


For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 



iv 

 

Contents at a Glance 

Contents .............................................................................................................. v 

About the Authors .............................................................................................. ix 

About the Technical Reviewers .......................................................................... x 

Acknowledgments ............................................................................................. xi 

Introduction ...................................................................................................... xii 

■Chapter 1: Understanding Cross-Platform Mobile  
                     Application Development ............................................................... 1

■Chapter 2: Getting Started with PhoneGap .................................................... 17

■Chapter 3: Setting the Environment .............................................................. 97

■Chapter 4: Using PhoneGap with jQuery Mobile .......................................... 127

■Chapter 5: Using PhoneGap with Sencha Touch .......................................... 193

■Chapter 6: Using PhoneGap with GWT ......................................................... 231

■Chapter 7: PhoneGap Emulator and Remote Debugging ............................. 249

■Chapter 8: Using PhoneGap Plug-Ins ........................................................... 271

■Chapter 9: Extending PhoneGap .................................................................. 293

Index ............................................................................................................... 325



xii 

 

Introduction 

Who This Book Is For 
This book is meant for anyone wanting to start mobile application development across more 
than one mobile platform. The book provides an introduction and detailed tutorial on PhoneGap 
and also helps the reader with the following: 

1. Identifying which JavaScript UI Framework is best for them 

2. Introduces the JavaScript UI Framework and its integration with PhoneGap 

3. Explains the concept of a plug-in and how to use it to do OAuth authentication and 

Cloud Push 

4. Explains how to write customized plug-ins 

How This Book Is Structured 
The book begins by explaining about the fragmentation in the mobile OS world and how it affects 
us. It goes further to talk about how to bridge the gap due to this fragmentation and how to write 
code once and deploy it across mobile platforms.  

After the concept behind PhoneGap is made clear, the book goes on to explain PhoneGap 
usage on Android and then gives instructions on how to do the same across the other remaining 
mobile platforms. 

It next introduces how to use a JavaScript UI Framework on top of PhoneGap and also talks 
about which JavaScript UI Framework to use in which scenario. 

Finally, the book moves its focus to plug-ins. It shows a couple of examples of how to extend 
the PhoneGap framework with community plug-ins. Then it explains how to build these plug-ins 
across iOS, Android, and BlackBerry.  

Downloading the Code 
All the source code referred to in this book is available at https://bitbucket.org/rohitghatol/ 
apress-phonegap. The chapters themselves state this. It is also available on the Apress web site at 
Apress.com. 

Contacting the Authors 
The authors can be contacted at their LinkedIn Profiles: 
 Rohit Ghatol—http://in.linkedin.com/in/rohitghatol  
 Yogesh Patel—www.linkedin.com/profile/view?id=19911394  

https://bitbucket.org/rohitghatol/
http://in.linkedin.com/in/rohitghatol
http://www.linkedin.com/profile/view?id=19911394


 1 

   Chapter 

Understanding 
Cross-Platform Mobile 
Application Development 
This book is about mobile application development; more specifically, about easing the 
pain of mobile application development. There are many smartphone platforms on the 
market: Android, iPhone, BlackBerry, Nokia, the Windows 7 Phone, and WebOS. Newer 
platforms are on the rise as well, such as Samsung’s Bada and Meego. 

The sheer number of development platforms for mobile applications may seem 
overwhelming. This is the first of many points you must keep in mind when dealing with 
mobile application development. 

In the year 2000, we saw a similar situation in the desktop world. We had Microsoft 
Windows, Apple’s Mac, and various versions of Linux and UNIX. At that time, it was 
difficult to build products that would run on all these platforms. The resulting  
fragmentation was often solved via in-house solutions by building frameworks in C++, 
with Operating System (OS)-specific modules abstracted. Fortunately, Sun’s Java came 
to the rescue and provided us with a common platform on which to build. With Java’s 
build–once–and–run–anywhere strategy, building desktop products had become a 
breeze. 

Between 2004 and 2008, the developer community saw a different kind of 
fragmentation; this time, it took place in the browser world. It was a fragmentation 
involving the very popular Internet Explorer 6 vs. Firefox and Safari—then, Chrome and 
other browsers came out of the woodwork, causing further fragmentation. 

The nature of this fragmentation, however, was different and a little more tame: it was 
mainly due to browsers not following the specifications outlined by the World Wide Web 
Consortium (W3C). Often, this fragmentation was solved by writing either “If Browser is 
IE, then do this else do that” or “If Feature is Present, then do this else do that.”  

1 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 2 

Many JavaScript libraries came to the rescue and helped write cross-browser web 
applications. Things have improved to such an extent that all of the browsers are 
working hard to be more and more compliant with W3C specs. The browser, as a 
platform, is now a strong contender. 

This book is about fragmentation in the mobile world. Mobile OS fragmentation is severe 
because there are no specifications or standards in this development area. 

In 2007, Apple and Google launched their mobile platforms. In 2008, both companies 
launched mobile app stores to allow smartphone users to download mobile applications. 
The era of mobile applications had begun; since then, there has been no looking back. 
The number of smartphone users has grown exponentially. 

Companies started focusing on delivering services and content on the new smartphone 
platform. Businesses realized they needed to shift their focus to smartphone users. Not 
only was there an increase in the number of users, but the frequency of smartphone 
usage increased as well. 

Imagine your developers working around to the clock to release the same product on 
the iPhone, Android, BlackBerry, WebOS, and Symbia—and now, let’s add Samsung 
Bada to that list! You can see the challenge here. The OS platforms, starting with their 
development environments, are so fragmented. For the iPhone, you will need Mac 
machines, and for BlackBerry, you will need Windows. This chapter will talk about these 
things in greater detail.  

Now, for those of you who are new to mobile application development, we will start by 
focusing on what it’s like to create a mobile application. We will answer questions like 
“How is a mobile application different than traditional web-based or desktop-based 
applications?” We will investigate the challenges of developing mobile applications for 
various platforms. 

Types of Mobile Applications  
It is important to understand the different types of mobile applications. I will put them in 
two categories, according to what they do. 

1. Standalone mobile applications 

2. Mobile applications (based on web services) 

Standalone mobile applications are applications such as alarms, phone dialers, and 
offline games. Web service-backed mobile applications are applications like e-mails, 
calendars, Twitter clients, online games, and applications that interact with web 
services. 

This distinction between mobile applications is unique to the context of this book. 
Although PhoneGap can be used to implement standalone mobile applications, the 
nature of PhoneGap-based mobile applications typically falls into the category of 
“service-backed mobile applications.” 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 3 

Understanding Web Services 
As a developer, when you look at the web applications on the Internet, you need to think 
about two kinds of web development. 

1. Web applications that are accessible via browsers (meant for human interfacing) 

2. Web services that are accessible via protocols like RESTful web services (meant 
for programmatic interfacing) 

All popular web applications like Google, Facebook, Twitter, LinkedIn, MySpace, Flickr, 
and Picasa provide a RESTful interface for their services. There are many online 
dictionaries for such sites. If you visit www.programmableweb.com, you will see a sizable 
listing of all of the web applications that provide such services for programmatic 
interfacing (see Figure 1–1). 

 

Figure 1–1. Programmable Web API directory   

Many companies that want to develop mobile applications for multiple platforms either 
have their own web services or rely on other web services. While PhoneGap can work 
for standalone mobile applications, it is very well-suited for mobile applications that 
make use of web services. The reason for this is that PhoneGap applications are 
primarily web applications that are augmented with device features. Think about a Flickr 
web application that has access to a device’s camera or Google Maps application, 
which, in turn, has access to a GPS. Another example is Foursquare, which has access 
to your GPS, as well as your phone’s address book. 

This more or less means that a majority of PhoneGap-based applications will access 
web services using JavaScript. This makes it important for developers using PhoneGap 
to have a handle on using web services. 

http://www.programmableweb.com


CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 4 

For developers who want to write PhoneGap applications after reading this book, I 
recommend finding some web services on ProgrammableWeb.com, and writing a 
PhoneGap client for those services as an exercise. 

This book will provide an example of one such service; namely, AlternativeTo.Net. 

Overview of Mobile Applications 
While many of you have at least some prior experience working with mobile 
applications, a large number of you are more familiar with non-mobile Platforms, (e.g., 
web platforms). Therefore, this book explicitly deals with the nature of mobile 
applications and the challenges associated with them. This will help you, if you come 
from a non-mobile background, in the way of understanding what it means to develop 
mobile applications. 

Mobile Application Features 

 

Figure 1–2. Mobile applications are not web applications. 

The first thing to note is that mobile applications are not web applications. The 
difference is in both the nature of the features and the number of features provided (see 
Figure 1–3). 

  A mobile application is likely to have fewer features.  

  You can expect your mobile application to look very different from your web 
application. First, the screen size on your smartphone is not the same as your 
desktop. On a web application, where the screen is bigger, you have more 
space for menus, toolbars, and widgets. 

  Given the screen size constraint on your smartphone, you will 
see more of a dashboard type of home screen.  

  The smartphone user is expected to go through various levels of 
navigation to reach the feature he or she intends to use.  

  Smartphone users and web users have different intentions. The smartphone 
user wants to use the application on the go, getting maximum productivity with 
the least amount effort, while the web user will likely spend more time using the 
web application.  



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 5 

Due to the preceding differences, you will see the most productive (or most frequently 
used) features being highlighted on smartphones. Whether a mobile application provides 
all the features, or a subset thereof, these small sets of productive (and most frequently 
used) features would be organized in the most accessible way on the mobile application. 

 

Figure 1–3. Mobile features are not thesame as web application features. 

User Interaction
The way a user interacts with a mobile application relative to a traditional web 
application is very different (see Figure 1–4). 

With the touch screen capabilities of a smartphone and more vivid user interaction, 
based on an accelerometer and compass, a mobile application has to be built 
differently.  

Think about a car game application, where the car is maneuvered by tilting the phone to 
the left or right. This is based on an accelerometer. Think about a map application that 
always points north as the user changes his or her direction. This is based on a 
compass. 

While the newer way to interact with applications has enhanced the user’s experience, 
the absence of a physical keyboard on the newer mobile platforms adds some 
additional constraints for the power keyboard user. This needs to be taken into 
consideration when the mobile application requirements are being elaborated.   

To add to this, a smartphone has two display modes: Layout and Portrait; these were 
unheard of in earlier browsers. An important part of documenting the requirement 
specification is to define the application’s look, feel, and behavior when the device is in 
Portrait or Landscape mode. 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 6 

 

Figure 1–4. Smartphones and web applications have different User Input Interfaces. 

Location Awareness 
Location awareness is something that comes naturally to a smartphone. Google Maps, 
Local Search, Foursquare, and many other mobile applications make use of the fine-
grained GPS of smartphones. Web applications use location awareness too; however, 
these applications use relatively more course-grained GPS systems (e.g., country level) 
(see Figure 1–5). 

 

Figure 1–5. Location awareness capacity of smartphone apps compared to web applications 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 7 

Push Notification
Application users like to be notified of useful events like incoming e-mails and 
messages. A smartphone is the best platform for notification, since it’s close to the user 
almost all of the time. 

Apart from notifications like incoming e-mails or messages, any service can send 
notifications to a smartphone user (see Figure 1–6). Think about a workflow at an 
organization. Instead of a user always logging on to a web application to complete a 
workflow that involves him or her, it would be much more productive for the application 
to notify the user that he or she needs to perform an action to complete a workflow. This 
way, the user is always productive, irrespective of whether he or she is close to his or 
her laptop or desktop. 

 

Figure 1–6. Push notification capability of smartphones (notification on the go) 

Challenges in Cross-Platform Mobile Application 
Development 
While mobile application development is exciting, given the growing number of mobile 
operating systems (OS), there are many challenges associated with developing mobile 
applications. 

Let’s take a look at those challenges. 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 8 

OS Fragmentation 
The trend of increased fragmentation coincides with the growing number of mobile 
platforms (see Figure 1–7). First, there were BlackBerry and Symbian smartphones—
then came the powerful iPhone and Android platforms. To be sure, mobile platforms did 
not stop there. HP came with WebOS; Microsoft introduced the Windows 7 Phone; and 
now, Samsung is coming up with Bada.  

This means that companies have to keep launching new products to make their 
presence felt on all mobile platforms.  

Figure 1–7. Fragmentation due to the growing number of mobile operating systems 

Let’s say you want to develop a mobile application and target it for the iPhone, Android, 
BlackBerry, etc. Due to each mobile platform’s different OS, consider the following: 

First, you have to set up different environments for each platform.  

Second, you need a bit of expertise with each respective OS. For a 
mobile developer, the learning curve may be long.   

Different programming languages are required for different mobile 
platforms. 

You need to be familiar with the features supported by each mobile 
platform; see Figure 1–10. 

Table 1–1 depicts the required setup for mobile application development (for various 
mobile platforms).  

In the past, we have seen similar OS fragmentations, beginning with the cross-desktop 
fragmentation of Windows, Linux, and Mac, which was resolved with Sun’s launch of 
Java. In the more recent past, we faced browser fragmentation, which is resolved by 
cross-browser JavaScript frameworks like jquery, YUI, and Google Web Toolkit. 

Mobile OS fragmentation is the worst and most diverse fragmentation of all. This adds a 
sizable technical challenge to launching mobile applications on all mobile platforms. 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 9 

Multiple Teams/Products 
If we choose to build a mobile application for each platform using multiple teams, we 
face a number of problems; adding teams leads to more risks with project delivery; 
adding products means more responsibilities for the product management team (see 
Figure 1–8). Since features are also fragmented on all mobile platforms, product 
management has to make specific requirements for products on each platform. 

Ultimately, adding more teams, increasing coordination between multiple teams, and 
adding multiple products will lead to added overhead for the management and 
development teams. 

 

Figure 1–8. Adding multiple teams for different mobile OSs poses new problems. 

Consistent User Experience 
Given the fact that you want your application to be consistent across multiple mobile 
platforms, your application needs to give similar and consistent user experiences across 
all of the platforms (see Figure 1–9). This also has to do with the fact that your end-users 
could migrate from one platform to another, or maybe they are present on more than 
one platform. Think about a user who has an Android smartphone and an iPhone iPad. 
The user may use the iPad when he or she is at home or at the office, and may use the 
Android smartphone while he or she is on the go.  

This is one of the many reasons why your application has to provide a similar user 
experience across mobile platforms; of course, user experience will vary to a degree 
depending on the mobile platform, due to the fragmentation of device features and 
capabilities. 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 10 

 

Figure 1–9. Providing a uniform user experience to application end-users across platforms 

Feature Fragmentation 
Device features and capabilities vary across platforms (see Figure 1–10). This means 
that while some Androids and iPhones have an embedded compass to show directions, 
the other smartphones don’t. This could mean that the navigation applications on other 
smartphones may not be able to rotate maps in the way that Android or iPhone 
applications can. 

Overall, the fact that the same application will have some features turned off on some 
mobile platforms is a reality; the application’s logic needs to be written in that manner.  

 
Figure 1–10. Feature Fragmentation for different mobile OS’s 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 11 

Development Environment Fragmentation 
Development environment is one particularly important fragmentation. You will need at 
least two operating systems—Windows (preferably Windows 7) and Mac (preferably 
Leopard)—if you want to develop a mobile application targeting the following platforms: 

1. iOS 

2. Android 

3. BlackBerry 

4. WebOS 

5. Symbian 

6. Windows 7 

What is more, you will have to use a variety of IDEs and programming languages, such 
as Java, C++, and Objective C. Also, you will be using a number of IDEs, such as Xcode 
and Eclipse. 

Table 1–1 shows the requirements for development environments (for various mobile 
platforms). 

Table 1–1. Development Requirements 

Mobile OS Operating System Software/IDEs Programming 
Language 

iOS Mac only Xcode Objective C 

Android Windows/Mac/Linux Eclipse/Java/Android 
Development Tool 
(ADT) 

Java 

BlackBerry Windows mainly Eclipse/JDE, Java Java 

Symbian Windows/Mac/Linux Carbide.c++ C++ 

WebOS  Windows/Mac/Linux Eclipse/WebOS plugin HTML/JavaScript/C+
+ 

Windows 7 Phone Windows mainly  Visual Studio 2010 C#, .NET, Silverlight 
or WPF 

  



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 12 

PhoneGap’s Strategy for Cross-Platform Mobile 
Application 
PhoneGap was made possible due to a commonality between all of the mobile 
platforms. If it were not for this common component, PhoneGap would not have been 
possible. 

Browser Component As the Common Platform 
The browser world was largely fragmented until just a few years ago. At the time, 
different browsers adhered to W3C standards to different degrees. Firefox and Safari 
browsers were at the forefront in terms of adhering to standards, while others lagged 
behind.  

A lot has changed since then. Now, browsers are looking better in terms of adhering to 
standards (more so on the mobile platforms). This is also true because most modern 
mobile platforms have the same webkit-based browser. 

Also, newer browsers, both on desktops and smartphones, have started to adhere to 
newer standards like HTML5/CSS3. This adds more features to the browser world and 
lessens the fragmentation across mobile platforms (see Figure 1–11). 

 

Figure 1–11. Mobile browser 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 13 

Let’s look at Table 1–2, which lists mobile platforms and their corresponding browser 
platforms. As you can see, all mobile platforms except the Windows 7 Phone use a 
webkit-based browser. While the Windows 7 Phone has its own browser, the good news 
is that all of the browsers listed here are already adhering to HTML5/CSS3 standards, 
and with the passage of time, their adherence will continue to improve. 

Table 1–2  Mobile Browsers 

Mobile OS Browser 

Android Webkit-based 

iPhone Webkit-based 

BlackBerry 6.0 + Webkit-based 

Windows 7 Phone IE 7-based * 

WebOS Webkit-based 

Nokia Webkit-based 

BADA Webkit-based 

PhoneGap uses these modern browsers as the platform for building HTML5/CSS3-
based applications. Think of all PhoneGap applications as having embedded browsers 
and running these HTML5/CSS3-based applications. 

Mobile Application Webviews  
All of these mobile platforms support embedding browsers in applications. This means 
one of the screens of your mobile application can actually be a browser that shows an 
HTML page.  

These embedded browsers are often referred as webviews. This means you can define 
one of the screens of your application as a webview. 

Think about your application having a screen named “about us.” This “about us” screen 
shows your company’s information. Now, let’s assume for example, the “about us” 
information about your company changes on a frequent basis. One of the requirements 
of your mobile application is to show the latest “about us” information. Therefore, 
instead of showing a hardcoded “about us” screen, you can show a webview pointing to 
your company’s “about us” page (preferably the mobile version of the web page). It will 
load the “about us” page from the web. Also, a webview can be used to load and 
display the HTML pages that are stored locally on the mobile device. We can take this 
concept a step further: instead of a static web page, we can show Ajax-based web 
pages that interact with web services.  



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 14 

Native Hooks to Expose Device Capabilities 
Now that we know that browsers can be embedded within a web application, let’s shift 
our focus to exposing device capabilities through these embedded browsers. 

Let’s say you are developing a Flickr application, based on a Flickr API. With the help of 
these APIs, you can login to Flickr, list galleries, and download and show your pictures. 

While this is a good idea for a web application, when we show the same application on a 
mobile phone, remember that a mobile phone usually has a camera. It would make 
perfect sense to allow the Flickr application to take a picture from the camera and 
upload it to Flickr. 

In order to do this, we can make the embedded browser (or webview) expose JavaScript 
API, which, when called, makes the camera take a picture and gives us back the binary 
data for that picture (see Figure 1–12). 

 

Figure 1–12. JavaScript to native communication and vice versa 

Technically, all these platforms support exposing native modules to JavaScript in the 
webview. This means, programmatically, that all these platforms allow JavaScript code 
to call native Java/C++/Objective C code, and vice versa. 

Let’s take a look at an example. Our webview hosts an HTML page, which is showing a 
Google map. We want to center the map according to the GPS location of the phone. In 
order to do so, we need to write a native component, which enquires the device about 
the GPS location.  

Then, we write code that will expose this native module from the webview. The 
JavaScript code in the webview invokes this code to gain access to the GPS 
coordinates. Once the code gains access to the GPS coordinates, it centers the map 
accordingly. This is the main principle behind the PhoneGap framework. 



CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 15 

HTML5 and CSS3: The Standards for Writing Applications 
HTML5 and CSS3 are emerging web technologies. They are making web applications 
more interactive and feature-rich. 

HTML5 has not only added new markups for more robust multimedia support; it has 
also added features like web worker for background processing, offline support, 
database support, and much more. 

CSS3 is the new standard for a seamless, rich User Interface (UI). Gone are the days 
when designers were put to task to get simple rounded corners or gradients on a button 
or border. With CSS3, things are easier, faster, and better.  

With the support for animation, a CSS3 site can now compete against flash-based sites.  
Not only that, but a portal site can be easily transformed into a mobile site by a mere 
change of the CSS file. Furthermore, print previews can now be achieved with a different 
CSS file. 

It’s a well-known fact that mobile browsers are early adopters of W3C standards. This 
means mobile phones are the right platform for HTML5/CSS3 applications. 

Single Origin Policy Not Applicable 
For those of you who have worked with Ajax-based applications, you know that a web 
application hosted at “abc.com” cannot make Ajax calls to a web service hosted at 
“xyz.com.” This means that if someone was developing an Ajax-based application— 
say, hosted at myphotobook.com—he or she would not be able to make Ajax calls to 
flickr.com. 

This is called a single origin policy—you can read further about single origin policies at 
http://en.wikipedia.org/wiki/Same_origin_policy. 

The same is not true for a PhoneGap application. A PhoneGap application bundles the 
required HTML, JavaScript, and CSS files, and PhoneGap applications do not have 
domains like “abc.com.” This allows PhoneGap to be a platform for the easy 
development of mashups, which can freely make Ajax calls to various other sites.  

Think about your PhoneGap application integrating Facebook, Twitter, and Flickr all into 
one mashup, with just a few lines of JavaScript code. 

This makes PhoneGap an ideal platform for creating mobile applications for the web 
services listed on programmableweb.com. 

The restrictions are illustrated in Figure 1–13: 

http://en.wikipedia.org/wiki/Same_origin_policy


CHAPTER 1:  Understanding Cross-Platform Mobile Application Development 16 

 

Figure 1–13. Single origin policy  

Conclusion 
PhoneGap uses HTML5, JavaScript, and CSS3 to develop mobile applications. These 
are standard technologies in the web world. By using PhoneGap, a developer with little 
or no native language background can start developing mobile applications for all of the 
popular mobile platforms.  

Although PhoneGap provides access to standard native features of mobile applications, 
its plug-in framework is flexible enough to extend and add new features, if required.  

PhoneGap is a growing technology used to develop cross-mobile platform applications. 



 17 

   Chapter 

Getting Started with 
PhoneGap 
PhoneGap is a HTML5 application framework that is used to develop native applications 
through web technologies. This means that developers can develop Smartphone and 
Tablet applications with their existing knowledge of HTML, CSS, and JavaScript.  With 
PhoneGap, developers don’t have to learn languages like Objective-C for the iPhone.  

Applications that are developed using PhoneGap are hybrid applications. These 
applications are not purely HTML/JavaScript based, nor are they native. Parts of the 
application, mainly the UI, the application logic, and communication with a server, is 
based on HTML/JavaScript. The other part of the application that communicates and 
controls the device (phone or tablet) is based on the native language for that platform. 
PhoneGap provides a bridge from the JavaScript world to the native world of the 
platform, which allows the JavaScript API to access and control the device (phone or 
tablet). 

PhoneGap essentially provides the JavaScript API with access to the device (phone or 
tablet) capabilities like, the camera, GPS, device information, and many others. These 
APIs are covered in detail in Chapter 4.  

This chapter starts with providing you with proper information to understand the overall 
architecture of PhoneGap. Then we will apply this information in a PhoneGap example. 
At the end of this chapter we will write a small Hello World Application using PhoneGap.  

NOTE: PhoneGap is a framework; it does not provide any IDEs or special development 

environments for coding. You will need to use Eclipse and Android SDK to develop a PhoneGap 
application for an Android; you will need to use Xcode to develop a PhoneGap application for an 

iPhone. 

2 



CHAPTER 2:  Getting Started with PhoneGap 18 

PhoneGap Architecture 

Figure 2–1. PhoneGap application architecture 

The PhoneGap framework is primarily a JavaScript Library that allows HTML/JavaScript 
applications to access device features. The PhoneGap framework also has a native 
component, which works behind the scene and does the actual work on the device 
(phone or tablet). 

Please refer to Figure 2–1 for overall PhoneGap architecture. An application build using 
PhoneGap will primarily have two parts: 

1. The JavaScript Business Logic Part, which drives the UI and its functionality. 

2. The JavaScript Part, which accesses and controls the device (phone or tablet). 

Consider a Facebook application. The main parts of the application would be the login 
page, and downloading photo galleries. Now you want to add a module where you can 
take a picture and upload it to Facebook. In order to do this, you would call PhoneGap’s 
camera API to gain access to the phone’s camera, take a picture, and get the picture 
file. The next step is an AJAX call to the Facebook Server, in order to upload the picture. 



CHAPTER 2:  Getting Started with PhoneGap 19 

Another example that can be applied is using PhoneGap to store a Friend List in a 
database, so we can search for local friends.  

The previous description gives the impression that developing mobile applications in the 
PhoneGap requires more of writing business logic and UI, and less accessing of the 
device’s capabilities, which is correct. This book not only explains PhoneGap APIs but 
also acts as a guide for creating a HTML5/CSS3 based mobile application. 

Setting up an Environment on the Android 
The first step towards creating a PhoneGap application is to setup a mobile 
development environment. We will begin with Android because the Android application 
development is in Java, which is based on Eclipse, and supports almost all features of 
PhoneGap.  

You will need to download and install the following prerequisites for Android: 

1. JDK 1.6+ 

2. Eclipse 3.4 to 3.6 

3. Android SDK with an Android 2.2 platform 

4. Android ADT plugin for Eclipse 

5. Android AVD for Android 2.2 

6. PhoneGap SDK 1.1.0 for Android 

Since Android is programmed in Java, we need JDK 1.6+ and Eclipse 3.4+. We will then 
install Android SDK. The Android SDK is a generic SDK and does not come with support 
for any platform. A platform is an OS version, for example 2.2 Froyo, 2.3 Ginger Bread, 
and 3.0 Honeycomb. These platforms need to be downloaded in order to create, build, 
and run Android projects. This plugin is called the Android ADT Plugin. 

Once the Eclipse, Android SDK, and Android ADT (Eclipse Plugin) are all set, we need to 
create an Emulator Environment for Android. This is called a Preparing Android AVD 
(Android Virtual Device). If we are developing a PhoneGap Application for Android that is 
targeting 2.2 Froyo, we need an AVD of the same Android platform. 

The following steps will explain how to create an Android Project and inject the 
PhoneGap Library into the Android. 

4



CHAPTER 2:  Getting Started with PhoneGap 20 

Required Installations for PhoneGap Android Project 
1. Install the 3.4 version of Eclipse. 

2. Install Android SDK. 

3. Install the Android ADT Plugin for Eclipse. 

4. Create AVD for the Emulator.  

5. Install the PhoneGap libraries. 

Step 1: Set-up Eclipse 
This step assumes you already have Java SDK 1.6 installed. Once that has been 
installed, download Eclipse from www.eclipse.org/downloads/. See Figure 2–2 to see 
the eclipse download page. We need to have an Eclipse IDE version 3.4+ with support 
for JDT (Java Development Environment). You should install Eclipse IDE for Java 
Developers.  

 
Figure 2–2. Eclipse download page 

Step 2: Install Android SDK 
Some of the steps in setting up the Android Development Environment are platform 
dependent. To avoid any confusion, we will explain how to execute each step in a 
platform specific manner. 

http://www.eclipse.org/downloads/


CHAPTER 2:  Getting Started with PhoneGap 21 

Start by downloading Android SDK from http://developer.android.com/sdk/index.html 
(refer to Figure 2–3). 

 

Figure 2–3. Android SDK download page 

Instruction for Windows 
Install Android SDK by using the Android Installer, installer r11-windows.exe. This is the 
recommended installation technique for Windows.  The alternative is to download the 
android-sdk r11-windows.zip file, and extract it to a folder.  We assume that the Android 
SDK is extracted to c:\android_sdk. 

Instructions for Linux 
Download the archie android-dk_r11-linux_x86.tgz archive and extract it to a folder.  

Instruction for Mac OSX Intel 
Download the archive android-sdk_r11-mac_x86.zip file and extract it to folder. 

This Android SDK can support all Android platforms that have been released so far. 
These platforms include the Android 1.1 platform to the recent Android 3.0 (Honeycomb) 
platform. Since nobody requires all of the platforms, the Android SDK comes with no 
platform preinstalled.  

For this book, we will focus only on the SDK platforms: Android 2.2, API 8, and revision 3.  

Since there are no platforms preinstalled, the next step is to install the platforms you are 
interested in. Go to the Android SDK location (in our case c:\android_sdk), and open an 

http://developer.android.com/sdk/index.html


CHAPTER 2:  Getting Started with PhoneGap 22 

executable named Android in the tools folder. In case you have bandwidth limitations, 
instead of downloading all of the platforms, download only the 2.2 Platform of Android 
(SDK platforms Android 2.2, API 8, and revision 3). 

This will open the following screen seen in Figure 2–4. Select the Available Package 
option, check that Android Repository, and click Install. 

 

Figure 2–4. Available platform packages that can be installed 

Now that you have downloaded the platforms, you have the necessary tools to create 
applications for all Android versions that have been launched so far. 

It is recommended you install all of the available packages so that you can have the 
tools to create Android Projects for any of the Android platforms that have been 
released. 

If you want to develop a mobile application for Froyo (Android 2.2), you need to have 
Froyo (Android 2.2.) listed in the installed packages. 

Step 3: Install the Android ADT Plugin for Eclipse 
1. Launch Eclipse and click on Help->Install New Software to open the Available 

Software Dialog box. 

2. In the Work With text box, enter the URL https://dl-
ssl.google.com/android/eclipse), as seen in Figure 2–5. 

3. When you see the option to install Developer Tools, click on it, select all of the 
check boxes in the Developer Tools check boxes, and click on Next. 

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse


CHAPTER 2:  Getting Started with PhoneGap 23 

 

Figure 2–5. Installing the Android ADT Plugin for Eclipse 

1. Configure the Android ADT Plugin with the location of the previously installed 
Android SDK. Open Eclipse’s Preferences by clicking Windows->Preferences for 
Windows and Eclipse->Preferences for Mac. In case you receive an Unsigned 
Content Warning Dialog, you can safely ignore that. 

2. In the Preferences pane, click and expand the Android option. You will see 
Android Preferences pane as shown in Figure 2–6. In the Android Preferences 
pane, put in the location of the Android SDK in the SDK Location text box, and hit 
Apply. 

If the Android SDK Location is correct, you should see a number of options under 
Target Name, including Android 2.2. 



CHAPTER 2:  Getting Started with PhoneGap 24 

  
Figure 2–6. Setting the Android SDK’s location in the Android Preferences screen. 

Step 3: Create Android AVD for the Android 2.2 Platform 
1. Open Eclipse and create a workspace for the Android PhoneGap. The next step is 

to create an emulator for Android. Since Android comes with many platform 
versions, we have to create an Android Virtual Device (AVD) for each platform that 
is targeted. In Figure 2–7, you will see your eclipse as depicted in the screen.  

Please note that the Android emulator runs an Android Virtual Device (AVD). 



CHAPTER 2:  Getting Started with PhoneGap 25 

 

Figure 2–7. Eclipse with the ADT Plugin. 

2. Click on the  button on the toolbar to open the Android SDK and the AVD 
Manager.  Choose the Virtual Devices option as depicted in Figure 2–8. 

 

Figure 2–8. The Android SDK and AVD Manager 



CHAPTER 2:  Getting Started with PhoneGap 26 

3. Click on the New Button to create a new AVD. Choose the Android 2.2 platform, 
also known as Froyo. Choose the 128 MB SD Card Size, and choose the Skin 
Built-in as HVGA. After all of that has been filled out, click Create AVD. Refer to 
Figure 2–9 to see what the “AVD Screen” looks like. 

 

Figure 2–9. Creating a new Android Virtual Device (AVD) to be run in the Android Emulator 

You will see the AVD that was created, depicted in Figure 2–10.  



CHAPTER 2:  Getting Started with PhoneGap 27 

 

Figure 2–10. AVD for the Android 2.2 Platform (Froyo) 

Step 4: Install the PhoneGap SDK 
1. Download the PhoneGap SDK 1.1.0 from the following link, 

http://phonegap.googlecode.com/files/phonegap-1.1.0.zip. After this zip is 
extracted you should see a directory structure, as seen in Figure 2–11. 

   

Figure 2–11.  PhoneGap SDK 1.1.0 directory structure 

2. Select the Android directory and you will see the phonegap-1.1.0.jar and the 
phonegap-1.1.0.js files (see Figure 2–12). 

  

Figure 2–12. Android folder within the PhoneGap SDK. 

This completes the setup of the PhoneGap for Android. 

http://phonegap.googlecode.com/files/phonegap-1.1.0.zip


CHAPTER 2:  Getting Started with PhoneGap 28 

Create a New Project 
The first application in this book is a Hello World Application. The Hello World PhoneGap 
mobile application shows a Hello World on the screen once the PhoneGap framework is 
loaded. 

Step 1: Create an Android Project 
Open Eclipse, click on File->New Project->Android Project.  This will open up an 
Android Project dialog box as shown in Figure 2–13 and Figure 2–14. This is shown in 
the following steps: 

1. Put PhoneGap-helloworld as the project name. 

2. Ensure that you have selected Android 2.2 as the build target. 

3. Enter Helloworld as the application name. This is the human readable name of the 
application. 

4. Enter org.examples.phonegap.sample as the package name. An application in the 
Android market is uniquely identified by the package name. There cannot be two 
Android applications with the same package name on the Android market. 

5. Check the Create Activity checkbox and enter helloworld as the activity name. 
The activity in Android is a screen. And the activity name is also the class name of 
the activity. 

6. Put 7 in the min SDK version. This means that you will allow this application to be 
searched and installed by all Android 2.1 device platforms,  also known as the 
Éclair Android phones. 



CHAPTER 2:  Getting Started with PhoneGap 29 

 

Figure 2–13. Android Project creation 



CHAPTER 2:  Getting Started with PhoneGap 30 

 

Figure 2–14. Android Project creation. 

Step 2: Add PhoneGap Libraries to the Project 
Once the Android Project is created, it’s time to inject the PhoneGap framework into the 
Android Project.  As we have mentioned before, PhoneGap comes with three main 
components:  the native component, the XML plugin, and a JavaScript file.  

1. To install the native component in Android, create a directory named lib in the 
project and copy the PhoneGap jar into it. You can either drag and drop the 
phonegap-1.1.0.jar in the lib folder, or you can copy and paste it into the lib 
folder in the Eclipse IDE. Next, add the PhoneGap jar to the class path by right 
clicking Build Path -> Add to Build Path. This is highlighted in Figure 2–15. 

2. Copy the XML directory from the PhoneGap’s Android Directory into the res 
folder. 



CHAPTER 2:  Getting Started with PhoneGap 31 

  

Figure 2–15. Highlighting the location of the PhoneGap jar in the Android Project 

3. Once the PhoneGap Jar Is added to the Android Project, it’s time to inject the 
JavaScript file of the PhoneGap into the project. We will create a www folder 
under the Assets Folder of the Android Project. The Assets Folder is like the 
media folder of the Android Application. In our case, we will put all of the files of 
the browser-based application inside of the www folder. To begin with, add the 
PhoneGap JavaScript file to the www folder, found in the Assets Folder. This is 
highlighted in Figure 2–16. 



CHAPTER 2:  Getting Started with PhoneGap 32 

  

Figure 2–16. Highlighting the location of the PhoneGap JavaScript file in the Android Project 

Step 3: Modify Android Permissions 
In Android applications, the main file is the Android Manifest file. In this file there are 
many specific things, like the package name, which uniquely identify the application on 
the market. The main file contains a section called permissions. Android uses this 
section to inform the user that the application will be using certain features of the phone. 
Say an application intends to use the Internet to fetch data; permission needs to be 
attained in order to install the application. When the user installs the application he will 
be shown by the Android market that this application will be given the permission to use 
the Internet. 

For the PhoneGap, the following permissions need to be added: 

1. Add the following permissions to the Android Manifest XML: 

<uses-permission android:name="android.permission.CAMERA" /> 
           <uses-permission android:name="android.permission.VIBRATE" /> 
           <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" /> 
           <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 
           <uses-permission 
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" /> 
           <uses-permission android:name="android.permission.READ_PHONE_STATE" /> 
           <uses-permission android:name="android.permission.INTERNET" /> 
           <uses-permission android:name="android.permission.RECEIVE_SMS" /> 
           <uses-permission android:name="android.permission.RECORD_AUDIO" /> 
           <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" /> 
           <uses-permission android:name="android.permission.READ_CONTACTS" /> 



CHAPTER 2:  Getting Started with PhoneGap 33 

           <uses-permission android:name="android.permission.WRITE_CONTACTS" /> 
           <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 
           <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> 

2. We will also need to add the supports-screen option in the Manifest file, as seen 
as follows: 

<supports-screens  
      android:largeScreens="true" 
      android:normalScreens="true"                        
      android:smallScreens="true" 
      android:resizeable="true"      
     android:anyDensity="true" /> 

3. Add android:configChanges=orignetation|keyboardHidden to the activity in the 
Android Manifest. This tells the Android not to kill and recreate the activity when 
the user flips the phone and the screen switches from portrait to landscape and 
vice versa. 

4. Add a second activity after the previous one, by applying the following XML 
snippet: 

<activity android:name="com.phonegap.DroidGap" android:label="@string/app_name" 
android:configChanges="orientation|keyboardHidden">  
 <intent-filter> </intent-filter>  
</activity> 

Once you have modified the Android Manifest, as per the previous instructions, an 
Android Manifest XML will appear.  It will be seen as follows: 

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
     package="org.examples.phonegap.helloworld" android:versionCode="1" 
     android:versionName="1.0"> 
     <supports-screens android:largeScreens="true" 
          android:normalScreens="true" android:smallScreens="true" 
          android:resizeable="true" android:anyDensity="true" /> 
     <uses-permission android:name="android.permission.CAMERA" /> 
     <uses-permission android:name="android.permission.VIBRATE" /> 
     <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" /> 
     <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 
     <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" 
/> 
     <uses-permission android:name="android.permission.READ_PHONE_STATE" /> 
     <uses-permission android:name="android.permission.INTERNET" /> 
     <uses-permission android:name="android.permission.RECEIVE_SMS" /> 
     <uses-permission android:name="android.permission.RECORD_AUDIO" /> 
     <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" /> 
     <uses-permission android:name="android.permission.READ_CONTACTS" /> 
     <uses-permission android:name="android.permission.WRITE_CONTACTS" /> 
     <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 
     <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> 
     <uses-sdk android:minSdkVersion="7" /> 
 
     <application android:icon="@drawable/icon" android:label="@string/app_name"> 
          <activity android:name="HelloWorld" android:label="@string/app_name" 
               android:configChanges="orientation|keyboardHidden"> 

http://schemas.android.com/apk/res/android


CHAPTER 2:  Getting Started with PhoneGap 34 

               <intent-filter> 
                    <action android:name="android.intent.action.MAIN" /> 
                    <category android:name="android.intent.category.LAUNCHER" /> 
               </intent-filter> 
          </activity> 
          <activity android:name="com.phonegap.DroidGap" 
android:label="@string/app_name" 
               android:configChanges="orientation|keyboardHidden"> 
               <intent-filter> 
               </intent-filter> 
          </activity> 
     </application> 
</manifest> 

Step 4: Modify the Main Activity 
In Android, a class named activity represents a screen. In order for us to use the 
PhoneGap in the Android, we will change the screen from an activity to a DroidGap. 
DroidGap is a special activity, which allows us to show HTML pages. This class is 
shown in Figure 2–17 for the HelloWorld Class. 

NOTE: We are telling the DroidGap to load the index.html file in the Android Assets. 

package org.examples.phonegap.helloworld; 
 
import android.os.Bundle; 
 
import com.phonegap.DroidGap; 
 
public class HelloWorld extends DroidGap { 
     /** Called when the activity is first created. */ 
     @Override 
     public void onCreate(Bundle savedInstanceState) { 
          super.onCreate(savedInstanceState); 
          super.loadUrl("file:///android_asset/www/index.html"); 
     } 
} 



CHAPTER 2:  Getting Started with PhoneGap 35 

 

Figure 2–17. Activity extending the DroidGap class 

Write the HelloWorld Application 
A PhoneGap application is an HTML/JavaScript application. Refer to Figure 2–18. 
Following is the index.html.  

1. Include the PhoneGap JavaScript Library version 1.1.0 in the HTML page. 

2. Register the init() method with the body’s onload event. 

3. In the init() function, register the JavaScript callback function onDeviceReady 
with the deviceready event.  

4. In the onDeviceReady callback function, change the contents of the h1 element 
with the ID“helloworld” with the text “hello World! Loaded PhoneGap Framework!” 

The complete source code is listed here: 

<!DOCTYPE HTML> 
<html> 
  <head> 
   
    <title>PhoneGap</title> 
     
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 



CHAPTER 2:  Getting Started with PhoneGap 36 

     
    <script type="text/javascript"> 
     
       /** Called when phonegap javascript is loaded */ 
       function onDeviceReady(){ 
         document.getElementById("helloworld").innerHTML 
 ="Hello World! Loaded PhoneGap Framework!"; 
       } 
        
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
        
    </script> 
  </head> 
  <body onLoad="init()"> 
   
    <h1 id="helloworld">...</h1> 
     
  </body> 
</html> 

 

Figure 2–18. Index.html of the PhoneGap Project 

You can download the complete source for this chapter from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Helloworld  

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Helloworld
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Helloworld
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Helloworld


CHAPTER 2:  Getting Started with PhoneGap 37 

Deploy to Simulator 
In order to run the Android application, right click on the project PhoneGap-helloworld, 
select Run As, and select Android Application. 

This will launch the emulator with the AVD that we previously created. And you will see 
following screens as the application loads. As the application launches, you will see … 
on the screen, as depicted in Figure 2–19. 

 

Figure 2–19. The PhoneGap application loads with … for a few seconds. 

Once the PhoneGap framework is loaded, you will see the application display a 
message, as depicted in Figure 2–20. 



CHAPTER 2:  Getting Started with PhoneGap 38 

Figure 2–20. The PhoneGap app shows a message after the PhoneGap framework loaded up the Deploy to Device 
application. 

So far we have seen how to test applications on the emulator. However, there are 
certain features that cannot be tested on the emulator. In order to test the GPS, camera, 
accelerometer, compass, and actual user perception, the actual device needs to be 
tested. 

Deploy to the Device 
Deploying an Android application to a device is a two-step process: 

Step 1: Get the device ready. 
1. Unlock your device and press the Menu key. This will give you a view that looks 

like Figure 2–21. 



CHAPTER 2:  Getting Started with PhoneGap 39 

 

Figure 2–21. Go to the Android phone’s Settings 

2. Click on the Settings and the screen in Figure 2–22 will appear. Choose the 
Applications option. 



CHAPTER 2:  Getting Started with PhoneGap 40 

 

Figure 2–22. Go to the Applications setting 

3. Now we must ensure that we can deploy non-Market applications on our device. 
This is done by clicking the Unknown sources, seen in Figure 2–23. 



CHAPTER 2:  Getting Started with PhoneGap 41 

 

Figure 2–23. Click the Unknown sources so we can add the non-Market applications 

4. The next step is to go into the Development options (see Figure 2–24) and enable 
the USB debugging (see Figure 2–25). This allows you to plugin one end of the 
USB cable to your Android device and the other end of your cable to your PC or 
Mac. Use Eclipse to debug the application running on your device. 



CHAPTER 2:  Getting Started with PhoneGap 42 

 

Figure 2–24. Go into the Development options 



CHAPTER 2:  Getting Started with PhoneGap 43 

 

Figure 2–25. Enable the USB debugging 

Now your device is all set to deploy applications.  

The Android ADT Plugin provides the Android with a Dalvik Debug Monitoring Server 
(DDMS). DDMS has many features, such as listing the devices/emulators that are 
currently available to deploy and debug an Android application, allowing users to see 
the log messages from the application that was deployed on the device/emulator, and 
browsing the file system of the device/emulator. 

Step 2: At the Application Launch Type, provide information that we 
intend to deploy to the device. 

1. Plug the USB cable into your device, and plug the USB end into your 
development machines. Now open Eclipse and go into the DDMS perspective (Go 
to Eclipse->Windows->Open Perspective->DDMS). You will see a screen like 
Figure 2–26. This screen depicts that we have an Android emulator running, and 
that we also have an Android device plugged into the machine’s USB input. 



CHAPTER 2:  Getting Started with PhoneGap 44 

 

Figure 2–26. The DDMS shows that we have an emulator running and a device plugged into a USB.  

2. When you click on the Run As of any Android application of your Android Project, 
you will see the screen in Figure 2–27. You are presented with this screen 
because you have both an emulator and a device available. Here Eclipse is asking 
you where to deploy the application. In case you only have a device plugged in 
and no emulator running, this screen will not be seen. 



CHAPTER 2:  Getting Started with PhoneGap 45 

 

Figure 2–27. In case there is more than one device or emulator, the DDMS will prompt the user to choose where 
to deploy the application. 

Exploring PhoneGap Features 
This section explores more of the PhoneGap features. 

Here is a short summary of features that PhoneGap supports: 

1. The accelerometer API of PhoneGap enables the application to sense change in 
the device’s orientation, therefore, it is able to act accordingly. This can be useful 
in creating applications that have a bubble level (making sure the phone is aligned 
horizontally to the ground). There is an option to fetch one reading of change in 
device orientation or to continuously receive the changes in device orientation. 

2. The camera API of PhoneGap allows applications to retrieve a picture from either 
the camera (which is very useful for Facebook and Picasa applications) or fetch 
the images from already existing photo galleries. 



CHAPTER 2:  Getting Started with PhoneGap 46 

3. The compass API of PhoneGap helps the applications know the bearing of the 
phone. This proves to be useful for map and navigation applications, since the 
map rotates as the user changes the bearing of the phone There is an option to 
fetch one reading of change in device heading or to continuously receive the 
changes in device heading. 

4. The contacts API of PhoneGap is a way for applications to read and write 
contacts. Many social applications can benefit from syncing phone contacts with 
contacts on social channels. 

5. The file API of PhoneGap allows applications to read, write, and list directories 
and file systems. This is handy if the application is planning to change the 
contents of a file in the file system of the phone. This API can also help write file 
explorer applications. 

6. The geolocation API helps to retrieve the device’s geolocation. This is good for 
many applications, including map-based applications, and applications like 
foursquare, where the user can check-in to a place by using their GPS location. 
There is an option to fetch one reading of change in device geo location or to 
continuously receive the changes in device geo location. 

7. The media API allows applications to control the media sensors and applications 
on the device. This API allows applications to record and playback audio and 
video recordings. 

8. The network API of PhoneGap provides the applications with the ability to see the 
state of the network. Instead of this state being just online and offline, this tells the 
application whether the device is on a 2G/3G/4G network or a Wi-Fi network. 
Such information often helps the application decide when to retrieve certain kinds 
of information. 

9. The notification API allows applications to notify the user that something has 
occurred, by making a beep, vibration, or providing a visual alert. 

10. The storage API of PhoneGap provides a built-in SQL database for the 
applications. An application can insert, retrieve, update, and delete data through 
SQL statements. Applications can query data in the database, and search for a 
specific e-mail in a locally stored list of e-mails. 



CHAPTER 2:  Getting Started with PhoneGap 47 

PhoneGap Tutorials 
Not all of the PhoneGap tutorials can be done on an Android emulator, so we will explain 
the following methods of examining the tutorials: 

  Tutorials that can be done on an Android emulator. 

  Tutorials that require an Android phone to work. 

Emulator Examples 

Fetching Device Information 
PhoneGap allows the device information to be read programmatically. In order to do this 
you need to ensure that the PhoneGap framework has been loaded. Once the 
framework has been loaded, you can extract device information using JavaScript. All the 
properties of the Device Information are listed in Table 2–1. 

Table 2–1. Device Information Properties  

JavaScript Property Description 

device.name Retrieves the device’s model name. 

device.phonegap Retrieves the version of PhoneGap running on 
the device. 

device.platform Retrieves the device’s operating system.  

device.version Retrieves the version of the device’s operating 
system. 

device.uuid Retrieves the device’s Universally Unique 
Identifier number. 

The following code will give you access to the device’s information. Refer to Figure 2–28 
for the same. 

<!DOCTYPE HTML> 
<html> 
  <head> 
   
    <title>PhoneGap</title> 
     
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
     
    <script type="text/javascript"> 
     
       /** Called when phonegap javascript is loaded */ 



CHAPTER 2:  Getting Started with PhoneGap 48 

       function onDeviceReady(){ 
         document.getElementById("deviceName").innerHTML            
  = device.name; 
         document.getElementById("version").innerHTML                    
  = device.phonegap; 
         document.getElementById("mobilePlatform").innerHTML       
  = device.platform; 
         document.getElementById("platformVersion").innerHTML      
  = device.version; 
         document.getElementById("uuid").innerHTML                         
  = device.uuid; 
       } 
        
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
        
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Device Info</h1> 
    <table border="1"> 
      <tr>   
 <td>Device Name</td> 

<td id="deviceName"></td>               
      </tr> 
      <tr>   
 <td>PhoneGap Version</td> 

<td id="version"></td>                    
      </tr> 
      <tr>   
 <td>Mobile Platform</td> 

<td id="mobilePlatform"></td>       
      </tr> 
      <tr>   
 <td>Platform Version</td> 

<td id="platformVersion"></td>      
      </tr> 
      <tr>   
 <td>UUID</td> 

<td id="uuid"></td>                         
      </tr> 
    </table> 
  </body> 
</html> 



CHAPTER 2:  Getting Started with PhoneGap 49 

 

Figure 2–28. PhoneGap device Info HTML source code 

When this code is run, the screen in Figure 2–29 should appear on your Android 
emulator. 



CHAPTER 2:  Getting Started with PhoneGap 50 

 

Figure 2–29. Running the PhoneGap’s device info on the emulator 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-DeviceInfo . 
You can refer to the official documentation of Device API at 
http://docs.phonegap.com/en/1.1.0/phonegap_device_device.md.html#Device. 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DeviceInfo
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DeviceInfo
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DeviceInfo
http://docs.phonegap.com/en/1.1.0/phonegap_device_device.md.html#Device


CHAPTER 2:  Getting Started with PhoneGap 51 

Fetching the Device’s Contacts 
We are going to use PhoneGap to fetch the device’s address book contact numbers. 
Before we do this on an Android emulator, we need to setup the Android emulator with 
some contact information. 

