
Beginning
Nokia Apps

Development
Ray Rischpater | Daniel Zucker

Qt and HTML5 for
Symbian and MeeGo

eBook
Available

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

 i

Beginning Nokia Apps
Development

Qt and HTML5 for Symbian and MeeGo

■ ■ ■

Ray Rischpater
Daniel Zucker

ii

Beginning Nokia Apps Development: Qt and HTML5 for Symbian and MeeGo
Copyright © 2010 by Ray Rischpater, Daniel Zucker

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3177-6

ISBN-13 (electronic): 978-1-4302-3179-0

Printed and bound in the United States of America (POD)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewers: Nicholas Foo, Balagopal K.S., Daniel Rocha, Jakl Andreas, Petro

Soininen and Wai M. Seto
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Mark Watanabe
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 iii

This book is dedicated to my children, Eli and Annie; my parents, Donald and Dorothy; and my

wonderful wife, MB; without any one of whom this book would not be possible.

—Dan

There is an irony in dedicating any book to my family, when time after time they patiently wait for

me to put down the laptop and put away the manuscript, but there it is: this book is for Meg and

Jarod.

—Ray

iv

Contents at a Glance

■Contents .. v

■Foreword .. ix

■About the Authors ... x

■About the Technical Reviewers .. xi

■Acknowledgments ... xii

■Introduction .. xiII

Part I: Design .. 1

■Chapter 1: Introducing Nokia’s Software Platform ... 3

■Chapter 2: Designing Your Application .. 11

Part II: Develop ... 37

■Chapter 3: Working with the Nokia Qt SDK ... 39

■Chapter 4: Beginning Qt Development ... 59

■Chapter 5: Doing More with Qt .. 87

■Chapter 6: Introducing Qt Quick .. 139

■Chapter 7: Developing with HTML5 ... 159

Part III: Distribute ... 185

■Chapter 8: Testing Your Application .. 187

■Chapter 9: Deploying Your Application .. 199

■Index .. 215

 v

Contents

■Contents at a Glance ... iv
■Foreword .. ix
■About the Authors ... x
■About the Technical Reviewers .. xi
■Acknowledgments ... xii
■Introduction .. xiii

Part I: Design .. 1
■Chapter 1: Introducing Nokia’s Software Platform ... 3

Why Nokia? ... 3
Introducing Nokia’s Hardware Platforms .. 4

Series 40 .. 4
Symbian ... 4
MeeGo .. 5

Choosing a Development Platform .. 5
Qt ... 6
HTML5 .. 7
Hybrid Applications .. 8

Distributing Your Application .. 8
Wrapping Up ... 9

■Chapter 2: Designing Your Application .. 11
Designing for Mobile ... 11

User Context .. 12
Mobile Interaction Considerations ... 12
Technical Considerations ... 13
Cultural Considerations .. 14

The Design Process .. 15
Getting Started ... 15
Design Research .. 16

■ CONTENTS

vi

Conceptual Design ... 17
Interaction Design and Prototyping .. 17
Documentation ... 18
Flowella ... 20
Visual and Information Design ... 27
Testing and Evaluation ... 30
Additional Topics: Gestalt and Unity ... 31

Usability Guidelines ... 32
Navigation .. 32
Entering Information .. 33
Information Presentation ... 34
Connectivity ... 34
Usability for Enterprise Applications .. 34
Usability and Security .. 34
Advertising ... 35
Platform Components .. 35

Checklists ... 35
Summary .. 36

Part II: Develop ... 37
■Chapter 3: Working with the Nokia Qt SDK ... 39

Choosing an IDE .. 39
Introducing the Nokia Qt SDK .. 39

Getting Started with the Nokia Qt SDK .. 41
Installing the Nokia Qt SDK .. 41
Finding Your Way around the Nokia Qt SDK .. 44
Creating a Qt Application ... 45
Compiling and Running Your Code on a Device ... 52

Debugging Your Application .. 54
Wrapping Up ... 57

■Chapter 4: Beginning Qt Development ... 59
Understanding the Qt Object Model .. 59

Understanding Signals and Slots ... 60
Making the Most of Hierarchical Ownership .. 61
Defining Object Properties ... 62
Casting at Run Time ... 63
Managing Resources and Localization .. 63
Understanding Qt’s Collection Classes .. 65

Using Signals and Slots .. 66
Performing Input and Output .. 68
Managing Multiple Threads .. 69
Using Item Views with the Model-View-Controller Paradigm ... 71

Understanding Qt’s Model Classes .. 72
Using Qt’s View Classes ... 75

Putting It All Together ... 76
Implementing the Application User Interface .. 77
Using the Network to Obtain Data .. 80
Parsing the USGS Data Feed .. 81

■ CONTENTS

 vii

Displaying the Results ... 85
Wrapping Up ... 86

■Chapter 5: Doing More with Qt .. 87
Using Application Resources .. 87

Including Resources in Your Applications .. 88
Accessing Application Resources .. 89

Incorporating User Actions ... 89
Introducing the Qt Main Window ... 90
Attaching Actions to the Main Window .. 92

Implementing a Custom Widget .. 92
Subclassing QWidget ... 93
Specifying Your Widget’s Size Hints and Policies .. 94
Handling Incoming Events ... 95
Handling Incoming Gestures .. 97
Painting Your Widget’s Contents .. 99

Integrating Qt Objects with Web Content .. 101
Linking Your Application with QtWebKit .. 102
Displaying Web Content with QtWebKit ... 102
Embedding C++ Objects in QtWebKit’s JavaScript Runtime ... 104
Embedding Qt Widgets into QtWebKit Pages ... 106

Extending Application Functionality with Qt Mobility .. 107
Using the Qt Mobility APIs .. 109
Managing Bearer Networks ... 112
Obtaining and Working with Device Location Information ... 113
Sending and Receiving Messages ... 115
Playing and Recording Multimedia .. 118
Obtaining System Information ... 121

Putting It All Together ... 122
Looking inside the Application Controller .. 124
Changes to the Network Request .. 128
Determining the Device Position .. 129
Drawing the Map ... 131

Wrapping Up ... 137

■Chapter 6: Introducing Qt Quick .. 139
Declaring Your User Interface ... 139

Introducing QML ... 141
Handling Signals in QML .. 143
Performing Animations in QML .. 145
Reviewing the Available Qt Quick Elements .. 146

Programming for the Web with QML ... 149
Creating the User Interface .. 151
Downloading the Data .. 154

Integrating C++ with QML .. 154
Displaying QML within a C++ Application ... 155
Mingling QObjects with QML .. 155

Wrapping Up ... 158

■ CONTENTS

viii

■Chapter 7: Developing with HTML5 ... 159
HTML5 Is an Industry Standard ... 160
Hello World in HTML5 .. 160

Hello World on a Handset ... 162
Using the HTML5 Application Cache .. 163

Hybrid Apps ... 165
Accessing Your HTML5 Content from the Local File System ... 165
Storing the HTML5 Content as an Application Resource ... 166

More HTML5 Features ... 167
Canvas ... 167
Transitions and Transformations ... 172
Local Storage ... 174

Putting It All Together: Implementing Shake in HTML5 ... 176
Adding UI Components to the Views .. 180
Fetching and Parsing the Data ... 182
Packaging the App ... 183

Links for further information ... 183
Wrapping Up ... 184

Part III: Distribute ... 185
■Chapter 8: Testing Your Application .. 187

Preparing to Test .. 187
Using Qt’s Test Framework ... 189

Introducing the QTest Test Framework .. 190
Unit Testing the QuakeEvent Class .. 192
Testing Signals and Slots Using QTest .. 195
Testing User Interface Code Using QTestEventList ... 196

Wrapping Up ... 198

■Chapter 9: Deploying Your Application .. 199
Preparing a Deployment Checklist .. 199
Packaging Your Application .. 200

Including Other Files within Your Application on Symbian Devices ... 200
Including Other Files within Your Application on MeeGo Devices .. 201
Including an Application Icon with Symbian Applications ... 202
Including an Application Icon with MeeGo Applications .. 202
Providing a UID for Qt Applications on Symbian .. 203
Providing a Desktop File for MeeGo ... 204
Putting It All Together .. 204

Signing Your Qt Application for Symbian Devices .. 205
Publishing with the Ovi Store .. 207

Registering with the Ovi Store ... 207
Publishing Your Application ... 208
QA in the Ovi Store ... 210

Marketing Your Application through the Ovi Store .. 211
Wrapping Up ... 213

■Index .. 215

■ INTRODUCTION

 ix

Foreword

Developers have been a key component of Nokia’s ecosystem since the first Symbian product
launched nearly a decade ago. In the time since then, Symbian has risen to power the majority of
the world’s smartphones, in no part due to the creativity and resourcefulness of you, the
developers of mobile applications.

Here at Forum Nokia, our goal has been and remains to empower you to create compelling
and original applications for Nokia’s mobile telephones and computers. In the last decade we’ve
offered developer solutions to you for Symbian, Series 40 in Java, Series 60, Maemo (now MeeGo)
and Qt. Along the way, as we supported freedom of choice, we’ve occasionally inadvertently
added to the number of platforms you must manage when developing for the diverse array of
mobile devices on the market today.

All of that has changed now with Qt. With Qt, Nokia promises that you need to write your
application once, using Qt—Qt’s libraries, C++, and Qt Meta-object Language (QML) if you
choose—and target your application to all of Nokia’s smartphones and mobile computers
running Symbian or MeeGo. Understanding that many of you have existing or new applications
written using HTML5, we also support an HTML5-compliant mobile browser to support the latest
web applications running within the browser, giving you another path to your customers.

When Daniel and Ray approached Forum Nokia about a book on cross-platform software
development for Nokia products, I knew immediately that the project would be a success,
because the book was to meet your needs by sharing Nokia’s developer story with you. Their past
experience with Nokia’s platforms—“eating our own dog food” as they developed solutions
internally using the same tools you use—guarantees that they can answer your questions about
the challenges you face in bringing your application ideas to reality on Nokia’s platforms.

I can’t wait to see what you create using Qt and HTML5.

Purnima Kochikar
Vice President, Forum Nokia & Developer Community

■ INTRODUCTION

x

About the Authors

Ray Rischpater is an engineer and author with more than 15 years of
experience writing about and developing for mobile computing platforms.
During this time, Ray has participated in the development of Internet
technologies for Java ME, Qualcomm BREW, Palm OS, Newton, and Magic
Cap, as well as several proprietary platforms. Ray is currently employed as a
senior research engineer at Nokia’s Palo Alto Research Center. When not
writing for or about mobile platforms, Ray enjoys hiking with his family and
public service through amateur radio in and around the San Lorenzo Valley in
northern California. Ray holds a bachelor’s degree in pure mathematics from
the University of California, Santa Cruz, and is a member of the IEEE, ACM,

and ARRL. Previous books by Ray include Software Development for the Qualcomm BREW
Platform (Apress, 2003), Wireless Web Development, 2nd Edition (Apress, 2002), eBay Application
Development (Apress, 2004), and Beginning Java ME Platform: from Novice to Professional (Apress
2008).

Daniel Zucker currently works in Nokia’s Palo Alto Research Center heading a
research team focused on User Experience innovations. He has more than 20
years of experience in Silicon Valley, with 14 of those years in mobile. He has
held a variety of industry positions, including CTO of ePocrates, the leader in
handheld medical applications; Senior Director of Technology at ACCESS,
maker of the market-leading Netfront mobile web browser; and Vice President
of Engineering at Mobilearia, innovator in bringing mobile computing to the
car. He holds bachelor’s, master’s, and Ph.D. degrees in electrical engineering
from Stanford University. Daniel has written more than 20 professional
publications and presentations. When not writing for or about mobile

platforms, Daniel manages development of software for mobile platforms—and sometimes finds
time to spend with his wife and children.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

■ INTRODUCTION

 xi

About the Technical
Reviewers

Nicholas Foo
Title: Manager, APAC Technical Support and Consultancy
Nokia

Balagopal K.S.
Title: Technology Expert
Nokia

Daniel Rocha
Title: Solutions Consultant
Nokia

Jakl Andreas
Title: Senior Technical Consultant
Nokia

Petro Soininen
Title: Chief Engineer, Web Technologies
Nokia

Wai Seto
Title: Technical Marketing Manager
Nokia

■ INTRODUCTION

xii

Acknowledgments

It seems unfair that two of our names are on the cover, when so many have contributed to this
book. First and foremost, we must thank our families, who provided support and encouragment
throughout the project. Thanks especially to Annie, Eli, and Jarod, all of whom showed patience
beyond their years as their fathers spent mornings, nights, and weekends poking away at their
keyboards. Thanks also to our wives, MB and Meg, who both put up with the distraction and
shouldered extra work when there was “just another chapter due” or “a quick e-mail from Apress
that needed a response.”

We owe a large debt to the staff at Apress itself, not least Adam Heath, Steve Anglin, Jeff Pepper,
Brian MacDonald, and all the others who contributed to this book. Apress was exceedingly flexible
as we adjusted the manuscript to best tell the story of Nokia’s developer platform and tools, with
several members of the project working nights and weekends to accommodate our need for
changes and the publication schedule at the same time. Thank you all for your efforts.

We would also like to thank Wai Seto, Purnima Kochikar, Leslie Nakajima, and the others at
Forum Nokia for their support. While right from the start this was a project for us outside our daily
responsibilities at Nokia, their encouragement, review, and support has been instrumental,
especially in ensuring alignment between our experience working with Nokia’s tools and the
information you need to develop your applications with those tools. (Of course, any errors that
might remain are our responsibility, and we’ll address them going forward on the Apress web site.)

From NRC, we ‘d like to thank Kari Pulli for his helpful input and reviews, and especially thank
John Shen, whose great support and encouragement came at a time when it was really needed.

Finally, we’d like to thank our fellow staff members so far left unmentioned, both in Nokia’s
Smartphones division and in the Nokia Research Center in Palo Alto. In our work with these folks,
we learned much about Qt that we might not have learned alone; discussing our experiences with
others greatly informed the process of writing this book. A special thanks to our peers at Nokia
Research Center, who tolerated our frequent distractions in the last weeks of the effort, as work
on the book bled into our office time.

Ray Rischpater and Daniel Zucker

■ INTRODUCTION

 xiii

Introduction

Popular acceptance of the smartphone has brought technology once only previously imagined in
science fiction to today’s reality. You can now use the small electronic device that used to be a
simple cell phone to manage your calendar, listen to music, take pictures, provide maps and
navigation, and browse the Internet—and still make a phone call. The technology that links you
to the vast information store on the Internet any time and anywhere is perhaps the greatest
revolution in information access the world has seen. Not only available to the developed nations
where we expect to see high-end smartphones, these devices are also widely available in
developing nations, where they are often the primary device people use to access the Internet.

The convergence of low-cost high performance processors, cheap memory, and wireless
networking is only some of the technology that make the smartphone possible. The widespread
use of open mobile computing platforms is the key to the smartphone’s success. These platforms
have opened the door for third parties (that’s you!) to write software applications for these mobile
computing platforms quickly and inexpensively.

Applications are no longer the exclusive domain of the device manufacturer. Now, anyone
can imagine an application and implement it. These applications are with you everywhere that
you carry your cell phone, and can take advantage of positioning information and wireless
connectivity provided by the phone. It is this ability for anyone to create an application that has
made the cell phone the truly wonderful device of tomorrow.

Why Should You Read This Book?
Even after nearly 40 years between us developing applications for mobile computing, we remain
excited seeing what people have realized and looking at what the future holds. Mobile
applications continue to influence the way people work and play in a way that very few market
segments do. Whether you’re just starting to develop mobile software, or if you’ve already been
part of that revolution, this book is for you.

When first talking about this project, we agreed immediately that providing a technical foray
of all the current mobile platforms today was simply too large a project. We also noticed the
relative paucity of books that discuss Nokia’s open platforms, a sad gulf given Nokia’s worldwide
market penetration. Through Nokia’s contributions to the open platforms maintained by the
Symbian Foundation and MeeGo, Nokia and other manufacturers using these platforms in their
products make up more than 40% of the smartphone market worldwide, and show no signs of
slowing. It was immediately obvious that what we needed to bring these platforms to your
attention.

Once we realized this, choosing what to share was easy. A key strategy at Nokia is to leverage
open platforms for their software developers across the entire smartphone product line, whether
the underlying operating system is Symbian or MeeGo (a Linux derivative). To do this, Nokia
provides both a web-based programming approach that lets you write local or networked
applications using HyperText Markup Language (HTML)-JavaScript-Cascading Style Sheet (CSS),

■ INTRODUCTION

xiv

with access to native platform services such as messaging and geolocation, as well as more
traditional application development stack based on Qt and C++ atop Symbian and MeeGo. As
you read this book, you learn about both the web-based and Qt-based cross-platform
approaches, and are equipped to select which makes the most sense for you in your endeavors.

In our writing, we assume that you’re new to Nokia’s open platforms, but not new to
software development itself. We assume that you have some experience in software development.
As we show you examples of both of HTML-JavaScript-CSS and C++ based development, you
should have at least a nodding acquaintance with the technologies that lie beneath the web stack
as well as C++. Rest assured, though, that we’re careful to document anything tricky we’ve done
that you might encounter along the way.

How Should You Read This Book?
Think of this book as a technical survey of what’s available in the Nokia ecosystem for you. We
understand that most of you don’t read a technical book from cover-to-cover at first, but tend to
dip in and out of chapters as their titles and your curiosity resonate. Although we understand that
you’re likely to do exactly that, we urge you to give a cursory reading of each chapter as you go
along. Because much of the material we cover is loosely coupled (for example, you don’t need to
understand how a web application is deployed in order to begin using Qt), you can certainly open
to any chapter and give it a go. Despite that, though, there’s a coherent story throughout the
book, and one of the things we aim to show you is how to pick which of Nokia’s open platforms is
best for your application.

This book has nine chapters, covering both the fundamentals of Qt using C++, as well as web
technologies such as HTML5.

• In Chapter 1, we survey the Nokia ecosystem, starting with a brief history of Nokia’s

contribution to the mobile computing arena and looking ahead at the opportunities to

come. You’ll learn about Nokia’s cross-platform strategy and how it fits together from the

first line of portable code that you write to packaging and delivering your application

through Nokia’s Ovi platform.

• In Chapter 2, we discuss the all-important yet neglected topic of designing applications for

today’s mobile devices, looking at how people interact with their phones and what they

expect from today’s mobile applications.

• In Chapter 3, we provide a detailed tutorial of how to use the Nokia Qt Software

Development Kit (SDK), a cross-platform environment for designing, implementing,

building, and packaging Qt applications for both Symbian and MeeGo devices.

• In Chapter 4, we show you the fundamental concepts you need to understand when

writing Qt applications. You learn about Qt’s object model, how Qt uses signals and slots

to communicate between objects, and aspects of Qt’s cross-platform porting layer, as well

as how to design and build applications using the model-view-controller paradigm in Qt.

• In Chapter 5, we continue your Qt education, moving on to more advanced topics,

including how to integrate Qt-based C++ applications with web content, how to create

your own widgets, and how to abstract user actions in your user interface.

• In Chapter 6, we explore QML, the Qt Meta-Object Language, and how you can create

dynamic user interfaces using QML and JavaScript that bind back to C++ for high

performance when you really need it.

• In Chapter 7, we shift gears and look closely at writing applications using HTML,

JavaScript, and CSS for Nokia’s WebKit-based web browser.

■ INTRODUCTION

 xv

• In Chapter 8, we discuss how to prepare your application for deployment, looking at how

Nokia’s tools support your cross-platform integration and testing efforts.

• In Chapter 9, we discuss application deployment itself, looking at the options available to

Nokia developers as they publish and market their applications through Nokia’s Ovi Store.

Throughout the book, we use various implementations of a simple application, “Shake”
which harvests information about recent earthquakes and displays the data using lists, detail
views, and maps. This sample application—written in different implementations using both C++
using Qt and the Web—demonstrates many of the key concepts you need to understand,
including model-view-controller design, XML parsing, and network access. Of course, these
samples are all available electronically at the Apress web site, http://www.apress.com/.

A Word on Conventions We Use in This Book
As with other technical books, it helps to make a distinction between what’s meant for you to
read and what’s meant for your computer to read.
Whole listings of code are set in the code style, like this:

 typedef struct _Node
 {
 /// Next node
 struct _Node *mpNext;
 /// Pointer to data for this node
 void *mpData;
 /// Pointer to any additional data for this node.
 void *mpMetaData;
 } Node;

As with many coauthored works, we present our opinions and views in the first person using
the collective pronouns “we” and “us” to refer to both of us. On occasion, where we want to
emphasize an experience that belongs solely to one of us, we use singular pronouns, identifying
the author after the first use of the singular pronoun.

http://www.apress.com

■ INTRODUCTION

xvi

 Part

Design

I

3

3

 Chapter

Introducing Nokia’s
Software Platform
One of the world’s largest providers of smartphones, Nokia is at the heart of a global

ecosystem of devices, services, and applications. With this success comes diversity. A

handset that sells successfully in the United States or Europe may be too expensive to

sell in developing markets, and a phone inexpensive enough in developing markets may

seem primitive by the standards in Europe or the United States. This diversity can lead

to fragmentation; fortunately, Nokia is well aware of this and responds to the threat of

fragmentation with software development platforms that span product lines.

In this chapter, we take a brief look at Nokia’s hardware and software platforms. Once

you understand the platforms that Nokia offers, we discuss application distribution

options when targeting Nokia products. After reading this chapter, you should be able to

select the appropriate Nokia platform for your application and understand how you will

deliver your application to others.

Why Nokia?
As we write this (early spring, 2010), Nokia’s global device market share rests at 38%*,1

consisting of 126.9 million phones for the fourth quarter of 2009. These devices run one

of three platforms (more about Nokia’s phone platforms in the section “Introducing

Nokia’s Phone Platforms” later in this chapter), letting Nokia dominate segments ranging

from the emerging market, where price can remain a major concern, to markets in

Europe and elsewhere demanding high-end, versatile computing devices.

Today, Nokia’s portfolio includes not just mobile communications devices ranging from

feature phone to mobile computers, but services under the Ovi brand, including

1* Statistics taken from Nokia’s press release at

www.nokia.com/results/Nokia_results2009Q4e.pdf.

1

http://www.nokia.com/results/Nokia_results2009Q4e.pdf

CHAPTER 1: Introducing Nokia’s Software Platform 4

messaging, contact management, mapping, photo sharing, and an application store. In

addition to the Ovi brand, Nokia has launched several services to specific markets, such

as Nokia Life Tools (providing agricultural and educational services to emerging markets)

and Nokia Money, a mobile banking service built with Obopay.

Introducing Nokia’s Hardware Platforms
To deliver compelling products to such a wide range of markets, Nokia must produce

devices at a wide range of prices that reflect manufacturing and software development

costs. With device costs tightly coupled to component costs, the key to producing

inexpensive devices is to manage expenses on components. This in turn affects the

software the product is able to run. To support this, Nokia divides its software portfolio

into three software platforms: Series 40, Symbian, and MeeGo.

Series 40
The Series 40 platform is among the world’s most widely used mobile device platforms.

A low-cost platform requiring little by way of hardware, it was introduced in 2002 and

remains a key platform for Nokia and its customers around the world.

Series 40 is a closed platform. No native SDK is available for you to write your own

applications using the S40 native platform. Instead, Nokia provides support for both

Java Mobile Edition (Java ME) and Adobe Flash Lite applications, and its browser

permits the development of traditional server-side web applications as well. Because of

this, we don’t say much about Series 40 throughout this book.

Symbian
Symbian has a long history in the mobile marketplace, having originally been built as an

integration of software contributed by Nokia, NTT DoCoMo, Sony Ericsson, and

Symbian Ltd in 1998. Ten years to the day of Symbian Ltd’s inception, Nokia announced

its intent to acquire all Symbian Ltd shares and create the Symbian Foundation. Today,

the nonprofit Symbian Foundation oversees the development and growth of the open

source Symbian platform, working with contributions from companies and individuals

around the world.

Nokia remains one of the major contributors to the Symbian source code base, even as

Symbian remains the platform of choice for smartphones built by members of the

Symbian Foundation and others. As component costs have dropped and contributors

continue to optimize the software, Symbian is now able to run on lower-cost devices.

This enables Nokia and others to produce an increasing number of Symbian devices for

cost-conscious markets, as well as for more demanding users.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 1: Introducing Nokia’s Software Platform 5

Symbian developers have a broad array of software platforms available, including:

 Qt, a C++ based cross-platform development environment.

 A web-based platform using HTML5, JavaScript, and CSS.

 Java ME, a dialect of the Java language and APIs suited for mobile

devices.

 Adobe Flash, generally Flash Lite, a dialect of Flash suitable for mobile

devices.

We discuss each of those platforms in the next section, “Choosing a Development

Platform.”

MeeGo
MeeGo is a Linux-based fusion of Nokia’s Maemo and Intel’s Moblin projects. Both

Maemo and Moblin have strong Linux roots. Moreover, past Maemo releases have

shipped to consumers on Nokia’s family of Internet Tablets, the Nokia N770, N800,

N810, as well as the N900 mobile computer. As we write this, MeeGo remains a platform

for higher-end devices. That may change: MeeGo isn’t just a phone platform, but a

general Linux-based platform for phones, web-enabled tablets, set-top boxes, and other

networked computing devices.

Because MeeGo is powered by Linux, developers can use either C++ with Qt or web

standards to create applications for MeeGo. As with Symbian, we discuss developing

for MeeGo throughout this book.

Choosing a Development Platform
Platform fragmentation is a serious challenge for mobile software developers. Already,

developers are often asked to support multiple platforms—the market is the mobile

market, not just users of a specific smartphone. Thus, many developers are tasked with

writing an application not just for an iPhone, Android, or Nokia, but they also write for all

three. Seemingly worse is that it appears Nokia isn’t just one platform, but several.

To address this challenge, Nokia products support a number of development platforms

across product lines. Key platforms include:

 Qt with C++

 Browser-based applications leveraging HTML5, JavaScript, and CSS

 Java ME

 Flash

Table 1–1 shows Nokia’s phone platforms and the development options available for

each. To summarize, Nokia provides Qt as the definitive platform for smartphone

development, spanning both Symbian and MeeGo. For developers with legacy web

CHAPTER 1: Introducing Nokia’s Software Platform 6

applications or who have other strong reasons to use web standards (such as portability

across multiple platforms), the Web, with support for advanced standards such as

HTML5, is also an option. Java ME remains an option when you want to target the very

low-cost Series 40 devices, and Flash remains available on Symbian and MeeGo.

NOTE: Throughout the book, we focus on mobile-device software development for Qt and
HTML5, as considerable documentation is already available that describes Java ME and Flash. If
you’re looking for resources for either of those platforms, consider Beginning Java™ ME
Platform or AdvancED Flash on Devices: Mobile Development with Flash Lite and Flash
10, both available from Apress.

Table 1–1. Open Software Technologies Across Nokia’s Product Line

Platform Qt HTML5 Java ME Flash

Series 40

Symbian

MeeGo

Qt
Although you may not know it, many well regarded applications use Qt, an open cross-

platform framework acquired by Nokia through its acquisition of Trolltech in 2008; Google

Earth, KDE, Opera, and Skype all use Qt to ease porting between multiple platforms. Qt as

a framework for portable computing devices is not new either, having been used in mobile

computing, running Linux and Window Mobile devices for several years.

As you learn in Chapters 4, 5 and 6, Qt provides a broad set of abstractions above

native hardware, including:

 Help with memory management in C++ through its use of smart

pointers, owned objects, and shared data between objects with copy-

on-write.

 A lightweight meta-object framework implemented using the C

preprocessor and C++ to permit run-time type detection and message

dispatching.

 Not one, but two graphics frameworks, one based on widget

hierarchies and the other on scene-based rendering and

transformation of viewable items.

 Cross-platform wrappers for network, file system, and other operating

system services.

CHAPTER 1: Introducing Nokia’s Software Platform 7

 Access to hardware capabilities using either Qt Mobility or access to

native Symbian APIs to use the camera, location services, access

contact records, and other native operations.

 QtWebKit, a wrapper for WebKit to permit Qt applications to load and

render Web content.

Qt is available on both Symbian and MeeGo products and is a good choice for your

application if:

 You have existing C, C++, or Qt code from another platform that you

want to bring to Nokia products.

 Your application needs to squeeze out every bit of performance from

the platform.

 You intend to port your application to other platforms in the future.

On the other hand, if one or more of the following are true, you should take a good look

at the Web:

 Your application’s content is primarily web-centric.

 You are providing a thin shell application that uses Representational

State Transfer (REST) or similar web-based interfaces to provide a

mobile client for a server-side application.

 You are targeting your application for other web-based environments,

such as desktop widgets.

Now and in the future, Qt is the primary platform when developing software for Nokia’s

smartphones. Engineered to provide high performance across Nokia’s products, it offers

a highly portable environment that lets you target multiple devices through a single SDK,

requiring only recompilation when moving your application between Symbian and

MeeGo.

HTML5
Nokia has been a strong supporter of WebKit, the popular layout engine behind most of

today’s mobile web browsers. WebKit fully supports HTML, JavaScript, and CSS, giving

you a state-of-the-art web-rendering stack for your web-based applications. Nokia

remains committed to supporting open web standards, including HTML5 in the built-in

browser used to access the Web. You should consider using web technologies when:

 You are porting a browser-based web application (perhaps written to

support other devices as well) from a server to run locally on a device.

 Your application sources content from a web server using either HTML

or XML

 You are fluent in HTML, CSS, and JavaScript and do not have the

luxury of learning another development platform, such as Qt.

CHAPTER 1: Introducing Nokia’s Software Platform 8

On the other hand, if one or more of the following is true, you may want to use Qt

instead:

 Your application must meet tight performance constraints, such as a

graphics-intensive game.

 You’re porting parts of an existing C or C++ application from other

platforms.

 You also want to deploy your application on other vendors’ hardware

platforms that provide Qt.

The Web remains a crucial component people use to access information using mobile

devices, and Nokia is fully committed to supporting it through a high-end mobile

browser that supports existing and the emerging HTML 5 standard.

Hybrid Applications
Before we move on, it’s worth pointing out that you can wrap your web content within a

Qt application, too. You can do this because Qt supports HTML, JavaScript, and CSS

through its inclusion of QtWebKit, a port of the popular WebKit web environment to Qt.

You should consider this approach when:

 You want to provide the user with the experience of downloading and

installing an application, but your content is largely written using web

technologies.

 Your application has key dynamic content available via the Web that

should be presented to the user.

Distributing Your Application
Picking a software platform and writing your application is only the start. Once the

application is written, there's the question of distribution: how do you get your

application into the hands of prospective users, and how do you monetize those

transactions? Nokia platforms give you a variety of options, not least being the Ovi

Store, available on all new devices and a surprising number of existing ones.

Distributing applications to smartphone users is nothing new; both Symbian and Maemo

devices for several years have enabled you to install applications from other sources,

including the Web. This is an example of off-deck distribution—that is, distribution from

a source other than the network operator.

Off-deck can sound simple—you may now be thinking, “Oh, I’ll just put an installer for

my application on our web site”—but it can quickly grow out of hand from the business

perspective. Application purchases and subsequent registration may need special

handling, and you may not even be equipped to process payments within your web site.

Moreover, several companies are available to carry and sell your application off-deck,

and to maximize your reach in the market you may choose to contract with one or more

CHAPTER 1: Introducing Nokia’s Software Platform 9

of those companies for distribution as well. While web and SMS delivery of your

application is possible with these companies, you usually will need to execute separate

agreements with each off-deck distributor you choose.

On-deck, as opposed to off-deck, is listing your application with the network operators

within their application distribution platforms. Nearly every operator now has either a

web site or native application that lets consumers browse and purchase applications;

this is the “deck.” Landing your application in an operator’s store takes an agreement

with the carrier, which generally takes a percentage of application sales from its site or

store application. Carriers typically pay you for your content and regularly provide details

about application sales. Some carriers can give you near real-time sell-through

statistics, letting you measure the results of advertising campaigns or other marketing

efforts.

Participating in the carrier’s distribution can be helpful if your application is well placed

on the deck and well promoted. As with off-deck, you can usually distribute your

application through more than one carrier, although then you need to have business

relationships with more than one carrier. If you’re seeking to launch an application with

global presence, acquiring these relationships can be both challenging and time-

consuming.

An ideal way to cover multiple markets is to list your application with Nokia in its Ovi

Store. The store is an application and media store that supports more than a hundred

devices with listings in 30 languages as I write this. To facilitate monetization of your

application, the store itself is integrated with 66 different operators in 19 different

countries, permitting integrated mobile billing; in areas without this integration, your

customers can remit payment to Nokia via their credit card. The Ovi Store complements

application promotion, such as from your web site, too; you can use Ovi Store’s

marketing tools to create banners that deep-link to your content in the Ovi store.

We discuss the process of preparing your application for deployment and making

money from sales of your application in Chapter 9.

Wrapping Up
Nokia’s product portfolio spans the gamut of prices, with sales numbers in the tens to

hundreds of millions each quarter. Nokia’s broad and deep reach around the world

drives a software market for almost any mobile application developer.

To address the myriad markets where Nokia sells handsets, Nokia groups devices into

three platforms: Series 40, Symbian, and MeeGo. One platform, Qt running on Symbian,

lets you target mid-range and premium (Symbian and MeeGo) devices using C++ and a

robust porting layer. Nokia’s support for HTML5 and other web standards leverages

your knowledge of HTML, JavaScript, and CSS to develop hybrid and web-based

environments using the latest web technologies. Most applications can be easily

constructed using tools from either platform, letting you choose the platform that most

closely meets your skills and prior projects. Using Qt requires skills in C++, but provides

the highest possible performance, while the web route provides more-than-adequate

CHAPTER 1: Introducing Nokia’s Software Platform 10

performance with the added benefit that since it’s based on W3C standards, porting

from other platform’s web-based applications isn’t difficult.

In the next chapter, we look at what you need to know to get started designing your

application for Qt and HTML5 on Symbian and MeeGo. Chapter 2 is preliminary

information for all developers new to mobile software; if you’re ready to dive in and

begin developing your application, skip ahead to Chapter 3, where we introduce the

various tools at your disposal.

11

11

 Chapter

Designing Your
Application
Design, followed by develop and distribute, is the first of three steps you must go

through to create your Nokia application. In this section we talk about design. This

chapter covers the theory and practice of designing your mobile application. We discuss

how designing for mobile is different from the desktop, present the steps in the design

process, and then go into some practical details for designing your application.

This chapter cannot even come close to covering design for mobile completely—not

even a full book dedicated to the topic would suffice. To comprehensively cover design

in detail, a university level master’s course might begin to do the topic some justice.

Our goal for this chapter is to give you, the application developer, enough of an overview

of design so that you can write your first application well. After that this material can

serve as a framework upon which to continue your study.

In the next chapter of this book, we do some hands-on exploration of the tools you will

use to actually design and later develop your application.

Now, let’s get started.

Designing for Mobile
Designing a mobile application is different from designing a desktop application. Yes,

both applications run on computers and both are built using technologies such as the

Web or C++. Even the underlying platforms are remarkably similar: the mobile device of

today has virtually the same amount of volatile memory, non-volatile storage, network

bandwidth, and processing power as the desktop of only a few years ago. Yet mobile is

different. The user expects different things from an application on his mobile device as

from his desktop. To understand this better, we need to think about User Context.

2

CHAPTER 2: Designing Your Application 12

User Context
What is the user doing when he is running an application? How is the mobile device

used differently from the desktop computer? What special scenarios arising from mobile

must you consider different from the desktop? These are all questions considered in

User Context.

User Context is consideration for what the user is doing and where he is when he is

using your application. The mobile device is different because it is mobile. It can be used

in noisy, crowded environments. It may be used in bright environments. The user may

be in a situation where he has time to interact with his device only for a small amount of

time and only with partial attention and not the long interaction timeframe typical with a

desktop.

Mobile applications, therefore, are typically designed to do one task or activity well. The

user may be doing something else while using your application. Consider this when

designing.

Mobile Interaction Considerations
What else do you need to keep in mind when designing your mobile application?

Obviously, the mobile device has a much smaller display than a desktop device. How do

you need to change your application layout and interaction paradigms to accommodate

this difference in user interaction? Input methods are usually different for a mobile

device. How will this impact your application design?

How does the environment affect how the user interacts with his device? Is this

application intended to be used when one-handed operation is critical? Are you

expecting the user to quickly check for a particular piece of information, or will the user

be engaged in a protracted interaction?

Furthermore, the device is always on and always connected. Your application can be

designed to send notifications to the user at odd times. Because the device is with the

user all the time, he will get the notification at any time. The device demands instant

interaction, so long wait times are not acceptable.

The application needs a consistent style when interacting with the user. It can’t force the

user to do extra thinking or remember additional things. The mobile device should be an

easy-to-use extension of daily life—not a mandate to memorize different interaction

methods.

Finally, the device is extremely personal. A smartphone is typically used by a single

individual and not shared. It should, therefore, be easy to customize and personalize.

The mobile device can quickly become an extension of the user; an integral fashion

accessory, it is now an inseparable element critical to his daily routine.

CHAPTER 2: Designing Your Application 13

Technical Considerations
There are technical considerations for mobile design as well. Though mobile devices are

similar in specifications to the desktops of yesterday, they are still not as powerful as

today’s desktops. You must therefore keep an eye toward the limited resources

available for mobile. Memory, both dynamic and non-volatile (analogous to a PC’s hard

drive) are limited. The CPU is also typically less powerful than that available on a

desktop.

When designing your application, you must take these limited resources into account. In

choosing algorithms, try to select those that require less memory. When designing data

structures, avoid wasted memory. It is critical to spend the extra time upfront to ensure

your memory allocation is as efficient as possible.

You also need to design your application so that it can handle situations when such

device resources as memory are low or exhausted. Typically this is implemented by

handling a signal or message from the system telling you that the system is out of

resources. When this happens, your application should make an attempt to free up

resources by cleaning up any unnecessary memory usage. You also need to handle the

case where a forced application shutdown is imminent. In this case, the application

should save state if necessary and prepare to exit immediately.

Bandwidth is also limited on a mobile device. When designing your application, be

efficient about how data is requested over the network. Request only the data you really

need. Can you prefetch data so that when the user accesses it, the download appears

much faster than it actually is?

Additionally, you must code for corner cases not always present in the desktop world.

On a mobile device network, coverage is frequently lost and regained. You need to

ensure your application gracefully accommodates an unexpected switch into offline

mode.

Another common case is low battery. Your application can query battery status and take

appropriate action when the level is too low. You can send a message to the user, for

example, or switch the application to a mode where less power is consumed. This is not

always possible but, depending on the application, it may be possible to trade

performance for less battery usage, such as reducing the framerate of video playback

application. Below is some example code using Qt (from the Qt Mobility Project) where

battery status is monitored and an appropriate message is sent to the user.

void Dialog::displayBatteryStatus(QSystemDeviceInfo::BatteryStatus status)
{
 QString msg;
 switch(status) {
 case QSystemDeviceInfo::BatteryCritical:
 {
 msg = " Battery is Critical (4% or less), please plug in the charger.";
 QMessageBox::critical(this,"QSystemInfo",msg);
 }
 break;
 case QSystemDeviceInfo::BatteryVeryLow:
 {

CHAPTER 2: Designing Your Application 14

 msg = "Battery is Very Low (10%), please plug in the charger soon";
 QMessageBox::warning(this,"QSystemInfo",msg);
 }
 break;
 case QSystemDeviceInfo::BatteryLow:
 {
 msg = "Battery is Low (40% or less)";
 QMessageBox::information(this,"QSystemInfo",msg);
 }
 break;
 case QSystemDeviceInfo::BatteryNormal:
 {
 msg = "Battery is Normal (greater than 40%)";
 QMessageBox::information(this,"QSystemInfo",msg);
 }
 break;
 };
}

So you see, in designing mobile applications, you need to consider a range of factors.

The device is physically different, both in terms of physical characteristics, such as

display size or input methods, and the components of the device, such as memory and

processor. Furthermore, the environment in which the user interacts with it is different.

These are all factors that must be considered when designing your application.

Cultural Considerations
Consider designing for different cultures when planning your application. Obvious

cultural factors include different languages and different methods for text entry. But

different cultures also can have significantly different design aesthetics. Remember this

when designing your application.

Even the use of color can have cultural significance. In Western cultures, white

commonly connotes freshness and purity; in Eastern cultures, white can be a symbol for

death. Fundamental symbolism can be radically different across cultures. Testing with

real users is the best way to avoid these pitfalls.

Forum Nokia describes characteristics for four of the major mobile markets—China,

Europe, India, and the US.

China is a market composed of heavy mobile users. There is more emphasis on leisure

time use of the mobile, and user interfaces tend to be more busy and crowded. Chinese

users also are typically heavy users of the mobile internet.

Europe is a more mature market for mobile. The market is composed of many different

countries, ethnicities, and languages so there can be much variation. Generally the

design aesthetic in Europe calls for simplicity, clarity, and a logical flow.

India is a diverse marketplace with huge potential. It is the largest market for entry-level

devices. Therefore, there is a preference for applications with lightweight technical

requirements. The mobile phone can be the user’s first real contact with technology.

Like China, the “more is more” principle applies.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 2: Designing Your Application 15

The US is a massive mobile market recently caught up with the rest of the world in terms

of mobile data and mobile application usage. American pop culture spreads rapidly

around the world, making the US an epicenter of new ideas and styles. Americans

appreciate ease of use, so that a long list of features sometimes is less important.

Americans also appreciate a good visual and tactile experience.

More detailed analysis of these regions can be found in a series of four Design Update

articles from Forum Nokia at:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-25ACF758-
7658-4A84-9300-93EAD530D33D.html

The Design Process
Now let’s talk about how to actually design the application. It is a big project, so how do

we get started? In this section, we discuss a formal set of steps that you can go through

to design your application. This section is based on information presented by Forum

Nokia. More complete information can be obtained from the web site:

www.forum.nokia.com/Design/Design_process/

When designing your application, you do not need to follow every one of these steps,

but it is still useful to understand the full range of tools at your disposal when designing

your application.

Forum Nokia presents a process with these key steps:

 Getting started

 Design research

 Conceptual design

 Interaction design and prototyping

 Visual and information design

 Testing and evaluation

Getting Started
Why are you building the product? In this phase you outline the basics to understand

what you want to do and why you are doing it. Did you identify a market need that is not

currently being met, or are you planning to improve a product that already exists.

This is also a good time to start choosing your technology approach. Will you use a

native SDK like Qt, or will you use HTML5? Is there a new technology that now makes

things possible that weren’t before?

At this early stage, you should understand what you are trying to accomplish, as well as

the constraints you are under—both business and technical—in order to get it done.

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-25ACF758-7658-4A84-9300-93EAD530D33D.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-25ACF758-7658-4A84-9300-93EAD530D33D.html
http://www.forum.nokia.com/Design/Design_process

CHAPTER 2: Designing Your Application 16

You should understand your target user and the marketplace you are aiming for. You

should also learn about competitors and why your product is better than theirs.

In the next section we talk about research, which will help you better understand the

information you need to move forward.

Design Research
Why do research? It can help you generate or evaluate ideas, clarify your product’s

strengths or potential, understand strengths and weaknesses of competing products,

and understand how your user will use your product.

There are two main types of design research: quantitative and qualitative. Quantitative

research focuses on gathering and analyzing numerical data. The output is usually in the

form of charts, tables, or graphs. An example of quantitative research data collection is

counting the number of times a user does a particular task during the day, such as

checking his calendar appointments.

Qualitative research attempts to cast a wider net and gain a more holistic understanding

of how your product will be used. Some techniques commonly used in performing

qualitative research are observation, interviews, and photographic studies.

Observation, as the name sounds, means to observe someone doing something. This

can be as simple as sitting on a park bench watching how people interact with their

mobile devices. Or it can be more structured observation, such as giving the user a

particular task assignment and seeing how he accomplishes it. For example, you might

ask, “How would you view the vacation photos you took last summer?” Structured

observation can involve shadowing, following behind someone in their day-to-day

activities, or undercover study. In an undercover study, you pretend to be someone for

the sake of observation—a bank customer, for example, to better understand the

process of creating a new account.

Interviewing means talking to people and asking about how they perform a task or use a

product. When interviewing, remember that what people say and what they do can be

very different. Some useful techniques for interviewing are story telling or desk tours. In

story telling, you ask the participant to walk you through some of his activities as though

he is telling you a story. In a desk tour you examine part of the participant’s life much as

you might the contents of his office desk. You walk through each part in detail to try to

gain an insight into the overall desk situation.

Photographic studies mean taking pictures of people, places, and things you are

interested in. Afterwards you can group the photos to make observations and draw

conclusions.

It is also possible to gain much information by researching on the Internet or reading

documentation. This is especially useful for gathering market data and understanding

competitor’s products. Remember, though, that reading information is no replacement

for getting out and talking to real people.

CHAPTER 2: Designing Your Application 17

Remember to document your findings. Also, it is good practice to involve the project

stakeholders in the research process as much as possible from the very beginning.

Conceptual Design
Now that we’ve completed our research, let’s start designing our app. Conceptual

design is the stage where you start thinking about your application’s main features and

flows.

Brainstorming is one technique that can be a good place to start. It also gives you a

chance to involve your entire team in the creative process. To brainstorm, gather all

team members and give them 10 to 15 minutes to design on their own. Then members

share their ideas. In brainstorming, it is important to make everyone feel comfortable to

share ideas no matter how crazy. It is also a good way to generate new ideas and can

foster a sense of ownership and buy-in from the team.

Sketching is a useful technique for communicating ideas. Pick some of the top ideas

from brainstorming and develop those further using sketching. Sketches are quick

drawings that begin to bring the product to life in a visual sense. They can also describe

technical aspects, such as flows or diagrams.

The next step is to define scenarios, also called use cases. Scenarios tell a story of how

your product will be used. A scenario for an e-mail application, for example, might be

“create a new e-mail and send it to someone in my contacts list.” These are very useful

in understanding how all the parts fit together to allow the user to accomplish a

particular task. They are also useful to help team members understand how the product

will really be used. This will help the developer make better decisions when designing

and building the product.

The goal of conceptual design is to synthesize business goals, initial ideas, and research

into a product idea. If you have a good idea of what the product is and how it fits into

the marketplace, then it is time to move to the next step in the process, interaction

design and prototyping.

Interaction Design and Prototyping
Interaction design is the next step, a point at which your product or application is

designed in greater detail. Ideally interaction design should be coupled with prototyping.

A prototype is an early implementation of your product or application, one that can

begin to allow real interactions. Prototyping allows you to validate, test, and then evolve

your design based on real feedback.

Interaction design is the act of defining the touch points, behaviors, and interactions

involved with a product. It can include specification of hardware and software controls

and affordances; system logic, including background processes and states; and system

feedback, such as notifications and alerts. It can also include manipulation models, such

as touch or gestures, animations, sounds, and vibrations.

CHAPTER 2: Designing Your Application 18

Good interaction design encompasses these elements:

 Consistency

 Trustworthiness

 Cleverness

 Responsiveness

 Playfulness and pleasure

Consistency is important to ease the user’s cognitive load. Inconsistencies force the

user to think and remember more than necessary, contributing to a more painful user

experience. It is important to build a level of trust with users. Otherwise, they will not

trust your company or brand for future iterations.

Your product should be clever. How do you define a clever product? That’s a good

question with a difficult answer. How does one define a beautiful painting or a fragrant

flower? This gets to the essence of design—yes, design has core elements that need to

be taught and studied, but truly great design is like great art. Throughout this chapter we

give rules and guidelines for building great products, but I can give step-by-step

guidance for creating a clever product only as easily as I could give step-by-step

guidance for creating a great painting or sculpture.

Lack of responsiveness can cause the user to wonder if the application is broken. Most

times the perception of responsiveness is as important as the application’s actual

responsiveness. So even if your application takes some time to perform a task such as

accessing the network or doing a long calculation, it is important to give the user an

indication that the application is doing something and still able to take user input. And

lastly, playfulness is important even for adults. Remember that a mobile device is very

personal and usually carried 24 hours a day. All work and no play does indeed make

Jack a dull boy.

Documentation
Documentation is very important in interaction design. It is useful to communicate your

product vision and helpful to clarify your thoughts when the ideas are being formed.

Documentation specifies how your application should work. It should include

descriptions of application architecture, flows, states, views, data structures and

bindings, components, and content, such as strings, tool tips, and alert text.

Documentation is useful only if people read and understand it, so it should be concise

and should communicate ideas you are trying to express. Remember that a picture is

worth a thousand words, so that it is often better to communicate your ideas with

pictures or diagrams, rather than only text. Some useful types of documentation are

navigation maps, task flow diagrams, wireframes, and prototypes.

Navigation maps are one useful form of navigation, like the one seen in Figure 2–1.

Navigation maps show the hierarchical structure of your application and document the

interconnections between views.

CHAPTER 2: Designing Your Application 19

Figure 2–1. An example navigation map (courtesy Forum Nokia)

Task flow diagrams (shown in Figure 2–2) are another type of diagram used to document

applications. These diagrams document the flow a user can go through to achieve a

certain task. This drawing usually includes decision points where the flow can change

based on system state or the user’s input.

Figure 2–2. An example task flow diagram (courtesy Forum Nokia)

CHAPTER 2: Designing Your Application 20

Wireframes (shown in Figure 2–3) present a visual representation for how the application

will look without specifying the visual or industrial design. Wireframes show placement

of functional and structural visual elements, such as buttons, check boxes, input fields,

scroll bars, and so on. Wireframes show the different application views and also how the

views are related to each other.

Figure 2–3. An example wireframe diagram (courtesy Forum Nokia)

Flowella
Prototypes are perhaps the most useful method to document your interaction design.

They can be used to document your current design and as a means to iterate and

expand the design for the future. Prototypes should be quick to build and quick to

modify, so that new ideas can be evaluated in a timely manner. A complex prototype

can quickly become useless if the design has evolved rapidly beyond what the

prototype can show.

Instead of one large all-encompassing prototype, it may be more efficient to make

multiple smaller prototypes that focus on a single feature or experience of the

application. Furthermore, prototypes do not need to be actual working code. Some

application behavior can be represented and explored using a static visual

representation, such as PowerPoint or even drawings on pieces of paper.

Flowella is an interaction design and prototyping tool available from Forum Nokia. It is

meant for designers and other nonprogrammers to quickly prototype and interact with

UIs during the design and development process. The tool allows you to quickly and

easily add navigation and flow information to visual assets, then play with the resulting

prototype on a desktop simulator or on an actual mobile device using Flash, web

widgets, or even QML. The graphical assets can be anything from simple sketches or

wireframes to production-ready artwork. Flowella allows an easy creation of device-

ready prototypes, so it is a cool way to quickly generate lots of real-world interaction

data.

