changing. The other algorithms require slightly more
preprocessing time but yield faster generation times than Algorithm 4.8.

4.5. ACCEPTANCE/REJECTION METHODS 121

Variations of Acceptance/Rejection

There are many variations of the basic acceptance/rejection method, and the
idea of selection of variates from one distribution to form a sample from a
different distribution forms the basis of several other methods discussed in this
chapter, such as formation of ratios of uniform deviates, use of the characteristic
function, and various uses of Markov chains.

Wallace (1976) introduced a modified acceptance/rejection method called
transformed rejection. In the transformed acceptance/rejection method, the
steps of Algorithm 4.6 are combined and rearranged slightly. Let G be the
CDF corresponding to the dominating density g. Let H(x) = G−1(x), and let
h(x) = d H(x)/dx. If v is a U(0, 1) deviate, step 1 in Algorithm 4.6 is equivalent
to y = H(v), so we have Algorithm 4.9.

Algorithm 4.9 The Transformed Acceptance/Rejection Method

1. Generate u and v independently from a U(0, 1) distribution.

2. If u ≤ p(H(v))h(v)/c, then
2.a. take H(v) as the desired realization;

otherwise,
2.b. return to step 1.

Marsaglia (1984) describes a method very similar to the transformed ac-
ceptance/rejection method: use ordinary acceptance/rejection to generate a
variate x from the density proportional to p(H(·))h(·) and then return H(x).
The choice of H is critical to the efficiency of the method, of course. It should
be close to the inverse of the CDF of the target distribution, P−1. Marsaglia
called this the exact-approximation method. Devroye (1986a) calls the method
almost exact inversion.

Other Applications of Acceptance/Rejection

The acceptance/rejection method can often be used to evaluate an elementary
function at a random point. Suppose, for example, that we wish to evalu-
ate tan(πU) for U distributed as U(−.5, .5). A realization of tan(πU) can be
simulated by generating u1 and u2 independently from U(−1, 1), checking if
u2

1 + u2
2 ≤ 1, and, if so, delivering u1/u2 as tan(πu). (To see this, think of

u1 and u2 as sine and cosine values.) Von Neumann (1951) gives an accep-
tance/rejection method for generating sines and cosines of random angles. An
example of evaluating a logarithm can be constructed by use of the equivalence
of an inverse CDF method and an acceptance/rejection method for sampling
an exponential random deviate. (The methods are equivalent in a stochastic
sense; they are both valid, but they will not yield the same stream of deviates.)

These methods of evaluating deterministic functions are essentially the same
as using the “hit-or-miss” Monte Carlo method described in Exercise 7.2 on
page 271 to evaluate an integral.

122 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Generally, if reasonable numerical software is available for evaluating special
functions, it should be used rather than using Monte Carlo methods to estimate
the function values.

Quality and Portability of Acceptance/Rejection Methods

Acceptance/rejection methods, like any method for generating nonuniform ran-
dom numbers, are dependent on a good source of uniform deviates. Hörmann
and Derflinger (1993) illustrate that small values of the multiplier in a con-
gruential generator for the uniform deviates can result in poor quality of the
output from an acceptance/rejection method. Of course, we have seen that
small multipliers are not good for generating uniform deviatess. (See the dis-
cussion about Figure 1.3, page 16.) Hörmann and Derflinger rediscover the
method of expression (1.23) and recommend using it so that larger multipliers
can be used in the linear congruential generator.

Acceptance/rejection methods generally use two uniform deviates to de-
cide whether to deliver one variate of interest. In implementing an accep-
tance/rejection method, we must be aware of the cautionary note in Section 4.3,
page 111. If the y in Algorithm 4.6 is special (extreme, perhaps) and results
from a special value from the uniform generator, the u generated subsequently
may also be special and may almost always result in the same decision to accept
or to reject. Thus, we may get either an abundance or a deficiency of special
values for the distribution of interest.

Because of the comparison of floating-point numbers (that occurs in step 3
of Algorithm 4.6), there is a chance that an acceptance/rejection method may
yield different streams on different computer systems or in implementations in
different precisions. Even if the computations are carried out correctly, the
program is inherently nonportable and the results may not be strictly repro-
ducible because if a comparision on one system at a given precision results in
acceptance and the comparison on another system results in rejection, the two
output streams will be different. At best, the streams will be the same except
for a few differences; at worst, however, because of how the output is used, the
results will be different beginning at the point at which the acceptance/rejection
decision is different. If the decision results in the generation of another random
number (as in Algorithm 4.10 on page 126), the two output streams can become
completely different.

Acceptance/Rejection for Multivariate Distributions

The acceptance/rejection method is one of the most widely applicable meth-
ods for random number generation. It is used in many different forms, often
in combination with other methods. It is clear from the description of the al-
gorithm that the acceptance/rejection method applies equally to multivariate
distributions. (The uniform random number is still univariate, of course.)

4.5. ACCEPTANCE/REJECTION METHODS 123

As we have mentioned, however, for higher dimensions, the rejection propor-
tion may be high, and thus the efficiency of the acceptance/rejection method
may be low.

Example of Acceptance/Rejection: A Bivariate Gamma Distribution

Becker and Roux (1981) defined a bivariate extension of the gamma distribu-
tion that serves as a useful model for failure times for two related components
in a system. (The model is also a generalization of a bivariate exponential
distribution introduced by Freund, 1961; see Steel and Le Roux, 1987.) The
probability density is given by

pX1X2(x1, x2) =

λ2 (Γ(α1) Γ(α2) βα1
1 βα2

2)−1 ×
xα1−1

1 (λ2(x2 − x1) + x1)α2−1 ×
exp
(
−(1

β1
+ 1

β2
− λ2

β2
)x1 − λ2

β2
x2

)
for 0 ≤ x1 ≤ x2,

λ1 (Γ(α1) Γ(α2) βα1
1 βα2

2)−1 ×
xα2−1

2 (λ1(x1 − x2) + x2)α1−1 ×
exp
(
−(1

β1
+ 1

β2
− λ1

β1
)x2 − λ1

β1
x1

)
for 0 ≤ x2 < x1,

0 elsewhere.
(4.10)

The density for α1 = 4, α2 = 3, β1 = 3, β2 = 1, λ1 = 3, and λ2 = 2 is shown in
Figure 4.10.

It is a little more complicated to determine a majorizing density for this
distribution. First of all, not many bivariate densities are familiar to us. The
density must have support over the positive quadrant. A bivariate normal
density might be tried, but the exp(−(u1x1+u2x2)2) term in the normal density
dies out more rapidly than the exp(−v1x1 − v2x2) term in the gamma density.
The normal cannot majorize the gamma in the limit.

We may be concerned about covariance of the variables in the bivariate
gamma distribution, but the fact that the variables have nonzero covariance is
of little concern in using the acceptance/rejection method. The main thing, of
course, is that we determine a majorizing density so that the probability of ac-
ceptance is high. We can use a bivariate density of independent variables as the
majorizing density. The density would be the product of two univariate densi-
ties. A bivariate distribution of independent exponentials might work. Such a
density has a maximum at (0, 0), however, and there would be a large volume
between the bivariate gamma density and the majorizing function formed from
a bivariate exponential density. We can reduce this volume by choosing a bivari-
ate uniform over the rectangle with corners (0, 0) and (z1, z2). Our majorizing

124 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.10: A Bivariate Gamma Density, Equation (4.10)

density then is composed of two densities, a bivariate exponential,

g1(y1, y2) =

1
v exp

(
−y1

θ1
− y2

θ2

)
for y1 > z1 and y2 > 0
or y1 > 0 and y2 > z2,

0 elsewhere,

(4.11)

where the constant v is chosen to make g1 a density, and a bivariate uniform,

g2(y1, y2) =

1

z1z2
for 0 < y1 ≤ z1 and 0 < y2 ≤ z2,

0 elsewhere.
(4.12)

Next, we choose θ1 and θ2 so that the bivariate exponential density can majorize
the bivariate gamma density. This requires that

1
θ1

≥ max
((

1
β1

+
1
β2

− λ2

β2

)
,

λ1

β1

)
,

with a similar requirement for θ2. Let us choose θ1 = 1 and θ2 = 2. Next, we
choose z1 and z2 as the mode of the bivariate gamma density. This point is
(4 1

3 , 2). We now choose c so that cg1(z1, z2) ≥ p(z1, z2).
The method is:

1. Generate u from a U(0, 1) distribution.

4.6. MIXTURES AND ACCEPTANCE METHODS 125

2. Generate (y1, y2) from a bivariate exponential density such as (4.11) ex-
cept over the full range; that is, with v = θ1θ2.

3. If (y1, y2) is outside of the rectangle with corners (0, 0) and (z1, z2), then
3.a. if u ≤ p(y1, y2)/cg1(y1, y2), then

3.a.i. deliver (y1, y2);
otherwise,

3.a.ii. go to step 1;
otherwise,

3.b. generate (y1, y2) as bivariate uniform deviates in that rectangle
and if u ≤ p(y1, y2)/(cy1y2), then

3.b.i. deliver (y1, y2);
otherwise,

3.b.ii. go to step 1.

The majorizing density could be changed so that it is closer to the bivariate
gamma density. In particular, instead of the uniform density over the rectangle
with a corner on the origin, a pyramidal density that is closer to the bivariate
gamma density could be used.

4.6 Mixtures and Acceptance Methods

In practice, in acceptance/rejection methods, the density of interest p and/or
the majorizing density are often decomposed into mixtures. If the mixture for
the density is a stratification, it may be possible to have simple majorizing
and squeeze functions within each stratum. Ahrens (1995) suggested using a
stratification into equal-probability regions (that is, the wjs in equation (4.6)
are all constant) and then using constant majorizing and squeeze functions in
each stratum. There is, of course, a tradeoff in gains in high probability of
acceptance (because the majorizing function is close to the density) and/or
in efficiency of the evaluation of the acceptance decision (because the squeeze
function is close to the density) and the complexity introduced by the decompo-
sition. Decomposition into regions where the density is nearly constant almost
always will result in overall gains in efficiency. If the decomposition is into
equal-probability regions, the random selection of the stratum is very fast.

There are many ways in which mixtures can be combined with accep-
tance/rejection methods.

Suppose that the density of interest, p, may be written as

p(x) = w1p1(x) + w2p2(x),

and suppose that there is a density g that majorizes w1p1; that is, g(x) ≥
w1p1(x) for all x. Kronmal and Peterson (1981, 1984) consider this case and
propose the following algorithm, which they call the acceptance/complement
method.

126 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Algorithm 4.10 The Acceptance/Complement Method to Convert
Uniform Random Numbers

1. Generate y from the distribution with density function g.

2. Generate u from a U(0, 1) distribution.

3. If u > w1p1(y)/g(y), then generate y from the density p2.

4. Take y as the desired realization.

We discussed nearly linear densities and gave Knuth’s algorithm for gener-
ating from such densities as Algorithm 4.7. Devroye (1986a) gives an algorithm
for a special nearly linear density; namely, one that is almost flat. The method is
based on a simple decomposition using the supremum of the density. (In prac-
tice, as we have indicated in discussing other techniques, this method would
probably be used for a component of a density that has already been decom-
posed.) To keep the description simple, assume that the range of the random
variable is (−1, 1) and that the density p satisfies

sup
x

p(x) − inf
x

p(x) ≤ 1
2

over that interval. Now, because p is a density, we have

0 ≤ inf
x

p(x) ≤ 1
2
≤ sup

x
p(x)

and
sup

x
p(x) ≤ 1.

Let p∗ = supx p(x), and decompose the target density into

p1(x) = p(x) −
(

p∗ − 1
2

)
and

p2(x) =
(

p∗ − 1
2

)
The method is shown in Algorithm 4.11.

Algorithm 4.11 Sampling from a Nearly Flat Density

1. Generate u from U(0, 1).

2. Generate x from U(−1, 1).

3. If u > 2(p(x) − (p∗ − 1
2)), then generate x from U(−1, 1).

4. Deliver x.

4.6. MIXTURES AND ACCEPTANCE METHODS 127

Another variation on the general theme of acceptance/rejection applied to
mixtures was proposed by Deák (1981) in what he called the “economical
method”. To generate a deviate from the density p using this method, an
auxiliary density g is used, and an “excess area” and a “shortage area” are
defined. The excess area is where g(x) > p(x), and the shortage area is where
g(x) ≤ p(x). We define two functions p1 and p2:

p1(x) = g(x) − p(x) if g(x) − p(x) < 0,

= 0 otherwise,

p2(x) = p(x) − g(x) if p(x) − g(x) ≥ 0,

= 0 otherwise.

Now, we define a transformation T that will map the excess area into the
shortage area in a way that will yield the density p. Such a T is not unique,
but one transformation that will work is

T (x) = min
{

t, s.t.
∫ x

−∞
p1(s) ds =

∫ t

−∞
p2(s) ds

}
.

Algorithm 4.12 shows the method.

Algorithm 4.12 The Economical Method to Convert Uniform
Random Numbers

1. Generate y from the distribution with density function g.

2. If p(y)/g(y) < 1, then
2.a. generate u from a U(0, 1) distribution;
2.b. if u ≤ p(y)/g(y), then replace y with T (y).

3. Take y as the desired realization.

Using the representation of a discrete distribution that has k mass points as
an equally weighted mixture of k two-point distributions, Deák (1986) develops
a version of the economical method for discrete distributions. (See Section 4.8,
page 133, on the alias method for additional discussion of two-point represen-
tations.)

Marsaglia and Tsang (1984) give a method that involves forming a decom-
position of a density into horizontal slices with equal areas. For a unimodal
distribution, they first form two regions, one on each side of the mode, prior to
the slicing decomposition. They call a method that uses this kind of decompo-
sition the “ziggurat method”.

Marsaglia and Tsang (1998) also describe a decomposition and transforma-
tion that they called the “Monty Python method”, in which the density (or
a part of the density) is divided into three regions as shown in the left-hand
plot in Figure 4.11. If the density of interest has already been decomposed

128 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

into a mixture, the part to be decomposed further, p(x), is assumed to have
been scaled to integrate to 1. The density in Figure 4.11 may represent the
right-hand side of a t distribution, for example, but the function shown has
been scaled to integrate to 1. The support of the density is transformed if
necessary to begin at 0. One region is now rotated and stretched to fit into an
area within a rectangle above another region, as shown in the right-hand plot
in Figure 4.11.

Figure 4.11: The Monty Python Decomposition Method

The key parameter in the Monty Python method is b, the length of the base
of a rectangle that has an area of 1. The portion of the distribution represented
by the density above 1/b between 0 and p−1(1/b) (denote this point by a) is
transformed into a region of equal area between a and b bounded from below
by the function

g(x) =
1
b
− cp(b − x) − d,

where c and d are chosen so the area is equal to the original and g(x) ≥ p(x) over
(a, b). This implies that the tail area beyond b is equal to the area between p(x)
and g(x). If a point (x, y), chosen uniformly over the rectangle, falls in region
A or B, then x is delivered; if it falls in C, then b− x is delivered; otherwise, x
is discarded, and a variate is generated from the tail of the distribution.

The efficiency of this method obviously depends on a choice of b in which the
decomposition minimizes the tail area. Marsaglia and Tsang (1998) suggest an
improvement that may allow a better choice of b. Instead of the function g(x), a
polynomial, say a cubic, is determined to satisfy the requirements of majorizing
p(x) over (a, b) and having an area equal to the original areal of C. This allows
more flexibility in the choice of b. This is the same as the transformation in the
exact-approximation method of Marsaglia referred to earlier.

4.7. RATIO-OF-UNIFORMS METHOD 129

4.7 Ratio-of-Uniforms Method

Kinderman and Monahan (1977) discuss a very useful relationship among ran-
dom variables U , V , and V/U . If (U, V) is uniformly distributed over the set

C =
{

(u, v), s.t. 0 ≤ u ≤
√

h
(v

u

)}
, (4.13)

where h is a nonnegative integrable function, then V/U has probability density
proportional to h. Use of this relationship is called a ratio-of-uniforms method.

It is easy to see that this relationship holds. For U and V as given, their
joint density is pUV (u, v) = IC(u, v)/c, where c is the area of C. Let X = U
and Y = V/U . The Jacobian of the transformation is x, so the joint density of
X and Y is pXY (x, y) = xIC(x, y)/c. Hence, we have

pXY (x, y) =
x

c
I[

0,
√

h(y)
](x),

and integrating out x, we get

pY (y) =
∫ √

h(y)

0

x

c
dx

=
1
2c

h(y).

In practice, we may choose a simple geometric region that encloses C, gen-
erate a uniform point in the rectangle, and reject a point that does not satisfy

u ≤
√

h
(v

u

)
.

The larger region enclosing C is called the majorizing region because it is similar
to the region under the majorizing function in acceptance/rejection methods.

The ratio-of-uniforms method is very simple to apply, and it can be quite
fast.

If h(x) and x2h(x) are bounded in C, a simple form of the majorizing region
is the rectangle

{(u, v), s.t. 0 ≤ u ≤ b, c ≤ v ≤ d},
where

b = sup
x

√
h(x),

c = inf
x

x
√

h(x),

d = sup
x

x
√

h(x).

This yields the method shown in Algorithm 4.13.

130 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Algorithm 4.13 Ratio-of-Uniforms Method (Using a Rectangular
Majorizing Region for Continuous Variates)

1. Generate u and v independently from a U(0, 1) distribution.

2. Set u1 = bu and v1 = c + (d − c)v.

3. Set x = v1/u1.

4. If u2
1 ≤ h(x), then
4.a. take x as the desired realization;

otherwise,
4.b. return to step 1.

Figure 4.12 shows a rectangular region and the area of acceptance for the
same density used to illustrate the acceptance/rejection method in Figure 4.4.

The full rectangular region as defined above has a very low proportion of
acceptances in the example shown in Figure 4.12. There are many obvious ways
of reducing the size of this region. A simple reduction would be to truncate the
rectangle by the line v = u, as shown. Just as in other acceptance/rejection
methods, there is a tradeoff in the effort to generate uniform deviates over a
region with a high acceptance rate and the wasted effort of generating uniform
deviates that will be rejected. The effort to generate only in the acceptance
region is likely to be slightly greater than the effort to invert the CDF.

Wakefield, Gelfand, and Smith (1991) give a generalization of the ratio-of-
uniforms method by introducing a strictly increasing, differentiable function g
that has the property g(0) = 0. Their method uses the fact that if (U, V) is
uniformly distributed over the set

Ch,g =
{

(u, v), s.t. 0 ≤ u ≤ g

(
ch

(
v

g′(u)

))}
,

where c is a positive constant and h is a nonnegative integrable function as
before, then V/g′(U) has a probability density proportional to h.

Ratio-of-Uniforms and Acceptance/Rejection

Stadlober (1990, 1991) considers the relationship of the ratio-of-uniforms method
to the ordinary acceptance/rejection method and applied the ratio-of-uniforms
method to discrete distributions. If (U, V) is uniformly distributed over the
rectangle

{(u, v), s.t. 0 ≤ u ≤ 1, −1 ≤ v ≤ 1},
and X = sV/U + a, for any s > 0, then X has the density

gX(x) =

1
4s

, a − s ≤ x ≤ a + s,

s

4(x − a)2
elsewhere,

4.7. RATIO-OF-UNIFORMS METHOD 131

Figure 4.12: The Ratio-of-Uniform Method (Same Density as in Figure 4.4)

and the conditional density of Y = U2, given X , is

gY |X(y|x) =

1 for a − s ≤ x ≤ a + s, and 0 ≤ y ≤ 1,

(x − a)2

s2
for x > |a + s|, and 0 ≤ y ≤ s2

(x − a)2
,

0 elsewhere.

The conditional distribution of Y given X = x is uniform on (0, 4sg(x)), and
the ratio-of-uniforms method is an acceptance/rejection method with a table
mountain majorizing function.

Ratio-of-Uniforms for Discrete Distributions

Stadlober (1990) gives the modification of the ratio-of-uniforms method in Al-
gorithm 4.14 for a general discrete random variable with probability function
p(·).
Algorithm 4.14 Ratio-of-Uniforms Method for Discrete Variates

1. Generate u and v independently from a U(0, 1) distribution.

132 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

2. Set x = �a + s(2v − 1)/u�.
3. Set y = u2.

4. If y ≤ p(x), then
4.a. take x as the desired realization;

otherwise,
4.b. return to step 1.

Ahrens and Dieter (1991) describe a ratio-of-uniforms algorithm for the Poisson
distribution, and Stadlober (1991) describes one for the binomial distribution.

Improving the Efficiency of the Ratio-of-Uniforms Method

As we discussed on page 117, the efficiency of any acceptance/rejection method
depends negatively on three things:

• the effort required to generate the trial variates;

• the effort required to make the acceptance/rejection decision; and

• the proportion of rejections.

There are often tradeoffs among them.
We have indicated how the proportion of rejections can be decreased by

forming the majorizing region so that it is closer in shape to the shape of the
acceptance region. This generally comes at the cost of more effort to generate
trial variates. The increase in effort is modest if the majorizing region is a
polygon. Leydold (2000) described a systematic method of forming polygonal
majorizing regions for a broad class of distributions (T -concave distributions,
see page 152).

The effort required to make the acceptance/rejection decision can be re-
duced in the same manner as a squeeze in acceptance/rejection. If a convex
polygonal set interior to the acceptance region can be defined, then acceptance
decisions can be made quickly by comparisons with linear functions. For a class
of distributions, Leydold (2000) described a systematic method for forming in-
terior polygons from construction points defined by the sides of a polygonal
majorizing region.

Quality of Random Numbers Produced
by the Ratio-of-Uniforms Method

The ratio-of-uniforms method, like any method for generating nonuniform ran-
dom numbers, is dependent on a good source of uniforms. The special relation-
ships that may exist between two successive uniforms when one of them is an
extreme value can cause problems, as we indicated on pages 111 and 122. Given
a high-quality uniform generator, the method is subject to the same issues of
floating-point computations that we discussed on page 122.

4.8. ALIAS METHOD 133

Afflerbach and Hörmann (1992) and Hörmann (1994b) indicate that, in
some cases, output of the ratio-of-uniforms method can be quite poor because
of structure in the uniforms. The ratio-of-uniforms method transforms all points
lying on one line through the origin into a single number. Because of the lattice
structure of the uniforms from a linear congruential generator, the lines passing
through the origin have regular patterns, which result in structural gaps in the
numbers yielded by the ratio-of-uniforms method. Noting these distribution
problems, Hörmann and Derflinger (1994) make some comparisons of the ratio-
of-uniforms method with the transformed rejection method (Algorithm 4.9,
page 121), and based on their empirical study, they recommend the transformed
rejection method over the ratio-of-uniforms method. The quality of the output
of the ratio-of-uniforms method, however, is more a function of the quality
of the uniform generator and would usually not be of any concern if a good
uniform generator is used. The relative computational efficiencies of the two
methods depend on the majorizing functions used. The polygonal majorizing
functions used by Leydold (2000) in the ratio-of-uniforms method apparently
alleviate some of the problems found by Hörmann (1994b).

Ratio-of-Uniforms for Multivariate Distributions

Stefănescu and Văduva (1987) and Wakefield, Gelfand, and Smith (1991) extend
the ratio-of-uniforms method to multivariate distributions.

As we mentioned in discussing simple acceptance/rejection methods, the
probability of rejection may be quite high for multivariate distributions. High
correlations in the target distribution can also reduce the efficiency of the ratio-
of-uniforms method even further.

4.8 Alias Method

Walker (1977) shows that a discrete distribution with k mass points can be
represented as an equally weighted mixture of k two-point distributions; that
is, distributions with only two mass points. Consider the random variable X
such that

Pr(X = xi) = pi, i = 1, . . . , k,

and
∑k

i=1 pi = 1. Walker constructed k two-point distributions,

Pr(Yi = yij) = qij , j = 1, 2; i = 1, . . . , k

(with qi1 +qi2 = 1) in such a way that any pi can be represented as k−1 times a
sum of qi,js. (It is easy to prove that this can be done; use induction, starting
with k = 1.)

A setup procedure for the alias method is shown in Algorithm 4.15. The
setup phase associates with each i = 1 to k a value Pi that will determine
whether the original mass point or an “alias” mass point, indexed by ai, will
be delivered when i is chosen with equal probability, 1

k . Two lists, L and H ,

134 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

are maintained to determine which points or point pairs have probabilities less
than or greater than 1

k . At termination of the setup phase, all points or point
pairs have probabilities equal to 1

k . Marsaglia calls the setup phase “leveling
the histogram”. The outputs of the setup phase are two lists, P and a, each of
length k.

Algorithm 4.15 Alias Method Setup to Initialize the Lists a and P

0. For i = 1 to k,
set ai = i;
set Pi = 0;
set bi = pi − 1

k ;
and if bi < 0, put i in the list L;

otherwise, put i in the list H .

1. If max(bi) = 0, then stop.

2. Select l ∈ L and h ∈ H .

3. Set c = bl and d = bh.

4. Set bl = 0 and bh = c + d.

5. Remove l from L.

6. If bh ≤ 0, then remove h from H ; and if bh < 0, then put h in L.

7. Set al = h and Pl = 1 + kc.

8. Go to step 1.

Notice that
∑

bi = 0 during every step. The steps are illustrated in Fig-
ure 4.13 for a distribution such that

Pr(X = 1) = .30,

Pr(X = 2) = .05,

Pr(X = 3) = .20,

Pr(X = 4) = .40,

Pr(X = 5) = .05.

At the beginning, L = {2, 5} and H = {1, 4}. In the first step, the values
corresponding to 2 and 4 are adjusted.

The steps to generate deviates, after the values of Pi and ai are computed
by the setup, are shown in Algorithm 4.16.

Algorithm 4.16 Generation Using the Alias Method Following the
Setup in Algorithm 4.15

4.8. ALIAS METHOD 135

Figure 4.13: Setup for the Alias Method; Leveling the Histogram

1. Generate u from a U(0, 1) distribution.

2. Generate i from a discrete uniform over 1, 2, . . . , k.

3. If u ≤ Pi, then
3.a. deliver xi;

otherwise,
3.b. deliver xai .

It is clear that the setup time for Algorithm 4.15 is O(k) because the total
number of items in the lists L and H goes down by at least one at each step.
If, in step 2, the minimum and maximum values of b are found, as in the
original algorithm of Walker (1977), the algorithm may proceed slightly faster
in some cases, but then the algorithm is O(k log k). The setup method given
in Algorithm 4.15 is from Kronmal and Peterson (1979a). Vose (1991) also
describes a setup procedure that is O(k). Once the setup is finished by whatever
method, the generation time is constant, or O(1). The alias method is always
at least as fast as the guide table method of Chen and Asau (Algorithm 4.3
on page 107). Its speed relative to the table-lookup method of Marsaglia as
implemented by Norman and Cannon (Algorithm 4.2 on page 106) depends on
the distribution. Variates from distributions with a substantial proportion of
mass points whose base b representations (equation (4.5)) have many zeros can
be generated very rapidly by the table-lookup method.

In the IMSL Libraries, the routine rngda performs both the setup and the
generation of discrete random deviates using an alias method.

136 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Kronmal and Peterson (1979a, 1979b) apply the alias method to mixture
methods and acceptance/rejection methods for continuous random variables.
Peterson and Kronmal (1982) describe a modification of the alias method in-
corporating some aspects of the urn method. This hybrid method, which they
called the alias-urn method, reduces the burden of comparisons at the expense
of slightly more storage space.

4.9 Use of the Characteristic Function

The characteristic function of a d-variate random variable X is defined as

φX (t) = E
(
eitTX

)
, t ∈ IRd. (4.14)

The characteristic function exists for any random variable.
For a univariate random variable whose first two moments are finite, and

whose characteristic function φ is such that
∫ |φ(t)| dt and

∫ |φ′′(t)| dt are finite,
Devroye (1986b) describes a method for generating random variates using the
characteristic function. Algorithm 4.17 is Devroye’s method for a univariate
continuous random variable with probability density function p(·) and charac-
teristic function φ(·).
Algorithm 4.17 Conversion of Uniform Random Numbers Using the
Characteristic Function

0. Set a =
√

1
2π

∫ |φ(t)| dt and b =
√

1
2π

∫ |φ′′(t)| dt.

1. Generate u and v independently from a U(−1, 1) distribution.

2. If u < 0, then
2.a. set y = bv/a and t = a2|u|;

otherwise,
2.b. set y = b/(va) and t = a2v2|u|.

3. If t ≤ p(y), then
3.a. take y as the desired realization;

otherwise,
3.b. return to step 1.

This method relies on the facts that, under the existence conditions,

p(y) ≤ 1
2π

∫
|φ(t)| dt for all y

and
p(y) ≤ 1

2πx2

∫
|φ′′(t)| dt for all y.

Both of these facts are easily established by use of the inverse characteristic
function transform, which exists by the integrability conditions on φ(t).

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 137

The method requires evaluation of the density at each step. Devroye (1996b)
also discusses variations that depend on Taylor expansion coefficients.

Devroye (1991) describes a related method for the case of a discrete random
variable.

The characteristic function allows evaluation of all moments that exist. If
only some of the moments are known, an approximate method described by
Devroye (1989) can be used.

4.10 Use of Stationary Distributions of
Markov Chains

Many of the methods for generating deviates from a given distribution are
based on a representation of the density that allows the use of some simple
transformation or some selection rule for deviates generated from a different
density. In the univariate ratio-of-uniforms method, for example, we identify
a bivariate uniform random variable with a region of support such that one
of the marginal distributions is the distribution of interest. We then generate
bivariate uniform random deviates over the region, and then, by a very simple
transformation and selection, we get univariate deviates from the distribution
of interest.

Another approach is to look for a stochastic process that can be easily simu-
lated and such that the distribution of interest can be identified as a distribution
at some point in the stochastic process. The simplest useful stochastic process is
a Markov chain with a stationary distribution corresponding to the distribution
of interest.

Markov Chains: Basic Definitions

A Markov chain is a sequence of random variables, X1, X2, . . ., such that the
distribution of Xt+1 given Xt is independent of Xt−1, Xt−2, A sequence
of realizations of such random variables is also called a Markov chain (that is,
the term Markov chain can be used to refer either to a random sequence or to
a fixed sequence of realizations). In this section, we will briefly discuss some
types of Markov chains and their properties. The main purpose is to introduce
the terms that are used to characterize the Markov chains in the applications
that we describe later. See Meyn and Tweedie (1993) for extensive discussions
of Markov chains. Tierney (1996) discusses the aspects of Markov chains that
are particularly relevant for the applications that we consider in later sections.

The union of the supports of the random variables is called the state space of
the Markov chain. Whether or not the state space is countable is an important
characteristic of a Markov chain. A Markov chain with a countable or “discrete”
state space is easier to work with and can be used to approximate a Markov
chain with a continuous state space. Another important characteristic of a
Markov chain is the nature of the indexing. As we have written the sequence

138 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

above, we have implied that the index is discrete. We can generalize this to a
continuous index, in which case we usually use the notation X(t).

A Markov chain is time homogeneous if the distribution of Xt is independent
of t. For our purposes, we can usually restrict attention to a time-homogeneous
discrete-state Markov chain with a discrete index, and this is what we assume
in the following discussion in this section.

For the random variable Xt in a discrete-state Markov chain with state space
S, let I index the states; that is, i in I implies that si is in S. For si ∈ S, let

Pr(Xt = si) = pti.

The Markov chain can be characterized by an initial distribution and a square
transition matrix or transition kernel K = (kij), where

kij = Pr(Xt+1 = si|Xt = sj).

The distribution at time t is characterized by a vector of probabilities pt =
(pt1, pt2, . . .), so the vector itself is called a distribution. The initial distribution
is p0 = (p01, p02, . . .), and the distribution at time t = 1 is Kp0. We sometimes
refer to a Markov chain by the doubleton (K, p0) or just (K, p).

In general, we have

pt = Kpt−1

= Ktp0.

We denote the elements of Kt as k
(t)
ij . The relationships above require that∑

j kij = 1. (A matrix with this property is called a stochastic matrix.)
A distribution p such that

Kp = p

is said to be invariant or stationary. From that definition, we see that an invari-
ant is an eigenvector of the transition matrix corresponding to an eigenvalue
of 1. (Notice the unusual usage of the word “distribution”; in this context, it
means a vector.) For a given Markov chain, it is of interest to know whether the
chain has an invariant (that is, whether the transition matrix has an eigenvalue
equal to 1) and if so, whether the invariant can be reached from the starting
distribution p0.

Some Markov chains oscillate among a set of distributions. (For example,
think of a two-state Markov chain whose transition matrix has elements k11 =
k22 = 0 and k12 = k21 = 1.) We will be interested in chains that do not oscillate;
that is, chains that are aperiodic. A chain is guaranteed to be aperiodic if, for
some t sufficiently large, k

(t)
ii > 0 for all i in I .

A Markov chain is reversible if, for any t, the conditional probability of Xt

given Xt+1 is the same as the conditional probability of Xt given Xt−1. A
discrete-space Markov chain obviously is reversible if and only if its transition
matrix is symmetric. A Markov chain defined by (K, p) is said to be in detailed
balance if Kijpi = Kjipj .

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 139

A Markov chain is irreducible if, for all i, j in I , there exists a t > 0 such
that k

(t)
ij > 0. If the chain is irreducible, detailed balance and reversibility are

equivalent.
Another property of interest is when a Markov chain first takes on a given

state. This is called the first passage time for that state. Given that the chain is
in a particular state, the first passage time to that state is the first return time
for that state. Let Tii be the first return time to state i; that is, for a discrete
time chain, let Tii = min{t, s.t. Xt = si|X0 = si}. (Tii is a random variable.)
An irreducible Markov chain is recurrent if, for some i, Pr(Tii < ∞) = 1. (For
an irreducible chain, this implies the condition for all i.) An irreducible Markov
chain is positive recurrent if, for some i, E(Tii) < ∞. (For an irreducible chain,
this implies the condition for all i.)

An aperiodic, irreducible, positive recurrent Markov chain is associated with
a stationary distribution or invariant distribution, which is the limiting distribu-
tion of the chain. In applications of Markov chains, the question of whether the
chain has converged to this limiting distribution is one of the primary concerns.

Applications that we discuss in later sections have uncountable state spaces,
but the basic concepts extend to those. For a continuous state space, instead
of a vector specifying the distribution at any given time, we have a probabil-
ity density at that time, K is a conditional probability density for Xt+1|Xt,
and we have a similar expression for the density at t + 1 formed by integrating
over the conditional density weighted by the unconditional density at t. Tier-
ney (1996) carefully discusses the generalization to an uncountable state space
and a continuous index.

Markov Chain Monte Carlo

There are various ways of using a Markov chain to generate random variates
from some distribution related to the chain. Such methods are called Markov
chain Monte Carlo, or MCMC.

An algorithm based on a stationary distribution of a Markov chain is an
iterative method because a sequence of operations must be performed until they
converge. A Markov chain is the basis for several schemes for generating random
numbers. The interest is not in the sequence of the Markov chain itself. The
elements of the chain are accepted or rejected in such a way as to form a different
chain whose stationary distribution is the distribution of interest.

Following engineering terminology for sampling sequences, the techniques
based on these chains are generally called “samplers”. The static sample, and
not the sequence, is what is used. The objective in the Markov chain sam-
plers is to generate a sequence of autocorrelated points with a given stationary
distribution.

140 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

The Metropolis Random Walk

For a distribution with density pX , the Metropolis algorithm, introduced by
Metropolis et al. (1953), generates a random walk and performs an accep-
tance/rejection based on p evaluated at successive steps in the walk. In the sim-
plest version, the walk moves from the point yi to a candidate point yi+1 = yi+s,
where s is a realization from U(−a, a), if

pX(yi+1)
pX(yi)

≥ u, (4.15)

where u is an independent realization from U(0, 1). If the new point is at
least as probable (that is, if pX(yi+1) ≥ pX(yi)), the condition (4.15) implies
acceptance without the need to generate u. The random walk of Metropolis et
al. is the basic algorithm of simulated annealing, which is currently widely used
in optimization problems. It is also used in simulations of models in statistical
mechanics (see Section 7.9). The algorithm is described in Exercise 7.16 on
page 277.

If the range of the distribution is finite, the random walk is not allowed to
go outside of the range. Consider, for example, the von Mises distribution, with
density

p(x) =
1

2πI0(c)
ec cos(x) for − π ≤ x ≤ π, (4.16)

where I0 is the modified Bessel function of the first kind and of order zero.
Notice, however, that it is not necessary to know this normalizing constant
because it is canceled in the ratio. The fact that all we need is a nonnegative
function that is proportional to the density of interest is an important property
of this method. In the ordinary acceptance/rejection methods, we need to know
the constant.

If c = 3, after a quick inspection of the amount of fluctuation in p, we
may choose a = 1. The output for n = 1000 and a starting value of y0 = 1
is shown in Figure 4.14. The output is a Markov chain. A histogram, which
is not affected by the sequence of the output in a large sample, is shown in
Figure 4.15.

The von Mises distribution is an easy one to simulate by the Metropolis
algorithm. This distribution is often used by physicists in simulations of lattice
gauge and spin models, and the Metropolis method is widely used in these sim-
ulations. Notice the simplicity of the algorithm: we do not need to determine a
majorizing density nor even evaluate the Bessel function that is the normalizing
constant for the von Mises density.

The Markov chain samplers generally require a “burn-in” period (that is, a
number of iterations before the stationary distribution is achieved). In practice,
the variates generated during the burn-in period are discarded. The number of
iterations needed varies with the distribution and can be quite large sometimes
thousands. The von Mises example shown in Figure 4.14 is unusual; no burn-in

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 141

Figure 4.14: Sequential Output from the Metropolis Algorithm for a Von Mises
Distribution

is required. In general, convergence is much quicker for univariate distributions
with finite ranges such as this one.

It is important to remember what convergence means; it does not mean
that the sequence is independent from the point of convergence forward. The
deviates are still from a Markov chain.

The Metropolis acceptance/rejection sequence is illustrated in Figure 4.16.
Compare this with the acceptance/rejection method based on independent vari-
ables, as illustrated in Figure 4.5.

The Metropolis–Hastings Method

Hastings (1970) describes an algorithm that uses a more general chain for the
acceptance/rejection step. Instead of just basing the decision on the proba-
bility density pX as in the inequality (4.15), the Metropolis–Hastings sampler
to generate deviates from a distribution with a probability density pX uses
deviates from a Markov chain with density gYt+1|Yt

. The method is shown in
Algorithm 4.18. The conditional density gYt+1|Yt

is chosen so that it is easy to
generate deviates from it.

Algorithm 4.18 Metropolis–Hastings Algorithm

0. Set k = 0.

1. Choose x(k) in the range of pX . (The choice can be arbitrary.)

142 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.15: Histogram of the Output from the Metropolis Algorithm for a Von
Mises Distribution

2. Generate y from the density gYt+1|Yt
(y|x(k)).

3. Set r:

r = pX(y)
gYt+1|Yt

(x(k)|y)
pX(x(k))gYt+1|Yt

(y|x(k))
.

4. If r ≥ 1, then
4.a. set x(k+1) = y;

otherwise,
4.b. generate u from U(0, 1) and

if u < r, then
4.b.i. set x(k+1) = y;

otherwise,
4.b.ii. set x(k+1) = x(k).

5. If convergence has occurred, then

random walk yi yi+1 = yi+3 = yi+2 =
yi + si+1 yi+1 + si+2 yi+2 + si+3 · · ·

accept? no yes no yes · · ·
i.i.d. from pX xj xj+1 · · ·

Figure 4.16: Metropolis Acceptance/Rejection

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 143

5.a. deliver x = x(k+1);
otherwise,

5.b. set k = k + 1, and go to step 2.

Compare Algorithm 4.18 with the basic acceptance/rejection method in Al-
gorithm 4.6, page 114. The analog to the majorizing function in the Metropolis–
Hastings algorithm is the reference function

gYt+1|Yt
(x|y)

pX(x) gYt+1|Yt
(y|x)

.

In Algorithm 4.18, r is called the “Hastings ratio”, and step 4 is called the
“Metropolis rejection”. The conditional density gYt+1|Yt

(·|·) is called the “pro-
posal density” or the “candidate generating density”. Notice that because the
reference function contains pX as a factor, we only need to know pX to within a
constant of proportionality. As we have mentioned already, this is an important
characteristic of the Metropolis algorithms.

We can see that this algorithm delivers realizations from the density pX by
using the same method suggested in Exercise 4.2 (page 160); that is, determine
the CDF and differentiate. The CDF is the probability-weighted sum of the two
components corresponding to whether the chain moved or not. In the case in
which the chain does move (that is, in the case of acceptance), for the random
variable Z whose realization is y in Algorithm 4.18, we have

Pr(Z ≤ x) = Pr
(

Y ≤ x
∣∣U ≤ p(Y)

g(xi|Y)
p(xi)g(Y |xi)

)

=

∫ x

−∞
∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0 g(t|xi) ds dt∫∞
−∞
∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0 g(t|xi) ds dt

=
∫ x

−∞
pX(t) dt.

We can illustrate the use of the Metropolis–Hastings algorithm using a
Markov chain in which the density of Xt+1 is normal with a mean of Xt and a
variance of σ2. Let us use this density to generate a sample from a standard
normal distribution (that is, a normal with a mean of 0 and a variance of 1). We
start with x0 chosen arbitrarily. We take logs and cancel terms in the expres-
sion for r in Algorithm 4.18. The sequential output for n = 1000, a starting
value of x0 = 10 and a variance of σ2 = 9 is shown in Figure 4.17. Notice
that the values descend very quickly from the starting value, which would be a
very unusual realization of a standard normal. This example is also special. In
practice, we generally cannot expect such a short burn-in period. Notice also
in Figure 4.17 the horizontal line segments where the underlying Markov chain
did not advance.

There are several variations of the basic Metropolis–Hastings algorithm. See
Bhanot (1988) and Chib and Greenberg (1995) for descriptions of modifications

144 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.17: Sequential Output from a Standard Normal Distribution Using a
Markov Chain, N(Xt, σ

2)

and generalizations. Also see Section 4.14 for two related methods: Gibbs
sampling and hit-and-run sampling. Because those methods are particularly
useful in multivariate simulation, we defer the discussion to that section.

The Markov chain Monte Carlo method has become one of the most impor-
tant tools in statistics in recent years. Its applications pervade Bayesian analysis
as well as Monte Carlo procedures in many settings. See Gilks, Richardson, and
Spiegelhalter (1996) for several examples.

Whenever a correlated sequence such as a Markov chain is used, variance
estimation must be performed with some care. In the more common cases of
positive autocorrelation, the ordinary variance estimators are negatively biased.
The method of batch means or some other method that attempts to account
for the autocorrelation should be used. See Section 7.4 for discussions of these
methods.

Tierney (1991, 1994) describes an independence sampler, a Metropolis–
Hastings sampler for which the proposal density does not depend on Yt; that is,
gYt+1|Yt

(·|·) = gYt+1(·). For this type of proposal density, it is more critical that
gYt+1(·) approximates pX(·) fairly well and that it can be scaled to majorize
pX(·) in the tails. Liu (1996) and Roberts (1996) discuss some of the properties
of the independence sampler and its relationship to other Metropolis–Hastings
methods.

As with the acceptance/rejection methods using independent sequences, the
acceptance/rejection methods based on Markov chains apply immediately to
multivariate random variables. As mentioned above, however, convergence gen-

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 145

erally becomes slower as the number of elements in the random vector increases.
As an example of MCMC in higher dimensions, consider an example similar

to that shown in Figure 4.17 except for a multivariate normal distribution in-
stead of a univariate one. We use a d-dimensional normal with a mean vector xt

and a variance-covariance matrix Σ to generate xt+1 for use in the Metropolis–
Hastings method of Algorithm 4.18. Taking d = 3,

Σ =

 9 0 0
0 9 0
0 0 9

 ,

and starting with x0 = (10, 10, 10), the first 1000 values of the first element
(which should be a realization from a standard univariate normal) are shown
in Figure 4.18.

Figure 4.18: Sequential Output of x1 from a Trivariate Standard Normal Dis-
tribution Using a Markov Chain, N(Xt, Σ)

Convergence

Two of the most important issues in MCMC concern the rate of convergence
(that is, the length of the burn-in) and the frequency with which the chain
advances. In many applications of simulation, such as studies of waiting times in
queues, there is more interest in transient behavior than in stationary behavior.
This is not the case in random number generation using an iterative method.
For general use in random number generation, the stationary distribution is the
only thing of interest. (We often use the terms “Monte Carlo” and “simulation”

146 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

rather synonymously; stationarity and transience, however, are often the key
distinctions between Monte Carlo applications and simulation applications. In
simulation in practice, the interest is rarely in the stationary behavior, but it
is in these Monte Carlo applications.)

The issue of convergence is more difficult to address in multivariate distrib-
utions. It is for multivariate distributions, however, that the MCMC method is
most useful. This is because the Metropolis–Hastings algorithm does not require
knowledge of the normalizing constants, and the computation of a normalizing
constant may be more difficult for multivariate distributions.

Gelman and Rubin (1992b) give examples in which the burn-in is much
longer than might be expected. Various diagnostics have been proposed to
assess convergence. Cowles and Carlin (1996) discuss and compare thirteen
different ones. Most of these diagnostics use multiple chains in one way or an-
other; see, for example, Gelman and Rubin (1992a), Roberts (1992), and John-
son (1996). Multiple chains or separate subsequences within a chain can be
compared using analysis-of-variance methods. Once convergence has occurred,
the variance within subsequences should be the same as the variance between
subsequences. Measuring the variance within a subsequence must be done with
some care, of course, because of the autocorrelations. Batch means from sepa-
rate streams can be used to determine when the variance has stabilized. (See
Section 7.4 for a description of batch means.)

Yu (1995) uses a cusum plot on only one chain to help to identify conver-
gence. Robert (1998a) provides a benchmark case for evaluation of conver-
gence assessment techniques. Rosenthal (1995), under certain conditions, gives
bounds on the length of runs required to give satisfactory results. Cowles and
Rosenthal (1998) suggest using auxiliary simulations to determine if the condi-
tions that ensure the bounds on the lengths are satisfied. All of these methods
have limitations.

The collection of articles in Gilks, Richardson, and Spiegelhalter (1996)
addresses many of the problems of convergence. Gamerman (1997) provides a
general introduction to MCMC in which many of these convergence issues are
explored. Additional reviews are given in Brooks and Roberts (1999) and the
collection of articles in Robert (1998b). Mengersen, Robert, and Guihenneuc-
Jouyaux (1999) give a classification of methods and review their performance.
Methods of assessing convergence are currently an area of active research.

Use of any method that indicates that convergence has occurred based on
the generated data can introduce bias into the results, unless somehow the prob-
ability of making the decision that convergence has occurred can be accounted
for in any subsequent inference. This is the basic problem in any adaptive sta-
tistical procedure. Cowles, Roberts, and Rosenthal (1999) discuss how bias may
be introduced in inferences made using an MCMC method after a convergence
diagnostic has been used in the sampling. The main point in this section is that
there are many subtle issues, and MCMC must be used with some care.

Various methods have been proposed to speed up the convergence; see
Gelfand and Sahu (1994), for example. Frigessi, Martinelli, and Stander (1997)

4.10. STATIONARY DISTRIBUTIONS OF MARKOV CHAINS 147

discuss general issues of convergence and acceleration of convergence. How
quickly convergence occurs is obviously an important consideration for the ef-
ficiency of the method. The effects of slow convergence, however, are not as
disastrous as the effects of prematurely assuming that convergence has occurred.

Coupled Markov Chains and “Perfect” Sampling

Convergence is an issue because we want to sample from the stationary distrib-
ution. The approach discussed above is to start at some arbitrary point, t = 0,
and proceed until we think convergence has occurred. Propp and Wilson (1996,
1998) suggested another approach for aperiodic, irreducible, positive recurrent
chains with finite state spaces. Their method is based on starting multiple
chains at an earlier point.

The method is to generate chains that are coupled by the same underlying
element of the sample space. The coupling can be accomplished by generating
a single realization of some random variable and then letting that realization
determine the updating for each of the chains. This can be done in several
ways. The simplest, perhaps, is to choose the coupling random variable to be
U(0, 1) and use the inverse CDF method. At the point t, we generate ut+1 and
update each chain with Xt+1|ut+1, xt by the method of equation (4.3),

xt+1 = min{v, s.t. ut+1 ≤ PXt+1|xt
(v)}, (4.17)

where PXt+1|xt
(·) is the conditional CDF for Xt+1, given Xt = xt. With this

setup for coupled chains, any one of the chains may be represented in a “sto-
chastic recursive sequence”,

Xt = φ(Xt−1, Ut), (4.18)

where φ is called the transition rule. The transition rule also allows us to
generate Ut+1|xt+1, xt, as

U
(
PXt+1|xt

(xt+1 − ε), PXt+1|xt
(xt+1)

)
, (4.19)

where ε is vanishingly small.
The idea in the method of Propp and Wilson is to start coupled chains at

ts = −1 at each of the states and advance them all to t = 0. If they coalesce
(that is, if they all take the same value), they are the same chain from then on,
and X0 has the stationary distribution. If they do not coalesce, then we can
start the chains at ts = −2 and maintain exactly the same coupling; that is,
we generate a u−1, but we use the same u0 as before. If these chains coalesce
at t = 0, then we accept the common value as a realization of the stationary
distribution. If they do not coalesce, we back up the starting points of the
chains even further. Propp and Wilson (1996) suggested doubling the starting
point each time, but any point further back in time would work. The important
thing is that each time chains are started that the realizations of the uniform
random variable from previous runs be used. This method is called coupling

148 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

from the past (CFTP). Propp and Wilson (1996) called this method of sampling
“exact sampling”. Note that if we do the same thing starting at a fixed point
and proceeding forward with parallel chains, the value to which they coalesce
is not a realization of the stationary distribution.

If the state space is large, checking for coalescence can be computationally
intensive. There are various ways of reducing the burden of checking for coales-
cence. Propp and Wilson (1996) discussed the special case of a monotone chain
(one for which the transition matrix stochastically preserves orderings of state
vectors) that has two starting state vectors x−

0 and x+
0 such that, for all x ∈ S,

x−
0 ≤ x ≤ x+

0 . In that case, they show that if the sequence beginning with x−
0

and the sequence beginning with x+
0 coalesce, the sequence from that point on

is a sample from the stationary distribution. This is interesting, but of limited
relevance.

Because CFTP depends on fixed values of u0, u−1, . . ., for certain of these
values, coalescence may occur with very small probability. (This is similar to
the modified acceptance/rejection method described in Exercise 4.7b.) In these
cases, the ts that will eventually result in coalescence may be very large in
absolute value. An “impatient user” may decide just to start over. Doing so,
however, biases the procedure. Fill (1998) described a method for sampling di-
rectly from the invariant distribution that uses coupled Markov chains of a fixed
length. It is an acceptance/rejection method based on whether coalescence has
occurred. This method can be restarted without biasing the results; the method
is “interruptible”. In this method, an ending time and a state corresponding
to that time are chosen arbitrarily. Then, we generate backwards from ts as
follows.

1. Select a time ts > 0 and a state xts .

2. Generate xts−1|xts , xts−2|xts−1, . . . , x0|x1.

3. Generate u1|x0, x1, u2|x1, x2, . . . , uts |xts−1, xts using, perhaps, the dis-
tribution (4.19).

4. Start chains at t = 0 at each of the states, and advance them to t = ts
using the common us.

5. If the chains have coalesced by time ts, then
accept x0;

otherwise,
return to step 1.

Fill gives a simple proof that this method indeed samples from the invariant
distribution.

Methods that attempt to sample directly from the invariant distribution of
a Markov chain, such as CFTP and interruptible coupled chains, are sometimes
called “perfect sampling” methods.

The requirement of these methods of a finite state space obviously limits
their usefulness. Møller and Schladitz (1999) extended the method to a class

4.11. USE OF CONDITIONAL DISTRIBUTIONS 149

of continuous-state Markov chains. Fill et al. (2000) also discussed the prob-
lem of continuous-state Markov chains and considered ways of increasing the
computational efficiency.

4.11 Use of Conditional Distributions

If the density of interest, pX , can be represented as a marginal density of some
joint density pXY , observations on X can be generated as a Markov chain with
elements having densities

pYi|Xi−1 , pXi|Yi
, pYi+1|Xi

, pXi+1|Yi+1 ,

This is a simple instance of the Gibbs algorithm, which we discuss beginning
on page 156. Casella and George (1992) explain this method in general.

The usefulness of this method depends on identifying a joint density with
conditionals that are easy to simulate. For example, if the distribution of in-
terest is a standard normal, the joint density

pXY (x, y) =
1√
2π

1
e−x2/2

, for −∞ < x < ∞, 0 < y < e−x2/2,

has a marginal density corresponding to the distribution of interest, and it has
simple conditionals. The conditional distribution of Y |X is U(0, e−X2/2), and
the conditional of X |Y is U(−√−2 logY ,

√−2 logY). Starting with x0 in the
range of X , we generate y1 as a uniform conditional on x0, then x1 as a uniform
conditional on y1, and so on.

The auxiliary variable Y that we introduce just to simulate X is called a
“latent variable”.

4.12 Weighted Resampling

To obtain a sample x1, x2, . . . , xm that has an approximate distribution with
density pX , a sample y1, y2, . . . , yn from another distribution with density gY

can be resampled using weights or probabilities

wi =
pX(yi)/gY (xi)∑n

j=1 pX(yj)/gY (xj)
, for i = 1, 2, . . . n.

The method was suggested by Rubin (1987, 1988), who called it SIR for sam-
pling/importance resampling. The method is also called importance-weighted
resampling. The resampling should be done without replacement to give points
with low probabilities a chance to be represented. Methods for sampling from
a given set with given probabilities are discussed in Section 6.1, page 217. Gen-
erally, in SIR, n is much larger than m. This method can work reasonably well
if the density gY is very close to the target density pX .

150 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

This method, like the Markov chain methods above, has the advantage that
the normalizing constant of the target density is not needed. Instead of the
density pX(·), any nonnegative proportional function cpX(·) could be used.
Gelman (1992) describes an iterative variation in which n is allowed to increase
as m increases; that is, as the sampling continues, more variates are generated
from the distribution with density gY .

4.13 Methods for Distributions with Certain
Special Properties

Because of the analytical and implementation burden involved in building a
random number generator, a general rule is that a single algorithm that works in
two settings is better than two different algorithms, one for each setting. This is
true, of course, unless the individual algorithms perform better in the respective
special cases, and then the question is how much better. In random number
generation from nonuniform distributions, it is desirable to have “universal
algorithms” that use general methods that we have discussed above but are
optimized for certain broad classes of distributions.

For distributions with certain special properties, general algorithms using
mixtures and rejection can be optimized for broad classes of distributions. We
have already discussed densities that are nearly linear (Algorithm 4.7, page 118)
and densities that are nearly flat (Algorithm 4.11, page 126).

Another broad class of distributions are those that are infinitely divisible.
Damien, Laud, and Smith (1995) give general methods for generation of random
deviates from distributions that are infinitely divisible.

Distributions with Densities that Can Be Transformed to
Concave Functions

An important special property of some distributions is concavity of the density
or of some transformation of the density. On page 119, we discuss how easy
it is to form polygonal majorizing and squeeze functions for concave densities.
Similar ideas can be employed for cases in which the density can be invertibly
transformed into a concave function.

In some applications, especially in reliability or survival analysis, the loga-
rithm is a standard transformation and log-concavity is an important property.
A distribution is log-concave if its density (or probability function) has the
property

log p(x1) − 2 log p

(
x1 + x2

2

)
+ log p(x2) < 0,

wherever the densities are positive. If the density is twice-differentiable, this
condition is satisfied if the negative of the Hessian is positive definite. Many of
the commonly used distributions, such as the normal, the gamma with shape

4.13. DISTRIBUTIONS WITH SPECIAL PROPERTIES 151

parameter greater than 1, and the beta with parameters greater than 1, are log-
concave. See Pratt (1981) for discussion of these properties, and see Dellaportas
and Smith (1993) for some examples in generalized linear models. Devroye
(1984b) describes general methods for a log-concave distribution, and Devroye
(1987) describes a method for a discrete distribution that is log-concave.

The methods of forming polygonal majorizing and squeeze functions for
concave densities can also be applied to convex densities or to densities that
can be invertibly transformed into concave functions by reversing the role of
the majorizing and squeeze functions.

Incremental Formation of Majorizing and Squeeze Functions:
“Adaptive” Rejection

Gilks (1992) and Gilks and Wild (1992) describe a method that they call adap-
tive rejection sampling or ARS for a continuous log-concave distribution.

The adaptive rejection method described by Gilks (1992) begins with a set
Sk consisting of the points x0 < x1 < . . . < xk < xk+1 from the range of
the distribution of interest. Define Li as the straight line determined by the
points (xi, log p(xi)) and (xi+1, log p(xi+1)); then, for i = 1, 2, . . . , k, define the
piecewise linear function hk(x) as

hk(x) = min (Li−1(x), Li+1(x)) for xi ≤ x < xi+1.

This piecewise linear function is a majorizing function for the log of the density,
as shown in Figure 4.19.

The chords formed by the continuation of the line segments form functions
that can be used as a squeeze function, mk(x), which is also piecewise linear.

For the density itself, the majorizing function and the squeeze function are
piecewise exponentials. The majorizing function is

cgk(x) = exp hk(x),

where each piece of gk(x) is an exponential density function truncated to the
appropriate range. The density is shown in Figure 4.20.

In each step of the acceptance/rejection algorithm, the set Sk is augmented
by the point generated from the majorizing distribution, and k is increased by
1. The method is shown in Algorithm 4.19. In Exercise 4.14, page 162, you
are asked to write a program for performing adaptive rejection sampling for the
density shown in Figure 4.20, which is the same one as in Figure 4.4, and to
compare the efficiency of this method with the standard acceptance/rejection
method.

Algorithm 4.19 Adaptive Acceptance/Rejection Sampling

0. Initialize k and Sk.

1. Generate y from gk.

152 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.19: Adaptive Majorizing Function with the Log-Density (Same Density
as in Figure 4.4)

2. Generate u from a U(0, 1) distribution.

3. If u ≤ expmk(y)
cgk(y)

, then

3.a. deliver y;
otherwise,

3.b. if u ≤ p(y)
cgk(y)

, then deliver y;

3.c. set k = k + 1, add y to Sk, and update hk, gk, and mk.

4. Go to step 1.

After an update step, the new piecewise linear majorizing function for the
log of the density is as shown in Figure 4.21.

Gilks and Wild (1992) describe a similar method, but instead of using se-
cants as the piecewise linear majorizing function, they use tangents of the log
of the density. This requires computation of numerical derivatives of the log
density.

Hörmann (1994a) adapts the methods of Gilks (1992) and Gilks and Wild
(1992) to discrete distributions.

T -concave Distributions

Hörmann (1995) extends the methods for a distribution with a log-concave den-
sity to a distribution whose density p can be transformed by a strictly increasing

4.13. DISTRIBUTIONS WITH SPECIAL PROPERTIES 153

Figure 4.20: Exponential Adaptive Majorizing Function with the Density in
Figure 4.4

operator T such that T (p(x)) is concave. In that case, the density p is said to
be “T -concave”. Often, a good choice is T (s) = −1/

√
s. A density that is

T -concave with respect to this transformation is log-concave.
Many of the standard distributions have T -concave densities, and in those

cases we refer to the distribution itself as T -concave. The normal distribution
(equation (5.6)), for example, is T -concave for all values of its parameters. The
gamma distribution (equation (5.13)) is T -concave for α ≥ 1 and β > 0. The
beta distribution (equation (5.14)) is T -concave for α ≥ 1 and β ≥ 1.

The transformation T (s) = −1/
√

s allows construction of a table moun-
tain majorizing function (reminiscent of a majorizing function in the ratio-
of-uniforms method) that is then used in an acceptance/rejection method.
Hörmann calls this method transformed density rejection.

Leydold (2001) describes an algorithm for T -concave distributions based
on a ratio-of-uniforms type of acceptance/rejection method. The advantage of
Leydold’s method is that it requires less setup time than Hörmann’s method,
and so would be useful in applications in which the parameters of the distrib-
ution change relatively often compared to the number of variates generated at
each fixed value. Gilks, Best, and Tan (1995; corrigendum, Gilks, Neal, Best,
and Tan, 1997) develop an adaptive rejection method that does not require the
density to be log-concave. They call the method adaptive rejection Metropolis
sampling.

154 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

Figure 4.21: Adaptive Majorizing Function with an Additional Point

Unimodal Densities

Many densities of interest are unimodal, and some simple methods of random
number generation take advantage of that property. The ziggurat and Monty
Python decomposition methods of Marsaglia and Tsang (1984, 1998) are most
effective for unimodal distributions, in which the first decomposition can involve
forming two regions, one on each side of the mode. Devroye (1984a) describes
general methods for generating variates from such distributions. If a distribu-
tion is not unimodal, it is sometimes useful to decompose the distribution into
a mixture of unimodal distributions to use the techniques on them separately.

Methods for sampling from unimodal discrete distributions, which often
involve linear searches, can be more efficient if the search begins at the mode.
(See, for example, the method for the Poisson distribution on page 188.)

Multimodal Densities

For simulating densities with multiple modes, it is generally best to express
the distribution as a mixture and use different methods in different regions.
MCMC methods can become trapped around a local mode. There are various
ways of dealing with this problem. One way to do this is to modify the target
density pX(·) in the Hastings ratio so that it becomes flatter, and therefore
it is more likely that the sequence will move away from a local mode. Geyer
and Thompson (1995) describe a method of “simulated tempering”, in which
a “temperature” parameter, which controls how likely it is that the sequence
will move away from a current state, is varied randomly. This is similar to

4.14. GENERAL METHODS FOR MULTIVARIATE DISTRIBUTIONS 155

methods used in simulated annealing (see Section 7.9). Neal (1996) describes a
systematic method of alternating between the target density and a flatter one.
He called the method “tempered transition”.

4.14 General Methods for Multivariate
Distributions

Two simple methods of generating multivariate random variates make use of
variates from univariate distributions. One way is to generate a vector of
i.i.d. variates and then apply a transformation to yield a vector from the de-
sired multivariate distribution. Another way is to use the representation of the
distribution function or density function as a product of the form

pX1X2X3···Xd
= pX1|X2X3···Xd

· pX2|X3···Xd
· pX3|···Xd

· · · pXd
.

In this method, we generate a marginal xd from pXd
, then a conditional xd−1

from pXd−1|Xd
, and continue in this way until we have the full realization

x1, x2, . . . , xd. We see two simple examples of these methods at the begin-
ning of Section 5.3, page 197. In the first example in that section, we generate
a d-variate normal with variance-covariance matrix Σ either by the transforma-
tion x = TTz, where T is a d×d matrix such that TTT = Σ and z is a d-vector
of i.i.d. N(0, 1) variates. In the second case, we generate x1 from N1(0, σ11),
then generate x2 conditionally on x1, then generate x3 conditionally on x1 and
x2, and so on.

As mentioned in discussing acceptance/rejection methods in Sections 4.5
and 4.10, these methods are directly applicable to multivariate distributions,
so acceptance/rejection is a third general way of generating multivariate obser-
vations. As in the example of the bivariate gamma on page 123, however, this
usually involves a multivariate majorizing function, so we are still faced with
the basic problem of generating from some multivariate distribution.

For higher dimensions, the major problem in using acceptance/rejection
methods for generating multivariate deviates results from one of the effects
of the so-called “curse of dimensionality”. The proportion of the volume of a
closed geometrical figure that is in the outer regions of that figure increases with
increasing dimensionality. (See Section 10.7 of Gentle, 2002, and Exercise 4.4f
at the end of this chapter.)

An iterative method somewhat similar to the use of marginals and condi-
tionals can also be used to generate multivariate observations. This method was
used by Geman and Geman (1984) for generating observations from a Gibbs
distribution (Boltzmann distribution) and so is called the Gibbs method. In the
Gibbs method, after choosing a starting point, the components of the d-vector
variate are generated one at a time conditionally on all others. If pX is the
density of the d-variate random variable X , we use the conditional densities
pX1|X2X3···Xd

, pX2|X1X3···Xd
, and so on. At each stage, the conditional distri-

bution uses the most recent values of all of the other components. Obviously,

156 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

it may require a number of iterations before the choice of the initial starting
point is washed out.

The method is shown in Algorithm 4.20. (In the algorithms to follow, we
represent the support of the density of interest by S, where S ⊆ IRd.)

Algorithm 4.20 Gibbs Method

0. Set k = 0.

1. Choose x(k) ∈ S.

2. Generate x
(k+1)
1 conditionally on x

(k)
2 , x

(k)
3 , . . . , x

(k)
d ,

Generate x
(k+1)
2 conditionally on x

(k+1)
1 , x

(k)
3 , . . . , x

(k)
d ,

. . .
Generate x

(k+1)
d−1 conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k)
d ,

Generate x
(k+1)
d conditionally on x

(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
d−1 .

3. If convergence has occurred, then
3.a. deliver x = x(k+1);

otherwise,
3.b. set k = k + 1, and go to step 2.

Casella and George (1992) give a simple proof that this iterative method con-
verges; that is, as k → ∞, the density of the realizations approaches pX . The
question of whether convergence has practically occurred in a finite number of
iterations in the Gibbs method is similar to the same question in the Metropolis–
Hastings method discussed in Section 4.10. In either case, to determine that
convergence has occurred is not a simple problem.

Once a realization is delivered in Algorithm 4.20 (that is, once convergence
has been deemed to have occurred), subsequent realizations can be generated
either by starting a new iteration with k = 0 in step 0 or by continuing at step
1 with the current value of x(k). If the chain is continued at the current value of
x(k), we must remember that the subsequent realizations are not independent.
This affects variance estimates (second-order sample moments) but not means
(first-order moments). In order to get variance estimates, we may use means
of batches of subsequences or use just every mth (for some m > 1) deviate in
step 3. (The idea is that this separation in the sequence will yield subsequences
or a systematic subsample with correlations nearer 0. See Section 7.4 for a
description of batch means.) If we just want estimates of means, however, it
is best not to subsample the sequence; that is, the variances of the estimates
of means (first-order sample moments) using the full sequence are smaller than
the variances of the estimates of the same means using a systematic (or any
other) subsample (as long as the Markov chain is stationary).

To see this, let x̄i be the mean of a systematic subsample of size n consisting
of every mth realization beginning with the ith realization of the converged

4.14. GENERAL METHODS FOR MULTIVARIATE DISTRIBUTIONS 157

sequence. Now, following MacEachern and Berliner (1994), we observe that

|Cov(x̄i, x̄j)| ≤ V(x̄l)

for any positive i, j, and l less than or equal to m. Hence, if x̄ is the sample
mean of a full sequence of length nm, then

V(x̄) = V(x̄l)/m +
m∑

i�=j;i,j=1

Cov(x̄i, x̄j)/m2

≤ V(x̄l)/m + m(m − 1)V(x̄l)/m2

= V(x̄l).