1. Click on the dialer application icon , seen in Figure 2–30.  

 

Figure 2–30. Click on the PhoneGap application on the Android emulator. 



CHAPTER 2:  Getting Started with PhoneGap 52 

2. This will open up the dialer application. Click on the Contacts tab, seen in 
Figure 2–31. 

 

Figure 2–31. Add a contact in Phone application 

3. Click Menu and choose New Contact. In the new contact add the first name, last 
name, and phone number. Refer to Figures 2–32 and 2–33. 



CHAPTER 2:  Getting Started with PhoneGap 53 

 

Figure 2–32. Click Menu and click New Contact  

 

Figure 2–33. Add Contact and click on Done. 



CHAPTER 2:  Getting Started with PhoneGap 54 

4. Once you have entered the needed value, click Done, and you should see one 
contact in your Contact List (as shown in Figure 2–34). 

 

Figure 2–34. Contact list 

In order to access the Contact List using PhoneGap, we need to use following API: 

navigator.service.contacts.find(contactFields, contactSuccess, contactError, 
contactfindOptions); 

Table 2–2 provides a description of each argument. 

Table 2–2. Arguments for PhoneGap Contacts API 

Argument Description Example 

contactField Required argument. This is an array field 
of contacts that need to be returned. 

[“name”,”phoneNumbers”] 

contactSuccess A JavaScript callback function that gets a 
contact array as an argument. 

function 
onSuccess(contacts){ 

} 

contactError A JavaScript callback function that gets 
an error as an argument. 

function onError(error){ 

} 

contactfindOptions Options like filtering by name var options = new 
ContactFindOptions() 

options.filter=”Bob”; 



CHAPTER 2:  Getting Started with PhoneGap 55 

The following provides the steps to produce the complete code for fetching contacts: 

1. Create a ContactFindOptions object. By making the options.filter equal to “” we 
are saying we want to fetch all contacts. If the options.filter was Bob, it would 
mean that we wanted to filter our search so that all of the results must contain the 
keyword Bob somewhere in the contact field. 

var options = new ContactFindOptions(); 
options.filter="";  

2. We need to define the contact fields that we want to fetch. When we search for 
contacts, a contact list appears. The contact itself is an associative array of 
contact fields. This means that if we specify that we want to fetch contacts only 
within the Name and Phone numbers contact field, we would only get that 
information back. 

var fields = [“name”,”phoneNumbers”]; 

3. Define the call back method for success and failure. When we call the method  

Navigator.service.contacts.find(), we need to provide two callbacks. This is 
because the find() method is an asynchronous method.  

function onSuccess(contacts) { 
    for(var index=0;index<contacts.length;index++){ 
        var contact= contacts[index]; 
        var contactName = contact.name.formatted; 
    } 
} 
function onError(error) { 
} 
navigator.service.contacts.find(fields, onSuccess, onError, options); 

4. Use Android Linkify to allow us to dial numbers. While we list the contacts in the 
address book as a part of the HTML list (as seen in the following code), 

<ul> 
<li>Rohit Ghatol</li> 
</ul> 
we can make the listing more useful by using a link for the contact. This is depicted as 
follows: 
<ul> 
<li> 
<a href=”tel://999-999-9999”>Rohit Ghatol</a> 
</li> 
</ul> 

When a user clicks on the link Rohit Ghatol, Android reads the URL to be tel and 
opens the dialer to dial the number. 

This is depicted in Figure 2–36 and Figure 2–37, which show how the application 
looks on Android Emulator. 

Use the following code to apply what we have learned so far. Refer to Figure 2–35 
for the index.html source code. 



CHAPTER 2:  Getting Started with PhoneGap 56 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
        /** Called when phonegap javascript is loaded */  
 function onDeviceReady(){ 
                  // find all contacts 
                  var options = new ContactFindOptions(); 
                  options.filter="";  
                  var fields = ["phoneNumbers", "name"]; 
                  navigator.service.contacts.find(fields, onSuccess, onError 
      , options); 
         } 
         function onSuccess(contacts) { 
              var ul = document.getElementById("list"); 
              for(var index=0;index<contacts.length;index++){ 
                  var name = contacts[index].name.formatted; 
                  var phoneNumber = contacts[index].phoneNumbers[0].value; 
                  var li = document.createElement('li'); 
                  li.innerHTML = "<a href=\"tel://"+phoneNumber+"\">"+name+"</a>"; 
                  ul.appendChild(li); 
              } 
       }; 
       function onError() { 
            alert('onError!'); 
       }; 
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Contacts</h1> 
    <ul id="list"> 
    </ul> 
  </body> 
</html> 



CHAPTER 2:  Getting Started with PhoneGap 57 

 

Figure 2–35. PhoneGap contact application HTML/JavaScript source code 



CHAPTER 2:  Getting Started with PhoneGap 58 

Figure 2–36. Listing Contacts  

Figure 2–37. Clicking on the Contact opens the phone dialer. 



CHAPTER 2:  Getting Started with PhoneGap 59 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Contacts.  
You can refer to the official documentation of Contacts API at 
http://docs.phonegap.com/en/1.1.0/phonegap_contacts_contacts.md.html#Contacts. 

Fetching the SD Card Listing 
This section will explain how to list the SD card of an Android device. This section uses 
a combination of W3C standards and a PhoneGap API. 

There are two steps to listing the SD card of an Android device.  These steps are as 
follows: 

1. We resolve the directory file:///sdcard and gain access to the directoryentry. 

2. When we get access to the directoryentry, we can create a directoryreader from 
the directoryentry, and fetch the contents of the directory (SD card). 

In Step 1, we call the following function: 

window.resolveLocalFileSystemURI("file:///sdcard", onResolveSuccess, onError); 

In response to the previous function, the onResolveSuccess callback will be activated. 
The onResolveSuccess callback can be seen in the following code. Once we get access 
to the fileEntry we create a directoryReader from it and call readEntries on that 
directoryReader. 

function onResolveSuccess(fileEntry){ 

var directoryReader = fileEntry.createReader(); 

directoryReader.readEntries(onSuccess,onError); 
} 

The onSuccess method is called when the path file:///sdcard is successfully resolved. 
The onSuccess method is as follows:  

function onSuccess(entries) { 
document.getElementById("loading").innerHTML=""; 
var ul = document.getElementById("file-listing"); 
for(var index=0;index<entries.length;index++){ 
var li = document.createElement('li'); 
li.innerHTML = entries[index].name; 
ul.appendChild(li); 
      } 

Deploy to the Simulator 
The following code provides a complete example of how to deploy to the simulator: 

<!DOCTYPE HTML> 
<html> 
     
    <head> 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Contacts
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Contacts
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Contacts
http://docs.phonegap.com/en/1.1.0/phonegap_contacts_contacts.md.html#Contacts


CHAPTER 2:  Getting Started with PhoneGap 60 

        <title> 
            PhoneGap 
        </title> 
        <script type="text/javascript" src="phonegap-1.1.0.js"> 
        </script> 
        <script type="text/javascript"> 
               /** Called when phonegap javascript is loaded */ 
 
       function onDeviceReady() { 
           window.resolveLocalFileSystemURI("file:///sdcard",  
  onResolveSuccess, onError); 
       } 
 
       function onResolveSuccess(fileEntry) { 
           var directoryReader = fileEntry.createReader(); 
           directoryReader.readEntries(onSuccess, onError); 
       } 
 
       function onSuccess(entries) { 
           document.getElementById("loading").innerHTML = ""; 
           var ul = document.getElementById("file-listing"); 
           for (var index = 0; index < entries.length; index++) { 
               var li = document.createElement('li'); 
               li.innerHTML = entries[index].name; 
               ul.appendChild(li); 
           } 
       } 
 
       function onError(error) { 
           alert('code: ' + error.code + '\n'  
 + 'message: ' + error.message + '\n'); 
       } 
 
        /** Called when browser load this page*/ 
 
       function init() { 
           document.addEventListener("deviceready", onDeviceReady, false); 
       } 
        </script> 
    </head> 
     
    <body onLoad="init()"> 
        <h1> 
            List SDCard Contents 
        </h1> 
        <ul id="file-listing"> 
        </ul> 
        <div id="loading"> 
            Loading .. 
        </div> 
    </body> 
 
</html> 

This code is illustrated in Figure 2–38. 



CHAPTER 2:  Getting Started with PhoneGap 61 

  

Figure 2–38. Listing files on the SD Card 

You can download the complete source for this chapter from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-DirectoryListing.  
You can refer to the official documentation of File API at 
http://docs.phonegap.com/en/1.1.0/phonegap_file_file.md.html#File. 

 Writing and Reading to a File 
This section will show you how to use the PhoneGap APIs to manipulate the file system.  

NOTE: PhoneGap is actually implementing and supporting the W3C’s file system specs 

mentioned at http://www.w3.org/TR/file-system-api/. 

Let’s make ourselves familiar with some of the key concepts found in the file system’s 
API.  These key concepts are: 

1. LocalFileSystem 

2. fileSystem 

3. fileEntry 

4. directoryEntry 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DirectoryListing
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DirectoryListing
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-DirectoryListing
http://docs.phonegap.com/en/1.1.0/phonegap_file_file.md.html#File
http://www.w3.org/TR/file-system-api/


CHAPTER 2:  Getting Started with PhoneGap 62 

LocalFileSystem 
LocalFileSystem provides us with access to the local file system and its files and 
directories. There are two types of FileSystems: 

1. LocalFileSystem.PERSISTENT: Data stored in a persistent file system should 
not be deleted by the UA, other than in response to a removal API call, without 
explicit authorization from the user. 

2. LocalFileSystem.TEMPORARY: Data stored in a temporary file system may be 
deleted by the UA at its discretion, without application or user intervention. 

The localFileSystem methods are accessed from the window object.  This is done with 
the following: 

1. window.requestFileSystem() – Used to gain access to the root file system. 

2. window.resolveLocalFileSystemURI() – Used to directly gain access to either the 
FileEntry or DirectoryEntry Object given that the URI is available for that directory 
or file. 

fileSystem 

The fileSystem represents the file system. It has two main properties: 

1. name – choose between two options “PERSISTENT” or “TEMPORARY”. Choose 
“PERSISTENT” if you want your files to persistent even when application is killed. 

2. root – the Root Directory of the file system (DirectoryEntry). 

You need to use the following API to get access to the fileSystem: 

void requestFileSystem ( 
       short type,  // LocalFileSystem.PERSISTENT or  
                      //LocalFileSystem.TEMPORARY 
       long long size, //Size for TEMPORARY FS 
       FileSystemCallback successCallback,  //Success Callback 
       optional ErrorCallback errorCallback);  // Failure Callback 

The code snippet for gaining access to the fileSystem is as follows: 

window.requestFileSystem(LocalFileSystem.PERSISTENT 
              ,0 //size 
              ,function(fileSystem){ // success callbac 
                     alert(“Got FileSystem “+fileSystem); 
              }, 
              function(err){ //failure callback 
                     alert(“Got Error requesting FileSystem”); 
              } 
       );      



CHAPTER 2:  Getting Started with PhoneGap 63 

You need to use the following API to gain access to either a fileEntry or directoryEntry 
object (objects which represent a file or directory): 

void resolveLocalFileSystemURL ( 
              DOMString url,  //url of file or directory on  
                                 //filesystem 
              EntryCallback successCallback,  //Success Callback 
              optional ErrorCallback errorCallback); //FailureCallback 

fileEntry 
In order to manipulate a file you will need a fileEntry object. There are many ways to get 
a fileEntry, but given that you know the URI of a file, you can gain this object as follows: 

window.resolveLocalFileSystemURL( 
              “file:///sdcard/read-write.txt”, 
              function(fileEntry){ 
              }, 
              function(err){ 
              } 
              ); 

In order to look up all of the properties and methods of a fileEntry, you need to have 
access to the appendix of the fileEntry. There are two ways of gaining this access: 

1. createWriter(): Creates a FileWriter object that can be used to write to a file. 

2. file(): Creates a File object containing file properties, including reading its content. 

directoryEntry 
In order to list files in a directory you will need a directoryEntry object. There are many 
ways to get a directoryEntry, but given that you know the URI of a directory, you can 
gain this object as follows: 

window.resolveLocalFileSystemURL( 
              “file:///sdcard/mydir/”, 
              function(directoryEntry){ 
              }, 
              function(err){ 
              } 
              ); 

In order to look up all the properties and methods of a directoryEntry, you need to have 
access to the appendix of the directoryEntry. There is one method to gain this access: 
getFile(): Create File in a given directory,or Get File from a given directory. 

Layout of Program 
Our program for File Read and Write is simple. It contains a TextArea where we either 
read the file contents or we write the contents of a TextArea in a file. We use two 
buttons, Read and Write, to read/write from a file named read-write.txt. 



CHAPTER 2:  Getting Started with PhoneGap 64 

Following is the code for the program. 

<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>PhoneGap</title> 
        <script type="text/javascript" src="phonegap-1.1.0.js"> 
        </script> 
        <script type="text/javascript"> 
            var filename = "read-write.txt"; 
            var filePath = "file:///sdcard/read-write.txt"; 
            var textarea = document.getElementById("textarea"); 
            /** Called when phonegap javascript is loaded */ 
            function onDeviceReady(){ 
                var readButton = document.getElementById("read"); 
                var writeButton = document.getElementById("write"); 
                 
                readButton.addEventListener("click", readFile, false); 
                writeButton.addEventListener("click", saveFile, false); 
                 
            } 
             
            function readFile(){ 
                 
                //Contents shown below 
                 
            } 
             
            function saveFile(){ 
             
                 //Contents shown below 
 
                 
            } 
             
             
             
            /** Called when browser load this page*/ 
            function init(){ 
                document.addEventListener("deviceready", onDeviceReady,   
     false); 
            } 
        </script> 
    </head> 
    <body onLoad="init()"> 
        <h1>Read Write File</h1> 
        <table> 
            <tr> 
                <td colspan="2"> 
                    /sdcard/read-write.txt 
                </td> 
            </tr> 
            <tr> 
                <td colspan="2"> 
                    <textarea id="textarea" rows="10" cols="30"> 
                    </textarea> 
                </td> 
            </tr> 



CHAPTER 2:  Getting Started with PhoneGap 65 

            <tr> 
                <td> 
                    <button id="read"> 
                        Read 
                    </button> 
                </td> 
                <td> 
                    <button id="write"> 
                        Write 
                    </button> 
                </td> 
            </tr> 
        </table> 
    </body> 
</html> 

This code when run is illustrated in Figure 2–39. 

 

Figure 2–39. Reading and Writing to Files. 

Now, let’s implement the readFile() method to read the file and show its content in the 
TextArea. The steps are very simple: 

Step 1: Resolve the URL file:///sdcard/read-write.txt. 

Step 2: If resolved, create a reader using the fileEntry.file() method. 

Step 3: If not resolved, show a message to the user telling the user that he needs to 
write the file before he can read it.. Refer to Figure 2–40. 



CHAPTER 2:  Getting Started with PhoneGap 66 

function readFile(){ 
                 
       window.resolveLocalFileSystemURI(    //filename to be read 
              filePath,    //success callback  
              function(fileEntry){ 
                     fileEntry.file( 
                            function(file){ 
                                   var fileReader = new FileReader(); 
                                   fileReader.onloadend =  
                                   function(evt){ 
                                   document.getElementById("textarea").value  
    = evt.target.result; 
                                   }; 
                                   fileReader.readAsText(file); 
                                          }, 
                                          function(error){ 
                                                 alert("Got error while reading 
"+filePath); 
                                          }) 
                },    //error callback 
                function(error){ 
                    alert(filename + " not present, please add content and click  
   Save first"); 
                } 
 ); 
                 
} 

 

Figure 2–40. Unable to read as no file has been written.  



CHAPTER 2:  Getting Started with PhoneGap 67 

Let’s implement the writeFile() method to read the text in the TextArea, and write it in 
file:///sdcard/read-write.txt.  

Step 1: Get Access to the fileSystem root. 

Step 2: From the fileSystem root DirectoryEntry, create file read-write.txt, if it does not 
already exist. 

Step 3: Create fileWriter and write the contents of the TextArea to the file.  This is shown 
in the following code: 

function saveFile() { 
 
    window.requestFileSystem( 
    LocalFileSystem.PERSISTENT, 0, 
    //Success Callback 
 
 
    function (fileSystem) { 
        var sdcardEntry = fileSystem.root; 
        sdcardEntry.getFile( 
        filename, 
        //Flag telling create file 
        { 
            create: true 
        }, 
        //Success callbacks  
 
 
        function (fileEntry) { 
            fileEntry.createWriter( 
 
            function (fileWriter) { 
                fileWriter.onwrite = function (evt) { 
                    alert("Write was successful!"); 
                    document.getElementById("textarea").value = ""; 
                }; 
                fileWriter.write(document.getElementById("textarea").value); 
            }, 
            //Error callback       
 
 
            function (error) { 
                alert("Failed to get a file writer for " + filename); 
            }); 
 
 
 
        }, 
        //Error Callback 
 
 
        function (error) { 
            alert("Got error while reading " + filename + " " + error); 
        }); 
 
    }, function (error) { 



CHAPTER 2:  Getting Started with PhoneGap 68 

        alert("Got Error while gaining access to file system"); 
    }); 

} 

When the user types text in the TextArea and hits Write, the contents are written to the 
file and an alert message is shown, saying Write was successful. You will notice the 
program clears the TextArea when you hit Write. Refer to Figure 2–41 to see the 
message when file writing is successful. 

Figure 2–41. Write was successful 

Now, try to read the content that you wrote to the file, by hitting the Read button. The 
content of what you wrote should appear in the TextArea. Refer to Figure 2–42 to see 
how the text area is filled, when reading is successful. 



CHAPTER 2:  Getting Started with PhoneGap 69 

 
Figure 2–42. Read was successful 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/62c45e339662/android/PhoneGap-FileReadWrite. 
 

You can refer to the official documentation of File API at 
http://docs.phonegap.com/en/1.1.0/phonegap_file_file.md.html#File. 

Writing and Reading from the Database 
This section will explain how to read, store, and manipulate the database. We will use 
the example of storing a list of contacts (firstName and lastName) in the database, and 
then read it, and delete the entry. 

There are three tables: one for the header columns, one for the content, and one to allow 
the user to add an entry to the list of contacts.   

Following is the index.html code for reading and writing from the database: 

<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>PhoneGap DB</title> 
        <script type="text/javascript" src="phonegap-1.1.0.js"> 
        </script> 
        <script type="text/javascript"> 

https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-FileReadWrite
https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-FileReadWrite
https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-FileReadWrite
http://docs.phonegap.com/en/1.1.0/phonegap_file_file.md.html#File


CHAPTER 2:  Getting Started with PhoneGap 70 

            var firstNameBox = null; 
               var lastNameBox = null; 
            var db = null; 
            var dataTable = null; 
            /** Called when phonegap javascript is loaded*/ 
            function onDeviceReady(){ 
                //Contents will be shown below 
               } 
            /** Called when browser load this page*/ 
            function init(){ 
                document.addEventListener("deviceready",  
                            onDeviceReady, false); 
            } 
        </script> 
        <style> 
            td { 
                width: 100px; 
            } 
             
            input { 
                width: 100px; 
            } 
        </style> 
    </head> 
    <body onLoad="init()"> 
        <h3>Read Write DB</h3> 
        <table border="1"> 
            <tr> 
                <td> 
                    <b>First Name</b> 
                </td> 
                <td> 
                    <b>Last Name</b> 
                </td> 
                <td> 
                    <b>Action</b> 
                </td> 
            </tr> 
        </table> 
        <table id="data-table"> 
        </table> 
        <table> 
            <tr> 
                <td> 
                    <input id="firstName" type="text"> 
                    </input> 
                </td> 
                <td> 
                    <input id="lastName" type="text"> 
                    </input> 
                </td> 
                <td> 
                    <button id="add"> 
                        Add 
                    </button> 
                </td> 
            </tr> 



CHAPTER 2:  Getting Started with PhoneGap 71 

        </table> 
    </body> 
</html> 

If you run this program you should see a layout similar to the one shown in Figure 2–43 

 
Figure 2–43. Read and Write to and from the database 

Now, let’s add some code to read, write, and delete contact entries from the database. 
The first step is to get access to the database object.  This is done as follows: 

 

var firstNameBox = null; 
var lastNameBox = null; 
var db = null; 
var dataTable = null; 
/** Called when phonegap javascript is loaded */ 
function onDeviceReady(){ 
       var addButton = document.getElementById("add"); 
       firstNameBox = document.getElementById("firstName"); 
       lastNameBox = document.getElementById("lastName"); 
       dataTable = document.getElementById("data-table"); 
                             
       db = window.openDatabase("contactDB", "1.0", "Contact  
                  Database", 1000000); 
                  //name,version,display name, size 
        
} 



CHAPTER 2:  Getting Started with PhoneGap 72 

Let’s focus on the API to create the database object.  This is done as follows: 

            window.openDatabase( 
                     databaseName, 
                     versionNumber, 
                     displayName, 
                     sizeInBytes); 

Now let’s see the code (refer to addButton.addEventListener below) that explains the 
process of clicking on the Add button, and adding an entry to the contacts table in the 
database. 

In order to add entry to contacts table we will use the method transaction() on the 
database object. Here is the API of this method: 

db.transaction( 
       function(tx){   //Function to execute the sql statements 
              //Use tx to execute sql statements 
       }, 
       function(err){  // Error callback 
              //Use err.code and err.message to understand the error 
       }, 
       function(){  //Success callback 
              // Update the UI, log a message 
       } 
       ); 

We want to add the new entry when the user clicks on the button. Hence, our add 
functionality is inside the click event listener of the Add button.  This is seen in the 
following code: 

addButton.addEventListener( 
       "click", 
       function(){ 
                                           
              db.transaction( 
                     //function sql statements 
                     function (tx){ 
                            ensureTableExists(tx); 
                            var firstName = firstNameBox.value; 
                            var lastName = lastNameBox.value; 
                                                         
                            var sql = 'INSERT INTO Contacts   
    ( firstName, lastName ) VALUES                                    
   ("' + firstName + '","' + lastName + '")'; 
                                                                
                            tx.executeSql(sql); 
                                                  
                     }, 
                     //error callback 
                     function (err){ 
                            alert("error callback "+err.code); 
                                                         
                     }, 
                     //success callback 
                     function (){ 
                            loadFromDB(); 
                     } 



CHAPTER 2:  Getting Started with PhoneGap 73 

              ); 
                                           
                                           
       },false); 
 
function ensureTableExists(tx){ 
       tx.executeSql('CREATE TABLE IF NOT EXISTS Contacts (id  
                     INTEGER PRIMARY KEY, firstName,lastName)'); 
                      
} 

We are using a method named ensureTableExists(tx), which ensures that we have the 
database table before we do a DB CRUD Operation in the database. 

We are using the SQL insert statement in our database transaction’s SQL function in 
order to make an entry in the database.  

NOTE: The primary key in SQLite is auto incremented by the default, hence, we only write the 

firstName and lastName, and the database actually increments the ID. 

Once the database has added the operation successfully, we call the loadFromDB() 
method to populate the HTML table from the database table. 

Refer Figure 2–44 to see how the UI Screen looks like for Add Contact functionality. 

 

Figure 2–44. Adding an entry 



CHAPTER 2:  Getting Started with PhoneGap 74 

Now, let’s look into the loadFromDB() method. Here we are using the same 
tx.executeSql, but in this case, we expect to get some different results, so we use the 
following version of tx.executeSql: 

tx.executeSql( 
       sqlStatement, 
       options, 
       successCallbackWithResultSet, 
       errorCallback); 

The successCallbackWithResultSet is a function that receives two things: 

1. tx 

2. resultset 

function loadFromDB(){ 
                             
db.transaction( 
       //function sql statements 
       function (tx){ 
              ensureTableExists(tx); 
              tx.executeSql('SELECT * FROM Contacts',  
   [],  
   //success callback 
                                       function(tx, results){ 
                                        var htmlStr="";  
                                                    for(var 
index=0;index<results.rows.length;index++){ 
                                                     var item = 
results.rows.item(index); 
                                                                                      
                            htmlStr = htmlStr +"<tr><td>"+ 
                                   item.firstName+"</td><td>" 
                                   +item.lastName 
                                   +"</td><td><button  
                                   onclick=\"deleteEntry('" 
                                   +item.id+ 
                                   "');\">X</button></td></tr>"; 
                                                                                      
    } 
                                                     
    dataTable.innerHTML=htmlStr; 
   },  
   //error callback 
   function(err){ 
    alert("Unable to fetch result from Contacts   
    Table"); 
   } 
  );                                                                 
                                                  
 }, 
 //error callback 
 function (err){ 
         alert("error callback "+err.code+" "+err.message); 
                                                         
 }, 
 //success callback 



CHAPTER 2:  Getting Started with PhoneGap 75 

 function (){ 
        firstNameBox.value=""; 
        lastNameBox.value=""; 
 });  
                             
} 

When we run the code now, we can see the previously added entries in the HTML table. 

Refer Figure 2–45, it shows previously added rows in the html table. 

 
Figure 2–45. Reading all of the entries from the database 

The last thing to do is to delete the entry when the user clicks on the X button. When we 
populated the HTML table, we defined the button in HTML as follows: 

<button onclick="deleteEntry(‘”+item.id+"’);’>X</button> 

Refer to Figure 2–46 to see how this looks in the HTML. 

When the user clicks on the X button, the deleteEntry function is called, passing the 
primary key of the entry to be deleted. Here, we are using the Delete SQL statement to 
delete the primary key. 

function deleteEntry(id){ 
       db.transaction( 
              //function sql statements 
              function (tx){ 



CHAPTER 2:  Getting Started with PhoneGap 76 

         ensureTableExists(tx); 
                                                                       
                     tx.executeSql('Delete FROM Contacts where id='+id);                                    
                                                  
              }, 
              //error callback 
              function (err){ 
                     alert("error callback "+err.code+" "+err.message); 
                                                         
              }, 
              //success callback 
              function (err){ 
                     loadFromDB(); 
              } 
       ); 
                             
                              
} 

 

Figure 2–46. Deleting an entry from the database 

Now when the user clicks on the X button, the entry is deleted and a call is given to 
loadFromDB(), which refreshes the HTML table from the database table. 



CHAPTER 2:  Getting Started with PhoneGap 77 

 

Figure 2–47. Delete entry is reflected 

The complete index.html source is listed here:  
<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title> 
            PhoneGap DB 
        </title> 
        <script type="text/javascript" src="phonegap-1.1.0.js"> 
                         
        </script> 
        <script type="text/javascript"> 
                            var firstNameBox = null; 
                    var lastNameBox = null; 
                    var db = null; 
                    var dataTable = null; /** Called when phonegap javascript is loaded */ 
 
                    function onDeviceReady() { 
                        var addButton = document.getElementById("add"); 
                        firstNameBox = document.getElementById("firstName"); 
                        lastNameBox = document.getElementById("lastName"); 
                        dataTable = document.getElementById("data-table"); 
 
                        db = window.openDatabase("contactDB",  
   "1.0", 
    "Contact Database",  
   1000000); //name,version,display name, size 
                        addButton.addEventListener("click", function() { 



CHAPTER 2:  Getting Started with PhoneGap 78 

                            db.transaction( 
                            //function sql statements 

                            function(tx) { 
                                ensureTableExists(tx); 
                                var firstName = firstNameBox.value; 
                                var lastName = lastNameBox.value; 

                                var sql = 'INSERT INTO Contacts (firstName, lastName) 
VALUES  

("' + firstName + '","' + lastName + '")'; 
                                tx.executeSql(sql); 

                            }, 
                            //error callback 

                            function(err) { 
                                alert("error callback " + err.code); 

                            }, 
                            //success callback 

                            function(err) { 
                                //alert("success callback "+err.code); 
                                loadFromDB(); 
                            }); 

                        }, false); 
                        loadFromDB(); 

                    } 

                    function loadFromDB() { 

                        db.transaction( 
                        //function sql statements 

                        function(tx) { 
                            ensureTableExists(tx); 
                            tx.executeSql('SELECT * FROM Contacts', [], function(tx, 
results) { 
                                var htmlStr = ""; 
                                for (var index = 0; index < results.rows.length; 
index++) { 
                                    var item = results.rows.item(index); 
                                    htmlStr = htmlStr  
   + "<tr><td>"  
   + item.firstName  
   + "</td><td>"  
   + item.lastName  
   + "</td><td><button onclick=\"deleteEntry('"  
   + item.id  
   + "');\">X</button></td></tr>"; 

                                } 



CHAPTER 2:  Getting Started with PhoneGap 79 

                                dataTable.innerHTML = htmlStr; 
                            }, function(err) { 
                                alert("Unable to fetch result from Contacts Table"); 
                            }); 
 
                        }, 
                        //error callback 
 
                        function(err) { 
                            alert("error callback " + err.code + " " + err.message); 
 
                        }, 
                        //success callback 
 
                        function() { 
                            firstNameBox.value = ""; 
                            lastNameBox.value = ""; 
 
                        }); 
 
 
                    } 
 
                    function deleteEntry(id) { 
                        db.transaction( 
                        //function sql statements 
 
                        function(tx) { 
                            ensureTableExists(tx); 
                            tx.executeSql('Delete FROM Contacts where id=' + id); 
 
                        }, 
                        //error callback 
 
                        function(err) { 
                            alert("error callback " + err.code + " " + err.message); 
 
                        }, 
                        //success callback 
 
                        function(err) { 
                            //alert("success callback "); 
                            loadFromDB(); 
 
                        }); 
 
 
                    } 
 
                    function ensureTableExists(tx) { 
                        tx.executeSql('CREATE TABLE IF NOT EXISTS Contacts  
   (id INTEGER PRIMARY KEY, firstName,lastName)'); 
 
                    } /** Called when browser load this page*/ 
 
                    function init() { 
                        document.addEventListener("deviceready",  



CHAPTER 2:  Getting Started with PhoneGap 80 

    onDeviceReady, false); 
                    } 
        </script> 
        <style> 
            td { width: 100px; } input { width: 100px; } 
        </style> 
    </head> 
     
    <body onLoad="init()"> 
        <h3> 
            Read Write DB 
        </h3> 
        <table border="1"> 
            <tr> 
                <td> 
                    <b> 
                        First Name 
                    </b> 
                </td> 
                <td> 
                    <b> 
                        Last Name 
                    </b> 
                </td> 
                <td> 
                    <b> 
                        Action 
                    </b> 
                </td> 
            </tr> 
        </table> 
        <table id="data-table"> 
        </table> 
        <table> 
            <tr> 
                <td> 
                    <input id="firstName" type="text"> 
                    </input> 
                </td> 
                <td> 
                    <input id="lastName" type="text"> 
                    </input> 
                </td> 
                <td> 
                    <button id="add"> 
                        Add 
                    </button> 
                </td> 
            </tr> 
        </table> 
    </body> 
 
</html> 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/62c45e339662/android/PhoneGap-DB. 

https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-DB
https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-DB
https://bitbucket.org/rohitghatol/apress-phonegap/src/62c45e339662/android/PhoneGap-DB


CHAPTER 2:  Getting Started with PhoneGap 81 

You can refer to the official documentation of Storage API at 
http://docs.phonegap.com/en/1.1.0/phonegap_storage_storage.md.html#Storage. 

Fetching Details about a Cellular Device or a Wi-Fi Network 
Often a Mobile application needs to connect to some server in order to fetch certain 
data. A modern day smartphone may be downloading the data by using either a 3G/4G 
network or a Wi-FI network. A good application would respect this distinction and 
download certain kinds of data when on a 3G/4G network, and only download heavy 
data when the smartphone is on a Wi-Fi network. 

This section will explain how to use PhoneGap to find out which kind of network the 
smartphone is using. 

We will need to use the following API: 

      navigator.network.connection.type 

This returns the type of connection. The values for different connection types are 
mentioned below: 

Connection.UNKNOWN = "unknown"; 
Connection.ETHERNET = "ethernet"; 
Connection.WIFI = "wifi"; 
Connection.CELL_2G = "2g"; 
Connection.CELL_3G = "3g"; 
Connection.CELL_4G = "4g"; 
Connection.NONE = "none"; 

The complete source code for the index.html is listed below:  

<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>PhoneGap DB</title> 
        <script type="text/javascript" src="phonegap-1.1.0.js"> 
        </script> 
        <script type="text/javascript"> 
             
             
            /** Called when phonegap javascript is loaded */ 
            function onDeviceReady(){ 
                fetchNetworkConnectionInfo(); 
                 
            } 
             
            function fetchNetworkConnectionInfo(){ 
 
               var networkType = navigator.network.connection.type; 
                     
               var networkTypes = {}; 
                     
               networkTypes[Connection.NONE]     = 'No network connection'; 
               networkTypes[Connection.UNKNOWN]  
   = 'Unable to identify Network Connection Type'; 
               networkTypes[Connection.CELL_2G]   

http://docs.phonegap.com/en/1.1.0/phonegap_storage_storage.md.html#Storage


CHAPTER 2:  Getting Started with PhoneGap 82 

  = 'Network Connection is of type 2G'; 
    networkTypes[Connection.CELL_3G]   
  = 'Network Connection is of type 3G'; 
                networkTypes[Connection.CELL_4G]   
  = 'Network Connection is of type 4G'; 
                networkTypes[Connection.WIFI]      
  = 'Network Connection is of type WiFi'; 
                networkTypes[Connection.ETHERNET]  
  = 'Network Connection is of type Ethernet'; 
                                                   
                     
                document.getElementById("network-status").innerHTML  
  = networkTypes[networkType]; 
                     
  
           } 
             
            /** Called when browser load this page*/ 
            function init(){ 
                document.addEventListener("deviceready",  
     onDeviceReady, false); 
            } 
        </script> 
    </head> 
    <body onLoad="init()"> 
        <h3>Phone Network Info</h3> 
        <div id="network-status"> 
        </div> 
    </body> 

</html> 

When this source is run it would show the network info as depicted in Figure 2–48.  



CHAPTER 2:  Getting Started with PhoneGap 83 

 

Figure 2–48. PhoneGap Network Info showing Network Connection is of Type 3G 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Network.  
You can refer to the official documentation of Connection API at 
http://docs.phonegap.com/en/1.1.0/phonegap_connection_connection.md.html#Connec
tion. 

Device Examples 
Given the nature of the features, the following examples can only be run on real Android 
devices. The Android emulator does not have support for the following features. 

Fetching the Geolocation 
In this example we will try to fetch the geolocation of the device. In order to do this, we 
will use the navigator.geolocation API. This API is an asynchronous API, which means 
that once we request the API for the geolocation, the API will inform the called program, 
and use one of the two callbacks registered with the API. 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Network
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Network
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Network
http://docs.phonegap.com/en/1.1.0/phonegap_connection_connection.md.html#Connec


CHAPTER 2:  Getting Started with PhoneGap 84 

The API invoked is as follows: 

navigator.geolocation.getCurrentPosition(onSuccessCallback, onErrorCallback); 
The API calls the onSuccessCallback function when the API is able to fetch the GPS 
coordinates. The API will call onErrorCallback when there is a problem fetching the GPS 
coordinates. 

The onSuccessCallback will get an argument named position. The position will contain 
the details about the geolocation as depicted in Table 2–3. 

Table 2–3. Position Object of PhoneGap GeoLocation API Explained 

Position result Description 

position.coords.latitude Latitude in decimal degrees 

position.coords.longitude Longitude in decimal degrees 

position.coords.altitude Altitude in decimal degrees 

position.coords.accuracy Accuracy for Latitude and 
Longitude in meters 

position.coords.altitudeAccuracy Accuracy for Altitude in meters 

position.coords.heading Direction of travel in terms of 
degrees from the true north in a 
clockwise direction 

position.coords.speed Speed of travel in terms of 
meters per second 

position.timestamp Creation timestamp of the GPS 
coordinates 

The complete code example of this is seen as follows: 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
       /** Called when phonegap javascript is loaded */ 
      function onDeviceReady(){ 
            navigator.geolocation.getCurrentPosition(onSuccess, onError); 
      } 
 
      function onSuccess(position) { 
          document.getElementById('latitude').innerHTML = position.coords.latitude; 
          document.getElementById('longitude').innerHTML = position.coords.longitude; 
          document.getElementById('altitude').innerHTML = position.coords.altitude; 



CHAPTER 2:  Getting Started with PhoneGap 85 

          document.getElementById('timestamp').innerHTML = new Date(position.timestamp);  
       } 
 
      function onError(error) { 
             alert('code: '    + error.code    + '\n' + 
                              'message: ' + error.message + '\n'); 
      } 
        
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>GeoLocation</h1> 
    <table border="1"> 
      <tr>  <td>Latitue</td>        <td id="latitude"></td>     <tr> 
      <tr>  <td>Longitude</td>      <td id="longitude"></td>    <tr> 
      <tr>  <td>Altitude</td>       <td id="altitude"></td>     <tr> 
      <tr>  <td>Timestamp</td>      <td id="timestamp"></td>    <tr> 
    </table> 
    </ul> 
  </body> 
</html> 

This code is illustrated in Figure 2–49. 

 

Figure 2–49. Running example of PhoneGap Geo location 



CHAPTER 2:  Getting Started with PhoneGap 86 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-GeoLocation.  

You can refer to the official documentation of Geolocation API at 
http://docs.phonegap.com/en/1.1.0/phonegap_geolocation_geolocation.md.html#Geol
ocation. 

Fetching the Accelerometer 
In this example, we will try to watch the accelerometer readings from the device. The 
accelerometer feature in modern day smart phones provides the user with the direction 
of their motions in x, y, and z coordinates. 

The API invoked is as follows: 

navigator.accelerometer.watchAcceleration(onSuccessCallback, 
onErrorCallback,accelerometerOptions); 

This API will keep monitoring the accelerometer readings and call onSuccessCallback at 
a predefined interval until the navigator.accelerometer.clearwatch() is called. The interval 
is defined in the accelerometerOptions, by providing the value in the form of 
{“frequency”:”3000”}. The unit of interval is milliseconds. If the accelerometerOptions 
does not provide the default interval of 1000, milliseconds is used. 

As mentioned in previous examples, the API will call onErrorCallback when there is a 
problem fetching the GPS coordinates. 

The onSuccessCallback will get an argument named acceleration. The acceleration will 
contain the details about the device motion as depicted in the Table 2–4. 

Table 2–4. Acceleration Object of Accelerometer Explained 

Accleration Description 

x Motion around the x-axis. The value is between 0-1. 

y Motion around the y-axis. The value is between 0-1. 

z Motion around the z-axis. The value is between 0-1. 

timestamp Creation timestamp of device motion. 

The complete example of the code is as follows: 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
       /** Called when phonegap javascript is loaded */ 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-GeoLocation
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-GeoLocation
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-GeoLocation
http://docs.phonegap.com/en/1.1.0/phonegap_geolocation_geolocation.md.html#Geol


CHAPTER 2:  Getting Started with PhoneGap 87 

            function onDeviceReady(){ 
                var options = { frequency: 1000 };  // Update every 1 seconds 
                  navigator.accelerometer.watchAcceleration(onSuccess,  
      onError,options); 
            } 
 
            function onSuccess(acceleration) { 
                document.getElementById('x').innerHTML = acceleration.x; 
                document.getElementById('y').innerHTML = acceleration.y; 
                document.getElementById('z').innerHTML = acceleration.z; 
                document.getElementById('timestamp').innerHTML  
  = acceleration.timestamp;  
      } 
 
          function onError(error) { 
             alert('code: '    + error.code    + '\n' + 
                              'message: ' + error.message + '\n'); 
            } 
        
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Accelerometer</h1> 
    <table border="1"> 
      <tr>  <td>X</td>           <td id="x"></td>            <tr> 
      <tr>  <td>Y</td>           <td id="y"></td>            <tr> 
      <tr>  <td>Z</td>           <td id="z"></td>            <tr> 
      <tr>  <td>Timestamp</td>   <td id="timestamp"></td>    <tr> 
    </table> 
    </ul> 
  </body> 
</html> 

This code is illustrated in Figure 2–50. 



CHAPTER 2:  Getting Started with PhoneGap 88 

Figure 2–50. PhoneGap Accelerometer example 

 A pictorial version of the same accelerometer is found in Figure 2–51. The 
accelerometer can be used to check the level of a surface by placing the phone flat on 
that surface. 

You can find the graphics for this example at 
http://code.google.com/p/beginingphonegap/downloads/list. 

http://code.google.com/p/beginingphonegap/downloads/list


CHAPTER 2:  Getting Started with PhoneGap 89 

 

Figure 2–51. Bubble application build using PhoneGap Accelerometer API 

There were four images used in the previous example.  These images varied from a 
circular bubble to an oval bubble. The complete example of the code is seen as follows: 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
       /** Called when phonegap javascript is loaded */ 
      function onDeviceReady(){ 
            var options = { frequency: 0100 };  // Update every 1 seconds 
            navigator.accelerometer.watchAcceleration(onSuccess,  
        onError,options); 
            } 
 
     function onSuccess(acceleration) { 
            moveX(acceleration); 
            moveXY(acceleration);  
      } 
       
      function moveXY(acceleration){ 
           
            var xyBase = document.getElementById("x-y-base"); 
            var circle = document.getElementById("circle"); 
            var position = getPos(xyBase); 
            var adjustX = 20; 

6



CHAPTER 2:  Getting Started with PhoneGap 90 

            var adjustY = 20; 
            var radius = 160; 
            var left = position.x; 
            var top  = position.y; 
            var width  = xyBase.clientWidth; 
            var height = xyBase.clientHeight; 
                 
            var centerX = left + width/2 - adjustX; 
            var centerY = top + height/2 - adjustY; 
            centerY = centerY - (radius * acceleration.y *  1.2) /10; 
            centerX = centerX - (radius * acceleration.x * -1.2) /10; 
                                   
            circle.style.left=centerX+"px"; 
            circle.style.top=centerY+"px"; 
                 
      } 
      function moveX(acceleration){ 
          //FIXME Move local variables to make them global 
          var xBase = document.getElementById("x-base"); 
            var oval = document.getElementById("oval"); 
            var basePosition = getPos(xBase); 
 
            var ovalLeft = basePosition.x + (xBase.clientWidth/2) –  
  (xBase.clientWidth * acceleration.x * -1)/10; 
              
            if( ( ovalLeft + oval.clientWidth )>  
  (xBase.clientWidth+basePosition.x) ){ 
                  ovalLeft = xBase.clientWidth + basePosition.x –  
   oval.clientWidth; 
            } 
            if (ovalLeft < basePosition.x){ 
                  ovalLeft = basePosition.x; 
            } 
            oval.style.left=ovalLeft+"px"; 
      } 
 
      function onError(error) { 
             alert('code: '    + error.code    + '\n' + 
                              'message: ' + error.message + '\n'); 
      } 
        
       /** Called when browser load this page*/ 
       function init(){ 
          document.addEventListener("deviceready", onDeviceReady, false); 
       } 
       function getPos(el) { 
              var position = {}; 
              if (document.getBoxObjectFor) { 
                     var bo = document.getBoxObjectFor(el); 
                     position.x = bo.x; 
                     position.y = bo.y; 
             } 
            else { 
                  var rect = el.getBoundingClientRect(); 
                  position.x = rect.left; 
                  position.y = rect.top; 
            }  



CHAPTER 2:  Getting Started with PhoneGap 91 

            return position; 
      } 
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Accelerometer</h1> 
     
    <div id="horizontal-bubble"> 
      <img id="circle" src="accelerometer-circle-bubble.png"  
 style="position:absolute"></img> 
      <img id="x-y-base" src="x-y-accelerator-base.png"></img> 
    </div> 
     
    <div id="vertical-bubble"> 
      <img id="x-base" src="z-accelerator-base.png"></img> 
      <img id="oval" src="accelerometer-circle-oval.png"  
 style="position:absolute;left:0px"></img> 
    </div>   
     
  </body> 
</html> 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Accelerometer-Image . 
You can refer to the official documentation of Accelerometer API at 
http://docs.phonegap.com/en/1.1.0/phonegap_accelerometer_accelerometer.md.html#
Accelerometer. 

Fetching Compass Bearings 
Let’s move to an application that has similar functionality as an accelerometer; a 
compass. Like an accelerometer, a compass provides device motion in the degrees of 
the x, y, and z axes. A compass provides device’s heading in degrees from true north in 
clock wise direction. 

You can find the graphics for this example at 
http://code.google.com/p/beginingphonegap/. 

The API invoked is as follows: 

navigator.compass.watchHeading (onSuccessCallback, onErrorCallback,compassOptions); 

This API will keep monitoring the direction that the compass is heading in and call 
onSuccessCallback at a predefined interval until navigator.compass.clearwatch() is 
called. The interval is defined in that compassOptions, and provides a value in the form 
of {“frequency”:”3000”}. The unit of interval is milliseconds. If the compassOptions is not 
provided, the default interval of 1000 milliseconds is used. 

As mentioned in previous examples, the API will call onErrorCallback when there is a 
problem fetching the GPS coordinates. 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Accelerometer-Image
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Accelerometer-Image
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Accelerometer-Image
http://docs.phonegap.com/en/1.1.0/phonegap_accelerometer_accelerometer.md.html#
http://code.google.com/p/beginingphonegap/


CHAPTER 2:  Getting Started with PhoneGap 92 

The onSuccessCallback will get an argument named heading. A heading is a degree 
between 0 and 360, and it is measured in a clock wise direction from the true north. 

The complete example is as follows. This example uses CSS3 to visually show a 
compass. In order to do this, we used a compass pointer image. This image is shown in 
Figure 2–52. 

 

Figure 2–52. Image of Compass used in the PhoneGap example 

First we register our onSuccess method with navigator.compass.watchHeading() 
method. When our onsuccess method gets called, we change the direction where the 
compass image points using css3 rotate transformation. This is a visual compass 
application. 

The complete index.html for this application is mentioned here: 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
       /** Called when phonegap javascript is loaded */ 
            function onDeviceReady(){ 
                var button = document.getElementById("capture"); 
                var compassOptions = { frequency: 1000 }; 
                navigator.compass.watchHeading(onSuccess, onError,  
     compassOptions); 
            }; 
             
            function onSuccess(heading) { 
                var image = document.getElementById('compass'); 
                var headingDiv =  
  document.getElementById('compassHeading'); 
                headingDiv.innerHTML=heading; 
                var reverseHeading = 360 - heading; 
                image.style.webkitTransform =  
  "rotate("+reverseHeading+"deg)"; 
            } 
 
          function onError(error) { 
             alert('code: '    + error.code    + '\n' +'message: ' + error.message + 
'\n'); 
            } 
        



CHAPTER 2:  Getting Started with PhoneGap 93 

       /** Called when browser load this page*/ 
           function init(){ 
              document.addEventListener("deviceready", onDeviceReady,  
      false); 
           } 
    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Compass</h1> 
    <table> 
 <tr> 
  <td>Compass Heading</td> 
  <td> 
   <div id="compassHeading">....</div> 
  </td> 
  <td>Degrees</td> 
 </tr> 
    </table> 
     
    <img id="compass" src="compass.png"  
 style="width:400px;height:400px;margin-left:auto;margin- 
 right:auto;auto;display:block"></img> 
     
  </body> 
</html> 

This code is illustrated in Figure 2–53. 

 

Figure 2–53. PhoneGap Visual Compass application 



CHAPTER 2:  Getting Started with PhoneGap 94 

The Figure shown in 2–53 can be downloaded from this url - 
http://beginingphonegap.googlecode.com/files/compass.png. 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Compass. 
You can refer to the official documentation of Compass API at 
http://docs.phonegap.com/en/1.1.0/phonegap_compass_compass.md.html#Compass. 

Capturing an Image from the Camera 
The last section in this chapter is about capturing images from the camera. This is a cool 
feature, which really adds a lot of value to HTML-based applications. Let’s see how we 
can use this feature. 

The API invoked is as follows: 

navigator.camera.getPicture (onSuccessCallback, onErrorCallback,cameraOptions); 

While there are many options present in the cameraOptions, we will focus on a single 
property named quality. The cameraOption would look like {“quality”:75}. 

With the above cameraOptions, the onSuccess() method will get an image of a base64 
encoded binary.  

The complete example of the Camera application is mentioned here: 

<!DOCTYPE HTML> 
<html> 
  <head> 
    <title>PhoneGap</title> 
    <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
    <script type="text/javascript"> 
       /** Called when phonegap javascript is loaded */ 
function onDeviceReady(){     

    var button = document.getElementById("capture");     

    button.addEventListener("click",captureImage,false); 

           } 

function captureImage(){ 

    var cameraOptions = { quality: 50 }; 

    navigator.camera.getPicture( onSuccess, onError,  

      cameraOptions ); 

}; 
             

function onSuccess(imageData) { 

    var image = document.getElementById('cameraImage'); 
    image.src = "data:image/jpeg;base64," + imageData; 

http://beginingphonegap.googlecode.com/files/compass.png
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Compass
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Compass
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Compass
http://docs.phonegap.com/en/1.1.0/phonegap_compass_compass.md.html#Compass


CHAPTER 2:  Getting Started with PhoneGap 95 

           } 
 
function onError(error) { 
                alert('code: '    + error.code    + '\n' +'message: ' + error.message + 
'                 \n'); 

} 

        
/** Called when browser load this page*/ 
function init(){   
    document.addEventListener("deviceready", onDeviceReady,  

 false); 

} 

    </script> 
  </head> 
  <body onLoad="init()"> 
    <h1>Camera</h1> 
    <button id="capture" >Capture Image</button> 
     
    <img id="cameraImage"></img> 
     
  </body> 
</html> 

This code is illustrated in Figure 2–54 and Figure 2–55. 

    

Figure 2–54. PhoneGap Camera application showing button to Capture Image 



CHAPTER 2:  Getting Started with PhoneGap 96 

 

Figure 2–55. PhoneGap Camera application after image has been captured 

You can download the complete source for this example from 
https://bitbucket.org/rohitghatol/apress-
phonegap/src/67848b004644/android/PhoneGap-Camera. 
You can refer to the official documentation of Camera API at 
http://docs.phonegap.com/en/1.1.0/phonegap_camera_camera.md.html#Camera. 

https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Camera
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Camera
https://bitbucket.org/rohitghatol/apress-phonegap/src/67848b004644/android/PhoneGap-Camera
http://docs.phonegap.com/en/1.1.0/phonegap_camera_camera.md.html#Camera


 97 

   Chapter 

Setting the Environment 
The PhoneGap environment can be setup in the following two manners: 

  Local development environment on your machine 

  Cloud build environment on PhoneGap Build 

The local development environment setup includes the developer setting up 
environments for each mobile platform that the developer wants to launch a PhoneGap 
application on. This chapter covers the local environment setup in detail and hopes that 
the audience won’t require any other documentation to run a PhoneGap application on 
each of the platform emulators.  

In order to run the PhoneGap application on a platform specific device, users need to 
look at platform specific documents. References to that documentation are provided in 
this chapter. 