Let’s take a more detailed look at Flowella by walking through an example. Let’s imagine

we want to design an application to look at data of recent earthquakes. We probably

want to see all the recent quakes displayed in a list. When you touch a single quake, we

CHAPTER 2: Designing Your Application 21

want to go to a details screen that shows more information about that particular event.

Finally, it would be cool to display a map with the location and magnitude of all the

quakes. Let’s call the app Shake. We can get the data from USGS web feeds, but for

now we’re only worried about the UI We’ll talk more about this application when we

implement it using first the QtSDK and again using HTML5. In this section, let’s focus on

the visual and interaction design of Shake.

Installing Flowella
Let’s get started by downloading and installing Flowella. You can get it from Forum

Nokia here:

www.forum.nokia.com/info/sw.nokia.com/id/7557c13f-0b43-4805-85ce-
8414bfbade57/Flowella.html

Flowella is built using Adobe Air, so you need to make sure Air is installed as well. If you

don’t yet have it on your PC, download Air from here:

http://get.adobe.com/air/

Flowella includes the application, a short tutorial, and an example podcast application.

Let’s launch Flowella and take a quick look at the UI. The Flowella UI contains five work

areas:

 Library

 Workspace

 Toolbox

 Top menu bar

 Preview window

Flowella is shown in Figure 2–4 below.

http://www.forum.nokia.com/info/sw.nokia.com/id/7557c13f-0b43-4805-85ce-8414bfbade57/Flowella.html
http://www.forum.nokia.com/info/sw.nokia.com/id/7557c13f-0b43-4805-85ce-8414bfbade57/Flowella.html
http://get.adobe.com/air

CHAPTER 2: Designing Your Application 22

Figure 2–4. The Flowella desktop.

The library is displayed on the right side of the Flowella workspace. This contains the

graphic images that you will drag

 into Flowella. These images are then dragged into the workspace to construct the

flows. The workspace is the large area in the center of UI where you arrange and

connect your views. The toolbox is a floating command box with buttons to zoom in,

zoom out, and preview. The top menu bar gives you access to things like saving your

project and adjusting project settings. Last, the preview window opens as a separate

popup window when you launch a Flowella preview.

Now let’s get started designing Shake.

Create Views
First we need to create our views. In Flowella each view is a graphical representation of

the display. This can be production-ready art or a simple sketch that has been digitized

with a scanner. Flowella applications do not contain any application logic; it is designed

only to prototype user interactions. Flowella can understand images formats in png or

jpg. For Shake, we have four views:

 List view

CHAPTER 2: Designing Your Application 23

 Selector view

 Map view

 Detail view

These four views are shown in Figure 2–5 below. You should save these

images using an easy remember names such as List, Select, Map, and Details.

Figure 2–5. The four views used in the Shake Flowella example.

Create the Project
Let’s now create a new project. Select File New from the top menu. Now, using the

file explorer, drag the images representing the application views that we created above

and drop them into the Flowella library. Do this for all four images.

Next, drag the images from the library to the Flowella workspace. Let’s start by dragging

only the list view. When you define a Flowella project, you need to tell Flowella which

view to launch when the app is started. You do this by dragging the Start Point in the

Flowella workspace (the Start Point is visible in Figure 2–4 previously) to the view where

you would like the app to launch from. For this example, drag the Start Point to the list

view. Finally, drag the details view to the workspace. Now we are ready to connect the

two views together.

Create the Connections
The next step is to connect the views together. This is done by defining hotspots for

each image. A hotspot is an area that when pressed by the user causes another view to

CHAPTER 2: Designing Your Application 24

open. To create a hotspot, first click the view where you would like to create your

hotspot. This should cause the view to become much larger so you can see the detail

more easily. Next, use the mouse to click-and-drag to define a rectangular hotspot area.

Let’s do this by creating a hotspot around the first list item in the list view. This is the

item labeled Oklahoma City Urban Area. After the hotspot is created, it should look

something like Figure 2–6.

Figure 2–6. Creating a hotspot around the Oklahoma City Urban Area list item

After the hotspot is created, mouse over the hotspot to make the controls visible. The

hotspot has three main controls: a button to delete the hotspot, seven resize handles

that can be dragged to resize the hotspot, and a connector. The connector is the dot

with an arrow in the center of the hotspot. This is what you use to assign an action to

the hotspot. These controls are shown in Figure 2–7.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 2: Designing Your Application 25

Figure 2–7. Hotspot controls.

To tell Flowella which view to go to when the hotspot is touched, click on the connector

dot and drag the area to the view that you would like to be activated when the touch

spot is touched. For our example, drag the touch spot for the Oklahoma City quake to

the details view.

TIP: When the view is enlarged, it sometimes will cover the view you would like to indicate as
the target. When this happen simply grab the enlarged view by its gray border and drag it out of

the way to expose the intended target.

Note that because Flowella does not allow any kind of application logic or data

processing, we must manually link one particular item to a static image of details for that

item. This is because Flowella is targeted at prototyping visual interactions and

navigation flow, not full application functionality.

We have created one connection: from a list item to the details view. Now let’s complete

the application flow by creating the following additional connections:

 Connect the title bar of the list view to the selector view.

 Connect the title bar of the details view to the selector view.

CHAPTER 2: Designing Your Application 26

 Connect the back button of the details view to the list view.

 Connect the map and list buttons of the selector view to the map and

list view, respectively.

 Create a hotspot on the map over Oklahoma City. Connect this to the

details view.

Your completed flow should look as shown in Figure 2–8.

Figure 2–8. The completed Shake prototype in Flowella.

Now click on the Preview button in the Toolbox. The preview popup window should

open and let you try your application interaction. Try it out. What do you think? Is this

the type of interaction you would like to see for Shake?

Export and Interact
One of the coolest things about Flowella is that it is so easy to preview your application

on a real device. To do this, you need to export your prototype to a format that can be

installed on a device. The supported formats are Flash, QML, and web widget.

Exporting your prototype is quite simple. Go to the top menu and select File Export.

Here, select the file type you would like to export to: Flash, WRT (the Symbian web

runtime widget format), or QML (also known as Qt Quick and discussed later in this

CHAPTER 2: Designing Your Application 27

book). Select a location and save the files on your PC. That’s it. Copy the files to your

device and you’re ready to go.

TIP: When exporting to Flash, make sure to copy all the files to your device. There are a number
of files created, including images, XML files, and a SWF file. Make sure to copy all of these to

your device. Just click to run.

TIP: When exporting to WRT format, the files are saved as a .wgz formatted file. This file type

can be run on Symbian, but not MeeGo devices.

Visual and Information Design
Visual and information design determines what your application looks like. It includes

designing the layouts, copyrighting, colors, fonts, graphics, icons, animations, and

transitions of your application. The visual aspect of your application is often the first

thing the user notices, so it is important. Strong information design promotes strong

usability of your application. It can highlight and prioritize critical elements, and help

clarify the purpose of UI controls. A beautiful product can enhance your company’s

brand and image and will definitely help to market your product.

Detailed tips on visual design are presented below. This section is based on information

presented by Forum Nokia. More complete information can be found on the Web here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CB5D4F7A-
CA69-49E6-839D-2F7E30641498.html

Screen Size
When designing the visual appearance of your application, consider screen size.

Depending on the device you are targeting, screen sizes can come in a wide variety of

resolutions from 120 x 160 (or less) up to 360 x 640.

Furthermore the physical size of the display is also very important. Consider the three

devices shown in Figure 2–9. All have the same resolution of 320px x 240px, but

because of the difference in screen size, graphics displayed on one can look very

different on another.

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CB5D4F7A-CA69-49E6-839D-2F7E30641498.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CB5D4F7A-CA69-49E6-839D-2F7E30641498.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CB5D4F7A-CA69-49E6-839D-2F7E30641498.html

CHAPTER 2: Designing Your Application 28

Figure 2–9. These three devices have the same resolution, but different physical screen sizes (courtesy Forum
Nokia)

Consider all possible display resolutions and dimensions when designing the visuals for

your application. Test on real devices as much as possible.

Scalable UI
Design your UI to be scalable. Strive to support different screen dimensions to support

multiple current and future devices. Use platform components as much as possible. This

not only helps ensure that your application will scale automatically, but also ensures that

you are using the common design language expressed by the platform-common

components.

Selecting the Correct Orientation
Your application can be designed to use either landscape or portrait orientation. This is

an application specific decision for how best to present to the user. For example, a

movie application is best shown in landscape, while an e-mail application is best used in

portrait.

You can also support both orientations and let the user decide which view is best.

Full-Screen Usage
Use full-screen mode where appropriate for your application. Full-screen mode means

your application takes up the entire screen and does not show any system chrome, such

as battery-level or signal strength indicators or application title bars. In some cases,

such as watching a movie or web browsing, it is desirable to use all available screen real

estate.

CHAPTER 2: Designing Your Application 29

There are three rules for full-screen usage:

1. Use full-screen mode when appropriate.

2. The UI can look different.

3. The visual look may vary, but the application behavior should remain the

same.

Figure 2–10 below shows an example of the Symbian photo application. In this case the

application designers felt it was important to use the entire screen area to display the

photo. The UI does not look like the standard Symbian UI: there is no header and the

controls do not look like standard Symbian buttons or menus. This is a good illustration

where full-screen usage is desired to present great photo viewing to the user, yet the

application functionality is not compromised.

Figure 2–10. The Symbian photo application is an example of full-screen usage

Fonts
Mobile devices typically have limited font support. There is usually one font installed on

the device referred to as the native or device font. When using your browser to display

information, consider that font styling may be limited to the basics of size, color, and

mode (such as bold or italic). Availability of multiple fonts is becoming increasingly

common, but should not be taken for granted.

Pay attention to font size when creating screen designs such as wireframes on your

desktop. Incorrectly sized fonts can easily cause your layout to appear different from

how it will appear on the device.

CHAPTER 2: Designing Your Application 30

Colors
When selecting colors, consider that the mobile device may be used in bright light or

viewed from different angles and orientations. In order to accommodate this, a good rule

of thumb is to select colors emphasizing strong contrast. Another consideration is power

consumption: on devices with Organic Light Emitting Diode (OLED) displays, brighter

colors consume more power, and darker colors use less, so there’s a tradeoff to be

made in selecting colors for contrast.

Avoid using gradients for backgrounds since complex gradients may not appear as

expected.

Color representation can vary across different mobile devices. In working with brand

managers or marketing departments, set expectations that color accuracy may vary. It is

difficult to match Pantone colors on a mobile display. As before, test on as many actual

devices as possible.

Graphics
Levels of graphic format support can vary, so plan your implementation carefully. Think

about image formats in the design phase. Use scalable image formats such as SVG-T

where possible.

An informative presentation with tips on optimizing graphics for mobile can be found

here:

http://sw.nokia.com/id/09102b7a-f5fb-4e1f-b3d0-
e813d6d7c54b/Graphic_Optimisation_v1_0_en.pdf

Animations
Animations can be useful to guide the user’s eye and to help navigation, but they can

also be distracting and slow the user from completing his objective. Be careful to use

animations only when the net result is positive for the user’s experience.

Additionally, be aware that animations can cause your application to perform poorly.

Testing and Evaluation
The last step in the design process is testing and evaluation. Until your product is tested

with real users on real devices, you cannot know for certain whether it is successful. The

mantra here is test early and test often. Test on real devices. Test with real users. Iterate

until your product is perfect!

For more information on testing, we will return to this topic in more detail later in

Chapter 8.

http://sw.nokia.com/id/09102b7a-f5fb-4e1f-b3d0-e813d6d7c54b/Graphic_Optimisation_v1_0_en.pdf
http://sw.nokia.com/id/09102b7a-f5fb-4e1f-b3d0-e813d6d7c54b/Graphic_Optimisation_v1_0_en.pdf

CHAPTER 2: Designing Your Application 31

Additional Topics: Gestalt and Unity
Gestalt is a German word meaning shape or form. Within the context of design, gestalt

refers to a design’s wholeness, which is more than the sum of its parts. Gestalt

emphasizes how the different parts of a design interrelate. Key principles of gestalt

perceptual organization are:

 Similarity: refers to how objects look. Items that appear similar will be

naturally grouped together.

 Proximity: refers to where objects are located. Items that appear near

each other will be grouped together.

 Repetition: a repetition in positioning, size, color, or shape creates a

natural unity

 Figure-to-ground relationship: discusses the relationship between the

figure, or foreground, and the ground, or background. The eye

naturally focuses on the figure, but it is important to keep the figure

and ground balanced.

 Closure: the mind supplies the missing elements to naturally complete

an image or grouping.

 Continuation: means that once you start looking in a particular

direction you will continue looking in that direction until you see

something significant.

We don’t have space to cover the gestalt principles in detail in this book, but an

excellent introductory article can be found at the Forum Nokia web site here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CC587793-
848B-4CA8-B43A-C58CC1D55A08.html

Unity is another important goal in design. Unity means the entire application fits together

as one. To achieve unity, gestalt principles are applied to these design elements:

 Space: is limited on the mobile display, yet it is important to avoid a

cluttered, overcrowded display.

 Visual flow: ensures the user is guided through your application in a

natural flow. Do not force the user to move from group to group in an

unnatural direction.

 Dominance: describes where one element visually dominates the

others on the display. Use dominance to grab the user’s attention

such as the active icon in a menu.

 Hierarchy: establishing a strong visual hierarchy can be extremely

useful in indicating relationships between elements and in guiding the

user through the content in a consistent and predictable manner.

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CC587793-848B-4CA8-B43A-C58CC1D55A08.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-CC587793-848B-4CA8-B43A-C58CC1D55A08.html

CHAPTER 2: Designing Your Application 32

 Color: is extremely important for conveying information such as

grouping or distinguishing between functional elements. Ensure color

is used judiciously so that it does not become a distraction.

 Images and graphics: are extremely important for concisely conveying

information. But be focused on the information you are trying to

convey. Avoid complex images on a small display.

 Animations and transitions: are very useful to help guide the eye or

establish context within an application. However, when overused

animation can distract and even slow the user from completing his

desired task.

Again, for excellent coverage of Design Unity, please look at the Forum Nokia web site

here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-EDA69912–
C994-4742–B936-AF5C3D855C41.html

We have presented a good, generic multistep framework for how to approach the

product design phase of your application. Now let’s jump into some specific tips guiding

you toward good usability and visual design.

Usability Guidelines
The mobile device is used differently from a desktop device. In this section we present

some design guidelines you should follow to make your application as usable as

possible. This section is based largely on information from Forum Nokia. More complete

information can be found here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-D35E7FD1-
F4DC-4AF1-A53D-DC6E42DE456C.html

Navigation
Navigation is the process by which the user travels through your application to get

information or perform a task. Using a mobile device, we often have only the user’s

partial attention so navigation should be simple. Unlike a desktop, we cannot have

multiple views at one time, so there is a temptation to lead the user through a long series

of screens to get to where he wants to go. This should be avoided.

Don’t force the user to configure things that can be configured automatically. A clever

application can learn from the user’s behavior, and additionally allows the user to

manually change options that the system incorrectly assumed.

Plan for user customization.

Consider whether your target device is touch (the user can interact with the device by

touching the display) or non-touch (the user must use hardware keys to interact with the

device), or a hybrid combining both. This will fundamentally determine the navigation

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-EDA69912%E2%80%93
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-D35E7FD1-F4DC-4AF1-A53D-DC6E42DE456C.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-D35E7FD1-F4DC-4AF1-A53D-DC6E42DE456C.html

CHAPTER 2: Designing Your Application 33

paradigm for your application. In recent times, touch UI has become preferred. A

common case is to design for touch to be used for primary navigation, with hardware

keys to be used as task accelerators. An example of this is the red end key. Typically, to

exit an application, you choose the “exit” menu sub-option from the “options” menu.

Pressing the red end key is a shortcut path to the same exit functionality.

When designing touch areas for your application, ensure the touch targets are large

enough to be easily selected. Historically, the Symbian S60 UI style provides the

following guidelines:

 7 x 7 mm with 1 mm gaps for index finger usage.

 8 x 8 mm with 2 mm gaps for thumb usage.

 List type of components should have minimum of 5 mm line spacing.

These guidelines still apply today with Qt on Symbian and MeeGo.

Entering Information
Entering information with a keypad is obviously more difficult than with a desktop

keyboard. Keep in mind that the user has multiple avenues to enter information on the

mobile. GPS sensors can be used to enter position information. The camera can be

used to enter information such as by scanning a 2D barcode. The camera can also be

used to enter information by taking a picture. Nokia’s Point and Find, for example, takes

input from the camera and returns new information about the photographed object.

Motion sensors can be used as a method to input information by sensing gestures.

When designing for keypad entry, consider that some devices will have a numeric

keypad, while some will have a complete alphanumeric keypad. And, of course,

consider that now touch is an extremely popular modality on today’s modern mobile

handsets. Depending on the target device, design for touch as a primary input, with

keypad entry an optional accelerator.

To make it easier to enter information, you should try to automate data entry as much as

possible. Try to automatically populate fields where appropriate. For example, the

contact database can be queried to autocomplete entries or fill in additional fields.

Do not force the user to re-enter information after navigating back and returning to a

data entry screen.

Finally, consider different languages and methods for input when designing your

application. Chinese, for example, will have methods for information entry much different

from Western languages.

CHAPTER 2: Designing Your Application 34

Information Presentation
On a mobile device, space available to present information is limited, so you must

carefully think through how information is presented to the user. Consider the overall

function of your application and decide how best to organize and order the information

so that it is convenient for the user.

Consistency is important. Use colors, graphics, and icons consistently. Use them in a

way to support the user’s ability to perform a task or extract some information. Avoid

overuse of graphics that instead cause distraction. Do not use icons to replace essential

information conveyed as text.

Consider whether to present your application in portrait or landscape—this will depend

largely on the specifics of your application design. In a movie application, for example, it

might make sense to force the user to use a landscape layout since this better fits the

native aspect ratio of the movie. In many cases it may be better to support both portrait

and landscape and let the user select either by physically rotating the device or using

other methods.

Connectivity
Many useful applications will take advantage of connectivity to exchange information

over the network. However, connectivity is a double-edged sword. The device can easily

lose network coverage, and in some cases the user may be charged to access the

network. Furthermore, connecting over the network can be slow.

So design your application to use network connections as efficiently as possible. Allow

the user to manage the connections when appropriate. Ensure that sufficient status

information is presented to the user about the connection state. Design your application

to gracefully handle on and offline modes.

Usability for Enterprise Applications
Enterprise applications are typically administered by IT departments. Remember to build

in features useful for administrators. This includes providing features that allow

administrators to configure applications and installation packages, and features for

remote administration. It is useful if the administrative interface can be integrated into

existing administrative tools.

Usability and Security
Because the mobile device is so personal, sensitive information stored on the device

must be treated with care. Use passwords and encryption where appropriate. Back up

critical data if possible. Allow the user to delete all sensitive information when desired.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 2: Designing Your Application 35

Advertising
Advertising is becoming increasingly popular in mobile applications. When placing

advertising, consider that it should not be obtrusive to the user. Placing ads in natural

application breaks or screen white space is a convenient way to insert it without

affecting the application flow too much. Avoid using pop-ups and floating ads since

these can be annoying to the user. Make sure the ads do not slow the user from

accomplishing the application’s primary task. Don’t greet the user with an ad when the

application first loads. It is better to draw the user into the application, then provide an

advertisement within a relevant context. Be judicious with full-page advertisements.

Ads should clearly indicate that something is being advertised and be different from

application content. Consider creating an easily recognizable look for advertising

content. Take advantage of context to provide advertising content more meaningful to

the user.

Platform Components
Use platform components whenever possible. These have been developed specifically

to implement the design paradigms mandated for that platform. Using the platform

components also gives you additional technological benefits, such as support for

scalable UI and theming.

Information on platform components for Symbian is available here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-830CD3A9-
E6AC-40C2–9452–B3009D4F153F.html

And information for the MeeGo/Maemo platform is available here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3A084AEA-
3683-45DD-AE8A-B67AF6F44FDB.html

Checklists
Is your usability design complete? The Forum Nokia web site has a comprehensive list

of checklists you can use to evaluate the quality of your usability design. These lists are

specifically designed to meet the quality requirements of different certification programs.

The full set of checklists is available here:

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3EE138E6-
1364-4293-9C3B-1B4BD62F176E.html

http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-830CD3A9-E6AC-40C2%E2%80%939452%E2%80%93B3009D4F153F.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-830CD3A9-E6AC-40C2%E2%80%939452%E2%80%93B3009D4F153F.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3A084AEA-3683-45DD-AE8A-B67AF6F44FDB.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3A084AEA-3683-45DD-AE8A-B67AF6F44FDB.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3EE138E6-1364-4293-9C3B-1B4BD62F176E.html
http://library.forum.nokia.com/topic/Design_and_User_Experience_Library/GUID-3EE138E6-1364-4293-9C3B-1B4BD62F176E.html

CHAPTER 2: Designing Your Application 36

Summary
In this chapter, we presented a thorough overview for designing your application. We

discussed how designing for mobile is different from designing for desktop applications.

Next, we presented a series of steps you can follow in designing your application.

Finally, we presented a series of concrete tips for good usability and visual design. You

should use this chapter as a framework to build more information on good design.

In the next chapter we get our feet wet using actual tools for software design and

development.

 Part

Developing Your
Application

II

39

39

 Chapter

Working with the
Nokia Qt SDK
Just as desktop software development often uses an integrated development

environment (IDE) with a compiler, linker, headers, and libraries, so does development

for mobile terminals. Nokia provides such an IDE for performing Qt development. The

Carbide.c++ IDE is still available for C++ development as well.

In this chapter we provide a tutorial that shows you how to get, install, and use the free

IDE for Qt software development. After reading this chapter, you will be able to install

the Nokia Qt software development kit (SDK) for your work, begin using the tools and

designers available to create your application’s user interface, and compile and load

your application on to a Nokia device.

Choosing an IDE
While desktop and mobile platforms share the common need for a tool chain, including

an editor, compiler, linker, headers, libraries, and debugger, there’s a key difference:

choice. Depending on the desktop platform you’re familiar with, you may have a wide

array of tool chains (think Qt Creator, GNU, Microsoft Visual Studio, and so on). This

choice may have some benefits—one tool chain may provide a better debugger, for

example, or a faster compiler—but forces you to actively choose (or simply accept the

decision made by your peers or manager). By contrast, Nokia provides the equivalent of

one-stop-shopping: the IDE you choose for developing on Nokia platforms depends

solely on the technology your application will use. If you plan to use Qt to build your

application, you will use the Nokia Qt SDK.

Introducing the Nokia Qt SDK
For some time, Qt has provided its own IDE, including an excellent source code editor,

integration with existing compiler, debugger, and linker tools. Called Qt Creator, it is

itself written in Qt, although it has some features that make using the environment quite

3

CHAPTER 3: Working with the Nokia Qt SDK 40

comfortable for anyone familiar with Eclipse. More recently, Nokia began providing its

own mobile-centric version of Qt Creator, called the Nokia Qt SDK. Available on

Macintosh, Windows, and Linux, the Nokia SDK provides the standard suite of services

for an IDE, as well as:

 A run-time simulator of the handset GUI, simulating display size, soft

keys, GPS, and other device features.

 Cross-compiling to Symbian, Maemo, MeeGo, the Qt simulator, and

Qt on the host platform (the Linux and Macintosh versions of the tool

require remote compilation for Symbian, however).

 Source-level debugging on the Qt simulator, native Qt, and device.

 A visual GUI builder derived from Qt Creator.

 Usage of Qt’s project files for meta-makefile management.

In practice, most IDEs today offer the same set of features, and learning to use an IDE is

mostly a matter of figuring out which menu contains which commands, and learning (or

rebinding) which function keys do what. The Nokia Qt SDK is no different; if you’ve used

Eclipse or Visual Studio, you will feel right at home in a matter of hours.

The Nokia Qt SDK is truly cross-platform, running on Mac OS X 10.6 or later, Linux

(Nokia recommends Ubuntu), or Windows (Windows XP Service Pack 2, Windows Vista,

or Windows 7). The installation is not small. Expect it to consume about 4 GB of disk

space, and it’ll happily consume all the RAM and processor you can throw its way.

There are some limitations on the Linux and Mac OS X version of the SDK, so be sure to

check the documentation; these limitations center on the ability to cross-compile for

Symbian and the SDK’s use of a Nokia-hosted compilation cloud to enable cross-

platform development to Symbian on these platforms. (One of us is happily running the

Nokia Qt SDK in a virtualized Windows XP machine on his Mac OS X workstation, so

virtualization is also an option.)

The Nokia Qt simulator is an essential part of the SDK that is written as a Qt runtime,

emulating key device features. These include device status (such as battery, network

access, and screen orientation) and device data (including device location and contacts

data), as well as a device’s specific Qt implementation of the screen and user interface.

Not a device emulator and not a device skin, the simulator provides a fine balance

between start-up and debugging performance with the ability to do things such as script

device data with JavaScript to enable most debugging right on your development

workstation. This eliminates much of the need for source-level debugging on your

hardware target, which is still supported for the occasional pesky bug that materializes

only on hardware.

CHAPTER 3: Working with the Nokia Qt SDK 41

Getting Started with the Nokia Qt SDK
If you’ve used Qt Creator in the past, you will find the Nokia Qt SDK very easy to work

with. Folks familiar with other IDEs—say, Microsoft Visual Studio—may suffer moments

of disorientation at first, but at its heart, the Nokia Qt SDK is simple enough that you can

become proficient in a manner of hours. Here’s a screen-by-screen walkthrough of the

Nokia Qt SDK 1.0 to get you started.

Installing the Nokia Qt SDK
Nokia provides web-based and full installs of the Nokia Qt SDK at

/www.forum.nokia.com/Develop/Qt/Tools/. (If it’s not there, click the Develop tab,

then the Qt item in the dropdown menu; once there, choose Tools, and follow the links

to the Nokia Qt SDK’s download page.) The online installers are pretty small (on the

order of 20 megabytes or so), but what you save in the initial download you pay later

when the installer downloads the half-gigabyte to gigabyte of tools, headers, and

libraries you need for a full installation. The installer itself is easy to use, but budget ten

or twenty minutes for the installation; as you might imagine, there are a lot of files and

tools to install.

Once you complete the installation and run the Qt SDK for the first time, you see a

screen that looks like Figure 3–1. Before you dive in and begin cutting code, however,

let’s take a few minutes and configure your test hardware. In the discussion that follows,

we assume you’re working with a PC running a variant of Microsoft Windows; Mac OS X

and Linux instructions can be found with the Nokia Qt SDK for those platforms and are

similar in substance:

 Install Ovi Suite so that your device and workstation can talk if

necessary (not required for Mac OS X or Linux, or Maemo devices).

 Install Qt for Symbian on Symbian devices.

 Install a debugging shim on all devices.

 Enable the connection between your workstation and phone.

http://www.forum.nokia.com/Develop/Qt/Tools

CHAPTER 3: Working with the Nokia Qt SDK 42

Figure 3–1. The Nokia Qt SDK

While the process sounds complicated, it takes only a few minutes.

Configuring a Symbian Device to Work with the Nokia Qt SDK
With your Symbian device should have come a copy of Ovi Suite, the software that

enables a Symbian phone to communicate with your PC. Assuming you’ve installed it,

you need only follow the links in the Nokia Qt SDK folder in your Start Menu to install

SQLite, Qt for Symbian, and TRK, the Symbian debugger, and you’re set (Figure 3-2).

With the Nokia SDK installed, go to the Start menu and choose Start ➤Nokia Qt SDK

➤Symbian and select these packages.

As you do this, you should have about 20MB free on your Symbian device. As I write

this, commercially available devices don’t have Qt installed, so it’s important that you

install everything. By the time this book reaches you, newer devices will have Qt

installed, and you need to install only TRK. If you’re unsure, check Forum Nokia for

specifics about the hardware that you have.

TRK is the debugging stub for Symbian development, and you’ll need to have it running

anytime you want to debug your application (including just downloading your app more

quickly than packaging the application and installing via the application installer).

Connect your device to your workstation using USB, and then launch TRK on the

device. Choose “Settings,” and then choose “USB.”

CHAPTER 3: Working with the Nokia Qt SDK 43

Figure 3–2. Installing TRK on Symbian

TIP: TRK also supports a Bluetooth connection, but the support may or may not be available with
the version of the Nokia Qt SDK you have. It’s worth checking into, although for long debugging
sessions, we recommend that you stick with USB, which usually keeps your handset powered as

well.

Configuring a MeeGo Device to Work with the Nokia Qt SDK
With MeeGo, the work is a little more involved, because you’re going to use MeeGo’s

networking stack to connect via TCP/IP over USB or WiFi to your development

workstation. Follow the steps included with the SDK, which should show you how to:

 Install the latest Ovi Suite or PC Connectivity Suite from Nokia for USB

support on Microsoft Windows.

 On the MeeGo device, select the Application Manager, then

Download, then Development, then find Mad Developer and install it.

This client application lets you configure a network connection to your

development workstation.

 Launch Mad Developer. You will see a screen similar to Figure 3–3.

CHAPTER 3: Working with the Nokia Qt SDK 44

To connect using WiFi, activate WiFi on your MeeGo device, and make

sure you’re connected to the same network as your development

workstation. Note the IP address in the wlan0 row of Mad Developer.

To connect using USB, touch “Edit” on the USB row and confirm by

touching “Configure.” Note the IP address in the usb0 row.

You’ll use Mad Developer any time you want to connect your device to the Qt Creator

SDK. Later, in the section titled “Compiling and Running Your Code on a Device,” we

show you how to complete the workstation half of the connection in the Nokia Qt SDK.

Figure 3–3 shows Mad Developer in action.

Figure 3–3. Mad Developer

TIP: Wireless debugging via WiFi is really cool, and works as long as you can ping between your
development workstation and the device (that is, they need to be on the same logical network,
but not necessarily the same physical network). However, USB is often a trifle faster, and

connecting to USB usually powers your handset, too.

Finding Your Way around the Nokia Qt SDK
Returning to Figure 3–1 for a minute, let’s get oriented with how the IDE is organized.

When you first start the SDK, the large empty area with the Qt Creator box in the middle

is a content area, where you spend most of your time editing visual layouts, source files,

debugging, and so forth. Along the left hand side are selectors to different views the IDE

can provide. (If you’ve used workspaces in Eclipse, the purpose is the same.) From top

to bottom, the views are:

Welcome lets you pick a tutorial, a recent project with which you’ve

worked, an example project, or create a project from scratch. This

view actually has three panes: one for getting started, one to let you

quickly load recent projects, and one that provides news and support

from the Qt Labs blog, Forum Nokia, and other sources.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 3: Working with the Nokia Qt SDK 45

 Edit lets you do just that: edit the text of a file with a syntax-

highlighting text editor.

 Design lets you create the visual layouts for your screens with a drag-

and-drop editor that lets you build arbitrarily complex widget

hierarchies. You do this using the Qt Designer, an integral part of the

Nokia Qt SDK.

 Debug lets you start and debug your application in simulation or on a

tethered device.

 Projects lets you work with the build configuration and other

packaging for your application

 Help provides help not just for the IDE, but also for all of Qt, including

Qt Mobility.

At the bottom of the left-hand side are progress annunciators for things like source code

indexing, as well as four buttons:

 The target selector, which lets you choose the build target (device,

simulator, and so on).

 The run button, which triggers a compilation if necessary and executes

your application.

 The debug button, which triggers a compilation if necessary and

executes your application in the source level debugger.

 The build button, which lets you trigger a compilation of your package.

Creating a Qt Application
Let’s create our first Qt application—“Hello World,” Qt style.

1. In the Welcome view, click “Create Project…”

2. In the dialog that appears (Figure 3–4), choose “Mobile Qt Application”

and click “Choose…”.

3. In the next dialog (the first of the creation wizard, Figure 3–4), name your

project and choose a directory where it should be stored.

CAUTION: Historically, some of these tools have not dealt well with spaces in paths. For best
results, place your projects in directories with no spaces in the paths. Although it seems
somewhat crude these days, one of us prefers just dropping new projects in a clean set of
folders on the root of the boot or a secondary drive. It’s easy to do, easy to find, and easy to back

up or take with you if necessary, and it’s guaranteed to work with just about any source-code

control system you can find.

CHAPTER 3: Working with the Nokia Qt SDK 46

Figure 3–4. Naming your project

4. After naming your project, choose the targets for your application—

simulation, Symbian, and MeeGo—from the next panel

5. If you want, rename the main class and files, as we did (Figure 3–5).

Figure 3–5. Entering information about your main and class files

CHAPTER 3: Working with the Nokia Qt SDK 47

6. Configure source-code control for your project if you want it, and click

“Finish.” You will see the Design view, as Figure 3–6 shows.

Figure 3–6. The Qt Design view

Let’s add a label containing the text “Hello World” and a button, stacked vertically.

1. From the bottom of the palette on the left side of the window, drag a

Label to the grey content window.

2. Right click the label, choose “Change plain text…” and type “Hello

World”.

3. Drag a push button from the middle of the palette on the left side of the

window and drop it on the gray content window.

4. Right click the button, choose “Change text…” and type “Hello to you

too!”

5. Right click the large gray rectangle on which you’ve been dropping

controls and choose “Lay Out Vertically.” You’ve just assigned a layout
manager to the widget that the IDE provided when it created your

window.

CHAPTER 3: Working with the Nokia Qt SDK 48

TIP: There’s a big difference between having the layout assigned to the main window’s widget
and putting a layout manager (one of the layouts at the top of the palette on the left) on the
widget! The former works wonders, generally doing what you’d expect. The latter doesn’t, and

leads to endless frustration when the layout doesn’t appear to do what you want. Worse, the
layout options in the right-click menu only appear once you’ve started putting child widgets in a
widget, which is usually about the time you’re getting very confused because the layout doesn’t

seem to be working. Don’t panic, and remember the sequence: first, add child widgets, then

right-click the containing widget. and choose the desired layout.

6. From the palette, drag a vertical spacer and drop it between the label

and button.

You should now see something like the contents of Figure 3–7.

Figure 3–7. Application design.

Before continuing, let’s see what the IDE has put together for us behind the scenes.

Choose the edit view, and double-click “HelloWorld.pro” from the left hand column. You

should see something like the contents of Listing 3–1.

CHAPTER 3: Working with the Nokia Qt SDK 49

Listing 3–1. The application’s project file

#---

Project created by QtCreator 2010-08-04T19:40:08

#---

QT += core gui

TARGET = HelloWorld
TEMPLATE = app

SOURCES += main.cpp\
 helloworld.cpp

HEADERS += helloworld.h

FORMS += helloworld.ui

CONFIG += mobility
MOBILITY =

symbian {
 TARGET.UID3 = 0xec6083f7
 # TARGET.CAPABILITY +=
 TARGET.EPOCSTACKSIZE = 0x14000
 TARGET.EPOCHEAPSIZE = 0x020000 0x800000
}

This is your application’s project file (also called a pro file, because its suffix is .pro), and

defines the libraries your application links to, the source files that need to be compiled,

and so forth. As we go along in the book, you’ll learn to make small, targeted changes to

this file (say, to add a library or an application icon), but in general, you probably won’t

need to edit it much, because the IDE does most of the heavy lifting. The project file is

the input to qmake, Qt’s metamake utility is responsible for analyzing project

dependencies and coming up with a make file used by a specific platform’s SDK, such

as MinGW, the Symbian build chain, or the GNU cross-compilation tools for MeeGo. It’s

declarative in that you specify values for variables (such as SOURCES, a list of the source

files from which your application builds), and qmake figures out the rest.

Next up is the “Forms” folder, which contains one file: the file you’ve been working on in

the Qt Designer. The Qt Designer creates the XML you see in the form files that bear the

.ui extension. The Qt Designer represents the interface as XML, so you shouldn’t edit

the XML directly. At compile time, these files get converted to C++ class declarations for

your UI. That gives you the flexibility of a visual designer at development time and the

performance of carefully tuned C++ at run time, so that there’s no latency in setting up a

complicated application UI.

TIP: The IDE won’t let you edit the XML directly, but of course with Emacs and caffeine, you can

do whatever you want. We don’t advise it.

CHAPTER 3: Working with the Nokia Qt SDK 50

The class header file “helloworld.h” defines a single QObject, extending Qt’s QMainWindow

class (Listing 3–2).

Listing 3–2. The application’s HelloWorld class.

#ifndef HELLOWORLD_H
#define HELLOWORLD_H

#include <QMainWindow>

namespace Ui {
 class HelloWorld;
}

class HelloWorld : public QMainWindow
{
 Q_OBJECT

public:
 explicit HelloWorld(QWidget *parent = 0);
 ~HelloWorld();

private:
 Ui::HelloWorld *ui;
};

#endif // HELLOWORLD_H

The application’s main window contains a central widget, which holds the controls for

your application’s user interface. (As you’ll see in Chapter 6, you can actually swap in

and out different collections of widgets, letting you show different screens in the same

window.) The Qt Designer constructs this widget from the controls you’ve drawn out,

using the XML and the automatically generated C++ we mentioned previously. This

declaration of the user interface is done in your application’s Ui namespace; as you see

in Listing 3–3, you can access the compile-time-generated user interface components in

that namespace.

Listing 3–3. The implementation of the helloworld class

#include "helloworld.h"
#include "ui_helloworld.h"

HelloWorld::HelloWorld(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::HelloWorld)
{
 ui ->setupUi(this);
}

HelloWorld::~HelloWorld()
{
 delete ui;
}

There’s a direct binding between the Designer’s controls and your source code; if you

return to the Designer, select a widget (say, the push button) and look at the right-hand

side of the window (Figure 3–7). You’ll see a list of properties for the widget you’ve

CHAPTER 3: Working with the Nokia Qt SDK 51

selected, including the object’s name. You can access the widgets in the Ui:HelloWorld

class directly just by referencing their name, like this:

ui ->pushButton ->setText("Yo.");

Try this in helloworld.cpp, just after the call to ui ->setupUi(this). (You may need to

compile your application first, if you’re relying on name completion in the source editor.)

At this point, it’s worth a quick compile-build cycle, just to see what you’ve created.

Click the green Run button (the green arrow) at the bottom of the left-hand pane, and

the IDE will compile your application and start it in the Qt simulator (Figure 3–8).

Figure 3–8. Hello World, compiled and running in the Qt Simulator.

Before you continue, we urge you to stop, put down the book, and spend an hour or so

experimenting with Qt Designer and this sample application. Try:

 Adding more widgets to the main window.

 Adding an empty widget to the main window, and then dropping

widgets on it.

 On the empty widget, set different layouts and see how things are

positioned.

 Using the property inspector or source code completion in the editor,

look at the properties different widgets bear. Try changing some of

them, either at compile- or run-time.

CHAPTER 3: Working with the Nokia Qt SDK 52

 Place a breakpoint in HelloWorld’s constructor by clicking next to the

line numbers, and run the debugger by clicking the run arrow with the

superimposed bug on the left.

 Anything else that comes to mind.

The Qt Creator is a powerful tool, and with it you can accomplish an awful lot right out of

the box—without writing a line of code. Think of the time you spend playing with it now

as a small investment that will reap rewards later when you sketch out or build your killer

application’s user interface.

Compiling and Running Your Code on a Device
Before we get to the nitty-gritty of running your code on a device, let’s spend a couple

more minutes looking at the Qt Simulator. The simulator has two windows—the window

showing what your application will look like on the device, and a second window that

lets you control the behavior of the simulator itself. This second view is divided into

several auto-hiding panes; choose the View pane, open it, and try choosing a different

device or adjusting the zoom level. As we write this, you can simulate Maemo, Symbian

touch-enabled devices, and non-touch devices, which together span Nokia’s platforms

that support Qt. Other panes let you simulate various properties of the device, such as

its battery level, position, network availability, contacts in the contacts database, and so

forth. Much of this is important when testing applications that use Qt Mobility, which we

discuss in Chapter 5.

Returning to the IDE, choose the Projects icon from the left-hand pane, and see the

different build configurations for your project (shown in Figure 3–9).

CHAPTER 3: Working with the Nokia Qt SDK 53

Figure 3–9. Setting build configurations for your project

You configure a specific build target here; for example, let’s look at getting your code up

and running on a MeeGo device. (First, be sure you’ve installed Mad Developer on your

MeeGo device.)

1. In the Project view, choose “Maemo.”* You can also choose this from

the build target selector below the view buttons in the left-hand pane.

2. Start Mad Developer on your target device.

3. Press “Developer Password” in Mad Developer.

4. In the Nokia Qt SDK, go to the Tools menu and select Tools ➤Options…

➤Projects ➤Maemo Device Configurations ➤Maemo Emulator†.1

5. Click “Add,” and name your configuration meaningfully (perhaps “WiFi”).

6. Enter your device’s IP address (from Mad Developer) in the Host Name

field.

7. Enter the password shown in Mad Developer in the Password field.

* Newer versions of the Nokia Qt SDK may rename this tab “MeeGo.”

† Again, this may be named “MeeGo.”

CHAPTER 3: Working with the Nokia Qt SDK 54

8. Click “Test” to test the connection.

9. Click “OK” to save the settings.

10. Click the “Run” button.

After a short pause while the IDE rebuilds your application for MeeGo, you’ll see the

application running on the device.

The device’s developer account and password work well if you’re only going to do a

quick test with a device, but for regular work, you’re much better off creating a secure

shell (SSH) key pair and installing the key on the device. To do this:

1. Return to the Tools menu’s Maemo Emulator options.

2. Create a new configuration and ensure that the “Key” authentication

type is selected.

3. Click “Generate SSH key… ” and save the public and private keys

somewhere. (You’ll want to guard the private key, of course).

4. Choose “Deploy Public Key…” and choose the public key file you just

created.

5. Change the configuration to use the one you just created.

Running your application on Symbian devices is even easier:

1. Choose “Symbian Device” in the Projects view or target selector.

2. Connect your device to your development workstation using a USB

cable.

3. When the device prompts for USB mode, select “PC Suite” or “Ovi

Suite” mode.

4. On the device, launch TRK. Ensure that the screen reads “Status:

Connected” over USB.

5. Click the “Run” button.

The Qt IDE will recompile your application for Symbian, copy the application to the

device, and start it.

Debugging Your Application
For developers today, support for debugging is as important as cross-compilation or

any other aspect of the tool chain. While mobile developers have long used tricks such

as logging to memory, reserving a few pixels on the display for status, or playing sounds

at critical points in code to determine code flow, the Nokia Qt SDK relegates these tricks

to the past with a state-of-the-art source-level debugger you’ve probably used in

desktop development or on other mobile platforms. You can place breakpoints where

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 3: Working with the Nokia Qt SDK 55

execution stops, examine memory and variables, and step into or through routines,

letting you inspect program state a source line at a time. Debugging works across all

hardware targets; if you’ve configured the Nokia Qt SDK to download and launch your

application on your target device (see the previous section), you’ve done the necessary

work for on-device debugging.

To begin, you need to enter the Debug view in the Nokia Qt SDK by clicking the Debug

icon on the left hand side of the display. You’ll see the Debug view, as you see in Figure

3–10. In this view, the code editor shares space with debugging information. The two

additional panes below the code editor display the stack trace and variable or memory

information, breakpoints, or other information.

Figure 3–10. The Debug view when writing your application and setting breakpoints

To place a breakpoint, click the line of source code where you’d like to stop execution.

Do this on the left side of the margin, just to the left of the source code line number.

You’ll see a red circle with an hourglass appear in that space; that is the breakpoint

indicator. You can place as many breakpoints as you’d like; in Figure 3–10, we’ve

placed one at line 8 of helloworld.cpp, in the constructor just before the user interface is

set up.

To launch a debug session, click the run icon that has the bug overlaid at the bottom of

the left pane, just above the hammer icon that represents the build operation. The SDK

will build and start your application and the target (either the simulator or device) will

execute your application until it reaches the first breakpoint, at which time execution

stops.

CHAPTER 3: Working with the Nokia Qt SDK 56

With execution stopped you can do several things (Figure 3–11). Using the additional

panes below your source code, you can:

 View the stack trace, seeing precisely where execution in your

application has stopped (in the left hand pane).

 View variables in the current stack context, or add global watchers

that show the values of global and static variables elsewhere in

memory (in the right hand pane using the first tab) in the watch

window.

 View a list of breakpoints (in the right hand pane using the second

tab).

 View a list of running threads (in the right hand pane using the third

tab).

Figure 3–11. The Debug View when execution has stopped

You can add additional breakpoints by clicking additional lines of code, or add variables

to the watch window by right-clicking the variable and choosing “Add to watch

window”. Using the row of small buttons above the left hand pane (the pane with the

stack trace), you can:

 Continue execution from the current point by pressing the green

continue button.

 Stop execution of a running application by pressing the stop button.

CHAPTER 3: Working with the Nokia Qt SDK 57

 Execute a single line, possibly executing a function in its entirety.

 Step into the next function call.

 Continue a function until it exits and returns to the caller, stopping

execution immediately after the target executes the return.

 Switch from source-code debugging to viewing individual assembly-

level instructions and stepping on an instruction-by-instruction level.

 Reverse execution flow to rerun a statement. (Of course, depending on

application state, your application may not behave well after this

operation!)

You can also right-click a source line in the editor and choose “Run to line” to continue

execution and run to the specified line, a handy way to skip a bunch of code you know

that works and stop at a potentially troublesome spot without placing another

breakpoint. In the Locals and Watchers pane of the watch window you can also edit

variable contents; this is handy if you see a variable is uninitialized and you want to fix it

at once and continue without having to stop execution, edit your code, recompile, and

debug until you get to the same point again. Double-click the corresponding value in the

value column and enter a new value (string, hexadecimal, or text). Right-clicking a line in

the watch window gives you additional ways to view a variable’s contents, including:

 Opening a memory editor at a specified address, letting you view and

edit individual words in memory.

 Add a permanent watch point to a variable or location in memory, so

it’s always visible in the watch window regardless of execution

context.

 Change the display format of strings from ASCII to Unicode or other

representations.

Wrapping Up
In this chapter, you’ve seen the Nokia Qt SDK, the tool chain Nokia provides for you to

build Qt applications. You’ve used the Qt Designer capacity to draw full user interfaces,

written and compiled a bit of code, and even built an application and ran it on the

device. In the next chapter, we build on the experience you’ve gained in this chapter to

see how to add that business logic that sets your application apart.

CHAPTER 3: Working with the Nokia Qt SDK 58

59

59

 Chapter

Beginning Qt Development
As we write this chapter, Qt is about to enter its second decade as a cross-platform

toolkit for software development. Given that Qt is used in applications from Autodesk

Maya to the VLC Media Player, in applications both proprietary and open, Nokia’s

choice to provide it on Nokia smartphones and mobile computers is well justified. With

support for graphics, multimedia, multithreading, and platform services such as network

and file system access, along with a port of WebKit for application development, Qt

offers a robust collection of APIs and elegant programming metaphor on top of C++.

In this chapter, we give you a whirlwind tour of Qt. While an introduction to Qt can fill an

entire book (and does; see, for example, Johan Thelin’s excellent Foundations of Qt
Development, also available from Apress), one of Qt’s strengths is that its basic

principles are easy to understand and enable you to begin writing real code for real

applications quickly. We begin by providing a high-level view of Qt’s object model and

the benefits it brings to you. Next, we show you Qt’s solution to message passing

between instances of classes, and we follow up with how it’s used in both GUI and non-

GUI development, such as access to the network. With these skills in hand, you’re ready

to learn about how Qt provides an elegant suite of classes to manage application

interfaces using the popular model-view-controller (MVC) paradigm. Finally, we close the

chapter with a concrete example that combines network access with an MVC user

interface to display recent earthquakes from data provided by the United States

Geological Service (USGS).

Understanding the Qt Object Model
While C++ provides a well-understood object model based on classes and inheritance,

it’s by no means perfect. Details including resource ownership, the static object system

at runtime, competing graphical user interface standards, and so forth can make writing

a complex GUI-based application in C++ alone a real headache. Qt begins with C++,

and adds a robust object system that includes:

4

CHAPTER 4: Beginning Qt Development 60

 A powerful inter-object communication system called signals and
slots.

 A hierarchical object ownership system that reduces resource leaks.

 An interface to set and obtain object properties.

 Dynamic casting that works across object boundaries.

 Static resource management (for example, pictures, audio, XML, etc.)

and contextual string translation.

 A template library for collections. These facilities are available to any

class that implements the QObject object, the base class from which

many Qt classes descend. Let’s look at each of these facilities in a

little more detail.

Understanding Signals and Slots
Signals and slots permit objects to communicate through a run-time conduit based on

C++ method dispatch (ensuring that it’s fast) while permitting the developer to provide

the method without needing to subclass or implement an interface (so it’s flexible). It’s

similar in principle to the callback technique used in C and C++, although considerably

more flexible.

Any QObject descendant can emit a signal to indicate the occurrence of an event, such

as a button being pressed, the movement of a slider, the completion of an HTTP

transaction, or other events. Qt permits you to declare what signals a given object can

emit, and lets you declare slots in QObject descendants that you can connect to

appropriate signals.

NOTE: Don’t confuse “event” in the context of signals and slots with Qt’s events, structures sent
to specific methods of widgets, as they’re not the same. It’s easily to get confused at first,
because some things Qt uses signals and slots for (such as a button press) are represented in

other GUI frameworks as an event.

Signals and slots are type-safe, helping reduce potential programming errors. The

coupling between signals and slots is loose, so that an object is free to emit signals as

its state changes, even if no slots are connected to those signals. In the same way, slots

need not be connected; they’re just method declarations with a bit of extra glue in the

class definition to indicate that you may be using the method as a slot, but you can still

call them from your source code like any other method.

At runtime, you connect a signal to a slot using QObject’s connect method, and

disconnect using QObject’s disconnect method. These connections are one-way,

indicating that a signal should trigger a slot; the mechanism may be one-to-many, in

which a single signal is connected to a number of slots, each through an invocation of

CHAPTER 4: Beginning Qt Development 61

QObject’s connect method. We show you a concrete example of how to do this later in

the chapter in the section titled “Using Signals and Slots.”

Making the Most of Hierarchical Ownership
C++, like C before it, relies on you, the developer, to keep track of when your application

allocates memory and when it should release it for reuse. In small applications this isn’t

difficult, but as your application grows in complexity, it gets more difficult. Errors where

you allocate memory and don’t free it cause memory leaks; on constrained devices such

as mobile phones, that can mean the difference between running and crashing as your

application runs out of memory. Worse, large programs can see more insidious

problems, such as using a region of memory after you’ve released it to the memory

manager, which can cause crashes and other aberrant behavior in your application.