See also Geyer (1992) for a discussion of subsampling in the chain.
The paper by Gelfand and Smith (1990) was very important in popularizing

the Gibbs method. Gelfand and Smith also describe a related method of Tanner
and Wong (1987), called data augmentation, which Gelfand and Smith call
substitution sampling. In this method, a single component of the d-vector is
chosen (in step 1), and then multivariate subvectors are generated conditional
on just one component. This method requires d(d−1) conditional distributions.
The reader is referred to their article and to Schervish and Carlin (1992) for
descriptions and comparisons with different methods. Tanner (1996) defines a
chained data augmentation, which is the Gibbs method described above.

In the Gibbs method, the components of the d-vector are changed system-
atically, one at a time. The method is sometimes called alternating conditional
sampling to reflect this systematic traversal of the components of the vector.

Another type of Metropolis method is the hit-and-run sampler. In this
method, all components of the vector are updated at once. The method is shown
in Algorithm 4.21 in the general version described by Chen and Schmeiser (1996).

Algorithm 4.21 Hit-and-Run Sampling

0. Set k = 0.

1. Choose x(k) ∈ S.

2. Generate a random normalized direction v(k) in IRd. (This is equivalent
to a random point on a sphere, as discussed on page 201.)

3. Determine the set S(k) ⊆ IR consisting of all λ � (x(k) +λv(k)) ∈ S. (S(k)

is one-dimensional; S is d-dimensional.)

4. Generate λ(k) from the density g(k), which has support S(k).

5. With probability a(k),
5.a. set x(k+1) = x(k) + λ(k)v(k);

otherwise,
5.b. set x(k+1) = x(k).

158 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

6. If convergence has occurred, then
6.a. deliver x = x(k+1);

otherwise,
6.b. set k = k + 1, and go to step 2.

Chen and Schmeiser (1996) discuss various choices for g(k) and a(k). One choice
is

g(k)(λ) =

p(x(k) + λv(k))∫

S(k) p(x(k) + uv(k)) du
for λ ∈ S(k),

0 otherwise,

and
a(k) = 1.

Another choice is g uniform over S(k) if S(k) is bounded, or else some symmetric
distribution centered on 0 (such as a normal or Cauchy distribution), together
with

a(k) = min
(

1,
p(x(k) + λ(k)v(k))

p(x(k))

)
.

Smith (1984) uses the hit-and-run sampler for generating uniform points
over bounded regions, and Bélisle, Romeijn, and Smith (1993) use it for gen-
erating random variates from general multivariate distributions. Proofs of the
convergence of the method can be found in Bélisle, Romeijn, and Smith (1993)
and Chen and Schmeiser (1996).

Gilks, Roberts, and George (1994) describe a generalization of the hit-and-
run algorithm called adaptive direction sampling. In this method, a set of
current points is maintained, and only one, chosen at random from the set, is
updated at each iteration (see Gilks and Roberts, 1996).

Both the Gibbs and hit-and-run methods are special cases of the Metropolis–
Hastings method in which the r of step 2 in Algorithm 4.18 (page 141) is
exactly 1, so there is never a rejection.

The same issues of convergence that we encountered in discussing the Metro-
polis–Hastings method must be addressed when using the Gibbs or hit-and-run
methods. The need to run long chains can increase the number of compu-
tations to unacceptable levels. Schervish and Carlin (1992) and Cowles and
Carlin (1996) discuss general conditions for convergence of the Gibbs sampler.

Dellaportas (1995) discusses some issues in the efficiency of random number
generation using the Gibbs method. Berbee et al. (1987) compare the efficiency
of hit-and-run methods with acceptance/rejection methods and find the hit-and-
run methods to be more efficient in higher dimensions. Chen and Schmeiser
(1993) give some general comparisons of Gibbs, hit-and-run, and variations.
Generalizations about the performance of the methods are difficult; the best
method often depends on the problem.

4.15. GENERATING SAMPLES FROM A GIVEN DISTRIBUTION 159

Multivariate Densities with Special Properties

We have seen that certain properties of univariate densities can be used to
develop efficient algorithms for general distributions that possess those special
properties. For example, adaptive rejection sampling and other special accep-
tance/rejection methods can be used for distributions having concave densities
or concave transformed densities, as discussed on page 150. Hörmann (2000)
describes a method for log-concave bivariate distributions that uses adaptive
rejection sampling to develop the majorizing function. Leydold (1998) shows
that while the methods for univariate T -concave distributions would work for
multivariate T -concave distributions, such methods are unacceptably slow. He
splits the T -concave multivariate density into a set of simple cones and con-
structs the majorizing function from piecewise hyperplanes that are tangent to
the cones. He reports favorably on the performance of his method for as many
as eight dimensions.

As we have seen, unimodal distributions are generally easier to work with
than multimodal distributions. A product multivariate density having uni-
modal factors will of course be unimodal. Devroye (1997) described general
acceptance/rejection methods for multivariate distributions with the slightly
weaker property of being orthounimodal; that is, each marginal density is uni-
modal.

4.15 Generating Samples from a

Given Distribution

Usually, in applications, rather than just generating a single random deviate,
we generate a random sample of deviates from the distribution of interest. A
random sample of size n from a discrete distribution with probability function

p(X = mi) = pi

has a vector of counts of the mass points that has a multinomial (n, p1, . . . , pk)
distribution.

If the sample is to be used as a set, rather than as a sequence, and if
n is large relative to k, it obviously makes more sense to generate a single
multinomial (x1, x2, . . . , xk) and use these values as counts of occurrences of the
respective mass points m1, m2, . . . , mk. (Methods for generating multinomials
are discussed in Section 5.3.2, page 198.)

This same idea can be applied to continuous distributions with a modifica-
tion to discretize the range (see Kemp and Kemp, 1987).

Exercises

4.1. The inverse CDF method.

160 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

(a) Prove that if X is a random variable with an absolutely continuous
distribution function PX , the random variable PX (X) has a U(0, 1)
distribution.

(b) Prove that the inverse CDF method for discrete random variables as
specified in the relationship in expression (4.2) on page 104 is correct.

4.2. Formally prove that the random variable delivered in Algorithm 4.6 on
page 114 has the density pX . Hint: For the delivered variable, Z, deter-
mine the distribution function Pr(Z ≤ x) and differentiate.

4.3. Write a Fortran or C function to implement the acceptance/rejection
method for generating a beta(3, 2) random deviate. Use the majoriz-
ing function shown in Figure 4.4 on page 115. The value of c is 1.2. Use
the inverse CDF method to generate a deviate from g. (This will involve
taking a square root.)

4.4. Acceptance/rejection methods.

(a) Give an algorithm to generate a normal random deviate using the ba-
sic acceptance/rejection method with the double exponential density
(see equation (5.11), page 177) as the majorizing density.

(b) What is the acceptance proportion of this method?

(c) After you have obtained the basic acceptance/rejection test, try to
simplify it.

(d) Develop an algorithm to generate bivariate normal deviates with
mean (0, 0), variance (1, 1), and correlation ρ using a bivariate prod-
uct double exponential density as the majorizing density. For ρ = 0,
what is the acceptance probability?

(e) Write a program to generate bivariate normal deviates with mean
(0, 0), variance (1, 1), and correlation ρ. Use a bivariate product
double exponential density as the majorizing density. Now, set ρ =
0.5 and generate a sample of 1000 bivariate normals. Compare the
sample statistics with the parameters of the simulated distribution.

(f) What is the acceptance probability for a basic acceptance/rejection
method to generate d-variate normal deviates with mean 0 and diag-
onal variance-covariance matrix with all elements equal to 1 using a
d-variate product double exponential density as the majorizing den-
sity?

4.5. What would be the problem with using a normal density to make a ma-
jorizing function for the double exponential distribution (or using a half-
normal for an exponential)?

4.6. (a) Write a Fortran or C function to implement the acceptance/rejection
method for a bivariate gamma distribution whose density is given in

EXERCISES 161

equation (4.10) on page 123 using the method described in the text.
(You must develop a method for determining the mode.)

(b) Now, instead of the bivariate uniform in the rectangle near the origin,
devise a pyramidal distribution to use as a majorizing density.

(c) Use Monte Carlo methods to compare efficiency of the method using
the bivariate uniform and the method using a pyramidal density.

4.7. Consider the acceptance/rejection method given in Algorithm 4.6 to gen-
erate a realization of a random variable X with density function pX using
a density function gY .

(a) Let T be the number of passes through the three steps until the
desired variate is delivered. Determine the mean and variance of T
(in terms of pX and gY).

(b) Now, consider a modification of the rejection method in which steps
1 and 2 are reversed, and the branch in step 3 is back to the new
step 2; that is:

1. Generate u from a uniform (0,1) distribution.
2. Generate y from the distribution with density function gY .
3. If u ≤ pX(y)/cgY (y), then take y as the desired realization;

otherwise return to step 2.

Is this a better method? Let Q be the number of passes through these
three steps until the desired variate is delivered. Determine the mean
and variance of Q. (This method was suggested by Sibuya, 1961, and
analyzed by Greenwood, 1976c.)

4.8. Formally prove that the random variable delivered in Algorithm 4.7 on
page 118 has the density p.

4.9. Write a Fortran or C function to implement the ratio-of-uniforms method
(page 130) to generate deviates from a gamma distribution with shape
parameter α. Generate a sample of size 1000 and perform a chi-squared
goodness-of-fit test (see Cheng and Feast, 1979).

4.10. Use the Metropolis–Hastings algorithm (page 141) to generate a sample
of standard normal random variables. Use as the candidate generating
density g(x|y), a normal density in x with mean y. Experiment with
different burn-in periods and different starting values. Plot the sequences
generated. Test your samples for goodness-of-fit to a normal distribution.
(Remember that they are correlated.) Experiment with different sample
sizes.

4.11. Let Π have a beta distribution with parameters α and β, and let X have a
conditional distribution given Π = π of a binomial with parameters n and
π. Let Π conditional on X = x have a beta distribution with parameters

162 CHAPTER 4. TRANSFORMATIONS OF UNIFORM DEVIATES

α + x and n + β − x. (This leads to the “beta-binomial” distribution;
see page 187.) Consider a bivariate Markov chain, (Π0, X0), (Π1, X1), . . .,
with an uncountable state space (see Casella and George, 1992).

(a) What is the transition kernel? That is, what is the conditional den-
sity of (Πt, Xt) given (πt−1, xt−1)?

(b) Consider just the Markov chain of the beta-binomial random variable
X . What is the (i, j) element of the transition matrix?

4.12. Obtain a sample of size 100 from the beta(3,2) distribution using the
SIR method of Section 4.12 and using a sample of size 1000 from the
density gY that is proportional to the triangular majorizing function used
in Exercise 4.3. (Use Algorithm 6.1, page 218, to generate the sample
without replacement.) Compare the efficiency of the program that you
have written with the one that you wrote in Exercise 4.3.

4.13. Formally prove that the random variable delivered in Algorithm 4.19 on
page 151 has the density pX . (Compare Exercise 4.2.)

4.14. Write a computer program to implement the adaptive acceptance/rejection
method for generating a beta(3,2) random deviate. Use the majorizing
function shown in Figure 4.19 on page 152. The initial value of k is 4, and
Sk = {0.00, 0.10, 0.60, 0.75, 0.90, 1.00}. Compare the efficiency of the pro-
gram that you have written with the ones that you wrote in Exercises 4.3
and 4.12.

4.15. Consider the trivariate normal distribution used as the example in Fig-
ure 4.18 (page 145).

(a) Use the Gibbs method to generate and plot 1000 realizations of X1

(including any burn-in). Explain any choices that you make on how
to proceed with the method.

(b) Use the hit-and-run method to generate and plot 1000 realizations
of X1 (including any burn-in). Explain any choices that you make
on how to proceed with the method.

(c) Compare the Metropolis–Hastings method (page 145) and the Gibbs
and hit-and-run methods for this problem.

4.16. Consider a probability model in which the random variable X has a bi-
nomial distribution with parameters n and y, which are, respectively, re-
alizations of a conditional shifted Poisson distribution and a conditional
beta distribution. For fixed λ, α, and β, let the joint density of X , N ,
and Y be proportional to

λn

x!(n − x)!
yx+α−1(1 − y)n−x+β−1e−λ for x = 0, 1, . . . , n;

0 ≤ y ≤ 1;
n = 1, 2,

EXERCISES 163

First, determine the conditional densities for X |y, n, Y |x, n, and N |x, y.
Next, write a Fortran or C program to sample X from the multivariate
distribution for given λ, α, and β. Now, set λ = 16, α = 2, and β = 4, run
500 independent Gibbs sequences of length k = 10, taking only the final
variate, and plot a histogram of the observed x. (Use a random starting
point.) Now repeat the procedure, except using only one Gibbs sequence
of length 5000, and plot a histogram of all observed xs after the ninth one
(see Casella and George, 1992).

4.17. Generate a random sample of 1000 Bernoulli variates with π = 0.3. Do
not use Algorithm 4.1; instead, use the method of Section 4.15.

This page intentionally left blank

Chapter 5

Simulating Random
Numbers from Specific
Distributions

For the important distributions, specialized algorithms based on the general
methods discussed in the previous chapter are available. The important differ-
ence in the algorithms is their speed. A secondary difference is the size and
complexity of the program to implement the algorithm. Because all of the
algorithms for generating from nonuniform distributions rely on programs to
generate from uniform distributions, an algorithm that uses only a small num-
ber of uniforms to yield a variate of the target distribution may be faster on
a computer system on which the generation of the uniform is very fast. As
we have mentioned, on a given computer system, there may be more than one
program available to generate uniform deviates. Often, a portable generator is
slower than a nonportable one, so for portable generators of nonuniform distri-
butions, those that require a small number of uniform deviates may be better.
If evaluation of elementary functions is a part of the algorithm for generating
random deviates, then the speed of the overall algorithm depends on the speed
of the evaluation of the functions. The relative speed of elementary function
evaluation is different on different computer systems.

The algorithm for a given distribution is some specialized version of those
methods discussed in the previous chapter. Often, the algorithm uses some
combination of these general techniques.

Many algorithms require some setup steps to compute various constants and
to store tables; therefore, there are two considerations for the speed: the setup
time and the generation time. In some applications, many random numbers
from the same distribution are required. In those cases, the setup time may not
be too important. In other applications, the random numbers come from differ-
ent distributions—probably the same family of distributions but with changing

165

166 CHAPTER 5. SPECIFIC DISTRIBUTIONS

values of the parameters. In those cases, the setup time may be very signifi-
cant. If the best algorithm for a given distribution has a long setup time, it
may be desirable to identify another algorithm for use when the parameters
vary. Any computation that results in a quantity that is constant with respect
to the parameters of the distribution should of course be performed as part of
the setup computations in order to avoid performing the computation in every
pass through the main part of the algorithm.

The efficiency of an algorithm may depend on the values of the parameters
of the distribution. Many of the best algorithms therefore switch from one
method to another, depending on the values of the parameters. In some cases,
the speed of the algorithm is independent of the parameters of the distribution.
Such an algorithm is called a uniform time algorithm. In many cases, the most
efficient algorithm in one range of the distribution is not the most efficient
in other regions. Many of the best algorithms therefore use mixtures of the
distribution.

Sometimes, it is necessary to generate random numbers from some subrange
of a given distribution, such as the tail region. In some cases, there are efficient
algorithms for such truncated distributions. (If there is no specialized algorithm
for a truncated distribution, acceptance/rejection applied to the full distribution
will always work, of course.)

Methods for generating random variates from specific distributions are an
area in which there have been literally hundreds of papers, each proposing
some wrinkle (not always new or significant). Because the relative efficiencies
(“efficiency” here means “speed”) of the individual operations in the algorithms
vary from one computing system to another, and also because these individual
operations can be programmed in various ways, it is very difficult to compare
the relative efficiencies of the algorithms. This provides fertile ground for a
proliferation of “research” papers. Two other things contribute to the large
number of insignificant papers in this area. It is easy to look at some algorithm,
modify some step, and then offer the new algorithm. Thus, the intellectual
capitalization required to enter the field is small. (In business and economics,
this is the same reason that so many restaurants are started; only a relatively
small capitalization is required.)

Another reason for the large number of papers purporting to give new and
better algorithms is the diversity of the substantive and application areas that
constitute the backgrounds of the authors. Monte Carlo simulation is widely
used throughout both the hard and the soft sciences. Research workers in one
field often are not aware of the research published in another field.

Although, of course, it is important to seek efficient algorithms, it is also
necessary to consider a problem in its proper context. In Monte Carlo simula-
tion applications, literally millions of random numbers may be generated, but
the time required to generate them is likely to be only a very small fraction of
the total computing time. In fact, it is probably the case that the fraction of
time required for the generation of the random numbers is somehow negatively
correlated with the importance of the problem. The importance of the time

5.1. MODIFICATIONS OF STANDARD DISTRIBUTIONS 167

required to perform some task usually depends more on its proportion of the
overall time of the job rather than on its total time.

Another consideration is whether the algorithm is portable; that is, whether
it yields the same stream on different computer systems. As we mention in Sec-
tion 4.5, methods that accept or reject a candidate variate based on a floating-
point comparison may not yield the same streams on different systems.

The descriptions of the algorithms in this chapter are written with an em-
phasis on clarity, so they should not be incorporated directly into program
code without considerations of efficiency. These considerations generally in-
volve avoiding unnecessary computations. This may mean defining a variable
not mentioned in the algorithm description or reordering the steps slightly.

5.1 Modifications of Standard Distributions

For many of the common distributions, there are variations that are useful ei-
ther for computational or other practical reasons or because they model some
stochastic process well. A distribution can sometimes be simplified by transfor-
mations of the random variable that effectively remove certain parameters that
characterize the distribution. In many cases, the algorithms for generating ran-
dom deviates address the simplified version of the distribution. An appropriate
transformation is then applied to yield deviates from the distribution with the
given parameters.

Standard Distributions

A linear transformation, Y = aX + b, is simple to apply and is one of the most
useful. The multiplier affects the scale, and the addend affects the location. For
example, a “three-parameter” gamma distribution with density

p(y) =
1

Γ(α)βα
(y − γ)α−1e−(y−γ)/β, for γ ≤ y ≤ ∞,

can be formed from the simpler distribution with density

g(x) =
1

Γ(α)
xα−1e−x, for 0 ≤ x ≤ ∞,

using the transformation Y = βX + γ. (Here, and elsewhere, when we give an
expression for a probability density function, we imply that the density is equal
to 0 outside of the range specified.) The β parameter is a scale parameter, and γ
is a location parameter. (The remaining α parameter is called the “shape para-
meter”, and it is the essential parameter of the family of gamma distributions.)
The simpler form is called the standard gamma distribution. Other distrib-
utions have similar standard forms. Standard distributions (or standardized
random variables) allow us to develop simpler algorithms and more compact
tables of values that can be used for a range of parameter values.

168 CHAPTER 5. SPECIFIC DISTRIBUTIONS

Truncated Distributions

In many stochastic processes, the realizations of the random variable are con-
strained to be within a given region of the support of the random variable.
Over the allowable region, the random variable has a probability density (or
probability function) that is proportional to the density (or probability) of the
unconstrained random variable. If the random variable Y has probability den-
sity p(y) over a domain S, and if Y is constrained to R ⊂ S, the probability
density of the constrained random variable is

pc(x) =
1

Pr(Y ∈ R)
p(x) for x ∈ R;

= 0, elsewhere. (5.1)

The most common types of constraint are truncations, either left or right.
In a left truncation at τ , say, the random variable Y is constrained by τ ≤ Y ,
and in a right truncation, it is constrained by Y ≤ τ .

Truncated distributions are useful models in applications in which the obser-
vations are censored. Such observations often arise in studies where a variable
of interest is the time until a particular event occurs. At the end of the study,
there may be a number of observational units that have not experienced the
event. The corresponding times for these units are said to be censored, or right-
censored; it is known only that the times for these units would be greater than
some fixed value. In a similar fashion, left-censoring occurs when the exact
times are not recorded early in the study. There are many issues to consider
in the analysis of censored data, but it is not our purpose here to discuss the
analysis.

Generation of random variates with constraints can be handled by the gen-
eral methods discussed in the previous chapter. The use of acceptance/rejection
is obvious; merely generate from the full distribution and reject any realizations
outside of the acceptable region. Of course, choosing a majorizing density with
no support in the truncated region is a better approach. Modification of the
inverse CDF method to handle truncated distributions is simple. For a right
truncation at τ of a distribution with CDF PY , for example, instead of the basic
transformation (4.1), page 102, we use

X = P−1
Y (UPY (τ)), (5.2)

where U is a random variable from U(0, 1).
The method using a sequence of conditional distributions described on page

149 can often be modified easily to generate variates from truncated distribu-
tions. In some simple applications, the truncated distribution is simulated by
a conditional uniform distribution, the range of which is the intersection of the
full conditional range and the truncated range. See Damien and Walker (2001)
for some examples.

There are usually more efficient ways of generating variates from constrained
distributions. We describe a few of the more common ones (which are invariably
truncations) in the following sections.

5.1. MODIFICATIONS OF STANDARD DISTRIBUTIONS 169

“Inverse” Distributions

In Bayesian applications, joint probability densities of interest often involve a
product of the density of some well-known random variable and what might
be considered the density of the multiplicative inverse of another well-known
random variable. Common examples of this are the statistics used in studenti-
zation: the chi-squared and the Wishart. Many authors refer to the distribution
of such a random variable as the “inverse distribution”; for example, an “inverse
chi-squared distribution” is the distribution of X−1, where X has a chi-squared
distribution. Other distributions with this interpretation are the inverse gamma
distribution and the inverse Wishart distribution. This interpretation of “in-
verse” is not the same as for that word in the inverse Gaussian distribution with
density given in equation (5.30) on page 193. In the cases of the inverse gamma,
chi-squared, and Wishart distributions, the method for generating random vari-
ates is the obvious one: generate from the regular distribution and then obtain
the inverse.

Folded Symmetric Distributions

For symmetric distributions, a useful nonlinear transformation is the absolute
value. The distribution of the absolute value is often called a “folded” distribu-
tion. The exponential distribution, for example, is the folded double exponential
distribution (see page 176). The halfnormal distribution, which is the distri-
bution of the absolute value of a normal random variable, is a folded normal
distribution.

Mixture Distributions

In Chapter 4, we discussed general methods for generating random deviates by
decomposing the density p(·) into a mixture of other densities,

p(x) =
∑

i

wipi(x), (5.3)

where
∑

i wi = 1. Mixture distributions are useful in their own right. It
was noticed as early as the nineteenth century by Francis Galton and Karl
Pearson that certain observational data correspond very well to a mixture of two
normal distributions, whereas a single normal does not fit the data well at all.
Often, a simple mixture distribution can be used to model outliers or aberrant
observations. This kind of mixture, in which a substantial proportion of the
total probability follows one distribution and a small proportion follow another
distribution, is called a “contaminated distribution”. Mixture distributions are
often used in robustness studies because the interest is in how well a standard
procedure holds up when the data are subject to contamination by a different
population or by incorrect measurements.

A very simple extension of a finite (or countable) mixture, as in equa-
tion (5.3), is one in which the parameter of the individual is used to weight

170 CHAPTER 5. SPECIFIC DISTRIBUTIONS

the densities continuously. Let the individual densities be indexed continuously
by θ; that is, the density corresponding to θ is p(·; θ). Now, let w(·) be a weight
(density) associated with θ such that w(θ) ≥ 0 and

∫
w(θ)dθ = 1. Then, form

the mixture density p(·) as

p(x) =
∫

w(θ)p(x; θ)dθ. (5.4)

An example of this kind of mixture is the beta-binomial distribution, the density
of which is given in equation (5.18).

Probability-Skewed Distributions

A special type of mixture distribution is a probability-skewed distribution, in
which the mixing weights are the values of a CDF. The skew-normal distribution
is a good example.

The (standard) skew-normal distribution has density

g(x) =
2√
2π

e−x2/2Φ(λx) for −∞ ≤ x ≤ ∞, (5.5)

where Φ(·) is the standard normal CDF, and λ is a constant such that −∞ <
λ < ∞. For λ = 0, the skew-normal distribution is the normal distribution, and
in general, if |λ| is relatively small, the distribution is close to the normal. For
larger |λ|, the distribution is more skewed, either positively or negatively. This
distribution is an appropriate distribution for variables that would otherwise
have a normal distribution but have been screened on the basis of a correlated
normal random variable. See Arnold et al. (1993) for discussions.

Other distributions symmetric about 0 can also be skewed by a CDF in this
manner. The general form of the probability density is

g(x) ∝ p(x)P (λx),

where p(·) is the density of the underlying symmetric distribution, and P (·)
is a CDF (not necessarily the corresponding one). The idea also extends to
multivariate distributions. Arnold and Beaver (2000) discuss definitions and
applications of such densities, specifically a skew-Cauchy density.

In most cases, if |λ| is relatively small, generation of random variables
from a probability-skewed symmetric distribution using an acceptance/rejection
method with the underlying symmetric distribution as the majorizing density
is entirely adequate. For larger values of |λ|, it is necessary to divide the sup-
port into two or more intervals. It is still generally possible to use the same
majorizing density, but the multiplicative constant can be different in different
intervals.

5.2 Some Specific Univariate Distributions

In this section, we consider several of the more common univariate distributions
and indicate methods for simulating them. The methods discussed are generally

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 171

among the better ones, at least according to some criteria, but the discussion is
not exhaustive. We give the details for some simpler algorithms, but in many
cases the best algorithm involves many lines of a program with several constants
that optimize a majorizing function or a squeeze function or the breakpoints of
mixtures. We sometimes do not describe the best method in detail but rather
refer the interested reader to the relevant literature. Devroye (1986a) has given
a comprehensive treatment of methods for generating deviates from various
distributions, and more information on many of the algorithms in this section
can be found in that reference.

The descriptions of the algorithms that we give indicate the computations,
but if the reader develops a program from the algorithm, issues of computational
efficiency should be considered. For example, in the descriptions, we do not
identify the computations that should be removed from the main body of the
algorithm and made part of some setup computations.

Two variations of a distribution are often of interest. In one variation, the
distribution is truncated. In this case, as we mentioned above, the range of
the original distribution is restricted to a subrange and the probability measure
adjusted accordingly. In another variation, the role of the random variable
and the parameter of the distribution are interchanged. In some cases, these
quantities have a natural association, and the corresponding distributions are
said to be conjugate. An example of two such distributions are the binomial
and the beta. What is a realization of a random variable in one distribution is
a parameter in the other distribution. For many distributions, we may want to
generate samples of a parameter, given realizations of the random variable (the
data).

5.2.1 Normal Distribution

The normal distribution, which we denote by N(µ, σ2), has the probability
density

p(x) =
1√
2πσ

e−(x−µ)2/(2σ2) for −∞ ≤ x ≤ ∞. (5.6)

If Z ∼ N(0, 1) and X = σZ + µ, then X ∼ N(µ, σ2). Because of this sim-
ple relationship, it is sufficient to develop methods to generate deviates from
the standard normal distribution, N(0, 1), so there is no setup involved. All
constants necessary in any algorithm can be precomputed and stored.

There are several methods for transforming uniform random variates into
normal random variates.

One transformation not to use is:

1. Generate ui for i = 1, . . . , 12 as i.i.d. U(0, 1).
2. Deliver x =

∑
ui − 6.

This method is the Central Limit Theorem applied to a sample of size 12. Not
only is the method approximate (and based on a poor approximation!), but it
is also slower than better methods.

172 CHAPTER 5. SPECIFIC DISTRIBUTIONS

A simple method is the Box–Muller method arising from a polar transfor-
mation: If U1 and U2 are independently distributed as U(0, 1), and

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2), (5.7)

then X1 and X2 are independently distributed as N(0, 1) (see Exercises 5.1a
and 5.1b on page 213).

The Box–Muller transformation is rather slow. It requires evaluation of one
square root and two trigonometric functions for every two deviates generated.

As noted by Neave (1973), if the uniform deviates used in the Box–Muller
transformation are generated by a congruential generator with small multiplier,
the resulting normals are deficient in the tails. Golder and Settle (1976) under
similar conditions demonstrate that the density of the generated normal variates
has a jagged shape, especially in the tails. Of course, if they had analyzed their
small-multiplier congruential generator, they would have found that generator
lacking. (See the discussion about Figure 1.3, page 16.) It is easy to see that
the largest and smallest numbers generated by the Box–Muller transformation
occur when a value of u1 from the uniform generator is close to 0. A bound
on the absolute value of the numbers generated is

√−2 log(e), where e is the
smallest floating-point that can be generated by the uniform generator. (In
the “minimal standard” congruential generator and many similar generators,
the smallest number is approximately 2−31, so the bound on the absolute value
is approximately 6.56.) How close the results of the transformation come to
the bound depends on whether u2 is close to 0, 1/4, 1/2, 3/4, or 1 when u1 is
close to 0. (In the “minimal standard” generator, when u1 is at the smallest
value possible, cos(2πu2) is close to 1 because u2 is relatively close to 0. The
maximum number, therefore, is very close to the upper bound of 6.56, which has
a p-value of the same order of magnitude as the reciprocal of the period of the
generator. On the other hand, when u1 is close to 0, the value of u2 is never close
enough to 1/2 or 3/4 to yield a value of one of the trigonometric functions close
to −1. The minimum value that results from the Box–Muller transformation,
therefore, does not approach the lower bound of −6.56. The p-value of the
minimum value is three to four orders of magnitude greater than the reciprocal
of the period of the generator.) If the Box–Muller transformation is used with
a congruential generator, especially one with a relatively small multiplier, the
roles of u1 and u2 should be exchanged periodically. This ensures that the lower
and upper bounds are approximately symmetric if the generator has full period.

Tezuka (1991) shows that similar effects also are noticeable if a poor Taus-
worthe generator is used. These studies emphasize the importance of using
a good uniform generator for whatever distribution is to be simulated. It is
especially important to be wary of the effects of a poor uniform generator in
algorithms that require more than one uniform deviate (see Section 4.3).

Bratley, Fox, and Schrage (1987) show that normal variates generated by
the Box-Muller transformation lie pairwise on spirals. The spirals are of exactly

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 173

the same origin as the lattice of the congruential generator itself, so a solution
would be to use a better uniform generator.

To alleviate potential problems of patterns in the output of a polar method
such as the Box–Muller transformation, some authors have advocated that, for
each pair of uniforms, only one of the resulting pair of normals be used. If there
is any marginal gain in quality, it is generally not noticeable, especially if the
roles of u1 and u2 are exchanged periodically as recommended.

The Box–Muller transformation is one of several polar methods. All of
them have similar properties, but the Box–Muller transformation generally re-
quires slower computations. Although most currently available computing sys-
tems can evaluate the necessary trigonometric functions extremely rapidly, the
Box–Muller transformation can often be performed more efficiently using an
acceptance/rejection algorithm, as we indicated in the general discussion of ac-
ceptance/rejection methods (see Exercise 5.1d on page 213). The Box–Muller
transformation is implemented via rejection in Algorithm 5.1.

Algorithm 5.1 A Rejection Polar Method for Normal Variates

1. Generate v1 and v2 independently from U(−1, 1), and set r2 = v2
1 + v2

2 .

2. If r2 ≥ 1, then
go to step 1;

otherwise,
deliver

x1 = v1

√−2 log r2/r2

x2 = v2

√−2 log r2/r2.

Ahrens and Dieter (1988) describe fast polar methods for the Cauchy and
exponential distributions in addition to the normal distribution.

The fastest algorithms for generating normal deviates use either a ratio-
of-uniforms method or a mixture with acceptance/rejection. One of the best
algorithms, called the rectangle/wedge/tail method, is described by Marsaglia,
MacLaren, and Bray (1964). In that method, the normal density is decomposed
into a mixture of densities with shapes as shown in Figure 5.1. It is easy to
generate a variate from one of the rectangular densities, so the decomposition
is done to give a high probability of being able to use a rectangular density.
That, of course, means lots of rectangles, which brings some inefficiencies. The
optimal decomposition must address those tradeoffs. The wedges are nearly
linear densities (see Algorithm 4.7), so generating from them is relatively fast.
The tail region takes the longest time, so the decomposition is such as to give a
small probability to the tail. Ahrens and Dieter (1972) give an implementation
of the rectangle/wedge/tail method that can be optimized at the bit level.

Kinderman and Ramage (1976) represent the normal density as a mixture
and apply a variety of acceptance/rejection and table-lookup techniques for the
components. The individual techniques for various regions have been developed
by Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia, MacLaren, and

174 CHAPTER 5. SPECIFIC DISTRIBUTIONS

Figure 5.1: Rectangle/Wedge/Tail Decomposition

Bray (1964). Marsaglia and Tsang (1984) also give a decomposition, resulting
in what they call the “ziggurat method”.

Leva (1992a) describes a ratio-of-uniforms method with very tight bounding
curves for generating normal deviates. (The 15-line Fortran program imple-
menting Leva’s method is Algorithm 712 of CALGO; see Leva, 1992b.)

Given the current speed of the standard methods of evaluating the inverse
normal CDF, the inverse CDF method is often useful, especially if order sta-
tistics are of interest. Even with the speed of the standard algorithms for the
inverse normal CDF, specialized versions, possibly to a slightly lower accuracy,
have been suggested, for example by Marsaglia (1991) and Marsaglia, Zaman,
and Marsaglia (1994). (The latter reference gives two algorithms for inverting
the normal CDF: one very accurate, and one faster but slightly less accurate.)

Wallace (1996) describes an interesting method of generating normals from
other normals rather than by making explicit transformations of uniforms. The
method begins with a set of kp normal deviates generated by some standard
method. The deviates are normalized so that their sum of squares is 1024. Let
X be a k × p array containing those deviates, and let Ai be a k × k orthogonal
matrix. New normal deviates are formed by multiplication of an orthogonal
matrix and the columns of X . A random column from the array and a random
method of moving from one column to another are chosen. In Wallace’s imple-
mentation, k is 4 and p is 256. Four orthogonal 4 × 4 matrices are chosen to

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 175

make the matrix/vector multiplication fast:

A1 =
1
2

1 1 −1 1
1 −1 1 1
1 −1 −1 −1

−1 −1 −1 1

 A2 =
1
2

1 −1 −1 −1
1 −1 1 1
1 1 −1 1

−1 −1 −1 1

A3 =
1
2

1 −1 1 1

−1 −1 1 −1
−1 −1 −1 1
−1 1 1 1

 A4 =
1
2

−1 1 −1 −1
−1 −1 1 −1
−1 1 1 1

1 1 1 −1

 ;

hence, the matrix multiplication is usually just the addition of two elements of
the vector. After a random column of X is chosen (that is, a random integer
between 1 and 256), a random odd number between 1 and 255 is chosen as a
stride (that is, as an increment for the column number) to allow movement from
one column to another. The first column chosen is multiplied by A1, the next
by A2, the next by A3, the next by A4, and then the next by A1, and so on. The
elements of the vectors that result from these multiplications constitute both
the normal deviates output in this pass and the elements of a new k × p array.
Except for rounding errors, the elements in the new array should have a sum
of squares of 1024 also. Just to avoid any problems from rounding, however,
the last element generated is not delivered as a normal deviate but instead is
used to generate a chi-squared deviate, y, with 1024 degrees of freedom via a
Wilson–Hilferty approximation, and the 1023 other values are normalized by√

y/1024. (The Wilson–Hilferty approximation relates the chi-squared random
variable Y with ν degrees of freedom to the standard normal random variable
X by

X ≈
(

Y
ν

) 1
3 − (1 − 2

9ν

)√
2
9ν

.

The approximation is fairly good for ν > 30. See Abramowitz and Stegun,
1964.)

Truncated Normal Distribution

In Monte Carlo studies, the tail behavior is often of interest. Variates from the
tail of a distribution can always be formed by selecting variates generated from
the full distribution, of course, but this can be a very slow process. Marsaglia
(1964), Geweke (1991a), Robert (1995), and Damien and Walker (2001) give
methods for generating variates directly from a truncated normal distribution.
The truncated normal with left truncation point τ has density

p(x) =
e−(x−µ)2/(2σ2)

√
2πσ

(
1 − Φ

(
τ−µ

σ

)) for τ ≤ x ≤ ∞,

where Φ(·) is the standard normal CDF.

176 CHAPTER 5. SPECIFIC DISTRIBUTIONS

The method of Robert uses an acceptance/rejection method with a trans-
lated exponential as the majorizing density; that is,

g(y) = λ∗e−λ∗(y−τ) for τ ≤ y ≤ ∞,

where

λ∗ =
τ +

√
τ2 + 4
2

. (5.8)

(See the next section for methods to generate exponential random variates.)
The method of Damien and Walker uses conditional distributions. The range

of the conditional uniform that yields the normal is taken as the intersection of
the truncated range and the full conditional range (−√−2 logY ,

√−2 logY) in
the example on page 149.

Lognormal and Halfnormal Distributions

Two distributions closely related to the normal are the lognormal and the
halfnormal. The lognormal is the distribution of a random variable whose
logarithm has a normal distribution. A very good way to generate lognormal
variates is just to generate normal variates and exponentiate. The halfnormal
is the folded normal distribution. The best way to generate deviates from the
halfnormal is just to take the absolute value of normal deviates.

5.2.2 Exponential, Double Exponential, and Exponential
Power Distributions

The exponential distribution with parameter λ > 0 has the probability density

p(x) = λe−λx for 0 ≤ x ≤ ∞. (5.9)

If Z has the standard exponential distribution (that is, with parameter equal
to 1), and X = Z/λ, then X has the exponential distribution with parameter λ
(called the “rate”). Because of this simple relationship, it is sufficient to develop
methods to generate deviates from the standard exponential distribution. The
exponential distribution is a special case of the gamma distribution, the density
of which is given in equation (5.13). The parameters of the gamma distribution
are α = 1 and β = 1

λ .
The inverse CDF method is very easy to implement and is generally sat-

isfactory for the exponential distribution. The method is to generate u from
U(0, 1) and then take

x = − log(u)
λ

. (5.10)

(This and similar computations are why we require that the simulated uniform
not include its endpoints.)

Many other algorithms for generating exponential random numbers have
been proposed over the years. Marsaglia, MacLaren, and Bray (1964) apply

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 177

the rectangle/wedge/tail method to the exponential distribution. Ahrens and
Dieter (1972) give a method that can be highly optimized at the bit level.

Ahrens and Dieter also provide a catalog of other methods for generating
exponentials. These other algorithms seek greater speed by avoiding the compu-
tation of the logarithm. Many simple algorithms for random number generation
involve evaluation of elementary functions. As we have indicated, evaluation of
an elementary function at a random point can often be performed equivalently
by acceptance/rejection, and Ahrens and Dieter (1988) describe a method for
the exponential that does that. (See Hamilton, 1998, for some corrections to
their algorithm.) As the software for evaluating elementary functions has be-
come faster, the need to avoid their evaluation has decreased.

A common use of the exponential distribution is as the model of the inter-
arrival times in a Poisson process. A (homogeneous) Poisson process,

T1 < T2 < . . . ,

with rate parameter λ can be generated by taking the output of an exponential
random number generator with parameter λ as the times,

t1, t2 − t1,

We consider nonhomogeneous Poisson processes in Section 6.5.2, page 225.

Truncated Exponential Distribution

The interarrival process is memoryless, and the tail of the exponential distrib-
ution has an exponential distribution; that is, if X has the density (5.9), and
Y = X + τ , then Y has the density

λeλτe−λy for τ ≤ y ≤ ∞.

This fact provides a very simple process for generating from the tail of an
exponential distribution.

Double Exponential Distribution

The double exponential distribution, also called the Laplace distribution, with
parameter λ > 0 has the probability density

p(x) =
λ

2
e−λ|x| for −∞ ≤ x ≤ ∞. (5.11)

The double exponential distribution is often used in Monte Carlo studies of
robust procedures because it has a heavier tail than the normal distribution yet
corresponds well with observed distributions.

If Z has the standard exponential distribution and X = SZ/λ, where S is
a random variable with probability mass 1

2 at −1 and at +1, then X has the
double exponential distribution with parameter λ. This fact is the basis for the

178 CHAPTER 5. SPECIFIC DISTRIBUTIONS

method of generating double exponential variates; generate an exponential, and
change the sign with probability 1

2 . The method of bit stripping (see page 10)
can be used to do this as long as the lower-order bits are the ones used and
assuming that the basic uniform generator is a very good one.

Exponential Power Distribution

A generalization of the double exponential distribution is the exponential power
distribution, having density

p(x) ∝ e−λ|x|α for −∞ ≤ x ≤ ∞. (5.12)

For α = 2, the exponential power distribution is the normal distribution. The
members of this family with 1 ≤ α < 2 are often used to model distribu-
tions with slightly heavier tails than the normal distribution. Either the double
exponential or the normal distribution, depending on the value of α, works
well as a majorizing density to generate exponential power variates by accep-
tance/rejection (see Tadikamalla, 1980a).

5.2.3 Gamma Distribution

The gamma distribution with parameters α > 0 and β > 0 has the probability
density

p(x) =
1

Γ(α)βα
xα−1e−x/β for 0 ≤ x ≤ ∞, (5.13)

where Γ(α) is the complete gamma function. The α parameter is called the
shape parameter, and β is called the scale parameter. If the random variable
Z has the standard gamma distribution with shape parameter α and scale pa-
rameter 1, and X = βZ, then X has a gamma distribution with parameters α
and β. (Notice that the exponential is a gamma with α = 1 and β = 1/λ.)

Of the special distributions that we have considered thus far, this is the
first one that has a parameter that cannot be handled by simple translations
and scalings. Hence, the best algorithms for the gamma distribution may be
different depending on the value of α and on how many deviates are to be
generated for a given value of α.

Cheng and Feast (1979) use a ratio-of-uniforms method, as shown in Al-
gorithm 5.2, for a gamma distribution with α > 1. The mean time of this
algorithm is O(α

1
2), so for larger values of α it is less efficient. Cheng and

Feast (1980) also gave an acceptance/rejection method that was better for large
values of the shape parameter. Schmeiser and Lal (1980) use a composition of
ten densities, some of the rectangle/wedge/tail type, followed by the accep-
tance/rejection method. The Schmeiser/Lal method is the algorithm used in
the IMSL Libraries for values of the shape parameter greater than 1. The speed
of the Schmeiser/Lal method does not depend on the value of the shape para-
meter. Sarkar (1996) gives a modification of the Schmeiser/Lal method that

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 179

has greater efficiency because of using more intervals, resulting in tighter ma-
jorizing and squeeze functions, and because of using an alias method to help
speed the process.

Algorithm 5.2 The Cheng/Feast (1979) Algorithm for Generating
Gamma Random Variates when the Shape Parameter is Greater
than 1

1. Generate u1 and u2 independently from U(0, 1), and set

v =

(
α − 1

6α

)
u1

(α − 1)u2
.

2. If
2(u2 − 1)

α − 1
+ v +

1
v
≤ 2,

then deliver x = (α − 1)v;
otherwise,

if
2 logu2

α − 1
− log v + v ≤ 1,

then deliver x = (α − 1)v.

3. Go to step 1.

An efficient algorithm for values of the shape parameter less than 1 is the
acceptance/rejection method described in Ahrens and Dieter (1974) and mod-
ified by Best (1983), as shown in Algorithm 5.3. That method is the algorithm
used in the IMSL Libraries for values of the shape parameter less than 1.

Algorithm 5.3 The Best/Ahrens/Dieter Algorithm for Generating
Gamma Random Variates when the Shape Parameter Is Less than 1

0. Set t = 0.07 + 0.75
√

1 − α and

b = 1 +
e−tα

t
.

1. Generate u1 and u2 independently from U(0, 1), and set v = bu1.

2. If v ≤ 1, then
set x = tv

1
α ;

if u2 ≤ 2 − x

2 + x
, then deliver x;

otherwise,
if u2 ≤ e−x, then deliver x;

otherwise,

set x = − log
(

t(b − v)
α

)
and y =

x

t
;

180 CHAPTER 5. SPECIFIC DISTRIBUTIONS

if u2(α + y(1 − α)) ≤ 1, then deliver x;
otherwise,

if u2 ≤ ya−1, then deliver x.

3. Go to step 1.

There are two cases of the gamma distribution that are of particular interest.
The shape parameter α often is a positive integer. In that case, the distribution
is sometimes called the Erlang distribution. If Y1, Y2, . . . , Yα are independently
distributed as exponentials with parameter 1/β, then X =

∑
Yi has a gamma

(Erlang) distribution with parameters α and β. Using the inverse CDF method
(equation (5.10)) with the independent realizations u1, u2, . . . , uα, we generate
an Erlang deviate as

x = −β log

(
α∏

i=1

ui

)
.

The general algorithms for gammas work better for the Erlang distribution if
α is large.

The other special case of the gamma is the chi-squared distribution in which
the scale parameter β is 2. Twice the shape parameter α is called the degrees of
freedom. For large or nonintegral degrees of freedom, the general methods for
generating gamma random deviates are best for generating chi-squared deviates;
otherwise, special methods described below are used.

An important property of the gamma distribution is:

If X and Y are independent gamma variates with common scale
parameter β and shape parameters α1 and α2, then X + Y has a
gamma distribution with scale parameter β and shape parameter
α1 + α2.

This fact may be used in developing schemes for generating gammas. For ex-
ample, any gamma can be represented as the sum of an Erlang variate, which is
the sum of exponential variates, and a gamma variate with shape parameter less
than 1. This representation may effectively be used in a method of generating
gamma variates (see Atkinson and Pearce, 1976).

Truncated Gamma Distribution

In some applications, especially ones involving censored observations, a trun-
cated gamma is a useful model. In the case of left-censored data, we need to
sample from the tail of a gamma distribution. The relevant distribution has
the density

p(x) =
1

(Γ(α) − Γτ/β(α))βα
xα−1e−x/β for τ ≤ x ≤ ∞,

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 181

where Γτ/β(·) is the incomplete gamma function (see page 321). Dagpunar (1978)
describes a method of sampling from the tail of a gamma distribution. The
method makes use of the fact mentioned above that an exponential distribu-
tion is memoryless. A truncated exponential is used as a majorizing density in
an acceptance/rejection method. Dagpunar first determines the optimal value
of the exponential scale parameter that will maximize the probability of accep-
tance. The value is the saddlepoint in the ratio of the truncated gamma density
to the truncated exponential (both truncated at the same point, τ),

λ =
τ − α +

√
(τ − α)2 + 4τ

2τ
.

The procedure therefore is:

1. Generate y from the truncated exponential and u independently as U(0, 1).
(y can be generated by generating u1 as U(0, 1) and taking y = − log u1

λ +
τ .)

2. If (1 − λ)y − (α − 1)(1 + log y + log 1−λ
α−1) ≤ log u1, then deliver y.

Many common applications require truncation on the right; that is, the ob-
servations are right censored. Philippe (1997) describes a method for generating
variates from a right-truncated gamma distribution, which has density

p(x) =
1

Γτ/β(α)βα
xα−1e−x/β for 0 ≤ x ≤ τ,

where Γτ/β(α) is the incomplete gamma function. Philippe shows that if the
random variable X has this distribution, then it can be represented as an infinite
mixture of beta random variables:

X =
∞∑

k=1

Γ(α)
Γ(α + k)Γ1/β(α)βα+k−1e1/β

Yk,

where Yk is a random variable with a beta random variable with parameters α
and k. Philippe suggested as a majorizing density a finite series

gm(y) ∝
m∑

k=1

1
βk−1Γ(α)Γ(k)

∑m
i=1

1
βi−1Γ(α+i)

yα−1(1 − y)k−1

=
m∑

k=1

1
βk−1Γ(α + k)

∑m
i=1

1
βi−1Γ(α+i)

hk(y),

where hk is a beta density (equation (5.14)) with parameters α and k. Thus, to
generate a variate from a distribution with density gm, we select a beta with the
probability equal to the weight and then use a method described in the next
section for generating a beta variate. The number of terms depends on the
probability of acceptance. Obviously, we want a high probability of acceptance,

182 CHAPTER 5. SPECIFIC DISTRIBUTIONS

but this requires a large number of terms in the series. For a probability of
acceptance of at least p∗ (with p∗ < 1, obviously), Philippe shows that the
number of terms required in the series is approximately

m∗ =
1
4

(
zp +

√
z2

p +
4
β

)2

,

where zp = Φ−1(p) and Φ is the standard normal CDF.

Algorithm 5.4 The Philippe (1997) Algorithm for Generating Gamma
Random Variates Truncated on the Right at τ

0. Determine m∗, and initialize quantities in gm∗ .

1. Generate y from the distribution with density gm∗ .

2. Generate u from U(0, 1).

3. If

u ≤
∑m∗

k=1
1

βk−1Γ(k)

e
y
β
∑m∗

k=1
(1−y)k−1

βk−1Γ(k)

,

then
take y as the desired realization;

otherwise,
return to step 1.

Philippe (1997) also describes methods for a left-truncated gamma distrib-
ution, including special algorithms for the case where the truncation point is
an integer. The interested reader is referred to the paper for the details.

Damien and Walker (2001) also give a method for generating variates di-
rectly from a truncated gamma distribution. Their method uses conditional
distributions, as we discuss on page 149. The range of the conditional uniform
that yields the gamma is taken as the intersection of the truncated range and
the full conditional range.

Generalized Gamma Distributions

There are a number of generalizations of the gamma distribution. The general-
izations provide more flexibility in modeling because they have more parame-
ters. Stacy (1962) defined a generalization that has two shape parameters. It
is especially useful in failure-time models. The distribution has density

p(x) =
|γ|

Γ(α)βαγ
xαγ−1e(−x/β)γ

for 0 ≤ x ≤ ∞.

This distribution includes as special cases the ordinary gamma (with γ = 1),
the halfnormal distribution (with α = 1

2 and γ = 2), and the Weibull (with

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 183

α = 1). The best way to generate a generalized gamma distribution is to use
the best method for the corresponding gamma and then exponentiate.

Everitt (1998) describes a generalized gamma distribution, which he calls
the “Creedy and Martin generalized gamma”, with density

p(x) = θ0 xθ1 eθ2x+θ3x2+θ4x3
for 0 ≤ x ≤ ∞.

This density can of course be scaled with a β, as in the other gamma distribu-
tions that we have discussed.

Ghitany (1998) and Agarwal and Al-Saleh (2001) have described a general-
ized gamma distribution based on a generalized gamma function,

Γ(α, ν, λ) =
∫ ∞

0

1
(t + ν)λ

tα−1e−tdt,

introduced by Kobayashi (1991). The distribution has density

p(x) =
1

Γ(α, ν, λ)βα−λ

xα−1

(x + βν)λ
e(−x/β) for 0 ≤ x ≤ ∞.

This distribution is useful in reliability studies because of the shapes of the
hazard function that are possible for various values of the parameters. It is the
same as the ordinary gamma for λ = 0.

D-Distributions

A class of distributions, called D-distributions, that arise in extended gamma
processes is studied by Laud, Ramgopal, and Smith (1993). The interested
reader is referred to that paper for the details.

5.2.4 Beta Distribution

The beta distribution with parameters α > 0 and β > 0 has the probability
density

p(x) =
1

B(α, β)
xα−1(1 − x)β−1 for 0 ≤ x ≤ 1, (5.14)

where B(α, β) is the complete beta function.
Efficient methods for generating beta variates require different algorithms

for different values of the parameters. If either parameter is equal to 1, it is
very simple to generate beta variates using the inverse CDF method, which in
this case would just be a root of a uniform. If both values of the parameters are
less than 1, the simple acceptance/rejection method of Jöhnk (1964), given as
Algorithm 5.5, is one of the best. If one parameter is less than 1 and the other
is greater than 1, the method of Atkinson (1979) is useful. If both parameters
are greater than 1, the method of Schmeiser and Babu (1980) is very efficient,
except that it requires a lot of setup time. For the case of both parameters

184 CHAPTER 5. SPECIFIC DISTRIBUTIONS

greater than 1, Cheng (1978) gives an algorithm that requires very little setup
time. The IMSL Libraries use all five of these methods, depending on the values
of the parameters and how many deviates are to be generated for a given setting
of the parameters.

Algorithm 5.5 Jöhnk’s Algorithm for Generating Beta Random
Variates when Both Parameters are Less than 1

1. Generate u1 and u2 independently from U(0, 1), and set v1 = u
1/α
1 and

v2 = u
1/β
2 .

2. Set w = v1 + v2.

3. If w > 1, then go to step 1.

4. Set x =
v1

w
, and deliver x.

5.2.5 Chi-Squared, Student’s t, and F Distributions

The chi-squared, Student’s t, and F distributions all are derived from the nor-
mal distribution. Variates from these distributions could, of course, be gener-
ated by transforming normal deviates. In the case of the chi-squared distribu-
tion, however, this would require generating and squaring several normals for
each chi-squared deviate. A more direct algorithm is much more efficient. Even
in the case of the t and F distributions, which would require only a couple of
normals or chi-squared deviates, there are better algorithms.

Chi-Squared Distribution

The chi-squared distribution, as we have mentioned above, is a special case
of the gamma distribution (see equation (5.13)) in which the scale parameter,
β, is 2. Twice the shape parameter, 2α, is called the degrees of freedom and
is often denoted by ν. If ν is large or is not an integer, the general methods
for generating gamma random deviates described above are best for generating
chi-squared deviates. If the degrees of freedom value is a small integer, the
chi-squared deviates can be generated by taking a logarithm of the product of
some independent uniforms. If ν is an even integer, the chi-squared deviate r
is produced from ν/2 independent uniforms, ui, by

r = −2 log

ν/2∏
i=1

ui

 .

If ν is an odd integer, this method can be used with the product going to
(ν − 1)/2, and then the square of an independent normal deviate is added to
produce r.

The square root of the chi-squared random variable is sometimes called a chi
random variable. Although, clearly, a chi random variable could be generated

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 185

as the square root of a chi-squared deviate generated as above, there are more
efficient direct ways of generating a chi deviate; see Monahan (1987).

Student’s t Distribution

The standard t distribution with ν degrees of freedom has density

p(x) =
Γ
(

ν+1
2

)
Γ
(

ν
2

)√
νπ

(
1 +

x2

ν

)− ν+1
2

for −∞ ≤ x ≤ ∞. (5.15)

The degrees of freedom, ν, does not have to be an integer, but it must be
positive.

A standard normal random variable divided by the square root of a chi-
squared random variable with ν degrees of freedom is a t random variable with
ν degrees of freedom. Also, the square root of an F random variable with 1 and
ν degrees of freedom is a t random variable with ν degrees of freedom. These
relations could be used to generate t deviates, but neither yields an efficient
method.

Kinderman and Monahan (1980) describe a ratio-of-uniforms method for
the t distribution. The algorithm is rather complicated, but it is very efficient.
Marsaglia (1980) gives a simpler procedure that is almost as fast. Either is
almost twice as fast as generating a normal deviate and a chi-squared deviate
and dividing by the square root of the chi-squared one. Marsaglia (1984) also
gives a very fast algorithm for generating t variates that is based on a trans-
formed acceptance/rejection method that he called exact-approximation (see
Section 4.5).

Bailey (1994) gives the polar method shown in Algorithm 5.6 for the Stu-
dent’s t distribution. It is similar to the polar method for normal variates given
in Algorithm 5.1.

Algorithm 5.6 A Rejection Polar Method for t Variates with ν
Degrees of Freedom

1. Generate v1 and v2 independently from U(−1, 1), and set r2 = v2
1 + v2

2 .

2. If r2 ≥ 1, then
go to step 1;

otherwise,

deliver x = v1

√
ν(r−4/ν − 1)

r2
.

The jagged shape of the frequency curve of normals generated via a polar
method based on a poor uniform generator that was observed by Neave (1973)
and by Golder and Settle (1976) may also occur for t variates generated by this
polar method. It is important to use a good uniform generator for whatever
distribution is to be simulated.

186 CHAPTER 5. SPECIFIC DISTRIBUTIONS

In Bayesian analysis, it is sometimes necessary to generate random variates
for the degrees of freedom in a t distribution conditional on the data. In the
hierarchical model underlying the analysis, the t random variable is interpreted
as a mixture of normal random variables divided by square roots of gamma
random variables. For given realizations of gammas, λ1, λ2, . . . , λn, the density
of the degrees of freedom is

p(x) ∝
n∏

i=1

νν/2

2ν/2Γ
(

ν
2

)λν/2
i e−νλi/2.

Mendoza-Blanco and Tu (1997) show that three different gamma distributions
can be used to approximate this density very well for three different ranges
of values of λge−λa , where λg is the geometric mean of the λi, and λa is the
arithmetic mean. Although the approximations are very good, the gamma
approximations could also be used as majorizing densities.

F Distribution

A variate from the F distribution can be generated as the ratio of two chi-
squared deviates, which, of course, would be only half as fast as generating a
chi-squared deviate. A better way to generate an F variate is as a transformed
beta. If X is distributed as a beta, with parameters ν1/2 and ν2/2, and

Y =
ν2

ν1

X

1 − X
,

then Y has an F distribution with ν1 and ν2 degrees of freedom. Generat-
ing a beta deviate and transforming it usually takes only slightly longer than
generating a single chi-squared deviate.

5.2.6 Weibull Distribution

The Weibull distribution with parameters α > 0 and β > 0 has the probability
density

p(x) =
α

β
xα−1e−xα/β for 0 ≤ x ≤ ∞. (5.16)

The simple inverse CDF method applied to the standard Weibull distribution
(i.e., β = 1) is quite efficient. The expression is simply

(− logu)
1
α .

Of course, an acceptance/rejection method could be used to replace the evalu-
ation of the logarithm in the inverse CDF. The standard Weibull deviates are
then scaled by β1/α.

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 187

5.2.7 Binomial Distribution

The probability function for the binomial distribution with parameters n and
π is

p(x) =
n!

x!(n − x)!
πx(1 − π)n−x for x = 0, 1, . . . , n, (5.17)

where n is a positive integer and 0 < π < 1.
To generate a binomial, a simple way is to sum Bernoullis (equation (4.4),

and Algorithm 4.1, page 105), which is equivalent to an inverse CDF technique.
If n, the number of independent Bernoullis, is small, this method is adequate.
The time required for this kind of algorithm is obviously O(n). For larger values
of n, the median of a random sample of size n from a Bernoulli distribution
can be generated (it has an approximate beta distribution; see Relles, 1972),
and then the inverse CDF method can be applied from that point. Starting
at the median allows the time required to be halved. Kemp (1986) shows that
starting at the mode results in an even faster method and gives a method to
approximate the modal probability quickly. If this idea is applied recursively,
the time becomes O(log n). The time required for any method based on the
CDF of the binomial is an increasing function of n.

Several methods whose efficiencies are not so dependent on n are available,
and for large values of n they are to be preferred to methods based on the CDF.
(The value of π also affects the speed; the inverse CDF methods are generally
competitive as long as nπ < 500.) Stadlober (1991) described an algorithm
based on a ratio-of-uniforms method. Kachitvichyanukul (1982) gives an effi-
cient method using acceptance/rejection over a composition of four regions (see
Schmeiser, 1983; and Kachitvichyanukul and Schmeiser, 1988a, 1990). This is
the method used in the IMSL Libraries.

Beta-Binomial Distribution

The beta-binomial distribution is the mixture distribution that is a binomial
for which the parameter π is a realization of a random variable that has a
beta distribution. This distribution is useful for modeling overdispersion or
“extravariation” in applications where there are clusters of separate binomial
distributions.

The probability function for the beta-binomial distribution with parameters
n, which is a positive integer, α > 0, and β > 0 is

p(x) =
n!

x!(n − x)!B(α, β)

∫ 1

0

πα−1+x(1 − π)n+β−1−xdπ for x = 0, 1, . . . , n,

(5.18)
where B(α, β) is the complete beta function. (The integral in this expression is
B(α + x, n + β − x).)

The mean of the beta-binomial is in the form of the binomial mean, nπ,

188 CHAPTER 5. SPECIFIC DISTRIBUTIONS

with the beta mean, α/(α + β), in place of π, but the variance is

nαβ

(α + β)2
n + α + β

1 + α + β
.

A simple way of generating deviates from a beta-binomial distribution is first
to generate the parameter π as the appropriate beta and then to generate the
binomial (see Ahn and Chen, 1995). In this case, an inverse CDF method for
the binomial may be more efficient because it does not require as much setup
time as the generally more efficient ratio-of-uniforms or acceptance/rejection
methods referred to above.

5.2.8 Poisson Distribution

The probability function for the Poisson distribution with parameter θ > 0 is

p(x) =
e−θθx

x!
for x = 0, 1, 2, (5.19)

A Poisson with a small mean, θ, can be generated efficiently by the inverse
CDF technique. Kemp and Kemp (1991) describe a method that begins at the
mode of the distribution and proceeds in the appropriate direction to identify
the inverse. They give a method for identifying the mode and computing the
modal probability.

Many of the other methods that have been suggested for the Poisson also re-
quire longer times for distributions with larger means. Ahrens and Dieter (1980)
and Schmeiser and Kachitvichyanukul give efficient methods having times that
do not depend on the mean (see Schmeiser, 1983). The method of Schmeiser
and Kachitvichyanukul uses acceptance/rejection over a composition of four
regions. This is the method used in the IMSL Libraries.

5.2.9 Negative Binomial and Geometric Distributions

The probability function for the negative binomial is

p(x) =
(

x + r − 1
r − 1

)
πr(1 − π)x for x = 0, 1, 2, . . . , (5.20)

where r > 0 and 0 < π < 1. If r is an integer, the negative binomial distribution
is sometimes called the Pascal distribution. If π is the probability of a success
in a single Bernoulli trial, the random variable can be thought of as the number
of failures before r successes are obtained.

If rπ/(1 − π) is relatively small and (1 − π)r is not too small, the inverse
CDF method works well. Otherwise, a gamma (r, π/(1− π)) can be generated
and used as the parameter to generate a Poisson. The Poisson variate is then
delivered as the negative binomial variate.

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 189

The geometric distribution is a special case of the negative binomial with
r = 1. The probability function is

p(x) = π(1 − π)x for x = 0, 1, 2, (5.21)

The integer part of an exponential random variable with parameter λ = − log(1−
π) has a geometric distribution with parameter π; hence, the simplest, and also
one of the best, methods for the geometric distribution with parameter π is to
generate a uniform deviate u and take⌈ log u

log(1 − π)

⌉
.

It is common to see the negative binomial and the geometric distributions
defined as starting at 1 instead of 0, as above. The distributions are the same
after making an adjustment of subtracting 1.

5.2.10 Hypergeometric Distribution

The probability function for the hypergeometric distribution is

p(x) =

(
M
x

)(
L − M
N − x

)
(

L
N

) (5.22)

for x = max(0, N − L + M), . . . , min(N, M).

The usual method of developing the hypergeometric distribution is with a finite
sampling model: N items are to be sampled, independently with equal proba-
bility and without replacement, from a lot of L items of which M are special;
the random variable X is the number of special items in the random sample.

A good method for generating from the hypergeometric distribution is the
inverse CDF method. The inverse CDF can be evaluated recursively using
the simple expression for the ratio p(x + 1)/p(x), so the build-up search of
Algorithm 4.4 or the chop-down search of Algorithm 4.5 could be used. In
either case, beginning at the mean, MN/L, can speed up the search.

Another simple method that is good is straightforward use of the finite
sampling model that defines the distribution.

Kachitvichyanukul and Schmeiser (1985) give an algorithm based on accep-
tance/rejection of a probability function decomposed as a mixture, and Stad-
lober (1990) describes an algorithm based on a ratio-of-uniforms method. Both
of these can be faster than the inverse CDF for larger values of N and M . Kach-
itvichyanukul and Schmeiser (1988b) give a Fortran program for sampling from
the hypergeometric distribution. The program uses either the inverse CDF or
the acceptance/rejection method depending on the mode,

m =
⌈

(N + 1)(M + 1)
L + 2

⌉
.

190 CHAPTER 5. SPECIFIC DISTRIBUTIONS

If m−max(0, N+M−L) < 10, then the inverse CDF method is used; otherwise,
the composition/acceptance/rejection method is used.

Extended Hypergeometric Distribution

A related distribution, called the extended hypergeometric distribution, can be
developed by assuming that X and Y = N −X are binomial random variables
with parameters M and πX and L−M and πY , respectively. Let ρ be the odds
ratio,

ρ =
πX(1 − πY)
πY (1 − πX)

;

then, the conditional distribution of X given X + Y = N has probability mass
function

p(x|x + y = N) =

(
M
x

)(
L − M
N − x

)
ρx

b∑
j=a

(
M
j

)(
L − M
N − j

)
ρj

(5.23)

for x = a . . . , b,

where a = max(0, N − L + M) and b = min(N, M).
This function can also be evaluated recursively and random numbers gener-

ated by the inverse CDF method, similarly to the hypergeometric distribution.
Liao and Rosen (2001) describe methods for evaluating the probability mass
functions and also for computing the mode of the distribution in order to speed
up the evaluation of the inverse CDF.

Another generalization, called the noncentral hypergeometric distribution,
is developed by allowing different probabilities of selecting the two types of
items. If the relative probability of selecting an item of the special type to
that of selecting an item of the other type (given an equal number of each
type) ω, the realization of X can be built sequentially by Bernoulli realizations
with probability Mk/(Mk + ω(Lk − Mk)), where Mk is the number of special
items remaining. Variates from this distribution can be generated by the finite
sampling model underlying the distribution.

5.2.11 Logarithmic Distribution

The probability function for the logarithmic distribution with parameter θ is

p(x) = − θx

x log(1 − θ)
for x = 1, 2, 3, . . . , (5.24)

where 0 < θ < 1.
Kemp (1981) describes a method for generating efficiently from the inverse

logarithmic CDF either using a chop-down approach (see page 108) to move

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 191

rapidly down the set of CDF values or using a mixture in which highly likely
values are given priority.

5.2.12 Other Specific Univariate Distributions

Many other interesting distributions have simple relationships to the standard
distributions discussed above. When that is the case, because there are highly
optimized methods for the standard distributions, it is often best just to use a
very good method for the standard distribution and then apply the appropriate
transformation. For some distributions, the inverse CDF method is almost as
good as more complicated methods.

Cauchy Distribution

Variates from the Cauchy or Lorentzian distribution, which has density

p(x) =
1

πa
(
1 +
(

x−b
a

)2) for −∞ ≤ x ≤ ∞, (5.25)

can be generated easily by the inverse CDF method. For the standard Cauchy
distribution (that is, with a = 1 and b = 0), given u from U(0, 1), a Cauchy
is tan(πu). The tangent function in the inverse CDF could be evaluated by
acceptance/rejection in the manner mentioned on page 121, but if the inverse
CDF is to be used, it is probably better just to use a good numerical function
to evaluate the tangent. Kronmal and Peterson (1981) express the Cauchy
distribution as a mixture and give an acceptance/complement method that is
very fast.

Rayleigh Distribution

For the Rayleigh distribution with density

p(x) =
x

σ2
e−x2/2σ2

for 0 ≤ x ≤ ∞ (5.26)

(which is a Weibull distribution with parameters α = 2 and β = 2σ2), variates
can be generated by the inverse CDF method as

x = σ
√
− log u.

Faster acceptance/rejection methods can be constructed, but if the computing
system has fast functions for exponentiation and taking logarithms, the inverse
CDF is adequate.