On the other hand, the cloud build environment called “PhoneGap Build” allows you to 
build PhoneGap applications without the need for a local development environment. 
This means that a developer will only code the PhoneGap portion of the application, 
which requires HTML, JavaScript, and CSS. This code will then be provided to the 
PhoneGap Build service. The PhoneGap Build service will build the required binaries for 
each platform and the developer can download these. We examine this process in more 
detail in this chapter. 

Local Development Environment 
The local development environment is much like what we did for Android in Chapter 2. 
In this chapter, we will see how to setup a PhoneGap environment on your development 
machines for the following platforms: 

1. iOS 

2. BlackBerry  

3. Symbian 

4. webOS 

3 



CHAPTER 3:  Setting the Environment 98 

It is important to note that iOS can only be built on a Mac using Xcode and, for 
BlackBerry, the preferred OS is Windows.  

Prerequisite Steps 
Before we go any further, we will complete the common steps for all of the platforms 
beforehand.  The first step is to download PhoneGap. 

Download PhoneGap 
You can download PhoneGap sdk from www.phonegap.com. This book employs 
PhoneGap version 1.1.0, which was the latest version at that time. 

Once you download PhoneGap sdk and unzip it, you will see the folder structure shown 
in Figure 3–1. 

Figure 3–1. PhoneGap SDK directory structure 

There is a separate directory for each of the platforms that PhoneGap supports. Each 
directory contains library, tools, and source code for each platform to help setup the 
local development environment. 

Setting Environment for iOS Using Xcode 4  
In order to work with iOS, you will need an Intel-based computer with Mac OS X Snow 
Leopard (10.6).  

You will also need the following in order to test your PhoneGap application on a device: 

1. An Apple device like iPhone, iPad, or iPod Touch 

2. iOS Developer account and certificate 

Next you will need to perform the following installation steps: 

1. Install Xcode and PhoneGap. Xcode installer can be downloaded from 
http://developer.apple.com/xcode/index.php, an Apple Developer Portal. 
Please note that you will need an Apple Developer account for this. Alternatively, 
you can purchase and download Xcode 4 from iTunes for around $5. 

http://www.phonegap.com
http://developer.apple.com/xcode/index.php


CHAPTER 3:  Setting the Environment 99 

2. Navigate to the iOS directory where you extracted PhoneGap sdk. Run the 
PhoneGap installer until completion.  

3. Create a new PhoneGap project. Open Xcode and create a new project. This will 
present the following dialog box. Select the “PhoneGap Based Application” 
option and select the Next button (see Figure 3–2). 

 

Figure 3–2. Create a new iOS PhoneGap project 

4. On the next screen (shown in Figure 3–3), provide the product name and 
company identifier to the project creation wizard. Click next. 



CHAPTER 3:  Setting the Environment 100 

 

Figure 3–3. Create a new iOS PhoneGap project 

 
5. Select the appropriate directory for the project and click the Create button.  

Xcode provides an option to create a git repository for your project. This feature 
can be enabled or disabled by clicking on the source control check box shown in 
Figure 3–4. 



CHAPTER 3:  Setting the Environment 101 

 

Figure 3–4. Create a new iOS PhoneGap project 

Now you should see the HelloWorld project in Xcode.  

1. Input PhoneGap’s HTML and JavaScript 

Please note that there is no www folder in our project. To create a www folder, 
click on the Run button in the top left corner of Xcode. It will build the project and 
launch it in the simulator. Don’t worry about the error in your simulator that says 
“index.html was not found”. It is expected as we haven’t put our HTML in the file 
yet. 

2. Open the project in Finder (see Figure 3–5). 



CHAPTER 3:  Setting the Environment 102 

   

Figure 3–5. Customizing iOS project for PhoneGap 

You will see a www folder next to the project folder. We need to copy this folder into the 
Xcode project. 

1. Drag and drop the www folder into Xcode. Xcode will now prompt with a few 
options. Select Create Folder References for any added folders and click the 
Finish button. Now you should see the project structure shown in Figure 3–6 in 
Xcode. 



CHAPTER 3:  Setting the Environment 103 

 

Figure 3–6. PhoneGap WWW folder in iOS project 

2. Write PhoneGap Application 

You can write the PhoneGap application by modifying the index.html file. In order 
to open index.html, open the www folder and open index.html page in editor. 
Type your content in the index.html file. You can also specify associated 
Javascript and CSS files on the index.html page. 

3. Deploy to the Simulator. Make sure the Simulator-version is selected as Active 
SDK in the top left menu. 

4. Click the Run button in the Xcode project header to build the project and launch 
the application in the Simulator (see Figure 3–7). 



CHAPTER 3:  Setting the Environment 104 

 

Figure 3–7. PhoneGap sample application running on iOS 

5. Deploy to Device 

You can launch the PhoneGap application on the developer device. In order to 
run the application on the device, open HelloWorld-info.plist and change the 
BundleIdentifier. You can get the BundleIdentifier from Apple if you have a 
developer license.  

6. Make sure the Device-version is selected as Active SDK in the top left menu, and 
then click the Run button in the Xcode project header. It will build the project and 
launch the application in the device. 

Setting Environment for BlackBerry 
You will need an Intel-based computer with Windows XP (32-bit) or Windows 7 (32-bit 
and 64-bit) for working with BlackBerry. You will need the following software installed on 
your PC: 



CHAPTER 3:  Setting the Environment 105 

1. Java se 6 jdk 32-bit  

2. Apache ant 

3. BlackBerry webworks sdk v2.0+ 

4. Any Java IDE environment 

5. Account with BlackBerry developer zone 

6. Install j2sdk 6 (32 bit) 

You can download the J2SDK from 
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase6-419409.html. Run the J2SDK installer until completion. Add the 
Installation_directory/J2SDK/bin in the PATH environment variable. 

Next you will need to perform the following installation steps: 

1. Install Apache ant 

You can download the Apache ant package from 
http://ant.apache.org/bindownload.cgi. The Apache ant package is a zip file. 
Extract the ant zip file and put the Extracted_directory/apache-ant-1.8.2/bin in 
the PATH environment variable. 

2. Install BlackBerry SDK 

Download the BlackBerry Webworks SDK for Smartphone from 
https://bdsc.webapps.blackberry.com/html5/download/sdk site. Run the 
BlackBerry installer until completion. Typically, the BlackBerry Webwork SDK 
installer installs the files in the C:\BBWP folder. If you changed it to some other 
directory, remember the installation path, as you will need to use it in later steps. 
We recommend using the path “c:\BBWP”, as we are using that path in the rest of 
the chapter. 

3. Create New PhoneGap project 

In order to create a BlackBerry PhoneGap application, the PhoneGap framework 
provides an ant script. 

  Navigate to the PhoneGap BlackBerry directory  

  Run ‘ant create –Dproject.path=C:\Dev\Sample’ command in 
command prompt  

Note that if you are not able to run the above command, try to download the 
PhoneGap’s BlackBerry callback from https://github.com/callback/callback-
blackberry/downloads and unzip it into the PhoneGap’s BlackBerry-WebWorks 
directory.   

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://ant.apache.org/bindownload.cgi
https://bdsc.webapps.blackberry.com/html5/download/sdk
https://github.com/callback/callback-blackberry/downloads
https://github.com/callback/callback-blackberry/downloads
https://github.com/callback/callback-blackberry/downloads


CHAPTER 3:  Setting the Environment 106 

 

Figure 3–8. Create BlackBerry PhoneGap project 

This will create the project folder as depicted in Figure 3–9. Notice the www 
folder. This folder contains the html file and the PhoneGap JavaScript file. 



CHAPTER 3:  Setting the Environment 107 

 

Figure 3–9. BlackBerry PhoneGap project directory structure 

You have to change the value of the bbwp.dir property in the project.properties 
file to C:\\BBWP. If you changed the BlackBerry installation directory during 
installation, as mentioned in Step 3, make sure you are typing the same directory 
for the bbwp.dir property (see Figure 3–10). 



CHAPTER 3:  Setting the Environment 108 

Figure 3–10. Configuring project.properties to point to BlackBerry Works SDK directory 

4. Write a PhoneGap Application 

Writing a PhoneGap application is as simple as modifying the index.html file. In 
order to open index.html, open the www folder and open the index.html page in 
your favourite editor. Include your CSS and JavaScript files in the index.html file.  

5. Deploy to Simulator

The following steps are needed to deploy on a BlackBerry simulator. 

Launch the BlackBerry simulator, run the ant target as shown 
below. This will start the BlackBerry simulator  

C:\Dev\Sample>ant load-simulator 

Select the BlackBerry button on the simulator 

Select the Downloads folder 

There you will see the PhoneGap sample application. Select it to open it (see Figure 3-11). 



CHAPTER 3:  Setting the Environment 109 

 

Figure 3–11. Running PhoneGap App from Downloads of BlackBerry Simulator 

6. Deploy to Device 

In order to deploy the PhoneGap application on a BlackBerry device, you need 
signing keys from RIM. You can use the following site to get your signing keys 
https://www.blackberry.com/SignedKeys.  

Navigate to your project directory and run the following ant command in the 
command prompt: 

C:\Dev\Sample>ant load-device 

Setting Environment for Symbian 
In order to work with Symbian, you will need an Intel-based computer with Windows OS. 
Although the official documentation of PhoneGap claims that the Symbian application 
can be developed on all OSs, we would recommend using Nokia Symbian s60 sdk on 
Windows for testing PhoneGap application on a Symbian emulator.  

https://www.blackberry.com/SignedKeys


CHAPTER 3:  Setting the Environment 110 

Next you will need to perform the following installation steps: 

1. Install Cygwin 

In order to setup the environment for Symbian, we will need Cygwin installed on 
Windows. Download the Cygwin.exe file from http://cygwin.com/install.html 
and begin installation until completion. Please note that you must choose two 
packages namely zip and make packages while installing Cygwin. 

2. Install the Symbian s60 sdk 

Download the Symbian s60 sdk from 
http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-
af0631419e9c/S60_All_in_One_SDKs.html . Please note, this sdk is around 800+ 
mb and installation requires about 3+ gb of space. The installation will take 
around 30+ minutes.  

3. Create a New PhoneGap project

PhoneGap directory has a folder named Symbian in it; this directory is a template 
project. In order to create a new Symbian PhoneGap project, simply copy this 
directory and past it where you wish to create a new Symbian PhoneGap project. 
The contents of this directory are shown in Figure 3–12. 

 

Figure 3–12. Create new PhoneGap project 

4. Write PhoneGap Application

Open the www folder and open the index.html in your favourite editor. Edit HTML 
content and include CSS and JavaScript as needed. 

5. Deploy to Simulator 

Symbian PhoneGap uses makefile to build the project. On Mac or Linux 
machines, these can be built by simply running make in terminal. In Windows, you 
will need Cygwin to build. Simply run “make” in terminal/Cygwin and  the 
Symbian project is built and the “wgz” file is created. These steps are shown in 
Figure 3–13. 

http://cygwin.com/install.html
http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-af0631419e9c/S60_All_in_One_SDKs.html
http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-af0631419e9c/S60_All_in_One_SDKs.html


CHAPTER 3:  Setting the Environment 111 

 

Figure 3–13. Build Symbian project 

 

 

Figure 3–14. Build Symbian project 

The app.wgz file needs to be loaded into the Symbian emulator. Use file options 
of the emulator to import the .wgz file. This will prompt you to install the 
application. Select yes to install the application. 

Once the application is installed, we need to click on the middle bottom button of 
the Symbian emulator to see all the applications that have been installed. Launch 
our application from this screen. Once you launch the application, you will be 



CHAPTER 3:  Setting the Environment 112 

prompted about the permission this application requires to run. Allow the 
application to use the required feature. 

6. Deploy to Device 

You need to use Bluetooth or email to deploy Symbian PhoneGap project to a 
device.  Load the app.wgz into the device using Bluetooth or email and launch the 
application. 

Setting Environment for webOS 
You can develop webOS application on Windows, Mac, and Linux. You will need the 
following software installed on your development box: 

1. Java se 6 jdk 32-bit  

2. Virtual machine version 3.0 to 3.2 

3. webOS sdk version 3.0.4  

Next you will need to perform the following installation steps: 

1. Install java se 6 jdk 32-bit  

You can download the J2SDK from 
www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase6-419409.html. Run the J2SDK installer until completion. Add 
the Installation_directory/J2SDK/bin in PATH environment variable. 

2. Install Virtual Box

Download virtual box 3.0 – 3.2 from 
www.virtualbox.org/wiki/Download_Old_Builds_4_0. Start installation until 
completion.  

3. Install webOS SDK 

Download webOS sdk from 
https://developer.palm.com/content/resources/develop/sdk_pdk_download.html . Begin 
installation until completion.  

4. Install Cygwin for Windows only 

If you are using Windows, you have to install Cygwin to build and deploy the 
PhoneGap application for webOS. Please look at step 1 of the Symbian 
installation. 

5. Create new PhoneGap project 

PhoneGap directory contains a directory named webOS. This is PhoneGap 
webOS’s template project. In order to create a PhoneGap webOS project, copy 
this directory to your project area. 

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.virtualbox.org/wiki/Download_Old_Builds_4_0
https://developer.palm.com/content/resources/develop/sdk_pdk_download.html


CHAPTER 3:  Setting the Environment 113 

6. Write PhoneGap application 

Open www folder and open index.html in your favourite editor. Edit HTML content 
and include CSS and JavaScript as per your need. 

7. Deploy to Simulator 

Before you deploy the project, ensure your webOS emulator is running. Run the 
palm-emulator from your application folder/start menu.  

Run “make” in project folder. This will create the final javaScript file. Package the 
project to the webOS mobile app package and install it in the webOS emulator. 

8. Deploy to Device 

In order to deploy the PhoneGap project in the webOS device, you have to enable 
‘Developer mode’ and plug it in. Run “make” in project folder in Cygwin terminal. 

Cloud Build Environment Using PhoneGap Build 
Until now, we saw it as tedious to build a PhoneGap application on different mobile 
platforms. While PhoneGap development eases the pain of cross platform mobile 
application development, it is still tedious for developers to build PhoneGap on each 
mobile platform. 

To ease this pain, PhoneGap has launched PhoneGap Build. PhoneGap Build is a cloud 
build service. The developer submits their PhoneGap application code to PhoneGap 
Build, and PhoneGap Build develops the application on the following: 

1. iOS 

2. Android 

3. Blackberry 

4. webOS 

5. Symbian 

In this section, we will see how to set up an account on PhoneGap and build 
applications on it. 

Registering with PhoneGap Build 
1. The first step is to get an account for PhoneGap beta. Go to 

http://build.phonegap.com and provide your details.  

2. Once you submit your details, you will get an email from PhoneGap. In this email, 
PhoneGap will provide the beta code. You need to provide the beta code at the 
signup page of PhoneGap. 

http://build.phonegap.com


CHAPTER 3:  Setting the Environment 114 

Although PhoneGap Build will build applications for you, you need to own these 
applications. This is necessary because you will be publishing the builds you get from 
PhoneGap Build on Appstore, Android Market, and BlackBerry market.  

Let’s try to understand what it means to own your application. An application needs to 
be signed by certain certificates, imprinting your ownership on the application. For 
platforms like iOS, you need to get a developer account and get the certificate from 
Apple.  

PhoneGap requires these certificates from you to build applications for the following: 

1. iOS 

2. Android 

3. BlackBerry 

The following sections will demonstrate how to generate these certificates and provide 
them to PhoneGap Build. 

Registering Your Application with PhoneGap Build 
The first step toward PhoneGap Build is to register your application with PhoneGap 
Build. There are three ways you can register with PhoneGap Build. 

1. Create a new git repository on PhoneGap server and push code there. 

2. Pull code from existing git repository. 

3. Upload an archive of you PhoneGap app.  

For simplicity, we will go with the second option of pulling the starter PhoneGap project 
from PhoneGap git repository (as shown in Figure 3–15).  

NOTE: PhoneGap Build requires access to your source code, as it’s a build tool. This means you 
will need to share your source code with PhoneGap Build. This is like saying we want to build 

PhoneGap sample code provided by PhoneGap in one of their git repositories. This way we don’t 

need to provide any source code and we will practice using sample source code. 

1



CHAPTER 3:  Setting the Environment 115 

 

Figure 3–15. Pulling PhoneGap starter code from PhoneGap repository 

Now you can see your application listed under “your apps” section. Note that for every 
platform, there is a download icon (as shown in Figure 3–16). Clicking on the download 
button allows you to download the platform specific binary. All these binaries are built 
on PhoneGap Build server, thereby not requiring you to setup environments for iOS, 
Android, BlackBerry, Symbian, and webOS. 



CHAPTER 3:  Setting the Environment 116 

 

Figure 3–16. PhoneGap Starter Project Build download screen 

Notice the orange warning for iOS build in Figure 3–16. For iOS, the build needs to be 
signed by a developer certificate and a provisioning profile. The provisioning profile is 
linked to an Apple developer account. If a developer wishes to test the application on an 
iOS device, the device needs to be registered with this provisioning profile. 

Now, out of the above 5 platforms listed, we need to provide some kind of developer 
private keys to PhoneGap Build for 3 platforms. This is required in order to get platform 
specific builds, which can be: 

1. Installed on devices.  

2. Uploaded to respective app store. 

These platforms are: 

1. Android 

2. iOS 

3. BlackBerry 



CHAPTER 3:  Setting the Environment 117 

Setting Up Android Build Environment 
Android applications are signed by self-signed keystore before they are published to the 
Android market. Android does not need a central authority to certify the developer’s 
application. However, if version 1 of an application is signed with an xyz developer 
keystore, then the next version of the application has to be signed with the same 
developer keystore. Failing to do so will result in the next version of application being 
rejected by Android Market. 

The following are the steps in order to configure the PhoneGap Build to turn out a 
proper Android build, which can be deployed on Android Market: 

1. Create private keystore 

2. Upload the private keystore to PhoneGap Build 

3. Run PhoneGap Build  

1. Create Private Keystore 
The starting point for this is to understand the Android application publishing guidelines 
listed at http://developer.android.com/guide/publishing/app-signing.html#cert. In 
this section, we will walk you through the steps required to create the private keystore. 

The requirement for creating a private keystore is that you need to have java jdk 1.6 and 
above installed on your machine. Confirm this by opening a terminal/command prompt 
and typing the following: 

$> keytool 

If this shows you some kind of help, then you are good to go. If this tells you that there is 
no tool named keytool, make sure your java bin directory is in path. 

Now, to actually create your private keystore, follow the steps provided below: 

$> keytool -genkey -v -keystore my-release-key.keystore 

You will be prompted for a password. Enter a password, and write it down. 

$>Enter keystore password: welcome 

You will be asked to re-enter the password. 

$>Re-enter new password: welcome 

Next you will be asked a number of questions to record your identity in the private 
keystore. Please answer these questions. 

$>What is your first and last name? 

  [Unknown]:  Rohit Ghatol 
$>What is the name of your organizational unit? 
  [Unknown]:  Engineering 

http://developer.android.com/guide/publishing/app-signing.html#cert


CHAPTER 3:  Setting the Environment 118 

$>What is the name of your organization? 
  [Unknown]:  QuickOffice 
$>What is the name of your City or Locality? 
  [Unknown]:  Pune 
$>What is the name of your State or Province? 
  [Unknown]:  Maharahstra 
$>What is the two-letter country code for this unit? 
  [Unknown]:  IN 

Now you will be asked to confirm that the data you have entered so far is correct. 

$>Is CN=Rohit Ghatol, OU=Engineering, O=QuickOffice, L=Pune, ST=Maharahstra, C=IN 
correct? 
  [no]:  yes 

NOTE: Tool will ask you password for creating the self-signed certification. To keep this the 

same as a previous password, just hit enter. 

$>Generating 1,024 bit DSA key pair and self-signed certificate (SHA1withDSA) with a 
validity of 90 days 

for: CN=Rohit Ghatol, OU=Engineering, O=QuickOffice, L=Pune, ST=Maharahstra, 
C=IN 
$>Enter key password for <mykey> 

(RETURN if same as keystore password):   
 [Storing my-release-key.keystore] 

Now your private keystore file named “my-release-key.keystore” is created and kept in 
the same directory. 

2. Upload the Private Keystore to PhoneGap Build 
Navigate to your application on PhoneGap Build, hit the edit button, and you will see the 
screen shown in Figure 3–17.  



CHAPTER 3:  Setting the Environment 119 

 

Figure 3–17. PhoneGap Build Edit Application Screen 

Navigate to the signing section and upload the Android keystore information on that 
screen (as shown in Figure 3–18) 



CHAPTER 3:  Setting the Environment 120 

 

Figure 3–18. Enter Android Release keystore details 

Here provide a title for your keystore. On PhoneGap Build, you can provide multiple 
keystore and choose which one you will use to build your application. The title is to 
recognize the keystore when you are browsing various keystores you uploaded on 
PhoneGap Build. 

Next Upload the keystore file and provide any alias. In the password fields (both), you 
need to put in the password, which you used to create the keystore and private 
certificate (in our case this was “welcome”). 

3. Run PhoneGap Build 
Lastly, hit create and PhoneGap Build will store this keystore on your behalf. 

Now you should see a screen that looks like Figure 3–19, telling you that “my release 
key” keystore is used to build the Android build. 



CHAPTER 3:  Setting the Environment 121 

 

Figure 3–19. Android keystore registered for PhoneGap app 

Setting Up iOS Build Environment 
Before we start, let’s note the list of the prerequisites for iOS build on PhoneGap.  

1. Apple developer account either for Apple developer program 
(http://developer.apple.com/programs/ios/ 0) or Apple Enterprise Developer 
Program (http://developer.apple.com/programs/ios/enterprise/). Choose the 
one that best suits your requirements. 

2. Mac Machine with Xcode to extract the developer certificate and provisioning 
profile. After this information is extracted, the developer can use PhoneGap Build 
from any Operating System. 

The next steps are as follows: 

1. Get the iOS keys 

2. Provide the iOS keys to PhoneGap Build  

1. Getting iOS Keys 
The complete information about how to configure your Xcode with your iOS developer 
account is described in detail on http://tiny.cc/appleprov. 

Follow the above steps and ensure you are able to build and install a sample iPhone 
Application on an emulator, preferably on an iOS device (already added to your 
provisioning profile). 

Now the next step is to export the developer certificate and provisioning profile from 
Xcode and put them in PhoneGap Build. 

2. Providing iOS Keys to PhoneGap Build 
After setting up the iOS development environment properly, we need to extract the 
developer certificate and mobile provisioning profile and upload them to PhoneGap 
Build. 

http://developer.apple.com/programs/ios/0
http://developer.apple.com/programs/ios/enterprise/
http://tiny.cc/appleprov


CHAPTER 3:  Setting the Environment 122 

The first step is to extract the developer certificate from Mac’s keychain access. Open 
keychain access and located the developer certificate and export it out. While exporting, 
you will be asked for a folder and a password. Record this password, as you will need 
the password when you upload the developer certificate on PhoneGap Build site. 

After this, we will proceed to extract the provisioning profile. The provisioning profile is 
inside Xcode. Open Xcode and go to window->organizer and launch it. From here, 
export the “team provisioning profile”. Make a note that the provisioning profile is where 
you tell Apple that you have registered your iPhone/iPod/iPad as a developer device to 
test your application. PhoneGap Build needs this profile to sign your application (ipa). 

We have now extracted both the developer certificate and the mobile provisioning profile 
in a directory called ios-Keys. 

 

Figure 3–20. Directory containing Developer Certificate and Provisioning Profile 

We need to upload these keys on PhoneGap Build. Again visit the edit screen of your 
application, navigate to the signing section, and, for iOS, click on add keys (below select 
a key drop down). 

 

Figure 3–21. iOS Add Key Screen 

This will open the iOS Certificate and provisioning profile Pair screen. Upload the 
needed keys and the same password that you used to export the developer certificate. 



CHAPTER 3:  Setting the Environment 123 

 
Figure 3–22. Provide PhoneGap Build with Developer Certificate and Provisioning Profile 

Once you fire up PhoneGap Build, you should notice the orange warning on iOS ipa 
build has gone and the build has turned green. Clicking on the ipa button will bring 
down the iOS ipa for you. 

Setting Up BlackBerry Build Environment 
The main actions required for setting up your BlackBerry build environment are as 
follows: 

1. Get the BlackBerry keys 

2. Provide the BlackBerry keys to PhoneGap Build 

1. Getting BlackBerry Keys 
PhoneGap Build provides out of the box support for building BlackBerry applications, 
which can be installed on your devices. However, in order to upload these applications 
for distribution, you need to have keys provided from rim. In order to gain these keys, 
you need to register with rim using this web site - 
https://www.blackberry.com/SignedKeys/. 

https://www.blackberry.com/SignedKeys/


CHAPTER 3:  Setting the Environment 124 

Once you register, you will get an email from rim mentioning the steps to install these 
keys with your BlackBerry development environment. We cannot go into details of the 
instructions due to legal prohibitions with respect to sharing those instructions.  

2. Providing BlackBerry Keys to PhoneGap Build 
The next step is to extract the keys from the BlackBerry development environment. The 
BlackBerry development environment can be setup using either eclipse or standalone 
BlackBerry web works. The BlackBerry keys are located in the sdk directory of the 
BlackBerry.  

The first task is to locate the sdk directory. 

If the BlackBerry development environment was installed using eclipse, you should find 
the BlackBerry sdk directory at the <<eclipse location>>\plugins\ 
net.rim.ejde.componentpackX.X.X_X.X.X.X \components. An example of that is 
d:\worksoft\eclipse-helios\ net.rim.ejde.componentpack5.0.0_5.0.0.25\components.  

If the BlackBerry development environment was installed using BlackBerry 
Widget/WebWorks Packager Standalone SDK (like how we showed in the earlier part of 
this chapter), the installation directory is the sdk directory. This was shown as “c:\BBWP” 
directory in the earlier part of this chapter. 

The code signing files/keys are located in the sdk directory. 

<<webworks_sdk_dir>\bin\sigtool.csk 

<<webworks_sdk_dir>\bin\sigtool.db 

Now that we have gained access to the BlackBerry keys, proceed to your app on 
PhoneGap Build, click edit, and go to the signing section.  From the drop down menu, 
choose “add a key” option for BlackBerry. 

 

Figure 3–23. iOS Add Key Screen 

Upload the BlackBerry keys in the dialog box shown below. Use the same password you 
created while following instructions, which you got in the email from BlackBerry. This 
provides PhoneGap Build with all information needed to build BlackBerry applications, 
which can be distributed on BlackBerry distribution channels. 



CHAPTER 3:  Setting the Environment 125 

 

Figure 3–24. BlackBerry Keys files upload 

Launching PhoneGap Build 
PhoneGap Builds can be fired in two ways:  

1. Manually hitting “rebuild all” on PhoneGap Build as depicted below. This will 
queue up builds on the PhoneGap Build server. 

2. The second way is to use PhoneGap Build restful api to create app, update code, 
and fire builds. You can make PhoneGap Builds part of your cit builds (from 
bamboo or jerkins or any cit systems). Make the cit build script call PhoneGap 
Build restful api. The details of the PhoneGap Build api can be found at 
https://build.phonegap.com/docs/api. 

Conclusion 
As cloud is increasingly becoming popular in hosting web services and applications, 
many companies are looking at cloud-based saas services to help in their development 
cycle.  

Companies, like pivotal tracker, are used for agile planning, bitcode to host source code, 
and there are even online cit builds (e.g., jira studio). The advent of PhoneGap Build 
comes as no surprise.  

https://build.phonegap.com/docs/api


CHAPTER 3:  Setting the Environment 126 

Saving the infrastructure cost by not buying additional Windows and Mac machines just 
for cit makes sense. Keeping cost low and hiring infrastructure (just like we pay for 
electricity as utility bills) is becoming the trend of the day. 

PhoneGap Build fits into the need of small to mid-size companies who want to stay out 
of the infrastructure burden and use cloud-based saas service for building PhoneGap 
applications. 



 127 

   Chapter 

Using PhoneGap with 
jQuery Mobile 
While PhoneGap provides a platform to allow JavaScript apps to access native phone 
features, there are many other things that contribute to a mobile HTML app. 

One of the most important parts of the mobile HTML application is the UI. You could 
write the entire UI by hand using HTML, JavaScript, and CSS. However, any web 
developer will tell you that there are many issues with this approach, including the 
following: 

1. Not all browsers are same; you need a cross-browser framework to be 
successful. Even if most mobile browser are webkit based, its best to use a 
framework that abstracts the browser differences from a developer. 

2. If you were coding by hand, most of your code would be of drawing the UI, 
modifying the DOM, and making Ajax calls. A framework that lets you write less 
and do more would help you actually focus on the business logic. 

3. Creating an aesthetically good-looking HTML UI requires designer skills. At the 
same time, most mobile clients have predefined themes or schemas. It would help 
a developer if a framework provides good-looking UI out of the box. That way, the 
developer could focus on the business logic. 

Having said that, one of the easiest frameworks to use with PhoneGap to write your UI is 
jQueryMobile. First of all, jQueryMobile is built on top of the very popular jQuery. jQuery 
is known to be a JavaScript library that increases developer productivity and helps 
developers with cross-browser compatibility. At the same time, there are many free 
plug-ins available with jQuery to do a lot of things. 

jQueryMobile is a UI framework built for a mobile UI. It has a declarative UI, which 
means you don’t have to code your UI in JavaScript, but can declare it in HTML. 
jQueryMobile also provides an excellent looking UI out of the box. 

4 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 128 

All this makes jQueryMobile the most easy to use JavaScript UI framework and the most 
appropriate framework for a mobile UI of moderate complexity.  

Having said that, jQueryMobile provides the same UI for smartphones and tablets. If 
your needs are different, and you need different layouts for smartphone and tablets, you 
should look at Chapter 5. 

Getting Acquainted with jQuery 
jQuery is one of the best JavaScript libraries that help you do Ajax calls, search the 
HTML DOM for a particular element, and modify the DOM. It also has its own plug-in 
framework. The best thing is its cross-browser framework, taking the headache out of 
browser differences. You can refer to the following jQuery tutorial: 
www.w3schools.com/jquery/default.asp. 

jQuery Initialization 
jQuery initialization is a two-step process.  

1. Include jQuery JavaScript in your HTML page.  

2. Declare a callback, which will be called by jQuery when jQuery’s library is loaded. 

This is necessary as an HTML page may include many files like CSS, JavaScript, and 
images. The browser would download all these resources and start executing all the 
JavaScript blocks. If you start to use jQuery API calls before proper initialization, you will 
get errors. Therefore, you declare a callback, which is an entry point for our application, 
and jQuery will call this callback and bootstrap the application. 

Typically, when a developer is not using jQuery, he would write the code in the following 
manner: 

window.onload = function(){ 
     alert(“Page Loaded”); 
} 

When using jQuery the same code would look like follows: 
<html> 
     <head> 
        //Step 1 – include jquery library 
        <script type="text/javascript" src="jquery.js"> 
                                         
        </script> 
        <script type="text/javascript"> 
                //Step 2 – Declare a callback for jquery to call when it loads 
                $(document).ready(function() { 
                    //Place to bootstrap your application 
                    alert(“jquery loaded”); 
                }); 
        </script> 
    </head> 
     

http://www.w3schools.com/jquery/default.asp


CHAPTER 4:  Using PhoneGap with jQuery Mobile 129 

    <body> 
        <h1> 
            jQuery Demo 
        </h1> 
    </body> 
</html> 

When you run this code in any browser, you will see an alert popping up when the page 
loads. The alert would say “jQuery loaded.” 

jQuery Selectors 
Now that you have seen how to initialize jQuery and register an onload() method, let’s 
move on to how to find HTML DOM elements. 

Typically, a developer would use following code to get a div with id “placeholder.” 

document.getElementById(“placeholder”).innerhtml = “hello world”; 

In jQuery, you would write the above function as  

$(“#placeholder”).html(“hello world”); 

jQuery provides a number of ways to locate an HTML element. One example is 
$(“#placeholder”), which returns a jQuery element wrapping an element that has id 
“placeholder.” Once you get this jQuery wrapper, you can call jQuery functions to 
manipulate the DOM. In the above case, you are changing its HTML content to “hello 
world.”  

Let’s review some other useful examples of selectors with reference to a code example: 

<html> 
     
    <body> 
        <h1 class=”title”> 
            JQUERY SELECTOR Tutorial 
        </h1> 
        <p> 
            simple paragraph 
        </p> 
        <p class="title"> 
            Paragraph with class title 
        </p> 
        <p> 
            another paragraph 
        </p> 
        <ul id="selector"> 
            <li> 
                Element based - $("p") 
            </li> 
            <li> 
                Id based - $("#selector") 
            </li> 
            <li> 
                CSS Class based - $(".title") 
            </li> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 130 

            <li> 
                Element + Class based - $("p.title"); 
            </li> 
            <li> 
                Element+ID+Position - $("ui#selectorli:first) 
            </li> 
        </ul> 
    </body> 
 
</html> 

Element-Based Selector 
$(“p”) selects all the paragraphs: 

<p>simple paragraph</p> 
<p class="title">Paragraph with class title</p> 
<p>another paragraph</p> 

ID-Based Selector 
$(“#selector”) selects the element with id “selector.” Remember, # is added before the 
id that you want to search. The following element is selected for this selector: 

<ul id="selector"> 

CSS-Based Selector 
$(“.title”) selects the element with class “title.” Remember, a “.” is called before a 
class name to search elements with that class. The following elements are selected for 
this selector: 

<h1 class=”title”>JQUERY SELECTOR Tutorial</h1> 
 
<p class="title">Paragraph with class title</p> 

Combination of Selectors 
The following are some examples of how to mix and match selectors to pin point a 
particular element: 

$(“p.title”) selects a paragraph element with class “title,” which selects the following 
element: 

<p class="title">Paragraph with class title</p> 

$(“ul#selector li:first”) selects the first li element from a UI with an id “selector.” 
This selects the following element: 

<li>Element based                    - $("p")</li> 

A complete list of jQuery selectors can be found at the following link: 
www.w3schools.com/jquery/jquery_ref_selectors.asp. 

http://www.w3schools.com/jquery/jquery_ref_selectors.asp


CHAPTER 4:  Using PhoneGap with jQuery Mobile 131 

jQuery DOM Manipulation 
First, let’s look at how to retrieve values from HTML. You can retrieve the value of an 
element or the inner HTML. 

If you execute javascript $(ul#selector).html(), you will get the following text: 

<li>Element based                    - $("p")</li> 
<li>Id based                             - $("#selector")</li> 
<li>CSS Class based                 - $(".title")</li> 
<li>Element + Class based       - $("p.title");</li> 
<li>Element+ID+Position         - $("ui#selector li:first)</li> 

The following example shows how to extract value from a jQuery selector result. First, 
the example shows what happens when you assume the jQuery selector returns only 
one value. That is, assume $(“p”) returned only one paragraph. You will then try to get 
the value of the paragraph using the html() function. Note that $(“p”) returns a jQuery 
Selector and the html() function belongs to the jQuery Selector. In this case, jQuery will 
run the html() method on the first element found by $(“p”) selector. This means when you 
say $(“p”).HTML(), $(“p”) will locate the first paragraph as below and give the value 
“simple paragraph.” 

<p>simple paragraph</p> 

Now you know that $(“p”) should give you many values as there are many paragraphs 
in the previous example, as shown here: 

<p>simple paragraph</p> 
<p class="title">Paragraph with class title</p> 
<p>another paragraph</p> 

In order to iterate over any list, jQuery provides a method: “each().” In order to use 
“each(),” you need to invoke it on a jQuery selector like in our case $(“p”). The “each()” 
method takes two arguments: the first being the index (position in the iteration) and the 
second being the actual entry at that position. 

Therefore, when you say $(“p”).each(function(index,element){}), the element is the actual 
jQuery selector on each paragraph. 

<script type="text/javascript"> 
$(document).ready(function() { 
    alert(“Simple extraction = ” + $("p").html()); 
 
    $("p").each(function(index, element) { 
        alert(index + " - '" + $(element).html() + "'"); 
    }); 
 
}); 
</script> 

Now, let’s move on to modifying HTML DOM. We will quickly introduce the simplest 
method to manipulate the DOM. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 132 

When you execute the following JavaScript, it will modify the content of paragraph to 
“Changed to 123.” 

<script type="text/javascript"> 
$(document).ready(function() { 
    $("p.title").html("Changed to 123"); 
}); 
</script> 

A complete list of jQuery HTML operations can be found at 
www.w3schools.com/jquery/jquery_ref_html.asp. 

jQuery Ajax Calls 
jQuery provides a number of useful methods for doing Ajax calls.  

The following is an example of doing an Ajax GET call to a URL. This is a classic 
example of “write less and do more.” The following code does an Ajax GET call to 
service/employee/details.txt and puts the contents in div with id “details”:  

$.get("service/employee/details.txt", function (result) { 
    $("div#details").html(result); 
}); 

The following is an example of doing an Ajax POST call to a URL, posting the data 
{name:employeeName}: 

$.post("service/employee/details", { 
    name: employeeName 
}, function (result) { 
    alert(“Post successful”); 
}); 

A complete list of jQuery HTML operations can be found at 
www.w3schools.com/jquery/jquery_ref_ajax.asp. 

Getting Acquainted with jQueryMobile 
jQueryMobile takes the jQuery concept of “write less, do more” to the next level by 
providing a common UI platform to develop mobile applications across many popular 
mobile platforms.  

jQueryMobile is built on very popular and robust jQuery and jQuery UI framework. 
jQueryMobile gives out-of–box, touch-ready mobile widgets such as list view, a header 
with a back button, navigation animation, and many more things. These widgets have a 
professional and polished look and feel, making it easier to develop ready-to-ship 
finished apps. 

jQueryMobile’s homepage is http://jquerymobile.com/. 

Moreover, jQueryMobile offers five out-of-box themes for you to choose from. The 
following is an example that shows how the buttons look in different themes. Overall, we 

http://www.w3schools.com/jquery/jquery_ref_html.asp
http://www.w3schools.com/jquery/jquery_ref_ajax.asp
http://jquerymobile.com/


CHAPTER 4:  Using PhoneGap with jQuery Mobile 133 

have five themes—Theme a, Theme b, Theme c, Theme d, and Theme d—as shown in 
Figure 4–1.  

 

Figure 4–1. jQueryMobile themes 

Also, jQueryMobile provides grade support for the platforms listed in Table 4-1. 

Table 4–1. jQueryMobile Supported Platform 

OS Platform Platform Version 

iOS Version 3.1.3 onwards 

Android Version 1.5 onwards 

Symbian S60 Version 5 onwards  

BlackBerry OS Version 5.0 onwards 

WebOS Version 1.4.1 onwards 

Windows 7 Version 7.0 onwards 

Samsung Bada Version 1.0 onwards 

MeeGo Version 1.1 onwards 

Including jQueryMobile in Mobile App 
Download jquery.mobile-1.0rc2.zip from http://jquerymobile.com/download/ and unzip 
it. Once you unzip it, you will see a folder structure as shown in Figure 4–2. It contains 
two pairs of jQueryMobile JavaScript and a CSS file. As the name suggests, you would 
use the .min JavaScript and CSS file in production as they are minified JavaScript and 
CSS files. 

Along with that, you will need to include the images folder in your mobile app. 

http://jquerymobile.com/download/


CHAPTER 4:  Using PhoneGap with jQuery Mobile 134 

 

Figure 4–2. jQueryMobile folder structure 

The following is the HTML template for jQueryMobile examples: 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title> 
            jQuery Mobile Demo 
        </title> 
        <link rel="stylesheet" type="text/css" href="jquery.mobile-1.0rc2.min.css"/> 
        <script type="text/javascript" src="jquery-1.6.4.min.js"></script> 
        <script type="text/javascript" src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        … 
    </body> 
 
</html> 

jQueryMobile Declarative UI 
Declarative UI building is the best part of jQueryMobile. You don’t need to write complex 
JavaScript code to build the UI. UI building is just like adding normal HTML elements 
with some jQueryMobile specific attributes and their values. 

Pages and Dialogs 
You saw the HTML template in the previous section. Now, you will add jQueryMobile 
layouts and widgets to it. 

You can declare the pages using data-role attributes in the div element inside the body 
tag. Thus, inside a body tag, you can declare many pages by just declaring the 
following: 

<div data-role=”page”></div> 

In the same manner, you can declare the components of a page by declaring data-role 
as “header,” “content,” and “footer.” The following is an example of a page in 
jQueryMobile: 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 135 

<div data-role=”page”> 
 
    <div data-role=”header”></div> 
 
    <div data-role=”content”></div> 
 
    <div data-role=”footer”></div> 
 
</div> 

The complete example of a page is shown here.  

<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Page Start--> 
        <div data-role="page"> 
            <!-- Page Header Start --> 
            <div data-role="header"> 
                <h1>Page Title</h1> 
            </div> 
            <!-- Page Header End --> 
 
            <!-- Page Body Start --> 
            <div data-role="content"> 
                <p> 
                    Page content goes here. 
                </p> 
            </div> 
            <!-- Page Body End --> 
 
            <!-- Page Footer Start --> 
            <div data-role="footer"> 
                <h4> 
                    Page Footer 
                </h4> 
            </div> 
            <!-- Page Footer End --> 
        </div> 
        <!-- Page End --> 
    </body> 
 
</html> 
 

This html when run in browser shows a screen as depicted in Figure 4–3. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 136 

 

Figure 4–3. jQueryMobile pages 

Now that you have seen the concept of a page in jQueryMobile, let’s go over a scenario 
in which you have multiple pages or dialog box. 

A typical application has multiple pages and dialog boxes. The best thing about 
jQueryMobile is that you can define all these different pages and dialog boxes within the 
same HTML page. 

Here is how to do it. Define multiple divs in an HTML page and give them the following: 

1. An attribute named data-role set to page. This looks like this: data-role=“page” 

2. An attribute named “id” to identify them in code 

You use links and buttons to navigate to these pages and dialog boxes. The simplest 
way to do that is to do the following: 

1. Define a link with href as #+<<id of the page/dialog box>> 

2. Give that link a data-role=”button” 

Note that a declaration of a page and dialog is the same. In fact, there is nothing called 
as a dialog, but you can load a page in a pop-up as a dialog. 

The following is an example of a link to a page. When this link is clicked, the transition to 
the page with id “page2” takes place. Also note that because the link is given the data-
role=”button”, it looks like a button. 

<a data-role="button" href="#page2">Page Navigation</a> 

Opening a page as a dialog is quite similar to navigating to page. You only need to add 
two more attributes to the link: 

1. data-rel=”dialog” 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 137 

2. data-transition=”pop” (this is the animation effect) 

<a data-role="button" href="#dialog1"  data-rel="dialog" data-transition="pop">Open 
Dialog </a> 

Here is the complete example for you to try. Figure 4–4 shows the “main” page, Figure 4–5 
shows the “page2” page, Figure 4–6 shows “dialog1” page, which acts as a dialogbox: 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header"> 
                <h1> 
                    Main Page 
                </h1> 
            </div> 
            <div data-role="content"> 
                <h1> 
                    Page Nav and Dialog Example 
                </h1> 
                <a data-role="button" href="#page2">Page Navigation</a> 
                <a data-role="button" href="#dialog1" data-rel="dialog" data- 
transition="pop">Open Dialog </a> 
            </div> 
            <div data-role="footer"> 
                <h4> 
                    Main Page Footer 
                </h4> 
            </div> 
        </div> 
        <!-- First Page End --> 
        <!-- Second Page--> 
        <div data-role="page" id="page2" data-add-back-btn=”true”> 
            <div data-role="header"> 
                <h1> 
                    Second Page 
                </h1> 
            </div> 
            <div data-role="content"> 
                <h1> 
                    Second Page 
                </h1> 
            </div> 
            <div data-role="footer"> 
                <h4> 
                    Click back to go back to main page 
                </h4> 
            </div> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 138 

        </div> 
        <!-- Second Page End --> 
        <!-- Dialog --> 
        <div data-role="page" id="dialog1"> 
            <div data-role="header"> 
                <h1> 
                    Dialog Title 
                </h1> 
            </div> 
            <div data-role="content"> 
                v 
                <h1> 
                    Dialog body 
                </h1> 
            </div> 
            <div data-role="footer"> 
                <h4> 
                    Click close button to go back to main page 
                </h4> 
            </div> 
        </div> 
        <!-- Dialog End --> 
    </body> 

</html> 

Figure 4–4. jQueryMobile page navigation 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 139 

 

Figure 4–5. jQueryMobile page navigation 

 

Figure 4–6. jQueryMobile dialog 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 140 

Toolbars and Buttons 
In jQueryMobile, there are two types of toolbars: 

1. Header bar 

2. Footer bar 

In general, creating a toolbar is as simple as declaring some buttons in the header or 
footer bar. This is depicted in Figure 4–7. 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header" data-position="inline"> 
                <a href="index.html" data-icon="delete">Cancel</a> 
                <h1> 
                    Edit Contact 
                </h1> 
                <a href="index.html" data-icon="check">Save</a> 
            </div> 
            <div data-role="content"> 
                <h1> 
                    Header Footer Toolbar Example 
                </h1> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <a href="index.html" data-role="button" data- icon="delete">Remove</a> 
                <a href="index.html" data-role="button" data-icon="plus">Add</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
u">Up</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
d">Down</a> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 141 

 

Figure 4–7. jQueryMobile toolbar and buttons 

Form Elements 
Form elements in jQueryMobile are typical HTML form elements—they only look 
different. This means you can use your HTML JavaScript skills to render good-looking, 
polished jQueryMobile widgets and use traditional event handling techniques to quickly 
write your mobile web apps. 

Let’s see a couple of examples of the form elements. In the first example, we are using 
an input text, a text area, and a search box. For all of these, a label is assigned. They 
are wrapped in a fieldset to form a group of the label and the associated widget. See 
Figure 4–8 to see how form elements look in jQueryMobile. 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header" data-position="inline"> 
                <a href="index.html" data-icon="delete">Cancel</a> 
                <h1> 
                    Edit Contact 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 142 

                </h1> 
                <a href="index.html" data-icon="check">Save</a> 
            </div> 
            <div data-role="content"> 
                <form action="#" method="get"> 
                    <h2> 
                        Simple Form Elements 
                    </h2> 
                    <div data-role="fieldcontain"> 
                        <label for="name"> 
                            Text Input: 
                        </label> 
                        <input type="text" name="name" id="name" value="" /> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <label for="textarea"> 
                            Textarea: 
                        </label> 
                        <textarea cols="40" rows="8" name="textarea" id="textarea"> 
                        </textarea> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <label for="search"> 
                            Search Input: 
                        </label> 
                        <input type="search" name="password" id="search" value="" /> 
                    </div> 
                </form> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <a href="index.html" data-role="button" data- icon="delete">Remove</a> 
                <a href="index.html" data-role="button" data-icon="plus">Add</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
u">Up</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
d">Down</a> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 143 

 

Figure 4–8. jQueryMobile form elements 

In the second example, the HTML select is wrapped in a good-looking on/off switch.  
Note that when you will be fetching the value from it programmatically, you will use it as 
an HTML select box. You have also wrapped a textbox with a slider. The value of the 
slider goes in the textbox. This is as good as a user filling in a number in the textbox, but 
with jQueryMobile, the user can use the slider to select a value in the given range. See 
Figure 4–9 to see how this HTML renders. 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header" data-position="inline"> 
                <a href="index.html" data-icon="delete">Cancel</a> 
                <h1> 
                    Edit Contact 
                </h1> 
                <a href="index.html" data-icon="check">Save</a> 
            </div> 
            <div data-role="content"> 
                <form action="#" method="get"> 
                    <h2> 
                        Simple Form Elements 
                    </h2> 
                    <div data-role="fieldcontain"> 
                        <label for="onoff-slider"> 
                            On/Off Switch: 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 144 

                        </label> 
                        <select name="onoff-slider" id="onoff-slider" data-
role="slider"> 
                            <option value="off"> 
                                Off 
                            </option> 
                            <option value="on"> 
                                On 
                            </option> 
                        </select> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <label for="range-slider"> 
                            Range Slider: 
                        </label> 
                        <input type="range" name="range-slider" id="range-slider" 
value="0" min="10" 
                        max="100" /> 
                    </div> 
                </form> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <a href="index.html" data-role="button" data- icon="delete">Remove</a> 
                <a href="index.html" data-role="button" data-icon="plus">Add</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
u">Up</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
d">Down</a> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 

 

Figure 4–9. jQueryMobile form elements 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 145 

In the following example, you can see how easy it is to wrap the HTML radio box and 
check box into good-looking widgets. This is done using data-role “controlgroup” and 
data-type as “horizontal.” See Figure 4–10 to see what Single and Multi Select form 
elements look like: 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header" data-position="inline"> 
                <a href="index.html" data-icon="delete">Cancel</a> 
                <h1> 
                    Edit Contact 
                </h1> 
                <a href="index.html" data-icon="check">Save</a> 
            </div> 
            <div data-role="content"> 
                <form action="#" method="get"> 
                    <h2> 
                        Single and MultiSelect Form Elements 
                    </h2> 
                    <div data-role="fieldcontain"> 
                        <fieldset data-role="controlgroup"> 
                            <legend> 
                                Choose a base: 
                            </legend> 
                            <input type="radio" name="radio-choice-1" id="radio-choice-
1" value="choice-1" 
                            checked="checked" /> 
                            <label for="radio-choice-1"> 
                                Thin Crust 
                            </label> 
                            <input type="radio" name="radio-choice-1" id="radio-choice-
2" value="choice-2" 
                            /> 
                            <label for="radio-choice-2"> 
                                Double Cheese Burst 
                            </label> 
                            <input type="radio" name="radio-choice-1" id="radio-choice-
3" value="choice-3" 
                            /> 
                            <label for="radio-choice-3"> 
                                Class Hand Tossed 
                            </label> 
                        </fieldset> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <fieldset data-role="controlgroup"> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 146 

                            <legend> 
                                Choose Pizza toppings 
                            </legend> 
                            <input type="checkbox" name="checkbox- 
1a" id="checkbox-1a" class="custom" /> 
                            <label for="checkbox- 
1a"> 
                                Jalepeno 
                            </label> 
                            <input type="checkbox" name="checkbox- 
2a" id="checkbox-2a" class="custom" /> 
                            <label for="checkbox-2a"> 
                                Olives 
                            </label> 
                            <input type="checkbox" name="checkbox- 
3a" id="checkbox-3a" class="custom" /> 
                            <label for="checkbox-3a"> 
                                Cheese 
                            </label> 
                            <input type="checkbox" name="checkbox- 
4a" id="checkbox-4a" class="custom" /> 
                            <label for="checkbox- 
4a"> 
                                Capsicum 
                            </label> 
                        </fieldset> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <fieldset data-role="controlgroup" data- type="horizontal"> 
                            <legend> 
                                Non Veg topping: 
                            </legend> 
                            <input type="checkbox" name="checkbox-6" id="checkbox-6" 
class="custom" 
                            /> 
                            <label for="checkbox- 
6"> 
                                Pepperoni 
                            </label> 
                            <input type="checkbox" name="checkbox-7" id="checkbox-7" 
class="custom" 
                            /> 
                            <label for="checkbox-7"> 
                                Ham 
                            </label> 
                            <input type="checkbox" name="checkbox-8" id="checkbox-8" 
class="custom" 
                            /> 
                            <label for="checkbox-8"> 
                                Turkey 
                            </label> 
                        </fieldset> 
                    </div> 
                    <div data-role="fieldcontain"> 
                        <fieldset data-role="controlgroup" data- type="horizontal"> 
                            <legend> 
                                Payment Type: 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 147 

                            </legend> 
                            <input type="radio" name="radio-choice-b" id="radio-choice-
c" value="on" 
                            checked="checked" /> 
                            <label for="radio-choice-c"> 
                                Cash 
                            </label> 
                            <input type="radio" name="radio-choice-b" id="radio-choice-
d" value="off" 
                            /> 
                            <label for="radio-choice-d"> 
                                Coupons 
                            </label> 
                            <input type="radio" name="radio-choice-b" id="radio-choice-
e" value="other" 
                            /> 
                            <label for="radio-choice-e"> 
                                Credit Card 
                            </label> 
                        </fieldset> 
                    </div> 
                </form> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <a href="index.html" data-role="button" data- icon="delete">Remove</a> 
                <a href="index.html" data-role="button" data-icon="plus">Add</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
u">Up</a> 
                <a href="index.html" data-role="button" data-icon="arrow- 
d">Down</a> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 148 

Figure 4–10. jQueryMobile form elements 

List Views 
So far, you have seen how easy it is to declare various UI widgets with simple HTML 
elements with data-roles and CSS classes. Well, in jQueryMobile, a list view is no 
exception. The following example will show you how a easily an HTML list can be 
converted to a mobile scrollable list. 