To help your application track when it needs to free allocated memory, Qt provides a

hierarchy of memory ownership with most of its classes. When you create an object

instance, you can designate another QObject as the owner (called the parent) of the

object you’re about to create. In turn, when the parent is released, any objects owned by

the parent are also released. For example, to create a button to be released when the

allocating object is deleted, we’d write:

QPushButton* button = new QPushButton(this);

In practice, it’s generally best to use parented objects like this, rather than keeping a

bunch of pointers and releasing them in the parent object’s destructor.

As in other frameworks, it’s common to use a null pointer (with the value 0) to indicate an

object that has already been freed. To automate the process of setting a pointer to null

when the pointer’s memory is released, you can use the QPointer template, like this:

QPointer<QPushButton> button = new QPushButton(this);

For memory allocated in a function’s scope, Qt provides the QScopedPointer, which

automatically deletes the memory associated with the pointer when the scope ends, like

this:

{
 QScopedPointer<QXmlStreamReader> xmlReader = new QXmlStreamReader();
 // …parse the xml here…
} // xmlReader is deleted by the QScopedPointer

QScopedPointers are handy to have around in large functions with multiple exit points,

where it’s likely you’ll forget to free an object. They’re especially useful in doing device

programming, where it’s best to make light use of stack allocation, because the stack

size on mobile devices is much smaller than what you’re used to on desktop or server

platforms.

CHAPTER 4: Beginning Qt Development 62

Defining Object Properties
As we’ve already said, Qt object instances are just C++ instances with a bit of extra

magic glue provided by Qt for things including the signal/slot mechanism and managing

the memory used by parented objects. Another feature of Qt’s objects that descend

from QObject are properties, name-value pairs for attributes of the objects you define. As

with other extensions to C++ that Qt provides, you can define properties in any class

that inherits from QObject. Properties are especially important for things like integration

with Qt Quick (see Chapter 7) and JavaScript in WebKit (see Chapter 8). To declare a

property in an object, use the Q_PROPERTY macro inside the class definition, like this:

Q_PROPERTY(bool focus
 READ hasFocus)
Q_PROPERTY(bool enabled
 READ isEnabled
 WRITE setEnabled)

After specifying the property’s type and name you can specify additional information in

the form of functions that perform a specific action. All properties must have a READ

directive that indicates the function the Qt meta-object system must invoke to obtain the

value of the property. It’s important to remember that you provide that function; all the

Q_PROPERTY does is set things up with the meta-object system, rather than actually

implementing functions like setters and getters.

In addition to READ, you can also provide several other directives defining the property,

including:

 WRITE indicates the method to call to set the value.

 RESET indicates a function that returns the property to its default

context-sensitive value.

 NOTIFY indicates a signal to emit whenever the property changes.

 DESIGNABLE is true or false and, when true, indicates that the

property should be shown in the Qt Creator UI. You can also specify a

member function that returns a bool for this directive. This value

defaults to true.

 SCRIPTABLE is true or false and, when true, indicates that the

property should be available to the scripting system in Qt Quick or

JavaScript. You may also specify a member function that returns bool

for this directive. This value defaults to true.

 STORED indicates whether the property is best thought of as an

independent property rather than one computed from other values

known to the object. Most properties are STORED true, and this is the

default.

 USER indicates whether the property is designated as a user-editable

property for the class (true or false). Typically, there is only one USER

property in a class, by Qt convention.

CHAPTER 4: Beginning Qt Development 63

 CONSTANT, another directive of type bool, indicates that the property

value is constant.

 FINAL indicates that subclasses will not override this property. Note

that this is really a comment to the developer; the meta-object

compiler and run time do not currently enforce this.

In practice, when implementing your class, you generally specify the READ and WRITE

values; occasionally you may come across a property that includes a RESET value.

CAUTION: Don’t forget that the Q_PROPERTY macro provides only the glue between your class
and its properties! You must provide methods that implement the setter, getter, and reset

operations if you specify them in a Q_PROPERTY macro.

Casting at Run Time
You are doubtless already aware of C++’s dynamic_cast, which lets you safely downcast

or crosscast a pointer (returning 0 if the cast fails because of a type mismatch).

Typically, you can’t perform a dynamic cast across a plug-in boundary. Because Qt

provides a cross-platform mechanism for managing plug-ins (in fact, Qt’s support for

different image types uses plug-ins to encapsulate the image format decoders), Qt

needs a type-safe way to crosscast and downcast across dynamic library boundaries.

To do this, Qt provides qobject_cast, a cast operation that’s essentially the same in

principle to dynamic_cast. In general when looking at Qt C++ code, you will likely see

more use of qobject_cast than dynamic_cast, and it’s generally a good idea to prefer it

to dynamic_cast as well in your code. Another benefit to using qobject_cast is

performance, as it uses the meta-object system rather than the C++ run time type

inference.

NOTE: We don’t explicitly discuss creating plug-ins using Qt in this book. If you think you have a
design that would benefit from using a plug-in architecture, take a peek at the Qt documentation

on plug-ins (http://doc.qt.nokia.com/plugins-howto.html is a good place to start).

Managing Resources and Localization
Most applications—even many that have a minimal GUI—require resources as well as

code. Images, sounds, and text—whether programmatic text, such as JavaScript to be

used with the QtWebKit port or the text in the interface for windows, buttons, and so

forth—must be packaged together with your application. Rather than taking the

approach of providing a resource bundle with your executable, Qt takes the approach of

statically compiling any resources into your executable. That way, you don’t have

multiple files to carry around with most applications, nor do you need to depend on a

platform-specific mechanism, such as an application bundle.

http://doc.qt.nokia.com/plugins-howto.htmlisagoodplacetostart

CHAPTER 4: Beginning Qt Development 64

You begin the process by specifying the resources your application requires in a

resource collection file. The resource collection file is just a text file containing XML that

describes the name and path to each required resource, like this:

<!DOCTYPE RCC>
 <RCC version="1.0">
 <qresource>
 <file>images/happy.png</file>
 <file>images/sad.png</file
 </qresource>
</RCC>

These files should already reside in your source tree (keeping them in your change

control system isn’t a bad idea, unless you’re using one that doesn’t handle binary files

well), and the paths you provide to each <file> item are the paths relative to the

resource collection definition file, as well as the paths to the resource when you load the

resource in your application. You can name the resource file anything you like, as long

as the filename ends with “.qrc.”

To include the resource file in your application, just add a RESOURCES line to your project

file indicating the resource file’s location, like this:

RESOURCES += resources.qrc

To use a resource in your application, simply precede the location of the resource with a

single colon and a solidus (“:/”), like this:

QImage image(":/images/happy.png");

(We go into using Qt resources in more detail in the next chapter, in the section “Using

Application Resources.”)

NOTE: Nearly any place you can specify a file path you can specify a resource path, too (just

don’t forget the leading :/ indicator in the path).

Small text resources, like those for labels, application error messages, and so forth, are

best carried separately in a translation file created using Qt Linguist and the localization

utilities lupdate and lrelease provided by Qt. You begin by ensuring that every string

that needs a translation is marked using the function tr, provided by QObject. For

example, when creating a button with the label “OK”, we might write:

QPointer<QPushButton> button(tr("OK"), this);

The tr function is what will load the appropriate locale-specific string at run time; if a

string is unavailable, it will default to the text you invoke it with.

Obviously, the thing you don’t want to do is pick through thousands of lines of source

code looking for tr invocations, so Qt provides lupdate, a utility to do just that. You

must specify only the translation files to create in your project file and run Qt’s lupdate
command on your project file to create translation files (their names will end in .ts)

containing every localizable string in your sources, headers, and Qt Designer files. Thus,

the resource and localization parts of my project file might read:

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 4: Beginning Qt Development 65

RESOURCES = resources.qrc
TRANSLATIONS = myapp_dk.ts \
 myapp_en.ts \
 myapp_fi.ts

(The translation files include the source language name using the ISO-639-1 defined

two-character code for the language.)

Once you create the initial translation files, your translator can use Qt Linguist to add the

translated resources. Once that’s done, you run lrelease over your project to compile

the resulting release files. The resulting files are highly compressed and optimized for

rapid access.

Occasionally, you might want to localize other resources, too—say, adding a localized

version of a specific icon within your application. You do this using the XML in the

resource collection file, by specifying the lang attribute of a specific qresource tag, like

this:

<qresource lang="en">
 <file alias="images/flag.png">images/flag_en.png</file>
</qresource>
<qresource lang="fi">
 <file alias="images/flag.png">images/flag_fi.png</file
</qresource>

Understanding Qt’s Collection Classes
Like the C++ Standard Template Library (STL), Qt provides a number of type-safe

collections through classes. These include sequenced collections through the use of the

templates QList, QLinkedList, QVector, QStack, and QQueue, as well as associative

containers through the use of QMap and QMultiMap, as well as QHash and QMultiHash.

Finally, there is also QPair, which you can use to contain pairs of objects of arbitrary

types.

For most applications needing to keep a list of items, QList is the logical choice. It’s

optimized for fast access, with only moderate penalties for insertion and deletion. If you

find you need better performance for an updating list, try QLinkedList, which trades

accessibility for performance when inserting or removing items. On the other hand, if

QList doesn’t meet your needs for access performance, there’s also QVector, which

stores its items in a contiguous region in memory, providing the fastest access but with

considerable cost when inserting or removing items in the middle of the vector. QStack

and QQueue provide convenience methods for implementing a stack using QVector and a

first-in-first-out (FIFO) store using QList.

Associative maps let you store key-value pairs. Usually, you do this using a hash table;

QHash and QMultiHash provide classic hash tables with arbitrary types for keys and

values. You can also do the same thing with a binary search across a sorted set using

QMap and QMultiMap. The “Multi” in QMultiHash and QMultiMap indicate that these

templates can store multiple values for a single key, giving you additional flexibility.

CHAPTER 4: Beginning Qt Development 66

These collections let you access items individually (using a method such as at or value)

and iterate across the entire contents of the collection. These collections provide both

STL-style iterators and a simpler Qt iterator to permit you to traverse the collection,

visiting each item. The example at the end of the chapter shows you how to enumerate

through the values in a QMap.

It’s worth observing that the QString class, intended to represent strings of characters,

isn’t actually a collection class, but provides similar methods for inserting and removing

characters from a string. The QString class also provides the usual methods you’d

expect of a container of characters, including methods to format non-string values such

as integers or floats, compare two strings, find and replace contents of a string, and so

forth.

Using Signals and Slots
As we mentioned previously, signals and slots play a crucial role in Qt, enabling any two

objects to communicate with each other without the need for clumsy interface definitions

or callback functions. Declaring a signal requires only that the signal’s object be a QObject

and that the signal be declared with the signal’s keyword in the class definition. In a

similar vein, Qt’s classic signal/slot example is that of a counter, wired to a button and

slider. Our simple Qt counter class might look like what you see in Listing 4–1.

Listing 4–1. An example declaring signals and slots

#include <QObject>
class Counter : public QObject
{
 Q_OBJECT

public:
 Counter() { mValue = 0; }
 int value() const { return mValue; }

public slots:
 void setValue(int value);
 void increment();

signals:
 void valueChanged(int newValue)

private:
 int mValue;
}

This class derives from QObject, as you can tell from the class declaration and the

inclusion of Qt’s Q_OBJECT declaration at the top of the class declaration. This pulls in

code generated by Qt’s metaobject compiler. Any class that uses signals or slots must

both be declared as a QObject and include the Q_OBJECT declaration.

CHAPTER 4: Beginning Qt Development 67

WARNING: Forgetting the Q_OBJECT declaration at the top of a class definition that inherits from
QObject is one of the most common mistakes people make when they first start working with
Qt. If you forget, you’ll get an error such as Class declarations lacks Q_OBJECT macro

(or something more confusing depending on what platform you’re targeting) when you compile

your class.

The class definition includes two slots and one signal. You can think of the signal

declaration as an output of the class. When mValue changes, the class must emit that

signal. As such, the signal itself does not have a method body; the prototype indicates

the type signature and name of the signal.

Slots, on the other hand, do have method bodies; the slot’s method body executes

either when a signal connected to it fires, or if another piece of code invokes it. (After all,

a slot really is just a method, albeit with special properties imbued by Qt.) For example,

Listing 4–2 shows the definitions of setValue and increment.

Listing 4–2. Implementing Counter’s slots

void Counter::setValue(int _value)
{
 if (mValue != value) {
 mValue = value;
 emit valueChanged(mValue);
 }
}

void Counter::increment()
{
 emit valueChanged(++mValue);
}

As you can see, the slots perform the expected operation (copying the new value or

incrementing the existing value) and then emit the signal using Qt’s emit statement.

For a signal to notify a slot, you must first connect them. In keeping with the counter

example, you might want to increment the counter every time the user presses a button

and show the resulting count. Listing 4–3 has pseudo code that demonstrates this.

Listing 4–3. Connecting signals to slots

…
QPushButton *button = new QPushButton(“Bump”, this);
QLCDNumber *countLCD = new QLCDNumber(this);
Counter *counter = new Counter(this);
connect(button, SIGNAL(clicked()),
 counter, SLOT(increment()));
connect(counter, SIGNAL(valueChanged(int)),
 countLCD, SLOT(display(int)));
…

When the push button receives an appropriate event from the Qt main event loop, it

emits the released signal. This in turn invokes the counter’s increment slot, which emits

CHAPTER 4: Beginning Qt Development 68

a valueChanged signal accepted by the countLCD’s display slot, which redraws itself to

show the new value provided to the slot.

Performing Input and Output
Many newcomers and those unfamiliar with Qt often think that Qt is only a GUI

abstraction layer, completely overlooking the support Qt provides for networking, file

system access, and other key components in application development. As you see in

Figure 4–1, Qt provides a clean abstraction for working with various kinds of I/O devices,

including files and sockets, too.

Figure 4–1. Qt’s hierarchy of I/O classes

At the root of the I/O hierarchy is QIODevice. QIODevice defines familiar methods for

managing a bidirectional stream of data, including:

 open, which prepares the device for reading and writing data.

 close, which terminates the device’s interface for reading and writing

and may release the system context (such as a file handle) associated

with the instance.

 read, which reads up to the indicated number of bytes and returns

them as an array of bytes.

 readAll, which reads the remainder of the available data and returns

the data as an array of bytes.

 write, which lets you write an array of bytes to the device.

CHAPTER 4: Beginning Qt Development 69

 peek, which lets you read ahead of the current file pointer.

 status methods, including isOpen, isReadable, and isWritable,

indicating whether the stream is open, provides data, or accepts data,

respectively.

 In many cases, you may not need to use the read and write methods

at all. Many utility classes, such as the QXmlStreamReader class, accept

QIODevice instances so you don’t have to shuffle the data from one

interface to another. We show you how to use the QXmlStreamReader in

the section “Putting It All Together” at the end of this chapter.

Perhaps even more useful is the QDataStream class, which provides serialization of

binary data to a QIODevice. For example, you might write:

QFile file("some.dat");
file.open(QIODevice::WriteOnly);
QDataStream out(&file);
out << QString("Hello World");
out.close();

The QDataStream class has bidirectional stream operators for types including: bool;

eight-bit, sixteen-bit, thirty-two bit, and sixty-four bit int; float; double; and char –
plus most Qt data types like QString, QColor, etc. You can configure the stream to

indicate byte order and floating-point precision, as well as directly read or write the raw

data for serializing your own data types.

Managing Multiple Threads
While Qt makes easy work of most I/O tasks, I/O brings its own issue: latency. While a

QIODevice is working, your application waits; wait too long and your application

performance will suffer as the UI thread stalls, blocking on pending I/O operations. In

some cases, such as application launch, this isn’t a problem. But in many cases

(especially network I/O), it can be. Fortunately, to help with this and other tasks that can

be run in parallel, Qt provides a platform-independent thread implementation, so you

can move lengthy tasks to run in separate threads within your application.

The Qt class QThread is at the heart of Qt’s thread support, and provides the usual

semantics for creating, managing, and terminating a single thread. To create a thread,

you simply subclass QThread and override its run method. At run time, you only need to

create an instance of your thread class and invoke start. In turn, Qt spawns a platform

thread and uses it to execute your run method. Once the run method exits, the QThread

cleans up and releases the thread it used.

A thread may have (although it doesn’t have to) an event loop that you can start by

calling exec in your thread’s run method. This makes it possible to connect signals and

slots between your thread and other threads, such as the main thread on which the user

interface of your application runs.

CHAPTER 4: Beginning Qt Development 70

CAUTION: Although a thread can have an event loop, your graphical user interface code (widgets
and painting) must all run on the main thread. Running user interface code—any code that
triggers painting to the screen—on threads other than the main thread is not supported, and will

yield unpredictable results.

The mechanics of managing the QThread are convenient, and made especially simple

through the use of (you guessed it!) signals that the thread emits at various stages of its

life. The methods QThread provides are:

 exit, which exits the run method and terminates the thread.

 isFinished returns true if the thread has run to completion, otherwise

it returns false.

 isRunning returns true if the thread is still running in its run method.

 priority and setPriority let you obtain and modify the thread’s

priority.

 stackSize and setStackSize let you determine and set the thread’s

stack size. Be careful using this method, because many devices have

a relatively small maximum stack size anyway.

 wait blocks the thread until either its run method exits, or the amount

of time that you specify (the time value is in milliseconds).

QThread provides the following slots (also usable as methods, of course):

 quit, which terminates a thread’s event loop.

 start, which starts a thread.

 terminate, which forcibly exits a thread. (In general, you should prefer

using quit to terminate.)

NOTE: To terminate a thread, you can call exit from within the thread, or invoke the quit slot

from outside the thread.

The signals that QThread provides are:

 finished, emitted when the thread’s run method exits.

 started, emitted when the thread’s run method commences.

 terminated, emitted if the thread is forcibly terminated.

Threads should be as independent as possible. Wherever you need inter-thread

communication, you should use signals and slots in conjunction with a thread’s event

loop if you can. However, there’s no getting around the fact that if your threads share

CHAPTER 4: Beginning Qt Development 71

resources such as mutable data structures, you simply have to synchronize access

between threads. Qt provides the usual inter-thread synchronization primitives:

 QSemaphore provides synchronization for a specific number of identical

resources.

 QMutex provides a mutually exclusive lock for a specific resource.

 QReadWriteLock is similar to QMutex, and is useful in that it

distinguishes between read and write access to shared data,

permitting multiple readers, while ensuring that only one thread is

writing to your data.

 QWaitCondition permits one thread to wake other threads when some

condition has been met.

Using Item Views with the Model-View-Controller
Paradigm
As you would expect, Qt provides a host of user interface widgets to present things

such as lists of items to the user. These widgets, such as QListWidget, provide an item-

oriented interface to your application, where you provide items (perhaps from a

collection your application maintains) that the user can manipulate (such as to make a

selection). This sounds good in theory, but in practice it has limitations.

The key limitation is one of scalability—as the size of your collection increases, it’s more

work and more memory to keep essentially two copies (one for your application and one

for the widget). Worse, if an item in your collection changes, you need to synchronize

the widget’s item list with your item list, which includes the need to repaint the widget.

Fortunately, there’s a better way. Qt provides an implementation of the model-view-
controller (MVC) pattern now commonplace in user interface development. The widgets

QListWidget, QTableWidget, and QTreeWidget have corresponding classes, QListView,

QTableView, and QTreeView, which each take a model of the data to present and monitor

for changes, sharing data with the model to ensure both a small footprint and rapid

updates.

CHAPTER 4: Beginning Qt Development 72

THE MODEL VIEW CONTROLLER PARADIGM

The MVC pattern originated with the Smalltalk programming language and provides a concise way to
structure an application’s user interface around three related components:

 The model contains an independent representation of the data your application
visualizes.

 The view is responsible for rendering the contents of the model in a specific (such as a
list or table) way.

 The controller takes events from the user and performs the appropriate actions (for
example, scrolling or collapsing part of the view), forwarding the application-specific
behavior for handling the event to either the model or view.

MVC has been around long enough that there’s a great deal written about it, and most GUI frameworks
today support it. If you’re unsure of how the pieces fit together after reading this section, take a look at
Wikipedia or the Portland Pattern Repository at www.c2.com/cgi/wiki?WelcomeVisitors.

Understanding Qt’s Model Classes
Qt provides a class hierarchy for models that are a little different than what you may

have encountered on other platforms. While you can use a model with a single flat

collection of objects such as a list, the Qt platform itself provides for a tree of two-

dimensional tables such as the one you see in Figure 4–2. In the figure, we see a tree

with a root that is a 4x4 table of items; the items at (0, 0) and (1, 3) each have child data,

and so forth. While dizzying, this general representation provides the ability for a model

to represent items in one dimension (lists), two dimensions (tables), and a hierarchy

(such as a directory tree).

Figure 4–2. An arbitrary model represented using Qt’s abstract model structure

http://www.c2.com/cgi/wiki?WelcomeVisitors

CHAPTER 4: Beginning Qt Development 73

Qt uses the QAbstractItemModel to encapsulate the full flexibility of a tree of tables;

normally, a QAbstractListModel or QAbstractTableModel suffices, hiding the complexity

of the tree unless you really need it.

In most cases, you don’t even need to create your own model; instead you can use a

QStringListModel for a one-dimensional list of QStrings, or a QStandardItemModel for

one- or two-dimensional array, as well as data structured in a hierarchy.

The two-dimensional nature of the QTableModel is strongly reminiscent of a SQL

database’s tables, and it almost immediately comes to mind when you have data

organized in rows with different facets of the data in each column. It shouldn’t,

however—in a Qt table model, each cell in the table is independent of every other cell.
Think of a Qt table like a financial spreadsheet (not a well-formatted list!). Instead, if you

have a list of items with different data per item—say, a list of location names with

latitudes and longitudes—each location is a single item in a list.

To provide access to different facets of a single item, Qt provides roles. A role is a

constant in an enumeration, and models return different data depending on the role you

pass when you interrogate the model. Qt defines several roles by default defined by the

Qt::ItemDataRole enumeration, including:

 Qt::DisplayRole, indicating the primary visible facet of a datum.

 Qt::DecorationRole, indicating a decoration (such as an icon) for a

datum.

 Qt::EditRole, indicating the primary editable facet of a datum.

 Qt::SizeHintRole, indicating the desired size of the item for display

layout purposes (this is the size the layout will try to accommodate,

rather than the actual object’s size).

 Qt::CheckStateRole, indicating whether the item is marked in some

way (say, a list item bearing a check mark).

So, for example, the QListView uses the Qt::DisplayRole to indicate to the model what

data is requested for display for each item. You can define your own roles, too, if you

need to represent different kinds of data and find the Qt roles limiting in the kind of data

being represented; just be sure that your first role has a value greater than Qt::UserRole.

When you set or get data from a model, you do so using a QModelIndex that indicates

which datum you’re interacting with as well as Qt’s QVariant class. The QVariant class

is a type-safe wrapper for most C++ and all Qt value types, including integers, floating-

point numbers, and strings. You access the model’s data through the data and setData

methods; they use QVariant for encapsulating the actual values.

NOTE: There’s even a way to add your own data types to those QVariant supports; see the

documentation for QVariant at http://doc.qt.nokia.com/qvariant.html.

http://doc.qt.nokia.com/qvariant.html

CHAPTER 4: Beginning Qt Development 74

For example, here’s how to access the first datum in a QStringListModel:

QStringListModel model;
…
QModelIndex index = model->createIndex(0);
QString datum = model->data(index, Qt::DisplayRole).toString();

Setting the data is similar:

QStringListModel model;
…
QModelIndex index = model->createIndex(0);
QString anEntry("hello world");
QString datum = model->setData(index,
 QVariant(anEntry),
 Qt::DisplayRole);

In addition to being able to set a datum within the model, you can manipulate the model

in various ways. The most common things you’re likely to want to use are:

columnCount and rowCount indicate the number of rows and columns,

respectively.

insertColumn and insertColumns insert a column or columns after the

indicated column.

insertRow and insertRows insert a row or rows after the indicated row.

removeColumn and removeColumns remove a specified column or

columns.

removeRow and removeRows remove a specified row or rows.

data and setData let you manipulate a specific datum at a specific

index in the model.

index to create an index object that indicates a specific datum within

the model.

As you manipulate a model with these methods, it emits signals so that the view or other

code can be kept abreast of any changes within the model. Typically, when using a

model, you don’t need to worry about these signals, unless you’re implementing your

own model.

You needn’t implement your own model most of the time. Qt also provides the

QStandardItemModel, which provides a concrete implementation of a model you can use

within your application for normal purposes. (We show you how to use the

QStandardItemModel later in this chapter, in the section “Putting it All Together.”)

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 4: Beginning Qt Development 75

SUBCLASSING A MODEL CLASS TO MAKE YOUR OWN MODEL

It’s unusual, but you may find a case where you think you need to write your own model. Typically, you’d
need to do this if you can’t provide all the data at once—say, because of pending network or file system
activity (however, Qt has support for SQL tables and file system directories through models it provides).
Creating your own model isn’t hard; you need only inherit from the appropriate base class
(QAbstractItemModel, QAbstractListModel, or QAbstractTableModel for one- or two-
dimensional or tree models, respectively) and override the methods that implement the structure
appropriate for your data. You’ll need to override two kinds of methods:

 Methods that describe the organization of your data, such as the rowCount and
columnCount methods.

 Methods that permit access and mutation of your data, such as the data and setData
methods.

In addition, when implementing the data-access methods, you’ll want to be sure that you emit the
appropriate signals when data changes in your model or the model’s size itself changes. The Qt
documentation provides good information about how to do this for pointers on creating both a simple list
model and a tree model.

Using Qt’s View Classes
Qt’s view classes provide robust components that rely on a model for their data.

QListView, QTableView, and QTreeView provide the fundamental UI classes many

applications can use to provide a browsing metaphor for their data. These implement

the abstract class QAbstractItemView, which defines the various methods, signals, and

slots exposed by all view classes.

In general, you need to know very little about how a Qt view class works; it often suffices

to drag one out in the GUI designer (or create one at run time, as you see later in this

chapter in the section “Putting it All Together”) and set its model, like this:

// In a class declaration inheriting from QMainWindow
QStandardItemModel *mModel;
QListView *mListView;
// Someplace in the GUI code
mListView = new QListView(this);
mStandardItemModel mModel = new QStandardItemModel(this);
mListView->setModel(mModel);
setCentralWidget(mListView);

Qt’s design style calls for generally shallow class hierarchies, with a great deal of

configurability being embedded in specific implementation classes, rather than dozens

of classes providing slightly different behaviors. Thus, the QAbstractItemView has a

number of properties affecting how an instance renders data, including:

 alternatingRowColors, indicating that the background of rows should

alternate between two colors, rather than a single color.

CHAPTER 4: Beginning Qt Development 76

 autoScroll, indicating that the control should automatically scroll

when the touch drags over the view.

 horizontalScrollMode and verticalScrollMode, indicating whether

the view should provide scrolling in the indicated direction.

 selectionBehavior indicating whether an item, row, or column can be

selected.

 selectionMode, indicating whether one item or multiple items (perhaps

contiguous) can be selected.

Unlike the classic implementation of model-view-controller, where the controller is a

separate class with its own (usually application-specific) logic, Qt divides the

responsibilities of the controller between the view and the application. The view handles

the view-specific events, such as responding to events that would cause scrolling or

item selection, and issues signals for user interaction that requires application logic,

such as item activation and selection. These signals include:

 activated, indicating an item has received focus.

 clicked, indicating that an item has been selected with the primary

selector such as a touch or mouse click.

 doubleClicked, indicating a double-click action.

 pressed, indicating the beginning of a click or double-click as the item

receives the initial down component of a mouse or touch.

TIP: On touch screen devices, you should always prefer clicked over the other signals. Users

expect that an action should take a single touch.

In the next section, you see how wiring a signal from the QListView triggers an action

when the user touches an item in the list.

Putting It All Together
Figure 4–3 shows our first prototype sample application “Shake”, which connects to a

Web service provided by the United States Geological Service (USGS) to show recent

earthquakes around the world. (This application doesn’t fully meet the design guidelines

we set out in Chapter 2; in the next chapter we’ll address that.)

CHAPTER 4: Beginning Qt Development 77

Figure 4–3. Our sample application

Let’s take a closer look at the source code, calling your attention to the construction of

the user interface, and its use of model-view-controller, threads, and I/O.

Implementing the Application User Interface
The user interface for our application is admittedly simple, providing a single list of

recent seismic events and a region showing the details of the event you select. The

class MainForm, which extends QMainWindow supports the user interface. Listing 4–4

shows the MainForm class.

Listing 4–4. The class declaration for MainForm

class MainForm : public QMainWindow
{
 Q_OBJECT

public:
 MainForm(QWidget *parent = 0);
 ~MainForm();

public slots:
 void fetch();

CHAPTER 4: Beginning Qt Development 78

private slots:
 void handleRequestFinished();
 void handleError(const QString& message);
 void handleItemClicked(const QModelIndex&);

private:
 WorkerThread* mBgThread;
 QuakeListModel* mEventModel;
 QSortFilterProxyModel* mSortedModel;
 QListView* mListView;
 QWebView* mItemView;
 QWidget* mMainView;
};

The UI itself uses a QListView to show the list of events, and a QWebView to show the

results. (We talk more about the QWebView class in the next chapter.) The earthquake

data is kept in the QuakeListModel, a simple subclass of QStandardItemModel that has a

single helper method to permit easy storage of seismic data through a container class.

In turn, the list view obtains the data through a QSortFilterProxyModel, which provides

the data sorted so that the resulting list has the most recent item first. All of this is

initialized in MainForm’s constructor (shown in Listing 4–5).

Listing 4–5. The MainForm constructor

MainForm::MainForm(QWidget *parent)
 : QMainWindow(parent)
 , mBgThread(0)
 , mEventModel(new QuakeListModel())
 , mSortedModel(new QSortFilterProxyModel(this))
 , mListView(new QListView(this))
 , mItemView(new QWebView(this))
 , mMainView(new QWidget(this))
{
 mItemView->setHtml(tr("<body><p align=\"center\">"
 "Loading data... please wait</p></body>"));

 mSortedModel->setSourceModel(mEventModel);
 mSortedModel->setDynamicSortFilter(false);
 mSortedModel->setSortRole(QuakeListModel::When);
 mListView->setModel(mSortedModel);

 mListView->setSizePolicy(QSizePolicy::Expanding,
 QSizePolicy::Expanding);
 mItemView->setSizePolicy(QSizePolicy::Expanding,
 QSizePolicy::Expanding);

 mListView->setHorizontalScrollBarPolicy(Qt::ScrollBarAlwaysOff);

 QBoxLayout::Direction direction;
 if (height()>=width()) {
 direction = QBoxLayout::LeftToRight;
 } else {
 direction = QBoxLayout::TopToBottom;
 }
 QBoxLayout *layout = new QBoxLayout(direction, mMainView);

 layout->addWidget(mListView, 1);

CHAPTER 4: Beginning Qt Development 79

 layout->addWidget(mItemView, 1);
 mMainView->setLayout(layout);

 setCentralWidget(mMainView);

 connect(mListView, SIGNAL(clicked(QModelIndex)),
 this, SLOT(handleItemClicked(QModelIndex)));

 fetch();
}

As you see immediately, we chose to manually create the UI, rather than use Qt Creator

within the Nokia Qt SDK. The reason is only to show you that you can; you could easily

use the user interface you created from Chapter 4 with Qt Creator. Regardless, the code

creates the two visible elements and combines them in a single widget, set to be the

main widget of the QMainWindow using QMainWindow’s setCentralWidget method.

Perhaps the most interesting code in the constructor is the lines that link the QuakeModel

instance with the QSortFilterProxyModel instance. As the name suggests, the

QSortFilterProxyModel is a model in the object-oriented sense (it inherits from

QAbstractItemModel), but doesn’t contain any data. Instead, it provides a view with an

ordered or filtered model (hence the “proxy” in its name) created using an indicated role.

Here, the code:

 Tells the proxy model to use the data in the mEventModel model.

 Says the model should be sorted on demand, not automatically when

items are added or removed.

 Tells the proxy model to present the data in the mEventModel sorted by

a custom role, QuakeListModel::When.

In turn, the QListView accesses the data through the proxy model; behind the scenes

the proxy model does some magic with its model indexes so that the model data

appears to be sorted by time.

Once the user interface component and model is initialized, the constructor invokes

fetch to obtain the latest seismic data.

It’s worth mentioning that in the user interface, our error handling is admittedly primitive,

but demonstrates that something needs to be done in the event of an error. In our case,

we simply emit an error message, which the UI will present in a dialog indicating the

nature of the error (Listing 4–6).

Listing 4–6. Showing an error message

void MainForm::handleError(const QString& message)
{
 QMessageBox box(QMessageBox::Critical,
 tr("Error"),
 message,
 QMessageBox::Ok,
 this);
 qDebug() << message;
}

CHAPTER 4: Beginning Qt Development 80

Using the Network to Obtain Data
Listing 4–7 shows the fetch method, responsible for starting the thread to fetch the

data.

Listing 4–7. Starting the Qt thread for network access and data parsing

void MainForm::fetch()
{
 if (!mBgThread)
 mBgThread = new WorkerThread(this, *mEventModel);
 connect(mBgThread, SIGNAL(finished()),
 this, SLOT(handleRequestFinished()));
 connect(mBgThread, SIGNAL(error(const QString&)),
 this, SLOT(handleError(const QString&)));
 mBgThread->fetch(
 "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml"
);
}

This code is quite simple. In addition to creating an instance of our worker thread, the

code connects its signals to slots in the main view so that the main view can respond to

success or failure in the attempt to obtain data from the network.

The thread itself is responsible for making the HTTP request and parsing the XML

results. Construction of the thread (see Listing 4–8) initializes a hash with the XML tags

we seek, and does the necessary connecting between signals and slots.

Listing 4–8. Worker thread initialization

WorkerThread::WorkerThread(QObject* owner,
 QuakeListModel& eventModel)
 : QThread(owner)
 , mCancelled(false)
 , mNetManager(0)
 , mReply(0)
 , mEventModel(eventModel)
{
 // Initialize the hashtable of tags we seek
 mXmlTags.append("id");
 mXmlTags.append("title");
 mXmlTags.append("updated");
 mXmlTags.append("summary");
 mXmlTags.append("point");
 mXmlTags.append("elev");
 mXmlTags.append("link");

 mNetManager = new QNetworkAccessManager(this);
 connect(mNetManager, SIGNAL(finished(QNetworkReply*)),
 this, SLOT(handleNetFinished(QNetworkReply*)));
}

Performing the HTTP request, done in the fetch method with the URL you pass it, is

very easy. Listing 4–9 shows how it’s done.

http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml

CHAPTER 4: Beginning Qt Development 81

Listing 4–9. Making an HTTP request

void WorkerThread::fetch(const QString& url)
{
 QNetworkReply *reply = mNetManager->get(QNetworkRequest(QUrl(url)));
 if (!reply) {
 emit error(tr("Could not contact the server"));
 }
}

It’s worth noting that the QNetworkAccessManager’s get method does not block; control

returns to the main thread, and the manager performs the network request

asynchronously. In fact, the real reason to encapsulate this part of the application in its

own thread is the XML parsing, which can take a bit of time in a large document. When

the network operation completes, the manager will emit the finished signal, which we

handle in handleNetFinished (Listing 4–10).

Listing 4–10. Handling the completion of the network transaction

void WorkerThread::handleNetFinished(QNetworkReply* reply)
{
 // Start parser by starting.
 if (reply->error() == QNetworkReply::NoError) {
 if (!this->isRunning()) {
 mReply = reply;
 start();
 }
 } else {
 emit error(tr("A network error occurred"));
 qDebug() << QString("net error %1").arg(reply->error());
 }
}

Parsing the USGS Data Feed
The USGS data provides its data in well-formed XML. A specific seismic event might

look like this:

<entry>
 <id>urn:earthquake-usgs-gov:ci:10756957</id>
 <title>M 3.8, Baja California, Mexico</title>
 <updated>2010-07-19T23:06:11Z</updated>
 <link rel="alternate" type="text/html" href="url"/>
 <link rel="related" type="application/cap+xml" href="url" />
 <summary type="html">
 <![CDATA
 html description of event
]]></summary>
 <georss:point>32.1465 -115.1627</georss:point>
 <georss:elev>-6300</georss:elev>
 <category label="Age" term="Past hour"/>
</entry>

This is contained within a root-level <feed> block. (For brevity, we’ve elided the actual

URLs and HTML content describing the event.) The only catch in working with the data

is that the <id> attribute uniquely identifies an event, but multiple <entry> items may

CHAPTER 4: Beginning Qt Development 82

have the same <id>. This can occur when the USGS provides updated information

about a seismic event, such as after collecting more data and refining the estimate.

Consequently, we must not only parse the XML <entry> items in the document, but also

de-duplicate the data by ID, taking the most recent item when multiple items exist.

Fortunately, there’s an easy way to do this—accumulate the <entry> items in a hash

indexed by the <id> field’s value. Listing 4–11 shows the parsing and de-duplication that

begins when the thread actually runs.

Listing 4–11. Parsing and de-duplicating the XML results

void WorkerThread::run()
{
 QuakeEvent anEvent;
 QXmlStreamReader xml;
 QXmlStreamReader::TokenType type;
 QString fieldName;
 QString value;
 QString tag;
 QMap<QString, QuakeEvent> events;
 bool successful = false;
 bool gotValue = false;
 bool gotEntry = false;

 xml.setDevice(mReply);
 while(!xml.atEnd())
 {
 // If we've been cancelled, stop processing.
 if (mCancelled) break;

 type = xml.readNext();
 QString tag = xml.name().toString().toLower();
 switch(type)
 {
 case QXmlStreamReader::StartElement:
 {
 gotValue = false;
 if (tag == "entry") {
 gotEntry = true;
 } else if (mXmlTags.contains(tag)) {
 fieldName = tag;
 } else {
 fieldName = QString();
 }
 }
 break;
 case QXmlStreamReader::Characters:
 // Save aside any text
 if (gotEntry && !fieldName.isEmpty() && !gotValue)
 {
 value = xml.text().toString();
 gotValue = true;
 }
 break;
 case QXmlStreamReader::EndElement:
 // Save aside this value
 if (gotValue && tag != "entry") {

CHAPTER 4: Beginning Qt Development 83

 anEvent.set(fieldName, value);
 } else if (tag == "entry"){
 events.insert(anEvent.id(), anEvent);
 anEvent.clear();
 gotEntry = false;
 gotValue = false;
 }
 break;
 default:
 break;
 }
 }

 successful = xml.hasError() ? false : true;

 if (!mCancelled && successful) {
 mEventModel.removeRows(0, mEventModel.rowCount());
 mEventModel.insertRows(0, events.count(), QModelIndex());
 int row = 0;
 // Convert the hash into a list
 foreach(anEvent, events) {
 mEventModel.setData(row++, anEvent);
 }
 emit finished();
 } else if (!mCancelled) {
 emit error(tr("Could not interpret the server's response"));
 }
}

The QXMLStreamReader takes a QIODevice, so it’s easily connected to either a file or a

network result like this one. An event-generating stream-based parser, it’s far more

efficient to use than a DOM parser, although it requires a little more code. (This is a good

trade-off, because neither the whole XML document nor the whole DOM must be stored

in memory when using a streaming parser like this one.) In brief, we use the reader to

walk through the stream a tag at a time, storing the characters bound by the tag. When

the tag closes, the code looks to see if the closed tag was an entry tag. The parser

accumulates data for the various sub-tags, creating a QuakeEvent in the hash for each

<entry> tag indexed by its <id> tag. Once the parser completes scanning all tags, the

code converts the hash to a list, enumerating the hash’s entries and inserting them into

the model. (Because our list view uses a proxy model that performs the sorting, it

doesn’t matter what order the hash’s entries are inserted in the model.) After updating

the model, the thread emits a finished signal so the UI knows that the download and

parsing work is complete.

TIP: A more robust sample application might store the previous results in a file so that data
would be immediately visible when starting the application, and then replace the older data with
that fetched from the network. See if you can make the modifications yourself. (Hint: Look at

where the data is parsed.)

CHAPTER 4: Beginning Qt Development 84

The QuakeEvent class is a data container and data helper class; it handles some of the

messier bits of parsing the XML, such as converting the USGS time stamps into

QDateTime instances that can be used elsewhere in the application. Listing 4–12 shows

the class definition for QuakeEvent.

Listing 4–12. The QuakeEvent class, representing a single seismic event

class QuakeEvent {
public:
 QuakeEvent();

 QString id() const;
 QString summary() const;
 QDateTime when() const;
 QString where() const;
 qreal magnitude() const;
 QPair<qreal, qreal> position() const;
 qreal elevation() const;
 QString html() const;

 // Used by the XML parser
 void set(const QString& name, const QString& value);
 QString get(const QString& name) const;

 bool isEmpty() const;
 void clear();

 // For use when sorting by time
 bool operator<(const QuakeEvent& b) const;

private:
 QMap<QString, QString> mData;
 static bool mRegisterMetaType;
};

The class itself stores the various fields of data in a hash table, and the accessor

methods do a bit of necessary screen scraping to obtain semantically valid values for

each field. For example, Listing 4–13 shows the code necessary to extract a numerical

magnitude and QString containing the human-readable location for a single event.

Listing 4–13. Screen scraping the magnitude and location from the USGS data

qreal QuakeEvent::magnitude() const
{
 QString title = mData.value("title");
 // Format of title is "M 2.6, Baja California, Mexico"
 QString mag = title.mid(2, 3);
 return mag.toFloat();
}

QString QuakeEvent::where() const
{
 QString title = mData.value("title");
 // Format of title is "M 2.6, Baja California, Mexico"
 QString where = title.mid(title.indexOf(", ")+2);
 return where;
}

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 4: Beginning Qt Development 85

Similar—albeit more complex—work is done to render the dates to a format usable by

Qt for sorting quake events.

NOTE: In a perfect world, there’d be no need for screen-scraping. Instead, the XML schema
would provide specific tags for each bit of data your application requires. Hopefully, you get to

define both sides of the transaction, or at least provide some input in the process of determining
what data the client must parse. Screen-scraping is brittle and subject to potential failure; we
use it here to show you how to obtain meaningful data from a Web service as a compromise

between looking for a data service ideal to our task and free for everyone to use.

Displaying the Results
The great thing about working with the MVC paradigm is that nothing special is required

to display updated content—stick some data in the model, and poof! The view updates

itself. Consequently, there’s little need for the handleRequestFinished slot, shown in

Listing 4–14.

Listing 4–14. Sorting the network results and helping the user

void MainForm::handleRequestFinished() {
 mSortedModel->sort(0, Qt::DescendingOrder);
 mItemView->setHtml(tr("<body><p align=\"center\">"
 "Select an item for more details.</p></body>"));
}

This method simply performs the deferred sorting of the data by recency, and provides a

bit of help text in the QWebView. A more complex application might need to do more here,

such as manage a distraction graphic.

In the section “Implementing the Application User Interface,” in the MainForm’s

constructor, we connected a slot to the mListView’s clicked method. Listing 4–15

shows this slot.

Listing 4–15. Displaying more data associated with an item

void MainForm::handleItemClicked(const QModelIndex& which)
{
 QVariant html = mSortedModel->data(which,
 QuakeListModel::Description);
 qDebug() << html.value<QString>();
 mItemView->setHtml(html.value<QString>());
}

This method just sets the HTML for the QWebView to the verbose description of the

seismic event, letting the user see a small map indicating the event’s position and more

information about the event.

CHAPTER 4: Beginning Qt Development 86

Wrapping Up
In this chapter, we’ve touched on a number of aspects of Qt programming, including:

 Qt’s introduction of signals and slots to facilitate decoupled

communication between different objects.

 Qt’s object model, including object properties that can be queried,

hierarchical memory management, and resource management.

 Qt’s collection classes, including lists and associative arrays (hashes).

 Using Qt’s QIODevice with other classes for reading and writing data.

 Qt’s facility for providing platform threads to multithreaded

applications.

 Qt’s support for MVC programming using a data model and view to

ease the construction of data-centric applications.

With this information in hand and perhaps an occasional peek at the Qt documentation,

you’re on your way to building many kinds of applications that obtain or process data

and present the results to users. In the next chapter, we’ll build on this information to

polish the application you’ve already seen by showing you how to include menu actions

and multiple views within your application.

87

87

 Chapter

Doing More with Qt
In the last chapter, we showed you the fundamentals of Qt as a porting layer and

graphics environment. With what you learned, you can begin to design and build

applications, but there’s still quite a bit Qt offers that you haven’t seen yet, some of it

essential to most applications, we touch on that in the last chapter and expand upon it

here.

This chapter shows you how to do more with Qt: including application resources,

incorporating user actions in your application’s user interface, implementing a custom

widget, integrating Qt with web content, and accessing hardware features such as the

positioning subsystem in the handset. We begin by discussing each of these facets of

Qt individually with code snippets that demonstrate their use, and then we close the

chapter with a revised version of Shake that shows how to integrate what you’ve learned

in a running application.

Using Application Resources
For all but the simplest of applications, application resources—whether text, data such

as XML-encoded default configurations, images, or sounds—play a key role. Over time,

different operating systems and application frameworks have tackled the problem of

carrying resources differently; some using parts of an application’s binary, others using

data files in specific locations or hidden from the user.

Qt provides a simple solution to the problem that works across all platforms, encoding

resources as a part of the application binary’s static read-only segment. Qt utility

classes that deal with files can load any application resource as well. Qt accomplishes

this by providing a resource compiler, rcc, as part of its tool chain; the resource compiler

takes a collection of resources you specify and includes a copy of the binary data for

each resource in the application binary. At runtime, you access the resources using

QFile by providing a file path to the resource as defined in the collection of resources at

compile time. You simply need only precede the path to the resource with a colon

character to indicate that the path is to a resource instead of a file on the file system.

Because most Qt classes that work with data can take data from files, in practice

loading data from application resources is trivial for you to implement.

5

CHAPTER 5: Doing More with Qt 88

The Qt resource system stores your resources in a tree within your application, so you

can create a logical hierarchy of resources, just as if they were on disk. The resource

collection file lets you specify the relationship between the source resources in your

project and the destination in the resource tree, although for simplicity it’s usually best

to have your source representation match the resource tree at runtime so you’re less

likely to be confused.

Including Resources in Your Applications
As you saw briefly in the previous chapter, including resources in your Qt application is

especially easy if you use Qt Creator; to begin, you need to define a collection of

resources to include. In Qt Creator, you do this by right-clicking the project in the

Projects pane, and then choosing “Add New…” “Qt Resource File” from the dialog

that appears. Qt Creator provides a resource editor to let you specify files for inclusion

as your application’s resources, or you can edit the resource collection manually.

When using the editor, you specify a resource’s path in your source file hierarchy, the file

name of the resource, and its path in the application resource tree. You can also provide

a language, indicating that the resource should be loaded only when the specific

language is active—handy if you’re localizing your application with locale-specific icons,

for example.

While the Qt Creator editor suffices for making small-scale changes to an application’s

resource collection, it’s handy to understand the internal representation. Once you do,

you can create tools to manage larger bodies of resources if your application requires it.

A collection of resources is specified as a simple XML file with the suffix .qrc, like this:

<!DOCTYPE RCC><RCC version="1.0">
<RCC>
 <qresource prefix="/images">
 <file>images/map.png</file>
 <file>images/smallmap.png</file>
 </qresource>
 <qresource prefix="/js">
 <file>init.js</file>
 </qresource>
</RCC>

The root-level RCC node indicates that the file contains a collection of Qt resources. You

indicate each path prefix in the resource tree using a qresource node; there can be any

number of these nodes in your resource collection. In the qresource nodes are one or

more file nodes, each providing a path (relative to the .qrc file) to the file that should

be included as a resource. In this example, there are three files in two tree locations—

two images in the images node, and a single (presumably JavaScript) file in the node

named js. The images originate in the application sources’ images directory, while the

JavaScript file comes from the same directory as the resource collection file.

When working with multiple languages, the qresource node includes a lang attribute, set

to the International Standards Organization (ISO) two-letter code for the language (such

as “en” for English, “de” for German, and so on). If you specify a resource with a lang

CHAPTER 5: Doing More with Qt 89

attribute and that language is not active at runtime, the resource loader will load the

resource without any lang attribute, giving you a succinct way to specify both an

international default and localized specific resources.

When you add a resource collection file to your project using Qt Creator, it will

automatically update your project file by adding a RESOURCES declaration containing the

path to your resource collection. In turn, Qt Creator uses qmake to create appropriate

make file directives to compile the resource collection and include it in your application

binary.

WHEN TO USE QT RESOURCES

The Qt resource system is so flexible that it’s tempting to use it for all your resources. It comes with a cost,
however: every resource you include in your application increases the data segment size of your
application. If you’re including a handful of bitmap images for buttons and a screen background, that’s
probably what you want. If there’s a lot more, however, you should use the platform’s native deployment
format (see Chapter 8) and include larger resources as separate files bundled with your application. If you
don’t, your application will load more slowly and fail to load on devices with smaller amounts of RAM. This
is especially true when your application runs from a USB-mountable medium such as a memory card,
because operating systems disable demand paging to avoid losing parts of your application if the USB
cable is removed.

Accessing Application Resources
In general, there is nothing specific that you need to do at runtime to access your

application resources, other than provide a path to a resource file in the same way

you’d provide a path to a file on the file system. The path to a resource always begins

with a colon, like this: ":/images/map.jpg". You can provide a resource path to any API

that takes a file path, including not just QFile, but other classes, such as QPixmap, which

loads an image as a map of pixels (we’ll have more to say about QPixmap in the next

section, “Implementing a Custom Widget”). For example, here’s a snippet from the

implementation of a custom widget that loads an image from the application resource

and draws it:

QPixmap map(":/images/map.jpg");
QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing);
QPoint pt(0,0);
painter.drawPixmap(pt, mMap);

Of course, in practice you’d want to load the pixmap once—say, at initialization time—

rather than each time you paint the pixmap, but you get the idea.

Incorporating User Actions
It’s one thing to use Qt’s components to trigger actions as you saw in the last chapter,

both simple controls like buttons and complex ones like list views emit signals when the

CHAPTER 5: Doing More with Qt 90

user interacts with them. However, there are times when you want to embed a call to an

action within a screen, rather than attach the operation to a specific widget. For

example, many applications have both list views and detail views, and you may want to

have a means within the view to switch between views. (Shake does this, as you see

later in the section “Putting It All Together”.)