Pareto Distribution

For the Pareto distribution with density

p(x) =
aba

xa+1
for b ≤ x ≤ ∞, (5.27)

192 CHAPTER 5. SPECIFIC DISTRIBUTIONS

variates can be generated by the inverse CDF method as

x =
b

u1/a
.

There are many variations of the continuous Pareto distribution, the sim-
plest of which is the one defined above. In addition, there are some discrete
versions, including various zeta and Zipf distributions. (See Arnold, 1983, for
an extensive discussion of the variations.) Variates from these distributions
can usually be generated by discretizing some form of a Pareto distribution.
Dagpunar (1988) describes such a method for a zeta distribution, in which the
Pareto variates are first generated by an acceptance/rejection method.

Zipf Distribution

The standard Zipf distribution assigns probabilities to the positive integers x
proportional to x−α, for α > 1. The probability function is

p(x) =
1

ζ(α)xα
for x = 1, 2, 3, . . . , (5.28)

where ζ(α) =
∑∞

x=1 x−α (the Riemann zeta function).
Variates from the simple Zipf distribution can be generated efficiently by a

direct acceptance/rejection method given by Devroye (1986a). In this method,
first two variates u1 and u2 are generated from U(0, 1), and then x and t are
defined as

x = �u−1/(α−1)
1 �

and
t = (1 + 1/x)α−1.

The variate x is accepted if

x ≤ t

t − 1
2α−1 − 1
2α−1u2

.

Von Mises Distribution

Variates from the von Mises distribution with density

p(x) =
1

2πI0(c)
ec cos(x) for − π ≤ x ≤ π, (5.29)

as discussed on page 140, can be generated by the acceptance/rejection method.
Best and Fisher (1979) use a transformed folded Cauchy distribution as the
majorizing distribution. The majorizing density is

g(y) =
1 − ρ2

π(1 + ρ2 − 2ρ cosy)
for 0 ≤ y ≤ π,

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 193

where ρ is chosen in [0, 1) to optimize the probability of acceptance for a given
value of the von Mises parameter, c. (Simple plots of g(·) with different val-
ues of ρ compared to a plot of p(·) with a given value of c visually lead to a
relatively good choice of ρ.) This is the method used in the IMSL Libraries.
Dagpunar (1990) gives an acceptance/rejection method for the von Mises dis-
tribution that is often more efficient.

Inverse Gaussian Distribution

The inverse Gaussian distribution is widely used in reliability studies. The
density, for location parameter µ > 0 and scale parameter λ > 0, is

p(x) =
(

λ

2π

)1/2

x−3/2 exp
(−λ(x − µ)2

2µ2x

)
for 0 ≤ x ≤ ∞. (5.30)

The inverse Gaussian distribution with µ = 1 is called the Wald distribution. It
is the distribution of the first passage time in a standard Brownian motion with
positive drift. Michael, Schucany, and Haas (1976) and Atkinson (1982) dis-
cussed methods for simulating inverse Gaussian random deviates. The method
of Michael et al., given as Algorithm 5.7, is particularly straightforward but
efficient.

Algorithm 5.7 Michael/Schucany/Haas Method for Generating
Inverse Gaussians

1. Generate v from N(0, 1), and set y = v2.

2. Set x1 = µ + µ2y
2λ − µ

2λ

√
4µλy + µ2y2.

3. Generate u from U(0, 1).

4. If u ≤ µ
µ+x1

, then
deliver x = x1;

otherwise,
deliver x = µ2

x1
.

The generalized inverse Gaussian distribution has an additional parameter
that is the exponent of x in the density (5.30), which allows for a wider range of
shapes. Barndorff-Nielsen and Shephard (2001) discuss the generalized inverse
Gaussian distribution, and describe a method for generating random numbers
from it.

5.2.13 General Families of Univariate Distributions

In simulation applications, one of the first questions is what is the distribution
of the random variables that model observational data. Some distributions,
such as Poisson or hypergeometric distributions, are sometimes obvious from
first principles of the data-generating process. In other cases, there may be a

194 CHAPTER 5. SPECIFIC DISTRIBUTIONS

“natural” distribution, such as normal or exponential, or a distribution derived
from a natural distribution, such as Student’s t or chi-squared. Sometimes,
however, we may not be willing to assume one of these parametric models. We
may seek a more general approach that loosely models an observed dataset. We
may want only to specify some of the moments, for example. Alternatively, we
may want the model distribution to correspond to a few specified quantiles.

There are a number of general families of distributions that may be useful in
simulating data that correspond well to observed data. Some commonly used
ones are the Pearson family, the Johnson family, the generalized lambda family,
and the Burr family. The Pearson family is probably the best known of these
distributions. A specific member of the family is determined by the first four
moments, so a common way of fitting a distribution to an observed set of data
is by matching the moments of the distribution to those of the sample.

Another widely used general family of distribution is the Johnson family.
A specific member of this family is also determined by the first four or five
moments, depending on the parametrization (see Hill, Hill, and Holder, 1976,
and Bacon-Shone, 1985). Specific members of the Johnson family can also be
constructed from the percentiles of the observations to be modeled (see Chou et
al., 1994). Devroye (1986a) describes a method for simulating Johnson variates
for a given parametrization.

A generalized lambda family of distributions was described by Ramberg and
Schmeiser (1974). This system, which is a generalization of a system introduced
by John Tukey, has four parameters that can be chosen to fit a variety of
distributional shapes. They specify the distribution in terms of the inverse of
its distribution function,

P−1(u) = λ1 +
uλ3 − (1 − u)λ4

λ2
. (5.31)

The distribution function itself cannot be written in closed form, but the inverse
allows deviates from this distribution to be generated easily by the inverse CDF
method; just generate u and apply equation (5.31).

Karian, Dudewicz, and McDonald (1996) and Karian and Dudewicz (1999,
2000) describe methods to determine values of the λ parameters to arrive at a
distribution function that fits a given set of data well. Freimer et al. (1988) give
a different parametrization of the generalized Tukey lambda family, and discuss
methods of fitting data under their parametrization, which seems somewhat
simpler. Albert, Delampady, and Polasek (1991) defined a family of distribu-
tions that is very similar to the lambda distributions and is particularly useful
in Bayesian analysis with location-scale models.

Another family of distributions that is very flexible and that can have a
wide range of shapes is the Burr family of distributions (Burr, 1942). One of
the common forms (Burr and Cislak, 1968) has the CDF

P (x) = 1 − 1
(1 + xα)β

for 0 ≤ x ≤ ∞; α, β > 0, (5.32)

5.2. SOME SPECIFIC UNIVARIATE DISTRIBUTIONS 195

which is easily inverted. Other forms of the Burr family have more parameters,
allowing modeling of a wider range of empirical distributions.

Fleishman (1978) suggested representing the random variable of interest as
a polynomial in a standard normal random variable, in which the coefficients
are determined so that the moments match specific values. If Z has a N(0, 1)
distribution, then the random variable of interest, X , is expressed as

X = c0 + c1Z + · · · + ckZk. (5.33)

If m moments are to be matched to prespecified values, then k can be chosen
as m − 1, and the cs can be determined from m equations in m unknowns
that involve expectations of powers of a N(0, 1) random variable. Fleishman
used this representation to match four moments; hence, he used a third-degree
polynomial in a standard normal random variable.

Tadikamalla and Johnson (1982) describe a flexible general family of distri-
butions based on transformations of logistic variables.

The generalized gamma distributions mentioned on page 182 can also be
very useful in modeling random variables with a variety of properties.

Tadikamalla (1980b) compares the use of the Pearson, Johnson, and gener-
alized lambda families of distributions and the Fleishman normal polynomials
for simulating distributions with various given shapes or given moments. As
might be expected, some systems are better in one situation and others are
better in other cases. The use of the polynomial of a normal random devi-
ate, as Fleishman suggested, seems to fit a wide range of distributions, and its
simplicity recommends it in many cases.

The motivation for some of the early work with general families of distrib-
utions was to use them as approximations to some standard distribution, such
as a gamma, for which it is more difficult to generate deviates. As methods for
the standard distributions have improved, it is more common just to generate
directly from the distribution of interest. The general families, however, often
provide more flexibility in choosing a distribution that better matches sample
data. The distribution is fit to the sample data using either percentiles or mo-
ments. Pearson, Johnson, and Burr (1979) discuss differences in the results
of using percentiles and moments. They give comparisons of the percentage
points of distributions with the same first four moments that are constructed
from eight different families of distributions. If a large number of moments
are known or assumed, the methods of Devroye (1989, 1991) that use only the
knowledge of the moments may be useful. If the percentiles are known, the in-
verse CDF method may be used to bracket the deviate, and then interpolation
can be used to evaluate the deviate.

Families of Distributions with Heavy Tails

Random number generation is important in studying the performance of various
statistical methods, especially when the assumptions underlying the methods
are not satisfied. The question is whether the statistical method is robust.

196 CHAPTER 5. SPECIFIC DISTRIBUTIONS

One concern in robust statistics is how well the method would hold up in very
extreme conditions such as in the presence of a heavy-tailed distribution. The
Cauchy distribution has very heavy tails; none of its moments exist. It is often
used in robustness studies.

The Pareto distribution has relatively heavy tails; for some values of the
parameter, the mean exists but the variance does not. A “Pareto-type” distri-
bution is one whose distribution function satisfies the relationship

P (x) = 1 − x−γg(x),

where g(x) is a slowly varying function; that is, for fixed t > 0,

lim
x→∞

g(tx)
g(x)

= 1.

The Burr distribution with the CDF given in (5.32) is of the Pareto type, with
γ = αβ.

The stable family of distributions is a flexible family of generally heavy-
tailed distributions. This family includes the normal distribution at one ex-
treme value of one of the parameters and the Cauchy distribution at the other
extreme value. There are various parameterizations of the stable distributions;
see Nolan (1998b). Depending on one of the parameters, α, the index of stabil-
ity, the characteristic function (equation (4.14), page 136) for random variables
of this family of distributions has one of two forms:

φ(t | α, σ, β, µ) = exp
(
−σα|t|α(1 − iβsign(t) tan(πα/2)

)
+ iµt

)
if α �= 1,

or

φ(t | 1, σ, β, µ) = exp
(
−σ|t|(1 + 2iβsign(t) log(t)/π

)
+ iµt

)
if α = 1

for 0 < α ≤ 2, 0 ≤ σ, and −1 ≤ β ≤ 1. For α = 2, this is the normal
distribution (in which case β is irrelevant), and for α = 1 and β = 0, this is the
Cauchy distribution.

Chambers, Mallows, and Stuck (1976) give a method for generating devi-
ates from stable distributions. (Watch for some errors in the constants in the
auxiliary function D2 for evaluating (ex − 1)/x.) Their method is used in the
IMSL Libraries. For a symmetric stable distribution, Devroye (1986a) points
out that a faster method can be developed by exploiting the relationship of the
symmetric stable to the Fejer–de la Vallee Poussin distribution.

The member of the stable family with α = 1 and β = 1 is called the
Landau distribution, which has applications in modeling fluctuation of energy
loss in a system of charged particles. Chamayou (2001) describes a method
for generating variates from a Landau distribution (based on the Chambers–
Mallows–Stuck method). He also gives a method for a generalization of the
Landau distribution called the Vavilov distribution.

Buckle (1995) shows how to simulate the parameters of a stable distribution,
conditional on the data.

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 197

5.3 Some Specific Multivariate Distributions

Multivariate distributions can be built from univariate distributions either by
a direct transformation of a vector of i.i.d. scalar variates or by a sequence of
conditional scalar variates.

The use of various Markov chain methods in Monte Carlo simulation has
made the conditional approaches more popular in generating multivariate devi-
ates. The hit-and-run sampler (see page 157) is particularly useful in generating
variates from multivariate distributions (see Bélisle, Romeijn, and Smith, 1993,
for example). A survey of methods and applications of multivariate simulation
can be found in Johnson (1987).

Elliptically contoured multivariate distributions are of special interest. The
densities of these distributions have concentric ellipses with constant values.
The density of an elliptically contoured distribution is of the form

p(x) = c
1

|Σ| 12 g
(
(x − µ)TΣ−1(x − µ)

)
,

where c is a positive constant of proportionality, and g is a nonnegative real
scalar-valued function. The multivariate normal distribution is an elliptically
contoured distribution.

5.3.1 Multivariate Normal Distribution

The d-variate normal distribution with mean vector µ and nonsingular variance-
covariance matrix Σ, which we denote by Nd(µ, Σ), has the probability density
function

p(x) =
1

(2π)
d
2 |Σ| 12 exp

(
− (x − µ)TΣ−1(x − µ)

2

)
. (5.34)

A direct way of generating random vectors from the multivariate normal
distribution is to generate a d-vector of i.i.d. standard normal deviates z =
(z1, z2, . . . , zd) and then to form the vector

x = TTz + µ, (5.35)

where T is a d × d matrix such that TTT = Σ. (T could be a Cholesky factor
of Σ; see Gentle, 1998, page 93, for discussion and an algorithm for a Cholesky
factor.) Then, x has a Nd(µ, Σ) distribution.

Another approach for generating the d-vector x from Nd(µ, Σ) is to generate
x1 from N1(0, σ11), generate x2 conditionally on x1, generate x3 conditionally
on x1 and x2, and so on.

Deák (1990) describes a method for generating multivariate normals by using
a transformation to spherical coordinates together with a random orthogonal
transformation. This method is also useful in evaluating multivariate normal
probabilities.

198 CHAPTER 5. SPECIFIC DISTRIBUTIONS

Multivariate distributions that are restricted to some subspace of the stan-
dard range may be difficult to simulate in general. Often, we must resort to
generation of variates from the full distribution followed by rejection of those
that do not meet the restriction. A multivariate normal distribution that is
truncated by linear restrictions, however, can be handled easily. If the variate
x from Nd(µ, Σ) must satisfy the restriction

a ≤ Cx ≤ b,

where C is a full rank matrix, the restrictions can be applied to a vector of
i.i.d. standard normal deviates z,(

TT
)−1(C−1a − µ) ≤ z ≤ (TT

)−1(C−1b − µ),

where TT is as in equation (5.35). The standard normal deviates with these re-
strictions can be generated as described above using an exponential majorizing
density. Geweke (1991a) describes this method and gives some timing compar-
isons.

5.3.2 Multinomial Distribution

The probability function for the d-variate multinomial distribution is

p(x) =
n!∏
xj !

∏
π

xj

j for xj ≥ 0, and Σxj = n. (5.36)

The parameters πj must be positive and sum to 1.
To generate a multinomial, a simple way is to work with the marginals; they

are binomials. The generation is done sequentially. Each succeeding conditional
marginal is binomial. For efficiency, the first marginal considered would be the
one with the largest probability.

Another interesting algorithm for the multinomial, due to Brown and Brom-
berg (1984), is based on the fact that the conditional distribution of indepen-
dent Poisson random variables, given their sum, is multinomial. The use of
this relationship requires construction of extensive tables. Davis (1993) found
the Brown–Bromberg method to be slightly faster than the sequential condi-
tional marginal binomial method once the setup operations are performed. If
multinomials are to be generated from distributions with different parameters,
however, the sequential conditional marginal method is more efficient.

5.3.3 Correlation Matrices and Variance-Covariance
Matrices

Generation of random correlation matrices or random variance-covariance ma-
trices in general requires some definition of a probability measure (as generation
of any random object does, of course). A probability measure for a variance-
covariance matrix, for example, may be taken to correspond to that of sample

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 199

variance-covariance matrices from a random sample of a given size from a d-
variate normal distribution with variance-covariance matrix Σ. In this case,
the probability distribution, aside from a constant, is a Wishart distribution.

Hartley and Harris (1963) and Odell and Feiveson (1966) give the method in
Algorithm 5.8 to generate random variance-covariance matrices corresponding
to a sample of size n from a d-variate normal distribution.

Algorithm 5.8 Sample Variance-Covariance Matrices from the
Multivariate Normal with Variance-Covariance Matrix Σ

0. Determine T such that TTT = Σ. T could be a Cholesky factor of Σ, for
example.

1. Generate a sequence of i.i.d. standard normal deviates zij for i = 1, 2, . . . , j
and j = 2, 3, . . . , d.

2. For i = 1, 2, . . . , d, generate independent chi-squared variates, yi, with
n − i degrees of freedom.

3. Compute B = (bij):
b11 = y1,
bjj = yj +

∑j−1
i=1 z2

ij for j = 2, 3, . . . , d,
b1j = z1j

√
y1,

bij = zij
√

yi +
∑i−1

k=1 zkizkj for i < j = 2, 3, . . . , d,
bij = bji for j < i = 2, 3, . . . , d.

4. Deliver V = 1
nTTBT .

The advantage of this algorithm is that it does not require n d-variate nor-
mals for each random variance-covariance matrix. The B in Algorithm 5.8 is
a Wishart matrix. Smith and Hocking (1972) give a Fortran program for gen-
erating Wishart matrices using this technique. The program is available from
statlib as the Applied Statistics algorithm AS 53. (See the bibliography.)

Everson and Morris (2000) describe a modification of the method above for
generating Wishart matrices whose eigenvalues are constrained to be less than
a specified vector. The main modification is to generate right-truncated chi-
squared variates, which they do by the inverse CDF method as in equation (5.2)
on page 168. This yields a first principal diagonal matrix (that is, the scalar
b11) with an eigenvalue that satisfies the constraint. They then modify the
computations of the bij for i, j ≥ 2 to include a rejection step that ensures that
the new eigenvalue of each principal diagonal in turn is less than its constraint.

A random matrix from a noncentral Wishart distribution with noncentrality
matrix having columns ci can be generated from a random Wishart matrix B
using the relationship

S = TT

(
d∑

i=1

(zi + ci)(zi + ci)T + B

)
T,

200 CHAPTER 5. SPECIFIC DISTRIBUTIONS

where zi are i.i.d. random vectors from a Nd(0, Id) distribution, and the zi

are independent of B. This requires d2 additional scalar normal variates.
Gleser (1976) gives a modification of this method that requires only r2 ad-
ditional normal deviates, where r is the number of linearly independent vectors
ci.

For generating random correlation matrices, again we need some probability
measure or at least some description of the space from which the matrices are to
be drawn. Chalmers (1975) and Bendel and Mickey (1978) develop procedures
that satisfy the definition of a correlation matrix (positive definite with 1s on
the diagonal) and having eigenvalues approximately equal to a specified set.
Another way of restricting the space from which random correlation matrices
are to be drawn is to specify the expected values of the correlation matrices.

Marsaglia and Olkin (1984) consider the problem of generating correlation
matrices with a given mean and the problem of generating correlation matrices
with a given set of eigenvalues. Their algorithm for the latter is similar to
that of Chalmers (1975). Starting with a diagonal matrix Λ with elements
0 ≤ λ1, λ2, . . . , λd ≤ 1 and such that

∑
λj = d, the algorithm forms a random

correlation matrix of the form PΛPT. It is shown as Algorithm 5.9.

Algorithm 5.9 Marsaglia–Olkin Method for Random Correlation
Matrices with Given Eigenvalues

0. Set E = Id (the d × d identity matrix) and k = 1.

1. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,
and compute a =

∑
(1 − λi)x2

i .

2. Generate a d-vector z of i.i.d. standard normal deviates, form y = Ez,
and compute b =

∑
(1 − λi)xiyi, c =

∑
(1 − λi)y2

i , and e2 = b2 − ac.

3. If e2 < 0, then go to step 2.

4. Choose a random sign, s = −1 or s = 1. Set r =
b + se

a
x − y.

5. Choose another random sign, and set pk =
s

(rTr)
1
2
w.

6. Set E = E − rrT, and set k = k + 1.

7. If k < d, then go to step 1.

8. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,
and set pd =

x

(xTx)
1
2
.

9. Construct the matrix P using the vectors pk as its rows. Deliver PΛPT

as the random correlation matrix.

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 201

Ryan (1980) shows how to construct fixed correlation matrices with a given
structure. Although the matrices are fixed, they have applications in Monte
Carlo studies for generating other deviates.

Heiberger (1978), Stewart (1980), Anderson, Olkin, and Underhill (1987),
and Fang and Li (1997) give methods for generating random orthogonal ma-
trices. The methods use reflector or rotator matrices to transform a random
matrix to the form desired. (See Gentle, 1998, for definitions and methods of
computing these matrices.)

Heiberger (1978) discussed the use of random orthogonal matrices in gener-
ating random correlation matrices. (See Tanner and Thisted, 1982, for a correc-
tion of Heiberger’s algorithm. This is the method used in the IMSL Libraries.)
Stewart (1980) used random orthogonal matrices to study an estimator of the
condition number of a matrix. One of the methods given by Fang and Li (1997)
results in matrices with quasirandom elements (see Chapter 3).

Eigenvalues of random matrices are often of interest, especially the extreme
eigenvalues. One way to generate them, of course, is to generate the random ma-
trix and then extract the eigenvalues. Marasinghe and Kennedy (1982) describe
direct methods for generation of the extreme eigenvalues for certain Wishart
matrices. They show that the maximum eigenvalue of a random 2× 2 Wishart
matrix, corresponding to a sample of size n, can be generated by the inverse
CDF method,

w =
(
1 +
√

1 − u2/(n−1)
)

/2,

where u is generated from U(0, 1).
Using a Weibull density,

g(y) = (n − 3)xe−(n−3)y2/2,

as a majorizing density, they also give the following acceptance/rejection algo-
rithm for the 2 × 2 case:

1. Generate u1 from U(0, 1), and set y = −2 log(u1)/(n − 3).

2. If y ≥ 1, then go to step 1.

3. Generate u2 from U(0, 1), and if u1u2 > (1 − y)(n−3)/2, then
go to step 1;

otherwise,
deliver w = (

√
y + 1)/2.

5.3.4 Points on a Sphere

Coordinates of points uniformly distributed over the surface of a sphere (here
“sphere” may mean “circle” or “hypersphere”) are equivalent to independent
normals scaled to lie on the sphere (that is, the sum of their squares is equal
to the radius of the sphere). This general method is equivalent to the polar

202 CHAPTER 5. SPECIFIC DISTRIBUTIONS

methods for normal random variables discussed previously. It can be used in
any dimension.

Marsaglia (1972b) describes methods for three and four dimensions that are
about twice as fast as using normal variates. For three dimensions, u1 and u2

are generated independently from U(0, 1), and if s1 = u2
1 + u2

2 ≤ 1, then the
coordinates are delivered as

x1 = 2u1

√
1 − s1,

x2 = 2u2

√
1 − s1,

x3 = 1 − 2s1.

For four dimensions, u1, u2, and s1 are generated as above (with the same
rejection step), u3 and u4 are generated independently from U(0, 1), and s2 is
formed as s2 = u2

3+u2
4. The same rejection step is applied, and for the accepted

points, the coordinates are delivered as

x1 = x1 as above,
x2 = x2 as above,

x3 = u3

√
1 − s1

s2
,

x4 = u4

√
1 − s1

s2
.

The IMSL routine rnsph uses these methods for three or four dimensions and
uses scaled normals for higher dimensions.

Banerjia and Dwyer (1993) consider the related problem of generating ran-
dom points in a ball, which would be equivalent to generating random points
on a sphere and then scaling the radius by a uniform deviate. They describe
a divide-and-conquer algorithm that can be used in any dimension and that
is faster than scaling normals or scaling points from Marsaglia’s method, as-
suming that the speed of the underlying uniform generator is great relative to
square root computations.

5.3.5 Two-Way Tables

Boyett (1979) and Patefield (1981) consider the problem of generating random
entries in a two-way table subject to given marginal row and column totals.
The distribution is uniform over the integers that yield the given totals. Boyett
derives the joint distribution for the cell counts and then develops the condi-
tional distribution for a given cell, given the counts in all cells in previous rows
and all cells in previous columns of the current given row. Patefield then uses
the conditional expected value of a cell count to generate a random entry for
each cell in turn.

Let aij for i = 1, 2, . . . , r and j = 1, 2, . . . , c be the cell count, and use the
“dot notation” for summation: a•j is the sum of the counts in the jth column,

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 203

for example, and a•• is the grand total. The conditional probability that the
count in the (l, m)th cell is alm given the counts aij , for 1 ≤ i < l and 1 ≤ j ≤ c
and for i = l and 1 ≤ j < m, is(

al• −
∑

j<m
alj

)
!
(
a•• −∑

i≤l
ai• −

∑
j<m

a•j +
∑

j<m

∑
i≤l

aij

)
!

alm!
(

al• −
∑

j≤m
alj

)
!
(

a•• −∑
i≤l

ai• −∑
j≤m

a•j +
∑

j<m

∑
i≤l

aij

)
!

×

(
a•m −∑

i≤l
aim

)
!
(∑

j>m

(
a•j −

∑
i<l

aij

))
!(

a•m −∑
i<l

aim

)
!
(∑

j≥m

(
a•j −

∑
i<l

aij

))
!
.

For each cell, a random uniform is generated, and the discrete inverse CDF
method is used. Sequential evaluation of this expression is fairly simple, so the
probability accumulation proceeds rapidly. The full expression is evaluated only
once for each cell. Patefield (1981) also speeds up the process by beginning at
the conditional expected value of each cell rather than accumulating the CDF
from 0. The conditional expected value of the random count in the (l, m)th cell,
Alm, for 1 ≤ i < l and 1 ≤ j ≤ c and for i = l and 1 ≤ j < m, is

E(Alm | aij) =

(
a•m −∑l−1

i=1 aim

)(
al• −

∑m−1
j=1 alj

)
∑c

j=m

(
a•j −

∑l−1
i=1 aij

)
unless the denominator is 0, in which case E(Alm|aij) is zero.

Patefield (1981) gives a Fortran program implementing the method de-
scribed. This is the method used in the IMSL routine rntab.

5.3.6 Other Specific Multivariate Distributions

Only a few of the standard univariate distributions have standard multivariate
extensions. Various applications often lead to different extensions; see Kotz,
Balakrishnan, and Johnson (2000). If the density of a multivariate distribution
exists and can be specified, it is usually possible to generate variates from the
distribution using an acceptance/rejection method. The majorizing density can
often be just the product density; that is, a multivariate density with compo-
nents that are the independent univariate variables, as in the example of the
bivariate gamma on page 123.

Multivariate Bernoulli Variates and the Multivariate
Binomial Distribution

A multivariate Bernoulli distribution of correlated binary random variables has
applications in modeling system reliability, clinical trials with repeated mea-
sures, and genetic transmission of disease. For the multivariate Bernoulli dis-
tribution with marginal probabilities π1, π2, . . . , πd and pairwise correlations
ρij , Emrich and Piedmonte (1991) propose identifying a multivariate normal

204 CHAPTER 5. SPECIFIC DISTRIBUTIONS

distribution with similar pairwise correlations. The normal is determined by
solving for normal pairwise correlations, rij , in a system of d(d−1)/2 equations
involving the bivariate standard normal CDF, Φ2, evaluated at percentiles zπ

corresponding to the Bernoulli probabilities:

Φ2(zπi , zπj ; rij) = ρij

√
πi(1 − πi)πj(1 − πj) + πiπj . (5.37)

Once these pairwise correlations are determined, a multivariate normal y is
generated and transformed to a Bernoulli, x, by the rule

xi = 1 if yi ≤ zπi

= 0 otherwise.

Sums of multivariate Bernoulli random variables are multivariate binomial
random variables. Phenomena modeled by binomial distributions, within clus-
ters, often exhibit greater or less intracluster variation than independent bi-
nomial distributions would indicate. This behavior is called “overdispersion”
or “underdispersion”. Overdispersion can be simulated by the beta-binomial
distribution discussed earlier. A beta-binomial cannot model underdispersion,
but the method of Emrich and Piedmonte (1991) to induce correlations in the
Bernoulli variates can be used to model either overdispersion or underdisper-
sion. Ahn and Chen (1995) discuss this method and compare it with the use of
a beta-binomial in the case of overdispersion. They also compared the output
of the simulation models for both underdispersed and overdispersed binomials
with actual data from animal litters.

Park, Park, and Shin (1996) give a method for generating correlated bi-
nary variates based on sums of Poisson random variables in which the sums
have some terms in common. They let Z1, Z2, and Z3 be independent Poisson
random variables with nonnegative parameters α11 − α12, α22 − α12, and α12,
respectively, with the convention that a Poisson with parameter 0 is a degen-
erate random variable equal to 0, and define the random variables Y1 and Y2

as
Y1 = Z1 + Z3

and
Y2 = Z2 + Z3.

They then define the binary random variables X1 and X2 by

Xi = 1 if Yi = 0
= 0 otherwise.

They then determine the constants, α11, α22, and α12, so that

E(Xi) = πi

and
Corr(X1, X2) = ρ12.

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 205

It is easy to see that

αij = log

(
1 + ρij

√
(1 − πi)(1 − πj)

πiπj

)
(5.38)

yields those relations. After the αs are computed, the procedure is as shown in
Algorithm 5.10.

Algorithm 5.10 Park/Park/Shin Method for Generating Correlated
Binary Variates

0. Set k = 0.

1. Set k = k + 1. Let βk = αrs be the smallest positive αij .

2. If αrr = 0 or αss = 0, then stop.

3. Let Sk be the set of all indices, i, j, for which αij > 0. For all {i, j} ⊆ Sk,
set αij = αij − βk.

4. If not all αij = 0, then go to step 1.

5. Generate k Poisson deviates, zj , with parameters βj . For i = 1, 2, . . . , d,
set

yi =
∑
i∈Sj

zj .

6. For i = 1, 2, . . . , d, set

xi = 1 if yi = 0
= 0 otherwise.

Lee (1993) gives another method to generate multivariate Bernoullis that
uses odds ratios. (Odds ratios and correlations uniquely determine each other
for binary variables.)

Multivariate Beta or Dirichlet Distribution

The Dirichlet distribution is a multivariate extension of a beta distribution,
and the density of the Dirichlet is the obvious extension of the beta density
(equation (5.14)),

p(x) = Γ(Σαj)∏
Γ(αj)

∏
x

αj−1
j (1 − x1 − x2 − · · · − xd)αd+1−1

for 0 ≤ xj ≤ 1.
(5.39)

Arnason and Baniuk (1978) consider several ways to generate deviates from the
Dirichlet distribution, including a sequence of conditional betas and the use of

206 CHAPTER 5. SPECIFIC DISTRIBUTIONS

the relationship of order statistics from a uniform distribution to a Dirichlet.
(The ith order statistic from a sample of size n from a U(0, 1) distribution has
a beta distribution with parameters i and n− i+1.) The most efficient method
that they found was the use of a relationship between independent gamma vari-
ates and a Dirichlet variate. If Y1, Y2, . . . , Yd, Yd+1 are independently distrib-
uted as gamma random variables with shape parameters α1, α2, . . . , αd, αd+1

and common scale parameter, then the d-vector X with elements

Xj =
Yj∑d+1

k=1 Yk

, j = 1, . . . , k,

has a Dirichlet distribution with parameters α1, α2, . . . , αd. This relationship
yields the straightforward method of generating Dirichlets by generating gam-
mas.

Dirichlet-Multinomial Distribution

The Dirichlet-multinomial distribution is the mixture distribution that is a
multinomial with parameter π that is a realization of a random variable having
a Dirichlet distribution. Just like the beta-binomial distribution (5.18), this dis-
tribution is useful for modeling overdispersion or extravariation in applications
where there are clusters of separate multinomial distributions.

A simple way of generating deviates from a Dirichlet-multinomial distribu-
tion is first to generate the parameter π as the appropriate Dirichlet and then
to generate the multinomial conditionally.

There are other ways of inducing overdispersion in multinomial distribu-
tions. Morel (1992) describes a simple algorithm to generate a finite mixture of
multinomials by clumping individual multinomials. This mixture distribution
has the same first two moments of the Dirichlet-multinomial distribution, but
it is not the same distribution.

Multivariate Hypergeometric Distribution

The multivariate hypergeometric distribution is a generalization of the hyper-
geometric distribution for more than two types of outcomes. The model is an
urn filled with balls of different colors. The multivariate random variable is
the vector of numbers of each type of ball when N balls are drawn randomly
and without replacement. The probability function for the multivariate hyper-
geometric distribution is the same as that for the univariate hypergeometric
distribution (equation (5.22), page 189) except with more classes.

To generate a multivariate hypergeometric random deviate, a simple way
is to work with the marginals. The generation is done sequentially. Each
succeeding conditional marginal is hypergeometric. To generate the deviate,
combine all classes except the first in order to form just two classes. Next,
generate a univariate hypergeometric deviate x1. Then remove the first class
and form two classes consisting of the second one and the third through the

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 207

last combined, and generate a univariate hypergeometric deviate based on N −
x1 draws. This gives x2, the number of the second class. Continue in this
manner until the number remaining to be drawn is 0 or until the classes are
exhausted. For efficiency, the first marginal used would be the one with the
largest probability.

Multivariate Uniform Distribution

Falk (1999) considers the problem of simulating a d-variate Ud(0, 1) distribution
with specified correlation matrix R = (ρij). A simple approximate method is
to generate y from Nd(0, R) and take

xi = Φ(yi),

where Φ is the standard normal CDF. Falk shows that the correlation matrix
of variates generated in this way is very close to the target correlation matrix
R. He also shows that if the matrix

R̃ = (rij)
=
(
2 sin(πρij/6)

)
is positive semidefinite, and if Y ∼ Nd(0, R̃) and Xi = Φ(Yi), then Corr(X) =
R. Therefore, if the target correlation matrix R is such that the corresponding
matrix R̃ is positive semidefinite, then variates generated as above are from a
d-variate Ud(0, 1) distribution with exact correlation matrix R.

Multivariate Exponential Distributions

A multivariate exponential distribution can be defined in terms of Poisson
shocks (see Marshall and Olkin, 1967), and variates can be generated from that
distribution by generating univariate Poisson variates (see Dagpunar, 1988).
There are various ways to define a multivariate double exponential distribu-
tion, or a multivariate Laplace distribution. Ernst (1998) describes an ellipti-
cally contoured multivariate Laplace distribution with density

p(x) =
γΓ(d/2)

2πd/2Γ(d/γ)|Σ| 12 exp
(
−((x − µ)TΣ−1(x − µ)

)γ/2
)

. (5.40)

Ernst shows that a simple way to generate a variate from this distribution is
to generate a point s on the d-dimensional sphere (see Section 5.3.4), generate
a generalized univariate gamma variate y (page 182) with parameters d, 1, and
γ, and deliver

x = yTTs + µ,

where TTT = Σ.
Kozubowski and Podgórski (2000) describe an asymmetric multivariate La-

place distribution (not elliptically contoured). They also describe a method for
generating random deviates from that distribution.

208 CHAPTER 5. SPECIFIC DISTRIBUTIONS

Multivariate Gamma Distributions

The bivariate gamma distribution of Becker and Roux (1981) discussed in Sec-
tion 4.5 (page 123) is only one possibility for extending the gamma. Others,
motivated by different models of applications, are discussed by Mihram and
Hultquist (1967), Ronning (1977), Ratnaparkhi (1981), and Jones, Lai, and
Rayner (2000), for example. Ronning (1977) and London and Gennings (1999)
describe specific multivariate gamma distributions and describe methods for
generating variates from the multivariate gamma distribution that they consid-
ered.

The bivariate gamma distribution of Jones, Lai, and Rayner (2000) is formed
from two univariate gamma distributions with fixed shape parameters and scale
parameters ζ and ξ, each of which takes one of two values with a generalized
Bernoulli distribution. For i, j = 1, 2, Pr(ζ = ζi, ξ = ξj) = πij . The
correlation between the two elements of the bivariate gamma depends on the
πij , as Jones, Lai, and Rayner (2000) discuss. It is easy to generate random
variates from this bivariate distribution: for each variate, generate a value for
ζ and ξ, and then generate two of the univariate gammas.

Multivariate Stable Distributions

Various multivariate extensions of the stable distributions can be defined. Mo-
darres and Nolan (1994) give a representation of a class of multivariate stable
distributions in which the multivariate stable random variable is a weighted sum
of a univariate stable random variable times a point on the unit sphere. The
reader is referred to the paper for the description of the class of multivariate
stable distributions for which the method applies. See also Nolan (1998a).

5.3.7 Families of Multivariate Distributions

Methods are available for generating multivariate distributions with various spe-
cific properties. Extensions have been given for multivariate versions of some of
the general families of univariate distributions discussed on page 193. Parrish
(1990) gives a method to generate random deviates from a multivariate Pear-
son family of distributions. Takahasi (1965) defines a multivariate extension
of the Burr distributions. Generation of deviates from the multivariate Burr
distribution can be accomplished by transformations of univariate samples.

Gange (1995) gives a method for generating general multivariate categorical
variates using iterative proportional fitting to the marginals.

A useful general class of multivariate distributions are the elliptically con-
toured distributions. A nonsingular elliptically contoured distribution has a
density of the general form

p(x) =
c

|Σ| 12 g
(
(x − µ)TΣ−1(x − µ)

)
,

5.3. SOME SPECIFIC MULTIVARIATE DISTRIBUTIONS 209

where g(·) is a nonnegative function, and Σ is a positive definite matrix. The
multivariate normal distribution is obviously of this class, as is the multivariate
Laplace distribution discussed above. There are other interesting distributions
in this class, including two types of multivariate Pearson distributions. John-
son (1987) discusses general methods for generating variates from the Pear-
son elliptically contoured distributions. The book edited by Fang and An-
derson (1990) contains several papers on applications of elliptically contoured
distributions.

Cook and Johnson (1981, 1986) define families of non-elliptically symmetric
multivariate distributions, and consider their use in applications for modeling
data. Johnson (1987) discusses methods for generating variates from those
distributions.

Distributions with Specified Correlations

Li and Hammond (1975) propose a method for a d-variate distribution with
specified marginals and variance-covariance matrix. The Li–Hammond method
uses the inverse CDF method to transform a d-variate normal into a multivari-
ate distribution with specified marginals. The variance-covariance matrix of the
multivariate normal is chosen to yield the specified variance-covariance matrix
for the target distribution. The determination of the variance-covariance ma-
trix for the multivariate normal to yield the desired target distribution is diffi-
cult, however, and does not always yield a positive definite variance-covariance
matrix for the multivariate normal. (An approximate variance-covariance or
correlation matrix that is not positive definite can be a general problem in ap-
plications of multivariate simulation. See Exercise 6.1 in Gentle, 1998, for a
possible solution.)

Lurie and Goldberg (1998) modify the Li–Hammond approach by iteratively
refining the correlation matrix of the underlying normal using the sample corre-
lation matrix of the transformed variates. They begin with a fixed sample of t
multivariate normals with the identity matrix as the variance-covariance. These
normal vectors are first linearly transformed by the matrix T (k) as described
on page 197 and then transformed by the inverse CDF method into a sample
of t vectors with the specified marginal distributions. The correlation matrix of
the transformed sample is computed and compared with the target correlation.
A measure of the difference in the sample correlation matrix and the target
correlation is minimized by iterations over T (k). A good starting point for T (0)

is the d × d matrix that is the square root of the target correlation matrix R
(that is, the Cholesky factor) so that T (0)TT (0) = R.

The measure of the difference in the sample correlation matrix and the
target correlation is a sum of squares, so the minimization is a nonlinear least
squares problem. The sample size t to use in the determination of the optimal
transformation matrix must be chosen in advance. Obviously, t must be large
enough to give some confidence that the sample correlation matrices reflect
the target accurately. Because of the number of variables in the optimization

210 CHAPTER 5. SPECIFIC DISTRIBUTIONS

problem, it is likely that t should be chosen proportional to d2.
Once the transformation matrix is chosen, to generate a variate from the

target distribution, first generate a variate from Nd(0, I), then apply the linear
transformation, and finally apply the inverse CDF transformation. To generate
n variates from the target distribution, Lurie and Goldberg (1998) also suggest
that the normals be adjusted so that the sample has a mean of 0 and a variance-
covariance matrix exactly equal to the expected value that the transformation
would yield. (This is constrained sampling, as discussed on page 248.)

Vale and Maurelli (1983) also generate general random variates using a
multivariate normal distribution with the target correlation matrix as a start-
ing point. They express the individual elements of the multivariate random
variable of interest as polynomials in the elements of the multivariate normal
random variable, similar to the method of Fleishman (1978) in equation (5.33).
They then determine the coefficients in the polynomials so that the lower-order
marginal moments correspond to specified values. This does not, of course,
mean that the correlation matrix of the random variable determined in this
way is the desired matrix. Vale and Maurelli suggest use of the first four mar-
ginal moments.

Parrish (1990), as mentioned above, gives a method for generating variates
from a multivariate Pearson family of distributions. A member of the Pear-
son family is specified by the first four moments, which of course includes the
covariances.

Kachitvichyanukul, Cheng, and Schmeiser (1988a) describe methods for in-
ducing correlation in binomial and Poisson random variates.

5.4 Data-Based Random Number Generation

Often, we have a sample and need to generate random numbers from the un-
known distribution that yielded it. Specifically, we have a set of observations,
{x1, x2, . . . , xn}, and we wish to generate a pseudorandom sample from the
same distribution as the given dataset. This kind of method is called data-
based random number generation.

Discrete Distributions

How we proceed depends on some assumptions about the distribution. If the
distribution is discrete and we have no other information about it than what is
available from the given dataset, the best way of generating a pseudorandom
sample from the distribution is just to generate a random sample of indices
with replacement (see Chapter 6) and then use the index set as indices for the
given sample. For scalar x, this is equivalent to using the inverse CDF method
on the ECDF (the empirical cumulative distribution function):

Pn(x) =
1
n

(number of xi ≤ x).

5.4. DATA-BASED RANDOM NUMBER GENERATION 211

This method of generating a random sample using given data is what is done
in nonparametric Monte Carlo bootstrapping (see Section 7.7.2).

Parametric Families of Distributions

If it is assumed that the given sample is from some parametric family, one
approach is to use the sample to estimate the parameters and then use one of
the methods given above. This is what is done in the parametric Monte Carlo
bootstrap.

General Families of Distributions

If it is assumed that the distribution is continuous, but no other assumptions are
made (other than perhaps some general assumptions of existence and smooth-
ness of the probability density), the problem can be thought of as two steps.
The first step is to estimate the density, perhaps using one of the general fam-
ilies of distributions discussed in Sections 5.2.13 and 5.3.7. The second step is
to generate random deviates from that density. The method suggested above
for a discrete distribution is what we would do if we first estimated the density
(probability function) with a histogram with bins of zero width and then gen-
erated the random deviates from a distribution with probability function the
same as the histogram.

General Univariate Distributions

For a univariate continuous distribution, use of the ECDF directly is not ac-
ceptable because it will only yield values corresponding to the given sample. We
may, however, use some smoothed version of the ECDF and then use the inverse
CDF method. There are several ways that this can be done. One way, when the
given sample size is small, is just to connect the jump points of the empirical
distribution function with line segments to form a piecewise linear, increasing
function. Another way is to bin the data and form either a histogram or a
frequency polygon and then use the inverse CDF method on the corresponding
distribution function. The distribution function corresponding to a histogram
is a piecewise linear function, and the distribution function corresponding to a
frequency polygon is a piecewise quadratic polynomial.

These methods use different nonparametric estimators of the probability
density function. There are other methods of nonparametric density estimation
that could be used (see Gentle, 2002, Chapter 9), but the simple methods
indicated above are generally adequate.

General Multivariate Distributions

As we have mentioned above, it is not practical to use the inverse CDF method
directly for multivariate distributions.

212 CHAPTER 5. SPECIFIC DISTRIBUTIONS

Taylor and Thompson (1986) suggest a different way that avoids the step
of estimating a density. The method has some of the flavor of density esti-
mation; however, in fact it is essentially equivalent to fitting a density with a
normal kernel. It uses the m nearest neighbors of a randomly selected point;
m is a smoothing parameter. The method is particularly useful for multivariate
data. Suppose that the given sample is {x1, x2, . . . , xn} (the xs are vectors). A
random vector deviate is generated by the steps given in Algorithm 5.11.

Algorithm 5.11 Thompson–Taylor Data-Based Simulation

1. Randomly choose a point, xj , from the given sample.

2. Identify the m nearest neighbors of xj (including xj), xj1 , xj2 , . . . , xjm ,
and determine their mean, x̄j .

3. Generate a random sample, u1, u2, . . . , um, from a uniform distribution

with lower bound 1
m −

√
3(m−1)

m2 and upper bound 1
m +

√
3(m−1)

m2 .

4. Deliver the random variate

z =
m∑

k=1

uk(xjk
− x̄j) + x̄j .

The limits of the uniform weights and the linear combination for z are chosen
so that the expected value of the ith element of a random variable Z that yields
z is the ith element of the sample mean of the xs, x̄i; that is,

E(Zi) = x̄i.

(The subscripts in these expressions refer to the elements of the data vectors
rather than to the element of the sample.) Likewise, the variance and covariance
of elements of Z are close to the sample variance and covariance of the elements
of the given sample. If m = 1, they would be exactly the same. For m > 1, the
variance is slightly larger because of the variation due to the random weights.
The exact variance and covariance, however, depend on the distribution of the
given sample because the linear combination is of nearest points. The routine
rndat in the IMSL Libraries implements this method.

Prior to generating any pseudorandom deviates by the Thompson–Taylor
method, the given dataset should be processed into a k-d tree (see Friedman,
Bentley, and Finkel, 1977) so that the nearest neighbors of a given observation
can be identified quickly.

5.5 Geometric Objects

It is often of interest to generate random geometric objects (for example, in
a space-filling problem). Exercise 5.8 on page 215 discusses a simple random-
packing problem to fill a volume with balls of equal size. More interesting and

EXERCISES 213

complicated applications involve objects of variable shape such as stones to be
laid down as paving or to be dispersed through a cement mixture.

Other applications are in the solution of partial differential equations and
in probability density estimation, when we may wish to tessellate space using
objects similar to triangles and rectangles. Rectangles are simple tessellating
objects that have similar properties in various dimensions. In one dimension,
they are intervals, in three dimensions they are often called rectangular solids,
and in general they are called hyperrectangles. Devroye, Epstein, and Sack
(1993) give efficient methods for generating random intervals and hyperrectan-
gles.

Simplices (plural of simplex) are often used in tesselating space because of
their simplicity. A simplex in d dimensions is deterimined by d + 1 points.
Simple triangles are simplices in two dimensions.

Exercises

5.1. Polar transformations.

(a) Show that the Box–Muller transformation (equation (5.7), page 172)
correctly transforms independent uniform variates into independent
standard normals.

(b) Let X1 and X2 be independent standard normal random variables
and represent the pair in polar coordinates

X1 = R cosΘ,

X2 = R sin Θ.

Show that R and Θ are independent and that Θ has a U(0, 2π)
distribution and R2 has an exponential distribution with parameter
1
2 ; that is, fR(r) = re−r2/2.

(c) Show that the rejection polar method of Algorithm 5.1 does indeed
deliver independent normals.

(d) Write a Fortran or a C program implementing both the regular Box–
Muller transformation using the intrinsic system functions and the
rejection polar method of Algorithm 5.1. Empirically compare the
efficiencies of the two methods by timing the execution of your pro-
gram.

5.2. Truncated normal.

(a) Write the steps for generating a truncated normal using the method
of Robert (1995) (page 176).

(b) Show that for majorizing densities that are translated exponentials,
the one with scale parameter λ∗ in equation (5.8) is optimal. (“Opti-
mal” means that it results in the greatest probability of acceptance.)

214 CHAPTER 5. SPECIFIC DISTRIBUTIONS

(c) Write a program in a compiled language to generate truncated nor-
mals using the method of Robert (1995) and another program using
the method of Damien and Walker (2001). Run timing comparisons
for the two methods. Which appears to be more efficient?

5.3. Prove that the random variable delivered in equation (5.10) on page 176
has an exponential distribution.

5.4. Identify quantities in Algorithm 5.2, page 179, that should be computed
as part of a setup step prior to the steps shown. There are four quantities
that should be precomputed, including such trivial new variables as a =
α − 1.

5.5. Write a program to generate truncated gamma variates using the method
of Philippe (1997) (page 182). The program should accept α, β, τ , and n∗

as arguments. Now, write a program that uses the Cheng/Feast (1979)
algorithm, page 179, and just rejects variates greater than τ . (Remember
to precompute quantities such as those that are used in every pass through
the accept/reject loop.) For α = 5, β = 1, and various values of τ ,
generate 10,000 deviates by both methods and compare the times of the
two algorithms.

5.6. Correlated binary variates.

(a) Derive equation (5.38) on page 205 (see Park, Park, and Shin, 1996).

(b) Consider the pair of binary variates with π = (0.2, 0.7) and ρ = 0.05.
Generate 1000 pairs using the method of Emrich and Piedmonte
(1991). First, compute r = 0.0961 from equation (5.37). Likewise,
generate 1000 pairs using the method of Park, Park, and Shin (1996)
and compute the sample correlation. How close are they to ρ?

5.7. Multivariate normal variates.

(a) Consider a bivariate random variable (X1, X2) with a bivariate nor-
mal distribution with means µ1 and µ2, variances σ2

1 and σ2
2 , and

correlation ρ. Assume you can generate a vector of d i.i.d. uni-
variate standard normal deviates by the function rnorm(d). Now,
assume a given value X2 = x2. Write an expression for a random
realization of X1.

(b) Consider a d-variate random variable X with a multivariate normal
distribution with mean µ and variances-covariance matrix Σ. (X
and µ are d-vectors and Σ is a d × d symmetric positive definite
matrix.) Now, consider a partition of X into d1 and d2 elements,
(X1, X2), with a corresponding partitioning of µ into (µ1, µ2), and
Σ into

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
,

EXERCISES 215

where the Σij are matrices of the appropriate dimensions. Assume,
as before, you can generate a vector of d i.i.d. univariate standard
normal deviates by the function rnorm(d). Now, assume a given
value of the d2 vector X2 = x2. Write an expression for a random
realization of the d1 vector X1. Formally show that your expression
has the correct conditional mean and covariance.

5.8. Consider a cube with each edge of length s. Imagine the cube to represent
a box with no top. Develop a program to simulate the dropping of balls
of diameter r (r < s) into the box until it is filled. (“Filled” can mean
either that no more balls will stack on the others or that no ball has its
top higher than the top of the box. Your program should allow either
definition.) Assume that the balls will roll freely to their lowest local
energy state within the constraints imposed by the sides of the box and
the other balls. Let s = 10 and r = 3. How many balls go into the box?
Try the simulation several times. Do you get the same number? Now,
let s � r. How many balls go into the box? Try the simulation several
times. Do you get the same number? Is this number in accordance with
the Kepler conjecture? (The Kepler conjecture states that the densest
arrangement of balls is obtained by stacking triangular layers of balls—
the “cannonball arrangement”.)

This page intentionally left blank

Chapter 6

Generation of Random
Samples, Permutations, and
Stochastic Processes

6.1 Random Samples

In applications of statistical techniques, as well as in Monte Carlo studies, it
is often necessary to take a random sample from a given finite set. A common
form of random sampling is simple random sampling without replacement, in
which a sample of n items is selected from a population N in such a way that
every subset of size n from the universe of N items has an equal chance of
being the sample chosen. This is equivalent to a selection mechanism in which
n different items are selected, each with equal probability, n/N , and without
regard to which other items are selected.

In a variation called Bernoulli sampling, each item is selected independently
with a probability of n/N . In this variation, the sample size itself is a random
variable. In another variation, called simple random sampling with replacement,
a fixed sample of size n is chosen with equal and independent probabilities,
without the restriction that the sample items be different. Selection of a simple
random sample with replacement is equivalent to generating n random deviates
from a discrete uniform distribution over the integers 1, 2, . . . , N .

Variations in sampling designs include stratified sampling and multistage
sampling. In multistage sampling, primary sampling units are selected first.
The primary sampling units consist of secondary sampling units, which are
then sampled in a second stage. For example, the primary sampling units may
be geographical districts, and the secondary sampling units may be farms. The
more complicated sampling schemes can be implemented by using the same
algorithms as for the simpler designs on different sampling units or at different
stages.

217

218 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

Often, rather than each item in the population having the same proba-
bility of being included in the sample, the ith item in the population has a
preassigned probability, pi. In many cases, the pis are assigned based on some
auxiliary variable, such as a measure of the size of the population units. In mul-
tistage sampling, the primary sampling units are often chosen with probability
proportional to the number of secondary units that they contain.

In one variation of sampling with unequal probabilities, similar to Bernoulli
sampling, each item in the population is selected independently with its pre-
assigned probability. This is called Poisson sampling. In this case, the sample
size is a random variable.

There are other operational variations. Sometimes, the sampling activity
begins with the generation of a set of indices, which are then used to determine
whether a given member of the population is included in the population. In a
more common situation, however, the items in the population are encountered
sequentially, and a decision must be made at the time of encountering the item.
This is called a “draw sequential” scheme.

The method shown in Algorithm 6.1 is a draw sequential scheme for simple
random sampling if the pi = n/N for each i. If

∑
pi is known in advance (and

presumably
∑

pi = n0, where n0 is some expected sample size), Algorithm 6.1
yields a probability sample without replacement, but the sample size is a ran-
dom variable. Unless the sample size is fixed to be 1 or all of the pis are equal,
the schemes to achieve a fixed sample size are very complicated. See Särndal,
Swensson, and Wretman (1992) for discussions of various sampling designs.

Algorithm 6.1 Draw Sequential Probability Sampling

0. Set i = 0, si = 0, ti = 0, and T =
∑

pj .

1. Set i = i + 1 and generate u from U(0, 1).

2. If u ≤ Tpi−si−1
T−ti−1

, then
include the ith item, and set si = si−1 + pi.

3. If i < N , set ti = ti−1 + pi, and go to step 1.

This algorithm is obviously O(N). For simple random sampling (that is, if the
probabilities are all equal), we can improve on Algorithm 6.1 in two ways. If N
is known in advance, Vitter (1984) and Ahrens and Dieter (1985) give methods
to obtain the simple random sample in O(n) time because we can generate the
random skips in the population before the next item is selected for inclusion in
the sample.

The other improvement for the case of simple random sampling is to drop
the requirement that N be known in advance. If a sample of size n is to
be selected from a population of size N , which is not known in advance, a
“reservoir sample” of size n is filled and then updated by replacements until
the full population has been considered; the reservoir is the sample. This process
is called reservoir sampling. In a simple-minded implementation of a reservoir

6.1. RANDOM SAMPLES 219

algorithm, a decision is made in turn, for each population item, whether to
replace one of the reservoir items with it. This process is obviously O(N)
(McLeod and Bellhouse, 1983). This can also be improved on by generating a
random number of population items to skip before including one in the sample.

Any one-pass algorithm for the case where N is unknown must be a reservoir
method (Vitter, 1985). Li (1994) summarizes work on reservoir sampling and
gives the following algorithm, which is O(n(1+ log(N/n))). In this description,
let the population items be denoted by X1, X2, X3,

Algorithm 6.2 Li’s Reservoir Sampling

0. Initialize the reservoir with the first n items of the population. Call the
sample items x1, x2, . . . , xn. Set i = n + 1.

1. Generate u1 from U(0, 1), and compute w = u
1
n
1 .

2. Generate u2 from U(0, 1), and compute s =
⌊

log u2
log(1−w)

⌋
.

3. If Xi+s is in the population, then
3.a. generate j uniformly from 1, 2, . . . , n, replace xj with Xi+s,

and go to step 1;
otherwise,

3.b. terminate.

At first, one may think that it would be unreasonable to choose an n for a
sample size without knowing N , but indeed this is a common situation, espe-
cially in sampling for proportions. Using the normal approximation for setting
a confidence interval, a sample of size 1067 will yield a 95% confidence interval
no wider than 0.06 for a population proportion, even if the finite population
correction factor is ignored. In practice, a “random sample” of size 1100 is
often used in sampling for proportions no matter what the size of the popula-
tion. Often, of course, simple random samples are not used. Instead, systematic
samples or cluster samples are used because of their operational simplicity.

Because databases are often organized in computer storage as trees rather
than just as sequential files, it is sometimes necessary to be able to sample from
trees. Knuth (1975) gives a general sampling algorithm for trees, and Rosen-
baum (1993) describes a more efficient method for equal probability sampling
from trees. Alonso and Schott (1995) and Wilson and Propp (1996) describe
algorithms for generating random spanning trees from a directed graph. Olken
and Rotem (1995a) give a survey of methods for sampling from databases or-
ganized as trees or with more complex structures.

Olken and Rotem (1995b) extend the reservoir sampling methods to the
problem of sampling from a spatial database such as may be used in geographic
information systems (GIS).

220 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

6.2 Permutations

The problem of generation of a random permutation is related to random sam-
pling. A random permutation can be generated in one pass as shown in Algo-
rithm 6.3. In this description, assume that the population items are indexed
by 1, 2, 3, . . .N .

Algorithm 6.3 Random Permutation

0. Set i = 0.

1. Generate j uniformly from the integers 1, 2, . . . , N − i.

2. Exchange the elements in the (N − i)th and the jth positions.

3. If i < N − 2, then
3.a. set i = i + 1 and go to step 1;

otherwise,
3.b. terminate.

The algorithm is O(N); it only makes one pass through the data, and the work
at each step is constant.

6.3 Limitations of Random Number Generators

We have mentioned possible problems with random number generators that
have short periods. As we have seen, the period of some of the most commonly
used generators is of the order of 231 (or 109), although some generators may
have a substantially longer period. We have indicated that a long period is
desirable, and this is intuitively obvious. Generation of random samples and
permutations is a simple problem that really points out a limitation of a finite
period.

Both of these problems involve a classic operation for yielding large numbers:
the factorial operation. Consider the seemingly simple case of generating a
random sample of size 500 from a population of size 1,000,000. The cardinality
of the sample space is (

1000000
500

)
≈ 102000.

This number is truly large by almost any scale. It is clear that no practical finite
period generator can cover this sample space (see Greenwood, 1976a, 1976b).

In no other application considered in this book does the limitation of a
finite period stand out so clearly as it does in the case of generation of random
samples and permutations.

6.4. GENERATION OF NONINDEPENDENT SAMPLES 221

6.4 Generation of Nonindependent Samples

A sequence of random variables can be thought of either as a stochastic process
or as a single multivariate random variable. Many multivariate distributions can
usefully be formulated as stochastic processes, and the conditional generation
algorithms that we described for the multivariate normal and the multinomial
distributions are simple examples of this. General methods for inducing corre-
lations either within a single stream of random variates or between two streams
have been described by Kachitvichyanukul, Cheng, and Schmeiser (1988) and
by Avramidis and Wilson (1995).

6.4.1 Order Statistics

In some applications, a random sample needs to be sorted into ascending or
descending order, and in some cases we are interested only in the extreme values
of a random set. In either case, the random numbers are order statistics from
a random sample. In the early 1970s, several authors pointed out that order
statistics could be generated directly, without simulating the full set and then
sorting (Lurie and Hartley, 1972; Reeder, 1972; and Schucany, 1972). There are
four possible ways of generating order statistics other than just generating the
variates and sorting them:

1. Direct transformations: If the order statistics from a given distribution
have some simple known distribution, generate the order statistics directly
from that distribution.

2. Sequential: Generate one order statistic directly using its distribution,
and then generate additional ones sequentially using their conditional
distributions.

3. Spacings: Generate one order statistic directly using its distribution, and
then generate additional ones sequentially using the distribution of the
spacings between the order statistics.

4. Multinomial groups: Divide the range of the random variable into in-
tervals, generate one multinomial variate for the counts in the intervals
corresponding to the probability of the interval, and then generate the
required number of ordered variates within each interval by any of the
previous methods.

There are only a few distributions for which we can use these methods directly
because the derived distributions that are necessary for the application of the
methods are generally not easily worked out.

Order Statistics from a Uniform Distribution

For the uniform distribution, all four of the methods mentioned above can be
easily applied. It is straightforward to show that the ith order statistic from

222 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

a sample of size n from a U(0, 1) distribution has a beta distribution with
parameters i and n − i + 1 (see, e.g., David, 1981). We can therefore generate
uniform order statistics directly as beta variates.

Notice that for the first or the nth order statistic from a uniform distribution,
the beta distribution has one parameter equal to 1. For such a beta distribution,
it is easy to generate a deviate because the density, and hence the distribution
function, is proportional to a monomial. The inverse CDF method just involves
taking the nth root of a uniform.

To proceed with the sequential method, we use the fact that conditional on
u(i), for j > i, the jth order statistic from a sample of size n from a U(0, 1)
distribution has the same distribution as the (j − i)th order statistic from a
sample of size n− i from a U(u(i), 1) distribution. We again use the relationship
to the beta distribution, except we have to scale it into the interval (u(i), 1).

The spacings method depends on an interesting relationship between ratios
of independent standard exponential random variables and the difference be-
tween order statistics from a U(0, 1) distribution. It is easy to show that if
Y1, Y2, . . . , Yn, Yn+1 are independently distributed as exponential with parame-
ter equal to 1, for i = 1, 2, . . . , n, the ratio

Ri =
Yi

Y1 + Y2 + . . . + Yn + Yn+1

has the same distribution as

U(i) − U(i−1),

where U(i) is the ith order statistic from a sample of size n from a U(0, 1)
distribution, and U(0) = 0.

Reeder (1972), Lurie and Mason (1973), and Rabinowitz and Berenson
(1974) compare the performance of these methods for generating order sta-
tistics from a uniform distribution, and Gerontidis and Smith (1982) compare
the performance for some nonuniform distributions. If all n order statistics are
required, the multinomial groups method is usually best. Often, however, only
a few order statistics from the full set of n are required. In that case, either the
sequential method or the spacings method is to be preferred.

Nagaraja (1979) points out an interesting anomaly: although the distribu-
tion of the order statistics using any of four methods that we have discussed is
the same,

Pr
(
Xseq

(n) > Xsort
(n)

)
> 0.5,

where Xseq
(n) is the maximum uniform order statistic generated by first generating

X(1) as the nth root of a uniform and then generating the sequence up to X(n),
and Xsort

(n) is the maximum uniform order statistic generated by sorting. The
probability difference is small, and this fact is generally not important in Monte
Carlo studies.

6.4. NONINDEPENDENT SAMPLES 223

Order Statistics from Other Distributions

If the target distribution is not the uniform distribution, it still may be possi-
ble to use one of these methods. If the inverse CDF method can be applied,
however, it is usually better to generate the appropriate order statistics from
the uniform distribution and then use the inverse CDF method to generate the
order statistics from the target distribution.

6.4.2 Censored Data

In applications studying lifetime data, such as reliability studies and survival
analysis, it is common not to observe all lifetimes of the experimental units in
the study. The unobserved data are said to be “censored”. There are several
ways that the censoring can be performed. Often, either the very small values
or the very large values are not observed. Data collected by such procedures
can be simulated as truncated distributions, such as we have already discussed.

More complicated censoring may be difficult to simulate. In “progressive
censoring” or “multiple censoring”, more than one experimental unit is removed
from the study at a time. In type-I progressive censoring, the censoring times
are fixed. At the ith preselected time, ri items are removed from the test; that
is, their lifetimes are censored. In type-II censoring, the censoring times are the
random failure times of single units. At the ith failure, ri items are removed
from the test. In this type of accelerated life testing, we observe m failures (or
lifetimes), and

n = m + r1 + · · · + rm,

where n items begin in the study. Balakrishnan and Sandhu (1995) give a
method for progressive type-II censoring. They show that if U(1), U(2), . . . , U(m)

are progressive type-II censored observations from U(0, 1),

Vi =
1 − U(m−i+1)

1 − U(m−i)
for i = 1, 2, . . . , m − 1,

Vm = 1 − U(1),

and
Wi = V

i+rm+rm−1+···+rm−i+1
i for i = 1, 2, . . . , m,

then the Wi are i.i.d. U(0, 1).
This fact (reminiscent of the relationships of order statistics from the uni-

form distribution) provides the basis for simulating progressive type-II censored
observations. Also similar to the situation for order statistics, the uniform case
can yield samples from other distributions by use of the inverse CDF method.

Algorithm 6.4 Progressive Type-II Censored Observations from a
Distribution with CDF P

1. Generate m independent U(0, 1) deviates wi.

224 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

2. Set vi = w
1/(i+rm+rm−1+···+rm−i+1)
i .

3. Set ui = 1 − vmvm−1vm−i+1.
The ui are deviates from progressive type-II censoring from the U(0, 1)
distribution.

4. Set xi = P−1(ui) (or use the appropriate modification discussed in Chap-
ter 4 if P is not easily invertible).

6.5 Generation of Nonindependent Sequences

There are many types of stochastic processes in which the distribution of a given
element in the process depends on the realizations of previous random elements
in the process. Examples of such processes are the position of an animal as
it moves in time and the price of a financial asset. There are various types
of models that are useful for stochastic processes, and in this section we will
briefly describe a few and discuss their simulation.

We denote a stochastic process by a sequence X0, X1, . . . and an associated
sequence t0, t1, The Xs and/or the ts may be random variables. The value
that an X assumes is called the state of the system. The set of all possible states
is called the state space. The associated sequence of ts are indexes, so we may
write the sequence of states as Xt0 , Xt1 , If the indexes are an increasing
sequence of scalars, the index is usually called “time”. Another common type of
index is location, usually in two dimensions. We distinguish types of processes
based on the kinds of values that the states can assume (whether they are
discrete or continuous) and the nature of the index values. When the values
of the indexes are restricted to increasing integral values, the process is called
a discrete-time process, and if the indexes can assume any real value in an
increasing sequence, the process is called a continuous-time process. In either
case, the indexes are usually restricted to be nonnegative.

Multivariate processes are often of interest. In signal processing applica-
tions, for example, we often assume an unobservable process X0, X1, . . . and a
sequence of observations Y0, Y1, . . . with distributions that depend on the Xts.
There are many variations of this basic model.

Often, the simulation of a stochastic process is just a straightforward se-
quential application of the methods that we have discussed for generation of
independent variates.

6.5.1 Markov Process

The Markov (or Markovian) property for a stochastic process is the requirement
that the conditional distribution of Xti |Xti−1 be independent of Xt0 , . . . , Xti−2 .
This is the condition that a Markov process does not have memory. A Markov
process, whether discrete time or continuous time, in which the state space is
a finite or countable set is called a Markov chain. In a discrete-time Markov

6.5. NONINDEPENDENT SEQUENCES 225

chain, with the states indexed by 1, 2, . . ., let pij be the probability that the
state at time tk is j given that the state at time tk−1 is i. The matrix P = (pij)
is called the transition matrix. See Meyn and Tweedie (1993) for an extensive
coverage of types of Markov chains and their properties.

Simulation of Markov chains is generally straightforward. When some of the
transition probabilities are small, combination of states followed by splitting can
be faster than a direct method. Juneja and Shahabudding (2001) discuss some
efficient methods for dealing with small transition probabilities.

A simple random walk on a grid is a Markov chain that has applications in
many areas. A generalization to a random walk on a plane is also a Markov
process. A self-avoiding random walk (that is, a random walk with the restric-
tion that no path of the walk can cross itself) is not a Markov process. A
self-avoiding random walk on a grid has been used to simulate the growth of
polymers.

6.5.2 Nonhomogeneous Poisson Process

A simple Poisson process is characterized by a sequence of independent expo-
nential random variables. It can be viewed as a continuous-time Markov chain
in which the states are a fixed sequence and the indexes are the cumulative
sums of the independent exponentials, which are called interarrival times.