<ul data-role="listview" data-theme="g"> 
    <li> 
        <a href="usa.HTML">USA</a> 
    </li> 
    <li> 
        <a href="uk.HTML">UK</a> 
    </li> 
    <li> 
        <a href="russia.HTML">Russia</a> 
    </li> 
</ul> 

The following is the complete code example of how to declare a list in HTML. In case of 
dynamic data, all you have to do is append the li elements within the ul element at 
runtime. Refer to Figure 4–11 to see what the list view looks like in jQueryMobile. 

<!DOCTYPE HTML> 
<HTML> 
     
    <head> 
        <title>jQuery Mobile Demo</title> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 149 

        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header"> 
                <h1> 
                    Header 
                </h1> 
            </div> 
            <div data-role="content"> 
                <ul data-role="listview" data-theme="c"> 
                    <li> 
                        <a href="usa.HTML">USA</a> 
                    </li> 
                    <li> 
                        <a href="uk.HTML">UK</a> 
                    </li> 
                    <li> 
                        <a href="russia.HTML">Russia</a> 
                    </li> 
                </ul> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <h1> 
                    Footer 
                </h1> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</HTML> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 150 

 

Figure 4–11. jQueryMobile list view 

You can read more about this at the jQueryMobile website. See the demo and 
documentation by following this link: http://jquerymobile.com/demos/1.0a4.1/. 

jQueryMobile Event Handling 
In jQueryMobile, event handling can be categorized into two areas: 

1. Events generated by non-jQueryMobile widgets. Examples of these are textboxes, 
text areas, buttons, radio buttons, and so on. 

2. Events generated by jQueryMobile widgets and framework. Examples of these are 
the touch event, orientation change event, scroll events, and page lifecycle 
events. 

Normal Events 
Normal events should be handled as jQuery typically does. In jQuery, we have a generic 
method bind available with jQuery selector, which allows us to bind to any event. 
<html> 
    <head>…</head> 
    <body> 
        <button id=”mybutton”>mybutton</button> 
    </body> 
</html> 
 
$(“#mybutton”).bind(“click”,function(event){  
    alert(“clicked mybutton”); 
}); 

http://jquerymobile.com/demos/1.0a4.1/


CHAPTER 4:  Using PhoneGap with jQuery Mobile 151 

jQuery also provides many convenience method for events like a short hand of above 
method is click method, which binds the callback to click event. 
 
$(“#mybutton”).click(function(event){  
    alert(“clicked mybutton”); 
}); 

You can read more about jQuery events at the following website:  

http://api.jquery.com/category/events/ 

Now, coming to the events generated by jQueryMobile. Please note that all events, 
irrespective of their source, need to be handled in the manner depicted above. The 
same applies to the events documented below. 

The following section will discuss the various events generated by jQueryMobile 
framework and widgets.  

Touch Events 
Touch events on a mobile or tablet are very different than the traditional mouse events 
like click or double click. In a similar manner, in traditional mouse events, gestures are 
not possible. jQueryMobile provides a set of new events meant for touch gestures. 
These events are described in Table 4-2. 
Table 4–2. jQueryMobile Touch Events 

Event Name Description 

Tap This event is generated after a quick touch and 
lift.  

Taphold This is a tap event where the finger (or any 
object) is held against the screen as in a long 
press for approximately one second. 

Swipe This is a touch gesture in which there is a 
horizontal drag of at least 30 px in any 
direction, limiting the vertical movement within 
20 px. All this happens in one second. 

Swipeleft This is a swipe event but when the direction of 
swipe is toward the left. 

Swiperight This is a swipe event but when the direction of 
swipe is toward the right. 

http://api.jquery.com/category/events/


CHAPTER 4:  Using PhoneGap with jQuery Mobile 152 

The following is an example of how touch events work with jQueryMobile. Refer to 
Figure 4–12 for this example. 
<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Touch Events Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
        <script> 
            $(document).ready(function() { 
                $("#tap").bind("tap", function() { 
                    alert("TapEvent"); 
                }); 
                $("#taphold").bind("taphold", function() { 
                    alert("Tap Hold Event"); 
                }); 
                $("#swipe").bind("swipe", function() { 
                    alert("Swipe Event"); 
                }); 
                $("#swipeleft").bind("swipeleft", function() { 
                    alert("Swipe Left Event"); 
                }); 
                $("#swiperight").bind("swiperight", function() { 
                    alert("Swipe Right Event"); 
                }); 
            }); 
        </script> 
    </head> 
     
    <body> 
        <!--Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header"> 
                <h1> 
                    Touch Events 
                </h1> 
            </div> 
            <div data-role="content"> 
                <h1> 
                    Touch Events example 
                </h1> 
                <p id="tap"> 
                    Tap here 
                </p> 
                <p id="taphold"> 
                    Tap and hold here 
                </p> 
                <p id="swipe"> 
                    Swipe in this area. 
                </p> 
                <p id="swipeleft"> 
                    Swipe Left &lt;-- in this area. 
                </p> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 153 

                <p id="swiperight"> 
                    Swipe Right -- &gt; in this area. 
                </p> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <h1> 
                    Footer 
                </h1> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 

 

Figure 4–12. jQueryMobile touch events. 

Orientation Change Events 
Both mobile and tablet devices can detect and react to orientation change. This is very 
useful, as the aspect ratio of mobile or tablet is different in portrait mode and landscape 
mode. jQueryMobile allows the developer to use this orientation change to make the 
best use of real estate on the screen in both modes. In order to do this, you need to 
listen to the “orientationchange” event on the window element. This is shown in the 
following example. Refer to Figure 4–13 and 4–14. 

<!DOCTYPE html> 
<html> 
     
    <head> 
        <title>jQuery Mobile Touch Events Demo</title> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 154 

        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
            $(document).ready(function(){  
                $(window).bind('orientationchange', function(event){ 
                    $("#placeholder").html("Orientation changed to "+event.orientation); 
                });  
            }); 
        </script> 
    </head> 
     
    <body> 
        <!-- Main Page--> 
        <div data-role="page" id="main"> 
            <div data-role="header"> 
                <h1> 
                    Touch Events 
                </h1> 
            </div> 
            <div data-role="content"> 
                <h1> 
                    Orientation Events example 
                </h1> 
                <div id="placeholder"> 
                </div> 
            </div> 
            <div data-role="footer" class="ui-bar"> 
                <h1> 
                    Footer 
                </h1> 
            </div> 
        </div> 
        <!-- First Page End --> 
    </body> 
 
</html> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 155 

 

Figure 4–13. jQueryMobile orientation change event 

 

Figure 4–14. jQueryMobile orientation change event 

Scroll Events 
One of the important aspects of mobile devices is the ability to scroll and do things in 
the background when the scroll is happening. Think about lazy loaded lists, which fetch 
data as the user scrolls the list. 

In order to do this, you need scroll events (see Table 4–3). jQueryMobile provides scroll 
events. Please note when the scrollstart event does not work as expected on iOS and 
we advise not to rely on scrollstart event on iOS. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 156 

Table 4–3. jQueryMobile Scroll Events 

Event Name Description 

scrollstart This event is fired when scroll starts. Note this 
event is not fired properly on iPhone. This is 
because iOS devices freeze DOM manipulation. 
All events during that time are queued and fired 
at the time scroll stops.  

scrollstop This event is fired when scroll stops. 

Page Events 
jQueryMobile has the concept of pages. Pages in jQueryMobile are created, shown, 
and/or hidden. jQueryMobile provides events so that developer can put in appropriate 
handling before the page is created, after it is created, and before and after the page is 
shown and hidden. All these events are documented in Table 4–4. 

Table 4–4. jQueryMobile Page Events 

Event Name Description 

pagebeforecreate This event is fired just before the page is created.  

pagecreate This event is fired after the page is created. 

pagebeforeshow This event is fired before the page is shown. 

pagebeforehide This event is fired before the page is hidden. 

pageshow This event is fired after the page is shown. 

pagehide This event is fired after the page is hidden. 

PhoneGap jQueryMobile Integration 
Now that you understand how jQueryMobile works, let’s work on integrating the features 
of PhoneGap and jQueryMobile to create applications. 

Please note when you are using jQueryMobile with PhoneGap, there are three 
JavaScript frameworks, each bootstrapping on their own. 

1. PhoneGap framework 

2. jQuery framework 

3. jQueryMobile framework 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 157 

While all the frameworks provide their own bootstrap mechanism, it is best to bootstrap 
these frameworks in the following order: 

1. PhoneGap 

2. jQuery  

3. jQueryMobile (if really required). 

This is shown in the following example: 

<script> 
 
    //onDeviceReady is called when PhoneGap is initialized 
 
    function onDeviceReady() { 
        $(document).ready(function() { 
            //Call any jQuery functions here 
        }); 
    } 
    document.addEventListener(“deviceready”, onDeviceReady); 
</script> 

Local Search Using jQueryMobile and PhoneGap 
Let’s put jQueryMobile and PhoneGap to the test. You will build a mashup of PhoneGap 
geo, compass, and a database feature combined with Google Maps Places API with the 
UI built using jQueryMobile. Refer to Figure 4–15. 

This mashup is called a local search. This mashup has the following features: 

1. Allows a user to search for a place of interest in the given radius of his/her current 
location. 

2. Allows a user to look at the details of the place and also visit the website of the 
place. 

3. Allows a user to save a place as a favorite and remove it from the favorites. 

4. Allows a user to browse the favorites he has saved. 

5. Allows a user to look at all the search result places in a Google Map. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 158 

Figure 4–15. Local search using jQueryMobile and PhoneGap 

The two most important features in this screen are as follows (refer to Figure 4–16): 

1. The search button to search pizza in a 5 km radius of the user’s location  

2. The favorites button to show the user all the places marked as favorite 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 159 

 

Figure 4–16. Local search using jQueryMobile and PhoneGap 

The search results can be show as a list or as markers on a map. Figure 4–17shows how 
the results are seen as a list in. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 160 

 

Figure 4–17. Local search result 

When the user clicks on one of the search results, he is taken to the business details 
page. This page shows details such as name, address and phone number, and vicinity 
of the business. It also allows the user to either add the business entry to his/her 
favorites or remove it from the favorites. This is shown in Figure 4–18. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 161 

 

Figure 4–18. Local search business detail 

When a user adds a business to his favorites, he can navigate to the favorites page from 
the main page. Here, the user will see the places/business saved as favorites. These 
entries are actually stored to the app’s internal database (provided by PhoneGap)(see 
Figure 4–19). 

 

Figure 4–19. Locally stored favorites . 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 162 

Here again, when the user clicks on one of the entries, he is taken to the details page. If 
you can observe, we can now see the “Remove to favorite” button, as this 
business/place is already part of the favorites. Refer to Figure 4–20. 

 

Figure 4–20. Favorite detail. 

Last, but not the least, is the entire search results plotted on a Google Map. In order to 
do so, you need to go to the main page, hit search, and then click on the map tab. You 
will see a screen as depicted in Figure 4–21. 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 163 

 

Figure 4–21. Local search result on a map 

Bootstrapping PhoneGap and jQuery 
The bootstrapping is done in the following order: 

1. PhoneGap is bootstrapped to call onDeviceReady() function when the PhoneGap 
JavaScript library is called 

2. In the onDeviceReady, jQuery is bootstrapped to call the anonymous function 
when jQuery is loaded 

<script> 
function onDeviceReady(){ 
                $(document).ready(function(){ 
                        //Register event handlers 
                }); 
} 
document.addEventListener(“deviceready”,onDeviceReady); 
</script> 

Installing Necessary JavaScript Libraries 
For this project, you will need following JavaScript libraries  

1. jQuery: http://docs.jquery.com/Downloading_jQuery#Download_jQuery 

http://docs.jquery.com/Downloading_jQuery#Download_jQuery


CHAPTER 4:  Using PhoneGap with jQuery Mobile 164 

2. jQueryMobile: http://jquerymobile.com/download/ 

3. jQuery ui map: http://code.google.com/p/jquery-ui-map/downloads/list 

4. PhoneGap: www.phonegap.com/download/ 

Assuming your application JavaScript is called app.js and application CSS is named 
app.css, your www folder should look as shown in Figure 4–22. Note the images folder 
is of jQueryMobile library. 

 

Figure 4–22. Local search project structure 

Layout of Local Search 
The local search page is the main page in the application. It takes three inputs to be able 
to do a local search.  

1. Geo location from PhoneGap 

2. Search keyword from the search text box 

3. Radius of search from the jQueryMobile slider 

Once this is done, it will fetch the search results and show them in the search result 
page. 

<!-- Main Search Page --> 
<div data-role="page"> 
    <div data-role="header"> 
        <h1> 
            Local Search 
        </h1> 
    </div> 
    <!-- /header --> 
    <div data-role="content"> 

http://jquerymobile.com/download/
http://code.google.com/p/jquery-ui-map/downloads/list
http://www.phonegap.com/download/


CHAPTER 4:  Using PhoneGap with jQuery Mobile 165 

        <div data-role="fieldcontain"> 
            <label for="search"> 
                Local Search 
            </label> 
            <input type="search" name="searchbox" id="searchbox" value="Pizza" /> 
        </div> 
        <div data-role="fieldcontain"> 
            <label for="slider"> 
                Search Range(kms): 
            </label> 
            <input type="range" name="range" id="range" value="5" min="1" max="25" 
            /> 
        </div> 
        <div data-role="fieldcontain"> 
            <button name="search" id="search"> 
                Search 
            </button> 
        </div> 
        <div data-role="controlgroup" data-type="horizontal"> 
            <a href="#fav" data-role="button" data-icon="home">Favorites</a> 
            <a href="index.html" data-role="button" data-icon="info">About us</a> 
        </div> 
    </div> 
    <!-- /content --> 
</div> 

Searching for a Local Business 
In order to search for places of interest, we are using Google Maps Places API. Places 
of interest can be searched by making a restful call to the Google Maps Places service 
end point. There are many parameters required to make this restful call; these are shown 
in Table 4–5. 

Table 4–5. Google Place API Parameters 

Parameter name Description 

API key You need an API key to tell Google that it is your application that is 
making rest calls. You need to register with Google and generate a key 
for your website. Visit this URL for more detail: 
http://code.google.com/apis/maps/signup.html 

Latitude Since Google Maps Places is a Geo Service, it requires your coordinates 

Longitude Since Google Maps Places is a Geo Service, it requires your coordinates 

Radius Google Maps Places needs a radius from you to determine the scope of 
the search 

Name The search keyword for finding places 

Types The category of places; this is “food” in this example 

http://code.google.com/apis/maps/signup.html


CHAPTER 4:  Using PhoneGap with jQuery Mobile 166 

 

The URL is shown here with fillers for each parameter: 

https://maps.googleapis.com/maps/api/place/search/json?location={latitude,longi
tude}&radius={radius}&types=food&name={search keyword} 
&sensor=false&key={api_key}. 

For the following URL, the JSON response occurs: 

https://maps.googleapis.com/maps/api/place/search/json?location=-
33.8670522,151.1957362&radius=500&types=food&name=harbour&sensor=true&key=<<api 
key>>. 

JSON response is as follows: 

{ 
    "html_attributions": ["Listings by \u003ca 
href=\"http://www.yellowpages.com.au/\"\u003eYellow Pages\u003c/a\u003e"], 
    "results": [{ 
        "geometry": { 
            "location": { 
                "lat": -33.8719640, 
                "lng": 151.1985440 
            } 
        }, 
        "icon": "http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png", 
        "id": "aefbc59325ffd5f3e93d67932375d20d143289de", 
        "name": "Toros Restaurant Darling Harbour", 
        "reference": 
"CoQBdgAAAE6oRybc13OZYNH0WeuwKzTfzjYXO8nuWyGqCqSTBogR_BZxE30fgXsybOl_wIR0s_uuHLZqq- 
17DTgpGHZoSehSbOG73dfIxO3rpQak2OmNuBb5Kg63rPN_afbH_PnbILiofw6WSODYOCkqhFl38qSXyujAPkQKZU 
76NJypgT6mEhCg1MhyNAuyark4X8YfRg4YGhTn_MXr0gelHUHPe3JMCic-cHlu3A", 
        "types": ["restaurant", "food", "establishment"], 
        "vicinity": "Darling Dr, Sydney" 
    }, ...] 
} 

Note that in the previous JSON, there is an id and reference. You need to understand 
these better to be able to build your application. 

Id is a unique identifier of a place. You will use id as a primary key when you store the 
place/business in your database. However, id cannot be used to fetch the latest 
information. 

Reference is a key that is used to fetch the details of a place/business from the Google 
Places server. However, note that a reference is not unique across multiple search 
results. 

Therefore, you will store both id (as the primary key) and reference (as a string) in the 
database, so you can uniquely identify a place/business (using id) and fetch information 
from Google Places any time using the reference. 

https://maps.googleapis.com/maps/api/place/search/json?location=
https://maps.googleapis.com/maps/api/place/search/json?location=-33.8670522,151.1957362&radius=500&types=food&name=harbour&sensor=true&key=
https://maps.googleapis.com/maps/api/place/search/json?location=-33.8670522,151.1957362&radius=500&types=food&name=harbour&sensor=true&key=
http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png


CHAPTER 4:  Using PhoneGap with jQuery Mobile 167 

Overall Layout in HTML 
The following is the overall layout of the application. There are in all five pages in the 
application: 

1. Search page 

2. Search result page with id “list” 

3. Details page with id “DETAILS” 

4. Favorite list page with id “fav” 

5. Map page with id “map” 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title>PhoneGap</title> 
        <link rel="stylesheet" type="text/css" href="app.css" /> 
        <script type="text/javascript" 
src="http://maps.google.com/maps/api/js?sensor=true"></script> 
        <script type="text/javascript" src="jquery.ui.map.min.js"></script> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
        <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
        <script type="text/javascript" src="app.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Search Page --> 
        <div data-role="page"> 
            <div data-role="header"> 
                <h1> 
                    Local Search 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <div data-role="fieldcontain"> 
                    <label for="search"> 
                        Local Search 
                    </label> 
                    <input type="search" name="searchbox" id="searchbox" value="Pizza" 
/> 
                </div> 
                <div data-role="fieldcontain"> 
                    <label for="slider"> 
                        Search Range(kms): 
                    </label> 
                    <input type="range" name="range" id="range" value="5" min="1" 
max="25" 
                    /> 
                </div> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 168 

                <div data-role="fieldcontain"> 
                    <button name="search" id="search"> 
                        Search 
                    </button> 
                </div> 
                <div data-role="controlgroup" data-type="horizontal"> 
                    <a href="#fav" data-role="button" data-icon="home">Favorites</a> 
                    <a href="index.html" data-role="button" data-icon="info">About 
us</a> 
                </div> 
            </div> 
            <!-- /content --> 
        </div> 
        <!-- /page --> 
        <!-- Search Result List Page --> 
        <div data-role="page" id="list"> 
            <div data-role="header" data-position="fixed"> 
                <h1> 
                    Result 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <ul id="result-list" data-role="listview" data-theme="g"> 
                </ul> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer" data-position="fixed" 
               class="ui-bar-a  
                   ui-footer ui-footer-fixed fade ui-fixed-overlay"  
               role="contentinfo" style="top: -1263px; "> 
                <div data-role="navbar" class="ui-navbar ui-navbar-noicons" 
role="navigation"> 
                    <ul class="ui-grid-a"> 
                        <li class="ui-block-a"> 
                            <a href="#list" data-theme="a"  
                                class="ui-btn-active ui-state-persist ui-btn ui-btn-up-
a"> 
                                <span class="ui-btn-inner"><span class="ui-btn-
text">List</span></span> 
                            </a> 
                        </li> 
                        <li class="ui-block-b"> 
                            <a href="#map" data-theme="a"  
                                class="ui-state-persist ui-btn ui-btn-up-a"> 
                                <span class="ui-btn-inner"><span class="ui-btn-
text">Maps</span></span> 
                            </a> 
                        </li> 
                    </ul> 
                </div> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!-- Maps Page --> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 169 

        <div data-role="page" id="map"> 
            <div data-role="header"> 
                <h1> 
                    Map 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content" class="map-content"> 
                <div id="map_canvas"> 
                </div> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer"  
                data-position="fixed" 
                class="ui-bar-a ui-footer ui-footer-fixed fade ui-fixed-overlay"  
                role="contentinfo" style="top: -1263px; "> 
                <div data-role="navbar" class="ui-navbar ui-navbar-noicons" 
role="navigation"> 
                    <ul class="ui-grid-a"> 
                        <li class="ui-block-a"> 
                            <a href="#list" data-theme="a" class="ui-state-persist ui-
btn ui-btn-up-a"> 
                                <span class="ui-btn-inner"><span class="ui-btn-
text">List</span></span></a> 
                        </li> 
                        <li class="ui-block-b"> 
                            <a href="#map" data-theme="a"  
                                class="ui-btn-active ui-state-persist ui-btn ui-btn-up-
a"> 
                                <span class="ui-btn-inner"><span class="ui-btn-
text">Maps</span></span></a> 
                        </li> 
                    </ul> 
                </div> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!--Favorite List Page --> 
        <div data-role="page" id="fav"> 
            <div data-role="header"> 
                <h1> 
                    Favorites 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <!--  
                    <ul id="fav-list" data-role="listview" data-theme="g"></ul> 
                --> 
                <ul id="fav-list" data-role="listview" data-theme="g"> 
                </ul> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer" data-position="fixed" 
                class="ui-bar-a ui-footer ui-footer-fixed fade ui-fixed-overlay"  



CHAPTER 4:  Using PhoneGap with jQuery Mobile 170 

                role="contentinfo" style="top: -1263px; "> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!-- Business Details Page --> 
        <div data-role="page" id="details"> 
            <div data-role="header"> 
                <h1> 
                    Business Details 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <table summary="Business Details"> 
                    <caption> 
                        <h3> 
                            Business Details 
                        </h3> 
                    </caption> 
                    <tfoot> 
                        <tr> 
                            <td colspan="2"> 
                                <div id="remove"> 
                                    <button id="removefav" data-role="button"> 
                                        Remove to Favorite 
                                    </button> 
                                </div> 
                                <div id="add"> 
                                    <button id="addfav" data-role="button"> 
                                        Add to Favorite 
                                    </button> 
                                </div> 
                            </td> 
                        </tr> 
                        <tr> 
                            <td colspan="2"> 
                                <a id="homepage" data-role="button" href="">Visit 
HomePage</a> 
                            </td> 
                        </tr> 
                    </tfoot> 
                    <tbody> 
                        <tr> 
                            <th scope="row"> 
                                Name 
                            </th> 
                            <td id="name"> 
                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Address 
                            </th> 
                            <td id="address"> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 171 

                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Phone 
                            </th> 
                            <td id="phone"> 
                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Rating 
                            </th> 
                            <td id="rating"> 
                                ... 
                            </td> 
                        </tr> 
                    </tbody> 
                </table> 
            </div> 
            <!-- /content --> 
        </div> 
        <!-- /page --> 
    </body> 
 
</html> 

Fetching and Showing the Search Results 
The function-initiated search binds the search button event with the function that 
actually performs the search. 

The following is the flow of events for a search: 

1. Show user a loading icon to let him/her know a long operation is occurring. This is 
done by calling $.mobile.showPageLoadingMsg();. 

2. Get the current position of the user using PhoneGap function 
navigator.geolocation.getCurrentPosition(successCallback, failureCallback). 

3. In the successCallback of the above call, a JSON request to Google Places with 
the following parameters is done: 

a. Geolocation 

b. Keyword for search 

c. Radius of search from the geolocation 

d. Developer Api key for Google Places 

e. var 
url="https://maps.googleapis.com/maps/api/place/search/json?locati
on="+position.coords.latitude+","+position.coords.longitude+"&radi



CHAPTER 4:  Using PhoneGap with jQuery Mobile 172 

us="+radius+"&name="+$("#searchbox").val()+"&sensor=true&key=<API_
Key>"; 

4. jQuery’s $.getJSON() is used to make a Ajax call to Google Places to fetch a 
JSON response. Note that as the PhoneGap application has no domain, you are 
not restricted by single origin policy of browser. Register a successCallback and a 
failureCallback with $.getJSON() function. 

5. In the successCallback of above call, the places response are fetched and 
appended to the ul element whose id is “result-list.” This ul element is annotated 
in the HTML code as a jQueryMobile list view. Once you have added the 
necessary li element to the ul element, we will call $(“result-list”).listView(“refresh”) 
to redraw the ul element as a jQueryMobile list. 

6. Note that you put the reference part of the JSON response for each place as the 
id of the link (an element). You do this so that when the user taps on this entry, he 
is taken to the details page. Note that the href part of this link is actually 
“#details.” 

7. Lastly, you are binding a click handler with the click event on the place so that 
you can actually make a call to the Google Places server to fetch the details of the 
business/place entry before navigating the user to the details page. 

8. The last step is to remove the loading icon by calling 
$.mobile.hidePageLoadingMsg ();. 

/** 
  * Binding Search button handler to go and fetch place results 
  */ 
function initiateSearch(){ 
        $("#search").click(function(){ 
try { 
                $.mobile.showPageLoadingMsg(); 
 
navigator.geolocation.getCurrentPosition(function(position){ 
 
var radius = $("#range").val() * 1000; 
mapdata = new google.maps.LatLng(position.coords.latitude, position.coords.longitude); 
var url = "https://maps.googleapis.com/maps/api/place/search/json?location=" +  
position.coords.latitude + "," + position.coords.longitude + "&radius=" + radius +  
"&name=" + $("#searchbox").val() + 
"&sensor=false&key=AIzaSyC4vCfT_Knq1SGuNMahZqyrmZFiTuBsdlY"; 
                    $.getJSON(url, function(data){ 
cachedData = data; 
                        $("#result-list").html(""); 
try { 
                            $(data.results).each(function(index, entry){ 
 
var htmlData = "<a href=\"#details\" id=\"" + entry.reference + "\"><img src=\"" +  
entry.icon + "\" class=\"ui-li-icon\"></img><h3>&nbsp;" + entry.name +  

https://maps.googleapis.com/maps/api/place/search/json?location=


CHAPTER 4:  Using PhoneGap with jQuery Mobile 173 

"</h3><p><strong>&nbsp;vicinity:" + entry.vicinity + "</strong></p></a>"; 
var liElem = $(document.createElement('li')); 
 
                                $("#result-list").append(liElem.html(htmlData)); 
 
 
                                $(liElem).bind("tap", function(event){ 
event.stopPropagation(); 
fetchDetails(entry); 
return true; 
                                }); 
 
                            }); 
                                                        $("#result- 
list").listview('refresh'); 
                        }  
catch (err) { 
console.log("Got error while putting search result on result page " + err); 
                        } 
 
 
                        $.mobile.changePage("list"); 
                        $.mobile.hidePageLoadingMsg(); 
                    }).error(function(xhr, textStatus, errorThrown){ 
console.log("Got error while fetching search result : xhr.status=" + xhr.status); 
 
                    }).complete(function(error){ 
                         $.mobile.hidePageLoadingMsg(); 
                    }); 
                }, function(error){ 
console.log("Got Error fetching geolocation " + error); 
                }); 
 
 
            }  
catch (err) { 
console.log("Got error on clicking search button " + err); 
            } 
 
 
 
        }); 
 
    } 

Showing Details of a Place/Business 
You have seen above that when the user clicks on a place entry in the list the showing 
places search results, fetchDetails() function is called. 

The fetchDetails() function has the following flow: 

1. The user is shown a loading icon. This is done by calling 
$.mobile.showPageLoadingMsg(). 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 174 

2. All the fields of the details place are reset to be blank. For example, 
$(“#name”).html();. 

3. A URL of the details place request is created (detailsURL) and an Ajax call is 
made using jQuery $.getJSON() call. 

4. In the successCallback of $.getJSON(), you get the details of the page. Here you 
first check if the given place is already stored by a user as a favorite or not. Based 
on this, the user is shown an “add to favorite” or “remove from favorite” button. 

5. The fields of this page are populated. 

6. The loading icon is removed by calling $.mobile.hidePageLoadingMsg(). 

/** 
     * Fetch the details of a place/business. This function is called before user 
navigates to details page 
     * @param {Object} reference 
     */ 
function fetchDetails(entry){ 
   
currentBusinessData = null;  
 
        $.mobile.showPageLoadingMsg(); 
var detailsUrl = "https://maps.googleapis.com/maps/api/place/details/json?reference=" +  
entry.reference + "&sensor=true&key=<API_Key>"; 
        $("#name").html(""); 
        $("#address").html(""); 
        $("#phone").html(""); 
        $("#rating").html(""); 
        $("#homepage").attr("href", ""); 
 
        $.getJSON(detailsUrl, function(data){ 
if (data.result) { 
currentBusinessData = data.result; 
 
isFav(currentBusinessData, function(isPlaceFav){ 
                                        console.log(currentBusinessData.name+" is fav  
"+isPlaceFav); 
if (!isPlaceFav) { 
 
                        $("#add").show(); 
                        $("#remove").hide(); 
                    } 
else { 
 
                        $("#add").hide(); 
                        $("#remove").show(); 
                    } 
                    $("#name").html(data.result.name); 
                    $("#address").html(data.result.formatted_address); 
                    $("#phone").html(data.result.formatted_phone_number); 
                    $("#rating").html(data.result.rating); 
                    $("#homepage").attr("href", data.result.url); 
 
                }); 

https://maps.googleapis.com/maps/api/place/details/json?reference=


CHAPTER 4:  Using PhoneGap with jQuery Mobile 175 

 
 
 
            } 
        }).error(function(err){ 
console.log("Got Error while fetching details of Business " + err); 
        }).complete(function(){ 
            $.mobile.hidePageLoadingMsg(); 
        }); 
 
    } 

Adding and Removing a Place/Business to Favorite 
The next step is to actually see  

1. How do we add a place to our favorites list? 

2. How do we remove a place from our favorites list? 

3. How do we find a given place is part of our favorites list? 

The thing to note here is that you are using PhoneGap’s database API to store, retrieve, 
and delete places. All this information is stored in the application’s database using 
PhoneGap’s database API. You will store the favorites in a table named “favorite.” 

The initiateFavButton() binds the click handlers for the “add to favorite” and “remove 
from favorite” buttons to actual handler. The “add to favorite” button is within a div with 
id “add,” and “remove from favorite” is in a div with id “remove.” You are controlling the 
visibility of the buttons by hiding or showing these divs. You also give corresponding 
calls to addToFavorite() and removeFromFavorite() methods to actually do the add and 
remove. 

/** 
 * Called to bind the "Add to Favorite" Button 
 */ 
 
function initiateFavButton() { 
    $("#removefav").click(function () { 
 
        try { 
            if (currentBusinessData != null) { 
                removeFromFavorite(currentBusinessData); 
                $("#add").show(); 
                $("#remove").hide(); 
 
            } 
        } catch (err) { 
            console.log("Got Error while removing " + currentBusinessData.name + " error 
" + err); 
        } 
 
 
    }); 
    $("#addfav").click(function () { 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 176 

        try { 
            if (currentBusinessData != null) { 
                addToFavorite(currentBusinessData); 
                $("#add").hide(); 
                $("#remove").show(); 
            } 
        } catch (err) { 
            console.log("Got Error while adding " + currentBusinessData.name + " error " 
+ err); 
        } 
 
    }); 
 
 
} 
The ensureTableExists() is a common function used by all other database functions. This 
function ensures you execute the SQL script “CREATE TABLE IF NOT EXISTS Favorite 
(id unique, reference, name, address, phone, rating, icon, vicinity)” before doing any 
insert, select, or delete operations on the database. 

/** 
 * Ensure we have the table before we use it 
 * @param {Object} tx 
 */ 
 
function ensureTableExists(tx) { 
    tx.executeSql('CREATE TABLE IF NOT EXISTS Favorite (id unique, reference,  
name,address,phone,rating,icon,vicinity)'); 
} 
The addToFavorite() is the function that actually does the database insert for the given 
places in the favorites table. Note that you are storing id, reference, name, icon, 
formatted_address, formatted_phone_number, rating, and vicinity in the database table 
“favorite”. 

    /** 
     * Add current business data to favorite 
     * @param {Object} data 
     */ 
 
    function addToFavorite(data) { 
        var db = window.openDatabase("Favorites", "1.0", "Favorites", 20000000); 
 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var id = (data.id != null) ? ('"' + data.id + '"') : ('""'); 
            var reference = (data.reference != null) ? ('"' + data.reference + '"') : 
('""'); 
            var name = (data.name != null) ? ('"' + data.name + '"') : ('""'); 
            var address = (data.formatted_address != null) ? ('"' + 
data.formatted_address + '"') : ('""'); 
            var phone = (data.formatted_phone_number != null) ? ('"' + 
data.formatted_phone_number + '"') : ('""'); 
            var rating = (data.rating != null) ? ('"' + data.rating + '"') : ('""'); 
            var icon = (data.icon != null) ? ('"' + data.icon + '"') : ('""'); 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 177 

            var vicinity = (data.vicinity != null) ? ('"' + data.vicinity + '"') : 
('""'); 
            var insertStmt = 'INSERT INTO Favorite (id,reference,  
name,address,phone,rating,icon,vicinity) VALUES (' + id + ',' + reference + ',' + name + 
',' + address + ',' + phone + ',' + rating + ',' + icon + ',' + vicinity + ')'; 
            tx.executeSql(insertStmt); 
 
        }, function (error) { 
            console.log("Data insert failed " + error.code + "   " + error.message); 
        }, function () { 
            console.log("Data insert successful"); 
        }); 
 
    } 
The removeFromFavorite() is the function that removes the favorite from the “favorite” 
table. It only requires the id to do so. 

/** 
 * Remove current business data from favorite 
 * @param {Object} data 
 */ 
 
function removeFromFavorite(data) { 
    try { 
        var db = window.openDatabase("Favorites", "1.0", "Favorites", 20000000); 
 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var deleteStmt = "DELETE FROM Favorite WHERE id = '" + data.id + "'"; 
            console.log(deleteStmt); 
            tx.executeSql(deleteStmt); 
 
        }, function (error) { 
            console.log("Data Delete failed " + error.code + "   " + error.message); 
        }, function () { 
            console.log("Data Delete successful"); 
        }); 
    } catch (err) { 
        console.log("Caught exception while deleting favorite " + data.name); 
    } 
 
} 
The isFav() is the function that queries the table “favorite” to find out whether the given 
place/business is already present in the table and thus marked by the user as a favorite. 

    /** 
     * 
     * @param {Object} reference 
     * @return true if place is favorite else false 
     */ 
 
    function isFav(data, callback) { 
        var db = window.openDatabase("Favorites", "1.0", "Favorites", 200000); 
        try { 
            db.transaction(function (tx) { 
                ensureTableExists(tx); 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 178 

                var sql = "SELECT * FROM Favorite where id='" + data.id + "'"; 
                tx.executeSql(sql, [], function (tx, results) { 

                    var result = (results != null && results.rows != null && 
results.rows.length > 0); 

                    callback(result); 
                }, function (tx, error) { 

                    console.log("Got error in isFav error.code =" + error.code + " 
error.message = " + error.message); 
                    callback(false); 

                }); 
            }); 
        } catch (err) { 
            console.log("Got error in isFav " + err); 
            callback(false); 
        } 
} 

Loading Your Favorite Places 
So far you have added and removed a place to and from the favorites. You also saw 
how to check whether a place is set by the user as his/her favorite. Now, let’s look at the 
code that retrieves all the favorite places of a user. 

This code is called when the user hits the “favorites” button on the home page. 

This code is very similar to isFav(), except here you will actually fetch all the entries from 
the “favorite” table, take the result set, and populate the UL with “fav-list” id.  

The populating part is similar to showing the results of a search. 

Please make a note that you fetch results from the database table “favorites” each time 
the user navigates to “favorites place.” This is done by listening to “pagebeforeshow” 
event of the page. The “pagebeforeshow” event is fired just before the jQueryMobile 
page is shown to the user. 

/** 
 * Called each time before user navigates to Favorites 
 */ 

function initiateFavorites() { 
    $("#fav").live("pagebeforeshow", function () { 

        var db = window.openDatabase("Favorites", "1.0", "Favorites", 200000); 
        try { 
            db.transaction(function (tx) { 
                tx.executeSql('SELECT * FROM Favorite', [], function (tx, results) { 

                    $("#fav-list").html(""); 
                    if (results != null && results.rows != null) { 
                        for (var index = 0; index < results.rows.length; index++) { 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 179 

 
                            var entry = results.rows.item(index) 
 
                            var htmlData = "<a href=\"#details\" id=\"" + 
entry.reference + "\"><img src=\"" + entry.icon + "\" class=\"ui-li-
icon\"></img><h3>&nbsp;" + entry.name + "</h3><p><strong>&nbsp;vicinity:" + 
entry.vicinity + "</strong></p></a>"; 
 
                            var liElem = $(document.createElement('li')); 
 
                            $("#fav-list").append(liElem.html(htmlData)); 
 
                            $(liElem).bind("tap", function (event) { 
                                event.stopPropagation(); 
                                fetchDetails(entry); 
                                return true; 
                            }); 
 
                        } 
                        $("#fav-list").listview('refresh'); 
                    } 
                }, function (error) { 
                    console.log("Got error fetching favorites " + error.code + " " + 
error.message); 
                }); 
            }); 
        } catch (err) { 
            console.log("Got error while reading favorites " + err); 
        } 
 
    }); 
} 

Showing Search Result on a Map 
The last part of this exercise is to show the search result for a place on Google Maps. 
This helps the user get a better idea of where a place is located. In the initiateSearch() 
function, when you received the search result, you cached the result in a JavaScript 
variable named “cachedData”. In this, you will actually use the same data to plot 
markers on the map. 

Please make a note that you redraw the map and plot the markers from cachedData 
each time the user navigates to “favorites place.” This is done by listening to the 
“pagebeforeshow” event of the page.  

  /** 
   * Called to initiate Map page 
   */ 
 
  function initiateMap() { 
      $("#map").live("pagebeforecreate", function () { 
          try { 
 
              $('#map_canvas').gmap({ 
                  'center': mapdata, 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 180 

                  'zoom': 12, 
                  'callback': function (map) { 
                      $(cachedData.results).each(function (index, entry) { 
                          $('#map_canvas').gmap('addMarker', { 
                              'position': new 
                              google.maps.LatLng(entry.geometry.location.lat, 
entry.geometry.location.lng), 
                              'animation': google.maps.Animation.DROP 
                          }, function (map, marker) { 
                              $('#map_canvas').gmap('addInfoWindow', { 
                                  'position': marker.getPosition(), 
                                  'content': entry.name 
                              }, function (iw) { 
                                  $(marker).click(function () { 
                                      iw.open(map, marker); 
                                      map.panTo(marker.getPosition()); 
                                  }); 
                              }); 
                          }); 
 
                      }); 
                  } 
 
 
 
 
              }); 
              console.log("Map initialized"); 
          } catch (err) { 
              console.log("Got error while initializing map " + err); 
          } 
 
      }); 

Complete Source Code 
The complete source of the index.html is as follows: 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title>PhoneGap</title> 
        <link rel="stylesheet" type="text/css" href="app.css" /> 
        <script type="text/javascript" 
src="http://maps.google.com/maps/api/js?sensor=true"></script> 
        <script type="text/javascript" src="jquery.ui.map.min.js"></script> 
        <link href="jquery.mobile-1.0rc2.min.css" rel="stylesheet" type="text/css"/> 
        <script src="jquery-1.6.4.min.js"></script> 
        <script src="jquery.mobile-1.0rc2.min.js"></script> 
        <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
        <script type="text/javascript" src="app.js"></script> 
    </head> 
     
    <body> 
        <!-- Main Search Page --> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 181 

        <div data-role="page"> 
            <div data-role="header"> 
                <h1> 
                    Local Search 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <div data-role="fieldcontain"> 
                    <label for="search"> 
                        Local Search 
                    </label> 
                    <input type="search" name="searchbox" id="searchbox" value="Pizza" 
/> 
                </div> 
                <div data-role="fieldcontain"> 
                    <label for="slider"> 
                        Search Range(kms): 
                    </label> 
                    <input type="range" name="range" id="range" value="5" min="1" 
max="25" 
                    /> 
                </div> 
                <div data-role="fieldcontain"> 
                    <button name="search" id="search"> 
                        Search 
                    </button> 
                </div> 
                <div data-role="controlgroup" data-type="horizontal"> 
                    <a href="#fav" data-role="button" data-icon="home">Favorites</a> 
                    <a href="index.html" data-role="button" data-icon="info">About 
us</a> 
                </div> 
            </div> 
            <!-- /content --> 
        </div> 
        <!-- /page --> 
        <!-- Search Result List Page --> 
        <div data-role="page" id="list"> 
            <div data-role="header" data-position="fixed"> 
                <h1> 
                    Result 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <ul id="result-list" data-role="listview" data-theme="g"> 
                </ul> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer" data-position="fixed" 
            class="ui-bar-a  
ui-footer ui-footer-fixed fade ui-fixed-overlay" role="contentinfo" style="top: - 
1263px; "> 
                <div data-role="navbar" class="ui-navbar ui-navbar-noicons" 
role="navigation"> 
                    <ul class="ui-grid-a"> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 182 

                        <li class="ui-block-a"> 
                            <a href="#list" data-theme="a" class="ui-btn-active ui-
state-persist ui-btn ui-btn-up- 
a"><span class="ui-btn-inner"><span class="ui-btn-text">List</span></span></a> 
                        </li> 
                        <li class="ui-block-b"> 
                            <a href="#map" data-theme="a" class="ui-state-persist ui-btn 
ui-btn-up-a"><span  
class="ui-btn-inner"><span class="ui-btn-text">Maps</span></span></a> 
                        </li> 
                    </ul> 
                </div> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!-- Maps Page --> 
        <div data-role="page" id="map"> 
            <div data-role="header"> 
                <h1> 
                    Map 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content" class="map-content"> 
                <div id="map_canvas"> 
                </div> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer" data-position="fixed" 
            class="ui-bar-a  
ui-footer ui-footer-fixed fade ui-fixed-overlay" role="contentinfo" style="top: - 
1263px; "> 
                <div data-role="navbar" class="ui-navbar ui-navbar-noicons" 
role="navigation"> 
                    <ul class="ui-grid-a"> 
                        <li class="ui-block-a"> 
                            <a href="#list" data-theme="a" class="ui-state-persist ui-
btn ui-btn-up-a"><span  
class="ui-btn-inner"><span class="ui-btn-text">List</span></span></a> 
                        </li> 
                        <li class="ui-block-b"> 
                            <a href="#map" data-theme="a" class="ui-btn-active ui-state-
persist ui-btn ui-btn-up- 
a"><span class="ui-btn-inner"><span class="ui-btn-text">Maps</span></span></a> 
                        </li> 
                    </ul> 
                </div> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!-- Favorite List Page --> 
        <div data-role="page" id="fav"> 
            <div data-role="header"> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 183 

                <h1> 
                    Favorites 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <!-- <ul id="fav-list" data-role="listview" data-theme="g"> 
</ul> 
                --> 
                <ul id="fav-list" data-role="listview" data-theme="g"> 
                </ul> 
            </div> 
            <!-- /content --> 
            <div data-role="footer" data-id="result-footer" data-position="fixed" 
            class="ui-bar-a  
ui-footer ui-footer-fixed fade ui-fixed-overlay" role="contentinfo" style="top: - 
1263px; "> 
                <!-- /navbar --> 
            </div> 
            <!-- /footer --> 
        </div> 
        <!-- /page --> 
        <!-- Business Details Page --> 
        <div data-role="page" id="details"> 
            <div data-role="header"> 
                <h1> 
                    Business Details 
                </h1> 
            </div> 
            <!-- /header --> 
            <div data-role="content"> 
                <table summary="Business Details"> 
                    <caption> 
                        <h3> 
                            Business Details 
                        </h3> 
                    </caption> 
                    <tfoot> 
                        <tr> 
                            <td colspan="2"> 
                                <div id="remove"> 
                                    <button id="removefav" data-role="button"> 
                                        Remove to Favorite 
                                    </button> 
                                </div> 
                                <div id="add"> 
                                    <button id="addfav" data-role="button"> 
                                        Add to Favorite 
                                    </button> 
                                </div> 
                            </td> 
                        </tr> 
                        <tr> 
                            <td colspan="2"> 
                                <a id="homepage" data-role="button" href="">Visit 
HomePage</a> 
                            </td> 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 184 

                        </tr> 
                    </tfoot> 
                    <tbody> 
                        <tr> 
                            <th scope="row"> 
                                Name 
                            </th> 
                            <td id="name"> 
                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Address 
                            </th> 
                            <td id="address"> 
                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Phone 
                            </th> 
                            <td id="phone"> 
                                ... 
                            </td> 
                        </tr> 
                        <tr> 
                            <th scope="row"> 
                                Rating 
                            </th> 
                            <td id="rating"> 
                                ... 
                            </td> 
                        </tr> 
                    </tbody> 
                </table> 
            </div> 
            <!-- /content --> 
        </div> 
        <!-- /page --> 
    </body> 
 
</html> 

The complete source of the app.js is as follows. Note that you will need to replace the 
<API_Key> with your own key. You can get API Key from 
http://code.google.com/apis/maps/documentation/places. 
var mapdata = null; 
 
var cachedData = null; 
 
var currentBusinessData = null; 
 
/** 
     * Fetch the details of a place/business. This function is called before user  

http://code.google.com/apis/maps/documentation/places


CHAPTER 4:  Using PhoneGap with jQuery Mobile 185 

navigates to details page 
     * @param {Object} reference 
     */ 
 
function fetchDetails(entry) { 
 
    currentBusinessData = null; 
 
    $.mobile.showPageLoadingMsg(); 
    var detailsUrl = 
"https://maps.googleapis.com/maps/api/place/details/json?reference=" + entry.reference + 
"&sensor=true&key=<API_Key>"; 
    $("#name").html(""); 
    $("#address").html(""); 
    $("#phone").html(""); 
    $("#rating").html(""); 
    $("#homepage").attr("href", ""); 
 
    $.getJSON(detailsUrl, function (data) { 
        if (data.result) { 
            currentBusinessData = data.result; 
 
            isFav(currentBusinessData, function (isPlaceFav) { 
                console.log(currentBusinessData.name + " is fav  
" + isPlaceFav); 
                if (!isPlaceFav) { 
 
                    $("#add").show(); 
                    $("#remove").hide(); 
                } else { 
 
                    $("#add").hide(); 
                    $("#remove").show(); 
                } 
                $("#name").html(data.result.name); 
                $("#address").html(data.result.formatted_address); 
                $("#phone").html(data.result.formatted_phone_number); 
                $("#rating").html(data.result.rating); 
                $("#homepage").attr("href", data.result.url); 
 
            }); 
 
 
 
        } 
    }).error(function (err) { 
        console.log("Got Error while fetching details of Business " + err); 
    }).complete(function () { 
        $.mobile.hidePageLoadingMsg(); 
    }); 
 
} 
 
//------------------------------- 
/** 
 * Called to initiate Map page 
 */ 

https://maps.googleapis.com/maps/api/place/details/json?reference=


CHAPTER 4:  Using PhoneGap with jQuery Mobile 186 

 
function initiateMap() { 
    $("#map").live("pagebeforecreate", function () { 
        try { 
 
            $('#map_canvas').gmap({ 
                'center': mapdata, 
                'zoom': 12, 
                'callback': function (map) { 
                    $(cachedData.results).each(function (index, entry) { 
                        $('#map_canvas').gmap('addMarker', { 
                            'position': new 
google.maps.LatLng(entry.geometry.location.lat, entry.geometry.location.lng), 
                            'animation': google.maps.Animation.DROP 
                        }, function (map, marker) { 
                            $('#map_canvas').gmap('addInfoWindow', { 
                                'position': marker.getPosition(), 
                                'content': entry.name 
                            }, function (iw) { 
                                $(marker).click(function () { 
 
                                    iw.open(map, marker); 
 
                                    map.panTo(marker.getPosition()); 
                                }); 
                            }); 
                        }); 
 
                    }); 
                } 
 
 
 
 
            }); 
            console.log("Map initialized"); 
        } catch (err) { 
            console.log("Got error while initializing map " + err); 
        } 
 
    }); 
 
 
} 
//-------------------------------------------------------------------------------- 
/** 
 * Called to bind the "Add to Favorite" Button 
 */ 
 
function initiateFavButton() { 
    $("#removefav").click(function () { 
 
        try { 
            if (currentBusinessData != null) { 
                removeFromFavorite(currentBusinessData); 
                $("#add").show(); 
                $("#remove").hide(); 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 187 

 
            } 
        } catch (err) { 
            console.log("Got Error while removing " + currentBusinessData.name + " error 
" + err); 
        } 
 
 
    }); 
    $("#addfav").click(function () { 
        try { 
            if (currentBusinessData != null) { 
 
                addToFavorite(currentBusinessData); 
                $("#add").hide(); 
                $("#remove").show(); 
            } 
        } catch (err) { 
            console.log("Got Error while adding " + currentBusinessData.name + " error " 
+ err); 
        } 
 