Rather than forcing you to handle this on a platform-by-platform basis, Qt provides an

abstraction called an action that you can attach to a specific window. The Qt run-time

library then performs device-specific gymnastics to present the actions you specify in

device-specific ways, ensuring a common look and feel between Qt and other

applications on the mobile device. To understand how this works, and to get a better

feel for how your application fits with the rest of the device’s user interface, it’s

worthwhile first to take a closer look at Qt’s concept of a main window, and then delve

into Qt actions in more detail.

Introducing the Qt Main Window
Figure 5–1 shows the layout of a typical Qt application’s user interface on both Symbian

(top) and MeeGo (bottom) devices. Both layouts reserve space for the following key

components:

 The status bar, with annunciators for signal strength, GPS activity, new

message alerts, and so forth. (These aren’t shown in the diagram,

which was taken from the Qt Simulator.)

 A trigger for the options menu of programmatic actions attached to the

main window.

 The central widget, which occupies the bulk of the screen.

In addition, on Symbian devices there’s room for two soft keys that lie below the

screen’s content region.

This layout is in turn a refinement of the Qt main window layout for desktop, which

includes space for menu bars, toolbars, a dock widget, the central widget, and the

status bar. On a mobile device, it’s obvious that there’s simply not enough room for all

of these, so to simplify the user experience, Qt on mobile devices strips out all but the

notion of a single menu and the central widget.

CHAPTER 5: Doing More with Qt 91

Figure 5–1. The typical appearance of Qt applications on mobile devices

When working with QMainWindow, Qt’s class that represents your application’s main

window, you should be aware of three methods that help you manage this organization

of your application’s user interface.

The first two are the centralWidget and setCentralWidget methods. They let you get the

currently established central widget and set it to a new widget. Your central widget can

be and often is a single widget, such as a QListView or QWebView. If you need a more

complicated layout, you can use a composite widget with layouts. Here’s where Qt

Creator really shines, because you can use it (simply right-click the project Add

New… Qt Qt Designer Form) to create a new composite widget as your application’s

central widget. Once you do this, in your code you just create an instance of this widget,

and then set it as the central widget for the main window.

The final method to be aware of is menuBar, which returns an instance of the Qt menu

bar that hosts the options menu. Historically from the desktop, this menu bar would

have multiple menus (e.g., “File,” “Edit.” and so forth), but on Nokia’s mobile platforms,

these menus are collapsed into the single options menu. You’ll add actions to the menu

bar that represent user actions, such as switching from one view to another.

CHAPTER 5: Doing More with Qt 92

Attaching Actions to the Main Window
Qt defines the QAction class as an abstraction of a user action. Actions act as

containers for the notion of an action, which has user representations such as its menu

text. On desktop platforms, actions bear a lot of additional optional information,

including icons, status text, shortcut keys, and tool tip text. On mobile devices, all you’ll

care about mostly is its menu text, because most of the time you use an action, you are

attaching it to a main window’s menu bar to represent an options menu item.

NOTE: Any widget can bear actions, however, but how widgets actually visualize and use those

actions depends on the widget. For example, a toolbar collects actions and shows the actions as
icons, while the options menu uses less space, but isn’t immediately obvious or accessible to the

user.

Using an action in the context of an options menu is easy: simply create it and add it to

the main window’s menu bar, like this:

 QAction showListAction = new QAction(tr("Show List"), this);
 mMainWindow->menuBar()->addAction(showListAction);

Actions emit the triggered signal when the user selects the action, so it’s also

necessary to connect the action’s triggered signal to something that can handle the

action, like so:

 connect(showListAction, SIGNAL(triggered()),
 this, SLOT(handleShowList()));

These four lines of code create an action that appears as the options menu item “Show

List,” add the action to the options menu, and then connect the item to the current

class’s handleShowList. So when the user selects the “Show List” item from the

options menu, Qt invokes the method handleShowList. Note that by setting the

showListAction’s parent to this, there’s no need to track it globally; when the creating

object reaches its end of life, the Qt memory manager will destroy the action as well.

Implementing a Custom Widget
With Qt’s rich collection of widgets, you might think there isn’t much need or room for

you to create your own widgets, but there are two reasons you might want to. First,

there may simply not be a widget with the appearance and behavior your need; creating

a new widget by composing simpler widgets or by performing the widget drawing and

event handling yourself lets you create an entirely custom widget. Second, creating a

custom widget is the trick to performing your own drawing in an application using other

widgets. Qt provides the QWidget class, a base class to all widgets; when you create a

widget, you subclass QWidget and override specific methods to indicate how your

widget should set its size relative to its layout, handle incoming events, and paint its

contents.

CHAPTER 5: Doing More with Qt 93

QWIDGET VS. QGRAPHICSITEM AND ITS KIN

A quick glance at Qt’s class hierarchy will quickly point you to two competing widget hierarchies: QWidget
and QGraphicsItem. What’s the difference?

QWidget provides a traditional widget hierarchy with the notion of parent and children widgets in a
container-based tree layout. It’s been a part of Qt for a long time, and provides the basis for traditional
component-oriented GUI applications for both desktop and mobile applications. It’s best suited to those
kinds of applications, where there’s somewhere between a handful and a few dozen or so active widgets
within a window at any time.

QGraphicsItem, on the other hand, is part of Qt’s newer graphics view framework, a scene-based
graphics rendering system that can handle large numbers of custom graphics items, including support for
zooming and rotation. In the view framework, graphics items are lighter weight than widgets, and are
managed by a graphics scene (consisting of a collection of objects) and visualized by a view. The
framework provides simple primitives for shapes such as rectangles and ellipses, although of course you
can provide your own custom items. These items can behave in ways very similar to widgets, including
performing their own event handling and painting.

You might choose to use the Qt graphics view framework if you’re implementing a very complex view
system, such as a vector-based map renderer or complex game with its own canvas and many objects
moving at once. While we focus on creating custom Qt widgets that interact with the QWidget hierarchy in
this chapter, many of the concepts carry over to using the Qt view framework, and you can learn more
about it at http://doc.qt.nokia.com/graphicsview.html.

Subclassing QWidget
To begin, your custom widget needs to implement QWidget and include the Q_OBJECT

declaration. Listing 5–1 shows a trivial example:

Listing 5–1. A trivial widget

class MyWidget : public QWidget
{
 Q_OBJECT
public:
 explicit MyWidget (QWidget *parent = 0)
 : QWidget(parent) {}

protected:
 void paintEvent(QPaintEvent *) {
 QPainter painter(this);
 painter.setPen(Qt::blue);
 painter.setFont(QFont("Arial", 18));
 painter.drawText(rect(),
 Qt::AlignCenter,
 "Hello world");
 }

private:
 Q_DISABLE_COPY(MyWidget)
};

http://doc.qt.nokia.com/graphicsview.html

CHAPTER 5: Doing More with Qt 94

This widget simply paints the message “Hello World” at its origin. It does, however,

demonstrate the basic requirements you must fulfill to provide your own widget:

Your custom widget must inherit QWidget.

Like any QObject-based class, your widget must include the Q_OBJECT
declaration in its class definition.

Your custom widget implements its functionality by overriding parent

methods in QWidget. As you’ll see in the section “Handling Incoming

Events” later in the chapter, many of these methods are event

handlers for specific Qt-based events passed to your widget.

Instances of widgets are best thought of as unique objects, and thus

can’t be copied. To prevent the compiler from including default copy

constructors for your widget, use the Q_DISABLE_COPY macro in private

declarations in your class to ensure that the copy constructors for your

widget remain private.

Specifying Your Widget’s Size Hints and Policies
Previously you’ve learned about Qt’s system of layouts, which let you specify how

widgets arrange themselves in a container. A key part of the layout system is how

widgets indicate their size preference and policies to the layout manager. They

communicate this using two methods: sizeHint and sizePolicy.

The sizeHint method provides a hint to the layout manager how big the widget would

like to be. It returns a QSize, which has width and height member functions to provide

the dimensions, along with an isValid function that indicates whether the size is valid or

not. (It also has convenience methods for performing arithmetic on sizes, including

scaling a size to fit within a predetermined width and height.)

How the layout system interprets the sizeHint depends on the sizePolicy, which can

have the following values for each of the horizontal and vertical axes:

When the value is QSizePolicy::Fixed, the sizeHint-returned value is

the only acceptable alternative, so the widget can never grow or

shrink.

When the value is QSizePolicy::Minimum, the sizeHint-returned value

is minimal and sufficient. The widget can be expanded, but there is no

advantage to it being larger.

When the value is QSizePolicy::Maximum, the sizeHint-returned value

is a maximum, and the widget can be shrunk if other widgets require

the space.

When the value is QSizePolicy::Preferred, the sizeHint-returned

value is best, but the widget can be shrunk or expanded and still be

useful.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 5: Doing More with Qt 95

 When the value is QSizePolicy::Expanding, the sizeHint-returned

value is a sensible size, but the widget should get as much space as

possible.

 When the value is QSizePolicy::MinimumExpanding, the sizeHint-

returned value is minimal and sufficient. The widget can make use of

extra space, so it should get as much space as possible.

 When the value is QSizePolicy::Ignored, the sizeHint-returned value

is ignored and the widget be made as large as possible.

The widget returns these values when the layout invokes sizePolicy, which returns a

QSizePolicy instance. Of course, you can override a specific widget’s desired horizontal or

vertical size policy by calling setSizePolicy. But in general when creating your own widget,

it’s easier to override sizePolicy altogether. Expanding our previous example, Listing 5–2

shows what we might write, with the methods you’ve already seen elided for brevity.

Listing 5–2. Handling size preferences in a custom widget

class MyWidget : public QWidget
{
 Q_OBJECT
public:
 explicit MyWidget (QWidget *parent = 0) …

 QSize sizeHint() {
 return QSize(80, 60);
 }
 QSizePolicy sizePolicy() {
 return QSizePolicy(QSizePolicy::MinimumExpanding,
 QSizePolicy::MinimumExpanding);
 }
protected:
 void paintEvent(QPaintEvent *event) …

private:
 Q_DISABLE_COPY(MyWidget)
};

A widget with these methods would start small, filling a rectangle 80 pixels wide and 60

pixels tall, and grow to fit whatever space the layout could provide.

Handling Incoming Events
In addition to the signal-slot mechanism (which we discussed in the previous chapter in

the section “Understanding Signals and Slots”), Qt provides for decoupled one-to-many

application signals, Qt provides a rich event system based on its QEvent class and

subclasses. All Qt applications have an event loop that accepts incoming events from

the native system’s event pump and converts those events to QEvent instances (or a

QEvent subclass). It then forwards the events to appropriate receivers through

QObject::event. The event receipt method in Qt. QObject::event (or its delegate) can

choose to accept an event, handling it and marking it as accepted using

CHAPTER 5: Doing More with Qt 96

QEvent::accept. Or it can ignore the event, in which case the event may propagate

elsewhere (such as to a containing parent widget).

TIP: Don’t confuse events and signals. They’re complementary, but very different. A signal lets

you set up a one-to-potentially-many notification by connecting a signal to one or more slots;
events are directed to a specific receiver, usually via the parent-child layout of the widget
hierarchy and the widget that has focus. While both use method dispatches in their

implementation, signals go through Qt’s metaobject system, while events passed through
straight-up inheritance and method dispatches. In many cases, lower-level events sooner or later
get transformed to higher-level signals. For example, a mouse-up event on a button will result in

a clicked signal that you can easily process in your application.

The QWidget class provides its own event method, which internally checks the type of

incoming events and calls one of a number of delegate methods, depending on the type

of event. Table 5–1 shows a number of the events you likely want to intercept and

handle in your widget.

Table 5–1. Common QWidget Events and their Delegate Methods

Event Delegated to Reason

QCloseEvent closeEvent Invoked when the widget is closed

QFocusInEvent focusInEvent Invoked when the widget is focused

QFocusOutEvent focusOutEvent Invoked when the widget loses focus

QHideEvent hideEvent Invoked when the view system hides the widget

QKeyEvent keyPressEvent Invoked when the user presses a key and a

widget is focused

QKeyEvent keyReleaseEvent Invoked when the user releases a key and a

widget is focused

QMouseEvent mouseDoubleClickEvent Invoked when the widget receives a double-click

QMouseEvent mouseMoveEvent Invoked when the user moves the mouse or

drags on a touch screen

QMouseEvent mousePressEvent Invoked when the user presses a mouse button

or presses the touch screen

QMouseEvent mouseReleaseEvent Invoked when the user releases a mouse button

or releases the touch screen

QPaintEvent paintEvent Invoked when Qt needs the widget to draw itself

QResizeEvent resizeEvent Invoked when the widget’s size changes

QShowEvent showEvent Invoked when the view system shows the widget

CHAPTER 5: Doing More with Qt 97

You’ve already seen one widget’s paintEvent, which performs the simple task of

drawing text. Many widgets also need to interact with the user, requiring them to

process either mouse events or gestures (see the next section for more information

about gestures).

Occasionally—especially when debugging someone else’s code—you may want to

intercept an event before it’s delegated to the widget hierarchy or wherever it’s headed.

You can do this by installing an event filter on an object using

QObject::installEventFilter. The event filter should be another QObject that

implements eventFilter, a method that takes the object being monitored for events (the

initial target of the event) and all events destined for the object. Use event filters

sparingly, however, because intercepting the event mechanism is computationally

expensive (your filter may receive a very large number of events) and may take a toll on

run-time and battery performance.

Handling Incoming Gestures
While traditional mouse movement suffices for single-touch interaction on a touch

screen, where mouse movement indicates dragging on the screen, Qt provides a

gesture framework that handles user panning, pinching, and swiping. It lets you extend

the gesture recognizer to interpret and handle application-specific gestures of your own.

The framework uses the QGesture class to share information common to all gestures,

gesture-specific subclasses such as QPanGesture, and the existing event system.

To indicate your widget can handle gestures, it must invoke grabGesture, passing the

gesture ID (Table 5–2) of the gesture it can handle. (If you implement a custom gesture,

the framework assigns it an ID when you register the gesture using

QGestureRecognizer::registerGesture.)

As an example, here’s how to recognize and act on swipe gestures, borrowed from Qt’s

Image Gesture example. The widget’s constructor grabs the swipe (and other gestures),

indicating to the gesture system that it wants to receive those gestures:

ImageWidget::ImageWidget(QWidget* parent)
 : QWidget(parent),
…
{
…
 grabGesture(Qt::PanGesture);
 grabGesture(Qt::PinchGesture);
 grabGesture(Qt::SwipeGesture);
…
}

QWidget doesn’t define an explicit event handler for gestures, so we need to catch these

gestures in QWidget’s event method:

bool ImageWidget::event(QEvent* event)
{
 if (event->type() == QEvent::Gesture)
 return gestureEvent(static_cast<QGestureEvent*>(event));
 return QWidget::event(event);

CHAPTER 5: Doing More with Qt 98

}

The gestureEvent method referred to here isn’t one in the QWidget class, but rather a

new method we implement that performs gesture-specific recognition and actions,

dispatching to specific handlers for each kind of gesture:

bool ImageWidget::gestureEvent(QGestureEvent *event)
{
 if (QGesture *swipe = event->gesture(Qt::SwipeGesture))
 swipeTriggered(static_cast<QSwipeGesture *>(swipe));
 else if (QGesture *pan = event->gesture(Qt::PanGesture))
 panTriggered(static_cast<QPanGesture *>(pan));
 if (QGesture *pinch = event->gesture(Qt::PinchGesture))
 pinchTriggered(static_cast<QPinchGesture *>(pinch));
 return true;
}

Table 5–2. Default supported gestures in Qt and their IDs

Gesture ID

Tap Qt::TapGesture

Tap and hold Qt::TapAndHoldGesture

Pan (press-drag-release) Qt::PanGesture

Pinch Qt::PinchGesture

Swipe (press-drag-accelerate-release) Qt::SwipeGesture

As the gesture recognizer interprets pointer movements and discerns gestures, it

generates QGestureEvent instances and passes them to any objects that have grabbed

the appropriate gestures via the object’s event function, just as it passes any other

event.

Each of the individual gesture handlers called from within gestureEvent do the actual

gesture handling. This is where the rubber meets the road; you invoke gesture on the

incoming QGestureEvent to recover the gesture, determine its type and data, and then

perform the necessary widget-specific processing, such as panning, rotating, or

zooming. As you do this, you need to be cognizant of the gesture’s state, because many

of them aren’t instantaneous—think pinching, where the user may adjust the distance

between the two touched points repeatedly to see the same content at different zoom

levels. When using a gesture event, you often need to reflect this state in your own event

handling logic—say, by tracking the appropriate zoom level between events.

Creating your own gesture involves subclassing QGestureRecognizer and overriding its

recognize event, which takes the widget receiving input events, and performs the

filtering necessary to determine whether the incoming events in fact define a new

gesture, and parameters that can be discerned from the gesture. Writing a gesture

recognizer is beyond the scope of this book, but it’s worth noting that gesture

recognition typically involves writing a small state machine, in which incoming events are

CHAPTER 5: Doing More with Qt 99

treated differently, depending on the previous events in the stream. When you create a

gesture recognizer, you also can subclass QGesture to provide a custom gesture

instance that has gesture-specific parameters, such as acceleration or a vector of

gesture movement. For more information on writing a gesture recognizer, see Qt’s

documentation about the gesture framework at http://doc.qt.nokia.com/gestures-
overview.html.

Painting Your Widget’s Contents
Qt provides a trio of classes that permit you to perform painting—QPainter,

QPaintDevice, and QPaintEngine. You use QPainter to paint on an output device,

represented by QPaintDevice. QPainter delegates its work to a high-performance

renderer via QPaintEngine, letting you render to raster images via the QImage class or

using OpenGL or OpenVG on devices with hardware support for those standards. In

practice, you use QPainter to perform painting and painting-related settings

management, using a QPainter instance correctly configured to paint to the device’s

screen.

You can paint only when the view system is ready for you to paint; this occurs within

your widget’s paintEvent method on the main application thread. You already saw a

small example in Listing 5–1, repeated again here:

 void paintEvent(QPaintEvent *) {
 QPainter painter(this);
 painter.setPen(Qt::blue);
 painter.setFont(QFont("Arial", 18));
 painter.drawText(rect(),
 Qt::AlignCenter,
 "Hello world");
 }

QPainter provides support for far more than just text drawing. Table 5–3 lists the

primitive drawing functions QPainter provides.

Table 5–3. QPainter drawing primitives

Shape Method

Arc (including a circle) drawArc

Bezier curve drawCubicBezier

Chord (circle segment) drawChord

Convex polygon drawConvexPolygon

Ellipse drawEllipse

Erase a rectangle eraseRect

Filled arc or circle drawPie

Filled polygon drawPolygon

http://doc.qt.nokia.com/gestures-overview.html
http://doc.qt.nokia.com/gestures-overview.html
http://doc.qt.nokia.com/gestures-overview.html

CHAPTER 5: Doing More with Qt 100

Shape Method

Filled rectangle fillRect

Image drawImage

Line drawLine

Multiple lines drawLines

Multiple points drawPoints

Open polygon drawPolyline

Picture drawPicture

Pixmap drawPixmap

Point drawPoint

Rectangle drawRect

Rectangles drawRects

Rectangle with rounded corners drawRoundedRect

Text drawText

Drawing with QPainter uses its settings, including its font, brush, and pen. You describe

each with a corresponding helper class (QFont, QBrush, and QPen) that encapsulates

information such as the font metrics, color, and fill pattern. For example, you can get

information and metrics information about a font with fontInfo and fontMetrics, or the

color of a pen or brush using the color method. Colors have their own representation,

too, using the QColor class, which includes support for interconversion between red-

green-blue (RGB), hue-saturation-value (HSV), and the subtractive cyan, magenta,

yellow, and key black (CMYK) color systems. The representation of colors includes an

alpha channel, as QPainter rendering supports alpha blending during drawing.

When constructing complex shapes, especially repeatedly, you can use QPainterPath, a

container class that lets you create a collection of graphical building blocks such as

rectangles, ellipses, and so forth. QPainterPath objects can be used for filling, outlining,

and clipping, and are more efficient than drawing the same shapes repeatedly because

each shape in the composition need be drawn only once. It’s especially handy when

drawing complex widgets that have precomputed components, because you can

compute and cache a QPainterPath as you construct your widget or when its data

changes, and then paint it with a single call to QPainter::drawPath in your widget’s

paintEvent function.

By default, when you paint with QPainter, you’re drawing on the device’s coordinate

system, usually screen pixels. Sometimes it’s easier to think about rendering by

adjusting the target coordinate system; QPainter lets you perform any affine

CHAPTER 5: Doing More with Qt 101

transformation (linear transformation followed by a translation) of its coordinate system.

You can use the following methods to adjust the coordinate system used by QPainter

 scale to scale the coordinate system by an offset.

 rotate to rotate the coordinate system clockwise around its origin.

 translate to translate (shift by an offset) the coordinate system.

 shear to twist a coordinate system around the origin.

Another common operation you may want to perform is off-screen drawing. While Qt

double-buffers drawing to prevent flickering, sometimes you need to perform off-screen

drawing for other reasons, such as to composite multiple bitmaps to create a specific

bitmap, or decorate a bitmap with text to be draw in multiple locations. Qt provides the

QImage class and its subclasses as other concrete implementations of QPaintDevice. So

you can create a QPainter using a QImage instance, and then drawing on the image

using the QPainter. Qt provides four implementations of QImage:

 QImage class, optimized for fast input/output and direct pixel

manipulation.

 QPixmap class, optimized for on-screen drawing.

 QBitmap class, an optimized QPixmap with a bitdepth of 1.

 QPicture class, a paint device that records and replays QPainter

commands in a manner similar to QPainterPath.

Interestingly, QImage and its subclasses are Qt value classes like QString; because they

use implicit data sharing, you can pass them around freely as you would other implicitly

shared data classes like QString and QList. Under the hood, Qt’s implicit data sharing

handles one shared block for multiple instances, using copy-on-write to create multiple

copies of the data only when necessary. To read about how Qt’s implicit data sharing

works under the hood, see Qt’s documentation at http://doc.qt.nokia.com/implicit-
sharing.html.

Integrating Qt Objects with Web Content
In the previous chapter we used Qt’s WebKit integration to show HTML, but neither said

much about its capabilities, nor took advantage of those capabilities. As it happens, Qt

and WebKit are quite well-integrated through the QtWebKit implementation, which lets

you not just render web content but enhance it by embedding QObject instances in the

web content. QtWebKit is a full port of the open source WebKit engine, including

rendering for HTML and XHTML, as well as Scalable Vector Graphics (SVG) documents,

all styled using CSS and scripted using JavaScript. The most obvious use for QtWebKit

is displaying web content or web-styled content in your application, but there are other

things you can do, too, such as process web content into bitmaps for placement in your

application (think of a wall in a platform game showing real-time data from a web-based

news feed).

http://doc.qt.nokia.com/implicit-sharing.html
http://doc.qt.nokia.com/implicit-sharing.html
http://doc.qt.nokia.com/implicit-sharing.html

CHAPTER 5: Doing More with Qt 102

Linking Your Application with QtWebKit
Linking against QtWebKit in your application is easy—just be sure that WebKit is in your

PRO file’s QT variable, like this:

QT += webkit

Of course, C++ classes that access QtWebKit classes need to have access to

QtWebkit’s interfaces. The easiest way to do this is to include QtWebKit’s headers any

place you need them, like this:

#include <QtWebKit>

For faster compilation, you can always forward-declare the classes you’re going to use

in your header files, and include just the definitions you require, although there’s no

guarantee that under-the-hood QtWebKit headers are doing the same thing.

Displaying Web Content with QtWebKit
For most purposes, the first class in QtWebKit you use is QWebView. It’s a descendant of

QWidget that you first encountered in the last chapter when we used it to display the

HTML content associated with an earthShake report in the USGS Really Simple

Syndication (RSS) feed using the setHtml method. You could just as easily have it load

web content from a remote server using its load method, like this:

QWebView* view = new QWebView(parent);
view->load(QUrl("http://www.apress.com/"));
view->show();

NOTE: If you find yourself using Qt’s graphics scene architecture and need to render Web
content, use QGraphicsWebView instead. It inherits from QGraphicsItem and renders

correctly in a QGraphicsScene.

The QWebView load method takes a QUrl, representing a URL; there are type coercion

functions that let you supply a string and it’ll be coerced to a URL at runtime, but it’s

better to be specific instead of relying on compiler magic to say what you mean.

QtWebKit’s content loading is asynchronous, so it doesn’t block the user thread. It

signals its progress so that you can notify the user or take other action. It emits the

loadStarted signal when the view begins loading, and periodically emits loadProgress

whenever a web element of the page (such as an image or JavaScript segment) is fully

loaded. When the entire page is loaded, the QWebView emits the loadFinished signal,

passing true if the page is successfully loaded, or false if there is a failure.

You can control a QWebView’s behavior using an instance of QWebSettings, available by

calling QWebView::settings. You can change the font family and font size, but the most

important things you can adjust are the web attributes that determine how QtWebKit

behaves. The attributes include:

http://www.apress.com

CHAPTER 5: Doing More with Qt 103

 Set by default, QWebSettings::AutoLoadImages specifies whether

images in content should be automatically loaded.

 Set by default, QWebSettings::JavaScriptEnabled specifies whether

JavaScript can be executed.

 QWebSettings::OfflineStorageDatabaseEnabled indicates whether

HTML 5 offline data storage is permitted or not.

 QWebSettings::LocalStorageEnabled indicates whether HTML 5 local

storage is enabled or not.

 QWebSettings::LocalContentCanAccessRemoteUrls indicates whether

locally loaded documents are allowed to access remote URLs.

The last property is especially handy; using it and locally cached content, you can

restrict browsing to local content.

QWebView relies heavily on its QWebPage object, which encapsulates the notion of a single

web page. QWebPage, in turn, uses one or more QWebFrame objects to represent individual

frames within the web page. You can obtain the QWebView’s QWebPage instance by calling

QWebView::page, and the main (parent) frame of a web page by calling

QWebPage::mainFrame.

QWebPage’s API is similar to QWebView, because QWebView is really a widget

implementation that delegates its handling of web content to QWebPage. A common use

for QWebPage (aside from obtaining the page’s main frame, something you do to embed

Qt objects into the JavaScript runtime, which we discuss more in the next section) is to

use it to render web content to an image. You do this using the QWebPage’s render

function, by invoking it when the web page finishes loading (when its loadFinished

signal fires). Listing 5–3 shows pseudocode from a class to do this drawn from the

QWebPage documentation.

Listing 5–3. Rendering a web page to an image

class Thumbnailer : public QObject
{
 Q_OBJECT

public:
 Thumbnailer(const QUrl &url, QObject* parent = 0)
 : QObject(parent) {
 page.mainFrame()->load(url);
 connect(&page, SIGNAL(loadFinished(bool)),
 this, SLOT(render()));
 };

 QImage thumbnail() {
 return thumb;
 };

signals:
 void finished();

private slots:

CHAPTER 5: Doing More with Qt 104

 void render() {
 page.setViewportSize(page.mainFrame()->contentsSize());

 QImage image = QImage(page.viewportSize(), QImage::Format_ARGB32);

 QPainter painter(&image);
 page.mainFrame()->render(&painter);
 painter.end();

 QImage thumb = image.scaled(400, 400, Qt::KeepAspectRatioByExpanding);

 emit finished();
 };

private:
 QWebPage page;
 QImage thumb;
};

The key work is in render, invoked when the web page finishes loading. It sets the

page’s view port—the virtual area where the page will render—to the QtWebKit-

calculated size for the page, and then it creates a QImage in which the QWebPage will

render the web page. Next, it creates a QPainter for the new QImage, and has the

QWebPage render the web page into the image. Finally, it scales the image to a

predetermined size, and indicates that thumbnailing is complete by emitting the

finished signal.

Another common thing you may want is having fine-grained control over which URLs the

web content can visit. This can happen if you’re using QtWebKit to render content over

which you don’t have full control, and don’t want to provide a full-on browser

experience. Doing this is a bit trickier than thumbnailing, because you have to subclass

QWebPage and override acceptNavigationRequest, which returns true if the QWebPage
should handle the navigation request. To do this:

1. Subclass QWebPage.

2. Implement QWebPage::acceptNavigationRequest, performing your application-

specific logic. You can look at the requested URL as well as the trigger for the

navigation (form submission, clicked link, etc.) and determine whether to let the

request pass or handle it yourself.

3. At runtime, create an instance of your QWebPage subclass and set it on your

application’s QWebView instance using setPage.

Embedding C++ Objects in QtWebKit’s JavaScript Runtime
While it’s quite handy to be able to embed a web view in your application, things get

really interesting when you embed Qt objects into your web application. Using

QWebFrame’s addToJavaScriptWindowObject, you can add any QObject subclass to the

JavaScript runtime associated with a web page. When you do this, Qt makes any

properties the QObject provides available to JavaScript as slots, and signals as

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 5: Doing More with Qt 105

JavaScript methods. For example, consider the class in Listing 5–4, which emits a signal

when someone calls its trigger method.

Listing 5–4. The WebActionProxy class

class WebActionProxy : public QObject
{
 Q_OBJECT

public:
 explicit WebActionProxy(QObject *parent = 0)
 : QObject(parent) {
 };

public slots:
 void trigger() {
 emit triggered();
 };

signals:
 void triggered();
};

In itself, it doesn’t seem that useful—until you embed it in a JavaScript context, like this:

mBackAction = new WebActionProxy(this);
mItemWidget->
 page()->currentFrame()->
 addToJavaScriptWindowObject("action",
 mBackAction,
 QScriptEngine::QtOwnership);

This adds a JavaScript object action that corresponds to an instance of WebActionProxy.

On the C++ side in our Qt application, we can connect other QObjects to the triggered

method, and then invoke them from JavaScript using something like the following HTML

anywhere in the web content:

<p align="center">
 <button type="button"
 onclick="action.trigger()">Back</button>
</p>

This creates a button with the name “Back” that invokes the WebActionProxy method’s

trigger method, which in turn emits a triggered signal—behaving just like a QAction in

a Qt view. We use this in Shake to permit the user to step back from an item view, which

you see later in this chapter in “Putting it All Together.”

NOTE: While you could just embed any old object in your JavaScript this way, using a
WebActionProxy object helps provide a clean abstraction between the JavaScript and C++

worlds, and makes for a more digestible example here.

The application of this should be obvious: not only can web content directly control the

behavior of the C++ portions of your application, but with Qt you can weave JavaScript

and C++ together, using each language’s strengths. By presenting web-oriented user

CHAPTER 5: Doing More with Qt 106

interface in HTML, you can rapidly prototype and control your presentation using CSS

with simple scripts using JavaScript, while leveraging native performance and features

using C++.

Embedding Qt Widgets into QtWebKit Pages
Not only can you embed Qt objects into a page’s JavaScript runtime, but you can

embed visible widgets in the page as well. This is handy if you want to use HTML and

CSS to control the layout of Qt application components, although doing so is a little

more finicky than simply embedding a QObject. QtWebKit supports QObject-based plug-

ins, which are visible entities in the web content drawn by Qt widgets. For example,

Figure 5–2 shows a QDateTime editor embedded in an HTML window.

Figure 5–2. Embedding a Qt widget into a QtWebKit page

In the HTML, you might write:

<object type="application/x-qt-plugin"
 classid="MyDateTime"
 name="datetime"
 width="400" height="48">
</object>

This calls out to QWebPage’s createPlugin method, which takes the name of a class to

create along with the name-value parameters from the HTML origin of the object, and

returns a QObject instance that is placed at the appropriate location in the HTML. This

method might look something like this:

CHAPTER 5: Doing More with Qt 107

QObject *MyWebPage::createPlugin(
 const QString& classid,
 const QUrl& url,
 const QStringList& paramNames,
 const QStringList& paramValues)
{
 QDateTimeEdit *edit = new QDateTimeEdit(QDateTime()));
 return edit;
}

Of course, a real implementation might support several QObject plug-ins, and need to

switch on the value of the classid variable.

Back in the QtWebKit environment, you can directly access the properties and slots

(method invocations) of the resulting object named datetime from JavaScript, just as

you could any other object proxied into the JavaScript runtime. The difference is that

the object you created is visible, and draws when the web page is painted.

Extending Application Functionality with Qt Mobility
At first it’s easy to be overwhelmed by the richness and depth of the porting layer that

Qt provides. Experienced mobile developers may soon despair, however, asking

where’s the geolocation service APIs? How do I access the camera? Can I integrate with

the native messaging stack? How do I access contacts?

Nokia provides the Qt Mobility application programming interfaces (APIs) to address

these questions. Starting from the capabilities of mobile devices, these APIs may be

equally relevant for desktop environments, especially as traditional desktop and mobile

computing continue to converge through ultraportable laptops and other computing

devices. Like the rest of Qt, Qt Mobility promises cross-platform compatibility without

sacrificing application performance by using C++, Qt’s metaobject system, and signals

and slots to provide a uniform programming environment throughout your Qt

application’s development. The APIs are provided as a collection of small libraries and

headers you include within your application, using only the portions of the Qt Mobility

API that your application requires.

As of this writing, Qt Mobility provides you with access to the following device features:

 Bearer management, permitting you to start and stop network

interfaces, as well as use the system’s support for selecting the best

bearer interface for a particular application, given the networks

available.

 The device camera, permitting you to capture still and video imagery.

 The contacts database, letting you create, edit, list, delete, and look

up contact information.

 Device location, giving you an interface to both obtain device location

and work with geographical information obtained from satellite or other

sources.

3

CHAPTER 5: Doing More with Qt 108

 The document gallery, letting you use native applications to render

data, such as captured photographs or multimedia.

 Control over feedback devices, such as on-board haptics.

 Messaging, letting you create, originate and receive Short Message

Service (SMS), Multimedia Message Service (MMS), Multipurpose

Internet Mail Extensions (MIME), and Transport Neutral Encapsulation

Format (TNEF) e-mail messages.

 Multimedia, letting you play audio and video using the device’s coders

and decoders, as well as access the built-in FM radio if one exists.

 The organizer, where you can request calendar, scheduling, and other

personal data from local or remote sources.

 Publish and subscribe, letting you share and access item values and

obtain change notifications from a tree of values.

 Sensors, letting you access sensors for screen orientation,

accelometry, and other applications.

 Service management for plug-in service discovery and use between

applications for internal and external data sources.

 Basic system information to determine system-related information and

capabilities, such as software versions, hardware features, available

network types and status, and so forth.

 Versit document management to parse vCard (and eventually

iCalendar) data.

The Qt Mobility interfaces have evolved considerably quicker than the existing Qt

interfaces, a result primarily of mobile developer needs and the small, well-defined

nature of each segment of the Qt Mobility API. Additionally, Nokia plans and frequently

makes available technology preview releases of Qt Mobility, giving access to new APIs

as soon as Nokia has finished coding and testing them. In the discussion that follows we

give you a flavor for the capabilities and use of the first commercial release of Qt

Mobility, so that as you design your application, you know what Qt Mobility features are

available.

In the discussion that follows we touch on some of what we believe to be the most

important and useful Qt Mobility APIs. For a thorough discussion of this fast-evolving

part of Qt, see http://qt.nokia.com.

http://qt.nokia.com

CHAPTER 5: Doing More with Qt 109

Using the Qt Mobility APIs
Before you use a Qt Mobility API in your application, you need to do several things:

1. Identify the Qt Mobility APIs you wish to use.

2. Update your application’s PRO file to include the necessary configuration for that

Qt Mobility API.

3. Re-run qmake by right-clicking on the project name and choosing “Run qmake.”

4. Include the necessary Qt Mobility classes (from the Qt Mobility namespace) in

your application.

5. On Symbian, update the platform capabilities to permit your application to use the

desired API.

When you use Qt Creator to create a PRO file for your application, it includes two

variables, CONFIG and MOBILITY. The CONFIG variable specifies particular build

configuration options for your application (such as whether it’s a Qt GUI or Qt console

application), while the MOBILITY variable indicates which Qt Mobility APIs you wish to

use. To use Qt Mobility APIs at all, you need to add mobility to the CONFIG variable, and

then enumerate the desired Qt Mobility APIs, like this:

CONFIG += mobility
MOBILITY += location bearer

This example indicates that you want to use the location and network bearer APIs in

your application. Under the hood, qmake uses the installed Qt Mobility configuration to

determine the additional include paths and libraries for your application based on the

value of the MOBILITY variable at build time. Table 5–4 lists each of the Qt Mobility API

domains and the corresponding value to append to the MOBILITY variable.

CAUTION: Don’t forget to include the appropriate values for the MOBILITY variable! If you find
you’re getting build errors relating to missing include files or mismatches between the Qt Mobility
namespace and your own namespace, or an inability to link, be sure and check your project’s

MOBILITY variable (and be sure you’re appending values with +=, not assigning them with =).

CHAPTER 5: Doing More with Qt 110

Table 5–4. Qt Mobility APIs and the values for the MOBILITY qmake variable

Qt Mobil i ty API Value

Bearer Management bearer

Contacts contacts

Document Gallery gallery

Feedback (haptics) feedback

Location location

Multimedia multimedia

Messaging messaging

Organizer organizer

Publish and Subscribe publishsubscribe

Service Framework serviceframework

Sensors sensors

System Information systeminfo

Telephony Events telephony

Versit (vCards) versit

In the class declarations that use Qt Mobility classes, you need to do two things: include

the Qt Mobility global declarations, and declare the Qt Mobility namespace so you don’t

have to declare the namespace containing Qt Mobility classes when you use a Qt

Mobility class. You do this with the following two lines:

#include <qmobilityglobal.h>
QTM_USE_NAMESPACE

(If you include a specific Qt Mobility header, you can omit the inclusion of

qmobilityglobal.h because it’ll be included by the specific header.)

Of course, you also need to forward-declare Qt Mobility classes or include the relevant

header files that declare those classes; as with Qt, there’s usually an include file for

each class. For example, to reference a position using the QGeoPositionInfo class,

simply include the QGeoPositionInfo header, like this:

#include <QGeoPositionInfo>

As a general rule to help speed compilations, we like to forward-declare our classes in

headers whenever possible, only including the actual class definition in source files

when they’re actually needed.

Finally, if you’re writing an application targeted to Symbian, you need to be aware of

Symbian capabilities. Symbian provides a robust security model, in which many APIs

that may require user or operator trust are available only to applications that assert

specific capabilities in their application binary. For example, before obtaining the device

CHAPTER 5: Doing More with Qt 111

position, an application must be built including the Location capability; if the application

doesn’t bear this capability, the location request will fail with a platform security

violation. You assert these capabilities in the application’s PRO file, and the build

system includes them in the binary package when building the application, like this:

symbian: TARGET.CAPABILITY += NetworkServices ReadUserData \
 Location

Table 5–5 shows a list of the required capabilities for each of the Qt Mobility APIs. For

more information about Symbian’s capability model, see http://wiki.forum.nokia.com/
index.php/Capabilities.

CAUTION: Failing to provide a capability is a common source of grief when using Qt Mobility for
Symbian. If your application simply fails to start, or exits immediately after starting or when you

invoke an operation that’s using a Qt Mobility API, be sure to check the capabilities in your
application’s PRO file. Mismatching capabilities frustratingly causes the system to terminate an

application without warning, rather than giving you an error.

Table 5–5. Qt Mobility APIs and the required Symbian capabilities

Qt Mobil i ty API Value

Bearer Management ReadUserData NetworkServices1

Contacts ReadUserData WriteUserData

Location Location

Multimedia UserEnvironment ReadUserData WriteUserData ReadDeviceData
WriteDeviceData

Messaging LocalServices ReadUserData WriteUserData NetworkServices
UserEnvironment ReadDeviceData WriteDeviceData

Organizer ReadUserData WriteUserData

Publish and Subscribe Depends on the value being read or written.

Service Framework None, although plug-ins may have specific requirements

Sensors

System Information LocalServices ReadUserData WriteUserData NetworkServices
UserEnvironment ReadDeviceData WriteDeviceData

Versit (vCards) None

1. NetworkControl is required for QNetworkSession::stop

2. Capability requirements are not yet published for the camera, document gallery,

telephony events, or feedback APIs.

http://wiki.forum.nokia.com

CHAPTER 5: Doing More with Qt 112

Note that if you add capabilities to your application, you may need to add a developer

certificate, as well to assert those capabilities. You also may need to obtain additional

signing from Nokia when publishing your application on the Ovi Store. For more

information about certificates in the context of testing and publishing your application,

see the section “Signing Your Qt Application for Symbian Devices” in Chapter 9.

Managing Bearer Networks
Today’s devices typically have multiple means of accessing wireless networks, such as

support for both WiFi and cellular wide-area networks. Most platforms allow the user to

select the system’s default configuration, which all applications should honor when

accessing the network. This default may be a service network for wide-area network

access, a particular Internet access point such as a WiFi network, or a default that

prompts the user with available networks at each attempt to connect. The Bearer

Management API lets you control when and how your application accesses the network

by selecting a particular network interface or using the user-specified system default,

without excessive prompting to the user.

The Bearer Management API consists of three classes: QNetworkConfigurationManager,
QNetworkConfiguration, and QNetworkSession. The first class provides ways to

determine whether the device is already online; detecting system network capabilities

such as whether the application can start and stop interfaces; roaming across networks;

obtaining a collection of all network configurations; or obtaining the default

configuration. This last use, the most common one, occurs when your application needs

to go online and should use the default connection, using code as you see in Listing 5–

5. The second class, QNetworkConfiguration, represents a specific interface

configuration, such as WiFi through a particular WiFi network with its associated security

information. The QNetworkConfigurationManager provides these, and you use a

QNetworkConfiguration with QNetworkSession, which opens a network session for your

application.

Listing 5–5. Opening the default network connection

QNetworkConfigurationManager manager;
const bool canStartIAP = (manager.capabilities()
 & QNetworkConfigurationManager::CanStartAndStopInterfaces);
QNetworkConfiguration cfg = manager.defaultConfiguration();
if (!cfg.isValid()
 || (!canStartIAP
 && cfg.state() != QNetworkConfiguration::Active)) {
 QMessageBox::information(this,
 tr("Network"),
 tr("No Access Point found."));
 return;
}

session = new QNetworkSession(cfg, this);
session->open();
session->waitForOpened(-1);

CHAPTER 5: Doing More with Qt 113

Listing 5–5 does just this, beginning by determining if it is permitted to start and stop

interfaces, and then determining the default configuration. If there’s no default

configuration and the network isn’t already active, the code tests to see if it can start a

new session; if it can’t, it fails with an informative error. If, however, there’s a default

configuration, or the network is already running, the code opens the session, blocking

the thread until the network completely opens(typically a few hundred milliseconds at

most).

The QNetworkSession class offers a signal when a more suitable network session is

available; by keeping a reference to the active QNetworkSession and listening for that

signal, you can migrate a network connection to a more suitable access point. To do

this:

1. Connect to the QNetworkSession’s preferredConfigurationChanged signal.

2. In the slot that handles the signal, connect to the QNetworkSession’s

newConfigurationActivated signal.

3. In the connection that handles the preferredConfigurationChanged signal, invoke

a migration to the new network by invoking QNetworkSession::migrate, or ignore

the new network by invoking QNetworkSession::ignore.

4. If you invoke migrate, the connection will attempt to migrate, and when migration

is complete, it willtrigger the newConfigurationActivated signal.

5. In the slot that handles the newConfigurationActivated signal, call accept to

terminate the previous access point, or reject to reject the actual migration if the

new network is unsuitable (for example, if the new network does not permit a

connection to the remote host).

The Bearer Management Qt Mobility API was moved to Qt in Qt 4.7, so if you’re

developing with the Qt 4.7 release, you should use the classes provided in Qt 4.7 rather

than the Qt Mobility API. To do this, simply remove the bearer value from the MOBILITY

variable in your PRO file, and remove the declaration of the Qt Mobility headers and

namespace from the relevant source files in your application.

Obtaining and Working with Device Location Information
The classes in the Qt Mobility Location API help you determine the device’s location and

manage the notion of precisely specified positions on the Earth’s surface, abstracting

the latitude and longitude, date and time, velocity, altitude, and bearing of the device

when the data was captured. The Location API is explicitly source-agnostic, so under

the hood it may be using the Global Positioning System (GPS), positioning through

cellular or WiFi network data, or other methods.

To obtain the device’s location, you must first obtain an instance of a position

information source, which you can do by calling

QGeoPositionInfoSource::createDefaultSource, which returns an instance of

QGeoPositionInfoSource. This class emits the positionUpdated signal any time the

CHAPTER 5: Doing More with Qt 114

system ascertains position information, so you connect your class to it and call

startUpdates to request continuous updates, or requestUpdate to request a single

update. We show how to do this in a full application later in the section “Putting It All

Together,” but Listing 5–6 shows the general idea.

Listing 5–6. Obtaining device position

class PositionInfo : public QObject
{
 Q_OBJECT
public:
 PositionInfo(QObject *parent = 0) : QObject(parent) {
 QGeoPositionInfoSource *source =
 QGeoPositionInfoSource::createDefaultSource(this);
 if (source) {
 connect(source, SIGNAL(positionUpdated(QGeoPositionInfo)),
 this, SLOT(positionUpdated(QGeoPositionInfo)));
 source->startUpdates();
 }
 }

private slots:
 void positionUpdated(const QGeoPositionInfo &info) {
 qDebug() << "Position updated: " << info;
 }
};

You can begin to receive continuous updates by invoking

QGeoPositionInfoSource::startUpdates, and stop those updates by invoking

QGeoPositionInfoSource::stopUpdates. You can control how often position reports are

returned by invoking QGeoPositionInfoSource::setUpdateInterval, or what positioning

methods you prefer using QGeoPositionInfoSource::setPreferredPositioningMethods.

Note that different positioning methods have different power consumption

characteristics, and the more often you obtain position data, the more you tax the

device’s battery. So it’s best to be judicious about how often you poll.

The position data is returned as an instance of QGeoPositionInfo, a data container class

that includes not just a QGeoCoordinate bearing the current device coordinates, but a

time stamp indicating when the data was obtained. It also has zero or more attributes

that indicate things such as the current direction, ground speed, vertical speed,

magnetic variation from true north at that location, and the horizontal and vertical

accuracy of the position data. The QGeoCoordinate includes information on the position

latitude, longitude, and altitude, and provides helper methods for calculating the

distance between two QGeoCoordinate instances as well as the bearing from one

QGeoCoordinate to another.

New to Qt Mobility 1.1, the Location API includes an abstract interface to a device’s

store of landmarks, which may be managed by a native application such as a mapping

or landmark application. This API provides QLandmarkManager, a utility class that lets you

save, fetch, and remove both landmarks and categories of landmarks. Qt Mobility 1.1

also provides an interface based on server plug-ins that present map and navigation

data through the notion of a geoservice provider that can provide mapping, routing, and

location search results. Using the geoservice provider, you can request an instance of

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 5: Doing More with Qt 115

QGeoMapWidget, a subclass of QGraphicsWidget that can present map data from the

geoservice provider. As both the landmarks API and the geoservice API are evolving as

we write this, consult http://doc.qt.nokia.com/qtmobility-1.1.0-beta/location-
overview.html for more information on the new interfaces available in the Qt Mobility

Location API.

Sending and Receiving Messages
Today’s mobile devices include support for all kinds of messaging, and many

applications benefit from integrating with those messaging solutions. Your application

can receive low-cost push notifications via SMS or e-mail, and originating e-mail

provides an asynchronous way for your application to interface with remote services.

Then, too, there’s the obvious: some applications need to permit the user to originate an

e-mail with content: think of the “e-mail this story” link on web pages, placed in your

application at strategic points in the content.

Qt Mobility’s Messaging API provides a host of classes for interfacing with messaging;

you can offer the device’s native message composition interface, leverage existing

installed message transports, including e-mail, SMS, and MMS, and access the native

messaging store to pick out specific messages for your application. Two key classes

provide the anchor for this functionality: QMessageService and QMessageManager.

Together with a number of classes that abstract the notions of messages, recipients,

message parts (attachments) message folders and message filters, it’s a rich API that

lets you use as little or as much of the platform’s support for e-mail as you choose.

The QMessageService class gives you a simple interface for managing the messaging

services themselves. Using QMessageService, you can:

 Prompt the user to compose and send a message using the native

messaging interface with the compose method.

 Query for messages matching specific filter criteria using the

queryMessages method.

 Retrieve an undownloaded message’s header or body (given only its

unique ID) using the retrieve, retrieveBody, or retrieveHeader

methods.

 Send a message you’ve programmatically composed using the send

method.

 Show an existing message using the show method.

http://doc.qt.nokia.com/qtmobility-1.1.0-beta/location-overview.html
http://doc.qt.nokia.com/qtmobility-1.1.0-beta/location-overview.html
http://doc.qt.nokia.com/qtmobility-1.1.0-beta/location-overview.html

CHAPTER 5: Doing More with Qt 116

Sending a message is easy. Here’s pseudocode to send an SMS message:

void MyClass::SendHello()
{
 QMessage message;
 message.setType(QMessage::Sms);
 message.setTo(QMessageAddress("+18885551212", QMessageAddress::Phone));
 message.setBody("Hello world!");

 if (mMessageService.send(message)) {
 sendId = message.id();
 } else {
 // Send failed
 }
}

mMessageService is an instance of the QMessageService class; its send message simply

sends the message you pass. You can receive confirmation that the message has sent

by attaching a slot to its stateChanged signal, like this:

MyClass::MyClass(QObject* parent) : QObject(parent)
{
 connect(&mMessageService,
 SIGNAL(stateChanged(QMessageServiceAction::State)),
 this,
 SLOT(messageStateChanged(QMessageServiceAction::State)));
}

void MyClass::messageStateChanged(QMessageServiceAction::State s)
{
 if (s == QMessageServiceAction::Successful) {
 // message send successful
 } else {
 // message sending failed
 }
}

Received messages are automatically placed in the message store, which you can query

for incoming messages. When querying for messages, you indicate the query criteria

using the QMessageFilter class, which has methods that let you specify filter criteria,

including:

 Message ID or a collection of message IDs using the byID method,

 Message priority by the byPriority method,

 Message time stamp using the byTimeStamp and

byReceptionTimeStamp methods,

 Message recipients using the byRecipients method,

 Message sender using the bySender method,

 Message size using the bySize method,

 Message status using the byStatus method,

CHAPTER 5: Doing More with Qt 117

 Message subject using the bySubject method,

 Message type using the byType method.