Some important Poisson processes have interarrival times that are distrib-
uted as exponential with rate parameter λ varying in time λ(t). For a non-
homogeneous Poisson process with a rate function that is varying in time,
Lewis and Shedler (1979) develop a method called “thinning” that uses accep-
tance/rejection on Poisson variates from a process with a greater rate function,
λ∗ (which may be stepwise constant). The method is shown in Algorithm 6.5.

Algorithm 6.5 Nonhomogeneous Poisson Process by Thinning

0. Set i = 0, and initialize t0.

1. Set d = 0.

2. Generate e from an exponential with rate function λ∗, and set d = d + e.

3. Generate a u from U(0, 1).

4. If u ≤ λ(ti + d)/λ∗, then
4.a. set i = i + 1, set ti = ti−1 + d, deliver ti, and go to step 1;

otherwise,
4.b. go to step 2.

The IMSL Libraries routine rnnpp generates a nonhomogeneous Poisson
process using the Lewis and Shedler thinning method.

The thinning technique also applies to other distributions that are varying
in time. Chen and Schmeiser (1992) describe methods for generating a nonho-
mogeneous Poisson process in which the rate varies cyclically as a trigonometric
function.

226 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

6.5.3 Other Time Series Models

One of the most widely used models for a time series is the autoregressive
moving average (ARMA) model,

φ(B)(Xt) = θ0 + θ(B)(At) for t = 0, 1, 2, . . . , (6.1)

where B is the backward shift operator defined by Bk(Xt) = Xt−k,

φ(B) = 1 − φ1B − · · · − φpBp,

and
θ(B) = 1 − θ1B − · · · − θqBq ,

where p, q ≥ 0. We can therefore rewrite equation (6.1) as

Xt = φ1Xt−1 + · · · + φpXt−p + θ0 + At − θ1At−1 − · · · − θqAt−q .

To begin the process, we usually set any X or A with a negative subscript as 0.
The At are i.i.d. random variables called innovations. In most cases, we

assume that the Ats have a normal distribution.
There are many variations on this basic model. Some variations are quite

amenable for analysis, but in some cases the model is best studied by simulation.
This is especially true if the innovations do not have a normal distribution.

The model is fairly easy to simulate. Numerical errors can accumulate
for a very long simulation, but this is not generally a problem. The IMSL
routine rnarm generates random realizations of ARMA sequences, and the S-
Plus function arima.sim generates random realizations of ARIMA sequences
(ARMA sequences with differencing).

If the innovations in the time series model are not i.i.d., various other models
may be more appropriate. One approach that seems to work well in some sit-
uations is the generalized autoregressive conditional heteroscedastic (GARCH)
model,

Xt = Etσt, (6.2)

where the Et are i.i.d. N(0, 1),

σ2
t = σ2 + β1σ

2
t−1 + · · · + βpσ

2
t−p + α1X

2
t−1 + · · · + αpX

2
t−q,

σ > 0, βi ≥ 0, αi ≥ 0,

and
p∑

i=1

βi +
q∑

j=1

αj < 1.

A GARCH(1,1) model is often adequate. This model is widely used in
modeling stock price movements. The assumption of normality for the Et can
easily be changed to some other distribution. Because normality is usually
assumed in a GARCH model, if some other distribution is assumed, the name
is often changed. For example, if a Student’s t distribution is used, the model is
sometimes called TGARCH, and if a stable distribution (other than the normal)
is used, the model is called SGARCH.

EXERCISES 227

Exercises

6.1. One scheme for sampling with replacement and with probability propor-
tional to size is called Lahiri’s method (see Särndal, Swensson, and Wret-
man, 1992). Suppose that a population consists of N items, with sizes
M1, M2, . . . , MN , and a sample of size n is to be selected with replace-
ment in such a way that the probability of the ith item is proportional to
Mi. (The N population items may be primary sampling units, and the
Mis may be numbers of secondary sampling units in the primary units.)
Lahiri’s method uses acceptance/rejection:

0. Set i = 0, j = 0, and M = max(M1, M2, . . . , MN).

1. Set i = i+1, and generate k from a discrete uniform over 1, 2, . . . , N .

2. Generate m from a discrete uniform over 1, 2, . . . , M .

3. If m ≤ Mk, then
include the kth item and set j = j + 1.

4. If j < n, then go to step 1.

Prove that this method results in a probability proportional-to-size sample
with replacement.

6.2. Consider the problem of generating a simple random sample of size n from
a population of size N . Suppose that N = 106, as in the discussion on
page 220, and suppose that you have a random number generator with
period 109.

(a) With this generator, what is the largest sample that you can draw in
accordance with the definition of a simple random sample? Discuss.
(A simple answer involves a major assumption. What is it? Without
this assumption, it is difficult even to interpret the question.)

(b) Suppose that you wish to use the generator to draw a random sample
of size 500. How serious do you believe the problem to be? Discuss.

6.3. Show that the ith order statistic from a sample of size n from a U(0, 1)
distribution has a beta distribution with parameters i and n− i+1. Hint:
Just write out the density (as in David, 1981, for example), plug in the
distribution function of the uniform, and identify the terms.

6.4. Write a Fortran or C function to accept a, b, n, n1, and n2 (with 1 ≤ n1 ≤
n2 ≤ n) and to return the nth

1 through the nth
2 order statistics from a two-

parameter Weibull distribution with parameters a and b. Use the random
spacings method to generate uniform order statistics, and then use the
inverse CDF to generate order statistics from a Weibull distribution.

6.5. Derive two different algorithms, and write programs implementing them
to generate a deal of hands for the game of bridge. (That is, form

228 CHAPTER 6. RANDOM SAMPLES AND PROCESSES

four random mutually exclusive sets each containing 13 of the integers
1, 2, . . . , 52.) Base one algorithm on the techniques of random sampling
and the other on methods of random permutations. Which is more effi-
cient?

6.6. Random walks.

(a) Write a program to simulate a symmetric random walk on a two-
dimensional grid. (That is, for integers i and j, if the state at time
t is (i, j), then the probability at time t + 1 is 1/4 for each of the
states (i − 1, j), (i + 1, j), (i, j − 1), and (i, j + 1), and, of course,
0 for all other states.) Use your program to estimate the mean
and variance of Dt =

√
(it − i0)2 + (jt − j0)2. Also determine these

values analytically.

(b) Write a program to simulate a symmetric self-avoiding random walk
on a two-dimensional grid. Notice that often the self-avoiding walk
reaches a point from which no further movement is possible. In some
applications, a good model is a self-avoiding random walk that does
not reach a point from which further movement is not possible. To
simulate such a process, we generate self-avoiding random walks for
the time period of interest and discard all that stop early. Use your
program to estimate the mean and variance of Dt for walks that do
not stop for t up to 200.

(c) Again, as in Exercise 6.6a, simulate a symmetric random walk on a
two-dimensional grid, except this time assuming that the state goes
from (i, j) to (i±1, j) and to (i, j±1) with probability 1/(4(1+e−1/2))
and goes to (i ± 1, j±) with probability e−1/2/(4(1 + e−1/2)). Use
your program to estimate the mean and variance of Dt.

(d) Now, simulate a symmetric random walk on a two-dimensional grid,
this time assuming that the state goes from (xt−1, yt−1) to the point
(xt, yt) with a probability density proportional to exp(((xt−xt−1)2+
(yt − yt−1)2)/2). Use your program to estimate the mean and vari-
ance of D =

√
(xt − x0)2 + (yt − y0)2.

6.7. Consider a symmetric random walk on a grid that is known to be at posi-
tion (0, 0) at time t = 0 and to be at position (it, jt) at time t. Develop an
algorithm and write a program to simulate a constrained symmetric ran-
dom walk on a grid. (This is not an easy problem!) Develop a statistical
test of your algorithm, and test it empirically.

Chapter 7

Monte Carlo Methods

Monte Carlo simulation is the use of experiments with random numbers to
evaluate mathematical expressions. The experimental units are the random
numbers. The expressions may be definite integrals, systems of equations, or
more complicated mathematical models. In most cases, when mathematical
expressions are to be evaluated, the standard approximations from numerical
analysis are to be preferred, but Monte Carlo methods provide an alterna-
tive that is sometimes the only tractable approach. Monte Carlo is often the
preferred method for evaluating integrals over high-dimensional domains, for
example. Very large and sparse systems of equations can sometimes be solved
effectively by Monte Carlo methods. (See Chapter 7 of Hammersley and Hand-
scomb, 1964.) In these applications, there is no inherent randomness. Random
variables are defined and then simulated in order to solve a problem that is
strictly deterministic.

Sometimes, an ensemble of physical units is described by a density, which can
be normalized to be a probability density, and Monte Carlo methods are used
to simulate properties of the ensemble. Evaluating models of large numbers
of particles is a common application in statistical physics (see Newman and
Barkema, 1999, for example).

In some cases, there is an inherent randomness in the model, and the objec-
tive of the Monte Carlo study is to discover the distribution of some variable.
We may think of the problem as having a set of inputs with known or assumed
random distributions and a set of outputs with unknown random distributions.
As a simple example, consider the question of the distribution of the midrange
of a gamma distribution. (Analytic methods should be used when practical, of
course. The distribution in this example can and should be worked out ana-
lytically.) The input is a variable with a gamma distribution, and the output
is the midrange statistic. Instead of estimating a finite-dimensional parameter
such as the mean and variance of the midrange, the objective of the Monte
Carlo study may be to estimate the probability density of the midrange. The
object to be estimated is a continuous function. There are various methods of

229

230 CHAPTER 7. MONTE CARLO METHODS

probability density estimation that could be used with a sample of midranges
generated by Monte Carlo methods. The results of the Monte Carlo study
generally are presented as graphs representing the probability density of the
statistic of interest.

There are many practical issues that must be taken into account in conduct-
ing a Monte Carlo study. These considerations include what software to use
and how the computer time is to be used. Often, a Monte Carlo study must
be conducted as a set of separate computer runs. In that case, it is necessary
that the separate runs not use overlapping sequences of random numbers. After
the underlying sequence of random numbers is interrupted, the study should
resume at the same point in the sequence.

The results of any scientific experiment should be reproducible. In Monte
Carlo experimentation, we have a stronger requirement: the experimental units
should be strictly reproducible. Strict reproducibility of the experimental units
means that any stream of random numbers can be repeated (to within machine
precision on each element), given the same initial conditions. As we have indi-
cated, in very rare instances, methods that make decisions based on comparisons
of floating-point computations that affect the number of uniform numbers used
may not yield strictly reproducible streams of random numbers.

Scientific experiments involving large problems or many variables must be
designed to yield information efficiently. Estimators and other statistics in a
well-designed experiment have small variance. Monte Carlo methods should
also be designed to be efficient. In this chapter, we discuss some of the ways
of reducing the variance of Monte Carlo estimators. Additional discussion and
other strategies can be found in Liu (2001).

In all applications, we should be aware of the cardinality of the sample
space. As pointed out in Section 6.3, even in some seemingly simple problems,
the sample space is so large that a random number generator may not be able
to generate all points in it.

A Monte Carlo method begins with the identification of a random variable
such that the expected value of some function of the random variable is a
parameter in the problem to be solved. To use the Monte Carlo method, we
must be able to simulate samples from the random variable. The problem being
addressed may be strictly deterministic. The evaluation of a definite integral,
which is a deterministic quantity, provides a good example of a Monte Carlo
method.

7.1 Evaluating an Integral

In its simplest form, Monte Carlo simulation is the evaluation of a definite
integral

θ =
∫

D

f(x) dx (7.1)

7.1. EVALUATING AN INTEGRAL 231

by identifying a random variable Y with support on D and density p(y) and a
function g such that the expected value of g(Y) is θ:

E(g(Y)) =
∫

D

g(y)p(y) dy

=
∫

D

f(y) dy

= θ.

Let us first consider the case in which D is the interval [a, b], Y is taken to
be a random variable with a uniform density over [a, b], and g is taken to be f .
In this case,

θ = (b − a)E(f(Y)).

The problem of evaluating the integral becomes the familiar statistical problem
of estimating a mean, E(f(Y)).

The statistician quite naturally takes a random sample and uses the sample
mean. For a sample of size m, an estimate of θ is

θ̂ = (b − a)
∑m

i=1 f(yi)
m

, (7.2)

where the yi are values of a random sample from a uniform distribution over
(a, b). The estimate is unbiased:

E(θ̂) = (b − a)
∑

E(f(Yi))
m

= (b − a)E(f(Y))

=
∫ b

a

f(x) dx.

The variance is

V(θ̂) = (b − a)2
∑

V(f(Yi))
m2

=
(b − a)2

m
V(f(Y))

=
(b − a)

m

∫ b

a

(
f(x) −

∫ b

a

f(t) dt

)2

dx. (7.3)

The integral in equation (7.3) is a measure of the roughness of the function.
(There are various ways of defining roughness. Most definitions involve deriv-
atives. The more derivatives that exist, the less rough the function. Other
definitions, such as the one here, are based on a norm of a function. The L2

norm of the difference of the function from its integrated value is a very natural
measure of roughness of the function. Another measure is just the L2 norm of
the function itself, which, of course, is not translation-invariant.)

232 CHAPTER 7. MONTE CARLO METHODS

The method of estimating an integral just described is sometimes called
“crude Monte Carlo”. In Exercise 7.2, page 271, we describe another method,
called “hit-or-miss”, and ask the reader to show that the crude method is su-
perior to hit-or-miss.

Suppose that the original integral can be written as

θ =
∫

D

f(x) dx

=
∫

D

g(x)p(x) dx, (7.4)

where p(x) is a probability density over D. As with the uniform example
considered earlier, it may require some scaling to get the density to be over the
interval D. (In the uniform case, D = (a, b), both a and b must be finite, and
p(x) = 1/(b − a).) Now, suppose that we can generate m random variates yi

from the distribution with density p. Then, our estimate of θ is just

θ̂ =
∑

g(yi)
m

. (7.5)

Compare this estimator with the estimator in equation (7.2).
The use of a probability density as a weighting function allows us to apply

the Monte Carlo method to improper integrals (that is, integrals with infinite
ranges of integration; see Exercise 7.9). The first thing to note, therefore,
is that the estimator (7.5) applies to integrals over general domains, while the
estimator (7.2) applies only to integrals over finite intervals. Another important
difference is that the variance of the estimator in equation (7.5) is likely to be
smaller than that of the estimator in equation (7.2) (see Exercise 7.7 on page 273
and see Section 7.5).

Quadrature is an important topic in numerical analysis, and a number of
quadrature methods are available. They are generally classified as Newton–
Cotes methods, extrapolation or Romberg methods, and Gaussian quadrature.
These methods involve various approximations to the integrand over various
subdomains of the range of integration. The use of these methods involves
consideration of error bounds, which are often stated in terms of some function
of a derivative of the integrand evaluated at some unknown point. Monte Carlo
quadrature differs from these numerical methods in a fundamental way: Monte
Carlo methods involve random (or pseudorandom) sampling. The expressions
in the Monte Carlo quadrature formulas do not involve any approximations,
so questions of bounds of the error of approximation do not arise. Instead of
error bounds or order of the error as some function of the integrand, we use the
variance of the random estimator to indicate the extent of the uncertainty in
the solution.

The square root of the variance (that is, the standard deviation of the esti-
mator) is a good measure of the range within which different realizations of the
estimator of the integral may fall. Under certain assumptions, using the stan-
dard deviation of the estimator, we can define statistical “confidence intervals”

7.2. SEQUENTIAL MONTE CARLO METHODS 233

for the true value of the integral θ. Loosely speaking, a confidence interval is
an interval about an estimator θ̂ that in repeated sampling would include the
true value θ a specified portion of the time. (The specified portion is the “level”
of the confidence interval and is often chosen to be 90% or 95%. Obviously,
all other things being equal, the higher the level of confidence, the wider the
interval must be.)

Because of the dependence of the confidence interval on the standard devia-
tion, the standard deviation is sometimes called a “probabilistic error bound”.
The word “bound” is misused here, of course, but in any event, the standard
deviation does provide some measure of a sampling “error”.

The important thing to note from equation (7.3) is the order of error in
terms of the Monte Carlo sample size; it is O(m− 1

2). This results in the usual
diminished returns of ordinary statistical estimators; to halve the error, the
sample size must be quadrupled.

We should be aware of a very important aspect of a discussion of error
bounds for the Monte Carlo estimators. It applies to random numbers. The
pseudorandom numbers that we actually use only simulate the random numbers,
so “unbiasedness” and “variance” must be interpreted carefully.

The Monte Carlo quadrature methods extend directly to multivariate inte-
grals, although, obviously, it takes larger samples to fill the space. It is, in fact,
only for multivariate integrals that Monte Carlo quadrature should ordinarily
be used. The preference for Monte Carlo methods in multivariate quadrature
results from the independence of the pseudoprobabilistic error bounds and the
dimensionality mentioned above. See Evans and Swartz (2000) for further dis-
cussion of techniques (both Monte Carlo and deterministic ones) for evaluation
of definite integrals, including integrals over multivariate spaces. Ogata (1990)
discusses Monte Carlo quadrature in the context of Bayesian analysis, espe-
cially with multiple parameters. The compendium of articles in Flournoy and
Tsutakawa (1991) covers use of Monte Carlo methods in the evaluation of a
number of specialized integrals. Some of the articles also review standard nu-
merical methods for the approximation of integrals. Gelman and Meng (1998)
review various methods for Monte Carlo quadrature, and demonstrate relation-
ships among various methods, including sequential ones discussed in the next
section.

7.2 Sequential Monte Carlo Methods

In many applications, random behavior can be modeled by an ensemble of i.i.d.
random variables. Also, in many applications of Monte Carlo methods, such
as the evaluation of an integral, i.i.d. sampling is the best way to approach
the problem. In other cases, however, the distributions of the elements in the
process being studied depend on the realizations of the elements up to that
point. Such a stochastic process could be studied by use of a single nested
integral, of course, but it is often more efficient, both in developing the model

234 CHAPTER 7. MONTE CARLO METHODS

and in performing the simulation, to use sequential Monte Carlo methods.
In sequential Monte Carlo simulation, we generate variates from conditional

distributions with densities pX0 , pX1|X0 , pX2|X1X0 , In applications, the in-
dex often represents time; that is, X0 is the random variable at time 0, X1 at
time 1, and so on. If the process is continuous in time (that is, if the index in
the subscript is continuous), in practice we assume that observations are taken
at discrete points in time.

A realization of the stochastic process is called a trajectory or a particle.
Sequential Monte Carlo methods generally require generation of many realiza-
tions of the stochastic process. To simplify the notation, let us use Xi:j for
integers i and j with i < j to represent the trajectory from Xi to Xj , that is,
the vector (Xi, . . . , Xj). Properties of the process are estimated by averaging
the trajectories.

A special kind of stochastic process is a Markov process, or Markov chain,
as we used in Section 4.10. A Markov process is characterized by densities
with the property that pXi|Xi−1···X0 = pXi|Xi−1 . A simple example of such a
process is a random walk. Two types of modifications of a random walk are a
self-avoiding random walk and a constrained random walk (see Exercises 7.8b
and 7.8c).

We often assume an underlying Markov process, X0, X1, . . ., that is not
observable (“hidden”) and a sequence of observations Y0, Y1, . . . that are con-
ditionally independent given the hidden Markov process, and the distribution
of Yt depends only on Xt. This type of model is useful in signal processing
applications, for example. The objective is to estimate recursively the posterior
(conditional) density,

pX0:t|Y1:t(x0:t|y1:t), (7.6)

the filtering density,
pXt|Y1:t(xt|y1:t),

or the expectation of a function of the signal,

E(ft(X0:t)) =
∫

ft(x0:t)pX0:t|Y1:t(x0:t|y1:t), dx0dx1 · · · dxt. (7.7)

In some areas of application this is called “particle filtering”. A straightforward
Monte Carlo estimate of the expectation in equation (7.7) can be computed by
generating m trajectories, x

(i)
0:t for i = 1, . . . , m, and averaging the ft(x

(i)
0:t).

Unfortunately, because of the high dimensions of the integral in equation (7.7)
and of the normalizing constants in the marginal and conditional distributions,
a straightforward application of Monte Carlo techniques would be overwhelmed
by variance. We will briefly discuss this problem later in this chapter. Extensive
discussion of the problem is in the book edited by Doucet, de Freitas, and
Gordon (2001).

7.3. EXPERIMENTAL ERROR IN MONTE CARLO METHODS 235

7.3 Experimental Error in Monte Carlo

Methods

Monte Carlo methods are sampling methods; therefore, the estimates that result
from Monte Carlo procedures have associated sampling errors. The fact that
the estimate is not equal to its expected value (assuming that the estimator is
unbiased) is not an “error” or a “mistake”; it is just a result of the variance of
the random (or pseudorandom) data. Monte Carlo methods are experiments
using random data. The variability of the random data results in experimental
error, just as in other scientific experiments in which randomness is a recognized
component.

As in any statistical estimation problem, an estimate should be accompanied
by an estimate of its variance. The estimate of the variance of the estimator of
interest is usually just the sample variance of computed values of the estimator
of interest.

Following standard practice, we could use the square root of the variance
(that is, the standard deviation) of the Monte Carlo estimator to form an ap-
proximate confidence interval for the integral being estimated. Of course, the
confidence limits would include the unknown terms in the variance. We could,
however, estimate the variance of the estimator using the same sample that we
use to estimate the integral.

The standard deviation in the approximate confidence limits is sometimes
called a “probabilistic error bound”. The word “bound” is misused here, of
course, but in any event, the standard deviation does provide some measure
of a sampling “error”. The important thing to note from equation (7.3) is the
order of error; it is O(m− 1

2).
An important property of the standard deviation of a Monte Carlo estimate

of a definite integral is that the order in terms of the number of function evalu-
ations is independent of the dimensionality of the integral. On the other hand,
the usual error bounds for numerical quadrature are O(m− 2

d), where d is the
dimensionality.

This discussion of error bounds for the Monte Carlo estimator applies to
random numbers. The pseudorandom numbers that we actually use only sim-
ulate random numbers, so “unbiasedness” and “variance” must be interpreted
carefully.

In Monte Carlo applications, a major reason for being interested in the
variance of the estimator is to determine whether to increase the Monte Carlo
sample size. The sample size is often determined so that the length of a con-
fidence interval for the estimator meets a given maximum length requirement.
For example, we may wish that the length of a 95% confidence interval for the
parameter of interest, θ, be no more than d. The confidence interval is of the
form (

θ̂ − I1, θ̂ + I2

)
.

Without knowing the distribution of θ̂, of course, we cannot determine I1 and

236 CHAPTER 7. MONTE CARLO METHODS

I2. The usual approach is to approximate the confidence interval using the
normal distribution. This leads to I1 and I2 having the forms tν1vν and tν2vν ,
where tν1 and tν2 are quantiles of a Student’s t distribution with ν degrees of
freedom, and vν is the square root of an estimator of the variance of θ̂ based
on a sample size related to ν. Because vν decreases approximately as 1/

√
ν,

increasing the sample size ultimately results in the restriction on the length
being satisfied:

(tν1 + tν2)vν ≤ d

(assuming the variance is finite).
The experimental error of Monte Carlo experiments should be treated just

as carefully as the experimental error or measurement error in other scientific
experimentation. The error determines a bound on the number of significant
digits in numerical results. The error is propagated through any subsequent
computations, and thus bounds on the number of significant digits are propa-
gated.

In reporting numerical results from Monte Carlo simulations, it is mandatory
to give some statement of the level of the experimental error. An effective way of
doing this is by giving the sample standard deviation. When a number of results
are reported, and the standard deviations vary from one to the other, a good
way of presenting the results is to write the standard deviation in parentheses
beside the result itself, for example,

3.147 (0.0051).

Notice that if the standard deviation is of order 10−3, the precision of the main
result is not greater than 10−3. Just because the computations are done at a
higher precision is no reason to write the number as if it had more significant
digits.

7.4 Variance of Monte Carlo Estimators

The variance of a Monte Carlo estimator has important uses in assessing the
quality of the estimate of the integral. The expression for the variance, as in
equation (7.3), is likely to be very complicated and to contain terms that are
unknown. We therefore need methods for estimating the variance of the Monte
Carlo estimator.

Estimating the Variance

A Monte Carlo estimate usually has the form of the estimator of θ in equa-
tion (7.2):

θ̂ = c

∑
fi

m
.

7.4. VARIANCE OF MONTE CARLO ESTIMATORS 237

The variance of the estimator has the form of equation (7.3):

V(θ̂)c
∫ (

f(x) −
∫

f(t) dt

)2

dx.

An estimator of the variance is

V̂(θ̂) = c2

∑
(fi − f̄)2

m − 1
. (7.8)

This estimator is appropriate only if the elements of the set of random variables
{Fi}, on which we have observations {fi}, are (assumed to be) independent and
thus have zero correlations.

Estimating the Variance Using Batch Means

If the Fi do not have zero correlations, the estimator (7.8) has an expected value
that includes the correlations; that is, it is biased for estimating V(θ̂). This
situation arises often in simulation. In many processes of interest, however,
observations are “more independent” of observations farther removed within
the sequence than they are of observations closer to them in the sequence. A
common method for estimating the variance in a sequence of nonindependent
observations therefore is to use the means of successive subsequences that are
long enough that the observations in one subsequence are almost independent
of the observations in another subsequence. The means of the subsequences are
called “batch means”.

If F1, . . . , Fb, Fb+1, . . . , F2b, F2b+1, . . . , Fkb is a sequence of random variables
such that the correlation of Fi and Fi+b is approximately zero, an estimate of
the variance of the mean, F̄ , of the m = kb random variables can be developed
by observing that

V(F̄) = V
(

1
m

∑
Fi

)

= V

1
k

k∑
j=1

1
b

jb∑
i=(j−1)b+1

Fi

≈ 1

k2

k∑
j=1

V

1
b

jb∑
i=(j−1)b+1

Fi

≈ 1

k
V(F̄b),

where F̄b is the mean of a batch of length b. If the batches are long enough, it
may be reasonable to assume that the means have a common variance. An esti-
mator of the variance of F̄b is the standard sample variance from k observations,
f̄1, . . . , f̄k: ∑

(f̄j − f̄)2

k − 1
.

238 CHAPTER 7. MONTE CARLO METHODS

Hence, the batch-means estimator of the variance of F̄ is

V̂(F̄) =
∑

(f̄j − f̄)2

k(k − 1)
. (7.9)

This batch-means variance estimator should be used if the Monte Carlo
study yields a stream of nonindependent observations, such as in a time series
or when the simulation uses a Markov chain. The size of the subsamples should
be as small as possible and still have means that are independent. A test of
the independence of the F̄b may be appropriate to help in choosing the size
of the batches. Batch means are useful in variance estimation whenever a
Markov chain is used in the generation of the random deviates, as discussed in
Section 4.10.

Analysis of Variance

The variance can also be estimated from the results of completely different
experiments because those results should be uncorrelated. Often, it is worth
the extra trouble of running separate experiments in order to get a reliable
estimate of the variance. There may also be other reasons to run separate
experiments.

In Chapter 2, we advocated use of more than one random number generator
and/or use of more than one seed in applications using random numbers. The
different generators or different seeds result in a block design for a simulation
experiment. We can represent the classical linear model for the observations
yijk in the experiment as

yijk = µ + gi + si(j) + eij(k),

where µ is the quantity about which we wish to make inference, gi is the effect
on the observations of the ith generator, si(j) is the effect of the jth seed within
the ith generator (this notation for nesting is not the most commonly used
notation), and eij(k) is the random error of the kth observation within the ij
pair of generator and seed. If the generators are all “perfect”, then gi = si(j) = 0
for all i and j. The means of all observations using the ij pairs of generator and
seed, ȳij•, should exhibit no systematic variation. The sample variance of the
ȳij• should be consistent with the means of appropriate size from a distribution
with the variance of the underlying error, eij(k). This can be formally checked
by the standard statistical techniques of analysis of variance. (The standard
statistical techniques rely on an assumption of normality of the eij(k). If this is
not reasonable, nonparametric procedures could be used in place of the standard
methods.)

Quasirandom Sampling

Our discussion of variance in Monte Carlo methods that are based on pseudo-
random numbers follows the pretense that the numbers are realizations of ran-
dom variables, and the main concern in pseudorandom number generation is

7.5. VARIANCE REDUCTION 239

the simulation of a sequence of i.i.d. random variables. In quasirandom number
generation, the attempt is to get a sample that is spread out over the sample
space more evenly than could be expected from a random sample. Monte Carlo
methods based on quasirandom numbers, or “quasi-Monte Carlo” methods, do
not admit discussion of variance in the technical sense.

The approximation of an integral such as in equation (7.1) using quasiran-
dom numbers, however, involves a quantity (in one dimension) of the same form
as that of an estimate using pseudorandom numbers, equation (7.2). Although
the approximation of the integral does not have a variance, how good the ap-
proximation is depends on a quantity similar to the variance of an estimator
based on random variables, equation (7.3). The integral in equation (7.3) is a
measure of the roughness of the integrand and thus is an appropriate measure
of how good the quasirandom approximation (or, indeed, any similar approx-
imation) is. The roughness can be approximated in the same way that the
variance is estimated; that is, by a quantity of the form (7.8).

Sometimes, it may be desirable to treat the results of a quasi-Monte Carlo
experiment as if they had variances. This may be to form confidence intervals
(rather than asymptotic error bounds). One approach to this is to use a hybrid
generator (that is, a combination of a quasirandom generator and a pseudo-
random generator). Braaten and Weller (1979) describe a hybrid method in
which a pseudorandom generator is used to scramble a quasirandom sequence.
Ökten (1998) suggests use of random samples from quasirandom sequences in
order to estimate a confidence interval. Owen (1995, 1997) discusses how hybrid
methods can actually improve both the variance of a pseudorandom method and
the precision of a quasirandom method.

In Section 7.5 we discuss ways of reducing the variance in Monte Carlo
estimation using pseudorandom numbers. One of these general methods is
stratification. In some uses of stratification, the objective is to ensure that the
observations are spread somewhat evenly over the sample space. We should
recall that this objective is also the basic motivation for use of quasirandom
sampling.

7.5 Variance Reduction

An objective in sampling is to reduce the variance of the estimators while pre-
serving other good qualities, such as unbiasedness. Variance reduction results
in statistically efficient estimators. The emphasis on efficient Monte Carlo sam-
pling goes back to the early days of digital computing (Kahn and Marshall,
1953), but the issues are just as important today (or tomorrow) because, pre-
sumably, we are solving bigger problems. The general techniques used in sta-
tistical sampling apply to Monte Carlo sampling, and there is a mature theory
for sampling designs that yield efficient estimators (see, for example, Särndal,
Swensson, and Wretman, 1992).

Except for straightforward analytic reduction, discussed in the next sec-

240 CHAPTER 7. MONTE CARLO METHODS

tion, techniques for reducing the variance of a Monte Carlo estimator are called
“swindles” (especially if they are thought to be particularly clever). The com-
mon thread in variance reduction is to use additional information about the
problem in order to reduce the effect of random sampling on the variance of the
observations. This is one of the fundamental principles of all statistical design.

7.5.1 Analytic Reduction

The first principle in estimation is to use any known quantity to improve the
estimate. For example, suppose that the problem is to evaluate the integral

θ =
∫

D

f(x) dx

by Monte Carlo methods. Now, suppose that D1 and D2 are such that D1∪D2 =
D and D1 ∩ D2 = ∅, and consider the representation of the integral

θ =
∫

D1
f(x) dx +

∫
D2

f(x) dx

= θ1 + θ2.

Now, suppose that a part of this decomposition of the original problem is known
(that is, suppose that we know θ1). It is very likely that it would be better
to use Monte Carlo methods only to estimate θ2 and take as our estimate of θ
the sum of the known θ1 and the estimated value of θ2. This seems intuitively
obvious, and it is generally true unless there is some relationship between f(x1)
and f(x2), where x1 is in D1 and x2 is in D2. If there is some known relation-
ship, however, it may be possible to improve the estimate θ̂2 of θ2 by using a
transformation of the same random numbers used for θ̂1 to estimate θ1. For
example, if θ̂1 is larger than the known value of θ1, the proportionality of the
overestimate, (θ̂1 −θ1)/θ1, may be used to adjust θ̂2. This is the same principle
as ratio or regression estimation in ordinary sampling theory.

Now, consider a different representation of the integral, in which f is ex-
pressed as g + h, where g and h have the same signs. We have

θ =
∫

D
(g(x) + h(x)) dx

=
∫

D g(x) dx +
∫

D h(x) dx

= θ3 + θ4,

and suppose that a part of this decomposition, say θ3, is known. In this case,
the use of the known value of

∫
D g(x) dx is likely to help only if g(x) tends to

vary similarly with f(x). In this case, it would be better to use Monte Carlo
methods only to estimate θ4 and take as our estimate of θ the sum of the known
θ3 and the estimated value of θ4. This is because |h(x)| is less rough than |f(x)|.
Also, as in the case above, if there is some known relationship between g(x) and

7.5. VARIANCE REDUCTION 241

h(x), such as one tends to decrease as the other increases, it may be possible to
use the negative correlation of the individual estimates to reduce the variance
of the overall estimate.

7.5.2 Stratified Sampling and Importance Sampling

In stratified sampling, certain proportions of the total sample are taken from
specified regions (or “strata”) of the sample space. The objective in stratified
sampling may be to ensure that all regions are covered. Another objective is
to reduce the overall variance of the estimator by sampling more heavily where
the function is rough (that is, where the values f(xi) are likely to exhibit a lot
of variability) so as

Stratified sampling is usually performed by forming distinct subregions with
different importance functions in each. This is the same idea as in analytic
reduction except that Monte Carlo sampling is used in each region.

Stratified sampling is based on exactly the same principle in sampling meth-
ods in which the allocation is proportional to the variance (see Särndal, Swens-
son, and Wretman, 1992). In some of the literature on Monte Carlo methods,
stratified sampling is called “geometric splitting”.

In importance sampling, just as may be the case in stratified sampling,
regions corresponding to large values of the integrand are sampled more heavily.
In importance sampling, however, instead of a finite number of regions, we allow
the relative sampling density to change continuously. This is accomplished by
careful choice of w in the decomposition implied by equation (7.4) on page 232.
We have

θ =
∫

D

f(x) dx

=
∫

D

f(x)
p(x)

p(x) dx, (7.10)

where p(x) is a probability density over D. The density p(x) is called the impor-
tance function. Stratified sampling can be thought of as importance sampling
in which the importance function is composed of a mixture of densities. In some
of the literature on Monte Carlo methods, stratified sampling and importance
sampling are said to use “weight windows”.

From a sample of size m from the distribution with density p, we have the
estimator,

θ̂ =
1
m

∑ f(xi)
p(xi)

. (7.11)

Generating the random variates from the distribution with density p weights
the sampling into regions of higher probability with respect to p. By judicious
choice of p, we can reduce the variance of the estimator.

The variance of the estimator is

V(θ̂) =
1
m

V
(

f(X)
p(X)

)
,

242 CHAPTER 7. MONTE CARLO METHODS

where the variance is taken with respect to the distribution of the random
variable X with density p(x). Now,

V
(

f(X)
p(X)

)
= E

(
f2(X)
p2(X)

)
−
(

E
(

f(X)
p(X)

))2

.

The objective in importance sampling is to choose p so that this variance is
minimized. Because (

E
(

f(X)
p(X)

))2

=
(∫

D

f(x) dx

)2

,

the choice involves only the first term in the expression for the variance. By
Jensen’s inequality, we have a lower bound on that term:

E
(

f2(X)
p2(X)

)
≥

(
E
(|f(X)|

p(X)

))2

=
(∫

D

|f(x)| dx

)2

.

That bound is obviously achieved when

p(x) =
|f(x)|∫

D |f(x)| dx
.

Of course, if we knew
∫

D
|f(x)| dx, we would probably know

∫
D

f(x) dx and
would not even be considering the Monte Carlo procedure to estimate the inte-
gral. In practice, for importance sampling we would seek a probability density
p that is nearly proportional to |f |; that is, such that |f(x)|/p(x) is nearly
constant.

The problem of choosing an importance function is very similar to the prob-
lem of choosing a majorizing function for the acceptance/rejection method, as
we discussed in Sections 4.5 and 4.6. Selection of an importance function in-
volves the principles of function approximation with the added constraint that
the approximating function be a probability density from which it is easy to
generate random variates.

Let us now consider another way of developing the estimator (7.11). Let
h(x) = f(x)/p(x) (where p(x) is positive; otherwise, let h(x) = 0) and generate
y1, . . . , ym from a density g(y) with support D. Compute importance weights,

wi = p(yi)/g(yi), (7.12)

and form the estimate of the integral as

θ̂ =
1
m

∑
wih(yi)∑

wi
. (7.13)

7.5. VARIANCE REDUCTION 243

In this form of the estimator, g(y) is a trial density, just as in the accep-
tance/rejection methods of Section 4.5. This form of the estimator has similar-
ities to the weighted resampling method discussed in Section 4.12 on page 149.

By the same reasoning as above, we see that the trial density should be
“close” to f ; that is, optimally, g(x) = c|f(x)| for some constant c.

Although the variance of the estimator in equations (7.11) and (7.13) may
appear rather simple, the term E((f(X)/p(X))2) could be quite large if p (or
g) becomes small at some point where f is large. Of course, the objective in
importance sampling is precisely to prevent that, but if the functions are not
well-understood, it may happen. An element of the Monte Carlo sample at a
point where p is small and f is large has an unduly large influence on the overall
estimate. Because of this kind of possibility, importance sampling must be used
with some care.

We should note that the weights wi do not sum to 1. Hesterberg (1995)
points out a number of situations in which normalized weights would improve
the estimation procedure. (If the weights do not sum to 1, the estimator is not
equivariant with respect to addition of a constant.) He describes various ways of
normalizing the weights by assuming that the weights themselves are covariates
in a sampling design. One method is the regression estimate adjustment, in
which the weights in equation (7.12) are adjusted as

w̃i = wi(1 + b(wi − w̄)/m),

where w̄ is the sample mean of the wi and b is the least squares slope adjustment,
m(1− w̄)/(

∑
(wi − w̄)2). Although this adjustment results in a biased estima-

tor (because of the random variables in the denominators), Hesterberg reports
favorable results for the regression-based weights except in cases involving very
small probabilities.

If the integrand f is multimodal, it is very likely that the best importance
function would be a mixture of densities. Oh and Berger (1993) suggested use
of a mixture of Student’s t distributions and described an adaptive method for
selecting the mixture that works well in certain cases.

Importance sampling is similar to hit-or-miss Monte Carlo sampling (see
Exercise 7.2, page 271), and the relationship is particularly apparent when
the weighting function is sampled by acceptance/rejection. (See Caflisch and
Moskowitz, 1995, for some variations of the acceptance/rejection method for
this application. Their variations allow a weighting of the acceptance/rejection
decision, called smoothed acceptance/rejection, that appears to be particularly
useful if the sampling is done from a quasirandom sequence as discussed in
Chapter 3.)

In higher dimensions, as we have seen in Section 4.14 and in Exercise 4.4f,
because the content of geometric regions far from the origin (which would be
in the rejection area) is large relative to the content near the origin, accep-
tance/rejection and hit-or-miss Monte Carlo methods become inefficient. Im-
portance sampling can help to alleviate these problems by decreasing the con-
tent of the outer regions. On the other hand, in higher dimensions, the problems

244 CHAPTER 7. MONTE CARLO METHODS

of very large ratios mentioned above are exacerbated, and importance sampling
must be used with extreme caution.

Sequential Importance Sampling

Direct application of importance sampling in sequential Monte Carlo methods
(Section 7.2 on page 233) would involve identification of a density gt(x0:t) and
formation of importance weights of the form

wt(x0:t) =
pt(x0:t)
gt(x0:t)

, (7.14)

where we are using a simpler notation for the posterior density of interest,
pX0:t(x0:t).

For the filtering problem, we would similarly identify a density g(x0:t|y1:t)
and form importance weights

wt(x0:t) =
p(x0:t|y1:t)
g(x0:t|y1:t)

.

If the density gt(x0:t) is close to the density pt(x0:t), we may be able to
represent the weights in equation (7.14) recursively as

wt(x0:t) = wt−1(x0:t−1)
pt(x0:t−1)pt|t−1(xt|x0:t−1)
pt−1(x0:t−1)gt(xt|x0:t−1)

.

In computations, at the ith trajectory in a simulation of m trajectories, it
may be more efficient to work with normalized weights,

w̃
(i)
t =

w(i)(x0:t)∑m
j=1 w(j)(x0:t)

.

In the filtering problem, these normalized weights can be computed recur-
sively in the trajectory, up to constants of proportionality, by

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x(i)
t)p(x(i)

t |x(i)
t−1)

g(x(i)
t |x(i)

0:t−1, y1:t)
.

Unfortunately, these importance weights become unstable in sequential Monte
Carlo sampling. The process has an increasing variance. Two approaches to
dealing with the problem are the resampling method of Gordon, Salmond, and
Smith (1993) and the rejection control method of Liu, Chen, and Wong (1998).
We refer the reader to those papers for the details of the methods.

7.5. VARIANCE REDUCTION 245

7.5.3 Use of Covariates

Another way of reducing the variance, just as in ordinary sampling, is to use
covariates. Any variable that is correlated with the variable of interest has
potential value in reducing the variance of the estimator. Such a variable is
useful if it is easy to generate and if it has properties that are known or that
can be computed easily. In the general case in Monte Carlo sampling, covariates
are called control variates. Two special cases are called antithetic variates and
common variates. We first describe the general case, and then the two special
cases. We then relate the use of covariates to the statistical method sometimes
called “Rao-Blackwellization”.

Control Variates

Suppose that Y is a random variable, and the Monte Carlo method involves esti-
mation of E(Y). Suppose that X is a random variable with known expectation,
E(X), and consider the random variable

Ỹ = Y − b(X − E(X)). (7.15)

The expectation of Ỹ is the same as that of Y , and its variance is

V(Ỹ) = V(Y) − 2bCov(Y, X) + b2V(X).

For reducing the variance, the optimal value of b is Cov(Y, X)/V(X). With
this choice V(Ỹ) < V(Y) as long as Cov(Y, X) �= 0. Even if Cov(Y, X) is not
known, there is a b that depends only on the sign of Cov(Y, X) for which the
variance of Ỹ is less than the variance of Y .

The variable X is called a control variate. This method has long been used
in survey sampling, where Ỹ in equation (7.15) is called a regression estimator.

Use of these facts in Monte Carlo methods requires identification of a control
variable X that can be simulated simultaneously with Y . If the properties of
X are not known but can be estimated (by Monte Carlo methods), the use of
X as a control variate can still reduce the variance of the estimator.

These ideas can obviously be extended to more than one control variate:

Ỹ = Y − b1(X1 − E(X1)) − · · · − bk(Xk − E(Xk)).

The optimal values of the bis depend on the full variance-covariance matrix.
The usual regression estimates for the coefficients can be used if the variance-
covariance matrix is not known.

Identification of appropriate control variates often requires some ingenuity.
In some special cases, there may be techniques that are almost always applica-
ble. In the case of Monte Carlo estimation of significance levels or quantiles, for
example, Hesterberg and Nelson (1998) describe some methods that are easy
to apply.

246 CHAPTER 7. MONTE CARLO METHODS

Antithetic Variates

Again consider the problem of estimating the integral

θ =
∫ b

a

f(x) dx

by Monte Carlo methods. The standard crude Monte Carlo estimator, equa-
tion (7.2), is (b − a)

∑
f(xi)/n, where xi is uniform over (a, b). It would seem

intuitively plausible that our estimate would be subject to less sampling vari-
ability if, for each xi, we used its “mirror”

x̃i = a + (b − xi).

This mirror value is called an antithetic variate, and use of antithetic variates
can be effective in reducing the variance of the Monte Carlo estimate, especially
if the integral is nearly uniform. For a sample of size n, the estimator is

b − a

n

n
2∑

i=1

(f(xi) + f(x̃i)).

The variance of the sum is the sum of the variances plus twice the covariance.
Antithetic variates have negative covariances, thus reducing the variance of the
sum.

Antithetic variates from distributions other than the uniform can also be
formed. The linear transformation that works for uniform antithetic variates
cannot be used, however. A simple way of obtaining negatively correlated
variates from other distributions is just to use antithetic uniforms in the inverse
CDF. Schmeiser and Kachitvichyanukul (1990) discuss other ways of doing this.
If the variates are generated using acceptance/rejection, for example, antithetic
variates can be used in the majorizing distribution.

Common Variates

Often, in Monte Carlo simulation, the objective is to estimate the differences
in parameters of two random processes. The two parameters are likely to be
positively correlated. If that is the case, then the variance in the individual
differences is likely to be smaller than the variance of the difference of the
overall estimates.

Suppose, for example, that we have two statistics, T and S, that are unbiased
estimators of some parameter of a given distribution. We would like to know
the difference in the variances of these estimators,

V(T) − V(S)

(because the one with the smaller variance is better). We assume that each
statistic is a function of a random sample: {x1, . . . , xn}. A Monte Carlo es-
timate of the variance of the statistic T for a sample of size n is obtained by

7.5. VARIANCE REDUCTION 247

generating m samples of size n from the given distribution, computing Ti for
the ith sample, and then computing

V̂(T) =
∑m

i=1(Ti − T̄)2

m − 1
.

Rather than doing this for T and S separately, using the unbiasedness, we could
first observe

V(T) − V(U) = E(T 2) − E(S2)
= E(T 2 − S2) (7.16)

and hence estimate the latter quantity. Because the estimators are likely to be
positively correlated, the variance of the Monte Carlo estimator Ê(T 2 − S2) is
likely to be smaller than the variance of V̂(T) − V̂(S). If we compute T 2 − S2

from each sample (that is, if we use common variates), we are likely to have a
more precise estimate of the difference in the variances of the two estimators,
T and S.

Rao-Blackwellization

As in the discussion of control variates above, suppose that we have two random
variables Y and X and we want to estimate E(f(Y, X)) with an estimator of the
form T =

∑
f(Yi, Xi)/m. Now suppose that we can evaluate E(f(Y, X)|X =

x). (This is similar to what is done in using equation (7.15) above.) Now,
E(E(f(Y, X)|X = x)) = E(f(Y, X)), so the estimator

T̃ =
∑

E(f(Yi, X)|X = xi)/m

has the same expectation as T . However, we have

V(f(Y, X)) = V(E(f(Y, X)|X = x)) + E(V(f(Y, X)|X = x));

that is,
V(f(Y, X)) ≥ V(E(f(Y, X)|X = x)).

Therefore, T̃ is preferable to T because it has the same expectation but no
larger variance. (The function f may depend on Y only. In that case, if Y and
X are independent we can gain nothing.)

The principle of minimum variance unbiased estimation leads us to consider
statistics such as T̃ conditioned on other statistics. The Rao-Blackwell Theorem
(see any text on mathematical statistics) tells us that if a sufficient statistic
exists, the greatest improvement in variance while still requiring unbiasedness
occurs when the conditioning is done with respect to a sufficient statistic. This
process of conditioning a given estimator on another statistic is called Rao-
Blackwellization. (This name is often used even if the conditioning statistics is
not sufficient.)

248 CHAPTER 7. MONTE CARLO METHODS

7.5.4 Constrained Sampling

Sometimes, in Monte Carlo methods it is desirable that certain sample statistics
match the population parameters exactly; for example, the sample mean may
be adjusted by transforming each observation in the Monte Carlo sample by

x̃i = xi + µ − x̄,

where µ is the mean of the target population, and x̄ is the mean of the original
Monte Carlo sample.

This idea can be extended to more than one sample statistic but requires
more algebra to match up several statistics with the corresponding parame-
ters. Pullin (1979) describes the obvious Helmert transformations for univari-
ate normal deviates so that the sample has a specified mean and variance, and
Cheng (1985) gives an extension for the multivariate normal distribution so that
the samples generated have a specified mean and variance-covariance matrix.
Cheng (1984) gives a method for generating a sample of inverse Gaussian vari-
ates with specified mean and variance and discusses applications of this kind of
constrained sampling in variance reduction.

Variance estimators that result from constrained samples must be used with
care. This is because the constraints change the sampling variability, usually
by reducing it. In using a finite mixture distribution, for example, the vari-
ance of estimators of first-order parameters, such as means, can be reduced by
generating data with the exact proportions of the mixture. If the purpose is
to estimate the variance or the mean squared error of the estimators, however,
sampling under such constraints biases the estimators of the variance.

7.5.5 Stratification in Higher Dimensions:
Latin Hypercube Sampling

The techniques of sampling theory are generally designed for reducing sampling
variance for single variables, often using one or just a few covariates. The
statistical developments in the design of experiments provide a more powerful
set of tools for reducing the variance in cases where several factors are to be
investigated simultaneously. Such techniques as balanced or partially balanced
fractional factorial designs allow the study of a large number of factors while
keeping the total experiment size manageably small. Some processes are so
complex that even with efficient statistical designs, experiments to study the
process would involve a prohibitively large number of factors and levels. For
some processes, it may not be possible to apply the treatments whose effects
are to be studied, and data are available only from observational studies. The
various processes determining weather are examples of phenomena that are
not amenable to traditional experimental study. Such processes can often be
modeled and studied by computer experiments.

There are some special concerns in experimentation using the computer (see
Sacks et al., 1989), but the issues of statistical efficiency remain. Rather than a

7.6. THE DISTRIBUTION OF A SIMULATED STATISTIC 249

model involving ordinary experimental units, a computer experimental model
receives a fixed input and produces a deterministic output. An objective in
computer experimentation (just as in any experimentation) is to provide a set of
inputs that effectively (or randomly) spans a space of interest. McKay, Conover,
and Beckman (1979) introduce a technique called Latin hypercube sampling (as
a generalization of the ideas of a Latin square design) for providing input to a
computer experiment.

If each of k factors in an experiment is associated with a random input that
is initially a U(0, 1) variate, a sample of size n that efficiently covers the factor
space can be formed by selecting the ith realization of the jth factor as

vj =
πj(i) − 1

n
+

uj

n
,

where

• π1(·), . . . , πk(·) are permutations of the integers 1, . . . , n, sampled ran-
domly, independently, and with replacement from the set of n! possible
permutations; and πj(i) is the ith element of the jth permutation.

• The uj are sampled independently from U(0, 1).

It is easy to see that the realizations of vj for the jth factor are also independent
realizations from a U(0, 1) distribution. We can see heuristically that such
numbers tend to be “spread out” over the space. This is because there is a
separation of at least 1/n in the terms (πj(i) − 1)/n. The ith realization of all
factors is constrained in a manner reminiscent of quasirandom sequences, but
with a much more regular pattern.

Expressing the Monte Carlo problem as a multidimensional integral and con-
sidering residuals from lower-dimensional integrals, Stein (1987) shows that the
variance of Monte Carlo estimators using Latin hypercube sampling is asymp-
totically smaller than the variance of Monte Carlo estimators using unrestricted
random sampling. Stein’s approach was to decompose the variance of the es-
timator of the integral into a mean, main effects of the integrated residuals of
the lower-dimensional integrals, and an additional residual.

Beckman and McKay (1987) and Tang (1993) provide empirical evidence
that its performance is superior to simple random sampling. Owen (1992a,
1992b, 1994a), Tang (1993), and Avramidis and Wilson (1995) derive various
properties of estimators based on Latin hypercube samples.

Using Stein’s decomposition of the variance, Owen (1994b) showed how
the variance could be reduced by controlling correlations in Latin hypercube
samples. Use of Latin hypercube sampling is particularly useful in higher di-
mensions (Owen, 1998).

7.6 The Distribution of a Simulated Statistic

In some Monte Carlo applications, the objective is to estimate some parameter
of a distribution. The parameter may be a simple scalar, such as a mean or

250 CHAPTER 7. MONTE CARLO METHODS

a variance, or it may be a vector or matrix parameter, perhaps correspond-
ing to moments of the underlying random variables. These applications are all
essentially equivalent to estimating an integral, as in Section 7.1. A more com-
plicated problem is the estimation of the distribution of some random variable,
which may be some statistic that is a function of the simulated input random
variables. The estimate for the distribution is a function. If the random vari-
able of interest is discrete, the estimate is essentially a histogram corresponding
to the probabilities of the points in its support. If the random variable of inter-
est has a continuous distribution, the objective is to estimate the probability
density function.

There are various ways of estimating a continuous probability density. In
one type of approach, we assume some parametric family and estimate the para-
meters that characterize the distribution. Other approaches are nonparametric.
They may be based on histograms or variations of histograms, kernel functions,
or orthogonal series expansions (see Gentle, 2002, Chapters 8 and 9).

Graphs give very useful pictures of the location, spread, and shape of the
distribution. To return to the simple example mentioned at the beginning
of this chapter, suppose that we are interested in the midrange of the gamma
distribution. We know, of course, that the distribution of the midrange depends
on the parameters of the gamma distribution and on the sample size. We can
represent the density of the midrange analytically, but it depends on some rather
complicated integrals. Alternatively, for a given combination of parameters and
sample size, we can generate a sample of the midrange computed from each of
a number of samples of the given size from the gamma distribution. In Monte
Carlo applications such as this example, we often speak of two samples: the
sample from the underlying distribution of interest (in this case, the gamma)
and the sample of the statistic of interest, called the Monte Carlo sample (in
this case, the sample of midranges).

Figure 7.1, for example, shows the results of a small Monte Carlo study of
the distribution of the midrange of samples from a gamma(2,2) distribution.
From the histograms, we see how the distribution of a linear combination of
central order statistics is somewhat skewed for a small sample but is more like
a normal distribution for a larger sample.

7.7 Computational Statistics

The field of computational statistics includes computationally intensive statisti-
cal methods and the supporting theory. Many of these methods involve the use
of Monte Carlo methods, in some cases methods that simulate a hypothesis and
in other cases methods that involve resampling from a given sample or multiple
partitioning of a given sample.

Some of the methods for dealing with missing data, for example, are com-
putationally intensive and may involve Monte Carlo resampling. An extensive
discussion of resampling methods for dealing with missing data is given by

7.7. COMPUTATIONAL STATISTICS 251

Figure 7.1: Histograms of Simulated Midranges from Gamma Distributions

Schafer (1997). The books by Robert and Casella (1999) and by Gentle (2002)
describe various uses of Monte Carlo methods in statistical data analysis.

7.7.1 Monte Carlo Methods for Inference

Barnard (1963), in a discussion of a paper read before the Royal Statistical So-
ciety, suggested that a test statistic be evaluated for simulated random samples
to determine the significance level of the test statistic computed from a given
dataset. This kind of procedure is called a Monte Carlo test. In Barnard’s
Monte Carlo test, the observed value of the test statistic is compared with the
values of the test statistic computed in each of m simulated samples of the same
size as the given sample. For a fixed significance level, α, Barnard suggested
fixing r so that r/(m + 1) ≈ α and then basing the test decision on whether
fewer than r of the simulated values of the test statistics exceeded the observed
value of the test statistic. Hope (1968) and Marriott (1979) studied the power
of the test and found that the power of Monte Carlo tests can be quite good
even for r as small as 5, which would require only a small number of simulated
samples, often of the order of 100 (which would correspond to a test of level
approximately 0.05 if r = 5).

Monte Carlo tests are used when the distribution of the test statistic is not
known. To use a Monte Carlo test, however, the distribution of the random
component in an assumed model (usually the “error” term in the model) must
be known. In a Monte Carlo test, new, artificial samples are generated using
the distribution of the random component in the model. For each Monte Carlo

252 CHAPTER 7. MONTE CARLO METHODS

sample thus generated, the value of the test statistic is computed. As in ran-
domization tests and bootstrap tests, the observed value of the test statistic is
compared with the values computed from the artificial samples. The proportion
of the simulated test statistics more extreme than the value of the test statistic
computed from the given sample is determined and is taken as the “p-value” of
the computed test statistic. The decision rule is then the same as in the usual
statistical hypothesis testing.

There are several applications of Monte Carlo tests that have been reported.
Many involve spatial distributions of species of plants or animals. Manly (1997)
gives several examples of Monte Carlo tests in biology. Agresti (1992) describes
Monte Carlo tests in contingency tables. Forster, McDonald, and Smith (1996)
describe conditional Monte Carlo tests based on Gibbs sampling in loglinear
and logistic models.

7.7.2 Bootstrap Methods

Resampling methods involve the use of samples taken from a single observed
sample. The objective of the resampling methods may be to estimate the vari-
ance or the bias of an estimator. Of course, if we can estimate the bias, we may
be able to correct for it to give us an unbiased estimator. Resampling can be
used to estimate the significance level of a test statistic or to form confidence
intervals for a parameter. The methods can be used when very little is known
about the underlying distribution.

One form of resampling, the “jackknife” and its generalizations, involves
forming subsamples without replacement from the observed sample. Although
the jackknife has more general applications, one motivation for its use is that
in certain situations it can reduce the bias of an estimator.

The Bootstrap Rationale

Another form of resampling, the nonparametric “bootstrap”, involves form-
ing samples, with replacement, from the observed sample. The basic step in
the nonparametric bootstrap is, because the observed sample contains all of the
available information about the underlying population, to consider the observed
sample to be the mass points of a discrete population that represents the pop-
ulation from which the original sample came. The distribution of any relevant
test statistic can be simulated by taking random samples from the “population”
consisting of the original sample.

Suppose that a sample S = {x1, . . . , xn} is to be used to estimate a popu-
lation parameter, θ. We form a statistic T that estimates θ. We wish to know
the sampling distribution of T to set confidence intervals for our estimate of θ.
The sampling distribution of T is often intractable in applications of interest.

The basic idea of the bootstrap is that the true population can be approxi-
mated by an infinite population in which each of the n sample points are equally
likely. Using this approximation of the true population, we can approximate dis-

7.7. COMPUTATIONAL STATISTICS 253

tributions of statistics formed from the sample. The basic tool is the empirical
distribution function, which is the distribution function of the finite population
that is to be used as an approximation of the underlying population of interest.
We denote the empirical cumulative distribution function based on a sample of
size n as Pn(·). It is defined as

Pn(x) =
1
n

n∑
i=1

I(−∞,x](xi),

where the indicator function IS(x) is defined by

IS(x) = 1 if x ∈ S;
= 0 otherwise.

The parameter is a functional of a population distribution function:

θ =
∫

g(x) dP (x).

The estimator is often the same functional of the empirical distribution function:

T =
∫

g(x) dPn(x).

Various properties of the distribution of T can be estimated by use of “bootstrap
samples”, each of the form S∗ = {x∗

1, . . . , x
∗
n}, where the x∗

i s are chosen from
the original xis in S with replacement.

Nonparametric Bootstrap Bias Estimation

The problem in its broadest setting is to estimate some function h(·) of the
expected value of some function g(·) of the random variable; that is, to esti-
mate h(E(g(X))). The approach is to find a functional fT (from some class of
functionals) that allows us to relate the distribution function of the sample Pn

to the population distribution function P ; that is, such that

E(fT (P, Pn) | P) = 0.

We then wish to estimate h(
∫

g(x) dP (x)).
For example, suppose that we wish to estimate

θ =
(∫

x dP (x)
)r

.

The estimator

T =
(∫

x dPn(x)
)r

= x̄r

254 CHAPTER 7. MONTE CARLO METHODS

is biased. Determining the bias is equivalent to finding b that solves the equation

fT (P, Pn) = T (Pn) − θ(P) + b

so that fT has zero expectation with respect to P .
The bootstrap principle suggests repeating this whole process. We now take

a sample from the “population” with distribution function Pn. We look for f
(1)
T

so that
E
(
f

(1)
T (Pn, P (1)

n) | Pn

)
= 0,

where P
(1)
n is the empirical distribution function for a sample from the discrete

distribution formed from the original sample.
The difference between this and the original problem is that we know more

about this equation because we know more about Pn. Our knowledge of Pn

comes either from parametric assumptions about the underlying distribution or
from just working with the discrete distribution in which the original sample is
given equal probabilities at each mass point.

Using the sample, we have

E(T (P (1)
n) − T (Pn) + b1 | Pn) = 0

or
b1 = T (Pn) − E(T (P (1)

n) | Pn).

An estimate with less bias is therefore

T̃1 = 2T (Pn) − E(T (P (1)
n) | Pn).

We may be able to compute E(T (P (1)
n) | Pn), but generally we must resort

to Monte Carlo methods to estimate it. The Monte Carlo estimate is based on
m random samples, each of size n, taken with replacement from the original
sample.

The basic nonparametric bootstrap procedure is to take m random samples
S∗

j each of size n and with replacement from the given set of data (that is, the
original sample S = {x1, . . . , xn}) and for each sample compute an estimate T ∗

j

of the same functional form as the original estimator T . The distribution of
the T ∗

j s is related to the distribution of T . The variability of T about θ can be
assessed by the variability of T ∗

j about T . The bias of T can be assessed by the
mean of T ∗

j − T .

Parametric Bootstrap

In the parametric bootstrap, the distribution function of the population of
interest, F , is assumed known up to a finite set of unknown parameters, λ. The
estimate of P , P̂ , instead of Pn, is P with λ replaced by its sample estimates
(of some kind). Likewise, P̂ (1) is formed from P̂ by using estimates that are
the same function of a sample from a population with distribution function P̂ .

7.7. COMPUTATIONAL STATISTICS 255

This population is more like the original assumed population, and the sample
is not just drawn with replacement from the original sample as is done in the
nonparametric bootstrap.

In a parametric bootstrap procedure, the first step is to obtain estimates
of the parameters that characterize the distribution within the assumed family.
After this, the procedure is very similar to that described above: generate m
random samples, each of size n, from the estimated distribution, and for each
sample, compute an estimate Tj of the same functional form as the original
estimator T . The distribution of the Tjs is used to make inferences about the
distribution of T .

Extensive general discussions of the bootstrap are available in Efron and
Tibshirani (1993), Shao and Tu (1995), Davison and Hinkley (1997), and Cher-
nick (1999).

7.7.3 Evaluating a Posterior Distribution

In the Bayesian approach to data analysis, the parameter in the probability
model for the data is taken to be a random variable. In this approach, the model
is a prior distribution of the parameter together with a conditional distribution
of the data, given the parameter. Instead of statistical inference about the
parameters being based on the estimation of the distribution of a statistic,
Bayesian inference is based on the estimation of the conditional distribution of
the parameter, given the data. This conditional distribution of the parameter
is called the posterior. Rather than the data being reduced to a statistic whose
distribution is of interest, the data are used to form the conditional distribution
of the parameter.

The prior distribution of the parameter, of course, has a parameter, so the
Bayesian analysis must take into account this “hyperparameter”. (When we
speak of a “parameter”, we refer to an object that may be a scalar, a vector, or
even some infinite-dimensional object such as a function. Generally, however,
“parameter” refers to a real scalar or vector.) The hyperparameter for the para-
meter leads to a hierarchical model with the phenomenon of interest, modeled
by the “data” random variable, having a probability distribution conditional
on a parameter, which has a probability distribution conditional on another
parameter, and so on. With an arbitrary starting point for the model, we may
have the following random variables:

hyperprior parameter: Ψ ;

prior parameter: Φ;

data model parameter: Θ;
data: Y .

The probability distributions of these random variables (starting with Φ) are:

prior parameter, φ, with hyperprior distribution pΦ(·);

256 CHAPTER 7. MONTE CARLO METHODS

data model parameter, θ, with prior distribution pΘ|φ(·);
data, y, with distribution pY |θ,φ(·).

The distributions of interest are the conditional distributions, given the data:
the posterior distributions. These densities are obtained by forming the joint
distributions using the hierarchical conditionals and marginals above and form-
ing the marginals by integration. Except for specially chosen prior distributions,
however, this integration is generally difficult. Moreover, in many interesting
models, the integrals are multidimensional; hence, Monte Carlo methods are
the tools of choice. The Markov chain Monte Carlo methods discussed in Sec-
tions 4.10 and 4.14 are used to generate the variates.

Instead of directly performing an integration, the analysis is performed by
generating a sample of the parameter of interest, given the data. This sample
is used for inference about the posterior distribution (see Gelfand and Smith,
1990, who used a Gibbs sampler).

Geweke (1991b) discusses general Monte Carlo methods for evaluating the
integrals that arise in Bayesian analysis. Carlin and Louis (1996) and Gelman et
al. (1995) provide extensive discussions of the methods of the data analysis and
the associated computations. Also, Smith and Roberts (1993) give an overview
of the applications of Gibbs sampling and other MCMC methods in Bayesian
computations.

The computer program BUGS (“Bayesian inference Using Gibbs Sampling”)
allows the user to specify a hierarchical model and then evaluates the posterior
by use of Gibbs sampling; see Gilks, Thomas, and Spiegelhalter (1992, 1994)
or Thomas, Spiegelhalter, and Gilks (1992). The program is available from the
authors at the Medical Research Council Biostatistics Unit at the University of
Cambridge. Information can be obtained at the URL

http://www.mrc-bsu.cam.ac.uk/bugs/
Chen, Shao, and Ibrahim (2000) provide extensive discussion and examples

of the use of Monte Carlo methods in Bayesian computations.

7.8 Computer Experiments

Some of the most important questions in science and industry involve the rela-
tionship of an entity of interest to other entities that can either be controlled or
more easily measured than the quantity of interest. We envision a relationship
expressed by a model

y ≈ f(x).

The quantity of interest y, usually called a “response” (although it may not be
a response to any of the other entities), may be the growth of a crystal, the
growth of a tumor, the growth of corn, the price of a stock one month hence, etc.
The other variables x, called “factors”, “regressors”, or just “input variables”,
may be temperature, pressure, amount of a drug, amount of a type of fertilizer,
interest rates, etc. Both y and x may be vectors. An objective is to determine

7.9. COMPUTATIONAL PHYSICS 257

a suitable form of f and the nature of the approximation. The simplest type
of approximation is one in which an additive deviation can be identified with a
random variable:

Y = f(x) + E.

The most important objective, whatever the nature of the approximation,
usually is to determine values of x that are associated with optimal realizations
of Y . The association may or may not be one of causation.

One of the major contributions of the science of statistics to the scientific
method is the experimental methods that efficiently help to determine f , the
nature of an unexplainable deviation E, and the values of x that yield optimal
values of y. Design and analysis of experiments is a fairly mature subdiscipline
of statistics.

In computer experiments, the function f is a computer program, x is the
input, and y is the output. The program implements known or supposed re-
lationships among the phenomena of interest. In cases of practical interest,
the function is very complicated, the number of input variables may be in the
hundreds, and the output may consist of many elements. The objective is to
find a tractable function, f̂ , that approximates the true behavior, at least over
ranges of interest, and to find the values of the input, say x̂0, such that f̂(x̂0)
is optimal. How useful x̂0 is depends on how close f̂(x̂0) is to f(x0), where x0

yields the optimal value of f .
What makes this an unusual statistical problem is that the relationships are

deterministic. The statistical approach to computer experiments introduces
randomness into the problem. The estimate f̂(x̂0) can then be described in
terms of probabilities or variances.