    }); 
 
 
} 
//--------------------------------------------------------------------------------------
----------------- 
/** 
 * Called each time before user navigates to Favorites 
 */ 
 
function initiateFavorites() { 
    $("#fav").live("pagebeforeshow", function () { 
 
        var db = window.openDatabase("Favorites", "1.0", "Favorites", 200000); 
        try { 
            db.transaction(function (tx) { 
                tx.executeSql('SELECT * FROM Favorite', [], function (tx, results) { 
 
                    $("#fav-list").html(""); 
                    if (results != null && results.rows != null) { 
                        for (var index = 0; index < results.rows.length; 
                        index++) { 
 
                            var entry = results.rows.item(index) 
 
                            var htmlData = "<a href=\"#details\" id=\"" + 
entry.reference + "\"><img src=\"" + entry.icon + "\" class=\"ui-li- 
icon\"></img><h3>&nbsp;" + entry.name + "</h3><p><strong>&nbsp;vicinity:" + 
entry.vicinity + "</strong></p></a>"; 
 
                            var liElem = $(document.createElement('li')); 
 
                            $("#fav- 
list").append(liElem.html(htmlData)); 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 188 

                            $(liElem).bind("tap", function (event) { 
                                event.stopPropagation(); 
                                fetchDetails(entry); 
                                return true; 
                            }); 

                        } 
                        $("#fav- 
list").listview('refresh'); 
                    } 
                }, function (error) { 
                    console.log("Got error fetching Favorites " + error.code + " " + 
error.message); 
                }); 
            }); 
        } catch (err) { 
            console.log("Got error while reading Favorites " + err); 
        } 

    }); 
} 
//-------------------------------------------------------------------------------- 
/** 
 * Ensure we have the table before we use it 
 * @param {Object} tx 
 */ 

function ensureTableExists(tx) { 
    tx.executeSql('CREATE TABLE IF NOT EXISTS Favorite (id unique,  
reference, name,address,phone,rating,icon,vicinity)'); 
} 
//----------------------------------------------------------------------- 
/** 
 * Add current business data to Favorite 
 * @param {Object} data 
 */ 

function addToFavorite(data) { 
    var db = window.openDatabase("Favorites", "1.0", "Favorites", 20000000); 

    db.transaction(function (tx) { 
        ensureTableExists(tx); 
        var id = (data.id != null) ? ('"' + data.id + '"') : ('""'); 
        var reference = (data.reference != null) ? ('"' + data.reference + '"') : 
('""'); 
        var name = (data.name != null) ? ('"' + data.name + '"') : ('""'); 
        var address = (data.formatted_address != null) ? ('"' + data.formatted_address + 
'"') : ('""'); 
        var phone = (data.formatted_phone_number != null) ? ('"' + 
data.formatted_phone_number + '"') : ('""'); 
        var rating = (data.rating != null) ? ('"' + data.rating + '"') : ('""'); 
        var icon = (data.icon != null) ? ('"' + data.icon + '"') : ('""'); 
        var vicinity = (data.vicinity != null) ? ('"' + data.vicinity + '"') : ('""'); 
        var insertStmt = 'INSERT INTO Favorite (id,reference,  
name,address,phone,rating,icon,vicinity) VALUES (' + id + ',' + reference + ',' + name + 
',' + address + ',' + phone + ',' + rating + ',' + icon + ',' + vicinity + ')'; 
        tx.executeSql(insertStmt); 

6



CHAPTER 4:  Using PhoneGap with jQuery Mobile 189 

 
    }, function (error) { 
        console.log("Data insert failed " + error.code + "   " + error.message); 
    }, function () { 
        console.log("Data insert successful"); 
    }); 
 
} 
//---------------------------------------------------------------------------------- 
/** 
 * Remove current business data from Favorite 
 * @param {Object} data 
 */ 
 
function removeFromFavorite(data) { 
    try { 
        var db = window.openDatabase("Favorites", "1.0", "Favorites", 20000000); 
 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var deleteStmt = "DELETE FROM Favorite WHERE id  
= '" + data.id + "'"; 
            console.log(deleteStmt); 
            tx.executeSql(deleteStmt); 
 
        }, function (error) { 
            console.log("Data Delete failed " + error.code + "   " + error.message); 
        }, function () { 
            console.log("Data Delete successful"); 
        }); 
    } catch (err) { 
        console.log("Caught exception while deleting Favorite " + data.name); 
    } 
 
} 
 
//--------------------------------------------------------------------  
/** 
 * 
 * @param {Object} reference 
 * @return true if place is Favorite else false 
 */ 
 
function isFav(data, callback) { 
    var db = window.openDatabase("Favorites", "1.0", "Favorites", 200000); 
    try { 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var sql = "SELECT * FROM Favorite where id='" + data.id + "'"; 
            tx.executeSql(sql, [], function (tx, results) { 
 
                var result = (results != null && results.rows != null && 
results.rows.length > 0); 
 
                callback(result); 
            }, function (tx, error) { 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 190 

                console.log("Got error in isFav error.code =" + error.code + " 
error.message = " + error.message); 
                callback(false); 
 
 
            }); 
        }); 
    } catch (err) { 
        console.log("Got error in isFav " + err); 
        callback(false); 
    } 
 
 
} 
 
//------------------------------------------------------------------------------- 
/** 
 * Binding Search button handler to go and fetch place results 
 */ 
 
function initiateSearch() { 
    $("#search").click(function () { 
        try { 
            $.mobile.showPageLoadingMsg(); 
 
 
            navigator.geolocation.getCurrentPosition(function (position) { 
 
                var radius = $("#range").val() * 1000; 
                mapdata = new 
                google.maps.LatLng(position.coords.latitude, position.coords.longitude); 
                var url = 
"https://maps.googleapis.com/maps/api/place/search/json?location=" + 
position.coords.latitude + "," + position.coords.longitude + "&radius=" + radius + 
"&name=" + $("#searchbox").val() + "&sensor=true&key=<API_Key>"; 
                $.getJSON(url, function (data) { 
                    cachedData = data; 
                    $("#result- 
list").html(""); 
                    try { 
 
                        $(data.results).each(function (index, entry) { 
 
 
                            var htmlData = "<a href=\"#details\" id=\"" + 
entry.reference + "\"><img  
src=\"" + entry.icon + "\" class=\"ui-li-icon\"></img><h3>&nbsp;" + entry.name + 
"</h3><p><strong>&nbsp;vicinity:" + entry.vicinity + "</strong></p></a>"; 
 
                            var liElem = $(document.createElement('li')); 
 
                            $("#result-list").append(liElem.html(htmlData)); 
 
                            $(liElem).bind("tap", function (event) { 
 
                                event.stopPropagation(); 

https://maps.googleapis.com/maps/api/place/search/json?location=


CHAPTER 4:  Using PhoneGap with jQuery Mobile 191 

                                fetchDetails(entry); 
 
                                return true; 
                            }); 
                        }); 
 
                        $("#result-list").listview('refresh'); 
                    } catch (err) { 
 
                        console.log("Got error while putting search result on result 
page " + err); 
                    } 
                    $.mobile.changePage("list"); 
                    $.mobile.hidePageLoadingMsg(); 
                }).error(function (xhr, textStatus, errorThrown) { 
                    console.log("Got error while fetching search result : xhr.status=" + 
xhr.status); 
 
                }).complete(function (error) { 
                    $.mobile.hidePageLoadingMsg(); 
                }); 
            }, function (error) { 
                console.log("Got Error fetching geolocation " + error); 
            }); 
 
        } catch (err) { 
            console.log("Got error on clicking search button " + err); 
        } 
    }); 
 
} 
 
//-------------------------------------------------------------- 
 
 
function bind() { 
    initiateMap(); 
    initiateFavorites(); 
    initiateSearch(); 
    initiateFavButton(); 
} 
//--------------------------------------------------- 
 
function onDeviceReady() { 
    $(document).ready(function () { 
        bind(); 
    }); 
} 
document.addEventListener("deviceready", onDeviceReady); 
//------------------------- 

 
The complete source of the app.css is as follows 
 
 
#map, .map-content, #map_canvas { 
    width: 100%; 
    height: 100%; 



CHAPTER 4:  Using PhoneGap with jQuery Mobile 192 

    padding: 0; 
} 
 
#map_canvas { 
    height: min-height: 100%; 
} 

Pros of jQueryMobile 
jQueryMobile is an easy to use JavaScript UI framework for mobile application 
developers. The best part of jQueryMobile is its declarative UI programming. Using 
HTML tags to create a UI and adding “data-Role” pages to annotate the HTML tags as a 
page, header, footer, content, list, and button make it very easy to quickly program the 
UI layout. 

Another great thing about jQueryMobile is the idea of pages. Pages are declared as divs 
in an HTML page. Also, the navigation part and history management part are built into 
jQueryMobile. This takes the headache out of putting in the history management part. 

While jQueryMobile provides good support for widgets and toolbars, the programming 
aspect of these requires that the developer do DOM manipulation. 

The biggest strength of jQueryMobile is that it is built on the robust jQuery core 
framework. Another strength of jQueryMobile is that it supports iOS, Android, 
BlackBerry, HP WebOS, Nokia/Symbian, Windows Mobile, Opera Mobile/Mini, Firefox 
mobile, and all modern desktop browsers. 

jQueryMobile provides touch events for mobile and tablet applications. jQueryMobile 
also provides great theme support. Switching between themes is as simple as changing 
an attribute on an HTML tag. 

Cons of jQueryMobile 
jQueryMobile is a great lightweight framework and using jQuery to manipulate the DOM 
allows a user to build applications in a nice and easy manner. However as the 
complexity of an application increases, and the need for data model and corresponding 
views arrive, programming in jQueryMobile is more of implementing your own MVC 
framework in JavaScript. 

In short, jQueryMobile is difficult to use when your application is complex. The lack of 
MVC framework or even Models and JavaScript Views makes JavaScript UI programming 
in jQueryMobile painful in comparison to other frameworks like Sencha Touch. 

Conclusion 
jQueryMobile is a great JavaScript mobile UI development framework if the mobile 
applications are fairly simple. As the complexity of your mobile application UI increases, 
programming in jQueryMobile will become more cumbersome. 



 193 

   Chapter 

Using PhoneGap with 
Sencha Touch 
Sencha Touch is a product from a company originally called “ExtJS.” “ExtJS” is a 
popular company in the Ajax RIA world that provides a rich polished JavaScriptui 
framework named “ExtJS”. The popular products of this company are “ExtJS” 
JavaScriptui framework, “Ext-GWT”, GWT UI framework (GWT counter part of ExtJS), 
and “Sencha Touch” JavaScript library for mobiles.  

“ExtJS” company was recently renamed to “Sencha”. So, while the name is new, what 
goes in “Sencha Touch” library is based on years of experience building UI using 
JavaScript. 

If you are familiar with “ExtJS”, you will notice many similarities between “ExtJS” and 
“Sencha Touch”, especially in the foundation classes. However, “Sencha Touch” is 
designed and intended only for mobile applications. 

Why Use Sencha Touch? 
Sencha Touch allows you to develop browser-based applications for iPhone, Android, 
and BlackBerry with a native look and feel. Also, Sencha Touch is based on HTML5.  

Sencha Touch provides you with the following advantages: 

1. Touch-optimized rich widget set, as well as touch-events that support tap, double 
tap, swipe, tap and hold, pinch and rotate, slide and gestures. 

2. New age web standards HTML5 and CSS3. 

3. Integrates with PhoneGap. 

4. Supports iOS, Android, and BlackBerry, along with native themes for these devices 

5. Out of box support for Ajax, JSONP, and Yahoo! Query Language (YQL), as well 
as support for local storage to back the widgets. 

5 



CHAPTER 5:  Using PhoneGap with Sencha Touch 194 

In short, Sencha Touch is currently one of the best JavaScript ui libraries for mobile 
application development. The learning curve may be a little steep at first, if you haven’t 
worked on ExtJS. 

Pros of Sencha Touch 
The pros of Sencha Touch far exceed the cons. First of all, Sencha Touch is based on 
web standards, like HTML5 and CSS3, and not on any proprietary technology. The 
community support of Sencha Touch is also very good. It’s free for commercial use.  

You can build an application in Sencha Touch that can detect whether we are on a 
tablet or a phone and you can code to make the same application work differently. For 
example, look at the kitchen sink. When you view it on a tablet and on a mobile, you will 
see the example adjusts itself to make use of the real estate. 

The widget set is quite rich. Building the entire widget in JavaScript ensures a high 
degree of interactivity with the user. You have more control. 

The performance of Sencha Touch is good and improving with every release. Also, more 
with newer versions of iOS and Android OS releases, the webkit shipped with these OS 
is also improving in performance. 

There is support for internationalization and there are widgets like grids and carousels 
that are very new age visualization aids. 

Cons of Sencha Touch 
The biggest con of Sencha Touch is its learning curve. With Sencha Touch, you rarely 
use any pre-rendered HTML. Everything is added to the DOM through JavaScript. It 
might be a conceptual shift for some people. 

Sencha Touch would be overkill if your application is simply a few pages with navigation 
and the views are mostly list views, forms, and toolbars. 

Downloading Sencha Touch 
Download Sencha Touch library from Sencha’s web site– 
www.sencha.com/products/touch/. Once you download and unzip the sdk, you will see 
the structure shown in Figure 5–1. 

http://www.sencha.com/products/touch/


CHAPTER 5:  Using PhoneGap with Sencha Touch 195 

 

Figure 5–1. Sencha Touch directory structure 

Integrating Sencha with PhoneGap 
Let’s begin with integrating Sencha Touch with a PhoneGap project. This chapter will 
assume it is for an Android platform. The steps for other platforms are similar. 

Refer to Chapter 2 and Chapter 3 to setup your PhoneGap project for whichever 
platform you are aiming for.  

As shown in Figure 5–2, from the Sencha Touch sdk, you will need to add the following 
files: 

1. Add the sencha-touch.js JavaScript file to www/lib. 

2. Add the resources/css folder to www/lib 

3. Put all the application code in a file named app/app.js. This will be our main 
JavaScript file. 

For the sake of this chapter and example, copy the icon.png, phone_startup.png, and 
tablet_startup.png from sencha-touch-1.1.0/examples/map folder. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 196 

 

Figure 5–2. PhoneGap and Sencha Touch Project structure 

Building a Local Search Application Using Sencha 
Touch 
The requirements for the local search application are similar to what we have in Chapter 5. 
User enters a search by keyword, a range to search from his/her current location and 
user get local places listed in a list view. User can click on one of the items and see the 
details of the place. On the details screen, users can choose to put the place in his/her 
favourite list (stored in application database for offline access). The user can also see the 
search results in a map view. 

Last but not least, users can click on the favourite button (star icon) to see his/her 
favourite listing. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 197 

Let’s begin building the application. Remember Sencha Touch is fairly large and this 
chapter will run you through a subset of Sencha Touch’s API required for this 
application. 

Initializing Sencha Touch  
The first step is to make sure index.html has Sencha Touch library, PhoneGap library, 
and CSS linked. Note our body is empty. This is because, in Sencha Touch, we build our 
entire ui in JavaScript. Note we are including the following JavaScript and stylesheet. 

1. Sencha Touch stylesheet 

2. Google Maps JavaScript 

3. Our application JavaScript 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title>Local Search</title> 
        <link rel="stylesheet" type="text/css" href="lib/touch/resources/css/sencha-
touch.css"></link> 
        <!-- applications that determine the user's location via a sensor must 
        passsensor=true when loading the Maps API JavaScript. --> 
        <script type="text/javascript" 
src="http://maps.google.com/maps/api/js?sensor=true"></script> 
        <script type="text/javascript" src="lib/touch/sencha-touch.js"></script> 
        <script type="text/javascript" src="phonegap-1.1.0.js"></script> 
        <script type="text/javascript" src="app/app.js"></script> 
    </head> 
     
    <body> 
    </body> 
 
</html> 

Now let’s head over to app.js. The PhoneGap application is setup in a function 
Ext.setup(). As a rule of thumb, remember all Sencha Touch functions take a JSON 
structure as a configuration. 

We will do the same to Ext.setup. See the code below. We will provide some icons for 
the application, as well as phone splash and tablet splash screens. But these are not the 
parts we want to focus on in this chapter. 

The most important part here is onReadyfunction (). This is like jQuery’s document ready 
and PhoneGap’s device’s ready function. We can begin drawing Sencha Touch’s UI in 
this function. 

Ext.setup({ 
    tabletStartupScreen: 'tablet_startup.png', 
    phoneStartupScreen: 'phone_startup.png', 
    icon: 'icon.png', 
    glossOnIcon: false, 
    onReady: function () { 



CHAPTER 5:  Using PhoneGap with Sencha Touch 198 

        //Sencha Touch framework has initialized here. 
        //Create Panels and bind event handlers. 
    } 
}); 

Creating the Layout (Application Skeleton) 
The next step is to declare a panel as your main panel. To do this, we will create a new 
panel (new Ext.Panel()) and, in its configuration JSON, we will declare the following:  

1. layout: ‘card’ -  the layout is to be a card layout, which means it’s a stack of 
cards, and we will show only one card at one time 

2. fullscreen: true – specifies this panel will take up 100% width and height available 
and automatically draws itself to the page 

3. items: [searchPanel,tabResultPanel,favourites, resultDetailPanel] – an array of 
child components to be added to this panel. As we are using a ‘card’ layout, it will 
show one child component at a time. There are four children in our main panel: 
searchPanel, tabResultPanel, favourites, and resultDetailPanel. searchPanel and 
tabResultPanel are declared in the same manner as mainPanel. By default, 
searchPanel is the visible card while other panels hide behind searchPanel 

4. dockedItems: [] – use to declare docked widgets, typically for toolbar buttons. 

5. Inside dockedItems has a toolbar declared in it by JSON representation. This 
toolbar has two buttons and one spacer to separate them. 

a. For the home button, we use the iconCls:’home’  

b. For the favourite button, we use the iconCls:’star’ 

For both these buttons, we have declared a handler, which is called when the 
buttons are clicked. 

//Main Panel with CardLayout 
var mainPanel = new Ext.Panel({ 
    layout: 'card', 
    fullscreen: true, 
    items: [searchPanel, tabResultPanel, favorites, resultDetailPanel], 
    dockedItems: [{ 
        xtype: 'toolbar', 
        title: 'Local Search', 
        dock: 'top', 
        items: [{ 
            iconMask: true, 
            ui: 'round', 
            iconCls: 'home', 
            handler: function () { 

            } 

        }, { 



CHAPTER 5:  Using PhoneGap with Sencha Touch 199 

            xtype: 'spacer' 
        }, { 
            iconMask: true, 
            ui: 'round', 
            iconCls: 'star', 
            handler: function () {} 
 
        }] 
    }] 
});     

Without any of its child widgets, Figure 5–3 shows how this panel will appear. 

 

Figure 5–3. Main application panel with toolbar buttons 

Next, we declare the search panel. The search panel has a text box where users can 
enter the search keyword and has a range selector to allow the user to choose the range 
of his/her search. Finally, the search panel has a toolbar with a search button. This is 
declared as follows: 

var searchPanel = new Ext.form.FormPanel({ 
    layout: 'fit', 
    fullscreen: true, 
    scroll: 'vertical', 
    standardSubmit: false, 
    //Adding form field 
    items: [{ 

<<Widget Placeholder>>



CHAPTER 5:  Using PhoneGap with Sencha Touch 200 

        xtype: 'fieldset', 
        title: 'Local Search', 
        items: [{ 
            xtype: 'textfield', 
            name: 'search', 
            label: ‘Search’, 
            value: ‘Pizza’, 
            userClearIcon: true, 
            autoCapitalize: false 
        }, { 
            xtype: 'sliderfield', 
            name: 'range', 
            label: 'Range (0-10 Kms)', 
            value: 5, 
            minValue: 0, 
            maxValue: 10 
        }] 
 
    }], 
    //Docking a toolbar at bottom    
    dockedItems: [{ 
        xtype: 'toolbar', 
        dock: 'bottom', 
        items: [{ 
            xtype: 'spacer' 
        }, { 
            text: 'Search', 
            iconCls: 'search', 
            title: 'Search', 
            iconMask: true, 
            ui: 'confirm', 
            handler: function () { 
 
            } 
        }] 
    }] 
}); 

Figure 5–4 shows how the search panel will appear. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 201 

 

Figure 5–4. Application search panel 

When the user does his/her search, the user is presented with two views. 

1. List view showing the search result 

2. Map view showing the search result 

Both of these views are encapsulated inside a tab panel. We declare the tab panel as 
follows: 

var tabResultPanel = new Ext.TabPanel({ 
    layout: 'fit', 
    tabBar: { 
        dock: 'bottom', 
        layout: { 
            pack: 'center' 
        } 
    }, 
    items: [result, map], 
 
 
}); 
The tab panel without any of its child panels is shown in Figure 5–5. Note that we 
defined in the configuration JSON to position the tab bar on the bottom for the two tabs 
‘result’ and ‘map’. By default, the ‘result’ tab will be selected. We will define label and 
icon for both tabs when we create the ‘result’ and ‘map’ object. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 202 

 

Figure 5–5. Search Results panel with tabs 

Now, we will see how to show the search result when a user does his/her searches. The 
part of how we do an AJAX call in the section is covered at a later part of this chapter. 

For the sake of this chapter, assume you have a JSON coming from the Google place 
server, which looks as follows: 

{ 
    "status": "OK", 
    "results": [{ 
        "name": "Zaaffran Restaurant - BBQ and GRILL, Darling Harbour", 
        "vicinity": "Darling Drive, Darling Harbour, Sydney", 
        "types": ["restaurant", "food", "establishment"], 
        "geometry": { 
            "location": { 
                "lat": -33.8712950, 
                "lng": 151.1984770 
            } 
        }, 
        "icon": "http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png", 
        "reference": "CpQBiwAAANM1CkdWcBxiExHinloJpp7kX2D3nyb_D0qoQ_-RuBhq9cwJKYvU8-
sRJUaXF4U2kET_OH3Oh3Yz4tf5_6gBgcsFAPyRappCrJ5WksvMkXrT5lA7q9U_S0ZI0u3mrsvTtXnTDMKlBMywE_
5Yy6lbshqPIatWZ6QkPZBNdmkifyN3vM7H2vL-
300iY6EoartWuxIQNckbM0Bs4D946thThmKOsBoUCmGgFrtYgtO0CIUc79fQi3waO0w", 
        "id": "677679492a58049a7eae079e0890897eb953d79b" 
    }, { 
        "name": "Toros Restaurant Darling Harbour", 
        "vicinity": "Murray Street, Sydney", 

http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png


CHAPTER 5:  Using PhoneGap with Sencha Touch 203 

        "types": ["restaurant", "food", "establishment"], 
        "geometry": { 
            "location": { 
                "lat": -33.8714080, 
                "lng": 151.1975410 
            } 
        }, 
        "icon": "http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png", 
        "reference": "CoQBdQAAALFujBuIMYXsG8Qlus2zSHeikZQNCsSbeII0-55zkhCiArbPkACXRU-
CcLZbeKsXaBpoBNH5iyYJg6Nquct2LTE127X4CD1YtKpozmbjZpyCRFrJ_V5DI4IDGLCWeY_8NMxznbiqb9prR8m
XJoAKv7jNz6KEMxAuGLRAXbi7G6CYEhBeR6Ur-x2ABlS3pKXsKXLvGhRWFzL3Q5TO0xe-gm_LJm9cgtzYJw", 
        "id": "aefbc59325ffd5f3e93d67932375d20d143289de" 
    }, { 
        "name": "Strike Bowling Bar Darling Harbour", 
        "vicinity": "Sydney", 
        "types": ["restaurant", "food", "establishment"], 
        "geometry": { 
            "location": { 
                "lat": -33.8662990, 
                "lng": 151.2016580 
            } 
        }, 
        "icon": "http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png", 
        "reference": "CoQBeAAAAO-prCRp9Atcj_rvavsLyv-
DnxbGkw8QyRZb6Srm6QHOcww6lqFhIs2c7Ie6fMg3PZ4PhicfJL7ZWlaHaLDTqmRisoTQQUn61WTcSXAAiCOzcm0
JDBnafqrskSpFtNUgzGAOx29WGnWSP44jmjtioIsJN9ik8yjK7UxP4buAmMPVEhBXPiCfHXk1CQ6XRuQhpztsGhQ
U4U6-tWjTHcLSVzjbNxoiuihbaA", 
        "id": "0a4e24c365f4bd70080f99bb80153c5ba3faced8" 
    } 
    ...additional results...], 
    "html_attributions": ["Listings by \u003ca 
href=\"http://www.yellowpages.com.au/\"\u003eYellow Pages\u003c/a\u003e"] 
} 

Now that we have seen the JSON structure of the Google places result, we will create 
the panel to show the result. In this case, we are extending a component and declaring a 
template (tpl) in the component. 

Templating is a feature of Sencha Touch where you will declare an html in <tpl> tags. In 
our case, we are passing the above JSON’s results object. The results object is actually 
an array. In our template code, notice the <tpl for=”.”>. This is telling the Sencha 
template engine that iterates over all the objects inside the results. 

In the later section of the html, you will notice placeholders like {reference}, {icon}, 
{name} etc. If any one of you has worked with java’s message formatting, you will notice 
this is quite similar. These {} entries will be replaced with corresponding data from the 
JSON. 

{name} will be replaced by the name inside results->entry->name.  

To populate this panel with data, we will call the following API: 

//This will call the template engine and draw the AJAX’s response    
    //result. Here ‘result’ is the Component object to show the results 
    //HTML and response.results is the JSON array. 
result.update(response.results);  

http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png
http://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png


CHAPTER 5:  Using PhoneGap with Sencha Touch 204 

Now, let’s see the code that is used to create the result panel. 

var result = new Ext.Component({ 
 
    title: 'Search Result', 
    iconMask: true, 
    iconCls: 'organize', 
    cls: 'timeline', 
    scroll: 'vertical', 
    tpl: ['<tpl for=".">',  
          '<div class="place" id="{reference}">',  
          '<div class="icon"><imgsrc="{icon}" /></div>',  
          '<div>', '<h2>{name}</h2>',  
          '<p>{vicinity}</p>',  
          '</div>',  
          '</div>',  
          '</tpl>'], 
    listeners: { 
        el: { 
            tap: detailClickHandler, 
            //function which  
            //will handle tap event 
        } 
    } 
}); 

Notice the listeners and el part at the end. This is telling Sencha Touch that we are 
interested to receive events on the elements of this component. Furthermore, we are 
telling it that we are specifically looking for tap events. The result of this code is that 
whenever the user taps on any of the places listed in the results, it will call the 
detailClickHandler function. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 205 

 
Figure 5–6. Search Results panel 

The Map widget of Sencha Touch makes life much easier. Otherwise, we would have to 
work with Google APIs for maps. We simply create a new Ext.Map and give it some 
options. This is the simplest way to get a map going. Note that ‘map’ object will be used 
in AJAX callback to add the place markers on it. The AJAX call is described in ‘Fetching 
the Places Listing’. 

var map = new Ext.Map({ 
    iconMask: true, 
    iconCls: 'maps', 
    title: 'Map', 
    // Name that appears on this tab 
    mapOptions: { 
         // Used in rendering map 
        zoom: 12 
    } 
}); 



CHAPTER 5:  Using PhoneGap with Sencha Touch 206 

 

Figure 5–7. Map panel to show places 

Next in line is the panel, which shows the details of a place. Note, once the user clicks 
on a search entry, the application will fetch the details from the Google places server. 
The JSON response of this request appears as follows: 

{ 
    "status": "OK", 
    "result": { 
        "name": "Google Sydney", 
        "vicinity": "Pirrama Road, Pyrmont", 
        "types": ["establishment"], 
        "formatted_phone_number": "(02) 9374 4000", 
        "formatted_address": "5/48 Pirrama Road, Pyrmont NSW, Australia", 
        "address_components": [{ 
            "long_name": "48", 
            "short_name": "48", 
            "types": ["street_number"] 
        }, { 
            "long_name": "Pirrama Road", 
            "short_name": "Pirrama Road", 
            "types": ["route"] 
        }, { 
            "long_name": "Pyrmont", 
            "short_name": "Pyrmont", 
            "types": ["locality", "political"] 
        }, { 
            "long_name": "NSW", 
            "short_name": "NSW", 



CHAPTER 5:  Using PhoneGap with Sencha Touch 207 

            "types": ["administrative_area_level_1", "political"] 
        }, { 
            "long_name": "2009", 
            "short_name": "2009", 
            "types": ["postal_code"] 
        }], 
        "geometry": { 
            "location": { 
                "lat": -33.8669710, 
                "lng": 151.1958750 
            } 
        }, 
        "rating": 4.5, 
        "url": "http://maps.google.com/maps/place?cid=10281119596374313554", 
        "icon": "http://maps.gstatic.com/mapfiles/place_api/icons/generic_business-
71.png", 
        "reference": 
"CmRRAAAAUgylGnuntxKOuZy9_c5zxdFi6e491_Fv0m1hks5YkeaH7k1SP9ujAkG4GROr1XCHFnMsDhuEIgQQq2W
Wyd33oGRAT8Vwr8rjTWEYEMvCZ1RxTzXSVDZ4gEFqLZcRyAw_EhBS8uZHidMMbYHuf9KHapRyGhQQ1dnf3uMghMR
BlXqJE6ygh_a3ag", 
        "id": "4f89212bf76dde31f092cfc14d7506555d85b5c7" 
    }, 
    "html_attributions": [] 
} 

The idea is to display the above information to the user in a tabular manner. To do so, 
we will use a combination of the following: 

1. A template to show the above JSON as a part of a table 

2. A button that will allow users to add this place as a favourite or remove it as a 
favourite. 

Hence, we use a wrapper panel called resultDetailPanel. This panel has a vbox layout 
(stacks widgets vertically). The first child is placeDetailsPanel (see below) and second is 
a button. 

The button’s text changes from “add to Favorite” to “Remove from Favorite”, depending 
on whether the user has already made the place a favorite . There is a function defined 
in the application for the same that is named isFav(). 

var resultDetailPanel = new Ext.Panel({ 
    layout: { 
        type: 'vbox', 
    }, 
    items: [ 
    placeDetailsPanel, 
    { 
        xtype: 'button', 
        text: 'Add to Favorite', 
        handler: function (button, event) { 
            if (button.text == "Add to Favorite") { 
                addCurrentToFav(); 
                button.setText("Remove from Favorite"); 
            } else { 

http://maps.google.com/maps/place?cid=10281119596374313554
http://maps.gstatic.com/mapfiles/place_api/icons/generic_business-71.png
http://maps.gstatic.com/mapfiles/place_api/icons/generic_business-71.png


CHAPTER 5:  Using PhoneGap with Sencha Touch 208 

                removeCurrentFromFav(); 
                button.setText("Add to Favorite"); 
            } 

        } 

    }], 
    dockedItems: [{ 
        xtype: 'toolbar', 
        dock: 'bottom', 
        items: [{ 
            ui: 'round', 
            text: 'Back', 
            handler: function () {} 

        }] 
    }] 

}); 

This is the panel that shows the JSON result as a table. It uses a template for the same. 
A template is an html template, which has placeholders represented by {<<variable>>}. 
The template code is used and the placeholders are replaced by actual values: 

var placeDetailsPanel = new Ext.Panel({ 
    tpl: ['<table>',  
          '<tr>',  
          '<td>',  
          '</td>',  
          '<td>',  
          '<h1 class="bold">Business Details</h1>',  
          '</td>',  
          '</tr>',  
          '<tr>',  
          '<td>',  
          '<h1 class="bold">Name</h1>',  
          '</td>',  
          '<td>',  
          '<h1>{name}</h1>',  
          '</td>',  
          '</tr>',  
          '<tr>',  
          '<td>',  
          '<h1 class="bold">Address</h1>',  
          '</td>',  
          '<td>',  
          '<h1>{formatted_address}</h1>',  
          '</td>',  
          '</tr>',  
          '<tr>',  
          '<td>',  
          '<h1 class="bold">Phone</h1>',  
          '</td>',  



CHAPTER 5:  Using PhoneGap with Sencha Touch 209 

          '<td>',  
          '<h1>{formatted_phone_number}</h1>',  
          '</td>',  
          '</tr>',  
          '<tr>',  
          '<td>',  
          '<h1 class="bold">Rating</h1>',  
          '</td>',  
          '<td>',  
          '<h1>{rating}</h1>',  
          '</td>',  
          '</tr>',  
          '<tr>',  
          '<td>',  
          '<h1 class="bold">Home Page</h1>',  
          '</td>',  
          '<td>',  
          '<a href="{url}" target="_blank">Home Page</a>',  
          '</td>',  
          '</tr>',  
          '</table>' 
 
    ] 
}); 

The place details panel is shown in Figure 5–8. 

 

Figure 5–8. Place Details panel 



CHAPTER 5:  Using PhoneGap with Sencha Touch 210 

Now that we have seen how to add or remove places to and from favorites, let’s see the 
panel, which lists user’s favorite places. And yes, this panel is quite similar to the results 
panel. The only difference is the result panel is given the JSON, which comes from 
Google places server, and the favorites panel is given the JSON, which comes from the 
database. 

var favorites = new Ext.Component({ 
    title: 'Favotites', 
    iconMask: true, 
    iconCls: 'organize', 
 
    cls: 'timeline', 
    scroll: 'vertical', 
    tpl: ['<tpl for=".">',  
          '<div class="place" id="{reference}">',  
          '<div class="icon"><imgsrc="{icon}" /></div>',  
          '<div>',  
          '<h2>{name}</h2>',  
          '<p>{vicinity}</p>',  
          '</div>',  
          '</div>',  
          '</tpl>'], 
    listeners: { 
        el: { 
            tap: detailClickHandler, 
        } 
    } 
}); 



CHAPTER 5:  Using PhoneGap with Sencha Touch 211 

 

Figure 5–9. Favorite places panel 

Switching Between Panels 
As you explore more of the application code, you will need to switch from one panel to 
another panel. This is the main reason we are using a ‘card’ layout for the main panel. 

In order to switch from one panel to another panel in card layout, we will use the 
following code. Note the first argument index number for widgets supplied in items to 
the mainPanel. The second argument is an animation effect.  

mainPanel.setActiveItem(0, "slide"); 
mainPanel.setActiveItem(1, {type: 'slide', direction: 'right'}); 

Also, the main panel owns the toolbar. We need to change the title of this toolbar to let 
the user know where he is. This is done using the following code: 

mainPanel.dockedItems.items[0].setTitle('Details'); 

Fetching the Places Listing 
When a user clicks on the search button on the search panel, we need to make an Ajax 
call to fetch Google places’ result. The following function shows how to do the same in 
Sencha Touch and PhoneGap. 

The steps are quite simple. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 212 

1. Get the geo location from PhoneGap 

2. In the success call of getcurrentPosition, initiate an Ajax call by calling 
Ext.ajax.request(url,successCallback,failureCallback) 

3. In the successCallback of Ext.ajax.request, you will get the JSON string.  

a. Convert this JSON string to JSON object 

b. Populate the result panel by calling result.update(obj.results); 

c. Populate the market on the Google maps 

var fetchFromGoogle = function () { 
 
        var keyword = searchPanel.items.items[0].items.items[0].value; 
        var range = searchPanel.items.items[0].items.items[1].value * 1000; 
        navigator.geolocation.getCurrentPosition( 
 
        function (position) { 
            var lat = position.coords.latitude; 
            var lng = position.coords.longitude; 
 
 
            map.update({ 
                latitude: lat, 
                longitude: lng 
            }); 
 
            var googlePlaceUrl = 
'https://maps.googleapis.com/maps/api/place/search/json?location='  
                  + lat + ',' + lng + '&radius=' + range + '&types=food&name=' + keyword 
+ '&sensor=true&key=API_Key'; 
            //Note that you will need to replace the API_Key with your own key. You 
//can get API Key from     
            //http://code.google.com/apis/maps/documentation/places/ 
            Ext.Ajax.request({ 
                url: googlePlaceUrl, 
                success: function (response, opts) { 
 
 
                    var obj = Ext.decode(response.responseText); 
 
                    result.update(obj.results); 
                    var data = obj.results; 
                    for (var i = 0, ln = data.length; i < ln; i++) { // Loop to add 
points to the map 
                        var place = data[i]; 
 
                        if (place.geometry && place.geometry.location) { 
                            var position = new 
google.maps.LatLng(place.geometry.location.lat, place.geometry.location.lng); 
                            addMarker(place.name, place.reference, position); // Call 
addMarker function with new data 
                        } 

https://maps.googleapis.com/maps/api/place/search/json?location=
http://code.google.com/apis/maps/documentation/places/


CHAPTER 5:  Using PhoneGap with Sencha Touch 213 

                    } 
 
                }, 
                failure: function (response, opts) { 
                    console.log('server-side failure with status code ' + 
response.status); 
 
                } 
            }, function (err) { 
                console.log('Failed to get geo location from phonegap ' + err); 
            }); 
        }) 
    } 

Fetching Places Details 
Fetching the places details from the Google places server is even easier. You need even 
fewer things. 

1. Initiate an Ajax call by calling Ext.ajax.request(url,successCallback,failureCallback) 

2. In the successCallback of Ext.ajax.request, you will get the JSON string.  

a. Convert this JSON string to a JSON object 

b. Populate the result panel by calling 
placeDetailsPanel.update(obj.result); 

c. Also we will check whether this place is favorite by calling isFav() 
function 

i. If the place is a favorite, we rename the button to “remove from 
Favorite” 

ii. Otherwise, we rename the button to “add to Favorite” 

var cachedDetails = null; 
 
/** 
 * Ensure we have the table before we use it 
 * @param {Object} tx 
 */ 
var ensureTableExists = function (tx) { 
    tx.executeSql('CREATE TABLE IF NOT EXISTS Favourite (id unique, reference,  
                          name,address,phone,rating,icon,vicinity)'); 
} 
 
/**  
 * Add currentDetails to DB 
 */ 
var addCurrentToFav = function () { 
    addToFavorite(cachedDetails); 
} 
 
/**  



CHAPTER 5:  Using PhoneGap with Sencha Touch 214 

 * Remove currentDetails from DB 
 */ 
var removeCurrentFromFav = function () { 
    removeFromFavorite(cachedDetails); 
} 
 
/** 
 * Add current business data to favourite 
 * @param {Object} data 
 */ 
var addToFavorite = function (data) { 
    var db = window.openDatabase("Favourites", "1.0", "Favourites", 20000000); 
 
    db.transaction(function (tx) { 
 
        ensureTableExists(tx); 
 
        var id = (data.id != null) ? ('"' + data.id + '"') : ('""'); 
        var reference = (data.reference != null) ? ('"' + data.reference + '"') : 
('""'); 
        var name = (data.name != null) ? ('"' + data.name + '"') : ('""'); 
        var address = (data.formatted_address != null) ? ('"' + data.formatted_address + 
'"') : ('""'); 
        var phone = (data.formatted_phone_number != null) ? ('"' + 
data.formatted_phone_number + '"') : ('""'); 
        var rating = (data.rating != null) ? ('"' + data.rating + '"') : ('""'); 
        var icon = (data.icon != null) ? ('"' + data.icon + '"') : ('""'); 
        var vicinity = (data.vicinity != null) ? ('"' + data.vicinity + '"') : ('""'); 
 
 
        var insertStmt = 'INSERT INTO Favourite (id,reference,  
                          name,address,phone,rating,icon,vicinity) VALUES  
                          (' + id + ',' + reference + ',' + name + ',' + address + ','  
                         + phone + ',' + rating + ',' + icon + ',' + vicinity + ')'; 
 
 
        tx.executeSql(insertStmt); 
 
    }, function (error) { 
       console.log("Data insert failed " + error.code + "   " + error.message); 
    }, function () { 
        console.log("Data insert successful"); 
    }); 
 
} 
 
 
/** 
 * Remove current business data from favourite 
 * @param {Object} data 
 */ 
var removeFromFavorite = function (data) { 
    try { 
        var db = window.openDatabase("Favourites", "1.0", "Favourites", 20000000); 



CHAPTER 5:  Using PhoneGap with Sencha Touch 215 

 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var deleteStmt = "DELETE FROM Favourite WHERE id = '" + data.id + "'"; 
            console.log(deleteStmt); 
            tx.executeSql(deleteStmt); 
 
        }, function (error) { 
            console.log("Data Delete failed " + error.code + "   " + error.message); 
        }, function () { 
            console.log("Data Delete successful"); 
        }); 
 
    } catch (err) { 
        console.log("Caught exception while deleting favourite " + data.name); 
    } 
 
} 
 
/** 
 * 
 * @param {Object} reference 
 * @return true if place is favourite else false 
 */ 
var isFav = function (data, callback) { 
 
    var db = window.openDatabase("Favourites", "1.0", "Favourites", 200000); 
 
    try { 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 
 
            var sql = "SELECT * FROM Favourite where id='" + data.id + "'"; 
 
            tx.executeSql(sql, [], function (tx, results) { 
                var result = (results != null && results.rows != null && 
results.rows.length > 0); 
                callback(result); 
            }, function (tx, error) { 
                var fetchDetails = function (reference) { 
                    placeDetailsPanel.update({ 
                        name: "", 
                        formatted_address: "", 
                        formatted_phone_number: "", 
                        rating: "", 
                        url: "" 
                    }); 
                    Ext.Ajax.request({ 
                        url: 
'https://maps.googleapis.com/maps/api/place/details/json?reference='  
                            + reference + '&sensor=true&key=API_Key', 
                        success: function (response, opts) { 
                            var obj = Ext.decode(response.responseText); 
                            //global variable to store the current place 

https://maps.googleapis.com/maps/api/place/details/json?reference=


CHAPTER 5:  Using PhoneGap with Sencha Touch 216 

                                cachedDetails = obj.result; 
                                isFav(obj.result, function (result) { 
                                    if (result) { 
 
                                        resultDetailPanel.items.items[1].setText("Remove 
from Favorite"); 
                                    } else { 
 
                                        resultDetailPanel.items.items[1].setText("Add to 
Favorite"); 
                                    } 
                                    placeDetailsPanel.update(obj.result); 
                                }); 
 
 
                            }, 
                            failure: function (response, opts) { 
                                console.log('server-side failure with status code ' + 
response.status); 
                            } 
                        }) 
                    } 
 
                    console.log("Got error in isFaverror.code =" + error.code + "  
                          error.message = " + error.message); 
                    callback(false); 
                }); 
            }); 
 
        } catch (err) { 
            console.log("Got error in isFav " + err); 
            callback(false); 
        } 
    } 

Storing and Retrieving Favorites from Database 
The last important part of this application is to have functions defined to do the 
following: 

1. Add a place to the favorite table 

2. Remove a place from the favorite table 

3. Check if a place is already in the favorite table 

4. Get all entries from the favorite table. 

In order to pass the place entry across various function calls, what we have done in this 
application is to declare a variable named cachedDetails. When we are in the page 
where we show the details of the place, we cache the current place in cachedDetails. 
cachedDetails is used to add a place to favorite, remove it from favorite, and also to 
check whether it is already a part of a user’s favorites. 



CHAPTER 5:  Using PhoneGap with Sencha Touch 217 

var cachedDetails = null; 
 
/** 
 * Ensure we have the table before we use it 
 * @param {Object} tx 
 */ 
var ensureTableExists = function (tx) { 
    tx.executeSql('CREATE TABLE IF NOT EXISTS Favourite (id unique, reference,  
                          name,address,phone,rating,icon,vicinity)'); 
} 
 
/**  
 * Add currentDetails to DB 
 */ 
var addCurrentToFav = function () { 
    addToFavorite(cachedDetails); 
} 
 
/**  
 * Remove currentDetails from DB 
 */ 
var removeCurrentFromFav = function () { 
    removeFromFavorite(cachedDetails); 
} 
 
/** 
 * Add current business data to favourite 
 * @param {Object} data 
 */ 
var addToFavorite = function (data) { 
    var db = window.openDatabase("Favourites", "1.0", "Favourites", 20000000); 
 
    db.transaction(function (tx) { 
 
        ensureTableExists(tx); 
 
        var id = (data.id != null) ? ('"' + data.id + '"') : ('""'); 
        var reference = (data.reference != null) ? ('"' + data.reference + '"') : 
('""'); 
        var name = (data.name != null) ? ('"' + data.name + '"') : ('""'); 
        var address = (data.formatted_address != null) ? ('"' + data.formatted_address + 
'"') : ('""'); 
        var phone = (data.formatted_phone_number != null) ? ('"' + 
data.formatted_phone_number + '"') : ('""'); 
        var rating = (data.rating != null) ? ('"' + data.rating + '"') : ('""'); 
        var icon = (data.icon != null) ? ('"' + data.icon + '"') : ('""'); 
        var vicinity = (data.vicinity != null) ? ('"' + data.vicinity + '"') : ('""'); 
 
 
        var insertStmt = 'INSERT INTO Favourite (id,reference,  
                          name,address,phone,rating,icon,vicinity) VALUES  
                          (' + id + ',' + reference + ',' + name + ',' + address + ',' + 
phone  
                          + ',' + rating + ',' + icon + ',' + vicinity + ')'; 



CHAPTER 5:  Using PhoneGap with Sencha Touch 218 

        tx.executeSql(insertStmt); 

    }, function (error) { 
        console.log("Data insert failed " + error.code + "   " + error.message); 
    }, function () { 
        console.log("Data insert successful"); 
    }); 

} 

/** 
 * Remove current business data from favourite 
 * @param {Object} data 
 */ 
var removeFromFavorite = function (data) { 
    try { 
        var db = window.openDatabase("Favourites", "1.0", "Favourites", 20000000); 

        db.transaction(function (tx) { 
            ensureTableExists(tx); 
            var deleteStmt = "DELETE FROM Favourite WHERE id = '" + data.id + "'"; 
            console.log(deleteStmt); 
            tx.executeSql(deleteStmt); 

        }, function (error) { 
            console.log("Data Delete failed " + error.code + "   " + error.message); 
        }, function () { 
            console.log("Data Delete successful"); 
        }); 

    } catch (err) { 
        console.log("Caught exception while deleting favourite " + data.name); 
    } 

} 

/** 
 * 
 * @param {Object} reference 
 * @return true if place is favourite else false 
 */ 
var isFav = function (data, callback) { 

    var db = window.openDatabase("Favourites", "1.0", "Favourites", 200000); 

    try { 
        db.transaction(function (tx) { 
            ensureTableExists(tx); 

            var sql = "SELECT * FROM Favourite where id='" + data.id + "'"; 



CHAPTER 5:  Using PhoneGap with Sencha Touch 219 

            tx.executeSql(sql, [],  
                function (tx, results) { 
                    var result = (results != null && results.rows != null && 
results.rows.length > 0); 
                    callback(result); 
                },  
                function (tx, error) { 
                    console.log("Got error in isFaverror.code =" + error.code + "  
                          error.message = " + error.message); 
                    callback(false); 
                }); 
            }); 
 
    } catch (err) { 
        console.log("Got error in isFav " + err); 
        callback(false); 
    } 
} 

This covers the layout part of the application, how to populate data from Google places 
server, and how to navigate and use database. 

Please refer to the complete example listed below in order to learn how events are 
handled. 