You can combine independent filters using the & and | operations, just like boolean

values. For example, you can search the messaging store for all high priority messages

from someone@noplace.com using code like this:

QMessageFilter priorityFilter(
 QMessageFilter::byPriority(QMessage::HighPriority));
QMessageFilter senderFilter(
 QMessageFilter::bySender("someone@noplace.com"));
QMessageIdList results =
 QMessageManager().queryMessages(priorityFilter & senderFilter);

This code uses the QMessageManager, which provides an abstraction over the message

store that lets you access individual messages. The QMessageManager class also provides

signals indicating when a message was added to the store (such as by message

composition or receipt), removed, or updated (such as when a message’s body was

fetched over IMAP).

You can obtain an individual message using its ID (obtained using one or more

QMessageFilters and the QMessageManager’s queryMessages method) and the constructor

for the QMessage class, which can accept an ID and create an abstraction of the content

of the message from its ID. The QMessage class is essentially a large data container, with

a number of accessor and mutator methods to obtain message fields and message

content, including:

 The to, cc, and bcc methods to obtain recipient information and the

corresponding setTo, setCc, and setBcc methods to set recipient

information.

 The attachmentIds, appendAttachments, and clearAttachments

methods to obtain attachment information, append files to the

message’s attachment list, and clear the list of attached files.

 The date and receivedDate methods to obtain composition and

receipt dates, and the setDate and setReceivedDate methods to set

those values.

 The ID method to obtain a message’s ID.

 The from method to obtain the message originator, and setFrom to set

the message’s originator.

 The subject and setSubject methods to obtain and manipulate the

message’s subject.

 The status and setStatus message to obtain or set the message’s

status (including the read status).

 The bodyId and setBody methods to obtain a reference to the ID for

the body or set the body as a string or text stream using QString or

QTextStream.

mailto:someone@noplace.com
mailto:someone@noplace.com

CHAPTER 5: Doing More with Qt 118

The class has several helper classes for data containment, such as QMessageAddress and

QMessageAddressList to represent senders or recipients of a message.

Originating a message is easy. To let the messaging user interface do the hard work,

you can invoke QMessageService::compose to have the messaging software provide its

native composition interface to the user. If you need to originate a message

programmatically, you create a QMessage object and use its setter methods to set the

recipients, subject, body, and any attachments. Once you do this, invoke

QMessageService::send method to send the message.

For examples showing how to use these methods in detail, consult the Keep In Touch

example at http://doc.qt.nokia.com/qtmobility-1.0/keepintouch.html and the Message

Services example at http://doc.qt.nokia.com/qtmobility-1.0/serviceactions.html

on the Nokia web site.

Playing and Recording Multimedia
Qt Mobility’s Multimedia APIs give you an easy way to harness the device’s integrated

coders and decoders (codecs) for audio capture, as well as audio and video playback.

The Multimedia API is a good choice when rendering sounds or video for games and

other entertainment, as well as streaming audio from remote sources like Internet radio

stations. While Qt has Phonon, another multimedia framework that provides cross-

platform compatibility, the Qt Mobility solution is the accepted path going forward.

(There’s also the Qt Multimedia framework, slated for addition into later versions of Qt

4.7 that has many of the same features.)

CAUTION: Unlike all the other Mobility APIs we describe, the Multimedia API is not in the Qt
Mobility namespace. When predeclaring or using the classes we discuss in this section, do not

include the QTM_USE_NAMESPACE macro.

Audio playback couldn’t be easier: create a player, create a URL to the (local or remote)

source of the audio content, and invoke play:

QMediaPlayer *player = new QMediaPlayer;
player->setMedia(QUrl::fromLocalFile("beep.mp3"));
player->setVolume(50);
player->play();

The QMediaPlayer has slots that permit control of basic playback functions, making it

easy to wire to existing UI controls, such as buttons and actions. These slots are as

follows:

 The play slot starts media playback.

 The pause slot pauses media playback.

 The setMuted slot mutes or unmutes audio.

http://doc.qt.nokia.com/qtmobility-1.0/keepintouch.html
http://doc.qt.nokia.com/qtmobility-1.0/serviceactions.html

CHAPTER 5: Doing More with Qt 119

 Not supported by all codecs, the setPlaybackRate slot takes a qreal

indicating a multiplier to the standard playback rate to speed up, slow

down, or reverse playback (normal playback is indicated by a value of

1.0).

 The setPlaylist slot takes a QMediaPlaylist, a collection of media

files, and instructs the player to play them in sequence. If the

QMediaPlayer instance is playing a playlist, you can obtain that playlist

by invoking playlist.

 The setPosition slot takes a number of milliseconds and sets the

playback position to that number. You can obtain the current playback

position by calling position.

 The setVolume slot takes a volume level as a percentage (from 0 to

100) and sets the playback volume. You can obtain the volume by

invoking volume.

 The stop slot stops media playback.

The QMediaPlayer emits a number of signals you can use to monitor playback, including

signals for buffering status (bufferStatusChanged), errors (error), media changes

(mediaChanged), playback status (stateChanged), position (positionChanged), and volume

(volumeChanged).

Playing video requires you to couple a QVideoWidget that renders the video stream to the

player. This is a QWidget that integrates with the codec subsystem to render video data,

so you can treat it as a standard widget in your application layouts. To wire a

QVideoWidget to a QMediaPlayer, you need only pass the QMediaPlayer instance to the

constructor of QVideoWidget, like so:

QMediaPlayer *player = new QMediaPlayer;
player->setMedia(QUrl::fromLocalFile("movie.mp4"));
widget = new QVideoWidget(player);
mainWindow->setCentralWidget(widget);
widget->show();
player->play();

Recording audio is a little trickier; not only do you need to set the output location (where

the recorded audio will be stored), but you must select an audio device and a codec

scheme. The Multimedia API encapsulates the notion of an audio source using the

QAudioCaptureSource class, which offers the following methods:

 The isAvailable method, indicating if audio capturing is available.

 The audioInputs method returns a list of audio inputs (strings

describing the kind of audio input).

 The setAudioInput method, which lets you set a particular audio input

by its name, indicating that audio should come from that input device.

 The audioDescription method, which returns a string describing the

named audio input source.

CHAPTER 5: Doing More with Qt 120

Once you select an audio input source (typically you would provide the list of sources in

a configuration view using a QListView or QListWidget, and use the widget’s signal to let

you set the appropriate source), you create a QMediaRecorder to record the audio and

configure it with a codec and destination for the data. Omitting the user interface for

selecting an audio source, we might write:

source = new QAudioCaptureSource;
if (!source.isAvailable()) return;
// Select the first audio input device
source.setAudioInput(source.audioInputs()[0]);

QAudioEncoderSettings settings;
settings.setCodec("audio/mpeg");
settings.setChannelCount(2);

recorder = new QMediaRecorder(source);
recorder->setOutputLocation(QUrl::fromLocalFile ("audio.mpg"));
recorder->setEncodingSettings(settings);
recorder.record();

The QMediaRecorder interface shares some of its configuration responsibilities with the

QAudioEncoderSettings (and QVideoEncoderSettings classes, on devices that support

video capture), so you use it to determine the names and attributes of codecs. But then

you actually delegate the configuration of a specific codec to the

QAudioEncoderSettings (or QVideoEncoderSettings) classes. QMediaRecoder has other

methods, including:

 audioSettings to determine the current audio encoder settings.

 videoSettings to determine the current video encoder settings.

 supportedAudioCodecs and supportedVideoCodecs to determine the

supported audio and video codecs.

 metaData and setMetaData methods to obtain and set metadata in the

encoded media stream.

 state and error to determine the recorder’s current state and the last

known error, if any.

As with the QMediaPlayer, the key actions a QAudioRecorder can take are actually slots,

so it’s easy to wire them to buttons or actions. These slots are:

 pause, to pause capture.

 record, to start recording.

 setMuted to mute the audio.

 stop to stop capture.

For an example demonstrating the Multimedia API, see the SlideShow example at

http://doc.qt.nokia.com/qtmobility-1.0/slideshow.html.

http://doc.qt.nokia.com/qtmobility-1.0/slideshow.html

CHAPTER 5: Doing More with Qt 121

Obtaining System Information
The System Information portion of the Qt Mobility API is perhaps the least exciting but

the most important to many developers. It provides fundamental information about the

system on which your application is running, and you can use that information to tune

your application’s presentation and performance. Using the API, you can obtain basic

information about the host system, including:

 The power system status, including the battery level and presence of a

battery or charger (using QSystemDeviceInfo).

 The input methods (keys, keyboard, single or multitouch, or mouse)

the device supports (using QSystemDeviceInfo).

 The sound profile (silent, normal, loud, etc) selected by the user for

ringtones and other alerts (using QSystemDeviceInfo).

 The International Mobile Equipment Identity (IMEI), a number that

uniquely identifies the device (using QSystemDeviceInfo).

 The International Mobile Subscriber Identity (IMSI), a number that

uniquely identifies the subscriber by the SIM in their device (using

QSystemDeviceInfo).

 The device manufacturer and model number (using QSystemDeviceInfo).

 Whether or not the SIM is available (using QSystemDeviceInfo).

 The number of displays and display size (via the existing Qt class

QDesktopWidget) and the color depth and brightness of each display

(via QSystemDisplayInfo).

 The availability of specific features such as a camera or Bluetooth, the

version number of the operating system or Qt installed, and the current

country code and language (via QSystemInfo).

 Information about the supported networks, current and home mobile

country, and network codes (via QSystemNetworkInfo).

 The ability to inhibit the screen saver when the handset is idle while

your application is running, which may have deleterious battery effects

(via QSystemScreenSaver).

 Available and total disk space on each storage media, such as the

internal storage or a mounted card (via QSystemStorageInfo).

Getting information from QSystemInfo and its related classes is as easy as creating it and

querying it, as the following pseudocode demonstrates:

QSystemDeviceInfo infoSource;
qDebug() << "imei: " << infoSource.imei();
qDebug() << "imsi: " << infoSource.imsi();
qDebug() << "manufacturer: " << infoSource.manufacturer();
qDebug() << "model: " << infoSource.model();

CHAPTER 5: Doing More with Qt 122

BEYOND QT MOBILITY: NATIVE INTERFACES

What if you look at the latest Qt Mobility APIs and don’t find an interface you need? There’s nothing that
says that you can’t access native device features from within your application; Qt and Qt Mobility are there
to help you with a clean abstraction layer, not prevent your access to native APIs and services. You can
always extend your application to include platform-specific libraries and headers and to write native code.

The best way to do this is to use the pointer to implementation pattern, a design pattern in which you
provide a platform-independent class that exposes a public API and bears a private pointer to a private,
platform specific implementation. You then use qmake and the build system to link the appropriate private
implementation into your build, so that as you write your application, the platform-specific implementation
is kept to a minimum of code. When you do this, you should:

 Use qmake and scopes to control which libraries, headers, and platform
implementation files get included in different platform builds of your application.

 Use Qt signals and slots in your public API to give a consistent programming interface
to the public consumers of your API.

 Insulate the public consumer from platform-specific exception handling (especially on
Symbian, where the practice is to use a platform-specific exception handling
mechanism instead of C++ exceptions) by translating platform-specific exceptions
and error codes to signals or Qt error codes. (In general for portability, Qt prefers
signals and error codes to using C++ exceptions.)

 Use Qt data types in the public interface, interconverting to platform data types where
required when using native APIs.

An excellent discussion of these points with an example Symbian native implementation can be found on
the Symbian Foundation’s wiki at http://developer.symbian.org/wiki/index.php/
Using_Q5_and_Symbian_C%2B%2B. Although focused on the Symbian platform, the guidelines
presented there apply equally to writing platform-specific code for Qt applications on MeeGo as well.

Putting It All Together
In the last chapter, we showed you some basic Qt features using a prototype of Shake,

our earthquake-reporting application that takes data from the U.S. Geological Survey

and renders the result as a list of earthquake events, showing the data associated with a

specific event. The application had several shortcomings, including a user interface that

doesn’t match the classic item list/item view paradigm of most mobile applications, an

inability to determine how close you were to a particular event, and no good way to get

a geographic overview of all of the events that have occurred.

For this chapter, we’ve extended Shake in several ways:

 The application now has separate list, item, and map views, as Figure

5–3 shows. As with other Qt mobile applications, the views are

selected from the options menu, although selecting a list item also

shows the item view.

http://developer.symbian.org/wiki/index.php

CHAPTER 5: Doing More with Qt 123

 The map view demonstrates how to implement a custom widget that

renders data from a Qt model.

 The application detail view includes more information about the event,

including information from its summary and the title, and if information

is available, your current distance from the reported event.

Figure 5–3. The three screens of the final Shake application as written using Qt: in (a) the list view, (b) the
options menu, (c) an item view obtained by touching a list item, and (d) the map view

To do this, we:

 Refactored the application to use a separate application controller

class to manage all of the various signals from the UI, network and Qt

Mobility layer.

 Added actions to the main window options menu for view selection.

 Inserted a QObject that proxies QAction into the item view’s QWebView,

which now displays a “Back” button.

 Wrote a map widget that takes data from the application model and

plots it over a Mercator projection map provided as a bitmap.

The following sections look at each of these changes in more detail.

CHAPTER 5: Doing More with Qt 124

Looking inside the Application Controller
When you launch Qt Creator to create a new Qt GUI application, by default it creates a

subclass of QMainWindow, the object that will contain your application’s user interface. As

defaults go, it’s not bad, but many applications don’t really need to subclass

QMainWindow. What they do need, however, is a controller—a QObject-derived class that

has slots to accept the various signals from different components in the application.

While you can certainly use a QMainWindow subclass to do this, as we did in the previous

chapter, it seems in principle a poor idea, because there’s an implied relationship with

QMainWindow that simply doesn’t exist. Because we were adding additional slots to our

application to handle user actions and position information, this seems a good time to

break the controller into its own subclass. First, we refactored main.cpp as you see in

Listing 5–7.

Listing 5–7. Shake’s entry point.

#include <QtGui/QApplication>
#include "maincontroller.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainController* controller = new MainController;
 int result = app.exec();
 delete controller;
 return result;
}

As you see, instead of creating an instance a QMainWindow subclass and showing it, we

create our MainController instance, and it has a QMainWindow it shows as part of its

initialization. Listing 5–8 shows the class definition for MainController in full, which we

discuss over this and the next section.

Listing 5–8. Shake’s MainController class

#ifndef MAINCONTROLLER_H
#define MAINCONTROLLER_H
#include <QObject>
#include <QPair>
#include <QMobilityGlobal.h>
#include <QGeoPositionInfoSource>
#include <QGeoPositionInfo>

class QSortFilterProxyModel;
class QProgressDialog;
class QModelIndex;
class QAction;
class QMainWindow;
class QStackedWidget;
class QListView;
class QWebView;
class WebActionProxy;
class WorkerThread;
class QuakeListModel;
class MapItemWidget;

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 5: Doing More with Qt 125

QTM_USE_NAMESPACE

class MainController : public QObject
{
 Q_OBJECT

public:
 explicit MainController(QObject *parent = 0);
 ~MainController();

 void fetch(const QString& url);

public slots:
 void fetch();
 void handleRequestFinished();
 void handleError(const QString& message);
 void handleItemClicked(const QModelIndex&);
 void handleItemClosed();
 void handleShowMap();
 void handleShowList();
 void positionUpdated(const QGeoPositionInfo&);
 void addProxyObjects();

private:
 void createActions();

 QProgressDialog *mProgressDialog;

 WorkerThread* mBgThread;
 QuakeListModel* mEventModel;
 QSortFilterProxyModel* mSortedModel;

 QListView* mListWidget;
 QWebView* mItemWidget;
 MapItemWidget* mMapWidget;

 WebActionProxy* mBackAction;
 QAction* mShowListAction;
 QAction* mShowMapAction;

 QStackedWidget* mMainWidget;
 QMainWindow* mMainWindow;

 QGeoPositionInfoSource* mLocationSource;
 bool mLocationKnown;
 QPair<qreal,qreal> mLocation;
};

#endif // MAINCONTROLLER_H

At this point, there are three things to note about the main controller. First, it has a

QMainWindow instance, rather than being one. In a moment, you’ll see where we create

and configure the main window. Second, it no longer uses a Qt Designer UI class; as

you’ll see more in a moment, we use a QStackedWidget to easily switch between

different central widgets in the window. Finally, most of its methods are slots, because

CHAPTER 5: Doing More with Qt 126

they’re triggered by signals emitted from actions, the network thread, or other incoming

events.

The constructor (Listing 5–8) is now responsible for setting up the entire user interface,

which consists of creating the list view, web view, and map view, and a QStackedWidget

to flip between each widget as the controller handles signals to change the user

interface’s main view.

Listing 5–8. The controller constructor, where user interface setup takes place

MainController::MainController(QObject *parent)
 : QObject(parent)
 , mProgressDialog(0)
 , mBgThread(0)
 , mEventModel(new QuakeListModel())
 , mSortedModel(new QSortFilterProxyModel(this))
 , mListWidget(new QListView())
 , mItemWidget(new QWebView())
 , mMapWidget(new MapItemWidget())
 , mBackAction(0)
 , mShowListAction(0)
 , mShowMapAction(0)
 , mMainWidget(0)
 , mMainWindow(new QMainWindow)
 , mLocationSource(
 QGeoPositionInfoSource::createDefaultSource(this))
 , mLocationKnown(false)
 , mLocation(QPair<qreal,qreal>(0,0))
{
 createActions();

 mProgressDialog = new QProgressDialog(
 tr("Fetching data..."),
 tr("Cancel"),
 0, 0);

 mSortedModel->setSourceModel(mEventModel);
 mSortedModel->setDynamicSortFilter(false);
 mSortedModel->setSortRole(QuakeListModel::When);

 mListWidget->setHorizontalScrollBarPolicy(Qt::ScrollBarAlwaysOff);
 mListWidget->setModel(mSortedModel);
 mListWidget->setContextMenuPolicy(Qt::NoContextMenu);

 mMapWidget->setModel(mSortedModel);

 connect(mListWidget, SIGNAL(clicked(QModelIndex)),
 this, SLOT(handleItemClicked(QModelIndex)));

 addProxyObjects();
 mItemWidget->setContextMenuPolicy(Qt::NoContextMenu);
 connect(mItemWidget->page()->currentFrame(),
 SIGNAL(javaScriptWindowObjectCleared()),
 this,
 SLOT(addProxyObjects()));

CHAPTER 5: Doing More with Qt 127

 mMainWidget = new QStackedWidget(mMainWindow);
 mMainWidget->addWidget(mListWidget);
 mMainWidget->addWidget(mItemWidget);
 mMainWidget->addWidget(mMapWidget);
 mMainWidget->setCurrentIndex(kListWidget);
 mMainWidget->setContextMenuPolicy(Qt::NoContextMenu);
 mMainWindow->setCentralWidget(mMainWidget);

 if (mLocationSource) {
 connect(mLocationSource,
 SIGNAL(positionUpdated(const QGeoPositionInfo&)),
 this,
 SLOT(positionUpdated(const QGeoPositionInfo&)));
 mLocationSource->setUpdateInterval(kLocationUpdateIntervalMs);
 mLocationSource->lastKnownPosition();
 mLocationSource->startUpdates();
 }

 QTimer::singleShot(0, this, SLOT(fetch()));

#if defined(Q_WS_S60)
 mMainWindow->showMaximized();
#else
 mMainWindow->show();
#endif
}

After creating the actions for the options menu (more on that in a moment), the

constructor creates a QProgressDialog, a stand-alone dialog class that provides a

barber pole or progressive bar indicating progress. We’ll show it when the network fetch

begins, and hide it when the fetch completes. Next we set up the model, just as you saw

in the previous chapter, and then set up the list’s options to hide the horizontal scroll

bar, use the sorted model, and not have a context menu for items. The code then

creates and registers a QObject subclass with the QWebView, and connects to the

QWebView’s javaScriptWindowObjectCleared signal. That way, any time the JavaScript

context changes, the same object is re-registered.

After that, the constructor creates the QStackedWidget mMainWidget and registers each of

the view widgets with it. The QStackedWidget acts as a collection of widgets, and shows

the widget indicated by its current index. We provide all three widgets to the stacked

widget at once, and instruct it to show the list widget first by calling setCurrentIndex

and passing the index of the 0th widget, the list widget.

Finally, the constructor configures the positioning interface (which we discuss in more

detail in the next section) and sets a single-shot timer to commence the request before

showing the main window.

Many of the slots in the controller are the same as the ones in the previous section, such

as those that involve touching an item or when the network transaction completes. New

are the action handlers for showing the list and the map, which involve triggered signals

emitted by QActions. Those QAction instances are set up in createActions, which you

see in Listing 5–9.

CHAPTER 5: Doing More with Qt 128

Listing 5–9. Creating actions and adding them to the main window.

void MainController::createActions()
{
 mBackAction = new WebActionProxy(this);
 connect(mBackAction, SIGNAL(triggered()),
 this, SLOT(handleItemClosed()));

 mShowListAction = new QAction(tr("Show List"), this);
 connect(mShowListAction, SIGNAL(triggered()),
 this, SLOT(handleShowList()));

 mShowMapAction = new QAction(tr("Show Map"), this);
 connect(mShowMapAction, SIGNAL(triggered()),
 this, SLOT(handleShowMap()));

 // Add to the options menu
 mMainWindow->menuBar()->addAction(mShowListAction);
 mMainWindow->menuBar()->addAction(mShowMapAction);
}

The first action isn’t a QAction, but a WebActionProxy, the class we showed you back in

the section “Embedding C++ Objects in QtWebKit’s JavaScript Runtime.” Triggered

when you press the back button, an HTML element, it simply brings you back to the list.

The other actions are for showing the list and map, and are added to the main window’s

menu bar to be shown in the options menu.

Changes to the Network Request
We made two changes to how the network code works: we added a QProgressDialog to

give some indication of progress, and added support for Qt Mobility’s Bearer

Management API to make sure that requests use the correct network in all places.

QProgressDialog provides a simple show/hide API that displays the dialog

asynchronously when you need it. We create the dialog in the controller’s constructor

(Listing 5–8), and show it at the beginning of the fetch method using the following line of

code:

if (mProgressDialog) mProgressDialog->show();

Later, in handleRequestFinished and handleError, we hide the dialog using

if (mProgressDialog) mProgressDialog->hide();

Incorporating the Bearer Management code isn’t much more difficult; we changed

WorkerThread::fetch to include the boilerplate default access point configuration, as

you see in Listing 5–10.

Listing 5–10. Requesting a URL after configuring the bearer network

void WorkerThread::fetch(const QString& url)
{
 // Don't try to re-start if we're running
 if (isRunning()) {
 this->cancel();

CHAPTER 5: Doing More with Qt 129

 }

 // On Symbian, be sure we're using the desired access point.
 // MeeGo doesn't need this.
#ifdef Q_OS_SYMBIAN
 // Set Internet Access Point
 QNetworkConfigurationManager manager;

 const bool canStartIAP = (manager.capabilities()
 & QNetworkConfigurationManager::CanStartAndStopInterfaces);

 // Is there default access point, use it
 QNetworkConfiguration cfg = manager.defaultConfiguration();
 if (!cfg.isValid()
 || (!canStartIAP
 && cfg.state() != QNetworkConfiguration::Active)) {
 emit error(tr("No Access Point found."));
 return;
 }

 mSession = new QNetworkSession(cfg, this);
 mSession->open();
 mSession->waitForOpened(-1);
#endif

 QNetworkReply *reply = mNetManager->get(QNetworkRequest(QUrl(url)));
 if (!reply) {
 emit error(tr("Could not contact the server"));
 }
}

This is exactly the code you saw in the section “Managing Bearer Networks,” and it’s

enabled only for Symbian, the one platform right now that has full support for different

bearer networks.

Determining the Device Position
In the constructor for the controller (Listing 5–8) you saw the following code:

if (mLocationSource) {
 connect(mLocationSource,
 SIGNAL(positionUpdated(const QGeoPositionInfo&)),
 this,
 SLOT(positionUpdated(const QGeoPositionInfo&)));
 mLocationSource->setUpdateInterval(kLocationUpdateIntervalMs);
 mLocationSource->startUpdates();
}

This code starts Qt Mobility’s Position API to emit position information on a regular

basis, invoking our positionUpdated slot when new position data becomes available.

Listing 5–11 shows the method that handles that data, code that splits out the latitude

and longitude and stores it in a QPair the way we stored position data in the previous

chapter’s example.

CHAPTER 5: Doing More with Qt 130

Listing 5–11. Handling incoming position data

void MainController::positionUpdated(const QGeoPositionInfo& update)
{
 if (update.isValid()) {
 QGeoCoordinate position = update.coordinate();
 mLocationKnown = true;
 mLocation = QPair<qreal, qreal>(position.latitude(),
 position.longitude());
 }
}

This position is global to the controller, and used only when we show a specific list item,

when the user touches an item and the list view’s clicked signal is emitted, invoking our

handleItemClicked slot. Listing 5–12 shows the handleItemClicked method.

Listing 5–12. Formatting an earthquake report with position information and the back button

void MainController::handleItemClicked(const QModelIndex& which)
{
 QPair<qreal, qreal> where(mSortedModel->data(which,
 QuakeListModel::Latitude).value<qreal>(),
 mSortedModel->data(which,
 QuakeListModel::Longitude).value<qreal>());
 QString distance = QString(tr("unknown"));
 QVariant desc = mSortedModel->data(which,
 QuakeListModel::Description);
 QVariant title = mSortedModel->data(which,
 QuakeListModel::DisplayRole);
 if (mLocationKnown) {
 distance = QString("%1 km (%2 mi)")
 .arg((qreal)gcdDistance(where, mLocation))
 .arg((qreal)gcdDistance(where, mLocation)
 / kKmPerMile);
 }

 QString html =
 QString(tr("%1<h1>%2</h1>\n%3\nDistance:%4\n%5"))
 .arg(kInitScript)
 .arg(title.value<QString>())
 .arg(desc.value<QString>())
 .arg(distance)
 .arg(kExitItem);

 mItemWidget->setHtml(html);
 mMainWidget->setCurrentIndex(kItemWidget);
}

This method has changed a lot, because we now no longer only show the bit of HTML

provided by the USGS, but a title with the same information as in the list view, a

distance (if we can compute one), and the back button.

This method starts by extracting the position of the earthquake event from the item in

the model, as well as its description and title. If the location is known, a string containing

the distance in kilometers and miles is computed using the Law of Haversines

(http://en.wikipedia.org/wiki/Great-circle_distance), although we could have just

http://en.wikipedia.org/wiki/Great-circle_distance

CHAPTER 5: Doing More with Qt 131

as easily used Qt Mobility’s own code to do the calculation. Then the entire item view’s

HTML is built up using a single template that has a (currently unused) JavaScript

initialization, heading, USGS-provided description, our computed distance, and the

HTML and JavaScript for the back button, which looks like this:

<p align="center">
 <button type="button"
 onclick="action.trigger()">Back
 </button>
</p>

The action variable in JavaScript is just the WebProxyAction we created in

createActions, back in Listing 5–9. It gets added to the JavaScript context each time

the context gets cleared in our addProxyObjects slot, which you see in Listing 5–13.

Listing 5–13. Adding a QObject to the web vie.

void MainController::addProxyObjects()
{
 mItemWidget->
 page()->
 currentFrame()->
 addToJavaScriptWindowObject("action",
 mBackAction,
 QScriptEngine::QtOwnership);
}

Drawing the Map
The old saying “A picture is worth a thousand words” is definitely true when it comes to

understanding the distribution of spatial data. We added the map to Shake to present

earthquake data graphically, giving a quick glance as to where earthquakes had

occurred and how big they were. Our goal when creating the map view to Shake was

twofold: provide a map that displays something useful and show you the basic idea

behind creating your own widget.

The result of this goal is the MapItemWidget, a simple class that draws markers of

different sizes on a Mercator projection of Earth. The MapItemWidget gets its data from a

model, so it additionally shows you how to watch a model’s data for changes and re-

renders when those changes occur. Listing 5–14 shows the class declaration for the

MapItemWidget.

CHAPTER 5: Doing More with Qt 132

Listing 5–14. The widget for rendering the map

#include <QWidget>
#include <QPixmap>
#include <QModelIndex>
#include <QList>

class QAbstractItemModel;

class MapItemWidget : public QWidget
{
 Q_OBJECT
public:
 explicit MapItemWidget(QWidget *parent = 0);
 ~MapItemWidget();

 QSize sizeHint();
 QSizePolicy sizePolicy();

 void setModel(QAbstractItemModel* model);

public slots:
 void itemsChanged(const QModelIndex& topLeft,
 const QModelIndex & bottomRight);
 void itemsReset();

protected:
 void paintEvent(QPaintEvent *event);
 void resizeEvent(QResizeEvent *event);

private:
 void initMap();
 void initMarkers();

 QPoint geoToWidgetCoords(qreal lat, qreal lon);

 QPixmap mMap;
 QSize mMapSize;

 QList< QPair<QPoint, int> > mMarkers;
 QAbstractItemModel* mModel;

 Q_DISABLE_COPY(MapItemWidget)
};

MOBILE DIGITAL CARTOGRAPHY

As we suggest, our goals here are to provide a glanceable view of where earthquakes occurred, and
provide you with a digestable example that demonstrates how to create your own widget. The
MapItemWidget is admittedly anemic if you’re interested in presenting large-scale real cartographic data,
or even in providing such basic operations as panning and zooming. If you need to show real data on real
maps, what are your choices?

First, future versions of Qt Mobility will provide a maps and navigation API, letting device manufacturers
provide plug-in map providers. Using the API, on devices with appropriate server applications, you can

CHAPTER 5: Doing More with Qt 133

embed maps in your application, providing the full digital mapping experience found with the native
hosting application. For many applications, this may be ideal, but does require that the application you’re
writing run on devices that have software serving maps to the Qt Mobility Layer.

Another option is to go with web-based maps like Open Street Maps or Google Maps. One solution would
be to embed a QWebView within your application that displays a web-hosted map, using the Qt-JavaScript
bindings to move information like the location of map markers from your application’s data model to the
JavaScript layer, thereby putting C++ objects directly on a map from the Web.

Either way you go, there’s still substantial work, and most of that work is with the interfaces of a specific
map provider, rather than what we want to show you here: how to create a custom widget. For more
information about Qt Mobility’s upcoming support for map rendering, see
http://developer.qt.nokia.com/wiki/MapsNavigationAPI.

We can divide the widget’s functionality into three broad areas: providing size hints to

the containing widget, handling the drawing and placement of map markers, and map

rendering. Listing 5–15 shows the code that provides the desired size hints for the

widget.

Listing 5–15. Providing default size hints

const int kMinWidth = 320;
const int kMinHeight = 240;
QSize MapItemWidget::sizeHint() {
 return QSize(kMinWidth, kMinHeight);
}

QSizePolicy MapItemWidget::sizePolicy() {
 return QSizePolicy(QSizePolicy::MinimumExpanding,
 QSizePolicy::MinimumExpanding);
}

Maps are useless when they’re too small, so we provide a fairly large minimum size,

indicate that our policy is to disallow anything smaller than that default, and grow to

accept as much size as the layout will provide.

The map rendering and marker handling are closely related and also coupled with

resizing the widget. This is because resizing the map involves redrawing the base map

and relocating all of the map markers before redrawing them as well. For a given widget

size, the map keeps two pieces of data to speed rendering: a pixmap containing the

base map, an image of a map of the Earth in Mercator projection we found at

WikiCommons (http://en.wikipedia.org/wiki/File:Mercator-projection.jpg), and

the location and relative size of each map marker in widget coordinates. The location

and size information is kept as a QPair, rather than a separate class; there’s no reason

not to use a separate class in this case, except that it makes the code longer, and QPair

works just as well.

The base map and marker cache are all initialized whenever the widget resizes. This

occurs when the widget is placed in a containing widget, as well as if the widget

changes sizes (say, because the screen orientation changes). Listing 5–16 shows the

initialization code, starting when the widget receives the resize event.

http://developer.qt.nokia.com/wiki/MapsNavigationAPI
http://en.wikipedia.org/wiki/File:Mercator-projection.jpg

CHAPTER 5: Doing More with Qt 134

Listing 5–16. Map widget initialization when the widget is resized

void MapItemWidget::resizeEvent(QResizeEvent *event)
{
 if (size() != mMapSize) {
 initMap();
 initMarkers();
 }
}

void MapItemWidget::initMap()
{
 // Load the map bitmap
 QPixmap map(":/images/map.jpg");

 QSize newSize(map.size());
 newSize.scale(size(), Qt::KeepAspectRatio);

 if (newSize!=map.size()) {
 mMap = map.scaled(newSize, Qt::KeepAspectRatio);
 }
 // Record the widget size so we only rescale when we need to
 mMapSize = size();
}

void MapItemWidget::initMarkers()
{
 // Always start from scratch
 mMarkers.clear();

 if (!mModel) {
 return;
 }

 for(int i = 0; i < mModel->rowCount(); i++)
 {
 QModelIndex index = mModel->index(i, 0);
 qreal lat = mModel->data(index,
 QuakeListModel::Latitude).value<qreal>();
 qreal lon = mModel->data(index,
 QuakeListModel::Longitude).value<qreal>();
 qreal mag = mModel->data(index,
 QuakeListModel::Magnitude).value<qreal>();
 QPoint point = geoToWidgetCoords(lat, lon);
 mMarkers.append(QPair<QPoint, int>(point, mag));
 }
}

Handling the resizing event is easy—just reinitialize the map’s base layer and cache of

item positions if the new size isn’t the same as the current size. Resizing the base map

itself is also easy, thanks to Qt’s handling of image formats; we simply reload the base

map (which is an image larger than we expect any device screen to be, but not so

unwieldy for today’s devices) and scale it to fit within the new widget’s bounds,

preserving the map’s aspect ratio. This isn’t perfect—as you saw in Figure 5–2, the map

ends up with black bands on the borders of the image—but it prevents additional

stretching and tearing that would distort the map projection further.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 5: Doing More with Qt 135

Initializing the map marker position cache is a little trickier. Because there are a small

number of items, we do this any time the map rescales or when the model changes

(which you see later in Listing 5–18). In either case, we simply clear the cache of markers

and then walk the model, projecting each point from its coordinates on Earth to its

coordinate on the map using the private function geoToWidgetCoords (not shown here,

but available in the sample code that accompanies this book). As you’ve seen

elsewhere, we simply use the model itself to generate an index for each row in the

model, and then extract the latitude, longitude, and quake magnitude from the model

using its own data method.

With the cache always up-to-date, the map widget’s paint function need only draw the

base map and then loop over the cache of projected markers, plotting a rectangle for

each marker, as you see in Listing 5–17.

Listing 5–17. Drawing the map and its markers

void MapItemWidget::paintEvent(QPaintEvent *event)
{
 QPainter painter(this);
 QPoint pt;

 pt.setX(size().width() /2 - mMap.size().width() /2);
 pt.setY(size().height()/2 - mMap.size().height()/2);
 painter.drawPixmap(pt, mMap);

 painter.setBrush(Qt::SolidPattern);
 for(int i = mMarkers.length(); i>0; i--)
 {
 QPair<QPoint, int> marker = mMarkers.at(i-1);
 pt = marker.first;
 int r = marker.second;
 painter.fillRect(pt.x()-r, pt.y()-r,
 2*r, 2*r,
 QColor(255, 0, 0));
 }
}

The code begins by calculating the upper-left-hand corner where to draw the map so it’s

centered horizontally and vertically. It then loops through the collection of map markers,

painting a red-filled rectangle at each marker position. The rectangle’s size is twice the

magnitude of the earthquake on each axis, providing a slight idea as to the earthquake’s

relative magnitude without causing too much overlapping between adjacent

earthquakes unless they’re very close.

The remaining methods of the map widget are largely bookkeeping to manage the map

model itself, as you can see from Listing 5–18.

CHAPTER 5: Doing More with Qt 136

Listing 5–18. Managing the view’s model and its signals

void MapItemWidget::setModel(QAbstractItemModel* model)
{
 if (mModel) {
 disconnect(mModel, 0, this, 0);
 }
 mModel = model;
 if (mModel) {
 connect(mModel, SIGNAL(dataChanged(QModelIndex,QModelIndex)),
 this, SLOT(itemsChanged(QModelIndex,QModelIndex)));
 connect(mModel, SIGNAL(modelReset()),
 this, SLOT(itemsReset()));
 }
 initMarkers();
 update();
}

void MapItemWidget::itemsChanged(const QModelIndex&, const QModelIndex &)
{
 initMarkers();
 update();
}

void MapItemWidget::itemsReset()
{
 initMarkers();
 update();
}

You first saw the map widget’s setModel method invoked back in Listing 5–8; it needs to

do four things:

1. Disconnect from all signals emitted by the old model, if there is one.

2. Cache a reference to the model so it can later get data from the model when it

initializes or updates the list of map markers.

3. Connect slots to the model’s dataChanged and modelReset methods, so that the

widget can redraw any time the model data changes.

4. Re-initialize the cache of markers, so that the view updates with the new data.

The two slots that handle the model changes, itemsChanged and itemsReset, simply

invalidate the entire cache and re-create the cache of markers. A more sophisticated

view might keep a cache indexed by model index, so that the dataChanged signal’s

indices could be used to determine which items should be updated, and then update

only the changed items. A good place to start in doing this would be to use a QHash

keyed by QModelIndexes, with each entry in the cache being the projected point and its

magnitude. However, given the number of items likely for the application (certainly less

than one hundred), the infrequency of model updates (never, once the application has

received its data), and the relatively low cost of handling a single item (a handful of

floating-point operations) this complexity doesn’t seem necessary.

k

CHAPTER 5: Doing More with Qt 137

Wrapping Up
In this chapter, we’ve covered a lot of ground. Armed with a basic knowledge of Qt,

we’ve shown you how to create multiview applications that draw and present

information from a variety of sources, including compile-time resources, device position,

the Web, the device’s messaging subsystem, local and remote multimedia, and system

information.

In the next chapter, we largely set this knowledge aside, and turn to writing applications

declaratively using Qt Meta-object Language (QML) and JavaScript, and how to bind

applications written with these tools to parts of your application in C++.

CHAPTER 5: Doing More with Qt 138

139

139

 Chapter

Introducing Qt Quick
Today, there are a lot of tools available for user interface development. In the past two

chapters, you’ve seen a pretty typical approach taken by a platform vendor: provide

robust APIs in a commonly known programming language (Qt with C++) to enable

developers to create their products. This approach is not without its drawbacks. The

cost of learning an entire new API set can be high for some, and even with an API as all-

encompassing as Qt, there’s still a lot of rote programming (think new and delete) you

must do as you develop your application. Surely there’s a better way.

To further streamline your development efforts—especially for new applications—Nokia

provides Qt Quick, a declarative programming environment consisting of Qt Meta-object

Language (QML), common components, and bindings to JavaScript and C++. In this

chapter we show you what Qt Quick is, how to use QML, and how to connect QML

applications to existing or new C++ and JavaScript. To give you hands-on examples

along the way, we take the Shake applications in two directions: first an entirely QML-

based implementation to show you how easy it is to write user interfaces using QML,

and one that uses a QML interface with the C++ worker thread, XML parsing, and model

to show you how to connect C++ code to QML. When you’re through with this chapter,

you’ll be in position to create your own Qt Quick prototypes and full-fledged

applications.

Declaring Your User Interface
Qt Quick takes a radically different approach to user interface development than you’ve

seen previously in C++ with Qt. More like HTML than C++, Qt Quick uses QML, a

JavaScript-like language to define your user interface. QML is a declarative language—

instead of writing imperative statements that do things, you write declarations of your

user interface objects. While at the top level both environments are inherently object-

oriented, how you work at the level of individual statements is very different. In C++ with

Qt, we might draw a new rectangle using pseudocode like this:

QRect rect(0, 0, 32, 32);
QPainter painter;
painter.setBrush(QBrush(Qt::red));
painter.drawRect(rect);

6

CHAPTER 6: Introducing Qt Quick 140

In QML, we’d simply write:

import QtQuick 1.0
Rectangle {
 height:200
 width: 200
 color: "red"
}

The QML example consists of a single object, of type Rectangle. This specific rectangle

overrides three of Rectangle’s default properties: height, width, and color. The height

and width properties are each set to the integer value 32, and color is set to the string

"red." Under the hood, the Qt Declarative module includes both a parser for QML and a

renderer that renders QML to the screen.

QML can contain scripts, too—here’s a button that changes its label to “Hello World”

when it’s clicked:

import QtQuick 1.0
Item {
 width: 200
 height: 100

 Text {
 id: label
 text: "Click Me"
 color: "black"
 anchors.horizontalCenter: parent.horizontalCenter
 anchors.verticalCenter: parent.verticalCenter
 font { family: "Helvetica"; pixelSize: 12; bold: true }
 }

 MouseArea {
 anchors.fill: parent
 onClicked: {
 label.text = "Hello World"
 }
 }
}

Here, we have a QML Item, the base element for all visible items in QML. It contains a

Text object and a MouseArea that spans the entire size of the Item. We control the layout

of the Text object and MouseArea using the anchors property, which indicates first that

the text should be centered horizontally and vertically, and second that the MouseArea

should fill its parent. The Text object is simply a label, with the initial text "Click Me" in

black Helvetica bold font. The MouseArea contains a single bit of script that sets the

object whose id is label—the Text item—to the string "Hello World"

You’ve already seen two examples of QML; now let’s examine the nuts-and-bolts of the

language.

CHAPTER 6: Introducing Qt Quick 141

Introducing QML
As you’ve seen, QML is declarative. Instead of saying how, you simply say what. With

syntax based on JavaScript, QML gives you a concise syntax to specify a tree of objects

with properties. Properties may be references to other objects, strings, or numbers,

making it easy to edit QML using your favorite text editor—or by using Qt Creator’s

excellent support for the language. Let’s look at the first Rectangle example again:

import QtQuick 1.0
Rectangle {
 height:200
 width: 200
 color: "red"
}

The first line simply instructs the QML interpreter to include the definitions provided by

QtQuick 1.0; you can provide your own QML files to import as well, or import JavaScript

to provide better separation between your user interface and business logic.

This QML defines a single object, a Rectangle. All QML objects are specified first by

their type and then the properties of the object as name-value pairs separated by a

single colon. Type names are capitalized, just like class names in C++. Here, we’ve

written the properties one at a time, but we can put them on the same line and separate

them with a semicolon, like this:

import QtQuick 1.0
Rectangle { height:200; width: 200; color: "red" }

Which you use is mostly a matter of personal preference for readability; we find that

closely related properties requiring little explanation—say, the dimensions of an object—

can be snuggled together on a single line. More important definitions, or those that

require additional thought, should probably be placed on their own line and include a

comment, like this:

import QtQuick 1.0
Rectangle {
 height:200; width: 200
 // Required by Sandy’s UX documentation as of 5 November.
 color: "red"
}

Comments are written with standard C++ and JavaScript syntax, using either /* and */

for a block comment, or // to indicate that everything that follows until the beginning of

the next line is a comment.

Values assigned to properties can be computed, too, using JavaScript syntax. For

example, to create a rectangle whose width is twice its height, I might write:

import QtQuick 1.0
Rectangle {
 id: myRectangle
 height: 200
 width: myRectangle.height * 2
 color: "red"
}

CHAPTER 6: Introducing Qt Quick 142

Here, the expression includes a reference to the rectangle itself, now named using its id

property. You can refer to other objects by their ID, too. The namespace is a tree

identical to the objects you define, and a path to a specific object is simply the IDs of

the objects along the path separated by periods. Of course, when referencing another

property of the same object, you could just write width: height * 2.

A powerful feature of QML is that when you refer to another object in an expression like

this, QML creates a binding: if the value of the referent changes, the QML runtime

automatically recomputes the expression, updating the visual appearance if necessary.

If later in our QML expression we change the value of myRectangle.height to 64, the

Rectangle object will automatically change its width to 128 and re-draw, changing the

appearance of the UI.

Properties are strongly typed; a property of one type may not be assigned a value of a

different type. The QML type system includes the following basic types:

 The action type, which has the properties of a QAction (see Chapter 5)

instance.

 The bool type, which may be true or false.

 The color type, which is a standard color name in quotes.

 A date, in the format YYYY-MM-DD.

 An enumeration, which can be any one of a set of named values.

 A font, which encapsulates the properties of a QFont.

 An int, representing an integer.

 A list, consisting of a list of objects.

 A point, with attributes for its x and y coordinates.

 A real, representing a real number.

 A rect, bearing attributes for its x, y, width, and height attributes.

 A size, with attributes for width and height.

 A string, which is a free-form collection of characters between

quotes.

 A time, specified as HH:MM:SS.

 A url, which is a string that corresponds to the standard Uniform

Resource Locator syntax.

 A vector3d, consisting of x, y, and z attributes.

You can introduce properties to your own object using the property declaration with a

type, like this:

CHAPTER 6: Introducing Qt Quick 143

import QtQuick 1.0
Rectangle {
 id: window
 property bool loading: feedModel.status == XmlListModel.Loading
 …
}

Here, we define the new property loading, whose value is dynamically computed based

on the status property of another object.

Finally, it’s worth noting that QML supports lists, collections of objects indicated

between square brackets, like this:

Item {
 transitions: [
 Transition {…},
 Transition {…}
]
}

Here, the transitions property consists of two Transition objects, each with their own

(here elided) properties.

Handling Signals in QML
Many Qt objects emit signals, and QML objects are no exception. You’ve already

encountered one, MouseArea’s pressed signal:

MouseArea {
 onPressed: {
 label.text = "Hello World"
 }
}

All signal handlers begin with on, and the remainder of a signal handler’s name is the

name of the signal; hence, onPressed is the signal handler for the MouseArea’s pressed

signal.

Some signals include an optional parameter, which is given a name and accessed as a

variable in the script for the handler. For example, the onPressed signal handler has a

mouse parameter, which you’re free to use to determine characteristics of the mouse

press, like this:

MouseArea {
 acceptedButtons: Qt.LeftButton | Qt.RightButton
 onPressed: if (mouse.button == Qt.RightButton)
 console.log("Right mouse button pressed")
 else if (mouse.button == Qt.LeftButton)
 console.log("Left mouse button pressed");
 }

In this script you also see the console object used; like the JavaScript console object,

you can use its log method to log strings to the console for print-style debugging.

CHAPTER 6: Introducing Qt Quick 144

TIP: Nokia is working on a mixed-mode debugger for QML and C++ that will let you place
breakpoints and inspect properties in both QML and C++. Until it’s available, console logging is
your best bet for debugging. Console log output appears on the application’s standard output, so

you can view it in the Application Output pane of Qt Creator or on the command line where you

commenced execution of your application.

Speaking of JavaScript, you can import JavaScript into your QML, too. For example, in

writing a game, we might want to encapsulate all of our game logic in a single file

gamelogic.js. To include this file in our QML, we’d simply use an import directive at the

top of the file:

import "gamelogic.js" as Gamelogic

This creates a top-level object named Gamelogic that has properties and methods for

each of the fields and functions defined in the file. For example, if our gamelogic.js file

defines a method startGame, we might create a start button in QML that begins the

game with a declaration such as:

import QtQuick 1.0
import "gamelogic.js" as Gamelogic
Item {
 Id: start
 width: 60
 height: 32

 Text {
 id: startLabel
 text: "Start"
 color: "black"
 font { family: "Helvetica"; pixelSize: 12; bold: true }
 }

 MouseArea {
 onClicked: {
 Gamelogic.startGame()
 }
 }
}

You can also do the reverse. You can access properties of any QML object in JavaScript

by referencing it as an object by its ID. For example, localization code written in

JavaScript to set the text of the start button in gamelogic.js might read:

function localizeToEo() {
 …
 startLabel.text = "Starti " // "Start" in Esperanto
 …
}

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 6: Introducing Qt Quick 145

Performing Animations in QML
With everything being declarations, you might wonder how dynamic behavior like

animation gets represented in QML. While you can implement dynamic behavior in

scripts, you can also provide animations across properties using the animation-on-

property syntax, like this:

import QtQuick 1.0
Rectangle {
 width: 64; height: 64
 color: "blue"

 PropertyAnimation on x { from: 0; to: 64; duration: 1000;
 loops: Animation.Infinite }
 PropertyAnimation on y { from: 0; to: 64; duration: 1000;
 loops: Animation.Infinite }
 }

This creates a blue rectangle that moves from the origin of the canvas to the position

(64, 64), over a second.

There are other animation types that follow the same idea, transitioning from one value

to another. For example, ColorAnimation animates changes in color values using QML’s

color type over Qt RGBA values, while RotationAnimation animates on the rotation of

an object around its origin in degrees.

Sometimes you want to link a default animation to when a property changes; for

example, you may want the rectangle to follow the mouse and animate to where the

mouse is clicked. You can do this by adding Behavior elements and adding a MouseArea,

like this:

import QtQuick 1.0
Item {
 width: 400; height: 400

 Rectangle {
 id: rect
 width: 64; height: 64
 color: "blue"

 Behavior on x { PropertyAnimation { duration: 500 } }
 Behavior on y { PropertyAnimation { duration: 500 } }
 }
 MouseArea {
 anchors.fill: parent
 onClicked: { rect.x = mouse.x; rect.y = mouse.y }
 }
}

Here, the Behavior declarations indicate that when x or y changes, the value should be

animated over 500 milliseconds. We’ll have more to say about anchors later, in the

section “Creating the User Interface,” later in this chapter.

Animations can be eased, that is, varied over time, according to one of various

mathematical curves specified by the easing’s type. For example, an animation may

CHAPTER 6: Introducing Qt Quick 146

accelerate from its start, reach a maximum speed, then slow down to finally stop at its

destination. The Easing property of animations has a number of attributes that control

how the value should be varied. Its attributes include:

 type, indicating the mathematical function that the values follow as the

animation is computed.

 amplitude, indicating a relative scale for the easing.

 overshoot, indicating how far past the final bound the animation

should occur before returning to the final bound.

 period, indicating the degree of repetition between the overshoot

value and the final value for some easing curves.

Qt defines a large number of easing curves, including linear, quadratic, cubic, and

sinusoidal curves. We might want to add a bit of bounce to our rectangle animation by

changing the PropertyAnimations like this:

Behavior on x {
 PropertyAnimation {
 duration: 500
 easing.type: Easing.InOutElastic
 easing.amplitude: 2.0
 easing.period: 1.5
 }
}
Behavior on y {
 PropertyAnimation {
 duration: 500
 easing.type: Easing.InOutElastic
 easing.amplitude: 2.0
 easing.period: 1.5
 }
}

Reviewing the Available Qt Quick Elements
Qt Quick elements can be broadly divided into two classes: things that are visible and

things that aren’t. Visible elements inherit from Item, and include the following:

 BorderImage, an image broken into nine tiles and can be used, for

example, to create a resizable button that selectively scales only the

middle area to retain an undistorted border.