In a Bayesian approach, randomness is introduced by considering the func-
tion f to be a realization of a random function, F . The prior on F may be
specified only at certain points, say F (x0). A set of input vectors x1, . . . , xn is
chosen, and the output yi = f(xi) is used to estimate a posterior distribution
for F (x) or at least for F (x0). See Sacks et al. (1989), Currin et al. (1991),
or Koehler and Owen (1996) for descriptions of this approach. The Bayesian
approach generally involves extensive computations.

In a frequentist approach, randomness is introduced by taking random values
of the input, x1, . . . , xn. This randomness in the input yields randomness in
the output yi = f(xi), which is used to obtain the estimates x̂0 and f̂(x̂0) and
estimates of the variances of the estimators. See Koehler and Owen (1996) for
further discussion of this approach.

7.9 Computational Physics

Many models of physics that describe the behavior of an ensemble of particles
are stochastic. Generally, the individual particles obey simple laws that govern
their motion or state.

258 CHAPTER 7. MONTE CARLO METHODS

+
+
−
−
−
+
−
−
+
+

−
+
+
+
−
+
−
−
−
−

−
+
−
+
+
+
−
+
−
+

−
−
−
−
−
+
+
+
−
+

+
−
+
+
+
−
+
+
+
−

−
−
−
+
−
−
−
+
+
+

+
+
−
+
−
+
+
−
+
−

−
−
−
−
+
−
−
+
−
+

−
−
+
+
−
+
−
−
+
+

+
+
−
−
−
−
+
−
−
+

−
+
+
−
−
+
−
−
−
+

−
−
+
+
−
−
−
+
−
−

+
−
+
+
−
+
−
−
−
−

+
−
−
−
−
+
−
+
+
+

−
−
−
+
+
−
+
+
−
−

−
−
−
−
−
+
−
−
−
+

+
−
−
+
−
−
+
+
−
+

+
+
−
−
+
−
+
−
−
+

−
+
−
−
+
−
+
−
−
+

−
−
+
−
−
−
−
−
−
−

Figure 7.2: A Lattice in 2-D

One of the most widely studied models is the Ising model, introduced by
Ernst Ising in the 1920s. The model can be used effectively to study phase
transitions in ferromagnetism, which was the original use by Ising, to study
state transitions, and to model binary amalgamations. In the Ising model, a
lattice is used to locate positions of the entities of interest. In applications
in physics, of course, the lattice is generally of three dimensions, but often a
two-dimensional lattice is useful.

In the applications in magnetism, we think of the lattice as representing
locations of atoms that have binary magnetic moments, either + or −. If
a linear ordering is imposed on the lattice, say by a systematic traversal of
rows, then columns, then planes, and so on, the system can be described by a
configuration vector σ = (σ1, . . . , σn). In a two-dimensional lattice, the state
of the system shown in Figure 7.2, for example, can be represented by σ =
(+1,−1, +1, +1, . . . ,−1,−1), in which the ordering is rowwise, beginning with
the top row.

Each particle interacts with all of the others in the system. The total energy
in the system is given by the Hamiltonian

H(σ) = −
∑
i<j

Jijσiσj − h
∑

i

σi, (7.17)

where Jij represents the strength of attraction between particles i and j, and
h is the strength of an external magnetic field. In the Ising model, only inter-
actions between particles at adjacent points on the lattice are considered, and
the strength of attraction is assumed to be equal for all adjacent pairs. Hence,
Jij = 0 for nonadjacent pairs, and Jij = J for adjacent pairs.

The system is subject to “thermal agitation”; that is, random changes in
state. The probability model for states is a Boltzmann distribution or a Gibbs
distribution. In this model, the probability of a state σ is given by

Pr(σ) ∝ e−βH(σ), (7.18)

where β includes units; often β = 1/(kT), where k is Boltzmann’s constant and
T is the temperature in absolute degrees.

7.9. COMPUTATIONAL PHYSICS 259

The normalizing constant for this probability distribution is

Z(β, J, h, n) =
∑

all configurations

e−βH(σ),

which in physics is called the partition function. The probability function then
becomes

p(σ) =
1
Z

e−βH(σ). (7.19)

In a continuous medium, the free energy density is

F (β, J, h) = lim
n→∞

1
n

Z(β, J, h, n).

The system changes randomly but generally in such a way that the energy
decreases. The changes can be modeled as a Markov process, with transition
probabilities favoring an energy decrease. It may be possible to determine a
steady-state distribution analytically in lower dimensions, but in higher dimen-
sions (currently three or greater), it is necessary to resort to simulation.

We can simulate the system changes by randomly generating a change and
then using the probability (7.18) in the Metropolis acceptance criterion (4.15),
page 140. (The Metropolis algorithm is also sometimes called “M(RT)2” after
the names of all five authors of the original 1953 paper, Metropolis et al., 1953.)
This method moves the system generally in a direction of lower energy. It
allows the system to move to higher energy states, however, so the system
does not get stuck in local minimum energy states. If the temperature T is
decreased, the probability of going to a higher energy state decreases, similar to
the annealing of iron during cooling. This method of “simulated annealing” has
general applications in optimization problems, especially ones with local optima
(see Exercise 7.16 on page 277, and Kirkpatrick, Gelatt, and Vecchi, 1983).

The Metropolis algorithm method can be applied to one site at a time (that
is, to a single spin), but more efficient algorithms consider clusters of points.
One of the earliest cluster algorithms is the Swendsen–Wang algorithm, which
can be viewed from a statistical perspective as a data augmentation algorithm.

Currently, the most widely used method for simulating the Ising model is
the Wolff algorithm.

Algorithm 7.1 Wolff’s Algorithm for the Ising Model for Fixed β

1. Choose a lattice point x at random uniformly.

2. Form a cluster about the chosen point:

(a) check each neighbor point, and if the point has the same polarity as
x, add it to the cluster with probability 1 − e−2βJ ;

(b) for each point added to the cluster, check each of its unchecked neigh-
bor points, and if the point has the same polarity as x, add it to the
cluster with probability 1 − e−2βJ ;

260 CHAPTER 7. MONTE CARLO METHODS

+
+
−
−
−
+
−
−
+
+

−
+
+
+
−
+
−
−
−
−

−
+
−
+
+
+
−
+
−
+

−
−
−
−
−
+
+
+
−
+

+
−
+
+
+
−
+
+�
+
−

−
−
−
+
−
−
−
+
+
+

+
+
−
+
−
+
+
−
+
−

−
−
−
−
+
−
−
+
−
+

−
−
+
+
−
+
−
−
+
+

�

+
+
−
−
−
+
−
−
+
+

−
+
+
+
−
+
−
−
−
−

−
+
−
+
+
+
−
+��
−
+

−
−
−
−
−
+
+�
+��
−
+

+
−
+
+
+
−
+��
+���
+��
−

−
−
−
+
−
−
−
+�
+��
+��

+
+
−
+
−
+
+
−
+�
−

−
−
−
−
+
−
−
+
−
+

−
−
+
+
−
+
−
−
+
+

�

+
+
−
−
−
+
−
−
+
+

−
+
+
+
−
+
−
−
−
−

−
+
−
+
+
+
−
−
−
+

−
−
−
−
−
+
+
−
−
+

+
−
+
+
+
−
−
−
−
−

−
−
−
+
−
−
−
+
−
−

+
+
−
+
−
+
+
−
+
−

−
−
−
−
+
−
−
+
−
+

−
−
+
+
−
+
−
−
+
+

Figure 7.3: One Step of Wolff’s Algorithm

(c) repeat step 2b until there are no points in the cluster with any
unchecked neighbors.

3. Flip the cluster.

Figure 7.3 shows one step in Wolff’s algorithm on a portion of the system
represented by the lattice in Figure 7.2. The lattice on the left-hand side rep-
resents the original configuration with the randomly chosen point shown by a
circle. In the lattice in the middle, the point shown with three concentric circles
is the one initially chosen, and the points with a single small circle represent
ones that were inspected during the process. Those with a second larger con-
centric circle were accepted into the cluster. The lattice on the right-hand side
represents the state of the system following that step of Wolff’s algorithm.

Newman and Barkema (1999) discuss programming issues for Wolff’s algo-
rithm and give a C function implementing the algorithm. Shchur and Blöte (1997)
give an equivalent formulation of Wolff’s algorithm as a random walk in one
dimension.

Cipra (1987) provides a very readable account of the development of the
Ising model and some of the interesting mathematics underlying the model.
Newman and Barkema (1999) discuss many approaches and details of simula-
tions of the Ising model. As mentioned in Chapter 2, Vattulainen, Ala-Nissila,
and Kankaala (1994, 1995) have developed tests of random number generators
based on the Ising model.

In the Ising model, there are only two possible states at each lattice point.
The Potts model is a generalization to allow any finite number of discrete states.
The XY model and Heisenberg model allow continuous states; see Newman and
Barkema (1999).

In most methods of simulated annealing, there are several possible variations
that affect the efficiency of the algorithm, and it is somewhat difficult to know
a priori what variations work best in a given problem. A general rule is that
more variation should be allowed early in the simulation and then less variation
as the system reaches the optimal state. Knowing whether a state is only a
local optimum or the global optimum is not easy. Consistent with the rule of
decreasing the amount of variation as the simulation proceeds, we generally find

7.10. COMPUTATIONAL FINANCE 261

that the Metropolis single-flip algorithm is more efficient far from the critical
point (that is, presumably, early on in the simulation), and a cluster algorithm
is more efficient near the critical point.

In general, simulated annealing methods work well on optimization problems
of this type. When there are local optima separated by strongly suboptimal
regions, it may be useful to allow the temperature T to increase occasionally.
This is called “simulated tempering”, and there are several ways that it can
be done, as described by Marinari and Parisi (1992). One way is just to run
multiple streams in parallel and occasionally swap states in two streams with a
Metropolis acceptance criterion using the Boltzmann distribution (7.18).

Any of these types of methods can be programmed in parallel (see Newman
and Barkema, 1999).

7.10 Computational Finance

Important questions in finance concern the fair price for various assets. Al-
though there are many fundamental issues that must be considered in order
to determine fair prices for some types of assets, there are other assets, called
“derivatives”, for which prices depend primarily on the prices and price move-
ment characteristics of other assets (the underlying assets or the “underlying”)
but are conditionally independent of other fundamental economic conditions.
Derivatives are financial instruments having values dependent on constraints on
their trading (their “exercise”) and on the price of other assets (the underlying)
or on some measure of the state of the economy or nature. A derivative is an
agreement between two sides: a long position and a short position.

Many pricing problems in finance cannot be solved analytically. The tradi-
tional approach has been to develop overly simplified models that approximate
what is believed to be a more realistic description of market behavior. Pricing
of various derivative instruments is an area in finance in which Monte Carlo
methods can be used to analyze more realistic models.

Pricing Forward Contracts

One of the simplest kinds of derivative is a forward contract, which is an agree-
ment to buy or sell an asset at a specified time at a specified price. The
agreement to buy is a long position, and the agreement to sell is a short po-
sition. The agreed upon price is the delivery price. The consummation of the
agreement is an execution.

Forward contracts are relatively simple to price, and their analysis helps in
developing pricing methods for other derivatives. Let k be the delivery price
or “strike price” at the settlement time ts, and let Xt be the value of the
underlying. (We consider all times to be measured in years.) A graph of the
profit or the payoff at the settlement date is shown in Figure 7.4 for both long
and short positions.

262 CHAPTER 7. MONTE CARLO METHODS

payoff�

Xtsk

long position

0 �

�
�

�
�

�
�

�
�

�
payoff�

Xtsk

short position

0 �

�
�

�
�

�
�

�
�

�

Figure 7.4: Payoff of a Forward Contract

Principles and Procedures for Pricing Derivatives

A basic assumption in pricing financial assets is that there exists a fixed rate of
return on some available asset that is constant and “guaranteed”; that is, there
exists an asset that can be purchased, and the value of that asset changes at a
fixed, or “riskless”, rate. The concept of “risk-free rate of return” is a financial
abstraction based on the assumption that there is some absolute controller of
funds that will pay a fixed rate of interest over an indefinite length of time.
In current world markets, the rate of interest on a certain financial instrument
issued by the United States Treasury is used as this value.

Given a riskless positive rate of return, another key assumption in economic
analyses is that there are no opportunities for arbitrage. An arbitrage is a
trading strategy with a guaranteed rate of return that exceeds the riskless rate
of return. In financial analysis, we assume that arbitrages do not exist. This is
the “no-arbitrage principle”. This means, basically, that all markets have two
liquid sides and that there are market participants who can establish positions
on either side of the market.

The assumption of a riskless rate of return leads to the development of
a replicating portfolio, having fluctuations in total valuation that can match
the expected rate of return of any asset. The replication approach to pricing
derivatives is to determine a portfolio and an associated trading strategy that
will provide a payout that is identical to that of the underlying. This portfolio
and trading strategy replicates the derivative.

Consider a forward contract that obligates one to pay k at ts for the un-
derlying. The value of the contract at expiry is Xts − k, but of course we do
not know Xts . If we have a riskless (annual) rate of return r, we can use the
no-arbitrage principle to determine the correct price of the contract.

To apply the no-arbitrage principle, consider the following strategy:

• take a long position in the forward contract;

• take a short position of the same amount in the underlying (sell the un-
derlying short).

7.10. COMPUTATIONAL FINANCE 263

With this strategy, the investor immediately receives Xt for the short sale
of the underlying. At the settlement time ts, this amount can be guaranteed to
be

Xter(ts−t) (7.20)

using the risk-free rate of return. Now, if the settlement price k is such that

k < Xter(ts−t), (7.21)

a long position in the forward contract and a short position in the underlying is
an arbitrage, so by the no-arbitrage principle, this is not possible. Conversely,
if

k > Xter(ts−t), (7.22)

a short position in the forward contract and a long position in the underlying
is an arbitrage, and again, by the no-arbitrage principle, this is not possible.
Therefore, under the no-arbitrage assumption, the correct value of the forward
contract, or its “fair price”, at time t is Xter(ts−t).

There are several modifications to the basic forward contract that involve
different types of underlying, differences in when the agreements can be exe-
cuted, and differences in the nature of the agreement: whether it conveys a
right (that is, a “contingent claim”) or an obligation.

The common types of derivatives include stock options, index options, com-
modity futures, and rate futures. Stock options are used by individual investors
and by investment companies for leverage, hedging, and income. Index options
are used by individual investors and by investment companies for hedging and
speculative income. Commodity futures are used by individual investors for
speculative income, by investment companies for income, and by producers and
traders for hedging. Rate futures are used by individual investors for specula-
tive income, by investment companies for income and hedging, and by traders
for hedging.

Stock Options

A single call option on a stock conveys to the owner the right to buy (usually)
100 shares of the underlying stock at a fixed price, the strike price, anytime
before the expiration date. A single put option conveys to the owner the right
to sell (usually) 100 shares of the underlying stock at a fixed price, the strike
price, anytime before the expiration date. Most real-world stock options can be
exercised at any time (during trading hours) prior to expiration. Such options
that can be exercised at any time are called “American options”. We will
consider a modification, the “European option”, which can only be exercised at
a specified time. There are some European options that are actually traded, but
they are generally for large amounts, and they are rarely traded by individuals.
European options are studied because the analysis of their fair price is easier.

A major difference between stock options and forward contracts is that stock
options depend on the fluctuating (and unpredictable) prices of the underlying.

264 CHAPTER 7. MONTE CARLO METHODS

Another important difference between stock options and forward contracts
is that stock options are rights, not obligations. The payoff therefore cannot
be negative. Because the payoff cannot be negative, there must be a cost to
obtain a stock option. The profit is the difference between the payoff and the
price paid.

Pricing of Stock Options

It is difficult to determine the appropriate price of stock options because stocks
are risky assets; that is, they are assets whose prices vary randomly (or at least
unpredictably).

Pricing formulas for stock options can be developed from a simple model of
the market that assumes two types of assets: the risky asset (that is, the stock)
with price at time t of Xt and a riskless asset with price at time t of βt. The
price of a stock option can be analyzed based on trading strategies involving
these two assets, as we briefly outline below. (See Hull, 2000, for a much more
extensive discussion.)

The price of the riskless asset, like the price of a forward contract, follows
the deterministic ordinary differential equation

dβt = rβtdt, (7.23)

where r is the instantaneous risk-free interest rate.
A useful model for the price of the risky asset is the stochastic differential

equation
dXt = µXtdt + σXtdBt, (7.24)

where µ is a constant mean rate of return, σ is a positive constant, called the
“volatility”, and Bt is a Brownian motion; that is,

1. the change ∆Bt during the small time interval ∆t is

∆Bt = Z
√

∆t,

where Z is a random variable with distribution N(0, 1);

2. ∆Bt1 and ∆Bt2 are independent for t1 �= t2.

Notice, therefore, that for 0 < t1 < t2, Bt2 −Bt1 has a N(0, t2− t1) distribution.
Notice also that the change in the time interval ∆t is randomly proportional
to

√
∆t. By convention, we set B0 = 0, so Bt2 has a N(0, t2) distribution.

A process following equation (7.24) is a special case of an Ornstein-Uhlenbeck
process.

Given a starting stock price, X0, the differential equation (7.24) specifies a
random path of stock prices. Any realization of X0, x(0), and any realization
of Bt at t ∈ [0, t1], b(t), yields a realized path, x(t).

We should note three simplifying assumptions in this model:

7.10. COMPUTATIONAL FINANCE 265

• µ is constant;

• σ is constant;

• the stochastic component is a Brownian motion (that is, i.i.d. normal).

The instantaneous rate of return from equation (7.24) is

dXt

Xt
= µdt + σdBt, (7.25)

so under the assumptions of the model (7.24), the price of the stock itself follows
a lognormal distribution.

A discrete-time version of the change in the stock price that corresponds to
the stochastic differential equation (7.24) is the stochastic difference equation

∆Xt = µXt∆t + σXt∆Bt

= µXt∆t + σXtZ
√

∆t, (7.26)

and a discrete-time version of the rate of return is

Rt(∆t) = µ∆t + σZ
√

∆t,

where, as before, Z is a random variable with distribution N(0, 1), so Rt(∆t)
is N(µ∆t, σ2∆t). The quantity µ∆t is the expected value of the return in the
time period ∆t and by assumption is constant. The quantity σZ

√
∆t is the

stochastic component of the return, where, by assumption, σ, the “volatility”
or the “risk”, is constant.

Figure 7.5 shows 100 simulated paths of the price of a stock for one year
using the model (7.26) with x(0) = 20, ∆t = 0.01, µ = 0.1, and σ = 0.2.

We first consider the fair price of the option at the time of its expiration.
The payoff, h, of the option at time ts is either 0 or the excess of the price of
the underlying Xts over the strike price k. Once the parameters k and ts are
fixed, h is a function of the realized value of the random variable Xts :

h(xts) =
{

xts − k if xts > k,
0 otherwise.

The price of the option at any time t prior to expiration ts is a function of
t and the price of the underlying x. We denote the price as P (t, x). With full
generality, we can set the time of interest as t = 0.

The price of the European call option should be the expected value of the
payoff of the option at expiration discounted back to t = 0,

P (0, x) = e−qtsE(h(Xts)), (7.27)

where q is the rate of growth of an asset. Likewise, for an American option, we
could maximize the expected value over all stopping times, 0 < τ < ts:

P (0, x) = sup
τ≤ts

e−qτE(h(Xτ)). (7.28)

266 CHAPTER 7. MONTE CARLO METHODS

Figure 7.5: 100 Simulated Paths of the Price of a Stock with µ = 0.1 and
σ = 0.2

The problem with expressions (7.27) and (7.28), however, is the choice of the
rate of growth q. If the rate of growth r of the riskless asset in equation (7.23)
is different from the mean rate of growth µ in equation (7.24), then there is an
opportunity for arbitrage. We must therefore consider a completely different
approach. Consideration of a “replicating strategy” leads us to a fair price for
options under the assumptions of the model in equation (7.24) and consistent
with a no-arbitrage assumption.

Replicating Strategies

A replicating strategy involves both long and short positions that together
match the price fluctuations in the underlying, and thus in the fair price of the
derivative. We will generally assume that every derivative can be replicated by
positions in the underlying and a risk-free asset. (In that case, the economy
or market is said to be complete.) We assume a finite universe of assets, all
priced consistently with some pricing unit. (In general, we call the price, or the
pricing unit, a numeraire. A more careful development of this concept rests on
the idea of a pricing kernel.) The set of positions, both long and short, is called

7.10. COMPUTATIONAL FINANCE 267

a portfolio.
The value of a derivative changes in time and as a function of the value

of the underlying. Therefore, a replicating portfolio must be changing in time
or “dynamic”. In analyses with replicating portfolios, transaction costs are
ignored. Also, the replicating portfolio must be self-financing; that is, once the
portfolio is initiated, no further capital is required. Every purchase is financed
by a sale.

Now, using our simple market model, with a riskless asset with price at time
t of βt and a risky asset with price at time t of Xt (with the usual assumptions
on the prices of these assets), we can construct a portfolio with a value that
will be the payoff of a European call option on the risky asset at time T .

At time t, the portfolio consists of at units of the risky asset and bt units
of the riskless asset. Therefore, the value of the portfolio is atXt + btβt. If we
scale βt so that β0 = 1 and adjust bt accordingly, the expression simplifies so
that βt = ert.

The portfolio replicates the value of the option at time ts if almost surely

atsXts + btse
rts = h(Xts). (7.29)

The portfolio is self-financing if at any time t

d(atXt + btert) = atdXt + rbtertdt. (7.30)

The Black–Scholes Differential Equation

Consider the price P of a European call option at time t < T . At any time,
this is a function of both t and the price of the underlying Xt. We would like
to construct a dynamic, self-financing portfolio (at, bt) that will replicate the
derivative at maturity. If we can, then the no-arbitrage principle requires that

atXt + btert = P (t, Xt) (7.31)

for t < ts.
Now, differentiate both sides of this equation. If at is constant, the differ-

ential of the left-hand side is the left-hand side of equation (7.30), which must
be satisfied by a self-financing portfolio. (The assumption that at is constant is
not correct, but the approximation does not seem to have serious consequences.)

The derivative of P (t, Xt) is rather complicated because of its dependence
on Xt and the fact that dXt has components of both dt and dBt in the stochas-
tic differential equation (7.24). If P (t, Xt) is continuously twice-differentiable,
we can use Itô’s formula (see Øksendal, 1998, for example) to develop the ex-
pression for the differential of the right-hand side of equation (7.31),

dP (t, Xt) =
(

∂P

∂t
+

∂P

∂Xt
µXt +

1
2

∂2P

∂X2
t

σ2X2
t

)
dt +

∂P

∂Xt
(σXt)dBt. (7.32)

268 CHAPTER 7. MONTE CARLO METHODS

By inserting the market model (7.24) for dXt into the differential of the
left-hand side, we have

(atµXt + rbtert)dt + atσXtdBt.

Now, equating the coefficients of dBt, we have

at =
∂P

∂Xt
.

From our equation for the replicating portfolio, we have

bt = (P (t, Xt) − atXt) e−rt.

Finally, equating coefficients of dt and substituting for at and bt, we have
the Black–Scholes differential equation,

r

(
P − Xt

∂P

∂Xt

)
=

∂P

∂t
+

1
2
σ2X2

t

∂2P

∂X2
t

. (7.33)

Instead of European calls, we can consider European puts and proceed in the
same way. We arrive at the same Black–Scholes differential equation (written
in a slightly different but equivalent form from the equation above):

∂P

∂t
+ rXt

∂P

∂Xt
+

1
2
σ2X2

t

∂2P

∂X2
t

= rP. (7.34)

It is interesting to note that µ is not in the equations, but r has effectively
replaced it.

A similar development could be used for American options. Other ap-
proaches can be used to develop these equations. One method is called “delta
hedging” (see Hull, 2000).

The Black–Scholes Formula

The solution of the differential equations depends on the boundary conditions.
These come from the price of the option at expiration. In the case of European
options, these are simple. For calls, they are

Pc(ts, Xts) = max(Xts − k, 0),

and, for puts, they are

Pp(ts, Xts) = max(k − Xts , 0),

where k is the strike price in either case. With these boundary conditions, the
Black–Scholes differential equations have closed-form solutions. For the call,
the solution is the “Black–Scholes formula”,

Pc(t, Xt) = XtΦ(d1) − ke−r(ts−t)Φ(d2), (7.35)

7.10. COMPUTATIONAL FINANCE 269

Figure 7.6: The Black–Scholes Call Pricing Function

and, for the put, it is

Pp(t, Xt) = ke−r(ts−t)Φ(−d2) − XtΦ(−d1), (7.36)

where Φ(·) is the standard normal CDF,

d1 =
log(Xt/k) + (r + 1

2σ2)(ts − t)
σ
√

ts − t
,

and
d2 = d1 − σ

√
ts − t.

The Black–Scholes formulas are widely used in determining a fair price for
options on risky assets. In practice, of course, σ2 is not known. The standard
procedure is to use price data over some fixed time interval, perhaps a year,
compute the sample variance of the rates of return during some fixed-length
subintervals, perhaps subintervals of length one day, and use the sample variance
as an estimate of σ2. A data analyst who has looked at such data will see the
effects of the rather arbitrary choice of the fixed times.

The prices have systematic relationships to the prices of the underlying, as
shown in Figure 7.6.

More Realistic Models

As we have seen, several simplifying assumptions were made in the development
of the Black–Scholes formulas. As in most financial analyses, we have assumed
throughout that there are no costs for making transactions. In trades involving
derivatives, the transaction costs (commissions) can be quite high.

270 CHAPTER 7. MONTE CARLO METHODS

One of the most troubling assumptions is that σ is constant. Because
real data on stock prices, Xt, and corresponding option prices, P (t, Xt), are
available, the unknown value of σ can be empirically determined from equa-
tions (7.33) and (7.34) for any given value of t and any fixed value of the strike
price, k. (This is called the “implied volatility”.) It turns out that for different
values of t and Xt − k, the implied volatility is different. (Because the implied
volatility increases more or less smoothly as |Xt + d − k| increases, where d is
some positive number, the relationship is called the “volatility smile”.)

One approach is to modify equation (7.24) to allow for nonconstant σ and
augment the model by a second stochastic differential equation for changes
in σ. There are various ways this can be done. Fouque, Papanicolaou, and
Sircar (2000) describe a simple model in which the volatility is a function of a
separate mean-reverting Ornstein-Uhlenbeck process:

dXt = µXtdt + σtXtdBt,

dσ2
t = f(Yt), (7.37)

dYt = α(µY − Yt)dt + βdB̃t,

where α and β are constants and B̃t is a linear combination of Bt and an in-
dependent Brownian motion. The function f can incorporate various degrees
of complexity, including the simple identity function. These coupled equations
provide a better match for observed stock and option prices. Economists refer
to the condition of nonconstant volatility as “stochastic volatility”. Pricing in
the presence of stochastic volatility is discussed extensively by Fouque, Papan-
icolaou, and Sircar (2000). The fact that the implied volatility is not constant
for a given stock does not mean that a model with an assumption of constant
volatility cannot be useful. It only implies that there are some aspects of the
model (7.24) that do not correspond to observational reality.

Another very questionable assumption in the model given by equation (7.24)
is that the changes in stock prices follow an i.i.d. normal distribution.

There are several other simplifications, such as the restriction to European
options, the assumption that the stocks do not pay dividends, the assumption
that the derivative of the left-hand side of equation (7.31) can be done as if at

were constant, and so on. All of these assumptions allow the derivation of a
closed-form solution.

More realistic models can be studied by Monte Carlo methods, and this
is currently a fruitful area of research. Paths of prices of the underlying can
be simulated using a model similar to equation (7.26), as we did to produce
Figure 7.5, but with different distributions on Z. A very realistic modification
of the model is to assume that Z has a superimposed jump or shock on its
N(0, 1) distribution. The simulated paths of the price of the underlying provide
a basis for determining a fair price for the options. This price is just the break-
even value discounted back in time by the risk-free rate r. Thompson (2000),
Barndorff-Nielsen and Shephard (2001), and Jäckel (2002) all discuss use of
Monte Carlo simulation in pricing options under various models. Thompson

EXERCISES 271

uses a model in which ∆Xt is subjected to a fixed relative decrease as a Poisson
event. Such “bear jumps”, of course, would decrease the fair price of a call
option from the Black–Scholes price and would increase the fair price of a put
option. Other modifications to the underlying distribution of ∆Xt result in
other differences in the fair price of options. Barndorff-Nielsen and Shephard
use a nonnormal process in an Ornstein-Uhlenbeck type of model.

Another type of approach to the problem of a nonconstant σ in the pricing
model (7.24) is to use a GARCH model (equation (6.2) on page 226). This
model is easy to simulate with various distributions.

Exercises

7.1. Use Monte Carlo methods to estimate the expected value of the fifth order
statistic from a sample of size 25 from a N(0, 1) distribution. As with any
estimate, you should also compute an estimate of the variance of your
estimate. Compare your estimate of the expected value with the true
expected value of 0.90501. Is your estimate reasonable? (Your answer
must take into account your estimate of the variance.)

7.2. The “hit-or-miss” method is another Monte Carlo method to evaluate
an integral. To simplify the exposition, let us assume that f(x) ≥ 0
on [a, b], and we wish to evaluate the integral, I =

∫ b

a
f(x) dx. First,

determine c such that c ≥ f(x) on [a, b]. Generate a random sample
of m pairs of uniform deviates (xi, yi), in which xi is from a uniform
distribution over [a, b], yi is from a uniform distribution over [0, c], and
xi and yi are independent. Let m1 be the number of pairs such that
yi ≤ f(xi). Estimate I by c(b − a)m1/m. (Sketch a picture, and you can
see why it is called hit-or-miss. Notice also the similarity of the hit-or-miss
method to acceptance/rejection. It can be generalized by allowing the ys
to arise from a more general distribution (that is, any distribution with
a majorizing density). Another way to think of the hit-or-miss method is
as importance sampling in which the sampling of the weighting function
is accomplished by acceptance/rejection.)

(a) Is this a better method than the crude method described in Sec-
tion 7.1? (What does this question mean? Think “bias” and “vari-
ance”. To simplify the computations for answering this question,
consider the special case in which [a, b] is [0, 1] and c = 1. For a
further discussion, see Hammersley and Handscomb, 1964.)

(b) Suppose that f is a probability density and the hit-or-miss method
is used. Consider the set of the m xis for which yi ≤ f(xi). What
can you say about this set with respect to the probability density f?

Because a hit-or-miss estimate is a rational fraction, the methods are
subject to granularity. See the discussion following the Buffon’s needle

272 CHAPTER 7. MONTE CARLO METHODS

problem in Exercise 7.10 below.

7.3. Describe a Monte Carlo method for evaluating each of the integrals

(a) ∫ ∞

−∞

∫ 2

0

∫ ∞

0

y cos(π(x + y + z))e−x2
e−z dz dy dx.

(b) ∫ ∞

−∞

∫ 2

0

∫ ∞

0

y cos(πy)e−x2ye−yz dz dy dx.

7.4. Use Monte Carlo methods to tabulate the cumulative distribution function
of the Anderson–Darling A2 statistic (equation (2.9), page 76) for the
uniform null distribution and for n = 10, 100, and 1000. Use Monte
Carlo sample sizes m = 500, and compute sample quantiles as (i− .5)/m
(so that your tabulated values correspond to 0.001, 0.003, . . .0.999).

Could you use these values in testing your uniform generator?

7.5. Obtain Monte Carlo estimates of the base of the natural logarithm, e.

(a) For Monte Carlo sample sizes n = 8, 64, 512, 4096, compute estimates
and the errors of the estimates using the known value of e. Plot the
errors versus the sample sizes on log-log axes. What is the order of
the error?

(b) For your estimate with a sample of size 512, compute 95% confidence
bounds.

7.6. Consider the following Monte Carlo method to evaluate the integral:

I =
∫ b

a

f(x) dx.

Generate a random sample of uniform order statistics x(1), x(2), . . . , x(n)

on the interval (a, b), and define x(0) = a and x(n+1) = b. Estimate I by
Î :

1
2

(
n∑

i=1

(x(i+1) − x(i−1))f(x(i)) + (x(2) − a)f(x(1)) + (b − x(n−1))f(x(n))

)
.

This method is similar to approximation of the integral by Riemann sums
except that in this case the intervals are random. Determine the variance
of Î . What is the order of the variance in terms of the sample size? How
would this method compare in efficiency with the crude Monte Carlo
method?

EXERCISES 273

7.7. Obtain a simplified expression for the variance of the Monte Carlo esti-
mator (7.5) on page 232.

7.8. Random walks on a two-dimensional uniform grid can be used as models
in a variety of scientific applications. The walk usually progresses from
point (i, j) at time t to one of the four points (i±1, j) and (i, j±1) at time
t+1. Sometimes, the points (i, j) (no movement) and (i±1, j±1) are also
allowed. The probability of moving to any one of the allowed points is
usually chosen to be equal, although by assigning different probabilities,
a trend can be induced in the direction of the walk.

(a) Write a program to generate a two-dimensional random walk that
goes to each of the four adjacent points with equal probabilities.
Use Monte Carlo to develop a relationship between the expected
distance from the starting point to the point at time t, Dt, and t;
that is, experimentally determine the function f in

E(Dt) = f(t).

(b) A self-avoiding random walk is one that does not revisit any point.
(It is not a Markov process.) This process has been used to simulate
the growth of large molecules (polymers) from smaller sets of atoms
(monomers). A self-avoiding random walk will usually stop because
it reaches a point from which no unvisited point is reachable. Exper-
imentally determine the average time at which this stoppage occurs
in a two-dimensional random walk that goes to each of the four ad-
jacent points with equal probabilities. (Modifications of this process
are necessary if the model is to be used for studying the growth of
polymers. See Liu, Chen, and Logvinenko, 2001, for discussions of
the problem.)

(c) There are various ways of constraining random walks. One type of
constrained random walk is one that begins at point (x0, y0) and
at time t is at the specified point (xt, yt). Develop an algorithm
that generates a realization of a two-dimensional random walk that
goes to each of the four adjacent points with equal probabilities that
meets these conditions. Note, of course, that (xt, yt) must be close
enough to (x0, y0) that it can be reached in t steps. (This problem
is harder than it may appear at first.)

7.9. Consider the integral ∫ ∞

0

x2 sin(πx)e−
x
2 dx.

(a) Use the crude Monte Carlo method with an exponential weight to
estimate the integral.

(b) Use antithetic exponential variates to estimate the integral.

274 CHAPTER 7. MONTE CARLO METHODS

(c) Compare the variance of the estimator in Exercise 7.9a with that
of the estimator in Exercise 7.9b by performing the estimation 100
times in each case with sample sizes of 10,000.

7.10. The French naturalist Comté de Buffon showed that the probability that
a needle of length l thrown randomly onto a grid of parallel lines with
distance d (≥ l) apart intersects a line is

2l

πd
.

(a) Write a program to simulate the throwing of a needle onto a grid
of parallel lines, and obtain an estimate of π. Remember that all
estimates are to be accompanied by an estimate of the variability
(that is, a standard deviation, a confidence interval, etc.).

(b) Derive the variance of your estimator in Exercise 7.10a, and deter-
mine the optimum ratio for l and d.

(c) Now, consider a variation. Instead of a grid of just parallel lines,
use a square grid, as in Figure 7.7. For simplicity, let us estimate
θ = 1/π. If nv is the number of crossings of vertical lines and nh

is the number of crossings of horizontal lines, then for a total of n
tosses both

dnv

2ln
and

dnh

2ln

are unbiased estimates of θ. Show that the estimator

dnv + dnh

4ln

is more than twice as efficient (has variance less than half) as either of
the separate estimators. This is an application of antithetic variates.

(d) Perlman and Wichura (1975) consider this problem and show that a
complete sufficient statistic for θ is n1+n2, where n1 is the number of

��l

�
d

�
�
d

Figure 7.7: Buffon’s Needle on a Square Grid

EXERCISES 275

times that the needle crosses exactly one line and n2 is the number of
times that the needle crosses two lines. Derive an unbiased estimator
of θ based on this sufficient statistic, and determine its variance.
Determine the optimum ratio for l and d.

(e) Now, consider another variation. Use a triangular grid, as in Fig-
ure 7.8. Write a program to estimate π using the square grid and

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�

�

d

Figure 7.8: Buffon’s Needle on a Triangular Grid

using the triangular grid. Using 10,000 trials, obtain estimates of π
using each type of grid. Obtain an estimate of the variance of each
of your estimators.
See Robertson and Wood (1998) for further discussion of the effi-
ciency of Buffon experiments using different types of grids.

C. R. Rao (in Statistics and Truth, Council of Scientific & Industrial
Research, New Delhi, 1989) relates some interesting facts about reports
of Buffon needle experiments. An Italian mathematician, Lazzarini, re-
ported in 1901 that he had obtained an estimate of 3.1415929 for π using
the simple Buffon method of one set of parallel lines. This estimate dif-
fers from the true value only in the seventh decimal place. This estimate
came from 1808 successes in 3408 trials. Why 3408, instead of 3400 or
3500? The answer may be related to the fact that the best rational ap-
proximation of π for integers less than 15,000 is 355

113 , and that is the value
Lazzarini reported, to seven places. The next rational approximation that
is as close is 52163

16604 . In Lazzarini’s experiment, l
d = 5

6 , so he could have ob-
tained his accurate approximation only if the number of trials he used was
213, 426, . . . , 3408, 3621, . . ., or else much larger numbers. The choice of
3408 does appear suspect. One wonders if exactly 1808 successes occurred
the first time he tried 3408 trials.)

7.11. Generate a pseudorandom sample of size 100 from a N(0, 1) distribution
that has a sample mean of 0 and sample variance of 1.

7.12. Consider two estimators for the mean of a t distribution with 2 degrees of
freedom. (The mean obviously is 0, but we may think of this problem as

276 CHAPTER 7. MONTE CARLO METHODS

arising in a model that has an unknown mean plus a stochastic compo-
nent that has a heavy-tailed distribution much like a t with 2 degrees of
freedom.) Two unbiased estimators are T , the α-trimmed mean (which
is the mean of the remaining data after the most extreme α fraction of
the data has been discarded), and U , the α-Winsorized mean (which is
the mean of the dataset formed by shrinking the most extreme α fraction
of the data to the extreme order statistics of the central 1−α fraction of
the data).

(a) Estimate the difference in the variance of T and U for samples of
size 100 from a t distribution with 2 degrees of freedom.

(b) Now, estimate the difference in the variance of Ê(T 2 − U2) and the
variance of V̂(T) − V̂(U), where the estimators Ê and V̂ are based
on Monte Carlo samples of size 500. (Read this problem carefully!
See equation (7.16).)

7.13. Consider a common application in statistics: three different treatments
are to be compared by applying them to randomly selected experimental
units. This, of course, usually leads us to “analysis of variance” using a
model such as yij = µ + αi + eij , with the standard meanings of these
symbols and the usual assumptions about the random component eij in
the model. Suppose that, instead of the usual assumptions, we assume
that the eij have independent and identical beta distributions centered on
zero (the density is proportional to (c+x

2c)p(c−x
2c)p over (−c, c)). Describe

how you would perform a Monte Carlo test instead of the usual AOV test.
Be clear in stating the alternative hypothesis.

7.14. Let S = {x1, x2, . . . , xn} be a random sample from a population with
mean µ, variance σ2, and distribution function P . Let P̂ be the em-
pirical distribution function. Let x̄ be the sample mean for S. Let
S∗ = {x∗

1, x
∗
2, . . . , x

∗
n} be a random sample taken with replacement from

S. Let x̄∗ be the sample mean for S∗.

(a) Show that
E

P̂
(x̄∗) = x̄.

(b) Show that
EP (x̄∗) = µ.

(c) Note that, in the questions above, there was no replication of the
bootstrap sampling. Now, suppose that we take m samples S∗

j , com-
pute x̄∗

j for each, and compute

V =
1

m − 1

∑
j

(
x̄∗

j − x̄∗
j

)2

.

Derive E
P̂
(V).

EXERCISES 277

(d) Derive EP (V).

7.15. Monte Carlo methods are often useful to ensure that our thinking is rea-
sonable. A good example of this kind of use is to investigate a simple
problem that generated much attention several years ago and for which
many mathematicians obtained an incorrect solution. The problem was
the analysis of the optimal strategy in a television game show popular at
the time. The show was Let’s Make a Deal with host Monty Hall. At
some point in the show, a contestant was given a choice of selecting one of
three possible items, each concealed behind one of three closed doors. The
items varied considerably in value. After the contestant made a choice
but before the chosen door was opened, the host, who knew where the
most valuable item was, would open one of the doors not selected and
reveal a worthless item. The host would then offer to let the contestant
select a different door from what was originally selected. The question, of
course, is should the contestant switch? Much interest in this problem was
generated when it was analyzed by a popular magazine writer, Marilyn
vos Savant, who concluded that the optimal strategy is to switch. This
strategy is counterintuitive to many mathematicians, who would say that
there is nothing to be gained by switching; that is, that the probability of
improving the selection is 0.5. Study this problem by Monte Carlo meth-
ods. What is the probability of improving the selection by switching? Be
careful to understand all of the assumptions, and then work the prob-
lem analytically also. (A Monte Carlo study is no substitute for analytic
study.)

7.16. Simulated annealing is a method that simulates a thermodynamic process
in which a metal is heated to its melting temperature and then is allowed
to cool slowly so that its structure is frozen at the crystal configuration of
lowest energy. In this process, the atoms go through continuous rearrange-
ments, moving toward a lower energy level as they gradually lose mobility
due to the cooling. The rearrangements do not result in a monotonic de-
crease in energy, however. If the energy function has local minima, going
uphill occasionally is desirable.

Metropolis et al. (1953) developed a stochastic relaxation technique that
simulates the behavior of a system of particles approaching thermal equi-
librium. (This is the same paper that described the Metropolis sampling
algorithm.) The energy associated with a given configuration of particles
is compared to the energy of a different configuration. In simulated an-
nealing, the system moves through a sequence of states s(1), s(2), . . ., and
the energy at each state, f(s(1)), f(s(2)), . . ., generally decreases. The
algorithm proceeds from state s(j) by choosing a trial state r and com-
paring the energy at r, f(r), with the energy at the current state, f(s(j)).
If the energy of the new configuration is lower than that of the previ-
ous one (that is, if f(r) < f(s(j))), the new configuration is immediately

278 CHAPTER 7. MONTE CARLO METHODS

accepted. If the new configuration has a larger energy, the new state is ac-
cepted with some nonzero probability that depends on the amount of the
increase in energy, f(r)− f(s(j)). In simulated annealing, the probability
of moving to a state with larger energy also depends on a “temperature”
parameter T . When the temperature is high, the probability of accep-
tance of any given point is high. When the temperature is low, however,
the probability of accepting any given point is low.

Although the technique is heuristically related to the cooling of a metal,
as in the original application, it can be used in other kinds of optimization
problems. The objective function of the general optimization problem is
used in place of the energy function of the original application. Simulated
annealing is particularly useful in optimization problems that involve con-
figurations of a discrete set, such as a set of particles whose configuration
can continuously change, or a set of cities in which the interest is an
ordering for shortest distance of traversal. Kirkpatrick, Gelatt, and Vec-
chi (1983) discussed various applications, and the method has become
widely used since the publication of that article.

To use simulated annealing, a “cooling schedule” must be chosen; that is,
we must decide the initial temperature and how to decrease the temper-
ature as a function of time. If T (0) is the initial temperature, a simple
schedule is T (k + 1) = qT (k), for some fixed q, such that 0 < q < 1. A
good cooling schedule depends on the problem being solved, and often a
few passes through the algorithm are used to choose a schedule. Another
choice that must be made is how to update the state of the system; that
is, at any point, how to choose the next trial point.

The probability of accepting a higher energy state must also be chosen.
Although this probability could be chosen in various ways, it is usually
taken as

e−(f(r)−f(s(j)))/T ,

which is proportional to the probability of an energy change of f(r) −
f(s(j)) at temperature T and comes from the original application of
Metropolis et al. (1953). In addition to the cooling schedule, the method
of generating trial states, and the probability of accepting higher energy
states, there are a number of tuning parameters to choose in order to
apply the simulated annealing algorithm. These include the number of
trial states to consider before adjusting the temperature. It is also good
to adjust the temperature if a certain number of state changes have been
made at the given temperature even if the limit on the number of trial
states to consider has not been reached. Finally, there must be some kind
of overall stopping criterion.

The simulated annealing method consists of the following steps:

0. Set k = 1 and initialize state s.
1. Compute T (k) based on a cooling schedule.

EXERCISES 279

2. Set i = 0 and j = 0.

3. Generate state r, and compute δf = f(r) − f(s).

4. Based on δf , decide whether to move from state s to state r.
If δf ≤ 0,

accept;
otherwise,

accept with a probability P (δf, T (k)).
If state r is accepted, set i = i + 1.

5. If i is equal to the limit for the number of successes at a given tem-
perature, imax, go to step 1.

6. Set j = j + 1. If j is less than the limit for the number of iterations
at the current temperature, jmax, go to step 3.

7. If i = 0,
deliver s as the optimum; otherwise,
if k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
“algorithm did not converge in kmax iterations”.

The traveling salesperson problem can serve as a prototype of the prob-
lems in which the simulated annealing method has had good success. In
this problem, a state is an ordered list of points (“cities”), and the ob-
jective function is the total distance between all points in the order given
plus the return distance from the last point to the first point. One simple
rearrangement of the list is the reversal of a sublist; that is, for example,

(1, 2, 3, 4, 5, 6, 7, 8, 9) → (1, 6, 5, 4, 3, 2, 7, 8, 9).

Another simple rearrangement is the movement of a sublist to some other
chosen point in the list; for example,

(1, 2, 3, 4, 5, 6, 7, 8,↑ 9) → (1, 7, 8, 2, 3, 4, 5, 6, 9).

Both of these rearrangements are called “2-changes” because in the graph
defining the salesperson’s circuit, exactly two edges are replaced by two
others.

(a) Write a program to use simulated annealing to solve the traveling
salesperson problem for d cities. Your progrm should take as input a
d × d matrix of distances between the cities. Use the simple cooling
schedule, T (k + 1) = qT (k), and use random 2-changes as described
above. The program should accept the beginning temperature T (0)
and the temperature reduction factor q. Finally, the program should

280 CHAPTER 7. MONTE CARLO METHODS

also accept the control parameters imax, jmax, and kmax from the
algorithm description above.
Although the program might seem rather complicated, it is not too
difficult if it is built in separate modules. One special task, for ex-
ample, is the implementation of the 2-change rule. You should write
a module to perform these random changes and thoroughly test it
before incorporating it in the full program.

(b) Now, use your program to determine the optimal order in which to
visit the cities in the mileage chart below. Assume that you return
to the starting city (it does not matter which one it is).

Alexandria ↓
Blacksburg 263 ↓
Charlottesville 117 151 ↓
Culpeper 70 193 47 ↓
Fairfax 15 249 102 55 ↓
Front Royal 71 203 124 44 57 ↓
Lynchburg 178 94 66 108 163 157 ↓
Manassas 28 238 91 44 23 45 157 ↓
Richmond 104 220 71 89 106 133 110 96 ↓
Roanoke 233 41 120 164 218 174 52 207 189 ↓
Williamsburg 148 257 120 133 150 177 165 140 51 215

Distances Between Cities in Virginia

7.17. Simulation of stock prices and Monte Carlo pricing of options.

In simulation applications, the values of the parameters can be set to
any desired values. This is one characteristic that makes Monte Carlo
simulation so useful. In any applications, however, we need some general
feel for the magnitude of the parameters for which values are to be chosen.
Before doing the simulations in this exercise, you may want to look at some
real price data. Daily historical price data are available at

http://chart.yahoo.com/d

These data can easily be downloaded in a spreadsheet format and entered
into an analysis program. The distribution of the rates of return, of course,
is different depending on the length of the time period. The data from
Yahoo can be used for periods of one day or longer.

Historical option prices can be obtained from some brokerage web sites.
E*Trade, for example, provides actual daily option prices and the corre-
sponding prices yielded by the Black–Scholes formula.

(a) Write a program to simulate the path of a stock price that follows
the stochastic difference equation (7.26) on page 265.

EXERCISES 281

(b) For fixed values of µ, σ, and X0, simulate 1000 price paths from t = 0
to t = 1, and, for each, determine the value at t = 1 of call options
with three different strike prices: X0 − µX0, X0, and X0 + µX0.
Using your average values of the call, discount them back to t = 0
for a fixed value of the riskless rate r. (Most options do not have a
life of one year, as in this exercise.) How do your three estimated
fair prices at t = 0 compare to the price given by the Black–Scholes
formula (7.35)?

(c) Now, repeat the previous exercise with only one modification. As-
sume that an event occurs with a Poisson frequency having mean 1
(using the same time units as t) in which the change ∆Xt = γ1Xt,
where γ1 = −.2 and an event occurs with a Poisson frequency with
mean 1/2 in which the change ∆Xt = γ2Xt, where γ2 = .1. How do
your three estimated fair prices at t = 0 compare to the price given
by the estimates in the previous exercise and with the Black–Scholes
formula (7.35)?

7.18. Use of GARCH models for stock prices.

In applications of either the stochastic differential equations or a GARCH
model, the first problem is to get estimates for the parameters in the
model. The parameters in the differential equation (7.24) or the stochastic
difference equation (7.26) are generally estimated from the moments of
an observed price series. The parameters in the GARCH model (6.2) are
usually estimated by maximum likelihood, and programs for estimating
them are available in a number of analysis packages.

(a) Use your program as in Exercise 7.17b to generate one price path
using your fixed values of µ, σ, and X0, and then obtain the maxi-
mum likelihood estimates of the parameters in a GARCH(1,1) model
(assuming a normal distribution). Now, using your GARCH model,
simulate a price path, and estimate µ and σ for the stochastic dif-
ference equation (7.26). How do they compare?

(b) Now, study the variance of the maximum likelihood estimates of the
parameters in a GARCH(1,1) model by simulating 1000 price paths
as in Exercise 7.17b and computing the estimates for each.

This page intentionally left blank

Chapter 8

Software for Random
Number Generation

Random number generators are widely available in a variety of software pack-
ages. Some programming languages such as C/C++, Fortran 95, and Ada 95
provide built-in uniform random number generators, but the standards for these
languages do not specify the algorithm, and it is often difficult to determine from
the documentation what algorithm is implemented or whether the algorithm
is correctly implemented. Except for small studies, these built-in generators
should be avoided.

A good software package for random number generation provides a variety of
basic uniform generators with long periods and that have undergone stringent
testing. The documentation for the package should include reports of results
of tests using such standard suites as DIEHARD, the NIST Test Suite, and
TestU01 (see page 79). The software package should provide the capability of
skipping ahead in the sequence or of interrupting the sequence and then be-
ginning again at the same point in the sequence. The software package also
should provide generators for some of the standard distributions, such as the
normal distribution. The package should allow the user to specify which uni-
form generator is to be used for generating deviates from other distributions.
The package should also allow incorporation of the user’s own basic uniform
generator and allow the user to specify it as the one to be used for generating
deviates from other distributions. These last two things are not often found in
scientific software packages.

Because of the impossibility of fully testing a random number generator,
we advocate the use of ad hoc tests of streams that are used in simulation.
The software package should include a basic test suite, so the user can easily
perform empirical tests on the generators. This is an capability not often found
in scientific software packages.

Test suites are often designed to test the bit stream produced by a given
algorithm. The user should be able not only to test unformatted bit streams but

283

284 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

also the actual numbers represented by formatted bits, either in floating point
or in (signed) fixed point. It is also useful to compare results from simulations
using different basic uniform generators.

Efficiency

Monte Carlo simulations often involve many hours of computer time, so compu-
tational efficiency is very important in software for random number generation.

Implementing one of the simple methods to convert a uniform deviate to
that of another distribution may not be as efficient as a special method for the
target distribution, and, as we have indicated, those special methods may be
somewhat complicated. The IMSL Libraries and S-Plus and R have a number
of modules that use efficient methods to generate variates from several of the
more common distributions. Matlab has a basic uniform generator, rand, and a
standard normal generator, randn. The Matlab Statistics Toolbox also contains
generators for several other distributions.

In programming random number generators, the standard principles of effi-
ciency apply: precompute and store constants, remove any constants within a
loop from the loop, rearrange computations to their simplest form (in terms of
computer operations), and so on.

It should be noted that the algorithms described in Chapters 4 and 5 are
written with an emphasis on clarity rather than on computational efficiency;
therefore, in some cases, the code should not correspond directly to the algo-
rithm description.

Choice of Software for Monte Carlo Studies

Monte Carlo studies typically require many repetitive computations, which are
usually implemented through looping program control structures. Some higher-
level languages do not provide efficient looping structures. For this reason, it is
usually desirable to conduct moderate- to large-scale Monte Carlo studies using
a lower-level language such as C or Fortran together with a high-quality library
callable with the language.

Higher-level languages are often used in Monte Carlo studies because of the
analysis capabilities that they provide. (After all, a Monte Carlo study involves
more than just generating random numbers!) Some higher-level languages pro-
vide the capability to produce compiled code, which will execute faster. If
Monte Carlo studies are to be conducted using an interpretive language, and
if the production of compiled code is an option, that option should be chosen
for the Monte Carlo work. The higher-level language may also allow the user
to replace its basic uniform generator with one supplied by the user. The user
should view this option as a major advantage of the software package, even if
there is no immediate intent to incorporate a different generator in the program.

A number of Fortran or C/C++ programs are available in collections pub-
lished by Applied Statistics and by ACM Transactions on Mathematical Soft-
ware. These collections are available online at statlib and netlib, respec-

8.1. THE USER INTERFACE FOR RANDOM NUMBER GENERATORS285

tively. See the bibliography for more information on statlib and netlib. In
Section 8.3 below, we discuss other sources for Fortran and C/C++.

The Guide to Available Mathematical Software, or GAMS, (see the bibliog-
raphy) can be used to locate special software for various distributions.

8.1 The User Interface for Random Number
Generators

Software for random number generation must provide a certain amount of con-
trol by the user, including the ability to

• set or retrieve the seed;

• select seeds that yield separate streams;

• possibly select the method from a limited number of choices.

Whenever the user invokes a random number generator for the first time in a
program or a session, the software should not require the specification of a seed,
but it should allow the user to set it if desired. If the user does not specify the
seed, the software should use some mechanism, such as accessing the system
clock, to form a “random” seed. On a subsequent invocation of the random
number generator, unless the user specifies a seed, the software should use the
value of the seed at the end of the previous invocation. This means that the
routine for generating random numbers must produce a “side effect”; that is,
it changes something other than the main result. It is a basic tenet of software
engineering that careful note must be taken of side effects. At one time, side
effects were generally to be avoided. In object-oriented programming, however,
objects may encapsulate many entities, and as the object is acted upon, any of
the components may change. Therefore, in object-oriented software, side effects
are to be expected. In object-oriented software for random number generation,
the state of the generator is an object.

Another issue to consider in the design of a user interface for a random
number generator is whether the output is a single value (and an updated seed)
or an array of values. Although a function that produces a single value such as
the C/C++ function rand() is convenient to use, it can carry quite a penalty
in execution time because of the multiple invocations required to generate an
array of random numbers. It is generally better to provide both single- and
multivalued procedures for random number generation, especially for the basic
uniform generator.

286 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

8.2 Controlling the Seeds in Monte Carlo

Studies

There are four reasons why the user must be able to control the seeds in Monte
Carlo studies: for testing of the program, for use of blocks in Monte Carlo
experiments, for combining results of Monte Carlo studies, and for strict repro-
ducibility of the research results.

In the early phases of programming for a Monte Carlo study, it is very
important to be able to test the output of the program. To do this, it is
necessary to use the same seed from one run of the program to another.

As discussed in Chapter 7, there are many situations in which the Monte
Carlo study involves different settings for major factors in the study. The
experiments in the separate classes may be performed in parallel or in other
unsynchronized ways. Separate streams begun by separate seeds are useful in
such cases.

When a Monte Carlo study is conducted as a set of separate computer runs,
it is necessary that the separate runs not use overlapping sequences of random
numbers. The software must provide the capability of interrupting the sequence
and then beginning again at the same point in the sequence.

Reproducibility is one of the standard requirements of scientific experimen-
tation. Use of pseudorandom number generators allows Monte Carlo exper-
imentation to be strictly reproducible if the software is preserved and if the
seeds used are available.

Controlling seeds in a parallel random number generator is much more com-
plicated than in a serial generator. Performing Monte Carlo computations in
parallel requires some way of ensuring the independence of the parallel streams
(see Section 1.10, page 51).

8.3 Random Number Generation in

Programming Languages

The built-in generator in C/C++ is the function rand() in stdlib.h. This
function returns an integer in the range 0 through RAND MAX, so the result must
be normalized to the range (0, 1). (The scaling should be done with care. Recall
that it is desirable to have uniforms in (0, 1) rather than [0, 1]; see Exercise 1.13,
page 59.) The seed for the C/C++ built-in random number generator is set in
srand().

In Fortran 95, the built-in generator is the subroutine random number, which
returns U(0, 1) numbers. (The user must be careful, however; the generator may
yield either a 0 or a 1.) The seed can be set in the subroutine random seed.
The design of the Fortran 95 module as a subroutine yields a major advantage
over the C function in terms of efficiency. (Of course, because Fortran 95 has
the basic advantage of arrays, the module could have been designed as an array
function and would still have had an advantage over the C function.)

8.4. RANDOM NUMBER GENERATION IN IMSL LIBRARIES 287

A basic problem with the built-in generator of C, Fortran 95, and Ada 95 is
the problem of portability discussed in Section 1.11, page 54. The bindings are
portable, but none of the generators will necessarily generate the same sequence
on different platforms. (The “bindings” are the application programming in-
terfaces.)

The freely distributed GNU Scientific Library (GSL) contains several C
functions for random number generation. There are several different basic uni-
form generators in the library, including the Mersenne twister (MT19937), three
versions of RANLUX, a combined multiple recursive generator of L’Ecuyer (1996,
1999) (equation 1.46) on page 48), a fifth-order multiple recursive generator of
L’Ecuyer, Blouin, and Couture (1993) (equation (1.29) on page 33), a four-tap
generalized feedback shift register generator of Ziff (1998), and the R250 gen-
erator of Kirkpatrick and Stoll (1981). The library also includes a number of
basic uniform generators that yield output sequences that correspond (or almost
correspond) to legacy generators provided by various system developers, such
as the IBM RANDU and generators associated with various Unix distributions.

GSL also includes programs for generating deviates from a few of the most
common nonuniform distributions. The type of the basic uniform generator to
be used is determined by an environmental variable, which can be specified by
a utility function but also can be set outside of the program (so that different
generators can be selected without recompiling the program). A simple seed
is also determined by an environmental variable, but utility functions in the
library must be used to save or set more complicated states of the generators.
Information about the GNU Scientific Library, including links to sites from
which source code can be obtained, is available at

http://sources.redhat.com/gsl/

In addition to the random number generators in Fortran, C, and C++ avail-
able at statlib and netlib or through the GNU Scientific Library, Numerical
Recipes by Press et al. provides random number generators in Fortran (Press et
al., 1992) and in C++ (Press et al., 2002). Those generators, especially ran2,
which implements a combined shuffled generator of L’Ecuyer (1988), are gen-
erally of high quality. Numerical Recipes also includes programs for generating
deviates from a few of the most common nonuniform distributions.

Given a uniform random number generator, it is usually not too difficult
to generate variates from other distributions using the techniques discussed in
Chapters 4 and 5. For example, in Fortran 95, the inverse CDF technique for
generating a random deviate from a Bernoulli distribution with parameter π
shown in Algorithm 4.1, page 105, can be implemented by the code in Figure 8.1.

288 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

integer, parameter :: n = 100 ! INITIALIZE THIS
real, parameter (pi) :: pi = .5 ! INITIALIZE THIS
real, dimension (n) :: uniform
real, dimension (n) :: bernoulli
call random_number (uniform)
where (uniform .le. pi)

bernoulli = 1.0
elsewhere

bernoulli = 0.0
endwhere

Figure 8.1: A Fortran 95 Code Fragment to Generate n Bernoulli Random
Deviates with Parameter π

8.4 Random Number Generation in
IMSL Libraries

For doing Monte Carlo studies, it is usually better to use a software system
with a compilable programming language, such as Fortran or C. Not only do
such systems provide more flexibility and control, but the programs built in the
compiler languages execute faster. To do much work in such a system, however,
a library or routines both to perform the numerical computations in the inner
loop of the Monte Carlo study and to generate the random numbers driving the
study are needed.

The IMSL Libraries contain a large number of routines for random number
generation. The libraries are available in both Fortran and C, each providing
the same capabilities and with essentially the same interface within the two
languages. In Fortran, the basic uniform generator is provided in both function
and subroutine forms.

The uniform generator allows the user to choose among seven different algo-
rithms: a linear congruential generator with modulus of 231 − 1 and with three
choices of multiplier, each with or without shuffling, and the generalized feed-
back shift generator described by Fushimi (1990), which has a period of 2521−1.
The multipliers that the user can choose are the “minimal standard” one of Park
and Miller (1988), which goes back to Lewis, Goodman, and Miller (1969) (see
page 20), and two of the “best” multipliers found by Fishman and Moore (1982,
1986), one of which is used in Exercise 1.10 of Chapter 1.

The user chooses which of the basic uniform generators to use by means
of the Fortran routine rnopt or the C function imsls random option. For
whatever choice is in effect, that form of the uniform generator will be used
for whatever types of pseudorandom events are to be generated. The states of
the generators are maintained in a common block (for the simple congruential
generators, the state is a single seed; for the shuffled generators and the GFSR
generator, the state is maintained in a table). There are utility routines for

8.4. RANDOM NUMBER GENERATION IN IMSL LIBRARIES 289

setting and saving states of the generators and a utility routine for obtaining a
seed to skip ahead a fixed amount.

There are routines to generate deviates from most of the common distri-
butions. Most of the routines are subroutines, but some are functions. The
algorithms used often depend on the values of the parameters to achieve greater
efficiency. The routines are available in both single and double precisions. (Be-
cause the basic underlying sequence is the same, double precision is more for
the purpose of convenience for the user than it is for increasing accuracy of the
algorithm.)

A single-precision IMSL Fortran subroutine for generating from a specific
distribution has the form

rnname (number, parameter 1, parameter 2, ..., output array)

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated, “parameter i” are parameters of the distrib-
ution, and “output array” is the output argument with the generated deviates.
The Fortran subroutines generate variates from standard distributions, so loca-
tion and scale parameters are not included in the argument list. The subroutine
and formal arguments to generate gamma random deviates, for example, are

rngam (nr, a, r)

where a is the shape parameter (α) of the gamma distribution. The other
parameter in the common two-parameter gamma distribution (usually called
β) is a scale parameter. The deviates produced by the routine rngam have a
scale parameter of 1; hence, for a scale parameter of b, the user would follow
the call above with a call to a BLAS routine:

sscal (nr, b, r, 1)

Identifiers of distributions include those shown in Table 8.1.
For general distributions, the IMSL Libraries provide routines for an alias

method and for table lookup for either discrete or continuous distributions. The
user specifies a discrete distribution by providing a vector of the probabilities
at the mass points and specifies a continuous distribution by giving the values
of the cumulative distribution function at a chosen set of points. In the case of
a discrete distribution, the generation can be done either by an alias method
or by an efficient table-lookup method. For a continuous distribution, a cubic
spline is first fit to the given values of the cumulative distribution function, and
then an inverse CDF method is used to generate the random numbers from
the target distribution. Another routine uses the Thompson–Taylor data-based
scheme (Taylor and Thompson, 1986, and Algorithm 5.11, page 212) to generate
deviates from an unknown population from which only a sample is available.

Other routines in the IMSL Libraries generate various kinds of time series,
random permutations, and random samples. The routine rnuno, which gener-
ates order statistics from a uniform distribution, can be used to generate order
statistics from other distributions.

290 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

Table 8.1: Root Names for IMSL Random Number Generators

Continuous Distributions Discrete Distributions

un or unf uniform bin binomial
nor, noa, or nof normal nbn negative binomial
mvn multivariate normal poi Poisson
chi chi-squared geo geometric
stt Student’s t hyp hypergeometric
tri triangular lgr logarithmic
lnl lognormal und discrete uniform
exp exponential mtn multinomial
gam gamma tab two-way tables
wib Weibull
chy Cauchy
beta beta
vms von Mises
stab stable
ext exponential mixture
cor correlation matrices
sph points on a circle or sphere
nos order statistics from a normal
uno order statistics from a uniform
arm ARMA process
npp nonhomogeneous Poisson process

All of the IMSL routines for random number generation are available in
both Fortran and C. The C functions have more descriptive names, such as
random normal. Also, the C functions may allow specification of additional
arguments, such as location and scale parameters. For example, random normal
has optional arguments IMSLS MEAN and IMSLS VARIANCE.

Controlling the State of the Generators

Figure 8.2 illustrates the way to save the state of an IMSL generator and then
restart it. The functions to save and to set the seed are rnget and rnset,
respectively.

In a collection of numerical routines such as the IMSL Libraries, it is likely
that some of the routines will use random numbers in regular deterministic com-
putations, such as an optimization routine generating random starting points.
In a well-designed system, before a routine in the system uses a random number
generator in the system, it will retrieve the current value of the seed if one has
been set, use the generator, and then reset the seed to the former value. IMSL
subprograms are designed in this way. This allows the user to control the seeds
in the routines called directly.

8.5. RANDOM NUMBER GENERATION IN S-PLUS AND R 291

call rnget (iseed) ! save it
call rnun (nr, y) ! get sample, analyze, etc.

...
call rnset (iseed) ! restore seed
call rnun (nr, yagain) ! will be the same as y

Figure 8.2: Fortran Code Fragment to Save and Restart a Random Sequence
Using the IMSL Library

8.5 Random Number Generation in S-Plus
and R

The software system called S was developed at Bell Laboratories in the mid-
1970s. Work on S has continued at Bell Labs, and the system has evolved
considerably since the early versions (see Becker, Chambers, and Wilks, 1988,
and Chambers, 1997). S is both a data analysis system and an object-oriented
programming language.

S-Plus is an enhancement of S developed by StatSci, Inc. (now a part of
Insightful Corporation). The enhancements include graphical interfaces, more
statistical analysis functionality, and support.

There is a freely available package, called R, that provides generally the
same functionality in the same language as S (see Gentleman and Ihaka, 1997).
The R programming system is available at

http://www.r-project.org/

S-Plus and R do not use the same random number generators. Monte Carlo
studies conducted using built-in random number generators in one system can-
not reliably be reproduced exactly in the other system with its built-in generators.

Random number generators in S-Plus are all based upon a single uniform
random number generator that is a combination of a linear congruential genera-
tor and a Tausworthe generator. The original generator, called “Super-Duper”,
was developed by George Marsaglia in the 1970s. It is described in Learmonth
and Lewis (1973). McCullough (1999) reports results of the DIEHARD tests
on the S-Plus generator. The tests raise some questions about the quality of
the generator.

Several choices for the basic uniform generator are available in R. The func-
tion RNGkind can be used to choose the generator. One of the choices is Super-
Duper, but the implementation is slightly different from the implementation in
S-Plus. The user can also specify a user-defined and programmed generator.
The chosen (or default) basic uniform generator is used in the generation of
nonuniform variates.