1. index.html 
<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>Sencha Touch Layout</title> 
        <link rel="stylesheet" type="text/css" href="lib/touch/resources/css/sencha-
touch.css"></link> 
        <script type="text/javascript" 
src="http://maps.google.com/maps/api/js?sensor=true"></script> 
        <script type="text/javascript" src="lib/touch/sencha-touch.js"></script> 
        <script type="text/javascript" src="app/app.js"></script> 
        <style> 
            .x-tabbar{  
                padding-top: 10px;!important;  
               border-bottom: 2px solid #306aa1 !important;  
            }  
            .place {  
                padding: 10px 0 10px 68px;  
                border-top: 1px solid #ccc;  
                min-height: 68px;  
                background-color: #fff;  
            }  
            .place h2 {  
                font-weight:bold;  
            }  
            .place .icon {  
                position: absolute;  
                left: 10px;  
            }   



CHAPTER 5:  Using PhoneGap with Sencha Touch 220 

            .place .icon img{ 
                height:24px;  
                width: 24px;  
            }  
            .bold{  
                font-weight: bold;  
            } 
        </style> 
    </head> 
    <body> 
    </body> 
</html> 

2. app.js 
Ext.setup({ 
    tabletStartupScreen: 'tablet_startup.png', 
    phoneStartupScreen: 'phone_startup.png', 
    icon: 'icon.png', 
    glossOnIcon: false, 
    onReady: function () { 
        var lastPanelId = 0; 
 
        var SEARCHPAGE = 0; 
        var TABPAGE = 1; 
        var FAVPAGE = 2; 
        var DETAILSPAGE = 3; 
 
        var cachedDetails = null; 
 
        var searchPanel = newExt.form.FormPanel({ 
            layout: 'fit', 
            fullscreen: true, 
            scroll: 'vertical', 
            standardSubmit: false, 
            //Adding form field 
            items: [{ 
                xtype: 'fieldset', 
                title: 'Local Search', 
                items: [{ 
                    xtype: 'textfield', 
                    name: 'search', 
                    label: 'Search', 
                    value: 'Pizza', 
                    useClearIcon: true, 
                    autoCapitalize: false 
                }, { 
                    xtype: 'sliderfield', 
                    name: 'range', 
                    label: 'Range (0-10 Kms)', 
                    value: 5, 
                    minValue: 0, 
                    maxValue: 10 
                }] 
            }] //Docking a toolbar at bottom    
            , 



CHAPTER 5:  Using PhoneGap with Sencha Touch 221 

            dockedItems: [{ 
                xtype: 'toolbar', 
                dock: 'bottom', 
                items: [{ 
                    xtype: 'spacer' 
                }, { 
                    text: 'Search', 
                    iconCls: 'search', 
                    title: 'Search', 
                    iconMask: true, 
                    ui: 'round', 
                    ui: 'confirm', 
                    handler: function () { 
                        lastPanelId = TABPAGE; 
                        fetchFromGoogle(); 
 
                        mainPanel.dockedItems.items[0].setTitle('Search Results'); 
                        mainPanel.setActiveItem(lastPanelId); 
                    } 
                }] 
            }] 
        }); 
 
        var detailClickHandler = function (event) { 
                var reference = event.getTarget(".place").id; 
                fetchDetails(reference); 
                mainPanel.dockedItems.items[0].setTitle('Details'); 
                mainPanel.setActiveItem(DETAILSPAGE, "slide"); 
            } 
 
        var result = new Ext.Component({ 
 
            title: 'Search Result', 
            iconMask: true, 
            iconCls: 'organize', 
            cls: 'timeline', 
            scroll: 'vertical', 
            tpl: ['<tpl for=".">',  
                  '<div class="place" id="{reference}">',  
                  '<div class="icon"><imgsrc="{icon}" /></div>',  
                  '<div>',  
                  '<h2>{name}</h2>', 
 
            '<p>{vicinity}</p>', '</div>', '</div>', '</tpl>' 
 
            ], 
            listeners: { 
                el: { 
                    tap: detailClickHandler, 
                    delegate: '.place' 
 
                } 
            } 
 
        }); 
 
        var favorites = new Ext.Component({ 



CHAPTER 5:  Using PhoneGap with Sencha Touch 222 

            title: 'Favotites', 
            iconMask: true, 
            iconCls: 'organize', 
 
            cls: 'timeline', 
            scroll: 'vertical', 
            tpl: ['<tpl for=".">',  
                  '<div class="place" id="{reference}">',  
                  '<div class="icon"><imgsrc="{icon}" /></div>',  
                  '<div>',  
                  '<h2>{name}</h2>',  
                  '<p>{vicinity}</p>',  
                  '</div>',  
                  '</div>',  
                  '</tpl>'], 
            listeners: { 
                el: { 
                    tap: detailClickHandler, 
                    delegate: '.place' 
 
                } 
            } 
 
        }); 
 
        var map = new Ext.Map({ 
            iconMask: true, 
            iconCls: 'maps', 
            title: 'Map', 
            // Name that appears on this tab 
            fullscreen: true, 
            mapOptions: { // Used in rendering map 
                zoom: 12 
            } 
        }); 
 
        var tabResultPanel = new Ext.TabPanel({ 
            layout: 'fit', 
            tabBar: { 
                dock: 'bottom', 
                layout: { 
                    pack: 'center' 
                } 
            }, 
            items: [result, map], 
 
 
        }); 
 
        var placeDetailsPanel = new Ext.Panel({ 
            //layout: 'fit', 
            tpl: ['<table>',  
                  '<tr>',  
                  '<td>',  
                  '</td>',  
                  '<td>',  
                  '<h1 class="bold">Business Details</h1>',  



CHAPTER 5:  Using PhoneGap with Sencha Touch 223 

                  '</td>', 
                  '</tr>', 
                  '<tr>',  
                  '<td>',  
                  '<h1 class="bold">Name</h1>',  
                  '</td>',  
                  '<td>',  
                  '<h1>{name}</h1>',  
                  '</td>', 
                  '</tr>', 
                  '<tr>',  
                  '<td>',  
                  '<h1 class="bold">Address</h1>',  
                  '</td>',  
                  '<td>',  
                  '<h1>{formatted_address}</h1>',  
                  '</td>', 
                  '</tr>', 
                  '<tr>',  
                  '<td>',  
                  '<h1 class="bold">Phone</h1>',  
                  '</td>',  
                  '<td>', 
                  '<h1>{formatted_phone_number}</h1>',  
                  '</td>', 
                  '</tr>', 
                  '<tr>',  
                  '<td>',  
                  '<h1 class="bold">Rating</h1>',  
                  '</td>',  
                  '<td>',  
                  '<h1>{rating}</h1>',  
                  '</td>',  
                  '</tr>', 
                  '<tr>',  
                  '<td>',  
                  '<h1 class="bold">Home Page</h1>',  
                  '</td>',  
                  '<td>',  
                  '<a href="{url}" target="_blank">Home Page</a>',  
                  '</td>',  
                  '</tr>',  
                  '</table>' 
 
            ] 
        }); 
 
        var resultDetailPanel = new Ext.Panel({ 
            layout: { 
                type: 'vbox', 
            }, 
            items: [ 
            placeDetailsPanel, 
            { 
                xtype: 'button', 
                text: 'Add to Favorite', 
                handler: function (button, event) { 



CHAPTER 5:  Using PhoneGap with Sencha Touch 224 

                    if (button.text == "Add to Favorite") { 
                        addCurrentToFav(); 
                        button.setText("Remove from Favorite"); 
                    } else { 
                        removeCurrentFromFav(); 
                        button.setText("Add to Favorite"); 
                    } 
 
                } 
 
            }], 
            dockedItems: [{ 
                xtype: 'toolbar', 
                dock: 'bottom', 
                items: [{ 
                    ui: 'round', 
                    text: 'Back', 
                    handler: function () { 
 
                        if (lastPanelId == 0) { 
                            mainPanel.dockedItems.items[0].setTitle('Home Page'); 
                        } else if (lastPanelId == 1) { 
                            mainPanel.dockedItems.items[0].setTitle('Search Results'); 
                        } else if (lastPanelId == 2) { 
                            fetchFromDB(); 
                            mainPanel.dockedItems.items[0].setTitle('Favourites'); 
                        } else if (lastPanelId == 3) { 
                            //Shouldn't happen 
                            mainPanel.dockedItems.items[0].setTitle('Details'); 
                        } 
 
                        mainPanel.setActiveItem(lastPanelId, { 
                            type: 'slide', 
                            direction: 'right' 
                        }); 
                    } 
 
                }] 
            }] 
 
        }); 
 
        //Main Panel with CardLayout 
        var mainPanel = new Ext.Panel({ 
            layout: 'card', 
            fullscreen: true, 
            items: [searchPanel, tabResultPanel, favorites, resultDetailPanel], 
            dockedItems: [{ 
                xtype: 'toolbar', 
                title: 'Local Search', 
                dock: 'top', 
                items: [{ 
 
                    iconMask: true, 
                    ui: 'round', 
                    iconCls: 'home', 
                    handler: function () { 



CHAPTER 5:  Using PhoneGap with Sencha Touch 225 

                        lastPanelId = SEARCHPAGE; 
 
                        mainPanel.dockedItems.items[0].setTitle('Home Page'); 
                        mainPanel.setActiveItem(lastPanelId, "slide"); 
                    } 
 
                }, { 
                    xtype: 'spacer' 
                }, { 
 
                    iconMask: true, 
                    ui: 'round', 
                    iconCls: 'star', 
                    handler: function () { 
                        fetchFromDB(); 
                        lastPanelId = FAVPAGE; 
                        mainPanel.dockedItems.items[0].setTitle('Favourites'); 
                        mainPanel.setActiveItem(lastPanelId, "slide"); 
                    } 
 
                }] 
            }] 
        }); 
 
        // These are all Google Maps APIs 
        var addMarker = function (name, reference, position) { 
 
                var marker = new google.maps.Marker({ 
                    map: map.map, 
                    position: position, 
                    clickable: true, 
                    optimized: true, 
                    title: name 
                }); 
                google.maps.event.addListener(marker, 'click', function () { 
                    fetchDetails(reference); 
 
                    mainPanel.dockedItems.items[0].setTitle('Details'); 
                    mainPanel.setActiveItem(DETAILSPAGE, "slide"); 
 
                }); 
 
 
            }; 
 
 
 
 
        var fetchFromGoogle = function () { 
 
                var keyword = searchPanel.items.items[0].items.items[0].value; 
                var range = searchPanel.items.items[0].items.items[1].value * 1000; 
                navigator.geolocation.getCurrentPosition( 
 
                function (position) { 
                    var lat = position.coords.latitude; 
                    var lng = position.coords.longitude; 



CHAPTER 5:  Using PhoneGap with Sencha Touch 226 

 
 
                    map.update({ 
                        latitude: lat, 
                        longitude: lng 
                    }); 
 
                    var googlePlaceUrl = 
'https://maps.googleapis.com/maps/api/place/search/json?location='  
                         + lat + ',' + lng + '&radius=' + range + '&types=food&name=' + 
keyword + '&sensor=true&key=API_Key'; 
                    //Note that you will need to replace the API_Key with your own key. 
You  
                    //can get API Key from 
//http://code.google.com/apis/maps/documentation/places/ 
                    Ext.Ajax.request({ 
                        url: googlePlaceUrl, 
                        success: function (response, opts) { 
 
 
                            var obj = Ext.decode(response.responseText); 
 
                            result.update(obj.results); 
                            var data = obj.results; 
                            for (var i = 0, ln = data.length; i < ln; i++) { // Loop to 
add points to the map 
                                var place = data[i]; 
 
                                if (place.geometry && place.geometry.location) { 
                                    var position = new 
google.maps.LatLng(place.geometry.location.lat, place.geometry.location.lng); 
 
                                    addMarker(place.name, place.reference, position); // 
Call addMarker function with new data 
                                } 
                            } 
 
                        }, 
                        failure: function (response, opts) { 
                            console.log('server-side failure with status code ' + 
response.status); 
 
                        } 
                    }, function (err) { 
                        console.log('Failed to get geo location from phonegap ' + err); 
                    }); 
                }) 
            } 
 
        var fetchFromDB = function () { 
                var db = window.openDatabase("Favourites", "1.0", "Favourites", 200000); 
                try { 
                    db.transaction(function (tx) { 
                        tx.executeSql('SELECT * FROM Favourite', [], function (tx, 
results) { 
                            var arr = []; 
                            for (var i = 0; i < results.rows.length; i++) { 

https://maps.googleapis.com/maps/api/place/search/json?location=
http://code.google.com/apis/maps/documentation/places/


CHAPTER 5:  Using PhoneGap with Sencha Touch 227 

                                var data = results.rows.item(i) 
                                arr[i] = data; 
 
                            } 
 
                            favorites.update(arr); 
 
                        }, function (error) { 
                            console.log("Got error fetching favourites " + error.code + 
" " + error.message); 
                        }); 
                    }); 
                } catch (err) { 
                    console.log("Got error while reading favourites " + err); 
                } 
 
            } 
 
 
 
        var fetchDetails = function (reference) { 
                placeDetailsPanel.update({ 
                    name: "", 
                    formatted_address: "", 
                    formatted_phone_number: "", 
                    rating: "", 
                    url: "" 
                }); 
                Ext.Ajax.request({ 
                    url: 
'https://maps.googleapis.com/maps/api/place/details/json?reference=' + reference + 
'&sensor=true&key=API_Key', 
                    success: function (response, opts) { 
                        var obj = Ext.decode(response.responseText); 
                        cachedDetails = obj.result; 
                        isFav(obj.result, function (result) { 
                            if (result) { 
 
                                resultDetailPanel.items.items[1].setText("Remove from 
Favorite"); 
                            } else { 
 
                                resultDetailPanel.items.items[1].setText("Add to 
Favorite"); 
                            } 
                            placeDetailsPanel.update(obj.result); 
                        }); 
 
 
                    }, 
                    failure: function (response, opts) { 
                        console.log('server-side failure with status code ' + 
response.status); 
                    } 
                }) 
            } 

https://maps.googleapis.com/maps/api/place/details/json?reference=


CHAPTER 5:  Using PhoneGap with Sencha Touch 228 

            /** 
             * Ensure we have the table before we use it 
             * @param {Object} tx 
             */ 
        var ensureTableExists = function (tx) { 
                tx.executeSql('CREATE TABLE IF NOT EXISTS Favourite (id unique, 
reference, name,address,phone,rating,icon,vicinity)'); 
            } 

        var addCurrentToFav = function () { 
                addToFavorite(cachedDetails); 
            } 

        var removeCurrentFromFav = function () { 
                removeFromFavorite(cachedDetails); 
            } 

            /** 
             * Add current business data to favourite 
             * @param {Object} data 
             */ 
        var addToFavorite = function (data) { 
                var db = window.openDatabase("Favourites", "1.0", "Favourites", 
20000000); 

                db.transaction(function (tx) { 
                    ensureTableExists(tx); 
                    var id = (data.id != null) ? ('"' + data.id + '"') : ('""'); 
                    var reference = (data.reference != null) ? ('"' + data.reference + 
'"') : ('""'); 
                    var name = (data.name != null) ? ('"' + data.name + '"') : ('""'); 
                    var address = (data.formatted_address != null) ? ('"' + 
data.formatted_address + '"') : ('""'); 
                    var phone = (data.formatted_phone_number != null) ? ('"' + 
data.formatted_phone_number + '"') : ('""'); 
                    var rating = (data.rating != null) ? ('"' + data.rating + '"') : 
('""'); 
                    var icon = (data.icon != null) ? ('"' + data.icon + '"') : ('""'); 
                    var vicinity = (data.vicinity != null) ? ('"' + data.vicinity + '"') 
: ('""'); 
                    var insertStmt = 'INSERT INTO Favourite (id,reference, 
name,address,phone,rating,icon,vicinity) VALUES (' + id  
                       + ',' + reference + ',' + name + ',' + address + ',' + phone + 
',' + rating + ',' + icon + ',' + vicinity + ')'; 
                    tx.executeSql(insertStmt); 

                }, function (error) { 
                    console.log("Data insert failed " + error.code + "   " + 
error.message); 

                }, function () { 
                    console.log("Data insert successful"); 

                }); 

            } 



CHAPTER 5:  Using PhoneGap with Sencha Touch 229 

 
 
            /** 
             * Remove current business data from favourite 
             * @param {Object} data 
             */ 
        var removeFromFavorite = function (data) { 
                try { 
                    var db = window.openDatabase("Favourites", "1.0", "Favourites", 
20000000); 
 
                    db.transaction(function (tx) { 
                        ensureTableExists(tx); 
                        var deleteStmt = "DELETE FROM Favourite WHERE id = '" + data.id 
+ "'"; 
                        console.log(deleteStmt); 
                        tx.executeSql(deleteStmt); 
 
                    }, function (error) { 
                        console.log("Data Delete failed " + error.code + "   " + 
error.message); 
                    }, function () { 
                        console.log("Data Delete successful"); 
                    }); 
                } catch (err) { 
                    console.log("Caught exception while deleting favourite " + 
data.name); 
                } 
 
            } 
 
       /** 
        * 
        * @param {Object} reference 
        * @return true if place is favourite else false 
        */ 
        var isFav = function (data, callback) { 
 
                var db = window.openDatabase("Favourites", "1.0", "Favourites", 200000); 
 
                try { 
                    db.transaction(function (tx) { 
                        ensureTableExists(tx); 
 
                        var sql = "SELECT * FROM Favourite where id='" + data.id + "'"; 
 
                        tx.executeSql(sql, [], function (tx, results) { 
                            var result = (results != null && results.rows != null && 
results.rows.length > 0); 
 
                            callback(result); 
                        }, function (tx, error) { 
                            console.log("Got error in isFaverror.code =" + error.code + 
" error.message = " + error.message); 
                            callback(false); 



CHAPTER 5:  Using PhoneGap with Sencha Touch 230 

 
                        }); 
                    }); 
 
                } catch (err) { 
                    console.log("Got error in isFav " + err); 
                    callback(false); 
 
 
                } 
 
 
            } 
 
    } 
}); 

Conclusion 
If you are building a fairly complex mobile application, you should use Sencha Touch. 
jQueryMobile is good for smaller, less complex Ajax applications. Although jQueryMobile 
can be used for more complex applications, you will have to do DOM manipulation all by 
yourself and things will get more complex there. 

Sencha Touch has a good performance and rich widget set. Some of its widgets use a 
data store to talk to the server components. You can use mvc design pattern with 
Sencha Touch and even split up your application into several .js files for improved 
modular code. 



 231 

   Chapter 

Using PhoneGap with GWT 
The Google Web toolkit (GWT) is a framework from Google that you can use to develop 
browser-based applications. The GWT allows developers to code in Java and generate 
JavaScript-based applications. 

GWT applications are inherently cross-browser compatible and they are the smallest 
and fastest browser-based applications. 

This chapter will focus on how to develop a GWT application for a mobile phone, using 
PhoneGap. The steps are based on the GWT PhoneGap library developed by Daniel 
Kurka. You can download this library from http://code.google.com/p/gwt-phonegap/.  

Knowledge of how to develop GWT-based applications is essential. If you are new to 
GWT-based applications, you can visit http://code.google.com/webtoolkit/doc/ 
latest/tutorial/index.html to learn more about GWT. 

Why Use GWT for User Interface Development? 
Before we jump into how to use GWT and PhoneGap together, let’s first consider why 
GWT is a great choice for user interface development: 

  The GWT allows developers to write browser-based applications 
without having to worry about cross browser issues, memory leaks in 
JavaScript, and the JavaScript language itself. 

  The GWT allows developers to code in Java and compiles the user 
interface and business logic written in Java into JavaScript.  

  The GWT also allows you to use concepts such as deferred binding 
(it’s like runtime polymorphism for the JavaScript world). This 
approach allows developers to create a single application that can 
serve a mobile browser using different classes, and serve a desktop 
browser using another set of classes. 

  The GWT ensures that you can create the smallest and fastest 
JavaScripts. 

6 

http://code.google.com/p/gwt-phonegap/
http://code.google.com/webtoolkit/doc/


CHAPTER 6:  Using PhoneGap with GWT 232 

  The GWT is a well-accepted technology used by many companies and 
by a large segment of the developer community. The GWT is 
becoming the de facto choice for large, complex Ajax-based 
applications. 

Along with the preceding advantages, many lightweight, ready-made widgets are 
available out of the box for the GWT. Also, there are professional GWT libraries, like 
EXT-GWT and Smart-GWT, which make the user interface look very professional and 
finished. Imagine your Java developers using their existing Java skills, writing browser-
based applications with ease and with the best design practices. The GWT takes the 
pain of writing browser-based applications away, while delivering the best browser 
applications possible. 

Getting Acquainted with the GWT PhoneGap 
The GWT provides a mechanism named JavaScript Native Interface (JSNI), which allows the 
GWT to wrap over existing JavaScript libraries. This ability allows the developer to code in 
Java without having to worry about how the underlying JavaScript functions are invoked. 

The GWT PhoneGap is a GWT wrapper for the PhoneGap library. The following section 
will demonstrate how to write a helloworld application using GWT PhoneGap. 

Building a PhoneGap GWT Application 
There are two main steps to building a GWT PhoneGap application. The first step is to 
build a GWT project. Once you have built the GWT project, the developer would compile 
the GWT project to create a web application (a set of HTMLs and JavaScripts).  

The second step is to build an Android PhoneGap application (using version 0.9.4 of 
PhoneGap) and to embed the GWT web application into the PhoneGap application. 

Build the GWT Application 
You will need the following tools before you build a GWT application: 

  JDK 1.6+ 

  Eclipse 3.6 Helios 

  Eclipse Google Plugin 

  PhoneGap 0.9.4 library 

  GWT PhoneGap 0.8 version library 

  Chrome browser 12+ version for testing 



CHAPTER 6:  Using PhoneGap with GWT 233 

Create a new web application project (Google web application) and fill the wizard with 
the values shown in Figure 6–1. You will need to check “Use Google Web Toolkit” and 
uncheck “Use Google App Engine.” 

 

Figure 6–1. Create GWT Project 

Create a folder named “lib” for the project. Download the GWT-PhoneGap library from 
http://code.google.com/p/gwt-phonegap/downloads/detail?name=gwt-phonegap-
0.8.jar and copy it into the lib folder for your application. Add the gwt-phonegap-0.8.jar 

http://code.google.com/p/gwt-phonegap/downloads/detail?name=gwt-phonegap-0.8.jar
http://code.google.com/p/gwt-phonegap/downloads/detail?name=gwt-phonegap-0.8.jar


CHAPTER 6:  Using PhoneGap with GWT 234 

to the class path by right-clicking the jar and then clicking “build path” -> “Add to build 
path.” 

Now open PhoneGap_GWT_Helloworld.gwt.xml file. In that file, add the following entry: 

<inherits name='de.kurka.phonegap.PhoneGap' /> 
<set-property name="user.agent" value="safari" /> 

Make a note that by adding the set-property of user.agent to safari, the GWT will only 
generate JavaScript for webkit-based browsers. Chrome browser will be used 
exclusively for testing in this scenario. 
Your PhoneGap_GWT_Helloworld.gwt.xml file should now appear as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
<module rename-to='phonegap_gwt_helloworld'> 
  <!-- Inherit the core Web Toolkit stuff.                        --> 
  <inherits name='com.google.gwt.user.User'/> 
  <!-- Inherit the default GWT style sheet.  You can change       --> 
  <!-- the theme of your GWT application by uncommenting          --> 
  <!-- any one of the following lines.                            --> 
  <inherits name='com.google.gwt.user.theme.clean.Clean'/> 
  <!-- <inherits name='com.google.gwt.user.theme.standard.Standard'/> --> 
  <!-- <inherits name='com.google.gwt.user.theme.chrome.Chrome'/> --> 
  <!-- <inherits name='com.google.gwt.user.theme.dark.Dark'/>     --> 
 
  <!-- Other module inherits                                      --> 
  <inherits name='de.kurka.phonegap.PhoneGap' /> 
   <set-property name="user.agent" value="safari" /> 
 
   
  <!-- Specify the app entry point class.                         --> 
  <entry-point 
class='com.phonegap.example.gwt.helloworld.client.PhoneGap_GWT_Helloworld'/> 
  <!-- Specify the paths for translatable code                    --> 
  <source path='client'/> 
  <source path='shared'/> 
 
</module> 

Now open PhoneGap_GWT_Helloworld.html, located in the war folder of your project, 
and make the following changes: 

<!doctype html> 
<!-- The DOCTYPE declaration above will set the    --> 
<!-- browser's rendering engine into               --> 
<!-- "Standards Mode". Replacing this declaration  --> 
<!-- with a "Quirks Mode" doctype may lead to some --> 
<!-- differences in layout.                        --> 
 
<html> 
  <head> 
    <meta http-equiv="content-type" content="text/html; charset=UTF-8"> 
 
    <!--                                                               --> 
    <!-- Consider inlining CSS to reduce the number of requested files --> 
    <!--                                                               --> 
    <link type="text/css" rel="stylesheet" href="PhoneGap_GWT_Helloworld.css"> 



CHAPTER 6:  Using PhoneGap with GWT 235 

 
    <!--                                           --> 
    <!-- Any title is fine                         --> 
    <!--                                           --> 
    <title>Gwt PhoneGap Demo</title> 
 
    <!--                                           --> 
    <!-- This script loads your compiled module.   --> 
    <!-- If you add any GWT meta tags, they must   --> 
    <!-- be added before this line.                --> 
    <!--                                           --> 
    <script type="text/javascript" language="javascript" 
src="phonegap_gwt_helloworld/phonegap_gwt_helloworld.nocache.js"></script> 
  </head> 
 
  <!--                                           --> 
  <!-- The body can have arbitrary html, or      --> 
  <!-- you can leave the body empty if you want  --> 
  <!-- to create a completely dynamic UI.        --> 
  <!--                                           --> 
  <body> 
     
  </body> 
</html> 

If you plan to run this example on Android, you should make this addition after 
phonegap_gwt_helloworld/phonegap_gwt_helloworld.nocache.js tag: 

<script type="text/javascript"> 
document.addEventListener("deviceready", (function(){ PhoneGap.available = true;}), 
false); 
</script> 

Now open PhoneGap_GWT_Helloworld.java in the src folder and make the following 
changes: 

package com.phonegap.example.gwt.helloworld.client; 
import com.google.gwt.core.client.EntryPoint; 
import com.google.gwt.user.client.ui.Label; 
import com.google.gwt.user.client.ui.RootPanel; 
 
/** 
 * Entry point classes define <code>onModuleLoad()</code>. 
 */ 
public class PhoneGap_GWT_Helloworld implements EntryPoint { 
 
 /** 
  * This is the entry point method. 
  */ 
 public void onModuleLoad() { 
  RootPanel.get().add(new Label("GWT PhoneGap Demo")); 
 } 
} 



CHAPTER 6:  Using PhoneGap with GWT 236 

The GWT project created by default has an RPC component for client server 
communication, which is not needed for this application. Therefore, you can remove the 
following entries from the project: 

  GreetingService.java and GreetingServiceAsync.java from the client 
package 

  Shared and server packages 

  Any servlets from web.xml 

Now, run the GWT project (run as -> Web application) and you should see the screen 
shown in Figure 6–2. Please note that this example will be run in a browser to ensure 
that your GWT project is properly set up. 

 

Figure 6–2. Running GWT Project in Chrome Browser 

The next step is to actually make use of the PhoneGap API to compile the GWT project 
into a web application. 

A benefit of the PhoneGap GWT library is that it mocks PhoneGap library when launched 
as a GWT web application. The library provides alternative functions based on the 
following instructions: 

1. Use PhoneGap JavaScript if run on either Android or an iPhone. 

2. Otherwise, use internal mock classes and give dummy values. 

Start by using deferred binding to create an object of PhoneGap: 

PhoneGap PhoneGap = (PhoneGap)GWT.create(PhoneGap.class); 

The next step is to register the following callbacks within the PhoneGap framework:  



CHAPTER 6:  Using PhoneGap with GWT 237 

  Phonegapavailablehandler: This callback will occur when everything 
goes fine and PhoneGap is initialized properly. In short, this is a 
success callback. 

  Phonegaptimeouthandler: This callback occurs when PhoneGap is not 
initialized within the given time limit, possibly due to failure to initialize 
the PhoneGap framework. In short, this is a failure callback. 

Lastly, you have to initialize the PhoneGap framework by calling 
PhoneGap.initializePhoneGap(). Calling this API will result in one of the above 
callbacks. 

The main code will be written as the PhoneGapAvailableHandler Callback, as shown 
below. Using the PhoneGap variable is safe because PhoneGap has been properly 
initialized. In the following code, you get the handler to the device from PhoneGap and 
then print device info value in a grid (table of 2 columns and 5 rows): 

Device device = phoneGap.getDevice();                 
Grid grid = new Grid(5, 2); 
//Add a row mentioning Name Property of Device 
grid.setWidget(0, 0, new Label("Name")); 
grid.setWidget(0, 1, new Label(device.getName())); 
                  
//Add a row mentioning Platform Property of Device 
grid.setWidget(1, 0, new Label("Platform")); 
grid.setWidget(1, 1, new Label(device.getPlatform())); 
                  
//Add a row mentioning Version Property of Device 
grid.setWidget(2, 0, new Label("Version")); 
grid.setWidget(2, 1, new Label(device.getVersion())); 
                  
//Add a row mentioning Name Property of Device 
grid.setWidget(3, 0, new Label("PhoneGapVersion")); 
grid.setWidget(3, 1, new Label(device.getPhoneGapVersion())); 
 
//Add a row mentioning Name Property of Device 
grid.setWidget(4, 0, new Label("UUID")); 
grid.setWidget(4, 1, new Label(device.getUuid())); 
 
grid.setBorderWidth(1); 
RootPanel.get().add(grid); 

Here is the complete example: 

package com.phonegap.example.gwt.helloworld.client; 
import com.google.gwt.core.client.EntryPoint; 
import com.google.gwt.core.client.GWT; 
import com.google.gwt.user.client.Window; 
import com.google.gwt.user.client.ui.Grid; 
import com.google.gwt.user.client.ui.Label; 
import com.google.gwt.user.client.ui.RootPanel; 
 
import de.kurka.phonegap.client.PhoneGap; 
import de.kurka.phonegap.client.PhoneGapAvailableEvent; 
import de.kurka.phonegap.client.PhoneGapAvailableHandler; 
import de.kurka.phonegap.client.PhoneGapTimeoutEvent; 



CHAPTER 6:  Using PhoneGap with GWT 238 

import de.kurka.phonegap.client.PhoneGapTimeoutHandler; 
import de.kurka.phonegap.client.device.Device; 

/** 
 * Entry point classes define <code>onModuleLoad()</code>. 
 */ 
public class PhoneGap_GWT_Helloworld implements EntryPoint { 

    /** 
     * This is the entry point method. 
     */ 
    public void onModuleLoad() { 
        final PhoneGap phoneGap = GWT.create(PhoneGap.class); 
        phoneGap.addHandler(new PhoneGapAvailableHandler() { 
                 
            public void onPhoneGapAvailable(PhoneGapAvailableEvent event) { 
                Device device = phoneGap.getDevice(); 
                  
                Grid grid = new Grid(5, 2); 
                //Add a row mentioning Name Property of Device 
                grid.setWidget(0, 0, new Label("Name")); 
                grid.setWidget(0, 1, new Label(device.getName())); 
                //Add a row mentioning Platform Property of Device 
                grid.setWidget(1, 0, new Label("Platform")); 
                grid.setWidget(1, 1, new Label(device.getPlatform())); 
                //Add a row mentioning Version Property of Device 
                grid.setWidget(2, 0, new Label("Version")); 
                grid.setWidget(2, 1, new Label(device.getVersion())); 
                //Add a row mentioning Name Property of Device 
                grid.setWidget(3, 0, new Label("PhoneGapVersion")); 
                grid.setWidget(3, 1, new Label(device.getPhoneGapVersion())); 
                //Add a row mentioning Name Property of Device 
                grid.setWidget(4, 0, new Label("UUID")); 
                grid.setWidget(4, 1, new Label(device.getUuid())); 
                grid.setBorderWidth(1); 
                RootPanel.get().add(grid); 

            } 
        }); 

        phoneGap.addHandler(new PhoneGapTimeoutHandler() { 
            public void onPhoneGapTimeout(PhoneGapTimeoutEvent event) { 
                Window.alert("can not load phonegap"); 
            } 
        }); 

        phoneGap.initializePhoneGap();     
    } 
} 

You can run this example from Eclipse using “run as -> web application” and looking up 
the code in the browser at 
http://127.0.0.1:8888/PhoneGap_GWT_Helloworld.html?gwt.codesvr=127.0.0.1:9997. 

You will see the table shown in Figure 6–3. As mentioned above, mock values are shown 
by the GWT PhoneGap when running the code in a browser and not on Android or an 
iPhone. 



CHAPTER 6:  Using PhoneGap with GWT 239 

 

Figure 6–3. Running GWT PhoneGap Project in Chrome Browser 

The last step is to compile this project into a web application. Right-click the project, 
choose the Google option, and click the menu option named “GWT compile.” You will 
be presented with the dialog box shown in Figure 6–4. Click compile. 



CHAPTER 6:  Using PhoneGap with GWT 240 

 

Figure 6–4. GWT Compilation Screen 

When the compilation is done, refresh your project in Eclipse, and you should see the 
directory structure shown in Figure 6–5. Inside the war folder you should see a 
phonegap_gwt_helloworld folder containing many HTML and JavaScript files, as shown 
below.  



CHAPTER 6:  Using PhoneGap with GWT 241 

 

Figure 6–5. GWT War Directory Structure after GWT Compilation 

Build a PhoneGap Android Application 
The final step in building the PhoneGap GWT application is to create an Android 
PhoneGap project, as shown in Figure 6–6 and Figure 6–7, and then copy the GWT-
generated web application into the assets/www folder.  

The first step is to create an Android project.  



CHAPTER 6:  Using PhoneGap with GWT 242 

 

Figure 6–6. Android Create Project Screen 



CHAPTER 6:  Using PhoneGap with GWT 243 

 

Figure 6–7. Android Create Project Screen 

Now, inject the PhoneGap 0.9.4 library into the Android project. 



CHAPTER 6:  Using PhoneGap with GWT 244 

Download the PhoneGap 0.9.4 library from 
http://phonegap.googlecode.com/files/phonegap-0.9.4.zip. Undo the zip file, and you 
will see the folder structure shown in Figure 6–8. 

 

Figure 6–8. PhoneGap 0.9.4 Directory Structure 

Create a lib folder in the Android project folder, copy the PhoneGap.0.9.4.jar file in the 
lib folder, and then add it to the Eclipse classpath. (Right-click the jar file, go to “Build 
Path,” and click “Add to Build Path.”) 

The next step is to create a www folder inside the assets folder and to copy the 
PhoneGap.0.9.4.js file into the www folder. Then you will need to copy the following files 
from the GWT project into the same folder: 

  PhoneGap_GWT_Helloworld.html 

  PhoneGap_Gwt_Helloworld.css 

  phonegap_gwt_helloworld folder 

Your folder structure should now look like the example in Figure 6–9. The files in the 
folder named “gwt” are generated when the project is compiled. 

http://phonegap.googlecode.com/files/phonegap-0.9.4.zip


CHAPTER 6:  Using PhoneGap with GWT 245 

 

Figure 6–9. Directory Structure of GWT PhoneGap Project using Android 

Now you need to modify the following files: 

  HelloWorld.java file 

  PhoneGap_GWT_Helloworld.html  

Also, you will need o check that HelloWorld.java file resembles the following: 

package com.phonegap.gwt.helloworld; 
import android.os.Bundle; 
import com.phonegap.DroidGap; 
public class HelloWorld extends DroidGap { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        super.loadUrl("file:///android_asset/www/PhoneGap_GWT_Helloworld.html"); 
    } 
} 

In the PhoneGap_GWT_Helloworld.html folder, you will need to make some code 
changes.  



CHAPTER 6:  Using PhoneGap with GWT 246 

First, add the PhoneGap JavaScript library version 0.9.4 for Android, as follows:  

<script type="text/javascript" src=”phonegap.0.9.4.js”></script> 

Next, listen to the deviceready event in order to determine whether the PhoneGap library 
is ready for use: 

<script type="text/javascript"> 
    document.addEventListener( 
        "deviceready",  
        (function() { 
            PhoneGap.available = true; 
        }),  
        false); 
</script> 

Explicitly set the PhoneGap.available variable to true here. This is a required step for the 
Android platform. 

Here is the complete source code for the PhoneGap_gWT_Helloworld.html: 

<!doctype html> 
<!-- The DOCTYPE declaration above will set the --> 
<!-- browser's rendering engine into --> 
<!-- "Standards Mode". Replacing this declaration --> 
<!-- with a "Quirks Mode" doctype may lead to some --> 
<!-- differences in layout. --> 
<html> 
     
    <head> 
        <meta http-equiv="content-type" content="text/html; charset=UTF-8"> 
        <!-- --> 
        <!-- Consider inlining CSS to reduce the number of requested files --> 
        <!-- --> 
        <link type="text/css" rel="stylesheet" href="PhoneGap_GWT_Helloworld.css"> 
        <!-- --> 
        <!-- Any title is fine --> 
        <!-- --> 
        <title> 
            Gwt PhoneGap Demo 
        </title> 
        <!-- --> 
        <!-- This script loads your compiled module. --> 
        <!-- If you add any GWT meta tags, they must --> 
        <!-- be added before this line. --> 
        <!-- --> 
        <script type="text/javascript" language="javascript" src="phonegap.0.9.4.js"> 
        </script> 
        <script type="text/javascript" language="javascript" 
src="phonegap_gwt_helloworld/phonegap_gwt_helloworld.nocache.js"> 
        </script> 
        <script type="text/javascript"> 
          document.addEventListener("deviceready", (function() { 
      PhoneGap.available = true; 
  }), false); 
        </script> 
    </head> 
    <!-- --> 



CHAPTER 6:  Using PhoneGap with GWT 247 

    <!-- The body can have arbitrary html, or --> 
    <!-- you can leave the body empty if you want --> 
    <!-- to create a completely dynamic UI. --> 
    <!-- --> 
     
    <body> 
    </body> 
 
</html> 

After you run this code, the screen on the emulator should appear as the example in 
Figure 6–10. 

 

Figure 6–10. GWT based PhoneGap Application showing Device Info 

As with the above code, you can write code to access other PhoneGap APIs, and you  
can also write a GWT application that accesses native phone features via PhoneGap. 

GWT PhoneGap Reference 
Links to the locations of the documentation and the source code used in this GWT 
PhoneGap project are listed below. Daniel Kurka is the author of this library. 

Home page – http://code.google.com/p/gwt-phonegap/  

Getting started – http://code.google.com/p/gwt-phonegap/wiki/GettingStarted  

Download jar – http://gwt-phonegap.googlecode.com/files/gwt-phonegap-0.8.jar    

http://code.google.com/p/gwt-phonegap/
http://code.google.com/p/gwt-phonegap/wiki/GettingStarted
http://gwt-phonegap.googlecode.com/files/gwt-phonegap-0.8.jar


CHAPTER 6:  Using PhoneGap with GWT 248 

Download Javadocs – http://gwt-phonegap.googlecode.com/files/gwt-phonegap-0.8-
javadoc.jar    

Source code – http://code.google.com/p/gwt-phonegap/source/browse/     

Current features – http://code.google.com/p/gwt-phonegap/wiki/Features   

http://gwt-phonegap.googlecode.com/files/gwt-phonegap-0.8-javadoc.jar
http://gwt-phonegap.googlecode.com/files/gwt-phonegap-0.8-javadoc.jar
http://code.google.com/p/gwt-phonegap/source/browse/
http://code.google.com/p/gwt-phonegap/wiki/Features


 249 

   Chapter 

PhoneGap Emulator and 
Remote Debugging 

Introduction 
The biggest pain I experienced when I worked on building the PhoneGap application is 
the following cycle: 

1. Develop an eclipse/xcode or irrespective IDE 

2. Compile and put the binary executable on device/emulator 

3. Test PhoneGap application on device/emulator 

4. Tweak code and repeat from step 1 

Clearly this cycle is very time consuming and frustrating. If you are an experienced 
JavaScript developer, this would be a nightmare for you. 

JavaScript developers are used to handy tools on the following modern browsers: 

1. Firefox 

2. Safari  

3. Chrome 

4. Internet Explorer  

(Note that for iPhone and Android development, Internet Explorer is not useful. We 
recommend the use of Firefox, Safari, or Chrome for iPhone and Android development.) 

Few of these tools are extensions for developers. Firefox has its own firebug, which is 
the first of the series, of javascript/html debugging tools and it allows you to debug not 
only the page elements (DOM structure), but the scripts, stylesheets, and network as 
well. It also allows you to change these things on fly and test them out immediately. 

7 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 250 

Chrome and Safari come with built-in developer tools. Internet Explorer is no exception 
and has its own extension for doing similar things. 

Clearly we need something similar while developing PhoneGap. Let’s list our two 
requirements here. We need the following: 

1. The ability to create and test applications outside PhoneGap in a browser world 
using a PhoneGap emulator 

2. The ability to debug PhoneGap applications once we have deployed them on 
some emulator or device 

In this chapter we will discuss using a PhoneGap emulator and remote debugging tool. 

PhoneGap Emulator for Chrome – Using Ripple 
Ripple is a multi-platform mobile platform emulator from a company named tinyHippos. 
Recently this company was acquired by Research In Motion (RIM). The main reason why 
Ripple came into existence was to reduce the challenges being faced by today’s mobile 
web developers due to the immense fragmentation in the mobile OS world. 

Ripple is a Chrome extension and provides simulation for the following: 

1. PhoneGap 

2. Webworks (from blackberry) 

3. WebWorks-Tablet-OS (from Blackberry) 

4. Mobile web 

5. WAC 

6. Opera 

7. Vodafone 

For the purposes of this book, we will only focus on PhoneGap emulation from Ripple. 

Installing Ripple 
The only prerequisite for Ripple is that you need the Chrome browser. Any version that 
supports extensions will do, so you don’t need to worry about which version of Chrome 
to install. However, we do recommend using the latest version. 

Open Chrome and visit the web site – http://ripple.tinyhippos.com/  

You will see the page shown in Figure 7–1; all you need to do is click on the “Get 
Ripple” button. 

http://ripple.tinyhippos.com/


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 251 

 

Figure 7–1. Ripple home page 

That will take you to the page shown in Figure 7–2. Now click on “Install.” 

z



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 252 

 

Figure 7–2. Installing Ripple as a Chrome extension 

As we mentioned earlier, Ripple is a Chrome extension. Clicking “Install” takes you to 
the Chrome web store. When you click “Add to Chrome,” the extension/plugin is 
actually downloaded from the Chrome web store and automatically installed in your 
Chrome browser (see Figure 7–3). 

 
Figure 7–3. Installing Ripple from Chrome web store 

Once the plugin is installed you will see a screen like the one shown in Figure 7–3. 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 253 

 

Figure 7–4. Installing Ripple on Chrome 

In order to verify that the plugin has been properly installed, open a site like 
www.google.com in Chrome and right click on the page. If the plugin has been properly 
installed, you should see an option for “Emulator” enable/disable. This is depicted in 
Figure 7–5. 

 
Figure 7–5. Right click option on Chrome to open the Ripple emulator 

Go ahead and click on “Emulator” and select “Enable.” If you see the screen in Figure 7–6, 
your Ripple plugin is working perfectly. To get out of that screen, simply right click and 
select Emulator - >Disable. 

http://www.google.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 254 

 

Figure 7–6. First time launch of Ripple 

Using Chrome Effectively for PhoneGap 
Before we go ahead and use Ripple on Chrome. Let’s understand how to use Chrome 
effectively for PhoneGap. PhoneGap has similarities with mobile web applications, but it 
differs in many areas as well. Let’s list out the two major differences. 

1. PhoneGap applications are HTML/JavaScript-based applications, but they are 
never hosted. They are bundled as a part of native mobile applications shown in 
an embedded browser inside the application. This is similar to testing your 
HTML/JavaScript application from your disk on Chrome. Chrome needs to be 
tweaked to support running html/javascript applications from disk. 

2. PhoneGap does not have any domain name associated with them. That is why 
they do not follow a single origin policy. If you want to simulate the not adhering 
to single origin policy for your PhoneGap application, which is hosted from file 
system or local web server, you need to tweak Chrome to support turning off 
single origin policy. 

In order to test the PhoneGap application from the local file system and not make it 
follow the single origin policy, you need to start Chrome with the command line 
arguments discussed in the next few paragraphs. 

Windows 
In Windows, create a .cmd file named chrome.cmd and copy the following script into 
that file. Now use chrome.cmd to launch Chrome. 

chrome.exe --disable-web-security -–allow-file-access-from-files 

Mac and Linux 
On a Mac, create a script named chrome.sh and copy the following script into that. Now 
use chrome.sh to launch Chrome. 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 255 

open "/Applications/Google Chrome.app" --args --disable-web-security -–allow-file-
access-from-files 

Change the permissions on the chrome.sh script to make it executable (needed to run 
the script). 

$>chmod +x chrome.sh 
Run the script from terminal as follows: 
$>./chrome.sh  

Using Ripple 
Now we will see how to use Ripple and what changes are required to run your 
PhoneGap app in Ripple. 

Following are the prerequisites for using a PhoneGap app in Ripple: 

1. The app needs to be a pure PhoneGap app with no plugins. 

2. You need to remove any reference to the PhoneGap JavaScript from all HTML files. 

Tune Your App for Ripple 
Let’s take a code example from Chapter 2.  

We will work on the example of a compass app. Take the compass image from this URL 
– http://beginingphonegap.googlecode.com/files/compass.png. This image is shown in 
Figure 7–7. 

 

Figure 7–7. Compass image to be used in PhoneGap application 

Now, let’s modify the index.html file to look as it does below. Make a note that we have 
removed any reference to phonegap.js. This is currently a prerequisite for using Ripple. 
Ripple is working with PhoneGap to get rid of this change. Hopefully, in upcoming 
releases, we will see this requirement disappear. 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title> 
            PhoneGap 
        </title> 

http://beginingphonegap.googlecode.com/files/compass.png


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 256 

        <script type="text/javascript"> 
               /** Called when phonegap javascript is loaded */ 
 
       function onDeviceReady() { 
           var button = document.getElementById("capture"); 
           var compassOptions = { 
               frequency: 1000 
           }; 
           navigator.compass.watchHeading(onSuccess, onError, compassOptions); 
       }; 
 
       function onSuccess(heading) { 
           var image = document.getElementById('compass'); 
           var headingDiv = document.getElementById('compassHeading'); 
           headingDiv.innerHTML = heading; 
           var reverseHeading = 360 - heading; 
           image.style.webkitTransform = "rotate(" + reverseHeading + "deg)"; 
       } 
 
       function onError(error) { 
           alert('code: ' + error.code + '\n' + 'message: ' + error.message + '\n'); 
       } 
 
        /** Called when browser load this page*/ 
 
       function init() { 
           document.addEventListener("deviceready", onDeviceReady, false); 
       } 
        </script> 
    </head> 
     
    <body onLoad="init()"> 
        <h1> 
            Compass 
        </h1> 
        <table> 
            <tr> 
                <td> 
                    Compass Heading 
                </td> 
                <td> 
                    <div id="compassHeading"> 
                        .... 
                    </div> 
                </td> 
                <td> 
                    Degrees 
                </td> 
            </tr> 
        </table> 
        <img id="compass" src="compass.png" style="width:400px;height:400px;margin-
left:auto;margin-right:auto;auto;display:block"> 
        </img> 
    </body> 
 
</html> 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 257 

Your app directory would look like Figure 7–8. It contains all HTML, JavaScript, and CSS 
files for your application.  

 

Figure 7–8. Application Directory for the Compass App 

Start Chrome with Special Flags 
The next step is to start Chrome with special flags (as we started earlier in this chapter).  

Start Chrome with --disable-web-security -–allow-file-access-from-files flags. 

Once Chrome starts, go to Window->Extensions and locate the “Ripple Mobile 
Environment Emulator” extension and enable the check box that says “Allow access to 
file URLs” (see Figure 7–9). 

 

Figure 7–9. Allow access to file URLs for Ripple extension 

Load App in Chrome 
Now load the compass application in Chrome. On the right-hand side in the top corner 
you will see the Ripple icon. Click on that item to enable Ripple for this app. This is 
shown in Figure 7–10.  

Make note because we started Chrome with above mentioned flags, that is why Chrome 
is able to load HTML files from local filesystem. Also, if the PhoneGap application loads 
data using Ajax, it would also work in Chrome as we have disabled the single origin 
policy. 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 258 

Figure 7–10. Loading Compass app in Chrome browser 

Enable Ripple 
You will see Figure 7–11 the first time you enable Ripple. We need to choose the 
PhoneGap option.  

Figure 7–11. Enabling Ripple for Compass app 

Play with Ripple Settings 
Now that we have enabled Ripple, we will see the webpage has changed. The 
application, which used to take up the entire screen, now looks different. This is 
because now Ripple is the main application. Ripple loads our own application in an 
iframe and injects itself to simulate PhoneGap Environment. On the main page, Ripple 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 259 

has given a number of controls to change the state and properties of devices that 
PhoneGap simulates (see Figure 7–12).  

 

Figure 7–12. Compass app loaded in Chrome browser with Ripple enabled 

Test Application with Ripple 
The application under test is a compass application. To test this application we will use 
the geo and compass control marked in red in the bottom-right corner (see Figure 7–12). If 
we change the heading, this means we are simulating the user moving the compass 
bearing of his/her device. 

As you can see in Figure 7–13, when we changed the heading we can see the compass 
image rotate around center. 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 260 

 

Figure 7–13. Using Ripple to emulate PhoneGap’s Compass api 

Simulating PhoneGap is just one angle of Ripple. Ripple allows developers to use their 
regular browser tools to debug and change the DOM and CSS of their application. In 
Figure 7–14, we have right clicked on the image and clicked on “Inspect Element.” We 
can then check the css style of inspected DOM element, in our case the html img. 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 261 

 

Figure 7–14. Using Chrome’s developer tool to see HTML DOM changes  

Remote Debugging – http://debug.phonegap.com 
While using Ripple to simulate, test, and debug PhoneGap applications works and is 
very helpful, nothing compares to debugging on an actual emulator or device.  

The problem with debugging on an actual emulator or device is that the webkit webview 
used to show the PhoneGap application is pretty much isolated and cannot be 
accessed from the outside. Compare this to Chrome, Firefox or Safari, in these browsers 
user can inspect an html element. But the Applications (HTML/Javascript) which run 
inside a WebView of say PhoneGap Applications cannot be inspected. 

Here is where remote debugging comes into picture. See Figure 7–15 to understand this 
concept better. The basic idea is to inject a debug JavaScript into our PhoneGap 
application. This opens a channel with the debug.phonegap.com server. The developer 
then opens debug.phonegap.com in a browser and inspects the PhoneGap application 
running on the device/emulator. 

http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 262 

 

Figure 7–15. Remote debugging architecture 

Setting up Remote Debugging  
The first step to do a remote debug is to open http://debug.phonegap.com in a browser. 
Here you can provide a guide of your own (like we did) or use the one the server 
randomly assigns. 

http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 263 

 

Figure 7–16. Using debug.phonegap.com to debug your PhoneGap application 

Injecting Remote Debugging in the PhoneGap App 
The next step is to copy the JavaScript snippet from http://debug.phonegap.com and 
inject it into your PhoneGap application. This is shown as underlined below. 

<!DOCTYPE HTML> 
<html> 
    <head> 
        <title>PhoneGap</title> 
        <script type="text/javascript" src="phonegap.1.1.0.js"> 
        </script> 
        <script type="text/javascript"> 
             
            /** Called when phonegap javascript is loaded */ 
            function onDeviceReady(){ 
                document.getElementById("deviceName").innerHTML = device.name; 
                document.getElementById("phoneGapVersion").innerHTML = device.phonegap; 
                document.getElementById("mobilePlatform").innerHTML = device.platform; 
                document.getElementById("platformVersion").innerHTML = device.version; 
                document.getElementById("uuid").innerHTML = device.uuid; 
            } 
             
            /** Called when browser load this page*/ 
            function init(){ 
                document.addEventListener("deviceready", onDeviceReady, false); 
            } 
        </script> 
        <script src="http://debug.phonegap.com/target/target-script-min.js#begining-
phonegap"> 
        </script> 
    </head> 
    <body onLoad="init()"> 
        <h1>Device Info</h1> 
        <table border="1"> 
            <tr> 
                <td> 
                    Device Name 

http://debug.phonegap.com
http://debug.phonegap.com/target/target-script-min.js#begining-phonegap
http://debug.phonegap.com/target/target-script-min.js#begining-phonegap


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 264 

                </td> 
                <td id="deviceName"> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    PhoneGap Version 
                </td> 
                <td id="phoneGapVersion"> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Mobile Platform 
                </td> 
                <td id="mobilePlatform"> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Platform Version 
                </td> 
                <td id="platformVersion"> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    UUID 
                </td> 
                <td id="uuid"> 
                </td> 
            </tr> 
        </table> 
    </body> 
</html> 

Debugging and Modifying the DOM Element 
The next step is to launch the PhoneGap application on an emulator or device. When 
this application starts, the JavaScript running inside it will communicate with the 
debug.phonegap.com server. Then we will be ready for remote debugging (see 
Figure 7–17). 



CHAPTER 7:  PhoneGap Emulator and Remote Debugging 265 

 

Figure 7–17. Loading device info application in Android emulator 

The last step is to open http://debug.phonegap.com/client/#begining-phonegap in a 
browser (see Figure 7–18). Remember, we got this URL from the 
http://debug.phonegap.com website. 