 Image, an element that displays an image from a specific source.

 ListView, which provides a list of items provided by a model.

 Loader, a region that loads its QML from its source attribute (specified

as a URL).

 Repeater, which lets you repeat an item-based component using

content from a model.

CHAPTER 6: Introducing Qt Quick 147

 Text, a region that displays formatted text.

 TextEdit and TextInput, regions that permit the entry of multiple or

single lines of text, respectively.

 WebView, which allows you to add web content to a Qt Quick view.

Each of these items can be created just as you saw us create Rectangle objects in the

previous sections. Several items can coexist in a single layout; the QML for a user

interface for a web browser in QML with a URL bar might look something like this:

import QtQuick 1.0

Rectangle {
 id: window
 width: 800
 height: 480
 TextInput {
 id: url
 anchors.left: window.left
 anchors.right: go.right
 anchors.top: window.top
 text: "http://qt.nokia.com/"
 }
 Rectangle {
 id: go
 anchors.left: url.right
 anchors.right: window.right
 anchors.top: window.top
 anchors.bottom: url.bottom
 Image {
 source: "go.svg"
 }
 }
 WebView {
 id: content
 anchors.left: window.left
 anchors.right: window.right
 anchors.top: url.bottom
 anchors.bottom: window.bottom
 source: "http://qt.nokia.com/"
 }
}

Here we’ve placed several items, using their anchor properties. Other visible items

control the layout of their children and can be used to provide other means of item

positioning, including:

 Column, a region that positions its child items so they are vertically

aligned.

 Flow, a region that arranges its children side by side, wrapping as

necessary,

 Grid, a region that positions its child objects in a grid.

http://qt.nokia.com
http://qt.nokia.com

CHAPTER 6: Introducing Qt Quick 148

 PathView is a cousin to Repeater, and lays out its model-provided

items along a path.

 Row, a region that arranges its children horizontally,

We might modify the layout in the previous QML to better encapsulate the URL

navigation line and “Go” button by placing them in a row, like this:

…
Row {
 id: navigation
 anchors.left: window.left
 anchors.right: window.right
 anchors.top: window.top
 TextInput {
 id: url
 text: "http://qt.nokia.com/"
 }
 Rectangle {
 id: go
 anchors.right: navigation.right
 width: 32
 Image {
 source: "go.svg"
 }
 }
}

Finally, some visible items don’t actually draw anything, but instead accept user events

for processing:

 Flickable, an item that appears to rotate around an axis as if it’s being

flipped over.

 GestureArea, used to enable simple gesture handling, such as

panning, pinching, swiping, tapping, and so forth.

 MouseArea, a region that enables simple mouse event handling.

Each of these has signal handlers; for example, MouseArea has them for common mouse

events including press, release, entry, and exit, while GestureArea has signal handlers

for tap, tap-and-hold, pan, pinch, and swipe gestures.

Because changing the position, orientation, and scale of items is something you often

want to do in user interfaces, Qt Quick defines the Translate, Rotation and Scale

elements (subclasses of the Transform element), which you can assign to the transform

property of a visible item. For example, the following specifies a rectangle rotated

around its center by 45 degrees:

Rectangle {
 width: 100; height: 100
 color: "blue"
 transform: Rotation { origin.x: 50; origin.y: 50; angle: 45}
}

http://qt.nokia.com

CHAPTER 6: Introducing Qt Quick 149

Note that when specifying a transform, the origin is relative to the object’s position, not

the center. In the previous example, the point (50, 50) is at the object’s center, not offset

to the lower–right-hand corner of the object.

Some visible elements, like the ListView, need a model of one or more items from which

to draw their content. Models include the ListModel, a list of ListItem items, as well as

the more flexible XmlListModel element, which draws its list items from an XML

document using XPath expressions. (We use the XmlListModel element in the next

section to represent the list of earthquakes from the USGS.)

A full list of the supported Qt Quick elements is available at

http://doc.qt.nokia.com/qdeclarativeelements.html.

NOTE: Qt Quick is undergoing heavy development and extension as we write this (Qt 4.7 has just
been released), and this quick survey of the elements available to Qt Quick is probably already

out of date. To keep with the latest information about Qt Quick, see

http://doc.qt.nokia.com/qtquick.html.

Programming for the Web with QML
It’s time to build a larger example: our Shake demonstration application, this time

entirely in QML. In this section we’ll build on the basics you’ve already learned, and

introduce the powerful XmlListModel Qt Quick element that lets you fetch RSS feeds

and parse out data from them using only XPath queries. Figure 6–1 shows our sample

UI.

Figure 6–1. The Shake application, this time in QML

http://doc.qt.nokia.com/qdeclarativeelements.html
http://doc.qt.nokia.com/qtquick.html

CHAPTER 6: Introducing Qt Quick 150

Before we begin, it’s worth noting that the UI is completely different than that of a

standard Qt application—here, pictured in the Qt Simulator with an N900 skin. If you’re

looking to create an application that closely resembles native applications with a look

and feel identical to the native experience, QML may not be your first choice, because

its presentation is a trifle more basic. As we write this, it doesn’t have the necessary UI

primitives or styles to match the native MeeGo or Symbian UI (this will soon be

introduced by the Qt Quick Components). On the other hand, if you want to establish

your own look and feel, or if you’re writing a game or other application where it’s okay to

deviate from the native device UI, QML is an excellent choice.

Our application returns to the split-screen UI you first saw in the prototype in Chapter 4,

with a few refinements. First, the event list on the left has a shaded background, and

doesn’t occupy precisely half the screen. Moreover, list items are formatted neatly, with

an event’s magnitude and region on separate lines. The basic functionality still remains,

although for the brevity of this example, we don’t include geolocation integration as we

demonstrated in Chapter 6. It’s easy to add through the Qt Mobility QML plug-ins

(available since Qt Mobility 1.1), though, or you can do it through C++, which we will

describe in the section “Mixing C++ with QML” later in the chapter.

Before we begin discussing the main user interface, you’ll want to create a new QML

project. To do this, launch Qt Creator and select “Create Project…” and then choose

“Qt Quick UI” from the New Project dialog, as you see in Figure 6–2.

If all you want to do is run the application, you can do so using the qmlviewer command,

which takes as its argument the name of a QML file to execute, like this:

qmlviewer main.qml

This works only on your development workstation; to display QML on the device, you’ll

use the wizard provided in Qt Creator (for versions after Qt Creator 2.1 beta), as we

show you in the section “Displaying QML within a C++ Application” later in this chapter.

CHAPTER 6: Introducing Qt Quick 151

Figure 6–2. Creating a new Qt Quick project

Creating the User Interface
The user interface consists of two pieces: the list view, a ListView element, and the item

view, a Text element. Listing 6–1 shows main.qml, the QML that defines the entire user

interface (and the application’s data model, as you’ll see as we go along).

Listing 6–1. The main UI for the QML version of Shake

import QtQuick 1.0
Rectangle {
 property bool loading: feedModel.status == XmlListModel.Loading
 id: window
 width: 800
 height: 480

 Rectangle {
 id: listView

CHAPTER 6: Introducing Qt Quick 152

 anchors.left: window.left
 anchors.top: window.top;
 width: window.width/3
 height: window.height
 color: "#efefef"

 ListView {
 id: events
 property string text: window.loading ?
 "Loading data... please wait" :
 "<center>" +
 feedModel.get(0).title.replace(",","\n").replace(",","\n") +
 "</center>
" + feedModel.get(0).summary
 focus: true
 anchors.fill: parent
 model: feedModel
 delegate: QuakeListDelegate {}
 highlight: Rectangle { color: "steelblue" }
 highlightMoveSpeed: 9999999
 }
 }

 Text {
 id: itemView
 anchors.left: listView.right
 anchors.top: window.top;
 width: window.width - listView.width
 height: window.height
 wrapMode: Text.Wrap
 text: events.text
 }

 XmlListModel {
 id: feedModel
 source: "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml"
 namespaceDeclarations:
 "declare default element namespace 'http://www.w3.org/2005/Atom';"
 query: "/feed/entry"
 XmlRole { name: "title"; query: "title/string()" }
 XmlRole { name: "summary"; query: "summary/string()" }
 }
}

The top level of the UI is a single rectangle, sized to fit the MeeGo device screen at

800 480 characters with the ID window. It has a single property, a Boolean value

loading, which is true while the XmlListModel is loading the XML from the USGS.

Inside the main rectangle is a smaller rectangle containing a ListView, and the Text

element that shows the details of a single earthquake event. We place the ListView in its

own rectangle and position this and the Text element to be adjacent to each other,

spanning the entire height of the containing rectangle using their anchor properties. They

permit you to anchor item borders by referring to the borders of adjacent items.

The ListView itself has a property, the text to show for the current element. When the

application starts, it simply shows a canned string indicating that the application is

loading data; because QML maintains bindings between all the properties, as the list

http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml
http://www.w3.org/2005/Atom

CHAPTER 6: Introducing Qt Quick 153

model’s status changes, so does the window’s loading property, and so does the text

property of the ListView. The JavaScript expression for the text property creates a bit

of HTML to present a rich-text version of the earthquake data that reiterates the quake’s

magnitude, location, and detail data the USGS provides.

A ListView doesn’t draw its own items; instead, it relies on a delegate, a separate item

that draws contents once for each item in the ListView’s model. Listing 6–2 shows the

QuakeListDelegate.qml (put it into the same directory as your main.qml file), our item for

displaying a single item of the list.

Listing 6–2. The delegate responsible for drawing a single list item

import QtQuick 1.0

Item {
 id: delegate

 width: delegate.ListView.view.width; height: 60

 Text {
 text: title.replace(",","\n").replace(",","\n")
 color: delegate.ListView.isCurrentItem ? "white" : "black"
 font { family: "Helvetica"; pixelSize: 16; bold: true }
 anchors {
 left: parent.left; leftMargin: 15
 verticalCenter: parent.verticalCenter
 }
 }

 Rectangle {
 width: delegate.width; height: 1; color: "#cccccc"
 anchors.bottom: delegate.bottom
 visible: delegate.ListView.isCurrentItem ? false : true
 }

 Rectangle {
 width: delegate.width; height: 1; color: "white"
 visible: delegate.ListView.isCurrentItem ? false : true
 }

 MouseArea {
 anchors.fill: delegate
 onClicked: {
 delegate.ListView.view.currentIndex = index
 delegate.ListView.view.text = "<center>" +
 title.replace(",","\n").replace(",","\n") +
 "</center>
" + summary
 }
 }
}

The delegate has a single Text item that displays the title of an earthquake report as a

series of three lines. It’s in black for all items but the currently focused item, which is

white and drawn over the highlight rectangle at the end of the listing. After the Text item

is a dividing line one pixel tall. It provides separation between this and subsequent

CHAPTER 6: Introducing Qt Quick 154

items. A MouseArea in the item filling the entire region handles clicks by setting the

ListView’s text property to the full text description of the event.

When the XmlListModel finishes loading or you click on an item, the QML runtime

updates the ListView’s text property. The itemView, a single Text element, displays this

by setting its text property to shadow the text property of the event list itself.

Downloading the Data
The XmlListModel is a specific list model that handles both the fetching of an XML feed

and parsing the feed into roles defined by XPath queries. The XmlListModel does the

work of the WorkerThread in the previous chapters’ examples, fetching the RSS feed and

parsing it to provide title and summary attributes from the source XML available from the

USGS. The fetch begins when the XmlListModel is created, and the status is updated

after the load completes.

The ListView draws each item using the delegate you saw in Listing 6–2, obtaining the

fields in each list item using the title and summary attributes extracted from a specific

feed entry based on the entry’s index. You can also fetch a specific XmlListModel’s item

using the get method and passing an index, as we do when we draw the 0th element

after the loading completes.

The XmlListModel highlights a key feature of QML we’ve only hinted at: content can be

fetched not just from the local device, but also over the Internet. Any element with a

source property can present data from any URL, letting you freely mix local and remote

resources in your Qt Quick applications. In fact, you can do this with whole Qt Quick

items. The Loader element has a source property and at runtime replaces itself with the

contents at the URL of its source element. That allows a Qt Quick application to load

other QML from the Web.

Integrating C++ with QML
While QML is arguably a powerful environment, there are still uses for C++ in Qt

development. For example, interfacing with platform enablers like QtDBus on MeeGo

still requires some C++ work, even if your UI is entirely written in QML. Fortunately, it’s

easy to bind QML with QObject subclasses written in C++ using Qt’s meta-object

features, which we touched on in Chapter 4.

As you’ll see in the section “Mingling QObjects with QML” later in this chapter, any

QObject can be added to QML’s object tree, exposing Qt properties as QML properties

and slots as methods.

Other times you may just want to introduce a QML interface as a visible component of

your application, either as all or part of your UI. The Qt Declarative library, on which Qt

Quick is based, provides a collection of classes that let you do just this. The most

obvious example is that when you want to ship a QML application on a mobile device,

you’ll need to create a QDeclarativeView in which to render your QML application.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 6: Introducing Qt Quick 155

Displaying QML within a C++ Application
Displaying QML in a Qt application is easy. Simply create an instance of

QDeclarativeView and add it to your widget hierarchy. Then, set its source to the URL of

the entry point to your QML application. For example, a player application for the

previous section’s QML is as simple as what you see in Listing 6–3.

Listing 6–3. Rendering QML in an application’s main window

#include <QApplication>
#include <QMainWindow>
#include <QDeclarativeView>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QMainWindow window();
 QDeclarativeView* view = new QDeclarativeView();

 window.setCentralWidget(view);

 view->setSource(QUrl::fromLocalFile ("main.qml"));
 window.showMaximized();

 return app.exec();
}

QDeclarativeView acts as a QWidget, so you can just set it as the central widget of the

application’s main window and give it some QML to render. In fact, if you choose a Qt

Quick application from Qt Creator’s “New Project,” the resulting project includes an

entry point (main function) whose body is very similar to what you see in Listing 6–3.

Mingling QObjects with QML
Through the rootContext method, the QDeclarativeView exposes a

QDeclarativeContext, which provides an interface to QML’s context within the QML

engine that the QDeclarativeView uses to render its content. Using the

QDeclarativeContent, you inject new QObject values to the context tree, providing the

name that the QML content will use to access the QObject. When you do this, the

QObject’s properties become QML properties of the object in the QML context, and

slots become methods that QML can invoke on the object.

As an example, let’s imagine we wanted to reuse the model and network code from the

previous chapter’s example with the QML user interface we presented in Listing 6–1 and

6–2. In practice, this probably isn’t a good idea, because the XmlListModel does what

we need and requires less code, but this example will show you how you can introduce

a model from C++ to QML and use it with QML’s ListView.

The only change we need to make to Listing 6–1 is to remove the XmlListModel from the

QML entirely; we’ll replace it with our QuakeListModel using the code you see in Listing

6–4.

CHAPTER 6: Introducing Qt Quick 156

Listing 6–4. Introducing a QObject into the QML context

static const char* kUrl =
 "http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml";

int main(int argc, char *argv[])
{
 qRegisterMetaType<QModelIndex>("QModelIndex");

 QApplication app(argc, argv);

 QMainWindow window();
 QuakeListModel* model = new QuakeListModel(&window);
 WorkerThread* worker = new WorkerThread(&window, *model);
 worker->fetch(kUrl);

 QDeclarativeView* view = new QDeclarativeView();

 // The only thing we show is the declarative view.
 window.setCentralWidget(view);
 window.showMaximized();
 view->rootContext()->setContextProperty("feedModel", model);

 view->setSource(QUrl::fromLocalFile("main.qml"));

 return app.exec();
}

Listing 6–4 introduces a QtDeclarativeView to the main window, but only after it creates

an instance of the QuakeListModel and WorkerThread to fetch the earthquake feed from

the USGS server. While the thread is working, the code inserts the QuakeListModel

instance into the declarative view’s context using the line of code

view->rootContext()->setContextProperty("feedModel", model);

This assigns the model to the QML entity feedModel.

The QuakeListModel we presented previously doesn’t provide status notifications as the

worker thread does its work; we need to add a Qt property that indicates the feed status

the worker thread will update as it fetches and parses the data. Listing 6–5 shows the

modified interface to the QuakeListModel.

Listing 6–5. Adding the status property to the QuakeListModel.

class QuakeListModel : public QStandardItemModel
{
 Q_OBJECT

 Q_PROPERTY(int status READ status WRITE setStatus NOTIFY statusChanged)

public:
 QuakeListModel(QObject* parent = 0);

 enum {
 … // Role enum elided for brevity
 };

 bool setData(int row, const QuakeEvent& value);

http://earthquake.usgs.gov/earthquakes/catalogs/1day-M2.5.xml

CHAPTER 6: Introducing Qt Quick 157

 int status();
 void setStatus(int status);

signals:
 void statusChanged();

… // remainder of class follows
};

The status property uses the status and setStatus methods as its implementation, and

setStatus must also emit statusChanged to provide QML’s binding something to hook

on to while watching for status changes. These methods (Listing 6–6) are trivial.

Listing 6–6. Changes to the QuakeListModel implementation

int QuakeListModel::status() {
 return mStatus;
}

void QuakeListModel::setStatus(int status) {
 if (status != mStatus) {
 mStatus = status;
 emit statusChanged();
 }
}

QuakeListModel::QuakeListModel(QObject* parent)
 : QStandardItemModel(parent) {
 QHash<int, QByteArray> roles;
 roles[Qt::DisplayRole] = "title";
 roles[QuakeListModel::Description] = "summary";
 setRoleNames(roles);
}

Listing 6–6 also shows a key change to the QuakeListModel’s notion of its roles; for each

named QML role, such as title, we need to provide the corresponding Qt::Role

enumeration value. The QML context uses these when resolving the attributes

referenced in specific list items while drawing the delegate for the list view. We do this

when we construct the model by creating a QHash that links the QML attribute names to

the Qt::Role enumeration values.

Next, the worker thread needs to update the model’s status property throughout the

HTTP transaction; for example, the beginning of the fetch method needs to look like

this:

void WorkerThread::fetch(const QString& url)
{
 // Don't try to re-start if we're running
 if (isRunning()) {
 this->cancel();
 }
 mEventModel.setStatus(2); // XmlListModel.loading

 // Configure the access point, do the fetch, etc.
 // See Chapter 4 for details.
 …
}

CHAPTER 6: Introducing Qt Quick 158

The model’s status also needs to be set at the end of run to signal the end of the

transaction for success or error conditions, of course.

Wrapping Up
In this chapter, we’ve shown you how to use Qt Quick, Nokia’s declarative environment

for creating user interfaces using QML, JavaScript, and C++. By using QML entities like

Rectangle, MouseArea, Item, Text, and ListView, you learned how to specify user

interfaces by their contents, instead of C++’s imperative declarations in method

definitions. You saw how QML uses properties and runtime binding to share data

between user interface objects, automatically updating each object in its context tree as

necessary. The process uses JavaScript to let you create programmatic linkages

between one object’s properties and another. We showed how that extended to both

the JavaScript and C++ runtimes, letting you add JavaScript and C++ objects to your

QML-based application. We also showed how to display QML content in a C++

application.

In the next chapter, we switch gears, and discuss Nokia’s support for Web technologies,

including HTML5, which lets you deploy existing or new web-based applications on

Nokia’s products. Take a walk to clear your head, and we’ll be ready when you return!

159

159

 Chapter

Developing with HTML5
One of the great things about Qt is its inclusion of QtWebKit and, with it, its excellent

support for HTML5. Using HTML5, along with sister technologies CSS3 and JavaScript,

you can build powerful standards-based applications that run simply in the web

browser. Even better, you can easily build hybrid applications that combine the power of

native Qt development, as we discussed in the past three chapters, with the ease and

portability of web apps. Qt native development is the preferred method for developing

Nokia apps, but HTML5, as supported in QtWebKit, is an acceptable secondary

platform as well.

HTML5 is the fifth generation of HyperText Markup Language, the primary technology

that has been used to author web pages and web applications since the beginning.

HTML5 includes almost all the tags and features you have come to expect from web

development (some tags that are rarely used or replaced with newer functionality have

been deprecated) and adds many cool new features. We’ll cover some of those features

later in this chapter. CSS3 (usually when people talk about HTML5 they really mean

HTML5 plus the related technologies CSS3 and JavaScript) stands for Cascading Style

Sheets version 3. CSS was published as a W3C specification in 1996 as a means to

clearly separate the content and styling in a web page. Now in its third generation, CSS3

adds powerful new features, such as animations, transitions, and transformations that

allow web developers to add advanced graphic techniques with just a couple lines of

code. Using CSS3 for these transforms also allows for hardware acceleration and,

therefore, fast performance of these computationally complex graphics. (Note that CSS3

transformations provide the opportunity to use hardware acceleration, but do not

guarantee that any given implementation does in fact implement this acceleration. The

accelerated features will vary depending on the platform.) Last of the trio, JavaScript is a

powerful scripting language that allows you to programmatically manipulate the

Document Object Model (DOM) or perform other dynamic calculations.

These are the same industry standard technologies used to build the World Wide Web.

Therefore, if you know how to build an application for the web, as do many developers

today, it is just as easy to build an application for a mobile handset.

QtWebKit, the engine used to render HTML5, CSS3, and JavaScript, is a derivative of

the WebKit open source project. (See www.webkit.org). This is the same browser core

7

http://www.webkit.org

CHAPTER 7: Developing with HTML5 160

used by Google’s Android, Apple’s iOS, and most other mobile browser platforms. This

means that web applications written using industry-standard HTML5 as supported by

WebKit will run with little or no modification across most mobile platforms.

HTML5 Is an Industry Standard
The proposal for HTML5 came originally from the WHAT (Web Hypertext Application

Technology) Working Group in June 2004 (www.whatwg.org/). At that time the W3C,

keeper of most of the web standards we are discussing, was promoting XHTML as the

next generation web markup language. The HTML5 team, including members from

Apple, Opera, and Mozilla, argued for a more evolutionary approach to the next

generation web, building on the existing HTML4 markup language. HTML5 became the

starting point for a new W3C HTML workgroup in 2007. This workgroup operated with

an openness policy that encouraged broad participation from the community, including

non-W3C members. The first HTML5 public working draft was published on Jan 22,

2008.

Today, the group continues to operate with strong industry support from players such as

Nokia, Google, Apple, Microsoft, IBM, and many others. The specification has not yet

reached final status as a Recommendation and may not for several years. However,

much of the work exists in a fairly stable state and is implemented in several browser

engines, including WebKit and Gecko. The fact that most mobile players use these

common engines ensures that support is mostly equivalent across different vendor

platforms.

Let’s get started by looking at some real HTML5 code.

Hello World in HTML5
A simple hello world application is a good place to start. A really simple hello world

might look something like this:

<html>
<body>
<div>Hello World!</div>
</body>
</html>

The easiest way to get started is to save this code in a text file somewhere on your

computer and call it hworld.html. Why not put it in your c:\temp directory? Now, fire up

your browser and type file:///c:\temp\hworld.html in the navigation bar. You should

see ‘Hello World!’ appear in your browser.

OK, that worked, but that code is about as exciting as pounding sand. Let’s spice it up

with some nifty HTML5 features. Let’s add just a few lines so that our code now looks

like this:

http://www.whatwg.org
file:///c:\temp\hworld.html

CHAPTER 7: Developing with HTML5 161

<html>
<body>

<style type="text/css">

 .box {
 float: left;
 margin: 4em 1em;
 width: 100px;
 height: 60px;
 border: 2px solid green;
 line-height: 60px;
 text-align: center;
 -webkit-transition: all 1s ease-in-out;
 }

 .rotate:active {
 -webkit-transform: rotate(180deg);
 }

</style>

<div class="box rotate">Hello World!</div>

</body>
</html>

Fire it up again in your browser and take a look. This time make sure that you have a

browser that supports HTML5. We like to use either Chrome or Safari. Click and hold on

the text in the middle of the box. Surprised? The box with the text in it should rotate 180

degrees, then rotate back when you release. A picture of ours is shown in Figure 7–1.

Let’s take a more detailed look at what just happened.

Figure 7–1. Hello world rotated

CHAPTER 7: Developing with HTML5 162

First, we added a style element that contains two CSS style rules for classes .box and

.rotate. The .box class has some basic CSS that defines a box drawn around our text.

It describes things like placement, size, text alignment, and so on. This is interesting

stuff, but has long been a part of the web design toolbox. But wait, there is something

new: a property -webkit-transition: all 1s ease-in-out. This tells the rendering

engine that objects of class .box should be animated with a transition animation. The

all parameter means that all the properties should be animated. 1s specifies a 1 second

duration for the animation. And ease-in-out tells us to use this timing function (other

options include linear or cubic Bezier functions).

Now look at the .rotate class. This tells us that when the class becomes active

(meaning, for example, an object of this class is clicked by the user) it should be rotated

180 degrees. Finally, look at the div that contains our text. We have added class

attributes telling the renderer that the div is part of the box and rotate classes. Notice

that we’re really playing here with CSS3, but as we said above, most people consider

this generically part of HTML5 technology.

So, when we activate the Hello World text by clicking on it, it is rotated 180 degrees.

And rather than seeing the text instantly flip upside down, the rotation happens in an

animation over a 1 second duration. This is HTML5!

Hello World on a Handset
OK, we’ve seen our Hello World HTML5 app running on our desktop. Now let’s try it out

on our handset. First, we need to serve up the HTML from a server and not from a local

file. (We’ll look at using local files on a handset later in this chapter, but for now let’s try

it from a server like a traditional web page.) So throw hworld.html on a web server and

let’s try it from a handset.

There is one problem, though. Nokia’s support of HTML5 is based on support of

QtWebKit. Nokia is committed to making QtWebKit the default platform browser moving

forward, but at the time this book is written the N900’s browser is based on the Gecko

rendering engine, and the Symbian platform browser is based on an older version of

WebKit. This means that we need to build our own version of QtWebKit and install it on

a handset. (Note that the Gecko rendering engine does in fact support most important

HTML5 features. But for consistency we want to use QtWebKit for both platforms we are

targeting.) Eventually this step won’t be required and the platform browser that ships

with the handset will run HTML5 apps without problem.

For now, the easiest way to build a QtWebKit browser is to build the fancybrowser

example application that comes with the Nokia Qt SDK. To begin, browse to the

directory C:\NokiaQtSDK\Examples\4.6\webkit (or similar). Here there are several

interesting QtWebKit examples. Open the file fancybrowser.pro in the fancybrowser

directory. Build the application just like any other Qt app as described earlier in this

book.

For Symbian make sure your bearer management is properly established as described

earlier in Chapter 5.

CHAPTER 7: Developing with HTML5 163

Now, fire up fancybrowser on either a Symbian or Maemo device and navigate to the

site where you put the hello world content. Probably you need to type something like

http://mysite.com/hworld.html. Try touching the Hello World text. Does it rotate like

you expect? Yes, we’re in business!

Using the HTML5 Application Cache
There is one concern, though, with running your web applications hosted on the network

like this. You must be online to access your application. This is OK for a desktop

computer that is plugged into a reliable network connection, but not so good for a

mobile device. For a mobile device, network connections are frequently dropped, such

as when driving through a tunnel, or potentially unavailable for long periods of time when

out of a coverage zone. Luckily, HTML5 has some key features to enable web

applications to work offline. We will discuss one such feature, local storage, later in this

chapter. The other feature, the HTML5 application cache, is a nifty way to ensure your

web pages are available even when the device is offline.

Caching is a technique normally implemented as an HTTP cache anyway, but HTML5

application cache is a new mechanism that allows you, the developer, to explicitly

manage caching behavior for your application. The browser is told which files to place in

the application cache by a manifest.

Imagine that our hworld application uses three files: hworld.html, hworld.css, and

hworld.js. Having multiple files of these types is typical for most web apps. The head

element for hworld.html might include these lines:

<head>
 <title>Hello World</title>
 <script src="hworld.js"></script>
 <link rel="stylesheet" href="hworld.css">
 </head>

Normally if a user tried to open Hello World while there was no network connectivity, he

would get an error because hworld.js and hworld.css are unavailable (unless they

happened to already be in the local HTTP cache, but this is unreliable).

With HTML5’s application cache, the developer can provide a manifest explicitly telling

the browser to cache these three files. The manifest would look like this:

CACHE MANIFEST
hworld.html
hworld.css
hworld.js

This file should be saved as a text file called hworld.manifest and served up as type

text/cache-manifest. You also need to add instructions to hworld.html telling the

browser to use the manifest file. You do this by modifying the HTML element of

hworld.html like this:

<html manifest="hworld.manifest">

7

http://mysite.com/hworld.html

CHAPTER 7: Developing with HTML5 164

Now, when the user goes to run the hworld web application, the browser will cache the

files and make them available even when the user is offline. The offline cache

mechanism also provides an API that allows the developer to have explicit control of the

application cache.

The manifest file can contain three distinct sections indicating how different files should

be handled:

CACHE

NETWORK

FALLBACK

CACHE is the default section and says that the files in this section should be downloaded

and stored in the application cache when they are accessed for the first time. Files

under the NETWORK section are explicitly not cached and must be accessed over the

network. This is useful when the application developer requires server side interaction,

such as for tracking mechanisms. All requests to resources under NETWORK bypass the

cache and are requested directly from their online location. Finally, FALLBACK allows the

developer to specify resources that should be used if the primary resource is not

available. The first URI is the resource, the second is the fallback. Both URIs must be

relative and from the same origin as the manifest file. This is useful for the developer to

put up an explicit warning or error message if some expected resource is not available.

A cache manifest with files in each section might look like this:

CACHE MANIFEST
CACHE
hworld.html
hworld.css
hworld.js

NETWORK
tracking.cgi

FALLBACK
offline.html

Once an application is cached, the browser will update the cached files only under three

conditions:

1. The user has cleared her cache and the cached content is therefore no longer

available.

2. The manifest file changed.

3. The cache is explicitly updated via JavaScript using the application APIs.

Full details can be found from the W3C specification for application cache at
http://dev.w3.org/html5/spec/offline.html.

There is one last important point to keep in mind when using the HTML5 application

cache. The application cache is by default disabled in QtWebKit, so you must explicitly

enable it to use it. To do this, we need to set the appropriate property to true in the

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

http://dev.w3.org/html5/spec/offline.html

CHAPTER 7: Developing with HTML5 165

QWebSettings class. To do this in our fancy browser example, you need to add these

lines of code to the application:

QWebSettings *GlobalSettings = QWebSettings::globalSettings();
GlobalSettings->
setAttribute(QWebSettings::OfflineWebApplicationCacheEnabled, true);

So now we can create a web application, host it online, and flag it to be cached locally

so that we can run it even when we don’t have network access. But we are still missing

a couple of things that we would get if we were running a full native application. First,

the application must be run in the web browser and accessed by the user from a

bookmark or explicitly entering a URL. The user does not click an icon on the home

screen to launch the application. Second, the application is not downloaded and

installed like a native application. On the one hand, this is a convenience to the user

since it eliminates the overhead of application installation, but on the other hand it

eliminates an opportunity for the developer to monetize his application by charging per

download, such as when the application is sold from the Ovi Store. (We cover the Ovi

Store in more detail in Chapter 9). To address these problems, let’s learn about hybrid

applications.

Hybrid Apps
Hybrid applications are a hybrid combination of native development, using Qt, and web

development, using QtWebKit. In the last chapter we saw a sophisticated example of

this where native Qt objects are embedded directly into a QWebView. In this section we

focus on a simple hybrid application strategy where a very thin layer of native Qt code

serves as a QtWebKit wrapper around generic HTML5 code.

In the example below, we use QWebView in a Qt C++ application, as we did previously

to run our Hello World example. Another approach is to use QML to open a WebView.

This would take only a few lines of code like this:

import QtQuick 1.0
import QtWebKit 1.0
WebView {
 url: http://nokia.com
}

Regardless of how we bring up the WebView, we can store our content locally on the

handset then display it in a thin shell application.

Accessing Your HTML5 Content from the Local File System
The simplest way to create a hybrid application of this type is to write a thin Qt

application using QWebView to render HTML5 content stored on the device in the local file

system. Let’s take a look at how to do this with our hworld example.

Our Qt application is called hybridshell and is available from www.apress.com for

download. This app doesn’t do much more than open a QWebView and display some

content. The difference is that this time the URL points to content on the local file

http://nokia.com
http://www.apress.com

CHAPTER 7: Developing with HTML5 166

system rather than an http server on the network. To do this on Meego, for example, we

use the command:

url=QUrl().fromLocalFile("/usr/local/share/web/hworld.html");

On Windows we probably want to put the content somewhere else that does not use an

absolute file path. On Windows we would use this command:

dir.setPath("../hybridshell/hworld.html");
url=QUrl().fromLocalFile(dir.canonicalPath());

Just make sure that the file or files you are accessing are deployed to the device at the

same time that you deploy your application binary. A convenient way to do this is to use

the DEPLOYMENT variable in your .pro file. This is described in detail in Chapter 9.

NOTE: At the time of this writing the deployment variable specified in the .pro file does not
work correctly for Maemo when building with Qt Creator. To work around this, select the “build”

project configurations for Maemo. Under “Build Steps,” select the “Details” tab for the “Create
Package” section. When the details pane is expanded, you will see a “Files to deploy” block.
Here you can select files from your local file system and specify to where they should be copied

on your remote device file system. This is a convenient place to specify your web content files.

There is one last thing we need to do. Many applications will need to access content on

the network in addition to the content stored on the local file system. For example, in the

Shake application that we present at the end of this chapter, we need to make an

XmlHttpRequest call to download the earthquake feed data. By default, the QtWebKit

security policy will block these requests. We need to explicitly enable this functionality

by setting the LocalContentCanAccessRemoteUrls property to true like this:

QWebSettings *GlobalSettings = QWebSettings::globalSettings();
GlobalSettings->setAttribute(QWebSettings::LocalContentCanAccessRemoteUrls, true);

Run the application and there it is—our web content appears just like a web page, but

now everything is local to the device. There is one last technique we should look at for

building hybrid web applications: packaging the content as a resource in the application

binary.

Storing the HTML5 Content as an Application Resource
Packaging files for the local storage system is nice, but it has the problem that you need

to explicitly manage the placement of these files. Each platform needs the files placed in

a slightly different location. An easier way to handle this problem is to include our

content as an application resource. Qt allows us to access a .qrc file just as simply as

accessing content from elsewhere. Just use qrc: rather than http: to indicate your

HTML content is accessed from a resource. For our sample application we just make

this substitution:

url=QUrl("qrc:/hworld.html");

CHAPTER 7: Developing with HTML5 167

Make sure to use Qt Creator to include your web content as application resources. Now,

the content is bundled into your application binary. Management is much easier since

we don’t have to worry about moving around a bunch of external files. Be careful,

though, too much web content stored as a resource will bloat the size of your

application binary.

In this section we’ve shown how to use Qt to render HTML5 content using four different

methods: a QtWebKit based browser that loads content off the net in the traditional

manner, a QtWebKit browser that uses the HTML5 application cache to enable that

same hosted application to be available without network connectivity, a hybrid app

where the content is stored locally on the device file system, and a hybrid app where the

content is bundled as a resource into the application binary.

In the next section we will take a more in-depth look at some of the new features in

HTML5.

NOTE: One last option for developing web applications is the Symbian Web Runtime. This is a
Nokia proprietary technology where web files such as HTML, JavaScript, and CSS can be

bundled into an archive package file and installed and run on the device like a native application.
It is similar to the W3C widget standard defined here: www.w3.org/TR/2009/CR-widgets-
20090723/. The Symbian Web Runtime will be supported on the Symbian platform for legacy

applications, but is not the recommended development path moving forward.

More HTML5 Features
HTML5 has lots of new features. There are new elements such as the <audio> and

<video> tags that give native support to multimedia formats that previously required

additional third-party plug-ins. There are also a number of new semantic elements that

allow authors to indicate the structural organization of the content. This is done with the

introduction of tags such as <header>, <article>, <figure>, and others.

Three features: canvas, CSS transitions and transformations, and local storage are

especially exciting. In the following sections we’ll dive deeper into these new features.

Canvas
Canvas is a major new enhancement to HTML5. The <canvas> element is a resolution-

dependent bitmap canvas which can be drawn on programmatically using JavaScript

APIs. It is useful for rendering dynamic content, such as graphs or game graphics.

Before we had <canvas>, web developers had to use plug-ins such as Flash.

To use <canvas>, you must first create the <canvas> element, just as you would with any

HTML element. Then you draw on it using the supplied JavaScript API. Let’s walk

through some of the main ideas here with some examples.

http://www.w3.org/TR/2009/CR-widgets-20090723
http://www.w3.org/TR/2009/CR-widgets-20090723

CHAPTER 7: Developing with HTML5 168

When you create a canvas you specify the width and height of the canvas like this:

<canvas id="myCanvas" width="300" height="300">

Let’s add some styling so that we can see the boundaries of our canvas:

 <style type="text/css">
 #myCanvas {border: 1px solid black;}
 </style>

Next, we need to add a spot where we can do some JavaScript to draw on the canvas.

For this simple example, let’s just execute a draw function every time the page is loaded

like this:

<body onload="draw();">

Now, we can use draw to experiment with the drawing code for <canvas>. The simplest

way to draw in canvas is by creating rectangles. Unlike SVG (SVG or Scalable Vector

Graphics is another W3C standard based on XML used for drawing two-dimensional

graphics) , no other primitive shapes such as circles or triangles are supported. You can

also draw with lines and arcs, but let’s talk about that later.

To draw, first you need to get the graphics context to draw in. Currently only two-

dimensional graphics are supported, but in the future 3D may also be supported. We

get the graphics context like this:

 var canvas = document.getElementById('myCanvas');
 var c = canvas.getContext('2d');

Once you have the graphics context, you use the fillRect function to draw a solid

rectangle. You can also use the strokeRect function to draw the outline of the rectangle

with no filling. The rectangle functions take four inputs: the x and y coordinates of the

rectangle’s starting position (usually the top left corner of the rectangle) and the width

and height of the rectangle to be drawn. The coordinate system is arranged such that

point (0,0) is the top left corner. Increasing x moves to the right, and increasing y moves

down. This is shown in Figure 7–2 below.

Figure 7–2. The canvas coordinate system.

You draw a rectangle like this:

c.fillRect (125, 10, 50, 50);

CHAPTER 7: Developing with HTML5 169

This gives us a nice black rectangle starting at the point (125, 10), and 50 pixels high

and 50 pixels wide (notice we are actually drawing a square, since the height and width

are the same—but still, the API refers to it as a rectangle so we will also). We can use

the function fillStyle to spice it up a little. fillStyle let’s you describe what kind of fill

you would like. Let’s add the line

c.fillStyle = 'red';

and you should see a red rectangle. Nice. OK, let’s draw something more than just a

rectangle. How about a stick figure? We already have the head. Let’s add a body and

arms. Just draw two more rectangles like this:

c.fillRect (142, 60, 16, 130); //body
c.fillRect (85, 100, 130, 16); //arm

Put it all together and you should see something like Figure 7–3 below.

Figure 7–3. Head and body stick man

Now, we have a problem, though. How do we draw the legs? We only know how to

draw rectangles. In addition to rectangles, you can also draw lines starting and stopping

from arbitrary points. To do this, you use the lineTo function to define a path. First you

tell the canvas that you would like to start drawing a path with the beginPath function.

Next, you specify the path by listing a series of points that are to be connected by lines.

First you create the starting point with the first moveTo function call. When calling

moveTo(x,y) and lineTo(x,y) you pass the x and y position of the point you are

describing. You now call lineTo for as many points as you would like to specify. You

can close the path with a closePath call, which takes you back to the first point you

started with. Or you can just call stroke, which draws the subpath you described

without closing it.

In our example we would like to draw some legs. Let’s add these lines:

c.beginPath();
c.moveTo(150,180); //starting position
c.lineTo(200,270); //rightleg
c.stroke();

CHAPTER 7: Developing with HTML5 170

For the left leg we want to move to the starting point without actually drawing a line. This

is kind of like picking the pen up from the piece of paper when drawing. Let’s call a

moveTo, then a lineTo to draw the left leg like this:

c.moveTo(150,180);
c.lineTo(100,270); //left leg

Finally, we want to make our lines look like the rectangles we drew earlier. To do that,

let’s add this styling call:

c.lineWidth=10;
c.strokeStyle='red';

Put it all together and our stick man should look like Figure 7–4 below.

Figure 7–4. Stick man with legs.

Our stick man is looking like a bit of a block head. But how do we give him a round

head? We can use the arc call. It’s like lineTo except that you specify an arc of a circle

rather than a straight line. The parameters passed to arc are x, y, radius, startAngle,

endAngle, and whether the direction is counterclockwise. The angles are expressed in

radians and the value describing whether the direction is counterclockwise is boolean.

(Remember from your high school math that 360 degrees equals 2 radians.) So, to

draw our head, let’s get rid of our block head and add a new arc path like this:

c.beginPath();
c.arc(150,35,25,Math.PI/2,3*Math.PI, false);
c.stroke();

Finally, our stick man has a real head as shown in Figure 7–5 below.

CHAPTER 7: Developing with HTML5 171

Figure 7–5. Our stick man with a round head

In addition to circular arcs, you can also use quadratic and Bezier curves to connect the

points in your path. Let’s talk about one last drawing feature in canvas before moving

on.

You can apply transformations to the canvas. Let’s consider this for drawing our legs.

What if we wanted to continue to use rectangles to draw our legs rather than use paths

as above. The problem before was that we can only draw rectangles aligned to the

corner or the rectangular canvas. To get around this, now we can use a rotate function

call to rotate the canvas much as we would a piece of paper before drawing on it.

Before doing that, though, let’s do a save function call. This saves the current state of

the graphics context. By doing first a save before the rotate, we can then do a restore

to restore the context to where it was before we did the rotation. This is like putting the

paper back in the position it was in before we moved it.

One last thing we need to do is to translate the origin. By default the transformation will

happen around point (0,0). We, however, want to rotate the rectangle with the origin of

rotation near its top, so that it will be positioned properly as a leg. To add legs as

rectangles rather than points, remove the code we had for creating a path and instead

add these lines to draw the legs:

c.save();
c.translate(142,185);
c.rotate(Math.PI/6);
c.fillRect(0,0,10,100);
c.restore();

c.save();
c.translate(158,185);
c.rotate(-Math.PI/6);
c.fillRect(-10,0,10,100);
c.restore();

The stick man looks pretty much the same as he did in Figure 7–5 above, but this time

we drew his legs using rectangles.

CHAPTER 7: Developing with HTML5 172

With that, we conclude our look at canvas. The examples we showed here, although

controlled with JavaScript function calls, are in reality rather static. We draw a figure that

could have just as easily been inserted as a static image. The real power of canvas

comes when the API is used to create dynamic images. These could be used to power

games or animations, or to generate dynamic graphs updated with the content.

Furthermore, there are several other aspects to canvas we did not talk about, such as

using text and images on the canvas, compositing and clipping drawings, adding

patterns and shadows, and animations. The canvas API is available for further study

here: http://dev.w3.org/html5/canvas-api/canvas-2d-api.html. We leave these

additional topics for investigation by the reader while we instead look at some new

CSS3 effects.

Transitions and Transformations
Transitions and transformations are two cool new things in CSS. Transitions are implicit

animations that occur when a CSS property is changed. Transformations allow elements

to be translated, rotated, and scaled in 2D and 3D space. While technically not part of

HTML5 (these are actually CSS features—not HTML), this new CSS functionality is one

of the things people talk about when considering new features in HTML5.

Transitions
We already saw some of this in our hworld.html example earlier. Let’s take a closer look

now. Let’s start with a typical CSS declaration. In the code below we describe

properties for a class called box.

.box {
 margin: 20px 20px;
 width: 200px;
 height: 100px;
 border: 1px dashed green;
 text-align: center;
}

There are many available CSS properties. Here we specify that the box is placed 20

pixels from neighboring content. It has a width and height of 200 and 100 pixels. Any

text placed in it is centered. And finally it is surrounded by a thin dashed green border.

Now, let’s create some text and give it the class box like this:

<div class="box">
Transitions are cool!
</div>

Display this in an HTML5 compliant browser and it should like Figure 7–6. (Actually we

haven’t gotten to the new HTML5 stuff so it should like Figure 7–6 in pretty much any

browser).

http://dev.w3.org/html5/canvas-api/canvas-2d-api.html

CHAPTER 7: Developing with HTML5 173

Figure 7–6. Illustrating various CSS properties

Now, we can do something clever. CSS allows us to define a selector for when the box

is active. In this declaration we can change some of the CSS properties we defined

above. Let’s add this text:

 .box:active {
 border: 8px solid red;
 font-size: xx-large;
 font-weight: bolder;
 }

Now render this in your web browser. Click on it and you will see the border change to a

thick solid red line. And the font gets bigger and bolder. Cool, right? Well, this is all just

old school CSS. When you click on the box, the properties all change instantly. Now,

let’s add a CSS transition. Add these lines to the box declaration block:

-webkit-transition: all 1s ease-in-out;

Click on it and watch again. Now instead of a jump, you should see the properties

smoothly animate from the start to the end property. This is a CSS3 transition!

In our transition line, we told the browser that all the properties that change should be

animated. You can also explicitly set which properties are animated like this:

-webkit-transition-property: border;

Now when you click on the box, the border change is animated, but the text simply

jumps from a small to large size. It is also possible to use different timing functions to

describe the animation. We specified ease-in-out, but you can also use other functions.

such as linear and cubic Bezier.

Now let’s take a look at transformations.

Transformations
Transitions are nice, but you need transformations to start doing really cool things.

Transformations are described with a new CSS property called –webkit-transform. This

CHAPTER 7: Developing with HTML5 174

lets you move web elements by applying any of three types of transforms: translation,

scaling, or rotation.

Translation means to move the element in the Cartesian plane. Scaling means to enlarge

or shrink the element. And rotation means to rotate the element about an axis. When

rotated about the z axis, the rotation happens on the view surface as you would expect

in a 2D drawing. But you can also rotate about the X and Y axis. For example, a rotation

about the X axis is like tipping the element away from you. You can also combine

transformations.

Let’s take the box we were using above and transform it in all three ways. We make it

grow, move, and rotate at the same time. You do this by adding this line to the

.box:active declaration block:

-webkit-transform: scale(2) translate(100px, 0) rotate(30deg);

Now when you click on the box it enlarges, spins, and moves to the right. The end result

is a box that looks like Figure 7–7.

Figure 7–7. Add some transformations

Again, we have only scratched the surface on the topic of transitions and

transformations. For further information, you can look at the W3C documentation here:

www.w3.org/TR/css3-2d-transforms

www.w3.org/TR/css3-3d-transforms

www.w3.org/TR/css3-transitions

Local Storage
Earlier in this chapter we discussed using the application cache to enable offline HTML5

applications. There is one thing missing to make truly robust offline applications—local

data storage. HTML5 gives you two methods to store data on your client: web storage

and web database.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

http://www.w3.org/TR/css3-2d-transforms
http://www.w3.org/TR/css3-3d-transforms
http://www.w3.org/TR/css3-transitions

CHAPTER 7: Developing with HTML5 175

Web storage allows you to store values in key-value pairs. This is similar to the current

cookie mechanism, but unlike cookies the key-value pair is not sent to the server with

every request. Web database is a JavaScript front end to a local SQL database. This

provides a robust method for your HTML5 application to access a local relational

database even when offline.

Local storage is disabled by default in QtWebKit. To enable it, you must set the

parameter QWebSettings::LocalStorageEnabled to true. You do this in the same way

that we set QWebSettings::OfflineWebApplicationCacheEnabled to true for application

cache above.

Web Storage
Let’s talk first about web storage. There are two types of web storage supported:

localStorage and sessionStorage. localStorage is meant to be more for storing long-

term data. The data persists in local client storage even after the host browser window is

closed. Also, the key-value pairs are accessible from any browser window.

sessionStorage is meant to be more of a temporary data store for a single browser

window. The data can be accessed only from the window in which it was created and

the data does not persist after the window is closed.

You store a key-value pair like this:

sessionStorage.setItem("item_price", theItemPrice);

and you retrieve the value based on querying the key like this:

var theItemPrice = sessionStorage.getItem("itemPrice");
// now do something with the value
document.getElementById(‘item_price’).value = theItemPrice;

Note that these examples use sessionStorage, but the same functions can be used for

localStorage. The syntax to use sessionStorage and localStorage is identical. The only

difference are the rules for data persistence that we mentioned above.

Also, you can use sessionStorage.length to determine how many keys are stored in

your local data store like this:

numKeys = session.storage.length;

Additionally, you can access a key based on a numeric index like this:

value = sessionStorage(index);

Finally, you can delete a single value like this:

sessionStorage.removeItem("item_price");

and delete all key-value pairs in your domain like this:

sessionStorage.clear();

CHAPTER 7: Developing with HTML5 176

Web Database
Web database provides a front end for a local SQL database. SQL, Structured Query

Language, is an extremely popular standard to access relational databases. SQL itself is

a large topic and is beyond the scope of this book. A good source of information for

further investigation of SQL is the SQLite website at www.sqlite.org.

Let’s explore some of the basics of using web database. First you need to create your

web database. You do that with a call that looks something like this:

var db = openDatabase(shortName, version, displayName, maxSize);

Once your database is created, you do most of your work with the executeSql function.

executeSql is part of a transaction object and is just a thin layer to pass SQL queries to

your database. Using executeSql you do things like create tables, insert rows, and make

queries. An example SQL query might look like this:

transaction.executeSql("SELECT * from items where color=?;",
 [myColor], dataHandler, errorHandler);

In this statement, the first argument is the SQL query passed to the local database to be

executed. The second argument is an array of JavaScript values that can be used in the

query. The third argument, dataHandler, is a callback function to handle the response.

Finally, the last argument, errorHandler, is a callback for an error handling function.

In this chapter we presented only some of the more popular features of HTML5, which

contains lots of cool features beyond the highlights we presented here. Furthermore,

HTML5 is a dynamic standard. New features are constantly invented, with

implementation following at an amazingly fast pace. For a current snapshot of the latest

features supported in QtWebKit please look at the latest supported standards page at:
http://trac.webkit.org/wiki/QtWebKitSupportedStandards.

Putting It All Together: Implementing Shake in
HTML5
So far we’ve learned about various tools for building web applications based on HTML5

technologies. Let’s put it all together with an example of building a more comprehensive

web application. Let’s take the Shake application we built in Chapters 4, 5 and 6 and,

instead of using native Qt technologies, let’s build it with web technologies.