In S-Plus and R, there are some basic functions with the form

rname (number [, parameters])

292 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated (which can be specified by an array argument,
in which case the number is the number of elements in the array), and “para-
meters” are parameters of the distribution, which may or may not be required.

For distributions with standard forms, such as the normal, the parameters
may be optional, in which case they take on default values if they are not
specified. For other distributions, such as the gamma or the t, there are required
parameters. Optional parameters are both positional and keyword.

For example, the normal variate generation function is

rnorm (n, mean=0, sd=1)

so

rnorm (n) yields n normal (0,1) variates,
rnorm (n, 100, 10) yields n normal (100,100) variates,
rnorm (n, 100) yields n normal (100,1) variates,
rnorm (n, sd=10) yields n normal (0,100) variates.

(Note that S-Plus and R consider one of the natural parameters of the normal
distribution to be the standard deviation or the scale rather than the variance,
as is more common.)

For the gamma distribution, at least one parameter (the shape parameter,
see page 178) is required. The function reference

rgamma (100,5)

generates 100 random numbers from a gamma distribution with a shape para-
meter of 5 and a scale parameter of 1 (a standard gamma distribution).

Identifiers of distributions include those shown in Table 8.2.
The sample function generates a random sample with or without replace-

ment. Sampling with replacement is equivalent to generating random numbers
from a (finite) discrete distribution. The mass points and probabilities can be
specified in optional arguments:

xx <- sample(massp, n, replace=T, probs)

Order statistics in S-Plus and R can be generated using the beta distribu-
tion and the inverse distribution function. For example, ten maximum order
statistics from normal samples of size 30 can be generated by

x <- qnorm(rbeta(10,30,1))

Controlling the State of the Generators

Both S-Plus and R use an object called .Random.seed to maintain the state
of the random number generators. In R, .Random.seed also maintains an in-
dicator of which of the basic uniform random number generators is the current
choice. Whenever random number generation is performed, if .Random.seed

8.5. RANDOM NUMBER GENERATION IN S-PLUS AND R 293

Table 8.2: Root Names for S-Plus and R Functions for Distributions

Continuous Distributions Discrete Distributions

unif uniform binom binomial
norm normal nbinom negative binomial
mvnorm multivariate normal pois Poisson
chisq chi-squared geom geometric
t t hyper hypergeometric
f F wilcox Wilcoxon rank sum statistic
lnorm lognormal
exp exponential
gamma gamma
weibull Weibull
cauchy Cauchy
beta beta
logis logistic
stab stable
arima.sim ARIMA process

does not exist in the user’s working directory, it is created. If it exists, it is used
to initiate the pseudorandom sequence and then is updated after the sequence
is generated. Setting a different working directory will change the state of the
random number generator.

The function set.seed(i) provides a convenient way of setting the value
of the .Random.seed object in the working directory to one of a fixed number
of values. The argument i is an integer between 0 and 1023, and each value
represents a state of the generator, which is “far away” from the other states
that can be set in set.seed.

To save the state of the generator, just copy .Random.seed into a named
object, and to restore, just copy the named object back into .Random.seed, as
in Figure 8.3.

oldseed <- .Random.seed # save it
y <- rnunif(1000) # get sample, analyze, etc.
...
.Random.seed <- oldseed # restore seed
yagain <- rnorm(1000) # will be the same as y

Figure 8.3: Code Fragment to Save and Restart a Random Sequence Using
S-Plus or R

A common situation is one in which computations for a Monte Carlo study
are performed intermittently and are interspersed with other computations,
perhaps broken over multiple sessions. In such a case, we may begin by setting

294 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

the seed using the function set.seed(i), save the state after each set of com-
putations in the study, and then restore it prior to resuming the computations,
similar to the code shown in Figure 8.4.

set.seed(10) # set seed at beginning of study
... # perform some computations for the Monte Carlo study
MC1seed <- .Random.seed # save the generator state
... # do other computations
.Random.seed <- MC1seed # restore seed
... # perform some computations for the Monte Carlo study
MC1seed <- .Random.seed # save the generator state

Figure 8.4: Starting and Restarting Monte Carlo Studies in S-Plus or R

The built-in functions in S-Plus that use the random number generators
have the side effect of changing the state of the generators, so the user must be
careful in Monte Carlo studies where the computational nuclei, such as ltsreg
for robust regression, for example, invoke an S-Plus random number generator.
In this case, the user must retrieve the state of the generator prior to calling
the function and then reset the state prior to the next invocation of a random
number generator.

In order to avoid the side effect of changing the state of the generator, when
writing a function in S-Plus or R, the user can preserve the state upon entry to
the function and restore it prior to exit. The assignment

.Random.seed <- oldseed

in Figure 8.3, however, does not work if it occurs within a user-written function
in S-Plus or R. Within a function, the assignment must be performed by the <<-
operator. A well-designed S-Plus or R function that invokes a random number
generator would have code similar to that in Figure 8.5.

oldseed <- .Random.seed # save seed on entry
...
.Random.seed <<- oldseed # restore seed on exit
return(...)

Figure 8.5: Saving and Restoring the State of the Generator within an S-Plus
or R Function

Monte Carlo in S-Plus and R

Explicit loops in S-Plus or R execute very slowly. For that reason, it is best to
use array arguments for functions rather than to loop over scalar values of the

EXERCISES 295

arguments. Consider, for example, the problem of evaluating the integral∫ 2

0

log(x + 1)x2(2 − x)3 dx.

This could be estimated in a loop as follows:

First, initialize n.
uu <- runif(n, 0, 2)
eu <- 0
for (i in 1:n) eu <- eu + log(uu[i]+1)*uu[i]^2*(2-uu[i])^3
eu <- 2*eu/n

A much more efficient way, without the for loop but still using the uniform, is

uu <- runif(n, 0, 2)
eu <- 2*sum(log(uu+1)*uu^2*(2-uu)^3)/n

Alternatively, using the beta density as a weight function, we have

eb <- (16/15)*sum(log(2*rbeta(n,3,4)+1))/n

(Of course, if we recognize the relationship of the integral to the beta distribu-
tion, we would not use Monte Carlo as the method of integration.)

For large-scale Monte Carlo studies, an interpretive language such as S-Plus
or R may require an inordinate amount of running time. These systems are
very useful for prototyping Monte Carlo studies, but it is often better to do the
actual computations in a compiled language such as Fortran or C.

Exercises

8.1. Identify as many random number generators as you can that are available
on your computer system. Try to determine what method each uses. Do
the generators appear to be of high quality?

8.2. Consider the problem of evaluating the integral∫ π

−π

∫ 4

0

∫ ∞

0

x2y3 sin(z)(π + z)2(π − z)3e−
x
2 dx dy dz.

Note the gamma and beta weighting functions.

(a) Write a Fortran or C program to use the IMSL Libraries to evaluate
this integral by Monte Carlo methods. Use a sample of size 1000,
and save the state of the generator, so you can restart it. Now, use
a sample of size 10,000, starting where you left off in the first 1000.
Combine your two estimates.

(b) Now, do the same thing in S-Plus.

296 CHAPTER 8. RANDOM NUMBER GENERATION SOFTWARE

(c) Now, do the same thing in Fortran 90 using its built-in random
number functions. You may use other software to evaluate special
functions if you wish.

8.3. Obtain the programs for Algorithm 738 for generating quasirandom num-
bers (Bratley, Fox, and Niederreiter, 1994) from the Collected Algorithms
of the ACM. The programs are in Fortran and may require a small number
of system-dependent modifications, which are described in the documen-
tation embedded in the source code.

Devise some tests for Monte Carlo evaluation of multidimensional in-
tegrals, and compare the performance of Algorithm 738 with that of a
pseudorandom number generator. (Just use any convenient pseudoran-
dom generator available to you.) The subroutine TESTF accompanying
Algorithm 738 can be used for this purpose.

Can you notice any difference in the performance?

8.4. Obtain the code for SPRNG, the scalable parallel random number gener-
ators. The source code is available at

http://sprng.cs.fsu.edu

Get the code running, preferably on a parallel system. (It will run on a
serial machine also.) Choose some simple statistical tests, and apply them
to sample output from single streams and also to the output of separate
streams. (In the latter case, the primary interest is in correlations across
the streams.)

Chapter 9

Monte Carlo Studies in
Statistics

In statistical inference, certain properties of the test statistic or estimator must
be assumed to be known. In simple cases, under rigorous assumptions, we have
complete knowledge of the statistic. In testing a mean of a normal distribution,
for example, we use a t statistic, and we know its exact distribution. In other
cases, however, we may have a perfectly reasonable test statistic but know very
little about its distribution. For example, suppose that a statistic T , computed
from a differenced time series, could be used to test the hypothesis that the
order of differencing is sufficient to yield a series with a zero mean. If enough
information about the distribution of T is known under the null hypothesis, that
value may be used to construct a test that the differencing is adequate. This,
in fact, was what Erastus Lyman de Forest studied in the 1870s in one of the
earliest documented Monte Carlo studies of a statistical procedure. De Forest
studied ways of smoothing a time series by simulating the data using cards
drawn from a box. A description of De Forest’s Monte Carlo study is given
in Stigler (1978). Stigler (1991) also describes other Monte Carlo simulation
by nineteenth-century scientists and suggests that “simulation, in the modern
sense of that term, may be the oldest of the stochastic arts”.

Another early use of Monte Carlo was the sampling experiment (using bio-
metric data recorded on pieces of cardboard) that led W. S. Gosset to the
discovery of the distribution of the t-statistic and the correlation coefficient.
(See Student, 1908a, 1908b. Of course, it was Ronald Fisher who later worked
out the distributions.)

Major advances in Monte Carlo techniques were made during World War II
and afterward by mathematicians and scientists working on problems in atomic
physics. (In fact, it was the group led by John von Neumann and S. M. Ulam
who coined the term “Monte Carlo” to refer to these methods.) The use of
Monte Carlo techniques by statisticians gradually increased from the time of

297

298 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

De Forest, but after the widespread availability of digital computers, the usage
greatly expanded.

In the mathematical sciences, including statistics, simulation has become an
important tool in the development of theory and methods. For example, if the
properties of an estimator are very difficult to work out analytically, a Monte
Carlo study may be conducted to estimate those properties.

Often, the Monte Carlo study is an informal investigation whose main pur-
pose is to indicate promising research directions. If a “quick and dirty” Monte
Carlo study indicates that some method of inference has good properties, it
may be worth the time of the research worker in developing the method and
perhaps doing the difficult analysis to confirm the results of the Monte Carlo
study.

In addition to quick Monte Carlo studies that are mere precursors to analytic
work, Monte Carlo studies often provide a significant amount of the available
knowledge of the properties of statistical techniques, especially under various
alternative models. A large proportion of the articles in the statistical literature
include Monte Carlo studies. In recent issues of the Journal of the American
Statistical Association, for example, almost half of the articles report on Monte
Carlo studies that supported the research.

One common use of Monte Carlo studies is to compare statistical methods.
For example, we may wish to compare a procedure based on maximum likeli-
hood with a procedure using least squares. The comparison of methods is often
carried out for different distributions for the random component of the model
used in the study. It is especially interesting to study how standard statistical
methods perform when the distribution of the random component has heavy
tails or when the distribution is contaminated by outliers. Monte Carlo meth-
ods are widely used in these kinds of studies of the robustness of statistical
methods.

9.1 Simulation as an Experiment

A simulation study that incorporates a random component is an experiment.
The principles of statistical design and analysis apply just as much to a Monte
Carlo study as they do to any other scientific experiment. The Monte Carlo
study should adhere to the same high standards of any scientific experimenta-
tion:

• control;

• reproducibility;

• efficiency;

• careful and complete documentation.

In simulation, control, among other things, relates to the fidelity of a nonran-
dom process to a random process. The experimental units are only simulated.

9.1. SIMULATION AS AN EXPERIMENT 299

Questions about the computer model must be addressed (tests of the random
number generators and so on).

Likewise, reproducibility is predicated on good random number generators
(or else on equally bad ones!). Portability of the random number generators
enhances reproducibility and in fact can allow strict reproducibility. Repro-
ducible research also requires preservation and documentation of the computer
programs that produced the results (see Buckheit and Donoho, 1995).

The principles of good statistical design can improve the efficiency. Use
of good designs (fractional factorials, etc.) can allow efficient simultaneous
exploration of several factors. Also, there are often many opportunities to
reduce the variance (improve the efficiency). Hammersley and Hanscomb (1964,
page 8) note

... statisticians were insistent that other experimentalists should de-
sign experiments to be as little subject to unwanted error as possible,
and had indeed given important and useful help to the experimen-
talist in this way; but in their own experiments they were singularly
inefficient, nay negligent in this respect.

Many properties of statistical methods of inference are analytically intracta-
ble. Asymptotic results, which are often easy to work out, may imply excellent
performance, such as consistency with a good rate of convergence, but the finite
sample properties are ultimately what must be considered. Monte Carlo studies
are a common tool for investigating the properties of a statistical method, as
noted above. In the literature, the Monte Carlo studies are sometimes called
“numerical results”. Some numerical results are illustrated by just one ran-
domly generated dataset; others are studied by averaging over thousands of
randomly generated sets.

In a Monte Carlo study, there are usually several different things (“treat-
ments” or “factors”) that we want to investigate. As in other kinds of ex-
periments, a factorial design is usually more efficient. Each factor occurs at
different “levels”, and the set of all levels of all factors that are used in the
study constitutes the “design space”. The measured responses are properties
of the statistical methods, such as their sample means and variances.

The factors commonly studied in Monte Carlo experiments in statistics in-
clude the following.

• statistical method (estimator, test procedure, etc.)

• sample size

• the problem for which the statistical method is being applied (that is, the
“true” model, which may be different from the one for which the method
was developed). Factors relating to the type of problem may be:

– distribution of the random component in the model (normality?)

– correlation among observations (independence?)

300 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

– homogeneity of the observations (outliers?, mixtures?)

– structure of associated variables (leverage?)

The factor whose effect is of primary interest is the statistical method. The
other factors are generally just blocking factors. There is, however, usually an
interaction between the statistical method and these other factors.

As in physical experimentation, observational units are selected for each
point in the design space and measured. The measurements, or “responses”
made at the same design point, are used to assess the amount of random vari-
ation, or variation that is not accounted for by the factors being studied. A
comparison of the variation among observational units at the same levels of all
factors with the variation among observational units at different levels is the
basis for a decision as to whether there are real (or “significant”) differences
at the different levels of the factors. This comparison is called analysis of vari-
ance. The same basic rationale for identifying differences is used in simulation
experiments.

A fundamental (and difficult) question in experimental design is how many
experimental units to observe at the various design points. Because the exper-
imental units in Monte Carlo studies are generated on the computer, they are
usually rather inexpensive. The subsequent processing (the application of the
factors, in the terminology of an experiment) may be very extensive, however,
so there is a need to design an efficient experiment.

9.2 Reporting Simulation Experiments

The reporting of a simulation experiment should receive the same care and con-
sideration that would be accorded the reporting of other scientific experiments.
Hoaglin and Andrews (1975) outline the items that should be included in a
report of a simulation study. In addition to a careful general description of the
experiment, the report should include mention of the random number genera-
tor used, any variance-reducing methods employed, and a justification of the
simulation sample size. The Journal of the American Statistical Association
includes these reporting standards in its style guide for authors.

Closely related to the choice of the sample size is the standard deviation
of the estimates that result from the study. The sample standard deviations
actually achieved should be included as part of the report. Standard deviations
are often reported in parentheses beside the estimates with which they are
associated. A formal analysis, of course, would use the sample variance of each
estimate to assess the significance of the differences observed between points in
the design space; that is, a formal analysis of the simulation experiment would
be a standard analysis of variance.

The most common method of reporting the results is by means of tables,
but a better understanding of the results can often be conveyed by graphs.

9.3. AN EXAMPLE 301

9.3 An Example

One area of statistics in which Monte Carlo studies have been used extensively
is robust statistics. This is because the finite sampling distributions of many
robust statistics are very difficult to work out, especially for the kinds of under-
lying distributions for which the statistics are to be studied. A well-known use
of Monte Carlo methods is in the important study of robust statistics described
by Andrews et al. (1972), who introduced and examined many alternative esti-
mators of location for samples from univariate distributions. This study, which
involved many Monte Carlo experiments, employed innovative methods of vari-
ance reduction and was very influential in subsequent Monte Carlo studies re-
ported in the statistical literature.

As an example of a Monte Carlo study, we will now describe a simple exper-
iment to assess the robustness of a statistical test in linear regression analysis.
The purpose of this example is to illustrate some of the issues in designing a
Monte Carlo experiment. The results of this small study are not of interest
here. There are many important issues about the robustness of the procedures
that we do not address in this example.

The Problem

Consider the simple linear regression model

Y = β0 + β1x + E,

where a response or “dependent variable”, Y , is modeled as a linear function of a
single regressor or “independent variable”, x, plus a random variable, E, called
the “error”. Because E is a random variable, Y is also a random variable. The
statistical problem is to make inferences about the unknown, constant parame-
ters β0 and β1 and about distributional parameters of the random variable, E.
The inferences are made based on a sample of n pairs, (yi, xi), with which are
associated unobservable realizations of the random error, εi, and are assumed
to have the relationship

yi = β0 + β1xi + εi. (9.1)

We also generally assume that the realizations of the random error are inde-
pendent and are unrelated to the value of x.

For this example, let us consider just the specific problem of testing the
hypothesis

H0: β1 = 0 (9.2)

versus the universal alternative. If the distribution of E is normal and we make
the additional assumptions above about the sample, the optimal test for the
hypothesis (using the common definitions of optimality) is based on a least
squares procedure that yields the statistic

t =
β̂1

√
(n − 2)

∑
(xi − x̄)2√∑

r2
i

, (9.3)

302 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

Figure 9.1: Least Squares Fit Using Two Datasets that are the Same Except
for Two Outliers

where x̄ is the mean of the xs, β̂1 together with β̂0 minimizes the function

L2(b0, b1) =
n∑

i=1

(yi − b0 − b1xi)2,

and
ri = yi − (β̂0 + β̂1xi).

If the null hypothesis is true, then t is a realization of a Student’s t distribution
with n− 2 degrees of freedom. The test is performed by comparing the p-value
from the Student’s t distribution with a preassigned significance level, α, or
by comparing the observed value of t with a critical value. The test of the
hypothesis depends on the estimates of β0 and β1 used in the test statistic t.

Often, a dataset contains outliers (that is, observations that have a realized
error that is very large in absolute value) or observations for which the model is
not appropriate. In such cases, the least squares procedure may not perform so
well. We can see the effect of some outliers on the least squares estimates of β0

and β1 in Figure 9.1. For well-behaved data, as in the plot on the left, the least
squares estimates seem to fit the data fairly well. For data with two outlying
points, as in the plot on the right in Figure 9.1, the least squares estimates are
affected so much by the two points in the upper left part of the graph that the
estimates do not provide a good fit for the bulk of the data.

Another method of fitting the linear regression line that is robust to outliers
in E is to minimize the absolute values of the deviations. The least absolute

9.3. AN EXAMPLE 303

values procedure chooses estimates of β0 and β1 to minimize the function

L1(b0, b1) =
n∑

i=1

|yi − b0 − b1xi|.

Figure 9.2 shows the same two datasets as before with the least squares (LS)
fit and the least absolute values (LAV) fit plotted on both graphs. We see that
the least absolute values fit does not change because of the outliers.

Figure 9.2: Least Squares Fits and Least Absolute Values Fits

Another concern in regression analysis is the unduly large influence that
some individual observations exert on the aggregate statistics because the val-
ues of x in those observations lie at a large distance from the mean of all of
the xis (that is, those observations whose values of the independent variables
are outliers). The influence of an individual observation is called leverage. Fig-
ure 9.3 shows two datasets together with the least squares and the least absolute
values fits for both. In both datasets, there is one value of x that lies far outside
the range of the other values of x. All of the data in the plot on the left in
Figure 9.3 lie relatively close to a line, and both fits are very similar. In the plot
on the right, the observation with an extreme value of x also happens to have
an outlying value of E. The effect on the least squares fit is marked, while the
least absolute values fit is not affected as much. (Despite this example, least
absolute values fits are generally not very robust to outliers at high leverage
points, especially if there are multiple such outliers. There are other methods
of fitting that are more robust to outliers at high leverage points. We refer the
interested reader to Rousseeuw and Leroy, 1987, for discussion of these issues.)

304 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

Figure 9.3: Least Squares and Least Absolute Values Fits

Now, we continue with our original objective in this example: to evaluate
ways of testing the hypothesis (9.2).

A test statistic analogous to the one in equation (9.3), but based on the
least absolute values fit, is

t1 =
2β̃1

√∑
(xi − x̄)2

(e(k2) − e(k1))
√

n − 2
, (9.4)

where β̃1 together with β̃0 minimizes the function

L1(b0, b1) =
n∑

i=1

|yi − b0 − b1xi|,

e(k) is the kth order statistic from

ei = yi − (β̃0 + β̃1xi),

k1 is the integer closest to (n − 1)/2 −√
n − 2, and k2 is the integer closest to

(n− 1)/2 +
√

n − 2. This statistic has an approximate Student’s t distribution
with n − 2 degrees of freedom (see Birkes and Dodge, 1993, for example).

If the distribution of the random error is normal, inference based on min-
imizing the sum of the absolute values is not nearly as efficient as inference
based on least squares. This alternative to least squares should therefore be
used with some discretion. Furthermore, there are other procedures that may
warrant consideration. It is not our purpose here to explore these important
issues in robust statistics, however.

9.3. AN EXAMPLE 305

The Design of the Experiment

At this point, we should have a clear picture of the problem: we wish to compare
two ways of testing the hypothesis (9.2) under various scenarios. The data may
have outliers, and there may be observations with large leverage. We expect
that the optimal test procedure will depend on the presence of outliers or,
more generally, on the distribution of the random error and on the pattern
of the values of the independent variable. The possibilities of interest for the
distribution of the random error include

• the family of the distribution (that is, normal, double exponential, Cauchy,
and so on);

• whether the distribution is a mixture of more than one basic distribution,
and, if so, the proportions in the mixture;

• the values of the parameters of the distribution (that is, the variance, the
skewness, or any other parameters that may affect the power of the test).

In textbooks on the design of experiments, a simple objective of an experi-
ment is to perform a t test or an F test of whether different levels of response
are associated with different treatments. Our objective in the Monte Carlo
experiment that we are designing is to investigate and characterize the depen-
dence of the performance of the hypothesis test on these factors. The principles
of design are similar to those of other experiments, however.

It is possible that the optimal test of the hypothesis will depend on the
sample size or on the true values of the coefficients in the regression model, so
some additional issues that are relevant to the performance of a statistical test
of this hypothesis are the sample size and the true values of β0 and β1.

In the terminology of statistical models, the factors in our Monte Carlo
experiment are the estimation method and the associated test, the distribution
of the random error, the pattern of the independent variable, the sample size,
and the true value of β0 and β1. The estimation method together with the
associated test is the “treatment” of interest. The “effect” of interest (that is,
the measured response) is the proportion of times that the null hypothesis is
rejected using the two treatments.

We now can see our objective more clearly: for each setting of the distribu-
tion, pattern, and size factors, we wish to measure the power of the two tests.
These factors are similar to blocking factors except that there is likely to be
an interaction between the treatment and these factors. Of course, the power
depends on the nominal level of the test, α. It may be the case that the nominal
level of the test affects the relative powers of the two tests.

We can think of the problem in the context of a binary response model,

E(Pijklqsr) = f(τi, δj , φk , νl, αq , β1s), (9.5)

where the parameters represent levels of the factors listed above (β1s is the
sth level of β1), and Pijklqsr is a binary variable representing whether the test

306 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

rejects the null hypothesis on the rth trial at the (ijklqs)th setting of the design
factors. It is useful to write down a model like this to remind ourselves of the
issues in designing an experiment.

At this point, it is necessary to pay careful attention to our terminology.
We are planning to use a statistical procedure (a Monte Carlo experiment) to
evaluate a statistical procedure (a statistical test in a linear model). For the
statistical procedure that we will use, we have written a model (9.5) for the
observations that we will make. Those observations are indexed by r in that
model. Let m be the sample size for each combination of factor settings. This
is the Monte Carlo sample size. It is not to be confused with the data sample
size, n, which is one of the factors in our study.

We now choose the levels of the factors in the Monte Carlo experiment.

• For the estimation method, we have decided on two methods: least squares
and least absolute values. Its differential effect in the binary response
model (9.5) is denoted by τi for i = 1, 2.

• For the distribution of the random error, we choose three general ones:

1. normal (0, 1);

2. normal (0, 1) with c% outliers from normal (0, d2);

3. standard Cauchy.

We choose different values of c and d as appropriate. For this example,
let us choose c = 5 and 20 and d = 2 and 5. Thus, in the binary response
model (9.5), j = 1, 2, 3, 4, 5, 6.

• For the pattern of the independent variable, we choose three different
arrangements:

1. uniform over the range;

2. a group of extreme outliers;

3. two groups of outliers.

In the binary response model (9.5), k = 1, 2, 3. We use fixed values of the
independent variable.

• For the sample size, we choose three values: 20, 200, and 2000. In the
binary response model (9.5), l = 1, 2, 3.

• For the nominal level of the test, we choose two values: 0.01 and 0.05. In
the binary response model (9.5), q = 1, 2.

• The true value of β0 is probably not relevant, so we just choose β0 = 1. We
are interested in the power of the tests at different values of β1. We expect
the power function to be symmetric about β1 = 0 and to approach 1 as
|β1| increases.

9.3. AN EXAMPLE 307

The estimation method is the “treatment” of interest.
Restating our objective in terms of the notation introduced above, for each

of two tests, we wish to estimate the power curve,

Pr(reject H0) = g(β1 | τi, δj , φk, νl, αq),

for any combination (τi, δj , φk, νl, αq). For either test, this curve should have
the general appearance of the curve shown in Figure 9.4.

The minimum of the power curve should occur at β1 = 0 and should be α.
The curve should approach 1 symmetrically as |β1|.

Figure 9.4: Power Curve for Testing β1 = 0

To estimate the curve, we use a discrete set of points, and because of sym-
metry, all values chosen for β1 can be nonnegative. The first question is at what
point does the curve flatten out just below 1. We might arbitrarily define the
region of interest to be that in which the power is less than 0.99 approximately.
The abscissa of this point is the maximum β1 of interest. This point, say β∗

1 ,
varies, depending on all of the factors in the study. We could work this out
in the least squares case for uncontaminated normal errors using the noncen-
tral Student’s t distribution, but, for other cases, it is analytically intractable.
Hence, we compute some preliminary Monte Carlo estimates to determine the
maximum β1 for each factor combination in the study.

To do a careful job of fitting a curve using a relatively small number of
points, we would choose points where the second derivative is changing rapidly
and especially near points of inflection where the second derivative changes
sign. Because the problem of determining these points for each combination of

308 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

(i, j, k, l, q) is not analytically tractable (otherwise, we would not be doing the
study!), we may conveniently choose a set of points equally spaced between 0
and β∗

1 . Let us decide on five such points for this example. It is not important
that the β∗

1s be chosen with a great deal of care. The objective is that we be
able to calculate two power curves between 0 and β∗

1 that are meaningful for
comparisons.

The Experiment

The observational units in the experiment are the values of the test statis-
tics (9.3) and (9.4). The measurements are the binary variables corresponding
to rejection of the hypothesis (9.2). At each point in the factor space, there
will be m such observations. If z is the number of rejections observed, then the
estimate of the power is z/m, and the variance of the estimator is π(1− π)/m,
where π is the true power at that point. (z is a realization of a binomial random
variable with parameters m and π.) This leads us to a choice of the value of
m. The coefficient of variation at any point is

√
(1 − π)/(mπ), which increases

as π decreases. At π = 0.50, a 5% coefficient of variation can be achieved with
a sample of size 400. This yields a standard deviation of 0.025. There may be
some motivation to choose a slightly larger value of m because we can assume
that the minimum of π will be approximately the minimum of α. To achieve
a 5% coefficient of variation at the point at which α1 = 0.05 would require a
sample of size approximately 160,000. That would correspond to a standard
deviation of 0.0005, which is probably much smaller than we need. A sample
size of 400 would yield a standard deviation of 0.005. Although that is large
in a relative sense, it may be adequate for our purposes. Because this particu-
lar point (where β1 = 0) corresponds to the null hypothesis, however, we may
choose a larger sample size, say 4000, at that special point. A reasonable choice
therefore is a Monte Carlo sample size of 4000 at the null hypothesis and 400 at
all other points. We will, however, conduct the experiment in such a way that
we can combine the results of this experiment with independent results from a
subsequent experiment.

The experiment is conducted by running a computer program. The main
computation in the program is to determine the values of the test statistics and
to compare them with their critical values to decide on the hypothesis. These
computations need to be performed at each setting of the factors and for any
given realization of the random sample.

We design a program that allows us to loop through the settings of the
factors and, at each factor setting, to use a random sample. The result is a nest
of loops. The program may be stopped and restarted, so we need to be able to
control the seeds (see Section 8.2, page 286).

Recalling that the purpose of our experiment is to obtain estimates, we may
now consider any appropriate methods of reducing the variance of those esti-
mates. There is not much opportunity to apply methods of variance reduction
discussed in Section 7.5, but at least we might consider at what points to use

9.3. AN EXAMPLE 309

common realizations of the pseudorandom variables. Because the things that we
want to compare most directly are the powers of the tests, we perform the tests
on the same pseudorandom datasets. Also, because we are interested in the
shape of the power curves, we may want to use the same pseudorandom data-
sets at each value of β1; that is, to use the same set of errors in the model (9.1).
Finally, following similar reasoning, we may use the same pseudorandom data-
sets at each setting of the pattern of the independent variable. This implies
that our program of nested loops has the structure shown in Figure 9.5.

Initialize a table of counts.
Fix the data sample size. (Loop over the sample sizes n = 20,
n = 200, and n = 2000.)

Generate a set of residuals for the linear regression
model (9.1). (This is the loop of m Monte Carlo replications.)

Fix the pattern of the independent variable. (Loop over
patterns P1, P2, and P3.)

Choose the distribution of the error term. (Loop
over the distributions D1, D2, D3, D4, D5, and D6.)

For each value of β1, generate a set of obser-
vations (the y values) for the linear regression
model (9.1), and perform the tests using both
procedures and at both levels of significance.
Record results.

End distributions loop.
End patterns loop.

End Monte Carlo loop.
End sample size loop.

Perform computations of summary statistics.

Figure 9.5: Program Structure for the Monte Carlo Experiment

After writing a computer program with this structure, the first thing is to
test the program on a small set of problems and determine appropriate values
of β∗

1 . We should compare the results with known values at a few points. (As
mentioned earlier, the only points that we can work out correspond to the
normal case with the ordinary t statistic. One of these points, at β1 = 0, is
easily checked.) We can also check the internal consistency of the results. For
example, does the power curve increase? We must be careful, of course, in
applying such consistency checks because we do not know the behavior of the
tests in most cases.

Reporting the Results

The report of this Monte Carlo study should address as completely as possible
the results of interest. The relative values of the power are the main points

310 CHAPTER 9. MONTE CARLO STUDIES IN STATISTICS

of interest. The estimated power at β1 = 0 is of interest. This is the actual
significance level of the test, and how it compares to the nominal level α is of
particular interest.

The presentation should be in a form easily assimilated by the reader. This
may mean graphs similar to Figure 9.4, except only the nonnegative half, and
with the tick marks on the horizontal axis. Two graphs, for the two test proce-
dures, should be shown on the same set of axes. It is probably counterproductive
to show a graph for each factor setting. (There are 108 combinations of factor
settings.)

In addition to the graphs, tables may allow presentation of a large amount
of information in a compact format.

The Monte Carlo study should be described so carefully that the study
could be replicated exactly. This means specifying the factor settings, the loop
nesting, the software and computer used, the seed used, and the Monte Carlo
sample size. There should also be at least a simple statement explaining the
choice of the Monte Carlo sample size.

As mentioned earlier, the statistical literature is replete with reports of
Monte Carlo studies. Some of these reports (and, likely, the studies themselves)
are woefully deficient. An example of a careful Monte Carlo study and a good
report of the study are given by Kleijnen (1977). He designed, performed, and
reported on a Monte Carlo study to investigate the robustness of a multiple
ranking procedure. In addition to reporting on the study of the question at
hand, another purpose of the paper was to illustrate the methods of a Monte
Carlo study.

Exercises

9.1. Write a computer program to implement the Monte Carlo experiment
described in Section 9.3. The S-Plus functions lsfit and l1fit or the
IMSL Fortran subroutines rline and rlav can be used to calculate the
fits. See Chapter 8 for discussions of other software that you may use in
the program.

9.2. Choose a recent issue of the Journal of the American Statistical Asso-
ciation and identify five articles that report on Monte Carlo studies of
statistical methods. In each case, describe the Monte Carlo experiment.

(a) What are the factors in the experiment?

(b) What is the measured response?

(c) What is the design space (that is, the set of factor settings)?

(d) What random number generators were used?

(e) Critique the report in each article. Did the author(s) justify the sam-
ple size? Did the author(s) report variances or confidence intervals?
Did the author(s) attempt to reduce the experimental variance?

EXERCISES 311

9.3. Select an article that you identified in Exercise 9.2 that concerns a sta-
tistical method that you understand and that interests you. Choose a
design space that is not a subspace of that used in the article but has a
nonnull intersection with it, and perform a similar experiment. Compare
your results with those reported in the article.

This page intentionally left blank

Appendix A

Notation and Definitions

All notation used in this work is “standard”, and in most cases it conforms
to the ISO conventions. (The notable exception is the notation for vectors.)
I have opted for simple notation, which, of course, results in a one-to-many
map of notation to object classes. Within a given context, however, the over-
loaded notation is generally unambiguous. I have endeavored to use notation
consistently.

This appendix is not intended to be a comprehensive listing of definitions.
The subject index, beginning on page 377, is a more reliable set of pointers to
definitions, except for symbols that are not words.

General Notation

Uppercase italic Latin and Greek letters, A, B, E, Λ, and so on, are generally
used to represent either matrices or random variables. Random variables are
usually denoted by letters nearer the end of the Latin alphabet, X , Y , Z,
and by the Greek letter E. Parameters in models (that is, unobservables in
the models), whether or not they are considered to be random variables, are
generally represented by lowercase Greek letters. Uppercase Latin and Greek
letters, especially P , in general, and Φ, for the normal distribution, are also used
to represent cumulative distribution functions. Also, uppercase Latin letters are
used to denote sets.

Lowercase Latin and Greek letters are used to represent ordinary scalar or
vector variables and functions. No distinction in the notation is made between
scalars and vectors; thus, β may represent a vector, and βi may represent the
ith element of the vector β. In another context, however, β may represent a
scalar. All vectors are considered to be column vectors, although we may write
a vector as x = (x1, x2, . . . , xn). Transposition of a vector or a matrix is denoted
by a superscript T.

Uppercase calligraphic Latin letters, F , V , W , and so on, are generally used
to represent either vector spaces or transforms.

313

314 APPENDIX A. NOTATION AND DEFINITIONS

Subscripts generally represent indexes to a larger structure; for example,
xij may represent the (i, j)th element of a matrix, X . A subscript in paren-
theses represents an order statistic. A superscript in parentheses represents an
iteration, for example, x

(k)
i may represent the value of xi at the kth step of an

iterative process. The following are some examples:

xi The ith element of a structure (including a sample, which is a
multiset).

x(i) The ith order statistic.

x(i) The value of x at the ith iteration.

Realizations of random variables and placeholders in functions associated
with random variables are usually represented by lowercase letters correspond-
ing to the uppercase letters; thus, ε may represent a realization of the random
variable E.

A single symbol in an italic font is used to represent a single variable. A
Roman font or a special font is often used to represent a standard operator or a
standard mathematical structure. Sometimes, a string of symbols in a Roman
font is used to represent an operator (or a standard function); for example,
exp represents the exponential function, but a string of symbols in an italic
font on the same baseline should be interpreted as representing a composition
(probably by multiplication) of separate objects; for example, exp represents
the product of e, x, and p.

A fixed-width font is used to represent computer input or output; for exam-
ple,

a = bx + sin(c).

In computer text, a string of letters or numerals with no intervening spaces or
other characters, such as bx above, represents a single object, and there is no
distinction in the font to indicate the type of object.

Some important mathematical structures and other objects are:

IR The field of reals or the set over which that field is defined.

IRd The usual d-dimensional vector space over the reals or the set
of all d-tuples with elements in IR.

IRd
+ The set of all d-tuples with positive real elements.

APPENDIX A. NOTATION AND DEFINITIONS 315

IC The field of complex numbers or the set over which that field is
defined.

ZZ The ring of integers or the set over which that ring is defined.

IG(n) A Galois field defined on a set with n elements.

C0, C1, C2, . . . The set of continuous functions, the set of functions with con-
tinuous first derivatives, and so forth.

i The imaginary unit
√−1.

Computer Number Systems

Computer number systems are used to simulate the more commonly used num-
ber systems. It is important to realize that they have different properties,
however. Some notation for computer number systems follows.

IF The set of floating-point numbers with a given precision, on
a given computer system, or this set together with the four
operators +, -, *, and /. IF is similar to IR in some useful
ways; it is not, however, closed under the two basic operations,
and not all reciprocals of the elements exclusive of the additive
identity exist, so it is clearly not a field.

II The set of fixed-point numbers with a given length, on a given
computer system, or this set together with the four operators
+, -, *, and /. II is similar to ZZ in some useful ways; it is not,
however, closed under the two basic operations, so it is clearly
not a ring.

emin and emax The minimum and maximum values of the exponent in the set
of floating-point numbers with a given length.

εmin and εmax The minimum and maximum spacings around 1 in the set of
floating-point numbers with a given length.

ε or εmach The machine epsilon, the same as εmin.

[·]c The computer version of the object ·.

NaN Not-a-Number.

316 APPENDIX A. NOTATION AND DEFINITIONS

Notation Relating to Random Variables

A common function used with continuous random variables is a density function,
and a common function used with discrete random variables is a probability
function. The more fundamental function for either type of random variable is
the cumulative distribution function, or CDF. The CDF of a random variable
X , denoted by PX(x) or just by P (x), is defined by

P (x) = Pr(X ≤ x),

where “Pr”, or “probability”, can be taken here as a primitive (it is defined in
terms of a measure). For vectors (of the same length), “X ≤ x” means that
each element of X is less than or equal to the corresponding element of x. Both
the CDF and the density or probability function for a d-dimensional random
variable are defined over IRd. (It is unfortunately necessary to state that “P (x)”
means the “function P evaluated at x”, and likewise “P (y)” means the same
“function P evaluated at y” unless P has been redefined. Using a different
expression as the argument does not redefine the function despite the sloppy
convention adopted by some statisticians—including myself sometimes!)

The density for a continuous random variable is just the derivative of the
CDF (if it exists). The CDF is therefore the integral. To keep the notation sim-
ple, we likewise consider the probability function for a discrete random variable
to be a type of derivative (a Radon–Nikodym derivative) of the CDF. Instead
of expressing the CDF of a discrete random variable as a sum over a countable
set, we often also express it as an integral. (In this case, however, the integral
is over a set whose ordinary Lebesgue measure is 0.)

A useful analog of the CDF for a random sample is the empirical cumulative
distribution function, or ECDF. For a sample of size n, the ECDF is

Pn(x) =
1
n

n∑
i=1

I(−∞,x](xi)

for the indicator function I(−∞,x](·).
Functions and operators such as Cov and E that are commonly associated

with Latin letters or groups of Latin letters are generally represented by that
letter in a Roman font.

Pr(A) The probability of the event A.

pX(·)
or PX(·)

The probability density function (or probability function), or
the cumulative probability function, of the random variable X .

pXY (·)
or PXY (·)

The joint probability density function (or probability function),
or the joint cumulative probability function, of the random vari-
ables X and Y .

APPENDIX A. NOTATION AND DEFINITIONS 317

pX|Y (·)
or PX|Y (·)

The conditional probability density function (or probability
function), or the conditional cumulative probability function,
of the random variable X given the random variable Y (these
functions are random variables).

pX|y(·)
or PX|y(·)

The conditional probability density function (or probability
function), or the conditional cumulative probability function,
of the random variable X given the realization y.

Sometimes, the notation above is replaced by a similar notation
in which the arguments indicate the nature of the distribution;
for example, p(x, y) or p(x|y).

pθ(·)
or Pθ(·)

The probability density function (or probability function), or
the cumulative probability function, of the distribution charac-
terized by the parameter θ.

Y ∼ DX(θ) The random variable Y is distributed as DX(θ), where X is
the name of a random variable associated with the distribution,
and θ is a parameter of the distribution. The subscript may
take forms similar to those used in the density and distribution
functions, such as X |y, or it may be omitted. Alternatively, in
place of DX , a symbol denoting a specific distribution may be
used. An example is Z ∼ N(0, 1), which means that Z has a
normal distribution with mean 0 and variance 1.

CDF A cumulative distribution function.

ECDF An empirical cumulative distribution function.

i.i.d. Independent and identically distributed.

X(i) d→ X
or Xi

d→ X
The sequence of random variables X(i) or Xi converges in dis-
tribution to the random variable X . (The difference in the
notation X(i) and Xi is generally unimportant. The former
notation is often used to emphasize the iterative nature of a
process.)

E(g(X)) The expected value of the function g of the random variable
X . The notation EP (·), where P is a cumulative distribution
function or some other identifier of a probability distribution,
is sometimes used to indicate explicitly the distribution with
respect to which the expectation is evaluated.

V(g(X)) The variance of the function g of the random variable X . The
notation VP (·) is also often used.

318 APPENDIX A. NOTATION AND DEFINITIONS

Cov(X, Y) The covariance of the random variables X and Y . The notation
CovP (·, ·) is also often used.

Cov(X) The variance-covariance matrix of the vector random variable
X .

Corr(X, Y) The correlation of the random variables X and Y . The notation
CorrP (·, ·) is also often used.

Corr(X) The correlation matrix of the vector random variable X .

Bias(T, θ)
or Bias(T)

The bias of the estimator T (as an estimator of θ); that is,

Bias(T, θ) = E(T)− θ.

MSE(T, θ)
or MSE(T)

The mean squared error of the estimator T (as an estimator of
θ); that is,

MSE(T, θ) =
(
Bias(T, θ)

)2 + V(T).

General Mathematical Functions and Operators

Functions such as sin, max, span, and so on that are commonly associated with
groups of Latin letters are generally represented by those letters in a Roman
font.

Generally, the argument of a function is enclosed in parentheses: sin(x).
Often, for the very common functions, the parentheses are omitted: sinx. In
expressions involving functions, parentheses are generally used for clarity, for
example, (E(X))2 instead of E2(X).

Operators such as d (the differential operator) that are commonly associated
with a Latin letter are generally represented by that letter in a Roman font.

|x| The modulus of the real or complex number x; if x is real, |x|
is the absolute value of x.

�x� The ceiling function evaluated at the real number x: �x� is the
smallest integer greater than or equal to x.

�x� The floor function evaluated at the real number x: �x� is the
largest integer less than or equal to x.

#S The cardinality of the set S.

APPENDIX A. NOTATION AND DEFINITIONS 319

IS(·) The indicator function:

IS(x) = 1 if x ∈ S;
= 0 otherwise.

If x is a scalar, the set S is often taken as the interval (−∞, y],
and, in this case, the indicator function is the Heaviside func-
tion, H, evaluated at the difference of the argument and the
upper bound on the interval:

I(−∞,y](x) = H(y − x).

(An alternative definition of the Heaviside function is the same
as this, except that H(0) = 1

2 .) In higher dimensions, the set S
is often taken as the product set,

Ad = (−∞, y1] × (−∞, y2] × · · · × (−∞, yd]
= A1 × A2 × · · · × Ad,

and, in this case,

IAd(x) = IA1(x1)IA2(x2) · · · IAd
(xd),

where x = (x1, x2, . . . , xd). The derivative of the indicator func-
tion is the Dirac delta function, δ(·).

δ(·) The Dirac delta “function”, defined by

δ(x) = 0 for x �= 0,

and ∫ ∞

−∞
δ(t) dt = 1.

The Dirac delta function is not a function in the usual sense.
For any continuous function f , we have the useful fact∫ ∞

−∞
f(y) dI(−∞,y](x) =

∫ ∞

−∞
f(y) δ(y − x) dy

= f(x).

minf(·)
or min(S)

The minimum value of the real scalar-valued function f , or the
smallest element in the countable set of real numbers S.

argminf(·) The value of the argument of the real scalar-valued function f
that yields its minimum value.

320 APPENDIX A. NOTATION AND DEFINITIONS

⊕ Bitwise binary exclusive-or (see page 39).

O(f(n)) Big O; g(n) = O(f(n)) means that there exists a positive con-
stant M such that |g(n)| ≤ M |f(n)| as n → ∞. g(n) = O(1)
means that g(n) is bounded from above.

d The differential operator. The derivative with respect to the
variable x is denoted by d

dx .

f ′, f ′′, . . . , fk′
For the scalar-valued function f of a scalar variable, differentia-
tion (with respect to an implied variable) taken on the function
once, twice, . . ., k times.

x̄ The mean of a sample of objects generically denoted by x.

x• The sum of the elements in the object x. More generally, xi•k =∑
j xijk .

x− The multiplicative inverse of x with respect to some modulus
(see page 36).

Special Functions

log x The natural logarithm evaluated at x.

sin x The sine evaluated at x (in radians) and similarly for other
trigonometric functions.

x! The factorial of x. If x is a positive integer, x! = x(x−1) · · · 2·1.
For other values of x, except negative integers, x! is often defined
as

x! = Γ(x + 1).

Γ(α) The (complete) gamma function. For α not equal to a nonpos-
itive integer,

Γ(α) =
∫ ∞

0

tα−1e−t dt.

We have the useful relationship Γ(α) = (α− 1)!. An important
argument is 1

2 , and Γ(1
2) =

√
π.

APPENDIX A. NOTATION AND DEFINITIONS 321

Γx(α) The incomplete gamma function:

Γx(α) =
∫ x

0

tα−1e−t dt.

B(α, β) The (complete) beta function:

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1 dt,

where α > 0 and β > 0. A useful relationship is

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

.

Bx(α, β) The incomplete beta function:

Bx(α, β) =
∫ x

0

tα−1(1 − t)β−1 dt.

This page intentionally left blank

Appendix B

Solutions and Hints for
Selected Exercises

1.5. With a = 17, the correlation of pairs of successive numbers should be
about 0.09, and the plot should show 17 lines. With a = 85, the correla-
tion of lag 1 is about 0.03, but the correlation of lag 2 is about −0.09.

1.8. 35 planes for 65 541 and 15 planes for 65 533.

1.10. 950 706 376, 129 027 171, 1 728 259 899, 365 181 143, 1 966 843 080,
1 045 174 992, 636 176 783, 1 602 900 997, 640 853 092, 429 916 489.

1.13. We seek x0 such that

16 807x0 − (231 − 1)c1 = 231 − 2

for some integer c1. First, observe that 231 − 2 is equivalent to −1, so
we use Euler’s method (see, e.g., Ireland and Rosen, 1991, or Fang and
Wang, 1994) with that simpler value and write

x0 =
((231 − 1)c1 − 1)

16 807

= 127 773c1 +
(2836c1 − 1)

16 807
.

Because the latter term must also be an integer, we write

16 807c2 = 2836c1 − 1

or

c1 = 5c2 +
(2627c2 + 1)

2836

323

324 APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES

for some integer c2. Continuing,

c2 = c3 +
(209c3 − 1)

2627
,

c3 = 12c4 +
(119c4 + 1)

209
,

c4 = c5 +
(90c5 − 1)

119
,

c5 = c6 +
(29c6 + 1)

90
,

c6 = 3c7 +
(3c7 − 1)

29
,

c7 = 9c8 +
(3c8 + 1)

3
,

c8 = c9 +
(c9 − 1)

2
.

Letting c9 = 1, we can backsolve to get x0 = 739 806 647.

1.14. Using Maple, for example,

> pr := 0:
> while pr < 8191 do
> pr := primroot(pr, 8191)
> od;

yields the 1728 primitive roots, starting with the smallest one, 17, and
going through the largest, 8180. To use primroot, you may first have to
attach the number theory package: with(numtheory):.

1.15. 0.5.

2.2c. The distribution is degenerate with probability 1 for r = min(n, m); that
is, the matrix is of full rank with probability 1.

2.3. Out of the 100 trials, 97 times the maximum element is in position 1311.
The test is not really valid because the seeds are all relatively small and are
very close together. Try the same test but with 100 randomly generated
seeds.

4.1a. X is a random variable with an absolutely continuous distribution func-
tion P . Let Y be the random variable P (X). Then, for 0 ≤ t ≤ 1, using
the existence of P−1,

Pr(Y ≤ t) = Pr(P (X) ≤ t)
= Pr(X ≤ P−1(t))
= P−1(P (t))
= t.

APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES 325

Hence, Y has a U(0, 1) distribution.

4.2. Let Z be the random variable delivered. For any x, because Y (from the
density g) and U are independent, we have

Pr(Z ≤ x) = Pr
(

Y ≤ x |U ≤ p(Y)
cg(Y)

)

=

∫ x

−∞
∫ p(t)/cg(t)

0
g(t) ds dt∫∞

−∞
∫ p(t)/cg(t)

0
g(t) ds dt

=
∫ x

−∞
p(t) dt,

the distribution function corresponding to p. Differentiating this quantity
with respect to x yields p(x).

4.4c. Using the relationship

1√
2π

e−
x2
2 ≤ 1√

2π
e

1
2−|x|

(see Devroye, 1986a), we have the following algorithm, after simplification.

1. Generate x from the double exponential, and generate u from U(0, 1).

2. If x2 + 1 − 2|x| ≤ −2 logu, then deliver x; otherwise, go to step 1.

4.5. As x → ∞, there is no c such that cg(x) ≥ p(x), where g is the normal
density and p is the exponential density.

4.7a. E(T) = c; V(T) = c2 − c. (Note that c ≥ 1.)

4.8. For any t, we have

Pr(X ≤ t) = Pr(X ≤ s + rh) (for 0 ≤ r ≤ 1)
= Pr(U ≤ r |V ≤ U + p(s + hU)/b)

=

∫ r

0

∫ u+p(s+hu)/b

u
2 dv du∫ 1

0

∫ u+p(s+hu)/b

u 2 dv du

=

∫ r

0 (p(s + hu)/b) du∫ 1

0
(p(s + hu)/b) du

=
∫ t

s

p(x) dx,

where all of the symbols correspond to those in Algorithm 4.7 with the
usual convention of uppercase representing random variables and lower-
case representing constants or realizations of random variables.

326 APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES

5.2b. We can consider only the case in which τ ≥ 0; otherwise, we could make
use of the symmetry of the normal distribution and split the algorithm
into two regions. Also, for simplicity, we can generate truncated normals
with µ = 0 and σ2 = 1 and then shift and scale just as we do for the
full normal distribution. The probability of acceptance is the ratio of the
area under the truncated exponential (the majorizing function) to the area
under the truncated normal density. For an exponential with parameter
λ and truncated at τ , the density is

g(x) = λe−λ(x−τ).

To scale this so that it majorizes the truncated normal density requires
a constant c that does not depend on λ. We can write the probability of
acceptance as

cλe−λτ−λ2/2.

Maximizing this quantity (by taking the derivative and equating to 0)
yields the equation λ2 − λτ − 1 = 0.

5.3. Use the fact that U and 1 − U have the same distribution.

5.6b. A simple program using the IMSL routine bnrdf can be used to compute
r. Here is a fragment of code that will work:

10 pl = bnrdf(z1,z2,rl)
ph = bnrdf(z1,z2,rh)
if (abs(ph-pl) .le. eps) go to 99
rt = rl + (rh-rl)/2.
pt = bnrdf(z1,z2,rt)
if (pt .gt. prob) then

rh = rt
else

rl = rt
endif
go to 10

99 continue
print *, rl

5.7b We need the partitions of Σ−1:

Σ−1 =
[

Σ11 Σ12

Σ21 Σ22

]−1

=
[

T11 T12

T21 T22

]
.

Now,
T11 =

(
Σ11 − Σ12Σ

−1
22 ΣT

11

)−1

(see Gentle, 1998, page 61).

APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES 327

The conditional distribution of X1 given X2 = x2 is Nd1(µ1+Σ12Σ
−1
22 (x2−

µ2), T−1
11) (see any book on multivariate distributions, such as Kotz,

Balakrishnan, and Johnson, 2000). Hence, first, take y1 as rnorm(d1).
Then,

x1 = T
−1/2
11 y1 + µ1 + Σ12Σ

−1
22 (x2 − µ2),

where T
−1/2
11 is the Cholesky factor of T−1

11 , that is, of Σ11 −Σ12Σ
−1
22 ΣT

11.

If Y2 is a d2-variate random variate with a standard circular normal dis-
tribution, and X1 has the given relationship, then

E(X1|X2 = x2) = µ1 + Σ12Σ
−1
22 (x2 − µ2),

and
V(X1|X2 = x2) = T

−1/2
11 V(Y1)T

−1/2
11 = T−1

11 .

6.2a. The problem with random sampling using a pseudorandom number gen-
erator is that the fixed relationships in the generator must be ignored –
else there can be no simple random sample larger than 1. On the other
hand, if these fixed relationships are ignored, then it does not make sense
to speak of a period.

7.2b. The set is a random sample from the distribution with density f .

7.3b. The integral can be reduced to∫ 2

0

√
π

y
cosπydy.

Generate yi as 2ui, where ui are from U(0, 1), and estimate the integral
as

2
√

π
∑ cosπyi√

yi
.

7.6. The order of the variance is O(n−2). The order is obviously dependent
on the dimension of the integral, however, and, in higher dimensions, it
is not competitive with the crude Monte Carlo method.

7.9a. Generate xi from a gamma(3, 2) distribution, and take your estimator as

16
∑

sin(πxi)
n

.

7.10b. The optimum is l = d.

7.10d. An unbiased estimator for θ is

d2(n1 + n2)
(dl − l2)n

.

The optimum is l = d.

328 APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES

7.14a.

E
P̂
(x̄∗) = E

P̂

(
1
n

∑
i

x∗
i

)

=
1
n

∑
i

E
P̂
(x∗

i)

=
1
n

∑
i

x̄

= x̄.

Note that the empirical distribution is a conditional distribution, given
the sample. With the sample fixed, x̄ is a “parameter” rather than a
“statistic”.

7.14b.

EP (x̄∗) = EP

(
1
n

∑
i

x∗
i

)

=
1
n

∑
i

EP (x∗
i)

=
1
n

∑
i

µ

= µ.

Alternatively,

EP (x̄∗) = EP

(
E

P̂
(x̄∗)

)
= EP (x̄)
= µ.

7.14c. First, note that
E

P̂
(x̄∗

j) = x̄,

V
P̂

(x̄∗
j) =

1
n

1
n

∑
(xi − x̄)2,

and
V

P̂
(x̄∗

j) =
1

mn2

∑
(xi − x̄)2.

Now,

E
P̂
(V) =

1
m − 1

E
P̂

∑
j

(
x̄∗

j − x̄∗
j

)2

APPENDIX B. SOLUTIONS AND HINTS FOR EXERCISES 329

=
1

m − 1
E

P̂

∑
j

x̄∗2
j − mx̄∗

j

2

=

1
m − 1

(
mx̄2 +

m

n

∑
(xi − x̄)2 − mx̄2 − m

mn2

∑
(xi − x̄)2

)
=

1
m − 1

(
m

n2

∑
(xi − x̄)2 − 1

n2

∑
(xi − x̄)2

)
=

1
n2

∑
(xi − x̄)2

=
1
n

σ2

P̂
.

7.14d.

EP (V) = EP (E
P̂
(V))

= EP

(
1
n

∑
(xi − x̄)2/n

)
=

1
n

n − 1
n

σ2
P .

This page intentionally left blank

Bibliography

As might be expected, the literature in the interface of computer science, nu-
merical analysis, and statistics is quite diverse, and articles on random number
generation and Monte Carlo methods are likely to appear in journals devoted to
quite different disciplines. There are at least ten journals and serials with titles
that contain some variants of both “computing” and “statistics”, but there are
far more journals in numerical analysis and in areas such as “computational
physics”, “computational biology”, and so on that publish articles relevant to
the fields of statistical computing and computational statistics. Many of the
methods of computational statistics involve random number generation and
Monte Carlo methods. The journals in the mainstream of statistics also have
a large proportion of articles in the fields of statistical computing and compu-
tational statistics because, as we suggested in the preface, recent developments
in statistics and in the computational sciences have paralleled each other to a
large extent.

There are two well-known learned societies with a primary focus in statistical
computing: the International Association for Statistical Computing (IASC),
which is an affiliated society of the International Statistical Institute, and the
Statistical Computing Section of the American Statistical Association (ASA).
The Statistical Computing Section of the ASA has a regular newsletter carrying
news and notices as well as articles on practicum. Also, the activities of the
Society for Industrial and Applied Mathematics (SIAM) are often relevant to
computational statistics.

There are two regular conferences in the area of computational statistics:
COMPSTAT, held biennially in Europe and sponsored by the IASC, and the
Interface Symposium, generally held annually in North America and sponsored
by the Interface Foundation of North America with cooperation from the Sta-
tistical Computing Section of the ASA.

In addition to literature and learned societies in the traditional forms, an
important source of communication and a repository of information are com-
puter databases and forums. In some cases, the databases duplicate what is
available in some other form, but often the material and the communications
facilities provided by the computer are not available elsewhere.

331

332 BIBLIOGRAPHY

Literature in Computational Statistics

In the Library of Congress classification scheme, most books on statistics, in-
cluding statistical computing, are in the QA276 section, although some are
classified under H, HA, and HG. Numerical analysis is generally in QA279 and
computer science in QA76. Many of the books in the interface of these disci-
plines are classified in these or other places within QA.

Current Index to Statistics, published annually by the American Statistical
Association and the Institute for Mathematical Statistics, contains both au-
thor and subject indexes that are useful in finding journal articles or books in
statistics. The Index is available in hard copy and on CD-ROM.

The Association for Computing Machinery (ACM) publishes an annual in-
dex, by author, title, and keyword, of the literature in the computing sciences.

Mathematical Reviews, published by the American Mathematical Society
(AMS), contains brief reviews of articles in all areas of mathematics. The
areas of “Statistics”, “Numerical Analysis”, and “Computer Science” contain
reviews of articles relevant to computational statistics. The papers reviewed
in Mathematical Reviews are categorized according to a standard system that
has slowly evolved over the years. In this taxonomy, called the AMS MR
classification system, “Statistics” is 62Xyy; “Numerical Analysis”, including
random number generation, is 65Xyy; and “Computer Science” is 68Xyy. (“X”
represents a letter and “yy” represents a two-digit number.) Mathematical
Reviews is available to subscribers via the World Wide Web at MathSciNet:

http://www.ams.org/mathscinet/

There are various handbooks of mathematical functions and formulas that
are useful in numerical computations. Three that should be mentioned are
Abramowitz and Stegun (1964), Spanier and Oldham (1987), and Thompson
(1997). Anyone doing serious scientific computations should have ready access
to at least one of these volumes.

Almost all journals in statistics have occasional articles on computational
statistics and statistical computing. The following is a list of journals, proceed-
ings, and newsletters that emphasize this field.

ACM Transactions on Mathematical Software, published quarterly by the ACM
(Association for Computing Machinery). This journal publishes algorithms
in Fortran and C. The ACM collection of algorithms is sometimes called
CALGO. The algorithms published during the period 1975 through 1999 are
available on a CD-ROM from ACM. Most of the algorithms are available
through netlib at

http://www.netlib.org/liblist.html

ACM Transactions on Modeling and Computer Simulation, published quarterly
by the ACM.

Applied Statistics, published quarterly by the Royal Statistical Society. (Until
1998, it included algorithms in Fortran. Some of these algorithms, with cor-

BIBLIOGRAPHY 333

rections, were collected by Griffiths and Hill, 1985. Most of the algorithms
are available through statlib at Carnegie Mellon University.)

Communications in Statistics — Simulation and Computation, published quar-
terly by Marcel Dekker. (Until 1996, it included algorithms in Fortran.
Until 1982, this journal was designated as Series B.)

Computational Statistics, published quarterly by Physica-Verlag (formerly called
Computational Statistics Quarterly).

Computational Statistics. Proceedings of the xxth Symposium on Computa-
tional Statistics (COMPSTAT), published biennially by Physica-Verlag. (It
is not refereed.)

Computational Statistics & Data Analysis, published by North Holland. The
number of issues per year varies. (This is also the official journal of the In-
ternational Association for Statistical Computing, and as such incorporates
the Statistical Software Newsletter.)

Computing Science and Statistics. This is an annual publication containing
papers presented at the Interface Symposium. Until 1992, these proceed-
ings were named Computer Science and Statistics: Proceedings of the xxth

Symposium on the Interface. (The 24th symposium was held in 1992.) In
1997, Volume 29 was published in two issues: Number 1, which contains the
papers of the regular Interface Symposium, and Number 2, which contains
papers from another conference. The two numbers are not sequentially pag-
inated. Since 1999, the proceedings have been published only in CD-ROM
form, by the Interface Foundation of North America. (It is not refereed.)

Journal of Computational and Graphical Statistics, published quarterly by the
American Statistical Association.

Journal of Statistical Computation and Simulation, published irregularly in four
numbers per volume by Gordon and Breach.

Proceedings of the Statistical Computing Section, published annually by the
American Statistical Association. (It is not refereed.)

SIAM Journal on Scientific Computing, published bimonthly by SIAM. This
journal was formerly SIAM Journal on Scientific and Statistical Computing.
(Is this a step backward?)

Statistical Computing & Graphics Newsletter, published quarterly by the Sta-
tistical Computing and the Statistical Graphics Sections of the American
Statistical Association. (It is not refereed and is not generally available in
university libraries.)

Statistics and Computing, published quarterly by Chapman & Hall.
There are two journals whose contents are primarily in the subject area

of random number generation, simulation, and Monte Carlo methods: ACM
Transactions on Modeling and Computer Simulation (Volume 1 appeared in
1992) and Monte Carlo Methods and Applications (Volume 1 appeared in 1995).

There has been a series of conferences concentrating on this area (with
an emphasis on quasirandom methods). The first International Conference
on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing was
held in Las Vegas, Nevada, in 1994. The fifth was held in Singapore in 2002.

334 BIBLIOGRAPHY

The proceedings of the conferences have been published in the Lecture Notes in
Statistics series of Springer-Verlag. The proceedings of the first conference were
published as Niederreiter and Shiue (1995); those of the second as Niederreiter
et al. (1998), the third as Niederreiter and Spanier (1999), and of the fourth as
Fang, Hickernell, and Niederreiter (2002).

The proceedings of the CRYPTO conferences often contain interesting ar-
ticles on uniform random number generation, with an emphasis on the cryp-
tographic applications. These proceedings are published in the Lecture Notes
in Computer Science series of Springer-Verlag under the name Proceedings of
CRYPTO XX, where XX is a two digit number representing the year of the
conference.

There are a number of textbooks, monographs, and survey articles on ran-
dom number generation and Monte Carlo methods. Some of particular note
(listed alphabetically) are Bratley, Fox, and Schrage (1987), Dagpunar (1988),
Deák (1990), Devroye (1986a), Fishman (1996), Knuth (1998), L’Ecuyer (1990),
L’Ecuyer and Hellekalek (1998), Lewis and Orav (1989), Liu (2001), Morgan
(1984), Niederreiter (1992, 1995c), Ripley (1987), Robert and Casella (1999),
and Tezuka (1995).

World Wide Web, News Groups, List Servers,

and Bulletin Boards

The best way of storing information is in a digital format that can be accessed
by computers. In some cases, the best way for people to access information is
by computers. In other cases, the best way is via hard copy, which means that
the information stored on the computer must go through a printing process
resulting in books, journals, or loose pages.

The references that I have cited in this text are generally traditional books,
journal articles, or compact discs. This usually means that the material has
been reviewed by someone other than the author. It also means that the author
possibly has newer thoughts on the same material. The Internet provides a
mechanism for the dissemination of large volumes of information that can be
updated readily. The ease of providing material electronically is also the source
of the major problem with the material: it is often half-baked and has not been
reviewed critically. Another reason that I have refrained from making frequent
reference to material available over the Internet is the unreliability of some sites.
The average life of a Web site is measured in weeks.

For statistics, one of the most useful sites on the Internet is the electronic
repository statlib, maintained at Carnegie Mellon University, which contains
programs, datasets, and other items of interest. The URL is

http://lib.stat.cmu.edu.

The collection of algorithms published in Applied Statistics is available in
statlib. These algorithms are sometimes called the ApStat algorithms.

BIBLIOGRAPHY 335

Another very useful site for scientific computing is netlib, which was es-
tablished by research workers at AT&T (now Lucent) Bell Laboratories and
national laboratories, primarily Oak Ridge National Laboratory. The URL is

http://www.netlib.org

The Collected Algorithms of the ACM (CALGO), which are the Fortran, C, and
Algol programs published in ACM Transactions on Mathematical Software (or
in Communications of the ACM prior to 1975), are available in netlib under
the TOMS link.

The Guide to Available Mathematical Software (GAMS) can be accessed at

http://gams.nist.gov

A different interface, using Java, is available at

http://math.nist.gov/HotGAMS/

A good set of links for software are the Econometric Links of the Economet-
rics Journal (which are not just limited to econometrics):

http://www.eur.nl/few/ei/links/software.html

There are two major problems in using the WWW to gather information.
One is the sheer quantity of information and the number of sites providing
information. The other is the “kiosk problem”; anyone can put up material.
Sadly, the average quality is affected by a very large denominator. The kiosk
problem may be even worse than a random selection of material; the “fools in
public places” syndrome is much in evidence.

There is not much that can be done about the second problem. It was not
solved for traditional postings on uncontrolled kiosks, and it will not be solved
on the WWW.

For the first problem, there are remarkable programs that automatically
crawl through WWW links to build a database that can be searched for logical
combinations of terms and phrases. Such systems and databases have been
built by several people and companies. One of the most useful is Google at

http://google.stanford.edu

A very widely used search program is Yahoo at

http://www.yahoo.com

A neophyte can be quickly disabused of an exaggerated sense of the value
of such search engines by doing a search on “Monte Carlo”.

It is not clear at this time what will be the media for the scientific literature
within a few years. Many of the traditional journals will be converted to an
electronic version of some kind. Journals will become Web sites. That is for
certain; the details, however, are much less certain. Many bulletin boards and
discussion groups have already evolved into “electronic journals”. A publisher
of a standard commercial journal has stated that “we reject 80% of the articles
submitted to our journal; those are the ones you can find on the Web”.

336 BIBLIOGRAPHY

References for Software Packages

There is a wide range of software used in the computational sciences. Some
of the software is produced by a single individual who is happy to share the
software, sometimes for a fee, but who has no interest in maintaining the soft-
ware. At the other extreme is software produced by large commercial companies
whose continued existence depends on a process of production, distribution, and
maintenance of the software. Information on much of the software can be ob-
tained from GAMS. Some of the free software can be obtained from statlib
or netlib.