 

Figure 7–18. Log message showing an Android application connected to http://debug.phonegap.com 

Now move to the element tab (see Figure 7–19). Here you will be able to see the DOM 
element of the page in the PhoneGap application.  

http://debug.phonegap.com/client/#begining-phonegap
http://debug.phonegap.com
http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 266 

 

Figure 7–19. Inspecting DOM on http://debug.phonegap.com 

The fun doesn’t stop here. Now you can change the DOM element (see Figure 7–20). To 
do so, double click on any DOM element (in our case a TD) and type in the style part by 
hand. In our case, we will add a style “style=‘background:red’” to td containing 0.9.5 
text. Now we will switch to the PhoneGap application running in the emulator to see the 
changes coming into effect.  

http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 267 

 

Figure 7–20. Changing a DOM property on http://debug.phonegap.com 

Now the background color of the TD element containing “0.9.5” changes to red (see 
Figure 7–21). This kind of debugging helps us debug applications on a device/emulator 
in real time. 

http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 268 

Figure 7–21. The change done on http://debug.phonegap.com reflected on an Android emulator 

Issues with debug.phonegap.com 
So far we’ve seen that the use of http://debug.phonegap.com is pretty useful in 
inspecting what is running inside a real device or an emulator. However, we won’t want 
to use it for following reasons: 

1. During development we don’t want to use an outside server.  

2. We want to save bandwidth and increase the speed of debugging. 

Note: A Weinre (web inspector remote) server powers debug.phonegap.com. PhoneGap 
folks also developed Weinre, and they have documented it pretty well. 

Installing Local debug.phonegap.com 
While installations and deployment of Weinre is out of scope of this book, I will leave a 
few instructions in the form of links on how to locally deploy Weinre. 

The documentation for Weinre is pretty good, and if you follow it you should have no 
problem locally installing Weinre and using it. 

http://debug.phonegap.com
http://debug.phonegap.com


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 269 

Visit http://phonegap.github.com/weinre/Installing.html for installation 
documentation (see Figure 7–22). 

 

Figure 7–22. Instructions on how to install Weinre 

Visit http://phonegap.github.com/weinre/Running.html for instructions on how to run it 
(see Figure 7–23). 

http://phonegap.github.com/weinre/Installing.html
http://phonegap.github.com/weinre/Running.html


CHAPTER 7:  PhoneGap Emulator and Remote Debugging 270 

 

Figure 7–23. Instructions on how to run Weinre 

Conclusion 
When developing PhoneGap applications, using an iPhone/Android emulator to test 
code is very time consuming and frustrating. In order to save time and energy and ease 
out development, use the Ripple PhoneGap Emulator. Make the most of Chrome’s 
developer tools and speed up your development. For remote debugging, use either 
http://debug.phonegap.com or a locally installed Weinre server. This helps you know 
what is actually happening to the HTML DOM when the application is running on the 
iPhone/Android emulator or on the actual device. 

http://debug.phonegap.com


 271 

   Chapter 

Using PhoneGap Plug-Ins 
PhoneGap comes with a set of JavaScript APIs that are used to access native phone 
features, such as camera, storage, contacts, geolocation, etc., to build cross mobile 
applications. If you want to do something that is not available in a PhoneGap API, you 
can leverage the PhoneGap plug-in. 

In any technology, it’s common practice to reuse a feature that is already available and 
tested. There are significant third party plug-ins available for the PhoneGap. For 
example, the authentication mechanism to access Facebook, access a third party 
service for Mobile Push notification, etc.  

What Is PhoneGap Plug-In?  
PhoneGap plug-in is an extension of the PhoneGap feature. It accesses a piece of 
functionality on the phone. Plug-in functionality may only be able to access native 
features of the phone or it may provide the functionality to access cloud services. 

Any PhoneGap Plug-in consists of at least two files: 

  JavaScript file 

  Native language file 

Plug-In’s JavaScript file is the interface between the PhoneGap’s application and the 
PhoneGap’s plug-in. Plug-In’s functionalities are accessed by the JavaScript file using 
JavaScript functions. 

A native language file is used by the PhoneGap framework to interact with the phone to 
access native features. As a plug-in user, we need to place the native code into our 
project structure. In the next section, we will examine in detail how to set up the project 
using this plug-in. 

8 



CHAPTER 8:  Using PhoneGap Plug-Ins 272 

Facebook Authentication and Fetching Friends  
Let’s leverage the PhoneGap plug-in to build a small application to login to Facebook 
and fetch friends’ info from Facebook.  

Our PhoneGap application will use the Facebook native app to perform a single sign on 
(SSO) for the user through the Facebook-PhoneGap plug-in. 

Setting Environment for Android  
First, we will need to set up the PhoneGap project for Android. Please refer to Chapter 2 to 
setup your project for Android. An Android project configuration is shown in Figure 8–1. 

 

Figure 8–1. Eclipse Android project configuration 



CHAPTER 8:  Using PhoneGap Plug-Ins 273 

Download the Facebook-connect plug-in from 
https://github.com/davejohnson/phonegap-plugin-facebook-connect/downloads. 

The Facebook-connect plug-in is a zip file. Unzip it in your favorite folder. The folder 
structure should be similar to Figure 8–2. 

 

Figure 8–2. Facebook-connect plug-in folder structure 

Next you will need to perform the following installation steps: 

1. Register Facebook Plug-in  

Add the following XML element as a child of the "plugins" element in the 
plugins.xml file as shown in Figure 8–3. You may need to create an xml folder in 
the res folder using the following: 

<plugin name="com.phonegap.facebook.Connect" value="com.phonegap.facebook.ConnectPlugin" /> 

https://github.com/davejohnson/phonegap-plugin-facebook-connect/downloads


CHAPTER 8:  Using PhoneGap Plug-Ins 274 

 

Figure 8–3. Facebook plug-in registration 

2. Include the native part of the plug-in into the project. Copy the libs and src folder 
from a Facebook-connect-plug-in folder as shown in Figure 8–4 and paste it into 
the root of our PhoneGap application, i.e., “FaceBookPluginExample”. 

 

Figure 8–4. Facebook-connect-plug-in native folders for android 

3. Include the JavaScript part of the plug-in in the project 

There are two JavaScript files that we need to include in our project from 
Facebook-connect plug-in.  

  /www/pg-plugin-fb-connect.js 

pg-plugin-fb-connect.js file is available under the www folder of the 
Facebook plug-in. Copy and paste it into the assets/www folder of our 
project. 

  /lib/facebook_js_sdk.js 

facebook_js_sdk.js file is available under the lib folder of the Facebook 
plug-in. Copy and paste it into the assets/www folder of our project. 



CHAPTER 8:  Using PhoneGap Plug-Ins 275 

Once you are done with these three steps, you will see the FaceBookPluginExample 
project structure as shown in Figure 8–5. 

 

Figure 8–5. FaceBookPluginExample project structure 

Initializing Facebook-Connect Plug-In  
The first step is to make sure that index.html has a Facebook-Connect library, PhoneGap 
library, and is CSS linked. Note that we are including the following JavaScript files. 

1. PhoneGap JavaScript 

2. Facebook Plug-In JavaScript 

3. Facebook SDK JavaScript 

<html> 
<head></head> 
<body> 
<div id=”friends”></div> 
<!--phonegap --> 
<script src="phonegap-1.1.0.js"></script> 
<!--phonegapfacebook plugin --> 
<script src="pg-plugin-fb-connect.js"></script> 
<!--facebookjssdk --> 



CHAPTER 8:  Using PhoneGap Plug-Ins 276 

<script src="facebook_js_sdk.js"></script> 
</body> 
</html> 

Now we will define the JavaScript functions in the index.html page to login into 
Facebook and fetch the friend list. The following is the code snip for the login function:  

function login() { 
    FB.login(function(response) {…}, 
                    { perms: "email" } 
             ); 
 } 

login() function calls the Facebook SDK’s login function FB.login(). Facebook’s FB.login() 
has two parameters. The first is the callback JavaScript function and the second is the 
JSON object, which is used to specify permissions. We are passing 
‘function(response){…}’ and ‘{ perms: "email" }’ into FB.login(). Facebook’s FB.login() 
prompts the user to login. Upon successful login, it calls the callback JavaScript 
function. The callback function gets the ‘response’ object to identify the login status. 
‘perms’ is used to specify the user permission. You can find more detail about the 
Facebook login API and user permissions from the Facebook developer site at 
http://developers.facebook.com/docs/reference/api/permissions. 

Next, we will see the code snippet that is used to get the friend list. To do so, we will 
create a JavaScript function getFriendList(). 

function getFriendList(){ 
    FB.api('/me/friends', function(response) { 
           if (response.error) { 
    alert(JSON.stringify(response.error)); 
           } else { 
               var friends = document.getElementById('friends'); 
               response.data.forEach(function(item) { 
               var d = document.createElement('div'); 
               d.innerHTML = item.name; 
               data.appendChild(d); 
                                   }); 
           } 
}); 
} 

In the getFriendList() function, a call to Facebook API FB.api() is made. The first 
parameter is the path of the graph API provided by Facebook. In our example, 
‘/me/friends’ is used to get the friend list of the logged-in user. The second parameter is 
the JavaScript callback function that receives a response. The following operations are 
performed in the callback method: 

1. Check the response status whether its successful response using ‘response.error’ 

2. If it’s a successful response, the result data available in response is iterated. 

3. ‘div’ element is created for each item and appended to‘friends’ div defined in 
index.html 

Next, we will modify the login() function to call getFriendList() on a successful login. 

http://developers.facebook.com/docs/reference/api/permissions


CHAPTER 8:  Using PhoneGap Plug-Ins 277 

function login() { 
FB.login( 
function(response) { 
        if (response.session) { 
            getFriendList(); 
        } else { 
            alert('not logged in'); 
        } 
              }, 
{ perms: "email" } 
    ); 
} 

Here we are checking the successful response of the ‘response.session’ value. If it is 
valid, we are calling the getFriendList() function. 
Now the last step is to use the JavaScript functions with the PhoneGap’s initialization 
event.  

document.addEventListener('deviceready',  
function() { 
    try { 
        /* Initialize the Facebook plug-in. Note that you need to replace the  
        <app_id>by your Facebook’s app_id */ 
        FB.init({ appId: "<app_id>", nativeInterface:PG.FB }); 
        document.getElementById('data').innerHTML = ""; 
        login(); 
    } catch (e) { 
         alert(e); 
    } 
}, false); 

Finally, to run the application, you need to put your Facebook’s app_secret key into the 
AndroidManifest.xml file as shown in Figure 8–6. 

 

Figure 8–6. Facebook app_secret key  

You can get the Facebook app_id and app_secret from the Facebook developer site, 
https://developers.facebook.com/apps. 

https://developers.facebook.com/apps


CHAPTER 8:  Using PhoneGap Plug-Ins 278 

Run the FacebookPluginExample as an Android application on the simulator. The first 
screen will show the Facebook login page as shown in Figure 8–7. 

Figure 8–7. Facebook login screen 

After successful login, you will see your friend list as shown in Figure 8–8. 



CHAPTER 8:  Using PhoneGap Plug-Ins 279 

 
Figure 8–8. Facebook friend list 

You can use jQueryMobile or Sencha Touch, along with the Facebook PhoneGap plug-
in, to develop an attractive Facebook application. Also, you can call other Facebook 
graph API by using the Facebook plug-in to add more features.  

C2DM Plug-In for Mobile Push Notification to 
PhoneGap  
Push notification or server push is the latest way to send data from the server to the 
client. Have you noticed how Gmail receives and displays the new email that arrives in 
your inbox? You don’t need to refresh the browser or click some refresh button to send 
request and receive latest data from the server.  

In the recent past, polling was a popular technique to receive notification. The polling 
technique sends periodic requests to the server and refreshes the UI with the response 
received. You can think of it as a background process that sends requests at certain 
predefined intervals and receives the update or notification from the server. There are 
many known shortcomings to this approach. The major drawback of the polling 
approach is identifying the appropriate intervals to send the requests. With shorter 



CHAPTER 8:  Using PhoneGap Plug-Ins 280 

intervals, there might be unnecessary requests and response trips that result in a loss of 
bandwidth and server resources. A larger interval might beat the purpose of polling 
because there might be a delay in receiving notification and it would no longer serve the 
purpose for which it was sent. If no new data is available, this approach consumes the 
battery of a mobile phone. 

A server push allows the server to send the notification or update to the client without 
waiting for a request. In the push technique, the client doesn’t have any background 
process to make the periodic request. At any point the server has an update, it can push 
the update to all registered clients. If the client is a mobile application, this technique is 
called a mobile push. 

Your PhoneGap application can also leverage the mobile push technique through 
PhoneGap plug-in. Let’s create a small PhoneGap application for an Android platform to 
receive push notifications from a C2DM service. 

Setting Environment for Android  
First, we will need to setup the PhoneGap project for Android. Refer to Chapter 2 to 
setup your project for Android. An Android project configuration is shown in Figure 8–9. 



CHAPTER 8:  Using PhoneGap Plug-Ins 281 

 

Figure 8–9. Eclipse Android project configuration 

We will use an Android Cloud to Device Messaging (C2DM) framework for push 
notification. You can read more about C2DM service at 
http://code.google.com/android/c2dm/#intro.  

Download the C2DM PhoneGap plug-in from http://github.com/awysocki/C2DM-
PhoneGap/downloads. The C2DM-PhoneGap plug-in is a zip file. Unzip it in your favorite 
folder. The folder structure should look similar to the listing in Figure 8–10. 

http://code.google.com/android/c2dm/#intro
http://github.com/awysocki/C2DM-PhoneGap/downloads
http://github.com/awysocki/C2DM-PhoneGap/downloads
http://github.com/awysocki/C2DM-PhoneGap/downloads


CHAPTER 8:  Using PhoneGap Plug-Ins 282 

 

Figure 8–10. C2DM-Plugin folder structure 

Next you will need to perform the following installation steps: 

1. Register C2DMPlug-in  

Add the following XML element as a child of the "plugins" element in the 
plugins.xml file as shown in Figure 8–11. You may need to create an xml folder 
under the ‘res’ folder and copy plugins.xml from the PhoneGap Android sample 
application. 

<plugin name="C2DMPlugin" value="com.plugin.C2DM.C2DMPlugin" /> 

 

Figure 8–11. Plug-in registration  

2. Include the native part of the plug-in into the project 



CHAPTER 8:  Using PhoneGap Plug-Ins 283 

Copy the src folder from the C2DM-plug-in folder as shown in Figure 8–12 and 
paste it into the root of our PhoneGap application, i.e., 
“MobilePushPluginExample”. 

 

Figure 8–12. C2DM-Plug-in native part 

3. Include the JavaScript part of the plug-in into the project 

Copy the following files from the C2DM-plug-in folder as shown in Figure 8–13 
and paste them into the assets folder of our application. 

  C2DMPlugin.js 

  jquery_1.5.2.min.js 

  PG_C2DM_script.js 

  index.html   

Note that, even though index.html is not part of the plug-in, we are using it in our 
project to save time to create and include js files. 

 

Figure 8–13. JavaScript part of plug-in 

Note that we are not including the Phonegap.0.9.5.js file, as we are using 
PhoneGap-1.1.0. We will do the required modification for PhoneGap-1.1.0. 

4. Finally we need to add that the required permissions in AndroidManifest.xml file 
for C2DM.Manifest file should be similar to the following listing: 



CHAPTER 8:  Using PhoneGap Plug-Ins 284 

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
           package="org.examples.mobilepushplugin.example" android:versionCode="1" 
           android:versionName="1.0"> 
 
           <uses-permission android:name="android.permission.CAMERA" /> 
           <uses-permission android:name="android.permission.VIBRATE" /> 
           <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" /> 
           <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 
           <uses-permission 
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" /> 
           <uses-permission android:name="android.permission.READ_PHONE_STATE" /> 
           <uses-permission android:name="android.permission.INTERNET" /> 
           <uses-permission android:name="android.permission.RECEIVE_SMS" /> 
           <uses-permission android:name="android.permission.RECORD_AUDIO" /> 
           <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" /> 
           <uses-permission android:name="android.permission.READ_CONTACTS" /> 
           <uses-permission android:name="android.permission.WRITE_CONTACTS" /> 
           <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 
           <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> 
 
           <!-- START:C2DM messaging stuff --> 
           <uses-library android:name="com.google.android.c2dm.C2DMessaging" /> 
 
           <permission 
android:name="org.examples.mobilepushplugin.example.permission.C2D_MESSAGE" 
                      android:protectionLevel="signature" /> 
           <uses-permission 
android:name="org.examples.mobilepushplugin.example.permission.C2D_MESSAGE" /> 
 
           <uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" /> 
 
           <uses-permission android:name="android.permission.WAKE_LOCK" /> 
           <!-- END:C2DM messaging stuff --> 
           <uses-sdkandroid:minSdkVersion="8" /> 
 
           <application android:icon="@drawable/icon" android:label="@string/app_name"> 
                      <activity android:name=".MobilePushPluginExampleActivity" 
                                 android:label="@string/app_name"> 
                                 <intent-filter> 
                                            <action 
android:name="android.intent.action.MAIN" /> 
                                            <category 
android:name="android.intent.category.LAUNCHER" /> 
                                 </intent-filter> 
                      </activity> 
                      <!-- START:C2DM messaging stuff --> 
                      <service android:name=".C2DMReceiver" /> 
 
                      <!-- Only C2DM servers can send messages for the app. If 
permission is  
                                 not set - any other app can generate it --> 
                      <receiver 
android:name="com.google.android.c2dm.C2DMBroadcastReceiver" 
                                 
android:permission="com.google.android.c2dm.permission.SEND"> 
                                 <!-- Receive the actual message --> 

http://schemas.android.com/apk/res/android


CHAPTER 8:  Using PhoneGap Plug-Ins 285 

                                 <intent-filter> 
                                            <action 
android:name="com.google.android.c2dm.intent.RECEIVE" /> 
                                            <category 
android:name="org.examples.mobilepushplugin.example" /> 
                                 </intent-filter> 
                                 <!-- Receive the registration id --> 
                                 <intent-filter> 
                                            <action 
android:name="com.google.android.c2dm.intent.REGISTRATION" /> 
                                            <category 
android:name="org.examples.mobilepushplugin.example" /> 
                                 </intent-filter> 
                      </receiver> 
                      <!-- END:C2DM messaging stuff --> 
           </application> 
            
</manifest> 

Once you are done with the previous three steps, you will see the 
MobilePushPluginExample project structure as shown in Figure 8–14. 

 

Figure 8–14. MobilePushPluginExample project structure 



CHAPTER 8:  Using PhoneGap Plug-Ins 286 

Modifying Plug-In for PhoneGap-1.1.0  
At the time of the writing this book, a C2DM plug-in is based on the PhoneGap version 
0.9.5. To use it with PhoneGap-1.1.0, we have to complete a couple of modifications. 

1. C2DMPlugin.jsfiles. 

Open C2DMPlugin.js and go to following function definition: 

PhoneGap.addConstructor(function() { 
      //Register the javascript plugin with PhoneGap 
      PhoneGap.addPlugin('C2DM', new C2DM()); 
       
      //Register the native class of plugin with PhoneGap 
      PluginManager.addService("C2DMPlugin", 
"com.plugin.C2DM.C2DMPlugin"); 
       
      //alert( "added Service C2DMPlugin"); 

}); 

Remove the following line: 

//Register the native class of plugin with PhoneGap 
PluginManager.addService("C2DMPlugin","com.plugin.C2DM.C2DMPlugin"); 

In PhoneGap-1.1.0, the plug-in has to be registered in the plugin.xml file. 
PluginManager is no longer available in the PhoneGap-1.1.0. We have already 
registered the C2DM-plugin in the plugin.xml file.  

Now the modified function looks as follows: 

PhoneGap.addConstructor(function() { 
      //Register the javascript plugin with PhoneGap 
      PhoneGap.addPlugin('C2DM', new C2DM()); 
             
      //alert( "added Service C2DMPlugin"); 
}); 

2. Move C2DMReceiver.java 

We have to move C2DMReceiver.java from com.phonegap.c2dm package to our 
application project, i.e., org.examples.mobilepushplugin.example. To do so, drag 
the C2DMReceiver.java from com.phonegap.c2dm package and drop it into 
org.examples.mobilepushplugin.example, as shown in Figure 8–15. 



CHAPTER 8:  Using PhoneGap Plug-Ins 287 

 

Figure 8–15. C2DMReceiver.java location 

We also have to modify the PhoneGap version in the index.html file, as we copied it from 
the plug-in folder. To do so, replace phonegap.0.9.5.js by phonegap-1.1.0 in the script 
tag.  

Signup for C2DM Service  
Go to http://code.google.com/android/c2dm/signup and fill in the form to register a 
sender. You have to mention the package name of the Android application and the 
sender account email along with other information. For our application, the package 
name should be “org.examples.mobilepushplugin.example” and we should use a 
Google account as a sender account email. We have to use the sender account email id 
in our PhoneGap application to register the device for receiving notification.  

Using C2DM Sender Account in PhoneGap  
The C2DM plug-in comes with ready-to-use PhoneGap deviceready implementation. We 
have to use our C2DM sender account to register the device for notification.  

Open the PG_C2DM_script.js file and go to the PhoneGap deviceready event 
implementation. Modify the “your_c2dm_account@gmail.com” to our C2DM sender 
account as shown in Figure 8–16.  

 

Figure 8–16. Registering application with C2DM sender account 

http://code.google.com/android/c2dm/signup
mailto:your_c2dm_account@gmail.com%E2%80%9D


CHAPTER 8:  Using PhoneGap Plug-Ins 288 

Android Simulator for C2DM-Enabled Service 
You need to use an AVD (Android Virtual Device) with target “Google APIs(Google Inc.) -
API Level 8” to run the C2DM-enabled Android application. Please refer to Chapter 2 to 
create new AVD from “Android SDK and AVD manager”.  

You also have to add your Google account in the simulator. To do so, run the simulator 
and open the setting as shown in Figure 8–17. 

Figure 8–17. Android setting option 

Go to “Account & Sync” and click on Add Account. You have to enter your Google 
account Id and password. Note that it’s not the C2DM sender account. It’s your Google 
account that you use to retrieve your email and other stuff from your Android phone. 

Now you are all set to test the C2DM plug-in. Run the MobilePushPluginExample as an 
Android application. Make sure the target simulator is Google API’s simulator. You will 
see the screen shown in Figure 8–18 on the simulator. 



CHAPTER 8:  Using PhoneGap Plug-Ins 289 

 
Figure 8–18. MobilePushPluginExampleOutput on simulator 

To understand the output appearing on the screen, we will go through the 
devicereadyevent callback function in the PG_C2DM_script.js file.  

Here, the window.plugins.C2DM.register() is calling the plug-in’s method to register the 
device or simulator into C2DM service. On successful registration, the C2DM server 
returns the Registration Id (REGID). This REGID is used to push the notification 
message.  But wait, our device is not supposed to push the message. It’s a notification 
receiver right? Here, we have to understand the role of the application server between 
our PhoneGap application running on the mobile and the C2DM service hosted on 
Google. 

Let’s use an example to understand how C2DM push works. Assume that 
MobilePushPluginExample is installed on multiple Android phones. Now, each phone 
receives the REGID from a C2DM service. Essentially, each REGID is unique. Before 
sending the REGID, the C2DM service stores all of the required information about the 
device and the network for further use in sending notification. The C2DM is the one that 
sends the notification to devices. Now, it’s the responsibility of the intermediate 



CHAPTER 8:  Using PhoneGap Plug-Ins 290 

application server to identify the updated data and ask C2DM to send notification to an 
actual mobile. To do so, our server has to know the REGIDs.   

Usually, a C2DM-enabled mobile application sends the REGID to our server. The server 
stores the REGIDs for all mobiles that are running this application. Once the server 
decides to send the notification, it uses the REGID to ask the C2DM service to do so. 

We received the REGID from the C2DM service, as can be seen in Figure 8–18. Now, 
you can send the push notification by using this REGID. You can use Java servlet or php 
to create a server side code to send the message. To learn more about how to send 
push notification go to the Android C2DM site: 
http://code.google.com/android/c2dm/index.html#push. 

In addition, there is a command line tool available to simulate the server. Go to 
http://curl.haxx.se/download.html and download the platform specific curl tool. There 
are two steps to sending the notification: 

1. Get the authentication key 

Run the following command on the console: 

D:\cURL>curl https://www.google.com/accounts/ClientLogin -d Email=<C2DM Sender Account>-
d "Passwd=<password>" -d accountType=GOOGLE -d source=org.examples. 
mobilepushplugin.example -d service=ac2dm –k 

You have to replace <C2DM Sender Account> and <password> with your 
registered Google account and password. 

After running the above command, you will get an authentication key similar to 
this listing: 

Auth=DQAAAMEAAABrqkqH2KYjDfCD93tndEF7n81lKgf5vczCwELPSXgW6xm_9EACDu0lsJFGud7fNBI 
HcRV1Q6zUmLwxFFJqosdn1nYYmGah0yu7fpT8vfjNLAVx8hs5aymz9OULg-pzKOyWWa1-6BDci1TBCoP 
2q6ZwJqEjzH6rArHSlD9DhruEKBrogjfBAWyeIm2fs9THvEkilSMO2Q8utoqyfG0id9keCQad5QPV7oO 
vNSe6urKOV4ZWEKxG7KAlXCsjW18u_m2Az6jj7DlUoVD89MeLvX0W 

 

2. Send the message to your application running on a simulator 

To send the notification, we will use the authentication key and REGID by using 
the following curl command:  

S:\cURL>curl --header "Authorization: GoogleLoginauth=<Auth Key>" 
"https://android.apis.google.com/c2dm/send" -d registration_id=<REGID>-d 
“data.message=This is a test message" -d "data.msgcnt=1" -d collapse_key=0 –k 

 

Replace <Auth Key> with the authentication key received from step 1 and REGID 
received by the application on the simulator. We are sending “This is a test 
message” text as a push notification to the simulator.  

We will see the notification received by our application on the simulator as shown in 
Figure 8–19. 

http://code.google.com/android/c2dm/index.html#push
http://curl.haxx.se/download.html
https://www.google.com/accounts/ClientLogin
https://android.apis.google.com/c2dm/send


CHAPTER 8:  Using PhoneGap Plug-Ins 291 

 

Figure 8–19. Push message on simulator 

If you want to leverage the push notification service for iPhone-PhoneGap application, 
you can use the PhoneGap plug-in available at: https://github.com/urbanairship/ios-
phonegap-plugin. It uses an Urban Airship service for push mobile notification.  

Conclusion  
PhoneGap plug-ins dynamically extend the PhoneGap application to include out of 
bound features. A PhoneGap application can use approximately any native features by 
using plug-ins.  

Plug-ins are good friends of PhoneGap, but the community support for plug-ins is still at 
an early stage. At the same time, the organization behind PhoneGap is making popular 
plug-ins official. However, plug-in support is still far from perfect. One example of this is 
trying to write a Facebook Connect application for the iPhone. When we tried to use this 
plug-in with PhoneGap 1.1.0, we found that it did not work. We also found that including 
this plug-in was very cumbersome. Our guess is that for upcoming releases of 
PhoneGap, the support for Plug-ins will improve and they will be much easier to bundle 
and use in a PhoneGap Application. 

https://github.com/urbanairship/ios-phonegap-plugin
https://github.com/urbanairship/ios-phonegap-plugin
https://github.com/urbanairship/ios-phonegap-plugin


CHAPTER 8:  Using PhoneGap Plug-Ins 292 

In this chapter, we only talked about the Android PhoneGap plug-in for Facebook 
Connect and Cloud Push. We added pointers about the iPhone plug-ins for the same 
reason, which need to improve before it can be easily and effectively used. 



 293 

   Chapter 

Extending PhoneGap 
Thus far, we have seen that PhoneGap has two parts 

1. The JavaScript part that we call from our PhoneGap applications 

2. A native part we include in our PhoneGap project to expose native phone 
features. 

These two parts work for scenarios where we want to access common phone features, 
including the following: 

1. Camera 

2. Accelerometer 

3. File system 

4. Geo location 

5. Storage services 

However, we often need to go beyond these features. 

JavaScript Limitations 
We have seen that JavaScript has improved in performance in the last decade; it has 
become 100 times faster than it was five years ago. However, even when this is true, 
sometimes applications need to do heavy lighting, do things in the background, or do 
complex operations. These are best done in native code for performance reasons. 

For example, if we want to download a multipart file, it involves downloading different 
parts of the file parallel and then checking its checksum. This part is best done in Java 
for Android and in Objective-C for iPhone. 

9 



CHAPTER 9:  Extending PhoneGap 294 

Solution 
If you recall from Chapter 1, we said PhoneGap is a bridge between the JavaScript 
world and the native world. The entire PhoneGap framework is based on plug-in 
architecture. This means PhoneGap provides a mechanism by which we map JavaScript 
functions (and arguments, return types, and callbacks) to native code.  

We can add a native code to the PhoneGap application and expose the code easily 
using JavaScript. For this, we need two parts 

1. Native code that does heavy lifting 

2. JavaScript code that exposes this native code 

Both are glued by the PhoneGap framework. 

Architecture 
The PhoneGap architecture is shown in Figure 9–1. As we observed, PhoneGap has two 
parts: the PhoneGap JavaScript engine and the PhoneGap native engine. We add the 
native code as a plug-in to the PhoneGap native engine and add JavaScript code as a 
plug-in to the PhoneGap JavaScript engine. 

 
Figure 9–1. PhoneGap architecture 

Scope 
This chapter focuses on how you can extend PhoneGap functionality to expose more of 
your native code. 

However, please note that even if you write PhoneGap plug-ins, the only way to inject 
the plug-in is to add the plug-in source to your project. There is currently no way to build 



CHAPTER 9:  Extending PhoneGap 295 

a plug-in into a package and add the package to your PhoneGap project. This stops you 
using your custom plug-ins when you are using PhoneGap build. 

For this chapter, let’s keep the nature of the plug-in very simple. We call this a 
helloworld plug-in. We pass a name to the plug-in, and we get back a string “Hello 
<name>! The time now is <Current Time>”. 

This way, we focus mainly on the bridge aspect of the plug-in. 

Extending PhoneGap for Android 
To begin, we create the plug-in as part of an Android PhoneGap application and then 
extract the plug-in out. This is required because 

1. The plug-in requires PhoneGap jar. 

2. We need to test the plug-in. 

A plug-in has two parts, one on each side of the PhoneGap framework (bridge). We have 
a native part (a class-extending plug-in) and a JavaScript file using PhoneGap’s 
JavaScript framework. 

Before we begin, let’s create an Android PhoneGap project (see Figure 9–2). This is 
shown in Chapter 2. 



CHAPTER 9:  Extending PhoneGap 296 

 

Figure 9–2. New Android project 

Then we need to configure the base Android project for PhoneGap.  

1. Change the MainScreen class to extend DroidGap. 

2. Add PhoneGap jar to classpath.  

3. Add the PhoneGap JavaScript library to the assets/www folder. 

The Android project looks as shown in Figure 9–3. 



CHAPTER 9:  Extending PhoneGap 297 

 

Figure 9–3. Android project structure 

Declaring the Native Part of the Plug-In 
Now we add an appropriate package for the plug-in, say 
“org.examples.phonegap..plugins.simpleplugin.” Then we declare a class named 
Simple Plug-in, which extends PhoneGap’s com.phonegap.api.Plugin class, as shown in 
Figure 9–4. 



CHAPTER 9:  Extending PhoneGap 298 

Figure 9–4. Declaring the native part of the plug-in 

Once you click on the “Finish” button, you would get the code shown below 

package org.examples.phonegap.plugins.simpleplugin; 

import org.json.JSONArray; 

import com.phonegap.api.Plugin; 
import com.phonegap.api.PluginResult; 

/** 
 * @author rohit 
 * 
 */ 
public class SimplePlugin extends Plugin { 

 /* (non-Javadoc) 



CHAPTER 9:  Extending PhoneGap 299 

  * @see com.phonegap.api.Plugin#execute(java.lang.String, org.json.JSONArray, 
java.lang.String) 
  */ 
 @Override 
 public PluginResult execute(String action, JSONArray data, String callbackId) { 
  // TODO Auto-generated method stub 
  return null; 
 } 
 
} 

 

When we extend the com.phonegap.api.Plugin class, we have to implement the execute 
method. The arguments of the execute method are  

1. Action: The action to be performed. For example, for a file-based plug-in, could 
be open, close, read, write, etc. 

2. Data: The data passed from the JavaScript side of the plug-in. This is the data 
passed from the PhoneGap’s JavaScript app to the native code. For example, for 
a file-based plug-in, could be filename, data, etc. 

3. CallbackId: This is used when calling back the JavaScript function. 

The return type of the execute method is PluginResult. PluginResult typically takes a 
Status enum and one other argument depicting the cause or more information.  

For example, new PluginResult(Status.OK); 

Status enum has many values; all are depicted below (the names are self-explanatory) 

1. NO_RESULT 

2. OK 

3. CLASS_NOT_FOUND_EXCEPTION 

4. ILLEGAL_ACCESS_EXCEPTION 

5. INSTANTIATION_EXCEPTION 

6. MALFORMED_URL_EXCEPTION 

7. IO_EXCEPTION 

8. INVALID_ACTION 

9. JSON_EXCEPTION 

10. ERROR 

Following is the implementation of the hello plug-in, which takes a name and returns the 
“Hello <name>! The time is <time>” text. 



CHAPTER 9:  Extending PhoneGap 300 

package org.examples.phonegap.plugins.simpleplugin; 
 
import java.util.Date; 
 
import org.json.JSONArray; 
import org.json.JSONException; 
 
import com.phonegap.api.Plugin; 
import com.phonegap.api.PluginResult; 
import com.phonegap.api.PluginResult.Status; 
 
/** 
 * @author rohit 
 *  
 */ 
public class SimplePlugin extends Plugin { 
 
 public static String ACTION_HELLO="hello"; 
  
 /* 
  * (non-Javadoc) 
  *  
  * @see com.phonegap.api.Plugin#execute(java.lang.String, 
  * org.json.JSONArray, java.lang.String) 
  */ 
 @Override 
 public PluginResult execute(String action, JSONArray data, String callbackId) { 
  PluginResult pluginResult = null; 
  if (ACTION_HELLO.equals(action)) { 
 
   String name = null; 
   try { 
    name = data.getString(0); 
 
    String result = "Hello " + name + "! The time is " 
      + (new Date()).toString(); 
 
    pluginResult = new PluginResult(Status.OK, result); 
 
    return pluginResult; 
   } catch (JSONException e) { 
    pluginResult = new PluginResult(Status.JSON_EXCEPTION, 
"missing argument name"); 
   } 
  } else { 
   pluginResult = new PluginResult(Status.INVALID_ACTION, 
     "Allowed actions is hello"); 
  } 
  return pluginResult; 
 } 
  
} 

You can see in the above code that we explicitly check for an action before we process 
the request. If the action is not what is handled by the plug-in, we return 
Status.INVALID_ACTION. The second check is for the argument. If we get any JSON 
exception while fetching the first argument as a string, we return Status.INVALID_JSON.  



CHAPTER 9:  Extending PhoneGap 301 

When the action and the argument are correct, we create a string “Hello <name>! The 
time is <time>” and return it with Status.OK. 

Please note, you do not have to spawn any threads from this method. Your entire 
method can be synchronous. This will not hand the JavaScript plug-in call calling this 
code. This is internally handled by PhoneGap, and that’s why we have success and 
failure callback in JavaScript (which you will see in the following section). 

Declaring the JavaScript Part of the Plug-In 
The JavaScript part of this plug-in is declared in a file named simpleplugin.js. There are 
three steps to declare the JavaScript part of plug-in: 

1. Plug-in Registration 

In the JavaScript part of the PhoneGap plug-in, things begin from the call to add 
the plug-in in PhoneGap. 

PhoneGap.addConstructor(function() { 
  // Register the Javascript plug-in with PhoneGap 
  PhoneGap.addPlugin('SimplePlugin', new SimplePlugin()); 
}); 

The plug-in is registered in the /res/xml/plugins.xml file. Add the following XML 
element as a child of the "plugins" element in the plugins.xml file: 

<plugin name="SimplePlugin" 
value="org.examples.phonegap.plugins.simpleplugin.SimplePlugin" /> 

Note: here we are doing two things 

a. Registering a JavaScript object as a plug-in with the name 
“SimplePlugin.” 

b. Registering a PhoneGap Java class as a service named 
“SimplePlugin.” You can think of this as an alias for the class 
name “org.examples.phonegap.plugins.simpleplugin.Simple 
Plugin.” 

2. Create the JavaScript object SimplePlugin. 

This is done by declaring a JavaScript function. 

var SimplePlugin = function() { 
} 

3. Add a plug-in function. 

In this step, we will add the plug-in function, which our JavaScript will call. In the 
following function, we are actually delegating the call to the native PhoneGap 
bridge asking it to actually call out the “SimplePlugin” service, which is the 
“org.examples.phonegap.plugins.simpleplugin.SimplePlugin” class. 
Furthermore, we are registering two callbacks: a callback if the call is successful 
and one when the call fails. Then we are declaring the action we want to invoke. 



CHAPTER 9:  Extending PhoneGap 302 

You can recall, we have code in our plug-in class to handle the “hello” service. 
Last, remember our plug-in class’s execute method takes an argument JSONArray; 
here, we are passing it as [name]. 

SimplePlugin.prototype.hello = function(name, successCallback, failureCallback) { 
 
 PhoneGap.exec( 
successCallback, // Success Callback 
failureCallback, // Failure Callback 
‘SimplePlugin’,  // Registered plug-in name 
‘hello’, // Action  
[name] //Argument passed in  
); 
     }; 

The complete JavaScript file simpleplugin.js is as follows: 

/** 
 *  
 * @return Instance of SimplePlugin 
 */ 
var SimplePlugin = function() { 
 
} 
 
/** 
 * @param name 
 *            The name passed in 
 * @paramsuccessCallback 
 *            The callback that will be called when simple plugin runs  
 *            successfully 
 * @paramfailureCallback 
 *            The callback that will be called when simple plugin 
 *            fails 
 */ 
SimplePlugin.prototype.hello = function(name, successCallback, failureCallback) { 
  PhoneGap.exec(successCallback, // Success Callback 
               failureCallback, // Failure Callback 
               'SimplePlugin',  // Registered Plug-in name 
               'hello',     // Action 
               [ name ]);        // Argument passed in 
}; 
 
/** 
 * <ul> 
 * <li>Register the Simple Listing Javascript plugin.</li> 
* </ul> 
 */ 
PhoneGap.addConstructor(function() { 
 // Register the Javascript plug-in with PhoneGap 
 PhoneGap.addPlugin('SimplePlugin', new SimplePlugin()); 
}); 



CHAPTER 9:  Extending PhoneGap 303 

Calling the Plug-In 
Time to test our plug-in. To do so, we need the following: 

1. HTML file 

2. PhoneGap js file 

3. Plug-in js file 

4. Plug-in Java file 

Your Android project should look as shown in Figure 9–5. 

 

Figure 9–5. Android PhoneGap plug-in project structure 

Your index.html file should look as follows: 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title>PhoneGap</title> 
        <script type="text/javascript" charset="utf-8" src="phonegap-1.1.0.js"></script> 
        script type="text/javascript" charset="utf-8" src="simpleplugin.js"></script> 
        <script type="text/javascript" charset="utf-8"> 
        document.addEventListener('deviceready', function() { 
     var btn = document.getElementById("hello"); 
     var textbox = document.getElementById("name"); 
     var output = document.getElementById("output"); 



CHAPTER 9:  Extending PhoneGap 304 

     btn.addEventListener('click', function() { 
 
         var text = textbox.value; 
 
         window.plugins.SimplePlugin.hello(text, 
         //success callback 
 
 
         function(result) { 
             output.innerHTML = result; 
         } 
         //failure callback,  
         , function(err) { 
             output.innerHTML = "Failed to invoke simple plugin"; 
         }); 
     }); 
 
 }, true); 
        </script> 
    </head> 
     
    <body> 
        <h1> 
            Simple Plugin Demo 
        </h1> 
        <table border="1"> 
            <tr> 
                <td> 
                    Enter Name 
                </td> 
                <td> 
                    <input type="text" name="name" id="name"> 
                    </input> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <b> 
                        Output: 
                    </b> 
                </td> 
                <td> 
                    <div id="output"> 
                    </div> 
                </td> 
            </tr> 
            <tr> 
                <td colspan="2"> 
                    <button id="hello"> 
                        Say Hello 
                    </button> 
                </td> 
            </tr> 
        </table> 
    </body> 
 
</html> 



CHAPTER 9:  Extending PhoneGap 305 

Here you should notice that the plug-in is invoked as follows. We first pass the text 
containing the name, and then we register a callback for success and one for failure. 

window.plugins.SimplePlugin.hello( 
    text,  
    //success callback 
    function (result) { 
        output.innerHTML = result; 
    }, 
    //failure callback 
    function (err) { 
        output.innerHTML = "Failed to invoke simple plugin"; 
    } 
); 

Finally, when we run this Android project, we see the following output as shown in 
Figure 9–6. 

 

Figure 9–6. PhoneGap plug-in output on Android 

Sharing the Android PhoneGap Plug-In 
As far as PhoneGap framework version 1.1.0 is concerned (the version at the time this 
book was written), there is no way to package and share your plug-in. 

The only way to share your plug-in is by 

1. Sharing the Java source file 



CHAPTER 9:  Extending PhoneGap 306 

2. Sharing the JavaScript source file 

3. Readme file telling how the plug-in is to be used 

PhoneGap plug-ins are typically uploaded at https://github.com/phonegap/phonegap-
plugins. If you wish to contribute your work, you can work with the PhoneGap team to 
add your plug-in in this repository. 

Extending PhoneGap for iPhone 
PhoneGap provides plug-ins for XCode for creating PhoneGap-based applications. At 
the time this book was written, PhoneGap moved from version 0.9.5 to 1.1.0. There are 
some changes in the iPhone-PhoneGap plug-in framework. This chapter focuses on 
1.1.0 plug-in development.  

Steps for installing the 1.1.0 XCode extension: 

1. Download PhoneGap 1.1.0 zip and unzip it. 

2. Go to the iOS folder and install PhoneGapInstaller.pkg. 

Once you have installed the 1.1.0 XCode plug-in for PhoneGap, create a PhoneGap-
based application from XCode as depicted in Figure 9–7 and Figure 9–8. 

 

Figure 9–7. Create a new iOS PhoneGap project 

https://github.com/phonegap/phonegap-plugins.If
https://github.com/phonegap/phonegap-plugins.If
https://github.com/phonegap/phonegap-plugins.If


CHAPTER 9:  Extending PhoneGap 307 

 

Figure 9–8. Create a new iOS PhoneGap project 

Follow the steps in Chapter 3 to add the www folder to the project. Now run the project 
and ensure that you are able to see the iPhone PhoneGap-based application. 

Declaring the Native Part of the Plug-In 
The native part of the plug-in for PhoneGap 1.1.0 needs to be added to the plug-ins folder. This is 
depicted in Figure 9–9.

 

Figure 9–9. iPhone plug-in native part 

Create an Objective-C class to the plug-ins folder. Let’s name the class SimplePlugin. 
SimplePlugin extends the PGPlugin. The SimplePlugin.h file looks as follows.  



CHAPTER 9:  Extending PhoneGap 308 

#import <Foundation/Foundation.h> 
#ifdef PHONEGAP_FRAMEWORK 
#import <PhoneGap/PGPlugin.h> 
#else 
#import "PGPlugin.h" 
#endif 

@interface SimplePlugin :PGPlugin { 

} 
/** 
 * Sets the idleTimerDisable property to true so that the idle timeout is disabled 
 */ 
- (void) hello:(NSMutableArray*)arguments withDict:(NSMutableDictionary*)options; 

@end 

Here we declare a function name “hello,” which has the following signature: 

- (void) hello:(NSMutableArray*)arguments withDict:(NSMutableDictionary*)options; 

This function does not return anything. Instead, it takes two arguments 

1. Arguments 

2. Options 

Any arguments to the plug-in or an input (in our case the name) is passed using the 
“arguments.” 

Now let’s implement the SimplePlugin’s hello function. In the first version, we will return 
a string “hello world” from the plug-in. In addition, we will explain how to gain access to 
the arguments passed and how to call success and failure callbacks. 

Note the plug-in is called from JavaScript as follows: 

window.plugins.SimplePlugin.hello( 
 “Bob”,  
//success callback 
function(result){ 
  alert(“plugin returned “+result); 
}, 
//failure callback,  
function(err){ 

alert(“got error when invoking the plugin”); 
 } 
); 

Following is the skeleton code of the plug-in method. 

The plug-in can gain access to the input argument, in our case “Bob,” extracting it from 
the arguments object. Note the first object in the arguments array is always the 
callbackId, used to call back the JavaScript callback functions. We can extract the 
actual arguments (in our case, only “Bob”) from index 1 onwards. 

NSString * name = [arguments objectAtIndex:1]; 



CHAPTER 9:  Extending PhoneGap 309 

If we have another argument, we would access it at index 2. 

Now let’s concentrate on how to invoke either the success or failure JavaScript callback 
functions. This begins with the declaration of the PluginResult object. This is followed by 
declaring two more objects, one for callbackId (which helps us call the callback 
functions) and another is a string, the JavaScript string, that we will embed in the HTML 
page to actually call the callbacks. 

NSString* jsString = nil; 
NSString* callbackId = [arguments objectAtIndex:0]; 

Now let’s go through the flow of code for success and failure conditions. This is shown 
in the code below. 

If things are going fine, we create a result object with status PGCommandStatus_OK. 
Then we go and create the jsString object from the result, passing the callbackId. 
Finally, we write the JavaScript to actually call the success callback by calling [self 
writeJavascript:jsString]. 

In the case of a failure, we create a PluginResult object with status other than 
PGCommandStatus_OK and create the jsString for error/failure callback. Finally, we 
invoke the error/failure callback using [self:writeJavascript:jsString]: 

PluginResult* result=nil; 
NSString* jsString=nil; 
NSString* callbackId=[argumentsobjectAtIndex:0]; 
     
     
if(success){ 
result=[PluginResultresultWithStatus:PGCommandStatus_OK]; 
   jsString=[resulttoSuccessCallbackString:callbackId]; 
} 
else{ 
result=[PluginResultresultWithStatus:PGCommandStatus_ILLEGAL_ACCESS_EXCEPTION]; 
   jsString=[resulttoErrorCallbackString:callbackId]; 
} 
     
[selfwriteJavascript:jsString]; 

 

If we want to pass data when we are calling the success or failure callback, we can do 
so by passing an addition argument when creating the PluginResult object. Here we 
pass a string by calling the resultWithStatus: messageAsString function of PluginResult. 

result = [PluginResultresultWithStatus:PGCommandStatus_OK messageAsString:@”Hello 
World”]; 

 The complete SimplePlugin looks as follows. Note we do not have negative paths here, 
and therefore, we create only jsString for the success callback. 

#import "SimplePlugin.h" 
 
 
@implementation SimplePlugin 
- (void) hello:(NSMutableArray*)arguments withDict:(NSMutableDictionary*)options 



CHAPTER 9:  Extending PhoneGap 310 

{ 
    PluginResult* result = nil; 
    NSString* jsString = nil; 
    NSString* callbackId = [arguments objectAtIndex:0]; 
    NSString* name = [arguments objectAtIndex:1]; 
    NSDate* date = [NSDate date]; 
    NSDateFormatter* formatter = [[[NSDateFormatteralloc] init] autorelease]; 
 
    //Set the required date format 
 
    [formatter setDateFormat:@"yyyy-MM-ddhh:mm:ss"]; 
 
    //Get the string date 
 
    NSString* dateStr = [formatterstringFromDate:date]; 
 
 
    NSString* returnStr = [NSStringstringWithFormat:@"Hello %@.The time is  %@!", 
name,dateStr]; 
 
    result = [PluginResultresultWithStatus:PGCommandStatus_OK 
messageAsString:returnStr]; 
    jsString = [result toSuccessCallbackString:callbackId ]; 
 
    [selfwriteJavascript:jsString]; 
} 
@end 

Just creating the .h and .m files for the plug-ins and putting the files in the plug-ins 
folder is not enough. We need to register our SimplePlugin with the PhoneGap 
framework. Adding an entry to the PhoneGap.plist file in the Supporting Files folder does 
this. 

This is shown in Figure 9–10. 



CHAPTER 9:  Extending PhoneGap 311 

 

Figure 9–10. Register PhoneGap plug-in 

Declaring the JavaScript Part of the Plug-In 
The JavaScript part of the iPhone plug-in is different from what you have seen for 
Android.  

This is done in mainly two steps 

1. Declare a JavaScript class named SimplePlugin and add a method, in our case 
“hello,” to it. In the hello function, we map the JavaScript arguments to the 
Objective Plugin class and method. 

2. The second part is to create a method install for SimplePlugin and register the 
JavaScript plug-in by calling PhoneGap.addConstructor(SimplePlugin.install); 

Let’s focus on the hello function of the plug-in for a while. Note that we are calling the 
PhoneGap.exec function inside the plug-in. 

Following the signature of PhoneGap.exec 

PhoneGap.exec(<<successCallback>>,<<failureCallback>>,<<Plugin Name>>,<<Action 
Name>>,<<Arguments Array>>) 

Note how we pass the first argument of the hello function “name” as part of the 
arguments array. The successCallback and errorCallback go as the first and second 
arguments to the PhoneGap.exec function. The plug-in class and the method name go 
as the third and fourth arguments. 

SimplePlugin.prototype.hello = function(name,successCallback, errorCallback) { 
    PhoneGap.exec( 
        successCallback,  
        errorCallback,  



CHAPTER 9:  Extending PhoneGap 312 

    "SimplePlugin",  
    "hello",  
    [name]); 
}; 

The complete code for the JavaScript part is shown below. 

if (!PhoneGap.hasResource("simpleplugin")) { 
    PhoneGap.addResource("simpleplugin"); 
 
    /** 
     * @returns instance of powermanagement 
     */ 
 
    function SimplePlugin() {}; 
 
    /** 
     *  
     * @param name Given the name, successCallBack gets the string "Hello <name>! The 
time is <time>." 
     * @paramsuccessCallback function to be called when the wake-lock was acquired 
successfully 
     * @paramerrorCallback function to be called when there was a problem with acquiring 
the wake-lock 
     */ 
    SimplePlugin.prototype.hello = function (name, successCallback, errorCallback) { 
        PhoneGap.exec(successCallback, errorCallback, "SimplePlugin", "hello", [name]); 
    }; 
 
 
 
    /** 
     * Register the plug-in with PhoneGap 
     */ 
    SimplePlugin.install = function () { 
        if (!window.plugins) window.plugins = {}; 
 
        window.plugins.SimplePlugin = new SimplePlugin(); 
 
        return window.plugins.SimplePlugin; 
    }; 
 
    PhoneGap.addConstructor(SimplePlugin.install); 
} 

Calling the Plug-In 
To test the plug-in, we will create a PhoneGap application and call the plug-in from 
there. This part is exactly the same as that for Android. 