The focus of this book is not to give an in-depth tutorial on web development. So

instead, in this section we’ll highlight some of the key points you’ll want to understand to

get Shake running as an HTML5 web app. For a more thorough understanding of what is

going on, please download the complete source code from www.apress.com and explore

on your own.

Web development is most easily done in an IDE designed for web applications. Any

environment used for web applications will work fine, but some popular ones are Adobe

DreamWeaver or Aptana Studio. Both of these environments have Nokia plug-ins to

http://www.sqlite.org
http://trac.webkit.org/wiki/QtWebKitSupportedStandards
http://www.apress.com

CHAPTER 7: Developing with HTML5 177

support the legacy Symbian Web Runtime platform. Even though we’re not developing

for the Web Runtime environment, some of the features and templates are still useful.

For example, the Shake code we are building is based on the RSS reader example that

comes with the Nokia Aptana plugin. You might want to take a look at those examples

as well.

Now, let’s consider how we are going to design Shake for HTML5. Just as in the native

Qt application, there are three things we must do: download the XML feed, parse the

feed data into usable pieces, and display the data to the user. Let’s get started with the

user interface.

Rather than build everything from the ground up, it is usually much easier to start with

some kind of JavaScript library that provides a useful widget set. Since QtWebKit is a

standards compliant HTML5 browser, any widget set that runs in HTML5 should work

fine. jQuery or jQuery Mobile seem especially popular, but any library should work. For

this example, let’s use Guarana, a UI library built by Nokia based on jQuery. More

information on Guarana is available from
http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-
Based_UI_Library_for_Nokia_WRT

WARNING: Guarana is no longer the target of active development and will likely be superseded
by other widget sets in the future. However, at the time this book is written, Guarana is still the

best available option from Nokia for mobile web widgets.

First, we need to include the reference to jQuery and Guarana in our code. For this, we

need to add code that looks like this:

<link rel='stylesheet'
 href='lib/guarana/themes/themeroller/default-theme/Themeroller.css'
 type='text/css' media='screen'>
<script src="lib/guarana/lib/jquery/jquery.js"
 type="text/javascript" charset="utf-8"></script>
<script src="lib/guarana/lib/Guarana.js"
 type="text/javascript" charset="utf-8"></script>

Also, we need to set the appropriate path variables for Guarana. For this, we want this

code:

<script type='text/JavaScript'>
NOKIA_PATH_JAVASCRIPT = 'lib/guarana/lib/';
NOKIA_PATH_STYLE_ROOT = 'lib/guarana/themes/nokia/base/';
</script>

We want to have two views for this application: our main view where we show the

earthquake data and the about view where we give ourselves credit.

We use the templatedefault widget to get the basic view layout to look right. This gives

us a title bar on the top with icons for home, menu, and back functionality, along with

pull-down menus to let you navigate between views. After we add the templatedefault

code the app should look like Figure 7–8.

http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-Based_UI_Library_for_Nokia_WRT
http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-Based_UI_Library_for_Nokia_WRT

CHAPTER 7: Developing with HTML5 178

Figure 7–8. Shake gets started.

Next, we want to create our two views. Let’s take a moment to understand how views

work. The best way to think about the Nokia.view class is as an abstract class that must

be extended to form more specific types of classes, which you then use to create object

instances for your application. You do this by creating callback functions that are called

as certain view events are handled. These callback functions are passed as function

arguments when the view is defined with the Nokia.view.extend function. Some

significant events for which you can define callback functions are:

 init

 renderUI

 bindUI

 syncUI

 show

 hide

As expected, init is called to initialize the view. The next three callbacks—renderUI ,

bindUI, and syncUI—are part of the view lifecycle. These are abstract (empty) methods

and need to be overridden for each view. renderUI is the method responsible for

creating and adding the HTML nodes the view needs. It is usually the point where the

DOM is first modified by the view. bindUI is the method responsible for attaching event

listeners that bind the UI to the view. And syncUI is the method responsibly for

synchronizing the state of the UI based on the current state of the view. show is called

when the widget is shown, and hide is called when the view is hidden.

Let’s take a look at the first view from our application. First, the view is defined using the

Nokia.view.extend function and the init function is overridden. In this example init

does nothing.

CHAPTER 7: Developing with HTML5 179

var FirstView = Nokia.View.extend({
 /*
 * Lifecycle
 */
init: function() {
 //console.log("initialize FirstView view");
},

Now, let’s look at renderUI. This is where the HTML for the node is created. In this case,

it is just some simple text. Later, we will add the HTML for our earthquake data in this

section.

renderUI: function() {
 this._viewHeader = Nokia.dom.parseHTML('<p class="nokia-view-header">First View Header
First View Header' +
 'First View Header First View Header First View Header First View Header First View
Header First View Header' + '</p>');

 Nokia.dom.append(this.getContainer(), this._viewHeader);
},

The HTML markup is attached to the DOM using the Nokia.dom.append function. This is

typical jQuery syntax. Next, look at bindUI and syncUI.

bindUI: function() {
 this._viewHeader.click(function() {
 //console.log('Clicked on Header');
 });
},

syncUI: function() {
 this._viewHeader.CSS('color', 'red');
},

bindUI is where listeners would be bound. In this case, bindUI does nothing but log that

the view was clicked. syncUI causes the text in this view to be colored red.

show does a lot of activity when the view is actually shown. The items in the menu

(selected by the menu icon in the title bar) are set to the appropriate values. The title bar

is updated with the appropriate view name and other elements in the title bar are also

updated. And finally, this.getContainer.show is called to show the entire view.

show: function() {
 if (feedName==null){
 viewManager.show(1);
 }
 var template = this.getTemplate();
 var topBar = template.getHeaderTopBar();

 floatingMenu.destroy();

 floatingMenu = new Nokia.FloatingMenu({
 autoRender: false,
 element: '.nokia-template-header-icon-menu',
 elementHoverClass: 'nokia-template-header-icon-menu-hover',
 offsetTop: 60,

CHAPTER 7: Developing with HTML5 180

 items: [
 {label: 'About', callback: function() {
viewManager.show(1) }},
 {label: 'Refresh', callback: function() {
window.location.reload(); }}
]
 });

 defaultTopItems[2] = {
 classname: 'nokia-template-header-icon-menu',
 callback: function() {
 floatingMenu.render().toggle();
 }
 };

 defaultTopItems[4] = {
 classname: 'nokia-template-header-title',
 label: feedName
 };

 defaultTopItems[6] = {
 classname: 'nokia-template-header-icon-close',
 pressedStateClass: 'nokia-template-header-icon-hover',
 callback: function() {
 window.close();
 }
 }
 topBar.setItems(defaultTopItems);
 this.getContainer().show();
 }
}

The views are now defined. Now we instantiate the two views and add these views to

the viewManager using the viewManager.Add function.

viewManager.add(new FeedsView());
viewManager.add(new AboutView());

The last significant piece of code is here:

Nokia.use('template-default', init);

This tells the Nokia Loader to dynamically load the library code for template-default, and

then execute the init function.

Adding UI Components to the Views
Our views are set up. Now let’s think about making the views look like something we

want. For the Shake view we want to show a list of seismic events as grabbed from the

USGS. We want to add the ability to click on each event to get more details and an

image showing where the quake hit. One way to do this is to make each event take you

to a new full screen view with the additional information. Another, nicer way, though, is

to use the accordion widget. Let’s add it to our application.

CHAPTER 7: Developing with HTML5 181

First, we need to add a <div> for the accordion to the FeedView HTML with a

recognizable div id. This div id is then referenced when the accordion is instantiated.

To do this, let’s add this code to the RenderUI callback in the FeedView we created

above.

renderUI: function() {
 this._viewHeader = Nokia.dom.parseHTML('<div class="widget-view">'+
 '<div id="accordion"></div>'+
 '</div>');
 Nokia.dom.append(this.getContainer(), this._viewHeader);
}

Now we’ve added the appropriate <div> to the view HTML. Next, we need to populate

the <div> with the appropriately structured content, and then instantiate the accordion.

Eventually we will populate this with the data we pull from the USGS, but for now let’s

get the structure right with some dummy data. Let’s populate the data in a function

called setFeedItems. This nicely contains this functionality so we can use this same

function later for the real feed data. So now, create this function:

function setFeedItems(items)
{
 // start by removing all current feed items
 $('#accordion').children().remove();

 // create new feed items and add them to the main view
 for (var i = 0; i < items.length; i++)
 {
 var item = items[i];
 $('#accordion').append(' quake ' + i + ' title ');
 $('#accordion').append('<div> <p>item 1 </p><p>item 2</p></div>');
 }
}

Note that this again makes significant use of jQuery syntax. For now, let’s call this

function from the show callback of the FeedView using some dummy data. Just add this

line to the FeedView callback:

setFeedItems([1,2,3]);

Last, we need to add the code to instantiate the accordion to our setFeedItems function.

SetFeedItems() should look something like this:.

window.accordion1 = new Nokia.Accordion({
 element: '#accordion',
 collapsible: true,
 multiple: false,
 closed: true,
 toggle: function(event, header, content) {
 },
 create: function() {
 },
 open: function(event, header, content) {
 },
 close: function(event, header, content) {
 }
 });

CHAPTER 7: Developing with HTML5 182

This code instantiates a new Nokia.Accordion object. The first element says that <div>

with div id = ‘accordion’ that we set earlier will become the container for the

accordion. The other options specify various configurable options for the widget. The

accordion widget, for example, has a configuration option to set whether or not it is

collapsible. Each widget has its own set of options that you can find from the

documentation provided earlier.

One last thing we need to do is to add ‘Accordion’ to the Nokia.use function call that

specifies which libraries are to be loaded. To do this, update the function call to look like

this:

Nokia.use('template-default', 'accordion', init);

If all goes well, your app should work as before, but now you should see an accordion

view filled with dummy earthquake data. Take a look at Figure 7–9 to see what it should

look like. Now let’s get some really USGS data and plug it in.

Figure 7–9. Shake with the accordion UI widget

Fetching and Parsing the Data
Next, we need to download and parse the XML data from the USGS. Let’s use

XmlHttpRequest to request the XML data. After that, we can put together some simple

JavaScript to parse the result and put in HTML formatting. Finally, we plug it into the

accordion widget and we are done.

There are many examples for how to request and parse XML feeds available elsewhere,

so we won’t go into detail here. The example code here was based on an RSS reader

example that came with the Nokia Aptana plug-in.

One really cool thing about this code is that the markup in the summary received from

the USGS XML feed includes an tag. Without doing any fancy coding or image

handling, the summary information for each quake shows a thumbnail for each quake’s

location in addition to the text giving details. We didn’t need to do anything special to

render the image. We just pasted the tag as we got it from the USGS and it

works!

CHAPTER 7: Developing with HTML5 183

Let’s do one bit of HTML5 magic to liven things up a bit. Inside the image element, let’s

add this class declaration:

class='quakeImage'

And later in the CSS file, let’s add this declaration block:

.quakeImage:active {
 -webkit-transition: all 1s ease-in-out;
 -webkit-transform: scale(5) translateX(50px);
}

Now, when we click on the image, we use the –webkit-transform property to make the

image grow and move to the right. With just a couple of lines of code we were able to

add a nice zooming effect.

Packaging the App
Finally let’s package our app into a hybrid app. In this case let’s package the content as

resources just so we don’t have to worry about installing files. Let’s package and install

as we did earlier in this chapter and we’re done!

Figure 7–10 below shows our completed Shake application built using HTML5 and

associated technologies and running in a QtWebKit container.

Figure 7–10. Shake is complete

Links for further information
Because of space considerations, we could not give the depth many topics deserve. We

encourage you to continue exploring these technologies on your own. Here are some

sources of additional information:

 Tutorials on web technologies: www.w3schools.com

 The full HTML5 specification: dev.w3.org/html5/spec/

http://www.w3schools.com

CHAPTER 7: Developing with HTML5 184

An excellent example of a Cartoon Reader written using hybrid Qt and

HTML5 technologies, including local storage:
www.forum.nokia.com/info/sw.nokia.com/id/269f8716-ca61-4036-
9b6a-f567f0184f0b/QtWebKit_Cartoon_Reader_Example.html

Tips on power management:
www.forum.nokia.com/main/resources/development_process/power_ma
nagement/.

JavaScript performance best practices:
wiki.forum.nokia.com/index.php/JavaScript_Performance_Best_
Practices#JavaScript_Performance_Best_Practices.

Wrapping Up
In this chapter we presented the basics you will need to know to write HTML5

applications for Nokia. We showed you how to build a QtWebKit-based browser and we

showed several techniques for running your HTML5 application offline. We highlighted

some of the more nifty HTML5 features, such as canvas, CSS transitions and

transformations, and local storage. Finally, we re-implemented Shake, the application

we built in the past three chapters with native Qt technologies, this time using HTML5.

Next up, we’ll show you how to test and distribute your application.

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

http://www.forum.nokia.com/info/sw.nokia.com/id/269f8716-ca61-4036-9b6a-f567f0184f0b/QtWebKit_Cartoon_Reader_Example.html
http://www.forum.nokia.com/info/sw.nokia.com/id/269f8716-ca61-4036-9b6a-f567f0184f0b/QtWebKit_Cartoon_Reader_Example.html
http://www.forum.nokia.com/main/resources/development_process/power_ma

 Part

Distribute

III

187

187

 Chapter

Testing Your Application
As you near the completion of your first application, it’s time to turn your attention to

what’s often called “the other 80 percent”—that is, the work that remains after you’ve

done the first 80 percent. It doesn’t need to be overwhelming, but the truth is that

there’s more to delivering a quality application than just the design and the code. As you

wrap up application development, you should be thinking about testing and integration

with other systems and even simple things like establishing your application’s brand

message through the artwork and copy you’ll submit to the Ovi Store (which we discuss

in the next chapter).

In this chapter, we examine application testing, giving you some tips and tricks as to

ways you can best use Nokia tools to support your testing. These include QTest, Qt’s

test framework, which as you’ll see, you can use throughout your development cycle to

help you reach your quality goals. We close the chapter with an example using QTest to

show you how easy it is to verify application quality as you go through the use of unit

tests.

Preparing to Test
Although there has been a lot of discussion in recent years about the nature of testing

that’s appropriate in software development, there’s no question some of it is absolutely

necessary. When you plan your testing, you should be sure to think about the kinds

your application will require and how much time and effort they will take.

You should begin with a test plan, a concise list of test cases that you automatically or

manually execute at regular intervals (say, daily or weekly). Each test case should

describe a single test, including the initial configuration, the steps to perform the test,

and the expected results. A good test plan, coupled with investigative work, can give

you an idea of the test coverage—that is, the percentage of the application’s

functionality that is testable and how much of that testing you can automate.

Your testing may be functional, as well as non-functional. Functional testing includes

everything to do with the actual operation of your application—things like its business

logic to ensure that it operates correctly. Non-functional testing includes all areas of

8

CHAPTER 8: Testing Your Application 188

your application that have to do with its performance outside of correct operation. That’s

a lot: out-of-memory conditions, signal loss, position/GPS loss, servers not being

available due to downtime or unplanned load, and so on. Non-functional testing is also

often thought of as adversarial testing. It explores how your application performs in

adverse situations. When planning your tests, be sure to include at least as much

adversarial testing as functional testing, because it’s impossible to really know just what

situations your application will encounter. The execution environment, after all, is mobile,

will both move in and out of signal coverage, and experience periods of heavy and light

use, leading to periods of heavy heap and persistent storage use.

What most people think of testing is dynamic—that is, testing that occurs while the

application is running. Dynamic tests include:

 Manual testing, in which you or a tester puts your application through

its paces with the guidance of a test plan.

 Unit tests, which exercise a single class programmatically (more on

doing this with Qt later in this chapter in the section “Using Unit Tests

to Verify Functionality”).

 Integration tests, which examine your application as it works with other

portions of your application’s system, such as back-end servers.

 Analysis tools like valgrind (http://valgrind.org) that explore run-time

performance with regard to memory and other resource usage (not

available for Symbian, however).

Equally—and perhaps more—important is static testing, which includes any

nonexecution examination of your source code. Buddy checks or code reviews are a

great way to catch common programming errors and cross-train participants on your

developer team, as well as think through tricky problems together. Tools abound for

verifying your application as part of the compile cycle; an easy one is the compiler’s own

warnings.

TESTING AS YOU GO ALONG

There’s a lot you can do today to ensure that your application works correctly tomorrow. Much of this falls
under the category “test-driven development.” The Internet has a lot of information that can guide you
toward a test-driven development cycle. Some places to start include:

 Daily builds. You should build your application daily, if not more often, from your
change control system. The resulting build should be at least smoke-tested to make
sure that no major problems have crept in—and, if they have, development should
stop while you determine the root cause and fix it.

 Buddy reviews. Even if you don’t go as far as a formal code review for all the code in
your application, working with a buddy to review the code you commit to your change
repository can help you spot both obvious and tricky coding errors.

 Compiler warnings. Compiler warnings are there for a reason: they tell you that you’re
doing something that isn’t safe to do. After years of experience, we liken a compiler’s

http://valgrind.org

CHAPTER 8: Testing Your Application 189

warnings to guards on power tools in the garage. Sure, you can flip up the guard and
continue working, but is it worth it? Probably not. Adopt a zero warnings, no-
exceptions policy for your code; you won’t regret it.

 Use multiple compilers. Although C++ language compatibility has improved
dramatically in the past decade, not all compilers are created equal. Some, including
GCC, provide very good warnings that can help you prevent esoteric bugs. Consider
using multiple compilers from different vendors if you can when you’re doing cross-
platform development. You can do this by using Microsoft Visual Studio for your
simulator testing, and then compiling for device (which uses a different compiler), for
example.

 Run early and run often on device. You’re developing an application for mobile, and
with today’s tools, there’s little excuse to spend all of your time in a simulator. Worse,
all a simulator does is simulate; you should run your application often on hardware to
explore its actual performance. The simulator is an excellent tool for rapid iteration on
your user interface, but there’s no replacement for actually seeing your application on
a device.

NOTE: Unfortunately, as we write this, the Symbian build environment is apt to emit warnings of
its own when you compile, making a zero-warnings policy difficult. One strategy is to use
compiler pragmas to turn off certain warnings, but we find it easier to periodically (say, daily)
skim the warnings from an otherwise working build and make sure nothing has crept in. If you’ve

got a lot of files in your project, once the number of files is stable, you can capture the output
and use a tool like diff to verify that the warnings remain the same. With luck and effort on the

part of Nokia, this problem will improve soon.

Using Qt’s Test Framework
Inspired by the various unit testing frameworks evangelized by the extreme

programming community, Qt provides a framework for implementing unit tests for

classes using Qt. This framework, called QTest, is a small, self-contained library that

invokes tests provided by a class that you write and lets you test components in your

application. With a bit of creativity, you can extend your tests within QTest to test not

just single classes as recommended by the unit test paradigm, but also test classes in

combination or perform simple integration tests. Implementing both the test runner and

the basic primitives for result verification and benchmarking, QTest is a lightweight, self-

contained thread- and type-safe library you can use to quickly create tests for your

application.

CHAPTER 8: Testing Your Application 190

Introducing the QTest Test Framework
QTest’s test runner uses Qt’s meta-object protocol to introspect the methods in a class

you provide to determine what must happen at run time. This makes test definition very

easy for you. You only need to provide a class derived from QObject that defines slots

implementing the tests that you want to run. QTest treats several slots in your test class

in special ways to determine what slots correspond to tests and give you a way to

control the test environment setup and teardown:

 The test harness invokes the slot initTestCase before any tests are run.

 The test harness invokes the slot cleanupTestCase after all tests are run.

 The test harness invokes the slot init before each test is run.

 The test harness invokes the slot cleanup after each test is run.

 The test harness invokes each slot in turn, invoking first the slot init,

and then the first slot it encounters, and then the slot cleanup, and

then init, the next slot, and then cleanup, and so on, until all slots are

run.

By design, your individual test cases should be independent; a test case should not rely

upon the performance of a previous or subsequent test case. This is a key reason for

providing the initTestCase and init methods, where you can separate key initialization

for all test cases, and clean up after a single or all test cases using cleanup and

cleanupTestCase.

CAUTION: Don’t confuse init with initTestCase (or cleanup with cleanupTestCase). It’s
easy to get confused, because you tend to think of each test in your class as an individual test

case—so there’s the temptation to write initTestCase for per-test initialization. It’s exactly

the reverse, however.

Listing 8–1 shows perhaps the most trivial of tests.

Listing 8–1. A trivial test class

#include <QtTest/QtTest>
class TrivialTest: public QObject
{
 Q_OBJECT
private slots:
 void () trivialTest
 { QVERIFY(1 == 1); }
 void anotherTrivialTest()
 { QVERIFY(0 != 1); }
};
QTEST_MAIN(TrivialTest)
#include "trivialtest.moc"

CHAPTER 8: Testing Your Application 191

Before we look at the test slots, let’s pause briefly and look at the additional stuff after

the test. The compiler will expand the QTEST_MAIN macro to provide an entry point

function and invoke your test methods. The second line with the #include includes the

output from the meta-object compiler, required anytime you define a QObject derivative

in a C++ class instead of a header. Not shown in Listing 8–1 is the .pro file; in addition to

including the source file for TrivialTest.cpp, it needs to include the QTest configuration. If

you’ve got the qmake executable in your path, an easy way to make a .pro file for a QTest

test class is to use qmake on the command line, like this:

C:\Book\Tests>qmake –project “CONFIG += QTest”
C:\Book\Tests>qmake
C:\Book\Tests>make

In project mode, qmake will make a .pro file for you that includes the source files in the

current directory, as well as the CONFIG variable, including the QTest libraries and

headers.

If you don’t, you can create one using Qt creator by performing the following in the

Nokia Qt SDK:

1. Choose “File>New File or Project”…

2. Choose “Other Project” from the upper left-hand pane of the window that

appears.

3. Choose “Qt Unit Test” from the list in the upper right-hand pane.

4. Click “Choose…”

5. Enter a name and path for the unit test and click “Next.”

6. Choose at least the Simulator Qt options for your build system, and optionally

choose device targets as well and click “Next.”

7. Choose any modules upon which your unit tests will depend, such as QtNetwork

for networking and click “Next.”

8. Fill out the form describing the first unit test in your test cases and click “Next.”

9. Click “Finish.”

Returning to the body of the test functions, the QVERIFY macro is one of several provided

by QTest to facilitate instrumentation for test passes and failures. These are:

 QVERIFY verifies that a condition is true and causes the test to fail if it’s

not.

 QVERIFY2 operates the same as QVERIFY, but includes a verbose

message to be output if the condition fails.

 QCOMPARE performs a type-safe comparison of an actual value to an

expected value. When comparing floating-point (single or double

precision), it uses the Qt function qFuzzyCompare to better support

approximate comparisons using floating-point representations.

CHAPTER 8: Testing Your Application 192

 QSKIP stops execution of the current test without adding a failure to

the test log. It does, however, indicate that the test was skipped for

the reason you provide when invoking the macro.

 QBENCHMARK benchmarks the code block that immediately follows the

macro, running it multiple times if necessary to obtain benchmark

data. You can require the benchmarked code only be run once by

using QBENCHMARK_ONCE, although the elapsed time may be reported as

zero, if the execution time is too short to be measured by the

benchmark system.

Unit Testing the QuakeEvent Class
Let’s take a look at an actual unit test, one we wrote for the QuakeEvent class. Listing 8–

2 shows the unit test itself.

Listing 8–2. The unit test for the QuakeEvent class

#include <QtCore/QString>
#include <QtTest/QtTest>
#include <QDebug>
#include "quakeevent.h"

class TestQuakeEvent : public QObject
{
 Q_OBJECT

public:
 TestQuakeEvent();

private:
 QuakeEvent *mEvent;

private Q_SLOTS:
 void initTestCase();
 void cleanupTestCase();

 void init();
 void cleanup();

 void testConstructor();
 void testSetGet();
 void testIsEmpty();
 void testClear();
 void testComparator();

 void testId();
 void testSummary();
 void testWhen();
 void testWhere();
 void testMagnitude();
 void testPosition();
 void testElevation();
 void testHtml();
 void testDistanceTo();

CHAPTER 8: Testing Your Application 193

};

TestQuakeEvent::TestQuakeEvent()
{
}

void TestQuakeEvent::initTestCase() {
 mEvent = new QuakeEvent();
}

void TestQuakeEvent::cleanupTestCase() {
 delete mEvent;
}

void TestQuakeEvent::init() {
 mEvent->clear();
 mEvent->set("title", "M 2.6, Hawaii region, Hawaii");
 mEvent->set("point", "19.9770 -156.8687");
 mEvent->set("elev", "-7900");
 mEvent->set("summary", "<img src=\"http://earthquake.usgs.gov¬
/images/globes/20_-155.jpg\" alt=\"19.977°N 156.869°W\"¬
 align=\"left\" hspace=\"20\" /><p>Monday, September 6, 2010 15:¬
19:09 UTC
Monday, September 6, 2010 05:19:09 AM at epicenter<¬
/p><p>Depth: 7.90 km (4.91 mi)</p>");
}

void TestQuakeEvent::cleanup() {
 mEvent->clear();
}

void TestQuakeEvent::testConstructor() {
 QuakeEvent *e = new QuakeEvent();
 QVERIFY(e->isEmpty());
 delete e;
}

void TestQuakeEvent::testSetGet() {
 mEvent->set("arbitrary", "value");
 QVERIFY(mEvent->get("arbitrary")=="value");
}

// Failures may indicate a problem with either
// isEmpty or clear
void TestQuakeEvent::testIsEmpty() {
 QVERIFY(!mEvent->isEmpty());
 mEvent->clear();
 QVERIFY(mEvent->isEmpty());
}

// Failures may indicate a problem with either
// isEmpty or clear
void TestQuakeEvent::testClear() {
 QVERIFY(!mEvent->isEmpty());
 mEvent->clear();
 QVERIFY(mEvent->isEmpty());
}

http://earthquake.usgs.gov�/images/globes/20_-155.jpg\
http://earthquake.usgs.gov�/images/globes/20_-155.jpg\

CHAPTER 8: Testing Your Application 194

void TestQuakeEvent::testComparator() {
 QuakeEvent *e = new QuakeEvent();
 e->set("summary", "<img src=\"http://earthquake.usgs.gov¬
/images/globes/20_-155.jpg\" alt=\"19.977°N 156.869°W\"¬
 align=\"left\" hspace=\"20\" /><p>Monday, September 6, 2010 15:¬
19:09 UTC
Monday, September 6, 2010 05:19:09 AM at epicenter<¬
/p><p>Depth: 7.90 km (4.91 mi)</p>");
 QVERIFY(*mEvent < *e);
 delete e;
}

void TestQuakeEvent::testId() {
 mEvent->set("arbitrary", "123456789");
 QVERIFY(mEvent->get("arbitrary")=="123456789");
}

void TestQuakeEvent::testSummary() {
 QVERIFY(mEvent->summary() == "M 2.6, Hawaii region, Hawaii");
}

void TestQuakeEvent::testWhen() {
 // Ideally this would test a number of dates and times
 QDateTime when(QDate(2010, 9, 6),
 QTime(15, 19, 9), Qt::UTC);

 QVERIFY(mEvent->when() == when);
}

void TestQuakeEvent::testWhere() {
 QVERIFY(mEvent->where() == "Hawaii region, Hawaii");
}

void TestQuakeEvent::testMagnitude() {
 float mag = (float)mEvent->magnitude();

 QCOMPARE(mag, (float)2.60);
}

void TestQuakeEvent::testPosition() {
 qDebug() << mEvent->position();
 QCOMPARE((float)mEvent->position().first, (float)19.977);
 QCOMPARE((float)mEvent->position().second, (float)-156.869);
}

void TestQuakeEvent::testElevation() {
 QVERIFY(qFuzzyCompare(mEvent->elevation(), -7900.0));
}

void TestQuakeEvent::testHtml() {
 QVERIFY(mEvent->html() ==
 "<img src=\"http://earthquake.usgs.gov¬
/images/globes/20_-155.jpg\" alt=\"19.977°N 156.869°W\"¬
 align=\"left\" hspace=\"20\" /><p>Monday, September 6, 2010 15:¬
19:09 UTC
Monday, September 6, 2010 05:19:09 AM at epicenter<¬
/p><p>Depth: 7.90 km (4.91 mi)</p>");
}

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

http://earthquake.usgs.gov�/images/globes/20_-155.jpg\
http://earthquake.usgs.gov�/images/globes/20_-155.jpg\
http://earthquake.usgs.gov�/images/globes/20_-155.jpg\
http://earthquake.usgs.gov�/images/globes/20_-155.jpg\

CHAPTER 8: Testing Your Application 195

void TestQuakeEvent::testDistanceTo() {
 qreal distance = mEvent->distanceTo(
 QPair<qreal, qreal>(37.0, -122.0));
 QCOMPARE((float)distance, (float)3870.68);
}

QTEST_APPLESS_MAIN(TestQuakeEvent);
#include "tst_quakeevent.moc"

These tests show a common pattern in unit tests, in which there’s at least one test per

method of the object under test. Our tests are self-explanatory, so rather than walking

line-by-line, we’ll just call out a few of the high points.

First, with a few exceptions, the test reuses a single QuakeEvent object, rather than

creating one for each case. This increases performance (fewer memory allocations), but

requires that the basic object recycling interface that the QuakeEvent::clear method

promises be working correctly. As each test case starts, the init method initializes the

unit test’s mEvent field with known content hand-scraped from the USGS web site’s

feed. When the test is completed, the cleanup method clears the mEvent field, ensuring

that each test enters and concludes with the recycled object in a known state.

Second, tests that require their own object—either one that hasn’t been initialized, like

the testConstructor test, or one that requires more than one QuakeEvent object, such as

testComparator—simply create a second object and initialize them as the logic behind

the test case requires.

Third, the test for QuakeEvent::when is probably a little underpowered; you remember

from Chapter 5 that it scrapes the date from a text string and requires exact matching of

month names; a good test case would probably set several different date strings on the

QuakeEvent and check that each date gets parsed correctly. (Even better would be one

that includes invalid dates and protects against crashes or bizarre failures.) However, the

code we wrote was reviewed, which provides some confidence, and such an example

could become tedious for you to read very quickly.

Finally, unit tests that compare floating-point numbers are notoriously finicky to get

exactly right. Thanks to the vagaries of floating-point arithmetic, you should always

declare the precision you desire and use either qFuzzyCompare or QCOMPARE (which uses

qFuzzyCompare under the hood). If you don’t, you can get all kinds of odd results,

especially when computing with double-precision floating-point numbers or when

matching single-precision and double-precision arithmetic. Here, given the nature of the

input and results, single-precision arithmetic is ample, so it’s all we do.

Testing Signals and Slots Using QTest
Many times when you’re writing a test for a class, you realize that what you want to test

is a signal’s emission, not just the results of a function. For example, if you write a new

model, you want to ensure that your model correctly emits the QAbstractItemModel’s

signals like dataChanged as the contents of the model changes.

CHAPTER 8: Testing Your Application 196

Fortunately, Qt has a class that enables you to examine the results of any signal

emission, QSignalSpy. Implemented as a list of QVariant lists, each signal it catches

appends a list of signal arguments to its main list, letting you eavesdrop on the signal

process itself. Listing 8–3 shows a typical use.

Listing 8–3. Using QSignalSpy to test signal emission

QSignalSpy spy(myObject, SIGNAL(something(QString, int)));
// trigger signal emission
myObject ->emitsSomething();
// Check the resulting types
QList<QVariant> arguments = spy.takeFirst();
QVERIFY(arguments.at(0).type() == QVariant::QString);
QVERIFY(arguments.at(1).type() == QVariant::Int);
// Check the resulting values
QVERIFY(arguments.at(0).value<int>() == 1);
QVERIFY(arguments.at(1).value<QString>() == “hello”);

The code begins by connecting a stack-stored QSignalSpy instance to a custom QObject

that emits the something signal, passing a QString and an int. It next calls the

hypothetical method emitsSomething, which presumably emits the something signal. The

arguments to this signal are stored in the QSignalSpy as its first element; each of the

signal’s arguments is stored as a separate QVariant instance (which we first mentioned

in Chapter 5) in a QList of arguments.

The code performs the tests themselves on the arguments to the signal, first verifying

the type of each signal argument, and then verifying the value. The QVariant’s type

method returns the C++ type of a QVariant as a Qt-enumerated value, while its

templated value function returns the value, optionally coerced to the specific type you

pass as a template argument.

Testing User Interface Code Using QTestEventList
If you’re interested in performing automated testing on user-interface classes, little

we’ve shown you so far provides much help. As your user interface should primarily

connect to your business logic through signals and slots, writing unit tests that use

QSignalSpy lets you create an instance of pieces of your user interface (say, a custom

widget or a panel of related widgets) and test that they emit appropriate signals.

However, to do this, when you test a user interface class, you want to simulate user

events, such as key or mouse events. This is especially true if you’re creating your own

widget or if you want to script an interaction with a component such as a view in your

application. QTest also includes the QTestEventList class, a class that lets you create a

list of events and then pass them one at a time to a child object of QWidget. At its heart,

it’s simply a QList of test event objects, which get invoked on the widget one at a time

when you invoke its simulate method. QTestEventList provides methods so that you

can add following events to the list:

 A key click or clicks (by Qt::Key code, ASCII character, or QString) by

calling addKeyClick or addKeyClicks (for multiple key clicks).

CHAPTER 8: Testing Your Application 197

 A key press by calling addKeyPress (passing either the Qt::Key code or

an ASCII character).

 A key release by calling addKeyRelease (passing either the Qt::Key

code or an ASCII character)

 A mouse click by calling addMouseClick and passing which mouse

button (Qt::MouseButton), any keyboard modifiers

(Qt::KeyboardModifiers), and the point where the click should be

simulated (QPoint).

 A mouse double-click by calling addMouseDClick and passing which

mouse button (Qt::MouseButton), any keyboard modifiers

(Qt::KeyboardModifiers), and the point where the click should be

simulated (QPoint).

 A mouse button press or release event by calling addMousePress or

addMouseRelease and passing which mouse button (Qt::MouseButton),

any keyboard modifiers (Qt::KeyboardModifiers), and the point where

the click should be simulated (QPoint).

 A mouse movement by calling addMouseMove, passing the point to

which the mouse cursor should move as a QPoint.

Each of these can optionally include a delay in milliseconds, or you can call addDelay to

add a delay to the simulated event stream.

Listing 8–4 shows how you might append the text “Hello world” with some extraneous

mouse movements to a QLineEdit in your unit test:

Listing 8–4. Simulating events to a QLineEdit using QTestEventList

QTestEventList events;
QLineEdit *lineEdit = new QLineEdit(this);
events.addKeyClicks("Hello world", 100);
events.addMouseMove(QPoint(qrand() % 256, qrand % 256), 25);
events.addMouseMove(QPoint(qrand() % 256, qrand % 256), 25);
events.addMouseMove(QPoint(qrand() % 256, qrand % 256), 25);
// simulate all the events
events.simulate(lineEdit);

The code creates first the events for the discrete key click events to type “Hello world,”

and then pauses for 100 milliseconds. Next, it creates three random mouse movement

events to random coordinates bounded by the rectangle (left: 0, top: 0, right: 256,

bottom: 256), pausing for 25 milliseconds between each move. Finally, it simulates these

events on the line editor instance lineEdit.

If you need only simulate an event or two, it may be simpler to use the static QTest

methods to do so. There’s one corresponding to each of the kinds of events you can

simulate using the QTestEventList class, namely:

 keyClick and keyClicks to simulate key clicks.

 keyEvent to simulate a specific key event.

CHAPTER 8: Testing Your Application 198

 keyPress and keyRelease to simulate a single key press or release.

 mouseClick and mouseDClick to simulate a single- or double-click.

 mousePress and mouseRelease to simulate a single mouse button press

or release.

 mouseMove to simulate a single mouse movement event.

Each of these takes the widget to which the event should be sent.

Finally, the QTest class has a few other static methods that can come in handy. Under

the qSleep method, the process sleeps for the number of milliseconds you specify,

blocking test execution and leaving events unprocessed (in other words, your test is

non-responsive during this time). The qWait method waits for the number of milliseconds

you specify, letting the test application still process events and handle network

communication. The toHexRepresentation takes an array of bytes and returns a

character string of space-separated hex characters to facilitate hex dumps, and the

toString method returns a human-readable string representation of times, dates, byte

arrays, points, sizes, rectangles, and other fundamental types that Qt defines.

Wrapping Up
We opened this chapter with the types of testing (dynamic vs. static, unit vs. integration)

that you can perform to help flush out bugs in your application. Most important, we

urged you to follow the best practices of test-driven development, including daily

builds, buddy code reviews, treating compiler warnings as errors, and frequent

execution on real devices.

Next, we gave you an in-depth look at Qt’s test framework QTest, which provides a

small self-contained library with a test harness and utilities ideal for unit testing and

small integration or system-level tests. Using QTest, you can create small executables

that run tests you write on a class (or a collection of classes). Defining the tests as

private slots of a QObject subclass, you instrument your tests using helper macros such

as QVERIFY and QCOMPARE to test for successful situations or test expected vs. actual

results. Using the QSignalSpy class, you can also test your classes’ emission of signals,

ensuring that they emit the correct arguments and values for the situations you create

for the object under test. You can even simulate sequences of common events like key

strokes and mouse events, either as a collection using QTestEventList or singly with the

static methods provided by the QTest class.

199

199

 Chapter

Deploying Your
Application
You’ve designed, written, and tested your application. Now it’s time to bring it to market.

As we promised in the first chapter, it isn’t hard. In this chapter, you learn precisely what

you need to do. We begin by providing a deployment checklist before describing some

final packaging steps that may be necessary for certain MeeGo and Symbian

applications, and then discuss the important concept of application signing required by

Symbian applications. Finally, we close the chapter by describing the publishing process

through the Ovi Store.

Preparing a Deployment Checklist
While every application is different, there are some things common to deploying nearly

all applications. Larger companies, especially those with clear development and release

criteria, often provide some sort of deployment checklist or signoff—often called a

release gate—that defines the criteria an application must meet before it reaches the

customer. (Larger companies with mature development cycles may have a sequence of

gates through which an application passes as it goes from inception through customer

delivery.) Especially if you’re just starting out, you should have a deployment checklist of

things not to forget when you deliver your application. Your list should address things

such as:

 Resources. Has your application been built with all production

resources, or is it still using temporary artwork in places? Do you own

the rights to distribute the resources (text, images, sounds, and music)

with your application?

 Services. Does your application rely on back-end servers or services?

Are they prepared to handle the load your application is expected to

generate? What if they’re not available when your application

launches?

9

CHAPTER 9: Deploying Your Application 200

 Testing. How much testing is enough? On what platforms have you

tested your application? Has your application been tested thoroughly?

What defects remain? What hasn’t been tested?

 Marketing. Is your marketing message ready? Where besides Ovi (your

web site, other web sites, comarketing opportunities, and so forth) will

you be marketing your application?

 Deployment. Do you have the necessary screenshots, icons, copy,

and search terms for your submission to publish on Ovi Store? If your

application needs to be signed (see “Signing Your Qt Application for

Symbian Devices” in this chapter) have you done the necessary

homework to obtain a digital certificate and left enough time in your

schedule for the Symbian Signed process?

It’s easy—especially when you’re flying solo and doing it all yourself—to forget

something you’ll need later. Some, such as the search terms you’ll provide to Ovi Store,

are things to come up with on the spot. Others, like adequate testing, require planning

and preparation; your deployment checklist can help you make sure you haven’t

forgotten anything.

Packaging Your Application
Although it’s not immediately obvious when you’re in the tight loop of coding, compiling,

and testing on a device, the Nokia Qt SDK produces output to the device in a manner

already roughly packaged for production. Symbian handsets require their applications to

be packaged in a platform-specific format known as the Software Installation Script

(SIS) file, a binary archive file that contains your application, application icon, and other

files your application needs. As you learn in the section “Signing Your Application,” later

in the chapter, you need to cryptographically sign your application, yielding what’s

commonly called a sisx file because its extension is .sisx. MeeGo, on the other hand,

uses the standard Debian software package format—called deb files—and does not

support cryptographic signing.

Before we discuss signing—the last thing you can do to your file before publishing it—

let’s talk about a few last-minute details, such as including other files within your

application and providing an application icon. We also touch on a minor platform-

specific difference between Symbian and MeeGo, showing you how to get and use a

unique id (UID) for your application on Symbian.

Including Other Files within Your Application on Symbian
Devices
In Chapter 5, we showed you how to use Qt’s support for data resources to include

arbitrary text and binary resources in your application. Sometimes, there’s a good

reason to include this data as separate files—you’re writing an image editing application,

say, and you want to include some sample images. You could carry these as application

CHAPTER 9: Deploying Your Application 201

resources and copy them to the appropriate place on the device, but then your

application consumes twice as much space as it needs for data only necessary at

installation time—a high premium for mobile devices. Instead, what you’d really like to

do is include these sample files as files in the application’s installer. You can do this by

specifying the files to include in the installer in your application’s PRO file.

Qt’s PRO files, which you first encountered in Chapter 3, use variables that can contain

lists of strings as the primary mechanism for its declarative power. For example, you

include source files for compilation by adding them to the SOURCES variable. You can

define your own variables, too.

When building your application, qmake also uses the contents of your application’s PRO

file to create the input scripts that the build system uses to generate your application’s

sisx and deb files. As it does so, it examines the DEPLOYMENT variable and copies the files

you specify to the paths you specify. You do so by creating a variable that contains the

list of files to install and the destination location, like this:

files.sources = photo1.jpg photo2.jpg photo3.jpg
files.path = /images
DEPLOYMENT += files

Note that we write += to add our variable’s contents to the DEPLOYMENT variable so we

append, rather than replace, any other files to be deployed.

Including Other Files within Your Application on MeeGo
Devices
The principle for including additional files with MeeGo applications is similar, but instead

of using the DEPLOYMENT variable, you use the INSTALLS variable, like this:

files.sources = photo1.jpg photo2.jpg photo3.jpg
files.path = /usr/local/share/photoeditor/samples
INSTALLS += files

Of course, this is best done in the context of PRO scopes, so you can support both

platforms, like this:

files.sources += photo1.jpg photo2.jpg photo3.jpg
symbian {
 files.path = /images
 DEPLOYMENT += files
}
unix {
 files.path = /usr/local/share/photoeditor/samples
 INSTALLS += files
}

Here, the photo list remains the same for both platforms, but on Symbian, the installer is

directed to copy the images to the root-level directory for images shared by all

applications, while on MeeGo, the installer copies them to a separate directory. In

addition, the appropriate PRO file uses the appropriate qmake variable in each case.

CHAPTER 9: Deploying Your Application 202

Including an Application Icon with Symbian Applications
For some time, Symbian has supported scalable vector graphics within both native

applications and as resources for application icons; this makes it easier for applications

to look polished across the variety of phone form factors and display technologies

Symbian supports.

To include your application icon on Symbian, all you need to do is assign the path to the

icon to the ICON variable in your PRO file, like this:

symbian {
 ICON = ./icon/icon.svg
}

Internally, qmake uses tools in the Symbian build chain to add the icon file to the

registration file needed by Symbian’s application framework, and ensures that it’s part of

the application installer script.

Including an Application Icon with MeeGo Applications
Including your application icon on MeeGo is a little trickier, as you provide several

separate images of different sizes, so that the application manager can choose the

appropriate image based on its needs. Each image is a separate Portable Network

Graphic (PNG) or X Pixmap (XPM) image that your installer copies to a predetermined

location. You name each image after the application name, but place the images in

separate directories using the INSTALL variable as you see in Listing 9–1.

Listing 9–1. Including application icons on MeeGo with your PRO file.

unix {
 isEmpty(PREFIX) {
 PREFIX = /usr/local
 }
 BINDIR = $$PREFIX/bin
 DATADIR =$$PREFIX/share

 INSTALLS += iconxpm icon26 icon48 icon64

 iconxpm.path = $$DATADIR/pixmap
 iconxpm.files += ./icon/maemo/$${TARGET}.xpm
 icon26.path = $$DATADIR/icons/hicolor/26x26/apps
 icon26.files += ./icon/26x26/$${TARGET}.png
 icon48.path = $$DATADIR/icons/hicolor/48x48/apps
 icon48.files += ./icon/48x48/$${TARGET}.png
 icon64.path = $$DATADIR/icons/hicolor/64x64/apps
 icon64.files += ./icon/64x64/$${TARGET}.png
}

This example starts with a bit of magic, defining variables for the local installation

directories for applications and their data (defaulting to /usr/local). Next, it adds the

information for four icons to the INSTALLS list:

CHAPTER 9: Deploying Your Application 203

 The iconxpm image is a 16 16 image in XPM format.

 The icon26 image is a 26 26 image in PNG format.

 The icon48 image is a 48 48 image in PNG format.

 The icon64 image is a 64 64 image in PNG format.

Providing a UID for Qt Applications on Symbian
The Symbian platform requires all applications to have a unique id (UID)—a thirty-two bit

integer—that identifies the applications. In native Symbian programming, UIDs are used

in a number of places; in fact, your application actually has three UIDs, but the first two

are the same across all Symbian applications, identifying your application as an

executable binary.

During development, the UID usually doesn’t matter, as long as it’s unique. To facilitate

application development, the Nokia Qt SDK randomly generates a UID from a subset of

thirty-two bit values, letting you do your development without needing to stop and get a

UID. However, before you can release your application, you need to obtain a unique ID.

As we write this, there are two ways to do this.

First, if you plan on signing your own application with Symbian Signed (see the section

“Signing Your Application”) before submitting your application to the Ovi Store, you

need to obtain your UID directly from Symbian Signed at http://symbiansigned.com.

Before you begin, you must determine if you need to sign your application; see the

section “Signing Your Application” to help you make that decision.

1. Log in to your Symbian Signed account.

2. Choose “UIDs” from the box on the left.

3. Choose “Request” from the box on the left.

4. Follow the instructions and obtain UIDs from the protected range if you intend to

sign your application, or the unprotected range if not.

Alternately, if you plan to submit your application through Nokia’s Signing Symbian

Applications Program, the process is similar, but Nokia will provide you with the UID.

Regardless, once you have the UID—a number such as 0xE1234567—you need to

include the UID as a field in your PRO file’s TARGET variable, like this:

symbian {
 TARGET.UID3 = 0xE1234567
}

http://symbiansigned.com

CHAPTER 9: Deploying Your Application 204

Providing a Desktop File for MeeGo
The MeeGo application manager also requires a desktop file that includes information

such as the path to your application. The format of this file matches a Windows

initialization (INI) file, is named after your application with the suffix .desktop, and looks

like this:

[Desktop Entry]
Encoding=UTF-8
Version=1.0
Type=Application
Name=Shake
Exec=/usr/local/bin/quake
Icon=quake
StartupWMClass=quake
X-Window-Icon=shake
X-HildonDesk-ShowInToolbar=true
X-Osso-Type=application/x-executable
Terminal=false

These fields are reasonably self-explanatory; the only catch is that you must ensure that

the Exec field points to your application’s binary—that is, the value of your TARGET
variable in your PRO file. Like the icon files, you include this file in your INSTALLS
variable, like this:

unix {
 INSTALLS += desktop

 desktop.path = $$DATADIR/applications/hildon
 desktop.files += $${TARGET}.desktop
}

The installer must place the desktop file in the /usr/local/share/applications/hildon

directory in order for the application manager to see it and include your application in

the application launcher screen.

Putting It All Together
Listing 9–2 shows the PRO file for the Shake application with scopes for both Symbian

and MeeGo, including all we’ve discussed here.

Listing 9–2. Including application icons, UIDs, and capabilities for a cross-platform application.

symbian {
 TARGET.CAPABILITY = NetworkServices ReadUserData Location
 CONFIG += mobility
 MOBILITY += bearer
 TARGET.UID3 = 0xE1234567 # example UID
 ICON = ./icon/icon.svg
}

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

CHAPTER 9: Deploying Your Application 205

unix {
 isEmpty(PREFIX) {
 PREFIX = /usr/local
 }
 BINDIR = $$PREFIX/bin
 DATADIR =$$PREFIX/share

 INSTALLS += iconxpm icon26 icon48 icon64 desktop

 iconxpm.path = $$DATADIR/pixmap
 iconxpm.files += ./icon/maemo/$${TARGET}.xpm
 icon26.path = $$DATADIR/icons/hicolor/26x26/apps
 icon26.files += ./icon/26x26/$${TARGET}.png
 icon48.path = $$DATADIR/icons/hicolor/48x48/apps
 icon48.files += ./icon/48x48/$${TARGET}.png
 icon64.path = $$DATADIR/icons/hicolor/64x64/apps
 icon64.files += ./icon/64x64/$${TARGET}.png

 desktop.path = $$DATADIR/applications/hildon
 desktop.files += $${TARGET}.desktop
}

This example uses qmake’s scopes to provide separate information to the Symbian and

MeeGo install script generators, each with the code you’ve already seen for each

platform.

Signing Your Qt Application for Symbian Devices
Your signature on a credit card transaction provides a way for a vendor to verify that

you’re the one who signed for a purchase—or for you to repudiate a fraudulent charge

made by someone without your authorization. Similarly, application signing lets you

prove that you are in fact connected to the application that you published—or not.

From the standpoint of identity, application signing uses a trusted authority and

cryptography to prove your relation to your application. First, you must obtain a digital

certificate from a trusted third party—a certificate authority. In the case of Symbian

Signed, it’s a firm such as TC TrustCenter. To obtain a digital certificate, you typically

must contact the firm, start a request, and provide some sort of official documentation

that you (or your firm) are who you claim to be. The company then responds by

providing you with a file that contains your digital certificate. You then use this digital

certificate to sign your application, and then provide it to a testing house to perform

some basic application validation. The testing then ensures that the application is

Symbian Signed—signed by a third party trusted by the Symbian Foundation, Nokia,

and carriers—before you give it to Nokia to publish in the Ovi Store.

Fortunately, for a large percentage of today’s applications, you no longer need to do

this. Symbian applications may be self-signed, meaning that you can sign them yourself

using a unique certificate that you generate (think of this as similar to the case where

you go to a café and buy a coffee with your credit or debit card and you don’t have to

sign the receipt.) Self-signed applications prompt the user before using facilities that

CHAPTER 9: Deploying Your Application 206

require the user’s trust, such as determining the handset’s location. Self-signed

applications can use the following capabilities:

 Location, for determining the handset’s position

 NetworkServices, for using the device’s network connectivity

 UserEnvironment, for camera and audio recording and other sensors

related to the device’s immediate environment

 ReadUserData and WriteUserData for access to confidential user

information such as the user’s contacts.

Given the features of Qt Mobility and the relationship between those features and these

capabilities, you can see that for a large number of applications, self-signing will suffice

as long as your users can tolerate being asked to confirm the use of trusted services

while the application runs. If that isn’t appropriate, you can have your application

Express Symbian Signed, in which you perform specific tests and submit your

application to Symbian Signed for a potential audit.

If your application needs additional capabilities—say, reading device settings and

parameters such as cell tower IDs—you need to obtain a certificate and make sure your

application is Certificate Symbian Signed. A third-party testing house ensures that your

application meets both functional and security requirements (the intent is not full

functional testing, but to determine whether your application behaves appropriately,

given the capabilities you gave it) before being signed. In that case, you can begin your

development using a device certificate for testing (see http://wiki.forum.nokia.com/
index.php/Developer_certificate), and when you are ready to submit your application,

you sign it using the certificate that the certificate authority has given you.

If you determine that you need capabilities that require you to get your application

Symbian Signed, you need to follow these steps through the Symbian Signed web site

at www.symbiansigned.com:

1. Use a developer certificate while testing your application.

2. While you are finishing application development, obtain a certificate from a

trusted certificate authority. This can take a few days to a week, so don’t wait until

the last minute thinking you can get your application signed and publish later the

same day. Be prepared to spend money upfront for this service.

3. Finish developing your application. Once you have a third-party sign your

application, you cannot make any changes to the installer!

4. Test your application to ensure that you’ll pass the tests required to earn a signing

for your application. You can find the tests at the Symbian.com website (currently

they’re at http://wiki.forum.nokia.com/index.php/How_to_conform_with_
Symbian_Signed_criteria.)

http://wiki.forum.nokia.com
http://www.symbiansigned.com:
http://wiki.forum.nokia.com/index.php/How_to_conform_with_

CHAPTER 9: Deploying Your Application 207

5. Choose whether you want to sign your application through the Express Signed

program or Symbian Signed. If you choose Certified Symbian Signed, select a

testing house and follow its procedures to submit your application and any

required documentation. The testing house may charge you a fee for this service.

6. When testing is complete, you will receive notification through Symbian Signed,

You can download your Symbian Signed application from the Symbian Signed

portal.

TIP: Before you have your application Symbian Signed, check with Forum Nokia and look at the
latest requirements for the Ovi Store. As we write this, Nokia is provides free signing for

applications to be published to the Ovi Store.

Publishing with the Ovi Store
For publishers like yourself, the URL you need to remember isn’t the one for Forum

Nokia, but http://publish.ovi.com. There, you can register to become a publisher,

submit new content for distribution, use the Ovi App Wizard to make RSS-based Web

applications, and learn about Ovi Store distribution.

Registering with the Ovi Store
Before you can publish your first application, you must register with the Ovi Store.

Registration entails giving Nokia the following information:

1. Contact information for you or your organization, including its location, URL, tax

ID, and a single point of contact available via phone or email.

2. A public name, description, and icon or avatar that constitutes your organization’s

public presence on Ovi.

3. Contact information for an administrator for your relationship with Ovi (you can

create additional accounts for other members of your organization later).

4. Your agreement to the Ovi Store’s terms and conditions.

5. The payment of a one-time registration fee (currently 50), payable through a Visa

or MasterCard. (Of course, the payment is due once the registration has

successfully completed.)

Once you successfully register as a publisher, you can log in to your Ovi Publish

account using the information it provides to your e-mail address. Like most online

presences, your account has a profile, where you can change your password or request

a temporary password if you lose it. Equally important, from your profile you can provide

http://publish.ovi.com

CHAPTER 9: Deploying Your Application 208

your bank details, so that the Ovi Store can pay you for your share of sales revenue for

your content. When providing this information, you’ll need:

 The payment type (for example, bank wire transfer).

 Your bank’s name and bank code.

 Your bank account number.

 An e-mail to which Nokia will send information about payments to your

account.

 Optionally (it’s a good idea), your bank’s street address and city.

Publishing Your Application
To publish your application, you should first assemble the following resources for

registering your content on the Ovi Store:

 The application installer (sisx or deb) for your application.

 The internal and externally viewable names for your application (these

may be the same).

 A short description of your application.

 The Ovi Store category—which you can determine by browsing the

Ovi Store—for your application.

 The approximate price point.

 How you prefer your customers to be billed—usually via operator

billing and credit card. Typically you’ll want to opt for both, because

operator billing is not available in all regions, and different regions have

different expectations about the use of credit cards.

 A support e-mail address and web site where Nokia’s customer care

team can contact your organization for customer support.

 An icon and up to three small screen shots of your application.

 Search keywords for your application.

 For each file you want to distribute, a list of devices and languages

that it supports and countries where it should be distributed.

As you plan your business strategy, you should be aware that the Ovi Store doesn’t let

you set precise pricing per locality. Instead, you enter an approximate price point for

your application, one of:

CHAPTER 9: Deploying Your Application 209

 Free

 1

 2

 3

 5

 7

 10

 15

 20

 25

 30

 40

 50

 60

 80

 100

The Ovi Store maps these amounts to similar amounts in local currency, such as dollars

in the United States, pounds in Great Britain, and so forth.

Your customers can remit payment for your application through operator billing (where

the charge for your application shows directly on their mobile service bill) and credit

card, or only by credit card if you want to omit operator billing. You may choose which

applies, but be aware that, in some areas, only credit card billing is permitted due to

relationships between Nokia and local operators. Of course, it’s probably best to

support both, so that it’s as convenient as possible for prospective users to pay. In

either case, you are not directly involved with the billing transaction; the Ovi Store

handles this for you.

Plan to spend some careful time crafting an application description and coming up with

good search keywords for your application. The Ovi Store supports searching by

keyword, and it’s likely that a good number of potential buyers will discover your

application through targeted solutions for a specific problem (e.g., determining the

weather or playing a role-playing game). The category where your application is placed,

which you pick from a drop-down menu, is equally important so that it catches the eye

of people who window-shop in the Ovi Store.

To enter this information and publish your application, you sign in to your Ovi account

and click “New Item”. When you do so, you see a form that prompts you for this

information. Once you’ve provided it, you will be prompted with a list of Nokia devices

p

CHAPTER 9: Deploying Your Application 210

by configuration, presented as a tree view, to indicate how well your application works

on those configurations. For each, you can specify:

 Fully Tested: You have executed all test cases with the application for

this configuration successfully.

 Briefly Tested: The application’s main functionality has been briefly

tested with this configuration.

 Assumed to Work: You assume that platform compatibility will

guarantee that this file works with this configuration.

 Might Work: The file has not been tested, but might work with this

configuration.

 Not Compatible: The file should not work with the configuration. Do

not even try.

 Not Known: This should only show when a new configuration is added

and compatibility is not yet defined.

As with configurations, you enter the countries and languages in which you want to

market your applications using the same tree view; countries are divided into regions

(e.g., “Asia-Pacific”), while languages have a single-category hierarchy of “All

Languages” and then a list of languages to which you may have localized your

application.

QA in the Ovi Store
Once you enter the information and upload your file, the Ovi Store’s QA team must test

your application. During this time, you cannot change the application and metadata, and

they will not be available on the Ovi Store. The testing is not comprehensive, but does

look to ensure that the basic functionality your application promises exists and that your

application meets Nokia’s Terms and Conditions for the Ovi Store. Thus, it’s important

that you fully test your application (the key topic of the previous chapter). These tests

include:

 Your application must be Symbian Signed for it to be accepted for

Symbian devices.

 You must submit your application as Fully Tested for at least one

configuration.

 Only Nokia billing is accepted. You cannot externally bill customers or

incrementally bill them within the application.

 Your application must provide help and developer attribution somewhere.

 The language within the application must be consistent and

appropriate throughout.

 The application must meet the Ovi Store’s content guidelines.

CHAPTER 9: Deploying Your Application 211

While Nokia is testing your submission, you can see its testing status within your Ovi

account for the application. When testing is complete you will receive a testing report

letting you know that your application has passed or failed and, if it has failed, what you

must correct before you resubmit your application.

While your application is being tested, you can make changes, but only if you unlock the

installer file, which interrupts the testing process. You might wish to do this if you find a

defect in your application, for example, or if you need to update the application’s

metadata. When you finish, lock your application again so that testing can resume.

Marketing Your Application through the Ovi Store
Once your application passes QA, it’s live on the Ovi Store! Every application in the Ovi

store receives a unique URL, which you can use in your own promotional materials or

deep-link in your web site.

Nokia staff at the Ovi Store may choose to promote your application through the

handset, mobile web site, desktop web site, or some combination of these. To ensure

that the staff can do this, you need to be sure you provide additional marketing assets,

including:

 Teaser text for the mobile web site (up to 23 characters).

 Large and medium spotlight banners.

 Small desktop images in 4:3, 3:4, and 9:16 aspect ratios,

 High and low-resolution spotlight images of the application.

These are optional, but a good idea in case Nokia selects your application for

promotion. See the Ovi Publisher Guide for the precise sizes and uses of these

marketing assets.

You can also market your application directly, of course; the Ovi Store provides a

promotional banner creator that includes your application icon, name, category, and

price, with a variety of banners, as you see in Figure 9–1. You can use the resulting

banners in your own web marketing campaigns.

CHAPTER 9: Deploying Your Application 212

Figure 9–1. Creating your own marketing banners using the promotional banner creator.

From time to time Nokia may provide other comarketing or promotional opportunities,

too. Keep an eye on the Ovi Publish web site at http://publish.ovi.com for details.

http://publish.ovi.com

CHAPTER 9: Deploying Your Application 213

Wrapping Up
Publishing with the Ovi Store is about as simple as it can be, given that it provides wide

reach, operator and credit-card billing, and multiple-country distribution.

Both Symbian and MeeGo applications require some work beyond simply coding your

application: you must provide icons for consumers to recognize your application, and

Symbian applications require a unique ID and signing as well. Obtaining a unique ID and

signing requires that you work with Symbian Signed at symbiansigned.com, although in

many cases Nokia may be willing to manage the unique ID allocation and signing on

your behalf.

Publishing your application requires you to register as a publisher with the Ovi Store, a

process that means gathering some information about your organization, including

banking details, and entering them on the Ovi Publisher web site at

http://publish.ovi.com. Once you’ve done this, Nokia will contact you with your login

credentials, and you can publish your application.

To publish, you should be prepared to provide good metadata about your application,

including engaging screen shots, an icon, and search metadata. Publishing entails

entering this information, as well as indicating which configurations your application

supports and waiting while Nokia conducts a brief test cycle of your application to

determine its fitness for the store. Once the application passes, you can comarket your

application with Nokia, on your own using the application’s unique URL in the Ovi Store,

or by creating banners with additional information about your application that link back

to the Ovi Store.

http://publish.ovi.com

CHAPTER 9: Deploying Your Application 214

e

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

215

215

Index

■ A
acceptNavigationRequest method, 104

accordion widget, 182

action type, 142

action variable, 131

actions, attaching to main window, 92

activated signal, 76

active declaration block, 174

addDelay method, 197

addKeyClicks method, 196

addKeyPress method, 197

addKeyRelease method, 197

addMouseClick method, 197

addMouseDClick method, 197

addMouseMove method, 197

addMousePress method, 197

addMouseRelease method, 197

addProxyObjects slot, 131

addToJavaScriptWindowObject method,

QWebFrame class, 104

advertising, 35

alternatingRowColors property, 75

amplitude attribute, 146

animations

overview, 30

performing in QML, 145–146

APIs (application programming interfaces),

107

appendAttachments method, 117

application cache, 163–165

Application Output pane, Qt Creator tool,

144

application programming interfaces (APIs),

107

application resources, 87–89

accessing, 89

including in applications, 88–89

storing HTML5 content as, 166–167

applications

C++, displaying QML within, 155

debugging, 54–57

deploying. See deploying applications

designing. See deploying applications

distributing, 8–9

extending functionality with Qt mobility,

107–122

managing Bearer networks, 112–113

obtaining and working with device

location information, 113–115

obtaining System Information,

121–122

playing and recording multimedia,

118–120

sending and receiving messages,

115–118

using Qt Mobility APIs, 109–112

hello world, HTML5, 160–165

hybrid, 8, 165–167

inside controllers, 124–128

linking with QtWebKit, 102

packaging, 183, 200–205

including application icons with

MeeGo applications, 202–203

including application icons with

Symbian applications, 202

including application icons with Web

applications, 203

including other files within

applications on MeeGo devices,

201

including other files within

applications on Symbian devices,

200–201

providing desktop files for MeeGo,

204

providing UID for Qt applications on

Symbian, 203

Qt, creating, 45–52

Shake, implementing in HTML5, 176–183

signing, 199

testing, 187–198

Index 216

preparation for, 187–189

using Qt test framework, 189–198

user interface, implementing, 77–79

Aptana plug-in, 182

Assumed to Work option, 210

attachmentIds method, 117

<audio> tag, 167

audioDescription method, 119

audioInputs method, 119

audioSettings method, 120

autoScroll property, 76

■ B
Back button, 123

bcc method, 117

Bearer Management API, 110–111, 113, 128

Bearer networks, 112–113

beginPath function, 169

bindUI function, 178–179

bodyId method, 117

bool type, 142

BorderImage element, 146

box class, 162, 172

brainstorming, 17

Briefly Tested option, 210

build button, Nokia Qt SDK, 45

byID method, 116

byPriority method, 116

byReceptionTimeStamp method, 116

byRecipients method, 116

bySender method, 116

bySize method, 116

byStatus method, 116

bySubject method, 117

byTimeStamp method, 116

byType method, 117, 160, 162

■ C
C++

applications, displaying QML within, 155

embedding objects, in QtWebKit's

JavaScript runtime, 104–106

integrating with QML, 154–158

displaying QML within C++

applications, 155

mingling QObjects with QML,

155–158

CACHE section, 164

canvas, 167–172

<canvas> element, 167

casting at run time, 63

cc method, 117

central widget, Qt main window, 90

centralWidget method, 91

certificate authority, 205

Change plain text... option, 47

Change text... option, 47

checklists, 35

Choose... option, 45, 191

classes

collection, 65–66

model, 72–75

QuakeEvent, unit testing, 192–195

view, 75–76

classid variable, 107

cleanup method, 195

cleanup slot, 190

cleanupTestCase slot, 190

clearAttachments method, 117

clicked method, mListView class, 85

clicked signal, 76

close method, 68

closeEvent method, 96

closePath function, 169

CMYK (cyan, magenta, yellow, and key

black), 100

code

compiling and running on devices, 52–54

user interface, testing using

QTestEventList, 196–198

collection classes, 65–66

color type, 142

colors, 30

columnCount method, 74

compiling code, on devices, 52–54

compose method, 115

conceptual designing, 17

CONFIG variable, 109, 191

connect method, 60

connections, Flowella tool, 23

connectivity, 34

consistency, 18, 34

CONSTANT directive, 63

Contacts API, 110–111

Create Package section, Qt Creator tool,

166

Create Project... option, 45, 150

createPlugin method, QWebPage class, 106

creating connections, Flowella tool, 26

Index 217

custom widgets, 92–101

handling incoming events, 95–97

handling incoming gestures, 97–99

painting widget contents, 99–101

specifying widget size hints and policies,

94–95

subclassing QWidget, 93–94

cyan, magenta, yellow, and key black

(CMYK), 100

■ D
data

downloading, 154

fetching and parsing, 182–183

obtaining using networks, 80–81

data method, 73–74

dataChanged method, 136

dataChanged signal, 136, 195

date method, 117

date type, 142

debug button, Nokia Qt SDK, 45

Debug view, Nokia Qt SDK, 45, 55–56

debugging applications, 54–57

declaring user interfaces, 139–149

elements, 146–149

handling signals in QML, 143–144

markup language, 141–143

performing animations in QML, 145–146

Deploy Public Key... option, 54

deploying applications, 199–213

marketing through Ovi Store, 211

packaging, 200–205

including icons with MeeGo

applications, 202–203

including icons with Symbian

applications, 202

including icons with Web

applications, 203

including other files on MeeGo

devices, 201

including other files on Symbian

devices, 200–201

providing desktop files for MeeGo,

204

providing UID on Symbian, 203

preparing for, 199–200

publishing with Ovi Store, 207–211

publishing, 208–210

QA in, 210–211

registering, 207–208

signing Qt applications for Symbian

devices, 205–207

DEPLOYMENT variable, 166, 201

Design view, 45, 47

DESIGNABLE directive, 62

designing applications, 11–36

checklists, 35

conceptual designing, 17

documentation, 18–20

Flowella tool, 20–27

creating connections, 23–26

creating projects, 23

creating views, 22–23

exporting and interacting, 26–27

installing, 21–22

gestalt and unity, 31–32

interaction design and prototyping,

17–18

for mobile, 11–15

culture, 14–15

interaction, 12

technicalities, 13–14

User Context, 12

research, 16–17

testing and evaluation, 30

usability, 32–35

advertising, 35

connectivity, 34

entering information, 33

for enterprise applications, 34

information presentation, 34

navigation, 32–33

platform components, 35

and security, 34

visual and information design, 27–30

animations, 30

colors, 30

fonts, 29

full-screen usage, 28–29

graphics, 30

scalable UI, 28

screen size, 27–28

selecting correct orientation, 28

desktop files, providing for MeeGo, 204

Details tab, Qt Creator tool, 166

Develop tab, 41

Developer Password option, Mad Developer

tool, 53

development platforms, 5–8

HTML5, 7–8

hybrid applications, 8

Index 218

Qt, 6–7

devices

compiling and running code on, 52–54

MeeGo, 43–44

Symbian, 42

disconnect method, 60

display slot, 68

distributing applications, 8–9

<div> element, 181–182

Document Gallery API, 110

Document Object Model (DOM), 159

documentation, 18–20

DOM (Document Object Model), 159

doubleClicked signal, 76

download page, 41

downloading data, 154

drawArc method, 99

drawChord method, 99

drawConvexPolygon method, 99

drawCubicBezier method, 99

drawEllipse method, 99

drawImage method, 100

drawLine method, 100

drawLines method, 100

drawPicture method, 100

drawPie method, 99

drawPixmap method, 100

drawPoint method, 100

drawPoints method, 100

drawPolygon method, 99

drawPolyline method, 100

drawRect method, 100

drawRects method, 100

drawRoundedRect method, 100

drawText method, 100

dynamic testing, 188

dynamic_cast operation, 63

■ E
easing property, 146

Edit view, 45, 48

elements, Qt Quick, 146–149

emit statement, 67

emitsSomething method, 196

endAngle parameter, 170

enterprise applications, 34

<entry> tag, 81, 83

enumeration type, 142

eraseRect method, 99

error method, 120

eventFilter method, 97

events, incoming, 95–97

Exec field, 204

exec method, 69

executeSql function, 176

exit method, 70

exporting Flowella tool, 26–27

■ F
FALLBACK section, 164

fancybrowser directory, 162

fancybrowser.pro file, 162

<feed> block, 81

Feedback (haptics) API, 110

fetch method, 79–80

fetching data, 182–183

FIFO (first-in-first-out), 65

<file> item, 64

Files to deploy block, Qt Creator tool, 166

fillRect method, 100, 168

fillStyle function, 169

FINAL directive, 63

Finish button, 47

finished signal, 70, 81

first-in-first-out (FIFO), 65

Flickable class, 148

Flowella tool, 20–27

creating connections, 23–26

creating projects, 23

creating views, 22–23

exporting and interacting, 26–27

installing, 21–22

focusInEvent method, 96

focusOutEvent method, 96

font type, 142

fonts, 29

Forms folder, 49

from method, 117

full-screen usage, 28–29

Fully Tested option, 210

■ G
gamelogic.js file, 144

Generate SSH key. option, 54

geoToWidgetCoords function, 135

gestalt, 31–32

GestureArea class, 148

gestureEvent method, 98

Index 219

gestures, incoming, 97–99

get method, 81, 154

GPS (Global Positioning System), 113

grabGesture method, 97

graphics, 30

gray content window, 47

grey content window, 47

Guarana widget, 177

■ H
hammer icon, 55

handleError slot, 128

handleItemClicked method, 130

handleNetFinished method, 81

handleRequestFinished slot, 85, 128

handleShowList method, 92

handsets, HTML5 hello world app on,

162–163

hardware platforms, 4–5

MeeGo, 5

Series 40, 4

Symbian, 4–5

hello world app, HTML5, 160–165

application cache, 163–165

on handsets, 162–163

helloworld class, 50

helloworld.cpp file, 51, 55

helloworld.h file, 50

HelloWorld.pro file, 48

Help view, Nokia Qt SDK, 45

hide function, 178

hideEvent method, 96

hierarchical ownership, 61

horizontalScrollMode property, 76

Host Name field, Mad Developer tool, 53

HSV (hue-saturation-value), 100

HTML element, 163

HTML5

canvas, 167–172

development platform, 7–8

hello world, 160–165

application cache, 163–165

on handsets, 162–163

Hybrid apps, 165–167

accessing content from local file

systems, 165–166

storing content as application

resources, 166–167

implementing Shake in, 176–183

adding UI components to views,

180–182

fetching and parsing data, 182–183

packaging apps, 183

industry standard, 160

links for further information, 183–184

local storage, 174–176

web databases, 176

web storage, 175

transformations, 173–174

transitions, 172–173

hue-saturation-value (HSV), 100

hworld.css file, 163

hworld.html file, 160, 162–163

hworld.js file, 163

hybrid applications, 8

Hybrid apps, HTML5, 165–167

accessing HTML5 content from local file

systems, 165–166

storing HTML5 content as application

resources, 166–167

■ I
ICON variable, 202

icons

including with MeeGo applications,

202–203

including with Symbian applications, 202

including with Web applications, 203

ID method, 117

<id> tag, 82–83

IDE (integrated development environment),

39–40

Image element, 146, 183

IMEI (International Mobile Equipment

Identity), 121

 tag, 182

IMSI (International Mobile Subscriber

Identity), 121

include file, 110

incoming events, 95–97

incoming gestures, 97–99

increment method, 67

index method, 74

information

entering, 33

presentation of, 34

information design, 27–30

animations, 30

colors, 30

Index 220

fonts, 29

full-screen usage, 28–29

graphics, 30

scalable UI, 28

screen size, 27–28

selecting correct orientation, 28

init method, 178, 190

init slot, 190

initTestCase method, 190

input, performing, 68–69

insertColumn method, 74

insertColumns method, 74

insertRow method, 74

insertRows method, 74

installing

Flowella tool, 21–22

Nokia Qt SDK, 41–44

configuring MeeGo device, 43–44

configuring Symbian device, 42

INSTALLS list, 202

INSTALLS variable, 201, 204

int type, 142

integrated development environment (IDE),

39–40

interaction

design of, 17–18

Flowella tool, 26–27

International Mobile Equipment Identity

(IMEI), 121

International Mobile Subscriber Identity

(IMSI), 121

International Standards Organization (ISO),

88

isAvailable method, 119

isFinished method, 70

ISO (International Standards Organization),

88

isOpen method, 69

isReadable method, 69

isRunning method, 70

isWritable method, 69

item views, using with MVC paradigm,

71–76

model classes, 72–75

view classes, 75–76

itemsChanged method, 136

itemsReset method, 136

■ J
JavaScript runtime, QtWebKit, 104–106

javaScriptWindowObjectCleared signal,

QWebView class, 127

■ K
keyClick method, 197

keyClicks method, 197

keyEvent method, 197

keyPress method, 198

keyPressEvent method, 96

keyRelease method, 198

keyReleaseEvent method, 96

■ L
landscape layout, 34

lang attribute, 65, 88–89

Lay Out Vertically option, 47

layout manager, 47

library area, Flowella tool, 22–23

lineTo function, 169–170

lineTo(x,y) function, 169

links, HTML5, 183–184

list type, 142

ListView element, 146, 151–154

load method, QWebView class, 102

Loader element, 146

loadFinished signal, 102–103

loadStarted signal, 102

local file systems, accessing HTML5 content

from, 165–166

local storage, 174–176

web databases, 176

web storage, 175

LocalContentCanAccessRemoteUrls

property, 166

localization, 63–65

Locals and Watchers pane, 57

Location API, 110–111

lupdate command, 64

lupdate utility, 64

■ M
Mad Developer tool, 43–44, 53

Maemo Emulator options, 54

main class, 46

MainController class, 124

main.cpp file, 124

MainForm class, 77–78

Index 221

MainForm constructor, 78, 85

MapItemWidget widget, 131–132

maps, drawing, 131–136

marketing applications, through Ovi Store,

211

markup language, 141–143

MeeGo devices

configuring, 43–44

including application icons with,

202–203

including other files within applications

on, 201

providing desktop files for, 204

MeeGo hardware platform, 5

memory leaks, 61

menuBar method, 91

messages, sending and receiving, 115–118

Messaging API, 110–111

metaData method, 120

mEvent field, 195

mEventModel model, 79

Might Work option, 210

MIME (Multipurpose Internet Mail

Extensions), 108

mListView class, 85

mMainWidget widget, 127

MMS (Multimedia Message Service), 108

mobile applications, 11–15

culture, 14–15

interaction, 12

technicalities, 13–14

User Context, 12

Mobile Qt Application option, 45

MOBILITY variable, 109–110, 113

model classes, 72–75

model-view-controller paradigm, using item

views with. See MVC paradigm,

using item views with

modelReset method, 136

MouseArea class, 140, 143, 148, 154

mouseClick method, 198

mouseDClick method, 198

mouseDoubleClickEvent method, 96

mouseMove method, 198

mouseMoveEvent method, 96

mousePress method, 198

mousePressEvent method, 96

mouseRelease method, 198

mouseReleaseEvent method, 96

moveTo function, 169–170

moveTo(x,y) function, 169

Multimedia API, 110–111, 118

Multimedia Message Service (MMS), 108

multimedia, playing and recording, 118–120

multiple threads, managing, 69–71

Multipurpose Internet Mail Extensions

(MIME), 108

MVC (model-view-controller) paradigm,

using item views with, 71–76

model classes, 72–75

view classes, 75–76

myRectangle.height property, 142

■ N
navigation, 32–33

navigation map, 18–19

network request, changes to, 128–129

NETWORK section, 164

networks

Bearer, 112–113

using to obtain data, 80–81

New File or Project option, Qt Creator tool,

191

New Project dialog box, 150

newConfigurationActivated signal,

QNetworkSession class, 113

Nokia Qt SDK, 39–57

choosing IDE, 39–40

compiling and running code on devices,

52–54

creating Qt applications, 45–52

debugging applications, 54–57

installing, 41–44

configuring MeeGo device, 43–44

configuring Symbian device, 42

views, 44–45

Nokia.dom.append function, 179

Nokia.use function, 182

Nokia.view class, 178

Nokia.view.extend function, 178

Not Compatible option, 210

Not Known option, 210

NOTIFY directive, 62

■ O
object models, 59–66

casting at run time, 63

collection classes, 65–66

hierarchical ownership, 61

Index 222

managing resources and localization,

63–65

object properties, 62–63

signals and slots, 60–61

objects, Qt, integrating with web content,

101–107

displaying web content with QtWebKit,

102–104

embedding C++ objects in QtWebKit's

JavaScript runtime, 104–106

embedding Qt widgets into QtWebKit

pages, 106–107

linking applications with QtWebKit, 102

off-deck distribution, 8

Oklahoma City Urban Area list item, 24

OLED (Organic Light Emitting Diode), 30

on-deck distribution, 9

onPressed signal handler, 143

open method, 68

options menu trigger, Qt main window, 90

Organic Light Emitting Diode (OLED), 30

Organizer API, 110–111

Other Project option, Qt Creator tool, 191

output, performing, 68–69

overshoot attribute, 146

Ovi App Wizard, 207

Ovi Store

marketing applications through, 211

publishing with, 207–211

publishing, 208–210

QA in, 210–211

registering, 207–208

Ovi Suite, 41–43, 54

■ P
packaging applications, 183, 200–205

including application icons

with MeeGo applications, 202–203

with Symbian applications, 202

with Web applications, 203

including other files within applications

on MeeGo devices, 201

on Symbian devices, 200–201

providing desktop files for MeeGo, 204

providing UID for Qt applications on

Symbian, 203

pages, QtWebKit, 106–107

paintEvent method, 96, 99–100

painting widget contents, 99–101

paradigm MVC, using item views with,

71–76

model classes, 72–75

view classes, 75–76

parsing data, 81–85, 182–183

Password field, Mad Developer tool, 53

pause slot, 118, 120

PC Suite mode, 54

peek method, 69

period attribute, 146

platform components, 35

play slot, 118

playfulness, 18

playlist method, 119

PNG (Portable Network Graphic), 202

point type, 142

Portable Network Graphic (PNG), 202

position method, 119

positionUpdated signal,

QGeoPositionInfoSource class, 113

positionUpdated slot, 129

preferredConfigurationChanged signal,

QNetworkSession class, 113

preparation, 187–189

pressed signal, MouseArea class, 143

preview window, Flowella tool, 22

priority method, 70

Project Creation dialog box, 44

project mode, qmake utility, 191

Project view, 53

projects, Flowella tool, 23

Projects icon, 52

Projects pane, 88

Projects view, 45, 54

properties, objects, 62–63

prototyping, 17–18

Publish and Subscribe API, 110–111

publishing

applications, 208–210

with Ovi Store, 207–211

publishing, 208–210

QA in, 210–211

registering, 207–208

■ Q
QA, in Ovi Store, 210–211

QAbstractItemModel class, 79, 195

QAbstractItemView class, 75

QAction class, 92, 123, 127–128

QAudioCaptureSource class, 119

Index 223

QAudioEncoderSettings class, 120

QBENCHMARK macro, 192

QBENCHMARK_ONCE macro, 192

QBitmap class, 101

QBrush class, 100

QCloseEvent event, 96

QColor class, 100

QCOMPARE macro, 191, 195

QDataStream class, 69

QDeclarativeContent class, 155

QDeclarativeContext class, 155

QDeclarativeView class, 154–155

QDesktopWidget class, 121

Q_DISABLE_COPY macro, 94

QEvent class, 95

QFile class, 87, 89

QFocusInEvent event, 96

QFocusOutEvent event, 96

QFont class, 100, 142

QGeoCoordinate class, 114

QGeoMapWidget class, 115

QGeoPositionInfo class, 110, 114

QGeoPositionInfoSource class, 113

QGeoPositionInfoSource\temp directory,

113–114

QGesture class, 97, 99

QGestureEvent event, 98

QGestureRecognizer class, 98

QGestureRecognizer\temp directory, 97

QGraphicsItem class, 93, 102

QGraphicsScene class, 102

QGraphicsWebView class, 102

QGraphicsWidget class, 115

QHash class, 65, 136

QHideEvent event, 96

QImage class, 99, 101, 104

QKeyEvent event, 96

QLandmarkManager class, 114

QLineEdit class, 197

QLinkedList class, 65

QList class, 65, 196

QListView class, 71, 73, 75, 78–79, 91

QListWidget widget, 71

QMainWindow class, 50, 77, 79, 91, 124

qmake utility, 191

QMap class, 65–66

QMediaPlayer class, 118–120

QMediaPlaylist class, 119

QMediaRecorder interface, 120

QMessage class, 117

QMessageAddress class, 118

QMessageAddressList class, 118

QMessageFilter class, 116–117

QMessageManager class, 115, 117

QMessageService class, 115–116

QMessageService\temp directory, 118

QML (Qt Markup Language)

displaying within C++ applications, 155

handling signals in, 143–144

integrating C++ with, 154–158

displaying QML within C++

applications, 155

mingling QObjects with QML,

155–158

mingling QObjects with, 155–158

performing animations in, 145–146

programming for Web with, 149–154

creating user interfaces, 151–154

downloading data, 154

qmobilityglobal.h file, 110

QModelIndexes class, 136

QMouseEvent event, 96

QMultiHash class, 65

QMultiMap class, 65

QNetworkAccessManager class, 81

QNetworkConfiguration class, 112

QNetworkConfigurationManager class, 112

QNetworkSession class, 112–113

QNetworkSession\temp directory, 113

QObject class, 66–67, 94, 97, 104, 123, 131,

154, 190, 196

Q_OBJECT declaration, 66–67, 93–94

Q_OBJECT macro, 67

QObject\temp directory, 95, 97

qobject_cast operation, 63

QObjects, mingling with QML, 155–158

QPaintDevice class, 99, 101

QPaintEngine class, 99

QPainter class, 99–101, 104

QPainter\temp directory, 100

QPainterPath class, 100

QPaintEvent event, 96

QPair class, 65, 133

QPanGesture class, 97

QPen class, 100

QPicture class, 101

QPixmap class, 89, 101

QPoint class, 197

QPointer template, 61

QProgressDialog class, 127–128

Q_PROPERTY macro, 62–63

QQueue class, 65

Index 224

QResizeEvent event, 96

qresource tag, 65

QShowEvent event, 96

QSignalSpy class, 196

QSize class, 94

QSKIP macro, 192

qSleep method, 198

QSortFilterProxyModel class, 78–79

QStack class, 65

QStackedWidget widget, 125–127

QStandardItemModel class, 78

QString class, 66, 84, 196

QSystemDeviceInfo class, 121

QSystemDisplayInfo class, 121

QSystemInfo class, 121

QSystemNetworkInfo class, 121

QSystemScreenSaver class, 121

QSystemStorageInfo class, 121

Qt

applications

creating, 45–52

providing UID for, on Symbian, 203

signing for Symbian devices,

205–207

changes to network request, 128–129

custom widgets, 92–101

handling incoming events, 95–97

handling incoming gestures, 97–99

painting widget contents, 99–101

specifying widget size hints and

policies, 94–95

subclassing QWidget, 93–94

development platform, 6–7

device position, 129–131

displaying results, 85

drawing maps, 131–136

extending application functionality with

Qt mobility, 107–122

managing Bearer networks, 112–113

obtaining and working with device

location information, 113–115

obtaining System Information,

121–122

playing and recording multimedia,

118–120

sending and receiving messages,

115–118

using Qt Mobility APIs, 109–112

implementing application user interface,

77–79

inside application controllers, 124–128

integrating Qt objects with web content,

101–107

displaying web content with

QtWebKit, 102–104

embedding C++ objects in

QtWebKit's JavaScript runtime,

104–106

embedding Qt widgets into QtWebKit

pages, 106–107

linking applications with QtWebKit,

102

managing multiple threads, 69–71

object models, 59–66

casting at run time, 63

collection classes, 65–66

hierarchical ownership, 61

managing resources and localization,

63–65

object properties, 62–63

signals and slots, 60–61

parsing USGS data feed, 81–85

performing input and output, 68–69

signals and slots, 66–68

temp directory, 73, 157

test framework, 189–198

QTest, 190–192

testing signals and slots using QTest,

195–196

testing user interface code using

QTestEventList, 196–198

unit testing QuakeEvent class,

192–195

user actions, 89–92

attaching actions to main window, 92

Qt main window, 90–91

using application resources, 87–89

accessing, 89

including in applications, 88–89

using item views with MVC paradigm,

71–76

model classes, 72–75

view classes, 75–76

using networks to obtain data, 80–81

Qt Creator tool, 88–89, 144, 155, 166, 191

Qt Designer Form option, 91

Qt Markup Language. See QML

Qt Mobility namespace, 109–110, 118

Qt Quick, 139–158

declaring user interfaces, 139–149

elements, 146–149

handling signals in QML, 143–144

D
ow

nl
oa

d
fro

m
 w

w
w

.e
B

oo
kT

M
.C

om

Index 225

markup language, 141–143

performing animations in QML,

145–146

integrating C++ with QML, 154–158

displaying QML within C++

applications, 155

mingling QObjects with QML,

155–158

programming for Web with QML,

149–154

creating user interfaces, 151–154

downloading data, 154

Qt Quick application option, 155

Qt Quick UI option, 150

Qt Resource File option, 88

Qt Unit Test option, 191

QT variable, 102

QTableView class, 71, 75

QTableWidget widget, 71

QtDeclarativeView class, 156

QTest

overview, 190–192

testing signals and slots using, 195–196

QTest class, 196–198

QTestEventList class, 197

QTestEventList, testing user interface code

using, 196–198

QTEST_MAIN macro, 191

QThread class, 69–70

QTM_USE_NAMESPACE macro, 118

QTreeView class, 71, 75

QTreeWidget widget, 71

QtWebKit

displaying web content with, 102–104

embedding Qt widgets into pages,

106–107

JavaScript runtime, embedding C++

objects in, 104–106

linking applications with, 102

QuakeEvent class, unit testing, 192–195

QuakeEvent\temp directory, 195

QuakeListDelegate.qml file, 153

QuakeListModel class, 78, 155–156

QuakeListModel\temp directory, 79

queryMessages method,

QMessageManager class, 115, 117

quit slot, 70

QVariant class, 73, 196

QVector class, 65

QVERIFY macro, 191

QVERIFY2 macro, 191

QVideoEncoderSettings class, 120

QVideoWidget class, 119

qWait method, 198

QWebFrame class, 104

QWebPage class, 103–104, 106

QWebPage\temp directory, 104

QWebSettings class, 165

QWebSettings\temp directory, 103, 175

QWebView class, 78, 85, 91, 102–103, 123,

127, 133

QWidget class, 96–98, 102, 119, 196

QWidget, subclassing, 93–94

QXmlStreamReader class, 69

■ R
radius parameter, 170

READ directive, 62

read method, 68–69

readAll method, 68

real type, 142

Really Simple Syndication (RSS), 102

receivedDate method, 117

recognize event, 98

record slot, 120

recording multimedia, 118–120

rect type, 142

red-green-blue (RGB), 100

registering applications, 207–208

released signal, 67

removeColumn method, 74

removeColumns method, 74

removeRow method, 74

removeRows method, 74

render function, QWebPage class, 103–104

renderUI function, 178–179

Repeater element, 146

Representational State Transfer (REST), 7

requestUpdate method, 114

research, 16–17

resizeEvent method, 96

resources

including in applications, 88–89

managing, 63–65

RESOURCES declaration, 89

responsiveness, 18

REST (Representational State Transfer), 7

restore function, 171

retrieve method, 115

retrieveBody method, 115

retrieveHeader method, 115

Index 226

RGB (red-green-blue), 100

rootContext method, 155

rotate class, 162

rotate method, 101, 171

rowCount method, 74

RSS (Really Simple Syndication), 102

Run button, 45, 51, 54

run icon, 55

run method, 69–70

Run qmake option, 109

run time, casting at, 63

Run to line option, 57

■ S
save function, 171

scalable UI, 28

Scalable Vector Graphics (SVG), 101

scale method, 101

scenarios, 17

screen size, 27–28

SCRIPTABLE directive, 62

SDK (software development kit), 39

secure shell (SSH), 54

security, 34

selectionBehavior property, 76

selectionMode property, 76

send method, 115

Sensors API, 110–111

Series 40 hardware platform, 4

Service Framework API, 110–111

setAudioInput method, 119

setBcc method, 117

setBody method, 117

setCc method, 117

setCentralWidget method, 79, 91

setCurrentIndex method, 127

setData method, 73–74

setDate method, 117

SetFeedItems() function, 181

setHtml method, 102

setMetaData method, 120

setModel method, 136

setMuted slot, 118, 120

setPage method, 104

setPlaybackRate slot, 119

setPlaylist slot, 119

setPosition slot, 119

setPriority method, 70

setReceivedDate method, 117

setSizePolicy method, 95

setStackSize method, 70

setStatus method, 117, 157

setSubject method, 117

setTo method, 117

setValue method, 67

setVolume slot, 119

Shake application, implementing in HTML5,

176–183

adding UI components to views,

180–182

fetching and parsing data, 182–183

packaging apps, 183

Shake view, 180

shear method, 101

Short Message Service (SMS), 108

show function, 115, 178–179

showEvent method, 96

showListAction method, 92

signals, 60–61, 66–68

handling in QML, 143–144

testing using QTest, 195–196

SIS (Software Installation Script), 200

size type, 142

sizeHint method, 94

sizePolicy method, 94–95

sketching, 17

slots, 60–61, 66–68, 195–196

SMS (Short Message Service), 108

software development kit (SDK), 39

Software Installation Script (SIS), 200

software platforms, 3–10

choosing development platforms, 5–8

HTML5, 7–8

hybrid applications, 8

Qt, 6–7

distributing applications, 8–9

hardware platforms, 4–5

something signal, 196

source attribute, 146

SOURCES variable, 201

SQLite tool, 42

SSH (secure shell), 54

stackSize method, 70

Standard Template Library (STL), 65

Start Point, Flowella tool, 23

start slot, 70

startAngle parameter, 170

started signal, 70

startGame method, 144

startUpdates method, 114

state method, 120

Index 227

stateChanged signal, 116

static testing, 188

status bar, Qt main window, 90

status method, 117, 157

status property, 157

STL (Standard Template Library), 65

stop slot, 119–120

STORED directive, 62

string type, 142

stroke function, 169

strokeRect function, 168

subclassing QWidget, 93–94

subject method, 117

supportedAudioCodecs method, 120

supportedVideoCodecs method, 120

SVG (Scalable Vector Graphics), 101

Symbian Device option, 54

Symbian devices

configuring, 42

including application icons with, 202

including other files within applications

on, 200–201

providing UID for Qt applications on, 203

signing Qt applications for, 205–207

Symbian hardware platform, 4–5

Symbian photo application, 29

syncUI function, 178–179

System Information API, 110–111

System Information, obtaining, 121–122

■ T
TARGET variable, 203–204

task flow diagram, 19

Telephony Events API, 110

templatedefault widget, 177

terminate slot, 70

terminated signal, 70

testConstructor test, 195

testing applications

overview, 30

preparation for, 187–189

using Qt test framework, 189–198

QTest, 190–192

testing signals and slots using QTest,

195–196

testing user interface code using

QTestEventList, 196–198

unit testing QuakeEvent class,

192–195

Text element, 147, 151–152, 154

text property, 154

TextEdit element, 147

TextInput element, 147

this.getContainer.show function, 179

threads, multiple, 69–71

time type, 142

TNEF (Transport Neutral Encapsulation

Format), 108

to method, 117

toHexRepresentation method, 198

toolbox, Flowella tool, 22

Tools menu, Nokia Qt SDK, 53

Tools option, 41

top menu bar, Flowella tool, 22

toString method, 198

tr function, 64

Transform element, 148

transformations, 173–174

transitions, 172–173

translate method, 101

Transport Neutral Encapsulation Format

(TNEF), 108

trigger method, 105

triggered method, 105

TrivialTest.cpp file, 191

TRK tool, 42–43, 54

trusted authority, 205

type attribute, 146

type method, QVariant class, 196

■ U
UID (unique id), 200, 203

UIs (User Interfaces)

adding components to views, 180–182

application, implementing, 77–79

code, testing using QTestEventList,

196–198

creating, 151–154

declaring, 139–149

handling signals in QML, 143–144

markup language, 141–143

performing animations in QML,

145–146

reviewing available elements,

146–149

scalable, 28

unique id (UID), 200, 203

unit testing, QuakeEvent class, 192–195

United States Geological Service (USGS),

59, 76

Index 228

unity, 31–32

url type, 142

USB mode, 54

USB row, Mad Developer tool, 44

user actions, 89–92

attaching actions to main window, 92

Qt main window, 90–91

User Context, 12

USER directive, 62

User Interfaces. See UIs

USGS data feed, parsing, 81–85

USGS (United States Geological Service),

59, 76

/usr/local/share/applications/hildon

directory, 204

■ V
valueChanged signal, 68

vCards (Versit) API, 110–111

vector3d type, 142

Versit (vCards) API, 110–111

verticalScrollMode property, 76

<video> tag, 167

videoSettings method, 120

view classes, 75–76

viewManager.Add function, 180

views

adding UI components to, 180–182

Flowella tool, 22–23

Nokia Qt SDK, 44–45

visual design, 27–30

animations, 30

colors, 30

fonts, 29

full-screen usage, 28–29

graphics, 30

scalable UI, 28

screen size, 27–28

selecting correct orientation, 28

volume method, 119

■ W
wait method, 70

Web applications, including application

icons with, 203

web content, integrating Qt objects with,

101–107

displaying web content with QtWebKit,

102–104

embedding C++ objects in QtWebKit's

JavaScript runtime, 104–106

embedding Qt widgets into QtWebKit

pages, 106–107

linking applications with QtWebKit, 102

web databases, HTML5, 176

Web Hypertext Application Technology

(WHAT), 160

Web, programming for with QML, 149–154

creating user interfaces, 151–154

downloading data, 154

web storage, HTML5, 175

WebActionProxy class, 105, 128

WebKit engine, 101

webkit-transform property, 173, 183

webkit-transition property, 162

WebProxyAction class, 131

WebView element, 147

Welcome view, 44–45

WHAT (Web Hypertext Application

Technology), 160

widgets, custom, 92–101

handling incoming events, 95–97

handling incoming gestures, 97–99

painting widget contents, 99–101

specifying widget size hints and policies,

94–95

subclassing QWidget, 93–94

windows, Qt, 90–92

wireframe diagram, 20

wlan0 row, Mad Developer tool, 44

WorkerThread, HelloWorld class, 128

workspace area, Flowella tool, 22–23

WRITE directive, 62

write method, 68–69

■ X
x parameter, 170

X Pixmap (XPM), 202

XmlHttpRequest method, 166, 182

XmlListModel element, 149, 152, 154–155

XPM (X Pixmap), 202

■ Y, Z
y parameter, 170

Index

Index

	Prelim
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Why Should You Read This Book?
	How Should You Read This Book?
	A Word on Conventions We Use in This Book

	Design
	Introducing Nokia’s Software Platform
	Why Nokia?
	Introducing Nokia’s Hardware Platforms
	Series 40
	Symbian
	MeeGo

	Choosing a Development Platform
	Qt
	HTML5
	Hybrid Applications

	Distributing Your Application
	Wrapping Up

	Designing Your Application
	Designing for Mobile
	User Context
	Mobile Interaction Considerations
	Technical Considerations
	Cultural Considerations

	The Design Process
	Getting Started
	Design Research
	Conceptual Design
	Interaction Design and Prototyping
	Documentation
	Flowella
	Visual and Information Design
	Testing and Evaluation
	Additional Topics: Gestalt and Unity

	Usability Guidelines
	Navigation
	Entering Information
	Information Presentation
	Connectivity
	Usability for Enterprise Applications
	Usability and Security
	Advertising
	Platform Components

	Checklists
	Summary

	Developing Your Application
	Working with the Nokia Qt SDK
	Choosing an IDE
	Introducing the Nokia Qt SDK

	Getting Started with the Nokia Qt SDK
	Installing the Nokia Qt SDK
	Finding Your Way around the Nokia Qt SDK
	Creating a Qt Application
	Compiling and Running Your Code on a Device

	Debugging Your Application
	Wrapping Up

	Beginning Qt Development
	Understanding the Qt Object Model
	Understanding Signals and Slots
	Making the Most of Hierarchical Ownership
	Defining Object Properties
	Casting at Run Time
	Managing Resources and Localization
	Understanding Qt’s Collection Classes

	Using Signals and Slots
	Performing Input and Output
	Managing Multiple Threads
	Using Item Views with the Model-View-Controller Paradigm
	Understanding Qt’s Model Classes
	Using Qt’s View Classes

	Putting It All Together
	Implementing the Application User Interface
	Using the Network to Obtain Data
	Parsing the USGS Data Feed
	Displaying the Results

	Wrapping Up

	Doing More with Qt
	Using Application Resources
	Including Resources in Your Applications
	Accessing Application Resources

	Incorporating User Actions
	Introducing the Qt Main Window
	Attaching Actions to the Main Window

	Implementing a Custom Widget
	Subclassing QWidget
	Specifying Your Widget’s Size Hints and Policies
	Handling Incoming Events
	Handling Incoming Gestures
	Painting Your Widget’s Contents

	Integrating Qt Objects with Web Content
	Linking Your Application with QtWebKit
	Displaying Web Content with QtWebKit
	Embedding C++ Objects in QtWebKit’s JavaScript Runtime
	Embedding Qt Widgets into QtWebKit Pages

	Extending Application Functionality with Qt Mobility
	Using the Qt Mobility APIs
	Managing Bearer Networks
	Obtaining and Working with Device Location Information
	Sending and Receiving Messages
	Playing and Recording Multimedia
	Obtaining System Information

	Putting It All Together
	Looking inside the Application Controller
	Changes to the Network Request
	Determining the Device Position
	Drawing the Map

	Wrapping Up

	Introducing Qt Quick
	Declaring Your User Interface
	Introducing QML
	Handling Signals in QML
	Performing Animations in QML
	Reviewing the Available Qt Quick Elements

	Programming for the Web with QML
	Creating the User Interface
	Downloading the Data

	Integrating C++ with QML
	Displaying QML within a C++ Application
	Mingling QObjects with QML

	Wrapping Up

	Developing with HTML5
	HTML5 Is an Industry Standard
	Hello World in HTML5
	Hello World on a Handset
	Using the HTML5 Application Cache

	Hybrid Apps
	Accessing Your HTML5 Content from the Local File System
	Storing the HTML5 Content as an Application Resource

	More HTML5 Features
	Canvas
	Transitions and Transformations
	Local Storage

	Putting It All Together: Implementing Shake in HTML5
	Adding UI Components to the Views
	Fetching and Parsing the Data
	Packaging the App

	Links for further information
	Wrapping Up

	Distribute
	Testing Your Application
	Preparing to Test
	Using Qt’s Test Framework
	Introducing the QTest Test Framework
	Unit Testing the QuakeEvent Class
	Testing Signals and Slots Using QTest
	Testing User Interface Code Using QTestEventList

	Wrapping Up

	Deploying Your Application
	Preparing a Deployment Checklist
	Packaging Your Application
	Including Other Files within Your Application on Symbian Devices
	Including Other Files within Your Application on MeeGo Devices
	Including an Application Icon with Symbian Applications
	Including an Application Icon with MeeGo Applications
	Providing a UID for Qt Applications on Symbian
	Providing a Desktop File for MeeGo
	Putting It All Together

	Signing Your Qt Application for Symbian Devices
	Publishing with the Ovi Store
	Registering with the Ovi Store
	Publishing Your Application
	QA in the Ovi Store

	Marketing Your Application through the Ovi Store
	Wrapping Up

	Index
	¦ A
	¦ B
	¦ C
	¦ D
	F
	¦
	¦ E
	G
	¦
	¦ H
	¦ I
	K
	¦
	¦ L
	M
	¦
	¦ J
	N
	¦
	¦ O
	¦ P
	¦ Q
	R
	¦
	¦ S
	¦ T ¦ U
	¦ V
	¦ X
	¦ W
	¦ Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