The names of many software packages are trade names or trademarks. In
this book, the use of names, even if the name is not especially identified, is not
to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

References to the Literature

The following bibliography obviously covers a wide range of topics in random
number generation and Monte Carlo methods. Except for a few of the general
references, all of these entries have been cited in the text. The purpose of
this bibliography is to help the reader get more information; hence, I eschew
“personal communications” and references to technical reports that may or may
not exist. Those kinds of references are generally for the author rather than for
the reader.

In some cases, important original papers have been reprinted in special
collections, such as Samuel Kotz and Norman L. Johnson (Editors) (1997),
Breakthroughs in Statistics, Volume III, Springer-Verlag, New York. In most
such cases, because the special collection may be more readily available, I list
both sources.

A Note on the Names of Authors

In these references, I have generally used the names of authors as they appear
in the original sources. This may mean that the same author will appear with
different forms of names, sometimes with given names spelled out and sometimes
abbreviated. In the author index, beginning on page 371, I use a single name for
the same author. The name is generally the most unique (i.e., least abbreviated)
of any of the names of that author in any of the references. This convention may
occasionally result in an entry in the author index that does not occur exactly
in any references. For example, a reference to J. Paul Jones together with one
to John P. Jones, if I know that the two names refer to the same person, would
result in an author index entry for John Paul Jones.

Abramowitz, Milton, and Irene A. Stegun (Editors) (1964), Handbook of Math-
ematical Functions with Formulas, Graphs, and Mathematical Tables, Na-

BIBLIOGRAPHY 337

tional Bureau of Standards (NIST), Washington. (Reprinted by Dover Pub-
lications, New York, 1974. Work on an updated version is occurring at NIST;
see http://dlmf.nist.gov/ for the current status.)

Afflerbach, L., and H. Grothe (1985), Calculation of Minkowski-reduced lattice
bases, Computing 35, 269–276.

Afflerbach, Lothar, and Holger Grothe (1988), The lattice structure of pseudo-
random vectors generated by matrix generators, Journal of Computational
and Applied Mathematics 23, 127–131.

Afflerbach, L., and W. Hörmann (1992), Nonuniform random numbers: A sensi-
tivity analysis for transformation methods, International Workshop on Com-
putationally Intensive Methods in Simulation and Optimization (edited by
U. Dieter and G. C. Pflug), Springer-Verlag, Berlin, 374.

Agarwal, Satish K., and Jamal A. Al-Saleh (2001), Generalized gamma type
distribution and its hazard rate function, Communications in Statistics —
Theory and Methods 30, 309–318.

Agresti, Alan (1992), A survey of exact inference for contingency tables (with
discussion), Statistical Science 7, 131–177.

Ahn, Hongshik, and James J. Chen (1995), Generation of over-dispersed and
under-dispersed binomial variates, Journal of Computational and Graphical
Statistics 4, 55–64.

Ahrens, J. H. (1995), A one-sample method for sampling from continuous and
discrete distributions, Computing 52, 127–146.

Ahrens, J. H., and U. Dieter (1972), Computer methods for sampling from
the exponential and normal distributions, Communications of the ACM 15,
873–882.

Ahrens, J. H., and U. Dieter (1974), Computer methods for sampling from
gamma, beta, Poisson, and binomial distributions, Computing 12, 223–246.

Ahrens, J. H., and U. Dieter (1980), Sampling from binomial and Poisson dis-
tributions: A method with bounded computation times, Computing 25,
193–208.

Ahrens, J. H., and U. Dieter (1985), Sequential random sampling, ACM Trans-
actions on Mathematical Software 11, 157–169.

Ahrens, Joachim H., and Ulrich Dieter (1988), Efficient, table-free sampling
methods for the exponential, Cauchy and normal distributions, Communi-
cations of the ACM 31, 1330–1337. (See also Hamilton, 1998.)

Ahrens, J. H., and U. Dieter (1991), A convenient sampling method with
bounded computation times for Poisson distributions, The Frontiers of Sta-
tistical Computation, Simulation & Modeling (edited by P. R. Nelson, E. J.
Dudewicz, A. Öztürk, and E. C. van der Meulen), American Sciences Press,
Columbus, Ohio, 137–149.

Akima, Hirosha (1970), A new method of interpolation and smooth curve fitting
based on local procedures, Journal of the ACM 17, 589–602.

Albert, James; Mohan Delampady; and Wolfgang Polasek (1991), A class of
distributions for robustness studies, Journal of Statistical Planning and In-
ference 28, 291–304.

338 BIBLIOGRAPHY

Alonso, Laurent, and René Schott (1995), Random Generation of Trees: Ran-
dom Generators in Science, Kluwer Academic Publishers, Boston.

Altman, N. S. (1989), Bit-wise behavior of random number generators, SIAM
Journal on Scientific and Statistical Computing 9, 941–949.

Aluru, S.; G. M. Prabhu; and John Gustafson (1992), A random number gen-
erator for parallel computers, Parallel Computing 18, 839–847.

Anderson, N. H., and D. M. Titterington (1993), Cross-correlation between si-
multaneously generated sequences of pseudo-random uniform deviates, Sta-
tistics and Computing 3, 61–65.

Anderson, T. W.; I. Olkin; and L. G. Underhill (1987), Generation of random
orthogonal matrices, SIAM Journal on Scientific and Statistical Computing
8, 625–629.

Andrews, D. F.; P. J. Bickel; F. R. Hampel; P. J. Huber; W. H. Rogers; and
J. W. Tukey (1972), Robust Estimation of Location: Survey and Advances,
Princeton University Press, Princeton, New Jersey.

Antonov, I. A., and V. M. Saleev (1979), An economic method of comput-
ing LPτ -sequences, USSR Computational Mathematics and Mathematical
Physics 19, 252–256.

Arnason, A. N., and L. Baniuk (1978), A computer generation of Dirichlet vari-
ates, Proceedings of the Eighth Manitoba Conference on Numerical Math-
ematics and Computing, Utilitas Mathematica Publishing, Winnipeg, 97–
105.

Arnold, Barry C. (1983), Pareto Distributions, International Co-operative Pub-
lishing House, Fairland, Maryland.

Arnold, Barry C., and Robert J. Beaver (2000), The skew-Cauchy distribution,
Statistics and Probability Letters 49, 285–290.

Arnold, Barry C., and Robert J. Beaver (2002), Skewed multivariate models
related to hidden truncation and/or selective reporting (with discussion),
Test 11, 7–54.

Arnold, Barry C.; Robert J. Beaver; Richard A. Groeneveld; and William Q.
Meeker (1993), The nontruncated marginal of a truncated bivariate normal
distribution, Psychometrika 58, 471–488.

Atkinson, A. C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika 66, 141–145.

Atkinson, A. C. (1980), Tests of pseudo-random numbers, Applied Statistics
29, 164–171.

Atkinson, A. C. (1982), The simulation of generalized inverse Gaussian and
hyperbolic random variables, SIAM Journal on Scientific and Statistical
Computing 3, 502–515.

Atkinson, A. C., and M. C. Pearce (1976), The computer generation of beta,
gamma and normal random variables (with discussion), Journal of the Royal
Statistical Society, Series A 139, 431–460.

Avramidis, Athanassios N., and James R. Wilson (1995), Correlation-induction
techniques for estimating quantiles in simulation experiments, Proceedings

BIBLIOGRAPHY 339

of the 1995 Winter Simulation Conference, Association for Computing Ma-
chinery, New York, 268–277.

Azzalini, A., and A. Dalla Valle (1996), The multivariate skew-normal distrib-
ution, Biometrika 83, 715–726.

Bacon-Shone, J. (1985), Algorithm AS210: Fitting five parameter Johnson SB

curves by moments, Applied Statistics 34, 95–100.
Bailey, David H., and Richard E. Crandall (2001), On the random character of

fundamental constant expressions, Experimental Mathematics 10, 175–190.
Bailey, Ralph W. (1994), Polar generation of random variates with the t-

distribution, Mathematics of Computation 62, 779–781.
Balakrishnan, N., and R. A. Sandhu (1995), A simple simulation algorithm for

generating progressive Type-II censored samples, The American Statistician
49, 229–230.

Banerjia, Sanjeev, and Rex A. Dwyer (1993), Generating random points in
a ball, Communications in Statistics — Simulation and Computation 22,
1205–1209.

Banks, David L. (1998), Testing random number generators, Proceedings of the
Statistical Computing Section, ASA, 102–107.

Barnard, G. A. (1963), Discussion of Bartlett, “The spectral analysis of point
processes”, Journal of the Royal Statistical Society, Series B 25, 264–296.

Barndorff-Nielsen, Ole E., and Neil Shephard (2001), Non-Gaussian Ornstein-
Uhlenbeck-based models and some of their uses in financial economics (with
discussion), Journal of the Royal Statistical Society, Series B 63, 167–241.

Bays, Carter, and S. D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software 2, 59–64.

Beck, J., and W. W. L. Chen (1987), Irregularities of Distribution, Cambridge
University Press, Cambridge, United Kingdom.

Becker, P. J., and J. J. J. Roux (1981), A bivariate extension of the gamma
distribution, South African Statistical Journal 15, 1–12.

Becker, Richard A.; John M. Chambers; and Allan R. Wilks (1988), The New
S Language, Wadsworth & Brooks/Cole, Pacific Grove, California.

Beckman, Richard J., and Michael D. McKay (1987), Monte Carlo estimation
under different distributions using the same simulation, Technometrics 29,
153–160.

Bélisle, Claude J. P.; H. Edwin Romeijn; and Robert L. Smith (1993), Hit-
and-run algorithms for generating multivariate distributions, Mathematics
of Operations Research 18, 255–266.

Bendel, R. B., and M. R. Mickey (1978), Population correlation matrices for
sampling experiments, Communications in Statistics — Simulation and Com-
putation B7, 163–182.

Berbee, H. C. P.; C. G. E. Boender; A. H. G. Rinnooy Kan; C. L. Scheffer; R. L.
Smith; and J. Telgen (1987), Hit-and-run algorithms for the identification of
nonredundant linear inequalities, Mathematical Programming 37, 184–207.

Best, D. J. (1983), A note on gamma variate generators with shape parameter
less than unity, Computing 30, 185–188.

340 BIBLIOGRAPHY

Best, D. J., and N. I. Fisher (1979), Efficient simulation of the von Mises dis-
tribution, Applied Statistics 28, 152–157.

Beyer, W. A. (1972), Lattice structure and reduced bases of random vectors gen-
erated by linear recurrences, Applications of Number Theory to Numerical
Analysis (edited by S. K. Zaremba), Academic Press, New York, 361–370.

Beyer, W. A.; R. B. Roof; and D. Williamson (1971), The lattice structure of
multiplicative congruential pseudo-random vectors, Mathematics of Com-
putation 25, 345–363.

Bhanot, Gyan (1988), The Metropolis algorithm, Reports on Progress in Physics
51, 429–457.

Birkes, David, and Yadolah Dodge (1993), Alternative Methods of Regression,
John Wiley & Sons, New York.

Blum, L.; M. Blum; and M. Shub (1986), A simple unpredictable pseudo-
random number generator, SIAM Journal of Computing 15, 364–383.

Bouleau, Nicolas, and Dominique Lépingle (1994), Numerical Methods for Sto-
chastic Processes, John Wiley & Sons, New York.

Boyar, J. (1989), Inferring sequences produced by pseudo-random number gen-
erators, Journal of the ACM 36, 129–141.

Boyett, J. M. (1979), Random R×C tables with given row and column totals,
Applied Statistics 28, 329–332.

Braaten, E., and G. Weller (1979), An improved low-discrepancy sequence for
multidimensional quasi-Monte Carlo integration, Journal of Computational
Physics 33, 249–258.

Bratley, Paul, and Bennett L. Fox (1988), Algorithm 659: Implementing Sobol’s
quasirandom sequence generator, ACM Transactions on Mathematical Soft-
ware 14, 88–100.

Bratley, Paul; Bennett L. Fox; and Harald Niederreiter (1992), Implementation
and tests of low-discrepancy sequences, ACM Transactions on Modeling and
Computer Simulation 2, 195–213.

Bratley, Paul; Bennett L. Fox; and Harald Niederreiter (1994), Algorithm 738:
Programs to generate Niederreiter’s low-discrepancy sequences, ACM Trans-
actions on Mathematical Software 20, 494–495.

Bratley, Paul; Bennett L. Fox; and Linus E. Schrage (1987), A Guide to Simu-
lation, second edition, Springer-Verlag, New York.

Brooks, S. P., and G. O. Roberts (1999) Assessing convergence of iterative
simulations, Statistics and Computing 8, 319–335.

Brophy, John F.; James E. Gentle; Jing Li; and Philip W. Smith (1989), Soft-
ware for advanced architecture computers, Computer Science and Statistics:
Proceedings of the Twenty-first Symposium on the Interface (edited by Ken-
neth Berk and Linda Malone), American Statistical Association, Alexandria,
Virginia, 116–120.

Brown, Morton B., and Judith Bromberg (1984), An efficient two-stage proce-
dure for generating random variates from the multinomial distribution, The
American Statistician 38, 216–219.

BIBLIOGRAPHY 341

Buckheit, Jonathan B., and David L. Donoho (1995), WaveLab and repro-
ducible research, Wavelets and Statistics (edited by Anestis Antoniadis and
Georges Oppenheim), Springer-Verlag, New York, 55–81.

Buckle, D. J. (1995), Bayesian inference for stable distributions, Journal of the
American Statistical Association 90, 605–613.

Burr, I. W. (1942), Cumulative frequency functions, Annals of Mathematical
Statistics 13, 215–232.

Burr, Irving W., and Peter J. Cislak (1968), On a general system of distribu-
tions. I. Its curve-shape characteristics. II. The sample median, Journal of
the American Statistical Association 63, 627–635.

Cabrera, Javier, and Dianne Cook (1992), Projection pursuit indices based on
fractal dimension, Computing Science and Statistics 24, 474–477.

Caflisch, Russel E., and Bradley Moskowitz (1995), Modified Monte Carlo meth-
ods using quasi-random sequences, Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing (edited by Harald Niederreiter and Peter
Jau-Shyong Shiue), Springer-Verlag, New York, 1–16.

Carlin, Bradley P., and Thomas A. Louis (1996), Bayes and Empirical Bayes
Methods for Data Analysis, Chapman & Hall, New York.

Carta, David G. (1990), Two fast implementations of the “minimal standard”
random number generator, Communications of the ACM 33, Number 1
(January), 87–88.

Casella, George, and Edward I. George (1992), Explaining the Gibbs sampler,
The American Statistician 46, 167–174.

Chalmers, C. P. (1975), Generation of correlation matrices with given eigen-
structure, Journal of Statistical Computation and Simulation 4, 133–139.

Chamayou, J.-F. (2001), Pseudo random numbers for the Landau and Vavilov
distributions, Computational Statistics 19, 131–152.

Chambers, John M. (1997), The evolution of the S language, Computing Science
and Statistics 28, 331–337.

Chambers, J. M.; C. L. Mallows; and B. W. Stuck (1976), A method for simulat-
ing stable random variables, Journal of the American Statistical Association
71, 340–344 (Corrections, 1987, ibid. 82, 704, and 1988, ibid. 83, 581).

Chen, H. C., and Y. Asau (1974), On generating random variates from an
empirical distribution, AIIE Transactions 6, 163–166.

Chen, Huifen, and Bruce W. Schmeiser (1992), Simulation of Poisson processes
with trigonometric rates, Proceedings of the 1992 Winter Simulation Con-
ference, Association for Computing Machinery, New York, 609–617.

Chen, Ming-Hui, and Bruce Schmeiser (1993), Performance of the Gibbs, hit-
and-run, and Metropolis samplers, Journal of Computational and Graphical
Statistics 3, 251–272.

Chen, Ming-Hui, and Bruce W. Schmeiser (1996), General hit-and-run Monte
Carlo sampling for evaluating multidimensional integrals, Operations Re-
search Letters 19, 161–169.

Chen, Ming-Hui; Qi-Man Shao; and Joseph G. Ibrahim (2000), Monte Carlo
Methods in Bayesian Computation, Springer-Verlag, New York.

342 BIBLIOGRAPHY

Cheng, R. C. H. (1978), Generating beta variates with nonintegral shape para-
meters, Communications of the ACM 21, 317–322.

Cheng, R. C. H. (1984), Generation of inverse Gaussian variates with given
sample mean and dispersion, Applied Statistics 33, 309–316.

Cheng, R. C. H. (1985), Generation of multivariate normal samples with given
mean and covariance matrix, Journal of Statistical Computation and Simu-
lation 21, 39–49.

Cheng, R. C. H., and G. M. Feast (1979), Some simple gamma variate genera-
tors, Applied Statistics 28, 290–295.

Cheng, R. C. H., and G. M. Feast (1980), Gamma variate generators with
increased shape parameter range, Communications of the ACM 23, 389–
393.

Chernick, Michael R. (1999), Bootstrap Methods: A Practitioner’s Guide, John
Wiley & Sons, New York.

Chib, Siddhartha, and Edward Greenberg (1995), Understanding the Metropolis–
Hastings algorithm, The American Statistician 49, 327–335.

Chou, Wun-Seng, and Harald Niederreiter (1995), On the lattice test for inver-
sive congruential pseudorandom numbers, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing (edited by Harald Niederreiter and
Peter Jau-Shyong Shiue), Springer-Verlag, New York, 186–197.

Chou, Youn-Min; S. Turner; S. Henson; D. Meyer; and K. S. Chen (1994), On
using percentiles to fit data by a Johnson distribution, Communications in
Statistics — Simulation and Computation 23, 341–354.

Cipra, Barry A. (1987), An introduction to the Ising model, The American
Mathematical Monthly 94, 937–959.

Coldwell, R. L. (1974), Correlational defects in the standard IBM 360 random
number generator and the classical ideal gas correlational function, Journal
of Computational Physics 14, 223–226.

Collings, Bruce Jay (1987), Compound random number generators, Journal of
the American Statistical Association 82, 525–527.

Compagner, Aaldert (1991), Definitions of randomness, American Journal of
Physics 59, 700–705.

Compagner, A. (1995), Operational conditions for random-number generation,
Physical Review E 52, 5634–5645.

Cook, R. Dennis, and Mark E. Johnson (1981), A family of distributions for
modelling non-elliptically symmetric multivariate data, Journal of the Royal
Statistical Society, Series B 43, 210–218.

Cook, R. Dennis, and Mark E. Johnson (1986), Generalized Burr–Pareto-logistic
distributions with applications to a uranium exploration data set, Techno-
metrics 28, 123–131.

Couture, R., and Pierre L’Ecuyer (1994), On the lattice structure of certain lin-
ear congruential sequences related to AWC/SWB generators, Mathematics
of Computation 62, 799–808.

Couture, Raymond, and Pierre L’Ecuyer (1995), Linear recurrences with carry
as uniform random number generators, Proceedings of the 1995 Winter Sim-

BIBLIOGRAPHY 343

ulation Conference, Association for Computing Machinery, New York, 263–
267.

Couture, Raymond, and Pierre L’Ecuyer (1997), Distribution properties of
multiply-with-carry random number generators, Mathematics of Compu-
tation 66, 591–607.

Coveyou, R. R., and R. D. MacPherson (1967), Fourier analysis of uniform
random number generators, Journal of the ACM 14, 100–119.

Cowles, Mary Kathryn, and Bradley P. Carlin (1996), Markov chain Monte
Carlo convergence diagnostics: A comparative review, Journal of the Amer-
ican Statistical Association 91, 883–904.

Cowles, Mary Kathryn; Gareth O. Roberts; and Jeffrey S. Rosenthal (1999),
Possible biases induced by MCMC convergence diagnostics, Journal of Sta-
tistical Computation and Simulation 64, 87–104.

Cowles, Mary Kathryn, and Jeffrey S. Rosenthal (1998), A simulation approach
to convergence rates for Markov chain Monte Carlo algorithms, Statistics
and Computing 8, 115–124.

Cuccaro, Steven A.; Michael Mascagni; and Daniel V. Pryor (1994), Techniques
for testing the quality of parallel pseudorandom number generators, Pro-
ceedings of the Seventh SIAM Conference on Parallel Processing for Scien-
tific Computing, Society for Industrial and Applied Mathematics, Philadel-
phia, 279–284.

Currin, Carla; Toby J. Mitchell; Max Morris; and Don Ylvisaker (1991), Bayes-
ian prediction of deterministic functions, with applications to the design
and analysis of computer experiments, Journal of the American Statistical
Association 86, 953–963.

D’Agostino, Ralph B. (1986), Tests for the normal distribution, Goodness-of-
Fit Techniques (edited by Ralph B. D’Agostino and Michael A. Stephens),
Marcel Dekker, New York, 367–419.

Dagpunar, J. S. (1978), Sampling of variates from a truncated gamma distrib-
ution, Journal of Statistical Computation and Simulation 8, 59–64.

Dagpunar, John (1988), Principles of Random Variate Generation, Clarendon
Press, Oxford, United Kingdom.

Dagpunar, J. (1990), Sampling from the von Mises distribution via a comparison
of random numbers, Journal of Applied Statistics 17, 165–168.

Damien, Paul; Purushottam W. Laud; and Adrian F. M. Smith (1995), Approx-
imate random variate generation from infinitely divisible distributions with
applications to Bayesian inference, Journal of the Royal Statistical Society,
Series B 57, 547–563.

Damien, Paul, and Stephen G. Walker (2001), Sampling truncated normal, beta,
and gamma densities, Journal of Computational and Graphical Statistics 10,
206–215.

David, Herbert A. (1981), Order Statistics, second edition, John Wiley & Sons,
New York.

Davis, Charles S. (1993), The computer generation of multinomial random vari-
ates, Computational Statistics & Data Analysis 16, 205–217.

344 BIBLIOGRAPHY

Davis, Don; Ross Ihaka; and Philip Fenstermacher (1994), Cryptographic ran-
domness from air turbulence in disk drives, Advances in Cryptology —
CRYPTO ’94, edited by Yvo G. Desmedt, Springer-Verlag, New York, 114–
120.

Davison, A. C., and D. V. Hinkley (1997), Bootstrap Methods and Their Ap-
plication, Cambridge University Press, Cambridge, United Kingdom.

Deák, I. (1981), An economical method for random number generation and a
normal generator, Computing 27, 113–121.

Deák, I. (1986), The economical method for generating random samples from
discrete distributions, ACM Transactions on Mathematical Software 12, 34–
36.

Deák, István (1990), Random Number Generators and Simulation, Akadémiai
Kiadó, Budapest.

Dellaportas, Petros (1995), Random variate transformations in the Gibbs sam-
pler: Issues of efficiency and convergence, Statistics and Computing 5, 133–
140.

Dellaportas, P., and A. F. M. Smith (1993), Bayesian inference for general-
ized linear and proportional hazards models via Gibbs sampling, Applied
Statistics 42, 443–459.

De Matteis, A., and S. Pagnutti (1990), Long-range correlations in linear and
non-linear random number generators, Parallel Computing 14, 207–210.

De Matteis, A., and S. Pagnutti (1993), Long-range correlation analysis of the
Wichmann–Hill random number generator, Statistics and Computing 3, 67–
70.

Deng, Lih-Yuan; Kwok Hung Chan; and Yilian Yuan (1994), Random number
generators for multiprocessor systems, International Journal of Modelling
and Simulation 14, 185–191.

Deng, Lih-Yuan, and E. Olusegun George (1990), Generation of uniform vari-
ates from several nearly uniformly distributed variables, Communications
in Statistics — Simulation and Computation 19, 145–154.

Deng, Lih-Yuan, and E. Olusegun George (1992), Some characterizations of
the uniform distribution with applications to random number generation,
Annals of the Institute of Statistical Mathematics 44, 379–385.

Deng, Lih-Yuan, and Dennis K. J. Lin (2000), Random number generation for
the new century, The American Statistician 54, 145–150.

Deng, L.-Y.; D. K. J. Lin; J. Wang; and Y. Yuan (1997), Statistical justification
of combination generators, Statistica Sinica 7 993–1003.

Devroye, L. (1984a), Random variate generation for unimodal and monotone
densities, Computing 32, 43–68.

Devroye, L. (1984b), A simple algorithm for generating random variates with a
log-concave density, Computing 33, 247–257.

Devroye, Luc (1986a), Non-Uniform Random Variate Generation, Springer-
Verlag, New York.

Devroye, Luc (1986b), An automatic method for generating random variates

BIBLIOGRAPHY 345

with a given characteristic function, SIAM Journal on Applied Mathematics
46, 698–719.

Devroye, Luc (1987), A simple generator for discrete log-concave distributions,
Computing 39, 87–91.

Devroye, Luc (1989), On random variate generation when only moments or
Fourier coefficients are known, Mathematics and Computers in Simulation
31, 71–79.

Devroye, Luc (1991), Algorithms for generating discrete random variables with
a given generating function or a given moment sequence, SIAM Journal on
Scientific and Statistical Computing 12, 107–126.

Devroye, Luc (1997), Random variate generation for multivariate unimodal
densities, ACM Transactions on Modeling and Computer Simulation 7, 447–
477.

Devroye, Luc; Peter Epstein; and Jörg-Rüdiger Sack (1993), On generating ran-
dom intervals and hyperrectangles, Journal of Computational and Graphical
Statistics 2, 291–308.

Dieter, U. (1975), How to calculate shortest vectors in a lattice, Mathematics
of Computation 29, 827–833.

Do, Kim-Anh (1991), Quasi-random resampling for the bootstrap, Computer
Science and Statistics: Proceedings of the Twenty-third Symposium on the
Interface (edited by Elaine M. Keramidas), Interface Foundation of North
America, Fairfax, Virginia, 297–300.

Dodge, Yadolah (1996), A natural random number generator, International
Statistical Review 64, 329–344.

Doucet, Arnaud; Nando de Freitas; and Neil Gordon (Editors) (2001), Sequen-
tial Monte Carlo Methods in Practice, Springer-Verlag, New York.

Efron, Bradley, and Robert J. Tibshirani (1993), An Introduction to the Boot-
strap, Chapman & Hall, New York.

Eichenauer, J.; H. Grothe; and J. Lehn (1988), Marsaglia’s lattice test and non-
linear congruential pseudo random number generators, Metrika 35, 241–250.

Eichenauer, J., and H. Niederreiter (1988), On Marsaglia’s lattice test for
pseudorandom numbers, Manuscripta Mathematica 62, 245–248.

Eichenauer, Jürgen, and Jürgen Lehn (1986), A non-linear congruential pseudo
random number generator, Statistische Hefte 27, 315–326.

Eichenauer-Herrmann, Jürgen (1995), Pseudorandom number generation by
nonlinear methods, International Statistical Review 63, 247–255.

Eichenauer-Herrmann, Jürgen (1996), Modified explicit inversive congruential
pseudorandom numbers with power of 2 modulus, Statistics and Computing
6, 31–36.

Eichenauer-Herrmann, J., and H. Grothe (1989), A remark on long-range cor-
relations in multiplicative congruential pseudorandom number generators,
Numerische Mathematik 56, 609–611.

Eichenauer-Herrmann, J., and H. Grothe (1990), Upper bounds for the Beyer
ratios of linear congruential generators, Journal of Computational and Ap-
plied Mathematics 31, 73–80.

346 BIBLIOGRAPHY

Eichenauer-Herrmann, Jürgen; Eva Herrmann; and Stefan Wegenkittl (1998),
A survey of quadratic and inversive congruential pseudorandom numbers,
Monte Carlo and Quasi-Monte Carlo Methods 1996 (edited by Harald Nieder-
reiter, Peter Hellekalek, Gerhard Larcher, and Peter Zinterhof), Springer-
Verlag, New York, 66–97.

Eichenauer-Herrmann, J., and K. Ickstadt (1994), Explicit inversive congru-
ential pseudorandom numbers with power of 2 modulus, Mathematics of
Computation 62, 787–797.

Emrich, Lawrence J., and Marion R. Piedmonte (1991), A method for gener-
ating high-dimensional multivariate binary variates, The American Statis-
tician 45, 302–304.

Erber, T.; P. Everett; and P. W. Johnson (1979), The simulation of random
processes on digital computers with Chebyshev mixing transformations,
Journal of Computational Physics 32, 168–211.

Ernst, Michael D. (1998), A multivariate generalized Laplace distribution, Com-
putational Statistics 13, 227–232.

Evans, Michael, and Tim Swartz (2000), Approximating Integrals via Monte
Carlo and Deterministic Methods, Oxford University Press, Oxford, United
Kingdom.

Everitt, B. S. (1998), The Cambridge Dictionary of Statistics, Cambridge Uni-
versity Press, Cambridge, United Kingdom.

Everson, Philip J., and Carl N. Morris (2000), Simulation from Wishart distrib-
utions with eigenvalue constraints, Journal of Computational and Graphical
Statistics 9, 380–389.

Falk, Michael (1999), A simple approach to the generation of uniformly dis-
tributed random variables with prescribed correlations, Communications in
Statistics — Simulation and Computation 28, 785–791.

Fang, Kai-Tai, and T. W. Anderson (Editors) (1990), Statistical Inference in
Elliptically Contoured and Related Distributions, Allerton Press, New York.

Fang, K.-T.; F. J. Hickernell; and H. Niederreiter (Editors) (2002), Monte Carlo
and Quasi-Monte Carlo Methods 2000, Springer-Verlag, New York.

Fang, Kai-Tai, and Run-Ze Li (1997), Some methods for generating both an NT-
net and the uniform distribution on a Stiefel manifold and their applications,
Computational Statistics & Data Analysis 24, 29–46.

Fang, Kai-Tai, and Yuan Wang (1994), Number Theoretic Methods in Statistics,
Chapman & Hall, New York.

Faure, H. (1986), On the star discrepancy of generalised Hammersley sequences
in two dimensions. Monatshefte für Mathematik 101, 291–300.

Ferrenberg, Alan M.; D. P. Landau; and Y. Joanna Wong (1992), Monte Carlo
simulations: Hidden errors from “good” random number generators, Physi-
cal Review Letters 69, 3382–3384.

Fill, James A. (1998), An interruptible algorithm for perfect sampling via
Markov Chains, Annals of Applied Probability 8, 131–162.

Fill, James Allen; Motoya Machida; Duncan J. Murdoch; and Jeffrey S. Rosen-

BIBLIOGRAPHY 347

thal (2000), Extensions of Fill’s perfect rejection sampling algorithm to gen-
eral chains, Random Structures and Algorithms 17, 290–316.

Fishman, George S. (1996), Monte Carlo Concepts, Algorithms, and Applica-
tions, Springer-Verlag, New York.

Fishman, George S., and Louis R. Moore, III (1982), A statistical evaluation of
multiplicative random number generators with modulus 231 − 1, Journal of
the American Statistical Association 77, 129–136.

Fishman, George S., and Louis R. Moore, III (1986), An exhaustive analysis of
multiplicative congruential random number generators with modulus 231−1,
SIAM Journal on Scientific and Statistical Computing 7, 24–45.

Fleishman, Allen I. (1978), A method for simulating non-normal distributions,
Psychometrika 43, 521–532.

Flournoy, Nancy, and Robert K. Tsutakawa (Editors) (1991), Statistical Mul-
tiple Integration, American Mathematical Society (Contemporary Mathe-
matics, Volume 115), Providence, Rhode Island.

Forster, Jonathan J.; John W. McDonald; and Peter W. F. Smith (1996), Monte
Carlo exact conditional tests for log-linear and logistic models, Journal of
the Royal Statistical Society, Series B 55, 3–24.

Fouque, Jean-Pierre; George Papanicolaou; and K. Ronnie Sircar (2000), Deriv-
atives in Financial Markets with Stochastic Volatility, Cambridge University
Press, Cambridge, United Kingdom.

Fox, Bennett L. (1986), Implementation and relative efficiency of quasirandom
sequence generators, ACM Transactions on Mathematical Software 12, 362–
376.

Frederickson, P.; R. Hiromoto; T. L. Jordan; B. Smith; and T. Warnock (1984),
Pseudo-random trees in Monte Carlo, Parallel Computing 1, 175–180.

Freimer, Marshall; Govind S. Mudholkar; Georgia Kollia; and Thomas C. Lin
(1988), A study of the generalized Tukey lambda family, Communications
in Statistics — Theory and Methods 17, 3547–3567.

Freund, John E. (1961), A bivariate extension of the exponential distribution,
Journal of the American Statistical Association 56, 971–977.

Friedman, Jerome H.; Jon Louis Bentley; and Raphael Ari Finkel (1977), An al-
gorithm for finding best matches in logarithmic expected time, ACM Trans-
actions on Mathematical Software 3, 209–226.

Frigessi, Arnoldo; Fabio Martinelli; and Julian Stander (1997), Computational
complexity of Markov chain Monte Carlo methods for finite Markov random
fields, Biometrika 84, 1–18.

Fuller, A. T. (1976), The period of pseudo-random numbers generated by
Lehmer’s congruential method, Computer Journal 19, 173–177.

Fushimi, Masanori (1990), Random number generation with the recursion Xt =
Xt−3p ⊕ Xt−3q , Journal of Computational and Applied Mathematics 31,
105–118.

Gamerman, Dani (1997), Markov Chain Monte Carlo, Chapman & Hall, Lon-
don.

348 BIBLIOGRAPHY

Gange, Stephen J. (1995), Generating multivariate categorical variates using
the iterative proportional fitting algorithm, The American Statistician 49,
134–138.

Gelfand, Alan E., and Adrian F. M. Smith (1990), Sampling-based approaches
to calculating marginal densities, Journal of the American Statistical Asso-
ciation 85, 398–409. (Reprinted in Samuel Kotz and Norman L. Johnson
(Editors) (1997), Breakthroughs in Statistics, Volume III, Springer-Verlag,
New York, 526–550.)

Gelfand, Alan E., and Sujit K. Sahu (1994), On Markov chain Monte Carlo
acceleration, Journal of Computational and Graphical Statistics 3, 261–276.

Gelman, Andrew (1992), Iterative and non-iterative simulation algorithms,
Computing Science and Statistics 24, 433–438.

Gelman, Andrew, and Xiao-Li Meng (1998), Simulating normalizing constants:
From importance sampling to bridge sampling to path sampling, Statistical
Science 13, 163–185.

Gelman, Andrew, and Donald B. Rubin (1992a), Inference from iterative sim-
ulation using multiple sequences (with discussion), Statistical Science 7,
457–511.

Gelman, Andrew, and Donald B. Rubin (1992b), A single series from the Gibbs
sampler provides a false sense of security, Bayesian Statistics 4 (edited by
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith), Oxford
University Press, Oxford, United Kingdom, 625–631.

Gelman, Andrew; John B. Carlin; Hal S. Stern; and Donald B. Rubin (1995),
Bayesian Data Analysis, Chapman & Hall, London.

Geman, Stuart, and Donald Geman (1984), Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images, IEEE Transactions on
Pattern Analysis and Machine Intelligence 6, 721–741.

Gentle, James E. (1981), Portability considerations for random number genera-
tors, Computer Science and Statistics: Proceedings of the 13th Symposium
on the Interface (edited by William F. Eddy), Springer-Verlag, New York,
158–164.

Gentle, James E. (1990), Computer implementation of random number gener-
ators, Journal of Computational and Applied Mathematics 31, 119–125.

Gentleman, Robert, and Ross Ihaka (1997), The R language, Computing Sci-
ence and Statistics 28, 326–330.

Gerontidis, I., and R. L. Smith (1982), Monte Carlo generation of order statis-
tics from general distributions, Applied Statistics 31, 238–243.

Geweke, John (1991a), Efficient simulation from the multivariate normal and
Student-t distributions subject to linear constraints, Computer Science and
Statistics: Proceedings of the Twenty-third Symposium on the Interface
(edited by Elaine M. Keramidas), Interface Foundation of North America,
Fairfax, Virginia, 571–578.

Geweke, John (1991b), Generic, algorithmic approaches to Monte Carlo in-
tegration in Bayesian inference, Statistical Multiple Integration (edited by

BIBLIOGRAPHY 349

Nancy Flournoy and Robert K. Tsutakawa), American Mathematical Soci-
ety, Rhode Island, 117–135.

Geyer, Charles J. (1992), Practical Markov chain Monte Carlo (with discussion),
Statistical Science 7, 473–511.

Geyer, Charles J., and Elizabeth A. Thompson (1995), Annealing Markov chain
Monte Carlo with applications to ancestral inference, Journal of the Amer-
ican Statistical Association 90, 909–920.

Ghitany, M. E. (1998), On a recent generalization of gamma distribution, Com-
munications in Statistics — Theory and Methods 27, 223–233.

Gilks, W. R. (1992), Derivative-free adaptive rejection sampling for Gibbs sam-
pling, Bayesian Statistics 4 (edited by J. M. Bernardo, J. O. Berger, A.
P. Dawid, and A. F. M. Smith), Oxford University Press, Oxford, United
Kingdom, 641–649.

Gilks, W. R.; N. G. Best; and K. K. C. Tan (1995), Adaptive rejection Metropo-
lis sampling within Gibbs sampling, Applied Statistics 44, 455–472 (Cor-
rections, Gilks, et al., 1997, ibid. 46, 541–542).

Gilks, W. R.; S. Richardson; and D. J. Spiegelhalter (Editors) (1996), Markov
Chain Monte Carlo in Practice, Chapman & Hall, London.

Gilks, Walter R., and Gareth O. Roberts (1996), Strategies for improving
MCMC, Practical Markov Chain Monte Carlo (edited by W. R. Gilks, S.
Richardson, and D. J. Spiegelhalter), Chapman & Hall, London, 89–114.

Gilks, W. R.; G. O. Roberts; and E. I. George (1994), Adaptive direction
sampling, The Statistician 43, 179–189.

Gilks, W. R.; A. Thomas; and D. J. Spiegelhalter (1992), Software for the Gibbs
sampler, Computing Science and Statistics 24, 439–448.

Gilks, W. R.; A. Thomas; and D. J. Spiegelhalter (1994), A language and
program for complex Bayesian modelling, The Statistician 43, 169–178.

Gilks, W. R., and P. Wild (1992), Adaptive rejection sampling for Gibbs sam-
pling, Applied Statistics 41, 337–348.

Gleser, Leon Jay (1976), A canonical representation for the noncentral Wishart
distribution useful for simulation, Journal of the American Statistical Asso-
ciation 71, 690–695.

Golder, E. R., and J. G. Settle (1976), The Box–Muller method for generating
pseudo-random normal deviates, Applied Statistics 25, 12–20.

Golomb, S. W. (1982), Shift Register Sequences, second edition, Aegean Part
Press, Laguna Hills, California.

Gordon, J. (1989), Fast multiplicative inverse in modular arithmetic, Cryptog-
raphy and Coding (edited by H. J. Beker and F. C. Piper), Clarendon Press,
Oxford, United Kingdom, 269–279.

Gordon, N. J.; D. J. Salmond; and A. F. M. Smith (1993), Novel approach
to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F,
Communications, Radar, and Signal Processing 140, 107–113.

Grafton, R. G. T. (1981), The runs-up and runs-down tests, Applied Statistics
30, 81–85.

350 BIBLIOGRAPHY

Greenwood, J. Arthur (1976a), The demands of trivial combinatorial problems
on random number generators, Proceedings of the Ninth Interface Sympo-
sium on Computer Science and Statistics (edited by David C. Hoaglin and
Roy E. Welsch), Prindle, Weber, and Schmidt, Boston, 222–227.

Greenwood, J. A. (1976b), A fast machine-independent long-period generator
for 31-bit pseudo-random numbers, Compstat 1976: Proceedings in Com-
putational Statistics (edited by J. Gordesch and P. Naeve), Physica-Verlag,
Vienna, 30–36.

Greenwood, J. Arthur (1976c), Moments of time to generate random variables
by rejection, Annals of the Institute for Statistical Mathematics 28, 399–
401.

Griffiths, P., and I. D. Hill (Editors) (1985), Applied Statistics Algorithms, Ellis
Horwood Limited, Chichester, United Kingdom.

Grothe, H. (1987), Matrix generators for pseudo-random vector generation,
Statistische Hefte 28, 233–238.

Guerra, Victor O.; Richard A. Tapia; and James R. Thompson (1976), A ran-
dom number generator for continuous random variables based on an inter-
polation procedure of Akima, Computer Science and Statistics: 9th An-
nual Symposium on the Interface (edited by David C. Hoaglin and Roy E.
Welsch), Prindle, Weber, and Schmidt, Boston, 228–230.

Halton, J. H. (1960), On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals, Numerische Mathematik
2, 84–90 (Corrections, 1960, ibid. 2, 190).

Hamilton, Kenneth G. (1998), Algorithm 780: Exponential pseudorandom dis-
tribution, ACM Transactions on Mathematical Software 24, 102–106.

Hammersley, J. M., and D. C. Handscomb (1964), Monte Carlo Methods,
Methuen & Co., London.

Hartley, H. O., and D. L. Harris (1963), Monte Carlo computations in normal
correlation procedures, Journal of the ACM 10, 302–306.

Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 97–109. (Reprinted in Samuel Kotz
and Norman L. Johnson (Editors) (1997), Breakthroughs in Statistics, Vol-
ume III, Springer-Verlag, New York, 240–256.)

Heiberger, Richard M. (1978), Algorithm AS127: Generation of random orthog-
onal matrices, Applied Statistics 27, 199–205. (See Tanner and Thisted,
1982.)

Hellekalek, P. (1984), Regularities of special sequences, Journal of Number The-
ory 18, 41–55.

Hesterberg, Tim (1995), Weighted average importance sampling and defensive
mixture distributions, Technometrics 37, 185–194.

Hesterberg, Timothy C., and Barry L. Nelson (1998), Control variates for prob-
ability and quantile estimation, Management Science 44, 1295–1312.

Hickernell, Fred J. (1995), A comparison of random and quasirandom points for
multidimensional quadrature, Monte Carlo and Quasi-Monte Carlo Meth-

BIBLIOGRAPHY 351

ods in Scientific Computing (edited by Harald Niederreiter and Peter Jau-
Shyong Shiue), Springer-Verlag, New York, 212–227.

Hill, I. D.; R. Hill, R.; and R. L. Holder (1976), Algorithm AS99: Fitting
Johnson curves by moments, Applied Statistics 25, 180–189 (Remark, 1981,
ibid. 30, 106).

Hoaglin, David C., and David F. Andrews (1975), The reporting of computation-
based results in statistics, The American Statistician 29, 122–126.

Hope, A. C. A. (1968), A simplified Monte Carlo significance test procedure,
Journal of the Royal Statistical Society, Series B 30, 582–598.

Hopkins, T. R. (1983), A revised algorithm for the spectral test, Applied Sta-
tistics 32, 328–335. (See http://www.cs.ukc.ac.uk/pubs/1997 for an up-
dated version.)

Hörmann, W. (1994a), A universal generator for discrete log-concave distribu-
tions, Computing 52, 89–96.

Hörmann, Wolfgang (1994b), A note on the quality of random variates gener-
ated by the ratio of uniforms method, ACM Transactions on Modeling and
Computer Simulation 4, 96–106.

Hörmann, Wolfgang (1995), A rejection technique for sampling from T -concave
distributions, ACM Transactions on Mathematical Software 21, 182–193.

Hörmann, Wolfgang (2000), Algorithm 802: An automatic generator for bivari-
ate log-concave distributions, ACM Transactions on Mathematical Software
26, 201–219.

Hörmann, Wolfgang, and Gerhard Derflinger (1993), A portable random num-
ber generator well suited for the rejection method, ACM Transactions on
Mathematical Software 19, 489–495.

Hörmann, Wolfgang, and Gerhard Derflinger (1994), The transformed rejec-
tion method for generating random variables, an alternative to the ratio of
uniforms method, Communications in Statistics — Simulation and Compu-
tation 23, 847–860.

Hosack, J. M. (1986), The use of Chebyshev mixing to generate pseudo-random
numbers, Journal of Computational Physics 67, 482–486.

Huber, Peter J. (1985), Projection pursuit (with discussion), The Annals of
Statistics 13, 435–525.

Hull, John C. (2000), Options, Futures, & Other Derivatives, Prentice–Hall,
Englewood Cliffs, New Jersey.

Ireland, Kenneth, and Michael Rosen (1991), A Classical Introduction to Mod-
ern Number Theory, Springer-Verlag, New York.

Jäckel, Peter (2002), Monte Carlo Methods in Finance, John Wiley & Sons
Ltd., Chichester.

Jaditz, Ted (2000), Are the digits of π an independent and identically distrib-
uted sequence?, The American Statistician 54, 12–16.

James, F. (1990), A review of pseudorandom number generators, Computer
Physics Communications 60, 329–344.

James, F. (1994), RANLUX: A Fortran implementation of the high-quality

352 BIBLIOGRAPHY

pseudorandom number generator of Lüscher, Computer Physics Communi-
cations 79, 111–114.

Jöhnk, M. D. (1964), Erzeugung von Betaverteilter und Gammaverteilter Zu-
fallszahlen, Metrika 8, 5–15.

Johnson, Mark E. (1987), Multivariate Statistical Simulation, John Wiley &
Sons, New York.

Johnson, Valen E. (1996), Studying convergence of Markov chain Monte Carlo
algorithms using coupled sample paths, Journal of the American Statistical
Association 91, 154–166.

Jones, G.; C. D. Lai; and J. C. W. Rayner (2000), A bivariate gamma mix-
ture distribution, Communications in Statistics — Theory and Methods 29,
2775–2790.

Joy, Corwin; Phelim P. Boyle; and Ken Seng Tan (1996), Quasi-Monte Carlo
methods in numerical finance, Management Science 42, 926–938.

Juneja, Sandeep, and Perwez Shahabudding (2001), Fast simulation of Markov
chains with small transition probabilities, Management Science 47, 547–562.

Kachitvichyanukul, Voratas (1982), Computer Generation of Poisson, Bino-
mial, and Hypergeometric Random Variables, unpublished Ph.D. disserta-
tion, Purdue University, West Lafayette, Indiana.

Kachitvichyanukul, Voratas; Shiow-Wen Cheng; and Bruce Schmeiser (1988),
Fast Poisson and binomial algorithms for correlation induction, Journal of
Statistical Computation and Simulation 29, 17–33.

Kachitvichyanukul, Voratas, and Bruce Schmeiser (1985), Computer generation
of hypergeometric random variates, Journal of Statistical Computation and
Simulation 22, 127–145.

Kachitvichyanukul, Voratas, and Bruce W. Schmeiser (1988a), Binomial ran-
dom variate generation, Communications of the ACM 31, 216–223.

Kachitvichyanukul, Voratas, and Bruce W. Schmeiser (1988b), Algorithm 668:
H2PEC: Sampling from the hypergeometric distribution, ACM Transactions
on Mathematical Software 14, 397–398.

Kachitvichyanukul, Voratas, and Bruce W. Schmeiser (1990), BTPEC: Sam-
pling from the binomial distribution, ACM Transactions on Mathematical
Software 16, 394–397.

Kahn, H., and A. W. Marshall (1953), Methods of reducing sample size in
Monte Carlo computations, Journal of the Operations Research Society of
America 1, 263–278.

Kankaala, K.; T. Ala-Nissila; and I. Vattulainen (1993), Bit-level correlations
in some pseudorandom number generators, Physical Review E 48, R4211–
R4214.

Kao, Chiang, and H. C. Tang (1997a), Upper bounds in spectral test for multiple
recursive random number generators with missing terms, Computers and
Mathematical Applications 33, 113–118.

Kao, Chiang, and H. C. Tang (1997b), Systematic searches for good multiple
recursive random number generators, Computers and Operations Research
24, 899–905.

BIBLIOGRAPHY 353

Karian, Zaven A., and Edward J. Dudewicz (1999), Fitting the generalized
lambda distribution to data: A method based on percentiles, Communica-
tions in Statistics — Simulation and Computation 28, 793–819.

Karian, Zaven A., and Edward J. Dudewicz (2000), Fitting Statistical Distrib-
utions, CRC Press, Boca Raton, Florida.

Karian, Zaven A.; Edward J. Dudewicz; and Patrick McDonald (1996), The
extended generalized lambda distribution system for fitting distributions to
data: History, completion of theory, tables, applications, the “final word” on
moment fits, Communications in Statistics — Simulation and Computation
25, 611–642.

Kato, Takashi; Li-ming Wu; and Niro Yanagihara (1996a), On a nonlinear con-
gruential pseudorandom number generator, Mathematics of Computation
65, 227–233.

Kato, Takashi; Li-ming Wu; and Niro Yanagihara (1996b), The serial test for
a nonlinear pseudorandom number generator, Mathematics of Computation
65, 761–769.

Kemp, A. W. (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics 30, 249–253.

Kemp, A. W. (1990), Patchwork rejection algorithms, Journal of Computational
and Applied Mathematics 31, 127–131.

Kemp, C. D. (1986), A modal method for generating binomial variables, Com-
munications in Statistics — Theory and Methods 15, 805–813.

Kemp, C. D., and Adrienne W. Kemp (1987), Rapid generation of frequency
tables, Applied Statistics 36, 277–282.

Kemp, C. D., and Adrienne W. Kemp (1991), Poisson random variate genera-
tion, Applied Statistics 40, 143–158.

Kinderman, A. J., and J. F. Monahan (1977), Computer generation of ran-
dom variables using the ratio of uniform deviates, ACM Transactions on
Mathematical Software 3, 257–260.

Kinderman, A. J., and J. F. Monahan (1980), New methods for generating
Student’s t and gamma variables, Computing 25, 369–377.

Kinderman, A. J., and J. G. Ramage (1976), Computer generation of normal
random variables, Journal of the American Statistical Association 71, 893–
896.

Kirkpatrick, S.; C. D. Gelatt; and M. P. Vecchi (1983), Optimization by simu-
lated annealing, Science 220, 671–679.

Kirkpatrick, Scott, and Erich P. Stoll (1981), A very fast shift-register sequence
random number generator, Journal of Computational Physics 40, 517–526.

Kleijnen, Jack P. C. (1977), Robustness of a multiple ranking procedure: A
Monte Carlo experiment illustrating design and analysis techniques, Com-
munications in Statistics — Simulation and Computation B6, 235–262.

Knuth, Donald E. (1975), Estimating the efficiency of backtrack programs,
Mathematics of Computation 29, 121–136.

Knuth, Donald E. (1998), The Art of Computer Programming, Volume 2, Semi-

354 BIBLIOGRAPHY

numerical Algorithms, third edition, Addison–Wesley Publishing Company,
Reading, Massachusetts.

Kobayashi, K. (1991), On generalized gamma functions occurring in diffraction
theory, Journal of the Physical Society of Japan 60, 1501–1512.

Kocis, Ladislav, and William J. Whiten (1997), Computational investigations
of low-discrepancy sequences, ACM Transactions on Mathematical Software
23, 266–294.

Koehler, J. R., and A. B. Owen (1996), Computer experiments, Handbook of
Statistics, Volume 13 (edited by S. Ghosh and C. R. Rao), Elsevier Science
Publishers, Amsterdam, 261–308.

Kotz, Samuel; N. Balakrishnan; and Norman L. Johnson (2000), Continuous
Multivariate Distributions, second edition, John Wiley & Sons, New York.

Kovalenko, I. N. (1972), Distribution of the linear rank of a random matrix,
Theory of Probability and Its Applications 17, 342–346.

Kozubowski, Tomasz J., and Krzysztof Podgórski (2000), A multivariate and
asymmetric generalization of Laplace distribution, Computational Statistics
15, 531–540.

Krawczyk, Hugo (1992), How to predict congruential generators, Journal of
Algorithms 13, 527–545.

Krommer, Arnold R., and Christoph W. Ueberhuber (1994), Numerical Inte-
gration on Advanced Computer Systems, Springer-Verlag, New York.

Kronmal, Richard A., and Arthur V. Peterson (1979a), On the alias method
for generating random variables from a discrete distribution, The American
Statistician 33, 214–218.

Kronmal, R. A., and A. V. Peterson (1979b), The alias and alias-rejection-
mixture methods for generating random variables from probability distrib-
utions, Proceedings of the 1979 Winter Simulation Conference, Institute of
Electrical and Electronics Engineers, New York, 269–280.

Kronmal, Richard A., and Arthur V. Peterson (1981), A variant of the acceptance-
rejection method for computer generation of random variables, Journal of
the American Statistical Association 76, 446–451 (Corrections, 1982, ibid.
77, 954).

Kronmal, Richard A., and Arthur V. Peterson (1984), An acceptance-complement
analogue of the mixture-plus-acceptance-rejection method for generating
random variables, ACM Transactions on Mathematical Software 10, 271–
281.

Kumada, Toshihiro; Hannes Leeb; Yoshiharu Kurita; and Makoto Matsumoto
(2000), New primitive t-nomials (t = 3, 5) over GF (2) whose degree is a
Mersenne exponent, Mathematics of Computation 69, 811–814.

Lagarias, Jeffrey C. (1993), Pseudorandom numbers, Statistical Science 8, 31–
39.

Laud, Purushottam W.; Paul Ramgopal; and Adrian F. M. Smith (1993), Ran-
dom variate generation from D-distributions, Statistics and Computing 3,
109–112.

BIBLIOGRAPHY 355

Lawrance, A. J. (1992), Uniformly distributed first-order autoregressive time
series models and multiplicative congruential random number generators,
Journal of Applied Probability 29, 896–903.

Learmonth, G. P., and P. A. W. Lewis (1973), Statistical tests of some widely
used and recently proposed uniform random number generators, Computer
Science and Statistics: 7th Annual Symposium on the Interface (edited by
William J. Kennedy), Statistical Laboratory, Iowa State University, Ames,
Iowa, 163–171.

L’Ecuyer, Pierre (1988), Efficient and portable combined random number gen-
erators, Communications of the ACM 31, 742–749, 774.

L’Ecuyer, Pierre (1990), Random numbers for simulation, Communications of
the ACM 33, Number 10 (October), 85–97.

L’Ecuyer, Pierre (1996), Combined multiple recursive random number genera-
tors, Operations Research 44, 816–822.

L’Ecuyer, Pierre (1997), Tests based on sum-functions of spacings for uniform
random numbers, Journal of Statistical Computation and Simulation 59,
251–269.

L’Ecuyer, Pierre (1998), Random number generators and empirical tests, Monte
Carlo and Quasi-Monte Carlo Methods 1996 (edited by Harald Niederreiter,
Peter Hellekalek, Gerhard Larcher, and Peter Zinterhof), Springer-Verlag,
New York, 124–138.

L’Ecuyer, Pierre (1999), Good parameters and implementations for combined
multiple recursive random number generators, Operations Research 47, 159–
164.

L’Ecuyer, Pierre; François Blouin; and Raymond Couture (1993), A search for
good multiple recursive random number generators, ACM Transactions on
Modeling and Computer Simulation 3, 87–98.

L’Ecuyer, Pierre; Jean-Françoise Cordeau; and Richard Simard (2000), Close-
point spatial tests and their application to random number generators, Op-
erations Research 48, 308–317.

L’Ecuyer, Pierre, and Peter Hellekalek (1998), Random number generators: Se-
lection criteria and testing, Random and Quasi-Random Point Sets (edited
by Peter Hellekalek and Gerhard Larcher), Springer-Verlag, New York, 223–
266.

L’Ecuyer, Pierre, and Richard Simard (1999), Beware of linear congruential
generators with multipliers of the form a = ±2q ±2r, ACM Transactions on
Mathematical Software 25, 367–374.

L’Ecuyer, Pierre, and Shu Tezuka (1991), Structural properties for two classes
of combined random number generators, Mathematics of Computation 57,
735–746.

Lee, A. J. (1993), Generating random binary deviates having fixed marginal
distributions and specified degrees of association, The American Statistician
47, 209–215.

Leeb, Hannes, and Stefan Wegenkittl (1997), Inversive and linear congruential

356 BIBLIOGRAPHY

pseudorandom number generators in empirical tests, ACM Transactions on
Modeling and Computer Simulation 7, 272–286.

Lehmer, D. H. (1951), Mathematical methods in large-scale computing units,
Proceedings of the Second Symposium on Large Scale Digital Computing
Machinery, Harvard University Press, Cambridge, Massachusetts. 141–146.

Leva, Joseph L. (1992a), A fast normal random number generator, ACM Trans-
actions on Mathematical Software 18, 449–453.

Leva, Joseph L. (1992b), Algorithm 712: A normal random number generator,
ACM Transactions on Mathematical Software 18, 454–455.

Lewis, P. A. W.; A. S. Goodman; and J. M. Miller (1969), A pseudo-random
number generator for the System/360, IBM Systems Journal 8, 136–146.

Lewis, P. A. W., and E. J. Orav (1989), Simulation Methodology for Sta-
tisticians, Operations Analysts, and Engineers, Volume I, Wadsworth &
Brooks/Cole, Pacific Grove, California.

Lewis, P. A. W., and G. S. Shedler (1979), Simulation of nonhomogeneous
Poisson processes by thinning, Naval Logistics Quarterly 26, 403–413.

Lewis, T. G., and W. H. Payne (1973), Generalized feedback shift register
pseudorandom number algorithm, Journal of the ACM 20, 456–468.

Leydold, Josef (1998), A rejection technique for sampling from log-concave
multivariate distributions, ACM Transactions on Modeling and Computer
Simulation 8, 254–280.

Leydold, Josef (2000), Automatic sampling with the ratio-of-uniforms method,
ACM Transactions on Mathematical Software 26, 78–98.

Leydold, Josef (2001), A simple universal generator for continuous and dis-
crete univariate T -concave distributions, ACM Transactions on Mathemat-
ical Software 27, 66–82.

Li, Kim-Hung (1994), Reservoir-sampling algorithms of time complexity O(n(1+
log(N/n))), ACM Transactions on Mathematical Software 20, 481–493.

Li, Shing Ted, and Joseph L. Hammond (1975), Generation of pseudo-random
numbers with specified univariate distributions and correlation coefficients,
IEEE Transactions on Systems, Man, and Cybernetics 5, 557–560.

Liao, J. G., and Ori Rosen (2001), Fast and stable algorithms for computing and
sampling from the noncentral hypergeometric distribution, The American
Statistician 55, 366–369.

Liu, Jun S. (1996), Metropolized independent sampling with comparisons to
rejection sampling and importance sampling, Statistics and Computing 6,
113–119.

Liu, Jun S. (2001), Monte Carlo Strategies in Scientific Computing, Springer-
Verlag, New York.

Liu, Jun S.; Rong Chen; and Tanya Logvinenko (2001), A theoretical framework
for sequential importance sampling with resampling, Sequential Monte Carlo
Methods in Practice (edited by Arnaud Doucet, Nando de Freitas, and Neil
Gordon) Springer-Verlag, New York, 225–246.

Liu, Jun S.; Rong Chen; and Wing Hung Wong (1998), Rejection control and

BIBLIOGRAPHY 357

sequential importance sampling Journal of the American Statistical Associ-
ation 93, 1022–1031.

London, Wendy B., and Chris Gennings (1999), Simulation of multivariate
gamma data with exponential marginals for independent clusters, Commu-
nications in Statistics — Simulation and Computation 28, 487–500.

Luby, Michael (1996), Pseudorandomness and Cryptographic Applications,
Princeton University Press, Princeton.

Lurie, D., and H. O. Hartley (1972), Machine generation of order statistics for
Monte Carlo computations, The American Statistician 26(1), 26–27.

Lurie, D., and R. L. Mason (1973), Empirical investigation of general techniques
for computer generation of order statistics, Communications in Statistics 2,
363–371.

Lurie, Philip M., and Matthew S. Goldberg (1998), An approximate method for
sampling correlated random variables from partially specified distributions,
Management Science 44, 203–218.

Lüscher, Martin (1994), A portable high-quality random number generator for
lattice field theory simulations, Computer Physics Communications 79, 100–
110.

MacEachern, Steven N., and L. Mark Berliner (1994), Subsampling the Gibbs
sampler, The American Statistician 48, 188–190.

MacLaren, M. D., and G. Marsaglia (1965), Uniform random number genera-
tors, Journal of the ACM 12, 83–89.

Manly, Bryan F. J. (1997), Randomization, Bootstrap and Monte Carlo Meth-
ods in Biology, second edition, Chapman & Hall, London.

Marasinghe, Mervyn G., and William J. Kennedy, Jr. (1982), Direct meth-
ods for generating extreme characteristic roots of certain random matrices,
Communications in Statistics — Simulation and Computation 11, 527–542.

Marinari, Enzo, and G. Parisi (1992), Simulated tempering: A new Monte Carlo
scheme, Europhysics Letters 19, 451–458.

Marriott, F. H. C. (1979), Barnard’s Monte Carlo tests: How many simula-
tions?, Applied Statistics 28, 75–78.

Marsaglia, G. (1962), Random variables and computers, Information Theory,
Statistical Decision Functions, and Random Processes (edited by J. Kozes-
nik), Czechoslovak Academy of Sciences, Prague, 499–510.

Marsaglia, G. (1963), Generating discrete random variables in a computer,
Communications of the ACM 6, 37–38.

Marsaglia, George (1964), Generating a variable from the tail of a normal dis-
tribution, Technometrics 6, 101–102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings
of the National Academy of Sciences 61, 25–28.

Marsaglia, G. (1972a), The structure of linear congruential sequences, Applica-
tions of Number Theory to Numerical Analysis (edited by S. K. Zaremba),
Academic Press, New York, 249–286.

Marsaglia, George (1972b), Choosing a point from the surface of a sphere,
Annals of Mathematical Statistics 43, 645–646.

358 BIBLIOGRAPHY

Marsaglia, G. (1977), The squeeze method for generating gamma variates, Com-
puters and Mathematics with Applications 3, 321–325.

Marsaglia, G. (1980), Generating random variables with a t-distribution, Math-
ematics of Computation 34, 235–236.

Marsaglia, George (1984), The exact-approximation method for generating ran-
dom variables in a computer, Journal of the American Statistical Association
79, 218–221.

Marsaglia, George (1985), A current view of random number generators, Com-
puter Science and Statistics: 16th Symposium on the Interface (edited by
L. Billard), North-Holland, Amsterdam, 3–10.

Marsaglia, George (1991), Normal (Gaussian) random variables for supercom-
puters, Journal of Supercomputing 5, 49–55.

Marsaglia, George (1995), The Marsaglia Random Number CDROM, including
the DIEHARD Battery of Tests of Randomness, Department of Statistics,
Florida State University, Tallahassee, Florida. Available at
http://stat.fsu.edu/~geo/diehard.html .

Marsaglia, G., and T. A. Bray (1964), A convenient method for generating
normal variables, SIAM Review 6, 260–264.

Marsaglia, G.; M. D. MacLaren; and T. A. Bray (1964), A fast method for
generating normal random variables, Communications of the ACM 7, 4–10.

Marsaglia, George, and Ingram Olkin (1984), Generating correlation matrices,
SIAM Journal on Scientific and Statistical Computing 5, 470–475.

Marsaglia, George, and Wai Wan Tsang (1984), A fast, easily implemented
method for sampling from decreasing or symmetric unimodal density func-
tions, SIAM Journal of Scientific and Statistical Computing 5, 349–359.

Marsaglia, George, and Wai Wan Tsang (1998), The Monty Python method for
generating random variables, ACM Transactions on Mathematical Software
24, 341–350.

Marsaglia, George, and Liang-Huei Tsay (1985), Matrices and the structure of
random number sequences, Linear Algebra and Its Applications 67, 147–
156.

Marsaglia, George, and Arif Zaman (1991), A new class of random number
generators, The Annals of Applied Probability 1, 462–480.

Marsaglia, George; Arif Zaman; and John C. W. Marsaglia (1994), Rapid eval-
uation of the inverse normal distribution function, Statistics and Probability
Letters 19, 259–266.

Marshall, Albert W., and Ingram Olkin (1967), A multivariate exponential
distribution, Journal of the American Statistical Association 62, 30–44.

Marshall, Albert W., and Ingram Olkin (1979), Inequalities — Theory of Ma-
jorization and Its Applications, Academic Press, New York.

Mascagni, Michael; M. L. Robinson; Daniel V. Pryor; and Steven A. Cuccaro
(1995), Parallel pseudorandom number generation using additive lagged-
Fibonacci recursions, Monte Carlo and Quasi-Monte Carlo Methods in Sci-
entific Computing (edited by Harald Niederreiter and Peter Jau-Shyong
Shiue), Springer-Verlag, New York, 262–267.

BIBLIOGRAPHY 359

Mascagni, Michael, and Ashok Srinivasan (2000), SPRNG: A scalable library
for pseudorandom number generation, ACM Transactions on Mathematical
Software 26, 346–461. (Assigned as Algorithm 806, 2000, ibid. 26, 618–
619).

Matsumoto, Makoto, and Yoshiharu Kurita (1992), Twisted GFSR generators,
ACM Transactions on Modeling and Computer Simulation 2, 179–194.

Matsumoto, Makoto, and Yoshiharu Kurita (1994), Twisted GFSR genera-
tors II, ACM Transactions on Modeling and Computer Simulation 4, 245–
266.

Matsumoto, Makoto, and Takuji Nishimura (1998), Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random generator, ACM Trans-
actions on Modeling and Computer Simulation 8, 3–30.

Maurer, Ueli M. (1992), A universal statistical test for random bit generators,
Journal of Cryptology 5, 89–105.

McCullough, B. D. (1999), Assessing the reliability of statistical software: Part
II, The American Statistician 53, 149–159.

McKay, Michael D.; William J. Conover; and Richard J. Beckman (1979), A
comparison of three methods for selecting values of input variables in the
analysis of output from a computer code, Technometrics 21, 239–245.

McLeod, A. I., and D. R. Bellhouse (1983), A convenient algorithm for drawing
a simple random sample, Applied Statistics 32, 182–184.

Mendoza-Blanco, José R., and Xin M. Tu (1997), An algorithm for sampling
the degrees of freedom in Bayesian analysis of linear regressions with t-
distributed errors, Applied Statistics 46, 383–413.

Mengersen, Kerrie L.; Christian P. Robert; and Chantal Guihenneuc-Jouyaux
(1999), MCMC convergence diagnostics: A reviewww, Bayesian Statistics 6
(edited by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith),
Oxford University Press, Oxford, United Kingdom, 415–440.

Metropolis, N.; A. W. Rosenbluth; M. N. Rosenbluth; A. H. Teller; and E.
Teller (1953), Equations of state calculation by fast computing machines,
Journal of Chemical Physics 21, 1087–1092. (Reprinted in Samuel Kotz and
Norman L. Johnson (Editors) (1997), Breakthroughs in Statistics, Volume
III, Springer-Verlag, New York, 127–139.)

Meyn, S. P., and R. L. Tweedie (1993), Markov Chains and Stochastic Stability,
Springer-Verlag, New York.

Michael, John R.; William R. Schucany; and Roy W. Haas (1976), Generating
random variates using transformations with multiple roots, The American
Statistician 30, 88–90.

Mihram, George A., and Robert A. Hultquist (1967), A bivariate warning-
time/failure-time distribution, Journal of the American Statistical Associa-
tion 62, 589–599.

Modarres, R., and J. P. Nolan (1994), A method for simulating stable random
vectors, Computational Statistics 9, 11–19.

Møller, Jesper, and Katja Schladitz (1999), Extensions of Fill’s algorithm for

360 BIBLIOGRAPHY

perfect simulation, Journal of the Royal Statistical Society, Series B 61,
955–969.

Monahan, John F. (1987), An algorithm for generating chi random variables,
ACM Transactions on Mathematical Software 13, 168–171 (Corrections,
1988, ibid. 14, 111).

Morel, Jorge G. (1992), A simple algorithm for generating multinomial random
vectors with extravariation, Communications in Statistics — Simulation and
Computation 21, 1255–1268.

Morgan, B. J. T. (1984), Elements of Simulation, Chapman & Hall, London.
Nagaraja, H. N. (1979), Some relations between order statistics generated by

different methods, Communications in Statistics — Simulation and Compu-
tation B8, 369–377.

Neal, Radford M. (1996), Sampling from multimodal distributions using tem-
pered transitions, Statistics and Computing 6, 353–366.

Neave, H. R. (1973), On using the Box–Muller transformation with multiplica-
tive congruential pseudo-random number generators, Applied Statistics 22,
92–97.

Newman, M. E. J., and G. T. Barkema (1999), Monte Carlo Methods in Sta-
tistical Physics, Oxford University Press, Oxford, United Kingdom.

Niederreiter, H. (1988), Remarks on nonlinear congruential pseudorandom num-
bers, Metrika 35, 321–328.

Niederreiter, H. (1989), The serial test for congruential pseudorandom numbers
generated by inversions, Mathematics of Computation 52, 135–144.

Niederreiter, Harald (1992), Random Number Generation and Quasi-Monte
Carlo Methods, Society for Industrial and Applied Mathematics, Philadel-
phia.

Niederreiter, Harald (1993), Factorization of polynomials and some linear-algebra
problems over finite fields, Linear Algebra and Its Applications 192, 301–
328.

Niederreiter, Harald (1995a), The multiple-recursive matrix method for pseudo-
random number generation, Finite Fields and Their Applications 1, 3–30.

Niederreiter, Harald (1995b), Pseudorandom vector generation by the multiple-
recursive matrix method, Mathematics of Computation 64, 279–294.

Niederreiter, Harald (1995c), New developments in uniform pseudorandom num-
ber and vector generation, Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing (edited by Harald Niederreiter and Peter Jau-Shyong
Shiue), Springer-Verlag, New York, 87–120.

Niederreiter, Harald (1995d), Some linear and nonlinear methods for pseudoran-
dom number generation, Proceedings of the 1995 Winter Simulation Con-
ference, Association for Computing Machinery, New York, 250–254.

Niederreiter, Harald; Peter Hellekalek; Gerhard Larcher; and Peter Zinter-
hof (Editors) (1998), Monte Carlo and Quasi-Monte Carlo Methods 1996,
Springer-Verlag, New York.

Niederreiter, Harald, and Peter Jau-Shyong Shiue (Editors) (1995), Monte

BIBLIOGRAPHY 361

Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Springer-
Verlag, New York.

Niederreiter, Harald, and Jerome Spanier (Editors) (1999), Monte Carlo and
Quasi-Monte Carlo Methods 1998, Springer-Verlag, New York.

NIST (2000), A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, NIST Special Publication 800-
22, National Institute for Standards and Technology, Gaithersburg, Mary-
land.

Nolan, John P. (1998a), Multivariate stable distributions: Approximation, es-
timation, simulation and identification, A Practical Guide to Heavy Tails:
Statistical Techniques and Applications (edited by Robert J. Adler, Raisa
E. Feldman, and Murad S. Taqqu), Birkhäuser, Boston, 509–526.

Nolan, John P. (1998b), Univariate stable distributions: Parameterizations and
software, A Practical Guide to Heavy Tails: Statistical Techniques and Ap-
plications (edited by Robert J. Adler, Raisa E. Feldman, and Murad S.
Taqqu), Birkhäuser, Boston, 527–533.

Norman, J. E., and L. E. Cannon (1972), A computer program for the genera-
tion of random variables from any discrete distribution, Journal of Statistical
Computation and Simulation 1, 331–348.

Odell, P. L., and A. H. Feiveson (1966), A numerical procedure to generate a
sample covariance matrix, Journal of the American Statistical Association
61, 199–203.

Ogata, Yosihiko (1990), A Monte Carlo method for an objective Bayesian pro-
cedure, Annals of the Institute for Statistical Mathematics 42, 403–433.

Oh, Man-Suk, and James O. Berger (1993), Integration of multimodal functions
by Monte Carlo importance sampling, Journal of the American Statistical
Association 88, 450–456.

Øksendal, Bernt (1998), Stochastic Differential Equations. An Introduction
with Applications, fifth edition, Springer-Verlag, Berlin.

Ökten, Giray (1998), Error estimates for quasi-Monte Carlo methods, Monte
Carlo and Quasi-Monte Carlo Methods 1996 (edited by Harald Niederreiter,
Peter Hellekalek, Gerhard Larcher, and Peter Zinterhof), Springer-Verlag,
New York, 353–358.

Olken, Frank, and Doron Rotem (1995a), Random sampling from databases: A
survey, Statistics and Computing 5, 25–42.

Olken, Frank, and Doron Rotem (1995b), Sampling from spatial databases,
Statistics and Computing 5, 43–57.

Owen, A. B. (1992a), A central limit theorem for Latin hypercube sampling,
Journal of the Royal Statistical Society, Series B 54, 541–551.

Owen, A. B. (1992b), Orthogonal arrays for computer experiments, integration
and visualization, Statistica Sinica 2, 439–452.

Owen, A. B. (1994a), Lattice sampling revisited: Monte Carlo variance of means
over randomized orthogonal arrays, Annals of Statistics 22, 930–945.

Owen, Art B. (1994b), Controlling correlations in Latin hypercube samples,
Journal of the American Statistical Association 89, 1517–1522.

362 BIBLIOGRAPHY

Owen, Art B. (1995), Randomly permuted (t, m, s)-nets and (t, s)-sequences,
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (edited
by Harald Niederreiter and Peter Jau-Shyong Shiue), Springer-Verlag, New
York, 299–317.

Owen, Art B. (1997), Scrambled net variance for integrals of smooth functions,
Annals of Statistics 25, 1541–1562.

Owen, Art B. (1998), Latin supercube sampling for very high-dimensional sim-
ulations, ACM Transactions on Modeling and Computer Simulation 8, 71–
102.

Papageorgiou, A., and J. F. Traub (1996), Beating Monte Carlo, Risk (June),
63–65.

Park, Chul Gyu; Tasung Park; and Dong Wan Shin (1996), A simple method
for generating correlated binary variates, The American Statistician 50,
306–310.

Park, Stephen K., and Keith W. Miller (1988), Random number generators:
Good ones are hard to find, Communications of the ACM 31, 1192–1201.

Parrish, Rudolph S. (1990), Generating random deviates from multivariate
Pearson distributions, Computational Statistics & Data Analysis 9, 283–
295.

Patefield, W. M. (1981), An efficient method of generating r × c tables with
given row and column totals, Applied Statistics 30, 91–97.

Pearson, E. S.; N. L. Johnson; and I. W. Burr (1979), Comparisons of the
percentage points of distributions with the same first four moments, cho-
sen from eight different systems of frequency curves, Communications in
Statistics — Simulation and Computation 8, 191–230.

Perlman, Michael D., and Michael J. Wichura (1975), Sharpening Buffon’s nee-
dle, The American Statistician 29, 157–163.

Peterson, Arthur V., and Richard A. Kronmal (1982), On mixture methods for
the computer generation of random variables, The American Statistician
36, 184–191.

Philippe, Anne (1997), Simulation of right and left truncated gamma distribu-
tions by mixtures, Statistics and Computing 7, 173–181.

Pratt, John W. (1981), Concavity of the log likelihood, Journal of the American
Statistical Association 76, 103–106.

Press, William H.; Saul A. Teukolsky; William T. Vetterling; and Brian P.
Flannery (1992), Numerical Recipes in Fortran, second edition, Cambridge
University Press, Cambridge, United Kingdom.

Press, William H.; Saul A. Teukolsky; William T. Vetterling; and Brian P.
Flannery (2002), Numerical Recipes in C++, second edition, Cambridge
University Press, Cambridge, United Kingdom.

Propp, James Gary, and David Bruce Wilson (1996), Exact sampling with
coupled Markov chains and applications to statistical mechanics, Random
Structures and Algorithms 9, 223–252.

Propp, James, and David Wilson (1998), Coupling from the past: A user’s
guide, Microsurveys in Discrete Probability (edited by D. Aldous and J.

BIBLIOGRAPHY 363

Propp), American Mathematical Society, Providence, Rhode Island, 181–
192.

Pullin, D. I. (1979), Generation of normal variates with given sample mean and
variance, Journal of Statistical Computation and Simulation 9, 303–309.

Rabinowitz, M., and M. L. Berenson (1974), A comparison of various methods
of obtaining random order statistics for Monte-Carlo computations. The
American Statistician 28, 27–29.

Rajasekaran, Sanguthevar, and Keith W. Ross (1993), Fast algorithms for gen-
erating discrete random variates with changing distributions, ACM Trans-
actions on Modeling and Computer Simulation 3, 1–19.

Ramberg, John S., and Bruce W. Schmeiser (1974), An approximate method
for generating asymmetric random variables, Communications of the ACM
17, 78–82.

RAND Corporation (1955), A Million Random Digits with 100,000 Normal
Deviates, Free Press, Glencoe, Illinois.

Ratnaparkhi, M. V. (1981), Some bivariate distributions of (X, Y) where the
conditional distribution of Y , given X , is either beta or unit-gamma, Statis-
tical Distributions in Scientific Work. Volume 4 – Models, Structures, and
Characterizations (edited by Charles Taillie, Ganapati P. Patil, and Bruno
A. Baldessari), D. Reidel Publishing Company, Boston, 389–400.

Reeder, H. A. (1972), Machine generation of order statistics, The American
Statistician 26(4), 56–57.

Relles, Daniel A. (1972), A simple algorithm for generating binomial random
variables when N is large, Journal of the American Statistical Association
67, 612–613.

Ripley, Brian D. (1987), Stochastic Simulation, John Wiley & Sons, New York.
Robert, Christian P. (1995), Simulation of truncated normal variables, Statistics

and Computing 5, 121–125.
Robert, Christian P. (1998a), A pathological MCMC algorithm and its use as a

benchmark for convergence assessment techniques, Computational Statistics
13, 169–184.

Robert, Christian P. (Editor) (1998b), Discretization and MCMC Convergence
Assessment, Springer-Verlag, New York.

Robert, Christian P., and George Casella (1999), Monte Carlo Statistical Meth-
ods, Springer-Verlag, New York.

Roberts, G. O. (1992), Convergence diagnostics of the Gibbs sampler, Bayesian
Statistics 4 (edited by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A.
F. M. Smith), Oxford University Press, Oxford, United Kingdom, 775–782.

Roberts, Gareth O. (1996), Markov chain concepts related to sampling algo-
rithms, Practical Markov Chain Monte Carlo (edited by W. R. Gilks, S.
Richardson, and D. J. Spiegelhalter), Chapman & Hall, London, 45–57.

Robertson, J. M., and G. R. Wood (1998), Information in Buffon experiments,
Journal of Statistical Planning and Inference 66, 21–37.

Ronning, Gerd (1977), A simple scheme for generating multivariate gamma

364 BIBLIOGRAPHY

distributions with non-negative covariance matrix, Technometrics 19, 179–
183.

Rosenbaum, Paul R. (1993), Sampling the leaves of a tree with equal probabil-
ities, Journal of the American Statistical Association 88, 1455–1457.

Rosenthal, Jeffrey S. (1995), Minorization conditions and convergence rates for
Markov chain Monte Carlo, Journal of the American Statistical Association
90, 558–566.

Rousseeuw, Peter J., and Annick M. Leroy (1987), Robust Regression and Out-
lier Detection, John Wiley & Sons, New York.

Rubin, Donald B. (1987), Comment on Tanner and Wong, “The calculation
of posterior distributions by data augmentation”, Journal of the American
Statistical Association 82, 543–546.

Rubin, Donald B. (1988), Using the SIR algorithm to simulate posterior distri-
butions (with discussion), Bayesian Statistics 3 (edited by J. M. Bernardo,
M. H. DeGroot, D. V. Lindley, and A. F. M. Smith), Oxford University
Press, Oxford, United Kingdom, 395–402.

Ryan, Thomas P. (1980), A new method of generating correlation matrices,
Journal of Statistical Computation and Simulation 11, 79–85.

Sacks, Jerome; William J. Welch; Toby J. Mitchell; and Henry P. Wynn (1989),
Design and analysis of computer experiments (with discussion), Statistical
Science 4, 409–435.

Sarkar, P. K., and M. A. Prasad (1987), A comparative study of pseudo and
quasirandom sequences for the solution of integral equations, Journal of
Computational Physics 68, 66–88.

Sarkar, Tapas K. (1996), A composition-alias method for generating gamma
variates with shape parameter greater than 1, ACM Transactions on Math-
ematical Software 22, 484–492.

Särndal, Carl-Erik; Bengt Swensson; and Jan Wretman (1992), Model Assisted
Survey Sampling, Springer-Verlag, New York.

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, Chapman &
Hall, London.

Schervish, Mark J., and Bradley P. Carlin (1992) On the convergence of succes-
sive substitution sampling, Journal of Computational and Graphical Statis-
tics 1, 111–127.

Schmeiser, Bruce (1983), Recent advances in generation of observations from
discrete random variates, Computer Science and Statistics: The Interface
(edited by James E. Gentle), North-Holland Publishing Company, Amster-
dam, 154–160.

Schmeiser, Bruce, and A. J. G. Babu (1980), Beta variate generation via expo-
nential majorizing functions, Operations Research 28, 917–926.

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1990), Noninverse correla-
tion induction: Guidelines for algorithm development, Journal of Computa-
tional and Applied Mathematics 31, 173–180.

Schmeiser, Bruce, and R. Lal (1980), Squeeze methods for generating gamma
variates, Journal of the American Statistical Association 75, 679–682.

BIBLIOGRAPHY 365

Schucany, W. R. (1972), Order statistics in simulation, Journal of Statistical
Computation and Simulation 1, 281–286.

Selke, W.; A. L. Talapov; and L. N. Shchur (1993), Cluster-flipping Monte Carlo
algorithm and correlations in “good” random number generators, JETP
Letters 58, 665–668.

Shao, Jun, and Dongsheng Tu (1995), The Jackknife and Bootstrap, Springer-
Verlag, New York.

Shaw, J. E. H. (1988), A quasi-random approach to integration in Bayesian
statistics, Annals of Statistics 16, 895–914.

Shchur, Lev N., and Henk W. J. Blöte (1997), Cluster Monte Carlo: Scaling
of systematic errors in the two-dimensional Ising model, Physical Review E
55, R4905–R4908.

Sibuya, M. (1961), Exponential and other variable generators, Annals of the
Institute for Statistical Mathematics 13, 231–237.

Sinclair, C. D., and B. D. Spurr (1988), Approximations to the distribution
function of the Anderson–Darling test statistic, Journal of the American
Statistical Association 83, 1190–1191.

Smith, A. F. M., and G. O. Roberts (1993), Bayesian computation via the
Gibbs sampler and related Markov chain Monte Carlo methods, Journal of
the Royal Statistical Society, Series B 55, 3–24.

Smith, Robert L. (1984), Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions, Operations Research 32, 1297–
1308.

Smith, W. B., and R. R. Hocking (1972), Algorithm AS53: Wishart variate
generator, Applied Statistics 21, 341–345.

Sobol’, I. M. (1967), On the distribution of points in a cube and the approximate
evaluation of integrals, USSR Computational Mathematics and Mathemat-
ical Physics 7, 86–112.

Sobol’, I. M. (1976), Uniformly distributed sequences with an additional uni-
form property, USSR Computational Mathematics and Mathematical Physics
16, 236–242.

Spanier, Jerome, and Keith B. Oldham (1987), An Atlas of Functions, Hemi-
sphere Publishing Corporation, Washington (also Springer-Verlag, Berlin).

Srinivasan, Ashok; Michael Mascagni; and David Ceperley (2003), Testing par-
allel random number generators, Parallel Computing 29, 69–94.

Stacy, E. W. (1962), A generalization of the gamma distribution, Annals of
Mathematical Statistics 33, 1187–1191.

Stadlober, Ernst (1990), The ratio of uniforms approach for generating discrete
random variates, Journal of Computational and Applied Mathematics 31,
181–189.

Stadlober, Ernst (1991), Binomial variate generation: A method based on ratio
of uniforms, The Frontiers of Statistical Computation, Simulation & Mod-
eling (edited by P. R. Nelson, E. J. Dudewicz, A. Öztürk, and E. C. van der
Meulen), American Sciences Press, Columbus, Ohio, 93–112.

366 BIBLIOGRAPHY

Steel, S. J., and N. J. le Roux (1987), A reparameterisation of a bivariate
gamma extension, Communications in Statistics — Theory and Methods
16, 293–305.

Stefănescu, S., and I. Văduva (1987), On computer generation of random vec-
tors by transformations of uniformly distributed vectors, Computing 39,
141–153.

Stein, Michael (1987), Large sample properties of simulations using Latin hy-
percube sampling, Technometrics 29, 143–151.

Stephens, Michael A. (1986), Tests based on EDF statistics, Goodness-of-Fit
Techniques (edited by Ralph B. D’Agostino and Michael A. Stephens), Mar-
cel Dekker, New York, 97–193.

Stewart, G. W. (1980), The efficient generation of random orthogonal matrices
with an application to condition estimators, SIAM Journal of Numerical
Analysis 17, 403–409.

Stigler, Stephen M. (1978), Mathematical statistics in the early states, Annals
of Statistics 6, 239–265.

Stigler, Stephen M. (1991), Stochastic simulation in the nineteenth century,
Statistical Science 6, 89–97.

Student (1908a), On the probable error of a mean, Biometrika 6, 1–25.
Student (1908b), Probable error of a correlation coefficient, Biometrika 6, 302–

310.
Sullivan, Stephen J. (1993), Another test for randomness, Communications of

the ACM 33, Number 7 (July), 108.
Tadikamalla, Pandu R. (1980a), Random sampling from the exponential power

distribution, Journal of the American Statistical Association 75, 683–686.
Tadikamalla, Pandu R. (1980b), On simulating non-normal distributions, Psy-

chometrika 45, 273–279.
Tadikamalla, Pandu R., and Norman L. Johnson (1982), Systems of frequency

curves generated by transformations of logistic variables, Biometrika 69,
461–465.

Takahasi, K. (1965), Note on the multivariate Burr’s distribution, Annals of
the Institute of Statistical Mathematics 17, 257–260.

Tang, Boxin (1993), Orthogonal array-based Latin hypercubes, Journal of the
American Statistical Association 88, 1392–1397.

Tanner, Martin A. (1996), Tools for Statistical Inference, third edition, Springer-
Verlag, New York.

Tanner, M. A., and R. A. Thisted (1982), A remark on AS127. Generation of
random orthogonal matrices, Applied Statistics 31, 190–192.

Tanner, Martin A., and Wing Hung Wong (1987), The calculation of poste-
rior distributions by data augmentation (with discussion), Journal of the
American Statistical Association 82, 528–549.

Tausworthe, R. C. (1965), Random numbers generated by linear recurrence
modulo two, Mathematics of Computation 19, 201–209.

Taylor, Malcolm S., and James R. Thompson (1986), Data based random

BIBLIOGRAPHY 367

number generation for a multivariate distribution via stochastic simulation,
Computational Statistics & Data Analysis 4, 93–101.

Tezuka, Shu (1991), Neave effect also occurs with Tausworthe sequences, Pro-
ceedings of the 1991 Winter Simulation Conference, Association for Com-
puting Machinery, New York, 1030–1034.

Tezuka, Shu (1993), Polynomial arithmetic analogue of Halton sequences, ACM
Transactions on Modeling and Computer Simulation 3, 99–107.

Tezuka, Shu (1995), Uniform Random Numbers: Theory and Practice, Kluwer
Academic Publishers, Boston.

Tezuka, Shu, and Pierre L’Ecuyer (1992), Analysis of add-with-carry and subtract-
with-borrow generators, Proceedings of the 1992 Winter Simulation Confer-
ence, Association for Computing Machinery, New York, 443–447.

Tezuka, Shu; Pierre L’Ecuyer; and R. Couture (1994), On the lattice structure
of the add-with-carry and subtract-with-borrow random number generators,
ACM Transactions on Modeling and Computer Simulation 3, 315–331.

Thomas, Andrew; David J. Spiegelhalter; and Wally R. Gilks (1992), BUGS:
A program to perform Bayesian inference using Gibbs sampling, Bayesian
Statistics 4 (edited by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A.
F. M. Smith), Oxford University Press, Oxford, United Kingdom, 837–842.

Thompson, James R. (2000), Simulation: A Modeler’s Approach, John Wiley
& Sons, New York.

Thompson, William J. (1997), Atlas for Computing Mathematical Functions:
An Illustrated Guide for Practitioners with Programs in C and Mathemat-
ica, John Wiley & Sons, New York.

Tierney, Luke (1991), Exploring posterior distributions using Markov chains,
Computer Science and Statistics: Proceedings of the Twenty-third Sympo-
sium on the Interface (edited by Elaine M. Keramidas), Interface Foundation
of North America, Fairfax, Virginia, 563–570.

Tierney, Luke (1994), Markov chains for exploring posterior distributions (with
discussion), Annals of Statistics 22, 1701–1762.

Tierney, Luke (1996), Introduction to general state-space Markov chain theory,
Practical Markov Chain Monte Carlo (edited by W. R. Gilks, S. Richardson,
and D. J. Spiegelhalter), Chapman & Hall, London, 59–74.

Vale, C. David, and Vincent A. Maurelli (1983), Simulating multivariate non-
normal distributions, Psychometrika 48, 465–471.

Vattulainen, I. (1999), Framework for testing random numbers in parallel cal-
culations, Physical Review E 59, 7200–7204.

Vattulainen, I.; T. Ala-Nissila; and K. Kankaala (1994), Physical tests for ran-
dom numbers in simulations, Physical Review Letters 73, 2513–2516.

Vattulainen, I.; T. Ala-Nissila; and K. Kankaala (1995), Physical models as
tests for randomness, Physical Review E 52, 3205–3214.

Vattulainen, I.; K. Kankaala; J. Saarinen; and T. Ala-Nissila (1995), A compar-
ative study of some pseudorandom number generators, Computer Physics
Communications 86, 209–226.

368 BIBLIOGRAPHY

Vitter, J. S. (1984), Faster methods for random sampling, Communications of
the ACM 27, 703–717.

Vitter, Jeffrey Scott (1985), Random sampling with a reservoir, ACM Transac-
tions on Mathematical Software 11, 37–57.

Von Neumann, J. (1951), Various Techniques Used in Connection with Random
Digits, NBS Applied Mathematics Series 12, National Bureau of Standards
(now National Institute of Standards and Technology), Washington.

Vose, Michael D. (1991), A linear algorithm for generating random numbers
with a given distribution, IEEE Transactions on Software Engineering 17,
972–975.

Wakefield, J. C.; A. E. Gelfand; and A. F. M. Smith (1991), Efficient gener-
ation of random variates via the ratio-of-uniforms method, Statistics and
Computing 1, 129–133.

Walker, A. J. (1977), An efficient method for generating discrete random vari-
ables with general distributions, ACM Transactions on Mathematical Soft-
ware 3, 253–256..

Wallace, C. S. (1976), Transformed rejection generators for gamma and normal
pseudo-random variables, Australian Computer Journal 8, 103–105.

Wallace, C. S. (1996), Fast pseudorandom generators for normal and exponen-
tial variates, ACM Transactions on Mathematical Software 22, 119–127.

Wichmann, B. A., and I. D. Hill (1982), Algorithm AS183: An efficient and
portable pseudo-random number generator, Applied Statistics 31, 188–190
(Corrections, 1984, ibid. 33, 123).

Wikramaratna, R. S. (1989), ACORN — A new method for generating se-
quences of uniformly distributed pseudo-random numbers, Journal of Com-
putational Physics 83, 16–31.

Wilson, David Bruce, and James Gary Propp (1996), How to get an exact sam-
ple from a generic Markov chain and sample a random spanning tree from
a directed graph, both within the cover time, Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
448–457.

Wolfram, Stephen (1984), Random sequence generation by cellular automata,
Advances in Applied Mathematics 7, 123–169. (Reprinted in Wolfram,
1994.)

Wolfram, Stephen (1994), Cellular Automata and Complexity. Collected Pa-
pers, Addison–Wesley Publishing Company, Reading, Massachusetts.

Wolfram, Stephen (2002), A New Kind of Science, Wolfram Media, Inc., Cham-
paign, Illinois.

Wollan, Peter C. (1992), A portable random number generator for parallel
computers, Communications in Statistics — Simulation and Computation
21, 1247–1254.

Wu, Pei-Chi (1997), Multiplicative, congruential random-number generators
with multiplier ±2k1 ±2k2 and modulus 2p−1, ACM Transactions on Math-
ematical Software 23, 255–265.

BIBLIOGRAPHY 369

Yu, Bin (1995), Comment on Besag et al., “Bayesian computation and sto-
chastic systems”: Extracting more diagnostic information from a single run
using cusum path plot, Statistical Science 10, 54–58.

Zaremba, S. K. (Editor) (1972), Applications of Number Theory to Numerical
Analysis, Academic Press, New York.

Zeisel, H. (1986), A remark on Algorithm AS183: An efficient and portable
pseudo-random number generator, Applied Statistics 35, 89.

Zierler, Neal, and John Brillhart (1968), On primitive trinomials (mod 2), In-
formation and Control 13, 541–554.

Zierler, Neal, and John Brillhart (1969), On primitive trinomials (mod 2), II,
Information and Control 14, 566–569.

Ziff, Robert M. (1998), Four-tap shift-register-sequence random-number gener-
ators, Computers in Physics 12, 385–392.

Ziv, J., and A. Lempel (1977), A universal algorithm for sequential data com-
pression, IEEE Transactions on Information Theory 23, 337–343.

This page intentionally left blank

Author Index

Abramowitz, Milton, 175, 332
Afflerbach, Lothar, 35, 66, 133
Agarwal, Satish K., 183
Agresti, Alan, 252
Ahn, Hongshik, 188, 204
Ahrens, Joachim H., 125, 132, 173, 177,

179, 188, 218
Akima, Hirosha, 109
Al-Saleh, Jamal A., 183
Ala-Nissila, T., 21, 41, 79, 86, 260
Albert, James, 194
Alonso, Laurent, 219
Altman, N. S., 34
Aluru, Srinivas, 43
Anderson, N. H., 26
Anderson, T. W., 201, 209
Andrews, David F., 300, 301
Antonov, I. A., 96
Arnason, A. N., 205
Arnold, Barry C., 170, 192
Asau, Y., 105, 107
Atkinson, A. C., 66, 180, 183, 193
Avramidis, Athanassios N., 221, 249

Babu, A. J. G., 183
Bacon-Shone, J., 194
Bailey, David H., 44, 91
Bailey, Ralph W., 185
Balakrishnan, N., 203, 223, 327
Banerjia, Sanjeev, 202
Baniuk, L, 205
Banks, David L., 80, 85
Barkema, G. T., 229, 260, 261
Barnard, G. A., 251
Barndorff-Nielsen, Ole E., 193, 270
Bays, Carter, 22
Beaver, Robert J., 170
Beck, J., 97
Becker, P. J., 123, 208
Becker, Richard A., 291
Beckman, Richard J., 249
Bélisle, Claude J. P., 158, 197
Bellhouse, D. R., 219
Bendel, R. B., 200
Bentley, Jon Louis, 212

Berbee, H. C. P., 158
Berenson, M. L., 222
Berger, James O., 243
Berliner, L. Mark, 157
Best, D. J., 179, 192
Best, N. G., 153
Beyer, W. A., 66
Bhanot, Gyan, 143
Bickel, Peter J., 301
Birkes, David, 304
Blöte, Henk W. J., 260
Blouin, François, 32, 287
Blum, L., 4, 37
Blum, M., 4, 37
Boender, G. E., 158
Bouleau, Nicolas, 99
Boyar, J., 4
Boyett, J. M., 202
Boyle, Phelim P., 98
Braaten, E., 95, 98, 239
Bratley, Paul, 97, 98, 172, 296, 334
Bray, T. A., 173, 174, 176
Brillhart, John, 39
Bromberg, Judith, 198
Brooks, S. P., 146
Brophy, John F., 30
Brown, Morton B., 198
Buckheit, Jonathan B., 299
Buckle, D. J., 196
Burr, Irving W., 194, 195

Cabrera, Javier, 20
Caflisch, Russel E., 243
Cannon, L. E., 105, 106, 107
Carlin, Bradley P., 146, 157, 158, 256
Carlin, John B., 256
Carta, David G., 21
Casella, George, 149, 156, 251, 334
Ceperley, David, 87
Chalmers, C. P., 200
Chamayou, J.-F., 196
Chambers, John M., 196, 291
Chan, Kwok Hung, 52, 53
Chen, H. C., 105, 107
Chen, Huifen, 225

371

372 AUTHOR INDEX

Chen, James J., 188, 204
Chen, K. S., 194
Chen, Ming-Hui, 157, 158, 256
Chen, Rong, 244, 273
Chen, W. W. L., 97
Cheng, R. C. H., 178, 184, 248
Cheng, Shiow-Wen, 210, 221
Chernick, Michael R., 255
Chib, Siddhartha, 143
Chou, Wun-Seng, 37
Chou, Youn-Min, 194
Cipra, Barry A., 260
Cislak, Peter J., 194
Coldwell, R. L., 20, 71, 87
Collings, Bruce Jay, 46
Compagner, Aaldert, 42
Conover, William J., 249
Cook, Dianne A., 20
Cook, R. Dennis, 209
Cordeau, Jean-Françoise, 21, 67
Couture, Raymond, 32, 36, 287
Coveyou, R. R., 20, 65
Cowles, Mary Kathryn, 146, 158
Crandall, Richard E., 44, 91
Cuccaro, Steven A., 33, 87
Currin, Carla, 257

D’Agostino, Ralph B., 76
Dagpunar, John S., 181, 192, 193, 207,

334
Damien, Paul, 150, 168, 175, 182
David, Herbert A., 222, 227
Davis, Charles S., 198
Davis, Don, 3
Davison, Anthony C., 255
de Freitas, Nando, 234
De Matteis, A., 47, 70
Deák, István, 127, 197, 334
Delampady, Mohan, 194
Dellaportas, Petros, 151, 158
Deng, Lih-Yuan, 21, 32, 34, 49, 52, 53, 61
Derflinger, Gerhard, 122, 133
Devroye, Luc, 121, 126, 136, 137, 151, 154,

159, 171, 192, 194, 195, 196,
213, 334, vii

Dieter, Ulrich, 18, 65, 132, 173, 177, 179,
188, 218

Do, Kim-Anh, 98
Dodge, Yadolah, 43, 304
Donoho, David L., 299
Doucet, Arnaud, 234
Dudewicz, Edward J., 194
Durham, S. D., 22
Dwyer, Rex A., 202

Efron, Bradley, 255
Eichenauer, Jürgen, 36, 38, 66

Eichenauer-Herrmann, Jürgen, 37, 38, 66,
70

Emrich, Lawrence J., 203, 204, 214
Epstein, Peter, 213
Erber, T., 45
Ernst, Michael D., 207
Evans, Michael, 233
Everett, P., 45
Everitt, Brian S., 183
Everson, Philip J., 199

Falk, Michael, 207
Fang, Kai-Tai, 7, 47, 97, 201, 209, 334
Faure, H., 95
Feast, G. M., 178
Feiveson, A. H., 199
Fenstermacher, Philip, 3
Ferrenberg, Alan M., 21, 41, 86
Fill, James Allen, 148, 149
Finkel, Raphael Ari, 212
Fisher, N. I., 192
Fishman, George S., 20, 21, 58, 65, 79,

288, 334
Flannery, Brian P., 287
Fleishman, Allen I., 195, 210
Flournoy, Nancy, 233
Forster, Jonathan J., 252
Fouque, Jean-Pierre, 270
Fox, Bennett L., 97, 98, 172, 296, 334
Frederickson, P., 26
Freimer, Marshall, 194
Freund, John E., 123
Friedman, Jerome H., 212
Frigessi, A., 147
Fuller, A. T., 12
Fushimi, Masanori, 41, 288

Gamerman, Dani, 146
Gange, Stephen J., 208
Gelatt, C. D., 259, 278
Gelfand, Alan E., 130, 133, 146, 157, 256
Gelman, Andrew, 146, 150, 233, 256
Geman, Donald, 155
Geman, Stuart, 155
Gennings, Chris, 208
Gentle, James E., 6, 28, 30, 55, 59, 87, 251
Gentleman, Robert, 291
George, E. Olusegun, 49
George, Edward I., 149, 156, 158
Gerontidis, I., 222
Geweke, John, 175, 198, 256
Geyer, Charles J., 154, 157
Ghitany, M. E., 183
Gilks, Walter R., 144, 146, 151, 153, 158,

256
Gleser, Leon Jay, 200
Goldberg, Matthew S., 209, 210

AUTHOR INDEX 373

Golder, E. R., 172, 185
Golomb, S. W., 40, 43
Goodman, A. S., 21, 288
Gordon, J., 37
Gordon, Neil J., 234, 244
Gosset, W. S. (“Student”), 297
Grafton, R. G. T., 78
Greenberg, Edward, 143
Greenwood, J. Arthur, 161, 220
Griffiths, P., 333
Groeneveld, Richard A., 170
Grothe, Holger, 35, 36, 38, 66, 70
Guerra, Victor O., 109
Guihenneuc-Jouyaux, Chantal, 146
Gustafson, John, 43

Haas, Roy W., 193
Halton, J. H., 94
Hamilton, Kenneth G., 177
Hammersley, J. M., 229, 271, 299
Hammond, Joseph L., 209
Hampel, Frank R., 301
Handscomb, D. C., 229, 271, 299
Harris, D. L., 199
Hartley, H. O., 199, 221
Hastings, W. K., 141
Heiberger, Richard M., 201
Hellekalek, Peter, 21, 95, 334
Henson, S., 194
Herrmann, Eva, 38
Hesterberg, Timothy C., 243, 245
Hickernell, Fred J., 99, 334
Hill, I. D., 47, 55, 194, 333
Hill, R., 194
Hinkley, David V., 255
Hiromoto, R., 26
Hoaglin, David C., 300
Hocking, R. R., 199
Holder, R. L., 194
Hope, A. C. A., 251
Hopkins, T. R., 65
Hörmann, Wolfgang, 122, 133, 152, 159
Hosack, J. M., 45
Huber, Peter J., 20, 301
Hull, John C., 264, 268
Hultquist, Robert A., 208

Ibrahim, Joseph G., 256
Ickstadt, K., 37
Ihaka, Ross, 3, 291
Ireland, Kenneth, 7, 9, 12

Jäckel, Peter, 97, 100, 270
Jaditz, Ted, 44
James, F., 20, 45, 58
Jöhnk, M. D., 183
Johnson, Mark E., 197, 209

Johnson, Norman L., 195, 203, 327
Johnson, P. W., 45
Johnson, Valen E., 146
Jones, G., 208
Jordan, T. L., 26
Joy, Corwin, 98
Juneja, Sandeep, 225

Kachitvichyanukul, Voratas, 187, 188, 189,
210, 221, 246

Kahn, H., 239
Kankaala, K., 21, 41, 79, 86, 260
Kao, Chiang, 33
Karian, Zaven A., 194
Kato, Takashi, 38, 78
Kemp, Adrienne W., 108, 118, 159, 188,

190
Kemp, C. D., 159, 187, 188
Kennedy, William J., 201
Kinderman, A. J., 129, 173, 185
Kirkpatrick, Scott, 41, 259, 278, 287
Kleijnen, Jack P. C., 310
Knuth, Donald E., 12, 32, 37, 53, 65, 118,

219, 334
Kobayashi, K., 183
Kocis, Ladislav, 95
Koehler, J. R., 257
Kollia, Georgia, 194
Kotz, Samuel, 203, 327
Kovalenko, I. N., 79
Kozubowski, Tomasz J., 207
Krawczyk, Hugo, 4
Krommer, Arnold R., 95
Kronmal, Richard A., 125, 135, 136, 191
Kumada, Toshihiro, 39
Kurita, Yoshiharu, 39, 41, 42

Lagarias, Jeffrey C., 4
Lai, C. D., 208
Lal, R., 178
Landau, D. P., 21, 41, 86
Larcher, Gerhard, 334
Laud, Purushottam W., 150, 183
Lawrance, A. J., 11
Le Roux, N. J., 123
Learmonth, G. P., 21, 46, 291
L’Ecuyer, Pierre, 14, 21, 29, 32, 36, 37,

41, 47, 48, 55, 57, 63, 65, 67,
80, 85, 287, 334

Lee, A. J., 205
Leeb, Hannes, 37, 39
Lehmer, D. H., 11
Lehn, Jürgen, 36, 38
Lempel, A., 84
Lépingle, Dominique, 99
Leva, Joseph L., 174

374 AUTHOR INDEX

Lewis, P. A. W., 21, 46, 55, 58, 225, 288,
291, 334

Lewis, T. G., 40, 41
Leydold, Josef, 132, 133, 153, 159
Li, Jing, 30
Li, Kim-Hung, 219
Li, Run-Ze, 97, 201
Li, Shing Ted, 209
Liao, J. G., 190
Lin, Dennis K. J., 21, 32, 34, 49, 61
Lin, Thomas C., 194
Liu, Jun S., 144, 230, 244, 273, 334
Logvinenko, Tanya, 273
London, Wendy B., 208
Louis, Thomas A., 256
Luby, Michael, 3, 4
Lurie, D., 221, 222
Lurie, Philip M., 209, 210
Lüscher, Martin, 45

MacEachern, Steven N., 157
Machida, Motoya, 149
MacLaren, M. D., 21, 46, 173, 174, 176
MacPherson, R. D., 20, 65
Mallows, C. L., 196
Manly, Bryan F. J., 252
Marasinghe, Mervyn G., 201
Marinari, Enzo, 261
Marriott, F. H. C., 251
Marsaglia, George, 14, 17, 20, 21, 35, 43,

46, 49, 66, 79, 80, 83, 85, 105,
117, 118, 121, 127, 154, 173,
174, 175, 176, 185, 200, 202

Marsaglia, John C. W., 174
Marshall, A. W., 239
Marshall, Albert W., 49, 207
Martinelli, F., 147
Mascagni, Michael, 33, 53, 87
Mason, R. L., 222
Matsumoto, Makoto, 39, 41, 42
Maurelli, Vincent A., 210
Maurer, Ueli M., 84
McCullough, B. D., 83, 291
McDonald, John W., 252
McDonald, Patrick, 194
McKay, Michael D., 249
McLeod, A. I., 219
Meeker, William Q., 170
Mendoza-Blanco, José R., 186
Meng, Xiao-Li, 233
Mengersen, Kerrie L., 146
Metropolis, N., 140, 259, 277
Meyer, D., 194
Meyn, S. P., 137, 225
Michael, John R., 193
Mickey, M. R., 200
Mihram, George Arthur, 208

Miller, J. M., 21, 288
Miller, Keith W., 20, 28, 61, 86, 288
Mitchell, Toby J., 248, 257
Modarres, R., 208
Møller, Jesper, 148
Monahan, John F., 129, 185
Moore, Louis R., III, 20, 21, 58, 65, 79,

288
Morgan, B. J. T., 334
Morris, Carl N., 199
Morris, Max, 257
Moskowitz, Bradley, 243
Mudholkar, Govind S., 194
Murdoch, Duncan J., 149

Nagaraja, H. N., 222
Neal, N. G., 153
Neal, Radford M., 155
Neave, H. R., 172, 185
Nelson, Barry L., 245
Newman, M. E. J., 229, 260, 261
Niederreiter, Harald, 35, 36, 37, 38, 66,

94, 97, 98, 100, 296, 334
Nishimura, Takuji, 42
Nolan, John P., 196, 208
Norman, J. E., 105, 106, 107

Odell, P. L., 199
Ogata, Yosihiko, 233
Oh, Man-Suk, 243
Ökten, Giray, 99, 239
Oldham, Keith B., 332
Olken, Frank, 219
Olkin, Ingram, 49, 200, 201, 207
Orav, E. J., 55, 58, 334
Owen, Art B., 239, 249, 257

Pagnutti, S., 47, 70
Papageorgiou, A., 97
Papanicolaou, George, 270
Parisi, G., 261
Park, Chul Gyu, 204, 214
Park, Stephen K., 20, 28, 61, 86, 288
Park, Tasung, 204, 214
Parrish, Rudolph F., 208, 210
Patefield, W. M., 202, 203
Payne, W. H., 40, 41
Pearce, M. C., 180
Pearson, E. S., 195
Perlman, Michael D., 274
Peterson, Arthur V., 125, 135, 136, 191
Philippe, Anne, 181, 182
Piedmonte, Marion R., 203, 204, 214
Podgórski, Krzysztof, 207
Polasek, Wolfgang, 194
Prabhu, G. M., 43
Prasad, M. A., 97

AUTHOR INDEX 375

Pratt, John W., 151
Press, William H., 287
Propp, James Gary, 147, 219
Pryor, Daniel V., 33, 87
Pullin, D. I., 248

Rabinowitz, M., 222
Rajasekaran, Sanguthevar, 119
Ramage, J. G., 173
Ramberg, John S., 194
Ramgopal, Paul, 183
Ratnaparkhi, M. V., 208
Rayner, J. C. W., 208
Reeder, H. A., 221, 222
Relles, Daniel A., 187
Richardson, S., 144, 146
Rinnooy Kan, A. H. G., 158
Ripley, Brian D., 334
Robert, Christian P., 146, 175, 251, 334
Roberts, Gareth O., 144, 146, 158, 256
Robertson, J. M., 275
Robinson, M. L., 33
Rogers, W. H., 301
Romeijn, H. Edwin, 158, 197
Ronning, Gerd, 208
Roof, R. B., 66
Rosen, Michael, 7, 9, 12
Rosen, Ori, 190
Rosenbaum, Paul R., 219
Rosenbluth, A. W., 140, 259, 277
Rosenbluth, M. N., 140, 259, 277
Rosenthal, Jeffrey S., 146, 149
Ross, Keith W., 119
Rotem, Doron, 219
Roux, J. J. J., 123, 208
Rubin, Donald B., 146, 149, 256
Ryan, T. P., 201

Saarinen, J., 86
Sack, Jörg-Rüdiger, 213
Sacks, Jerome, 248, 257
Sahu, Sujit K., 146
Saleev, V. M., 96
Salmond, D. J., 244
Sandhu, R. A., 223
Sarkar, P. K., 97
Sarkar, Tapas K., 178
Särndal, Carl-Erik, 218, 227, 239, 241
Schafer, J. L., 251
Scheffer, C. L., 158
Schervish, Mark J., 157, 158
Schladitz, Katja, 148
Schmeiser, Bruce W., 157, 158, 178, 183,

187, 188, 189, 194, 210, 221,
225, 246

Schott, René, 219
Schrage, Linus E., 172, 334

Schucany, William R., 193, 221
Selke, W., 41, 86
Sendrier, Nicolas, 4
Settle, J. G., 172, 185
Seznec, André, 4
Shahabudding, Perwez, 225
Shao, Jun, 255
Shao, Qi-Man, 256
Shaw, J. E. H., 98
Shchur, Lev N., 41, 86, 260
Shedler, G. S., 225
Shephard, Neil, 193, 270
Shin, Dong Wan, 204, 214
Shiue, Peter Jau-Shyong, 334
Shub, M., 4, 37
Sibuya, M., 161
Simard, Richard, 14, 21, 67
Sinclair, C. D., 76
Sircar, K. Ronnie, 270
Smith, Adrian F. M., 130, 133, 150, 151,

157, 183, 244, 256
Smith, B., 26
Smith, Peter W. F., 252
Smith, Philip W., 30
Smith, Richard L., 222
Smith, Robert L., 158, 197
Smith, W. B., 199
Sobol’, I. M., 94
Spanier, Jerome, 332, 334
Spiegelhalter, David J., 144, 146, 256
Spurr, B. D., 76
Srinivasan, Ashok, 53, 87
Stacy, E. W., 182
Stadlober, Ernst, 130, 131, 132, 187, 189
Stander, J., 147
Steel, S. J., 123
Stefănescu, S., 133
Stegun, Irene A., 175, 332
Stein, Michael, 249
Stephens, Michael A., 76
Stern, Hal S., 256
Stewart, G. W., 201
Stigler, Stephen M., 297
Stoll, Erich P., 41, 287
Stuck, B. W., 196
Sullivan, Stephen J., 89
Swartz, Tim, 233
Swensson, Bengt, 218, 227, 239, 241

Tadikamalla, Pandu R., 178, 195
Takahasi, K., 208
Talapov, A. L., 41, 86
Tan, K. K. C., 153
Tan, Ken Seng, 98
Tang, Boxin, 249
Tang, H. C., 33
Tanner, Martin A., 157, 201

376 AUTHOR INDEX

Tapia, Richard A., 109
Tausworthe, R. C., 38
Taylor, Malcolm S., 212, 289
Telgen, J., 158
Teller, A. H., 140, 259, 277
Teller, E., 140, 259, 277
Teukolsky, Saul A., 287
Tezuka, Shu, 36, 47, 48, 97, 100, 172, 334
Thisted, Ronald A., 201
Thomas, Andrew, 256
Thompson, Elizabeth A., 154
Thompson, James R., 109, 212, 270, 289
Thompson, William J., 332
Tibshirani, Robert J., 255
Tierney, Luke, 137, 139, 144
Titterington, D. M., 26
Traub, J. F., 97
Tsang, Wai Wan, 127, 154, 174
Tsay, Liang-Huei, 79
Tsutakawa, Robert K., 233
Tu, Dongsheng, 255
Tu, Xin M., 186
Tukey, John W., 301
Turner, S., 194
Tweedie, R. L., 137, 225

Ueberhuber, Christoph W., 95
Underhill, L. G., 201

Văduva, I., 133
Vale, C. David, 210
Vattulainen, I., 21, 41, 79, 86, 87, 260
Vecchi, M. P., 259, 278
Vetterling, William T., 287
Vitter, Jeffrey Scott, 218, 219
Von Neumann, J., 121
Vose, Michael D., 135

Wakefield, J. C., 130, 133
Walker, A. J., 133

Walker, Stephen G., 168, 175, 182
Wallace, C. S., 121, 174
Wang, J., 49
Wang, Yuan, 7, 47, 97
Warnock, T., 26
Wegenkittl, Stefan, 37, 38
Welch, William J., 248, 257
Weller, G., 95, 98, 239
Whiten, William J., 95
Wichmann, B. A., 47, 55
Wichura, Michael J., 274
Wikramaratna, R. S., 45
Wild, P., 151
Wilks, Allan R., 291
Williamson, D., 66
Wilson, David Bruce, 147, 219
Wilson, James R., 221, 249
Wolfram, Stephen, 44
Wollan, Peter C., 52
Wong, Wing Hung, 157, 244
Wong, Y. Joanna, 21, 41, 86
Wood, G. R., 275
Wretman, Jan, 218, 227, 239, 241
Wu, Li-ming, 38, 78
Wu, Pei-Chi, 13
Wynn, Henry P., 248, 257

Yanagihara, Niro, 38, 78
Ylvisaker, Don, 257
Yu, Bin, 146
Yuan, Yilian, 49, 52, 53

Zaman, Arif, 35, 174
Zaremba, S. K., 7
Zeisel, H., 47
Zierler, Neal, 39
Ziff, Robert M., 41, 287
Zinterhof, Peter, 334
Ziv, J., 84

Subject Index

acceptance/complement method 125
acceptance/rejection method 113, 227
ACM Transactions on Mathematical Soft-

ware 284, 332, 335
ACM Transactions on Modeling and Com-

puter Simulation 332
ACORN congruential generator 45
adaptive direction sampling 158
adaptive rejection sampling 151
add-with-carry random number generator

35
additive congruential random number gen-

erator 11
alias method 133
alias-urn method 136
almost exact inversion 121
alternating conditional sampling 157
AMS MR classification system 332
analysis of variance 238
Anderson–Darling test 75
antithetic variates 26, 246
Applied Statistics 284, 332, 334
ARMA model 226
ARS (adaptive rejection sampling) 151
AWC random number generator 35

ball, generating random points in 202
batch means for variance estimation 237
Bernoulli distribution 105, 203
Bernoulli sampling 217
beta distribution 183
beta function 321
beta-binomial distribution 187, 204
Beyer ratio 66
binary matrix rank test 81
binary random variables 105, 203
binomial distribution 187
birthday spacing test 81
bit stream test 81
bit stripping 10, 13, 22
blocks, simulation experiments 51
Blum/Blum/Shub random number gener-

ator 37
Boltzmann distribution 258
bootstrap, nonparametric 253

bootstrap, parametric 254
Buffon needle problem 274
BUGS (software) 256
Burr distribution 194
Burr family of distributions 208

C (programming language) 283
CALGO (Collected Algorithms of the ACM)

332, 335
Cauchy distribution 191
CDF (cumulative distribution function) 102,

316
cellular automata 44
censored data, simulating 223
censored observations 168, 180
CFTP (coupling from the past) 147, 148
chaotic systems 45
characteristic function 136
Chebyshev generator 45
chi distribution 185
chi-squared distribution 180, 184
chi-squared test 74
chop-down method 108, 190
cluster algorithm 259
Collected Algorithms of the ACM (CALGO)

332, 335
combined multiple recursive generator 48,

287
common variates 246
Communications in Statistics — Simula-

tion and Computation 333
complete beta function 321
complete gamma function 320
COMPSTAT 331, 333
Computational Statistics & Data Analysis

333
Computational Statistics 333
Computing Science and Statistics 333
concave density 119, 150
congruential random number generator 11
constrained random walk 234, 273
constrained sampling 248
contaminated distribution 169
control variate 245
convex density 151

377

378 SUBJECT INDEX

correlated random variables 123
correlated random variables, generation 210,

221
correlation matrices, generating random

ones 199
coupling from the past 147, 148
craps test 83
crude Monte Carlo 232
cryptography 3, 4, 37, 334
cumulative distribution function 316
Current Index to Statistics 332
cycle length of random number generator

3, 11, 22

D-distribution 183
d-variate uniformity 63
data augmentation 157
data-based random number generation 212,

289
DIEHARD tests for random number gen-

erators 80, 291
Dirac delta function 319
Dirichlet distribution 205
Dirichlet-multinomial distribution 206
discrepancy 69, 93
discrete uniform distribution 105, 217
DNA test for random numbers 82
double exponential distribution 177, 207

ECDF (empirical cumulative distribution
function) 74, 210, 316

economical method 127
eigenvalues, generating ones from random

Wishart matrices 201
elliptically contoured distribution 197, 207,

208
empirical cumulative distribution function

74, 316
empirical test 71
entropy 68
envelope 114
equidistributed 63
equivalence relationship 8
Erlang distribution 180
Euler totient function 9, 12
exact-approximation method 121
exact sampling 147, 148
exponential distribution 176
exponential power distribution 178
extended hypergeometric distribution 190
extended gamma processes 183

Faure sequence 94, 95
feedback shift register generator 38
Fibonacci random number generator 33
finite field 9
fixed-point representation 10

folded distributions 169
Fortran 95 283

Galois field 9, 38
gamma distribution 178, 208
gamma distribution, bivariate extension

208
gamma function 320
GAMS (Guide to Available Mathematical

Software) 285, 335
GAMS, electronic access 335
GARCH model 226
generalized gamma distributions 182, 195
generalized inverse Gaussian distribution

193
generalized lambda family of distributions

194
geometric distribution 189
geometric splitting 241
GFSR (method) 38
Gibbs distribution 258
Gibbs method 149, 155, 256
GIS (geographic information system) 219
GNU Scientific Library (GSL) 287
goodness-of-fit test 74, 75
Google (Web search engine) 335
Gray code 96, 98
GSL (GNU Scientific Library) 287

halfnormal distribution 176
Halton sequence 94
Hamming weight 14
Hastings method 141
hat function 114
HAVEGE 4
Heaviside function 319
heavy-tailed distribution 196
hit-and-run method 157, 197
hit-or-miss Monte Carlo 116, 121, 232, 243,

271
hotbits 2
hybrid generator 98, 239
hypergeometric distribution 189

importance sampling 241, 271
importance-weighted resampling 149
IMSL Libraries 284, 288
incomplete beta function 321
incomplete gamma function 321
independence sampler 144
independent streams of random numbers

51
indicator function 319
infinitely divisible distribution 150
instrumental density 114
Interface Symposium 331, 333

SUBJECT INDEX 379

International Association of Statistical Com-
puting (IASC) 331, 333

interrupted sequence 230, 286, 290, 293
inverse CDF method for truncated distri-

butions 168
inverse CDF method 102
inverse chi-squared distribution 169
“inverse” distributions 169
inverse gamma distribution 169
inverse Gaussian distribution 193
inverse Wishart distribution 169
inversive congruential generator 36
irreducible polynomial 38
Ising model 258
iterative method for random number gen-

eration 139, 155

Johnson family of distributions 194
Journal of Computational and Graphical

Statistics 333
Journal of Statistical Computation and Sim-

ulation 333

k-d tree 212
Kepler conjecture 215
KISS (generator) 46
Kolmogorov distance 75
Kolmogorov–Smirnov test 74, 75

lagged Fibonacci generator 33
Lahiri’s sampling method 227
lambda family of distributions 194
Landau distribution 196
Laplace distribution 177, 207
Latin hypercube sampling 248
lattice test for random number generators

20, 66
leaped Halton sequence 95
leapfrogging, in random number genera-

tion 24, 43, 52
Lehmer congruential random number gen-

erator 11
Lehmer sequence 11
Lehmer tree 26
linear congruential random number gener-

ator 11
linear density 118
log-concave distributions 150
logarithmic distribution 190
lognormal distribution 176
Lorentzian distribution 191

M(RT)2 algorithm 259
machine epsilon 7
majorizing density 114, 203
Markov chain Monte Carlo 139, 144, 146,

156, 256

Markov chain 137
Markov process 224
Mathematical Reviews 332
Matlab (software) 284
matrix congruential generator 34
matrix congruential generator, multiple re-

cursive 35
MCMC (Markov chain Monte Carlo) 139,

144, 146, 156, 256
Mersenne prime 13
Mersenne twister 42, 287
Metropolis algorithm 259
Metropolis–Hastings method 141, 156
Metropolis-Hastings method 256
“minimal standard” generator 13, 20, 21,

28, 61, 86
minimum distance test 82
Minkowski reduced basis 66
mixture distributions 110, 169, 248
modular arithmetic 7
Monte Carlo evaluation of an integral 231
Monte Carlo experimentation 297
Monte Carlo study 297
Monte Carlo test 251
MR classification system 332
MT19937 (generator) 42, 287
multinomial distribution 198
multiple recursive random number gener-

ator 32, 35
multiplicative congruential random num-

ber generator 11
multiply-with-carry random number gen-

erator 36
multivariate distributions 197, 212
multivariate double exponential distribu-

tion 207
multivariate gamma distribution 208
multivariate hypergeometric distribution

207
multivariate Laplace distribution 207
multivariate normal distribution 197
multivariate stable distribution 208

nearest neighbors 212
nearly linear density 118
negative binomial distribution 188
netlib 285, 332, 335, vii
Niederreiter sequence 94, 98
NIST Test Suite, for random number gen-

erators 83
noncentral hypergeometric distribution 190
noncentral Wishart distribution 200
nonhomogeneous Poisson process 225
nonlinear congruential generator 37
nonparametric bootstrap 253
norm, function 231
normal distribution 171

380 SUBJECT INDEX

normal number 43, 91

one-way function 3
order of random number generator 3, 32
order statistics, generating random 221
Ornstein-Uhlenbeck process 264
orthogonal matrices, generating random

ones 201
overdispersion 204
overlapping pairs test 81
overlapping permutation test 81
overlapping quadruples test 82
overlapping sums test 83

parallel processing 43, 51, 52
parallel random number generation 51
parametric bootstrap 254
Pareto distribution 192
Pareto-type distribution 196
parking lot test 82
particle filtering 234
Pascal distribution 188
patchwork method 118
Pearson family of distributions 194, 208
perfect sampling 147
period of random number generator 3, 11,

22, 220
permutation, generating random ones 217
π as a source of random numbers 44, 91
Poisson distribution 188
Poisson process, generating a random one

177
Poisson process, nonhomogeneous 225
Poisson sampling 218
portability of software 28, 54, 102, 122,

167
Potts model 260
primitive element 12
primitive polynomial 96
primitive root 12
probabilistic error bound 233, 235
probability-skewed distribution 170
Proceedings of the Statistical Computing

Section (of the ASA) 333
projection pursuit 20

quasi-Monte Carlo method 93
quasirandom sequence 4, 94

R (software) 284, 291
R250 (generator) 41, 287
Random Master 3
random number generator, congruential 11
random number generator, feedback shift

method 38
random number generator, parallel 51
random number generator, testing 71

random sampling 217
RANDU (generator) 18, 58, 87
rand 55, 285
RANLUX (generator) 45, 287
Rao-Blackwellization 247
ratio-of-uniforms method 129, 178, 185
Rayleigh distribution 191
rectangle/wedge/tail method 173, 177
reproducible research 286, 299
resampling 252
reservoir sampling 218
residue 8
robustness studies 169, 195, 298
roughness of a function 231
runs test 77, 83, 84

S, S-Plus (software) 284, 291
sampling, random 217
sampling/importance resampling 149
second-order test 71
seed 3, 11, 24, 26, 286, 290, 292
self-avoiding random walk 234, 273
sequential importance sampling 244
sequential Monte Carlo 233
serial test 78
setup time 165
shuffled random number generator 22, 46
SIAM Journal on Scientific Computing 333
side effect 285
simple random sampling 217
simplex 213
simulated annealing 140, 259, 277
simulated tempering 154, 261
simulation 1, 146, 297
SIR (sampling/importance resampling) 149
skew-normal distribution 170
skewed distributions 170
smoothed acceptance/rejection method, for

random number generation 243
smoothing parameter 212
smoothing 212
Sobol’ sequence 94, 96, 98
software engineering 285
spanning trees, generating random ones

219
spectral test for random number genera-

tors 20, 65
sphere, generating random points on a sphere

201
SPRNG, software for parallel random num-

ber generation 53, 296
squeeze test 83
squeeze, in acceptance/rejection 117, 132
stable distribution 196, 208
standard distribution 167

SUBJECT INDEX 381

Statistical Computing Section of the Amer-
ican Statistical Association 331,
333

Statistical Computing & Graphics Newslet-
ter 333

Statistics and Computing 333
statlib 285, 333, 334, vii
stratified distribution 110
stratified sampling 241
strict reproducibility 28, 54, 122, 230
Student’s t distribution 185
substitution sampling 157
substreams 23, 33, 43, 51
subtract-with-borrow random number gen-

erator 35
Super-Duper (generator) 46
SWC random number generator 35
Swendsen–Wang algorithm 259
swindle, Monte Carlo 240

T -concave distributions 153, 159
table, generating random tables with fixed

marginals 202
table-lookup method 105
Tausworthe random number generator 38
tempered transition 155
test suites 79
testing random number generators 71
TestU01 tests for random number genera-

tors 80
thinning method 225
3-D sphere test 82
transcendental numbers as a source of ran-

dom numbers 44
transformed density rejection method 153
transformed rejection method 121

truncated distribution 168, 223
truncated gamma distribution 180, 181,

182
truncated normal distribution 175, 198
twisted GSFR generator 42
twos-complement representation 10

underdispersion 204
uniform time algorithm 166
universal methods 102
unpredictable 4, 37
urn method 105, 136

van der Corput sequence 94
variance estimation 237
variance reduction 26, 239
variance-covariance matrices, generating ran-

dom ones 199
Vavilov distribution 196
von Mises distribution 193

Wald distribution 193
Weibull distribution 186
weight window 241
weighted resampling 149
Wichmann/Hill random number genera-

tor 47, 59
Wilson–Hilferty approximation 175
Wishart distribution 199
Wolff algorithm 259

zeta distribution 192
ziggurat method 127, 174

Zipf distribution 192

	Preface
	Contents
	1 Simulating Random Numbers from a Uniform Distribution
	1.1 Uniform Integers and an Approximate Uniform Density
	1.2 Simple Linear Congruential Generators
	1.2.1 Structure in the Generated Numbers
	1.2.2 Tests of Simple Linear Congruential Generators
	1.2.3 Shuffling the Output Stream
	1.2.4 Generation of Substreams in Simple Linear Congruential Generators

	1.3 Computer Implementation of Simple Linear Congruential Generators
	1.3.1 Ensuring Exact Computations
	1.3.2 Restriction that the Output Be in the Open Interval (0,1)
	1.3.3 Efficiency Considerations
	1.3.4 Vector Processors

	1.4 Other Linear Congruential Generators
	1.4.1 Multiple Recursive Generators
	1.4.2 Matrix Congruential Generators
	1.4.3 Add-with-Carry, Subtract-with-Borrow, and Multiply-with-Carry Generators

	1.5 Nonlinear Congruential Generators
	1.5.1 Inversive Congruential Generators
	1.5.2 Other Nonlinear Congruential Generators

	1.6 Feedback Shift Register Generators
	1.6.1 Generalized Feedback Shift Registers and Variations
	1.6.2 Skipping Ahead in GFSR Generators

	1.7 Other Sources of Uniform Random Numbers
	1.7.1 Generators Based on Cellular Automata
	1.7.2 Generators Based on Chaotic Systems
	1.7.3 Other Recursive Generators
	1.7.4 Tables of Random Numbers

	1.8 Combining Generators
	1.9 Properties of Combined Generators
	1.10 Independent Streams and Parallel Random Number Generation
	1.10.1 Skipping Ahead with Combination Generators
	1.10.2 Different Generators for Different Streams
	1.10.3 Quality of Parallel Random Number Streams

	1.11 Portability of Random Number Generators
	1.12 Summary
	Exercises

	2 Quality of Random Number Generators
	2.1 Properties of Random Numbers
	2.2 Measures of Lack of Fit
	2.2.1 Measures Based on the Lattice Structure
	2.2.2 Differences in Frequencies and Probabilities
	2.2.3 Independence

	2.3 Empirical Assessments
	2.3.1 Statistical Goodness-of-Fit Tests
	2.3.2 Comparisons of Simulated Results with Statistical Models in Physics
	2.3.3 Anecdotal Evidence
	2.3.4 Tests of Random Number Generators Used in Parallel

	2.4 Programming Issues
	2.5 Summary
	Exercises

	3 Quasirandom Numbers
	3.1 Low Discrepancy
	3.2 Types of Sequences
	3.2.1 Halton Sequences
	3.2.2 Sobol’ Sequences
	3.2.3 Comparisons
	3.2.4 Variations
	3.2.5 Computations

	3.3 Further Comments
	Exercises

	4 Transformations of Uniform Deviates: General Methods
	4.1 Inverse CDF Method
	4.2 Decompositions of Distributions
	4.3 Transformations that Use More than One Uniform Deviate
	4.4 Multivariate Uniform Distributions with Nonuniform Marginals
	4.5 Acceptance/Rejection Methods
	4.6 Mixtures and Acceptance Methods
	4.7 Ratio-of-Uniforms Method
	4.8 Alias Method
	4.9 Use of the Characteristic Function
	4.10 Use of Stationary Distributions of Markov Chains
	4.11 Use of Conditional Distributions
	4.12 Weighted Resampling
	4.13 Methods for Distributions with Certain Special Properties
	4.14 General Methods for Multivariate Distributions
	4.15 Generating Samples from a Given Distribution
	Exercises

	5 Simulating Random Numbers from Specific Distributions
	5.1 Modifications of Standard Distributions
	5.2 Some Specific Univariate Distributions
	5.2.1 Normal Distribution
	5.2.2 Exponential, Double Exponential, and Exponential Power Distributions
	5.2.3 Gamma Distribution
	5.2.4 Beta Distribution
	5.2.5 Chi-Squared, Student’s t, and F Distributions
	5.2.6 Weibull Distribution
	5.2.7 Binomial Distribution
	5.2.8 Poisson Distribution
	5.2.9 Negative Binomial and Geometric Distributions
	5.2.10 Hypergeometric Distribution
	5.2.11 Logarithmic Distribution
	5.2.12 Other Specific Univariate Distributions
	5.2.13 General Families of Univariate Distributions

	5.3 Some Specific Multivariate Distributions
	5.3.1 Multivariate Normal Distribution
	5.3.2 Multinomial Distribution
	5.3.3 Correlation Matrices and Variance-Covariance Matrices
	5.3.4 Points on a Sphere
	5.3.5 Two-Way Tables
	5.3.6 Other Specific Multivariate Distributions
	5.3.7 Families of Multivariate Distributions

	5.4 Data-Based Random Number Generation
	5.5 Geometric Objects
	Exercises

	6 Generation of Random Samples, Permutations, and Stochastic Processes
	6.1 Random Samples
	6.2 Permutations
	6.3 Limitations of Random Number Generators
	6.4 Generation of Nonindependent Samples
	6.4.1 Order Statistics
	6.4.2 Censored Data

	6.5 Generation of Nonindependent Sequences
	6.5.1 Markov Process
	6.5.2 Nonhomogeneous Poisson Process
	6.5.3 Other Time Series Models

	Exercises

	7 Monte Carlo Methods
	7.1 Evaluating an Integral
	7.2 Sequential Monte Carlo Methods
	7.3 Experimental Error in Monte Carlo Methods
	7.4 Variance of Monte Carlo Estimators
	7.5 Variance Reduction
	7.5.1 Analytic Reduction
	7.5.2 Stratified Sampling and Importance Sampling
	7.5.3 Use of Covariates
	7.5.4 Constrained Sampling
	7.5.5 Stratification in Higher Dimensions: Latin Hypercube Sampling

	7.6 The Distribution of a Simulated Statistic
	7.7 Computational Statistics
	7.7.1 Monte Carlo Methods for Inference
	7.7.2 Bootstrap Methods
	7.7.3 Evaluating a Posterior Distribution

	7.8 Computer Experiments
	7.9 Computational Physics
	7.10 Computational Finance
	Exercises

	8 Software for Random Number Generation
	8.1 The User Interface for Random Number Generators
	8.2 Controlling the Seeds in Monte Carlo Studies
	8.3 Random Number Generation in Programming Languages
	8.4 Random Number Generation in IMSL Libraries
	8.5 Random Number Generation in S-Plus and R
	Exercises

	9 Monte Carlo Studies in Statistics
	9.1 Simulation as an Experiment
	9.2 Reporting Simulation Experiments
	9.3 An Example
	Exercises

	A: Notation and Definitions
	B: Solutions and Hints for Selected Exercises
	Bibliography
	Literature in Computational Statistics
	World Wide Web, News Groups, List Servers, and Bulletin Boards
	References for Software Packages
	References to the Literature

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