You need to follow these steps  

1. Include the PhoneGap 1.1.0 js file.  

2. Include the simpleplugin.js file. 



CHAPTER 9:  Extending PhoneGap 313 

3. Register a button click to invoke the plug-in. 

4. Register success and failure callback to show the result. 

The complete source code of the index.html is as follows: 

<!DOCTYPE HTML> 
<html> 
     
    <head> 
        <title>PhoneGap</title> 
        <script type="text/javascript" charset="utf-8" src="phonegap-1.1.0.js"></script> 
        <script type="text/javascript" charset="utf-8" src="simpleplugin.js"></script> 
        <script type="text/javascript" charset="utf-8"> 
        document.addEventListener('deviceready', function() { 
     var btn = document.getElementById("hello"); 
     var textbox = document.getElementById("name"); 
     var output = document.getElementById("output"); 
 
     btn.addEventListener('click', function() { 
 
         var text = textbox.value; 
 
         window.plugins.SimplePlugin.hello(text, 
         //success callback 
 
 
         function(result) { 
             output.innerHTML = result; 
         } 
         //failure callback,  
         , function(err) { 
             output.innerHTML = "Failed to invoke simple plugin"; 
         }); 
     }); 
 
 }, true); 
 
 
 
  
        </script> 
    </head> 
     
    <body> 
        <h1> 
            Simple Plugin Demo 
        </h1> 
        <table border="1"> 
            <tr> 
                <td> 
                    Enter Name 
                </td> 
                <td> 
                    <input type="text" name="name" id="name"> 
                    </input> 
                </td> 
            </tr> 



CHAPTER 9:  Extending PhoneGap 314 

            <tr> 
                <td> 
                    <b> 
                        Output: 
                    </b> 
                </td> 
                <td> 
                    <div id="output"> 
                    </div> 
                </td> 
            </tr> 
            <tr> 
                <td colspan="2"> 
                    <button id="hello"> 
                        Say Hello 
                    </button> 
                </td> 
            </tr> 
        </table> 
    </body> 
 
</html> 

When you run the PhoneGap example, you will see the application as shown in Figure 9–11. 



CHAPTER 9:  Extending PhoneGap 315 

 

Figure 9–11. PhoneGap plug-in output 

Sharing the iPhone PhoneGap Plug-In 
You need to share the following files to share the plug-in. 

1. SimplePlugin.h 

2. SimplePlugin.m 

3. simpleplugin.js 

Add the above list of files to the Plugin documentation. Also document on how to invoke 
the plug-in from JavaScript. 



CHAPTER 9:  Extending PhoneGap 316 

Extending PhoneGap for BlackBerry 
Similar to Android, PhoneGap’s plug-in for BlackBerry has two parts, one on each side 
of the PhoneGap framework (bridge). We have a native part (a class-extending 
PhoneGap’s plug-in) and a JavaScript file using PhoneGap’s JavaScript framework. 

We assume you are using BlackBerry WebWorks SDK version greater than version 1.5. 

We assume that BlackBerry WebWorks SDK is installed on C:\BBWP, and we have Java 
1.6 SDK and Ant installed and in path. We also assume our development directory is 
D:\PhoneGap-Plugin, and we have PhoneGap SDK present in D:\PhoneGap-
plugin\PhoneGap-1.1.0 directory. Refer to Chapter 3 to recall the system requirement for 
BlackBerry PhoneGap development. 

The steps for creating and testing BlackBerry plug-in are as follows: 

1. Create the plug-in Java file and dump it inside PhoneGap SDK’s framework. 

2. Create the BlackBerry PhoneGap project to test the plug-in. 

3. Then compile the BlackBerry PhoneGap project to compile the plug-in Java, 
which you dumped inside PhoneGap SDK’s framework folder. If there is a 
compilation error, you need to delete the project you created in step 2, fix the 
Java file, and repeat from step 2. 

4. When the plug-in Java file compiles without an error, then you can dump the 
JavaScript plug-in file and code the HTML page to use the plug-in. 

Declaring the Native Part of the Plug-In 
The BlackBerry plug-in class is very similar to the Android plug-in class. The only 
difference is the BlackBerry plug-in class uses the PhoneGap 1.1.0 framework; 
therefore, there are a few differences. 

Following is the skeleton of the BlackBerry plug-in class: 

package com.phonegap.plugins; 
 
import com.phonegap.api.Plugin; 
import com.phonegap.api.PluginResult; 
 
 
import java.util.Date; 
import com.phonegap.json4j.JSONArray; 
 
public class HelloWorldPlugin extends Plugin { 
 
    private static final String ACTION_HELLO="hello"; 
  
    /** 
     * Executes the requested action and returns a PluginResult. 



CHAPTER 9:  Extending PhoneGap 317 

     * 
     * @param action     The action to execute. 
     * @paramcallbackIdThe callback ID to be invoked upon action completion. 
     * @paramargsJSONArry of arguments for the action. 
     * @return           A PluginResult object with a status and message. 
     */ 
    public PluginResult execute(String action, JSONArray data, String callbackId) { 
  return null; 
    } 
 
    /** 
     * Called when the plug-in is paused. 
     */ 
    public void onPause() { 
 
    } 
 
    /** 
     * Called when the plug-in is resumed. 
     */ 
    public void onResume() { 
 
    } 
 
    /** 
     * Called when the plug-in is destroyed. 
     */ 
    public void onDestroy() { 
 
    } 

} 

Note that we dump this plug-in class not in our project area but inside the PhoneGap 
SDK area. The screenshot in Figure 9–12 shows where we copy this plug-in class. You 
may have to create the plug-ins folder. 



CHAPTER 9:  Extending PhoneGap 318 

Figure 9–12. Native part of the plug-in 

The main catch here is that you need a proper Java plug-in class in the above directory 
(which compiles), before you can proceed. We will guide you through this. 

The next step is to create the BlackBerry WebWorks PhoneGap project. 

$>D: 
$>cd d:\PhoneGap-plugin\phonegap-1.1.0 
$>ant create -Dproject.path=D:\PhoneGap-Plugin\BB-Plugin-Test 

This will show you the directory shown in Figure 9–13. 

Figure 9–13. PhoneGap BlackBerry project structure 

Now let’s ensure whether our plug-in class compiles. 

$>cd D:\PhoneGap-Plugin\BB-Plugin-Test 
$>ant build 



CHAPTER 9:  Extending PhoneGap 319 

If the above step shows some compilation errors in HelloWorldPlugin, you need to 

1. Fix those compilation errors. 

2. Delete the project at D:\PhoneGap-Plugin\BB-Plugin-Test. 

3. Recreate the project using Ant create -Dproject.path=D:\PhoneGap-Plugin\BB-
Plugin-Test. 

4. Check the compilation using “ant build.” 

Now that you have gone past this issue of compiling a blank Java plug-in class, let’s put 
some code in it. 

Following is the complete code for the plug-in class (this is quite similar to the Android 
plug-in). We expose an action name “hello,” and we expect an argument named 
“name.” Given that someone calls out the action “hello” with the name “Rohit,” we 
return back “Hello Rohit! The time is <current time>.” 

package com.phonegap.plugins; 
 
import com.phonegap.api.Plugin; 
import com.phonegap.api.PluginResult; 
 
 
import java.util.Date; 
import com.phonegap.json4j.JSONArray; 
 
public class HelloWorldPlugin extends Plugin { 
 
 private static final String ACTION_HELLO="hello"; 
  
    /** 
     * Executes the requested action and returns a PluginResult. 
     * 
     * @param action     The action to execute. 
     * @paramcallbackIdThe callback ID to be invoked upon action completion. 
     * @paramargsJSONArry of arguments for the action. 
     * @return           A PluginResult object with a status and message. 
     */ 
public PluginResult execute(String action, JSONArray data, String callbackId) { 
 PluginResult pluginResult=null; 
    if (ACTION_HELLO.equals(action)) { 
  
  String name; 
   try { 
    name = data.getString(0); 
    String result = "Hello " + name  
                                            + "! The time is " 
                     + (new Date()).toString(); 
    pluginResult =  
                                           new PluginResult(PluginResult.Status.OK, 
result); 
    returnpluginResult; 
   } catch (Exception e) { 
    pluginResult =  



CHAPTER 9:  Extending PhoneGap 320 

                                            new 
PluginResult(PluginResult.Status.JSONEXCEPTION,   
                                                "missing argument name"); 
   } 
  
     } else { 
   pluginResult =  
                              new PluginResult(PluginResult.Status.INVALIDACTION, 
                                         "Allowed actions is hello"); 
     } 
 return pluginResult; 
    } 
 
    /** 
     * Called when the plug-in is paused. 
     */ 
    public void onPause() { 
 
    } 
 
    /** 
     * Called when the plug-in is resumed. 
     */ 
    public void onResume() { 
 
    } 
 
    /** 
     * Called when the plug-in is destroyed. 
     */ 
    public void onDestroy() { 
 
    } 

} 

Note that you have to dump the modified HelloWorldPlugin.java again in PhoneGap’s 
framework as shown in Figure 9–13. You also have to delete and recreate the project 
using Ant create -Dproject.path=D:\PhoneGap-Plugin\BB-Plugin-Test to test the plug-in. 

Declaring the JavaScript Part of the Plug-In 
Again, the JavaScript part of the plug-in is very similar to the Android JavaScript part of 
the plug-in. In this case, we declare everything in a function declaration and call it as 
well. 

(function () { 
    var HelloWorld = function () { 
            return { 
                hello: function (message, successCallback, errorCallback) { 
                    PhoneGap.exec(successCallback, errorCallback, 'HelloWorldPlugin', 
'hello', [message]); 
                } 
            } 
        }; 



CHAPTER 9:  Extending PhoneGap 321 

 
    PhoneGap.addConstructor(function () { 
        // add the plug-in to window.plugins 
        PhoneGap.addPlugin('simpleplugin', new HelloWorld()); 
 
        // register the plug-in on the native side 
        phonegap.PluginManager.addPlugin('HelloWorldPlugin', 
'com.phonegap.plugins.HelloWorldPlugin'); 
    }); 
})(); 

The first step is to create a JavaScript object named HelloWorld and declare a function 
in it by the name of “hello.” This function internally calls a PhoneGap-registered service, 
which in turn calls the actual native class. 

Now that we have this object, which will be called from our HTML, we need to register 
this object as a PhoneGap JavaScript plug-in. We also need to map the service name 
“helloworldplugin” to the class “com.phonegap.plugins.HelloWorldPlugin.” All this is 
done inside the PhoneGap.addConstructor() call. 

We use PhoneGap.addPlugin() to map the “simpleplugin” name to the JavaScript plug-in 
object. This exposes the plug-in as windows.plugins.simpleplugin. 

Then we use phonegap.PluginManager.addPlugin() to map the Service name to the 
actual Java class. 

This completes the part where we create our JavaScript part of the plug-in. We will put 
this JavaScript inside the project’s www directory. 

Calling the Plug-In 
To call the plug-in, we modify the index.html file present in the project’s www directory. 

This is very similar to what we did earlier for Android and iPhone.  

Following is the code snippet used to invoke our plug-in: 

window.plugins.simpleplugin.hello( 
    document.getElementById("name").value, 
    //success callback 
    function (message) { 
        document.getElementById("output").innerHTML = message; 
    }, 
    //failure callback 
    function () { 
        log("Call to plugin failed"); 
    } 
); 

As we did earlier, we supply the name; in this case, the name comes from an input type 
text element. Then we provide a success callback and a failure callback. In the success 
callback, we set the return value in a div with id “output.” 

Here is the complete code for the index.html page: 



CHAPTER 9:  Extending PhoneGap 322 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd"> 
<html> 
     
    <head> 
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 
        <meta name="viewport" id="viewport" content="initial-scale=1.0,user-
scalable=no"> 
        <script src="json2.js" type="text/javascript"> 
        </script> 
        <script src="phonegap-1.1.0.min.js" type="text/javascript"> 
        </script> 
        <script src="helloworld.js" type="text/javascript"> 
        </script> 
        <script type="text/javascript"> 
        function log(message) { 
     document.getElementById("log").innerHTML = 
document.getElementById("log").innerHTML + "<br>" + message; 
 } 
 
 function onDeviceReady() { 
        } 
 
 function sayHello() { 
 
     window.plugins.simpleplugin.hello(document.getElementById("name").value, 
     //success callback 
 
 
     function(message) { 
         document.getElementById("output").innerHTML = message; 
     }, 
     //failure callback 
 
 
     function() { 
         log("Call to plugin failed"); 
     }); 
 
 
 } 
 
 // register PhoneGap event listeners when DOM content loaded 
 
 
 function init() { 
     document.addEventListener("deviceready", onDeviceReady, true); 
 } 
 
 
  
        </script> 
    </head> 
     
    <body onload="init()"> 
        <h1> 
            Simple Plugin Demo 

http://www.w3.org/TR/html4/loose.dtd


CHAPTER 9:  Extending PhoneGap 323 

        </h1> 
        <table border="1"> 
            <tr> 
                <td> 
                    Enter Name 
                </td> 
                <td> 
                    <input type="text" name="name" id="name"> 
                    </input> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <b> 
                        Output: 
                    </b> 
                </td> 
                <td> 
                    <div id="output"> 
                    </div> 
                </td> 
            </tr> 
            <tr> 
                <td colspan="2"> 
                    <button id="hello" onclick="sayHello();"> 
                        Say Hello 
                    </button> 
                </td> 
            </tr> 
        </table> 
        <div id="log"> 
            ... 
        </div> 
    </body> 
 
</html> 

The last step is to run the WebWorks BlackBerry project. Go to command prompt, go to 
the project directory, and run the following command: 

$>ant build load-simulator 

This will open the BlackBerry simulator, and you can see our application running inside 
it. Enter a value in the text box and hit the button. You will see the result shown in 
Figure 9–14. 



CHAPTER 9:  Extending PhoneGap 324 

 
Figure 9–14. PhoneGap plug-in output 

Sharing the BlackBerry PhoneGap Plug-In 
To share the plug-in, you need to publish two files 

1. helloworldplugin.java 

2. helloworld.js 

Add the above to the documentation on how to invoke the plug-in from JavaScript. 

Conclusion 

Although JavaScript is a fast and flexible language for developing a cross-mobile 
application, JavaScript has certain inherent limitations when implementing complex 
processing and background work. Sometimes it’s necessary to use native code to 
perform the heavy lifting.  

PhoneGap’s architecture allows us to extend its plug-in to introduce the native code for 
our PhoneGap application. 



 325 

Index 

■ A
addToFavorite() method, 175–177,  

188–189 
Android 

ADT Plugin for Eclipse installation, 
22–24 

application, GWT 
Build Path, 244 
device info, 247 
directory structure, 244, 245 
Eclipse classpath, 244 
GWT PhoneGap reference,  

247–248 
HelloWorld.java file, 245 
PhoneGap_GWT_Helloworld.html

, 245–247 
project creation, 241–243 

AVD creation, 24–27 
build environment 

private keystore creation,  
117–118 

private keystore upload, 118–120 
run PhoneGap build, 120 
self-signed keystore, 117 

download and install, 19 
installations, 20 

eclipse download, 20 
SDK, 20–22 

project 
Application Launch Type, 43–45 
applications setting, 39, 40 
creation, 28–30 
Dalvik Debug Monitoring Server 

(DDMS), 43 
DroidGap, 34, 35 
HelloWorld Application, 35–36 

JavaScript file, 31, 32 
native component installation, 30 
permissions modifications, 32–34 
phone’s settings, 39 
simulator deployment, 37–38 
unknown sources, 40 
USB debugging, 41–43 
XML directory, 30 

simulator 
Account & Sync, 288 
authentication key, 290 
C2DM plug-in, mobile push 

notification, 288–291 
deployment, 37–38 
devicereadyevent callback 

function, 289 
message sending, 290 
MobilePushPluginExampleOutput, 

289 
push message, 291 
REGID, 289–290 
setting option, 288 
window.plugins.C2DM.register(), 

289 
SDK (see SDK) 

Android Virtual Device (AVD), 24–27, 
288 

app.css source code, 191 
app.js source code 

addToFavorite () function, 188–189 
ensureTableExists() function, 188 
initiate Map page, 185–186 
initiateFavButton() function, 186–187 
initiateFavorites() function, 187–188 
isFav () function, 189 



Index 326 

place/business fetch details,  
184–185 

removeFromFavorite () function, 189 
search button handler bind, 190–191 

■ B 
BlackBerry 

build environment 
“add a key” option, 124 
BlackBerry keys, 123 
distribution channels, 124 
files upload, 124, 125 
requirements, 123 
sdk directory, 124 

local development environment 
Apache ant installation, 105 
bbwp.dir property, 107 
BlackBerry SDK installation, 105 
directory structure, 107 
index.html file, 108 
J2SDK download, 105 
PhoneGap application creation, 

105–106 
project.properties file, 107, 108 
signing keys, 109 
simulator, 108, 109 
software installtion, 104 

PhoneGap 
JavaScript part, 320–321 
native part, 316–320 
plug-in call, 321–324 
plug-in creation and testing, 316 
plug-in sharing, 324 
WebWorks SDK version, 316 

BundleIdentifier 

■ C
CallbackId, 299 
C2DM plug-in, mobile push notification 

Android simulator, 288–291 
C2DM.Manifest file, 283–285 
Eclipse Android project 

configuration, 281 
folder structure, 282 
JavaScript part, 283 
MobilePushPluginExample project 

structure, 285 

modification, PhoneGap-1.1.0,  
286–287 

native part, 282–283 
polling technique, 279–280 
push technique, 280 
registration, 282 
sender account, 287 
signup, 287 

Chrome, 249 
Cloud build environment, 113 

Android build environment 
private keystore creation,  

117–118 
private keystore upload, 118–120 
run PhoneGap build, 120 
self-signed keystore, 117 

Apple certificate, 114 
BlackBerry build environment 

“add a key” option, 124 
BlackBerry keys, 123 
distribution channels, 124 
files upload, 124, 125 
requirements, 123 
sdk directory, 124 

iOS build environment 
add key screen, 122 
Apple developer, 121 
developer certificate and 

provisioning profile, 122, 123 
iOS keys, 121 
ipa button, 123 
keychain access, 122 
Mac Machine, 121 

PhoneGap beta, 113 
PhoneGap build launch, 125 
PhoneGap build registeration 

PhoneGap starter code, 115 
private keys, 116 
provisioning profile, 116 
starter project build download 

screen, 116 
ways to register, 114 

com.phonegap.api.Plugin class, 299 
com.phonegap.plugins.HelloWorldPlugin 

class, 321 



Index 327 

■ D
Dalvik Debug Monitoring Server 

(DDMS), 43 
DroidGap, 34, 35 

■ E
ensureTableExists() function, 176, 188 
enum status, 299 
errorCallback, 311 

■ F
Facebook authentication 

app_secret key, 277 
Eclipse Android project 

configuration, 272 
plug-in JavaScript, 275 
SDK JavaScript, 275 
FaceBookPluginExample project 

structure, 274–275 
folder structure, 273 
friend list, 278–279 
getFriendList() function, 276–277 
initialization event, 277 
login function, 276 
login screen, 278 
native folders, 274 
PhoneGap JavaScript, 275 
registration, 273–274 

fetchDetails() function, 173, 175 
Firefox, 249 
Form elements 

controlgroup data role and horizontal  
data type, 145–148 

fieldset, 141 
HTML select box, 143–144 
label and associated widget,  

141–142 

■ G
getFriendList() function, 276–277 
Google Web toolkit (GWT), 231 

Android application 
Build Path, 244 
device info, 247 
directory structure, 244, 245 
Eclipse classpath, 244 

GWT PhoneGap reference,  
247–248 

HelloWorld.java file, 245 
PhoneGap_GWT_Helloworld.html

, 245–247 
project creation, 241–243 

application project 
in Chrome browser, 236, 239 
compilation, 239–240 
creation, 233–234 
deferred binding, 236 
directory structure, 240–241 
GreetingService.java, 236 
GreetingServiceAsync.java, 236 
Phonegapavailablehandler,  

237–238 
PhoneGap_GWT_Helloworld.gwt.

xml file, 234 
PhoneGap_GWT_Helloworld.html, 

234–235 
PhoneGap_GWT_Helloworld.java, 

235 
PhoneGap.initializePhoneGap(), 

237 
Phonegaptimeouthandler, 237 
RPC component, 236 
shared and server packages, 236 
tools, 232 

JSNI, 232 
PhoneGap 0.9.4 library, 232 
user interface development,  

231–232 

■ H
helloworld.js file, 324 
helloworldplugin.java file, 324 
HTML file, 303 

■ I
index.html source code, 180–184 
initiateFavButton() function, 175,  

186–187 
initiateFavorites() function, 187–188 
initiateSearch() function, 179–180 
Internet Explorer, 249 



Index 328 

iOS  
build environment 

add key screen, 122 
Apple developer, 121 
developer certificate and 

provisioning profile, 122, 123 
iOS keys, 121 
ipa button, 123 
keychain access, 122 
Mac Machine, 121 

using XCode 4 
BundleIdentifier, 104 
device testing, 98 
device-version selection, 104 
HTML and JavaScript, 101 
index.html file, 103 
Mac OS X Snow Leopard, 98 
new PhoneGap project creation, 

99–101 
project customization, 102 
sample application, 104 
simulator, 103 
www folder, 102–103 
XCode and PhoneGap 

installation, 98 
iPhone 

iOS PhoneGap project creation, 306, 
307 

JavaScript part, 311–312 
native part, 307–311 
plug-in, 312–315 
1.1.0 XCode installation, 306 

isFav () function, 177–178, 189 

■ J, K
JavaScript Native Interface (JSNI), 232 
jQueryMobile, 127 

cons, 192 
declarative UI, 134 

data-role attributes, 134–135 
dialog page, 136–138 
“dialog1” page, 137, 139 
form elements. see Form 

elements 
list views, 148–150 
“main” page, 137, 138 
multiple divs, 136 

“page2” page, 137, 139 
pages, 135, 136 
toolbars and buttons, 140, 141 

event handling categories, 150 
folder structure, 133, 134 
jQuery 

Ajax calls, 132 
cross-browser framework, 128 
CSS-based selector, 130 
definition, 127 
DOM manipulation, 131–132 
element-based selector, 130 
HTML element location, 129–130 
ID-based selector, 130 
initialization process, 128–129 
li element, 130 
mix and match selectors, 130 
“placeholder”, 129 

local search 
app’s internal database, 161 
binding search button handler, 

172–173 
bootstrapping, 163 
business entry, favorites, 160 
favorite detail, 162 
favorite place loading, 178–179 
features, 157–158 
function-initiated search, 171 
Google Maps Places API, 157, 

158 
HTML layout, 167–169, 171 
initiateSearch() function, 179–180 
JavaScript libraries, 163–164 
layout, 164–165 
local business, 165–166 
place/business search. see 

Place/business search 
result on map, 163 
results, 160 
source code, 180–191 

normal events, 150 
orientation change events, 153–155 
out-of-box themes, 132 
page events, 156 
PhoneGap integration, 156–157 
pros, 192 



Index 329 

scroll events, 155, 156 
SenchaTouch, 230 
support platforms, 133 
touch events, 151–153 
UI issues, 127 

jsString, 309 

■ L
Layout, application skeleton 

AJAX call, 202 
‘card’, 198 
CardLayout, 198 
detailClickHandler function, 204 
dockedItems, 198 
Ext.Map, 205 
favorites panel, 210, 211 
fullscreen, 198 
Google place server, 202–203 
home and star buttons, 198 
items, 198 
JSON response, 206–207 
placeDetailsPanel, 207–209 
placeholders, 208–209 
result panel code creation, 204, 205 
resultDetailPanel, 207 
search panel, 199–200 
tab panel, 201 
<tpl> tags, 203 
toolbar buttons, 199 

Local development environment 
BlackBerry 

Apache ant installation, 105 
bbwp.dir property, 107 
BlackBerry SDK installation, 105 
directory structure, 107 
index.html file, 108 
J2SDK download, 105 
PhoneGap application creation, 

105, 106 
project.properties file, 107, 108 
signing keys, 109 
simulator, 108, 109 
software installtion, 104 

iOS using XCode 4 
BundleIdentifier, 104 
device testing, 98 
device-version selection, 104 

HTML and JavaScript, 101 
index.html file, 103 
Mac OS X Snow Leopard, 98 
new PhoneGap project creation, 

99–101 
project customization, 102 
sample application, 104 
simulator, 103 
www folder, 102–103 
XCode and PhoneGap 

installation, 98 
PhoneGap SDK directory structure, 

98 
Symbian, 109–112 
webOS application, 112–113 
Xcode, 98 

■ M, N
Mobile application 

consistent user experience, 9 
environment fragmentation 

development, 11 
feature fragmentation, 10 
features, 4, 5 
HTML5 and CSS3, 15 
location awareness, 6 
multiple teams/products, 9 
OS fragmentation, 8 
PhoneGap’s strategy 

browser, 12–13 
device capability, 14 
webviews, 13 

push notification, 7 
single origin policy, 15, 16 
types, 2 
user interaction, 5 
web services, 3–4 

■ O 
Opera, 250 

■ P, Q
PGCommandStatus_OK, 309 
PhoneGap 

Android. See Android 
Android project 

Application Launch Type, 43–45 



Index 330 

applications setting, 39, 40 
creation, 28–30 
Dalvik Debug Monitoring Server 

(DDMS), 43 
DroidGap, 34, 35 
HelloWorld Application, 35–36 
JavaScript file, 31, 32 
native component installation, 30, 

31 
permissions modifications, 32–34 
phone’s settings, 39 
SD card listing, 59–61 
simulator deployment, 37–38 
unknown sources, 41 
USB debugging, 41–43 
XML directory, 30 

application architecture, 18 
cellular device/Wi-Fi network, 81–83 
database, 69–81 
device examples 

accelerometer, 86–91 
capturing images, camera, 94–96 
compass bearings, 91–94 
geolocation, 83–86 

directoryEntry, 63 
emulator, 249 

code for contacts, 55–59 
contact list, 54 
contacts api, 54 
contacts tab, 52 
Ripple, Chrome (see Ripple) 
device information, 47–50 
dialer application icon, 51 
new contact, 52, 53 

environment, 97 
cloud build environment. see 

Cloud build environment 
local development environment. 
see Local development 
environment 

features, 45–46 
fileEntry, 63 
fileSystem, 62–63 
framework, 18 
LocalFileSystem, 62 
programlayout, 63–69 

SDK installation, 27 
tutorials, 47 

PhoneGap extension, 293 
accelerometer, 293 
Android 

configuration, 296 
JavaScript part, 301–302 
native part, 297–301 
new project, 296 
plug-in, 303–306 
project structure, 297 

architecture, 294 
BlackBerry 

JavaScript part, 320–321 
native part, 316–320 
plug-in call, 321–324 
plug-in creation and testing, 316 
plug-in sharing, 324 
WebWorks SDK version, 316 

camera, 293 
file system, 293 
geo location, 293 
helloworld plug-in, 295 
iPhone 

iOS PhoneGap project creation, 
306, 307 

JavaScript part, 311–312 
native part, 307–311 
plug-in, 312–315 
1.1.0 XCode installation, 306 

JavaScript code, 294 
JavaScript limitations, 293 
native code, 294 
storage services, 293 

PhoneGap js file, 303 
PhoneGap plug-ins, 271 

C2DM plug-in, mobile push 
notification 

Android simulator, 288–291 
C2DM.Manifest file, 283–285 
Eclipse Android project 

configuration, 281 
folder structure, 282 
JavaScript part, 283 
MobilePushPluginExample 

project structure, 285 



Index 331 

modification, PhoneGap-1.1.0, 
286–287 

native part, 282–283 
polling technique, 279–280 
push technique, 280 
registration, 282 
sender account, 287 
signup, 287 

Facebook authentication 
app_secret key, 277 
Eclipse Android project 

configuration, 272 
plug-in JavaScript, 275 
SDK JavaScript, 275 
FaceBookPluginExample project 

structure, 274–275 
folder structure, 273 
friend list, 278, 279 
getFriendList() function, 276–277 
initialization event, 277 
login function, 276 
login screen, 278 
native folders, 274 
PhoneGap JavaScript, 275 
registration, 273–274 

functionality, 271 
JavaScript file, 271 
native language file, 271 

PhoneGap.addConstructor, 311, 321 
PhoneGap.exec function, 311 
PhoneGap.plist file, 310 
phonegap.PluginManager.addPlugin(), 

321 
PhoneGap’s com.phonegap.api.Plugin 

class, 297 
Place/business search 

addToFavorite() method, 175–177 
ensureTableExists() function, 176 
fetchDetails() function, 173, 175 
initiateFavButton() function, 175 
isFav() function, 177–178 
removeFromFavorite() function, 177 

Plug-in Java file, 303 
Plug-in js file, 303 
PluginResult, 299 
PluginResult object, 309 

■ R
Registration Id (REGID), 289–290 
Remote debugging, 249 

architecture, 262 
debug.phonegap.com 

installation, 268–270 
issues, 268 
server, 261 

DOM element 
Android application connection, 

265 
device info application loading, 

265 
inspection, 266 
property change, 267, 268 

injection, PhoneGap app, 263–264 
settings, 262–263 
webkit webview, 261 

removeFromFavorite () function, 177, 
189 

Research In Motion (RIM), 250 
resultWithStatus: messageAsString 

function, 309 
Ripple 

application directory, 257 
Chrome with special flags, 257 
compass application loading,  

257–258 
compass image, 255 
enabling, 258 
index.html file, 255–256 
installation 

on Chrome, 253 
as Chrome extension, 252 
from Chrome Web Store, 252 
first time launch, 254 
home page, 251 
HTML/JavaScript-based 

applications, 254 
right click option, 253 
single origin policy, 254 

Mac and Linux, 254–255 
Mobile web, 250 
Opera, 250 
PhoneGap, 250 
RIM, 250 



Index 332 

settings, 258–259 
test application, 259–261 
tinyHippos, 250 
Vodafone, 250 
WAC, 250 
Webworks, 250 
WebWorks-Tablet-OS, 250 
Windows, 254 

Ripple Mobile Environment Emulator, 
257 

■ S, T, U
Safari, 249 
SDK 

linux instructions, 21 
Mac OSX Intel instructions, 21–22 
Windows instructions, 21 

SenchaTouch, 193 
advantages, 193 
browser-based applications, 193 
directory structure, 194, 195 
ExtJS company, 193 
jQueryMobile, 230 
learning curve, 194 
local search 

app.js, 220–230 
cachedDetails, 216–219 
fetching places details, 213–216 
Google places’ result fetching, 

211–213 
index.html, 219–220 
index number and animation 

effect, 211 
initialization, 197–198 
layout, application skeleton. see 

Layout, application skeleton 
requirements, 196 

PhoneGap integration, 195, 196 
web stardards, 194 

SimplePlugin.h file, 315 
simpleplugin.js file, 315 
SimplePlugin.m file, 315 
Status.INVALID_ACTION, 300 
Status.INVALID_JSON, 300 
successCallback, 311 

■ V, W, X, Y, Z 
Vodafone, 250 



   i 

Beginning PhoneGap 
Mobile Web Framework for 

JavaScript and HTML5 

 

 

 

 

  

■ ■ ■ 

Rohit Ghatol 
Yogesh Patel 

 



Beginning PhoneGap: Mobile Web Framework for JavaScript and HTML5 

Copyright © 2012 by Rohit Ghatol and Yogesh Patel 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information 
storage or retrieval system, without the prior written permission of the copyright owner and the 
publisher. 

ISBN-13 (pbk): 978-1-4302-3903-1 

ISBN-13 (electronic): 978-1-4302-3904-8 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editors: Michelle Lowman 
Technical Reviewer: Dave Caolo 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, 

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,  
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,  
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh 

Coordinating Editor: Kelly Moritz  
Copy Editors: Scribendi, Inc. 
Compositor: MacPS, LLC 
Indexer: SPi Global 
Artist: SPi Global 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or 
promotional use. eBook versions and licenses are also available for most titles. For more 
information, reference our Special Bulk Sales–eBook Licensing web page at 
www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work. 

Any source code or other supplementary materials referenced by the author in this text is 
available to readers at www.apress.com. For detailed information about how to locate your book’s 
source code, go to http://www.apress.com/source-code/. 

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/


This book is dedicated to the countless developers across the world who all worked hard 
to make HTML5/JavaScript/CSS the new standard for developing applications.  

I would like to acknowledge the patience shown by my wife, Manija Ghatol, and the 
forgiving nature of my parents, S.G Ghatol and Manda Ghatol, toward whom I ignored 

my duties during the tenure of writing this book. I am fortunate to have a family that 
understands and supports my aspirations. Also, I would like to recognize the timely help 
provided by my friend and colleague Yogesh Patel, who is not only a technical genius but 

also a wonderful person. 

— Rohit Ghatol  

 

 

To my wife, Smita, who has always been there for me. Without you I am not in the place I 
am right now. 

I wish to express my gratitude to Rohit for his immense support in my professional and 
personal life; you are one of the most inspiring people I’ve ever met. 

—Yogesh Patel 



v 

 

Contents 

Contents at a Glance .......................................................................................... iv
About the Authors .............................................................................................. ix
About the Technical Reviewers .......................................................................... x
Acknowledgments ............................................................................................. xi
Introduction ...................................................................................................... xii
 
■Chapter 1: Understanding Cross-Platform Mobile  
                     Application Development ............................................................... 1

Types of Mobile Applications .................................................................................................................................. 2
Understanding Web Services .................................................................................................................................. 3
Overview of Mobile Applications ............................................................................................................................. 4

Mobile Application Features .............................................................................................................................. 4
User Interaction ................................................................................................................................................. 5
Location Awareness ........................................................................................................................................... 6
Push Notification ................................................................................................................................................ 7

Challenges in Cross-Platform Mobile Application Development ............................................................................. 7
OS Fragmentation .............................................................................................................................................. 8
Multiple Teams/Products ................................................................................................................................... 9
Consistent User Experience ............................................................................................................................... 9
Feature Fragmentation .................................................................................................................................... 10
Development Environment Fragmentation ...................................................................................................... 11

PhoneGap’s Strategy for Cross-Platform Mobile Application ................................................................................ 12
Browser Component As the Common Platform ............................................................................................... 12
Mobile Application Webviews .......................................................................................................................... 13
Native Hooks to Expose Device Capabilities .................................................................................................... 14
HTML5 and CSS3: The Standards for Writing Applications .............................................................................. 15
Single Origin Policy Not Applicable .................................................................................................................. 15
Conclusion ....................................................................................................................................................... 16

■Chapter 2: Getting Started with PhoneGap .................................................... 17
PhoneGap Architecture ......................................................................................................................................... 18
Setting up an Environment on the Android ........................................................................................................... 19

Required Installations for PhoneGap Android Project ...................................................................................... 20
Create a New Project ....................................................................................................................................... 28



■ CONTENTS 

 

 

vi 

Write the HelloWorld Application ..................................................................................................................... 35
Deploy to Simulator ......................................................................................................................................... 37
Deploy to the Device ........................................................................................................................................ 38

Exploring PhoneGap Features ............................................................................................................................... 45
PhoneGap Tutorials ............................................................................................................................................... 47

Emulator Examples .......................................................................................................................................... 47
Device Examples .............................................................................................................................................. 83

■Chapter 3: Setting the Environment .............................................................. 97
Local Development Environment .......................................................................................................................... 97
Prerequisite Steps ................................................................................................................................................. 98

Download PhoneGap ........................................................................................................................................ 98
Setting Environment for iOS Using Xcode 4 ..................................................................................................... 98
Setting Environment for BlackBerry ............................................................................................................... 104
Setting Environment for Symbian .................................................................................................................. 109
Setting Environment for webOS ..................................................................................................................... 112

Cloud Build Environment Using PhoneGap Build ................................................................................................ 113
Registering with PhoneGap Build .................................................................................................................. 113
Registering Your Application with PhoneGap Build ....................................................................................... 114
Setting Up Android Build Environment ........................................................................................................... 117
Setting Up iOS Build Environment .................................................................................................................. 121
Setting Up BlackBerry Build Environment ...................................................................................................... 123
Launching PhoneGap Build ............................................................................................................................ 125

Conclusion .......................................................................................................................................................... 125

■Chapter 4: Using PhoneGap with jQuery Mobile .......................................... 127
Getting Acquainted with jQuery .......................................................................................................................... 128

jQuery Initialization ........................................................................................................................................ 128
jQuery Selectors ............................................................................................................................................. 129
jQuery DOM Manipulation .............................................................................................................................. 131
jQuery Ajax Calls ............................................................................................................................................ 132

Getting Acquainted with jQueryMobile ................................................................................................................ 132
Including jQueryMobile in Mobile App ................................................................................................................ 133
jQueryMobile Declarative UI ................................................................................................................................ 134

Pages and Dialogs ......................................................................................................................................... 134
Toolbars and Buttons ..................................................................................................................................... 140
Form Elements ............................................................................................................................................... 141
List Views ....................................................................................................................................................... 148

jQueryMobile Event Handling .............................................................................................................................. 150
Normal Events ................................................................................................................................................ 150
Touch Events ................................................................................................................................................. 151
Orientation Change Events ............................................................................................................................. 153
Scroll Events .................................................................................................................................................. 155
Page Events ................................................................................................................................................... 156

PhoneGap jQueryMobile Integration ................................................................................................................... 156
Local Search Using jQueryMobile and PhoneGap ............................................................................................... 157

Bootstrapping PhoneGap and jQuery ............................................................................................................. 163
Installing Necessary JavaScript Libraries ...................................................................................................... 163
Layout of Local Search .................................................................................................................................. 164



■ CONTENTS 

vii 

Searching for a Local Business . ..................................................................................................................... 165
Overall Layout in HTML . .................................................................................................................................. 167
Fetching and Showing the Search Results . .................................................................................................... 171
Showing Details of a Place/Business . ............................................................................................................. 173
Adding and Removing a Place/Business to Favorite ....................................................................................... 175
Loading Your Favorite Places . ......................................................................................................................... 178
Showing Search Result on a Map . .................................................................................................................. 179
Complete Source Code . .................................................................................................................................. 180
Pros of jQueryMobile . ...................................................................................................................................... 192
Cons of jQueryMobile . ..................................................................................................................................... 192
Conclusion ....................................................................................................................................................... 192

■Chapter 5: Using PhoneGap with Sencha Touch . ........................................ 193
Why Use Sencha Touch? . .................................................................................................................................... 193

Pros of Sencha Touch . .................................................................................................................................... 194
Cons of Sencha Touch . ................................................................................................................................... 194

Downloading Sencha Touch . ............................................................................................................................... 194
Integrating Sencha with PhoneGap . ..................................................................................................................... 195
Building a Local Search Application Using Sencha Touch ................................................................................... 196

Initializing Sencha Touch . ............................................................................................................................... 197
Creating the Layout (Application Skeleton) . .................................................................................................... 198
Switching Between Panels . ............................................................................................................................ 211
Fetching the Places Listing . ............................................................................................................................ 211
Fetching Places Details . .................................................................................................................................. 213
Storing and Retrieving Favorites from Database . ........................................................................................... 216

Conclusion ............................................................................................................................................................ 230

■Chapter 6: Using PhoneGap with GWT . ....................................................... 231
Why Use GWT for User Interface Development? . ................................................................................................. 231
Getting Acquainted with the GWT PhoneGap . ...................................................................................................... 232
Building a PhoneGap GWT Application . ................................................................................................................ 232

Build the GWT Application . .............................................................................................................................. 232
Build a PhoneGap Android Application . ........................................................................................................... 241
GWT PhoneGap Reference . ............................................................................................................................. 247

■Chapter 7: PhoneGap Emulator and Remote Debugging . ........................... 249
Introduction ........................................................................................................................................................... 249
PhoneGap Emulator for Chrome – Using Ripple . ................................................................................................. 250

Installing Ripple ............................................................................................................................................... 250
Using Chrome Effectively for PhoneGap . ........................................................................................................ 254
Using Ripple ..................................................................................................................................................... 255
Tune Your App for Ripple . ............................................................................................................................... 255
Start Chrome with Special Flags . ................................................................................................................... 257
Load App in Chrome . ....................................................................................................................................... 257
Enable Ripple ................................................................................................................................................... 258
Play with Ripple Settings . ............................................................................................................................... 258
Test Application with Ripple . .......................................................................................................................... 259

Remote Debugging – http://debug.phonegap.com .............................................................................................. 261
Setting up Remote Debugging . ....................................................................................................................... 262
Injecting Remote Debugging in the PhoneGap App . ....................................................................................... 263

http://debug.phonegap.com


■ CONTENTS 

 

 

viii 

Debugging and Modifying the DOM Element ................................................................................................. 264
Issues with debug.phonegap.com ................................................................................................................. 268
Installing Local debug.phonegap.com ........................................................................................................... 268

Conclusion .......................................................................................................................................................... 270

■Chapter 8: Using PhoneGap Plug-Ins ........................................................... 271
What Is PhoneGap Plug-In? ................................................................................................................................ 271
Facebook Authentication and Fetching Friends .................................................................................................. 272

Setting Environment for Android .................................................................................................................... 272
Initializing Facebook-Connect Plug-In ........................................................................................................... 275

C2DM Plug-In for Mobile Push Notification to PhoneGap ................................................................................... 279
Setting Environment for Android .................................................................................................................... 280
Modifying Plug-In for PhoneGap-1.1.0 ........................................................................................................... 286
Signup for C2DM Service ............................................................................................................................... 287
Using C2DM Sender Account in PhoneGap .................................................................................................... 287
Android Simulator for C2DM-Enabled Service ............................................................................................... 288
Conclusion ..................................................................................................................................................... 291

■Chapter 9: Extending PhoneGap .................................................................. 293
JavaScript Limitations ........................................................................................................................................ 293
Solution ............................................................................................................................................................... 294
Architecture ........................................................................................................................................................ 294
Scope .................................................................................................................................................................. 294
Extending PhoneGap for Android ........................................................................................................................ 295

Declaring the Native Part of the Plug-In ........................................................................................................ 297
Declaring the JavaScript Part of the Plug-In .................................................................................................. 301
Calling the Plug-In ......................................................................................................................................... 303
Sharing the Android PhoneGap Plug-In .......................................................................................................... 305

Extending PhoneGap for iPhone .......................................................................................................................... 306
Declaring the Native Part of the Plug-In ........................................................................................................ 307
Declaring the JavaScript Part of the Plug-In .................................................................................................. 311
Calling the Plug-In ......................................................................................................................................... 312
Sharing the iPhone PhoneGap Plug-In ........................................................................................................... 315

Extending PhoneGap for BlackBerry ................................................................................................................... 316
Declaring the Native Part of the Plug-In ........................................................................................................ 316
Declaring the JavaScript Part of the Plug-In .................................................................................................. 320
Calling the Plug-In ......................................................................................................................................... 321
Sharing the BlackBerry PhoneGap Plug-In .................................................................................................... 324

Conclusion .......................................................................................................................................................... 324

Index ............................................................................................................... 325 
 



ix 

 

About the Authors 

Rohit Ghatol is a technology evangelist at heart. He loves to try new 
technologies and weave the vision of the future around them. He is currently 
working as an architect with QuickOffice and Synerzip. Rohit has more than 10 
years of experience and is a regular technical speaker on various platforms in 
India including Indic Threads, SaltMarch, and CSI. He himself runs one such 
platform named TechNext on meetup. Rohit is an ex-Googler and worked with 
the OpenSocial team for a while. 
 
 
 

 
Yogesh Patel is a seasoned developer, building Web 2.0-based applications 
over the last 8 years. His expertise lies in Usability and Web 2.0 on JavaScript 
and GWT, and he is a corporate trainer on JavaScript and GWT-based 
technology. Yogesh is currently working as a Project Lead and Usability Guru 
with FuelQuest Inc. and Synerzip India, and he is actively involved in 
developing PhoneGap-based mobile applications with provision for Push from 
the cloud. 



x 

 

About the Technical Reviewers 

Giacomo Balli is an iOS entrepreneur and freelance developer with successful 
apps on the App Store. He is an expert in HTML5/CSS3/AJAX modern 
techniques for webapps and an active reviewer of webkit with Apple. Giacomo 
loves working on new concepts and finding simple solutions to common 
problems. He has had a thorough exposure to PhoneGap multi-platform 
development since the first days. 
 
 
 
 

 
Markus Leutwyler is a web and mobile developer living in Switzerland. He’s 
interested in many web-based technologies and believes PhoneGap is one of 
the best solutions when creating universal mobile applications. 
 
 
 
 
 
 
 

 
Nick McCloud started out with a Commodore PET and has programmed pretty 
much every desktop computer in a wide range of languages since. With 
experience pre-dating the world-wide-web, he has taken a keen interest in the 
application of web technologies to provide small enterprises with a competitive 
edge. Using PhoneGap, Nick has developed multiple cross-device apps for his 
clients. 
 



xi 

 

Acknowledgments 

Writing a book can be a tremendous responsibility, and when I began, the idea excited me as well 
as frightened me. Without the help and goodwill of various people, this book would not have 
come alive. The task was made easy by the Apress team. To name a few: Kelly Moritz really helped 
me understand the process and made things easier for me, and I got excellent and timely advice 
from Richard Carey and all the technical reviewers. Without the collaboration of these people, it 
would probably have become almost impossible. I have included the PhoneGap GWT Library 
from Daniel Kurka, and I would like to acknowledge his work and his help in understanding the 
library. Also, Yogesh Patel would like to acknowledge his student intern Omkar Ekbote, who 
helped develop and test the plug-in source code.  

Finally, I would like to acknowledge the support from my colleague Nikhil Walvekar, a 
developer-cum-photography e×pert who helped me with some of the images in the book. 

 
—Rohit Ghatol 


	Cover

	Contents at a Glance

	Contents

	About the Authors

	About the Technical Reviewers

	Acknowledgments

	Introduction


	Understanding Cross-Platform Mobile Application Development
	Types of Mobile Applications
	Understanding Web Services
	Overview of Mobile Applications
	Mobile Application Features
	User Interaction
	Location Awareness
	Push Notification

	Challenges in Cross-Platform Mobile Application Development
	OS Fragmentation
	Multiple Teams/Products
	Consistent User Experience
	Feature Fragmentation
	Development Environment Fragmentation

	PhoneGap’s Strategy for Cross-Platform Mobile Application
	Browser Component As the Common Platform
	Mobile Application Webviews
	Native Hooks to Expose Device Capabilities
	HTML5 and CSS3: The Standards for Writing Applications
	Single Origin Policy Not Applicable
	Conclusion


	Getting Started with PhoneGap
	PhoneGap Architecture
	Setting up an Environment on the Android
	Required Installations for PhoneGap Android Project
	Create a New Project
	Write the HelloWorld Application
	Deploy to Simulator
	Deploy to the Device

	Exploring PhoneGap Features
	PhoneGap Tutorials
	Emulator Examples
	Device Examples


	Setting the Environment
	Local Development Environment
	Prerequisite Steps
	Download PhoneGap
	Setting Environment for iOS Using Xcode 4
	Setting Environment for BlackBerry
	Setting Environment for Symbian
	Setting Environment for webOS

	Cloud Build Environment Using PhoneGap Build
	Registering with PhoneGap Build
	Registering Your Application with PhoneGap Build
	Setting Up Android Build Environment
	Setting Up iOS Build Environment
	Setting Up BlackBerry Build Environment
	Launching PhoneGap Build

	Conclusion

	Using PhoneGap with jQuery Mobile
	Getting Acquainted with jQuery
	jQuery Initialization
	jQuery Selectors
	jQuery DOM Manipulation
	jQuery Ajax Calls

	Getting Acquainted with jQueryMobile
	Including jQueryMobile in Mobile App
	jQueryMobile Declarative UI
	Pages and Dialogs
	Toolbars and Buttons
	Form Elements
	List Views

	jQueryMobile Event Handling
	Normal Events
	Touch Events
	Orientation Change Events
	Scroll Events
	Page Events

	PhoneGap jQueryMobile Integration
	Local Search Using jQueryMobile and PhoneGap
	Bootstrapping PhoneGap and jQuery
	Installing Necessary JavaScript Libraries
	Layout of Local Search
	Searching for a Local Business
	Overall Layout in HTML
	Fetching and Showing the Search Results
	Showing Details of a Place/Business
	Adding and Removing a Place/Business to Favorite
	Loading Your Favorite Places
	Showing Search Result on a Map
	Complete Source Code
	Pros of jQueryMobile
	Cons of jQueryMobile
	Conclusion


	Using PhoneGap with Sencha Touch
	Why Use Sencha Touch?
	Pros of Sencha Touch
	Cons of Sencha Touch

	Downloading Sencha Touch
	Integrating Sencha with PhoneGap
	Building a Local Search Application Using Sencha Touch
	Initializing Sencha Touch
	Creating the Layout (Application Skeleton)
	Switching Between Panels
	Fetching the Places Listing
	Fetching Places Details
	Storing and Retrieving Favorites from Database

	Conclusion

	Using PhoneGap with GWT
	Why Use GWT for User Interface Development?
	Getting Acquainted with the GWT PhoneGap
	Building a PhoneGap GWT Application
	Build the GWT Application
	Build a PhoneGap Android Application
	GWT PhoneGap Reference


	PhoneGap Emulator and Remote Debugging
	Introduction
	PhoneGap Emulator for Chrome – Using Ripple
	Installing Ripple
	Using Chrome Effectively for PhoneGap
	Using Ripple
	Tune Your App for Ripple
	Start Chrome with Special Flags
	Load App in Chrome
	Enable Ripple
	Play with Ripple Settings
	Test Application with Ripple

	Remote Debugging – http://debug.phonegap.com
	Setting up Remote Debugging
	Injecting Remote Debugging in the PhoneGap App
	Debugging and Modifying the DOM Element
	Issues with debug.phonegap.com
	Installing Local debug.phonegap.com

	Conclusion

	Using PhoneGap Plug-Ins
	What Is PhoneGap Plug-In?
	Facebook Authentication and Fetching Friends
	Setting Environment for Android
	Initializing Facebook-Connect Plug-In

	C2DM Plug-In for Mobile Push Notification to PhoneGap
	Setting Environment for Android
	Modifying Plug-In for PhoneGap-1.1.0
	Signup for C2DM Service
	Using C2DM Sender Account in PhoneGap
	Android Simulator for C2DM-Enabled Service
	Conclusion


	Extending PhoneGap
	JavaScript Limitations
	Solution
	Architecture
	Scope
	Extending PhoneGap for Android
	Declaring the Native Part of the Plug-In
	Declaring the JavaScript Part of the Plug-In
	Calling the Plug-In
	Sharing the Android PhoneGap Plug-In

	Extending PhoneGap for iPhone
	Declaring the Native Part of the Plug-In
	Declaring the JavaScript Part of the Plug-In
	Calling the Plug-In
	Sharing the iPhone PhoneGap Plug-In

	Extending PhoneGap for BlackBerry
	Declaring the Native Part of the Plug-In
	Declaring the JavaScript Part of the Plug-In
	Calling the Plug-In
	Sharing the BlackBerry PhoneGap Plug-In

	Conclusion

	Index
	A 
	B 
	C 
	D 
	E 

	F 
	G

	H
	I

	J, K 

	L 

	M, N
	O
	P, Q
	R
	S, T, U 
	V, W, X, Y, Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice


