
Creating Custom Web Sites and
Web Apps for iOS Devices

Beginning
iPhone and iPad

Web Apps
Scripting with HTML5, CSS3 and JavaScript

Chris Apers | Daniel Paterson

 i

Beginning iPhone and
iPad Web Apps

Scripting with HTML5, CSS3,
and JavaScript

■ ■ ■

Chris Apers
Daniel Paterson

ii

Beginning iPhone and iPad Web Apps: Scripting with HTML5, CSS3, and JavaScript

Copyright © 2010 by Chris Apers and Daniel Paterson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3045-8

ISBN-13 (electronic): 978-1-4302-3046-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewer: Paul Haine
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Kim Wimpsett
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/
info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this
work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

 iii

To Aoï, who had to put up with my moods for so long.
A thousand thanks. With love.

—Chris

To Alice, for I can never thank you enough
for the inspiration your love and brilliance provide.

—Daniel

iv

Contents at a Glance

■Contents .. v
■About the Authors ..xv
■About the Technical Reviewer...xvi
■Acknowledgments..xvii
■Introduction...xviii
Part I: Getting Started with Web App Development .. 1

■Chapter 1: Development Tools... 3

■Chapter 2: Development Environment ... 13

■Chapter 3: Introducing Developer and Debugging Tools 29

Part II: Web App Design with HTML5 and CSS3 .. 65

■Chapter 4: The Anatomy of a Web Application .. 67

■Chapter 5: User Experience and Interface Guidelines 89

■Chapter 6: Interesting CSS Features for Your Web Application
 User Interface .. 117

■Chapter 7: Bitmap and Vector Graphics and Downloadable Fonts
 with Canvas and SVG... 165

■Chapter 8: Embedding Audio and Video Content in
 Your Web Application .. 219

■Chapter 9: Handling Transformations, Animations,
 and Special Effects with CSS... 257

Part III: Going Futher with JavaScript and Web Standards 299

■Chapter 10: An Object-Oriented JavaScript Programming Primer.............. 301

■Chapter 11: Cross-Document Communication .. 321

■Chapter 12: Ajax and Dynamic Content ... 343

■Chapter 13: Using Touch and Gesture Events.. 367

■Chapter 14: Location-Aware Web Applications ... 397

■Chapter 15: A Better Handling of Client-Side Data Storage......................... 431
■Index.. 467

 v

Contents

■Contents at a Glance... iv
■About the Authors ..xv
■About the Technical Reviewer...xvi
■Acknowledgments..xvii
■Introduction...xviii

Part I: Getting Started with Web App Development .. 1

■Chapter 1: Development Tools... 3

The Source Editor ...3
Varanus Komodoensis ...3
Make Yourself Comfortable ...4

What About Dashcode?...5
Using the Right Browser ...6

The WebKit...6
The Gecko and the Fox ..7
Opera ...7
Internet Explorer, Lost at Sea ..7

Developing Web-Wise...8
Acid...Acid...Acid ..8
HTML5 Conformance ...8
A Satellite in Your Browser ..8

Developing for iOS ..9
Using the iPhone and iPad Simulator...9
Using a Real Device Anyway..10
The ADC Is Your Friend ..10

Summary ..11

■Chapter 2: Development Environment ... 13

Serving the Web Application...13
Mac OS, Making Things Easy..14

■ CONTENTS

vi

An Apache in Your Mac..14
The Script Engine...15

Windows, Choose Your Weapons..16
An All-in-One Installation Process ...17
Security Settings..20

Linux, Take Control ...22
Handling Multiple Hosts..23

Unix-Based System..23
Windows-Based System ..24

Configuring Multiple Web Sites...24
Apache 2: Get Carried Away ..24
The Windows Case...26

Have You Made It? ..27
Bet You Have! ...28

■Chapter 3: Introducing Developer and Debugging Tools 29

Making Friends with WebKit’s Developer Tools..29
Enabling the Develop Menu ...30
The Develop Menu Exposed...30
Developing on Mobile Safari ..32

Overview of the Web Inspector ...34
The Developer Tools Window...35
Error Notifications..36

Master Your Code ...37
Make the Document Yours...37
Dig Your Style ..38
Editing Styles ...40
Metrics...40
Advanced Search ...43

The Resources Viewer ..44
Debugging JavaScript...46

Logging to the Console ..46
Using the Interactive Shell ...48
Let the Debugger Do the Job ...49

The Life Cycle of Your Page ..55
Profiling Your Scripts ..57

Understanding the Profiles ..58
Filtering with the Search Field...59

Client-Side Data Storage ..60
Database Storage ..61
Cookies ..61
Other Storage Features..61

Auditing Your Page ...61
Still Unsure?..63
Summary ..63

Part II: Web App Design with HTML5 and CSS3 .. 65

■Chapter 4: The Anatomy of a Web Application .. 67

The iPhone Revolution ..67

■ CONTENTS

 vii

Belief in Web Apps...68
But What is a Web App Exactly? ..70

Planet of the Apps: Who Rules..71
Cross-Platform Master...71
Hardware Access Is No Forbidden Weapon Anymore..72
Free Your Content ..72
Release Model ...73
Web Apps: Not the Little Brother Anymore ..73

Web Apps on Mobile Safari...73
Master the Browser ...73
Browser Metrics...74
Think “Web App” ...75

Configuring the Viewport ..75
Seriously Appy: Using Stand-Alone Mode...77

Showcasing a Proper Icon ...77
Running Your Application Full-Screen ...79
An Awesome Startup ...79
Tweaking the Status Bar..80
Staying in Stand-Alone Mode ..80

Build Your First Web App Base Project ...81
Your Document Template in Komodo Edit ...82
Hiding Mobile Safari’s Address Bar ...85
Handling Screen Orientation Changes ...86
Final Touch ..87

Ready to Go...88

■Chapter 5: User Experience and Interface Guidelines 89

From the Web on the Desktop to the Mobile Web ..90
Forget the Desktop ..91
Change Navigation Habits..91
Show Ads Thoughtfully ..92
Let Users Decide by Themselves ...95

Simplicity and Ease of Use ...96
Avoid Clutter ..96
User Interface ..97

Avoid Unnecessary Interaction ...99
Make Use of New Input Types Capabilities..100
Ponder Upon User-Supplied Information ...101
Avoid Multiplying Steps ...102

The Spirit: Be Focused..102
Make Things Responsive ..103

Make Your Web App Responsive ...103
Make Your Web App Reactive..105

iOS Interface Design Good Practices ..105
Adaptability ..105
List vs. Icon Approach..106

Considering UI Alternatives...109
Mimicking the iOS UI..109

■ CONTENTS

viii

Building the iPad Experience ...110
Be Creative and Innovative ...115
Summary ..116

■Chapter 6: Interesting CSS Features for Your Web Application
 User Interface .. 117

Improving the User Experience with CSS ...117
User Feedback ...118
Disabling Copy/Paste Functionalities...119
Control Over Callout ...120

Selectors...121
Overview of Available CSS Selectors ...121
Position in Suite Selectors: Structural Pseudoclasses...122

Advanced Handling of Backgrounds ...124
Origin of the Background ...125
Global Background Clipping...126
Text-Based Background Clipping...128
Sizing the Background...128
Developing a Photos-Like Gallery ..130
Multilayer Backgrounds ...134

Colors..135
The Alpha Channel ...135
New Color Definitions ..136

Using Gradients...137
Basic Syntax ..137
Changing the Size of the Gradient ...139
Complete Gradient Syntax ...139
Advanced Color Handling...140

Boxes and Borders..142
Box Sizing ..142
Rounded Box Corners ..143
Borders Drawn with Images ..145

Shadows ...147
Box Shadows ...148
Text Shadows ..149
Text Effect with Shadows and Outline ...150

Adding a Button to Your Header..150
Columns Layout ..152

CSS Column Properties..152
Porting Press Content to the Web ..155

The Flexible Box Model ...158
A Clean and Flexible Way to Handle Column Layouts ..158
Ordering Boxes ..159
Flexibility..160
Packing and Alignment ..161

Targeting WebKit Specifically ...162
Summary ..163

■ CONTENTS

 ix

■Chapter 7: Bitmap and Vector Graphics and Downloadable Fonts
 with Canvas and SVG... 165

Working with the Canvas Area..165
The Drawing Context..167
Drawing Simple Shapes...172
Colors, Gradients, and Patterns ...174
More Complex Shapes with Paths ...175
Applying Transformations..181
Simplifying Drawing State Modifications...183
Using Text ..183
Shadows ..187
Clipping and Compositing ..188
Working with Canvas Pixels...191

Using Vector Graphics...195
Inserting SVG into Your Documents ...196
Understanding the Coordinates System...196
Drawing Shapes...200
Interoperability...201
Communication..205
Animation with and Without Scripting ...207
Coping with Temporary Bugs...210

Preinstalled and Downloadable Fonts...211
Summary ..218

■Chapter 8: Embedding Audio and Video Content in
 Your Web Application .. 219

Embedding Video Content...220
Getting Information About the Video..221
The Video Placeholder ...222
Playing the Video ...223

Embedding Audio Content ..224
Keep Things Reasonable...225
Take Control Over Your Content..226

Understanding and Using Ranges..227
A Number of Supported Events..232

Adding Subtitles and Chapters to Your Media ..233
Creating Your Own Custom Subtitles...234
Easier Media Browsing with Chapters ...243

Workarounds...Let’s Go...247
Media Content for the iPhone and iPad ..248

Understanding Video Formats..248
Dealing with Supported Audio Formats ...250
Encoding for the Web...251

Summary ..256

■Chapter 9: Handling Transformations, Animations,
 and Special Effects with CSS... 257

Transform Your Elements ...257
Checking Transform Support ...258

■ CONTENTS

x

Applying Rotations259
Translating Element Coordinates. ...260
Scaling Page Contents260
Distorting Elements..261
Custom Transformations with Matrices. ...261
The Origin of the Transformation262

Working in a Three-Dimensional Environment262
New Transform Functions. ..263
Setting the Perspective. ..263
Preserving the 3D Aspect . ..265
Back Face Visibility ..266

Combining Styles with JavaScript . ..268
Accessing Current Styles268
A Native Object to Compute Matrices . ..268

Transitions . ..270
The transition CSS Property. ...271
Initiating a Transition ...271
Timing Function Curve272
Telling When the Transition Is Completed274

Getting Ready for a Cover Flow–Like Experience274
The Main Document. ...275
The Cover Flow Animation278
Flipping the Current Cover280
Final Touch to the Animation280
Double-Check: Preventing Unexpected Behavior . ..281

Advanced Animations and Key Frames...282
Key Frames ..282
Starting and Timing the Animation . ..283
Animation Properties283
The Evolution Curve284
Working with Events . ..285

Special Effects with CSS...285
Creating Reflections...286
Using Real Masks . ..287

Create an iOS-Like Tab Bar Using Masks288
Getting the Initial Tab Bar Ready289
A Placeholder for Icons . ..291
Icons Management . ..292
Creating Icons..294
Custom Icons Using an Image297

Summary . ..298

Part III: Going Futher with JavaScript and Web Standards 299

■Chapter 10: An Object-Oriented JavaScript Programming Primer. 301

From the Procedural Model...301
...to Object-Oriented Programming. ...302

A First Custom Object . ..302
Using a Proper Constructor. ..303

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ CONTENTS

 xi

Better Performance with Prototype ...304
Implementing Inheritance...305

Prototype-Based Inheritance ...305
Shared Properties ..306
The Prototype Chain...307

The Execution Context ..308
Using the call() and apply() Methods ...308
Taking Care of the Execution Context ..310
Setting the Proper Context with Handlers and Callbacks ..310

Accessing Properties and Methods ..312
Defining Getters and Setters...313
Code Isolation and Libraries ...314

Isolating Your Code ..315
Creating a Library ..316

Enhancing Your Spinner Animation ..317
Summary ..318

■Chapter 11: Cross-Document Communication .. 321

Cross-Document Communication Limitations ..322
Communication, the HTML5 Way..323

The Cross-Document Messaging API...323
Data Type Support and Handling ...324
Security Considerations ...325

Case Study ..325
The Main Document...325
The Hosted Document..327
Let’s Send a Message..328
Handling the Response ..329

Specific Mobile Safari Behavior with <iframe>..330
Working with Proper Windows..332

Notify the Page Is Loaded ..333
Properties of the Window Object ...334

Encapsulating the API to Ease Communication ..335
An Object for the Host Document...335
An Object for the Widget..337
The Host Document and the Widgets...338

Relaxing Subdomain Communication ...340
Changing the Domain...340
Security..341

The Last Message...341

■Chapter 12: Ajax and Dynamic Content ... 343

Building an HTTP Request...343
Requests Using the XMLHttpRequest Object ...344
The open() Method...344
Sending Requests Using GET or POST ...344
Handling the Request State ...345
Handling Progress Events ..346
Checking the Response ...347

■ CONTENTS

xii

Handling Return Formats ..348
Most Common Return Formats ..348
Parsing XML for Use in HTML Documents ...349
Specificities When Parsing JSON...352
JSON Security Considerations ...353

Client-Side Rendering Using Returned Data ...354
Handling Template Variables ...354
Formatting Variables..355

Cross-Origin Communication ..356
Using Proxies ...356
The JSONP Way ...357
The Cross-Origin Resource Sharing...359

Real-Life Example: Display Twitter Trends ...360
The Twitter Trends Feed ..360
Fetching and Rendering Data ..360

Be Kind to the Waiting User ..363
Adding Visual Feedback...363
Handling Excessive Waiting Times ..364

Summary ..365

■Chapter 13: Using Touch and Gesture Events.. 367

How to Handle Events...367
Calling Priority of Handlers ..367
The Capture Stage ...369
Control Over Event Propagation ...370
Preventing Default Behavior ..370
Handlers and Object Methods..371

Classic Events with Mobile Safari...372
Behavior of Mouse Events ...372
Scrolling Information ...372

Multi-Touch Events ...373
New Interaction Processes ..373
Handling Multi-Touch Events...373
Unlimited Touch Points ..374
Cancelled Touch Events...376

A Page View Built with Touch and Transform...377
What We Are Going to Do...377
The Container...378
Bring Elements and Interaction ...379
Creating Custom Events...382
Handling Custom Events ..384

Working with Precomputed Gestures ...385
Create Your Own Gestures..387

One Code, Many Strokes..387
The Bounding Box Object...389
Registering User Strokes ...390
Using the Recognizer Object..392
Improve Accuracy ..394

■ CONTENTS

 xiii

Summary ..395

■Chapter 14: Location-Aware Web Applications ... 397

The Geolocation API ..398
Privacy Considerations ..398
Setup Considerations...398

Getting the Current Position..399
Longitude, Latitude, and More ...399
Handling Errors from Requests..401
Accuracy, Timeout, and Cached Location..402

Putting the User on a Map with Google Maps...403
Showing the Map...403
Centering the Map on the Location of the User ...405
Marking the Position of the User ...407
Showing Accuracy ...409

Tracking the User’s Position ...410
Registering for Updates ...410
Specific Behavior of the Watcher...411
Watching Position on Google Maps..412

From Data to Math ..413
Distance Between Two Points ...413
Sharper Distance Between Two Points..414
The Direction to Take...415

Building a Compass Web App ...416
Create the Mobile Elements...416
The Graduations...418
The Needles ...420
The Dial Shine..421
Render the Compass..422
Add Elements to the Document ...424
Prepare the Document to Receive Location Data ..425
Use Location Data ..426
Animate the Compass..427
Prevent Staggering Needles ..429

Summary ..430

■Chapter 15: A Better Handling of Client-Side Data Storage......................... 431

Different Storage Areas ..431
How to Use New Storage Capabilities..432
Specific Behavior of sessionStorage ...433
Being Notified of Storage Area Modification..434
Security and Privacy Considerations ...435
Caching Ajax Requests ..435
Sending Client Data to the Server..441

SQL Local Database ..442
Opening the Database..443
Creating Tables ..444
Adding Data to Tables..446
Querying Data from the Tables ..448

■ CONTENTS

xiv

Updating Data ..449
Using Database in Place of Storage...451
Handling Transaction and Query Errors ...452
Maintaining Coherent Access with Versioning ..454
Deleting the Database..456
Security Again..457

Offline Web Application Cache..458
How Does It Work?...458
The Manifest File ...459
Controlling the Cache with JavaScript...462
Reacting to Events Sent by the Application Cache ..464
Deleting Cache...465
Is the User Online?...466

Summary ..466

■Index.. 467

■ INTRODUCTION

 xv

About the Authors

Chris Apers has more than 13 years experience in web technologies and
mobile development, including the PalmOS, webOS, and iPhone. He is a
technical manager and architect at Newsweb/Lagardère Active and
participates in open source projects such as porting development libraries
and software to mobile devices. With the creation of the open source
framework WebApp.Net, he provides an easy way to create mobile content
targeting WebKit browsers. For more, visit www.webapp-net.com and
www.chrilith.com.

Daniel Paterson has a master’s degree in comparative literature, and he penned a memoir on
integrating literary theory into fictional works, taking novels by Umberto Eco, Milan Kundera,
and David Lodge as examples. After his university years, Daniel entered web development and
joined Newsweb/Lagardère Active in April 2009. Passionate about the Web as about many other
things, he enjoys every opportunity to work on interesting projects and to develop his skills.

http://www.webapp-net.com
http://www.chrilith.com

■ ACKNOWLEDGMENTS

xvi

About the Technical
Reviewer

Paul Haine is a client-side developer currently working in London for the Guardian newspaper.
He is the author of HTML Mastery: Semantics, Standards, and Styling (friends of ED, 2006) and
runs a personal web site at www.joeblade.com.

http://www.joeblade.com

■ INTRODUCTION

 xvii

Acknowledgments

We would like to thank the people from Apress, especially Steve Anglin, for giving us the
opportunity to take part in this project, and Clay Andres, for his greatly helpful participation in
the early stages of the writing. We also send thanks to our editors, Douglas Pundick and Brian
MacDonald, for their valuable comments; Paul Haine for his close reading and testing of every
chapter and example in this book; and Kim Wimpsett, for helping us make our explanations more
straightforward when they became too complicated. Finally, this book probably never would
have been published without the close following of its evolution by Kelly Moritz and Adam Heath.

Thanks also go to those who have helped, in one way or another, to bring this book together,
among whom are Hans Shumacker, Ivan Mitrovic, Roy Sinclair, Adam Dachis, David Ljung
Madison, and Kris Merckx. As for those whom we (may) have forgotten here, we acknowledge
your precious help.

Finally and most importantly, our thoughts go to Alice and Aoï who lived with us every day during
the past months, putting up with us and our changing moods and late nights of work. Without
their patience and support, this book wouldn’t be.

■ ACKNOWLEDGMENTS

xviii

Introduction

Although most iOS development is currently focused on native applications using Apple’s
Software Development Kit, this proves less and less relevant as the number of different mobile
devices and OS versions grows. Gathering resources to make web applications that will work
cross-platform is far more cost-effective than hiring a team to build specific version-applications.
In this sense, it is probable that web applications have only just begun to fight.

Indeed, web browser performance and features make possibilities regarding user experience and
provided services ever greater, and web browsers create an exciting field for web developers to
play in. With the arrival and implementation of new standards, the boundaries between native
applications and web applications have never been so thin; geolocation and Multi-Touch control,
for instance, are no longer just a dream. HTML5, on the other side, is not only a new version of
the markup language; the new specification comes with a full range of new APIs that will make
you forget heavy use of presentational images and let you richly integrate multimedia elements.
Because most of these new features originate in recognized specifications, they are not only
implemented in the Mobile Safari layout engine but are also widely available on other mobiles
devices and desktop browsers.

Web browsers are everywhere; they’re the widest distribution platform ever, available on all
platforms and, increasingly, on all devices. This makes web development the field where
developers can reach the widest audience using minimal resources. This may well turn building
web applications into the new El Dorado in the years to come.

Who This Book Is For
This book is especially fit for developers who have strong experience in front-end web
development and are looking to turn to mobile development, primarily web application
development for WebKit-based browsers. Although the examples and explanations in this book
are meant to work on iPhone, iPad, and iPod touch, you should find them quite equally useful for
developing for webOS, Android, or the browser from the latest BlackBerry devices, as well as for
any modern desktop browser.

This book will be useful also to native application developers because resorting to the UIWebView
from the iOS SDK is often necessary to gain more control over the interface of your applications,
and getting a firm grasp on the latest advances of the technologies presented in this book can be
of great help.

■ INTRODUCTION

 xix

What You Need to Know
This book assumes you already have solid knowledge of the Web and its underlying technologies,
including a firm grasp of JavaScript development. Not only has JavaScript become essential to
enhance the user experience in modern web applications, it is also necessary in order to use the
latest APIs brought by HTML5 and other World Wide Web Consortium (W3C) or Web Hypertext
Application Technology Working Group (WHATWG) specifications. To build efficient
applications, you will also need to have a good understanding of object-oriented programming
and JavaScript-specific related mechanisms.

What’s in This Book
This book is divided into three main sections. They will in turn bring you the necessary
background to build web applications and efficiently develop for mobile devices; take you
through a number of new exciting features of CSS3, HTML5, and Mobile Safari; and get you going
with more advanced uses of web standards. Here is a short description of each part:

 Part I, Getting Started with Web App Development: The first part of this book goes through
useful tools to develop web applications. Of course, chances are you have your own habits,
with a fully functional and ready-to-use development environment. However, digging into
the specific development tools of WebKit browsers will help you build better web
applications faster.

 Part II, Web App Design with HTML5 and CSS3: This second part will let you get into
further detail about what a web application looks like and the rules that you should be
aware of to build successful web applications. Following specific guidelines on user
interface and user experience—they should be your two primary concerns—we will go
through the latest technologies that will allow you to efficiently meet your style, content,
and interaction goals.

 Part III, Going Further with JavaScript and Web Standards: The final part will take you
even further into client-side development, with topics such as Ajax and HTML templates,
advanced handling of Apple’s Multi-Touch API, and location-aware web applications. The
last chapter from this part will bring the ultimate touch to building web applications that
behave like native applications by introducing you to ways you can make your pages
available and functional offline.

Are You Ready?
Thanks to the incredible iOS platform found on the iPhone, iPad, and iPod touch and to the
implementation of the latest web standards in the Mobile Safari, not only will you find that the
limit for your web applications practically is the sky‚ you will also notice that your development
process and the options available to you will be more fluid and open to creativity.

Some examples from this book may seem more technical and advanced than others. However,
don’t be afraid because everything is explained step-by-step. Also, don’t forget that testing code
yourself and playing around with it is the best way to learn and understand. So, don’t hesitate to
modify the examples in this book and change them to fit your needs.

Reading this book, you should master the main tools to build advanced web applications that
have major assets to be appealing to users. So come, turn the page, and jump into this exciting
area of creation!

■ ACKNOWLEDGMENTS

xx

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

1

 Part

Getting Started with
Web App Development

I

3

3

 Chapter

Development Tools
Unlike native iPhone application development, web application development doesn’t

require a specific integrated development environment (IDE). As long as you have an

editor that can save to plain text, you’re OK. Likewise, the primary front-end web

developer’s tool, the web browser, exists in all shapes, is well known, and is easily

available.

Being free doesn’t necessarily mean being reckless, and in your development process,

you’ll want all the software usefulness you can get. This first chapter aims to help you

build an efficient working environment while assuring we have a common background

from the beginning of our iOS adventure.

The Source Editor
There are plenty fabulous editors out there—open source and proprietary, free or pay,

jukebox-like beautiful or running directly from a terminal. From our point of view, a really

useful editor should at least support syntax coloring, autocompletion, and some kind of

snippet utility.

Varanus Komodoensis
If you’re already involved in web development, you’ve probably already settled with your

perfect code pal. If you’re not, we suggest you download and install Komodo Edit, a

cross-platform, free, and feature-rich open source editor built on the Mozilla code base,

which is going to be used throughout all our examples.

NOTE: You can download Komodo Edit for Mac OS X, Windows, and Linux from the ActiveState
web site at www.activestate.com/komodo-edit/.

Like Mozilla, Komodo Edit is an open web and open standards initiative. The open web

aims to encourage a community-driven development of open and non proprietary web

technologies to ensure the viability and open evolution of the Web.

1

http://www.activestate.com/komodo-edit

CHAPTER 1: Development Tools 4

Starting with version 6.0, Komodo Edit noticeably features support for HTML5 and CSS3

syntax out of the box, including support for the -webkit- proprietary prefix. These will all

become very useful throughout this book.

Make Yourself Comfortable
Komodo Edit is so feature rich that it almost seems like a lightweight IDE by itself.

When you launch Komodo Edit, it greets you with an offer to restore your previous

session; answering “no” will take you to the Start Page (always accessible as a special

tab), as shown in Figure 1–1. There, you will find quick links to open files and perform

various actions, and ActivateState has even added samples for each option to help you

get started. You can access these samples from a built-in Toolbox panel, made visible

by selecting the View Tabs & Sidebars menu and then selecting Toolbox. You will also

notice one of Komodo Edit’s interesting assets: project management, which will let you

orderly group all the elements of your projects. In Chapter 4, we are going to create a

web application template that will be used throughout this book, and using Komodo Edit

is an easy way to create, store, and reuse this template.

Figure 1–1. Komodo Edit’s Start Page

CHAPTER 1: Development Tools 5

Another aspect that can seriously enhance productivity is Komodo Edit’s ability to boost

code and file reuse though the handling of snippets, templates, and even macros. You can

create snippets and templates directly by right-clicking a piece of code and selecting Add
as Snippet in Toolbox in the contextual menu, so go ahead—save some time.

Also, as stated earlier, Komodo Edit is based on Mozilla, which means it can be

extended with add-ons. The add-ons management window is available from the menu

Tools Add-ons.

You can also check out the community web site and the extensions section at

http://community.activestate.com/. Chances are the one thing you were missing will

be there. We’re not going to get into thorough detail about Komodo Edit, but it is

definitely worth trying. If you haven’t settled on a source editor or if you like a change in

your working habits from time to time, do check it out. Further documentation is

available on the web site.

What About Dashcode?
You may be thinking, “OK, when I installed Snow Leopard, it shipped with Xcode and

Dashcode, so why not just use that?” You’d be right, because Apple developed this

piece of software specially for this purpose (Figure 1–2).

Figure 1–2. The new project window in Dashcode 3.0

http://community.activestate.com

CHAPTER 1: Development Tools 6

Dashcode is a good tool that generates small but nifty web applications with nice

transitions between views. What’s more, Dashcode makes intensive use of the Model-

View-Controller (MVC) paradigm to rationalize and simplify interactions between

application layers. Nonetheless, it simply doesn’t fit our needs.

First, it is available only on a computer running Mac OS X, limiting its use to developers

owning a Mac; today these still make up a small proportion of coders.
Next, it is visual programming software. You very well could build applications with

Dashcode without ever touching a single line of code. This can be handy, but it is not

our point here. As the reader of this book and a professional web developer, you’re

going to need full control over your code, and you want to know what is happening at

every stage of the developing process to ensure the quality of your web application.

Finally, just like Dreamweaver and other graphical tools, it tends to produce many

framework-specific attributes, making the whole code a chore to alter and maintain, and

it generates too much unnecessary markup and JavaScript. When developing for the

Web, especially for low-memory devices such as mobile browsers, lightweight code

should be a primary concern.

Using the Right Browser
To develop for the Web is to develop mainly for a web browser. Although we are going

to specifically target Mobile Safari (the browser used on the iPhone, the iPod touch, and

the iPad), it can be helpful to have a clear idea of what’s going on in this field. Moreover,

if you already are a web developer, you’re probably used to going through the

development process using primarily one specific browser, and developing on a desktop

browser rather than a mobile device often proves more efficient.

The WebKit
Developing for Apple devices, you’ll have Mobile Safari specifically in mind all the time.

Of course, you can strive to make your applications cross-browser compatible, but this

would mean more code if not less functionality. Moreover, as you’re about to see,

Mobile Safari isn’t as limited a target as it may at first seem.
Mobile Safari and Desktop Safari are based on the WebKit layout engine. The engine

was designed from the beginning to be lightweight and standards compliant. Not only

does WebKit implement the latest W3C candidate recommendations, but it also

implements draft-stage features with the -webkit- prefix.

The WebKit engine also comes with a full set of tools for developers. We will detail

WebKit’s Web Inspector in Chapter 3, and you will soon see that it can be of great help

in your web application development process.

CHAPTER 1: Development Tools 7

NOTE: The best option to develop iPhone (or iPod touch or iPad) web applications is to work on
an Apple platform. However, you can easily install Safari on Windows, be it XP, Vista, or 7. As an
alternative to Safari, we recommend browsers based on the Chromium project, such as Google
Chrome, Chromium, or Iron. All three are available for Mac OS, Windows, and Linux.

WebKit is used by many browsers on all platforms, including mobile devices. Among

others, you may be interested in SymbianOS, Google’s Android, ChromeOS, BlackBerry,

and the recent webOS from Palm. Most web applications you build for Apple’s browser

should work on other mobile devices.

The Gecko and the Fox
Another big actor in the browser market is Firefox, an open source project based on the

Gecko engine. Its compliance with standards is very good, and you might appreciate

one of Firefox’s strongest points: its community. It is infinitely extensible with rich add-

ons, such as Firebug, which is a thorough and usable development and debugging tool.

This makes Firefox an excellent companion when developing for the Web with features

similar to those of WebKit.

Opera
Opera is also available for all operating systems. The Opera team has always put priority

on speed and the respect for standards, and although its browser doesn’t have a major

market share, it is an excellent alternative to the browsers introduced earlier and a good

choice for developers too. Indeed, Opera comes with its own set of developer tools,

Dragonfly. Opera is also available for mobile devices (Opera Mini), which, unlike Mobile

Safari, is a drastically lightened version of the browser and therefore will not let you

benefit from all the standards supported by the desktop browser.

Internet Explorer, Lost at Sea
If you are a Windows user wondering about Internet Explorer, we’re afraid we couldn’t

less recommend this browser for web development purposes. Although it definitely was

an advanced web browser from versions 3 to 5 (the first major browser to implement

CSS support and the first browser to provide then-unnamed Ajax features), it has

followed a path away from standards and as of version 8 still lacks support for many

features such as CSS selectors and properties (CSS2 selectors and properties, that is),

scoring 20/100 at the Acid3 test. It appears that Internet Explorer 9 should mark great

evolution in this regard, but for now, the Trident-based browser isn’t an option.

CHAPTER 1: Development Tools 8

Developing Web-Wise
The Web has standards, the first of which are the World Wide Web Consortium (W3C)

specifications. These give you, the developer, tools to build brilliant web-based

applications. That’s why the first concern you’ll have about a web browser when

developing web applications is its W3C compliance. The more compliant the browser

you choose as your first target is, the more your pages will be functional on other

platforms and the less extra work you will have to do.

Acid...Acid...Acid
The Web Standards Project is an organization dedicated to promoting and encouraging

the respect and adoption of web specifications. Because not all browsers are equal at

this task, it provides a tool to easily check how well a layout engine is keeping up. The

latest version of the test is called Acid3.

TIP: To know what score a browser achieves at this test, just go to
http://acid3.acidtests.org/, and you will get the result within a few seconds.

Mobile Safari passes the test with 100 percent compliance, which is good because it

means many possibilities to enhance your applications. If you’re using another browser

for development purposes, you should have in mind that you could find yourself

thoughtlessly discarding very interesting features of HTML, CSS, and JavaScript.

HTML5 Conformance
Although the Acid3 test is a good way to evaluate CSS standards compliance of a

browser, it doesn’t indicate exactly what is supported. However, you can check the

support for HTML5 features available in a browser using the test page at

http://html5test.com/ and get a detailed table of supported and unsupported

standards.

This test page will list all new APIs, extensions, and HTML5 specificities, indicating the

level of support for them in the used browser. Mobile Safari scores 125 (and 7 bonus

points) out of 300. Though this may seem low, it actually indicates excellent support of

new standards, especially for a mobile browser.

To get more detail about each feature implemented, every element from the list is a link

that will take you directly to the relevant page from the specification.

A Satellite in Your Browser
Another central part of modern front-end development—and especially of web

application development—is JavaScript. We will heavily resort to JavaScript in most of

our chapters and will introduce object-oriented JavaScript programming in Chapter 10.

http://acid3.acidtests.org
http://html5test.com

CHAPTER 1: Development Tools 9

The compliance of the scripting engine of a browser to the ECMA-262 specification (up

to version 3) can be evaluated using the Sputnik test, built by Google and available from

http://sputnik.googlelabs.com/. It is an open source test gathering more than 5,000

points. Safari obtains a very good score, coming second right behind Opera.

Developing for iOS
Although we have introduced cross-platform options for all the tools you may need, you

are going to develop for iOS, and the following software, however useful, is available

only on Macintosh systems. If you don’t have a Mac, do read on anyway; although you

won’t benefit from the applications described in the following sections, we will be

presenting useful resources for your developing adventure.

Using the iPhone and iPad Simulator
There are many reasons why you wouldn’t want to use an iPhone device while

developing your web applications. The good news is that Apple provides a free tool that

does just what you need as soon as you’ve become a registered Apple developer. Just

sign up at http://developer.apple.com/ios/. Then, download and install the free iOS

Software Development Kit (SDK), and specifically its simulator, shown in Figure 1–3.

NOTE: Before downloading, do fetch some tea. You’ll be on for a near-to-3GB download. Once
the installation is complete, the iPhone and iPad Simulator application will be hiding in the folder
/Developer/Platforms/iPhoneSimulator.platform/Developer/Applications/. If you don’t want to go
mad looking for it before each work session, drag a shortcut to the Dock or your desktop!

The main benefit of the simulator is that you don’t have to actually have a proper device

to do your testing and drain your battery by loading pages again and again. What’s

more, not only does it support iPhone simulation, but it now also simulates the iPad,

using a real version of Mobile Safari. It also allows you to run tests on different versions

of the OS without going through the long and annoying process of reinitializing the

device.

http://sputnik.googlelabs.com
http://developer.apple.com/ios

CHAPTER 1: Development Tools 10

Figure 1–3. The simulator offers only a minimal set of applications fit for development purposes

This is the closest you’ll get to an iPhone living on your desktop. As for non-Mac users,

we can only recommend you double-test all your code on a proper iPhone, iPod touch,

or iPad to get a proper grasp of how the actual devices behave.

Using a Real Device Anyway
Using the simulator, you’ll get less functionality, the bare minimum for development.

Take into account that performance may be better on the simulator, which uses your

desktop computer for resources, than on the device. Thus, transitions and advanced

visual effects or multimedia content, covered in Chapters 8 and 9, should systematically

be tested on the targeted product.

Also, because screen size does make a difference, you should always check that all your

text and elements (such as buttons) are readable and usable in order not to harm the

user experience of your web applications.

The ADC Is Your Friend
Whether you have a Mac to install the simulator on or not, it always is a good idea to

register. The Apple Developer Connection (ADC) is resourceful place to browse through

and find help. Being a registered developer will gain you access to tips, screencasts,

interviews, and much more. If you make your way through information irrelevant to you

(that is, information about native iOS applications development), you’ll find how hugely

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1: Development Tools 11

beneficial Apple’s own information can be. The best place to start is the Safari

development page (http://developer.apple.com/safari/), where interesting

information about supported features is available.

Summary
By now, you should have a functional development environment. Whether you have

chosen Komodo Edit or another great editor; whether you’ve picked Safari, another

WebKit browser, or even Firefox; and whether you’ve been able to install the simulator

or not—you have what it takes to make your developing process easier and more

efficient. You’ve also built up some background to comfortably work your way through

this book.
In the next two chapters, you’re going to begin getting your hands dirty. So that you

have a perfect development environment, we’ll help through the process of installing a

server on your computer where you can host your projects. Then you’ll sharpen your

development tools by becoming intimate with an absolute time- and hair-saver, the

debugging tools.

http://developer.apple.com/safari

13

13

 Chapter

Development Environment
You now have tools to create and tools to test. In Chapter 1, we recommended that in

order to properly evaluate your application, you should always test it thoroughly on a

proper device, whichever it is you are targeting. Likewise, the most reliable way to know

how your pages are going to behave on the user’s side is to use them in close to real

conditions right from the development process.

Once you have your application ready and shining, you will have to host it on a server so

it can be served throughout the World Wide Web. Legitimately yet, you may not want to

host your web site on a production platform while still in the development stage.

Because some restrictions and shortcomings apply only when a site is hosted—along

with some welcome conveniences—we’re going to guide you through the not-as-hard-

as-you-thought process of installing a local server on your working machine.

Your new server will provide all you need to develop web applications and follow the

examples in this book. Consider it primarily another working tool. Following just the

steps from this chapter, you will not get into advanced functionalities or fancy

configuration. You will have a ready server, whatever your platform, that will host your

pages and make them available to external devices that share the same wireless

network.

Serving the Web Application
We mentioned there are some restrictions when developing your web applications

directly on local files. Here’s an example before you undertake installing your local web

server: you’ve built a search application with a suggestion feature; when a user starts

typing a word—pow!—that very word he was going to type comes up before him! To

achieve this, you check words from a list on some remote site. You’ve tested your

application thoroughly from local files, and it’s working like a charm. Yet, when you put it

online, no more magic—no more suggestions appear. This is because Ajax, the

underlying technology for such functionality, works only if requests occur on the same

origin. This “cross-domain” restriction didn’t happen when you were testing because

local files don’t have a domain and because, using the file:// URL scheme, the

2

file://URL

CHAPTER 2: Development Environment 14

execution context is different. That’s why you had never noticed this problem—until it

was a little too late.

Another shortcoming if you’re using the iPhone Simulator or a proper device in your

developing process—which you should—is that neither can access files on your local file

system. Hosting your pages is a necessary step to use the simulator as well as your

targeted device—iPhone, iPod touch, or iPad.

Mac OS, Making Things Easy
The latest versions of Mac OS X ship with all the components needed to set up a

working server. Although site hosting is useful to developers (among others), it usually

isn’t their primary field of knowledge. Luckily, the configuration process has been made

extremely straightforward. Just follow the steps in the next sections.

An Apache in Your Mac
Open System Preferences … from the menu, and from the window that appears, open

the Internet & Wireless section. Click the Sharing icon, and select the Web Sharing

check box (see Figure 2–1). Managed that? Well, good news—your server is set up!

Figure 2–1. The Mac OS X Sharing panel

Clicking the personal web site link, Safari, or whatever your default web browser is will

open a window using the default files from your new personal site, shown in Figure 2–2.

You can modify and add files for this site in your /Users/username/Sites/ folder, where

username is your session user name.

CHAPTER 2: Development Environment 15

Figure 2–2. The default web site

The second link will lead you to the computer’s web site. Accessing this URL will give

you the common “It works!” message found on the Apache default installation. The files

for this web site are located in the /Library/Webserver/Documents/ folder.

If you just can’t remember URLs like 192.168.1.100 or can’t be bothered to type them,

you can also access your site using the computer name. The URL would look something

like http://computername.local/~username/.

These simple steps allow you to build a web site with your primary languages—HTML,

CSS, and JavaScript. This is the minimal configuration you need to start making hosted

web applications, but for building a modern web site, you will probably want to use

some brand of server-side scripting language to add more interaction between your site

and the user. We’ll be using PHP for some examples in this book, so we recommend

you follow these steps. It isn’t as “click-and-go” as the first part of the install, because

you’ll be modifying a configuration file with administrative privileges. Still, don’t worry: it

isn’t as difficult as it is impressive.

The Script Engine
Open a Terminal window, and type the following command:

sudo vi /private/etc/apache2/httpd.conf

You’ll be asked for an administrator password. You probably are the administrator for

your computer, in which case the password is your session password. However, if you

are using a company machine, you’ll may have to ask someone to type one for you. The

apache2 configuration file should open in Vi, within the Terminal window.

http://computername.local/~username

CHAPTER 2: Development Environment 16

NOTE: We won’t be using command-line tools to edit files often in this book. Nonetheless, when
we will, we’ll use the well-known Vi. If you’re not familiar with command-line text editors, you
may find them a little frightening. They do often have a steep learning curve. However, because
some are popular and truly feature rich, we thought we might introduce one here.

If, on the contrary, you’re not a Vi fan and you’ve installed Komodo Edit, check out the option to
enable Vi-type behavior in the Komodo ➤ Preferences… menu item; select Editor ➤ Key
Bindings, and choose Enable Vi emulation, the second option from the top.

Once the file is open, move your cursor down until you reach the lines that look like this:

...
#LoadModule php5_module libexec/apache2/libphp5.so
#LoadModule fastcgi_module libexec/apache2/mod_fastcgi.so
...

You want to uncomment these lines by removing the # signs to enable these modules

and allow PHP scripts to execute properly. To do this, type a (for append), uncomment

the lines as you would do in any editor, save your changes by typing esc to exit editing

mode, and then type :wq (for write and quit).

For your configuration changes to take effect, restart the server by deselecting and

reselecting the Web Sharing option in System Preferences or, right from your Terminal

window, by typing this:

sudo apachectl restart

You may be wondering what you have just done. The first line tells the server to load the

PHP5 module, allowing you to run PHP scripts on the server side. PHP is a popular,

open source, and very powerful general-purpose scripting language. In its latest version,

it features object-oriented programming and many functions to make a developer’s life

easier.

The second line allows separation of script execution and other server tasks. To put it

simply, the server and the PHP module—or any other module implementing the FastCGI

protocol—run as independent applications, with distinct resources and processes. This

accordingly means that if a script crashes PHP, the server won’t need to be restarted.

So, without even noticing, you’ve made it: you’ve set up a server with PHP5 on your

working machine to make the developing process both easier and more professional. If

you’re the curious kind, we bet you’ve even modified a few things on your new site (that

is, if you’re a Mac user, of course). Next is the guide to achieve similar results on a

Windows machine.

Windows, Choose Your Weapons
To install a server on your Windows machine, your first move is to get Internet

Information Services (IIS) and the components to run PHP. Microsoft has made great

CHAPTER 2: Development Environment 17

efforts lately to make this task much easier than it used to be. http://php.iis.net/,

shown in Figure 2–3, is a site specially dedicated to server installation. Go there, and

click the Install PHP button.

Figure 2–3. PHP for IIS by Microsoft

Of course, you can use any web browser to access this site and proceed, but we

recommend you use Internet Explorer for the following operations to ensure everything

goes as planned.

An All-in-One Installation Process
Follow the on-screen instructions. You’ll be asked to download the Web Platform

Installer (Web PI), a lightweight tool that will help you deploy a complete web-serving

platform on your machine with stunning ease.

http://php.iis.net

CHAPTER 2: Development Environment 18

NOTE: The Web Platform Installer needs the .NET Framework version 2.0. If surprisingly your
.NET version was outdated or not available on Windows XP, it will guide you through the upgrade
before resuming the regular server installation.

Also, the installer won’t work with more basic versions of Windows, including Windows Vista
Home Basic and Windows 7 Starter Edition.

Once the download is complete, run the application. If you are using Vista or 7, your

system will ask your permission to run the Web PI add-on in your browser. Click the bar

under the browser tabs (Figure 2–4) and approve by selecting Run ActiveX Control (for

Vista) or Run Add-on (for 7). If you’re suspicious, you can get details about what is going

to happen from the drop-down menu. Yet, this is Windows software, so you can trust

it... On 7 only, you will be asked for allowance again before the program is run. This is

the regular process, so just click Allow to continue.

Figure 2–4. Click Run Add-on to launch the installer

At this stage, a window should appear with an Install PHP check box selected, as shown

in Figure 2–5. You may appreciate that, from tabs on the left, you can choose to install

popular components along with the base server. These include open source content

management systems (CMSs), e-business solutions, and wiki engines. If any from this

software selection trigger your interest, just select the boxes, as shown in Figure 2–6,

and the installation will be added seamlessly.

CHAPTER 2: Development Environment 19

Figure 2–5. The Web Platform Installer

Figure 2–6. Easy to set up

Whether you’ve chosen to add extra treats to your server or not, accept the license

contract, and watch the install complete. This should all be fast enough, unless you’re

on dial-up. You can now return to your browser and type http://localhost/. This is

your local web site!

http://localhost

CHAPTER 2: Development Environment 20

Now, you can take control over your web site and—why not?—add more web sites

using the dedicated Internet Information Services (IIS) Manager administrative tool you’ll

find in the Control Panel.

However, you have one final step to go through to make this site available to external

devices, which is to make the Windows Firewall allow access to the web service. This is

done similarly on both XP and Vista. You’ll see that adding an exception to the Windows

7 Firewall is a slightly different story.

Security Settings
On Windows XP, open the Start menu, and choose Security Center from the Control

Panel window. Select “Manage security settings for: Windows firewall” at the bottom of

the window. Clicking the Exceptions button, you will see the “Add port...” option. Click

this button, and add an entry for port 80 through TCP to make your site available.

WARNING: If you have installed some kind of security software, it is possible that the firewall in
use on your system is not that of Windows. We cannot cover all configurations in this regard, so
we recommend you look into the documentation for your software.

On Vista, from the Control Panel, click “Allow a program through Windows Firewall”

under the Security section, as shown in Figure 2–7. From there continue as in XP.

Figure 2–7. Steps are easy on Windows Vista

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2: Development Environment 21

The latest Windows system has added a lot of configuration functionality, losing some of

the simplicity you could experience with XP or Vista. Still, the operation remains fairly

straightforward as long as you know where you are going.

Once you’ve opened the Control Panel, at the bottom of the “View and create firewall

rules” section, choose the Inbound Rules option, as shown in Figure 2–8. Then, in the

new appearing screen, click New Rule from the top of the right pane. A wizard will guide

you through the subsequent process.

Figure 2–8. Windows Firewall with Advanced Security on 7

Choose to add a port rule, and click Next. From there, select the TCP protocol and

specify 80 as the local port. On the two following screens, leave all selections

unchanged. Then give a name to your new rule, and click the Finish button to save it.

There you are, pretty much ready to build your web applications on your Windows

server! You can start adding files to the default site location, in the C:\Inetpub\wwwroot\
directory.

Yet, there is one restriction in using your working machine to serve pages to an Apple

device. Because Microsoft and Apple use different communication protocols, you can

access your site only using the IP address. To find out what IP your Windows OS is

CHAPTER 2: Development Environment 22

using, simply run ipconfig at the command prompt. This will return the IP currently in

use.

Linux, Take Control
For the Linux install process, we’re going to take you the command-line way. There are

two main reasons for this. First, we believe it is the easiest way to install an Apache

server on a Linux box. Second, there are so many different graphical tools for installing

packages on so many Linux distributions that we couldn’t cover them all. Anyway,

setting up an Apache server with PHP enabled through the command line is pretty

simple, so don’t worry.

NOTE: We’re using apt-get in our examples, which is the front end to the widespread
Advanced Packaging Tool (APT) that is used notably in the Debian and Ubuntu distributions. The
package names will be the same whatever your flavor of the kernel, and they most likely are in
the distribution’s repositories. Just check whether you should use yum (yum install ...),
pacman (pacman -S ...), or something else.

As promised, the install begins by opening a Terminal window, and your first command

will be as follows:

sudo apt-get update

The shell will update your package database. This is to make sure you get a clean install,

that versions don’t mixed up, and that there are no dependency issues. Next is the

actual install command. You then use apt-get again, but with the install option. On

one line, type this:

sudo apt-get install apache2 libapache2–mod-php5 php5-mysql

Output will appear in the Terminal window for a few seconds while the packages are

installed, and then you will see the prompt again. That’s it!

Depending on your distribution, your server files will not be found in the same directory.

On Debian-based distributions, the root directory is /var/www/. Because we cannot list

all possible cases here, we recommend you visit Apache’s wiki at

http://wiki.apache.org/httpd/DistrosDefaultLayout. This page references all the

information you need to get about where the most important Apache files are located on

your system. Whatever your flavor of Unix, you can see your site in a browser at

http://localhost.

The final touch to your server install is to make the server your own, that is, to change its

ownership from root to you. This is easily done on the command line with the chown

command (CHange OWNership):

sudo chown -R username /var/www

Now, you can modify all files and directories on the web site without using the sudo

command you used to install it. That wasn’t difficult, was it?

http://wiki.apache.org/httpd/DistrosDefaultLayout
http://localhost

CHAPTER 2: Development Environment 23

Handling Multiple Hosts
Whatever your developing platform, you have a server set up to host all your upcoming

web applications. If you want to test your web applications in real-life conditions, there

is still one thing to set up, though.

This is necessary for at least one reason: when using Ajax, the so-called cross-domain

limitation, of course, wouldn’t apply if you were hosting all your pages on the localhost

domain.

To remedy this, you have to create a different local host on your computer. You do this

by modifying the hosts file on your system to define new domains that should point to

your local server. This will in turn allow you to test pages on these domains as if they

were on the World Wide Web.

NOTE: Please note that although you can use any URL with any top-level domain (TLD), we
recommend you don’t use existing TLDs to avoid conflicting with existing web sites. Naming your
local site apple.com would mean you couldn’t go to the actual Apple site anymore!

Unix-Based System
The hosts file is generally nested in the /etc/ directory, the same as your Apache

configuration file. On most Unix and BSD systems, it should be at the root of this folder,

with other system-wide configuration files. Because root privileges are needed to edit

such files, we are going to open it in the terminal with Vi, running the following:

sudo vi /etc/hosts

A rather short file appears on-screen, looking something like this:

Host Database

localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.

127.0.0.1 localhost

After this line, add another rule to the file following the same scheme, with 127.0.0.1

and your site name.

127.0.0.1 localhost
127.0.0.1 www.example.local

You can now save your file and test this newly created domain in your browser. You

should see the same page as the one previously configured with your web server.

http://www.example.local

CHAPTER 2: Development Environment 24

Windows-Based System
On Windows systems, this file can be edited with any text editor, without special

privileges. You can, for instance, use Komodo Edit here. The /etc/ directory is located in

C:\Windows\System32\drivers\, and there you will find your hosts file.

Its contents will look a lot like those of Unix and BSD systems. You should apply the

same changes as in the previous section. Your changes will be automatically taken into

account.

Configuring Multiple Web Sites
Now, as a treat, there is one last thing we will go through. This step is not necessary; we

just thought it might be desirable to some of you. Specifically, we will explain how to

create multiple sites on your server. Thus, working on several projects, instead of using

subfolders, you can make your browser understand proper addresses.

In addition to the organization benefit of using different site names in different folders,

you will benefit from some notion of a “root directory,” be it with PHP, HTML, or CSS.

Practically, in PHP, you will access this information using the

$_SERVER['DOCUMENT_ROOT'] environment variable. Writing HTML and CSS, if you start

an URL with a slash (/) character, the browser will understand that the path you are

calling will start from the top of the directory structure down. On the site

http://localhost/example/, /images/hey.png means http://localhost/
images/hey.png.

Apache 2: Get Carried Away
The following steps apply to Apache servers, in other words, the server type you

installed on Mac OS X and Linux platforms. As a lucky Unix user, you will yet have to

adapt a little, because, as you’ve experienced earlier, all platforms don’t install Apache

in the same way. You have to find Apache’s main configuration file, which you are going

to modify. There are other ways to manage virtual hosts, but this one is closest to

platform independent.

Checking the Configuration
As in the install part, you are again going to edit the file with Vi in the terminal. Open a

Terminal window, and type in one of the following two commands depending on your

system:

sudo vi /private/etc/apache2/httpd.conf # On MacOSX
sudo vi /etc/apache2/apache2.conf # On Debian

A file will be open with variable content depending on your system. The first thing you

want to do is to check for these two lines:

http://localhost/example
http://localhost

CHAPTER 2: Development Environment 25

Ensure that Apache listens on port 80
Listen 80

Listen for virtual host requests on all IP addresses
NameVirtualHost *:80

If they exist, very well, you can go to the next step. If they don’t, you should add them at

the end of the file. To do this in Vi, move your cursor to the end of the file, and again

type a (for Append) to enter edition mode. These rules ensure your Apache server will

listen for HTTP requests on port 80, whatever the IP (which is the reason for the *).

Configuring Your First Virtual Host
Next is creating the actual virtual host. At the very least, you need to give a name to your

site (an URL) and the path to the document root (where your files will go). At the end of

your configuration file, add the following code using the names and paths you want:

<VirtualHost *:80>
 DocumentRoot /var/www/example
 ServerName www.example.local
</VirtualHost>

WARNING: Adding a virtual host using this directive will override the main host that was initially
installed. To prevent this, you should create a virtual host using the global server name and
document root from that host prior to adding new ones. You will find the information you need
within the main Apache config file you are editing.

Once you have performed all the changes you needed, you can save the file and quit Vi

by typing Esc key and then :wq (write and quit). Then, restart your server. If you are a

Mac user and you have followed the Apache install process, you already know how to

do this. For Debian users, run the following command:

sudo /etc/init.d/apache2 restart

Apache now knows your site exists, but the rest of your system doesn’t as long as you

haven’t added it to your hosts file. To fix this, you should follow the steps explained

earlier to modify this file.

You now can check your new site in a browser, typing the server name you’ve chosen. A

rather empty page should appear, because your document root holds no files.

Nevertheless, it is functional, so we’ll be meeting you in the next chapters to fill it with

exciting homemade web applications.

http://www.example.local

CHAPTER 2: Development Environment 26

The Windows Case
If you’re a Windows user, whether you can set up a virtual host depends on which

operating system you have installed. Before Vista, it wasn’t possible to configure

multiple sites on a workstation machine. XP users can only simulate multiple sites by

editing their hosts file, as explained earlier.

For Vista and 7 users, however, you can access such features changing the Internet

Information Services configuration from Control Panel ➤ Administrative Tools ➤ Computer
Management. Then, from the window that appears, unfold the Services and Applications

section in the left pane, and choose Internet Information Service Manager.

NOTE: If the relevant menu doesn’t appear under Windows 7, change the display mode for the
Control Panel window to small or large icons from the top-right pop-up menu.

At this stage, your window should look like Figure 2–9.

Figure 2–9. The IIS Manager view

Next, right-click the Sites directory in the second pane from the left, and choose Add web
site from the contextual menu. The form that appears is quite simple, as shown in Figure

2–10. Just fill it in with the listing name you want for your site, its root directory path, and

the URL you want to access it by.

CHAPTER 2: Development Environment 27

Figure 2–10. The web site configuration panel

Your site is now ready to fly! If you seem not to be able to access the desired URL from

a web browser, check that it has been added to your hosts file. Otherwise, your machine

would not know that this address should be looked for locally.

Have You Made It?
Wasn’t that easier than you expected? Setting up a basic server isn’t necessarily a

complicated task, especially since the two major OS companies have been through

great efforts to make it even more accessible. If you’re the believe-it-when-I-see-it type,

here’s the perfect test for you. Create a PHP file in your server root directory. In Komodo

Edit, this is done by going to the menu item File ➤ New ➤ New file… and choosing the

PHP file template. In the newly created file, type the following code:

<?php
 phpinfo();
?>

Save the file to your server root directory under the name index.php. Now open your

local site in a browser: you should see tables with details about your server

configuration. This means two things. For one, you’ve run a PHP script, which means

everything is OK; then, you can check all the options available on your new server.

CHAPTER 2: Development Environment 28

WARNING: if your browser offers to download the file, something has gone wrong during the
installation. Check the steps described earlier to find out what has been forgotten.

At this stage, you can even open this page in your favorite Apple device. There are just a

couple of conditions you need to check: for all systems, you need your computer and

device to use the same Wi-Fi connection. This is always the case using the SDK

simulator, because the server and simulator share the same computer. On a Windows

system, as we explained earlier, you will have to type the IP address, not the computer

name.

In all cases, if you choose the IP address solution, be aware that most Wi-Fi connections

use Dynamic Host Configuration Protocol (DHCP). This means the IP address will be

attributed dynamically and thus will be likely to change: whereas you may be able to

access your server with the same IP any time at your home or office, switching from one

to the other—or establishing a connection at Starbuck’s—will probably require you

make a change.

Bet You Have!
Well, you’ve begun doing exciting things here. Perhaps for the first time, you’ve set up a

functional server to host and serve your work in progress before showing it to the world.

It is also possible that you now have a better understanding of how web sites work,

which is also a good point. Now, the last, but definitely not least, thing we have to do to

make this setup part complete is to introduce the tools you’ll be extensively using all the

way through your web app developer’s life: the debugging tools.

29

29

 Chapter

Introducing Developer
and Debugging Tools
It isn’t obvious that developing for the Web would require specific debugging tools or

that such tools would even exist. Not so long ago, front-end development was seriously

lacking good tools to analyze and debug page components. But the Web has evolved

tremendously: front-end debugging tools have flourished, and most major browsers

nowadays come with built-in debugging tools or easily added extensions.

The proliferation of such solutions is recent but by no means surprising. Building a web

site generally means tightly combining a markup language, a styling language, and a

scripting language. As sites get more and more complex, it can get ever more

complicated to keep track of all the elements of these building blocks.
Because we are going to be working specifically with Mobile Safari, which is a WebKit-

based browser, and because WebKit’s debugging tools for Desktop Safari are extremely

well designed, let’s get started with Safari’s developer tools. You’re one step away from

handling real-life code now, and we assure you that mastering these tools will save you

a lot of time and hassle.

In this chapter, we will talk about the developer tools in Safari. The features we introduce

are mostly available using other WebKit browsers, yet we cannot guarantee that all the

features will be found in the same place or using the same process.

Making Friends with WebKit’s Developer Tools
Not only does WebKit come with excellent support of web standards, but it also

provides advanced tools such as a great live document and styles editor and a full-

featured JavaScript debugger to make the life of front-end developers easier. These will

help you considerably speed up your development process throughout its different

stages. From simple control of your HTML markup to database management following

the latest HTML5 standards, we are going to help you activate and use these tools at

their best.

3

CHAPTER 3: Introducing Developer and Debugging Tools 30

NOTE: At the time of this writing, we are talking about the latest nightly build of the developer
tools. You may be using an older version of these tools. If you are missing some functionalities,
you can always get the latest build from WebKit’s site at http://nightly.webkit.org/.

Enabling the Develop Menu
Naturally, the first step to use these tools on Safari is to start Safari. From the

Preferences window (File Preferences…), choose the Advanced tab. In this section, you

want to select the “Show Develop menu in menu bar” option (see Figure 3–1). You now

have an extra menu entry in your browser’s menu called Develop. You can also add an “i”

button to your toolbar, and you can always access the tools by right-clicking any

element on a web page and choosing Inspect Element from the contextual menu.

Figure 3–1. You can enable the Develop menu from the Advanced preferences

The Develop Menu Exposed
Let’s now explore the Develop menu, shown in Figure 3–2. Your first option allows you

to open the current page in any other browser you have available on your computer.

Because we are targeting Safari, you probably won’t use this option a lot.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://nightly.webkit.org

CHAPTER 3: Introducing Developer and Debugging Tools 31

Figure 3–2. Many options are available directly from the new Develop menu

The second option, however, may come in handy more often. With WebKit’s developer

tools enabled, you can change the user agent for Safari, which technically means

changing the string the browser sends to the distant server to identify itself as such or

the engine, engine version, and so on. If you’re going through your developing process

on Desktop Safari but you want to implement browser- or platform-sniffing capabilities

(instead of relying on features detection) to enable specific features for some users or

you want to access a site blocked to browsers other than Mobile Safari, this is going to

help. Changing the user agent header sent by your desktop browser through this menu

will make websites recognize your client as Mobile Safari on iPhone, iPod touch, or iPad.

The Show Web Inspector and Show Error Console items will both open the Web Inspector,

respectively focusing the Elements Inspector and Console sections, which we will cover

in further detail soon.

The Snippet Editor menu item will open a different window. This idea behind the snippet

editor is that building or tweaking a web page can be a cumbersome process. Creating

files, modifying, saving, reloading in a browser window, and starting again can be a long

process and require switching between many windows and applications. The snippet

editor handles all this from the same dual-pane window. We’ve used it extensively to

test code examples for this book, so we believe that it can be a great help to you too.

The upper part of the window is for you to write your code. It handles HTML, CSS, and

JavaScript, and it can manage huge amounts of it. The lower part updates as you type

CHAPTER 3: Introducing Developer and Debugging Tools 32

to show you the code as it would appear in a proper browser window. In prototyping

stage, this can allow you to easily test your code and try plenty of alternatives.

The next entries give you direct access to advanced JavaScript debugging tools inside

the Web Inspector window. These will let you quickly debug scripts by providing tools to

selectively study your code’s behavior and components. Again, we will get deeper into

these soon.

The last group of options allows you to modify the browser’s behavior. Obviously, cases

where your end user would diminish the capabilities of the browser are quite unlikely,

because all these characteristics, especially the graphical interface and JavaScript

functionalities, are at the heart of a web application’s identity. Accessing the richness of

the Web nowadays with JavaScript disabled has become an almost impossible task,

and it is likely you wouldn’t want to develop an application without client-side scripts.

Still, you should take into account that some of your users may not enable script

execution and therefore should serve understandable content all the same.

Nevertheless, the Disable Caches option will come to some avail, because not only is it the

best way to test first-visit loading times, but it will also let you test your page when the

advanced HTML5 caching abilities are not available.

Developing on Mobile Safari
Let’s take a minute to talk about Mobile Safari. The functionalities available on the

iPhoneOS browser are limited compared to what we are about to cover, because you

can use a console only. You can open the console by tapping Settings Safari

Developer (at the far bottom) and switching the Debug Console option to ON (see Figure

3–3). Also note that you will be able to disable JavaScript or cookies and empty the

browser cache to simulate specific browsing conditions.

CHAPTER 3: Introducing Developer and Debugging Tools 33

Figure 3–3. You can switch the console on from the iPhone settings

After that, the Debug Console will show right under the address bar in your Mobile Safari

windows, displaying the number of HTML, CSS, and JavaScript errors in the page or

displaying “No errors” if no errors have occurred (Figure 3–4). Tips and custom

messages can also be displayed using the Console API that we will explore later in this

chapter.

Figure 3–4. The Debug Console appears under the address bar

Tapping the error count will open a list of errors with the line where each occurred and

the option to filter them by type—HTML, CSS, JavaScript, or All (see Figure 3–5).

CHAPTER 3: Introducing Developer and Debugging Tools 34

Figure 3–5. The console shows all the messages

Be careful, though: the console truncates log entries when they get too long. Try not to

generate logs that would span beyond two or three lines, and always focus on the core

information you need. To make this less limiting, you can still turn the device to make

line longer, which would make your two lines hold a little more content.

Overview of the Web Inspector
Before going through each separate function of WebKit’s Web Inspector, the best

approach is to get to know the tool as a whole. Invoking the Develop window for the first

time will launch a new window by default. Once you have used it once, your last

choice—a proper window or a docked one—will apply automatically.

NOTE: From now on, we will designate the Web Inspector as window, regardless of its being in
window or docked state. Likewise, we will refer to the inspector as related to a browser window,
although obviously you can open an instance of the Web Inspector for any browser tab.

CHAPTER 3: Introducing Developer and Debugging Tools 35

The Developer Tools Window
At the top of the window (Figure 3–6), you will find the main series of icons that will act

as tabs, giving you access to the various debugging tools. They represent, in order of

appearance, the elements inspector, the resources tracker, the script debugger, a

timeline inspector, a script profiler, a client-side storage manager, audits, and the

console.

Still on the upper part of the Web Inspector, on the right side, is a search field. This field

is contextual: it allows you to perform an advanced search within the main area of your

current view. For instance, if you are working on your HTML markup, performing a

search in this field will search elements within the document; running a query while on

the Profiles tab will return the query element in all the profile data.

Figure 3–6. The developer tools window focused on the Elements Inspector

At the bottom of the window, you have several icons that will be different depending on

which tool you are using. In all sections of the debugging tool, though, you will find a

window icon and a icon showing a line preceded by an arrow. The first icon lets you

dock the Web Inspector window to its parent window, which is very useful if you are

working with several pages and a debugger instance for each. It also can prevent you

from looking up and editing code from the wrong window by mistake!

The second icon will fire up a console. The console is available regardless of the tool

you are currently using. It can be triggered by pressing the Esc key. Next to these icons,

CHAPTER 3: Introducing Developer and Debugging Tools 36

if you are inspecting an HTML element in the page, the path to this element in the

document tree will be presented in a “breadcrumbs” manner (“html > body” in Figure 3–

6) to help you easily navigate the document.

A strong asset of the inspection window is that it is closely related to the page on which

you are working. Data in this window will update as the page is modified. If you click a

link and land on a different page, the inspector will entirely change its content too. As a

consequence, you can inspect only one window with one debugger instance. This

shouldn’t be an issue, because you can open as many inspector windows as you need,

whatever number of pages you have open.

Error Notifications
If something is going wrong in your page—a fair reason to inspect your code—one of

the first places you should be looking within the inspector would be at the bottom-right

side of the Web Inspector window (Figure 3–7). There, if the WebKit interpreter has

identified errors in the code, you will see a red number preceded by a white-on-red

cross for errors, and another yellow number next to a warning sign for warnings.

Figure 3–7. Two icons indicate errors and warnings thrown for the current page; these will be described in the
console

Clicking these numbers will open a console area where the reported errors and warnings

will be listed, together with the operations run by WebKit in order to fix them and the line

where they occurred in the file.

For instance, in XHTML documents, it is common to get mixed up between self-closing

tags and tags that require full closing. If you use a <link> tag that you have closed using

the corresponding </link>, you would get the following message:

Unmatched </link> encountered. Ignoring tag. YourPage.html:14

This lets you search the element in the source code using the indicated line number,

which also is a link that will take you directly to the relevant line using the Resources

viewer that we will soon introduce.

“Ignoring tag” here doesn’t mean that your link will be dropped altogether; it simply

means that the unexpected closing tag will be ignored and won’t appear in the DOM

tree. This is the way WebKit interprets your code to render your pages. Be attentive to

these errors, because they can cause side effects; for instance, not closing tags such as

<script> or <canvas> would result in the elements following them being considered as

script or canvas content—and not being displayed.

CHAPTER 3: Introducing Developer and Debugging Tools 37

Master Your Code
Perhaps the most obvious way to get started with WebKit’s Web Inspector is with the

base of your web application: the HTML markup. It probably is the easiest way too. The

Elements Inspector is accessible through different actions. All have their pros, which we

will cover now.

Make the Document Yours
The primary way to inspect page components is by selecting the first tab on the top bar,

named Elements. It will open a well-presented, syntax-colored tree for your page that

occupies most of the Web Inspector window (see Figure 3–8). On the right, you can see

a sidebar holding several collapsible panes. By default the <body> tag is highlighted, but

you can always invoke the Elements tab by right-clicking any area in the page and

choosing Inspect Element from the contextual menu.

INFO: Because the debugging tools are built with HTML, CSS, and JavaScript, you may
mistakenly begin inspecting the debugger window instead of the code you intended to. Although
this may seem to be a limitation of the inspector, it can be useful for those willing to extend the
tools. The inspector’s evolutions are widely community-driven. We encourage you, if you have
the skills and time, to join in and help improve them yourself.

The major asset of this method is that when debugging a page, you generally know

roughly where the problem is. By invoking the inspector from a specific area in the page,

the document tree will be unfolded down to the node you want to analyze.

What’s more, when hovering over an element in your page, the element will be

highlighted, with a translucent light blue showing its inner boundaries and a darker blue

showing its padding and margins. This means that without even getting your mind into

the document tree, you can get a grasp of the layout of your page constituents.

CHAPTER 3: Introducing Developer and Debugging Tools 38

Figure 3–8. Visual feedback inspecting the code under the book cover image

Because getting a visual idea of the layout of your page can be an attractive tool, you’ll

be satisfied to learn that the latter functionality is available from most sections of the

debugging tools by clicking the magnifying glass icon in the bottom status bar.

Of course, getting a representation of your element’s layout generally won’t be enough

to seriously analyze what’s going on in your code. Let’s take a closer look at the

Elements Inspector.

No matter how the code you wrote was presented, the inspector’s document tree will be

appropriately indented with a new line for each new node start. Also, the code will be

clearly colored to make it more readable: violet for tags, orange for attribute names, and

blue for attribute values. You will even see your inline comments in green. Clicking the

disclosure triangle on the left of any node start will toggle its state so you don’t end up

with endless line feeds to scroll through.

Dig Your Style
In the first pane you have several categories, representing all the styles that are applied

to your element, shown in Figure 3–9.

CHAPTER 3: Introducing Developer and Debugging Tools 39

Figure 3–9. The Elements Inspector sidebar

The first category of styles from the top is very useful; “Computed Style” is the style the

WebKit renderer has taken into account, calculated, and applied. This is handy because

it lets you, at a glance, see all the styles that your element effectively has. For several

reasons, the computed style also comes in use with rules resorting to numerical values,

such as width and height in Figure 3–9. CSS makes extensive use of relative values

using units such as ems or percentages. Because all computed sizes are expressed in

pixels, comparison is easier.

But the computed style is nothing when debugging your page if you cannot determine

what the style has been computed from. This is where the subsequent subpanes come

into the picture. Each subpane represents a separate manner in which styles are

applied, ordered from the latest applied to the earliest. Style rule specificity in CSS is

considered in the following order: styles applied with the style attribute (inline styles) are

applied first; then, from <link> and <style> tags, id and class selectors; then document

tree selectors (more selector specificity meaning more precedence—note that the

“weight” of the parent, whether it is evoked with an id, a class, or a tag name, counts);

and finally tag names.

TIP: By default, all color-related rules are expressed using RGB or color names (if available). If
you prefer to use other color formats in your code, you can switch between hexadecimal, RGB,
and HSL either by clicking the colored square next to the rule (this will change the format only for
the current rule) or by changing the format by using the gears icon on the top-left side of the
sidebar.

All rules will be listed. However, because not all rules will be finally applied, you will

notice in the other sections of the sidebar that some are ruled out, showing which style

CHAPTER 3: Introducing Developer and Debugging Tools 40

is overloaded by another rule. Again, this presentation gives you precise insight into how

your page styles are working.

Editing Styles
Understanding is good, but to be able to modify your style rules directly from the

sidebar is even better. You can do this in three ways. First, to deactivate a rule, you

would simply deselect the box on the right side of the rule. Your page will immediately

act as if this rule had never existed, and style inheritance will be updated accordingly.

To go further, you can edit rules by double-clicking any value, as Figure 3–10 shows.

This will show you the rule as editable and let you enter whatever you like. Press Return

or click outside the editing area to save and apply the new rule.

Finally, in the latest versions of the inspector, you can create new selectors from scratch

to apply styles on several elements at a time. This is done from the option menu,

represented by a gear in the top-right corner of the sidebar. Again, a new field will

appear, but you will be able to enter both a style rule and the selector to which it applies.

As previously, press Return or click outside the editing area for changes to take effect.

Figure 3–10. CSS properties are easy to edit

Not only does the Web Inspector allow you to get a firm understanding of your page, but

it also gives you tools to get into serious prototyping without going through the hassle of

inspecting, modifying your file, saving, reloading the page, and so on.

Metrics
The second pane from the top, Metrics, offers a visual representation of the size-related

rules applying to the page element, namely, margins, padding, borders, widths, and

heights, all shown in Figure 3–11. These rules together are referred to as the box model.
The latest version of the inspector also adds position information for elements with a

position property set to relative, absolute, or fixed. This representation, of course, is

much faster to use than the CSS rules list found on the Styles pane, and just as you can

modify rules inside the latter, you can modify dimensions from the former by double-

clicking the value you want to change. You may note that, as within the computed style

category, values here are processed to all be given in pixels regardless of the initial

definition.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: Introducing Developer and Debugging Tools 41

Figure 3–11. The Metrics pane

TIP: On both the Styles and Metrics panes, you can modify numerical values by double-clicking
them and using the up and down arrows on your keyboard to increment or decrement by 1
(default), 10 (combined with Shift), or 0.1 (with Alt).

The two lower panes in the elements inspector may seem a little more cryptic. They are

no less useful.

Properties
Each element in your page is accessible using an instance of a DOM object, which

allows you to work with this element from within your JavaScript code. As such, each

element has properties of its own and inherited properties. For instance, an <h1> tag is a

DOM HTMLHeadingElement instance with HTMLHeadingElement properties but also

inherited HTMLElement object properties and methods, and so on, up to the Object object

properties.

The different collapsible categories in the Properties pane show an alphabetical list of all

the properties and methods of the currently selected object (Figure 3–12). Of course, a

DOM element doesn’t have only fixed property values. The innerHTML property, for

example, will be different depending on the page it is used in; the Properties pane lists

all these variable values at the time of inspection.

CHAPTER 3: Introducing Developer and Debugging Tools 42

Figure 3–12. The Properties pane

Knowing all this probably won’t be of any help when editing HTML or CSS, but it

definitely can be when writing JavaScript. It brings you a whole range of information to

build with or upon that represents the DOM with all the dynamic potential it has. We say

not only “build with” but “build upon,” because scripting with JavaScript, you probably

will be adding properties to your elements. The Properties pane will update as you type

or execute scripts, so you can always get a relevant picture of your document and

object state.

Event Listeners
The last trick to complete your vision of the DOM through the inspector is, precisely, to

see where in the page objects are likely to change. Now, by switching to the last sidebar

pane, Event Listeners, shown in Figure 3–13, you can see whether any JavaScript

event—like a click or load event—is attached to it.

Figure 3–13. The Events Listeners pane showing listeners hierarchy

CHAPTER 3: Introducing Developer and Debugging Tools 43

Events are grouped by type, and each event can be unfolded to reveal the functions

related to it in the order they are called. This would let you see, for instance, why your

listener might never be called—because it is possible to stop propagation from a

listener. It would also let you discover memory leaks due to the unexpected stacking of

listeners based on anonymous functions, which are more complicated to stop than

regular listeners.

Having a list of nodes to which an event is attached is useful when you want to know

whether an element is related to a script, but what is especially useful is to have a list of

all dynamic elements as a new way to inspect the DOM and to find bug causes such as

JavaScript conflicts.

Advanced Search
In addition to the collapsible representation of the document tree and the magnifying

glass tool that allows you to select elements directly where they are shown, there is

another, more advanced tool available to you when inspecting your HTML document.

It’s the search field at the top-right corner of the Web Inspector window. We are talking

about this tool now because its most nifty uses are those regarding HTML searching,

but the search field is always available to the debugging tool currently in use and will

yield results from and related to what you have before your eyes.

Searching the HTML markup can be done using advanced options. If your search

returns any results, the number of items will be reported on the left side of the search

field, as shown in Figure 3–14. All matching occurrences will be highlighted in the

document tree, and the first one will be selected.

Figure 3–14. The number of matches is shown at the left of the search field

The most obvious search option is to simply look up plain text. This is done against the

document content (taking case into account) and against tag and attribute names (case-

insensitive). Although this may not seem very efficient for large or poorly known

documents, it at least is easily understood and used, and because the results are clearly

displayed, it should prove altogether useful.

You can also use CSS syntax and selectors to find tags in your document. Selectors are

pattern matching rules that allow both simple tag targeting searches and complex

contextual selections. This of course is attractive to front-end developers, because it is a

language you should know well. Just be careful—searching tag names will trigger a

case-insensitive search, but IDs and class names are just as case sensitive in the search

field as they are in an XHTML document.

Although we will be covering selectors in more depth in the following chapters, here is a

simple example, just to make things clear:

CHAPTER 3: Introducing Developer and Debugging Tools 44

<h1>A Big Title</h1>
<p>
 The strong and quick brown fox
 jumps over the lazydog.
</p>

If you perform a simple text search for strong on this document, three occurrences will

be found. Of course, you could have expected five, but the search engine recognizes

that two of the occurrences actually are closing tags that work with opening tags and so

only consider the latter. This is the simplest case.

If this document were larger, you might want to find all second tags that have

as ancestor a <p> immediately following an <h1> heading. Getting somewhat trickier?

This is typically where CSS selectors can be of great help. Try typing the following into

the search field:

h1 + p strong:nth-child(2)

This should seem familiar to front-end developers. For readers less familiar with these

kind of selectors, there are not so many selectors to remember, so it definitely is worth

digging this.

Finally, you have the option to perform XPath searches on your document. The XPath

language was specifically designed to perform searches on XML. HTML shares many

similarities with XML. The XPath syntax allows advanced structure queries. Applied to

the former example, your search query would be as follows:

//h1/following-sibling::p//strong[2]

Without getting into too much detail about XPath, we simply want to stress that both

methods have strengths and limitations. For instance, in our examples, you should

notice that CSS selectors express the fact that the <p> tag immediately follows the

heading with the + sign, which cannot be translated to XPath. On the other side, CSS

selectors have no way to perform backward searches (find an element that has another

element as parent), which XPath has.

The Resources Viewer
The Resources viewer gives a graphical overview of the elements downloaded for the

current page (see Figure 3–15). You can choose between two graphs from the top area

of the left sidebar: Time and Size.

The first view, Time, shows the timeline for all elements that have to be downloaded,

together with the total retrieval time. The light area represents the latency period, that is,

the time elapsed from the moment the request is sent to the moment the server sends a

response. The darker area gives the actual download time. Each element type is

represented in a different color, so they are easily identified by reading the legend in the

top graph bar. You can filter categories, depending on your needs, using the buttons at

the top of the Web Inspector window, and you can choose by which criteria your data

should be ordered. The blue and red vertical lines, respectively, indicate when the

CHAPTER 3: Introducing Developer and Debugging Tools 45

DOMContentLoaded and load events are fired, which should help you understand how

your page is loaded and from there optimize its design.

Figure 3–15. The Resources viewer

The second view, Size, simply displays the weight of all the elements downloaded for

your page ordered by importance, from the heaviest to the lightest. The graph bars with

their two areas are still there to make things easier to understand. Here, the first bar

represents the weight of the actually transferred file, while the second bar is relevant

when HTTP Compress is used to represent the weight of the actually downloaded file.

Hence, images will have only a darker bar.

You can differentiate actual file size from transfer size for the filtering. If you choose

transfer size, the fact that some elements may be cached is taken into account, so the

files taking the most time to be fetched may not be the heaviest. To know whether a

resource is available from the cache, simply hover over the relevant bar from the graph;

if the file has been cached, a tooltip will appear displaying a file size of 0 bytes.

Naturally, because cached elements do not weigh anything, they will all be displayed

together, by default at the end of the list.

To get more information about a resource, you may click any element in the left sidebar.

This will display images and text files in the main area, as shown in Figure 3–16, with

details on the content, and the related headers sent by the client and server (using the

tabs above the main view) will appear in the main view. Double-clicking a resource in the

sidebar will open it in a new browser window.

CHAPTER 3: Introducing Developer and Debugging Tools 46

Figure 3–16. Detail of the headers for a resource

This of course can help you optimize your site design, by checking the caching process

and seeing which elements might slow down the page rendering, but it is also very

useful to follow Ajax actions by letting you see the files loaded with their HTTP headers

and content.

Debugging JavaScript
Like most scripting languages, JavaScript comes with its share of hair pulling, and it can

be hard putting your finger on why exactly your script isn’t working. The Web Inspector

makes several very handy tools available to you in this task, from the most

straightforward script execution timeline to the more complex observation helpers such

as breakpoints. We’ll now cover how your developing tools can help you get out of

scripting chaos faster and with less guessing.

Before you start, please note that, unlike the Elements Inspector, in which the HTML

code was clearly displayed as a structured tree, the JavaScript code will appear as it

was originally written. Therefore, we would obviously not recommend that you work with

these tools on minified code—code from which unnecessary spaces and line feeds have

been removed in order to make file size smaller.

Logging to the Console
If you’ve already coded in JavaScript, it’s likely that you’ve already used an alert()

method to get the value of an object or a variable at some precise point of your

CHAPTER 3: Introducing Developer and Debugging Tools 47

developing process. Because this has quite a few drawbacks (don’t try this with loops,

for instance!), you may have gotten further by using some tracing options, which is

generally more natural and efficient. The good news is that there is a full Console API

that you can use with the Web Inspector.

Table 3–1. Logging Functions

Function Description

console.log(format, ...);

console.info(format, ...);

console.debug(format, ...);

console.warn(format, ...);

console.error(format, ...);

Logs a message or object properties to the

console. These five functions only differ in the

icon shown on the left of the message. On

Safari Mobile, only these commands are

available; moreover, the formatting options

listed in the next table are not available.

console.assert(condition, format, ...); Logs to the console only if the condition is not

met.

console.group(format, ...);

console.groupEnd();

Starts and ends a group of logs. Each new

group will be indented relative to the other

logs.

console.time(name);

console.timeEnd(name);

Respectively starts and ends a timer,

supposedly to track code execution times. The

name is to identify the timer so that is can be

stopped.

console.count(name); Sets a function-call counter. name is used to

identify the counter. Counter logs an

incremented number for each new call of a

function.

console.dir(object); Logs all properties of an object to the console.

console.dirxml(node); Logs an HTML node with all its child nodes as

a collapsible tree. In the latest versions of the

inspector, console.log() acts similarly with

HTML elements.

console.trace(); Logs the current functions call stack with the

values of the passed arguments.

inspect(object); Opens the appropriate inspector tab based on

the passed object. Triggered tabs are Element,

Database, or Storage inspector.

console.profile(name);
console.profileEnd(name);

Starts and ends profiling script execution.

CHAPTER 3: Introducing Developer and Debugging Tools 48

Several of the listed expressions can take in patterns similarly to C’s printf() function,

with a number of variables. Thus, you can notably use %s to insert a string or %o to add a

collapsible object structure. This can help you keep your logs organized and consistent

throughout your developing process.

Table 3–2. Formatting Options

Format Description

%s String.

%d or %i Integer. Numeric formatting such as %02d is not supported.

%f Floating-point number. Numeric formatting such as %4.2f is not supported.

%o Object. With ability to see object details using a disclosure triangle.

Here are two examples of how to use the console log:

console.log("My %s is great!", "iPhone");
console.log("My", "iPhone", "is great!");

To make reading easier, the console will automatically add spaces where necessary,

and objects will be represented in tree format. These two commands will result in the

same output to the console, with a link to the line where they were run. Clicking the link

will focus and highlight the relevant line.

Using the Interactive Shell
Sometimes it can be tedious to go through repetitive logging actions to find out the

value of an object or variable. Editing a file, saving, reloading the page, and so on, is

time-consuming and overall inefficient. Well, some of this work can be done, thanks to

the inspector’s interactive nature, by typing your commands directly in the console

prompt at the bottom of the window. The return value of the command will be printed to

the console immediately. There is a lot you can do with this functionality.

The shortest way to a result is to use the logging commands we listed earlier, but you

can also run scripts that exist in your page. This will allow you to evaluate the variables

in your code, see how they behave, and tweak your page, because all changes as a

result of what you execute will be applied directly to the affected elements, if any.

Pressing the up arrow will open the history of commands you’ve already entered, from

most to least recent.

The inspector’s interactive console even supports code completion: begin typing a

command, and suggestions will complete the word. Accept them by pressing the right

arrow or the Tab key. Also, when inside a terminal, typing clear() will clear all output on

the screen, though this functionality is available by clicking the further-right icon at the

bottom-left side of the window.

CHAPTER 3: Introducing Developer and Debugging Tools 49

Let the Debugger Do the Job
In everything we have introduced up to now, you are the one typing the commands,

determining what to do where, and determining how to do it. If this was not enough, you

can take advantage of the advanced debugger implemented in the Web Inspector. We

will use the following code to illustrate the various tools of the debugger:

<html>
<head>
 <title>Testing Scripts</title>
 <script>
 var counter = 0;
 var timerID = window.setInterval(myTimer, 10000);

 function myTimer() {
 var span = document.getElementById("count");
 span.textContent = incrementCounter();

 for (var n = 0; n < 100000; n++) {
 new Object().toString();
 }

 if (counter > 1) {
 errorGenerator();
 }
 }

 function incrementCounter() {
 return ++counter;
 }
 </script>
</head>

<body>
 Timer executions: 0
</body>
</html>

What this code does is launch a timer that calls another function, myTimer(), every ten

seconds. The function in turn increments a counter displayed in the browser, then runs

through an important loop, and finally generates an exception by calling an undefined

function.

Once your page has loaded, you can activate the debugger either from the menu or, if

the Web Inspector window is already open, by clicking the Scripts tab.

The window you have just opened has two main parts, shown in Figure 3–17. On the left

is the current script as it is written in the file, with line numbering; if the script is directly

in a <script> tag in your HTML document, as in our example, you will see this file. On

the right, you will find various information about the current script. For the moment, this

part is empty.

CHAPTER 3: Introducing Developer and Debugging Tools 50

Figure 3–17. The script debugger

Each part of the window has dedicated buttons. On the top left, you can choose all

available scripts from a drop-down menu. From above the right sidebar, you have the

possibility to pause script execution, step to the next function call, step into next

function call or out of the current function, and disable breakpoints using the stepping

buttons.

Breakpoints
Even when you more or less know at which stage your script stops working, knowing

what is going wrong can be trickier. This is where breakpoints can help you.

WARNING: You cannot use the debugger by running scripts from the console. Whatever
breakpoints you have placed or exceptions are generated, the execution in this case will not
pause. Therefore, you must also think of useful log functions to follow your scripts.

Clicking the line gutter on the left side of the window will toggle a blue breakpoint for the

part of the script on that line. Using the previous code, you can, for instance, add a

breakpoint on the line where the myTimer() function is defined. When the script is run, it

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: Introducing Developer and Debugging Tools 51

will interrupt at this point (Figure 3–18), and the current state of all variables and

functions will be listed in the sidebar.

Figure 3–18. Two breakpoints are placed on the line gutter; the debugger stops on the second one

You can also fine-tune your script watching with conditional breakpoints. If you want to

know what a variable value is if it isn’t "foo", right-click any line, and choose Edit
Breakpoint... from the contextual menu. A text field will pop up for you to enter your

expression, as shown in Figure 3–19. The breakpoint in this case will turn orange. If the

expression is true, the script will be stopped; otherwise, its execution will resume

automatically.

Figure 3–19. Setting a conditional breakpoint

In a debugging process, it can be cumbersome to set a breakpoint, see what’s

happening, remove it, look for another line, come back to the previous one, and so on.

The bottom pane in the sidebar, Breakpoints, is your friend for this. It holds a list of all

breakpoints, which instead of deleting, you can deactivate by clicking their respective

check boxes. You can also deactivate them all at once using the breakpoint icon at the

top right of the sidebar.

Once you have changed options, you will have to reload the page. Scripts will run until a

breakpoint is reached. Then, all execution is paused, and contextual information about

the execution is shown on the right, as shown in Figure 3–20.

CHAPTER 3: Introducing Developer and Debugging Tools 52

Figure 3–20. When the debugger stops on a breakpoint, the sidebar is updated with information related to the
current execution context

Stepping
Watching just one part of a script before going through the entire process over again

isn’t very efficient or natural. To work around this, let’s take a closer look at the stepping

buttons at the top of the sidebar, shown in Figure 3–21.

Figure 3–21. The script debugger with stepping buttons

You can use the first button to pause the execution of the current script before

refreshing, allowing you to see the script in action without installing breakpoints, but it

will also let you navigate between breakpoints during the debug session. Clicking the

second icon will simply run the next instruction. The third icon will let you step into the

function under the execution cursor if its code can be seen (this is not the case for

functions that belong to the script engine). The last icon reversely lets you step out of

the currently inspected function and up one level.

CHAPTER 3: Introducing Developer and Debugging Tools 53

Watch Expressions
In the sidebar, another pane can help you inspect specific elements in your scripts: the

Watch Expressions section. The expressions you watch can be quite anything, such as

variables, test expressions, instances, and more. The information you will gather can be

both local or global and will be updated as scripts are executed.

Continuing with the same example, click the Add button (Figure 3–22), and type counter

to observe its evolution. Refreshing is not automatic, so you will have to click the

Refresh button to update data when a breakpoint is reached.

Figure 3–22. To watch an expression, click the Add button, and enter the expression to evaluate

Call Stack
The second pane from the top is labeled Call Stack. Here, all the functions that have

been called but haven’t returned yet are listed, with the most recent call on top.

You can add a second breakpoint on the incrementCounter() declaration and start the

debug up to this function; this would result in what is shown on Figure 3–23. From there,

you can move up the stack by clicking the entries from the pane.

Figure 3–23. The call stack is displayed in the sidebar in the relevant pane

TIP: If you want your function’s name in the call stack to be more readable in some manner, you
can easily assign it a specific name in the debugger with the displayName property. Thus, the
function myTimer(), extended with myTimer.displayName = "Main Loop", will appear as
"Main Loop" in the call stack. This will also work in the profiler, soon to be introduced.

This of course can be a great time-saver when watching the execution of consecutive

scripts or scripts that are nested inside one another.

CHAPTER 3: Introducing Developer and Debugging Tools 54

Scope Variables
The last and arguably richest section in the scripts sidebar is the one under the Scope

Variables pane. At any time, the values of all the elements in the scope of the current

execution context or used by the current script will be listed here. Stopping at the first

breakpoint in our example, the data should look like Figure 3–24, displaying all the

variables available to the myTimer() function, regardless of whether they have been

initialized.

Figure 3–24. Variables in the current scope, initialized or not, with the huge Global list

For ease of reading, these elements are classified based on their types and their use in

the current scope: Local, Global, and With Block or Closure when available. This view

not only makes it easier to find and use the elements available to your script, but it can

also help you understand what’s going on and how to change it. As with CSS and HTML

values, you can alter values in the Scope Variables pane by double-clicking them. The

Global pane will notably give a list of classes available at the scripting engine level with

their complete prototype.

Exceptions
You’ve learned how to find errors and how to look at your script behavior. However, you

may have noticed that both the JavaScript console and the Scripts section only notify

about exceptions—a log in the console, a colored line directly in the script—they do not

stop the execution. To make the execution of functions automatically halt on exceptions

(Figure 3–25), you can click the Pause icon in the bottom-left corner of the Web

Inspector window.

CHAPTER 3: Introducing Developer and Debugging Tools 55

Figure 3–25. Click the Pause button will halt the debugger on exceptions

Clicking once will color the icon blue, meaning that all exceptions will cause the script to

pause, so you can check the information available at that stage, as shown in Figure 3–

25. Clicking twice will cause the script to halt only on uncaught exceptions—not those

caught by a try...catch statement.

These tools brought together should make your development process hugely easier and

faster. Not only is the JavaScript debugger useful to identify exactly where your script

may be going wrong, but as you get used to it, it should also help you in your

optimization stages to build overall better web applications.

The Life Cycle of Your Page
It is always interesting to get an overview of what’s going on in your page all the way

through its life. Which scripts are executed, how long to they take to complete, what

amount of code, markup or images are loaded and in which order...this information is

important when developing for the Web. The Timeline tab shows you all this information

in an orderly and clear manner (see Figure 3–26).

The recording is triggered by clicking the round icon on the bottom-left side of the Web

Inspector window. If you click this button and reload your page, you will see that

everything is recorded, including what happens after the initial page load and expressed

at the top of the drawing area using three parallel timelines—Loading, for elements

loaded for the page; Scripting, for script evaluation and events triggered on page load

for instance; and Rendering, for all that is done to draw to the screen, what is redrawn,

and how it can harm performance.

CHAPTER 3: Introducing Developer and Debugging Tools 56

Figure 3–26. The Timeline section with control buttons on the bottom

WARNING: You have to be cautious with this inspector tool and always remember that the
device you are targeting will not share the same specs as your desktop system and browser,
notably regarding connection speeds. That is to say, use this tool, get information from it, but,
most importantly, interpret this information while keeping in mind that you are not developing for
the device you are debugging on.

For ease of use, although all operations are recorded, you can easily show only some

types of events by deselecting categories from the left sidebar opposite the timeline.

This will make the events in the timeline change from blue (loading), yellow (scripting),

and purple (rendering) to gray.

The timeline width is limited to the width of your screen, meaning the timescale will

change depending on its contents. You can refine your inspection target by pulling the

handles from the left and right edges of the top timeline area. This will stress the relevant

section of the event tree. This will prove especially useful if your page contains animated

content or JavaScript timers, because in this case, the timelines will continue drawing

changes to the screen, showing newly rendered browser areas and timer iterations.

CHAPTER 3: Introducing Developer and Debugging Tools 57

Hovering over an event in the timeline or the tree view will trigger a pop-up with

information about the event, such as the time it took to take effect, its type, or the files

requested in a loading operation. Clicking elements in this pop-up will take you to the

Resources section of the Web Inspector to get additional information about the event

(see Figure 3–27).

Figure 3–27. A pop-up showing information about the bar being hovered over

As with the JavaScript debugger, if you want a fresh start at some point, you can clear

the view by clicking the struck circle icon near the bottom-left side of the window.

Profiling Your Scripts
Together with a timeline for all that is happening in your page, you can get a profile of

the scripts being run and CPU usage. This feature is available by clicking the Profiles

icon (see Figure 3–28).

This section will only hold instructions when you first open it. These instructions invite

you to click the Record button, found in the bottom-left area of the window, as with the

Timeline section, to show the scripting activity over time. Clicking once will start the

recording, and you will have to click a second time to stop the recording and see

evaluated data written to the screen.

You can also start profiling from the console using console.profile() and

console.profileEnd() shown earlier. One asset of using the console instead of the

Record button is that you can record several profiles at a time.

Whatever the method you choose, do not forget to deactivate breakpoints you may have

set in the Scripts section so that there is no interference with the profiling. Also note

that, unlike the other tools in the Web Inspector, the profiling tool is global for all

browser windows and tabs, so it might be useful to close all windows except the one

you need to study.

CHAPTER 3: Introducing Developer and Debugging Tools 58

Figure 3–28. The profiler

For each new profile, a profile icon will show up in the left sidebar. If a profile starts

recording within another profile, the upper-level profile will become collapsible with a

disclosure triangle.

Understanding the Profiles
We will use the same example as for the script debugger here to illustrate how the

profiler works. Open the Web Inspector, click the Record icon, and reload your page.

Once the counter has reached 2, click the same icon to stop the recording, and check

your newly acquired data (Figure 3–29).

Figure 3–29. Gathered data is shown in the result table of the profiler

CHAPTER 3: Introducing Developer and Debugging Tools 59

The profile data is presented as five columns in the right part of the Web Inspector

window. It details all the function calls and execution times, by default as a list with the

most consuming function on top. The default view shows values as a percentage of total

time. You can change these view options using the pop-up menu from the bottom of the

window. This way, you can see your functions in tree view, stressing the call stack rather

than the resource consumption.

All functions on the right side can be unfolded to reveal the call stack. The base for the

call stack is always “(program).” This collapsible area also shows the number of times

that the function has been called. This is why myTimer() appears twice in the same

group.

Likewise, you can change values for the whole view from percentage to absolute values

in milliseconds using the % button next to the pop-up menu. If you are concentrating on

a specific column (Table 3–3), you may want to change the data view for that one only.

This can be done by double-clicking the columns.

Table 3–3. Data Columns Description

Column Description

Self Total execution time for the function itself.

Total Global execution time for the function, including calls to external functions.

Average Mean execution duration across calls.

Calls How many times the function was called.

Functions List of called functions with their related call stack.

Moreover, to perfectly fit your needs, you can change the sort order of a column’s data

by clicking the column heading.

In the functions list, if one of the function isn’t part of the WebKit script engine as shown

in Figure 3–29 with getElementById(), a link will be available on the far right that will take

you to the relevant file and the relevant line highlighted on the Resources tab.

To make reading such amounts of data easier, you can focus a particular function using

the eye icon in the status bar. This of course will be more comfortable if the execution

chain is complex. It is also possible to remove functions from the view by clicking the

cross icon in the same place. Using one of these options will automatically make a

Reload button appear, still on the status bar, so you can seamlessly recover the initial

state of the view.

Filtering with the Search Field
From the Profiles section, as from any other section, you can perform a search against

your data from the text field at the upper right of the Web Inspector window. This search

CHAPTER 3: Introducing Developer and Debugging Tools 60

field will understand character strings when looking for function names or resource

URLs. Nonetheless, it should take numerical values and operators, such as <, >, <=, >=,

and =. This will allow you, for instance, to find all functions that take more than a certain

amount of time to complete. Values would be highlighted in the table, as shown on

Figure 3–30.

Figure 3–30. Searching for >4s will highlight all the relevant table entries

You can use the same numerical units as in the tabular data, namely, percentage,

milliseconds, or seconds. Once your query has returned results, you can navigate

different elements by pressing the Return key.

Client-Side Data Storage
One exciting new feature in WebKit is the ability to store data on the user side not only

with cookies but also with databases directly set in the browser. We will be getting into

further detail for this feature in Chapter 15; for now, we will see how the Storage section

(the Database section in older versions) allows you to inspect several client-side storage

types (see Figure 3–31).

Figure 3–31. The Storage Inspector

The Storage Inspector layout should seem familiar at this stage with the usual sidebar

and main view. In the sidebar on the left are panes listing storage types, and under each

you will see the various storage groups or cookies in use, if any.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: Introducing Developer and Debugging Tools 61

Database Storage
The first group is for databases. Each database is collapsible using the arrow preceding

the database icon. To reveal the tables of a storage block, just click it. The selected

table will be presented on the right side of the window as data grids showing all columns

and rows.

As with the Scripts section, if you want to go further with your inspection, you can

invoke an interactive shell by clicking the storage block. The shell here is dedicated to

SQL commands, allowing you to query data with the help of autocompletion. Note that

in the current version, running commands here is the only way to interact with the tables,

which cannot be edited directly as you may have done with other storage features.

However, the results of your queries will appear immediately on the screen, so the

process is rather quick and simple.

Cookies
Cookies are a long-known client-side storage method. Selecting the Cookies pane from

the left can hugely simplify your management of cookies. All cookies available to the

current page will be presented as a table, with for each its name, value, domain (whether

it is a cookie from your page or from third-party sites, as for ads), path, expiry date, size,

HTTP, and HTTPS-only flags. You can delete any cookie; however, all cookie deletion is

definitive, so use this with care—you may not want to lose your preferences for all your

favorite sites by messing this up.

Other Storage Features
Cookie are limited in size to 4KB. Along with database storage, WebKit brings you

solutions to store beyond these limitations with local storage and session storage. Each

of these has a dedicated pane in the left sidebar. Like cookies, they work as key-value

pairs of information. To illustrate this, you can type the following into the console:

localStorage.myKey = "Some value";
sessionStorage.anotherKey = "Some other value";

This lines will respectively create new storages sections in the local and session storage

areas. As will be possible with cookies, you can delete an entry by clicking the cross

icon under the table, but unlike cookies and database storage, you can modify value

directly from the table and add new entries by double-clicking an empty spot.

Auditing Your Page
The Audits section can help you optimize your site by suggesting guidelines and best

practices related to the loading of your pages. These guidelines are mainly based on

recommendations from the W3C WebApps Working Group (WWAWG) for better web-

based applications. At the time of writing, you cannot extend the audit abilities, but this

CHAPTER 3: Introducing Developer and Debugging Tools 62

is a project for future versions, which should allow you to target issue categories

specifically, such as security or specific devices.

Again, a list of audits is available from the left sidebar, and the right side of the window

holds data and options to run a new audit (Figure 3–32). You will be able to choose

between Network Utilization, Page Performance, and All. You can also choose between

an audit on page load and an audit of the current state of the page. When you’re ready,

simply click the Run button at the bottom of the window, and shortly the results of your

audit should appear in the inspector.

Figure 3–32. The result of the audit

Results are categorized depending on how critical they are—red for important issues

and green for lesser improvements to be considered. Among recommendations, you

may find a list of unused CSS selectors, tips for browser caching, or tips for cookie

handling. For instance, you may be advised to put static content on a separate server to

prevent useless cookie movement with each new request (images, style sheets, and so

on); obviously, this uselessly adds to the traffic weight, because there are few chances

that a cookie would be processed on the server by static content such as an image.

If we haven’t reminded you enough, you’re targeting devices whose connection quality

is unreliable and with overall lower performances than desktop computers or laptops.

CHAPTER 3: Introducing Developer and Debugging Tools 63

Every kilobyte spared is time saved and is a step away from seeing your user leave the

page, perhaps never to come back.

Still Unsure?
Although we think the WebKit Web Inspector is a great tool for front-end debugging, it is

natural that you may prefer some other browser or tool in your developing process. If

you’re already a front-end developer, you may be used to Firebug on Firefox or

Dragonfly on Opera. Even Internet Explorer comes with developer tools with the latest

versions. Whatever your situation, be aware that most browsers nowadays have

debugging and development tools either built in or available as extensions. The Web

Inspector actually wasn’t built from scratch: the Console API, for instance, was first used

in the hugely successful Firebug. This ultimately is a matter of habits and personal

choice.

If you like Firebug or you want more functionality to debug directly on your targeted

device, we recommend you follow the updates of Firebug Lite. This tool is a lightweight

version of Firebug available to all browsers as a bookmarklet. For now, it isn’t very

functional on the iPhone, but as it evolves, it may be a serious option for web app

developers.

Summary
You now should have a firm grasp of the tools available to you to speed up your

developing process. You may also feel reassured that so many helpful tools are

available right in your everyday browser to make your developer’s life easier. You are not

alone, and because the tools we have introduced are built with web languages, the

evolutions coming from the community should prove of great help too: who better than

web developers can tell what they need? We will be giving more detail about some of

these tools when necessary in the following chapters. We bet you sense that things are

getting more concrete. In the next chapter, we will be dissecting the generic web app

elements, before getting to the core of Mobile Safari development.

65

 Part

Web App Design with
HTML5 and CSS3

II

67

67

 Chapter

The Anatomy of a Web
Application
It has been some time now that mobile phones can browse the Internet. Back when

Internet access on mobiles devices started, it was nothing like what we know now.

Networks had drastically limited speeds and were extremely expensive, screen sizes

were small, and devices usually only did black and white. You could read only a few

short lines at a time, with a thumbnail-size image if you were lucky. Back then, a web

page couldn’t go beyond a bunch of kilobytes, partly because of device memories, and

users had the chore of navigating mostly with the 0–9 phone keys. Obviously, even if

this was some kind of technical revolution, browsing the Internet on their phones wasn’t

very attractive to end users.

Devices evolved, screens grew wider, and touch phones made an appearance. Phone

engines boasted overall better performances, but connections remained expensive, and

site layouts weren’t ultimately worth it. Although the technologies had largely gotten

better since WAP—a kind of lightweight HTML based on XML, the first standard—sites

mostly weren’t optimized, making page layout and, more annoyingly, navigation a

definite issue. Also, because browsing wasn’t a phone manufacturer’s priority, merely

accessing online services generally implied digging into numerous menus and

submenus.

That is to say that for a long time, the mobile Internet was around but certainly wasn’t an

attractive field for developers.

The iPhone Revolution
When Apple released the iPhone, users discovered a new mobile experience, with a full

range of possibilities for developers to build on. Accessing the Internet suddenly

became seamless, and browsing through pages was a nice, flowing process. Relying on

a revolutionary graphical user interface (GUI), the iPhone builds a close relationship

between device and the end user based on touch.

4

CHAPTER 4: The Anatomy of a Web Application 68

Before the release of the iPhone, users—no matter which device they were using—had

to have some kind of accessory to interact with content and access functionality, be it a

keyboard, mouse, or stylus. After the release of the iPhone, people seemed to reject

using these portable devices, and designers progressively abandoned small buttons to

emulate the closeness provided by Apple’s Multi-Touch system.

Not only is this new connection beyond revolutionary, but Apple also opened the phone

user experience to the real Web. By releasing a full range of web-dependent

applications and, most importantly, by implementing a real, adapted browser called

Mobile Safari, Apple offered a proper sense of immediateness close to that of desktop

browsing.

Apple also hugely favored the use of network services on mobile phones with a strong

marketing move: on the iPhone’s initial release, the company managed to make carriers

commercialize the device with mostly trouble-free Internet access, which allowed in

most cases a fully satisfying and relatively inexpensive usage of the possibilities of the

device.

Belief in Web Apps
Long before the release of the iPhone SDK, Apple counted upon web applications to

extend the possibilities of its smartphone. Perhaps the main proof of this was that most

web applications were distributed through a dedicated section on Apple’s web site

(www.apple.com/webapps/), as shown in Figure 4–1. This page is still one of Mobile

Safari’s default bookmarks.

Figure 4–1. The Apple’s web apps dedicated web site

http://www.apple.com/webapps

CHAPTER 4: The Anatomy of a Web Application 69

Whereas Apple probably already planned to offer native iPhone applications, it is possible

that the wider development of these compared to that of web applications was initiated by

developers themselves, who urged Apple to provide a full range of tools to build these

specifically. It is nothing unusual nowadays that the eclectic masses, from technology

enthusiasts to international firms, have come to develop native iPhone applications

(150,000+ to date). Web applications have been temporarily relegated to the background,

while native development kits have met great success. However, Apple has sustained

projects such as Dashcode. Although primarily designed for desktop widget creation,

Dashcode soon became an interesting tool to build web apps too, with new functionality

dedicated to Mobile Safari, such as iPhone-inspired web application templates.

Lately, questions have arisen about the possibility of the PastryKit and AdLib

frameworks being released to the public respectively for iPhone and iPad development.

These two strong frameworks are dedicated to iOS-integrated web applications and

bring solutions to perennial issues such as the unavailability of fixed-position elements

with CSS. They also bring desirable features meant to enhance the user experience,

such as a fixed header that allows users to browse without panning and allows them to

navigate as within native applications.

For now, the PastryKit framework seems to be used only on the iPhone user guide

(http://help.apple.com/iphone/guide/), shown in Figure 4–2, and probably in your

iPhone bookmarks; however, the enthusiasm and curiosity around it is a sign not only

that Apple is still working on the future of web applications but also that developers look

to produce higher-quality services in this field.

Figure 4–2. The iPhone user guide on...iPhone

http://help.apple.com/iphone/guide

CHAPTER 4: The Anatomy of a Web Application 70

Other such frameworks have indeed been released by open source believers, showing

the urge to find helpers in the iPhone web application development process. Among

others, you can check out iUI (formerly iPhoneNav, by Joe Hewitt, the man behind

Firebug), which appeared shortly after the first iPhone release; WebApp.Net, which is a

lightweight, optimized framework; or jQTouch, which is based on the jQuery library.

Web applications on the iPhone are getting more and more attractive. Mobile Safari’s

performances are ever-growing, and support for cutting-edge web standards is

constantly evolving. Lately, iOS’s browser has even gained access to core tools such as

geolocation abilities. Because more and more companies are providing web services

that can be included in web applications and because the release of the iPad has been

greeted with much enthusiasm, the future of the web application field appears even

more promising.

But What is a Web App Exactly?
Developing for the iPhone, you have three possibilities: make native applications, build

regular web pages, or build web apps (which is somewhere in between the first two). A

web application supposedly resembles a native iOS application but is accessible in the

same way as a web page and basically uses the same technologies (for instance, HTML

and JavaScript).

Apple’s guidelines for building web applications stress several points in this regard,

which all come down to very close device targeting. According to Apple, the web app

should bring a specific answer to a specific need of the user. It should emulate the rest

of the iOS interface, thus using special iOS user experience features where appropriate.

The idea is to minimize the feel of a browser experience to favor a closer relationship

with the user, in other words, to make the user actually use the page instead of

browsing it. For this, Apple recommends strong adherence to web standards and the

use of Ajax to avoid reloading pages.

This all makes the difference clearer but certainly not definite. If you are wondering

whether the projects you had in mind actually are web applications, and not “just” web

pages, be aware that this is all about user orientation: if what you build is dedicated to

serving the end user and you think it is a web app, it most likely is. In real life, you could

also consider that your page is a web app if your users return to it repeatedly with the

same goal. Thus, products such as the iPhone-optimized Gmail or Google Maps can be

considered web applications (Figure 4–3).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4: The Anatomy of a Web Application 71

Figure 4–3. Two iPhone-optimized Google’s web applications

Planet of the Apps: Who Rules
Many have pounced upon the iPhone application market through the popular App Store.

You may be wondering why you should build web applications while native applications

are supported by Apple and have already made many people rich in little time. This point

needs clarification: the number of applications on the App Store is tremendous;

therefore, building up visibility there is a complicated task. Strong marketing is more and

more important in order to break through, and few ever meet any success. Moreover,

getting to be distributed on the App Store requires approval by Apple, which can take

time and extra energy even after you thought you were done with your application. Now,

of course, there is more to the debate than just these considerations.

Cross-Platform Master
Building web applications can be better than building native iPhone applications in

several ways, and the first convenience that comes to mind is cross-platform

compatibility—actually, double cross-platform compatibility.

Indeed, you do not depend on a specific operating system or on specific tools to build

web apps. You can basically use anything, from the simplest plain-text editor to

complex WYSIWYG editors and IDEs, whereas native applications tend to be inefficient

to build without Xcode on Mac OS X.

CHAPTER 4: The Anatomy of a Web Application 72

Then your web application itself should be platform-independent to some extent. Both

Google’s Android browser and Palm’s webOS are based on WebKit and thus will render

your pages similarly to Mobile Safari. The WebKit engine is getting more and more

popular, not only for desktop browsers (Epiphany has recently made the jump from

Gecko to WebKit) but also on a growing number of mobile devices, such as RIM’s

BlackBerry. No matter how popular the iOS, applications targeting it depend on its

underlying platform and APIs and are likely to never work out of the box on any other

device.

Hardware Access Is No Forbidden Weapon Anymore
You may have heard that native applications are much more narrowly intertwined with

the iOS itself and have access to more hardware power, more resources from the

platform, and more possibilities when no connection is available (or desired). This isn’t

all true anymore.

First, it is unlikely that your application will need more power to run than what is

provided through Mobile Safari—and native applications don’t use all the power they are

given either. As for storage, since version 2.0, you have the option to use JavaScript

databases directly on the device, hence making your application data available

execution after execution.

Moreover, users can now access web applications in offline mode, which means that all

static content will be available even if no connection is. Considering that static elements

of your page no longer need to be reloaded each time the page is viewed and

considering the new storage abilities of HTML5, you can make a lot of content

accessible for users even without a connection.

Finally, although native applications do have more tools available to them from the OS,

change is coming for this too: in version 3.0, the iOS gives the browser access to

geolocation information. This may be another sign that Apple is betting on the future of

web apps.

Free Your Content
The second point where web application development can be more attractive than that

of native applications lies in the freedom you, the developer, have for your content.

Being distributed in the App Store requires that Apple validates your application, which

does imply some limitations in what you can show and what your application is about.

The process may be long too, and once you manage to get through this stage, you still

have to get the users to choose your application from among the myriads of other

applications.

Building web applications, you can release a new application every day, without any

concern for Apple, and about most anything you want. You will still have to appeal to

users, but, hey! you’re making something for them, so, nothing is more natural.

CHAPTER 4: The Anatomy of a Web Application 73

Release Model
On the user side, however easy the process, native applications require an installation

and may need updates. The former obviously is not true for web apps, and the latter just

happens automatically. For native applications, even updates are dependent on Apple’s

validation, which necessarily means a delay, even a short one. Finally, web apps are

discoverable and available from any device, as long as the user has a browser, which

can seem better than being bound to the nonetheless incredible App Store.

Web Apps: Not the Little Brother Anymore
Unlike what is often heard, web applications are no easier to build than native ones. It’s

just like comparing apples and oranges: they’re both fruit, but they’re plain different.

Freedom doesn’t make page creation easier. Unlike native application developers, web

application developers will be confronted with a white page each time they undertake a

new application. Although displaying elements in a browser can be easier than arranging

them for an Objective-C application, the CocoaTouch framework is very efficient in

handling this kind of task. Also, we’ve explained how emulating the iPhone GUI is

important, which might make web app development tricky regarding layout and

appearance. Building for the iPhone is a whole new range of constraints for the web

developer.

Developers should always keep in mind that a web app focuses on specific features that

are presented to the user few at a time. Use and access to information must always be

as clear as possible. Nonetheless, don’t get worried. Frameworks exist that can help you

through the process. And what’s more, we will too.

Web Apps on Mobile Safari
You’re going to make web apps for Mobile Safari running on iOS. Although this entails

much fewer platform limitations than making native applications, you must be fully

aware of the characteristics of the devices you are targeting. Especially, you should

know how you web app will be seen. Up to now, the targeted devices, the iPhone and

iPod touch, had exactly the same screen size, visual behavior, and GUI recurrences.

With the release of the iPad, you’ll have to take into account both a different screen size

and slightly different GUI components.

Master the Browser
If there’s one element you should get to know inside out, it’s Mobile Safari. As Apple

likes to put it, it is not a browser miniature: unlike many mobile products on the market,

it is a fully-grown web interpreter, with full support for HTML, CSS, and JavaScript—

including Ajax technologies. This means that, more or less, any site will display correctly

on Mobile Safari if it is built upon the web standards. Not only is it a proper browser, but

it can also boast advanced support for cutting-edge features of HTML5 and CSS3

CHAPTER 4: The Anatomy of a Web Application 74

specifications (although these are still at working draft stage). A minor limitation to this

may be that none of the three devices we are talking about uses a mouse. All emulate

mouse events through touch events, thus allowing more natural interaction than solely

with a mouse. In most cases, this difference will not harm usability.

We can only recommend again and again that you keep closely up-to-date with the all

the evolutions initiated by the World Wide Web Consortium (W3C; www.w3.org) and the

Web Hypertext Application Technology Working Group (WHATWG; www.whatwg.org).

This is where you’ll find most of tomorrow’s web technologies.

Browser Metrics
The default behavior of Mobile Safari is to scale page contents to fit into the screen.

This, of course, makes the browsing experience different from that on a desktop

browser or from the experience on Opera Mini, which reorders and resizes pages so that

they are readable on small screens. Users, with the help of specific gestures, have to

adapt the view to what they want like to read. This is done by pinch-opening (zooming

in), pinch-closing (zooming out), and double-tapping (focusing a particular page

element). Moreover, the “page” metaphor doesn’t exist for Mobile Safari as it does for

desktop browsers. This means that users will not scroll a page up, down, left, or right,

with visual assistance on the side and bottom of the screen. They will pan the view up,

down, or sideways by finger-flicking it to uncover whatever content they want to see in

the viewport.

The visible area of your page will not only be limited by the size of the screen; you will

also have to cope with the address bar and the navigation bar, respectively at the north

and south of the screen. However, the address bar will move up as the user pans and be

made accessible by tapping the status bar to save screen real estate. The iPad

topography here is slightly different: as the screen is wider, the address area and

navigation options are grouped in a single bar at the top of the screen. This bar will not

disappear as the user pans.

Table 4–1 lists the dimensions you will be working with. Keep them in mind. You should

take them into account every time you design a web application for Apple devices.

Table 4–1. Browser Metrics in Safari and Full-Screen Mode

Device Portrait Mode Landscape Mode

iPhone, iPod touch 320x460

minus 44px for navigation bar

minus 60px for address bar

minus 50px for console

480x300

minus 32px for navigation bar

minus 60px for address bar

minus 50px for console

iPad 768x1004

minus 58px for navigation bar

minus 50px for console

1024x748
minus 58px for navigation bar

minus 50px for console

http://www.w3.org
http://www.whatwg.org

CHAPTER 4: The Anatomy of a Web Application 75

These metrics are not absolute limits, because all three devices allow web apps to be

run full-screen. In that case, only the status bar will be visible, and your application will

run freely on the rest of the screen.

Think “Web App”
The problem with this browsing model is that it conflicts with the core principles of the

web app experience. The aim of a web application is to seamlessly supply a service. For

the end user, having to zoom to access a menu or specific content can easily be

deceptive, and visitor loyalty from your point of view would suffer. You must acquire full

control over the space dedicated to your application. For that, you have to know it

perfectly and focus completely on the core functionalities you are providing. The default

browser navigation should disappear, leaving the user to an efficient inner navigation

handled by the web application. We will soon explain how to bring your user to add your

application to the home screen and how to let him launch it in full-screen mode. This will

make your web app look more a like a native app.

Ajax is great help in achieving an application experience, yet it does raise new problems

when used exclusively over complete page refresh. Be careful not to spoil your

application with poor navigation or an imperfect application experience. For instance, it

is important that the user is able to easily return to some specific part of your web

application directly from an URL. Not to give away too much of the following chapters,

but we will be introducing at least two ways to create web applications that can be

navigated with unique URLs without ever refreshing the page. One relies on a widely

used JavaScript method (window.location.hash), and the other one uses a cutting-edge

CSS3 tool (the :target pseudo-oselector). One great advantage of these methods is

that if the user bookmarks a page and comes back to it later, you can display the right

content relative to the URL, not just the default loaded content.

Configuring the Viewport
The viewport concept on iOS doesn’t represent the dimensions of the client part of the

browser—even less the size of the screen. It is a logical area where a web page can be

displayed. It can be larger or smaller than the device screen. When landing on a page,

the overall contents will be resized to fit best in the viewport while keeping the same

aspect ratio. The default width of the viewport is set to 980 pixels, which is adapted to a

great majority of web sites nowadays. However, you know that the approach for a web

application is different. You don’t want your page to be scaled: users should get direct

access to the content they are coming for, with an absolute minimum actions. Making

them start with a zoom gesture is bad. You have to build your page to prevent this.

The viewport options can be defined with the viewport meta tag, inside the <head> tag of

your web pages. The code shown here will fit your needs in most cases, and we

recommend you use it for the majority of your pages. What it does is set the initial zoom

to 1.0 and then prevent the user from zooming:

<meta name="viewport" content="initial-scale=1.0; maximum-scale=1.0;

CHAPTER 4: The Anatomy of a Web Application 76

 user-scalable=no">

Hence, your application won’t be scaled on load, and no matter whether it’s on an

iPhone or an iPad, it will be displayed at the optimal size you have decided. Now, you

may be wondering how your page will display correctly if the default viewport is 980px

wide and your web app isn’t zoomed. The trick is that the viewport meta tag has other

options, which we haven’t used here because they are deduced from those we have

written. Here, the width option, which you could set to whatever you want, is assumed

to be equal to the device screen width as the initial scale is set to 1.0. Therefore, the

previous meta rule is the same as this:

<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

It is recommended you use the device-width and device-height constants rather than

hard-coded values in the meta tag whenever possible. This is the best guaranty that

your page will occupy on the device screen, even when changing from portrait to

landscape orientation and reversely. It also is a good idea to make your pages fluid, that

is, to make them occupy all the space they can on the screen to make sure your

application will appear full-screen whatever the user’s configuration.

All parameters are optional, meaning Mobile Safari will guess values for the ones you do

not specify. The rules for the content attribute can be declared in any order, as long as

you separate them with a colon followed by a space. Table 4–2 lists all the properties

and values available for the viewport meta tag. All have been around since the first

version of iOS.

Table 4–2. Viewport Properties

Property Description

width The width of the viewport in pixels. The default value is 980, and the range

is from 200 to 10,000. This property can also take the device-width and

device-height constants.

height The height of the viewport in pixels. The default is calculated based on the

value of the width property and the aspect ratio of the device. The range

is from 223 to 10,000 pixels. This property can also take the device-width

and device-height constants.

initial-scale The initial scale of the viewport as a multiplier. The default is calculated to

fit the web page in the visible area. The range is determined by the

minimum-scale and maximum-scale properties. Setting a value of 1.0 here

automatically changes the width default value to device-width.

minimum-scale Specifies the minimum scale value of the viewport. The default is 0.25.

The range is from 0 to 10.0.

maximum-scale Specifies the maximum scale value of the viewport. The default is 1.6. The

range is from 0 to 10.0.

user-scalable Determines whether the user can zoom in and out. The default is "yes".

Set to "yes" (or 1) to allow scaling and "no" (or 0) to disallow scaling.

CHAPTER 4: The Anatomy of a Web Application 77

Seriously Appy: Using Stand-Alone Mode
Now that you have a web application that will just fit in the user’s device screen, you’d

like your application to be truly used like an application. The good news is that not only

do iOS users have the option to put a web page in their bookmarks, but they can also

put shortcuts to web pages on their home screen as web clips. This makes the web

application as quickly accessible as any native app, notably making it accessible with

Spotlight. The user just has to select the “Add to home screen” option and choose a

name for the shortcut. After that, tapping the new icon on the springboard will bring up

your web application in Mobile Safari straightaway.

Showcasing a Proper Icon
The default icon that will be generated for the user’s home screen is a screenshot of

your application, resized to fit the size of other icons on the page. Although a little gloss

is added to make this more icon-like, the truth is it isn’t very attractive or very

recognizable (see Figure 4–4). You want your end user to find your web app easily and

recognize it at first glance, even in the middle of various other shortcuts.

Figure 4–4. The default icon built with web page screenshot...not very sexy

To achieve this, you have to make your own icon for your web application. It’s best to

make it a reminder of your application, be it by using the same colors, similar shapes,

and so on. It will be used for any page that is turned into a web clip, just like a favicon in

traditional web browsers, so you want something sexy. The easiest way to make iOS

use your icon is to save it as apple-touch-icon.png format at the root of your site.

Having your icon displayed in the springboard is good, but making it shine is better. The

typical shine and drop shadows from the iPhone GUI will be automatically superimposed

on your icon, so if you create an icon that is square and is large enough to display in a

good quality, it will look just like a native icon to the user (see Figure 4–5).

Icons on iPhone are 57 pixels wide, while the default iPad icon size is 72 pixels. Building

icons to common sizes such as 128 or 256 pixels seems a rather good practice. Simply

be careful not to add light effects yourself, which could interfere with the default effects

added by the OS.

CHAPTER 4: The Anatomy of a Web Application 78

Figure 4–5. Apress icon before and after styles are applied by the springboard

Nevertheless, there are cases where the gloss just doesn’t fit in and cases where you

want to make something slightly different. If you make an application listing places to

see Eastern European naïve painters, you may want to have an icon that is rather flat-

looking. Shiny curves would just look out of place. To prevent the OS from applying the

full range of effects, simply rename your icon to apple-touch-icon-precomposed.png.

You will still have rounded corners and a drop shadow, but the icon itself will remain

unchanged (see Figure 4–6).

Figure 4–6. Icon using the “precomposed” option

Having one icon for your web application when it has a small range of different services

is enough. However, if you build a tabbed application, with different categories,

sections, or services, setting contrasted icons for various parts of the application can

bring extra value to the user. You can achieve this on a per-page basis using a <link>

tag in the head of your page, with the special rel attribute values apple-touch-icon and

apple-touch-icon-precomposed. The full code to use an icon for just one page would be

something like this:

<link rel="apple-touch-icon" href="/path/to/custom-icon.png">
<link rel="apple-touch-icon-precompsed" href="/path/to/custom-icon.png">

These values yield the same results as their icon-name counterparts, and the same rules

apply.

CHAPTER 4: The Anatomy of a Web Application 79

Running Your Application Full-Screen
You’ve made another important step in your application-not-browser experience.

However, if this icon launches Mobile Safari with your web app inside it, the browser

presence cannot be hidden. This is where another meta option comes in. Since version

1.1.3 of iOS, you can tell your page to open full-screen by default. Only the status bar

remains visible; the rest of the screen will be dedicated to your page. The so-called

stand-alone mode doesn’t run your web page in Mobile Safari; it uses the same

rendering engine as Mobile Safari, the user will have access to functionalities from

Mobile Safari, but the view itself will be your application.

Here is how you do it:

<meta name="apple-mobile-web-app-capable" content="yes">

Do not forget: your application will not be running in Mobile Safari or in a “lite” version of

it. It is a different mode, which should be thoroughly tested to be sure nothing goes

wrong regarding display and behavior. Also, be sure to make a clear and efficient

navigation system available to the end user, because none of the navigation options

from the browser will be at hand. Landing on an application page where one can’t

actually do anything or where one quickly gets stuck is obviously deceptive for any user.

When needed, you can check whether this mode is currently enabled with JavaScript

with the window.navigator.standalone boolean. It is a read-only property, so you won’t

be able to change it dynamically; however, we will show how to play with options and

actions specific to this mode later in this chapter.

An Awesome Startup
Special <link> tags also allow you to trigger an image to display as a splash screen

when your application first loads. The default behavior when a page is opened is to

show the page as it was on last visit, until it is loaded sufficiently to be displayed. This

not only is rather impersonal, but it can also leave users with the impression that the

application freezes on startup and drive them away.

On the iPhone, the OS lets you change this behavior by specifying a startup image, as in

the code that follows. Be aware, however, that this is not possible on the iPad; that will

systematically show a screenshot of your page.

<link rel="apple-touch-startup-image" href="/path/to/startup-image.png">

Your image should be 460 pixels high and 320 pixels wide (portrait orientation). Do note

that this height takes the status bar height into account. If your image occupies the

whole span of the device screen, 20 pixels will be hidden behind the platform interface.

CHAPTER 4: The Anatomy of a Web Application 80

Tweaking the Status Bar
You have noticed that the only iOS interface element always visible to the user is the

status bar. Although it integrates easily with many different designs, you may want some

control over its appearance. This is Apple: you won’t be able to really change the look of

the status bar. However, you can choose between variations so that it better fits your

needs.

To change the look of the status bar, use another meta tag in the head of your page.

<meta name="apple-mobile-web-app-status-bar-style" content="default">

The content attribute has three options available. Other than default, you have a choice

between black and black-translucent. Remember that this option will work only in full-

screen mode. You cannot use it if the application changes to full-screen after it has

loaded. Again, this isn’t possible on the iPad, neither in stand-alone mode nor for native

applications.

 Staying in Stand-Alone Mode
The main problem with stand-alone mode is that, natively, whenever users tap a link to

move on to another page, they will launch Mobile Safari in normal mode, and that’s most

of your hard work reduced to nothing. The workaround here is to handle all links with

JavaScript and prevent the default behavior.

If your application is primarily Ajax driven and you have only a couple of links on your

page, this is no big deal. You can bind an event to your link directly from the HTML

code, like this:

<a href="http://www.apress.com/"
 onclick="window.location.href=this.href; return false">Apress Web Site

What happens here is straightforward enough. this.href gathers the linked address

from the href attribute; window.location tells the browser to refresh this page using the

given address; and finally, return false prevents the default anchor behavior from

taking place, which would have been to open a new page. You can even take this further

by moving part of the work to an external function, which could look something like this:

function openLink(anchor) {
 window.location.href = anchor.href;
 return false;
}

Your function would be called from each anchor tag as follows:

 Apress Web Site

Nonetheless, if your application uses links more extensively, as in classic web

navigation, we recommend you used a more advanced link-handling system. That could

work something like this:

/* Create a document-wide click listener */

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.apress.com
http://www.apress.com

CHAPTER 4: The Anatomy of a Web Application 81

document.addEventListener("click", clickHandler, false);

function clickHandler(e) {
 var element = e.target;

 /* handle clicks only on anchor elements */
 if (element.localName.toUpperCase() != 'A') {
 return;
 }

 /* ignore elements with a target value specified since "target"
 cannot be handled in full-screen mode
 those links shall open regularly in Mobile Safari */
 if (!!element.getAttribute('target')) {
 return;
 }
 var url = element.href;

 /* ignore links other than HTTP(S) and to different origin */
 var match = url.match(/^https?:\/\/(.+?)\/.*$/);
 if (!match || match[1] != window.location.host) {
 return;
 }

 /* finally open the link in full-screen view and prevent default behavior */
 window.location.href = url;
 e.preventDefault();
}

As you can tell from the comments in this code, this specific script doesn’t handle

complex (or less complex...) situations. More importantly, it doesn’t handle links that

have child tags. For instance, if you had an HTML block as common as this:

then the script wouldn’t work, because it would be the image, and not the link, that

would receive the event. However, this solution is easily extended, and its main asset is

to be unobtrusive, that is, to separate HTML markup and JavaScript code. And, of

course, it will safely keep you in stand-alone mode as long as you are linking to other

parts of a page or other pages that are part of the web application. For external links, it

seems reasonable to always let the OS launch the proper browser, because you cannot

be sure that distant sites will be appropriate for stand-alone mode, nor should you want

them to be too closely associated to you own web site.

Build Your First Web App Base Project
With all these basics clear enough in mind, it’s time we got into web app building. To

make things coherent, we’re going to show how to build a base project from scratch.

This will make examples easier to follow throughout the chapters, and, as you extend

this template, it can greatly benefit your workflow. Respectful of the guidelines we put

forward earlier in this chapter, and to make things easier, we will be sticking to the iOS

CHAPTER 4: The Anatomy of a Web Application 82

default colors and metrics. This will also be the time to announce a few tips to use CSS

where images would have been used not so long ago (these tips will be properly

explained later, in the relevant chapter).

Your Document Template in Komodo Edit
To create a new project in Komodo Edit, select File New New Project. Call the new

project Web App Template, or whatever pleases you, and choose in which directory you

want to save your files. If the project’s sidebar is activated, you will see your new project

there with the name you gave it and the Komodo Edit project extension .kpf. If the

sidebar is not open, you can activate it from the View menu, specifically, View Tabs &
Sidebars Projects.

NOTE: This project definition is basedon Komodo Edit 5.x. Menu Layouts and options may differ
in newer versions of the editor.

Now, let’s add your first HTML file. You can do this either by right-clicking the project

name in the sidebar and choosing Add New file or by selecting the menu item Project

Web App Template.kpf Add New file. A new window will pop up. From its right column,

choose the appropriate file type, HTML for now. Choose index.html as the file name in

the text field underneath the columns; you will notice that the correct folder to save it in

is already selected, so just click Open. Your new file will be displayed in the editing area.

This file is not blank. Because you’ve chosen an HTML file type, Komodo Edit has

already done some work for you, and your basic structure is already there. However, to

fit our needs exactly, we are going to change or add some elements. This is what your

file should look like for the next step:

<!DOCTYPE html>
<html>
<head>
 <title>Web Application Template</title>
 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style" content="default">
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <link rel="stylesheet" href="styles/main.css">
 <script src="scripts/main.js"></script>
</head>

<body>
 <div class="view">
 <div class="header-wrapper">
 <h1>Web App Header</h1>
 </div>

 <div class="group-wrapper">
 <h2>iPhone</h2>
 <p>Hello World!</p>

CHAPTER 4: The Anatomy of a Web Application 83

 </div>
 </div>
</body>
</html>

You can see the special tags we have been talking about in this chapter. Of course, if

you want all of them to act as expected, you should create an images folder in your root

folder and populate it with a startup.png file, as explained earlier. You should note that

we have changed the DOCTYPE from what it was in Komodo Edit’s default HTML file. This

is the HTML5 doctype, which we are going to use throughout this book in order to

showcase the new features of HTML5 while still producing a valid document. The

uppercase letters are an old front-end developer’s habit; since HTML5, the doctype

declaration is case-insensitive.

If you open this file in your browser now (or choose to see it directly in Komodo Edit,

using View Preview in browser from the menu), you probably won’t be impressed. No

styles are applied, and there hardly is any content. However, you will notice that our

template skeleton has several classes and IDs. These are going to help you target

elements and style them to look like a proper application.

Create a new folder, still at the root of your site, called styles. Now, create a CSS file as

you did a few minutes ago for the HTML file, and call it main.css. This file is already

called in the head of your document, so whatever you change in it should be applied

immediately, so let’s add some style.

Following the recommendations we went through earlier, the first style rule you will add

to your style sheet will state that the document should take the entire screen height. To

mimic the iOS UI, you will also set the generic font to Helvetica.

Further chapters will get deeper into CSS possibilities, so we will not explain everything

here. Simply, you could be unfamiliar with the -webkit- prefix. It is a proprietary prefix

(which means it isn’t interpreted by browsers other than WebKit-based browsers) used

for properties and values that are either specific to the browser or considered unstable

regarding the CSS3 specifications or their implementation.

html { height: 100%; }
body {
 height: 100%;
 margin: 0;
 font-family: helvetica, sans-serif;
 -webkit-text-size-adjust: none;
}

To always make text as readable as possible, Mobile Safari automatically changes the

size of text each time the viewport orientation changes. This isn’t always desirable,

because it can break your layout or end up looking odd if you design your pages in a

particular manner. To prevent this behavior and keep control over the appearance of

your pages, we set the -webkit-text-size-adjust to none, which disables automatic

text resizing.

CHAPTER 4: The Anatomy of a Web Application 84

Next, using the -webkit-gradient() background extension, we create a general

background without even using images. This background is built so that all you have to

do to change the color of the element without losing the iOS look is change the

background-color property. As for the .view rule, it applies to the main container of the

document views.

body {
 -webkit-background-size: 100% 21px;
 background-color: #c5ccd3;
 background-image:
 -webkit-gradient(linear, left top, right top,
 color-stop(.75, transparent),
 color-stop(.75, rgba(255,255,255,.1)));
 -webkit-background-size: 7px;
}

.view {
 min-height: 100%;
 overflow: auto;
}

Then, add the header style using the same rule applied to the body background.

.header-wrapper {
 height: 44px;
 font-weight: bold;
 text-shadow: rgba(0,0,0,0.7) 0 -1px 0;
 border-top: solid 1px rgba(255,255,255,0.6);
 border-bottom: solid 1px rgba(0,0,0,0.6);
 color: #fff;
 background-color: #8195af;
 background-image:
 -webkit-gradient(linear, left top, left bottom,
 from(rgba(255,255,255,.4)),
 to(rgba(255,255,255,.05))),
 -webkit-gradient(linear, left top, left bottom,
 from(transparent),
 to(rgba(0,0,64,.1)));
 background-repeat: no-repeat;
 background-position: top left, bottom left;
 -webkit-background-size: 100% 21px, 100% 22px;
 -webkit-box-sizing: border-box;
}
.header-wrapper h1 {
 text-align: center;
 font-size: 20px;
 line-height: 44px;
 margin: 0;
}

And finally, this is what will allow to display our content with style:

.group-wrapper {
 margin: 9px;
}

.group-wrapper h2 {
 color: #4c566c;

CHAPTER 4: The Anatomy of a Web Application 85

 font-size: 17px;
 line-height: 0.8;
 font-weight: bold;
 text-shadow: #fff 0 1px 0;
 margin: 20px 10px 12px;
}

.group-wrapper p {
 background-color: #fff;
 -webkit-border-radius: 10px;
 font-size: 17px;
 line-height: 20px;
 margin: 9px 0 20px;
 border: solid 1px #a9abae;
 padding: 11px 9px 12px;
}

The last exciting feature presented here is the border-radius property, which will let you

bring rounded borders to any kind of element. Now, reload your page in a browser

(Figure 4–7). Does that ring a bell?

Figure 4–7. Et voila, your first web app!

Hiding Mobile Safari’s Address Bar
As long as you view your site in full-screen mode, this is all very well. However, you can’t

be absolutely sure that your end user will use it that way. A desirable trick would be to

hide the address bar—and the error console, if necessary—when the site is seen in

CHAPTER 4: The Anatomy of a Web Application 86

Mobile Safari. Take a look at the situation. These page elements disappear as the user

pans the viewport. The page will take up at least 100 percent of the view height, which

means that it won’t necessarily be high enough to cover the whole screen if part of its

elements move out of focus. Therefore, our goal will be to readjust the page’s height if

needed so it occupies 100 percent of the viewport, even if part of it is hidden.

Let’s get to the code. Create a new directory in your project named scripts. From

Komodo Edit, create a JavaScript file called main.js, and copy the following code to it:

if (!window.navigator.standalone) {
 document.addEventListener("DOMContentLoaded", adjustHeight, false);
}

function adjustHeight() {
 var html = document.documentElement;
 var size = window.innerHeight;

 html.style.height = (size + size) + "px";
 window.setTimeout(function() {
 if (window.pageYOffset == 0) {
 window.scrollTo(0, 0);
 }
 html.style.height = window.innerHeight + "px";
 }, 0);
}

What this snippet does is check for stand-alone mode; if the user is not viewing your

page full-screen, the adjustHeight() function will be associated with the DOM finishing

loading. The function makes the page twice the height of the screen, which will be

enough in most cases, because user interface elements will rarely take as much space.

The window.setTimeout() gives the page enough time to be modified before the magic

occurs. The magic takes two steps: we move the page up so the top of the page is at

the top of the screen with the scrollTop() method; then, we readjust the page height to

make it just fit the screen height again.

You may find it strange to readjust the page position only if the vertical page offset

equals 0. Actually, as long as a single pixel hasn’t moved out of the screen, the

pageYOffset will have a value of 0. Even if the user pans half the height of the address

bar, the pageYOffset value will stay at 0. Thus, we can maintain the page position call

after call. The result is that when the user loads the page, it will show almost full-screen,

giving maximum focus to the application.

Handling Screen Orientation Changes
However, because the height of the page has been modified dynamically, if the user

rotates the screen when not in full-screen mode, the page would become too high for

the screen. We must add an event listener for this case also. Note that the pageYOffset

test is especially useful here, because the position won’t be reinitialized with each

rotation. Here is the line that handles rotation:

window.addEventListener("orientationchange", adjustHeight, false);

CHAPTER 4: The Anatomy of a Web Application 87

This code will let us know when the user turns his device. The event listener must be set

on the DOMWindow object attached to the current window, not on the document. You will

be able at any time to check the value of the orientation using the window.orientation

property, as done in the following example, for instance to modify styles appropriately:

switch (window.orientation) {
 /* Normal orientation, home button on the bottom */
 case 0:
 document.body.className = "portrait";
 break;

 /* Rotated 90 degrees to the left */
 case 90:
 document.body.className = "landscape";
 break;

 /* Upside down */
 case 180:
 document.body.className = "portrait";
 break;

 /* Rotated 90 degrees to the right */
 case -90:
 document.body.className = "portrait";
 break;
}

This way, we avoid using a timer, which would have been hard on the battery, to

regularly check the dimensions of the window for changes—the notification is automatic.

Note that on the iPad you can also target one orientation or the other using CSS or the

link tag with the media attribute.

<link rel="stylesheet" media="all and (orientation:portrait)" href="portrait.css">
<link rel="stylesheet" media="all and (orientation:landscape)" href="landscape.css">

<!-- Or in a style tag or stylesheet -->

<style>
 @media all and (orientation:portrait) { /* Your style here */ }
 @media all and (orientation:landscape) { /* Your style here */ }
</style>

This is possible only on the iPad. For other devices, a good practice is to add a class or

id on the body tag with JavaScript to apply different styles when the orientation

changes.

Final Touch
The previous piece of JavaScript handles the viewport if the user is opening your

application in Mobile Safari. If he is not, we have seen that you should handle links with

JavaScript; we are going to add the relevant script to our main.js to prevent the default

behavior in this case. For that, add an event listener as follows, and append the

clickHandler() function to your scripts file:

CHAPTER 4: The Anatomy of a Web Application 88

if (!window.navigator.standalone) {
 document.addEventListener("DOMContentLoaded", adjustHeight, true);
 window.addEventListener("orientationchange", adjustHeight, true);
} else {
 /* Target only standalone mode */
 document.addEventListener("click", clickHandler, true);
}

Ready to Go
The files and file structure you have built here are just what you will need to start most

web app projects. If you’ve installed Komodo Edit, you can now save this project as a

template to easily reuse it in your regular working process. To do this, choose your

project name from the Project menu, and click Create template from project. The default

location for templates is the Template folder in the user folder that was created when

Komodo Edit was installed. You will be able to create new projects from this template

from the Project menu by choosing New project from template.

If you haven’t chosen to install Komodo Edit, we recommend you find some other way

to easily reuse this code and structure. From this chapter, you have learned how

important the requirements our template stub answers are to the satisfaction of the

user—and the success of your web app. Using templates as helpers will help you

quickly get past the somewhat annoying first stages of the project. It also is a first step

to make your web application meet its primary goal: to be a proper application.

89

89

 Chapter

User Experience and
Interface Guidelines
The heart of the previous chapter is not the information about screen dimensions,

technical possibilities, or even understanding of how iOS behaves on the iPhone, iPod

touch, and iPad. Of course, you have to master these aspects to build quality web

applications for these devices, but the techniques for doing so are simply tools to

succeed in the process. The advice in this book all comes down to the user. The touch-

interaction system of Apple’s portable devices establishes a specific relationship

between the device and the user that is definitely user-centric. This means that you, the

developer, need to seriously consider the design of your applications.

Applied to computer development, cognitive ergonomics is the practical science that

aims to make an application’s functionality easy to understand and access for the user.

The Apple engineers have considered some of the ergonomics of the iOS already. For

instance, the Multi-Touch interaction model allows users to easily perform common

tasks for most sites, such as zooming, focusing, or opening a contextual menu.

An important aspect of ergonomics in Apple products in general, and even more

critically on Apple portable devices, is aesthetic appeal. The iOS has a strong visual

identity that has been made even more recognizable by the success of native

applications tightly integrated into the iPhone’s GUI. Therefore, the quality of an

application from a user point of view is often judged by how its visual quality compares

to the iOS GUI.

Of course, relying solely on design won’t make your web application successful.

Although a pretty face can allure users into an application, if they don’t find the expected

quality when actually using it, they will quickly move on. This is especially true in the

wildly competitive field like application development.

In this chapter, we will go through a number of rules and best practices that will help you

build better web applications, that is, applications where the user experience, which is

different on mobile devices than on desktop computers, is at its best.

5

CHAPTER 5: User Experience and Interface Guidelines 90

From the Web on the Desktop to the Mobile Web
It is a common but dangerous mistake to consider that the Web is the same regardless

of the platform it is accessed on. Although web applications are built using web

technologies, they are completely different from classic web pages. Obviously, device

capabilities are different. If you view a web application such as Gmail on Desktop Safari

or Mobile Safari, you will see a notably different interface.

Still, using Gmail on your iPhone is possible because Mobile Safari is meant to adapt to

the limited screen real estate. However, the experience for the user is not as good as

when using an iMac or even a MacBook. The scaling makes the content harder to read

and interact with, as demonstrated in Figure 5–1. As a result, Google tries to offer

adapted versions—with lighter interfaces, generally less features, and optimized loading

times—of its web applications for mobile devices.

Figure 5–1. Although the rendering is the same between Desktop Safari and Mobile Safari, the scaling does
affect user experience

A different screen size doesn’t only mean a different view: changing devices implies a

completely different experience, with different behaviors and expectations. Developing

web applications, you should tightly relate interface and interaction schemes to

functionality, independently from the device. Likewise, web technologies such as CSS or

JavaScript should always be considered as tools that can be used to define interfaces

and interaction possibilities, inherent to specific functionality—but should by no means

dictate what the interface and functionality should be.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5: User Experience and Interface Guidelines 91

Forget the Desktop
Typically, the desktop metaphor is one to forget, together with the habit of intensive

multitasking. Get used to the fact that iOS devices—not to say all mobile devices—do

not work that way. Using a desktop computer, the end user can perform various tasks at

a time, handling multiple windows that he can, if he wants, display side by side at any

time. For all these tasks, he enjoys plenty screen estate and, most importantly, will

interact with the desktop using feature-rich devices, that is, a mouse and keyboard.

Computers embrace the desktop metaphor, and they can boast productivity tools and a

practical or playful approach to many activities. With iOS, though you can have several

background tasks such as playing music, downloading applications, or fetching e-mail,

running several native applications side by side isn’t possible. iOS aims to let the end

user efficiently accomplish one task at a time. The small screen means the user

successively focuses on one area—and hence one series of actions—at a time.

Change Navigation Habits
When developing for the mobile Web, it is important not to lose your end user halfway

through the web application experience. The traditional web experience lets the user

access all parts of the site from any other part of the site. This is usually done using both

a navigation bar and numerous internal links. As a user of the Web, you’ve probably

already been confronted with a site that you just couldn’t figure out. If all went right, you

found what you were looking for fast enough; if not, like most users, you probably have

moved to the next site.

This situation is even more critical on the mobile Web. The user expects to find a clear,

straightforward path from one point to another. The important notion is that of flow.

Although it may seem obvious not to interrupt the user in whatever process is set in

motion, displaying a modal dialog box can easily interrupt the user. For such cases, you

should always offer the user an easy way to close the dialog box that makes the

subsequent events obvious.

Developers may be tempted to make an application more personal for the end user by

requiring input, be it through text fields or radio buttons. On the iPhone, this will slow

down the user’s experience and postpone them from achieving their goal.

The consequence may be even more annoying on an iPad. Apple suggests that iPad

applications should work in a nonlinear way, meaning users should see the content of

their tasks in a master view and be able to access options and interaction tools from the

navigation part of the screen. That is to say, users should be able to perform most tasks

no matter what they are doing in the application. Even if it seems relevant to you, be

careful when asking the user to choose between things, because this both breaks the

user’s flow in the master view and may result in cutting off options in the navigation

area, which can be frustrating. For instance, in a mail application, you wouldn’t want to

lose the “compose” option because the user is reading mail. As a rule of thumb, you

should be careful making assumptions about the context in which the user is and what

the user is likely to want to do.

CHAPTER 5: User Experience and Interface Guidelines 92

Also keep in mind that manufacturers have already thought through the usability of their

devices. Therefore, you shouldn’t re-create functionality that already exists and that the

user is used to using.

Show Ads Thoughtfully
Sites often offer free content and rely on advertisements for pecuniary income. If this is

your plan, you should seriously think about how you’re going to do it. On traditional web

pages, various studies have proven that users are widely “trained” to not even notice

advertisements. Although you may think this is less a problem on the iPhone, because

advertisements necessarily take up more of the screen estate and the display is usually

less cluttered, you shouldn’t overload your page. There is a clear risk that forcing the

user to pan past irrelevant content or to zoom away from it may quickly drive the user

away from your web application.

For web applications and native applications, ad standards have already been long

established; you would generally display a small banner at the top or at the bottom of

the page. Native applications, however, take this further and automatically hide

advertisements after a short delay in most cases, leaving the entire space to the actual

content. This has the advantage of driving the attention of the user to the ad while not

being intrusive. It would be a positive move to bring such a behavior to web

applications, especially because, using CSS transitions, you hardly have to use any

JavaScript. The following is a simple example that you can easily test using the template

created earlier in the book. To begin, add the following to the <head> of your page:

.ads {
 z-index: -1;
 position: relative;
 -webkit-transition: margin-top 0.35s ease-out;
 border-bottom: 0;
 margin: 0 auto 34px;
 width: 320px;
}

.ads img { display: block; }

.ads .tab:before {
 color: red;
 content: 'AD ';
}

.ads .tab {
 position: absolute;
 background-image:-webkit-gradient(
 linear, left top, left bottom,
 from(black), to(#666));
 color: white;
 font: bold 11px/24px verdana;
 height: 24px;
 bottom: -24px;
 left: 0;
 width: 100%;

CHAPTER 5: User Experience and Interface Guidelines 93

 padding: 0 5px;
 -webkit-box-sizing: border-box;
}

First, you define styles so that the advertisement stacks beneath the header by

modifying the z-index and position values for the advertisement. Then, you create the

styles applied to the advertisement area and to the block that should remain visible once

the advertisement has appeared. The code relative to the transition is in bold type and

indicates that a smooth 35ms transition should occur when the margin-top property is

changed.

Next, you rely on a script to trigger the animation:

function hideAds() {
 setTimeout(hide, 5000);
}

function hide() {
 var ads = document.querySelector(".ads");
 ads.style.marginTop = (-ads.offsetHeight) + "px";
}

function reveal() {
 var ads = document.querySelector(".ads");
 ads.style.marginTop = "";
 hideAds();
}

NOTE: The querySelector() method returns the first occurrence that matches the CSS
selector passed as parameter. It is part of the W3C Selectors API, fully supported by Mobile
Safari.

This way, whenever you want to hide your advertisement, you will simply have to call the

hide() function, which will determine a new margin-top value based on the height of the

banner and launch the animation.

The reveal() function will allow you to show the advertisement again by restoring the

initial value of margin-top and triggering the animation again. Here is the relevant HTML

markup:

<body onload="hideAds()">
...
 <div class="header-wrapper">
 <h1>Web App Header</h1>
 </div>

 <div class="ads">

 <div class="tab" onclick="reveal()">
 Apress sales. 20% off on all books.</div>
 </div>
...

CHAPTER 5: User Experience and Interface Guidelines 94

Figure 5–2 shows the result. The user will be able to click the tab to see the

advertisement again, and the hiding process will happen again after five seconds.

Chapter 9 covers more about CSS transitions.

Figure 5–2. The advertisement is automatically hidden after a few seconds

Also, you should avoid pop-over elements. As explained earlier, you should limit

anything that negatively affects the flow of the user experience. Therefore, you should

consider using pop-over elements only at specific moments, such as the first page load.

In all cases, there should be an obvious and easy way for the user to close the

advertisement—using the default X from the iPhone UI is a reasonable choice (Figure 5–

3). Overall, you should thoroughly consider how your advertisements affect your

application.

Figure 5–3. You should always supply the user with an easy way to hide advertisements

On the iPad, similar processes can be used, only with different formats. Although with its

large screen the iPad comes closer to what the desktop Web is, a special connection is

established between the user and the device, as explained in the previous chapter.

Therefore, you should consider new, adapted ways to introduce advertising into your

pages. The possibilities available to you, including sound, video, and rich interaction,

should encourage you to make the user a central character in promotional content.

CHAPTER 5: User Experience and Interface Guidelines 95

Whatever ideas you come up with, keep in mind the usage characteristics that have

been and will be presented in this book—as well as elements gathered from your own

iPhone user experience.

Let Users Decide by Themselves
Finding the appropriate attitude as a developer between guiding users through a

seamless experience, letting them choose what they want from the web application, and

not intervening throughout the process can be really tricky. However, there are times

where clearly enough you should leave the decision to the user. Although the frustration

of the user isn’t directly a question of user interface or design, it will have a negative

effect on the perceived quality of your application. For instance, filtering users based on

the device they use and blocking them with “iPhone Only” messages is something you

should avoid. First, it is a better and overall more efficient practice to target

functionalities rather than user agents. Then, if your web application works on the

iPhone, it probably will work similarly on an iPad but also on an Android, a webOS

device, and so on.

Likewise, you shouldn’t impose an iPhone-specific site on iPhone users. Users may

have reasons to prefer using the regular, desktop site. You’ve seen that Mobile Safari

renders sites in a similar way than Desktop Safari and provides tools to view pages in

the best conditions. Give the user a choice (Figure 5–4), remember that choice (be it with

cookies or other storage means), and always gives users a chance to change their

minds.

CHAPTER 5: User Experience and Interface Guidelines 96

Figure 5–4. The mobile version of Google Translate offers users the option to use the regular web version

Simplicity and Ease of Use
What is true for traditional desktop development and web development is even more

critical when it comes to the mobile Web. Because portable devices are meant to be

used in mobile situations, chances are users may be focusing simultaneously on

something else at the same time. This is why you have to make it obvious to users how

to achieve their goal with your application. Although repeated panning can be annoying,

you shouldn’t concentrate most of your content at the top of the page; instead, if you

have a lot of content, you should categorize it and make your categories clear. The user

should be able to immediately identify the primary function of your web application,

together with how the application globally works, even while focusing on other things at

the same time.

Avoid Clutter
The overall iOS user interface is simple and polished, with subtle gradients, a limited set

of colors, and clean lines. This is a standard by which users will judge your web

applications, and Apple’s choice is by no means random. Clutter begins with loud

colors, too many colors, and colors that make your content difficult to scan. The same

applies to elements of your web application. Scattered content can be difficult to take in

and will distract the user from what is important. Figure 5–5 shows an example of a

cluttered application.

CHAPTER 5: User Experience and Interface Guidelines 97

Figure 5–5. eBay is not optimized for the iPhone and leaves an impression of clutter, while still remaining
efficient because there is only one search field

This doesn’t mean you should make extensive use of whitespace. Using too much

whitespace on the iPhone will force the user to pan a lot, with limited visibility on the

content as a whole. Misusing whitespace on a larger screen like that of the iPad is likely

to dilute the content and leave the impression of a scattered experience.

In the case where your web application intrinsically contains many different content

elements, the key to a satisfying user experience is probably an efficient menu. Again,

you cannot keep the habits you may have built developing for the desktop Web. Your

menu has to get to the point quickly, limiting user actions to a minimum while still

making the different available options clear. Short, expressive text should be preferred

over long and descriptive or drop-down menus. If you’re confident that your targeted

public will know technical words or abbreviations that could make their options clear in

fewer characters, use them. Everything regarding navigation should be fast to scan and

use, so these guidelines similarly apply to buttons, links, and the odd pop-up window.

Simply, do not forget that all these elements are secondary and should not draw

attention away from the main service you are providing. Appropriately balancing all of

this will greatly help catch user attention and ultimately increase user loyalty.

User Interface
In a mobile context with limited screen sizes, the notion of a user interface should be

considered with a curious mind. We are talking about someone who frequently uses

your web application while on the move, though on a screen smaller than what one is

CHAPTER 5: User Experience and Interface Guidelines 98

used to and using solely finger gestures to interact with your application and the device

as a whole.

Developing desktop applications, you could confidently line up buttons at the far edge

of a full-screen window to make them easily clicked. Developing for the Web, you could

rely on mouse-over tooltips to guide your users in the right direction. These techniques

aren’t relevant when developing on iOS. Nothing specifically prevents users from

missing the far edges of the screen, and there is no actual mouse hovering by which the

user could rapidly “explore” the page. For the user interface to remain what it was on the

desktop—a set of graphical elements acting as a whole to make functionality easily

accessible—you have to reconsider what key rules you should apply.

Adapt to Touch
The first parameter you should take into account is the pointing device—the user’s

finger. Apple suggests that the fingers of most users need an area roughly 44 pixels

wide to quickly tap something without missing. If you want to use smaller buttons or

links, be sure to make enough surrounding space available so that several active areas

aren’t clicked simultaneously.

Another crucial point is that actions should be clearly indicated. There is no point in

having perfectly sized tapping areas if nobody ever actually thinks of tapping them.

Make your elements look tappable. The best way to guarantee that a user will recognize

a button is to follow the prevalent Apple user interface. If you move away from it, you

should be careful that people won’t misunderstand your elements. On the iPhone,

general advice to create tappable elements would be to make them “look real.” Apple

buttons stand out on the screen because of their gradients and drop shadows (see

Figure 5–6). They look like buttons you could actually touch—which is precisely what

you need to suggest.

Figure 5–6. Users will be more likely click the button than the plain link

This will be even more important when developing for the iPad: it is probable that real-

world-like application interfaces will be taken a serious step further as the number of

applications and sites specifically designed for the iPad's larger screen increases.

Finally, don’t forget that unlike when using a mouse the user has no means to activate

hover states. If it relies on tooltips or complex hover effects, your application is likely to

simply drive disappointed users away.

CHAPTER 5: User Experience and Interface Guidelines 99

Adapt to Size
The fact is, there are chances you may not be developing for mobile devices with much

larger dimensions in mind. Although screen resolutions may enhance the experience for

the user, screen sizes, if devices are to remain mobile, are unlikely to get any larger. The

iPad is a quite different experience. Although it has a larger screen, it shouldn’t be

considered as a new kind of laptop, and although it definitely shouldn’t be considered as

a larger iPod touch, the following applies to iPad development too: always be extremely

careful that all your text content is readable. Small fonts on a wide screen annoy many

people—on an mobile device screen, it can completely put your user off.

Of course, one solution is to offer the ability to increase or decrease font size (Figure 5–

7). However, ultimately, the best technique is to test your fonts on a device, being

honest as to the accurateness of your own eyesight. Create icons with the same

limitations in mind. When you make an area efficiently tappable by its size, remember

the purpose of an icon is to express an action, a shortcut, or a link faster and more

universally than text. This is extra true on mobile devices.

Figure 5–7. The Twitterific application offers a button in the navigation bar to change text size

Avoid Unnecessary Interaction
We’ve stressed that the experience for the user should be as fluid as possible. Whereas

filling in forms on the traditional Web can discourage users from going further, on the

mobile Web, it can quickly become a chore. In all cases, you should prefer radio

buttons, check boxes, or drop-down options to text fields, because typing on an iPhone

can be difficult depending on circumstances. The same guideline should be followed

CHAPTER 5: User Experience and Interface Guidelines 100

concerning the iPad; Apple recommends making iPad applications entirely usable with

one hand only, while using two hands should bring extra comfort and speed to access

functionality.

Make Use of New Input Types Capabilities
Nowadays, forms are part of a web user’s everyday life. People are used to filling in

forms and think about it less and less. Therefore, they may be less patient and have

higher standards regarding aesthetics and usability. This is especially true on mobile

devices, where browsing conditions tend to make users impatient and where input

processes can be difficult.

HTML5 introduces a number of new input types to address these issues, which are

backward compatible. Table 5–1 lists the types supported by Mobile Safari.

Table 5–1. New Input Types Supported in Mobile Safari

Type Description

tel A phone number (usually a set of numeric characters)

search A search field

url An absolute URL

email One or several valid e-mail addresses

number A numerical value

The core idea is that the browser should be able to supply an interface for the user and

submit the format to the developer when handling forms. Mobile Safari brings a

contextual keyboard for user submission with these input types. For example, tapping a

tel type input will trigger a numerical keyboard, as shown on Figure 5–8.

Figure 5–8. All the supported keyboards

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5: User Experience and Interface Guidelines 101

Such features can obviously make the user experience better by requiring fewer actions

for a seamless interaction. The iPhone, up to version 2.0, provided similar functionality

to some extent, by automatically firing a numeric keyboard for input elements named

zip or phone. However, this feature was dropped in iOS 2.0 and was not available until

version 3.1 began to support these new types.

Ponder Upon User-Supplied Information
Although user input can be made easier, always ask yourself whether you really need

the information you plan to ask for, or in other words, if it will be a primary concern for

the end user. If your application returns a list of books depending on various criteria, it

seems secondary to ask whether hardback products, a specific editor, or any year of

publication are preferred. In such a case, the best would be to break queries into stages,

as done by Amazon (Figure 5–9). First, search by title, author, or topic—ideally, this

requires only one text field, leaving the server-side script to determine which is relevant.

Then, offer to filter results, for instance by date, editor, or cover type. Finally, you can let

your user classify the last results, let’s say by price or availability in book stores.

Figure 5–9. Amazon doesn’t load the search area with filters. Instead, it delays filtering to the result page

Another way to speed up such an application is to keep track of user input. Here, it is

likely that your loyal user will mostly be looking for books from the same publishers. You

can store the user’s choices using traditional cookies or HTML5’s latest client-side

storage tricks that we will be using in Chapter 15. This way, whenever the user comes

CHAPTER 5: User Experience and Interface Guidelines 102

back to your web application, the user will be grateful for not having to type

Mephistofeles’s Antique Bookshelf Treasures again.

The key principle behind user input is that for whatever information you ask for, you

should give as much extra functionality in return. Of course, gathering information about

your user can greatly improve the quality of the service you are providing. The point is to

make the “greatly” as great as possible relative to the “gather.”

Avoid Multiplying Steps
In the previous example, the user goes through three steps—filter, search, and sort—of

which only the first is required. As we have stated earlier, the functionality the user came

to find should be available as soon as possible, through a straightforward process. Cutting

the book search application into three separate pages only to lighten up each stage—as is

often seen with traditional Web, for example in account creation forms—wouldn’t be

appropriate here. The benefits of such a decision—less panning, less clutter—would be

hindered by the fact that the user is forced to wait, perhaps without even knowing how

long the process will take or which step is next. Also, for the developer, it is a risky bet to

consider that the network will be efficient three time in a row.

The Spirit: Be Focused
The iPhone is not a computer, nor is the iPad. Don’t expect users to handle them as

such, and don’t develop your web applications with computer applications in mind. An

iOS application should focus on bringing a specific and satisfying solution to a particular

demand or problem and should focus almost only on providing what is expected in the

most straightforward manner. The viewport holding your web app should therefore be a

place holding selected elements that behave as a whole and a place that is uncluttered,

discrete, and clear, as with the Clock application (Figure 5–10).

Although this may originate in hardware limitations—slow rendering under heavy activity,

limited screen estate—it has become an expectation of the user, whose loyalty will

reward you for providing the appropriate answer to the user’s primary question. This

becomes true for the iPad also, at least by inheritance, so, always focus on bringing one

appropriate service rather than several approximate ones.

CHAPTER 5: User Experience and Interface Guidelines 103

Figure 5–10. The Clock application focuses on what is expected: time services

Make Things Responsive
Users on mobile devices expect things to happen quickly. Any action should entail a

reaction immediately. We’ve explained in the previous chapter that the default start-up

screen for full-screen mode web applications was a view of the last web application

screen state, which could leave the impression that the application or the device had

become unresponsive. This at least can be frustrating for the user. Even a rather short

wait can repel some, and in all cases will harm user loyalty.

Make Your Web App Responsive
This remains true all the way through the web application experience. You should avoid

multiplying actions that are heavy on the processor, too much JavaScript , and actions

that are too long to complete like heavy server-side activity to show results. This should

all be thoroughly considered in the optimizing stage of your development, but also right

from the start, in brainstorming and feature designing stage.

To minimize wait times right from your web application loading, always limit the use of

images to a minimum, be careful with file sizes, and avoid pages that are too long and

will require a lot of panning to use. Regarding images, as we will see in later chapters,

you can replace many by using CSS gradients, canvases, or web fonts. You should be

aware that as long as the document hasn’t fully loaded, the rest of your page is likely to

CHAPTER 5: User Experience and Interface Guidelines 104

be unavailable to user interaction—without the user actually understanding why,

because the part of the page still to load will be out of view. Finally, although separating

markup, styles, and functionality (that is, HTML, CSS, and JavaScript) and resorting to

external files is a good practice, you should send as few HTTP requests as possible,

because again you cannot predict connection type or quality and because server

response times may be longer on mobile devices.

Of course, apparent latency steps in the experience you provide are likely to be

inevitable. If at some stage you have to initiate an action that is going to take a fair

amount of time, always remember to give the user feedback on the web application

activity (Figure 5–11). While every action should lead to a quick answer, if this is not

doable, users will be more patient and tolerant if you keep them up-to-date with what is

happening. This by the way is true for most kinds of user interaction.

Figure 5–11. The Mail application uses a spinner during the connection and then a progress bar for the
potentially longer loading of messages

For waiting stages, unless you’re absolutely sure the awaiting is going to be short,

regardless of connection quality, a progress bar is better than a spinner, because it tells

the user about the evolution of current processes. Likewise, if several actions are taking

place, it would be beneficial to tell users about what is happening, step after step. Visual

elements changing on the screen tell users that something is really going on, that is, that

the web application hasn’t just frozen on a spinner view—and if you do things nicely, it

can even be entertaining to some extent.

CHAPTER 5: User Experience and Interface Guidelines 105

Make Your Web App Reactive
In a similar way, you should guide your user through actions, even if they are not going

to take time to complete. iOS comes with built in feedback for tapped buttons using the

-webkit-tap-highlight-color CSS property. You can take this as an example of what

can be done to strengthen the connection between the user and his device—and your

application—because the screen reacts to finger actions like a proper button. On the

traditional Web, this is often achieved with hover states: a menu item changes color

when hovered over, a tooltip appears, elements are zoomed in upon, or their opacity is

toggled.

You know that this isn’t an option on mobile devices because with no mouse, there is no

actual hover action. Instead, you should give extra attention to whatever should happen

when the user taps. Another inspiring example from native iOS functionalities is the

toggle on-off button. Instead of a regular check box, or even a button that looks pressed

in when a feature is activated, Apple designers use a “switch” metaphor. This gives the

user a superior sense of concreteness of the GUI elements, while the change in the state

becomes a discreet animation, acknowledging that the action has been taken into

account. Nonetheless, always be careful when mimicking the native iOS UI, because

users will expect your elements to behave exactly like those they imitate. Hence, a

different behavior or result would be deceiving and negatively impact the perceived

quality of your applications.

As an iOS developer, it can be interesting in many cases to go further than the

-webkit-tap-highlight-color effect in this kind of process by creating your own effects

(keep in mind however that things should remain simple and easily understandable), by

managing your own custom effects, or, for instance, by mimicking entry or menu

selection list native effects.

iOS Interface Design Good Practices
Beyond the usability guidelines introduced earlier, there are a number of user interface

design guidelines that you should consider when developing your web application.

These originate in the specificities of the devices or in the native iOS GUI. Following

them can help you serve an experience as good as the user expects and is an important

step to a successful application.

Adaptability
A tricky specificity of the iOS is that it allows users to choose at any time between

portrait and landscape orientation for the viewport. This is unusual compared to

traditional web developers, who can easily rely on minimum screen sizes and ultimately

on scrolling. Moreover, there is little chance that a user would change the size of the

browser window repeatedly in one visit of a page, which means there won’t be a direct

comparison of different displays. The situation is made even more complicated with the

release of the iPad, which has a screen five times as large as that of the iPhone and iPod

CHAPTER 5: User Experience and Interface Guidelines 106

touch. To provide a satisfactory experience to users, it is critical that your web

applications perfectly adapt to these circumstances.

Because, following the advice found in this book, you have prevented zooming on your

web application, you have to make sure it will adapt to the width of the viewport (set to

device-width). If you are a front-end web developer, you know what a fluid layout is. The

basic idea is that you page occupies 100 percent of the screen, whatever the size of the

screen, without breaking into a bunch of disorderly elements. This means you should

prohibit fixed sizes for all layout elements and, as a general rule, avoid them altogether.

There will be plenty examples in this book on how to achieve this. You have already

seen in the project template you built that the title and paragraph take all the width of

the screen, regardless of the orientation.

Another method available to you is to apply CSS rules depending on the viewport

orientation. This is to be used with caution, because you can easily double file sizes if

you end up applying completely different rules to each configuration. The best method is

to keep in mind that your page will have two possible layouts and test both at each

development stage. If you have built your markup and styles this way, you probably will

not have to use specific styles.

List vs. Icon Approach
Looking to present data in a clear and straightforward manner, you will be using lists

quite a lot. Apple recommends using lists for web pages and applications that target

devices running iOS, and indeed lists have many advantages. They allow you to be more

concise by cutting the number of complete sentences, and they make large amounts of

information stand out as clear groups of data. In addition, they are similar in form to the

default menus of the iOS and desktop application menus, so they will be familiar to the

user.

Be careful, however, not to make lists too long. Although the points presented earlier all

intersect with good practices we have already written about, lists—even web pages—if

they become too long, they will force users to pan, possibly missing what they were

looking for or getting lost in the information. Another serious issue with long lists is that

they generally make the browser slower, which again will frustrate the user. To avoid

lists becoming too lengthy, as explained previously, you should ask yourself what

information is most important and how you can categorize it.

Because lists exist in the iOS GUI, there are existing styles you can mimic to achieve an

appealing interface for your web applications. Three types of list are available, namely,

edge-to-edge lists, lists with rounded borders, and icon grid lists (see Figure 5–12).

CHAPTER 5: User Experience and Interface Guidelines 107

Figure 5–12. Three different list types in three different applications (Yahoo Finance, Settings, and LinkedIn)

If you follow all the examples in this book and create templates from the files and

snippets we suggest, you will soon have a solid base that you can pick from to build

web applications.

The first list type is especially adapted to long lists. It is compact, simple, and readable.

If you’ve started building your project template and template files, you can create a new

HTML file and add the following code into the .view container:

<div class="list-wrapper">
 <h2>A</h2>

 Apple
 Application

</div>

Next is the CSS to make your basic list look iPhone-like. Append it to the styles.css style

sheet you have already started in the web application template:

.list-wrapper h2 {
 line-height: 1;
 font-size: 18px;
 padding: 1px 12px;
 font-weight: bold;
 text-shadow: rgba(0,0,0,0.5) 0 1px 0;
 background: left 1px -webkit-gradient(linear,
 left top, left bottom,
 from(rgba(0,0,0,0.18)), color-stop(0.65, transparent))
 rgba(178,187,194,0.89);
 -webkit-box-sizing: border-box;

CHAPTER 5: User Experience and Interface Guidelines 108

 height: 22px;
 border-bottom: solid 1px rgba(0,0,0,0.18);
 overflow: hidden;
 white-space: nowrap;
 margin: 0;
 color: #fff;
}

.list-wrapper ul {
 padding: 0;
 background: #fff;
 font-size: 20px;
 line-height: 23px;
 margin: 0;
}

.list-wrapper ul li {
 border-bottom: 1px solid #dfdfdf;
 padding: 10px;
}

The second list type is very similar to the edge-to-edge list type, but it has rounded

borders on the first and last list items. Therefore, it is better used on not-too-long lists,

so the top and bottom edges of the list are seen at once. The HTML is very similar to the

previous markup, though the styles will transfer the padding directly to the links, so

effects applied to the focused elements take the border radius into account. To see

what happens, simply put the following code inside a .group-wrapper:

<h2>Group List</h2>

 Item 1
 Item 2
 Item 3

And the relevant styles go into the same style sheet:

.group-wrapper ul {
 background-color: #fff;
 -webkit-border-radius: 10px;
 font-size: 17px;
 line-height: 20px;
 margin: 9px 0 10px;
}

.group-wrapper ul li {
 padding: 11px 9px 12px;
}

.group-wrapper ul {
 font-weight: bold;
 margin-bottom: 20px;
 list-style: none;
 padding: 0;
 border: solid 1px #a9abae;
}

CHAPTER 5: User Experience and Interface Guidelines 109

.group-wrapper ul li:not(:last-child) {
 border-bottom: inherit;
}

.group-wrapper ul li a {
 padding: inherit;
 color: inherit;
 text-decoration: inherit;
 margin: -11px -9px -12px;
 display: block;
}

.group-wrapper ul li:first-child a {
 -webkit-border-top-right-radius: 10px;
 -webkit-border-top-left-radius: 10px;
}

.group-wrapper ul li:last-child a {
 -webkit-border-bottom-right-radius: 10px;
 -webkit-border-bottom-left-radius: 10px;
}

Your third list alternative, the icon grid display, is appropriate when many options have

to be presented in a minimal area. It allows for an intuitive display that can be used to

present options to the user. You can also use this display to replace labels in contextual

menus, as when a user long-presses to use copy-and-paste functionality. Just

remember to always make tappable areas large enough to be usable.

Considering UI Alternatives
Along with considerations about usability design, you thoroughly rethink actual graphical

design for your web applications. You have several options here, which are all

legitimate. Since there are quite a few orientations regarding interface design for mobile

devices, it is your choice to which extent you will follow these guidelines.

Mimicking the iOS UI
Mimicking the native GUI from the device you are targeting is a rather safe bet when

developing your web applications. Using a look and feel that users already know will

speed up their navigation experience and favor positive impressions regarding your

application. You should aim to serve a fluid experience, so making your application

mimic the overall Apple interface and using well-designed elements provided by Apple

seems like an obvious idea.

The main drawback to mimicking the iOS is that your application may feel out of place if

viewed on another device. A webOS or Android user will see your web application just

as it could be seen on an iPhone—but the surroundings, the built-in functionalities, and

even the device itself will not be an iPhone.

CHAPTER 5: User Experience and Interface Guidelines 110

Finally, you would be right to consider that mimicking the iOS UI, even if Apple

recommends it, isn’t very personal, which could ultimately make your application less

memorable than one with similar functionality but a more recognizable identity.

Without actually mimicking the native interface, there are times where you should rely on

it. iOS has specific built-in behaviors regarding form <select> elements and pop-up

modal windows. Moving away from Apple's implementation, these typically would be

difficult to render in a usable way, especially because it should be clear for users what is

going to happen when they perform actions on such elements.

There are also times when you will have no choice but to rely on the iPhone UI. If you

want to use special URL schemes such as mailto: or tel:, you will be leaving the

control to the OS again. The same is true when resorting to audio or video players,

because Mobile Safari doesn’t integrate these functionalities directly on the iPhone and

iPod touch.

Building the iPad Experience
The iPad is new to the developing market. Although it shares its GUI with the iPhone and

iPod touch, because it too works with iOS, you should think your design principles over

again for this device. The iPad will most probably bring users a brand new experience as

a device—it is up to you to build a new, relevant application experience.

The screen of the iPad is more or less netbook size, and it has a greater resolution than

that of the iPhone and iPod touch. However, you shouldn’t develop your application with

a laptop in mind or simply considering the iPad to be a larger iPhone. The functionality

the iPad brings is clearly different from that of computers and smartphones.

Not a Laptop, Not an iPhone
The initial orientation of the iPad is the portrait orientation, and there is no scrollbar. The

importance of a clear experience remains as critical as with the iPhone. Just because

you have more screen estate available for your application definitely doesn’t mean that

you should try to use all of it. Keep focusing user attention on one purpose of your web

app, and keep ways of interacting with it easy to understand. In general, apply the same

guidelines as for iPhone development.

Again, the iPad isn’t a large iPhone. If following iPhone UI guidelines, you should adapt

wherever is possible or necessary. You can keep a preference for lists, though you

might consider making the amount of content for each item more complete. Also, you

might consider where you had two views on an iPhone application, you can combine

elements in the iPad to make one view if it seems relevant, as Figure 5–13 shows.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5: User Experience and Interface Guidelines 111

Figure 5–13. A creative and realistic way to implement split view

An interesting way to design content layout for the iPad is called split view. The idea is

that, because the iPad has a larger screen, developers can separate the main focus from

auxiliary content and more advanced functionality in a master-detail style.

In portrait orientation, the detail view would appear full-screen, and the master would

float over it; users toggle from a visible state to hidden by tapping an button. In

landscape orientation, you would transform the floating box of your application into a

sidebar. This has serious advantages, but do not forget to always let users choose by

themselves. If you are thinking that you should suggest to use landscape view or even

force it, you’re probably producing poor design or making an application that is not

really an iPad application.

On the iPad, touch is maintained as the ideal way to interact with the OS, applications,

and content. This is important because it strongly influences how users use and

perceive your pages and applications. Because the screen size allows you to more

easily mimic real-life elements, with higher detail, you can rely on a new level of realism

to make your application easier to understand and use. Take a look at iBooks (Figure 5–

14), which goes far with the library metaphor. The application is very intuitive, because

the user is invited to take a book to read it.

CHAPTER 5: User Experience and Interface Guidelines 112

Figure 5–14. iBooks stand as in a real library on the iPad, inviting users to take a book

As you have more space available to you, interaction in space is no longer limited to

vertical movement, and it becomes less of a chore too, be it only because users will

have more visibility on what they are doing. The applications presented first on the iPad

are to read books, keep a calendar up-to-date, and even do text processing. These are

all desktop activities (we’re talking about a proper, wooden desktop here), ported to a

cleaner, mobile life. This is strong suggestion that you should allow for similar physical

sensation of what the user is doing.

CHAPTER 5: User Experience and Interface Guidelines 113

Creating the Interface for the iPad
If you are going to extensively use split view (Figure 5–15) in your application design, you

should once more seriously consider building a reusable template to speed up your

developing process. There are several points where building a split view can be a little

tricky.

Figure 5–15. A classic split view with the Mail application

First, you will have to target the iPad specifically—obviously split view would break on a

320x480 pixels screen. This is achieved using the CSS @media rule, as follows:

@media only screen and (min-device-width:640px) { ... }

This means we are targeting only screen devices with a minimal width of 640px. This

means you could put this in your main style sheet:

@media only screen and (min-device-width:640px) {
 body {
 background: #e1e4e9;
 }

 .header-wrapper {
 color: #727880;

CHAPTER 5: User Experience and Interface Guidelines 114

 text-shadow: rgba(255,255,255,0.7) 0 1px 0;
 border-top-color: #fff;
 border-bottom-color: #3e4149;
 background: -webkit-gradient(linear,
 left top, left bottom,
 from(#f4f5f7), to(#a8adb8));
 -webkit-background-size: 100%;
 }

 .group-wrapper p,
 .group-wrapper ul {
 -webkit-box-shadow: 0 1px 0 #fff;
 border-color: #b2b5b9;
 }
}

For the moment, you only change the color of the header to fit with the color scheme of

the iPad. However, it is unnecessary to overload your iPhone style sheet uselessly,

because you can also load a different, specific file when your web application is used on

an iPad or desktop browser. This is done by specifying the device width in the media

attribute of the <link> tag:

<link rel="stylesheet" href="styles/big.css"
 media="only screen and (min-device-width:640px)">

This way, nothing will be loaded if your user is on an iPhone, but you can add

appropriate styles for the larger devices. Add the previous code to a file called big.css in

your template styles directory.

Now that you have your iPad-specific style sheet waiting, let’s get some code in it to

achieve the split view mentioned earlier. You will apply it following the way it is

implemented on native iPad installed applications. Note that it is important that both

columns in landscape orientation have the same height. Therefore, you use the table

and table-cell display property value for main and auxiliary views, which avoids having

to resort to JavaScript or visual illusions using background images that would be heavier

on the rendering engine, longer to load, and less elegant and maintainable altogether.

.split-view {
 display: table;
 width: 100%;
 height: 100%;
}

.split-view .view {
 display: table-cell !important;
}

.split-view .view:first-child {
 border-right: solid 1px black;
 width: 320px;
}

And your markup would be as simple as this:

<div class="split-view">
 <div class="view">

CHAPTER 5: User Experience and Interface Guidelines 115

 ...
 </div>
 <div class="view">
 ...
 </div>
</div>

Now, simply do not forget to hide the auxiliary content from iPhone users, by putting the

following in your main style sheet:

.split-view .view:first-child {
 display: none;
}

This will not be applied on the iPad, because you have specified !important on the

display:table-cell rule earlier. The !important statement overrides all other rules in the

style sheet or inline.

Be Creative and Innovative
You now have knowledge and tools to efficiently start building iPhone and iPad

applications. An easy way to start moving away from the defaults is to keep the overall

layout unchanged—you understand how the presented layout choices have positive

effects on the usability of your web app—but tweak the color scheme applied. The

default colors of iOS are distinguished but can be a little cold for some purposes. The

relevance also depends on the public you may be targeting. The gray and blue choice

may, for instance, feel boring to a teenage target.

An easy yet entertaining way to play with color schemes is to go the site

http://kuler.adobe.com/. There, you can choose between numerous user-submitted

themes or create your own. The idea for you is to easily generate color associations that

fit into the initial spirit of Apple’s design. You can also go there to get a sense of what’s

popular or find inspiration.

Of course, the best way to find original ways to design your web applications is to

actually use the devices you target as much as possible. Knowing them well, not only as

a developer but also as a user, will immensely help you understand what “works” and

what doesn’t.

Mimicking the UI of the OS you target is a good start to make your application more

accessible. Even lazy users should easily adapt to an environment they are familiar with.

Therefore, the interface to your application should be well designed and intuitive,

building upon what already exists.

Still, you should often be able to find good inspiration in your everyday life. Do you like

to sort papers to get yourself organized? Do you need a soothing landscape painting to

work in good conditions? Find ways to port this to your applications. Chances are you

are not alone in your case, and this kind of innovation can make the difference between

good and great. To offer a different experience, build upon the simple, clear iOS

interface, creating beautiful, new environments.

http://kuler.adobe.com

CHAPTER 5: User Experience and Interface Guidelines 116

Summary
Developing for mobile devices isn’t easy. You’ll have to move away from a number of

principles and habits that ruled on the traditional Web to produce successful web

applications. All iOS-based devices provide excellent support for standards, a clean

interface, and nifty features for your applications—and thus users—to benefit from.

Nonetheless, this comes with its share of constraints. You should be extremely careful

not to disappoint your users and always bring them the best experience possible, taking

into account the standards they have become used to seeing.

Think about your design process from the ground up but without forgetting what you

may have learned from previous development. You have plenty tools available to you, so

make the most of them by creating a relevant and unique experience. In the next

chapters, we will be getting into more thorough detail of what is possible to achieve with

the WebKit and iOS technologies.

117

117

 Chapter

Interesting CSS Features
for Your Web Application
User Interface
HTML5 takes document semantics even further than previous versions of the language.

However, if you’ve been a front-end developer for some time, you must be conscious

that an appealing design often implies hard dilemmas and superfluous markup. In this

chapter, we’ll go through a number of CSS features that are going to make your web

application developing process much faster, richer, and cleaner. Some make long-

awaited enhancements hassle free and easy to maintain, and others are more complex

but are going to open a whole new range of layout and design opportunities for your

web application on Mobile Safari.

Note that many of the features explained in this chapter are either pretty new and

considered unstable or WebKit specific and therefore are prefixed with the WebKit’s

proprietary -webkit-. This can be needed for property values and is required for most of

the properties we are going to explain. As a good practice, you should always declare

the WebKit-specific rule followed by the proper, non-prefixed rule to achieve maximum

forward compatibility.

Keep all this in mind, and dive into the new wonders that Mobile Safari is making

available to you.

Improving the User Experience with CSS
Before we introduce a number of CSS treats brought by the CSS3 specification and

some others often sacrificed to browser compatibility, let’s go through a few Mobile

Safari–specific CSS features. Although the CSS goodness to be presented in this

chapter will help you increase and refine your control over the layout and design of your

pages, you are targeting a specific OS and browser, both of which have strong user

6

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 118

interfaces and have created habits and expectations for their users. The Mobile Safari

possibilities we are going to start with will let you build applications that integrate even

better into the user’s device to improve their user experience.

User Feedback
On a device with such close interaction between the user and the interface, it is

important that actions on the user side trigger visual feedback in your web applications,

as we explained in Chapter 5.

The initial interaction state implemented in Mobile Safari is based on the -webkit-tap-
highlight-color property, which defines a color for the overlay box that will highlight

tappable areas of the viewport on user action. It can be seen, for instance, on any

tapped link. The following rule would darken (Figure 6–1) such areas whenever the user

touches a tappable element:

a { -webkit-tap-highlight-color: rgba(0, 0, 0, 0.5); }

Figure 6–1. A touched element with custom highlight color

You may have been thinking that there was no other “clicked” state in Mobile Safari.

This isn’t entirely true. However, it takes a little trick to access this property with the CSS

:active and :hover pseudo-classes.

Many recommend using the mouseover and mouseout Multi-Touch equivalents

touchstart and touchend by adding and removing a specific class with an event handler.

This indeed works, but it is somewhat clumsy and heavy to use, especially considering

there is a much simpler way to achieve this.

You can activate these equivalents by adding an event handler on the window, and

without even adding functionality to this handler, it just works and triggers the desired

behavior. Therefore, the following code added to the main.js file in our web application

template will allow us to add the subsequent rule to our main.css file, as shown in Figure

6–2:

/* main.js */
document.addEventListener("touchstart", new Function(), false);

/* main.css */
.group-wrapper ul li a {
 ...

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 119

 -webkit-tap-highlight-color: transparent;
}

.group-wrapper ul li a:active {
 color: #fff;
 background: #015de6
 -webkit-gradient(linear,
 left top, left bottom,
 from(rgba(255, 255, 255, .25)), to(transparent));
}

.group-wrapper ul li a:active * {
 color: #fff;
}

Figure 6–2. Just like a native iPhone menu

Again, we have made these styles in a way that makes them easily adaptable. Here, a

simple change of the background color will allow you to change the aspect of the

button, without altering the gradient.

Disabling Copy/Paste Functionalities
Users can easily initiate a long press action on elements of your page, which would

trigger the copy/paste feature with an ugly box that could spoil the user experience to

some extent, as shown in Figure 6–3.

Figure 6–3. A long press may trigger the copy/paste feature

This behavior can be disabled when it is not desired or when you want to add some

custom functionality to this action. You do this using only CSS, with the -webkit-user-

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 120

select property. This takes either the value auto, to allow selecting; text, to let users

select only text; or none, to disable it altogether.

Nonetheless, be careful not to let usability dwindle, for instance by removing the ability

to select text fields. The following code takes care of this for you, using common

selectors:

*:not(input):not(textarea):not(select),
 input[type=image],
 input[type=file],
 input[type=submit],
 input[type=button],
 input[type=reset] {

 -webkit-user-select: none;
}

This will prevent selection for all elements apart from text inputs (taking into account all

the new input types), making your web application experience closer to that of a native

Mobile Safari application.

Control Over Callout
The touch and hold action on a link will trigger the menu shown in Figure 6–4. If your

web application has been made to resemble a native application, this behavior is

probably not needed, desired by you, or expected by the user.

Figure 6–4. Touching and holding on elements such as links or images may trigger an option callout

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 121

Luckily, it can be disabled, again with simple CSS, by setting the -webkit-touch-
callout property to none. As with the previous property, do consider cases where the

functionality may be expected by the user, to not entail frustration on that side.

body {
 ...
 -webkit-touch-callout: none;
}

Adding this rule for the body of your documents will be enough to globally disable the

behavior for all elements.

Selectors
Before getting into the magic of CSS3 layout and styling features, we think it is

important to spend some time going through one of the most exciting aspects of writing

CSS for modern browsers: selectors. Indeed, if you used to target elements using IDs,

classes, and descendants only, you have been missing most of the fun. WebKit

browsers implement all of the CSS1 and 2 selectors, along with most of those

introduced by CSS3.

NOTE: All the selectors discussed here can be used in the search field of WebKit's Web Inspector
found under the Develop menu, which again can prove very useful in your development process.

This gives you almost full control over which element you want to target, without having

to identify too many tags with extra identifiers. CSS selectors allow you to precisely

move across the document structure choosing only elements with given characteristics.

Overview of Available CSS Selectors
With CSS3, the number of available selectors has become quite impressive, but we will

only get into the details of those that appear more complex to handle. You can find the

complete list with a description for each selector on the specification page, at

www.w3.org/TR/css3-selectors/#selectors.

You will see that most of the selectors presented there are either known already or

pretty self-explanatory. You will probably notice some interesting newcomers that allow

for negative selection or selection on only part of an attribute. In Chapter 9, we will also

be using the very versatile :target, which can save you a fair amount of JavaScript.

Other selectors, however useful, may be a little less obvious. Here are a few notes and

explanations for those.
First, pseudo-elements are now differentiated from pseudo-classes by the use of a

double colon mark (::) instead of a single one. This may seem trivial, but CSS2 didn’t

make this difference. It has a meaning in the nature of selectors: pseudo-elements are

not part of the document tree. Typically they belong to the document text content and

http://www.w3.org/TR/css3-selectors/#selectors

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 122

couldn’t normally be accessed with the document language, while pseudo-classes are

meant to further identify elements based on their position in the DOM.

Second, you should be careful with spaces, because an “empty selector” can target any

element.

/* 2 equivalent definitions... (with space) */
p ::first-letter { ... }
p *::first-letter { ... }

/* ...but different from */
p::first-letter { ... }

Next, be aware that you can chain selectors. You could, for instance, want to add a

visual mark to the end of all your articles. Assuming that the very last child of the <div>

is a paragraph element, this could be done as follows:

div p:last-child::after {
 content: "The End";
 font-weight: bold;
}

This can be quite complex, because there is virtually no limit to how precise you get, as

you can imagine from what follows:

a.class1.class2:not(#id1):first-child:hover {
 color: red;
}

Here, we target any anchor that has the classes .class1 and .class2, but not the ID id1,

and that is the first child of its parent in order to apply a specific color to its hover state.

Position in Suite Selectors: Structural Pseudoclasses
You may be accustomed to using the :first-child and :last-child selectors. If so,

you probably know that they can be frustrating, for two reasons.

The first limitation is that, obviously, they allow you to target only the first and last children,

respectively. Yet, it can often be desirable to apply different styles to the penultimate child

of an element, every other element, or the first child of such or such type.

The second reason is that both of these selectors have an ambiguous behavior where

p:first-child doesn’t target the first <p> element, but the first element of the parent, if

it is of type <p>. Thus, in the following code, no paragraph would be styled differently:

<style>
 div p:first-child {
 font-weight: bolder;
 }
</style>

<div>
 <h1>Some Title</h1>
 <p>First paragraph, but not first element: will not be bold text.</p>
 <p>Second paragraph.</p>
</div>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 123

All of these limitations are addressed in CSS3. However, the syntax for these new

selectors deserves some explanation. The selectors we are going to look at here are

those that imply counting elements within the tree, :nth-child(), :nth-last-child(),

:nth-of-type(), :nth-last-of-type().

These all share a peculiar syntax where the count of the element you want to target can be

represented either by a single number, to target the nth child only, or by an expression

matching the xn+y pattern. Both xn and y can be omitted if they equal 0, but one of them

must be different from 0. Also, y can have a negative value. Here is an application:

<style>
 /* Here there will be no repetition, equal to nth-child(3) */
 ul li:nth-child(0n+3) {
 font-weight: bolder;
 }

 ul li:nth-child(2n) {
 /* Every other row will be affected */
 color: red;
 }
</style>

 Item
 Red Item
 Bolder Item
 Red Item
 Item
 Red Item

xn always represents the variable increment part of the expression, and the number after

the + is the position where the increment should begin. When the variable is set to 0n,

you target only one element, as in our first example.

Hence, the expression ul li:nth-child(1n+3) would have to target all elements

starting at the third child of its parent. Using nth-child(4n+1) would target every fourth

element starting the count at the first child (1, 5, 9, 13...).

For nth-last-child(), the syntax is the same, except n is a decrement factor. :nth-
last-child(2n+0) targets every even element counting from the end. Also note that for

both forward and backward counting, the +y can be a -y, as in (3n-1).
Understanding this syntax gives you plenty of possibilities to style repetitive layout

patterns or target specific elements without resorting to additional markup. Also note

that all these selectors can take the odd and even keywords as a parameter. Thus, the

two following rules are identical:

section div:nth-child(2n+0)::after { content: "even"; }
section div:nth-child(even)::after { content: "even"; }

As are these two:

section div:nth-child(2n+1)::after { content: "odd"; }
section div:nth-child(odd)::after { content: "odd"; }

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 124

On the other side, the former examples may or may not be identical to the following,

because the starting point is different:

section div:nth-last-child(2n+0)::after { content: "odd or even"; }
section div:nth-last-child(even)::after { content: "odd or even"; }

Finally, note that the expressions taken by these selectors as parameters should be free

of whitespace. The following is invalid and will be ignored:

ul li:nth-child(0n + 3) { font-weight: bolder; }

As we said, these global child selectors search through all children of a container,

regardless of their type. It can often be preferable to target only one kind of children, as

in our first example. Here it is again, modified to work as expected:

<style>
 div p:first-of-type {
 font-weight: bolder;
 }
</style>

<div>
 <h1>Some Title</h1>
 <p>First paragraph now bolder!</p>
 <p>Second paragraph.</p>
</div>

Hence, you can have complete control over the selection of your elements.

Advanced Handling of Backgrounds
Although many inspiring designs have been achieved with the possibilities offered by

previous versions of CSS, these usually made the task of setting a background a difficult

one.

From a designer's point of view, background definition possibilities with CSS2 could be

called a rough cut. Nonetheless, backgrounds are used extensively today as designs

grow more complex and richer and incorporate more page elements.

Moreover, backgrounds apply on structures that are more intricate and complex than

before. Therefore, developers need to more precisely display backgrounds.

CSS3 offers a new set of background properties to make formerly tricky and

cumbersome tasks easier and more efficient. Better positioning and multiple layer

backgrounds are available. We are going to explain those that are currently supported

by Mobile Safari.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 125

NOTE: Many CSS3 features temporarily require a -webkit- prefix. This allows you to implement
new specifications earlier but also implies that these rules will be replaced and disappear.
Therefore, in your style sheets, you should always declare the -webkit- prefixed rule followed
by what should be the proper, unprefixed rule, to avoid surprises when future versions don’t
support the “draft” implementation. Also, because the definitive implementation will possibly be
better (either faster, cleaner...), you will want that to be applied rather than the draft as soon as it
is ready. Therefore, it should be declared second.

Origin of the Background
When defining a background, it is typically applied to a box, with some padding, a

border, and a margin. The background color would run from the outer edges of the

borders to meet at the center of the box, while a background image would be positioned

relative to the inner edge of the border.

This can be fine-tuned with the CSS3 background-origin property, which in a way

extends background-position by allowing you to specify the origin for positioning. This

will be made most clear with a couple of examples:

<style>
 div {
 float: left;
 border: dashed 10px #000;
 background-color: #ccc;
 padding: 20px;
 width: 240px;
 height: 240px;
 margin: 20px;
 background-position: bottom right;
 background-repeat: no-repeat;
 background-image: url(images/flower.jpg);
 }

 div:nth-of-type(1) {
 -webkit-background-origin: border-box;
 }

 div:nth-of-type(2) {
 -webkit-background-origin: padding-box; /* default */
 }

 div:nth-of-type(3) {
 -webkit-background-origin: content-box;
 }
</style>

<!-- Our 3 boxes -->
<div></div>
<div></div>
<div></div>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 126

For this example, we have created three boxes with the same dimensions, the same

background color, and the same background image. The only difference is the value of

the background-origin property. You can check their behavior in Figure 6–5.

The values determine whether the background image should be placed relative to the

whole box, including borders; to the box with its padding; or only to the actual content

area. The default value for this property is padding-box, the illustration in the middle.

Figure 6–5. Three possible origins for the background, namely the border, the padding (default), and the content
of the box

Of course, you may think this was achievable with CSS 2.1 properties—you could

determine the position of a background, taking into account the width of the borders

and of the padding. This obviously had serious limitations.

For instance, you couldn’t make the image move into the border area, even by setting a

negative value to make it move from the padding area back into the border. Also,

defining fixed values for styles such as a background-position typically leads to less

reusable code and a multiplication of similar rules, because values would have to be

updated for each individual block size. Using the background-origin property not only

gives you more possibilities, but it also allows for more global styles, thus letting you

write less, more efficient code.

Global Background Clipping
The benefits for design explained in the previous section apply also for the next

property, background-clip. While the “origin” of the background affected only

background images, the background-clip property allows you to state rules for all

background elements, that is, images and colors, by defining the background painting

area.

We can almost use the previous example by simply replacing origin with clip in the

styles—because the values for this property are the same as for background-origin.

<style>

 div {
 ...

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 127

 background-position: bottom right;
 background-repeat: no-repeat;
 background-image: url(images/flower.jpg);
 -webkit-background-origin: border-box;
 }

 div:nth-of-type(1) {
 -webkit-background-clip: border-box; /* default */
 }

 div:nth-of-type(2) {
 -webkit-background-clip: padding-box;
 }

 div:nth-of-type(3) {
 -webkit-background-clip: content-box;
 }

</style>

This would result in the behavior shown in Figure 6–6.

Figure 6–6. The three possible states for background clipping: from the outer edge of the border (default), then
excluding the border, then the padding (starting within the content area)

The default behavior is to extend the background color into the borders of the box. The

other values prove to behave as for the background origin, only including background

colors too.

Be careful, however, when using the content-box value for the background-clip

property: WebKit has implemented it as defined in an early version of the CSS3

specification. However, because this value has been removed from the specification,

you should prefer, where possible, to combine background-clip with one of its other two

values to achieve the desired effect, in case the value is removed from the browser. It is

probable that for the background-clip property, the padding-box value is the most

interesting, because it allows rich styling of borders with images—as we will soon see—

or translucency.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 128

Text-Based Background Clipping
WebKit also offers the possibility to clip the background in relation with the text from the

container using the value text, as shown in Figure 6–7.

<style>
 div {
 background-image:
 -webkit-gradient(linear,
 left top,
 left bottom,
 from(yellow), to(red));
 -webkit-background-clip: text;
 color: transparent;
 }

</style>

<div>Background Clip</div>

Figure 6–7. Image-less text rendered as a gradient

As you can see in the code, the text color needs to be set to transparent so that the

container background shows through. The problem with this is that versions of the

browser that do not support this background value will show practically no text. Luckily,

you can work around this using a WebKit-specific property supported only by versions

that also support the background property value in question, -webkit-text-fill-color.

You would use it like this:

-webkit-text-fill-color: transparent;
color: red;

This way, the text will be red for browsers that don’t support these recent properties but

will still be rendered as a gradient on latest versions of Mobile Safari.

Sizing the Background
Another shortcoming in CSS2 backgrounds that you have probably cursed is that

background images, unlike proper HTML images, couldn’t be resized. CSS3 brings an

easy-to-use solution to this annoying problem with the background-size property

(prefixed with -webkit-).

We are soon going to see how you can use this new feature to bring the attractiveness

of the Photos native application to your web applications. One aspect of the Photos

application that makes it visually attractive is that all the pictures are presented in a

regular grid of thumbnails with the same format and alignment—small squares of the

same size, as shown in Figure 6–8. This results in a consistent layout, without harming

the quality of the pictures because they are all scaled or cropped to fit in the format.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 129

Figure 6–8. The Photos application presents a homogeneous gallery, where pictures all have the same display
size

Developing a native application, you could use the UIImageView object from the Cocoa

Touch framework to make images fit into whatever container size using aspect fit, scale

to fill, or aspect fill parameters, as shown in Figure 6–9. We are going to use the new

CSS features made available to us to achieve a very similar design. The Mobile Safari

resize algorithm is good, so you can obtain excellent results.

Figure 6–9. The aspect fit, scale to fill, and aspect fill modes can now be achieved simply by applying a style to
the container

The background-size property takes two values: a horizontal value and a vertical value,

and of course you can specify only one value that will apply for both. You can give

values using the usual CSS units of your liking; however, for our example, percentages

are the best choice, because they make the code easily reusable.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 130

The most obvious value to use is scale to fill, so you needn’t know the horizontal/vertical

ratio of your pictures. The image will be resized to fill the available space and be

stretched or squashed appropriately:

/* Scale to fill */
-webkit-background-size: 100%;

The other values for the background-size property require that you know the orientation

of your images. To obtain an aspect fill effect, you should set the narrowest part of your

picture to 100% and the other to auto. This means your image will be cropped vertically

for a portrait and cropped horizontally for a landscape.

/* Aspect fill for landscape images... */
-webkit-background-size: auto 100%

/* ... and portrait images */
-webkit-background-size: 100% auto;

Reversing these values would result in an aspect fit resize, meaning the whole image will

appear in the dedicated area, leaving blank space either vertically or horizontally.

Specifying both values explicitly would force the resized image dimensions.

WARNING: Be careful that your images are not more than twice as high as your container. There
is a bug in Mobile Safari’s handling of such a situation, which shows a cropped image. The only
way to avoid this problem is to use smaller images.

The CSS3 specification has values to easily achieve the desired effect. However, these

values—contain and cover—are not supported as of iOS version 3.2.

Developing a Photos-Like Gallery
In this section, we will show a live example of the possibilities offered by these new CSS

properties and values by using them to reproduce the appearance of the Photos gallery

shown earlier. One of the characteristics that makes this gallery so efficient and

appealing is that, whatever the initial format of the pictures displayed, they all fit nicely

into the square area allotted to them.

As usual, we are going to build upon our Komodo Edit project and the directory

structure we have already worked with. First, you will need to add a new physical folder

to your project, named images, where you will store all the pictures for your gallery.

In Komodo Edit, go to Project ➤ Add ➤ New Live Folder, and click the appropriate icon to

create a new directory called images. Then select it.

Next, because we are going to use PHP to read the images folder contents and

dynamically add references to the images inside it to some JavaScript code, you will

have to rename your index.html file to index.php. This is what it should look like:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 131

<?php require_once("index_code.php"); ?>
<!DOCTYPE html>
<html>
<head>
 <title>Gallery Demo</title>
...
 <link rel="stylesheet" href="styles/main.css">
 <link rel="stylesheet" href="styles/gallery.css">
...
 <script src="scripts/main.js"></script>
 <script>
 var images = <?php writeImages('images'); ?>;
 </script>
 <script src="scripts/gallery.js"></script>
</head>

<body onload="showImages()">
...
 <h1>Gallery</h1>
...
 <div id="gallery"></div>

</body>
</html>

Then, create a index_code.php file at the same level as index.php. It will hold the

functions necessary for the galley to work. In other words, it allows you to gather the list

of images from the images folder. Here it is:

<?php

Parse the given folder and return an array of the collected files

function getImages($path) {
 $handle = opendir($path);
 $files = array();

 if ($handle) {
 while (($name = readdir($handle)) !== false) {
 if (is_file("$path/$name")) {
 $files[] = "$path/$name";
 }
 }
 }

 closedir($handle);
 return $files;
}

Transform our PHP array into a JavaScript array

function writeImages($path) {
 $all = implode('", "', getImages($path));
 echo !$all ? '[]' : '["'. $all . '"]';
}
?>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 132

Now, create a gallery.css file in your styles folder, and link to it in the head of your

document. The following are the styles you will be using:

.header-wrapper {
 background-color: #444;
}

.view {
 background-color: #fff;
}

div#gallery {
 padding: 2px;
 float: left;
}

#gallery > div {
 border: solid 1px rgba(0,0,0,0.1);
 width: 75px;
 height: 75px;
 margin: 2px;
 float: left;
 -webkit-box-sizing: border-box;
 -webkit-background-size: 100%;
 background-position: center top;
 background-repeat: no-repeat;
 -webkit-background-origin: border-box;
}

#gallery > div.portrait {
 -webkit-background-size: 100% auto;
}

#gallery > div.landscape {
 -webkit-background-size: auto 100%;
}

These styles ensure that each image extends into the borders of its container so that all

images have exactly the correct size. In addition, the translucent border makes sure that

the overall look is consistent, even with pale-colored pictures.

You will have noticed that, because the contain and cover values aren’t supported, we

have to apply different rules, whether the picture is in portrait or landscape orientation.

We will use the following JavaScript code, to be put in a new scripts/gallery.js file, to

determine for each image which class should be added:

function showImages() {
 var container = document.getElementById("gallery");
 container.innerHTML = "";

 for (var i = 0; i < images.length; i++) {
 loadImage(container, images[i]);
 }
}

function loadImage(container, src) {
 var img = new Image();

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 133

 img.src = src;

 var div = document.createElement("div");
 container.appendChild(div);

 img.onload = function() {
 div.className = (this.width < this.height) ? "portrait" : "landscape";
 div.style.backgroundImage = "url(" + this.src + ")";
 }
}

The showImages() function first empties the gallery container so that there is no display

problem when loading new content. Then, it uses the global images array to fetch the

pictures to be displayed and for each new item calls the loadImage() function. This

function creates a new <div> container for each new item with the right class and image

background. The Image object is used only to determine the current orientation once

each image has been loaded.

Now, if you open the URL to this page in Mobile Safari, you should see a consistent

gallery similar to that of the native Photos application, as shown in Figure 6–10.

Figure 6–10. A homogeneous picture gallery

To be more search engine friendly, you can also add the images directly to the markup

on the server side and apply an onload attribute directly to each image. However, you

would then need to replace all the images’ src with a blank pixel image in order to finally

display only the background.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 134

Multilayer Backgrounds
As you can see, the effects you can achieve with CSS3 backgrounds are much richer

than those of CSS2. Yet this is not all the new specifications have in store for you.

Working with background images, you can now handle multiple backgrounds applied to

only one element. By using a comma-separated list of values for the URL of your

background, all images will be taken into account, stacking up with the first declared

one on top. The main limitation to this is that you can specify only one background color

that will be on only the lowermost layer.

However, WebKit extends this functionality by allowing it not only for the background-
image property but for all background properties apart from the color. This means, for

instance, the end of the sliding-doors technique or more possibilities for fluid layouts,

because gradient backgrounds drawn with -webkit-gradient() will be resizable. Rather

than using a background repeat, you could also achieve effects like the one shown in

Figure 6–11 using the following code:

.multiple {
 width: 400px;
 height: 300px;

 background-repeat: no-repeat;
 background-image: url(flower.jpg);

 background-position:
 90px 90px,
 70px 70px,
 50px 50px;

 -webkit-background-size:
 60% auto,
 50% auto,
 40% auto,
 30% auto,
 20% auto;
}

Figure 6–11. Images stack up, from the first at the bottom to the last on top

In this example, we leave the background-image property unchanged for all background

layers, but we progressively change its position and size to mimic a zoom-in effect.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 135

It is important here to understand how the interpreter handles values when there are

more layers than values for some property. The rule applied is to repeat the list of

available values in a loop until they meet the right count.

However, be careful: although the specifications indicate that the number of layers

should be determined solely by the number of background-image properties, WebKit

duplicates this property if other background properties have a higher count. Because,

following the specifications, superfluous values should be ignored, we advise that you

should not rely on this for your designs, because it is likely that either WebKit’s

implementation or the specification will evolve.

This property will, for instance, let you set a different background for elements that are

selected. We shall use it in our next chapter on the canvas and SVG to add an arrow to

list items, and this is used in our web application template header combining gradients

and the new color definition possibilities that we are going to explain next.

Colors
Color is essential to design, and its use has become more and more complex as its

rendering has improved on devices. However, building interfaces with complex color

associations often required that we resorted to images (for instance to handle

transparency) or to third-party tools (typically to build a color scheme). The CSS3

specification brings a new set of options that will help you build image-less interfaces

that are more complex yet more lightweight, while making your workflow more efficient.

The Alpha Channel
Colors using CSS2 would most often be defined using the RGB notations, namely,

#rrggbb, #rgb, and the rgb() function. This is extended in CSS3 to allow for an alpha

channel, using the rgba() function. The value for the alpha channel is a floating number

within a range from 0 to 1. This is especially useful when dealing with transparent box

backgrounds, because the traditional use of the opacity property has the inconvenience

of being inherited. For instance, to set a translucent background on a box while still

having fully readable text inside it, you would have needed to resort to background

images or complex positioning. This is no longer necessary, because you can simply set

transparency for the background-color property.

The following code illustrates how this will change your life:

<style>
 body { background-color: yellow; }
 .main { position: relative; }

 .opacity-layer {
 position: absolute;
 background-color: blue;
 opacity: 0.25;
 left: 0;
 right: 0;

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 136

 top: 0;
 bottom: 0;
 }

 .content-layer {
 position: relative;
 color: red;
 }
</style>

<div class="main">
 <div class="opacity-layer"></div>
 <div class="content-layer">
 <h1>Some Title</h1>
 <p>A nice paragraph.</p>
 </div>
</div>

Here is equivalent code using the new color functions:

<style>
 body { background-color: yellow; }

 .content-layer {
 background-color: rgba(0,0,255,0.25);
 color: red;
 }
</style>

<div class="content-layer">
 <h1>Some Title</h1>
 <p>A nice paragraph.</p>
</div>

Of course, the other advantage of the alpha channel is that, because it is simply a color

definition, you can apply it to anything that takes a color as value, including text or

borders. You will also find it can be used to create sophisticated CSS background

gradients.

New Color Definitions
The alpha channel can also be used with a new CSS3 color definition function: hsl().

Although RGB is commonly used and many front-end developers are quite fluent with it,

it is often considered unintuitive. Indeed, in “everyday life”, people are used to

subtractive synthesis of colors (as when mixing paint colors), while RGB is based on

additive synthesis (as in “blending all colors together produced pure white,” which is the

case for light). It is common that RGB users actually get used to it by subconsciously

translating it to a change in hue, saturation, and light.

The hue (the h in the hsl() and hsla() functions) is an angle, measured in degrees

(without specifying the unit) with a value from 0 to 360. It is usually represented by a

circle, where each degree represents a shift in color, from red (0) to red (360). Saturation

and lightness are specified as percentages.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 137

hsl(<hue>, <saturation>, <lightness>)
hsla(<hue>, <saturation>, <lightness>, <alpha>)

Here is a set of equivalent CSS rules:

.red { color: red; }

.red { color: #f00; }

.red { color: rgb(255, 0, 0); }

.red { color: hsl(0, 100%, 50%); }

.red { color: hsl(360, 100%, 50%); }

.red { color: hsla(0, 100%, 50%, 1.0); }

Because the progression around the hue “circle” is easy to grasp, you can quite easily

move around it, as represented in Figure 6–12, a laid-out version of the circle, with stop

points to situate basic colors.

Figure 6–12. Conversion table between basic colors

HSL makes it easier to move around color values in a natural way. If you want orange,

you just pick a value between red and yellow (0 and 60 degrees). Want a lighter orange?

Just add some lightness. Need an orange that is less vivid? Remove some saturation.

With the rgb() representation, you would have had to determine an amount of each

color, while with the #rrggbb representation, you would have had to cope with the extra

difficulty of converting to hexadecimal values for each color.

Using Gradients
The previous properties allowed for the fine-tuning of background properties. However,

WebKit features new properties that allow you to use code instead of images for a most

interesting purpose: gradients. This can make a great difference in the way you handle

design elements, because it has quite a few advantages.

First, CSS gradients will be more lightweight for the end user, because no images will

have to be loaded, and of course, there will be no extra HTTP request—which, as we

have indicated before, can be quite slow on mobile devices.

Second, CSS gradients, once you have mastered them, are faster and more

straightforward to modify on your site, because you will need only one tool—which often

means only one person, too—and you don’t have to worry about dimensions.

Basic Syntax
As of this writing, there is no specification about the actual syntax for CSS gradients;

each browser vendor has implemented this feature in its own way. Here is the most

elementary syntax to create a gradient for WebKit browsers:

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 138

-webkit-gradient(
 linear,
 left top,
 right bottom,

 from(black),
 to(yellow)
)

For instance, you can apply this to the background of an element using the following:

<style>

 button {
 background-image:
 -webkit-gradient(
 linear,
 left top,
 right bottom,

 from(white),
 to(lightgrey)
);
 border: 1px solid gray;
 }

</style>

<button>Click Me</button>

This example draws a linear gradient that spans from the upper-left corner of the box to

the lower-right corner and will create a transition from white to lightgrey, as shown in

Figure 6–13. In our examples, we are going to use named colors for clarity, but you can

use any color naming convention supported by CSS3, including transparent values.

Figure 6–13. A simple button with a linear gradient

You can determine positions using named positions, pixels (with implicit unit), or

percentages: the left top and right bottom values in our example are equivalent to 0 0

and 100% 100%, for instance.

A gradient value can be applied to properties that support an image, namely,

background-image, border-image, list-style-image, and even content. However, it is

not possible for now to set this value for a color property—meaning you won’t be able

to directly apply gradients to text.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 139

Changing the Size of the Gradient
With backgrounds, the default behavior of gradients is to extend to the dimensions of

the box to which they are attached. Because the -webkit-gradient() function is

considered as an image, you can tweak this behavior using the properties explained

earlier, noticeably with background-size, which will change the drawing area for the

gradient.

Setting the background size to 5px, for instance, will limit the span of the gradient to a

square 5 pixels on a side. The default value of the background-repeat is repeat, so if you

haven’t set a value, the gradient will repeat as a pattern to cover the box area, as shown

in Figure 6–14.

.gradient-box {
 ...
 -webkit-background-size: 5px;
}

Figure 6–14. Because the drawing area has been redefined, the gradient has become a repeating pattern

Of course, your gradient could be cut off, if the drawing area is not large enough to hold

the whole gradient. This would typically occur using fixed dimensions (as you will have

to do to use radial gradients).

Complete Gradient Syntax
Although gradients offer a good range of new possibilities for the styling of HTML

elements, there is more to the implementation of gradients by WebKit. Here is the

complete syntax as described in the WebKit documentation:

-webkit-gradient(<type>, <point> [, <radius>]?, <point> [, <radius>]? [, <stop>]*)

As with regular expressions, the question mark indicates that the item can occur none or

one time, and the asterisk shows that it can be used one or several times, or not at all.

Of course, specifying a gradient with no color seems like a strange idea.

You can create two kinds of gradients with CSS: linear gradients, as you have already

seen, and radial gradients. To define a radial gradient, you have to specify a radius

together with the elements we have already introduced. Note that the value for the

radius is expressed in pixels only, though the unit should not be specified. You cannot

use relative units to fit your gradient whatever the size of your box, and therefore you

can achieve only regular circles, not more complex ellipses. You can see the effect of

the radial type gradient (shown in Figure 6–15) by replacing your gradient code in the

first example by the following:

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 140

-webkit-gradient(
 radial, /* gradient <type> */
 100 100, 25, /* <point> and <radius> (for radial gradients only) */
 100 100, 100,

 from(black), /* 2 <stop> values */
 to(yellow)
);

Figure 6–15. A simple radial gradient

This syntax can seem a little tricky or confusing. It is important to understand exactly

what each value represents. The first pair of values, after the gradient type, is the

position where the gradient should originate. It is followed by the radius of the area that

should be entirely filled by the first color stop.

The second pair again indicates the destination circle of the gradient, the last number

being the radius by which the color blend should occur. The rest of the available space

out of this last circle will be filled with the last color stop, plain.

The last values determine the colors that will be used to draw the gradient. As shown

previously and as we’ll explain in the next section, you can set as many colors as you

like for these values.

Advanced Color Handling
The from() and to() functions are both shorthand expressions for the color-stop()
function, which has the following signature:

color-stop(<stop value>, <color>)

The first parameter can be defined either as a percentage or with a float ranging from 0

to 1. The second takes any valid CSS color definition. This function thus allows you to

determine the entire color palette for your gradient, along with the steps where they

should start, stop, and blend. from(<color>) and to(<color>) hence are the same as

color-stop(0, <color>) and color-stop(1, <color>).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 141

This opens new ways to use your gradients, because you can use the color-stop()

function as many times as you want for a single gradient. Here is the preceding

example, with an extra color:

-webkit-gradient(
 radial,
 100 100, 25,
 100 100, 100,

 from(black),
 to(yellow),
 color-stop(50%, red)
);

If you use Photoshop, this logic should seem familiar, and you will recognize the

Gradient Editor, as shown in Figure 6–16.

Figure 6–16. Photoshop Gradient Editor with color stops and midpoint circles between stops

However, with CSS, the only way to give more importance to one color over another as

you would with the color midpoint in Photoshop or to build irregular gradients is to add

more stops with the same color.

Order is not important when you specify these color stops, unless several occur in the

same place, for instance when building a sharp transition, as in the following example

(Figure 6–17):

-webkit-gradient(
 radial,
 50% 50%, 0,
 50% 50%, 100,

 from(red),
 color-stop(50%, red),

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 142

 color-stop(50%, yellow),
 color-stop(99%, yellow),
 color-stop(99%, transparent),
 to(transparent)
);

Figure 6–17. Two concentric circles drawn using several color-stop()

Using this technique, you can draw circles with crisp borders, without worrying about

the ending color of the gradient filling the entire box. In our web application template, we

have used this technique to add a hashed background. It will be used also in Chapter 9

to create an attractive tab bar, in association with the flexible box model, which will be

explained later in this chapter.

Boxes and Borders
Traditionally, “boxes” in CSS haven’t been supplied with many styling options. Beyond a

handful of unevenly supported border styles, you had to resort to background images,

with all the duplicate styles and the approximations that the process entails, to bring

some extra shine to your elements.

A simple web search yields hundreds of pages promising the ultimate beveled or

rounded border solution; this has resulted either in superfluous markup, heavy

JavaScript, or extra images. CSS3 is almost making these practices obsolete, with

several very interesting features supported by recent browsers, including Mobile Safari.

Box Sizing
Before we get into the styling of boxes, let’s take a look at a new feature regarding box

sizing. The box-sizing property resulted from the observation of the non-compliant

Internet Explorer that didn’t calculate box sizes as described in the CSS2 specification.

Although HTML renderers should process the box size as the sum of its width, padding,

borders, and margins, Internet Explorer considered the padding part of the content

width, instead of adding it.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 143

.box {
 -webkit-box-sizing: border-box;
}

The default value for the box-sizing property is content-box, which is the behavior

expected in CSS2. However, setting the value to border-box will cause the padding and

borders to be counted inside the content area instead of around it. Figure 6–18 shows

the difference.

Figure 6–18. The transparent padding and black borders show the difference between both box models

This may seem unusual to you if you’ve been using the CSS2 box model for some time.

Nonetheless, using this property value means you won’t have to worry about giving a

100% width to a box or adding a border to your containers.

Typically, you would design a site with a global container, a 680 pixels wide left column

for the main content, and a 300 pixels side column. Changing the padding for your

boxes or adding a border to your side column would have proven a daunting task. Here,

you wouldn’t have to worry about this, because your boxes would preserve their outer

width.

Rounded Box Corners
Adding rounded corners to elements on your pages has been very popular for some

time now; however, again, this could be difficult to implement in a flexible way.

Furthermore, the iPhone user interface extensively uses rounded corners. To achieve a

design consistent with this, it is likely you will want to emulate iOS boxes too.

CSS3 brings the ultimate solution with the border-radius property. With a simple CSS

declaration, you should be able to achieve most of your designer dreams regarding

corners, as shown in Figure 6–19.

Note that WebKit (and, necessarily, Mobile Safari) doesn’t exactly comply with the

specification. This is a limitation only in that the specification allows you to generate

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 144

differentiated borders in a single declaration. With the syntax for WebKit, you will have to

declare each corner separately if you want different effects.

The syntax for Mobile Safari is arguably more intuitive, though. You refer to the targeted

border in the property name and set the radius as the value. Thus, your rule would be

presented as follows:

/* Same value for the four corners */
-webkit-border-radius: 16px;

/* The same as separated declarations */
-webkit-border-top-left-radius: 16px;
-webkit-border-top-right-radius: 16px;
-webkit-border-bottom-left-radius: 16px;
-webkit-border-bottom-right-radius: 16px;

Figure 6–19. A simple box with rounded corners

Of course, you are not limited to regular shapes. Although giving the same value to every

corner will return a regular box with rounded corners and end in a perfect circle, you can

create a more elliptic shape by specifying parallel values for the width and height, as in

Figure 6–20:

/* Again, same value for the four corners */
-webkit-border-radius: 24px 48px;

/* And again, the same as separated declarations */
-webkit-border-top-left-radius: 24px 48px;
-webkit-border-top-right-radius: 24px 48px;
-webkit-border-bottom-left-radius: 24px 48px;
-webkit-border-bottom-right-radius: 24px 48px;

Figure 6–20. A box with distorted corners

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 145

The property is applicable to all elements, just as with the border property, but it doesn’t

depend on the actual use of a border. Likewise, you can use any measure unit, be it

fixed values such as pixels or relative values such as ems or percentages.

Using percentages, the value of the radius will be evaluated relative to the overall width

and height of the box (that is, the dimensions considered as when using the border-box

value for box-sizing). Also note that you won’t have to worry about your backgrounds

overflowing their containers, because they will be clipped appropriately.

Borders Drawn with Images
However awesome the border-radius CSS3 feature may be, there is more to borders

than actual border lines with the new specification. Indeed, you can also integrate more

elaborate border styles with the border-image property. This will take care of adapting

an image to the size of your borders, either by scaling it or by repeating it.

In the following examples, we will use the image in Figure 6–21, which is 300 pixels wide

and high, as a pattern for a border divided into nine different areas. These will be

declared in the same order as for margins, padding, or borders, with two modes,

stretch and repeat. The main limitation to this method is that you cannot specify a

different mode for opposite borders.

Figure 6–21. A pattern to be used as a border image

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 146

Figure 6–22 shows the result of the following code, changing only the mode:

.border {
 -webkit-border-image: url(diamonds.png) 100 100 100 100 stretch stretch;
 width: 400px;
 height: 350px;
 border-width: 100px;
}

Figure 6–22. The resulting box with stretch and repeat mode

There is a third mode, round, that would repeat the pattern and scale it so that it is not

truncated. However, this mode is not yet supported by Mobile Safari. As a consolation,

because a border with an image primarily is a border, you can specify the border width

directly in your border-image declaration, as shown here:

.border {
 -webkit-border-image: url(diamonds.png) 100 / 100px stretch stretch;
 width: 400px;
 height: 350px;
}

This is shorthand for the property. Because all sides have the same dimensions, we

group the slice areas together. This value doesn’t take a unit; pixels are implicit for the

parts of the image. A slash separates the slice area from the size of the border to avoid

any confusion.

Because the areas in our image are 100 pixels wide doesn’t mean we need to have

borders that wide: by defining a thinner border, the area of the image shall be scaled to

fit into the border width. Thus, in the following example, our image will be made,

respectively, 50px, 25px, 100px, and 25px wide for the top, right, bottom, and left borders

(Figure 6–23).

.border {

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 147

 -webkit-border-image: url(diamonds.png) 100 / 50px 25px 100px stretch;
 width: 400px;
 height: 350px;
}

Figure 6–23. Each border has its own thickness

This rule can be very useful when creating attractive buttons to replace the default

operate system ones.

Shadows
More control over borders is an interesting feature in building web pages because

identifying blocks helps readability and can be a way to make content stand out. CSS3

offers another long-awaited feature in this respect, namely, outer shadows for blocks

with the box-shadow property. WebKit browsers also implement the CSS2 text-shadow

property. Because this property is part of an official recommendation and is considered

stable, you needn’t use the -webkit- prefix.

Both of these features not only allow for drop shadows but also make it possible to draw

glowing effects, which is useful creating button effects. Beyond the visual attractiveness,

one advantage of this solution is that shadows don’t extend the dimensions of your

blocks or text, meaning your layout will not be affected. Also, you have the possibility to

apply multiple shadows to the same element, using only one declaration.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 148

Box Shadows
The syntax for box shadows is quite simple. The box-shadow property takes four

parameters: the color, horizontal offset, vertical offset, and blur radius. Setting the blur

to 0 would result in a neatly cut shadow; the greater the value, the fuzzier and more

transparent the shadow.

The most usual use of such a property would probably be the outlining of page sections

or provide user feedback while pressing a button. Nonetheless, in the following example,

we are going to use it to create an iOS-looking icon, using only one image, that of the

icon itself.

<style>
 .icon {
 display: inline-block;
 text-shadow: rgba(0,0,0,0.5) 2px 2px 2px;
 color: #000;
 font: bold 11px helvetica;
 text-align: center;
 margin: 8px;
 }

 .icon div {
 -webkit-border-radius: 8px;
 width: 57px;
 height: 57px;
 margin: 0 auto 4px;
 -webkit-box-shadow: 0 4px 4px rgba(0,0,0,0.5);
 -webkit-box-sizing: border-box;
 background-image:
 -webkit-gradient(radial,
 50% -40, 37,
 50% 0, 100,
 from(rgba(255,255,255, 0.75)),
 color-stop(30%, rgba(255,255,255, 0)),
 color-stop(30%, rgba(0,0,0, 0.25)),
 to(rgba(0,0,0, 0))
),
 url(flower.png);
 -webkit-background-size: auto auto, 100% 100%;
 }
</style>

<div class="icon">
 <div></div>
 Flowers
</div>

The first thing you’ll notice in Figure 6–24 is that the shadow follows the borders.

Therefore, if you apply a radius to corners, the shadows will be rounded too.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 149

Figure 6–24. An icon in the iOS Dashboard style

NOTE: The zoom property is not valid CSS. First implemented by Internet Explorer, it has been
implemented by other browsers without ever making its way to any specification.

What is interesting using this code is also that it is fully resizeable. For instance, setting

the zoom property to 0.57 would change your 57 pixel icon to the regular 32 pixel iPhone

menu icon; just changing one value will result in a modified icon size while preserving

the overall measurements and quality.

Text Shadows
The previous example uses another kind of shadow, applied to text. The syntax for the

text-shadow property is very similar to that of box-shadow; the only difference is that you

should declare the color value first, instead of last. The two following classes,

respectively, apply a drop shadow and a glow effect to the piece of text they are applied

to (Figure 6–25):

.shadow {
 text-shadow: #000 2px 2px 5px;
}

.glow {
 text-shadow: #000 0 0 2px;
 color: #fff;
}

Figure 6–25. Shadow and glow effect

As we have seen in our web application template, drop shadows can be used for more

than shadows. Previously, we have used drop shadows to create embossed effects.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 150

Using JavaScript, you could even extend and reduce dynamically the blur of the text

shadow dynamically to create a vibrant glowing animation.

Text Effect with Shadows and Outline
With the text-shadow property, you have learned to create a realistic glow effect that’s

quite similar to an outline. To explore the richness of possibilities offered by Mobile

Safari in this field, let’s draw a more advanced heading using properties that will let you

finely control the rendering of the text stroke:

<style>
 div {
 color: lightgrey;
 -webkit-text-stroke: 2px gray;
 font-size: 100px;
 text-shadow:
 gray 1px 1px 0,
 gray 2px 2px 0,
 gray 3px 3px 0,
 gray 4px 4px 0,
 gray 5px 5px 0,
 gray 6px 6px 0
 }
</style>

<div>Text Stroke</div>

The text-stoke property is a shorthand to the text-stroke-width and text-stroke-
color properties. This makes defining an outline extremely simple, as illustrated in Figure

6–26. In this example, we also add a drop shadow to enhance our title visually.

Figure 6–26. The outline is simply defined using a CSS property

This again is an illustration of how new CSS features can save you the use of images

and make your developing and maintenance processes faster and easier. In this

particular case, this would be especially true when dealing with different languages. You

will see in the next chapter that this kind of optimization is made even more acute with

the use of downloadable fonts.

Adding a Button to Your Header
This is a lot to take in at once. Why not have a break and add something to your web

application template? Adding the following code to your main.css style sheet will let you

use a stylish button in the header of your web applications:

.view {

...
 position: relative;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 151

}

.header-wrapper .header-button {
 /* Button size and position (anchored right) */
 position: absolute;
 top: 7px;
 right: 6px;
 width: auto;
 height: 29px;
 min-width: 44px; /* Minimum size for a tappable element */

 margin: 0;
 padding: 0 10px;

 /* Box style for a rounded button */
 -webkit-border-radius: 5px;
 border: solid 1px rgba(0,0,0,.25);
 border-top-color: rgba(0,0,0,.6);

 -webkit-box-sizing: border-box;
 -webkit-box-shadow: 0 1px 0 rgba(255,255,255,.3);

 /* Text style */
 font-family: inherit;
 font-size: 12px;
 font-weight: bold;
 text-shadow: rgba(0,0,0,.4) 0 -1px 0;
 text-decoration: none;
 text-align: center;
 line-height: 29px;
 color: #fff;

 /* Shiny effect for the background */
 background-color: rgba(0,0,0,.3);
 background-image:
 -webkit-gradient(linear, left top, left bottom,
 color-stop(0, rgba(255,255,255,0.25)),
 color-stop(0.1, rgba(255,255,255,.4)),
 color-stop(1, rgba(255,255,255,.1))),
 -webkit-gradient(linear, left top, left bottom,
 from(transparent),
 to(rgba(0,0,64,.05)));
 background-repeat: no-repeat;
 background-position: top left, bottom left;
 -webkit-background-size: 100% 14px, 100%;
}
.header-wrapper .header-button:disabled {
 color: rgba(255,255,255,0.65)
}

.header-wrapper .header-button:active:not(:disabled) {
 background-color: rgba(0,0,64,.5);
}

The button described would be drawn on the right side of your header. To move it to the

left of the screen, simply add the following class to your styles:

.header-wrapper .header-button.left {

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 152

 left: 6px; right: auto;
}

This code is easy to use and reuse, be it to create form buttons or simple links. The

following code results in the area shown in Figure 6–27:

<div class="header-wrapper">
 <h1>Web App</h1>

 Edit
 <button class="header-button left">Back</button>
</div>

Figure 6–27. Two buttons in the header

The header-button class uses the method called adaptive styles, meaning the color of

the button automatically adapts to the background color of its parent. This method was

used already for the header itself. Because it uses only translucent black and white for

backgrounds and borders, it will only darken or brighten the color that shows through,

without blending—just like native iOS buttons.

If you, however, wanted to create a colored button, like the blue action buttons on the

iPhone, you would simply change the value for background-color, as follows:
.header-wrapper .header-button.action {
 background-color: #0f6cd7;
}

As you can see, this code is easily reusable and adaptable. It’s exactly what you need

for lightweight web applications.

Columns Layout
In Chapter 4, we used a table type display to create the split view we needed for the

iPad. The main container had its display property set to table and its inner boxes with a

display set to table-cell extended to have exactly the same height. This also allowed

you to center content vertically. It can seem attractive to use this method to emulate a

column layout like in a newspaper or a magazine.

However, this would result in semantically superfluous markup. What’s more, it would

prove hard to maintain, and even to achieve, because you would have to evaluate a

length for each piece of content and enclose each one appropriately.

CSS Column Properties
Better than layout tricks, CSS3 automatically handles column flow. This feature is

implemented in iOS since version 2.0. You don’t have to think about the length of your

content, nor do you even have to physically represent your columns by enclosing pieces

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 153

of content inside HTML tags. Mobile Safari will determine where to cut the text, either to

achieve a number of columns or to achieve a column size. This allows for global styles,

which will end in a consistent layout within many container sizes. The following code will

result in a different layout whether you view the page on an iPhone or an iPad, as shown

in Figures 6–28 and 6–29:

.newspaper {
 -webkit-column-width: 200px;
 -webkit-column-gap: 20px;
 -webkit-column-rule: 1px dotted black;
 padding: 20px;
}

Figure 6–28. One column on iPhone...

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 154

Figure 6–29. ...and four columns on iPad with landscape view

In our example, we define a minimum width of 200 pixels for our columns. The rendering

engine will try to stay as close as possible to this value, while still adapting to the

available space. This is why the column on the iPhone is 280 pixels wide.

These properties are pretty self-explanatory. Note how the column-gap property solves a

common issue met with horizontal layouts, namely, the whitespace between different

blocks. Here, you don’t have to worry about a incongruous margin sticking out on one

side of your layout. What happens is that Mobile Safari evaluates the amount of content

that is to be shared between columns and the width of the container.
Also note that the column-rule property is shorthand that can take the same styling

values as the border property and allows you to define, for instance, a color or width as

independent rules.

As long as the container has enough free space left, a new column will be created.

When the renderer has determined the ideal number of columns, the content will be

distributed as evenly as possible.

If you have a close enough idea of how long your content will be, you can enclose your

content inside a fixed-height box. Simply be aware that, if your text grows longer than

expected, new columns will continue being generated to the left, beyond the container.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 155

A fourth column layout property is available to you, column-count. This acts inversely to

column-width, because it allows you to specify a number of columns where your content

should be distributed. Mobile Safari will try to render the expected number of columns

(be aware that it may judge one letter wide columns acceptable) but will let them grow

them vertically if there is not enough space available horizontally.

Of course, it is possible to associate both properties, for instance to render two 300

pixel wide columns inside a 1,000 pixel wide container. When using both properties

together, remember that column-width will prevail.

Porting Press Content to the Web
These already interesting features of CSS3 have a new light shed on them by the release

of the iPad, for which an obvious use could be online newspapers and magazines. In the

following example, we are going to try to reproduce a magazine layout using CSS3

properties. First, we create a file named magazine.html with the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>Columns Layout</title>
 <meta name="viewport" content="width=device-width;
 initial-scale=1; maximum-scale=1; user-scalable=0">
 <link rel="stylesheet" href="page.css">
 </head>
 <body>
 <div class="mag">
 <hgroup>
 <h1>Flowers</h1>
 <h2>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras
 pharetra mollis pharetra. Suspendisse lacinia orci et felis
 tristique sit amet semper massa tempus. Suspendisse consectetur
 tempor pulvinar.</h2>
 </hgroup>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras pharetra
 mollis pharetra. Suspendisse lacinia orci et felis tristique sit amet
 semper massa tempus. Suspendisse consectetur tempor pulvinar. Proin dui
 eros, ultricies vel malesuada vel, tempor at ante. Nam eget nisl dui.
 Donec molestie lectus a nunc scelerisque blandit. Nam non ligula massa,
 sed suscipit turpis. Etiam eget ligula sit amet turpis venenatis dictum
 in eleifend augue. Duis tellus lectus, volutpat et adipiscing a,
 pellentesque eu metus. Aenean suscipit congue mauris at gravida. Integer
 lectus ligula, consectetur sit amet venenatis id, scelerisque eget nisl.
 Nunc dapibus posuere risus, vitae tempor nibh iaculis et.</p>
 </div>
 </body>
</html>

Next, add the appropriate styles in a file called page.css:

 * { margin: 0; }
html { height: 100%; }
body {
 height: 100%;

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 156

 color: white;
}

.mag {
 background: black url(flower.jpg) center center no-repeat;
 -webkit-background-size: auto 150%;
 width: 100%;
 min-height: 100%;
 padding: 20px;
 -webkit-box-sizing: border-box;
 position: relative;
 font-weight: bold;
 text-shadow: 1px 1px 3px black;
}

h1 {
 margin: 0;
 font-size: 50px;
}

p {
 margin: 0;
 position: absolute;
 max-width: 420px;
 -webkit-column-gap: 20px;
 -webkit-column-width: 200px;
 -webkit-column-rule: 1px dotted white;
 font-size: 16px;
 text-shadow: 1px 0 0 black;
 bottom: 20px;
 right: 20px;
}

p:first-letter {
 font-size: 36px;
 margin-right: 4px;
 margin-bottom: -6px;
 float: left;
}

p:after {
 content: '';
 display: inline-block;
 width: 10px;
 height: 10px;
 background-color: white;
 margin-left: 10px;
 -webkit-box-shadow: black 1px 1px 1px;
}

As shown in Figure 6–30, however simple the markup, we achieve an interesting result.

We make sure the background will take all the visible space by setting its size to 150

percent of the container space—though you could use the method explained earlier to

have a more adapted result whatever the image format. Then, with a simple title,

subtitle, and paragraph association, we build a simple magazine-style layout that will

appear consistently whatever the device orientation.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 157

Figure 6–30. A nice page

WARNING: Safari has a bug preventing it from correctly evaluating text size when a vertical
shadow is applied to the content. The algorithm actually truncates the letters instead of making
columns higher or shifting text to the next column.

As usual, you can build specific rules to serve a slightly different page whether it is

viewed on an iPad or on a smaller screen. This could be done like this:

@media only screen and (max-device-width:760px) {
 h1 { font-size: 30px; }
 h2 { font-size: 20px; margin-bottom: 20px; }
 p { position: relative; bottom: auto; right: auto; }
}

This way, your text will simply look scaled on an iPhone or iPod touch with you still

having control, and the overall layout will not break because of a lack of space.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 158

The Flexible Box Model
As explained earlier, in a previous chapter, we have used the interesting table and

table-cell display properties to gain more control over the placement and sizing of our

elements. This is a simple and efficient method, but CSS3 brings even more control over

the box model. What we are going to explain here is among the most interesting

features brought by the latest specification—and yet it seems ill-known, because it has

been implemented ever since the first version of Mobile Safari!

A Clean and Flexible Way to Handle Column Layouts
This “box model” method is simple, efficient, and extensive. It allows for full control over

subsequent boxes. Let’s begin with a simple example. This is the relevant code:

<style>
 .group {
 display: -webkit-box;
 min-height: 100px;
 padding: 5px;
 background-color: lightgrey;
 }

 .group .box {
 text-align: center;
 border: 10px groove green;
 padding: 10px 30px;
 margin: 1px;
 background-color: white;
 }
</style>

<div class="group">
 <div class="box">Box 1</div>
 <div class="box">Box 2</div>
 <div class="box">Box 3</div>
</div>

The first thing you should notice in this code is that no superfluous markup is needed.

Now, taking a look at Figure 6–31, you will see the interest for layout purposes.

Figure 6–31. A new way to achieve column layout

3

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 159

The height of our three boxes adjusts to the outer box, and as explained next, if you

specify a box-flex value, our boxes will occupy 100 percent of the width of their parent,

solving two problems that have been around since front-end developers have moved

from table to CSS layout. The box value makes the container behave as a block element.

You can also trigger an inline block—keeping your elements in the document flow—

behavior by using the value inline-box.

Ordering Boxes
This of course is very useful, yet there is much more to this new box model. In our

example, you probably weren’t surprised that our inner boxes appeared in the document

flow in the same order as that of their appearance in the code. This is the default

behavior for boxes, which is equivalent to using the box-direction property with the

value normal. Setting the value of this property to reverse would result in our boxes

being presented from last to first, as in Figure 6–32.

.group {
 display: -webkit-box;
 min-height: 100px;
 ...
 -webkit-box-direction: reverse;
}

Figure 6–32. Seamlessly reversing the layout

You can even go further in box ordering by using the box-ordinal-group property. This

property takes an integer as a value, with 1 being the default. This allows you either to

reorder boxes, for instance putting box 3 in the first position and box 1 in the second, or

to group them. You can also combine this with CSS3 selectors, for instance with a rule

such as this:

.group .box:nth-child(2) {
 -webkit-box-ordinal-group: 2;
}

In this example, because all boxes left unchanged have a box-ordinal-group value of 1,

the second box will end up in third position, because all the other boxes have a

prevalent position, as shown in Figure 6–33.

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 160

Figure 6–33. Box 2 has been moved to the last position because of its ordinal group value

This property can be used with box-direction. If this is set to reverse, the meaning of

the ordinal groups will also be changed, together with the boxes in each group.

Flexibility
The default behavior for boxes here is to line up horizontally. This too can be changed

using the box-orient property. Setting the value to vertical, the boxes will stack up

vertically, and there’s more: setting their box-flex value to 1.0, our boxes will adapt

vertically, meaning that each box in our example would be one-third high (Figure 6–34).

.group {
 display: -webkit-box;
 min-height: 200px;
 ...
 -webkit-box-orient: vertical;
}

.group .box {
 ...
 -webkit-box-flex: 1.0;
}

Figure 6–34. Layout with default box-flex value, which is (0.0), and box-flex set to 1.0

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 161

The box-flex property determines the degree of flexibility of each box. By default, vertically

stacked boxes take 100 percent of the available width and only the necessary vertical space.

By giving boxes a flex value, they will try to fill the entire available vertical space.

Thus, if all boxes have a flex value that is identical, they will expand to fill their container,

all by the same degree. If one or several boxes have a higher flex value, they will expand

more. For instance, with the following code, the second box will be made wider or

higher, depending on whether your boxes line up or stack up.

.group .box:nth-child(2) {
 -webkit-box-flex: 2.0;
}

Be careful that this does not mean your second box will be twice as wide or high as the

others, as shown in Figure 6–35. It means only that it is more flexible, so it will be larger

to some extent. However, giving a box flexibility allows you to use boxes with a fixed

width or height and still have an area entirely occupied.

Figure 6–35. The flexibility is relative; the second box is not twice as big as the others

Of course, because these properties have to do with the page flow, you cannot use

them with elements that are absolutely positioned or are floated. The behavior not only

wouldn’t be what is expected, but it could also unpredictably break your layout, whereas

the general fallback for these properties is the regular box model.

Packing and Alignment
Flexibility as you can see and imagine is full of potential. However, there are times when

a more definitive layout is more desirable. In such cases, it is likely you will want to have

some control over how elements behave when they do not exactly fit together.

If there is space still available in a box container when all children have reached their

definitive size, you may want to decide where the child elements should be displayed

relative to that whitespace.

Two properties are available to you in this quest: box-pack and box-align. Modifying the

styles of the .group class in our previous example illustrates this:

.group {
 display: -webkit-box;
 min-height: 100px;
 ...
 -webit-box-pack: justify;
 -webkit-box-align: end;
}

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 162

The results are shown in Figure 6–36.

Figure 6–36. Boxes take the available horizontal space because of the justify value and align at the bottom of
their parent because of the end value

Indeed, the box-pack and box-align properties tell the boxes where to settle within the

container. box-pack tells the children how to align on the axis of their orientation; box-
align shows how to align perpendicular to the axis of their orientation. Both can take the

values start, end, and center. The box-pack property can also take justify as a value,

while box-align can take baseline and stretch. The latter is the default value, which is

why boxes take all the available space if nothing is specified.

Used together, all these properties allow you to fine-tune the layout of your elements. Of

course, you can use these values and properties on any kind of element, meaning this

control can be used not only for overall layout but also for small areas of your code,

such as an evenly laid out tabbed menu. Although this set of properties is only a draft, it

is quite reliable, because it has been implemented since Desktop Safari version 3.0 and

from the first version of Mobile Safari. We have listed only the properties that seem the

most interesting to us, but there is more to this part of the specification, so feel free to

dig further!

Targeting WebKit Specifically
Although we are targeting Mobile Safari, as we have stated earlier, many devices

nowadays have good support for standards, and your web applications are likely to

work satisfactory on portable devices using other browsers. If you plan to support such

browsers to some extent, you could want to serve some rules only to Safari. This can be

done using a WebKit-specific targeting feature, related to the pixel ratio of the device.

Here is how to do it:

@media screen and (-webkit-min-device-pixel-ratio:0) {
 /* Your specific CSS here */
}

Or, using the link element:
 <link rel="stylesheet" href="some.css"
 media="screen and (-webkit-min-device-pixel-ratio:0)">

CHAPTER 6: Interesting CSS Features for Your Web Application User Interface 163

This appears to be supported also by Opera 9.5+. At the time of this writing, you can

work around this using the following for Opera:

@media all and (-webkit-min-device-pixel-ratio: 10000),
 not all and (-webkit-min-device-pixel-ratio: 0) {
 /* Your code here, only for Opera */
}

However, hacks are by nature precarious, and there is no warranty that the previous will

not be obsolete by near-future versions of the major browsers on the market.

Summary
You just got a glimpse of the possibilities the latest version of CSS and its

implementation by Mobile Safari. Designed with modern functionality and aesthetic

features in mind, it solves many problems met by front-end developers in the near past.

You are now limited only by your own imagination, and launching a quick search on the

Internet for CSS3 tutorials and showcases will finish persuading you if this chapter

hasn’t. With all this, you can mimic the iOS UI using hardly any images or JavaScript.

Indeed, CSS is a serious way to limit file sizes and bandwidth usage (by requesting

fewer images) and overall can lead to better code. These principles have guided the

development of our web application template in Chapter 4.

As a general recommendation, we suggest limiting the number of classes you need in

your markup. Remember that classes and IDs have a purpose; strive not to create a new

ID every time you build a new block, and avoid multiplying duplicate style declarations.

Classes are meant to visually group elements that share common characteristics.

Therefore, you should use classes to define characteristics that are to be used many

times in your code. On the contrary, IDs should be used for very specific modules, and

when applying them, choose the outermost block you can. As you have seen, CSS

selectors can hugely help limit the need for identifiers in your code.
In following chapters, we will get into further detail about other, exciting CSS3 features

implemented in Safari such as downloadable fonts with SVG, animation, and hardware

transformations, so start practicing with them and building crisp and elegant web

applications.

165

165

 Chapter

Bitmap and Vector
Graphics and
Downloadable Fonts with
Canvas and SVG
The one element of Mobile Safari that has drawn the most attention is that it has no

support for Adobe Flash. The Web has become a place where multimedia and animation

hold an important role, and while being unable to create Flash-based web sites and

casual gaming might not be a problem for most people, the main problem is that Flash

is used in some manner on most sites nowadays, be it for graphic animation in headers,

advertisements, or videos. Not supporting Flash can be a real issue for the iPhone and

iPad user experience when viewing classic web sites.

Although canvases and SVG are often presented as alternatives to Flash on iOS devices,

they can be used for more than creating interface elements and definite modules only at

great expense. The lack of authoring tools makes their development for intensive use

unproductive. However, there are many interesting applications to these new

technologies, especially with the WebKit-specific extensions that we will introduce in

this chapter.

By using these two features, which are newly supported on Mobile Safari, together with

some scripting, you will be able to achieve many graphics and effects that formerly

would have required heavy images or server-side processing.

Working with the Canvas Area
The new <canvas> tag, introduced in HTML5, doesn’t do anything by itself, but it lets you

work with the browser in a entirely new way; it lets you define an area in which you will

7

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 166

be able to draw directly using a powerful JavaScript API. This is how you should insert it

into your code:

<canvas id="area" width="200" height="200">
 Fallback information.
</canvas>

The id attribute you place on the <canvas> tag is very important, because it is the

identifier by which you will be able to interact with the defined drawing area. Any content

between the opening and closing <canvas> tags will appear only if the end user has

disabled scripts on the device.

If, however, the user has for some reason disabled scripts in Mobile Safari, the <canvas>

tag will be useless, because nothing could be drawn to the area defined by it. In this

case, the text you insert should indicate that scripts are required to access the

unavailable content, and you should give information on how to do this.

The scope of the canvas area should be defined with the width and height attributes, a

200 pixel wide square in our example. If you determine the size of the canvas with

styles, the rendering engine will scale the canvas drawing area to fit in the default

boundaries, instead of rendering the script output as expected. If you do not specify

these dimensions, the default size of the area is 300 pixels horizontally and 150 pixels

vertically.

Note, however, that using styles to set the size of the canvas area can be useful to

maintain your layout in case scripting is disabled, because the width and height

attributes will be ignored in that case. You should also set the display property of the

canvas to inline-block if it is not floated, to keep the default inline behavior of the area.

#area {
 display: inline-block;
 width: 200px;
 height: 200px;
 font-weight: bold;
 color: red;
}

Regarding dimensions, also keep in mind that whenever you resize the canvas area by

the means of a script, the entire drawing area is cleared and reset.

The drawing area bound by the canvas is transparent. You could therefore use it as you

would a PNG image with an alpha channel. This opens its usage to plenty of

possibilities; for instance, it allows you to replace GIF images, which, unlike PNG

images, allow for animation but only support fully transparent and fully opaque pixels

(see Figure 7–1).

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 167

Figure 7–1. Using PNG or the <canvas> tag, edges are clean no matter what background the image is
superimposed on, whereas quality is poor with GIF

The latter of course is a problem as soon as you want to draw curved or diagonal lines

to a transparent image background, because the line shown would be rough and

irregular. Typically, you couldn’t use a GIF image for a logo implying a circular shape if

you wanted it to be adaptable to several backgrounds.

Despite these preliminary assets of the <canvas> tag, be careful not to use it where some

other tag would be semantically more appropriate, primarily because of accessibility

issues. An image with an alt attribute makes it clear what kind of content is present and

should describe the content to a sufficient extent.

The first of the following examples is an appropriate use for the <canvas> tag because

the spinner has no particular meaning and can be easily ignored, while the second

should be avoided.

<!-- This is recommended -->
<canvas width="45" height="45" id="spinner">Page loading</canvas>
<i>Please wait...</i>

<!-- This is not -->
<canvas width="450" height="200" id="comic-strip-cell">A comic strip</canvas>
<i>Have fun!</i>

The tag would fit perfectly with the type of data presented in the second example.

Using a canvas here could result in poorer accessibility for disabled users and surely

would be poorly taken into account by search engines. Note that we will explain further

in this chapter how to use a canvas as a proper image.

Now, we bet you are impatient to see the exciting JavaScript API in action. Let’s go.

The Drawing Context
To access the canvas and work with it, the first thing to do is get a context. This can be

done using the getContext() method from the API. The following will allow you to work

with a two-dimensional bitmap context:

var canvas = document.getElementById("area");
var context = canvas.getContext("2d");

Once you have obtained a reference to the context in this way, you can start drawing to

the canvas area. Every call of getContext("2d") will return the same instance. Keep in

mind that none of what you will create inside the canvas area will be accessible through

any DOM interface. You will simply be drawing pixels on the drawing surface. For

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 168

instance, to animate a line, you have to draw the line all over again; you cannot move it

or change its properties as you would a DOM element.

NOTE: Be aware that, for now, only two-dimensional contexts can be used. A very promising 3D
version is being studied, primarily by the Khronos Group. It is based on OpenGL ES 2.0 and will
be called WebGL. One asset of its evolution is that it is bound directly to the hardware (GPU
accelerated), making much more complex and fluid animations possible. We hope this
technology will be available soon on the iPhone.

WebKit introduces another, versatile way to define canvases, by allowing you to use a

canvas directly from a style declaration, thus letting you use canvases as backgrounds

or as a value for any other property that can take an image. This, for instance, will let you

easily create a spinner, without actually using images. This of course not only will save

you some bandwidth and loading time but will also allow for real alpha transparency and

color adaptability, as explained earlier.

/* Using a canvas as a value in a CSS declaration is extremely simple */
.css-canvas {
 background-image: -webkit-canvas(area);
}

In the previous example, we indicate that a new canvas should be created with the area

identifier. This canvas does not exist at this stage, but from there, you can initialize it and

get a context for it with the getCSSCanvasContext() method from the document object, as

follows:

var context = document.getCSSCanvasContext("2d", "area", 37, 37);

As with getContext(), the first parameter is the desired context type, and the second, as

you will guess, is the identifier for your canvas. The two following parameters are the

dimensions you expect your canvas to have. Each call to this canvas with the same

parameters will return the same instance, while changing the dimensions in a call to this

method would result in the canvas being cleared, as in the regular canvas-handling

process.

One interesting characteristic of this use of canvases is that the defined canvas can

be used simultaneously on as many elements as you like. In our example, if you create

an animation in it, the animation will be drawn for any element that uses the class

.css-canvas.

Now, let’s take our animated spinner example further and see the code that can make it

live. In the pieces of code that follow, we are going to use quite a few properties of

HTML canvases, but don’t worry: all will be explained in due time.

First, we are going to define the object that will enable you to initialize and animate our

canvas easily to be added to our web application template. Again, if you are not used to

object-oriented JavaScript programming, worry not. This will all be explained in Chapter

10. For now, you can just as well see this code as a series of reusable functions.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 169

/* Object constructor */
var BigSpinner = new Function();

BigSpinner.prototype.init = function(id, color, shadow) {
 /* Initialize the canvas and save the context */
 this.context = document.getCSSCanvasContext("2d", id, 37, 37);

 /* Line style for the spinner */
 this.context.lineWidth = 3;
 this.context.lineCap = "round";
 this.context.strokeStyle = color;

 /* Define a shadow for the spinner */
 if (shadow) {
 this.context.shadowOffsetX = 1;
 this.context.shadowOffsetY = 1;
 this.context.shadowBlur = 1;
 this.context.shadowColor = shadow;
 }

 /* Animation variables */
 this.step = 0;
 this.timer = null;
}

BigSpinner.prototype.draw = function() {
 /* Clear the canvas at every frame */
 this.context.clearRect(0, 0, 37, 37);

 /* Prepare canvas state and draw spinner lines */
 this.context.save();
 this.context.translate(18, 18);
 this.context.rotate(this.step * Math.PI / 180);

 for (var i = 0; i < 12; i++) {
 this.context.rotate(30 * Math.PI / 180);
 this.drawLine(i);
 }
 this.context.restore();

 /* Increment the animation */
 this.step += 30;
 if (this.step == 360) {
 this.step = 0;
 }
}

BigSpinner.prototype.drawLine = function(i) {
 /* Draw one line with varying transparency depending on the iteration */
 this.context.beginPath();
 this.context.globalAlpha = i / 12;
 this.context.moveTo(0, 8 + 1);
 this.context.lineTo(0, 16 - 1);
 this.context.stroke();
}

BigSpinner.prototype.stop = function() {

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 170

 if (this.timer) {
 this.context.clearRect(0, 0, 37, 37);
 window.clearInterval(this.timer);
 this.timer = null;
 }
}

BigSpinner.prototype.animate = function() {
 /* Already running? exit... */
 if (this.timer) {
 return;
 }

 /* The execution context (this) will be the window object with setInterval()
 Save the correct context in "that" variable and run the timer */
 var that = this;
 this.timer = window.setInterval(function() {
 that.draw();
 }, 100);
}

From there, it becomes very straightforward to create a new custom spinner. Simply

create a new instance of the BigSpinner object and initialize it with the init() method,

passing the ID of the canvas, a color, and, optionally, a shadow color as parameters,

and launch the animation with the animate() method, as shown here:

var spinner = new BigSpinner();
spinner.init("area", "red", "rgba(0,0,0,0.5)");
spinner.animate();

The code that follows is intended to imitate the start-up screen of Mac OS X, as shown

in Figure 7–2.

<!DOCTYPE html>
<html>
 <head>
 <title>Startup Screen</title>
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <style>
 html { height: 100% }
 body {
 height: 100%;
 background-color: lightgrey;
 color: gray;
 margin: 0;
 }

 .bigSpinner {
 background-image: -webkit-canvas(spinner);
 }

 .useSpinner {
 background-position: center 70%;
 background-repeat: no-repeat;
 width: 100%;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 171

 min-height: 100%;
 padding-top: 20%;
 -webkit-box-sizing: border-box;
 text-align: center;
 font-size: 100px;
 }
 </style>

 <script>
 /* The BigSpinner class definition goes here
 ... */

 var spinner = new BigSpinner();
 spinner.init("spinner", "gray");
 spinner.animate();
 </script>
 </head>
<body>

<div class="bigSpinner useSpinner">
 <!-- Apple logo -->
</div>

</body>
</html>

Figure 7–2. The Mac OS X start-up screen, drawn with the Canvas API

As you can see, this solution is both simple and easily customizable. Because it is likely

that you want to use the same spinner several times, it is profitable to make a simple

definition in one CSS class (.bigSpinner) and develop it in another (.useSpinner).

Because only one element is loaded, such a practice represents a notable gain in

download times and memory usage.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 172

Indeed, the same spinner as an animated GIF image would require more than 3KB,

whereas this code, which is less than 3KB, allows you to create as many spinners as

desired, customize them, and seamlessly execute them. Moreover, HTTP compression

is widely used on servers nowadays. Because GIF images are already compressed, the

file size for the GIF spinner wouldn’t change, while the code for the canvas spinner is

likely to be compressed to less than 1KB.

Of course, it would be preferable to launch the animation only at the time it is needed in

order not to uselessly consume battery power. For this, you can use the stop() method,

together with animate(), to control the activity of the spinner.

You can also take a more conventional approach to using canvases in your styles. The

toDataURL() method of the canvas object is meant for that, because it allows you to

transform the data from the canvas into an URL. This way, you can use binary, base64-

encoded data right in an HTML page, for instance. The background of an element thus

could be modified from a canvas like this:

var data = canvas.toDataURL();

/* Use the canvas as a background of the first <div> of the document */
var object = document.getElementsByTagName("div");
object[0].style.backgroundImage = data;

/* Use canvas data in a tag */
var image = document.images[0];
image.src = data;

The default format is PNG, which is the only format required for implementation by the

specifications. However, other formats, like JPEG, can be used to pass the MIME type

(image/jpeg) as a parameter to the toDataURL() method. For now, we are going to get

into the details of the Canvas API.

Drawing Simple Shapes
With the Canvas API, the simplest shapes to draw are rectangles. To draw more

complex shapes such as circles, you have to handle complex path functions (which we

will soon explain). On the contrary, to draw a rectangle, you have three options, all of

which are pretty straightforward. All three take the same parameters: the origin as a

couple of reference points (x,y) and the dimensions for the box (width,height). Figure

7–3 shows how this works.

/* Paints a rectangle using the current fill style */
context.fillRect(10, 10, 180, 80);

/* Draws the box outlining the given rectangle
 using the current stroke style */
context.strokeRect(10, 110, 180, 80);

/* Clears the area to transparent */
context.clearRect(50, 50, 100, 100);

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 173

Figure 7–3. Simple shapes drawn with the Canvas API

Notice that when executing this code, the lines of the rectangle drawn with the

strokeRect() method are a little fuzzy and bolder than expected—the default border

width being 1 pixel. To solve this problem, you would usually just have to add 0.5 to

origin points, as follows:

context.strokeRect(10.5, 110.5, 180, 80);

This is because, although the lines are not drawn along a pixel grid, the drawing process

does depend on the undividable pixel unit. Because it is impossible to draw a half pixel,

the renderer uses anti-aliasing to lessen the density of the line and give the impression

that the line is along the axis, with the expected width. By moving the line by half a pixel,

you make it possible to draw the line on a full pixel, no longer two halves, and the line

looks crisp. Figure 7–4 stresses this behavior, where each line is an axis and each

square is a physical pixel.

Figure 7–4. Different pixel rendering depending on the position and the width of the lines

All three represent the drawing of a 2 pixel high line. The first example illustrates the

issue described earlier, with a 1 pixel width at the coordinates (0,0). The pixels are anti-

aliased and extend to both sides of the vertical axis. By positioning the same line on the

points (0.5,0), the extension happens on the new axis, and the line fits on the physical

pixel. No visual effect is needed. The illustration to the right in Figure 7–4 shows a line

with the same characteristics as the first, but 2 pixels wide. In this case, each pixel can

be displayed on one side of the axis.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 174

Colors, Gradients, and Patterns
The default drawing and fill color in a canvas is black, though of course you can modify

this at any stage. This is done as follows:

context.fillStyle = "red";
context.fillRect(10, 10, 180, 80);

context.strokeStyle = "rgba(0, 255, 0, 0.5)";
context.strokeRect(10, 110, 180, 80);

In these processes, you can use any CSS colors that we have seen in the previous

chapter, including colors with an alpha channel, as shown in both previous examples.

Syntaxes are also available to you to use gradients and even patterns.

Using Gradients
The syntax for gradients in the Canvas API is quite similar to that found in CSS, with

-webkit-gradient(). You should choose between a linear or radial gradient to use the

appropriate method to instantiate a new CanvasGradient object.

/* createLinearGradient(x0, y0, x1, y1) */
var linear = context.createLinearGradient(0, 0, 100, 100);

/* createRadialGradient(x0, y0, r0, x1, y1, r1) */
var radial = context.createRadialGradient(100, 100, 90, 100, 100, 10);

The first example will draw a linear gradient stretching from point (0,0) to point

(100,100)—thus along a diagonal. Beyond these points, the colors will continue to fill

the entire canvas area. The coordinates refer to points in the space of the canvas;

therefore, the display will change depending on the position of the shapes that use this

gradient.

The second example should draw a radial gradient, with parameters that specify the

center of the initial circle (100,100), its radius 10, and the position of the second circle

(100,10), with a radius of 90 pixels.

Once you have defined an area and stop points for your gradient, you can add color to it

with the addColorStop() method. As previously, the definition looks a lot like that found

with CSS.

linear.addColorStop(0.0, "yellow");
linear.addColorStop(1.0, "green");

The first parameter is the offset from where the color should start, ranging from 0.0 to

1.0; the second of course is the color. Now that you gradient is ready, you can use it

with the methods shown earlier both for the stroke and for the fill (Figure 7–5).

context.fillStyle = linear;
context.strokeStyle = linear;

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 175

Figure 7–5. You can use a gradient both for fill and for stroke

This already allows for quite a few possibilities. Nonetheless, the Canvas API also allows

for the use of an image object, a video, or even a canvas (including the current canvas)

as patterns inside your drawing area.

Defining Patterns
New patterns are created with the createPattern() method from an image, video, or

even canvas object, which takes two parameters, the source object and a repeat mode,

as shown in the CSS background-repeat property.

var image = document.getElementById("someImage");
var pattern = context.createPattern(image, "repeat-x");

Once you have created a new pattern, it can be used, just like plain colors and

gradients, with the fillStyle and strokeStyle properties. However, remember that,

once you have created your pattern object, it will not be changed, even if, for instance,

the source image used to create it was altered or the source canvas was cleared and

drawn differently. Therefore, you cannot automatically animate a pattern, even using a

video or multilayer GIF image.

More Complex Shapes with Paths
All the previous methods and properties of course can have many appreciable uses.

However, for now, you are still limited to straight lines and rectangles. Of course, there is

more to the API. Using paths, similar to those used in Illustrator or in Photoshop with the

water pen tool, you can achieve very complex illustrations.

In the canvas area, paths should be defined using one or more subpaths, which are

themselves composed of several points on a straight or curved line. A subpath can be

indicated as closed, meaning its last point is connected to its first by a straight line.

Table 7–1 lists the different methods used to define paths.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 176

Table 7–1. Methods Used to Define Paths

Method Description

context.beginPath() Resets the list of subpaths.

context.moveTo(x, y) Creates a new subpath with the given point.

context.lineTo(x, y) Adds the given point to the subpath connected to the

previous one by a straight line.

context.rect(x, y, w, h) Adds a new closed subpath representing the given

rectangle.

conext.arc(x, y, radius,
startAngle, endAngle,
anticlockwise)

Adds points to the subpath representing the given arc,

connected to the previous one by a straight line. Angles are

in radians.

context.arcTo(cpx1, cpy1, cpx2,
cpy2, radius)

Adds two control points defining, using last point of the

previous subpath, two intersecting segment tangents to the

circle defined by arguments. Resulting subpath is an arc

starting at intersection point with the first tangent and

ending at intersection point with the second tangent. The

first point is connected to the previous subpath by a straight

line.

context.quadraticCurveTo(cpx,
cpy, x, y)

Adds the given point to the subpath, connected to the

previous one by a quadratic Bézier curve with the given

control point.

context.bezierCurveTo(cp1x,
cp1y, cp2x, cp2y, x, y)

Adds the given point to the subpath, connected to the

previous one by a cubic Bézier curve with the given control

points.

context.fill() Fills the subpaths with the current fill style.

context.stroke() Strokes the subpaths with the current stroke style.

context.closePath() Closes the current subpath explicitly and starts a new one

with the same point as the previous point.

Paths should be initialized with the beginPath() method of the context object, which

empties the subpath’s list. The closePath() method closes the current subpath (not the

path itself), drawing a line from its last point to its first point, as shown in Figure 7–6.

The fill() and stroke() methods make closing the subpath implicit but don’t close the

active path, like the closePath() method would. There can be only one current path at a

time, which is why you should always specify to the engine when a path begins and

where to close a subpath. This is critical if several subpaths are to be defined with

similar styles but shouldn’t be connected.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 177

context.beginPath();

/* Draw a first triangle */
context.moveTo(20, 90);
context.lineTo(70,40);
context.lineTo(120,90);

/* Then move and draw another triangle */
context.moveTo(80, 110);
context.lineTo(130,160);
context.lineTo(180,110);
context.closePath();

/* Fill subpaths and stroke */
context.fill();
context.stroke();

Figure 7–6. The first triangle is implicitly closed, while the second is closed with the closePath() method

In this example, we begin by creating a first subpath to draw a triangle with only two

sides, and then we move within the path using moveTo() to start another subpath in

another area. Therefore, the closePath() method will close only the second subpath.

Drawing Arcs
There once again are quite a few possibilities using the previous methods; however,

these examples still stick to straight lines. To unleash the full range of possibilities

offered by the Canvas API, you will have to handle the most complex path methods,

namely, those used to draw curves. Starting with the arcTo() method, you will notice

that the two points it takes as parameters don’t even actually belong to the subpath that

it allows you to draw. They are control points, that is, points that will be used to

calculate the position of the arc from its starting point to its ending point.

Figure 7–7 shows an arc drawn with the following code:

context.beginPath();
context.moveTo(120,18);
context.arcTo(140, 20, 110, 100, 100);
context.lineTo(200, 100);
context.stroke();

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 178

Figure 7–7. An arc is defined by its control points (the gray dots) relative to the last point from the previous
subpath (black dot)

As you can see, neither of the lighter dots—the control points—are part of the subpath.

Instead, they are used only to define tangents, whose intersection points are used to

situate the points of the actual subpath, as the arc spans from one to the other. As

explained in Table 7–1, the first point is attached to the previous subpath by a straight line.

Drawing Curves
There are two other curve types: quadratic and cubic b-splines. They’re drawn using the

quadraticCurveTo() and bezierCurveTo() methods, using one and two control points,

as shown on Figure 7–8. These are widely used in the graphic industry, be it for 3D

creation or in the car design industry, where they were developed.

/* A quadratic curve */
context.beginPath();
context.moveTo(20, 100);
context.quadraticCurveTo(100, 20, 180, 100);
context.stroke();

/* A cubic curve */
context.beginPath();
context.moveTo(20, 100);
context.bezierCurveTo(70, 20, 140, 180, 180, 100);
context.stroke();

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 179

Figure 7–8. Two Bézier curves—one quadratic, one cubic

Once again, the lighter points indicate control points. You will notice that the actual

curve is much lower than the corresponding control point. Basically, to draw a Bézier

curve is to draw a definite line from the center of one definite line to the center of the

next definite line connected to it. This gives you the initial position of the curve. The

newly created lines will be used in the same manner as explained earlier. Of course, this

is very schematic, but it is the basics of the process, and along with some training, it

should allow you to obtain the results you expect.

Line Styles
All the previous methods are configurable, so you can style all lines in quite a few

manners, beyond the colors and gradients introduced earlier. The configuration is

available with the context object.

Thus, lineWidth allows you to tweak the thickness of your lines, lineCap will let you

choose an ending style for each line, and lineJoin will let you indicate how lines should

meet. These are illustrated respectively in Figures 7–9 and 7–10.

context.lineCap = "butt"; // Default, also 'round', 'square'
context.lineJoin = "miter"; // Default, also 'round', 'bevel'

Figure 7–9. Different line endings

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 180

Figure 7–10. Different line blending options

The default size for the miter is 10.0. This can be modified with the miterLimit property.

If the rendering engine doesn’t find enough space to draw the miter, it will extend it to

the defined limit and then cut it as with the bevel parameter.

Enhancing Your Menus with Style
Now that you know how to create paths with different styles, you can add a new feature

to your web application templates: the missing chevron in your list menu. Add the

following styles and scripts to the main.css and main.js files, with the result shown in

Figure 7–11.

/* main.css */

.group-wrapper ul li a {

...
 background: -webkit-canvas(chevron-normal) right center no-repeat;
}

.group-wrapper ul li a:active {

...
 background:
 -webkit-gradient(linear,
 left top, left bottom,
 from(rgba(255, 255, 255, .25)), to(transparent)),

 -webkit-canvas(chevron-active) right center no-repeat #015de6;
...
}

/* main.js */

initChevron("chevron-normal", "hsl(0, 0%, 50%)");
initChevron("chevron-active", "hsl(0, 0%, 100%)");

function initChevron(id, style) {
 var context = document.getCSSCanvasContext("2d", id, 22, 13);

 context.save();

 context.clearRect(0, 0, 20, 13);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 181

 context.strokeStyle = style;
 context.lineWidth = 3;

 context.beginPath();
 context.moveTo(4, 1);
 context.lineTo(10, 6.5);
 context.lineTo(4, 12);
 context.stroke();

 context.restore();
}

Figure 7–11. Your template menus have moved yet another step toward native application styles

In the previous chapters, you created styles to differentiate the :active and :hover

states. Here you simply extend the relevant classes, taking advantage of multiple

background support.

Once again, this code is easily reusable and customizable, and you can, for instance,

use different drawing styles for the normal and active states.

Applying Transformations
The Canvas API offers several methods to achieve transformations, letting you adopt a

fluid workflow. You will be able to modify the scale, apply a rotation, or move the grid for

your canvas together with the points from your elements. These transformations will

apply only to the shapes that are to be drawn—shapes that have already been stroked

will not be altered.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 182

/* Moves the grid by 100 pixels in both directions */
context.translate(100, 100);

/* Rotates the grid by 60 degrees */
context.rotate(60 * Math.PI / 180);

/* Scales the grid, double in width, half in height */
context.scale(2, 0.5);

All transformations are calculated from the origin of the grid, initially the top left (0,0).

The translate() method allows you to change this value. The rotate() method, which

takes a value in radians, will be calculated from the new point defined by the previous

call to translate(), clockwise. The advantage of these methods is that the scaling will

not simply multiply pixels. As with a vector graphics editor, proper scaling will take

place.

These basic transform methods actually are affine transformations, calculated with

matrices, with each new transformation bringing a new transformation to the previous

matrix. You can define your own matrices with the following form.

NOTE: If you are not familiar with matrices, don’t worry, because this is only for very advanced
usage of the canvas transformations. You’ll see in Chapter 9 how to easily calculate resulting
matrices with the CSSMatrix object.

This is done with one of the following methods:

context.transform(a, b, c, d, e, f);
context.setTransform(a, b, c, d, e, f);

The first method multiplies the matrix defined by the current matrix parameters. The

second method clears the transformation matrix, before acting like the transform()

method, applying the new matrix.

/* These methods... */
context.translate(100, 100);
context.rotate(45 * Math.PI / 180);

/* ... are analogous to the following */
var cos = Math.cos(45 * Math.PI / 180);
var sin = Math.sin(45 * Math.PI / 180);
context.transform(cos, sin, -sin, cos, 100, 100);

To completely reset the whole transformation matrix, you can use this very useful piece

of code:

context.setTransform(1, 0, 0, 1, 0, 0);

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 183

This way, you will not have to work back through all your previous transformation

operations. This of course will make your code simpler and will make it more lightweight.

Simplifying Drawing State Modifications
The method illustrated in the previous section lets you easily reset all transformations.

However, the HTML5 specification allows for fine-tuning on the successive

transformations that you operate, by providing means to save and restore different

states of the canvas.

Each context can keep in memory a stack of the different drawing states. Thus, any

previously defined line end, color, or transformation property can be pushed to this

stack with the save() method and popped later with the restore() method, following

the last-in-first-out principle. The following code illustrates this behavior:

/* this is the current state */
context.strokeStyle = "red";

/* Push the current state to the stack
 and draw a green rectangle */
context.save();
context.strokeStyle = "green";
context.strokeRect(10, 10, 180, 180);

/* Restore and draw a red rectangle */
context.restore();
context.strokeRect(20, 20, 160, 160);

You can call the save() method as many times as you like without calling restore(),

which can be useful, for instance, if you are building several functions that draw distinct

graphic elements, because you wouldn’t have to worry about the state of the drawing

context. Nonetheless, each call of the save() method requires that you at some stage

call the restore() method to return to the initial state.

This again is both a code weight saver and a good optimization operation, because

these methods are natively executed by the script engine, without being interpreted.

Using Text
Although the rendering of text is part of the Canvas specification, it is not properly

implemented as of version 3.2 of iOS. However, all the methods and properties of the

Text API can be accessed without raising any exception. You will simply see no result in

the canvas area. Nevertheless, because this part of the specification is already

implemented in Desktop Safari, we believe these features will be added soon to future

versions of Mobile Safari.

The font and its characteristics should be defined similarly to what is found in CSS with

the font shorthand. The default is sans-serif, 10px, with a weight of 400 (aka normal).

However, you cannot change the line-height, which is set at a common value and will

be ignored if defined.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 184

context.font = "italic 18px Georgia";

As with CSS, you can define font sizes with relative values such as ems. In such a case,

the actual font size will be calculated based on the computed font-size property value

applicable to the canvas at the moment it is created—not on any previous font

declaration with the context object. On the other side, if the canvas is dynamically

generated with JavaScript and wasn’t in the source code of the document, relative

values will be based on the default values for the context font property.

<style>
 div { font-size: 13px; }
</style>

<div>
 <canvas id="area" width="200" height="200"></canvas>
</div>

<script>
 var canvas = document.getElementById("area");
 var context = canvas.getContext("2d");

 context.font = "italic 1.4em Georgia";
 context.fillStyle = "red";
 context.fillText("Some Text", 10, 100);
</script>

In this example, because the size of the font is relative, it will be computed relative to the

CSS definition found in the style declaration. Because the <canvas> tag inherits from its

<div> parent, the font size would be 18px (13*1.4).

Later in our description of canvases, we will also see how the font face can be changed

to some other font than those installed on the device with the @font-face rule and

downloadable fonts.

Drawing the Text
To draw pieces of text, you have two methods available to you: either draw the text fill

as in classic HTML or draw only the outlines of the text. The following illustrate both

methods:

/* Classic rendering */
context.fillText("Some Text", 0, 20);

/* Outlined text */
context.strokeText("Some Text", 0, 20);

Both methods should take a third, optional parameter, maxWidth, that limits the content

width to the definite value. If the text would have spanned beyond this width, it is

compressed to stay inside the defined area. However, this third parameter is not yet

supported in Safari. Therefore, you will have to use a scaling method together with the

measureText() method, which returns the size of the passed text. The following example

shows how to use this to obtain such results, and Figure 7–12 shows the result:

context.font = "bold 15px 'Marker Felt'";

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 185

/* The string to be drawn */
var str = "The quick brown fox jumps over the lazy dog.";

/* Measurement */
var maxWidth = 200;
var metrics = context.measureText(str);

/* Draw with and without constrains */
context.fillText(str, 0, 20);
if (maxWidth < metrics.width) {
 context.scale(maxWidth / metrics.width, 1);
}
context.fillText(str, 0, 40);

Figure 7–12. The first definition lets the text span beyond the edges of the canvas; with the second method, the
full text is rendered visibly

The only FontMetrics property available for now is width, which is read-only. It

represents the rendered width of the string passed as a parameter to the measureText()

method. Unfortunately, there is no way to determine the line-height or the actual height

that the rendered text will take, which means you won’t be able to determine whether

your text will vertically fit into the area you expect. This can be especially problematic,

for instance, when attempting to draw an object, such as a button, or when centering

your text vertically inside the container.

Text Baseline
Nonetheless, knowing the size of your font can let you get a pretty close evaluation of

the vertical space your content will take. Hence, you will want to determine how the text

will be displayed within the space occupied. This can be tuned with the textBaseline

property. Although the default baseline for text content is the baseline of the square em

measure, you can, for instance, force your text to align in the middle of this area by

setting textBaseline to middle.

NOTE: A square em (pronounced “M,” not “e.m.”) is a fixed height (it varies, however, depending
on the font size) within which any character in the font set can be drawn—including accents on
uppercase letters, ascending and descending letters, and so on.

Other available values for the textBaseline property are alphabetic (default), top, and

bottom. These values are illustrated in Figure 7–13. There are other values; however, they

are currently not supported.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 186

Figure 7–13. Different values for the textBaseline property

This of course will make the results of your code more predictable. The following

example would center your text inside its container (see Figure 7–14).

context.font = "15px Zapfino";
context.textBaseline = "middle";
context.strokeRect(50.5, 0.5, 100, 80);
context.fillText("Zapfino", 50, 40);

Figure 7–14. Vertically centered text

In our example, we know that the Zapfino font is quite large, so we draw a frame slightly

higher than the 15 pixels given for the font size. Our text is then drawn from the left side

of the frame and centered vertically. To center it horizontally too, we could, of course,

use measureText() to calculate its position depending on the text size. However, there is

a far simpler method.

Text Alignment
Horizontal alignment works in roughly the same manner as vertical alignment, though

there is no em square consideration—just a start, a center, and an end for the text,

which will be values for the textAlign property. The text in our previous example thus

can be easily centered both ways by adding this declaration to our text (Figure 7–15):

...
context.textAlign = "center";
context.fillText("Zapfino", 100, 40);

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 187

Figure 7–15. The text is perfectly centered in the frame

The preceding value depends on the text direction as defined in the HTML document

with the dir attribute. The default value for dir is ltr (left to right), meaning that the

default value, start, will make the text begin at the given position and expand from left

to right; using end, the reverse will happen. If you gave the dir attribute the value rtl—

such as when writing in Hebrew or Arabic—these behaviors would be reversed.

If you do not want your canvas to depend on the text direction, you can use the

direction-insensitive left and right values. Of course, the value center will not be a

problem, because the text would evenly expand to both sides of the initial point.

Shadows
As with CSS and HTML, you can apply shadows to everything drawn inside the canvas.

Shadows are defined using four properties of the context object. To see the effect of a

shadow definition, simply add the following lines to the code of our previous example

(results in Figure 7–16):

...
context.shadowColor = "gray";
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.shadowBlur = 4;

context.textAlign = "center";
context.fillText("Zapfino", 100, 40);

Figure 7–16. The equivalent of a text shadow within your canvases

With these few lines of code, all the rendered shapes will gain a drop shadow. Be careful

that shadowColor can take only a color as a value, unlike strokeStyle and fillStyle that

can take a gradient or a pattern. Canvases are not yet ready for rainbow shadows. Also

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 188

remember that offsets are not affected by transformations. Hence, the shadow will

always go the same sense, even after a rotation, and will always have the same size,

even after a scaling operation.

NOTE: A resilient bug in WebKit’s implementation affects all browser versions. If the
shadowBlur property has its value set to 0 (the default), the value for shadowOffsetY will
systematically be treated as negative. The easiest way to avoid this problem is to give the
shadowBlur property a forbidden value, namely, NaN, Infinite, or a negative value.
Moreover, the shadow will not work at all if the shape style is based on a gradient or pattern.

The shadowBlur property gives you control over the fuzziness of shadow. Its value

should be either positive or null, and it applies a two-dimensional Gaussian blur to the

shadow. Any other value should be ignored but will be automatically set to 0 by WebKit.

Clipping and Compositing
By default, all shapes are drawn one on top of the other in the area allotted to the

canvas. However, you can constrain the drawing to a specific area of the canvas.

Clipping to the Drawing Area
To bind the rendering of an element to a specific area, you should use the clip()

method. What this method does is define the current path as a drawing area beyond

which no point or line will be drawn. The following example illustrates this behavior, and

the results are shown in Figure 7–17:

/* The path */
context.beginPath();
context.moveTo(30, 70);
context.lineTo(70, 70);
context.lineTo(100, 30);
context.lineTo(130, 70);
context.lineTo(170, 70);
context.lineTo(100, 160);

/* Clip and implicitly close the path (for clipping only) */
context.clip();

/* Create a gradient and draw a filled box */
var linear = context.createLinearGradient(50, 70, 100, 200);
linear.addColorStop(0.0, "red");
linear.addColorStop(0.6, "yellow");

context.fillStyle = linear;
context.fillRect(0, 0, 200, 200);

/* Prepare a shadow */
context.shadowOffsetX = 3;
context.shadowOffsetY = 5;

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 189

context.shadowColor = "rgba(0,0,0,0.3)";

/* You can stroke your path too since it is drawn across the line (3 in, 3 out) */
context.lineWidth = 6;
context.closePath();
context.stroke();

Figure 7–17. The same shape drawn with and without clipping

This code defines a shape to which the subsequent drawing will be bound. As you can

see Figure 7–17, multiple operations can be applied to one path—clip() and stroke()

in our example. We have added a shadow to the path stroke, which is drawn only inside

the clipping area. If you comment the context.clip() line, you will see the same

drawing unclipped, with a broader line style and a shadow spanning beyond the figure

area. Thus, clipping can let you create slightly inset shadows.

Calls to the clip() method are cumulative, which means each new clipping area you

define will itself be clipped to any previously defined clipping area. Consequently, you

couldn’t, for instance, restore the initial clip state by calling the clip() method with the

dimensions of the canvas itself. You will have to resort to the save() and restore()

methods as explained earlier.

Another limitation to the clip() method is that it can apply only with paths. Although

paths are the major part of canvas drawing, you won’t be able to define a clipping area

using text, for instance. If you want to clip using text content, you can define a pattern

containing the desired material and use it as fillStyle or strokeStyle, as in previous

examples.

Compositing and Global Transparency
Canvases are initially transparent, which means you can create effects combining a

background on an HTML element behind your background and the elements in your

canvas.

To go further, you can also benefit from advanced compositing features of the Canvas

API, using the globalCompositeOperation property. Compositing is an operation by

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 190

which you can combine several images to create one final illustration. The following

code is used to draw Figure 7–18:

/* Draw the source over the destination (default) */
compositing("source-over", 0, 0);

/* Apply a eXclusive OR between the source and the destination */
compositing("xor", 160, 0);

/* Fill blank pixels with the source shape */
compositing("destination-over", 320, 0);

function compositing(mode, x, y) {
 context.save();
 context.translate(x, y);

 context.fillStyle = "yellow";
 context.fillRect(0, 0, 100, 100);

 context.globalCompositeOperation = mode;
 context.fillStyle = "blue";
 context.fillRect(50, 50, 100, 100);

 context.restore();
}

Figure 7–18. An illustration of compositing abilities

Table 7–2 lists all the values supported by Mobile Safari for the

globalCompositeOperation property. Be careful: all values are case sensitive. The

blending occurs between the element to be drawn and the current canvas contents,

taking into account either the transparent pixels (with an alpha value less than 1.0 but

more than 0.0) or the non-transparent ones.

Another feature regarding compositing is brought by the globalAlpha property, which

we have already used in our spinner example. We used it to play with the opacity of the

spinner lines. As made clear by its name, the globalAlpha property allows you to define

an opacity value (from 0.0 to 1.0) for all rendered elements. This makes it possible to

apply an alpha channel, even to elements that do not support one by themselves, such

as images. Note that shadows that are not affected by transformations take the alpha

value defined by the globalAlpha property.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 191

Table 7–2. Supported Values for the globalCompositeOperation Property

Value Description

source-over The source is drawn over the destination. This is the default behavior.

source-atop The source is drawn atop the destination. The destination behaves like a

mask.

destination-over The source is drawn under the destination. It is the inverse of source-over.

destination-out Deletes intersecting pixels from the destination.

lighter Displays the sum of the source and destination image, with color values

approaching 1 as limit.

darker Same as lighter but with color values approaching 0 as limit.

xor Applies an eXclusive OR operation between the two images, removing fully

opaque intersecting pixels.

Working with Canvas Pixels
Drawing shapes within your canvas can yield excellent results. However, to take things

much further, it is possible to include image contents directly with the Canvas API. The

following methods will let you use complete images as part of your canvas, as shown in

Figure 7–19:

context.drawImage(image, dx, dy);
context.drawImage(image, dx, dy, dw, dh);
context.drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh);

The called image can be an element, a video, or a canvas (either an external

canvas or the current canvas). In the cases of videos, the browser will consider only the

frame at the current playback position for insertion. These methods are subject to the

same constraints as other features such as compositing or clipping.

NOTE: In the current version of Mobile Safari, trying to access a video frame always raises a
SECURITY_ERR exception. This should occur only if the drawImage() method was used to
copy an image from an origin other than that of the executed code. This bug is not present in
Desktop Safari.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 192

Figure 7–19. The drawImage() method with different arguments

The following code will draw an image with rounded corners:

<canvas id="area" width="400" height="300"></canvas>

<script>

 /* Create a new Image object and attach an onload handler to it */
 var image = new Image();
 image.onload = drawImage;
 image.src = "panda.jpg";

 function drawImage() {
 /* Get the canvas context */
 var canvas = document.getElementById("area");
 var context = canvas.getContext("2d");

 /* Read image dimensions */
 var w = canvas.width;
 var h = canvas.height

 /* Prepare a rounded rectangle and use it as clipping area */
 context.save();
 roundedRect(context, 20, 20, w - 40, h - 40, 64);
 context.clip();

 /* Finally, draw the image */
 context.drawImage(this, 20, 20, w - 40, h - 40);
 context.restore();
 }

 function roundedRect(ctx, x, y, w, h, radius) {
 var x1 = x + radius,
 var x2 = x + w - radius;
 var y1 = y + radius;
 var y2 = y + h - radius;

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 193

 ctx.beginPath();
 ctx.arc(x1, y1, radius, Math.PI * 1.0, Math.PI * 1.5);
 ctx.arc(x2, y1, radius, Math.PI * 1.5, Math.PI * 2.0);
 ctx.arc(x2, y2, radius, Math.PI * 2.0, Math.PI * 0.5);
 ctx.arc(x1, y2, radius, Math.PI * 0.5, Math.PI * 1.0);
 ctx.closePath();
 }

</script>

This example should be pretty clear. We define a path that draws a box with rounded

corners that we use as a clipping area. Of course, we push the context state to the stack

so that the clipping will be reset. Then, the image is rendered inside this area with the

drawImage() method. Figure 7–20 shows the resulting canvas.

Figure 7–20. An image with rounded corners

The image must be loaded with the call to drawImage(), or nothing will appear. This is

why we call our function after the image onload event. The first parameter to the

drawImage() method is set to this, because the execution context is the object that sent

the event—the image defined earlier.

Though using images in such a manner offers interesting possibilities, the API allows us

to go even further by directly accessing the pixels of the canvas. Thus, you will be able

to apply special effects. In our next example, we will simply turn the image used from

color to black-and-white and invert its colors.

<canvas id="area" width="400" height="300"></canvas>

<script>

 function snap() {
 var canvas = document.getElementsByTagName("canvas")[0];
 var context = canvas.getContext("2d");

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 194

 /* Draw the image into the canvas */
 var w = canvas.width;
 var h = canvas.height;
 context.drawImage(document.images[0], 0, 0, w, h);

 /* Get the input buffer and create an output buffer */
 var inp = context.getImageData(0, 0, w, h);
 var out = context.createImageData(inp.width, inp.height);

 /* Iterate through the image pixels */
 for (var y = 0; y < inp.height; y++) {
 var line = y * inp.width * 4;

 for (var x = 0; x < inp.width; x++) {

 /* Get a pixel and calculate its brightness */
 var pixel = x * 4 + line;
 var light = 255 - (inp.data[pixel + 0] * 0.30 // Red
 + inp.data[pixel + 1] * 0.59 // Green
 + inp.data[pixel + 2] * 0.11); // Blue

 var out_r = light;
 var out_g = light;
 var out_b = light;
 var out_a = inp.data[pixel + 3]; // Alpha

 /* Write the new pixel into the buffer */
 out.data[pixel + 0] = out_r;
 out.data[pixel + 1] = out_g;
 out.data[pixel + 2] = out_b;
 out.data[pixel + 3] = out_a;
 }
 }

 /* Flush the buffer to the canvas area */
 context.clearRect(0, 0, w, h);
 context.putImageData(out, 0, 0);
 }

</script>

The brightness of a color is made of roughly 30 percent red, 59 percent green, and 11

percent blue components. To reverse the colors of an image, you have to invert these

three values and give the new ones to each color. In our example, we read the

component of each pixel color found in the data array of the ImageData object returned

by the getImageData() method—and obtain the result shown in Figure 7–21.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 195

Figure 7–21. The original picture and the picture transformed with the Canvas API

To hold the transformed pixels, we use a buffer created with the createImageData()

method that can take either the dimensions of the buffer or an existing ImageData object

from which the dimension data will be obtained. In both cases, the buffer will be empty.

The data property is a one-dimensional array that holds the color components for each

pixel under the RGBA notation, which is why we multiply by four to move from one pixel to

the next.

Once the buffer holds all our transformed pixels, we write the data to the canvas with

the putImageData() method to the canvas, with an ImageData object as a parameter and

the coordinates where the image should be drawn. Optionally, you can specify with this

method a “dirty” rectangle, that is, the area to update, so that only the defined rectangle

is rendered to the canvas.

Using Vector Graphics
The great advantage of vector graphics over bitmap images is that they are independent

of the resolution to which they are rendered and can be scaled without loss of quality.

This is useful to draw the same background at full screen size, whatever the size of the

device—for instance, on an iPhone and an iPad.

SVG is a presentational markup language based on XML. Like the Canvas API, it is

lightweight, easily compressible (because it is text), and is thus fast to load on portable

devices that, like Mobile Safari on iPhone, support HTTP compression even for complex

documents. Note, however, that you will obtain poorer performance with SVG than with

a canvas.

Taking advantage of the fact that it is based on XML (and, unlike the canvas, which

works with an unalterable drawing process), SVG is provided with specific DOM

interfaces, similar to that of HTML, that make it both dynamic and potentially interactive.

Moreover, dynamism isn’t accessible only through scripts. It has good native support of

animations through the Synchronized Multimedia Integration Language (SMIL)

integration, a specification based on XML that aims to ease the creation of interactive

audiovisual presentations.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 196

Inserting SVG into Your Documents
HTML5 lets you use the <svg> tag directly in your markup, without even having to

specify a namespace. Unfortunately, this is not yet supported by Mobile Safari. To

embed an SVG document into your pages, you will have to resort either to the tag,

specifying the file locations in the src attribute; to the <iframe> tag (this method is not

recommended, because it proves inflexible in Mobile Safari); or to the <object> tag, with

the SVG location as a value for the data attribute, as shown in the following example

(Figure 7–22):

<object data="tiger.svg" width="400" height="400" type="image/svg+xml"></object>

Figure 7–22. The famous vector tiger drawn with SVG

Mobile Safari ignores any width and height value given to an <iframe>, because it

automatically sizes the frame to contain the linked document. This of course is

problematic with SVG documents, which inherently have no defined size.

Understanding the Coordinates System
This is not the place to get into too much detail, but it is essential to understand how the

browser renders an SVG document. Hence, we are going to explain the necessary

basics to understand how an SVG document will be scaled inside an HTML page in

Mobile Safari.

The dimensions of an SVG canvas are initially infinite, but they are generally fixed by the

width and height attributes on the <svg> tag. The size will be considered in pixels if no

measure unit is given. For the rendering, coordinates are converted to pixels based on a

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 197

96dpi resolution. This means a 4-centimeter line—as long as the viewport for the HTML

document is correctly set for scaling and the scale is set at 1.0—will be rendered as 151

pixels – 4 / 2.53 * 96 (where 2.53 is a rounded value for 1 inch).

As an example, let’s take a simple SVG document where a rectangle and a circle are

drawn with the <rect> and <circle> tags (Figure 7–23). Note that the XML declaration

and doctype are not mandatory.

<?xml version="1.0" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg">

 <rect x="0" y="0" width="100%" height="100%" fill="lightgrey"
 stroke="black" stroke-width="4" />

 <circle cx="110" cy="110" r="100" fill="yellow"
 stroke="red" stroke-width="2" />

</svg>

To add this to our HTML document, we are going to use the <object> tag. The tag

is not the best solution to insert SVG elements, and it is unlikely that you will ever really

have to choose that option. Therefore, we will systematically use the <object> tag and

bring more information when notable behavior differences arise. For now, let’s make our

object 320 square pixels.

Figure 7–23. A simple SVG document inside an HTML document

Because we haven’t specified any dimension for the SVG canvas, those indicated on the

<object> tag will be used to set the rendered size, which will be the same as the SVG

viewport, that is, the area in which the document will be drawn. In Figure 7–23, the

rectangle thus completely outlines the viewport, and, as expected, the circle has a 100

pixels radius (the r attribute) and spans 200 pixels.

Now, let’s explicitly set the document viewport size by adding width and height

attributes to the <svg> tag:

...
<svg xmlns="http://www.w3.org/2000/svg"

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 198

 width="400" height="400">
...
</svg>

Because the viewport, as defined, is larger than the object area, the rectangle spans

beyond the area (Figure 7–24), and the content is clipped. Here, the behavior would be

different using an tag. Indeed, using img, the SVG document is considered as a

bitmap element, so it will be scaled to fit into the area defined by its own attributes,

without consideration of the initial ratio.

Figure 7–24. With a viewport explicitly larger, the document is clipped

If a value isn’t defined inside the SVG document, it will be considered to have the same

dimensions as the host HTML document. This seems to us a limitation of the tag,

although in some specific cases it can come in handy.

This limitation is especially sensible because, in cases where it is desirable to determine

an area of the document that would stretch to fit into some specific container—as to

apply a focus on such an area—it can be done with the viewBox attribute. This attribute

allows you to set coordinates of the rectangle to bind to the viewport. By default, the

scaling will occur while preserving the initial ratio (Figure 7–25).

...
<svg xmlns="http://www.w3.org/2000/svg"
 width="320" height="320" viewBox="0 0 150 800">
...
</svg>

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 199

Figure 7–25. The same document using the viewBox attribute

To clarify things, we adjust the dimensions of the viewport again to make them fit with

those of the <object> element. As you can see in Figure 7–25, the viewBox attribute has

an effect on relative coordinates such as those defined for the rectangle but doesn’t clip

drawn lines, and the circle spans beyond the area. Moreover, because the area defined

is higher than the viewport (800px), the image is scaled.

This default behavior can be modified with the preserveAspectRatio, for instance by

setting it to none. This way, the scaling will occur regardless of the defined area and will

span on either side to fill the viewport, as shown in Figure 7–26.

Figure 7–26. The aspect ratio can be changed with an attribute

Those are the main features available to you using SVG in HTML documents. All work

with the <object> tag. Using an tag, not only will the behavior regarding

dimensions be different, but animations will not be rendered, and you will not be able to

use scripts or interactions defined in the document. Moreover, you will lose access to

the SVG DOM through JavaScript from the hosting document.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 200

Drawing Shapes
As stated earlier, SVG is a presentational language that provides plenty of tags to draw

most of the shapes commonly used in vector graphics—lines, rectangles, polygons, and

paths—and to define colors, stroke styles, fills, gradients, and transitions. All the options

available for the canvas area are available in SVG also, though instead of being handled

with scripts, they are described with XML. The following code gives examples for a fair

range of the available shapes, with the results in Figure 7–27:

<svg xmlns="http://www.w3.org/2000/svg">
 <g fill="yellow" stroke="red" stroke-width="4" transform="translate(5,5)">
 <circle cx="45" cy="45" r="45" />
 <rect x="100" y="0" width="90" height="90" rx="10" ry="10" />
 <ellipse cx="245" cy="45" rx="45" ry="30" />
 </g>

 <g fill="yellow" stroke="red" stroke-width="4" transform="translate(5,105)">
 <polyline
 points="0,0
 0,90 20,90 20,80 30,80
 30,90 40,90 40,80 50,80
 50,90 60,90 60,80 70,80
 70,90 90,90 90,45" />

 <polygon transform="translate(100, 0)"
 points="0,0
 0,90 20,90 20,80 30,80
 30,90 40,90 40,80 50,80
 50,90 60,90 60,80 70,80
 70,90 90,90 90,45" />

 <line x1="200" y1="0" x2="290" y2="90" />
 </g>
</svg>

Figure 7–27. Some basic shapes available with SVG

This piece of code already gives you a look of the kind of possibilities SVG has. As you

can see, you don’t need to use paths to draw rounded corners on a rectangle, setting

the optional attributes rx and ry on the rect element. You will also notice that the only

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 201

difference between the <polyline> and <polygon> elements is that the former doesn’t

automatically close the shape.

To make this more obvious, our two shapes use the same points, apart from the initial

coordinates (so that the second doesn’t cover the first). Finally, the transform attribute

doesn’t only allow translation: you can also rotate, scale, or skew (horizontally or

vertically, with skewX and skewY) or use a custom matrix, as with Canvas. Note that

although skewing isn’t available natively with the Canvas API, it is easily achievable

using a matrix. As previously stated, all transformations are actually affine

transformations.

We are not going to get into the details of actually writing SVG, because the most

effective way to create SVG documents probably is to use a dedicated tool such as

Adobe Illustrator or Inkscape. Paths, for instance, are often complex and will be easier

to grasp, draw, and modify with a mouse and visual feedback. For the same reasons

that we put forward regarding Komodo Edit, we suggest using Inkscape, a solid,

feature-rich, free, open source SVG graphical editor.

NOTE: Inkscape is the reference open source tool for vector graphics creation. It is available on
all operating systems and can be downloaded for free and with no restriction from the official
web site, www.inkscape.org.

Interoperability
Once your document is created, you can add it to your HTML document. Because it is

often desirable to do more with images, especially SVG images, rather than just leave

them in the middle of the screen, we are going to take the possibilities of SVG further.

To demonstrate interoperability, let’s start by creating the same chevron as we did in an

earlier example in a canvas and use it as a CSS background. Because it is a rather

simple drawing, we can create it directly in Komodo Edit, without resorting to a specific

authoring tool. Here is the code from the chevron.svg document:

<svg xmlns="http://www.w3.org/2000/svg" width="23" height="13">
 <polyline
 fill="none" stroke="gray" stroke-width="3"
 points="4,1 10,6.5 4,12"
 />
</svg>

This will yield exactly the same result as the previous canvas JavaScript but by simply

using XML. You can replace your CSS rules for the chevron with the following:

/* main.css */
.group-wrapper ul li a {
 ...
 background: url(images/chevron.svg) right center no-repeat;
}

http://www.inkscape.org
http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 202

Note that the no-repeat rule is crucial. Not only can you not apply repetition to a SVG

image, chances are that not applying the no-repeat rule to such an image would just

result in nothing being rendered to the screen. Moreover, it would no longer be possible

to use the CSS3 background-size property.

NOTE: As you may know, it is possible to enable the accessibility features from the iPhone and
iPad settings. Doing this, you would notice that the zoom for partially sighted people doesn’t take
advantage of the scaling advantages of SVG documents. Indeed, this option applies a zoom to the
screen pixels: it doesn’t scale the SVG graphics or fonts.

With this new definition, your chevron will be perfectly rendered whatever the resolution

of the screen and the scale that may be applied. For instance, you can set the viewport

to a scale factor of 2.4 to make your web application take the same width on the iPhone

and the iPad (unlikely you would want to do that) with the following code:

<meta name="viewport" content="initial-scale=2.4; maximum-scale=2.4; user-scalable=no">

With this configuration, you should see a clear difference in the quality of your graphics,

as shown in Figure 7–28.

Figure 7–28. When zooming, the difference between bitmap (canvas) and vector (SVG) is noticeable

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 203

Nevertheless, for now, you can’t do everything with SVG that you can do with a canvas.

Indeed, in our earlier example, we could easily modify the color of our chevron using the

initChevron() function. This cannot be done the same way with SVG used as an image.

To be able to change the color, we are going to add the SVG code directly to the

JavaScript code—which is no problem because the code is really short—and load it

using the data URL scheme, which is an IETF standard (RFC 2397) that allows for

instance inline inclusion in HTML, CSS, or JavaScript files. This will also help save some

HTTP requests.

The scheme can take either base64-encoded data (especially useful to hold binary data

such as images) or encoded URLs, which we are going to use right now.

Let’s start by putting our SVG document into a JavaScript variable, taking care to delete

line feeds:

/* Initial document in plain text so that it is easy to modify */
var chevron = '<svg xmlns="http://www.w3.org/2000/svg" width="23" height="13">
 <polyline fill="none" stroke="ADD_COLOR" stroke-width="3"
 points="4,1 10,6.5 4,12" /></svg>';

/* URL encode the string */
chevron = encodeURIComponent(chevron);

Doing this, note that we have replaced the stroke color by ADD_COLOR in order to easily

replace the string later. Then, the data URL will take this form:

chevron = "data:image/svg+xml;charset=utf-8," + chevron;

The URL begins with the relevant scheme, data: in this case. You then declare the

MIME type for SVG documents and the character set separated by semicolons. The

actual data starts after the comma. Now, let’s see how this is handled in the main.css

style sheet:

/* main.css */
.group-wrapper ul li a {
 ...
 background: url(#chevron,gray) right center no-repeat;
}
.group-wrapper ul li a:active {
 ...
 background:
 -webkit-gradient(linear,
 left top, left bottom,
 from(rgba(255, 255, 255, .25)), to(transparent)),

 url(#chevron,white) right center no-repeat #015de6;
 ...
}

We have added an identifier in order to allow communication with the SVG, and for more

flexibility, the color is added to the styles directly, which is logical really! Of course, this

style declaration is perfectly valid CSS, because the #chevron is a hash that should call

part of the current document. Next, we need a script that will dynamically modify the

CSS definition using the data URL:

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 204

/* main.js */
var list = { "chevron": chevron };
applySVGBackground();

function applySVGBackground() {
 /* Get all CSS attached to the document */
 var css = document.styleSheets;

 /* Parse them all looking for a background url() */
 for (var i = 0; i < css.length; i++) {
 var rules = css[i].rules;

 for(var j = 0; j < rules.length; j++) {
 var rule = rules[j].style.getPropertyCSSValue("background-image");

 /* Return an single objet, an empty collection.
 Be sure to always have a list of objects */
 if (!rule) {
 continue;
 } else if (!rule.length) {
 rule = [rule];
 }

 for (var k = 0; k < rule.length; k++) {
 /* Only handle certain objects */
 if (!rule[k].getStringValue) {
 continue;
 }

 var r = rule[k],
 text = r.getStringValue(r.CSS_URI) || "";

 /* If we have a hash, try to apply the SVG style */
 var start = text.indexOf("#");
 if (start != -1) {
 var defs = text.substr(start + 1).split(",");
 r.setStringValue(r.CSS_URI, getSVG(defs[0], defs[1]));
 }
 }
 }
 }
}

function getSVG(id, color) {
 if (list[id] != undefined) {
 color = color.replace("[", "%28").replace("]", "%29");
 return list[id].replace("ADD_COLOR", color);
 }
}

First, we save our chevron to the list object, which will allow communication between

the hash read in the CSS file and the data URL to use. The applySVGBackground()

function gathers a collection of objects using the document.styleSheets property that

holds the styles from the HTML document, regardless if they are declared as links to

external style sheets or style declarations inline. This collection is parsed to look for rules

relevant to our purpose. The parsed rules are in computed style, which is why we can

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 205

access the background-image property where the background shorthand is used in the

actual style sheet. We must be careful here to handle multiple background definitions,

not to lose styles in the process.

Next, once we have obtained a two-element long array (identifier and color), we pass the

array to the getSVG() function. This function returns the data URL relative to the

identifier, inserting the passed color at the expected place. From there, everything is

automatic.

All CSS2.1 color definitions can be used, as well as the named colors introduced by

SVG. On the other side, for colors written as an rgb() declaration, you should replace

the parentheses with square brackets, so you don’t generate an erroneous CSS rule that

would not be accessible and thus not alterable by our script. The getSVG() function will

take care of changing the square brackets back to the usual form.

/* Invalid definition */
url(#chevron,rgb(0,0,0))

/* Correct definitions */
url(#chevron,rgb[0,0,0])
url(#chevron,black)
url(#chevron,#000)

The strong point of this script is that it is very generic and can be used without any

changes. To use it with other SVG documents, the only thing to do (other than declaring

styles in the CSS) is add it to the list object with the identifier and the encoded data.

var list = { "chevron": chevron , "identifier": svgDataUrl };

Now, you may wonder what happens working with more complex documents, if you

wanted to affect the DOM directly. As we have said earlier, this is not possible when

using the tag to insert SVG document—and it is not possible when the SVG is

used as a background-image either. However, if your SVG is brought to the document

using the <object> tag, you can communicate with the SVG document, as long as its

DOM has been entirely loaded and has the same origin as the HTML and scripts (that is,

it is on the same domain). In this case, we could use the onload event of the HTML

document; instead, we are going to experience the communication possibilities between

SVG and HTML.

Communication
As we have said, SVG has support for scripting, so we can add JavaScript directly into

the SVG document. This is how we modify our previous file:

<?xml version="1.0" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" onload="notify()">

 <rect x="0" y="0" width="100%" height="100%" fill="lightgrey"
 stroke="black" stroke-width="4" />

 <circle cx="110" cy="110" r="100" fill="yellow"
 stroke="red" stroke-width="2" />

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 206

 <script type="text/ecmascript"><![CDATA[
 function notify() {
 parent.svgLoaded(this);
 }
]]></script>
</svg>

The onload event is added directly to the SVG document. The called function notifies the

HTML document that the SVG is ready. From there, the SVG document can access the

HTML elements using the parent object. By default, the scripting language for SVG is

ECMAScript, a specification from which JavaScript inherits. Therefore, the code should

be pretty clear. Inside the HTML document, we add the following code and JavaScript:

<script>
 function svgLoaded(svg) {
 var circles = svg.document.getElementsByTagName("circle");
 circles[0].setAttribute("r", 200);

 var ellipse =
 svg.document.createElementNS("http://www.w3.org/2000/svg", "ellipse");

 ellipse.setAttribute("cx", "50%");
 ellipse.setAttribute("cy", "50%");
 ellipse.setAttribute("rx", "150");
 ellipse.setAttribute("ry", "50");

 circles[0].parentNode.appendChild(ellipse);
 }
</script>

<object data="notify.svg" width="320" height="320"
 type="image/svg+xml" id="mySVG"></object>

The svgLoaded() function receives a reference to the SVG document, modifies the

radius of the circle, and creates an ellipse to be inserted into the document. It is

necessary here to use the namespace version of the createElement() method.

Otherwise, the object will be created with the wrong element type and will be impossible

to add to the SVG document.

NOTE: In this example, the SVG establishes a communication with the HTML document. The
JavaScript in the HTML is not explicitly asking for access to the SVG document (as we will do
later in this section). Therefore, it can be useful to identify the document in question. To do this,
you can use the location property of the SVG document object, which holds the various parts
of the document URL. To get an ID, it is possible, for instance, to add a hash to the URL in the
data parameter of the <object> tag that holds your SVG and collect this using the hash
property of the Location object.

In Figure 7–29, this method is used on the document object of the SVG document, but

we also could have used it on the document object of the HTML DOM.

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 207

Figure 7–29. The modified document

You can also acquire full control over your HTML document from the host file. The

following is the code that we would have used to create HTML tags in the HTML

document from a script in the SVG.

/* Create a new <div> element in the host document */
var div = document.createElementNS("http://www.w3.org/1999/xhtml", "div");
div.style.width = "100px";
div.style.height = "100px";
div.style.backgroundColor = "green";

parent.document.body.appendChild(div);

Here, it is the SVG that should indicate when it is available so that it can be referenced

by its host. If we had used the onload event of the HTML document, we could have used

the getSVGDocument() method to get a reference to the SVG. This could, for instance,

look like the following:

var svg = document.getElementById("mySVG").getSVGDocument();

From there, the rest of the code is still valid and should yield the same results. It is

merely another method to access the SVG code from the HTML document. These

techniques will even allow you to animate your pages with scripting, both from the XML

and from the HTML.

Animation with and Without Scripting
Though you can animate SVG elements with a scripting language, this is not the only

way to do it. Indeed, SVG integrates the Synchronized Multimedia Integration Language

(SMIL), which is widely used today to produce multimedia content, and more specifically

the SMIL Animation Specification, which was collaboratively established by the SMIL

and SVG Working Groups. SVG inherits much of its functionality and animation

possibilities from these technologies.

Once again, we are going to take our spinner example first created in a canvas and

adapt it to pure SVG. The first step is to draw the spinner using XML.

<svg xmlns="http://www.w3.org/2000/svg"

http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 208

 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 37 37">

<defs>
 <line x1="0" y1="9" x2="0" y2="15" id="line" />
</defs>

<g transform="translate(18,18)" stroke="rgb(0,0,0)" opacity="0.5"
 stroke-width="3" stroke-linecap="round">

<use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85">
 <use xlink:href="#line" transform="rotate(-30)" opacity="0.85" />
 </use>
 </use>
 </use>
 </use>
 </use>
 </use>
 </use>
 </use>
 </use>
 </use>
</use>

<animateTransform attributeName="transform" attributeType="XML"
 type="rotate" values="0;30;60;90;120;150;180;210;240;270;300;330"
 calcMode="discrete" repeatCount="indefinite" additive="sum" dur="1.2s" />

</g>

</svg>

The logic behind this code is still very close to what has been done with the Canvas API,

and you will see that the result is the same as that of the canvas. Even the line ends and

the stroke styles are calculated in the same manner, pixel for pixel.

First, we add the namespace that allows us to reference objects from some tags. The

<defs> tag is meant to define reusable elements and, in our example, is very useful to

create the primary line with a rounded end that we will repeat inside the <g> tag.

On the <g> tag, we add several attributes that let us define the basic styles for its

children. SVG can also take CSS rules, so this could have been done with the code that

follows. However, be careful when doing this, because it will no longer be possible to

modify element attributes with the setAttribute() method.

<!-- Styles defined with the style attribute -->
<g transform="translate(18,18)"

http://www.w3.org/1999/xlink

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 209

 style="stroke:rgb(0,0,0);opacity:0.5;stroke-width:3;stroke-linecap:round">
</g>

<!-- Styles defined using the <style> tag -->
<defs>
 <style type="text/css"><![CDATA[
 g {
 stroke: rgb(0,0,0);
 opacity: 0.5;
 stroke-width: 3;
 stroke-linecap: round;
 }
]]></style>
</defs>

Next, we add a number of <use> tags so that each inherits from its parent, and then,

altogether, they draw our 12-branched spinner. Hence, the definition is the same for

each branch, but because each one inherits from its parent and rotation and opacity are

relative to the parent, we end up with a circular shape with a progressive fade-out effect.

The <use> tag lets you reference an object defined with its id through the xlink:herf

attribute. From there, as with any other shape, you can attach style or transformation

attributes to it.

The last tag in use is the <animateTransform> tag. Its purpose is, quite obviously, to

bring animation to the transformations applied to objects—rotate() in our example. To

avoid interpolation between the different steps of the animation and instead obtain a

fluid movement of the shape as a whole, we use the values attribute that lets you define

a series of values to be applied to the property you want to be animated. The calcMode

attribute set to discrete is what avoids interpolation. This way, the shape itself seems

not to move, and what appears to take place is a color rotation. To have a full turn that

takes 100ms, we have fixed the dur attribute to 1.2s—because there are still 12 steps.

The additive attribute set to sum makes the animation cumulative so that no

transformation is lost. If it had been set to replace, we would have lost the translation,

and the shape would have changed its origin from the first iteration.

Of course, the spinner drawing could have been made shorter and thus perhaps easier

to maintain—but we wanted the code to be clear to understand. You can, for instance,

replace all the <use> tags with the following script after the <g> tag:

...
<script type="text/ecmascript"><![CDATA[

 var g = document.getElementsByTagName("g");
 var use, prev = g[0];

 for (var i = 0; i < 12; i++) {
 use = document.createElementNS("http://www.w3.org/2000/svg", "use");
 use.setAttributeNS("http://www.w3.org/1999/xlink", "href", "#line");
 use.setAttribute("transform", "rotate(-30)");
 use.setAttribute("opacity", "0.85");

 prev.appendChild(use);

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 210

 prev = use;
 }

]]></script>
...

To create objects appropriately, we once again use createElementNS(), and then we use

setAttributeNS() to set the href attribute that isn’t part of the SVG namespace. The

loop will create the 12 <use> tags for you, which in turn will draw the 12 branches,

entwining them as with the previous XML code.

The new spinner is now ready to be added to any of your HTML documents, with the

same quality at any size, as shown on Figure 7–30. Indeed, because we have used

viewBox in our example, the SVG drawing will adapt to fill its container. All you have to

do is set the width and height attributes to fit your needs.

Figure 7–30. A pretty big spinner

Coping with Temporary Bugs
The only bad news is that a recent bug in Safari prevents SVG graphics from appearing

as translucent when inserted using a holder tag. This means that a white background

will always appear behind fully or partially transparent areas. This can be remedied at

least in cases where you can define a plain background for your graphics by adding an

option to our previous script, as we had done for the chevron color. Again, we can grab

this option from the hash. The <object> definition looks like this:

<object data="spinner.svg#green,red,0.5"
 width="320" height="320" type="image/svg+xml"></object>

Then, simply add the following to the end of the previous script in the SVG document:

var hash = window.location.hash;

if (hash != "") {
 var defs = hash = hash.substr(1).split(",");

 /* Create the background color */
 if ((defs[0] || "transparent") != "transparent") {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 211

 var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
 rect.setAttribute("width", "100%");
 rect.setAttribute("height", "100%");
 rect.setAttribute("fill", defs[0]);

 g[0].parentNode.insertBefore(rect, g[0]);
 }

 /* Additionally change the spinner color and opacity if defined */
 if (defs[1]) {
 g[0].setAttribute("stroke", defs[1]);
 }
 if (defs[2]) {
 g[0].setAttribute("opacity", defs[2]);
 }
}

The SVG code will be able to identify this information in the URL, still using the

location.hash property, and use them to alter the background color (green), the spinner

color (red), and the opacity of the branches (0.5).

One interest of this method compared to using a script in the host HTML document to

apply modifications is that you won’t have to worry about waiting for the SVG document

to load before calling the function. Because there is no dependence between the

documents, handling functionalities is easier.

Preinstalled and Downloadable Fonts
Using fonts other than the default serif, sans-serif, and monospace is often a crucial

step on the way to more attractive web pages. iOS comes with a number of already

installed fonts that you can safely rely on. The following is the list, and Figure 7–31

shows what each font looks like on-screen:

 American Typewriter

 Arial

 Arial Rounded MT Bold

 Courier New

 Georgia

 Helvetica

 Marker Felt

 Times New Roman

 Trebuchet MS

 Verdana

 Zapfino

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 212

Figure 7–31. Fonts natively available on iOS

Other fonts are installed, but they are used only to render different alphabets, such as

Hebrew, Japanese, or Arabic. You cannot simply use these by their names in your style

sheets, because they are extended character sets meant to be system fonts for foreign

alphabets. However, some do offer interesting versions of the Roman character set. For

instance, you could try “Heidi J” or “.Helvetica LT MM” (don’t forget the leading point).

NOTE: If you want to discover all the font available on your device, you can download the free
Typefaces application (formerly Cédille) by Tomoaki Nakano from the App Store.

Nevertheless, you can also use fonts that are not actually installed on the system, if the

installed fonts don’t necessarily fit your specific needs. You probably have resorted to

images and more or less complicated CSS tricks in such cases. Creating a header on

every page with this kind of technique can prove unproductive and annoying, especially

with multilingual sites—which can lead to leave your initial design aside.

Mobile Safari, starting with version 3.1, supports the CSS3 @font-face property, which

will let you specify a downloadable font from the growing list of appropriately licensed

fonts. This of course is much more flexible, because this will make the font available

almost like any other font that would be installed on the OS.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 213

WARNING: The most important limitation to this property is the question of licensing. That a font
is installed on your own system or is downloadable for free doesn’t necessarily mean it can be
used in all cases and for all purposes. For any font you choose to use, you should check whether
it is all right to use in your specific case. Always check the license or contact the author prior to
using a font.

Mobile Safari has support for SVG fonts only. SVG allows you to define several fonts

using the tag, and you can add them directly to the document. However,

because character definitions often use many complex paths and need a long kerning

definition, it is more productive to use a font creation application.

FontForge is a powerful, open source font editor and converter that works on all

platforms and won’t cost you a thing. It can handle TrueType (TTF), OpenType (OTF),

and of course SVG. You can download it from the SourceForge web site at

http://fontforge.sourceforge.net/.

Generally, you will not be creating your own fonts; you will simply want to convert

existing ones. Be it a font that is installed on your system but is known not to be

common on some other system or a font that you have downloaded, the software will

ask you to choose a font when you launch it. Quite evidently, it is unlikely that you would

want to convert a font such as Arial, Verdana, or Times for @font-face inclusion. Table

7–3 gives you the default folders for font files on different operating systems.

Table 7–3. Availability of Fonts on the Main Operating Systems

Mac OS X Windows Linux

~/Library/Fonts/

/Library/Fonts/

/System/Library/Fonts/

%windir%\fonts\

(%windir% is usually C:\Windows)

~/.fonts/

/usr/share/fonts/

Choose the font you want to work with, and click OK. If the font holds some license

information, FontForge will ask you whether you have the necessary rights to edit the

font (see Figure 7–32).

Figure 7–32. FontForge may ask for permission to load the font

Once you have loaded the font into the software, a new window will appear containing

all the available glyphs (Figure 7–33). From the menu in this window, choose File

http://fontforge.sourceforge.net

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 214

Generate Fonts..., give a name to your font, select SVG format, and save. You are almost

done.

Figure 7–33. The font window with the font glyphs and the export dialog box

We write almost because, as explained earlier, the namespace definition is required for

Mobile Safari to correctly interpret the font—however, FontForge doesn’t add this.

Therefore, you will need to edit the font source, for instance by using Komodo Edit.

What you need to modify is the <svg> tag, as follows:

<svg xmlns="http://www.w3.org/2000/svg">

Once this is done, simply save the document. Now your font is ready for the Web! All

you have to do is add the following rule into the relevant style sheet. Whereas Desktop

Safari will ask for permission before downloading the font, the mobile version of the

browser will just do it without complaining.

@font-face {
 font-family: "My Font Face";
 src: local("Baskerville"), url("pathto/mybaskerville.svg#fontID") format("svg");
}

There are several important steps here. First, you need to name your font for further use

with the font-family property. For this, avoid using real font family names so it doesn’t

conflict with other fonts. In our example, we have exported the font “Baskerville” and

named it “My Font Face”.

Because nothing proves the font will not be installed in future versions of iOS, you will

not want it to be downloaded systematically—in case it could be useless. Therefore, the

first source we indicate for the browser to look for the font is the proper font name, to be

searched directly in the OS fonts. This is done with the local() function. The url()

function, as with background-image, is used to indicate a remote URL, in this case, the

path to the downloadable font. Specifying the format is necessary for the rule to work,

as is the reference to the tag identifier in the hash of the URL (fontID in our

http://www.w3.org/2000/svg

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 215

example). Note that the latter is required even if there is only one font tag in the

document. Because SVG is primarily a format meant to describe vector documents, it is

absolutely possible to define several fonts in one document. This of course can be

useful if you need to define several SVG fonts, because it would limit the number of

HTTP requests.

Your newly defined font can now be used in your documents as any other (Figure 7–34).

<!DOCTYPE html>
<html>
 <head>
 <title>Definition</title>
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <style>
 body {
 background: #fce9cb -webkit-gradient(linear,
 left top, left 50%,
 from(rgba(95,66,21,0.5)), to(transparent)) repeat-x;
 color: #5f4215;
 font-family: "Marker Felt";
 font-size: 16px;
 margin:15px;
 }
 h1 {
 font: 100 normal 35px/50px "Anagram";
 text-shadow: #fce9cb -1px -1px 3px;
 border-bottom: 1px dotted currentColor;
 text-align: center;
 }

 p:nth-of-type(3) {
 font-family: "Zapfino";
 text-align: right;
 }

 @font-face {
 font-family: "Anagram";
 src: url("anagram.svg#Anagram") format("svg");
 }
 </style>
 </head>

<body>

 <h1>Anagram</h1>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. In tristique sodales
 dui, in porttitor orci sodales quis. Vivamus et lobortis nisl. Nullam et varius
 ante. Sed ante erat, laoreet vitae tristique sed, placerat ut lacus. Sed at
 dictum odio. Nam iaculis dictum quam, et fermentum tellus ultricies vel.</p>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac
 turpis egestas. Donec fringilla odio vel arcu ullamcorper pretium. Mauris arcu
 ipsum, semper eu auctor accumsan, dignissim et diam.</p>

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 216

 <p>by Lorem Ipsum</p>

</body>
</html>

Figure 7–34. A nice presentation using the Anagram font by Nick Curtis and built-in fonts

If you have exported the font as we have explained, you may have noticed that the file

size is rather large. This is because the SVG font contains all the glyphs that the original

font had—which may not be necessary for your purposes. One typical case is that some

font definitions copy the uppercase glyphs into the lowercase ones. For such cases, you

can easily benefit from the scripting possibilities of FontForge.

Once you have selected a font, you should notice that selecting a glyph will make some

information appear at the top of the window, noticeably the Unicode code for the glyph

(Figure 7–35)—this is just what we need to select only some glyphs to add to our

exported SVG font.

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 217

Figure 7–35. The scripting window

We are going to use a script to export only the characters that we need. The scripting

functionalities are accessible from the menu File Execute Script.... In the new window

that appears, select FF from the bottom—to activate FontForge mode—and type the

following code:

Select(0u0041);

This command selects only the uppercase letter A. To select several glyphs at a time,

you need only specify the first and last glyphs of your series. The following code would

select all uppercase letters from A to Z:

Select(0u0041, 0u005a);

What the Select() function does is allow selecting character groups with pairs of

references, the first of character of the list, and then the last of the list. All characters in

the interval will be selected. If you want to select only one glyph, specify only one

reference; if you want to select a single glyph inside a list of intervals, you should simply

specify the same start and end points for the glyph. Here is the code that will allow you

to export our SVG font as we need it:

Select(0u0030, 0u0039, 0u0041, 0u005A, 0u0061, 0u007a, 0u00ab, 0u00ab, 0u00bb);
SelectInvert();
Cut();
Generate("exported.svg");
SelectNone();
Revert();

This code exports the 0–9, a–z, and A–Z sets, together with left and right angle quotes.

Then, we invert our selections to use the Cut() function and delete our unused glyphs

from the font. Naturally, be careful to enter a correct path for the Generate() function. To

finalize our script, we cancel our selection and revert to the initial font to avoid

accidents. Your font file should now be notably lighter.

Note that if you want to use only uppercase letters, you should be careful that all your

text is written in capital letters or, better yet, let a style rule take care of this for you:

CHAPTER 7: Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG 218

.upper {
 text-transform: uppercase;
}

Nonetheless, remember that fonts imported with @font-face have some limitations in

WebKit browsers. The main one is that, even if you have imported the uppercase glyphs,

you won’t be able to give the font-variant the small-caps value. Although the

specification explicitly notes that user agents should use scaled uppercase letters for

small capitals if these are not defined, WebKit simply ignores @font-face-defined

typefaces if a font-variant rule is set and reverts to the default inherited font.

.small-caps {
 font-size: 0.71em; /* Reduce text */
 text-transform: uppercase;
}

.small-caps::first-letter {
 font-size: 1.41em; /* Reset to 100% of the inherited font-size */
}

Although this solution covers only the first letter, it can be enough for quite a few uses.

Another limitation that you should keep in mind is that, unlike fonts that are already

installed on the system of the user, web fonts have to be downloaded (on the first visit,

they may be cached). This can be long, because SVG fonts are inherently heavier than

TTF or OTF and take more time to be rendered, especially if your font is complex and

depends on a lot of code. Beware that Mobile Safari might freeze, and always limit this

practice to reasonable file sizes.

Summary
The examples used in this chapter gave you only a glimpse of what can be done with

canvas and vector graphics. However useful the spinner we have created can be—used

in association with Ajax, for instance, to give feedback to the user—we have used small

amounts of code and simple, repetitive shapes. If you have some experience with some

vector graphics creation software, you will soon see what possibilities SVG support can

offer you. The use of canvas also has huge potential, for those who prefer scripting to

graphic design. Also, look into our following chapters about video and animations, which

help you bring your graphics to life.

We are going to use these technologies in following chapters, for instance in Chapter 14

to build a compass, and in Chapter 12, where our spinner will be used to give the user

feedback during Ajax requests. Work your way into the richness of these new features,

but always ask yourself which solution is best between the two and whether either is

better than another alternative, for instance, a CSS-based solution. As for bitmap

images, Flash, and most things on the Web, use them when they will create a better

user experience.

219

219

 Chapter

Embedding Audio and
Video Content in Your
Web Application
As we have stated before, Mobile Safari doesn’t support Flash content. iOS, however, is

an extraordinary multimedia platform that inherits the quality of the iPod for audio and

video content. That the YouTube application is shipped by default on the OS is

symptomatic of the importance given to multimedia both by Apple and by third-party

web sites. The number of companies that optimize their sites for the iPhone and the

iPad is ever growing, such as Vimeo (as shown on Figure 8–1), where the popular Adobe

Flash content is replaced by H.264 videos, the format pushed by Apple. Even YouTube

is providing a new mobile version of its web site, surpassing the iPhone built-in native

application using the new HTML5 features.

Many signs indicate that web actors are taking alternate web-specific formats more and

more seriously—even Adobe has implemented H.264 in its Flash Player. This movement

also follows from the excellent support of the latest web standards by mobile browsers

such as Mobile Safari, which allows for efficient support of multimedia content. Indeed,

as you are going to see, Apple no longer advises you to use the <embed> tag under Safari

and recommends you use the new HTML5 <audio> and <video> tags, which come with

solid APIs that will let you control many aspects of the playing and collect real-time

information on the state of the content using a full range of events.

8

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 220

Figure 8–1. The iPad-optimized web application by Vimeo

NOTE: To illustrate this chapter, we are going to use the great animation film Big Buck Bunny
(Creative Common license, © Blender Foundation) that you can download in many formats—
including iPhone—from www.bigbuckbunny.org.

Before HTML5, because there was no standard to embed media content into a web

page, browsers usually resorted to external plug-ins, possibly requiring installation by

the user, which wouldn’t be possible under Mobile Safari. This is no longer necessary—

it’s up to you to get started.

Embedding Video Content
Video probably is the most popular media on the Web nowadays. Even if you don’t

produce your own content, you can easily add media to your site. Using YouTube, for

instance, this is easily done with code similar to the following:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.bigbuckbunny.org
http://www.youtube.com/v/VIDEO_IDENTIFIER

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 221

VIDEO_IDENTIFIER is the value for the v parameter found in all YouTube video URLs.

However, embedding such video content in this way will launch the YouTube

application, and at the end of the sequence, the user will be left inside this application.

Of course, building your web app, your aim will be to keep the user inside the

application as long as possible and make the experience as close as possible to that of

a native application. With HTML5, playing media directly from inside the browser is as

easy as using the new <video> tag. This is a simple though rich way to embed video

content, similar in some aspects to the formerly used <embed> tag, with which it shares

several attributes.

<video src="myvideo.m4v" poster="preview.png"
 id="myvideo" width="320" height="240"></video>

As with the <canvas> tag, the default size for <video> tag is 300 pixels wide and 150

pixels high, and you should specify any other dimensions using the width and height

attributes. If the ratio of the movie is different from that of the defined area, black stripes

will be displayed along the unoccupied space, and the video will be resized, keeping its

initial ratio. Unfortunately, there is no way to change the color of the stripes, such as by

applying a background color, as you might expect.

By default, the <video> tag is an inline element, and it should be closed as in our

example; if not, the code that follows it will be considered to be fallback content. As

you’ll see soon, the <video> tag can contain not only fallback information but also other

tags, such as an <object> or <embed> tag, or other elements that let you refine the media

type definition and bring additional functionality to enhance simple playing.

Getting Information About the Video
If for some reason you do not specifically know the initial ratio of the movie you are

embedding, you can access this information using the properties of the

HTMLVideoElement object and, for instance, adjust the size of your container

appropriately. This could prove useful if you use a default format for your movie but offer

several formats based on the connection speed of the user’s device.

NOTE: Using the width and height properties in the adjustVideo() function, the returned
values are those of their attribute counterparts. However, if these values are not set or are set
using a percentage, the returned values will not be exploitable. Therefore, we prefer the DOM
offsetWidth and offsetHeight properties.

var video = document.getElementById("myvideo");
video.addEventListener("loadedmetadata", adjustVideo, false);

function adjustVideo(event) {
 var video = event.target;

 /* Intrinstic size (read only) */

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 222

 var vw = video.videoWidth;
 var vh = video.videoHeight;

 /* Element size */
 var ew = video.offsetWidth; // Could be video.width
 var eh = video.offsetHeight; // Could be video.height

 /* adjust container size if needed */
 var vratio = vw / vh;
 var eratio = ew / eh;

 if (vratio != eratio){
 video.height = ew / vratio;
 }
}

If the browser hasn’t downloaded a minimum of information to identify the video, the

data specific to the movie won’t be available. The preload attribute—which indicates

that the video metadata should be preloaded with the HTML page—is currently not

supported by Mobile Safari, primarily to limit HTTP traffic. This kind of information will be

accessible only once the loadedmetadata event is raised. The API attached to the new

HTML5 media tags offer many other specific events, such as timeupdate, that will let us

handle custom subtitles. We’ll cover them later in the chapter.

The Video Placeholder
On Mobile Safari, no data regarding the video is downloaded until the video is

launched—at least nothing that can be of any use to you. As you wait for this data, if the

poster attribute is set, the defined image will be used as a placeholder, with the same

image ratio as the movie itself. Of course, the image you choose should be as

representative as possible of the video. If no image is defined or the source URL is

wrong, on both the iPhone and the iPod touch a blue gradient will be used as a

placeholder, as shown in Figure 8–2.

Figure 8–2. The default video placeholder on the iPhone

This is true for versions of the OS prior to 3.2, but with the latest versions (including 3.2

that ships with the recent iPad), if no poster attribute is specified, the whole video area

will appear black, with no other indication. This is probably because one of the great

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 223

steps taken by the iPad is that you can play movies directly in the browser, without

launching the QuickTime Player full-screen as would happen with earlier versions.

Hence, you can create media content that integrates into your page, and the neutral

black can make this operation more versatile.

Playing the Video
On the iPhone and iPod touch, to play a video, the user has to tap the placeholder,

which will launch the external player (Figure 8–3). Naturally, as we leave the browser

context, you may assume that all events attached to the tag will be lost. This actually

isn’t true. The use of an external player doesn’t prevent events related to the videos or

actions upon videos to be executed, such as resizing the container, as shown earlier.

Figure 8–3. The QuickTime media player on the iPhone

On the iPad, using the <video> tag will not yield the same results. The movie won’t

launch automatically, and nothing will happen if you tap the placeholder. To allow the

video to be played, you will have to either add the controls attribute, which indicates

that the player should display standard controls visible to the user, or use the play()

method on the video object to launch the video dynamically. The first way, the player will

have a play button, as on previous versions. When controls are enabled, they cover part

of the movie (as shown in Figure 8–4), but they disappear automatically after a few

seconds, making the experience seamless for the end user, as with most modern media

application nowadays.

<video src="myvideo.mp4" poster="preview.png"
 id="myvideo" width="320" height="240" controls></video>

<!-- Handle video playing using javascript -->
<button onclick="document.getElementById('myvideo').play()">Watch Video</button>

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 224

Figure 8–4. With controls enabled, a play icon appears on the video. Pressing the button launches the movie and
shows other controls

Note that the video element itself doesn’t support the onclick event so that it doesn’t

interfere with these controls, even if it is enclosed in some other container. This is why

you use a separate button, which should be outside the video placeholder.

Whatever solution you choose, the video can be launched only after an action by the

end user. The autoplay attribute is supported only in a very specific case, which we’ll

explain later in this chapter. The same limitations apply to the play() method, which

means you couldn’t use a window.setTimeout() method to launch your video after a

delay. This most likely is because when using cellular networks, it is still common to be

charged per data unit, and being charged a fortune because a web application designer

has made you download a heavy file without your consent is bad user experience.

Embedding Audio Content
The <embed> tag used to be recommended not only for video but also for audio content.

With HTML5, this has changed, because a new elegant solution is now offered to

developers, as shown here:

<audio src="myaudo.mp3" id="myaudio"></audio>

The associated DOM interface is HTMLAudioElement, and you can easily create an audio

object dynamically with JavaScript, with the usual createElement() DOM method but

also using a new HTML5 constructor that takes a source URL as a parameter. The

benefit of this method is that, because only sound is involved, the element can be

initialized and played immediately without being added to the document tree.

var audio1 = document.createElement("audio"); // DOM way
var audio2 = new Audio("myaudio.mp3"); // HTML5 way

Because there is no image or sequence to display, the width and height attributes are

not supported. The block will default to a block that’s 200 pixels by 16 pixels. On the

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 225

iPhone and iPod touch, the same placeholder as for the <video> tag will be shown with

these dimensions, which allows the audio content to be launched by tapping and allows

it to be resized using styles. This placeholder is the only way to launch sound on the

device without resorting to JavaScript.

On the iPad, the configuration is slightly different. The default display for the <audio> tag

is a plain blank area, which will be replaced by proper controls (Figure 8–5) when the

controls attribute is set, as shown with the <video> tag. With controls enabled, sound

control is rendered with the default dimensions or with the dimensions defined by any

style rules. Be aware, however, that the controls can be made wider but cannot be

forced to be taller. If you specify a height value larger than 16 pixels, the controls will

simply be aligned vertically inside the defined area.

Figure 8–5. The iPad audio controls

In either case, the audio player isn’t specially attractive. Finding an alternative solution

would allow you to both enhance the user experience and unify the cross-device

experience—without resorting to the DOMWindow navigator.platform or

navigator.userAgent property. You can easily attach an event to an image, such as an

album cover, and launch the play() method for your <audio> tag this way.

Keep Things Reasonable
As you have seen, it has become extremely easy to embed audio content into your

pages. Be careful, however, not to overdo it. If you want to display a list of videos on a

page, for instance, as is done on YouTube or Vimeo (see Figure 8–6), we don’t

recommend using a <video> tag for each element. Because on the iPhone and iPod

touch tapping the player launches QuickTime, you could be tempted to do this to make

accessing your content easier. Nonetheless, you should be aware that multiplying media

tags on the same page can considerably slow down navigation and make the browser

less snappy.

Instead, you could display a list of images, each one sending the user to a dedicated

play page. This will enhance user experience, especially for iPad users who will play the

video directly in the browser and expect a viewing experience superior to that provided

by a small-sized video in a thumbnail list.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 226

Figure 8–6. A video list in the YouTube web application

Take Control Over Your Content
As stated earlier, once the user has launched the video or audio content, you can gather

information about this content. The API bound to the new HTML5 media tags ships with

a whole range of new DOM events that will let you know exactly what is going on while

media content is played.

To illustrate some of the possibilities offered by the API, we are going to create a page

that will display real-time information about the state of a playing movie. Mainly, we will

use the TimeRanges object—used in the HTMLMediaElement interface from which the video

and audio objects inherit—and its attached properties for the audio and video objects.

This interface is very simple, containing only a length property that holds information

about the number of available ranges, and two methods, start() and end(), that give

data in seconds about the range with the index passed as a parameter. If an error

occurs with this parameter, that is, if it is out of range, an INDEX_SIZE_ERR exception will

be thrown.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 227

Understanding and Using Ranges
The HTMLMediaElement interface has several properties, including buffered, which gives

information about the state of downloaded data available to play the media content, and

played, which indicates the already played ranges. Note that in Mobile Safari, it is most

often considered that the played property has only one range.

The seekable property, which also uses the TimeRanges object, indicates which ranges

are seekable by the browser. We are not going to use it here, because it generally

returns a range equal to the range from the startTime property (for the video object) to

the duration property. Cases where this is not true include media on web servers that

do not support HTTP range that allows for partial download—which is used, for

instance, to let users resume an interrupted download. Also, on older versions of the

iOS, the range will be set to the available buffer and will raise an INDEX_SIZE_ERR if you

try to set the currentTime property out of this range.

NOTE: Although media is played directly in the browser on the iPad, information is updated also
on the other iOS devices. Nonetheless, with versions prior to 3.2, the played property holds no
range, which shouldn’t be a problem because it is generally preferable to use the startTime
and currentTime properties to get the play position.

For our example, let’s start with the HTML markup of our application:

<!DOCTYPE html>
<html>
 <head>
 <title>Media Demo</title>
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <link rel="stylesheet" href="styles/video.css">
 <script src="scripts/video.js"></script>
 </head>

 <body onload="setup()">
 <div class="info">
 <h1>Big Buck Bunny</h1>
 <p>A fantastic movie under Creative Commons License
 freely available for download to everyone.</p>
 </div>
 <div class="video">
 <div class="media">
 <time>Waiting...</time>
 <video src="media/BigBuckBunny_640x360.m4v"
 width="100%" height="360" controls></video>
 </div>

 <div id="buffered"><meter></meter><mark></mark></div>
 <div id="played"></div>
 </div>

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 228

 </body>
</html>

Note that the <div> identified as buffered has two children. The first will be a progress

bar attached to the buffer completion, while the second will hold an arrow indicating the

current play position. The played ranges will be added to the <div> identified as played.

Next, we create a specific style sheet for our video pages that we unsurprisingly name

video.css:

body {
 background-color: #444;
 color: white;
 font-family: helvetica;
 text-shadow: black 2px 2px 2px;
}

.video { margin-right: 200px; }
.media { position: relative; }

.media time {
 position: absolute;
 top: 0;
 left: 0;
 right: 0;
 background-color: rgba(0, 0, 0, 0.5);
 padding: 5px;
 color: white;
 font: bold 10px verdana;
}

.media video {
 display: block;
 background: black;
 -webkit-box-shadow: 0 4px 20px black;
}

.info {
 float: right;
 width: 190px;
 font-size: 13px;
}

.info h1 { font-size: 18px; }

#buffered, #played {
 position: relative;
 background-color: black;
 -webkit-box-shadow: 0 4px 20px black;
 margin: 1px;
}

#buffered {
 background-color: #444;
}

/* Progress bars */

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 229

meter, mark {
 display: block;
 height: 10px;
}

#buffered meter {
 background-color: gray;
 -webkit-box-sizing: border-box;
 border:1px solid black;
 border-width:0 1px;
}

/* Arrow indicator */
#buffered mark {
 position: absolute;
 border: 5px solid transparent;
 border-bottom-color: white;
 margin: -10px 0 0 -5px;
 height: 0;
}

Finally, this would all be pointless without the appropriate scripts to display the

expected information. We create a file called video.js to which we add the

adjustVideo() function shown earlier. Then, the first function we create is the one called

with the document onload event; it initializes the watchers.

function setup() {
 var video = document.getElementsByTagName("video")[0];

 window.setInterval(checkBuffered, 500, video);
 video.addEventListener("timeupdate", checkPlayed, false);
 video.addEventListener("loadedmetadata", adjustVideo, false);
}

The checkBuffered() function checks the buffer state of the video every 500

milliseconds and displays this data as a gray progress bar under the video. Using

Desktop Safari, much more memory would be available, but on portable devices, the

browser is allotted less memory, which means the buffer will constantly change without

ever holding all the length of the movie. Also note that we use a timer because the

progress event, corresponding to the update state of the buffer, is currently not

supported.

function checkBuffered(video) {
 if (video.buffered.length && video.duration) {
 var pos = calcPosition(video.buffered.start(0),
 video.buffered.end(0), video.duration);

 var bar = document.getElementById("buffered");
 updateBar(bar.firstChild, pos);
 }
}

Next, the checkPlayed() function displays the played range, again as a progress bar

under the video. In Mobile Safari, because there is never more than one already played

range that spans from the beginning of the video to the current play state, only one bar

will be displayed, whereas on Desktop Safari each range will be rendered independently.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 230

Thus, a new range will be added, for instance, when you jump to another frame of the

movie using the time cursor. When two ranges overlap, they are merged to make just

one range and reduce the number of ranges. This is why we clear the played container

with each updatetime event, making the progress bar update.

function checkPlayed(event) {
 var video = event.target;

 /* Update the time cursor position */
 var progress = document.getElementById("buffered");
 progress.lastChild.style.left = (video.currentTime / video.duration * 100) + "%";

 /* Update the textual video time progression */
 updateTime(video);

 /* Clear and add played ranges if any */
 var container = document.getElementById("played");
 container.innerHTML = "";

 for (var i = 0; i < video.played.length; i++) {
 var pos = calcPosition(video.played.start(i),
 video.played.end(i), video.duration);

 addRange(container, pos);
 }
}

function addRange(dest, pos) {
 var bar = document.createElement("meter");
 bar.style.backgroundColor =
 "hsl(" + (pos.from * 360 / 100 | 0) + ", 100%, 50%)";

 updateBar(bar, pos);
 dest.appendChild(bar);
}

The following functions calculate the progress and control the display of the progress

bar. The first function determines the percentages required for the second to correctly

position the bars in their container and visually represent the played range passed as a

parameter to calcPosition().

function calcPosition(start, end, max) {
 return {
 from: (start / max * 100),
 to: (end / max * 100)
 }
}

function updateBar(bar, pos) {
 bar.style.width = (pos.to - pos.from) + "%";
 bar.style.marginLeft = pos.from + "%";
}

Finally, we need to handle duration. The updateTime() function evaluates the elapsed

and remaining time and converts them from seconds to a more readable time format

using the formatTime() function.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 231

function updateTime(video) {
 if (video.duration) {
 var elapsed = video.currentTime - video.startTime;
 var state = video.paused ? "Paused" : "Playing";

 document.getElementsByTagName("time")[0].textContent = state + ": " +
 formatTime(elapsed) + " / " +
 formatTime(video.duration) + " (-" +
 formatTime(video.duration - elapsed) + ")";
 }
}

function formatTime(time) {
 /* Do we have hours? */
 var cut = time < 3600 ? 4 : 1;
 var str = "";

 for (var i = 2; i >= 0; i--) {
 var step = Math.pow(60, i);
 var part = (time / step) | 0; // Quick way to do a Math.floor()

 time -= part * step;
 str += ":" + ("0" + part).substr(-2); // Add a leading 0
 }

 return str.substr(cut);
}

Now, open the created page in Mobile Safari—or your development browser to see

multiple ranges—and launch the video. You should get a result similar to Figure 8–7.

Figure 8–7. The time is displayed in the upper part; the buffer and playback progression are shown as bars at the
bottom

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 232

As in Mobile Safari, the video download will begin only on an action by the user.

Absolutely no data will be available, including the length of the movie, until this has

occurred. Once the download has begun, the information will be gathered and

displayed, and the progression will be accurately represented.

A Number of Supported Events
Only a handful of available events have been covered in our previous example, and there

are many more that you can use. Table 8–1 shows the complete list of supported events

with their meaning on iOS. The Event object passed as a parameter to the handlers has

no specific property related to the event type itself like the current playback time with

the timeupdate event. The necessary data is available directly through the object

receiving the event, as you have seen in the example (event.target).

Table 8–1. List of Events Supported by Mobile Safari

Event Name Description

abort The fetching has been interrupted before the browser has completed

downloading the media.

emptied An already initialized media has been reinitialized to its initial state.

play Playback has been initiated, for instance after the user has pressed a play

button.

pause Playback has been paused, for instance after the user has pressed the

pause button.

loadedmetadata Dimensions and duration data about the media are available.

loadeddata Data required for media playback have just been made available.

waiting Playback has stopped because the next frame is not available.

playing Playback has started.

canplay Data is available for playback, without certainty that it will be playable

without buffering.

canplaythrough Data is available to play the media, and the browser estimates that it will

be playable without buffering.

seeking The browser has to find a new playback position. This event will be

triggered only if the searching takes longer than is reasonable.

seeked The browser finished seeking a new position.

timeupdate The current playback position has changed.

ended The playback has stopped because the media has come to an end.

ratechange The playback rate has been modified.

durationchange The length of the media has changed, for instance if the source of the

media has been modified.

volumechange The volume has changed. Modifying the volume using the controls on the

player doesn’t trigger this event.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 233

Some behaviors for these events can be surprising. The ratechange and volumechange

events are supported but are of limited use on Mobile Safari. Indeed, the associated

properties on the media objects currently have no effect. Modifying the values for the

properties playbackRate, defaultPlaybackRate, and volume—which should change the

playback speed and volume—will trigger the event but won’t affect the playback.

To implement a fast-forward function, you have to use the currentTime property, but

you will not benefit from the same playback fluidity as using the properties directly

affecting the playback rate.

Using the currentTime property will automatically trigger a seeked event. Technically,

using currentTime changes the seeking property to true to indicate that a search is

being performed. The seeked event will be sent when the property is set back to false. If

the process takes more time than expected, and in this case only, a seeking event will

be triggered.

The same event is also triggered when the media content comes to an end and the loop

attribute on the <audio> or <video> tag is set. In such a case, the ended event is never

triggered, because the playback isn’t expected to stop. Therefore, you will have to

manually check whether the playback is complete using the currentTime and duration

properties along with the seeked event. This would be useful if you wanted the media to

be looped only so many times.

Adding Subtitles and Chapters to Your Media
The HTML5 specification plans for external resources to be linkable to media content

that would make media more accessible, notably for disabled users. At the time of

writing, this feature is still a work in progress and hasn’t been implemented in any

browser. Eventually, you should be able to specify one or several resources using the

<track> tag, as in the following example:

<video src="myvideo.mp4" poster="preview.png"
 id="myvideo" width="320" height="240">

 <track kind="subtitles"
 src="mysubtitles-us.srt" srclang="en-US" label="English Subtitles">

 <track kind="subtitles"
 src="mysubtitles-fr.srt" srclang="fr-FR" label="Sous-Titres en Français">
</video>

Specific attributes allow you to determine the resource types—subtitles in our

example—as well as the language in use, in the BCP 47 format, similar to that returned

for the browser with the navigator.language property of the window object. The label

attribute contains the title for the track, which can be used in a menu to select

resources. Therefore, it shouldn’t be left empty, should be representative, and ideally

should be different for an attribute value with the same kind value.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 234

Creating Your Own Custom Subtitles
Because subtitles can be a desirable feature prompt to enhance user experience and

make your web applications more attractive, we are going to build some code to replace

the unsupported <track> tag. Of course, subtitles will be of interest only if you are

targeting devices that support playing media directly inside the browser—you cannot

add functionality to an external player. On the contrary, navigating through chapters will

be possible on all devices, because events can be passed to the player.

From our previous examples, you learned how to gather the current playback position.

Hence, you only have to find a way to insert the relevant elements into your page at the

right time. For this, we are going to use a simple, widely used format for our subtitles:

SRT. .srt files were initially created for the SubRip application, which is used to extract

subtitles in real time from a video stream. This format is close to the WHATWG format in

progress, WebSRT, and is simpler than the current W3C Timed Text Markup Language

(TTML), which is why we are going to use it.

Displaying Subtitles
SRT files are text files with series of multiline blocks representing the following

information:

 A period number

 The range in which the subtitle should appear

 The text of the subtitle (which can span several lines and include new

lines, but no blank lines)

 A blank line indicating a new subtitle is coming

For our example, we will use an SRT file with five subtitles and allow HTML markup so

we can easily transform our content:

1
00:00:16,000 --> 00:00:18,000
Tweet tweet! I'm a bird!

2
00:00:19,500 --> 00:00:20,000
Tweeet... Ouch!

3
00:00:20,000 --> 00:00:21,000
Tweeet... Ouch!

4
00:00:47,000 --> 00:00:50,000
Oh, it's already morning.
What a beautiful day!

5
00:01:03,000 --> 00:01:05,000
Humm, that smells nice... what is it?

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 235

Obviously, these subtitles are of limited interest, but they are enough to convey speech

to our animated characters. Still using the Big Buck Bunny movie, we are going to

explore the possibilities offered by this solution.

First, let’s define a style sheet that will allow us to make text evolve, such as between

subtitles 2 and 3. We want the text (“Tweeet...”) not to flicker when the “Ouch!” part

appears after a few seconds. In the style sheet from the previous example, add the

following:

#textual span {
 visibility: hidden;
}

Of course, you’ll also need generic styles to position and style the subtitles. You will

place them at the bottom of the video and apply a text-shadow so that the text remains

readable no matter what the rendered video image is.

#textual {
 position: absolute;
 left: 0;
 right: 0;
 bottom: 16px;
 text-align: center;
 color: white;
 font-weight: bold;
 text-shadow:
 black 0 0 3px,
 black 1px 1px 2px;
}

Next, let’s modify the HTML code to add the container for the subtitles (with the ID

textual):

...
<div class="media">
 <div id="time">Waiting...</div>
 <video src="media/BigBuckBunny_640x360.m4v"
 width="100%" height="360" controls>

 <track kind="subtitles"
 src="srt/subtitles-us.srt" srclang="en-US" label="English Subtitles">

 <track kind="subtitles"
 src="srt/subtitles-fr.srt" srclang="fr-FR" label="Sous-Titres en Français">

 </video>
 <div id="textual">(Press Play)</div>
</div>
...

Now, you’ll put this altogether, using JavaScript:

var TimedInfo = function(media, container) {
 this.owner = media;
 this.element = container;

 /* Active track */

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 236

 this.current = 0;

 /* Self initialization */
 this.parse();
 var that = this;
 this.owner.addEventListener("timeupdate", function() {
 that.shouldDisplay();
 }, false);
}

TimedInfo.prototype.parse = function() {
 var tracks = this.owner.getElementsByTagName("track");

 /* Push all available tracks information */
 this.data = [];
 for (var i = 0; i < tracks.length; i++) {
 this.data.push({
 src: tracks[i].getAttribute("src"),
 label: tracks[i].getAttribute("label") || "Untitled",
 readyState: 0
 });
 }
}

TimedInfo.prototype.loadResource = function(index) {
 var that = this;
 var req = new XMLHttpRequest();
 req.open("get", this.data[index].src);
 req.onreadystatechange = function() { that.handleAsyncState(this, index) };
 req.send();
}

TimedInfo.prototype.handleAsyncState = function(req, index) {
 if (req.readyState == 4) {
 if (req.status != 200) {
 this.data[index].readyState = 3;
 } else {
 this.data[index].srt = this.extract(req.responseText);
 this.data[index].readyState = 2;
 this.shouldDisplay();
 }
 }
}

TimedInfo.prototype.extract = function(text) {
 var i, j, res = [];
 var parts = text.split("\n\n");

 /* Iterate through each block */
 while ((i = parts.shift())) {

 /* Split the block lines ... */
 i = i.split("\n");
 j = i[1].split(" --> ");

 /* ... and take the time information (start and end) */
 for (var n = 0; n < 2; n++) {

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 237

 j[n] = j[n].split(":");

 for (var t = 0, m = 0; m < 3; m++) {
 t = t * 60 + 1 * j[n][m].replace(",", ".");
 }

 j[n] = t;
 }

 /* Push information */
 res.push({ time: j, text: i.slice(2).join("
") });
 }

 return res;
}

TimedInfo.prototype.shouldDisplay = function() {
 if (!this.checkReadyState(this.current)) {
 return;
 }

 /* Data have been loaded */
 var st = this.data[this.current].srt;
 var ct = this.owner.currentTime - this.owner.startTime;

 /* Look for a suitable subtitle */
 this.element.innerHTML = "";
 for (var i = 0; i < st.length; i++) {
 if (ct >= st[i].time[0] && ct < st[i].time[1]) {
 this.element.innerHTML = st[i].text;
 break;
 }
 }
}

TimedInfo.prototype.checkReadyState = function(index) {
 if (index == -1) {
 return false;
 }

 /* Check whether the data is available */
 switch (this.data[index].readyState) {
 case 0:
 this.loadResource(index);
 this.data[index].readyState = 1;
 case 1:
 case 3:
 return false;
 }

 return true;
}

This is quite a chunk of code. You create an object, TimedInfo, partly inspired by the

TimedTrack object from the HTML5 specifications. This object will read the <track> tags

related to the media passed to the constructor and then display the subtitles using a

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 238

handler on the timeupdate event. This way, the subtitles will appear appropriately both in

play mode and in seek mode.

You can initiate an instance of the object simply by passing the media object and the

container for the subtitles. The constructor will keep these parameters, get the required

data on the tracks using the parse() method, and then register for timeupdate

notifications and display subtitles appropriately using the shouldDisplay() method.

var ti = new TimedInfo(mediaObject, containerObject);

The parse() method will read the attributes from the tracks and collect them in the data

array. Because at this moment no data is available, we add a readyState property set to

0, indicating that the resource has not been downloaded.

When a timeupdate event is triggered, the shouldDisplay() method checks whether the

active resource is available. If this isn’t the case, it asks for the SRT file to be

downloaded using the loadResource() method and changes the readyState property to

1, showing that a download request has been initiated. As long as the resource is

unavailable, the shouldDisplay() method simply waits. Once the data is loaded, the

method looks for the subtitle relevant to the current playback time and displays it if any.

The XMLHttpRequest object, which we will detail in a coming chapter, is used by

loadResource() to launch the resource download in asynchronous mode. Once the

request has completed, the handleAsyncState() function extracts the data returned by

the server via the responseText property and passes them to extract(), which will split

the SRT file and return an array with organized data.

Once this object is added to the video.js file, you simply have to modify the setup()

function created earlier and add the following lines:

var timed; // Globally stored for future use

function setup() {
...
 timed = new TimedInfo(video, document.getElementById("textual"));
}

Launching your page in Mobile Safari will show you the movie, with subtitles

corresponding to the played picture, as shown in Figure 8–8.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 239

Figure 8–8. Real-life subtitles

Language Auto-selection
You have used only a few attributes of the <track> tag, and you are using only the first

<track> tag in the HTML code, although you have gathered all those that were defined.

With the following code, you’ll use the srclang attribute to automatically select a

language for the subtitles depending on the browser language. The information will be

saved to the array.

TimedInfo.prototype.parse = function() {
...
 for (var i = 0; i < tracks.length; i++) {
 var l1 = tracks[i].getAttribute("srclang");
 var l2 = window.navigator.language;
 if (l1.toLowerCase() == l2.toLowerCase()) {
 this.current = i;
 }

 this.data.push({
 language: l1,
...
 });
 }
}

To test this code, you simply have to add the language relative to your browser in the

second position in the <video> tag and create the associated SRT files. Here is the

French version of the subtitles:

1
00:00:16,000 --> 00:00:18,000
Cui cui ! Je suis un oiseau !

2

7

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 240

00:00:19,500 --> 00:00:20,000
Cuuiii... Aïe !

3
00:00:20,000 --> 00:00:21,000
Tweeet... Ouch!

4
00:00:47,000 --> 00:00:50,000
Oh, et bien c’est déjà le jour.
Quelle belle journée !

5
00:01:03,000 --> 00:01:05,000
Humm, ça sent bon... Qu’est-ce que c’est ?

Don’t forget to check the language for your browser to appropriately set the srclang
attribute for your tests. You can easily check this by typing window.navigator.language
in the console.

Let the End User Choose
Automatic selection is good, but, as usual, letting users choose for themselves is better.

This is why you’ll now add methods to get the list of tracks available for a given kind and

activate the track you want.

The specifications allow for several values for this attribute, as presented in Table 8–2.

These values can give you ideas of what you can create while waiting for proper support

for this feature. Of course, some keywords will be hard to implement, because they are

tightly related to the system and the ability to communicate with it, such as the

descriptions value.

Table 8–2. The kind Keywords As Defined by the HTML5 Specification

Keyword Description

subtitles A translation for the media used when the sound is present but not

understood

captions Transcription of the soundtrack in case the sound is muted and for

disabled viewers

descriptions Transcription of the images displayed, for use with vocal synthesizers for

blind people

chapters Chaptering meant to make parts of the media more easily accessible

metadata Tracks defined by the developer to be used with scripts

In the parse() method, you do not gather information for the kind attribute. You do that

with the following code to filter the track types:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 241

TimedInfo.prototype.parse = function() {
...
 this.data.push({
 kind: tracks[i].getAttribute("kind"),
 src: tracks[i].getAttribute("src"),
 label: tracks[i].getAttribute("label") || "Untitled",
 language: l1,
 readyState: 0
 });
...
}

Next, let’s add two simple methods that get the list of available tracks for a defined kind

and activate the relevant resource. The activate() method will add a class to the

container for the textual data based on the kind to eventually add different styles

depending on its value.

TimedInfo.prototype.getFilteredIndex = function(kind) {
 var list = [];

 for (var i = 0; i < this.data.length; i++) {
 if (this.data[i].kind == kind) {
 list.push(i);
 }
 }

 return list;
}

TimedInfo.prototype.activate = function(index) {
 if (index >= 0 && index < this.data.length) {
 this.current = index;
 this.element.className = this.data[this.current].kind;
 }
}

From here, you can build a select box from the data returned by getFilteredIndex():

function buildList() {
 var list = timed.getFilteredIndex("subtitles");
 var select = document.createElement("select");

 for (var i = 0; i < list.length; i++) {
 var index = list[i];
 var option = document.createElement("option");

 option.textContent = timed.data[index].label;
 option.value = index;
 option.selected = (timed.current == option.value);

 select.appendChild(option);
 }

 select.onchange = selectionChanged;
 return select;
}

function selectionChanged(event) {

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 242

 timed.activate(event.target.value);
}

The buildList() function creates a <select> element populated with the labels from the

tracks, directly reading the data property from the TimedInfo object. Because now the

language is selected automatically when the parse() method is initialized, you just have

to activate the associated option not to display the wrong information to the user. A

handler is added to the <select> tag to immediately change the language when the

section is modified.

You can now modify the HTML code to add the list container to receive the <select>

tag:

<div class="info">
...
 <form id="list"></form>
</div>

Here are the rules to style the select box and position it above the video on the right:

#list {
 height: 20px;
 border: 1px solid gray;
 -webkit-border-radius:4px;
 -webkit-box-shadow:2px 2px 4px black;
 background-image:-webkit-gradient(
 linear, left bottom, left top,
 from(transparent), to(rgba(255,255,255,0.2))
);
}

#list select {
 border: 0;
 background: none;
 color: white;
 font-size: 13px;
 line-height: 18px;
 text-shadow: black 1px 1px 1px;
}

/* Create a small arrow on the left */
#list::before {
 content: '';
 display: inline-block;
 width: 10px;
 height: 10px;
 margin-right: -10px;
 border: 5px solid transparent;
 border-left-color: gray;
 -webkit-box-sizing: border-box;
}

On Mobile Safari, the <select> element can be fully styled. You can, for instance,

remove the border and arrow, as we do here.

The final touch is to call the function buildList() and add the returned object to the

markup. Once more, you alter the setup() function, adding a line at the end:

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 243

function setup() {
...
 document.getElementById("list").appendChild(buildList());
}

Now, test all of this in your browser; it should look something like Figure 8–9.

Figure 8–9. The user can easily select a language now

As you can see, the default <select> on the iPad doesn’t need any further styling.

Easier Media Browsing with Chapters
With the previous examples, you are already adding appreciable functionality to the

default media implementation. To make the experience closer still to that of a proper

media player application, we are now going to offer the user the possibility to move from

one part of the media to another specifically or to load several sounds in the same

media tag and trigger one or another for some action by the user. We are going to

continue expanding the previous example.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 244

First, add an object to the JavaScript code that will handle tracks with the chapter type:

TimedInfo = function(media, container) {
...
 /* Active track */
 this.current = 0;
 this.chapter = { index: -1 };
...
}

Then come the methods to activate a specific chapter (number) based on a given

resource (index):

TimedInfo.prototype.play = function(index, number, shouldStop) {
 /* Don't request twice the same chapter while loading SRT file */
 if (index != this.chapter.index || number != this.chapter.number) {
 this.chapter.index = index;
 this.chapter.number = number;
 this.chapter.shouldStop = shouldStop;
 this.chapter.timeChanged = false;

 this.handleChapter();
 }
}

TimedInfo.prototype.handleChapter = function() {
 if (!this.checkReadyState(this.chapter.index)) {
 return;
 }

 var nb = this.chapter.number - 1;
 var st = this.data[this.chapter.index].srt;

 /* We have data, we can set the current position */
 if (!this.chapter.timeChanged) {
 if (this.owner.paused) {
 this.owner.play();
 }
 if (this.owner.readyState == this.owner.HAVE_NOTHING) {
 return;
 }
 this.owner.currentTime = this.owner.startTime + st[nb].time[0];
 this.chapter.timeChanged = true;
 }

 /* If we have to stop at the end of the chapter */
 if (this.chapter.shouldStop) {
 var ct = this.owner.currentTime - this.owner.startTime;
 var et = st[nb].time[1];

 if (ct >= et) {
 this.chapter = { index: -1 };
 this.owner.pause();
 }
 }
}

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 245

The handleChapter() method is the trickiest because you must consider many

parameters. As shown previously, you must download the SRT file asynchronously, but

you must also handle the state of the media data to avoid getting an INVALID_STATE_ERR

exception when fixing the currentTime property.

NOTE: The decompression algorithm integrated into the device doesn’t allow for precise
positioning. You may have to move your timing a few seconds forward to get the exact place. The
position written in currentTime isn’t guaranteed, though there is no problem reading this
property.

First, you check whether the video is being played, reading the paused property, and

launch the playback if necessary. Then, you check the state of the readyState property,

which must at least have a value of 1 (HAVE_METADATA), the minimal value indicating that

data is available for playback (see Table 8–3). If the value is lower, the previously noted

error will be raised. From there, we can set the reading position depending on the data

of the chosen chapter.

Setting a value for currentTime that doesn’t fit into the ranges seekable by the browser

will throw an INDEX_SIZE_ERR exception on the iPhone and iPod touch. However, on the

iPad, the browser will begin downloading a new range to make reading at the indicated

position possible.

Table 8–3. Possible Values for the readyState Property

Constant Description

media.HAVE_NOTHING (0) No information about the media is available.

media.HAVE_METADATA (1) The available data is enough to determine the duration of the

media. For videos, dimensions are also known. The available

data is not sufficient to play the media.

media.HAVE_CURRENT_DATA (2) The available data is sufficient to play the current position of the

media but not to move forward in it.

media.HAVE_FUTURE_DATA (3) Enough data has been gathered to play the media without

immediately interrupting.

media.HAVE_ENOUGH_DATA (4) There is enough data to correctly play the media.

The shouldStop property determines whether the playback should stop after the chapter

is completed. If it is set to true, we test the value for currentTime to tell whether the

playback has reached the end of the video and use the pause() method if it has. To

handle this option, handleChapter() has to be called too during the timeupdate event.

To achieve this, you have to group both methods in the same handler.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 246

TimedInfo.prototype.handleTracks = function() {
 this.handleChapter();
 this.shouldDisplay();
}

Of course, you must modify the listener with this new handler:

TimedInfo = function(media, container) {
...
 /* Self initialization */
 this.parse();
 var that = this;
 this.owner.addEventListener("timeupdate", function() {
 that.handleTracks();
 }, false);
}

TimedInfo.prototype.handleAsyncState = function(req, index) {
...
 } else {
 this.data[index].srt = this.extract(req.responseText);
 this.data[index].readyState = 2;
 this.handleTracks();
 }
...
}

Finally, you must prevent the activation of a chapter as a subtitle:

TimedInfo.prototype.parse = function() {
...
 if (tracks[i].getAttribute("kind") != "chapters" &&
 l1.toLowerCase() == l2.toLowerCase()) {
 this.current = i;
 }
...
}

This way, if you modify the HTML code to add a reference to a chaptering resource, it

won’t be selected by mistake.

 <video src="BigBuckBunny_640x360.m4v" width="100%" height="360" controls>

 <track kind="subtitles"
 src="subtitles-us.srt" srclang="en-US" label="English Subtitles">

 <track kind="subtitles"
 src="subtitles-fr.srt" srclang="fr-FR" label="Sous-Titres en Français">

 <track kind="chapters"
 src="srt/chapters-us.srt" srclang="en-US" label="English Chapters">
 </video>

By now, you can display a list of chapters using something similar to the buildList()

function used to display subtitle options and launch the chapter using the play()

method of the TimedInfo object. With our previous code, you could, for instance, have

the following SRT file:

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 247

1
00:00:00,000 --> 00:00:24,000
In the begining...

2
00:00:24,900 --> 00:00:50,300
The rabbit wakes up.

You would then activate the second chapter using code similar to this:

<button onclick="timed.play(2, 2, false)">The rabbit wakes up.</button>

However, on Mobile Safari, jumping directly to a specific chapter will be possible only if

the playback is initiated by an action by the user, as explained earlier. Because media

resources are downloaded asynchronously, the actual play() call is deferred from the

action by the user and therefore will not be applied. Still, as soon as the user launches

the media, this code will work.

Workarounds...Let’s Go
Automatic playing of a media resource is not supposed to be possible on Mobile Safari,

because an action by the user should be required to start playback. This can be

annoying, because you may want to automatically play, for instance, a sound file,

considering that it could be no larger than an average image file. Your sound file thus

would be rather quickly downloaded, as quickly as other files that wouldn’t suffer any

restriction. You can work around this limitation on iOS 3.2 (and newer) using the load()

method. This method forces the media to be downloaded, which will make it

automatically playable, using code such as the following. Note that you may have to wait

a short time for some buffer before to call play().

var audio = document.getElementsByTagName("audio")[0];
audio.load();
audio.play();

Hence, to launch a chapter immediately after the SRT has been loaded, you would

simply have to add a call to the load() method in the setup() function.

function setup() {
 var video = document.getElementsByTagName("video")[0];
 video.load();
...
}

In reality, the browser always downloads minimal information to check the integrity of

the media, which is how you can get a ruled-out play button (Figure 8–10) on your player

when the format related to the src attribute is not supported by Mobile Safari. The

browser also sets the networkState property to 1 (NEWTWORK_IDLE), indicating that a

resource is active although the network isn’t in use at that precise moment. This,

however, doesn’t trigger any event, not even loadedmetadata, until the user taps the play

button, initiating the actual download of playable data.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 248

Figure 8–10. If the media is not playable or not found, Safari will display a ruled-out play button

When the load() method is called, the browser will first check the networkState and, if it

is not set to 0 (NETWORK_EMPTY, indicating that the element hasn’t been initialized), will

reset it and successively send two events—abort and then emptied—and restart the

initialization from the beginning. Finally, once the resource has been validated, it will

resume the download of the metadata and of the data necessary for playback.

Using this method, you will be able to launch your audio and video media without the

previously presented restrictions. Nonetheless, be aware that Mobile Safari can play

media only one at a time, because some media can be played only using the hardware

directly, meaning several sources cannot be simultaneously decoded. This means you

cannot, for instance, overlay several sound effects.

Media Content for the iPhone and iPad
On a computer, Safari can handle many different audio and video formats using a

number of codecs from third-party sources, but iOS supports only a few. Nevertheless,

most of the supported formats are based on very rich standards, with widespread

implementation. They are also quite easy to use, once you can tell the specificities for

each.

Understanding Video Formats
Video decoding is a very resource-hungry operation, which is why the iPhone uses a

specific chip that decodes video bitstreams directly from the hardware. This is much

more lightweight than using the main processor and thus saves precious battery lifetime.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 249

WARNING: The use of the H.264 codec is subject to royalties, be it for the distribution or the use
of video content. As a video content producer, you should be sure that you have the appropriate
license for your needs, which will not ship with the video compression software that you may be
using to produce H.264-readable media. All Apple and Adobe software comes with a license to
benefit from the codec for personal and noncommercial use. However, the Internet Broadcast
AVC Video license specifies that the distribution of content for free won’t be subject to royalties
until 2015. If you are specifically interested in this subject, you may get thorough information
from the MPEG LA site at www.mpegla.com.

Table 8–4 presents the currently supported characteristics that will allow you to

appropriately configure you video creation software.

Table 8–4. Supported Video Formats

Video/Audio Max Bit Rate Max Format Frame/Channel Video Profile Container

H.264

AAC-LC

1.5 Mbps

160 Kbps

640x480

48 KHz

30 fps

stereo audio

Low-Complexity

of the Baseline

Profile

.m4v, .mp4,
.mov

H.264

AAC-LC

2.5 Mbps

160 Kbps

640x480

48 KHz

30 fps

stereo audio

Baseline Profile

Level 3.0

.m4v, .mp4,
.mov

MPEG-4

AAC-LC

2.5 Mbps

160 Mbps

640x480

48 KHz

30 fps

stereo audio

Simple Profile .m4v, .mp4,
.mov

H.264

AAC-LC

14 Mbps

160 Kbps

1280x720

48 KHz

30 fps

stereo audio

(iPad only) Main

Profile Level 3.1

in 720p

.m4v, .mp4,
.mov

M-JPEG

PCM

35 Mbps 1280x720

μ-law coding

30 fps

stereo audio

(iPad only)

Motion JPEG

.avi

H.264 is often referred to as MPEG-4/AVC or MPEG-4 Part 10. This is not the same as

MPEG-4 (Part 2) in the table, which depends on a different industry standard and uses a

different compression method. However, the supported formats globally are MPEG-4

standards, which are widely used nowadays and also used in the 3GP format, a low-

quality video format often used for multimedia mobile services, because it is easily

readable on mobile networks and is widely supported by mobile phones. The M-JPEG is

widespread on numeric cameras with video capabilities.

The associated profiles and levels determine the specificities supported with the format,

such as compression modes, bitrates and framerates, maximum resolution, and so on.

iOS’s support for levels is incomplete, which is why the highest possible value is

indicated in the table.

http://www.mpegla.com

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 250

Of course, you don’t have to understand every detail about these codecs to use them.

Be aware, however, that the Low-Complexity Baseline Profile isn’t part of the MPEG-

4/AVC standard but is a simplified variant of the Baseline Profile with only one reference

frame. The compression of videos is based upon the differences between one or more

frames in the video and save this difference only, thus making the amount of data to

hold lesser. With a reference frame, the picture to be displayed is solely calculated from

one frame, which also simplifies the decoding process but entails lesser compression

efficiency and lower quality.

The soundtrack for video media uses Advanced Audio Coding – Low Complexity (AAC-

LC), the most commonly used nowadays. AAC is a lossy compression format that

follows MP3 but produces a better-quality sound with similar bitrate and more flexibility.

However, as with MPEG-4, support isn’t full and is limited to a sample rate of 48KHz in

stereo, as with MP3, where AAC itself can reach 96kHz with 48 channels—for a much

better quality. AAC, unlike MPEG-4, isn’t subject to any license for distribution, and

media using it can be freely distributed, whatever the distribution mode.

Dealing with Supported Audio Formats
Naturally, Apple devices have support for other formats that you can use with the

<audio> tag. Table 8–5 presents a non-exhaustive list.

Table 8–5. Supported Audio Formats

Format Description

AAC (MPEG-4 Advanced Audio Coding)

and HE-AAC (High Efficiency)

HE-AAC is an extension to the AAC format optimized

for low bitrate, ideal for application that, for instance,

use streaming.

ALAC (Apple Lossless) A format created by Apple. Unlike MP3 and AAC, the

compression is lossless, you will not see lesser

quality. The compressed video should be around half

of the size of the original.

IMA4 (IMA/ADPCM) Interactive Multimedia Association (IMA) is a

compression algorithm designed to be used in

entertainment multimedia applications. It is particularly

fast to encode and decode.

Linear PCM (uncompressed, linear

pulse-code modulation)

As WAV (Windows) and AIFF (Mac), it is a

uncompressed format played in software. Requires

little processing because it needn’t be decoded but

can represent large file sizes.

MP3 (MPEG-1 audio layer 3) The widespread format everyone knows. The

compression ratio is better than that of AAC, but the

quality isn’t as good. The VBR mode (Variable Bit

Rate) is also supported.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 251

There are chances you will choose to serve your user a format that offers good quality;

still, you should take into account the target audience that you aim for. A WAV file will be

larger than an AAC file, will require more bandwidth, will require longer download times,

and potentially will be more costly for the user.

If you know that your audience is likely to be affected by such drawbacks, you can

consider formats such as Internet Low Bitrate Codec (iLBC); μ-law and a-law, which are

low-quality formats used in telecommunications (generally for voice encoding); or

Adaptive Multi-Rate (AMR), used to bring sound to Multimedia Messaging Services

(MMS).

Encoding for the Web
When planning to encode any kind of media, especially video content, you should begin

with high-quality material, because compression is generally lossy. Likewise, if you want

to test or produce several formats, always use the original source for each new

production, because successive compressions could result in disastrous quality.

This is important, because, when working on the Web, it is a good practice to offer

several formats from which QuickTime can choose depending on the circumstances—

especially network conditions—under which the user is trying to view your content. The

latter behavior is made possible by the use of a reference movie.

A reference movie is a binary file that references links to different resources relative to

network considerations. It is automatically generated by the QuickTime Player when you

export a video for the Web, as we’ll explain.

If you cannot or do not want to use professional software such as Apple’s Final Cut or

Adobe’s Premiere, you can, as a Snow Leopard user, count on QuickTime X, which

allows you, with no extra fee, to export video media for the iPhone. For Windows users

and Mac OS X users with a version prior to 10.6, you will need to buy QuickTime Pro (7

or newer). This remains far below the prices of the professional software cited

previously.

Using QuickTime Player
The process using QuickTime Player is very simple. Launch the software and load a

video from the menu using File Open File.... A new playback window appears with the

first frame from the movie. Still from the File menu, simply choose Save For Web.... An

option window will appear, as shown in Figure 8–11.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 252

Figure 8–11. The export window in QuickTime

To finalize your export, give a new name to your video, choose a directory to save it to

(here, Desktop), and select the formats you need to export to. As a general rule, you can

leave all checked formats. For instance, the first will be used with a Wi-Fi connection on

iPhone, the second for a 3G or EDGE connection, and the third for a Wi-Fi connected

iPad or a computer.

Click the Save button, and a progress window will appear (Figure 8–12). Wait for the

export to complete; the progress bars will disappear as the export completes.

Figure 8–12. The Export Progress window

Once all operations have completed, your chosen directory will contain a new folder with

several files; here we’re still using the same example movie:

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 253

 Big Buck Bunny – Computer.m4v

 Big Buck Bunny – iPhone (Cellular).3gp

 Big Buck Bunny – iPhone.m4v

 Big Buck Bunny.html

 Big Buck Bunny.jpg

 Big Buck Bunny.mov

The first three are the videos themselves, using different formats and the same naming

as specified in the export window. The HTML file holds the relevant markup and

information to embed your media into a regular web page. The JPEG file should be used

in the poster attribute of your <video> tag, whereas the .mov file is to be set as the src

attribute—this is the reference movie. Also, don’t forget to place the video files at the

same level as the .mov files so that the player can find all the data when parsing the

reference movie.

An Encoder Alternative
This is a very simple—and for lucky Snow Leopard users, a cost-effective—method to

compress video content; however, you have no control over the dimensions or bitrate of

your media. If you target iPad users, it is likely you will want larger formats and better

quality. Moreover, developers on other platforms will be frustrated to be forced to pay

for such a service, not to mention Linux users who cannot natively install QuickTime.

Therefore, once again, we are going to introduce a free, open source, cross-platform

alternative that also offers better control over the export options.

The name is HandBrake, and you can download it from http://handbrake.fr/. Once the

download has completed and you have been through the pretty straightforward

installation process, you can launch the program. The file selector should appear and let

you choose a media to convert from your file system. If this didn’t happen, just click the

Source button at the top of the window.

When the chosen movie is loaded, the interface will update (Figure 8–13) with the default

output parameters depending on presets appearing in the right sidebar (Regular

Normal). You have the possibility to change these to fit your needs. Start by choosing the

Apple iPhone & iPod Touch profile from the sidebar to filter the options available to you

and make your configuration easier. This, for instance, will disable the B-frames option

on the Advanced tab, which is not supported by the device.

http://handbrake.fr

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 254

Figure 8–13. The HandBrake interface with video settings

On the Video tab (close to the center of the window), you can access configuration

options for the video stream encoding. By default, primacy is given to quality. Hence,

the bitrate will be evaluated to obtain the best possible quality, which isn’t necessarily

the best choice when working with web devices in mind. Appropriately, we can set a

specific bitrate.

Using QuickTime, the default was 80 Kb/s for the cellular version of our media, 1 Mbit/s

for a Wi-Fi connected iPhone, and 5 Mbit/s at best quality. We are going the aim for

these values by selecting the “Average bitrate” option under the Quality section.

NOTE: The more important the video dimensions, the higher the bitrate should be to keep an
optimal quality. Always preview your content before beginning the encoding process to check
whether the result is what you expect. Also keep in mind that the higher the bitrate, the more
difficult the video will be to view on a cellular network.

Now, we are going to make a video with the lowest bitrate (80 Kb/s) and scale the video

down to get a satisfactory quality. This is done by clicking the Picture Settings button in

the toolbar (or the Picture tab, if you are not on a Mac) and choosing “none” from the

Anamorphic combo box in the window that appears (Figure 8–14). Change the width to

176, keeping the aspect ratio so that your media isn’t deformed, and close the window.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 255

Figure 8–14. The Picture Settings window

On the Video tab again, if it isn’t already so, set Video Codec to H.264 (x264) instead of

FFmpeg (for MPEG-4 Part 2), and set Framerate to Same as Source to keep good

fluidity while playing the media.

Then, on the Audio tab, as shown on Figure 8–15, check that the audio codec is set to

AAC (CoreAudio) if you are on a Mac user or the poorer but only available AAC (faac) on

other platforms. If you need to, you can explicitly reduce audio quality by limiting the

sample rate, the bitrate, or both. This could be necessary, for instance, if the source

bitrate were over 160 Kb/s, the support limit for the devices you target.

Figure 8–15. Audio settings

You can now finalize the configuration to export for the Web. In the upper area of the

window, under Output Settings, the format should be set to “MP4 file.” You should also

select the Web Optimized option to allow progressive download and let the user play the

video before all data is available.

CHAPTER 8: Embedding Audio and Video Content in Your Web Application 256

To check the quality of your video before you export it, click the Preview Window button

in the main window, and in the window that pops up, click Live Preview, as shown on

Figure 8–16. If the result is as expected, click Start to launch the conversion.

Figure 8–16. The HandBrake preview window

This should give you enough all the options to create exactly the media formats you

need. HandBrake is a powerful tool that will also let you create batches and group-

encode your media. The documentation on the software web site is very rich; you can

use it to discover the best way to get the exact result you were seeking.

Summary
As you have seen, embedding media content the HTML5 way is both more specific and

much richer than the earlier possibilities offered to developers. Not only does it make

your markup more semantic, but it also comes with a full panel of ways to interact with

your media, and it offers the user a better, deeper, more customizable experience.

Combined with the <canvas> tag and its related API and the use of SVG, you can create

applications that really come to life, giving users the impression of immediacy and

movement that they are likely to expect on their devices.

257

257

 Chapter

Handling
Transformations,
Animations, and Special
Effects with CSS
Desktop Safari has long enabled you to make advanced visual effects directly from the

style sheets, and logically Mobile Safari inherits these capabilities. Not only is it possible

to apply two- and three-dimensional effects to many elements of your pages, but it is

now also possible to precisely define advanced animations to make your web

applications visually more lively and attractive—all of this without using a single line of

JavaScript or relying on external plug-ins. Again, Flash no longer is a necessity when

moving away from still pages. These enhancements are available thanks to the new

CSS3 specification, and there are some extra treats from WebKit itself, such as CSS

masks.

Transform Your Elements
Transformations have been supported since version 2.0 of iOS. Transformations can be

applied in a manner similar to what we have seen for canvases or SVG elements, using

matrices. All are available using the transform CSS property, prefixed with -webkit-,

though this property has been supported for some time now.

There are four basic transformations, namely, rotate(), translate(), scale(), and

skew(). Most allow several variations, which we will go through in this chapter. You can

also define your own matrices using the matrix() function.

9

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 258

The transform property takes a list of space-separated transformations as a value.

However, keep in mind that transform rules are not cumulative, meaning that every new

rule definition of the transform property will clear the previous definition.

.transformation {
 -webkit-transform: rotate(90deg) scale(2.0) translateX(15px);
}

In the previous code, we already are doing quite a lot. First, we rotate our element

clockwise by 90 degrees, then we double its dimensions, and finally we move it by 15

pixels to the right of the x-axis. Note that the x-axis is relative to the element position in

space, which means that in our example, moving to the “right” means moving

downward.

In the previous example, transformations are not applied one after the other. The

rendering engine processes the different transformations to apply the resulting matrix.

This has the advantage of being very efficient. Efficiency is also enhanced because the

transformations are handled on the hardware, which makes an appreciable difference

compared to canvases or SVG, which can be slower on the iPhone when several

elements are drawn.

NOTE: All style rules affecting the transformed elements are also modified by the transformation.
Therefore, drop shadows combined with a rotation will show relative to the element they are
attached to, instead of being coherent with surrounding elements. This is different from the
behavior of canvases.

Also, note that, like elements with a position set to relative or absolute, elements to

which a transform has been applied do not affect the flow of the document.

Transformations are applied in place.

There are differences, however, regarding the overflow value of the parent element. As

with relatively positioned elements, transformed elements will not show beyond the

boundaries of a parent with an overflow set to hidden; however, as with absolutely

positioned elements, a block that has been transformed will not cause scrollbars if the

overflow value of the parent is set to auto. Finally, transformations cannot be applied

upon inline elements.

Checking Transform Support
To try transformations only in browsers that support them, you can rely on a media

query to target them using the following code:

@media all and (-webkit-transform-2d) { ... }

This will allow you to build fallback behaviors directly from your style sheets, without

resorting to JavaScript.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 259

Applying Rotations
Rotations are defined clockwise using the rotate() function. Because we are working in

a two-dimensional area, the function takes only one parameter, an angle in degrees

(denoted deg), that is applied from the center of the element by default.

NOTE: Keep in mind that block elements take all the available width unless you specify a width
value. Therefore, the center of your element may well be the center of the screen, and you may
wonder, after your rotation, where the content of your block has disappeared to. One solution to
this is to change the display value of your block to inline-block, because it will then adapt
to the width of what it contains.

Using this function, you can draw text vertically or diagonally, a technique often used

with images, either to conserve screen real estate or to create a more attractive design.

<style>

ul {
 background: lightgrey;
 height: 44px;
 font: bold 12px/2.5 sans-serif;
 margin: 0;
 padding: 0;
 list-style: none;
 border: solid 1px black;
}

li {
 -webkit-transform: rotate(-45deg);
 width: 100px;
 background: white;
 display: inline-block;
 margin: 0 -65px 0 10px;
 text-indent: 10px;
 border: black 1px solid;
}

div {
 overflow: hidden;
 padding-bottom: 30px;
}

</style>

<div>

 Home
 Tools
 Contact

</div>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 260

The previous code will result in the layout shown in Figure 9–1. Once the rotation is

applied, the page flow remains unchanged, and the tabs are too far from one another.

This is why we add a negative margin to each list item.

Figure 9–1. Tabs are tipped by 45 degrees

Such abilities can make your developing process easier and your web applications more

efficient in terms of weight. For instance, you can now obtain the effect seen in the

Photos application of the iPad without resorting to various images displaying different

orientations.

Translating Element Coordinates
The translate() function allows you to reposition elements relatively to their physical

position in the page without affecting the layout. It takes the x and y offset values for the

translation as parameters, although the specification also provides the shortened

functions translateX() and translateY() to work with only one coordinate.

The previous example could therefore be easily enhanced to bring visual feedback to the

user, by moving our tabs on mouse hovering, with the following rule:

li:hover {
 -webkit-transform: rotate(-45deg) translateX(-10px);
}

This already lets you achieve quite a few visual effects. Nonetheless, translations (and

more generally transformations), as we will see, are of much greater interest combined

with transitions, which will let you animate elements over time using only CSS.

Scaling Page Contents
The scale() function works in a way similar to translate(), and the shortened functions

scaleX() and scaleY() are also available. scale() takes two scaling coefficients as

parameters to apply on the x- and y-axes. If you specify only one value, it will be used

for both parameters. As with all transformation functions, the origin for the

transformation is the middle of the element.

As when using the CSS zoom property, all styles are scaled, which means the rendered

quality will remain even with extreme values. One asset of the scale() function over the

zoom property is that you have control over both axes; therefore, you can stretch

elements one way only, as shown with the text in Figure 9–2. Yet, for images, you will

notice that the limitations are the same as when forcing the size of an image using CSS

or the width and height attributes on the tag. The bigger the difference from the

original image size, the lesser the displayed quality.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 261

Figure 9–2. Quality isn't affected as the coefficient changes

Distorting Elements
The specification will let you apply a distortion matrix to your elements using the skew()

function. The parameters to this function are angles by which the transformation should

be applied (Figure 9–3).

<style>

div {
 width: 320px;
 border: 5px solid black;
 padding: 5px;
 font: bold 15px helvetica;
 text-align: center;
 -webkit-transform: skewX(-30deg);
}

</style>

<div>Some text content.</div>

Figure 9–3. A -30 degree skew operation along the x-axis

As with translate() and scale(), you have two shortened functions, skewX() and

skewY(), to build one-way transformations.

Custom Transformations with Matrices
Instead of chaining predefined transformations to achieve a goal, the specification will

also let you define a complete transformation matrix using the matrix() function. This

can be useful to make your code smaller or to create your own custom transformations.

The matrix() function takes six parameters, which are used in the following matrix:

All options available to you can be combined to give you full control over the effects you

want to create with the transform rule. This lets you define a full set of transformations in

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 262

a single declaration, reducing file sizes for styles but also the readability of the whole

code. This corresponds to what the layout engine computes before applying the

transformation. We will see more about using matrices for transformations later in this

chapter, with the JavaScript CSSMatrix object.

The Origin of the Transformation
As stated earlier, the default origin for transformations is the center of the transformed

element. This can be modified using the transform-origin property (Figure 9–4).

<style>

.box {
 width: 100px;
 height: 100px;
 background-color: black;
 float: left;
}

.box + .box {
 background-color: gray;
 -webkit-transform: rotate(-45deg);
 -webkit-transform-origin: 50% 50%;
}

</style>

<div class="box"></div>

Figure 9–4. The same rotation based on different transform-origin values

This property can take all the usual position keywords as parameters, as well as any

CSS numerical value (px, em...), as used with the background-position rule, for instance.

Working in a Three-Dimensional Environment
Not only does Mobile Safari offer the possibility to handle two-dimensional

transformations, but it also implements features from the CSS specification to create

three-dimensional effects. This makes it possible to render elements on the x-, y-, and

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 263

z-axes. The specification also offers new properties that will let you define the

perspective level, as well as how to handle the back face of your elements.

Nevertheless, be conscious that unlike applying changes to the x- and y-axes, styles

won’t be scaled for transformations upon the z-axis, and quality will dwindle as the

factor for the transformation changes.

As with 2D transformations, you can target only those browsers with support for the

features using the -webkit-transform-3d condition in a media query.

New Transform Functions
The specification extends the 2D Transforms module by adding new functions to handle

the z-axis. New variants of the two-dimensional functions, ending with Z() and 3d(), are

now available. Because rotations can now be executed in full space, the new rotateX(),

rotateY(), rotateZ(), and rotate3d() are also available to you.

All functions for 3D use a 4x4 homogeneous matrix that will let you work in the three-

dimensional space and apply perspective projection. The matrix3d() function thus takes

16 values, in column-major order (reading the matrix members from top to bottom and

left to right), as represented here:

Considering the previous matrix, the following definitions are equivalent:

 matrix(a, b, c, d, e, f)
matrix3d(a, b, 0, 0, c, d, 0, 0, 1, 0, e, f, 0, 1)

NOTE: Again, you don’t have to fully understand the matrix in order to use it. The CSSMatrix
will be there to help. The most useful information to be extracted from the matrix will be the m41
and m42 members, giving the computed x and y positions of the element.

However, using 3D alternatives will have no notable effect as long as the perspective

level is not specified, because no projection will be observable. A rotation on the y-axis,

for instance, would compress the element only horizontally, without projecting it.

Setting the Perspective
Perspective can be rendered using either of two processes: the perspective() function,

which you can use within the transform property to modify one element type, or the

perspective property, which you can use to change the perspective for the transformed

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 264

children of the element to which the property is attached. Both take a positive or null

value, with no explicit unit.

/* Element level */
.perspective {
 -webkit-transform: perspective(500) rotateY(45deg);
}

/* Children level */
.perspective {
 -webkit-perspective: 500;
}

.child {
 -webkit-transform: rotateY(45deg);
}

The great asset of this method is that all children are rendered within a uniform 3D

environment, which will allow you to create animations with rich and realistic depth

effects.

To estimate values for the perspective property, you should consider it as the distance

between the observer and an element on the z-axis. An element with its z position set to

0 will show in its normal size, whereas an element with a position set to half the distance

will be twice as big.

/* The element will look twice as big */
.perspective {
 -webkit-transform: perspective(1000) translateZ(500px);
}

NOTE: Keep in mind that translations are applied relative to the plane of the element. Therefore,
with a 90-degree rotation on the y-axis, the translation will apply on the perceived x-axis instead
of the z one.

As the observer gets closer, distances grow smaller, vanishing points get closer to one

another, and parallel lines head apart, creating an extreme perspective effect (as shown

in Figure 9–5). Hence, the smaller the value, the more stretched the element will be on

the z-axis; the bigger the value, the lesser perceivable the perspective effect will be.

Generally speaking, the value for a perspective should span between 500 and 1000.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 265

Figure 9–5. A 100x100-pixel element with a perspective value set successively to 125, 250, and 1000

The position of the vanishing point defaults to the center of the element. This can be

changed with the perspective-origin (prefixed with -webkit-). It can take three values

indicating the position of the point in a three-dimensional environment—the x point first,

then y, and finally z. This means you can also change the distance, changing only the

value for z and keeping the perspective value.

Preserving the 3D Aspect
When an element is rendered in perspective within its parent, it is actually drawn to the

screen to give the impression of perspective. However, if a transformation is applied to

the parent in the 3D environment, the child elements will be flattened in the plane of their

parent regardless of their own position in space. Of course, it would be preferable that

each element keep their depth so that everything is coherently rendered within a 3D

space using the same perspective. The following code shows how to achieve that:

<style>

div { border: 5px solid black; }

.perspective {
 border: 0;
 -webkit-perspective: 150;
}

.parent {
 margin: 0 auto;
 width: 100px;
 height: 100px;
 padding: 10px;
 -webkit-transform: rotateY(60deg);
 -webkit-transform-style: preserve-3d;
}
.child {
 height: 100%;
 -webkit-box-sizing: border-box;
 -webkit-transform: translateZ(-50px) rotateX(45deg);
}

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 266

</style>

<div class="perspective">
 <div class="parent">
 <div class="child"></div>
 </div>
</div>

As shown in the Figure 9–6, using the default value for the transform-style property,

flat, elements will not be projected “outside” their parents. The result will be similar to

applying a rotation to an element in two dimensions, as with an image. The preserve-3d

value allows you to maintain the depth of each element, which will let you create very

realistic effects, especially with CSS animations, that we will soon be going through.

Figure 9–6. The second illustration uses the flat value for the transform-style property; for the third, the value
is set to preserve-3d

Back Face Visibility
In the 3D space, an element has two faces, somewhat like a transparent card. The side

that initially shows is the classic HTML display. When rotating the element by 180

degrees around the y-axis, the other side logically is the same view, just reversed, as

shown in Figure 9–7.

Figure 9–7. The initial state of the element, a 180-degree rotation, and the resulting state

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 267

During an animation, when two elements are placed back to back, if both elements are

opaque, normally no inconsistency should show, because pixels will overlap without

revealing what is behind the element; however, because both elements use the same

space, the rendering isn’t what would be expected, and in most cases both elements

are alternatively swapped in a disorderly manner.

<style>

.parent {
 width: 110px;
 margin: 0 auto;
 -webkit-perspective: 1000;
}

.parent div {
 width: 100%;
 height: 150px;
 line-height: 150px;
 text-align: center;
 position: absolute;
 float: left;
 color: white;
 background: black;
 -webkit-border-radius: 8px;
 -webkit-transition: -webkit-transform 1s linear;
}

.face { -webkit-transform: rotateY(0deg); }
.back { -webkit-transform: rotateY(-180deg); }

.parent:hover .face { -webkit-transform: rotateY(180deg); }
.parent:hover .back { -webkit-transform: rotateY(0deg); }

</style>

<div class="parent">
 <div class="face">FACE</div>
 <div class="back">BACK</div>
</div>

In our example, we create two elements back to back. The second one is rotated by 180

degrees so that its front is visible after the transition. Now, if you point your mouse or

finger on the element, the card will turn around, but the rendering will be deceptive. You

could solve this by moving both elements enough along the z-axis so that they no longer

occupy the same space, but you would also have to modify the original position of the

transformation, making the handling of positions uselessly heavier.

To address this issue, you should use the backface-visibility property, which can be

set either to visible (by default) or to hidden.

.parent div {

...
 -webkit-backface-visibility: hidden;
}

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 268

This will force the engine to hide the backside of the element during the rotation. It will

simply disappear, leaving a transparent area that will solve the approximate positioning

problem. This new property, together with those presented earlier, lets you finely control

your elements within the 3D plane.

Combining Styles with JavaScript
Like all CSS properties, transformations can be read and modified using JavaScript. This

can be used to build interactivity with the user or to create animations.

Accessing Current Styles
To access and apply transformations via JavaScript, you should use the

webkitTransform property of the CSSStyleDeclaration object, attached to any relevant

element.

var element = document.getElementById("myElement");
element.style.webkitTransform = "translateX(100px)";

Quite naturally, as with any CSS declaration, any modification overwrites any previous

ones. If you need to apply a transformation in addition to its current state, you will have

to first read its computed style using the getComputedStyle() method of the DOMWindow

object. This returns a CSSStyleDeclaration object that will let you access the styles in

use (through a style sheet or a script), as with the style property.

var iter = 0;

var timerID = window.setInterval(function() {
 var current = window.getComputedStyle(element);
 element.style.webkitTransform = current.webkitTransform + " translateY(10px)";

 if(iter++ == 5) {
 window.clearInterval(timerID);
 }
}, 200);

In this piece of code, we move our element downward by 10 pixels every 200

milliseconds. The movement is relative to the previous position, because we add our

new transformation to the current state, which takes previous transformations into

account. Looking at the value returned by current.webkitTransform, you will note that it

is always a unique matrix() function (or matrix3d(), if the element has been

transformed in a 3D environment) and not a list of successive function calls; as

explained earlier, the engine always computes one matrix that synthesizes all matrices

that should be applied.

A Native Object to Compute Matrices
The process used in our previous example yields the expected result but isn’t very

flexible, nor is it optimal because it forces you to handle potentially long strings that can

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 269

be cumbersome if many parameters are in line. The specification for transformations

brings a new object to remedy this: CSSMatrix. It has been supported since version iOS

2.0 and allows you to easily calculate matrices. Here is how it can be used:

var timerID = window.setInterval(function() {
 var current = window.getComputedStyle(element);
 var matrix = new WebKitCSSMatrix(current.webkitTransform);
 element.style.webkitTransform = matrix.translate(0, 10);

 if(iter++ == 5) {
 window.clearInterval(timerID);
 }
}, 200);

As in our example, this object takes the previous matrix as a parameter. To the

constructor, you can pass a string containing a matrix() or matrix3d() function or

another CSSMatrix object. If no parameter is specified, a new empty matrix will be

returned. Table 9–1 shows the different methods available to interact with the matrix.

Table 9–1. Methods Applicable to the CSSMatrix Object

Method Description

matrix.setMatrixValue(newMatrix) Modifies the matrix using the one passed as a

parameter.

matrix.multiply(matrix) Returns a new CSSMatrix object resulting from the

multiplication of the current matrix and the one

passed as a parameter.

matrix.inverse() Returns a new CSSMatrix object that is the inverse

of the matrix to which the method is applied.

matrix.translate(x, y, z) Returns a new CSSMatrix object resulting from the

multiplication of the matrix by the translation matrix

using the values passed as parameters. The z

parameter can be omitted; it will default to 0.

matrix.scale(x, y, z) Returns a new CSSMatrix object resulting from the

multiplication of the matrix by the scale matrix,

using the values passed as parameters. z can be

omitted and will default to 1. Moreover, y can be

omitted also, in which case it will take the same

value as x.

matrix.rotate(x, y, z) Returns a new CSSMatrix object resulting from the

multiplication of the matrix by the rotate matrix,

using the values passed as parameters. Rotations

are applied one at a time in the same order as the

parameters. Angles are set in degrees. If y and z

aren’t defined, in order to be compatible with the

2D version of the CSSMatrix object, the call will be

considered to be (0, 0, z).

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 270

Method Description

matrix.rotateAxisAngle(x, y, z, angle) This method allows you to define a new axis and

operate a rotation around it. Like the previous

methods, this returns a new matrix.

matrix.toString() Returns the matrix as a string holding a matrix()
or matrix3d() function, as defined for the

transform CSS property.

Only the first method modifies the CSSMatrix object. The others just return a new

CSSMatrix holding the resulting matrix. Surprisingly, there is no skew() method, so you

will have to create your own matrix. The following is an example of how to do this:

/* Define a skew(45deg, 30deg) matrix */
var matrix = new WebKitCSSMatrix();
matrix.b = Math.tan(30 * Math.PI / 180);
matrix.c = Math.tan(45 * Math.PI / 180);

Each value for the matrix is accessible through the pertaining properties, named, as

shown previously, from a to f (supported since version 3.0 of the OS) for the 2D version

and from m11 to m44 for the 3D version. This means six values for the two-dimensional

matrix and sixteen for the three-dimensional one. Note that, of course, you could use a

similar function to calculate matrices within canvases, with the transform() and

setTransformation() methods of the CanvasRenderingContext2D object. This can be

done as follows:

context.translate(50, 50);
context.rotate(Math.PI * 0.5);

That is equivalent to the following:

var matrix = new WebKitCSSMatrix().translate(50, 50).rotate(45);
context.transform(matrix.a, matrix.b, matrix.c, matrix.d, matrix.e, matrix.f);

As you can see, the specification of angles is different in canvases than it is in the

CSSMatrix object. However, reading properties from the CSSMatrix object, values

representing angles will be converted to radians. This object will also let you know

where an element is situated at some given moment, for instance reading the current

matrix during an animation, as with transitions.

Transitions
We have seen how it is possible to move an element within the page using a timer and

the CSSMatrix object, which was used to read the current state of the matrix applied to

an element. Nevertheless, you can define such transitions without resorting to

JavaScript, using CSS rules directly.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 271

WARNING: To obtain better rendering, the engine rasterizes the elements so animations can be
handled directly by the hardware. This does not mean you can do anything with CSS without
worrying about performance. You could easily end up with jumps in your animations, especially
on the iPhone and iPod touch, if your style sheets get too complex. You will often find that too
much relatively or absolutely positioned elements will make the task for the rendering engine
harder, which will result in poorer quality. Always check for useless styles, and try to find the
most efficient solution to your goal.

Many CSS properties can be animated: colors and gradients (as long as they keep the

same count of color stops), dimensions, font sizes, and others. You should be able to

interact in this way with most style rules. Note that, because opacity and

transformations are handled on the hardware level, performance will be better for these

than for other styles. Most of the transformations explained earlier gain much richness

with transitions.

The transition CSS Property
The principle of CSS transitions is to interpolate an initial CSS value to another, which is

simply done using the transition property; it should be used as follows:

transition: <property> <duration> <timing-function> <delay>

The transition property is a shorthand to a series of properties relative to transitions.

These two declarations hence are equivalent:

/* Shorthand */
-webkit-transition: opacity 0.5s linear 200ms;

/* Exploded version */
-webkit-transition-property: opacity;
-webkit-transition-duration: 0.5s;
-webkit-transition-timing-function: linear;
-webkit-transition-delay: 200ms;

You can also define several transitions in a single declaration (one use of the transition

property) by separating your transitions by comma. The transition-property defaults to

all, meaning that all properties supporting transitions will be affected.

Initiating a Transition
The transition begins at the very moment the value of the property is modified, yet after

any delay set for the transition-delay property. The modification must occur outside

the initial definition of the value, which means you can trigger a transition on some

action by the user.

<style>

.box {

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 272

 width:100px;
 height:100px;
 background-color: black;

 -webkit-transition-property: -webkit-transform;
 -webkit-transition-duration: 2s;
}

.box:hover {
 -webkit-transform: translateX(100px);
}

</style>

<div class="box"></div>

NOTE: On iOS 3.x, the hardware acceleration is buggy with some translations, resulting in a
staggered rendering. To animate only these properties, you should use the translate3d()
method to obtain fluid transitions.

In our example, the user pointing his finger on the <div> makes the black square move

by 100 pixels to the right over a two-second time span. When the user leaves the square

area, the value of the property is restored, and the animation is reversed, even if its first

movement isn’t complete.

However, this means that, if the same transition configuration was used, the animation

would be asymmetric, because the starting point would not match the previously

expected target point. This of course would seem unnatural to users, who will expect

the same reversed movement. This issue shows when using nonlinear timing functions.

The specification describes a specific behavior for such cases, which will maintain

consistency when reversing transitions. The rendering engine will compute the curve of

the timing function and search the stage it should be at the current keyframe. The

reverse animation will then be started from that point.

Timing Function Curve
As suggested earlier, the animation curve isn’t always linear—and in most cases, it

actually isn’t linear at all. Mobile Safari supports several keywords to be used with the

transform-timing-function property, which allows you to define the most common

animation curves, as shown in Table 9–2 and in Figure 9–8.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 273

Table 9–2. Supported transform-timing-function Keywords and Their Related cubic-bezier() Definitions

Keyword Configuration

ease (default) cubic-bezier(0.25, 0.1, 0.25, 1.0)

linear cubic-bezier(0.0, 0.0, 1.0, 1.0)

ease-in cubic-bezier(0.42, 0, 1.0, 1.0)

ease-out cubic-bezier(0.0, 0.0, 0.58, 1.0)

ease-in-our cubic-bezier(0.42, 0.0, 0.58, 1.0)

All are based on cubic Bézier curves that can be defined using the cubic-bezier()

function. As parameters, this function takes coordinates for the control points P1 and P2

of the curves, spanning from 0.0 to 1.0. The origin and destination points (P0 and P3) are

considered to be positioned at (0,0) and (1,1).

Figure 9–8. The curves relative to the transform-timing-function keywords and a custom curve definition

The idea is to define a progress curve for the animation. For instance, using the last

curve from Figure 9–8, the animation will first progress slowly and will temporarily speed

up, before taking the same pace as when beginning.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 274

Telling When the Transition Is Completed
In the use of transitions and animations, you will often need to know when they have

been completed. Rather than using a timer set to the time span of the transition, you can

rely on the transitionend event.

var box = document.getElementsByClassName("box")[0];

box.addEventListener("webkitTransitionEnd", function(event) {
 alert("The box reached the destination point after " + event.elapsedTime + "s.");
}, false);

The event is triggered as soon as the transition is complete, even when the transition is

reversed. Of course, this is far more accurate than a timer, because it will always be

synchronous with the transition. Moreover, because the handler is executed in the

context of the object that triggers the event, you can access this directly using the

event.target property or the keyword this, without previously saving them.

WARNING: In Mobile Safari, the name of the event is case sensitive, meaning you should be
careful to use the webkitTransitionEnd event, with the appropriate uppercase letters, for the
event listener to work.

The event has the TransitionEvent type and holds two extra properties, elapsedTime

and propertyName, that will let you know the time taken by the transition (in seconds,

regardless of the transition-delay property) and the property associated to the

transition.

Getting Ready for a Cover Flow–Like Experience
Now that you have an overall idea of how transitions work and how to use them, let’s

bring all of this together in an example that would have been a CSS dream not so long

ago. We are going to create a Cover Flow effect, familiar to anyone who has used

iTunes, the Mac OS X Finder, an iPod, or the iPad App Store (Figure 9–9).

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 275

Figure 9–9. A Cover Flow from the French iPad App Store

Note that this code will not work well on older WebKit versions like Desktop Safari 4 or

an earlier version of Mobile Safari because of a bug in the transition implementation.

The Main Document
First let’s get our HTML file together. We will need the following code:

<html>
 <head>
 <title>Cover Flow Demo</title>
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <link rel="stylesheet" href="styles/coverflow.css">
 <script src="scripts/coverflow.js"></script>
 </head>

<body>
 <div id="coverflow">
 <div id="left"></div>
 <div id="right"></div>
 </div>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 276

</body>

</html>

Next come the styles relative to this document:

body { background-color: black; }

#coverflow {
 position: relative;
 height: 320px;
 background-color: #333;
 white-space: nowrap;
 overflow: hidden;
 -webkit-border-radius: 32px;
 border: solid 3px white;
 -webkit-perspective: 1000;
}

#left {
 width: 50%;
 height: 100%;
 float: left;
}

#right {
 width: 50%;
 height: 100%;
 float: right;
}

We associate an overflow property set to hidden and a white-space rule set to nowrap

so that our covers, as they move, do not change position, spanning over several lines or

beyond the #coverflow container. For now, the document holds only the main

containers, that is, the #coverflow parent defining the perspective and the left and right

areas that will hold the actual covers. To add covers, we will use a script to create

elements and set colors for them so that they are recognizable during the animations.

Create a new coverflow.js file, and add the following to it:

function init() {
 var m = 8; // Covers count
 var s = 360 / m; // Color step

 /* Add left and right covers */
 var o = document.getElementById("left");
 createCovers(o, m, s);
 o = document.getElementById("right");
 createCovers(o, m, s);

 /* Add current cover */
 o = document.getElementById("coverflow");
 createCovers(o, 1, 0);
 o.lastChild.className ="current";
}

function createCovers(o, max, step) {

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 277

 var color = step;
 for (var n = 0; n < max; n++, color += step) {
 var span = document.createElement("span");
 span.style.backgroundColor = "hsl(" + (color) + ",100%, 50%)";
 o.appendChild(span);
 }
}

The number of covers can be modified by changing the value of m in the init() function.

This will let you have one eye on performance issues, because each cover will be

animated individually.

Now, the following styles will be used to correctly place the covers within their container:

#coverflow span {
 width: 160px;
 height: 240px;
 border: solid 5px rgba(0, 0, 0, 0.25);
 margin-top: 40px;
 -webkit-box-sizing: border-box;
 -webkit-border-radius: 16px;
}

#left span {
 float: right;
 margin-left: -130px; /* 30px between each cover */
 -webkit-transform: translate3d(-30px, 0, -80px) rotateY(+60deg);
}

#right span {
 float: left;
 margin-right: -130px;
 -webkit-transform: translate3d(+30px, 0, -80px) rotateY(-60deg);
}

#coverflow .current {
 position: absolute;
 left: 50%;
 top: 50%;
 margin-left: -80px;
 margin-top: -120px;
}

This transforms the covers so that they are displayed with a 60-degree rotation and

moves them backward in a three-dimensional plane to make them further back than the

focused cover. Because we are working in a 3D environment, we cannot use z-index to

handle the element’s stack. To make placing the current cover earlier, we place it at the

center of the view and position it absolutely.

Next, change the HTML document to execute the init() function when the document is

loaded.

...
<body onload="init()">
...

Your document should now look like Figure 9–10.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 278

Figure 9–10. The near to final state of the Cover Flow experience

For the moment, although the CSS performance is appreciable, there is nothing really

useful in our display. However, everything is in place to add the Cover Flow animation to

our page.

The Cover Flow Animation
To animate our covers, we will begin by adding buttons to our page to trigger

animations:

...
 <div id="coverflow">
 <div id="left"></div>
 <div id="right"></div>

 <button onclick="slide(-1)">«</button>
 <button onclick="slide(+1)">»</button>
 </div>
...

An here are the associated styles:

button {
 font-size: 80px;
 color: white;
 text-shadow: black 1px 1px 10px;
 border: 0;
 background: none;
 position: absolute;
 top: 100px;
}

button:first-of-type { left:0; }
button:last-of-type { right:0; }

A function slide(), attached to the click event on the button elements, takes a

parameter indicating the direction in which the covers should slide. Here is the initial

definition, as well as the first functions that will control movement:

function slide(dir) {
 document.getElementById("coverflow").className = "slide";

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 279

 /* Move covers */
 moveSides("left", dir, +1);
 moveSides("right", dir, -1);
 moveCurrent(dir);
}

function moveSides(str, dir, coef) {
 var s = document.getElementById(str).childNodes;
 for (var n = 0; n < s.length; n++) {
 s[n].style.webkitTransform = getMatrix(s[n], dir, coef, 30);
 }
}

function moveCurrent(dir) {
 var s = document.querySelector(".current");
 var styles = window.getComputedStyle(s);

 var matrix = new WebKitCSSMatrix(styles.webkitTransform);
 matrix = matrix.translate(30 * dir, 0, 0);
 s.style.webkitTransform = matrix;
}

function getMatrix(s, dir, coef, move) {
 var styles = window.getComputedStyle(s);
 var matrix = new WebKitCSSMatrix(styles.webkitTransform);

 /* Read values from the matrix */
 var angle = Math.acos(matrix.m11) * 180 / Math.PI * coef;
 var x = matrix.m41 + move * dir;
 var y = matrix.m42;
 var z = matrix.m43;

 /* Return a new matrix */
 return new WebKitCSSMatrix().translate(x, 0, z).rotate(0, angle, 0);
}

When the user clicks the button, the slide() function adds a .slide class to the main

container. This allows you to define a transition to use, which is defined with CSS only:

.slide span {
 -webkit-transition: -webkit-transform .35s linear;
}

The moveSlides() function gathers the covers from each side and then uses the

transformation of each cover to read the information from their matrices using

getMatrix() and the CSSMatrix object. Because the rotation changes the position of the

x-axis, we cannot simply apply a new translation to move the covers, or they would go

forward or backward instead of to the left and to the right. This is why we re-create the

matrix after having calculated the current position of each element. For the focused

cover, however, because there is no rotation, we can simply use the translate()

function to change its position.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 280

Flipping the Current Cover
If you try this code now, you will notice that all covers move to the left or right. Now to

make the focused cover return to the cover stack and switch the focus to next one, we

have to intercept the transitionend event before resuming the animation.

function slide(dir) {
...
 var current = document.querySelector(".current");
 current.addEventListener("webkitTransitionEnd", function(event) {
 this.removeEventListener(event.type, arguments.callee, false);

 document.getElementById("coverflow").className = "flip";
 prepareFlipSide(dir);
 prepareFlipCurrent(dir);
 }, false);
}

When the event is received, we immediately delete the listener, because it is defined

anew for each click event and no longer is of any use. Then we add the following .flip
class to the main container again:

.flip span {
 -webkit-transition: -webkit-transform 0.2s ease-in-out;
}

Then we call the functions that are responsible for the cover rotations:

function prepareFlipSide(dir) {
 var s = document.getElementById(dir > 0 ? "left" : "right").firstElementChild;
 s.style.webkitTransform = "translateX(" + (dir * 80) + "px)";
}

function prepareFlipCurrent(dir) {
 var current = document.querySelector(".current");

 /* Apply a new matrix based on the style of the side covers */
 var base = document.getElementById(dir < 0 ? "left" : "right").firstElementChild;
 current.style.webkitTransform = getMatrix(base, dir, -dir, (80 - 30));
}

The side cover to be focused will be repositioned with the prepareFlipSide() function;

then, the prepareFlipCurrent() function gathers the transformation of an element from

the stack to apply its matrix to the previously focused element. The last stage is to

transfer the nodes of the covers to their new parent so that a new animations can be

initiated.

Final Touch to the Animation
To maintain the consistency of the document, we are going to move the covers after the

second animation to give them their original styles. This is done with the following code:

function prepareFlipCurrent(dir) {
...
 current.addEventListener("webkitTransitionEnd", function() {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 281

 this.removeEventListener(event.type, arguments.callee, false);

 /* Reset elements to their initial state */
 reset("left");
 reset("right");
 document.getElementById("coverflow").className = "";
 this.style.webkitTransform = "";
 this.className = "";

 /* Append the current cover to its new parent */
 var c, e = document.getElementById(dir < 0 ? "left" : "right");
 e.insertBefore(this, e.firstElementChild);

 /* Append the new current cover to the main container */
 e = document.getElementById(dir > 0 ? "left" : "right");
 c = e.firstElementChild;
 e.parentNode.appendChild(c);
 c.className = "current";
 }, false);
}

function reset(str) {
 var s = document.getElementById(str).childNodes;
 for (var n = 0; n < s.length; n++) {
 s[n].style.webkitTransform = "";
 }
}

As previously, we add a listener to be notified of the end of the animation. Then, all

elements are reset to their initial states, and the covers are moved.

Double-Check: Preventing Unexpected Behavior
At this stage, if a user clicks the button before an animation is complete, the movement

becomes inconsistent because the animations are interrupted, and therefore the

matrices are no longer those expected. To address this, we add a variable that will let us

check the state of the animation.

var animate = false;

function slide(dir) {
 var c1 = (document.getElementById("left").childNodes.length == 1);
 var c2 = (document.getElementById("right").childNodes.length == 1);

 if (animate || (c1 && dir == +1) || (c2 && dir == -1)) {
 return;
 }
 animate = true;
...
}

function prepareFlipCurrent(dir) {
...
 current.addEventListener("webkitTransitionEnd", function() {
...

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 282

 animate = false;
 }, false);
}

In addition to the animate variable, we add a control in slide() on the number of

children remaining on either sides of the Cover Flow display. If none of them remain on

one pane and the user tries to move elements from that side, nothing will happen.

This is your Cover Flow setup. Of course, the colored squares used in our example

aren’t very attractive and should be replaced with relevant content. To use this at its

best, we suggest you try things with transitions, such as modifying animation curves or

adding more covers to estimate the impact on the performance of your page.

Advanced Animations and Key Frames
The transitions explained up to now only allow you to progressively slip from one value

to another for some property, and each property needs its own definition. Moreover,

they use implicit animation, because the animation is triggered by the change of a

property value. Whenever you need finer control over your animation and have to

explicitly declare animations from your style sheets, you should resort to Apple’s new

CSS Animation module. This will let you precisely define a series of events on a timeline,

using an at-rule.

Key Frames
A key frame specifies the state of an animation at some definite stage in time. A series of

key frames is defined using the @keyframes rule by giving a name to the sequence that

will be used by the animation-name property and listing CSS rules to be animated.

@-webkit-keyframes "mySequence" {
 0% {
 left: 100px;
 top: 0;
 background-color: red;
 }

 25% {
 left: 75px;
 background-color: green;
 }

 75% { background-color: blue; }

 100% {
 left: 200px;
 top: 100px;
 }
}

Using this sequence, for instance, on an absolutely positioned element, the element will

be set to the position (100,0), with a red background. Then, using 25 percent of the

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 283

defined animation duration, it will slide to the left until it reaches the position (75,0) and

simultaneously blend from red to green. Finally, a new color switch will occur over 50

percent of the allotted time, before the element is shifted to the coordinates (200,100)

over the 25 percent remaining for the animation.

NOTE: As with transitions, the animations are optimized for some properties, and you are often
better off using transformations than regular CSS positioning in order to obtain better
performances and thus spare battery life and provide an overall better user experience.

To prepare your animations, you have to determine the initial state (0%), optional

transitional states, and a final state (100%). The position of these states must be set using

numerical values followed by the % sign, or the rule will not be considered valid.

Moreover, the 0% and 100% points are mandatory. Note, however, that they can be

replaced with the from and to keywords. The order of the declarations isn’t important,

but be careful because any single mistake will make the whole sequence invalid and

compromise the whole animation.

Starting and Timing the Animation
To trigger an animation, you simply need to use the animation-name property,

associating the name of a sequence to it and giving the animation a duration. The timing

uses properties similar to those of transitions, and you can use both the animation-
duration property to declare the duration and animation-delay to delay the beginning of

the animation. The duration will then be split up to determine the duration of each step

of the sequence.

div {
 -webkit-animation-name: "mySequence";
 -webkit-animation-duration: 10s;
 -webkit-animation-delay: 2s;
 -webkit-animation-iteration-count: 3;
}

In the previous example, we indicate that the animation should follow the mySequence

sequence and span over ten seconds, after a two-second delay. This delay naturally

isn’t taken into consideration for the animation duration. The animation will be repeated

three times before stopping and hence will last for thirty seconds. The animation-
iteration-count property can also be set to infinite, which is quite self-explanatory.

Animation Properties
As with transitions, not all properties can be animated. However, using such a

property—box-shadow, for instance—within an @keyframes statement will not raise an

error, and the animation will resume, simply ignoring the faulty rule.

When a property is animated, the computed values are affected by the transformations

applied all along the animation. Moreover, because all properties pertaining to the

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 284

animation can take several comma-separated values, it is possible to specify several

sequences for one element. In such a case, if the same properties are animated, the last

definition will overwrite the previous one.

<style>

@-webkit-keyframes "blue-yellow" {
 from { background-color: blue; }
 to { background-color: yellow; }
}

@-webkit-keyframes "red-green" {
 from { background-color: red; }
 to { background-color: green; }
}

div {
 width: 100px;
 height: 100px;
 -webkit-animation-name: "red-green", "blue-yellow";
 -webkit-animation-duration: 10s, 2s;
}

</style>

<div></div>

In this peculiar example, the animation will begin with a blue to yellow blending, because

the same property is animated in both @keyframes, and blue-yellow is called last.

However, because the red-green animation lasts longer, the animation will go on as if

the red to green animation had occurred and will be resumed with a slightly greenish red

block, changing to full green on the tenth second.

Be aware that if the initial state declaration is different from that of the actual element to

animate for some property, no transition will occur from one style to the other, and the

transition initial state declaration will be applied immediately. This may cause unpleasant

effects, for instance a jump of the element before the actual transition. Moreover, unlike

what happens with transitions, the state of the element after the animation is complete

isn’t persistent, and the element will instantly return to its initial state, with the same

jump effect.

Always keep these specificities in mind when building animations for your web

applications, and don’t get stuck because of something that isn’t an actual issue but just

a subtlety of the implementation.

The Evolution Curve
Animation curves, defined using animation-timing-function, are the same as for

transitions and use the cubic-bezier() function. The curve isn’t applied globally for the

animation as a unit, but one key frame at a time. Thus, you can define a different curve

for each step of the animation within the at-rule. The animation-timing-function

property is the only property that can be used directly within the at-rule.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 285

@-webkit-keyframes "mySequence" {
 0% {
 left: 100px;
 top: 0;
 background-color: red;
 }

 25% {
 left: 75px;
 background-color: green;
 -webkit-animation-timing-function: ease-in;
 }
...
}

The timing function must be defined on the destination key frame, or it will either not be

applied or not be applied where expected. If you want the function to apply to all steps

of the sequence, you can define it directly along with animation-name.

Working with Events
Animations come with three new events. The first two, animationstart and

animationend, will let you know when an animation starts or reaches its end; the third,

animationiteration, is triggered when an animation is run again after its first occurrence

because of the animation-iteration-count property value.

var div = document.getElementsByTagName("div")[0];

div.addEventListener("webkitAnimationStart", function(event) {
 alert('The animation "' + event.animationName + ' has started.');
}, false);

As for transitions, the name is case sensitive when used with the addEventListener()

method, and you should follow the camel case syntax used in the previous example.

All three events use the new AnimationEvent object that adds the animation name to the

base Event object through the animationName property. For animationiteration and

animationend, as with transitions, the elapsedTime property lets you estimate the time

elapsed during the animation.

Of course, this property will always return 0 for animationstart, because no delay

before the animation is taken into account. The event will actually be triggered only after

the delay is determined. Also note that because the animationiteration is replaced by

animationend for the last iteration, you will never get an animationiteration if the

counter is set to 1.

Special Effects with CSS
The latest versions of WebKit implement new properties that can make the life of web

developers much easier, such as reflection or masks. These are not yet part of the CSS3

specifications, so they won’t be exportable for some time to other browsers.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 286

Creating Reflections
Although reflection has been a very popular effect for some time now, there is no

optimal way to implement it into your pages. Up to now, solutions included creating a

specific image for each element you wanted reflected—which isn’t very flexible—or

stacking 1-pixel high elements underneath your image and applying a positioned

background to each one while acting on opacity, which is not very flexible either,

because this can only work with images and it takes up a lot of extra markup. Both of

these solutions of course are quite heavy on the rendering engine. WebKit comes with

the new -webkit-box-reflect property, which should be used as follows:

-webkit-box-reflect: <direction> <offset> <mask-box-image>

The direction parameter, which determines to which side of the element the reflection

should be built, can take either of four values: below, above, left, or right. The offset

can be set using any valid CSS size unit, including percentages, and will determine the

distance between the original image and its reflection. Finally, the mask can be any

image supported for the background-image property, as Figure 9–11 demonstrates. The

use of CSS gradients for the mask will of course make the process even simpler and

lightweight.

<style>
 img {
 -webkit-box-reflect: below 3px
 -webkit-gradient(
 linear,
 left top, left bottom,
 color-stop(0.7, transparent), to(rgba(0, 0, 0, 0.75))
)
 }
</style>

Using a gradient, like any other image format, the most important element is the alpha

channel, because pixels visible in the image used as a mask will be visible in the

reflection. Therefore, you will most often use PNG, although all formats are supported.

Using a format that doesn’t support transparency (or an image with no transparent or

partially transparent pixel) will be the same as not specifying a mask-box-image

parameter: a full mask will be applied, with all pixels visible. Note that the image will be

stretched to take all the available space of the reflection box.

Also keep in mind that when defining your reflection mask, even using a gradient, it will

be reversed according to the direction: if the reflection is projected on the x-axis, it will

be reversed as in a mirror, and it will be shown upside down if the projection is vertical.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 287

Figure 9–11. A simple reflection using a gradient

NOTE: On older WebKit versions, reflection doesn’t work in association with transformations.
Using reflections for your Cover Flow effect, you will see the reflection only for the focused
element using iOS version 3.2 or earlier. This has been solved in the latest versions of Safari.

You can of course use SVG, in which case the transparency of the colors will determine

the opacity of the pixels, or canvases, using the WebKit-specific –webkit-canvas()

function, explained in Chapter 7. This way, you could easily define animations on your

masks, for instance, if you wanted to create a wavy water-reflection effect.

Likewise, if the element from which the reflection is built changes—for instance during a

hover event—the reflection will take this change into account. Finally, remember that,

like shadows, CSS reflections do not change the dimensions of elements nor otherwise

affect the layout.

Using Real Masks
The third parameter to the reflection function is a mask, which can let you achieve quite

interesting effects once you have mastered their subtleties. Masks in WebKit are also

available as such with many advanced options and will let you finely cut out parts of

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 288

your page elements. The supported items supported for CSS masks are the same as for

reflections, that is, images, gradients, SVG, and canvases. Masks are declared much like

backgrounds, meaning that all the adjustments used for backgrounds—including those

presented in Chapter 6—can be used for masks, and you shouldn’t find difficult to

master the new possibilities available to you. Figure 9–12 shows the effect of the

following rule:

<style>
 img {
 -webkit-mask-image: url(mask.png);
 -webkit-mask-repeat: repeat-x;
 -webkit-mask-size: 50%;
 }
</style>

Figure 9–12. The content, mask, and association of the two with CSS

Not only can you use masks on backgrounds, but they can also be applied on borders

using the -webkit-mask-box-image property that behaves like the border-image property.

Note, however, that, unlike border images, border masks do not adapt to the

dimensions of the border; this means the corners will be rendered without scaling, and

the rest of the mask will be tiled or stretched depending on the parameter you specify,

regardless of the border itself.

Create an iOS-Like Tab Bar Using Masks
To convey an idea of the possibilities offered by masks and their options, we will create

a tab bar similar to that provided by the UITabBar object of the Cocoa Touch API, which

is often used in native applications (Figure 9–13).

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 289

Figure 9–13. The classic tab bar in the bottom of the Phone application

For this we will rely on canvases, masks, and the flexible box model that we introduced

in Chapter 6. Also, we will use the new :target pseudo-oclass to activate the current

tab, so absolutely no script or images are required.

Getting the Initial Tab Bar Ready
We are going to base our example on the web application template used and extended

in previous chapters. Simply add the code associated with our tabs:

...
<body>
 <div class="view">
 <div class="header-wrapper">
 <h1>Tab Bar Demo</h1>
 </div>

 <nav class="tabbar-wrapper">

 <li id="tab1"><i></i>Most Recent
 <li id="tab2"><i></i>Favorites
 <li id="tab3"><i></i>Search
 <li id="tab4"><i></i>Bookmarks
 <li id="tab5"><i></i>History

 </nav>
 </div>
</body>
...

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 290

The :target pseudo-class is going to let us focus the tab relevant to the active hash in

the URL. To do this, we add an ID to each list item of the list identical to the hash

specified as href to the anchor. The <i> and tags will only be placeholders for the

tab icons and their shadows. This will be explained thoroughly later in this chapter.

Next, we add some rules to our main.css file to style our tab bar. This shares some

resemblance with the header; it is simply higher and uses a slightly different gradient,

because the base color is black.

.tabbar-wrapper {
 background-color: black;
 background-image:
 -webkit-gradient(linear, left top, left bottom,
 from(rgba(255, 255, 255, 0.2)),
 to(rgba(255, 255, 255, 0.1)));
 background-repeat: no-repeat;
 background-position: top left;
 -webkit-background-size: 100% 50%;
 border-top: solid 1px rgba(0,0,0,0.6);
 position: absolute;
 bottom: 0;
 width: 100%;
}

Then, here are the rules relative to the list itself:

.tabbar-wrapper ul {
 border-top: solid 1px rgba(255, 255, 255, 0.2);
 height: 48px;
 display: -webkit-box;
 margin: 0;
 padding: 2px;
 text-align: center;
 color: hsla(0,0%,100%, 0.65);
 font-weight: bold;
 font-size: 9px;
 line-height: 1;
 -webkit-box-sizing: border-box;
}

.tabbar-wrapper li {
 width: 100%;
 list-style: none;
 -webkit-box-flex: 1;
 padding: 2px;
 margin-top: -1px;
}

.tabbar-wrapper li a {
 color: inherit;
 text-decoration: none;
 display: block;
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 291

So as not to worry about the size of our tabs, we use the box display mode for our

container (). From there, in order to make the tabs take up all the available width,

whatever the number of tabs and their individual width, we set their box-flex property to

1. Thus, even when the user changes the orientation of the device, our tab bar will

consistently span across the screen.

A Placeholder for Icons
Before adding icons to our tabs, let’s handle the tab selection, as announced, using the

:target pseudo-class. This is done as follows:

.tabbar-wrapper li:target {
 color: white;
 -webkit-border-radius: 3px;
 background-color: hsla(0, 0%, 100%, 0.2);
 text-shadow: rgba(0, 0, 0, .5) 1px 1px 1px;
}

Now, we can add the placeholder for our tab icons. Before applying a mask to draw the

icons, we define the containers that will hold the shadow and the blue icon.

.tabbar-wrapper li b {
 display: block;
 width: 36px;
 height: 36px;
 margin: -3px auto -1px;
 padding: 2px;
 -webkit-box-sizing: border-box;
}

.tabbar-wrapper li i {
 display:block;
 width:32px;
 height:32px;
 background-image: -webkit-gradient(
 linear, left top, left bottom, from(#bbb), to(#666)
);
}

.tabbar-wrapper li:target i {
 background-image:
 -webkit-gradient(radial, 72 170, 160, 72 170, 184,
 from(rgba(255,255,255,0)),
 color-stop(0, rgba(255, 255, 255, 0.3)),
 color-stop(0, rgba(255, 255, 255, 0.35)),
 to(white)
),
 -webkit-gradient(linear, left top, left bottom, from(#0062db), to(#44d5fe));
 -webkit-background-size: 48px 32px;
 background-position: right top;
}

The backgrounds define the gray and blue gradients (Figure 9–14) for the unfocused and

focused states of our tabs. They will show through the mask once it is defined. You can

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 292

already check the behavior of the :target pseudo-class by loading the page in your

browser.

Figure 9–14. The gray and blue gradients, before the application of masks

Icons Management
To create our icons, we are going to use the “sprite” technique, commonly used to limit

HTTP requests for background images; it can be used for masks also. As with

backgrounds, you will simply have to move the image within the container to show

different areas of the mask.

We have defined two containers—one that’s 36x36 pixels represented by a tag,

which will contain the shadow, and the other that’s 32x32 pixels represented by an <i>

tag, which will hold the icon mask. The shadow placeholder is slightly larger than the

actual icon placeholder, because in order to be visible, the shadow must span beyond

the limits of the icon (in this case, to the bottom right).

For our icons, we need an image whose alpha channel represents the shapes of the

pictographs we want to use; we will use canvases to build a template that will represent

the successive display stages. Figure 9–15 represents the template we are going to use.

For each shape, we are going to align three areas from this template vertically. The first

element represents the icon. The image holding the mask needs to be drawn black on a

transparent background, up to 30 pixels wide and high, and offset by 1 pixel from the

top and left. For a better result, the icon should be centered in the 30x30 pixels area.

Also note that within the black zone, you may draw some transparent pixels. The two

additional pixels of the <i> container will let us correctly position the icon in the tab bar.

The second element will be used for the shadow on unfocused tabs, which will emboss

the icon materialized by a gray gradient, as explained earlier. This area will be drawn

directly from the canvas by copying the first area without the 1-pixel vertical offset and

setting a lower opacity value. This is why the icon has to be drawn black.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 293

Figure 9–15. The template used to build an icon

To draw the last element, the drop shadow, we can copy the first one again and change

the opacity value three times (Figure 9–16). Proceeding this way, we needn’t worry

about the actual shape of the icon we draw to render the shadow.

Figure 9–16. A basic icon as three elements: the icon, the emboss shadow, and the regular shadow

We can now create our icons and use them in our tabs using masks.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 294

Creating Icons
The canvas definition that holds the different images should be declared within the client

code rather than from the main style sheet, because you are likely to need several tab

bars in the same web application at some stage. We are going to use the -webkit-
canvas() function, as shown in the following code:

<style>

.tabbar-wrapper li i {
 -webkit-mask-image: -webkit-canvas(tabbar-icons);
}

.tabbar-wrapper li b {
 background-image: -webkit-canvas(tabbar-icons);
}

</style>

As explained earlier, the <i> tag holds the icon, and we will use the previously defined

gradients. A mask will let us “cut out” the icon shape from the gradients. The tag will

hold a background that will simulate a shadow; we won’t need a mask for this, because

the shadow will already be defined from the canvas.

Here is how the icons are finally defined:

<script>

const AREA_SIZE = 36;

/* Prepare the 3 states of 3 icons */
initTabBarIcons("tabbar-icons", 3, createIcons);

function initTabBarIcons(id, count, src) {
 var ctx = document.getCSSCanvasContext("2d", id, AREA_SIZE * count, AREA_SIZE * 3);

 if (typeof src == 'function') {
 src(ctx);
 createShadows(ctx);

 } else {
 var i = new Image();
 i.onload = function() {
 ctx.drawImage(this, 0, 0);
 createShadows(ctx);
 }
 i.src = src;
 }
}

</script>

The initTabBarIcons() function takes three parameters. The two first parameters are

rather straightforward—first, the ID of the canvas to hold the icon states, and second, the

number of icons in order to correctly fit the canvas width. The last parameter can be either

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 295

a function or the URL of an image. In the first case, the functions will be called to draw

icons to the relevant context (passed as first parameter) using the Canvas API. In the

second case, the image will be loaded and then drawn to the canvas using the

drawImage() method. The image has to be built according to the scheme explained earlier.

For now, let’s draw our icons using the first configuration, with the createIcons()

function. We will go through the more common case later.

function createIcons(ctx) {
 ctx.save();

 /* Offset of 1x1 pixel */
 ctx.translate(1, 1);
 ctx.fillStyle = "black";

 /* A circle icon */
 ctx.beginPath();
 ctx.arc(15, 15, 15, 0, Math.PI * 2, false);
 ctx.fill();

 /* A square icon */
 ctx.translate(AREA_SIZE, 0);
 ctx.fillRect(0, 0, 30, 30);

 /* A triangle icon */
 ctx.translate(AREA_SIZE, 0);
 ctx.moveTo(15, 0);
 ctx.lineTo(30, 30);
 ctx.lineTo(0, 30);
 ctx.fill();

 ctx.restore();
}

Now, our canvas has three basic icons, for which the function createShadows() is going

to build shadows, as evoked earlier, by copying the icon and altering its opacity and

position. Figure 9–17 shows the final result.

function createShadows(ctx) {
 var c = ctx.canvas;
 var w = c.width;
 var h = c.height / 3;

 ctx.save();

 /* Draw the emboss shadow */
 ctx.globalAlpha = 0.25;
 ctx.drawImage(c, 0,0,w,h, 0,h*1-1,w,h);

 /* Draw the drop shadow */
 ctx.globalAlpha = 0.1;
 ctx.drawImage(c, 0,0,w,h, 1,h*2+0,w,h);
 ctx.drawImage(c, 0,0,w,h, 2,h*2+1,w,h);
 ctx.drawImage(c, 0,0,w,h, 3,h*2+2,w,h);

 ctx.restore();
}

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 296

Figure 9–17. The final result showing icons and their shadows

The canvas is now ready, so we need only add styles to position the shadows within

their areas. Here is the code to be added to the main style sheet:

.tabbar-wrapper li b {

...
 background-position: 2px -34px;
}
.tabbar-wrapper li:target b {
 background-position: 2px -70px;
}

Because we have a 2-pixel padding, we adjust the position of the background shadow

() so that it is aligned with the icon (<i>). Then, we select the relevant shadow by

moving the canvas upward, depending on the state of the icon.

If you test your page now, you will see that all tabs have the same round icon. To use a

different icon for each tab, still using the “sprite” technique, you simply need to move

the background by a specific amount of pixels. Because our blocs are 36 pixels wide

and the shadow requires a 2-pixel offset, the following code added to our CSS file will

take care of that:

<style>
...
 .tabbar-wrapper li:nth-child(2) i { -webkit-mask-position-x: -36px; }
 .tabbar-wrapper li:nth-child(3) i { -webkit-mask-position-x: -72px; }
 .tabbar-wrapper li:nth-child(4) i { -webkit-mask-position-x: -36px; }

 .tabbar-wrapper li:nth-child(2) b { background-position-x: -34px; }
 .tabbar-wrapper li:nth-child(3) b { background-position-x: -70px; }
 .tabbar-wrapper li:nth-child(4) b { background-position-x: -34px; }

</style>

Because we have only three icons for five tabs, we use two icons twice, as shown in

Figure 9–18. Sprites are a very convenient and flexible way to define background

images, and as stated earlier, they will generally help making your applications faster to

load, because they limit the number of HTTP requests, which is especially appreciable

on mobile devices.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 297

Figure 9–18. Our tabs with icons appropriately positioned

Custom Icons Using an Image
Our initTabBarIcons() function can take an image URL as its third parameter. Of

course, this will often be more flexible and familiar to developers than using the Canvas

API to draw icons. The image should contain as many black icons as needed, on a

transparent background, using the template shown earlier. The following call to the

function uses the image presented on Figure 9–19 to create the tab bar shown in Figure

9–20:

<script>
 initTabBarIcons("tabbar-icons", 5, "icons.png");
</script>

<style>
...
 .tabbar-wrapper li:nth-child(4) i { -webkit-mask-position-x: -108px; }
 .tabbar-wrapper li:nth-child(5) i { -webkit-mask-position-x: -144px; }
...
 .tabbar-wrapper li:nth-child(4) b { background-position-x: -106px; }
 .tabbar-wrapper li:nth-child(5) b { background-position-x: -142px; }

</style>

Figure 9–19. icons.png is used for the tab bar icons

Figure 9–20. A tab bar using an external image

First, the image is copied to the canvas and the building process is launched. Then

everything happens exactly like when using a canvas definition, and the icons are

positioned. The process is very simple to set up and makes code maintenance easy,

because only one image is required to handle both the icons and their shadows.

CHAPTER 9: Handling Transformations, Animations, and Special Effects with CSS 298

Summary
Although the new CSS properties introduced in this chapter may seem unfamiliar and

somewhat disturbing, you will soon find that they can greatly enhance the user

experience for your web applications, both by making them more appealing visually via

animations and masks and by allowing better performances relying on hardware

optimized transformations.

By limiting the number of images and scripts required to achieve attractive effects, not

only should you be able to limit the number of HTTP requests, reduce the overall file size

to be loaded for your pages, and make your pages easier to process for the rendering

engine, you should end up with code that is easier to maintain, more flexible, and, with

some practice, faster to build.

299

 Part

Going Futher with
JavaScript and
Web Standards

III

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

301

301

 Chapter

An Object-Oriented
JavaScript Programming
Primer
It is more than likely that, as shown in the previous chapters, you will heavily rely on JavaScript

to build your web applications. Over time, client-side scripting has become an ever more

crucial tool for developers, with the progress of hardware, the evolution of expectations, and,

recently, new APIs that bring the most desirable functionality to web content.

However, this language, to be efficiently used, requires that the developer understands

some of its specificities, such as weak typing and its object model. We will explain the

object-oriented programming part, which should help you bring more modularity to your

programs, encapsulate some APIs to make their use more flexible and generic, and

make them easier to maintain. This chapter will also help you better understand

execution context issues that you are likely to run into when using event handlers or

callback functions, as used extensively in the upcoming chapters. You will also find out

how to effectively solve the problems of code execution isolation when you need to

work with third-party scripts to enhance your web applications or when you provide

scripts to other sites yourself.

From the Procedural Model...
The procedural programming model is still widespread nowadays. As in BASIC, this

means you use a series of functions to control the state of your program by modifying

variables and changing their values. The most common way to do this is as follows:

var state = add(5, 6, 7);

function add(a, b, c) {
 return a + b + c;
}

10

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 302

Proceeding this way, you multiply the number of independent and possibly redundant

functions and variables. Yet, in JavaScript, this is actually already OOP. As soon as you

define a function, the scripting engine creates an instance of the Function object.

Therefore, the previous code is the same as what follows:

var add = new Function("a", "b", "c", "return a + b + c");

The Function object takes a series of strings as parameters, the last always being the

code to be executed and the others being arguments for use by the defined function.

There are several ways to declare these parameters. You can declare them as we did

previously, or you can group comma-separated arguments within the same string to

form the list of parameters for the function. Hence, the previous example could have

been written like this:

var add = new Function("a, b", "c", "return a + b + c");
var add = new Function("a, b, c", "return a + b + c");

Of course, the function keyword is a very useful shortcut, because declaring a function

within a string the way it is done using the Function object would quickly prove difficult

to handle.

Using instantiation for our previous example will quite evidently result in code similar to

the following example:

var add = function(a, b, c) {
 return a + b + c;
}

Note that you can also add a name to your function so that it can refer to itself within the

function. Specifically, this declaration type is the basis of creating objects.

...to Object-Oriented Programming
When a function is declared, an object is created internally that is attached to the global

object of the hosting environment. With JavaScript, in the browser context, this is the

DOMWindow object of the browser, accessible using the window property. This means

when you declare a function, you extend the window object, and the function will be

accessible through this property, as any variable would be.

var state = window.add(5, 6, 7);
var result = window.state;

Using the faculty of objects to be extended with properties and methods, we are going

to create a simple program to illustrate the assets of OOP.

A First Custom Object
Using object-oriented programming, any object inherits from the base object Object, as

seen in languages like .NET or Java. This means all properties and methods available to

the Object object will be available to the inheriting object. The most common example is

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 303

the toString() method. So, beginning to create our object, we create an instance of

Object with the new keyword. From there we can extend it with the following code:

var animal = new Object();

/* Additional properties */
animal.family = "Unnamed";
animal.noise = "Silent";
animal.legs = 4;

/* New method */
animal.makeNoise = function() {
 console.log("The noise of " + this.family + " is " + this.noise + ".");
}

Calling the function and reading the properties of our object is easy:

animal.makeNoise();
console.log(animal.legs);

--- result ---
> The noise of Unnamed is Silent.
> 4

In our examples, we adopt the naming conventions of the language, that is, camel case,

with an uppercase first letter for object definitions and a lowercase first letter for its

properties.

The keyword this will let you access the current execution context. In our example, this

is the instance of the object, which allows us to reach the properties previously defined

and use them to build a readable string. The execution context is an important notion

that we will explain in more detail shortly.

The effect achieved with the previous code can also be reached using a slightly different

syntax.

var animal = {
 family: "Unnamed",
 noise: "Silent",
 legs: 4,

 makeNoise: function() {
 console.log("The noise of " + this.family + " is " + this.noise);
 }
};

This method to create objects is called an object initializer. It can be useful to

dynamically create anonymous objects and, for instance, return several values from a

function; however, it doesn’t offer the flexibility provided by other object-oriented

languages, because the definition of the object here isn’t easily reusable.

Using a Proper Constructor
The animal we have created obviously isn’t very lively yet. Let’s remedy this. To make

our object structure reusable, we need to add a constructor using a Function object.

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 304

ECMAScript doesn’t have actual classes but uses constructors that let you allocate the

object and initialize its properties. The following code does just that:

/* Constructor */
var Animal = function() {
 /* Properties */

 this.family = "Unnamed";
 this.noise = "Silent";
 this.legs = 4;

 /* Method */
 this.makeNoise = function() {
 console.log("The noise of " + this.family + " is " + this.noise + ".");
 }
}

This allows you to get an instance of Animal, using the new keyword again.

/* Create a first instance of Animal */
var animal1 = new Animal();
animal1.family = "Mussel";

/* Create a new instance of Animal */
var animal2 = new Animal();
animal2.family = "Plankton";

animal1.makeNoise();
animal2.makeNoise();

--- result ---
> The noise of Mussel is Silent.
> The noise of Plankton is Silent.

This means we can use our object as many times as needed with totally independent

instances, each holding their own properties. Still, this is not optimal, because the

syntax used to declare each method forces the engine to instantiate a new Function

object for the makeNoise() method for every instance rather than using a reference to the

object. This means that more memory will be used, which could be a problem if the

object is used intensively.

Better Performance with Prototype
There is a property introduced by ECMAScript that solves this reinstantiation issue,

named prototype. Every constructor has this property available to implement

inheritance and shared properties. Hence, we can further better our object:

/* Constructor */
var Animal = function() {
 this.family = "Unnamed";
 this.noise = "Silent";
 this.legs = 4;
}

/* A more efficient way to define a method */

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 305

Animal.prototype.makeNoise = function() {
 console.log("The noise of " + this.family + " is " + this.noise + ".");
}

The defined method will be shared by all instances of the Animal object and will be

instantiated only once. This is true for all properties defined this way.

WARNING: This is an important notion: all properties defined using prototype will be shared
by all instances of the object. Hence, modifying the value of a property will impact all instances.

Of course, this syntax uses more code; therefore, you should always seek a good

balance between concise code and memory usage. Still, referring to the Function object

instead of instantiating makes a great difference in performance, because allotting

memory is a very greedy operation. Safari’s Web Inspector should be of some help to

evaluate this, as shown in Chapter 3.

Implementing Inheritance
Although JavaScript is an object-oriented language, it isn’t based on the class concept,

like C++ or Java, for instance. Instead, it relies on constructors and prototypes, and

each constructor has a prototype property available to it. The engine implicitly sets the

value of this property to a reference that points to an instance of Object, which implies

that it inherits from Object. This instance will be shared by all instances of your object,

which is the reason why all methods defined using prototype will also be shared,

because they extend prototype.

Prototype-Based Inheritance
To implement prototype-based inheritance for your own objects, you simply need to

redefine prototype so that it inherits from your object instead of Object. Thus, to further

specify your animals, you could use the following code:

/* Constructor */
var Dog = function() {
 this.family = "Dog";
 this.noise = "Woof!";
};

/* Dog will inherit from Animal */
Dog.prototype = new Animal;

/* Add a new method to Dog */
Dog.prototype.showLegs = function() {
 console.log("The " + this.family + " has " + this.legs + " legs.");
}

We define a new object called Dog, whose default properties are changed using the

constructor to actually fit with a dog. Other properties are already defined through the

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 306

Animal constructor, as illustrated in our next block of code. The previous script starts

with a instantiation of Animal that is associated with the prototype property of the Dog

object when the code is evaluated. The call to the constructor of Dog will occur only after

this initialization, using the new keyword.

var dog = new Dog();
dog.makeNoise();
dog.showLegs();

--- result ---
> The noise of Dog is Woof!.
> The Dog has 4 legs.

Here the legs property is present, although it hasn’t been defined in the constructor of

Dog, and the makeNoise() method returns a string with the appropriate values for family

and noise. Proof is made that Dog inherits from Animal.

Shared Properties
However desirable limiting memory usage and function instance multiplication may be,

you could learn the hard way that, using inheritance, all properties from the inherited

object (arrays, anonymous objects, and so on) are also defined using this principle and

thus are shared by all instances of your object. You could, for instance, add an array to

your initial object to hold all of the eye color values for your animals.

var Animal = function() {
...
 this.eyeColor = [];
}

You would then create two dogs with their own eye color:

var dog1 = new Dog();
dog1.eyeColor.push("brown", "brown");

var dog2 = new Dog();
dog2.eyeColor.push("blue", "brown");
console.log(dog1.eyeColor);
console.log(dog2.eyeColor);

--- result ---
> ["brown", "brown", "blue", "brown"]
> ["brown", "brown", "blue", "brown"]

And, as you can see, you would have two dogs, each with no less than four eyes. This

can be remedied by defining an initialize() method, which should be used to initialize

sensitive properties. Doing just this will return more appropriate information.

var Animal = function() {
...
 this.initialize();
}

Animal.prototype.initialize = function() {
 this.eyeColor = [];

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 307

}

var Dog = function() {
...
 this.initialize();
}

--- result ---
> ["brown", "brown"]
> ["blue", "brown"]

This convenient method prevents the inheriting object from gathering what its parent

contains and initializes. Reinitializing properties directly from the constructor of Dog is

possible but would harm the maintainability of your code, because you would have to

change Dog every time you altered the definition of Animal. However, redefining a

property in an inheriting object doesn’t mean that its initial value is lost, as shown with

the following example:

Animal.prototype.initialize = function() {
 this.eyeColor = ["initial value"];
}
...
console.log(dog1.eyesColor);
delete dog1.eyesColor; // Delete the property created with initialize()
console.log(dog1.eyesColor); // Return the property from Animal
console.log(dog2.eyesColor); // Other instances are not affected

--- result ---
> ["brown", "brown"]
> ["initial value"]
> ["blue", "brown"]

The object dog1 is instantiated, which creates a new eyeColor property on the prototype.

This way, the previous code will return the correct value for the eye color of our first dog.

Then, we empty this property using the delete operator. With the next access to the

property, the scripting engine will move up the prototype hierarchy until it finds a

property with the same name and returns the value of this property, if any. This is why

we get the content of the array as defined for the Animal object.

Generally, this initialization issue isn’t encountered with properties with a more primitive

type such as Boolean or Number, because the most common technique is to redefine

values directly on the property. On the contrary, it is common to use methods to

populate an array (such as push() or unshift()) or to scan it (such as pop() or shift());

hence, you would be working directly on the shared instance of the Array object, instead

of working on the property.

The Prototype Chain
ECMAScript introduces the prototype chain concept. The prototype property allows

you, as indicated earlier, to move up the chain of the original properties of inherited

objects. This is what the engine does when it calls a method. Thus, calling

dog.makeNoise(), the engine checks whether Dog has this method; if this is not the case,

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 308

it will move up the chain until it finds the called method—or not. This specificity can be

used to call methods of the base object. For this, you simply have to get the base

prototype and call the method with the correct execution context.

var Dog = function() {
 this._base = this.constructor.prototype;
...
}

Dog.prototype.makeNoise = function() {
 console.log("Modified Version...");
 this._base.makeNoise.call(this);
}

var dog = new Dog();
dog.makeNoise();

--- result ---
> Modified Version...
> The noise of Dog is Woof!.

We use the internal constructor property to access the prototype in order not to depend

on the initial object. We could have used, for the value of _base, Animal.prototype. The

_base property is used to call makeNoise() through the call() method of the object

Function. This method will let you specify the execution context and thus use the values

from the current object properties, not those of the base object.

The Execution Context
Programming with JavaScript, the execution context is a crucial notion. It is what

determines what is accessible and what isn’t at the moment some code is executed and

functions are accessed. The call() method of the Function object takes at least an

execution context as a first parameter; you can then add a comma-separated list of

other parameters that will be passed to the called function.

Using the call() and apply() Methods
One problem is that you may not always know exactly how many parameters you might

need to pass to your function when you call it. Moreover, fixing parameters explicitly for

the call() method doesn’t favor maintainability and code reusability. Here’s an

example:

Animal.prototype.initialize = function() {
...
 this.colors = [];
}

Animal.prototype.setColors = function(color1, color2) {
 this.colors.splice(0, this.eyesColor.length);
 this.colors.push(color1);
 this.colors.push(color2);

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 309

}

Dog.prototype.setColors = function(color1, color2) {
 console.log("Adding colors: " + color1 + ", " + color2);
 this._base.setColors.call(this, color1, color2);
}

dog.setColors("white", "maroon");

Here, it is clear that this process isn’t very flexible, because only two colors can be

attributed to an animal. This could be addressed simply by using a variable number of

parameters that would be processed in a loop using the arguments property, as

illustrated here:

Animal.prototype.setColors = function() {
 this.colors.splice(0, this.eyesColor.length);

 for (var i = 0; i < arguments.length; i++) {
 this.colors.push(arguments[i]);
 }
}

To solve the problem met with the setColors() function of the object inheriting from

Animal, you can use the apply() method of the Function object. This method takes the

execution context as a parameter, like when using call(), and takes arguments, unlike

call(), as an array, instead of a list. Hence, our code can be optimized.

Animal.prototype.setColors = function() {
 this.colors.splice(0, this.eyeColor.length);
 this.colors.push.apply(this.colors, arguments);
}

Dog.prototype.setColors = function() {
 console.log("Adding colors: " + arguments.join(", "));
 this._base.setColors.apply(this, arguments);
}

Because we know which type of argument the function expects, we needn’t list these in

the function declaration; the only unknown element is the number of arguments. With

the setColor() method of the Animal object, we use apply() on the push() method,

which initially takes a list of elements to add to an array. In this case, the context needn’t

be modified but has to be specified, so we use this.colors to keep the correct context.

Then, to simplify the call of the base method from within Dog, we replace call() with

apply(), to make the number of arguments totally unimportant. You will therefore be

able to call any method from the base object whatever the signature of the function.

The apply() method should come to great use developing web applications as soon as

the application relies on lists whose lengths vary dynamically. For instance, this method

can be used to handle an array of objects holding data in order to display a list of e-

mails and to let the user show more messages using a More button, like in the iPhone

Mail application. In this case, apply() would let you save a loop by simply adding the

objects to the list with the push() method of the Array object.

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 310

This is more efficient, because the process is handled natively by the scripting engine

and doesn’t have to be interpreted in a loop.

Taking Care of the Execution Context
This is all rather simple, but it may sometimes be difficult to identify where a piece of

code is going wrong, especially when using a reference to a method. For instance, using

the first definition of Dog, you could expect that funcRef() would return the same string

as seen previously.

var funcRef = dog.makeNoise;
funcRef();

--- result ---
> The noise of undefined is undefined

On the contrary, here, the properties are not available, so their return value is undefined.

This is because the reference was taken on the function makeNoise(). Although

makeNoise() is referred to through an instance of Dog, it has no relation with any context.

In this case, dog.makeNoise is a reference to an instance of the function.

Calling dog.makeNoise(), the context is fixed by the dog object. Because the method is

called with dog and the context is the caller of the function, this refers to the instance of

Dog, and the result is as expected.

On the other side, when defining funcRef, dog was used only to access the reference to

the instance of the function. After that, the engine moves out of the context (dog) to

execute the next instruction. Thus, when we actually call funcRef(), the calling context
is set to the default context, the global window object. This is easily verified, as shown

here:

...
var family = "Bird";
funcRef();

--- result ---
> The noise of Bird is undefined

This kind of issue comes up often when you’re building web applications, because you

will often rely on a reference to define event handlers and timers. Using

addEventListener(), the context is always that of the object to which the listener is

attached to; managing setTimeout() and setInterval(), which are methods of the

window object, the context will be window itself.

Setting the Proper Context with Handlers and Callbacks
In Chapter 7, we have created a spinner with the canvas and JavaScript. In the functions

we used, you may have noted that we put the value of this into the variable that and

then encapsulated the call in an anonymous function. This technique lets you use the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 311

right context and thus allows you to correctly execute methods with the right instance.

Here is the relevant part of the code, the animate() method of the BigSpinner object:

BigSpinner.prototype.animate = function() {
 /* Already running? exit... */
 if (this.timer) {
 return;
 }

 /* The execution context (this) will be the window object with setInterval()
 Save the correct context in "that" variable and run the timer */
 var that = this;
 this.timer = window.setInterval(function() {
 that.draw();
 }, 100);
}

The variable that is local. Still, because it is referenced within the timer, it will be kept in

memory, and its range will be valid until the timer is canceled with the clearInterval()

method. This is the most common way to call a method by reference. To make the

syntax of such a technique easier in your code, you can extend the native Function

object with a new method that will bind an execution to a specific context. Note that all

native objects can be extended. You should also notice that we test for the existence of

such a method; this is because it is planned for with the fifth version of the ECMAScript

specification. Our version is simplified.

if (!Function.prototype.bind) {
 Function.prototype.bind = function(ctx) {
 var that = this;

 return function() {
 that.apply(ctx, arguments);
 }
 }
}

However convenient this may be, be aware that every time you call this function, the

Function object will be instantiated anew. Therefore, if you need to use this reference

several times, consider associating it to a variable or a property in order not to take up

too much memory. Also take into account that saving the reference is necessary to

remove an event listener. In the following code, you wouldn’t obtain the expected result,

because two different instances are passed to the addEventListener() and

removeEventListener() methods.

/* Listen to "load" event */
document.body.addEventListener("click", some.method.bind(someParameter), false);

/* Try to remove listener, but nothing happens */
document.body.removeEventListener("click", some.method.bind(someParameter), false);

Instead, you should do as follows, which will work:

/* Get a reference */
var ref = some.method.bind(some);

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 312

/* Listen to "load" event */
document.body.addEventListener("click", ref, false);

/* The listener can be found and removed */
document.body.removeEventListener("click", ref, false);

Here, the references in the listener methods are to the same instance, and the second

method will find the method used in the first. This of course is important, especially

when repeatedly adding and removing listeners for animations, as we saw in our

previous chapter about CSS transitions. Indeed, as long as a listener hasn’t been

removed, the instance of the object is still being referenced, the listener is still working,

and the memory load and CPU load will continuously grow, as more and more code is

executed for a same event.

Accessing Properties and Methods
As illustrated in this chapter, it is easy to access a property with commands with the

form object.property. The same is true for methods, because these are properties that

reference an instance of the Function object. All these properties are actually stored as

key/value pairs in a hash table. Hence, they are accessible using the

object["property"] syntax, which is especially useful, for instance, when setting

properties for a character in a role-playing game. This is similar to the DOM

setAttribute() method.

var Character = function(name) {
 this.patronym = name || "The Unknown";

 this.characteristics = {
 stamina: 10,
 mana: 10,
 skill: 10,
 health: 100
 };
}

Character.prototype.setCharacteristic = function(prop, value) {
 if (this.characteristics.hasOwnProperty(prop)) {
 if (value >= 0 && value <= 250) {
 this.characteristics[prop] = value;
 }
 }
}

Character.prototype.showCharacteristics = function() {
 console.log("Characteristics of " + this.patronym + ":");
 for (var prop in this.characteristics) {
 console.log("=>" + prop + ": " + this.characteristics[prop]);
 }
}

var paladin = new Character("Danis");
paladin.setCharacteristic("health", 200);
paladin.setCharacteristic("mana", 0);

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 313

paladin.showCharacteristics();

--- result ---
> Characteristics of Danis:
> => stamina: 10
> => mana: 0
> => skill: 10
> => health: 200

To prevent our characteristics object from artificially growing, we check that the

requested property exists when setCharacteristic() is called. Besides, we check that

the value is within a reasonable interval. Checking that properties exist also prevents

errors due to letter case, because properties are always case sensitive.

In our example, we have used the hash table syntax to iterate through our properties

using the for...in statement and to display their values. Be careful, however; because

our example properties are displayed in the same order as they were declared in, this

won’t necessarily happen. Never expect a specific order when scanning the properties

of an object.

Defining Getters and Setters
In our previous example, we have used a method to set the values for several properties,

which is quite similar to using a setter in other object-oriented programming languages.

JavaScript will also let you define getters and setters, also called accessors, though this

is of limited use, because unlike some more complex languages, you won’t be able to

define object properties other than public ones. There is no native way to define private

properties meant only for use within one specific object. Therefore, whereas

programming with other languages you would try to protect access to some variables to

make your code easier to maintain, it is common with JavaScript to leave variables of an

object instance available to the client code.

Programming in JavaScript, you should dissociate elements from an existing object to

use them as properties rather than use a method. Accessors will also allow for control

over the access and over the associable values by a property. For instance, if you

wanted to create an object that would count the time elapsed during the execution of a

function to compare one technique to another, you could expose the conversion from

milliseconds to seconds using a property created with a getter.

/* Object definition */
var Timing = function() {
 this.elapsed = 0;
}

Timing.prototype.test = function(iter, func) {
 var time = new Date();

 for (var i = 0; i < iter; i++) {
 func();
 }
 this.elapsed = new Date() - time;
}

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 314

Timing.prototype.__defineGetter__("seconds",
 function() { return this.elapsed / 1000; });

/* Using the object... */
var timer = new Timing();

/* Test Math.floor() speed */
timer.test(1000000, function() { var a = Math.floor(10.6) });
console.log(timer.seconds);

/* Test shorter/faster way */
timer.test(1000000, function() { var a = (10.6 << 0) });
console.log(timer.seconds);

--- result ---
> 0.035
> 0.011

We have a read-only property that lets us get the elapsed time in seconds using the

__defineGetter__ method. This method takes the name of the property to create as a

first parameter and a function to call as a second parameter. This, however, only allows

you to read the value. To be able to write to the property, you also need to define a

setter. You should define such a function like a getter, only passing a value to the

associated function.

Timing.prototype.__defineSetter__("reset",
 function(value) {
 if (value === true) {
 this.elapsed = 0
 }
 });

Accessors can be added either to an object, as shown here, or dynamically to an

instance. You can also use them directly with object initializers, using the get and set

keywords to prefix the relevant property.

var something = {
 prop: "value",
 get someProp() { return this.prop },
 set someProp(value) { this.prop = value }
};

This can be useful in some cases, but keep in mind that these accessors are slower to

execute than a method that would do the same thing—which in turn would still be

slower than a regular property. Note that although these accessors are not standards,

they are supported by Mobile Safari and by many other browsers. Therefore, they may

be of more use for very large JavaScript applications where strong control over

properties guarantees that the code is correctly executed.

Code Isolation and Libraries
It is often desirable to isolate code as much as possible from other scripts in a web page

or site to avoid conflicts when using a third-party snippet or when providing libraries to

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 315

other web applications. This can be done resorting to the scope chain. The scope chain

defines the environment, bound to the execution context, where a function is executed.

In other words, it is a list of objects that are scanned when evaluating a property. Every

call to a function pushes new elements on this chain.

Isolating Your Code
Isolating code is rather straightforward to implement: you just have to enclose your

function in parentheses to force evaluation and then launch execution as with any

function reference.

(function() {
 /* Your code here */
})();

Anything declared within this function will be pushed to the scope chain and won’t be

accessible from functions external to it, because its context will be bound to this

function. Thus, there is no risk of overwriting external properties, as long as you use the

var keyword to force the definition of a new variable. Not using this keyword would

result in a search against the scope chain that could move up to a corresponding

declaration outside the function.

var variable1 = "This is external variable 1.";
var variable2 = "This is external variable 2.";

function someFunc() {
 console.log("External someFunc() called.");
}

(function() {
 var variable0 = "Not accessible from external code.";
 var variable1 = "This is internal variable 1.";
 variable2 = "This is bad... replaced external variable 2.";

 function someFunc() {
 console.log("Internal someFunc() called.");
 console.log("Am I in 'window' context: " + (this == window));
 }

 /* Trace starts here... */
 someFunc();
 window.someFunc();
})();

/* ...and continues here */
console.log(variable0);
console.log(variable1);
console.log(variable2);
someFunc();

--- result ---
> Internal someFunc() called.
> Am I in 'window' context: true
> External someFunc() called.

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 316

x ReferenceError: Can't find variable: variable0
> This is external variable 1.
> This is bad... replaced external variable 2.
> External someFunc() called.

In the previous code, we define two external variables and a global function named

someFunc; then, we write some code that is isolated and executed immediately. You will

have noticed that the second internal variable doesn’t overwrite its external counterpart,

because it is defined using the var keyword. On the contrary, for the last variable, no

keyword is used—the engine hence looks for a property with this name in the scope

chain and, finding one, will set a new value for it. Finally, someFunc() is not overwritten,

because its definition is equivalent to the following:

var someFunc = function() { ... }

Therefore, it will be pushed to the scope chain and found on the stack whenever

someFunc() is called. Of course, you can also call the someFunc() method previously

defined by specifying the object to which it is attached—window in our example. The var

keyword works differently outside a function and binds variables and functions as

properties of the global object.

Creating a Library
Now, let’s consider that our isolated function may return something, like an object

initializer; then, you would be defining a static object with private variables and

functions.

var MyStatic = (function() {
 var localVariable = "LOCAL";

 var public = {
 someProp: "PUBLIC",
 someMethod: function() {
 console.log(localVariable);
 }
 };

 localVariable += " " + public.someProp;

 return public;
})();

MyStatic.someMethod();

--- result ---
LOCAL PUBLIC

Using an object initializer as with public in our example, we actually create an instance

of Function. Thus, that is equivalent to the following:

var public = new function() {
 this.someProp = "PUBLIC";
...
}

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 317

When a function is defined within another function and a reference is made to this

Function object, a closure is created. Thus, functions and variables outside public but

used in these methods are referenced inside the closure and so will be stored as long as

the closure remains valid. Such variables are a kind of private property to the public

object, because they are accessible only by this object. We already met closures in a

previous example, defining the bind() function.

This technique is used in many libraries and web application frameworks like jQuery, iUI,

or WebApp.Net to isolate the library core as much as possible while still allowing for

interaction with client code.

Enhancing Your Spinner Animation
You should now have a pretty firm grasp of what JavaScript OOP is. We are now going

to use some of the principles presented earlier to make the BigSpinner object from

Chapter 7 better. The new object will let you create different spinners by concentrating

on the animation rendering. Of course, some of the code will be taken as is from the

original object.

First, rename the BigSpinner object to CanvasAnimator, and apply the following changes:

/* Base object to be inherited */

var CanvasAnimator = function() {
 /* Default dimensions */
 this.width = this.width || 37;
 this.height = this.height || 37;

 this._base = CanvasAnimator.prototype;
}

CanvasAnimator.prototype.init = function(id, color, shadow) {
 /* Initialize the canvas and save the context */
 this.context = document.getCSSCanvasContext("2d", id, this.width, this.height);

 /* Animation variables */
 this.step = 0;
 this.timer = null;

}

CanvasAnimator.prototype.stop = function() {
...
 this.context.clearRect(0, 0, this.width, this.height);
...
}

CanvasAnimator.prototype.animate = function() { ... }

/* Abstract method */
CanvasAnimator.prototype.draw = null;

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 318

The changes brought to the original code are minor here. In this object, we only put

what will be common to any spinner and define one abstract method that we set to null

to force its definition from the object that will inherit CanvasAnimator. For our first

spinner, we are going to use the methods from BigSpinner that draw the canvas context

and fix the dimensions using the new width and height properties.

/* The new BigSpinner object */
var BigSpinner = new Function();

/* Inherit from BaseSpinner */
BigSpinner.prototype = new CanvasAnimator;

BigSpinner.prototype.init = function(id, color, shadow) {
 /* Call the base method */
 this._base.init.apply(this, arguments);

 /* Line style for the spinner */
 this.context.lineWidth = 3;
 this.context.lineCap = "round";
 this.context.strokeStyle = color;

 /* Define a shadow for the spinner */
 if (shadow) {
 this.context.shadowOffsetX = 1;
 this.context.shadowOffsetY = 1;
 this.context.shadowBlur = 1;
 this.context.shadowColor = shadow;
 }
}

BigSpinner.prototype.draw = function() {
 /* Clear the canvas */
 this.context.clearRect(0, 0, this.width, this.height);
...
}

BigSpinner.prototype.drawLine = function(i) { ... }

Coding JavaScript, there is no notion of abstract classes, in other words, incomplete

implementations that will be finalized using an inheriting class. Still, this is what we try to

achieve. The only missing method is draw(), which is moved to our inheriting objects in

order to define our different spinners. We also override the init() method to prepare

the canvas context. CanvasAnimator, the base object, only plays the animation drawing

frames through the draw() method. All that is left to do is to create your own animations.

Summary
Although JavaScript OOP is more limited than other languages, with this application,

you have proof that it can make your code notably more flexible and usable.

Always keep in mind that objects, like methods, should as much as possible focus on

doing one thing or as much as possible pertain to one area of action. Also, always

ponder the respective assets of inheritance or composition when defining what your

CHAPTER 10: An Object-Oriented JavaScript Programming Primer 319

objects are and what they hold. The object doesn’t make everything, and design and

architecture are more important because they are what will determine how flexible,

maintainable, and easy to extend your applications will be.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

321

321

 Chapter

Cross-Document
Communication
There are many cases where integrating external content into a web page can really

make a difference to its richness. It is no secret that the Web isn’t as static as it initially

was, and including pieces from other pages, importing raw data, RSS feeds, or so-called

widgets has become a norm as found on Netvibes or iGoogle (shown in Figure 11–1),

where content and tools from several sources are appropriately brought together in a

single page to supply users with a kind of synthesis of their interests.

Figure 11–1. iGoogle lets you create your own unique page by grouping external content

11

CHAPTER 11: Cross-Document Communication 322

This can be quite easily done by handling XML or JSON feeds (preferred for back-end

and front-end treatment, respectively), but the easiest way to include a page into

another is to virtually create a new page inside your page with an iframe. In many cases,

you are likely to choose the latter method. Fetching feeds can be a lot of work, because

you have to handle both getting the feed to parse or store it and handling its layout in

your pages in the first place.

Because the <iframe> tag acts as a raw inclusion of a page into another one, you will

just have to indicate the source URL and let the magic operate. This cuts out most of the

maintenance work, leaving it to the site you load the page from. What’s more, it takes

care of security issues that arise when using untrusted or unreliable code, because no

communication is possible between the <iframe> tag and the host page.

However, communication between part of your pages will quite often be desirable, either

to add functionality, to operate tweaks on the imported content, or to gather specific

information from the external document. Traditionally, this is possible only one way,

when the page first loads, by passing data such as color or other styling information to

the iframe source query string.

One of the most annoying problems using iframes arguably is that because your main

document has no idea of the external document, there is no straightforward manner to

determine which height should be allotted to the <iframe>. This often results in the

appearance of scrollbars or in truncated content. Although specifically this is not a

problem on the iPhone, as you will soon see, it could often be useful if the content of the

frame could communicate this kind of information to the parent document or if, for

instance, it could send a message to notify that its content has been successfully loaded

to trigger some process in the main document. This is all possible now thanks to the

new Cross-Document Messaging API.

Cross-Document Communication Limitations
For years, communication between pages from different domains—or even different

subdomains—has been prevented because of security reasons and privacy

considerations. Letting any page access any other freely can lead to uncontrollable

attacks and the spreading of malicious programs.

The limitation also protects intellectual property, to some extent. Practically, you cannot

apply styles to the included content, nor can you access it with scripting languages.

Therefore, a request as basic as the following code will return an exception:

<!DOCTYPE html>
<html>
<head>
 <title>Quick Sample</title>
</head>

<body>
 <iframe src="http://www.apress.com/"></iframe>
 <script>

http://www.apress.com

CHAPTER 11: Cross-Document Communication 323

 window.addEventListener("load", function() {
 var frame = document.getElementsByTagName("iframe")[0];
 alert(frame.contentWindow.document.title);
 }, false);

 </script>
</body>
</html>

The exception simply occurs because, as far as your page is concerned, the

conentWindow frame object has no document property.

NOTE: This code will not yield an exception if you try to load the iframe inside a page accessed
using a file:// URL scheme, because in this case, the security context is completely different.
Therefore, always test your pages in real-life conditions to avoid delusions when putting your
web applications online.

Up to now, there was no easy way out of this trap. If your conflict involved different

domain prefixes on a single domain, you probably would have moved the relevant files

from one place to another to make the problem disappear altogether, but if you were

coping with multiple sites, the only solutions available would have been both mind-

twisting and awkward to maintain.

Communication, the HTML5 Way
HTML5 introduces an API that is meant to allow communication between documents

whatever their source domain while preventing cross-site scripting attacks as much as

possible. It may seem a dream; the following sections detail how it works.

The Cross-Document Messaging API
The API itself is quite straightforward. It simply introduces the MessageEvent object and a

method used to send messages that can be applied to a window object. Table 11–1

presents the main properties for the event object as it is sent to a remote document.

This event cannot be canceled, it doesn’t bubble, and it has no default behavior.

Table 11–1. Main Properties of the MessageEvent Object

Property Description

event.data The data that is sent with the postMessage() method.

event.origin The origin of the message.

event.source The source window.

file://URL

CHAPTER 11: Cross-Document Communication 324

The MessageEvent object is sent to the destination window with the postMessage()

method. The parameters currently supported by Mobile Safari, listed in Table 11–2, are
all required.

Table 11–2. Parameters for the postMessage() Method

Parameter Description

message The message that will be accessed in the target window with the data

property of the event object

targetOrigin The target to which you accept to deliver the message

The targetOrigin parameter can be defined under three forms, either an absolute URL,

a / to indicate the same origin, or the * wildcard, indicating that no origin check will be

performed.

If the value of targetOrigin doesn’t match the actual origin of the target window, the

message is ignored, for security reasons. If the targetOrigin parameter is not defined, a

SYNTAX_ERR exception will be thrown.

Data Type Support and Handling
The API specifies that several data types should be supported by the data property.

Unfortunately, only the string format is currently supported in Mobile Safari as of OS 3.2.

Nonetheless, there are quite effortless workarounds to handle several other types. For

instance, the Number, Boolean, or Date objects have a convenient toString() method

that will return appropriate values and allow for further processing—including

reconversion to objects. Do remember, though, that because the elements passed as

parameter will be plain strings, you won’t be able to access any of their initial properties,

as made clear in the following example:

var o = { someProperty: 'someValue' };

The preceding will appear in the data property as [object Object], a 15-character

string. This requires that you pay attention, of course, to the elements that you pass as

parameters to the postMessage() method but also that you take extra care of checking

the data you receive.

Mobile Safari’s implementation of the API yet isn’t much more restrictive than the API

itself. The Cross-Document Messaging API doesn’t intend that native DOM objects

should be handled by the postMessage() method. Therefore, you should never be able

to access objects through the document.getElementById() method or get information

about the page structure.

CHAPTER 11: Cross-Document Communication 325

Security Considerations
The HTML5 specification indicates several stages of the process where developers

should be particularly vigilant when using the method and recommends good practices.

This is because using cross-document messaging can easily lead to vulnerability to

scripting attacks that ultimately would affect the end user.

The main stage where developers should be careful is when receiving a message. First,

you should verify the origin of the message and process it only if the source is trusted

and expected to communicate at the specific moment in the specific context of the

operation. You have to be able to rely on the code from the source, because security

weaknesses in it could expose your site to attacks without the source site even being

aware of it. Then, you should confront the communicated data to the expected data

format.

Again, if the data you receive is different from what you were asking for without your

noticing it, you are exposed to cross-site scripting attacks. Finally, you should never use

the wildcard for the targetOrigin parameter when handling sensitive data, such as user

information, because there is no way to verify recipients.

Case Study
To make the Cross-Document Messaging API more concrete, we are going to build a

small widgets-based web application where a document on the domain

www.example1.local is going to gather widget information from the <iframe> it contains,

which loads a document from www.example2.local. You can easily set up this example

on your computer following the instructions in Chapter 2 about the development

environment.

Note that following these instructions, your files will be hosted in the same directories;

however, the domain and the directory structure are two completely different realities, so

you could actually call the same file for the main document and the iframe source, as

long as you use different domains or subdomains.

The Main Document
If you’ve created a Komodo Edit project template as introduced in Chapter 4, you need

to change the following bold elements in the index.html file:

<!DOCTYPE html>
<html>
<head>
 <title>Messaging Example</title>
 <meta name="viewport" content="initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <link rel="stylesheet" href="styles/main.css">
 <script src="scripts/main.js"></script>

http://www.example1.local
http://www.example2.local

CHAPTER 11: Cross-Document Communication 326

 <style>
 .group-wrapper p iframe {
 width: 100%;
 height: 1px;
 border: 0;
 }

 .header-wrapper .header-button {
 background-color: #2070e9;
 }

 .widget h2 {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
 background-color: #c5ccd3;
 border: 1px solid #a9abae;
 border-bottom: 0;
 margin: 0;
 color: gray;
 font-size: 14px;
 line-height: 25px;
 padding: 0 10px;
 }

 .widget p {
 margin-top: 0;
 border-top: 0;
 -webkit-border-top-left-radius: 0;
 -webkit-border-top-right-radius: 0;
 }
 </style>
</head>

<body>
 <div class="view">
 <div class="header-wrapper">
 <h1>Messaging</h1>
 <button class="header-button" onclick="sendMessageToFrame()">Send</button>
 </div>

 <div class="group-wrapper">
 <div class="widget">
 <h2>Loading Widget...</h2>
 <p><iframe src="http://www.example2.local/calculator.html">
 </iframe></p>
 </div>
 </div>
 </div>
</body>
</html>

Because style is not the point in this example, we have kept it as simple as possible.

Therefore, we shall leave the styles in the <head> area of the page, rather than include

them from an external style sheet.

s

http://www.example2.local/calculator.html

CHAPTER 11: Cross-Document Communication 327

The Hosted Document
The following is the calculator.html file to be included in the main document through an

<iframe> tag representing a widget. Because it needs to be a proper HTML document,

do not forget to create a validating HTML structure (for example, with a doctype

declaration). However, because its purpose is only to supply content for the main

document, you needn’t use additional markup for the content area or use a specific

external style sheet.

<!DOCTYPE html>
<html>
<head>
 <title>Calculator</title>

 <style>
 body {
 font-family: helvetica;
 font-size: 14px;
 margin: 0;
 }

 p { margin: 0; }
 </style>
</head>

<body>

 <p>Hello, I'm a calculator widget.

 Click "Send" to request the widget title.</p>

</body>
</html>

Things are getting into shape here, as you can see in Figure 11–2. You will notice that

the <iframe> has taken an appropriate height, so its contents fit in. We will explain this

behavior later in this chapter. But for now, the next step is to do some API magic and

make the title above the <iframe> adapt to the actual content of the iframe.

CHAPTER 11: Cross-Document Communication 328

Figure 11–2. The initial document, without custom widget name

Let’s Send a Message
We are going to assume that the hosted document will be able to answer a request from

our main document by returning a title relevant to its own content. The following is the

code that we need to do that, using the API. Add it to the head of the main document.

<script>

 /* Register for the answer */
 window.addEventListener("message", handleFrameMessage, false);

 /* Send a message to the iframe */
 function sendMessageToFrame() {
 var frame = document.getElementsByTagName("iframe")[0];
 frame.contentWindow.postMessage("getFrameTitle", "http://www.example2.local");
 }

 /* Expects a string under the form "title:frame document title" */
 function handleFrameMessage(e) {
 if (e.origin == "http://www.example2.local") {
 if (e.data && e.data.indexOf("title:") == 0) {
 var h2 = document.getElementsByTagName("h2")[0];
 h2.textContent = e.data.substr(6);
 }
 }
 }

</script>

http://www.example2.local
http://www.example2.local

CHAPTER 11: Cross-Document Communication 329

First, we have registered to be notified of message events. Then, we add a button in the

header so that we can manually send our message with the sendMessageToFrame()

function. Of course, we could have used the onload event of the body to trigger the

message immediately after the document has loaded.

Handling the Response
The last step happens on the <iframe>document side. We want the document loaded in

the inline frame to answer the message of the main document by sending the contents of

its <title> tag. The following code, put in the <head> of the hosted document, should do:

<script>
 window.addEventListener("message", handleParentMessage, false);

 function handleParentMessage(e) {
 if (e.origin == "http://www.example1.local") {
 if (e.data == "getFrameTitle") {
 e.source.postMessage("title:" + document.title, e.origin);
 }
 }
 }
</script>

We add a new event handler to launch the handleParentMessage() function when we

receive a message. Note how the checking process is done: first, we check whether the

message is coming from the right domain; then, we check that the received message is

in the expected format (in our example, we check for an exact string). Only after this

security checking will we send a message with the requested data. Then, similar

checking will be taken on by the hosting page before replacing the <h2> title with the one

sent by the inline frame (see Figure 11–3).

The response will be caught using the handleFrameMessage() function. Note how we use

the textContent property in the main document handling function, rather than the more

common innerHTML. This is an extra security action, because innerHTML will write out all

the content of the variable as it is received, while textContext will encode special

characters into proper HTML entities.

http://www.example1.local

CHAPTER 11: Cross-Document Communication 330

Figure 11–3. The title has been changed using the API

Of course, you must also never get the target origin parameter wrong, or you will get an

error as shown in Figure 11–4 and no data because the message will be ignored.

Figure 11–4. An incorrect origin value will raise an exception

Most importantly, you should neglect none of the security steps we have introduced. If

you want to add more, all the better. The end user himself obviously cannot react to

cross-site scripting attacks, so you are responsible for the security of your pages,

especially when you are involving other sites.

So, let’s repeat it: when working with cross-document messaging, always make sure, at

the least, that the message you receive is from the right document or site, that its

content is in the right format and holds appropriate data, and that you don’t leave space

for scripting.

Specific Mobile Safari Behavior with <iframe>
Frames in HTML5 have been dropped. You are no longer supposed to use the

<frameset>, <frame>, and <noframes> tags. There are several reasons for this.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11: Cross-Document Communication 331

First, they tend to participate in bad user experience, while not bringing many

advantages to web pages. Furthermore, they are usually very bad for visibility for search

engines and are very badly supported by screen readers.

Yet, the <iframe> tag remains part of the language, although it has disappeared from the

XHTML Strict specification. However, it should be resorted to only when absolutely

necessary, especially in Mobile Safari, because <iframe> content requires a two-finger

gesture to be panned (a rather uneasy one—try it). If you can display this content

without it needing to be scrolled, the drawbacks will be fewer. For this, you need the

size of the inline frame to adapt to the size of the browsing context it nests.

The use of iframes in Mobile Safari can result in strange rendering, because scrollbars as

such do not exist. Therefore, if your content goes beyond the limits of the frame window,

it will simply appear truncated, which can be unclear to the user.

However, Mobile Safari handles iframes differently from desktop browsers. By

specifying both a width and a height for your <iframe>, you will trigger an iOS-specific

behavior: the frame will adapt to the size of its content (see Figure 11–5).

Figure 11–5. If both dimensions are set, the frame is expanded to fit its contents

This is why we have set the height of our frame to 1px in the main document of the

previous case study. Do note that this behavior will not be triggered if the width or height

is set to 0. Also, the reverse action will not apply. If you determine a width or height

greater than that of the content, the frame will not be made smaller.

CHAPTER 11: Cross-Document Communication 332

Working with Proper Windows
Inline frames are a way to cope with external content with a fully active browsing context

and a child browsing context. However, there are cases where it would be desirable to

create an auxiliary browsing context instead, in the form of a second window, either

because the external content doesn’t visually fit into the design of your page or because

you would like to launch a stand-alone widget that could still communicate with the host

document.

NOTE: This of course is possible in Mobile Safari. However, if you are creating a web application
meant to run in stand-alone mode, opening a new window in such a way would result in
changing that window—without actually opening Safari—at loss of the main document.
Therefore, the execution context could be lost.

The following is an example of how to open a new browsing context in a separate

window and how to establish communication between the main document and the

second one.

To begin, modify the case study by adding this code to your index.html file:

<script>
 var win; // Global variable to work later on the window

 function openChildWindow() {
 if (!win) {
 win = window.open('http://www.example2.local/calculator.html', "childWin");
 }
 return false;
 }

 function sendMessageToWindow() {
 win.postMessage("getFrameTitle", "http://www.example2.local");
 }
...

</script>
...
 <div class="header-wrapper">
 <h1>Messaging</h1>
 <button class="header-button" onclick="openChildWindow()">Window</button>
 </div>
 <div class="group-wrapper">

http://www.example2.local/calculator.html
http://www.example2.local

CHAPTER 11: Cross-Document Communication 333

 <h2>Loading Widget...</h2>
 <p>No iframe here.
Click the "Window" button.</p>
 </div>
 </div>
...

Because the pop-up blocker usually is turned on by default, we bind the opening of the

new window to an action by the user using a button and an onclick handler. Also, it is

better to open the auxiliary browsing context only once the main document is fully

loaded to make synchronizing the windows together more reliable.

Only the childWin window can know when it has been fully loaded, and the window

from which it has been opened has limited control over it. The only actions the main

window can operate on its auxiliary context is to close it or change its location.

Next, modify the handleFrameMessage() function so you can get a “page loaded”

notification, and then ask for the title information you want:

 function handleFrameMessage(e) {
 if (e.origin == "http://www.example2.local") {
 if (e.data == "loaded") {
 sendMessageToWindow();

 } else if (e.data && e.data.indexOf("title:") == 0) {
...
 }
 }
 }

The next step is to modify code inside the child window so that it indicates when its

content is loaded.

Notify the Page Is Loaded
You want the child window to notify its parent window when it is ready for

communication. Conveniently, auxilary browsing contexts have a object that keeps the

memory of their parent browsing context.

Therefore, they can communicate both with the context from which it was opened and

with the top-level browsing context of that opener. Here is the code that you need in the

head of the calculator.html file for the newly opened window:

...
 function contentLoaded() {
 if (window.opener) {
 window.opener.postMessage("loaded", "*");
 }
 }
...
<body onload="contentLoaded()">

http://www.example2.local

CHAPTER 11: Cross-Document Communication 334

The opener property of the window object keeps record of the opening context for further

processing. It will return a WindowProxy object related to its parent window, if the latter

has one and is still available.

Still, be careful, because there is no way to check the domain of the window referred to

by the window.opener object; therefore, be careful not to send private information to it. In

our example, you simply notify of document loading state. Once both documents are

ready, they can communicate with the postMessage() method, as we have seen

previously.

Note that this load notification method works with windows but could also be used with

inline frames, using the properties covered in the next section.

Properties of the Window Object
The opener, top, and parent properties initially are part of the DOM Level 0; that is, they

are DOM properties first introduced by user agents themselves.

HTML5 makes them part of the web specifications, which means you will soon be able

to use them more reliably to determine the position of browsing contexts within the

parents/children hierarchy. Figure 11–6 shows different relationships possible between

browsing contexts.

Figure 11–6. Relationships between browsing contexts

The opener is relative to the browsing context from which the child window was opened.

When a new browsing context is created from a <iframe>, it can refer to its parent using

the usual property from the DOMWindow object. Hence, you would simply have to replace

window.opener with window.parent.

CHAPTER 11: Cross-Document Communication 335

...
 function contentLoaded() {
 /* Do not post a message to self */
 if (window.parent && window.parent != window) {
 window.parent.postMessage("loaded", "*");
 }
 }
...

Remember to always check, as is done in our example, that parent doesn’t refer to the

current window, because parent and top are the same as window when the browsing

context is the top level.

Encapsulating the API to Ease Communication
Up to now, in the examples, you have handled only one widget, with code specific to

one host page, one widget, and one external source. Of course, as in any development

process, it would be better to create code that can handle multiple elements to avoid

creating processes over and over again. Here, what you want to do is create one

process that could initiate communication for any widget of the kind.

With this aim in mind, we are going to gather all the functionality we have previously

implemented into two objects: one for the host document, which will send requests to

create titles, and one for the widgets, which will relieve the content providers from any

specific implementation on the source side, except the use of the object and a few

specific functions. This will enhance maintainability on both sides.

An Object for the Host Document
In a new host.js file, we are going to create our object for the document that will hold the

widgets. As stated earlier, we want to make it possible to load several widgets with a

communication process that is mainly automatic while still addressing security

concerns.

var Communicator = function(element) {
 var widget = Communicator.widgetFromElement(element);
 this.title = widget.getElementsByTagName("h2")[0];
 this.iframe = widget.getElementsByTagName("iframe")[0];

 /* Force same origin if the domain cannot be extracted */
 var match = this.iframe.src.match(/^(https?:\/\/.+?)\/.*$/);
 this.domain = (match) ? match[1] : "/";
}

Communicator.prototype.setTitle = function(title) {
 if (!title) {
 this.iframe.contentWindow.postMessage("getFrameTitle", this.domain);
 } else {
 this.title.lastChild.textContent = title;
 }
}

CHAPTER 11: Cross-Document Communication 336

As a parameter, the constructor takes a widget and gathers the HTMLHeadingElement and

HTMLIFrameElement objects that are to be modified in the widget. The domain is gathered

directly from the src attribute of the <iframe> element and will be used to secure the

communication. This is done, as shown earlier, by validating the origin of the message.

The setTitle() method allows you to set a title for the widget either by giving it directly

a new title directly or by getting it from the widget itself, using the postMessage()

method.

Finally, we need a global process to receive messages and distribute them among the

relevant widgets. To not overload the browser with too many listeners, we define one

global listener that will listen for messages from widgets.

/* Static part of the Communicator object */

Communicator.listen = function() {
 window.addEventListener("message", Communicator.handleMessages, false);
}

Communicator.handleMessages = function(e) {
 var iframe = Communicator.containerFromSource(e.source);

 if (iframe) {
 /* When the widget is loaded,
 append a new property to the iframe element */
 if (e.data == "loaded") {
 iframe._com = new Communicator(iframe);
 iframe._com.setTitle("Loaded!");

 /* Handle messages and dispatch request to proper object */
 } else if (iframe._com) {
 if (e.data.indexOf("title:") == 0) {
 iframe._com.setTitle(e.data.substr(6));
 }
 }
 }
}

The first method is used for initialization and triggers the listening for messages. It is the

only function explicitly called by the client code and will be launched immediately,

without waiting for the load event, so as not to miss any messages from the widgets.

This is done because the browser downloads elements moving down the document tree

before it is completely loaded.

The second method is the handler that receives notifications. Its first action is to look for

an <frame> that fits with the message source, and then it checks the type of the received

message. If it is a “loaded” message, it instantiates a new Communicator object that will in

turn be attached to the widget HTMLIFrameElement, appending to it a new _com property to

make it easy to find and use later. For other message types, it will call the relevant method

on the previously instantiated Communicator object, in our case, setTitle().

Communicator.containerFromSource = function(source) {
 var widgets = document.getElementsByClassName("widget");
 for (var i = 0; i < widgets.length; i++) {
 var iframe = widgets[i].getElementsByTagName("iframe")[0];

CHAPTER 11: Cross-Document Communication 337

 if (iframe.contentWindow == source) {
 return iframe;
 }
 }
}

Communicator.widgetFromElement = function(o) {
 return (o && o.className != "widget") ?
 Communicator.widgetFromElement(o.parentNode) : o;
}

Finally, we use two convenient methods that, respectively, allow you to search for a

widget container (an <iframe>) or find a “widget” bloc using one of its children.

An Object for the Widget
The Widget object will let the widgets send information to their host and execute actions

the host asks for. In our example, this is quite simple because the action will only show a

title above each widget. In a new widget.js file, you need to add the following code:

var Widget = function(allowed) {
 this.allowed = allowed || [];
}

Widget.prototype.loaded = function() {
 /* The wildcard is not a problem here,
 there is no sensitive data sent to the parent window */
 window.parent.postMessage("loaded", "*");

 /* Prepare message handling */
 var that = this;
 window.addEventListener("message", function(e) {
 that.handleParentMessage(e);
 }, false);
}

Widget.prototype.isAllowed = function(origin) {
 for (var i = 0; i < this.allowed.length; i++) {
 if (origin == this.allowed[i]) {
 return true;
 }
 }
 return false;
}

Widget.prototype.handleParentMessage = function(e) {
 if (this.isAllowed(e.origin)) {
 if (e.data == "getFrameTitle") {
 e.source.postMessage("title:" + this.getTitle(), e.origin);
 }
 }
}

Again, the elements here have been used in previous examples. Our primary concern is

security, so we pass a list of trusted sources to the constructor. This way, if the widget

CHAPTER 11: Cross-Document Communication 338

is available to several partners using the API defined here, there will only be an array to

fill. If the origin of the widget doesn’t match an entry of the array, the widget can be

deactivated, and different content can be loaded instead.

The loaded() method is called by the widget with the load event to make sure

communication between the host and the widget will happen as expected. It sends the

“loaded” message to the host that will instantiate the Communicator object required for

the communication process. The messages are handled by the handleParentMessage()

function, which will first test for a valid request by checking the origin and then send the

title for the document. Last, we need the widget-specific part:

Widget.prototype.getTitle = function() {
 return document.title;
}

Using this small API, all the partner has to do is implement this method to return the

document title. It is used in handleParentMessage(). Thus, adding a new action is as

simple as adding a handler to this function and adding the appropriate method to the

object prototype.

The Host Document and the Widgets
To make this effective, we need to call our new scripts in our main document. From the

index.html file we created previously in this chapter, remove the inline scripts that

handled messages, and add the following code:

<head>
...
 <script src="scripts/main.js"></script>
 <script src="scripts/host.js"></script>
 <script>
 Communicator.listen();
 </script>
 <style>
 h2 a {
 float: right;
 color: inherit;
 text-decoration: none;
 }
...
</head>

Then, add two widget calls after the first one to make use of the new code:

...
 <div class="widget">
 <h2>»Title
 Loading Widget...</h2>
 <p><iframe src="http://www.example2.local/calculator.html"></iframe></p>
 </div>

 <div class="widget">
 <h2>»Title
 Loading Widget...</h2>

http://www.example2.local/calculator.html

CHAPTER 11: Cross-Document Communication 339

 <p><iframe src="http://www.example2.local/game.html"></iframe></p>
 </div>

 <div class="widget">
 <h2>»Title
 Loading Widget...</h2>
 <p><iframe src="http://www.example2.local/weather.html"></iframe></p>
 </div>
...

To make the process of gathering titles from the Title links more straightforward, you

can use a function that is a shortcut to the Communicator object bound to each frame:

function getTitle(o) {
 var widget = Communicator.widgetFromElement(o);
 var iframe = widget.getElementsByTagName("iframe")[0];
 iframe._com.setTitle();

 return false; // To cancel the click event
}

Finally, change the widget file, calculator.html, by removing the initial scripts and adding

the following:

...
 </style>
 <script src="scripts/widget.js"></script>
 <script>
 function contentLoaded() {
 var allowed = ["http://www.example1.local"];
 new Widget(allowed).loaded();
 }
 </script>
</head>
<body onload="contentLoaded()">

You instantiate a new Widget object without relating it to a variable. Still, there is no risk

of it being deleted by the garbage collector, because one of its methods is referred to in

an event listener.

The last step is to actually create more widgets. Because the document is quite simple,

all you need to do is change the <title> and the content of the <p> element in each

document. Now, refreshing the host document in a browser, you should see something

similar to Figure 11–7.

You can trigger the title request by clicking the Title link on the right of the widget title.

The point here was to illustrate how requests using the messaging API can be

encapsulated.

http://www.example2.local/game.html
http://www.example2.local/weather.html
http://www.example1.local

CHAPTER 11: Cross-Document Communication 340

Figure 11–7. Several widgets can be loaded and communicate with the host document without requiring specific
scripts

Relaxing Subdomain Communication
When handling subdomain communication, we evoked the possibility to simply change

the location of one of the files to make both documents be called on the same domain.

This of course, when it can be done, is a rather annoying and potentially problematic

thing to do because it may harm the initial architecture. After all, if two documents were

on different subdomains, there probably was a reason. There actually is a more elegant

way to handle subdomain communication. It has drawbacks, but it is a reliable method.

Changing the Domain
DOM Level 1 allows you to redefine the domain for documents sharing the same suffix.

The relevant property initially returns the host name of the server from which the page is

served; it can also be assigned the domain suffix to allow communication between

frames with the same top-level domain.

For instance, using the files from the previous case study, if you are working with

calculator.html on someplace.example1.local instead of www.example2.local, you could

set both documents to have a domain property example1.local, and communication will

be enabled. This makes it possible not to resort to the Cross-Document Messaging API

when not strictly necessary, thus letting you access the title directly using less code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.example2.local

CHAPTER 11: Cross-Document Communication 341

document.domain = "example1.local";

Here is what your main document code would look like:

...
 function getFrameTitle() {
 var frame = document.getElementsByTagName("iframe")[0];
 var h2 = document.getElementsByTagName("h2")[0];
 h2.textContent = frame.contentWindow.document.title;
 }
...
<body onload="getFrameTitle()">

Not only is the code made much simpler, but this method also allows you to directly

read the entire DOM of the child document as if it were the same browsing context.

Furthermore, no more code is needed in the child document, apart from the domain

change.

Security
Using the latter method, you yet once again have to pay extra attention to security

issues. The first thing to be careful about is the type of hosting you are using. If your

pages are on a shared hosting, using the same top-level domain for all hosted sites (as

is done, for instance, for people.wordpress.com, computers.wordpress.com, and so on),

the obvious risk is that any other site using the domain could find a way to access your

site in the same manner, especially by building a page to affect yours specifically (which

actually some people do get into doing).

The Last Message
The Cross-Document Messaging API introduced by HTML5 opens a whole new range of

opportunities for developers to build better web sites and applications. Indeed, because

the Web grows ever more dynamic and mixed-source content becomes an inevitable

way to make richer content and better service, being able to do more with alien content

is a great step forward.

However, the causes for restrictions applied to iframes in HTML4 and previous are still

to be taken into account. Communicating with alien content necessarily implies risks

that this content could have harmful consequences—even when there was no such

intention on your fellow developer’s side.

Therefore, do be careful to always double- and triple-check any content or message that

is embedded or called from sites you do not have a hand on. Security on the Web is a

collective effort in which you too need to participate.

343

343

 Chapter

Ajax and Dynamic Content
Although inline frames can be an appropriate way to load external content into your web

pages, they are not as flexible as much modern functionality would require. Building web

applications, you will generally try to provide a specific answer to some request of the

user, so it is likely that you will need to dynamically load external content on actions of

the user or resort to server-side scripting to process user input.

This would traditionally require that you use multiple forms and load a new page every

time the user has completed a significant piece of information, which of course violates

a number of principles that we have presented in earlier chapters. Because the

experience for the user should be made as seamless as possible, imposing daunting

forms, regularly loading new pages without being confident that connectivity will be

steady, and ultimately breaking the impression of users that they are within a proper

application should by all means be avoided.

For some years now, Asynchronous JavaScript and XML (Ajax) has been widely

accepted as the appropriate solution to provide functionality in such a manner. The

principle of Ajax is that JavaScript can let you perform HTTP client functionality after

your page has loaded. This is done using a specific API, maintained by the W3C, based

on the XMLHttpRequest object.

Building an HTTP Request
The XMLHttpRequest object allows client scripts to perform HTTP functionality. This

means you can perform actions that you traditionally would have accessed by loading a

new page without leaving the current page and by loading external content into the

current document. This typically is done asynchronously, although the object supports

synchronous requests; the strength of asynchronous requests is that they do not

depend on the global page-loading process, and because requests are executed in the

background, they will not affect the rest of the page activity, be it simple rendering or the

execution of other scripts.

12

CHAPTER 12: Ajax and Dynamic Content 344

Requests Using the XMLHttpRequest Object
The process to use the XMLHttpRequest object is pretty straightforward. All versions of

Mobile Safari have an implementation that complies to the W3C standard. The following

is the most basic way to do this:

function ajaxHandler() {
 /* Test state of the request and handle response */
}

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = ajaxHandler;
ajax.open("GET", "file.xml");
ajax.send();

There are four steps to execute a typical Ajax request. First, you need to create a new

XMLHttpRequest instance; then, you will open a connection using the open() method

and, finally, send the request and process the response from the server, if any.

The open() Method
The purpose of the open() method basically is to set parameters and options for the

request you want to perform. The two parameters in our example—the request method

and URL—are mandatory. Other optional parameters should be passed as follows:

ajax.open(method, url, async, login, password);

The async parameter lets you specify whether the request should be run

asynchronously. If this is set to false, the engine will complete the request before

executing any other script. The default value is true, which is your best choice for most

requests, because a synchronous request can often give the impression that the web

application has frozen.

The two other parameters will let you pass a user name and password if needed to

access the server pointed to in the url parameter.

The browser should check for the validity of the request. For instance, if the method is

either CONNECT, TRACE, or TRACK, a SECURITY_ERR exception will be raised.

Sending Requests Using GET or POST
The differences between GET and POST requests using the XMLHttpRequest object are the

same as with regular HTML forms. POST requests have the advantage that you can pass

larger amounts of data, using more diverse formats. Another appreciable characteristic

of all POST requests is that user agents shouldn’t resort to cached data to display

content.

However, although passing data with a GET request is very straightforward—you simply

need to add a query string to the URL in the call to open()—passing data when using

the POST method is a different process. The data passed with the request should be the

CHAPTER 12: Ajax and Dynamic Content 345

parameter to the send() method, but first, you will have to tell the server that you are

submitting data with you request; this is done by setting a custom Content-Type header:

var data = "firstname=John&lastname=Doe";

/* Pass data using GET... */
ajax.open("GET", "script.php?" + data);
ajax.send();

/* ... or using POST */
ajax.open("POST", "script.php");
ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
ajax.send(data);

Handling the Request State
Naturally, you will need to define a function to process whatever data you would gather

from your request; in the previous example, this function is called ajaxHandler(). In this

example, we listen for the readystatechange event attached to the XMLHttpRequest

object using the onreadystatechange property. Be aware that this is called every time

the request state changes, which should be four times for each request. Of course, you

could also use the traditional addEventListener() method:

ajax.addEventListener("readystatechange", ajaxHandler, false);

From the handler function, you can access the current state using the readyState

property. Table 12–1 presents the possible values.

Table 12–1. Possible States of the XMLHttpRequest readystate Attribute

Constant Description

ajax.UNSENT (0) The object has been constructed, but nothing else has happened.

ajax.OPENED (1) The open() method has been run successfully.

ajax.HEADERS_RECEIVED (2) All headers have been received.

ajax.LOADING (3) The response from the server is being received (in most cases, this

means an external document is being loaded).

ajax.DONE (4) Either all external data transfer has completed or an error has

occurred.

When a new XMLHttpRequest object is instantiated, its readyState property is set to

UNSENT. This is changed to OPENED when the open() method of the object has been

successfully called. Once headers have been received, the property is set to

HEADERS_RECEIVED, and the loading of the remote document begins (LOADING). Once all

operations of the request have completed, the state is set to DONE.

The readyState property should be used to check that you can safely use the data that

you requested. For instance, you can abort the request to prevent the response body

CHAPTER 12: Ajax and Dynamic Content 346

from being loaded when the received content doesn’t come in the expected format. This

could be done by checking values for the response HTTP header using the

getResponseHeader() method.

ajax.onreadystatechange = ajaxhandler;
...
function ajaxHandler() {
 if (this.readyState > this.HEADERS_RECEIVED) {
 if (this.getResponseHeader("Content-Type") != "text/xml") {
 this.abort();
 }
 }
}

This will also save some bytes to load for the user. Note that whatever happens during

the process, the readyState property will end with the value DONE.

Handling Progress Events
In addition to the onreadystatechange event, Mobile Safari supports many events

specific to the XMLHttpRequest object Level 2. Table 12–2 lists these events with their

use.

Table 12–2. Events Available for the XMLHttpRequest Object

Event Description

onreadystatechange The readyState has changed during the HTTP request.

loadstart The request has begun.

progress The data is being received. This event can be sent several times

for one request, depending on the time the request takes to

complete.

load The request has completed successfully.

abort The request was interrupted, for instance through the abort()

method.

error An error has occurred during the request; for instance, an attempt

was made to send a cross-origin request, if the remote page was

not found (HTTP 404).

All these events, except the onreadystatechange event, return an

XMLHttpRequestProgressEvent object that will let you provide feedback to the user while

data is being downloaded.

You can see whether the download time is computable from the lengthComputable

property and then evaluate the loading time with the loaded and total properties.

CHAPTER 12: Ajax and Dynamic Content 347

ajax.addEventListener("progress", progressHandler, false);

function progressHandler(e) {
 if (e.lengthComputable && e.total != 0) {
 var progress = 100 * e.loaded / e.total;
 /* Do something with progress value */
 } else {
 /* Not supported or not computable, do something else... */
 }
}

The progress is computable in most cases; still, you should always build an alternative in

case it is not—as planned for in the previous example.

Checking the Response
However, this is not enough to be sure the data is really available, because it only

indicates the state of the request. You should also check the status property available

after the headers have been received. This property returns the HTTP status code 200 if

the operation completed correctly and an error code otherwise—generally 404, meaning

the requested document could not be found, or 500, if the server returns a fatal error.

Note that redirection (for instance, codes 301 or 302) is automatically handled, so you will

not have to worry about that.

There are also two cases when the HTTP status code is set to the specific value 0: when

an unauthorized cross-origin request is attempted or when the request is performed

from a file with the file:// URL scheme.

Once these verifications have been made, you will want to gather the data returned by

the server. This comes in either of two formats: an XML document or plain-text content.

Depending on the format, it will be stored in the responseXML or in the responseText

properties of the XMLHttpRequest instance.

Gathering data through an HTTP request, especially on mobile devices, is prone to

return errors. Therefore, you should check the state of your requests at all of these

stages. This can be done by adding verifications to the ajaxHandler() function. Because

the send() method can be called only if the readyState value is set to OPENED, we will

also move it inside a conditional statement.

function ajaxHandler() {
 switch (this.readyState) {
 /* When possible, send the request */
 case this.OPENED:
 this.send();
 break;

 /* Test if the loading process has end */
 case this.DONE:
 if (this.status != 200) {
 console.log("An error occurred.");

 } else {
 /* Code to run if the response body is in XML format */

file://URL

CHAPTER 12: Ajax and Dynamic Content 348

 if (this.responseXML) {
 console.log("XML response received.");

 /* Code to run if the body entity is of another format */
 } else if (this.responseText) {
 console.log(("Plain text response received.");
 } else {
 console.log("No data received.");
 }
 }
 break;
 }
}

Processing this way, the document will be accepted only if the response appears to be

valid. Because the responseXML property is a Document object, you will be able to

traverse it as you would an HTML document. The responseText property, on the other

side, can be processed in various ways.

Handling Return Formats
Three main options are available to you for the format of the information you load using

Ajax: XML, JSON and HTML. Every format has its fervent advocates, but it ultimately

comes down to how you need to gather data and what you need to do with it. The fact

that XML actually is the X in Ajax shouldn’t misguide you, because this is only for

historical reasons.

NOTE: The responseText property can hold any other text data, such as SRT subtitles that we
have used in Chapter 8. These could be processed in a similar way to dynamically add subtitles
to a video.

Most Common Return Formats
The most obvious and straightforward solution to simply display data on the page from

the perspective of the front-end developer probably is to gather already formatted HTML

from the server, because such data will seamlessly integrate into the destination page,

will be directly rendered by the browser without any kind of parsing and will be easily

styled with CSS.

<!-- publications.html -->
<ul id="books">

 Oliver Twist
 DICKENS, Charles
 1838

 The Picture of Dorian Gray
 WILDE, Oscar

CHAPTER 12: Ajax and Dynamic Content 349

 1890

You can simply inject this snippet into your document as it is, using the innerHTML

property, as shown here:

<section id="publications"></section>

<script>

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = ajaxHandler;
ajax.open("GET", "publications.html");
ajax.send();

function ajaxHandler() {
 if (this.readyState == this.DONE && this.status == 200) {
 document.getElementById("publications").innerHTML = this.responseText;
 }
}

</script>

However, requesting HTML from the server will typically be less flexible, primarily

because the back-end developer may not be the same person as the front-end

developer but also because, unlike the two other formats, the descriptive nature of

HTML is rather loose.

Parsing XML for Use in HTML Documents
The XML alternative is the most verbose option, not only because its formatting is based

on tags but also because processing it requires a lot of code. When receiving a

response in XML format, you can either convert the data to HTML to insert into your

page by parsing the XML with JavaScript or develop specific style sheets to convert the

XML to HTML using XSLT. Both solutions are pretty heavy to set up. Here is a sample

XML file and two examples of how it can be rendered to look like the HTML shown

earlier:

<?xml version="1.0" encoding="utf-8" ?>
<!-- publications.xml -->
<publications>
 <books>
 <book title="Oliver Twist">
 <author>
 <lastname>DICKENS</lastname>
 <firstname>Charles</firstname>
 </author>
 <year>1838</year>
 </book>
 <book title="The Picture of Dorian Gray">
 <author>
 <lastname>WILDE</lastname>
 <firstname>Oscar</firstname>
 </author>

CHAPTER 12: Ajax and Dynamic Content 350

 <year>1890</year>
 </book>
 </books>
</publications>

Parsing the DOM with JavaScript
The following is the ajaxHandler() function, which uses the W3C Selectors API Level 1

to parse the XML code and store it in the html variable after transformation:

...
ajax.open("GET", "publications.xml");
...
function ajaxHandler() {
 if (!(this.readyState == this.DONE && this.status == 200)) {
 return;
 }

 var input = this.responseXML.documentElement;
 var books = input.querySelectorAll("books book");

 var html = '<ul id="books">';
 for (var i = 0; i < books.length; i++) {
 html += "" +
 "" + books[i].getAttribute("title") + "\n" +
 "" + books[i].querySelector("author lastname").textContent + ", " +
 books[i].querySelector("author firstname").textContent +
 "\n" +
 "" + books[i].getElementsByTagName("year")[0].textContent + "";
 }
 html += "";

 document.getElementById("publications").innerHTML = html;
}

As with our HTML example, the markup held in the html variable is then inserted into the

HTML document with the innerHTML property. This method of course is heavier to

process, because the HTML markup is generated directly on the client.

Using XML Style Sheet Transformations
Our second alternative is to parse the XML with XLST. XLST is supported by Mobile

Safari 2.0 and newer, so you can confidently use it to process XML. It is a very

appropriate language to convert XML into HTML, and it is extremely powerful because it

uses XPath to gather information from nodes.

You’d start by creating a new document named publications.xsl, with the following code:

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <ul id="books">
 <xsl:for-each select="//books/book">

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.w3.org/1999/XSL/Transform

CHAPTER 12: Ajax and Dynamic Content 351

 <xsl:value-of select="@title" />
 <xsl:value-of select="author/lastname" />,
 <xsl:value-of select="author/firstname" />
 <xsl:value-of select="year" />

 </xsl:for-each>

 <xsl:template>
</xsl:stylesheet>

To use this style sheet, you would need to call the file from your XML as follows:

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="publications.xsl" ?>
...

Unfortunately, doing this from an XML HTTP request, the XLST style sheet will simply

not be downloaded—and thus not be applied. Therefore, we need to parse the XML

document to check for style sheets and download any that are found.

function findStylesheet(xml) {
 var nodes = xml.childNodes;
 for (var i = 0; i < nodes.length; i++) {
 if (nodes[i].nodeType == xml.PROCESSING_INSTRUCTION_NODE &&
 nodes[i].nodeName == "xml-stylesheet") {

 return /href="(.+?)"/.exec(nodes[i].nodeValue)[1];
 }
 }
}

Of course, we also need to modify our response handler, because it now needs to

trigger the download of another file:

function ajaxHandler() {
 if (this.readyState == this.DONE && this.status == 200) {
 var xml = this.responseXML;
 var fss = findStylesheet(xml);

 /* Send a request for the stylesheet */
 var xsl = new XMLHttpRequest();
 xsl.onreadystatechange = function() {
 if (this.readyState == this.DONE && this.status == 200) {
 var processor = new XSLTProcessor();
 processor.importStylesheet(this.responseXML);
 var doc = processor.transformToFragment(xml, document);
 document.getElementById("publications").appendChild(doc);
 }
 }
 xsl.open("GET", fss);
 xsl.send();
 }
}

We use the transformToFragment() method of the XSLTProcessor object, which takes an

XML object and the document that will hold the fragment as parameters, to apply our

style sheet. Because the doc variable then holds a document fragment instead of a

string, we can insert it using the appendChild() method.

CHAPTER 12: Ajax and Dynamic Content 352

Although this method is rich and useful, it is not very flexible, because you will need to

check for errors on two HTTP requests. A more flexible process would be to convert the

data into HTML on the server.

Specificities When Parsing JSON
Parsing JSON-formatted data with JavaScript, as one can imagine when comparing it to

the previous examples, is very similar to parsing XML. However, you will have noticed

the close connection between JSON notation and JavaScript syntax.

{
 "publications": {
 "books": [
 { "title": "Oliver Twist",
 "author": { "lastname": "DICKENS", "firstname": "Charles" },
 "year": "1838"
 },
 { "title": "The Picture of Dorian Gray",
 "author": { "lastname": "WILDE", "firstname": "Oscar" },
 "year": "1890"
 }
]
 }
}

JSON stands for JavaScript Object Notation and can be transformed into a proper

JavaScript object using the native eval() function. This means that following the same

path as with our XML parsing script, our code would look like this:

...
ajax.open("GET", "publications.json");
...
function ajaxHandler() {
 if (!(this.readyState == this.DONE && this.status == 200)) {
 return;
 }

 var json = eval ('(' + this.responseText + ')');
 var books = json.publications.books;

 var html = '<ul id="books">';
 for (var i = 0; i < books.length; i++) {
 html += "" +
 "" + books[i].title + "\n" +
 "" + books[i].author.lastname + ", " +
 books[i].author.firstname +
 "\n" +
 "" + books[i].year + "";
 }
 html += "";

 document.getElementById("publications").innerHTML = html;
}

CHAPTER 12: Ajax and Dynamic Content 353

Whereas JSON notation can be confusing to read with the multiple square and curly

brackets, the JavaScript code to parse it is made clear by the common roots of JSON

and JavaScript. This doubles the advantage it has over XML for file sizes. Be careful not

to forget the parentheses around the JSON literal, which are mandatory to avoid the

object literal being confused with a block.

JSON Security Considerations
Yet, because JSON closely resembles JavaScript, you must be careful with the code

you evaluate, because actual scripts within JSON data would, of course, be run.

However, because the syntax for JSON is a stricter version of JavaScript literal notation,

you can quite easily eliminate most security risks by checking the format of the code you

receive against the one you expect using regular expressions. Unquoted, only a bunch

of expressions are allowed in JSON format (among which are numbers, boolean, and

null); therefore, you can easily isolate what isn’t acceptable data. Properties and values

need to be wrapped in quotes, and quotes inside these should be escaped. This means

you can easily build a reusable function to check the JSON data you receive.

The following validation script is based on that of the MooTools compact JavaScript

framework:

function getJSON(s) {
 var check = s.replace(/\\./g, '').replace(/"[^"\\]*"/g, '');
 var regexp = /^[,:{}\[\]\s\d\.\-+eEfalr-un]*$/;

 if (regexp.test(check)) {
 try {
 return eval('(' + s + ')');
 } catch(e) {
 /* Ignore */
 }
 }
 return null;
}

function ajaxHandler() {
...
 var json = getJSON(this.responseText);
...
}

The first line of this function removes all escape characters and then all quoted values.

At this stage, no backslash or quotation mark—which could be used in a script injection

attempt—should remain. On the resulting “bare-bones” string, we use a regular

expression representing the normal syntax of a JSON object in the test() method to

check whether no unexpected character remains; we then return the resulting object

using eval(). Using this small function, you can be pretty sure that no actual script is

hiding within the JSON data you receive and add the evaluated object to access its

data.

CHAPTER 12: Ajax and Dynamic Content 354

Client-Side Rendering Using Returned Data
When handling sensitive data from your own site, it is quite obvious that most rendering

should be done on the server. However, when handling highly dynamic content or when

the data you need to render your page comes as a feed or more generally from external

sites, it can be useful to operate the rendering on the client. For such purposes, the

easiest format, as mentioned earlier, is JSON, because its manipulation with JavaScript

is very straightforward.

Handling Template Variables
A popular way to handle JSON is to build a template available to a script that will identify

specific keywords to be replaced by dynamic content, using the global RegExp object. A

similar system is used in the Prototype JavaScript library. A template could look

something like this:

var template = "<h2>#{title}</h2><p>#{content}</p>";

This template could be populated using data in the following form:

var json = { "title": "Some title", "content": "Some cool content coming..." };

Here is the function to apply the relevant modifications:

function applyTemplate(template, data) {
 var item, regexp = /#\{(\w+)\}/g;
 var index = 0;

 while (item = regexp.exec(template)) {
 var pattern = new RegExp(item[0], "g");
 template = template.replace(pattern, data[item[1]]);

 var last = regexp.lastIndex;
 regexp.lastIndex = index;
 index = last;
 }

 return template;
}

var formatted = applyTemplate(template, json);
console.log(formatted);

--- result ---
> <h2>Some title</h2><p>Some cool content coming...</p>

Using the global search identifier g, our regular expression searches the whole

document for all substrings beginning with #{, ending with }, and holding one or more

word characters (represented by \w). The exec() method of the RegExp object returns an

array whose first entry is the string found; we use this string to perform a new regular

expression search on the template and replace it with the relevant data from the json

variable. The subsequent entries list the captured patterns.

CHAPTER 12: Ajax and Dynamic Content 355

The lastIndex property stores the index position of the last occurrence found in the

template to know where to continue the search from; in order not to miss any

occurrences, we change the value of lastIndex to the previous search position using

the index variable, which is then used as a starting point for the next exec() call. This

prevents errors because of changes to the template length after a replacement has

taken place but could also be used to apply recursive changes to the template.

Formatting Variables
Replacing a template item by some value is useful but sometimes isn’t enough. Because

JSON doesn’t have specific date formats, you could typically want to format date

elements before displaying them. To illustrate how this can be done, we are going to

build a formatter that will be called when necessary to transform timestamps. The

following is our modified template and JSON object:

var template = "<h2>#{title}</h2><p>#{content}</p>\n<time>#{dateFormatted}</time>";
var json = {
 "title": "Some title",
 "content": "Some cool content coming...",
 timestamp: 207698400000 /* Aug 1st, 1976 */
}

function applyTemplate(template, data, formatters) {
...
 var value = undefined;
 if (item[1].substr(-9) == "Formatted") {
 var property = item[1].substr(0, item[1].length - 9);

 var func = formatters[property];
 if (typeof func == "function") {
 value = func(data[property], data);
 }
 } else {
 value = data[item[1]];
 }
 template = template.replace(pattern, value);
...
}

function formatDate(value, data) {
 var date = new Date(data.timestamp);
 return date.getFullYear();
}

var formatters = { "date": formatDate };
var formatted = applyTemplate(template, json, formatters);
console.log(formatted);

--- result ---
> <h2>Some title</h2><p>Some cool content coming...</p>
 <time>1976</time>

CHAPTER 12: Ajax and Dynamic Content 356

The formatters properties don’t necessarily have to match a property from the JSON

object; in such a case, value will be set to undefined. Otherwise, it will hold the value of

the corresponding JSON property to make its formatting easier. Whatever the case, the

data parameter will hold all the data required to build complex schemes, taking several

properties into account.

Cross-Origin Communication
The most frustrating part of Ajax probably is the same-origin restriction, which notably

prevents accessing content from another domain name. Although it unfortunately isn’t

possible to use the domain property of the Document object, as done in Chapter 11, to

bypass this restriction, several workarounds are available to you.

Using Proxies
To perform a cross-origin XMLHttpRequest, you can send the request to a proxy. A proxy

is a server used as an intermediate between a client and another server. The advantage

of such a process for cross-site communication is that servers, unlike the Ajax request,

will not be limited by the same-origin rule. Thus, rather than querying a distant site—

which would return an error—you would let your own server do the work, simply passing

it the relevant data for your query:

ajax.open("GET", "proxy.php?url=" +
 encodeURIComponent("http://www.example2.local/file.xml"));

In this example, the request is initiated from www.example1.local and needs data from

www.example2.local. To create the proxy.php script, we are going to use PHP together

with the cURL API, which is widely available, solid, and rather easy to understand and

use.

<?php

if ($url = $_GET['url']) {

 # Process the request using the cURL API.
 if ($curl = curl_init($url)) {
 curl_setopt($curl, CURLOPT_FOLLOWLOCATION, 1);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
 $data = curl_exec($curl);

 # Read the response information
 $code = curl_getinfo($curl, CURLINFO_HTTP_CODE);
 $type = curl_getinfo($curl, CURLINFO_CONTENT_TYPE);

 # Return the content and quit.
 if ($code == 200) {
 header("Content-Type: $type", true, $code);
 exit($data);
 }
 }
}

http://www.example2.local/file.xml
http://www.example1.local
http://www.example2.local

CHAPTER 12: Ajax and Dynamic Content 357

If there is no valid content, we send a HTTP 500 error response.
header('Content-Type: text/plain', true, 500);
echo 'UNEXPECTED RESPONSE';

?>

Our PHP script expects a url parameter to be passed in the query string. If this entry is

found, a new cURL session is initialized using the curl_init() function, and the request

options are set. CUROPT_FOLLOWLOCATION will apply HTTP redirections, if any, while the

CURLOPT_RETURNTRANSFER constant will let us store the result of our request in the $data

variable using the curl_exec() function.

Once the request has been executed, we gather the HTTP status code with the

curl_getinfo() function, together with the content type, which will allow you to return

the expected header. If no error occurs, the content is sent back with the initial content

type; otherwise, an HTTP 500 error code is returned.

The use we have made of the API is rather simple here, but the options available to you

using cURL are numerous and can be finely tailored to your needs. Although the

process is very straightforward, you should be especially careful when you send the

header, because your client-side script may check the value of the status property

($code in the PHP file) to halt its execution. Nevertheless, the result is that, seamlessly,

your Ajax request is done on the same domain, while still gathering data from a remote

server.

Because server-side scripting is generally faster than client-side scripting (especially

because client-side scripting performances partly depend on the device), it is a good

idea to run whatever security checking or preliminary processing you need to do directly

on the server. Don’t forget that, as with any request to a site that isn’t maintained by

you, there is a risk that the returned data isn’t what you expect.

The JSONP Way
If you would rather not use proxies or an Ajax request and the data you expect from your

request is formatted as JSON, there is a simpler method—although it is one that implies

greater security risks—namely, JSONP. JSONP stands for JSON with Padding. The idea

behind this method is that data returned in JSON format needs to be evaluated and is

meant to be processed and used, and this should be done without cluttering your code.

To achieve this, the server should return not only the requested data in JSON format but

also the call to the function that is going to process it. Thus, when the response is

received, it will automatically be processed appropriately.

Let’s start with the server-side script. We are going to use the json_encode() PHP

function to generate JSON-formatted data from an array. Here are the contents of the

json.php file that you can add to your server.

<?php

$json = json_encode(requestData());

CHAPTER 12: Ajax and Dynamic Content 358

We have a callback, process a JSONP behavior
if ($callback = $_GET['callback']) {
 header('Content-Type: text/javascript');
 echo "$callback($json);";

No callback, send a classic JSON content
} else {
 header('Content-Type: application/json');
 echo $json;
}

Request data from database or whatever...
function requestData() {
 return array(
 'firstname' => 'John',
 'lastname' => 'Doe'
);
}

?>

The script expects a callback to be passed as a parameter that will process the JSON

data on the client. If the parameter isn’t set, the script simply returns the raw JSON-

formatted data. This allows you to use this file for both requests using JSONP and

proxies.

On the client side, you would define a function holding what needs to be done with the

data in your client document. This is equivalent to the handler function used in our Ajax

requests. It will be run when the <script> tag is added to the document.

<script>
 function useJSON(data) {
 /* Do something with the data */
 }
</script>

You need to notify the server that this function is to be run when the data is sent. To

achieve this, you would simply pass the relevant function in a query string when calling

the remote file like any other external script.

<script src="http://www.example2.com/json.php?callback=useJSON"></script>

When this <script> tag is evaluated, it would result in something similar to this:

useJSON({"firstname":"John","lastname":"Doe"});

With this method, you needn’t define complicated methods to handle the moment when

data is made available: the JSON-formatted data can be evaluated in your function, and

the relevant information can used in your page directly. This is obviously useful when a

page is likely to receive different kinds of information, with different processing for each,

because you can tightly relate specific functions to specific data.

http://www.example2.com/json.php?callback=useJSON

CHAPTER 12: Ajax and Dynamic Content 359

The Cross-Origin Resource Sharing
As you can see, there are quite a few efficient methods that will let you gather data from

distant pages, including documents from different domains. However, the most efficient

method to perform cross-origin requests is to use the new Cross-Origin Resource

Sharing (CORS) specification, maintained by the Web Applications Working Group. The

specification, supported on Mobile Safari, lets you define a set of HTTP headers on the

server side that will be read by the client application to check whether the request is

authorized. We are going to see how this can be used to perform GET and POST requests.

NOTE: For more complex HTTP requests such as DELETE or PUT, you can refer to the
specification details at www.w3.org/TR/cors/.

Of course, the downside of this method is that it requires that you have some control

over the server configuration and over the server-side scripts that will return the

headers, or it requires that the site from which you want to retrieve information

implements this specification.

The following is an example of the most basic use of this kind of authorization, using

PHP:

<?php

header("Access-Control-Allow-Origin: *");

?><xml>Data Sample</xml>

As with our proxy example, if this script is hosted at www.example1.local and the

request is sent from www.example2.local, the request will be correctly executed, and the

expected data will be received by the client. The Access-Control-Allow-Origin header

is set to *, which acts as a wildcard for all origins.

Of course, you can limit the authorization to some selected origins by explicitly setting a

URL, which is a better practice where security is concerned.

Access-Control-Allow-Origin: http://www.example2.local

Note that Mobile Safari doesn’t allow you to set several URLs using this header, but the

specification requires that the browser should send an Origin header indicating the

source of the request. Therefore, the server-side script will be able to keep a list of

authorized domains and return the relevant header when the request comes from one of

these.

<?php

$whitelist = Array('http://www.example2.local', 'http://www.domain.other');

foreach ($whitelist as $origin) {
 if ($_SERVER["HTTP_ORIGIN"] == $origin) {
 header("Access-Control-Allow-Origin: $origin");
 break;
 }

http://www.w3.org/TR/cors
http://www.example1.local
http://www.example2.local
http://www.example2.local
http://www.example2.local
http://www.domain.other

CHAPTER 12: Ajax and Dynamic Content 360

}

?><xml>Data Sample</xml>

In this example, we read the value of the HTTP_ORIGIN server variable corresponding with

PHP to the client-side header Origin. Then, if the header value is recognized in the array

of authorized origins, the authorization is sent. Otherwise, no extra header is added, and

the request will fail.

Real-Life Example: Display Twitter Trends
Many sites nowadays make content available that you can use to enrich or spice up

your applications. Remote data even comes more and more frequently with specifically

developed APIs to help developers integrate them in many manners into their sites.

Naturally enough, this information is often given in XML and JSON formats.

Twitter, the microblogging web service, is one of those sites. A growing number of APIs

are made available to developers to follow popular topics or perform searches against

user posts. Thus, building an application that would keep users informed of what topics

are most discussed on Twitter is quite easy.

The Twitter Trends Feed
In our example, we are going to display the current most trendy topics, because the

data to process is the shortest. For this specific query, the only available format is

JSON.

The URL where you can fetch the JSON data is

http://api.twitter.com/1/trends.json.

{
 "as_of": "Tue, 07 Sep 2010 9:10:11 +0000"
 "trends":
 [{ "url": "http://search.twitter.com/search?q=Apress", "name": "New Book!" }],

}

Looking at this location, you will see that it holds a JSON object containing a trends
property, with a series of url/name pairs. The previous is an example limited to the first

trend.

Fetching and Rendering Data
With this JSON data, we are going to build an updatable list of popular topics, mostly

using elements from the web application template we built in previous chapters. First,

let’s see the markup:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.twitter.com/1/trends.json
http://search.twitter.com/search?q=Apress

CHAPTER 12: Ajax and Dynamic Content 361

...
 <div class="header-wrapper">
...
 <button class="header-button" onclick="init()">Get</button>
 </div>

 <div class="group-wrapper">
 <h2>Twitter Trends</h2>

 <ul id="trends" class="template">
 #{name}

 </div>
...

Of course, we don’t want to display this list without content; therefore, we add a rule in

the head of our document to hide the list by default.

<style>
 .template { display: none; }
</style>

As you can see, a function call is attached to the button onclick event. The init()

function creates a new XMLHttpRequest object and sends a request to Twitter’s web site.

Here, we use the proxy explained earlier in this chapter; the code for proxy.php is

exactly the same as previously.

function init() {
 var xml = new XMLHttpRequest();
 xml.onreadystatechange = showTrends;
 xml.open("get", "proxy.php?url=" +
 encodeURIComponent("http://api.twitter.com/1/trends.json"));
 xml.send();
}

function buttonState() {
 var but = document.querySelector("button.header-button");
 but.disabled = true;
}

Likewise, the getJSON() function used in showTrends() is the one used earlier to check

that our JSON object is safe.

function showTrends() {
 if (this.readyState == this.DONE && this.status == 200) {
 var txt = this.responseText;
 var json = getJSON(txt);

 if (json) {
 renderTrends(json);
 buttonState();
 }
 }
}

Finally, once we have gathered and checked the JSON from Twitter’s site, we can insert

the data into our template:

http://api.twitter.com/1/trends.json

CHAPTER 12: Ajax and Dynamic Content 362

function renderTrends(feed) {
 var list = document.getElementById("trends");
 var template = list.innerHTML;
 var trends = feed.trends;
 var html = "";

 for (var n = 0; n < trends.length; n++) {
 html += applyTemplate(template, trends[n]);
 }

 appendContent(list, html);
}

function appendContent(list, html) {
 var dummy = document.createElement("div");
 dummy.innerHTML = html;

 list.innerHTML = "";
 while(dummy.hasChildNodes()) {
 list.appendChild(dummy.firstChild);
 }
 list.className = null;

}

Figure 12–1 shows the resulting page populated with the trends gathered from the

JSON feed.

Figure 12–1. Latest Twitter trends

CHAPTER 12: Ajax and Dynamic Content 363

You may think that it would have been easier to run list.innerHTML = html; however, a

rendering problem prevents Mobile Safari from applying styles correctly to the list

elements if done so. Therefore, we add the content of the html variable to a dummy

element and then move each node from the dummy element to the list. Surprisingly, this

method is twice as fast as the innerHTML method one could have initially expected.

Be Kind to the Waiting User
As stated several times already, HTTP response times can be irregular on mobile

devices, as are loading times depending on the quality of the connection the user

currently has access to. Therefore, particularly for Ajax-based web applications, you

should always provide visual feedback to your user during loading and processing

times.

Adding Visual Feedback
To do this, you again can rely on the readyState property by adding a condition to the

function used earlier. You could, for instance, use a spinner as a background for the

element that should receive the content. This has the advantage of being lightweight

and flexible. Here, we use the BigSpinner object created in Chapter 7.

var spinner = new BigSpinner();

function init() {
 spinner.init("spinner", "white");
...
}

function showTrends() {
 if (this.readyState == this.OPENED) {
 buttonState(true);

 } else if (this.readyState == this.DONE && this.status == 200) {
...
 buttonState(false);
 }
}

function buttonState(loading) {
 var but = document.querySelector("button.header-button");

 if (loading) {
 but.disabled = true;
 but.className += " spinning";
 spinner.animate();
 } else {
 but.className = but.className.replace(" spinning", "");
 spinner.stop();
 }
}

CHAPTER 12: Ajax and Dynamic Content 364

The new buttonState() function adds a .spinning class to the button to display the

spinner. For the spinner to be shown in the button, you need to add a

surrounding the button text.

<button class="header-button" onclick="init()">Get</button>

The final step is to add the relevant style into the main.css file so that it can easily be

used in other projects. You can see the resulting button in Figure 12–2.

.header-wrapper .header-button.spinning span {
 color: transparent;
 text-shadow: none;
 background: -webkit-canvas(spinner) center center no-repeat;
 -webkit-background-size: auto 22px;
 padding: 4px;
 margin: -4px;
}

Figure 12–2. The spinning button

The CSS class .spinning hides the button text by setting its color to transparent and

changes its background using the -webkit-canvas() function. Because the spinner is a

little too big, we resize it using the background-size property so that it perfectly fits

inside our button.

Handling Excessive Waiting Times
Additionally, you should plan for possible errors or excessive waiting times. Setting a

timer for this is the most straightforward solution; depending on the kind of content you

need to load, you may want to adapt the value for a “reasonable” wait.

var timerID;

function checkTime(msecs, ajax) {
 timerID = window.setTimeout(function() {
 ajax.abort();
 alert("The server is taking too long to respond... \n
 Try reloading this page.");
 }, msecs);
}

function showTrends() {
 if (this.readyState == this.OPENED) {
 checkTime(1000, this);
...
 } else if (this.readyState == this.DONE && this.status == 200) {
 window.clearTimeout(timerID);
...
 }
}

CHAPTER 12: Ajax and Dynamic Content 365

Especially when everything doesn’t depend solely on yourself, you cannot be sure that

your application will run without any problem. Handling possible errors is an extra

guarantee of a good user experience.

Summary
Building web applications shouldn’t be considered an insular task. The richness of the

Web nowadays partly depends on interaction between web sites, and you can seriously

benefit from external sources and numerous third-party feeds and APIs to build better

applications. You now have the tools to take full advantage of elements that have

allowed the success of the Web 2.0 era and that should be fundamental for upcoming

changes in the way people consume web content.

Master these thoroughly, take them further, and always remember that, regarding the

use of external content, there is no absolute best solution. A format or technique will be

more appropriate for some project, and another may be far better for another—not to

mention that all are not necessarily available in all cases.

367

367

 Chapter

Using Touch and
Gesture Events
The iPhone, iPad, and iPod touch, like many portable devices nowadays, uses the finger

as the only pointing device. Apple’s devices even support several simultaneous contact

points, which, along with a simple, intuitive graphical interface, makes their use fluid,

efficient, and overall pleasing for the user. As we have explained in earlier chapters, this

entails a close, almost intimate connection between the user and the device. This

particular relationship favors realistic designs; for instance, building a poker game

application, you can allow your user to virtually “throw” cards on a table with a simple

flick of the finger, adding to the real-life impression.

Since version 2.0 of the OS, you can use the Multi-Touch API with Mobile Safari to bring

interaction between the user and your web applications a major step further. In this

chapter, we are going to explain how to implement functionality from this API to catch

touch events and how to interpret most any user movement and, ultimately, use this to

build a simple handwriting recognition web application.

How to Handle Events
To catch events using JavaScript, developers are used to attributes such as onclick—

normalized in the HTML5 specification—directly on an element or the DOM

addEventListener() method, sometimes without really understanding how listeners are

to be organized or what capturing events implies. A thorough understanding of this is

crucial to efficiently work with events.

Calling Priority of Handlers
Not taking the capture into account, there is no actual priority among handlers; they are

simply called in the order of their definition. Hence, event attributes within the HTML

markup are generally interpreted before scripts, and code introduced using attributes

will be executed first when an event occurs, as easily shown with the following example:

13

CHAPTER 13: Using Touch and Gesture Events 368

<div onclick="console.log('attribute')">Click Me</div>

<script>

 var div = document.getElementsByTagName("div")[0];
 div.addEventListener("click", function() { console.log("listener") }, false);

</script>

--- result ---
> attribute
> listener

Nevertheless, if a new click event is defined using element.onclick in a script, the

onclick attribute will be overwritten, the previous handler will be removed, and a new

handler will be created:

<div onclick="console.log('attribute')">Click Me</div>

<script>

 var div = document.getElementsByTagName("div")[0];
 div.addEventListener("click", function() { console.log("listener") }, false);
 div.onclick = function() { console.log("property") };

</script>

--- result ---
> listener
> property

Attributes basically allow you to define only one handler at a time. This doesn’t mean

you cannot preserve a previous attribute-defined handler when defining a new handler.

Here is one method to do this:

/* First, we read the handler from the onclick attribute */
var old = div.onclick;

/* Next, we group all relevant functions in a global handler */
div.onclick = function() {
 old();
 console.log("property");
};

--- result ---
> listener
> attribute
> property

Obviously, this method isn’t very flexible, and it entails that all your handlers are

triggered only when the global handler is called. Using the addEventListener() and

removeEventListener() methods should be preferred in most cases.

CHAPTER 13: Using Touch and Gesture Events 369

The Capture Stage
The third parameter to the addEventListener() method specifies whether you want to

add a listener only for the capture stage, which means it won’t be triggered during the

target and bubbling stages. The capture stage is the process by which an event can be

handled by parents to the target before being allotted to the target itself.

<div>0<div>1<div>2<div>3<div>4
 <div>5</div>
</div></div></div></div></div>

<script>

 var div = document.getElementsByTagName("div");

 div[0].addEventListener("click", handleEvent, false);
 div[1].addEventListener("click", handleEvent, false);
 div[2].addEventListener("click", handleEvent, false);
 div[3].addEventListener("click", handleEvent, false);
 div[4].addEventListener("click", handleEvent, false);
 div[5].addEventListener("click", handleEvent, false);

 function handleEvent(event) {
 console.log("(" + event.eventPhase + ") " + this.firstChild.nodeValue);
 }

</script>

In this piece of code, each <div> is the parent of the next <div>. Therefore, every click

on a number will reach the direct target (target phase) and then move up the DOM tree

to the top-level ancestor (bubbling phase). For instance, clicking 4 will cause 4, 3, 2, 1, 0

to be logged to the console. Naturally, ancestors will receive the event only if a listener

exists.

To precisely identify the event target, you can rely on two properties of the Event object.

The target property holds the actual target of the event; clicking 4 in the previous

example, it would return a reference to the element holding the string "4". The

currentTarget property is a reference to the object receiving the event during the

bubbling phase or the capture phase. In a handler such as the one defined earlier, this

and currentTarget are equal; if our handler had been bound to an object, on the

contrary, this would refer to that object. Moreover, you can simply determine the phase

relative to the received event using the eventPhase property, whose possible values are

presented in Table 13–1.

CHAPTER 13: Using Touch and Gesture Events 370

Table 13–1. Constants Use for the Different Event Phases

Constant Description

event.CAPTURING_PHASE (1) The current event phase is the capture phase.

event.AT_TARGET (2) The current event phase is the target phase.

event.BUBBLING_PHASE (3) The current event phase is the bubbling phase.

Now, if you change the third parameter of the first listener from false to true, the order

of the log will change, because the event will be in capture phase first. The console will

display 0, 4, 3, 2, 1. Capture handlers are always added to the top of the call stack.

Control Over Event Propagation
If you want to precisely control every click within your web application—as, for instance,

we have done in Chapter 4 to maintain the application in full-screen mode—you need to

use capture (set the third parameter to true). Capture, for instance, could let you prevent

the user from tapping some elements if the user is not logged in. The stopPropagation()
method of the Event object allows you to prevent the propagation of the event at any

chosen moment. This way, try modifying our previous handler as follows:

div[0].addEventListener("click", handleEvent, true);
...
function handleEvent(event) {
 console.log("(" + event.eventPhase + ") " + this.firstChild.nodeValue);

 if (event.eventPhase == event.CAPTURING_PHASE) {
 event.stopPropagation();
 }
}

Only the value 0 will be logged to the console, corresponding to the text of the first

<div>, because propagation for any child <div> is halted directly during the capture

phase. This doesn’t mean that listeners defined with the same currentTarget and at the

same phase won’t be called, but using this method implies that there is no guarantee

that your handler will be triggered, because the process can be interrupted at any

moment by another handler at a higher level.

Preventing Default Behavior
It is also often desirable to locally prevent the default behavior of the browser to some

event, typically changing the URL when a link or submit button is tapped or preventing

gesture effects using the touchstart event. This can be done using the

preventDefault() method, assuming that the event can be canceled. You can check

this by reading the cancelable property of the Event object. Note that this method has

the advantage of not stopping propagation.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13: Using Touch and Gesture Events 371

Handlers and Object Methods
There are cases where you will need to use a handler based on an object method, and

you will have to restore the calling context, as shown in Chapter 10, and encapsulate the

method in a new Function object. This of course implies more memory usage. To

address this issue, since DOM Level 2, you can use the handleEvent() method from the

EventListener interface. To benefit from the advantages of this method, you should

simply use the this keyword or any other instance of an object implementing the

function in place of what generally would be a Function object as a parameter to the

addEventListener() method.

someObject.addEventListener("click", this, false);

Proceeding this way, the scripting engine will seek a handleEvent() method attached to

this and will call the method passing the Event-derived object (MouseEvent,

TouchEvent...) with all its properties to it. The keyword this can be used when the

handleEvent() is at the window level or when it is directly under an object definition. In

other cases, you will need to pass an object instance, as shown here:

<div>Click Me</div>

<script>

 /* A sample objet */
 var Example = function(name) {
 this.name = name;
 }

 Example.prototype.handleEvent = function(event) {
 switch (event.type) {
 case "mousedown":
 case "mouseup":
 this[event.type + "Handler"](event);
 }
 }

 Example.prototype.mousedownHandler = function(event) {
 console.log("The 'mousedown' handler was called with " + this.name + ".");
 }

 Example.prototype.mouseupHandler = function(event) {
 console.log("The 'mouseup' handler was called with " + this.name + ".");
 }

 /* Create 2 objects and use them as event handlers */
 var div = document.getElementsByTagName("div")[0];
 var obj1 = new Example("Object 1");
 var obj2 = new Example("Object 2");

 div.addEventListener("mousedown", obj1, false);
 div.addEventListener("mouseup", obj2, false);

</script>

CHAPTER 13: Using Touch and Gesture Events 372

--- result ---
> The 'mousedown' handler was called with Object 1.
> The 'mouseup' handler was called with Object 2.

In this code, the handling of events is deferred to two instances of Example. As you can

see, the execution context is maintained, and each event triggers a log using the

expected value for name. To make maintenance easier, the subhandler has been

externalized to specific methods called using the ability of JavaScript to provide object

properties through a hash table. Of course, if the code you use is short, you could use

switch...case directly without any additional method.

Classic Events with Mobile Safari
Although Apple portable devices have no support for external pointing devices, the

events usually related to a mouse are supported by Mobile Safari. This, however, is of

limited usefulness because they are simply faked and may react differently than what

would be expected in a desktop environment.

Behavior of Mouse Events
Although the mouse events are triggered, they are sent only once the user has released

finger pressure. Moreover, all events are sent at the same time, meaning that, for

instance, a typical series of events such as mouseover, mousemove, mousedown, mouseup,

and click would all be sent simultaneously, in this precise order, once the last event

ended. The mouseout event will be sent only if the user points at a new element that

tracks mouse events and a mouseover event has been previously recorded. Finally, the

mousemove event will be sent once the finger pressure ends, meaning you won’t be able

to track movement as you would with a proper mouse event.

These events are all part of the default touchstart event behavior. Because touch

events, as we shall see, are always sent before regular mouse events, it is possible to

prevent the sending of a mouse event using the preventDefault() method, introduced

earlier in this chapter, on the touchstart event. This will let you define differentiated

behaviors for Mobile Safari and classic device browsers.

Scrolling Information
Another event that can come in handy is the scroll event. This can be used, for

instance, to simulate a CSS position:fixed rule, because this is not supported on the

iPhone. On desktop browsers, this event is sent repeatedly as the scrollbar position

changes, whereas on Mobile Safari, the event will be sent only when the finger of the

user leaves the screen surface. This all shows the necessity for specific events to

implement interaction with the user. Appropriate touch events have been available since

iOS version 2.0.

CHAPTER 13: Using Touch and Gesture Events 373

Multi-Touch Events
The superior efficiency of touch events over mouse events on portable devices by Apple

is by no means a necessity, and other portable device manufacturers have preferred to

implement mouse events more precisely. However, the favor given to touch events, and

more precisely Multi-Touch events using several simultaneous touch points, on the

iPhone, iPod touch, and iPad is a base for a fluid, natural, and efficient navigation

experience.

New Interaction Processes
Fingers act as several mice plugged into the terminal; each one can “jump” from one

point to another, whereas a mouse can move only along the desktop potentially

triggering a mousemove event. Besides, mice usually have several different buttons whose

click you can identify using the button property of the MouseEvent object. Using touch

events, a tap naturally can have but one state.

There basically are three states for a touch event. Every touch event starts with a

touchstart event and ends with a touchend event, possibly passing by a touchmove

event in between. Unlike a mousemove, touchmove is triggered after a touchstart event

and will take every new contact point into account, whatever the number of fingers used

(though the limit appears to be 11 simultaneous contact points), until a touchend event is

sent.

Handling Multi-Touch Events
Touch events should be listened for similarly to any other event, using the

addEventListener() and removeEventListener() methods. Always be careful, however,

not to carelessly prevent some gestures necessary to the browsing process, such as

panning. An example as simple as the one presented here would prevent the user from

panning to uncover parts of the page outside the viewport or showing a hidden address

bar:

document.addEventListener("touchstart", function(event) {
 event.preventDefault();
}, false);

iOS has several predefined Multi-Touch gestures, such as pinch (to zoom) or rotate.

Most can be overridden using touch events. We shall soon get into more detail about

gestures.

WARNING: As a rule of thumb, always be extremely careful when modifying the default behavior
of the browser and OS interface. The user has habits and expectations, which when changed or
disappointed can severely harm the quality of the user experience.

CHAPTER 13: Using Touch and Gesture Events 374

Unlimited Touch Points
The limit to the number of simultaneous events you can catch should logically never be

a drawback in your developing process, because you can comfortably handle one event

per finger. Each finger position can be gathered using the new TouchEvent object and its

touches property. This property provides a TouchList holding a Touch object for each

contact point, regardless of the event target. Whenever a new finger press is received, a

new touchstart event is triggered, and the list is updated with a new Touch object.

There are two other properties using the TouchList object: targetTouches, which holds

all the Touch objects related to the target triggering the event, and changedTouches,

which should be used as in the following example:

<!DOCTYPE html>
<html>
<head>
 <title>Multi-Touch Demo</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no">

 <style>

 div {
 -webkit-user-select: none;
 position: absolute;
 width: 44px;
 height: 44px;
 text-align: center;
 background-color: black;
 -webkit-border-radius: 22px;
 }

 div span {
 display: block;
 font: bold 9px/15px sans-serif;
 margin-top: -15px;
 }

 </style>

 <script>

 document.addEventListener("touchstart", handleTouch, false);
 document.addEventListener("touchmove", handleTouch, false);
 document.addEventListener("touchend", handleTouch, false);

 function handleTouch(event) {
 var touch = event.changedTouches;

 for (var n = 0; n < touch.length; n++) {
 var id = "i" + touch[n].identifier;
 var div = document.getElementById(id);
 if (!div) {
 div = document.createElement("div");
 div.innerHTML = "" + id.substr(1) + "";
 div.id = id;

CHAPTER 13: Using Touch and Gesture Events 375

 document.body.appendChild(div);
 }
 div.style.left = (touch[n].pageX - 22) + "px";
 div.style.top = (touch[n].pageY - 22) + "px";
 div.style.opacity = (event.type == "touchend") ? 0.05 : 1.0;
 }

 event.preventDefault();
 }

 </script>
</head>
<body></body>
</html>

This code simply adds a disc-shaped <div> for every new contact point (Figure 13–1)

that follows finger movement, in a kind of drag-and-drop style. To determine new

contact points, we use the changedTouches property that holds all added or modified

Touch objects that have triggered an event. This again happens independently from the

initial object target, which allows you to delete only the relevant elements.

Figure 13–1. Each finger touch on the iPad screen is materialized by a circle

i

CHAPTER 13: Using Touch and Gesture Events 376

WARNING: From iOS version 3.2, the touch properties of the touchend event are unreliable,
and touches and targetTouches will systematically remain empty. This implies that only the
changedTarget property could let you appropriately handle the release of touches, but this will
hold all current touches, making its use difficult, if not impossible. If you need to use this event,
test it thoroughly on the iPad to avoid unpleasant surprises when your application goes online.

The Touch object has a identifier property holding a unique identifier for every

instance. Because the order in which touches occur isn’t fixed and the user can point

fingers in one specific order and take them disorderly off the screen, we use this

property to determine the previously created <div>. Because identifiers can be recycled

and reused by the system, we do not delete previous discs; instead, we simply change

its opacity to observe its movement when its identifier is recycled.

Table 13–2. Properties of the Touch Object

Properties Description

touch.pageX and touch.pageY
Represent the position of the touch event relative to the full

page.

touch.clientX and touch.clientY Should represent the position of the event relative to the

client area but returns the same values as pageX and pageY.

touch.screenX and touch.screenY Should represent the event position relative to the screen

but returns the same values as pageX and pageY. Values are

adjusted, however, to the scale of the viewport.

touch.identifier The unique identifier to the Touch instance.

touch.target The target of the event for this touch.

Table 13–2 describes all properties available to the Touch object. As you can see,

although the object holds three distinct properties to accurately position the event

depending on your needs, all return the same value. Also take note that, although the

TouchEvent object has a pageX property and a pageY property, these will always return 0,

forcing you to always rely on the properties of the Touch object itself.

Cancelled Touch Events
The operating system can halt a touch sequence at any moment, in which case a

touchcancel event is sent. This happens, for instance, when the OS launches an internal

event, like with a long press that will initiate a copy/paste operation, selecting the

element pointed by the user. Using this event will let you correctly halt the execution of

your code, because any current or pending operation will not resume.

CHAPTER 13: Using Touch and Gesture Events 377

A Page View Built with Touch and Transform
In classic web pages, it is common to associate events with changes to the markup, to

show a drop-down menu for instance. With Mobile Safari, you can take advantage of

fluid CSS transitions when elements are moved. In the following example, we are going

to implement drag-and-drop functionality using Multi-Touch events and transitions to

achieve a result similar to the behavior of the iPhone photo album application. In Cocoa

Touch, you would do this using the UIPageView object.

What We Are Going to Do
In an album, though there are generally several pictures or photographs, it is not

necessary to create a placeholder for each, because only one image is focused at a

time. When the user moves an image to the right or to the left, part of the next or

previous image is uncovered. This means that we need only three areas where images

will be displayed, as shown in Figure 13–2.

Figure 13–2. Template for the page view

With each movement to the right, the node holding the picture at the left will be moved

to the focus area, and the area at the right will be shifted to the left of the focus area

(and reversely for the left). After each movement, the placeholders from the hidden areas

will need to be updated to display the relevant new picture.

CHAPTER 13: Using Touch and Gesture Events 378

The Container
We want to create the three necessary areas dynamically in order to make handling the

page view easier. All we will need to do is define a container (with the class .pageview-
wrapper) with its dimensions. Here are the styles necessary to set up our areas:

.pageview-wrapper {
 position: relative;
 overflow: hidden;
}

.pageview-wrapper div {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
}

.pageview-group div {
 border: solid 5px black;
 -webkit-box-sizing: border-box;
}

.pageview-group div:first-child { left: -100%; }
.pageview-group div:last-child { left: +100%; }

Our three areas are absolutely positioned to make it easier to lay them out, and we have

grouped them inside one container (.pageview-group) so that they do not need to be

moved independently and less code is required. So that the areas are visible even if no

image is displayed, we add a border to our areas. From there, let’s simply set

dimensions for our container:

html, body {
 margin: 0;
 height: 100%;
}

.box {
 width: 100%;
 height: 100%;
 background-color: lightgrey;
}

In our example, we have given the container a relative width for it to take all the available

space on the device used for testing. You can, of course, set any dimensions to fit your

needs.

The definition of the container in the HTML markup is very straightforward:

<div class="box pageview-wrapper"></div>

For now, this all only displays a gray rectangle. The group and the areas will be added

when the PageView object we are going to create will be initialized.

CHAPTER 13: Using Touch and Gesture Events 379

Bring Elements and Interaction
The PageView object created here will add the elements necessary to add pagination in

our container and handle user-initiated events related to the movement of the picture

areas.

var PageView = function(target) {
 this.target = target;
 this.state = this.WAITING;

 /* Initialization phase */
 this.createElements();
 this.registerEvents();
}

/* The PageView is waiting for a user action */
PageView.prototype.__defineGetter__("WAITING", function() { return 0 });

/* The user is pointing to the PageView container */
PageView.prototype.__defineGetter__("ATTACHED", function() { return 1 });

/* The user released the container and the PageView is moving to its new position */
PageView.prototype.__defineGetter__("DETACHING", function() { return 2 });

The container is passed to the constructor as a parameter, which is stored in the target

property. The page view state is then set to WAITING using the constants defined in the

getters. The constructor then calls the initialization methods.

PageView.prototype.createElements = function() {
 /* Create a pages group */
 this.group = document.createElement("div");
 this.group.className = "pageview-group";
 this.target.appendChild(this.group);

 /* Add the 3 pages */
 for (var n = 0; n < 3; n++) {
 var div = document.createElement("div");
 this.group.appendChild(div);
 }
}

PageView.prototype.registerEvents = function() {
 this.target.addEventListener("touchstart", this, false);
 this.target.addEventListener("touchmove", this, false);
 this.target.addEventListener("touchend", this, false);
}

The createElements() method creates the page group that will be moved when the user

wants to change the focused picture. The three pages are added to this container, and

the touch event listeners are attached to the main container. Because we pass this as a

handler, we need to define a handleEvent() method, as explained earlier.

PageView.prototype.handleEvent = function(event) {
 switch (event.type) {
 case "touchstart":
 case "touchmove":
 case "touchend":
 var handler = event.type + "Handler";

CHAPTER 13: Using Touch and Gesture Events 380

 this[handler](event);
 }
}

Each event is then directed to the relevant function.

PageView.prototype.touchstartHandler = function(event) {
 if (this.state == this.DETACHING) {
 return;
 }
 this.state = this.ATTACHED;
 this.origin = event.touches[0].pageX;
 event.preventDefault();
}

When the user touches the container of the PageView, the state is changed to ATTACHED,

indicating that the object should catch user actions. The origin of the finger movement is

registered, and the origin property will let us calculate the movement during the

touchmove event.

To prevent any irrelevant behavior, we also cancel any default action of the browser.

PageView.prototype.touchmoveHandler = function(event) {
 if (this.state != this.ATTACHED) {
 return;
 }
 var distance = event.touches[0].pageX - this.origin;
 this.group.style.webkitTransform = "translate3d(" + distance + "px, 0, 0)";
}

When the user moves a finger along the screen, we adjust the position of the pages

group to move it simultaneously. As explained in Chapter 9, the translateX() method is

currently unreliable because it lacks fluidity. We rely on the translate3d() method that

doesn’t come with this issue.

When the user releases pressure, we need to activate the newly focused image.

Because we do not want the page view to jump from one area to the other abruptly, we

use CSS transitions. This way, the areas move smoothly to their new position. Using

transitions requires that the entire control (time, easing function) is shifted to the style

sheet to make the transition easier to maintain than with JavaScript hard-coded values.

.pageview-group {
 -webkit-transition: -webkit-transform 0.35s ease-out;
}

To prevent transitions during the touchmove event, it is necessary to modify the

createElements() method to initialize the time with the value 0, which will keep the

transition from occurring.

PageView.prototype.createElements = function() {
 /* Create a pages group */
 this.group = document.createElement("div");
 this.group.className = "pageview-group";
 this.group.style.webkitTransitionDuration = 0;
 this.target.appendChild(this.group);
...
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13: Using Touch and Gesture Events 381

Moreover, if you do not rasterize absolutely positioned elements globally, flickers may

occur during the animation. The shift from one state to another can occasionally entail

rendering approximations, especially with large elements. The difference is notable on

the iPad. This can be done simply by adding the following CSS property to the elements

to be animated.

NOTE: When dealing with very large elements, if you don't need to make the verso of your
element visible, setting the backface-visibility property to hidden will improve
performance.

.pageview-wrapper div {
 -webkit-transform: translate3d(0, 0, 0);
 position: absolute;
...
}

We can now define the handler for the touchend event:

 PageView.prototype.touchendHandler = function(event) {
 if (this.state == this.DETACHING) {
 return;
 }

 var matrix = new WebKitCSSMatrix(this.group.style.webkitTransform);
 if (matrix.e == 0) {
 this.state = this.WAITING;
 } else {
 var jump = this.target.offsetWidth;
 matrix.e = (matrix.e > 0) ? +jump : -jump;

 this.group.addEventListener("webkitTransitionEnd", this, false);
 this.group.style.webkitTransitionDuration = "";
 this.group.style.webkitTransform = matrix;
 this.state = this.DETACHING;
 }
}

The touchendHandler() method gathers data from the current matrix to determine

whether a movement has occurred. If no movement has taken place, the object simply

returns to its WAITING state; otherwise, the method determines the direction of the

movement and alters the matrix in order to apply the translation in the correct direction

by a distance equivalent to the width of the container. The duration of the translation

defined in the style sheet is restored so that the animation is executed correctly and the

state of the object is set to DETACHING. This tells the other methods that an animation is

running so that no event should be listened for.

To terminate the movement, a listener is added for the transitionend event. We need to

modify the handleEvent() method to take this into account:

PageView.prototype.handleEvent = function(event) {
 switch (event.type) {
 case "webkitTransitionEnd":
 this.moveNodes();

CHAPTER 13: Using Touch and Gesture Events 382

 break;

 case "touchstart":
...
 }
}

Once the animation is complete, the moveNodes() method is called. This method too

reads the matrix to determine the direction, and then it moves the nodes appropriately.

Finally, the listener is deleted, and the group is reset to its initial state. The object state

returns to WAITING, expecting a new action from the user.

PageView.prototype.moveNodes = function() {
 var matrix = new WebKitCSSMatrix(this.group.style.webkitTransform);
 var first = this.group.firstChild;

 if (matrix.e < 0) {
 this.group.appendChild(first);
 } else {
 var last = this.group.lastChild;
 this.group.insertBefore(last, first);
 }

 this.group.removeEventListener("webkitTransitionEnd", this, false);
 this.group.style.webkitTransitionDuration = 0;
 this.group.style.webkitTransform = "";
 this.state = this.WAITING;
}

All that is left to do is associate the object with the main container, which is done as

simply as this:

var wrap = document.querySelector(".pageview-wrapper");
var view = new PageView(wrap);

As you can see, this code is really short and makes defining the transitions and

dimensions very flexible, because all is handled from the style sheet. If you run this code

now, you can already make the areas move from right to left and from left to right. This

of course is not very satisfying, because, for the moment, nothing is displayed in the

defined areas.

Creating Custom Events
To handle the rendering of our images in the different areas, we are going to create new

events. The first one, PageChanged, will initialize the page view images. The other two,

PageMovedLeft and PageMovedRight, will be sent when images are moved to the left or to

the right. This is done by first creating a sendEvent() method, as follows:

PageView.prototype.sendEvent = function(dir) {
 /* Create a new Event instance */
 var type, event = document.createEvent("Event");

 /* Prepare the event type */
 if (dir > 0) {
 type = "PageMovedRight";

CHAPTER 13: Using Touch and Gesture Events 383

 } else if (dir < 0) {
 type = "PageMovedLeft";
 } else {
 type = "PageChanged";
 }

 /* Initialize the new event */
 var vendor = "book";
 event.initEvent(vendor + type, false, false);

 /* Add a 'pages' property to the Event object */
 var nodes = this.group.childNodes;
 event.pages = {
 left: nodes[0],
 view: nodes[1],
 right: nodes[2]
 };

 /* Dispatch the vent to the target */
 this.target.dispatchEvent(event);
}

The createEvent() method of the DOM DocumentEvent interface returns an instance of

the object passed as a parameter. Here, we create a basic event by passing the string

Event. We also could have passed MouseEvent, TouchEvent, and so on, to create

instances of these events.

Every object implementing the Event interface has its own initialization method. For the

Event object, that is initEvent(), which takes only three parameters. The MouseEvent

initialization method, for instance, is notably longer. The initEvent() method has the

following signature:

event.initEvent(eventType, canBubble, cancelable);

Our event cannot be canceled, because it is sent after the markup is built, and the group

is moved: the default behavior cannot be canceled, because it has already been

executed. The prefix book is added to our event type to ensure forward compatibility

with native events. You could, of course, use event names from the DOM and thus

simulate a click, for instance.

Once the Event object is initialized, we add a new pages property to it, which will let the

handler access and modify the areas at any moment. The event is then sent to its target,

the main container.

Now, we can call our new sendEvent() function. We simply change our constructor so

that the client code initializes the content of our areas with the PageChanged event.

var PageView = function(target) {
...
 this.sendEvent();
}

Next, we need to notify the client code after the transition has completed. Therefore, we

change the moveNodes() method to add a function call at the end of it.

PageView.prototype.moveNodes = function() {

CHAPTER 13: Using Touch and Gesture Events 384

...
 this.sendEvent(matrix.e);
}

The PageView object is now ready to send its own custom events to the client code.

Handling Custom Events
Without getting into too-lengthy development, we are simply going to change the

background color of our areas. If you want to use this in an application with proper

images, you could use the background positioning and sizing rules presented in Chapter

6 in order to use all the available space while keeping a relevant ratio.

The catching of custom events is handled exactly like that of native events. We are

going to use the new CSS hsl() function in order to loop through colors seamlessly,

without coping with the value of the color variable.

The first event to catch is PageChanged, which will indicate when to initialize the colors for

the three areas.

var color = 0;

function makeColor(hue) {
 return "hsl(" + hue + ", 100%, 50%)";
}

wrap.addEventListener("bookPageChanged", function(e) {
 e.pages.left.style.backgroundColor = makeColor(color - 20);
 e.pages.view.style.backgroundColor = makeColor(color);
 e.pages.right.style.backgroundColor = makeColor(color + 20);
}, false);

Next, we want to shift colors progressively as the user moves areas from one side to the

other.

wrap.addEventListener("bookPageMovedLeft", function(e) {
 color += 20; // New active color
 e.pages.right.style.backgroundColor = makeColor(color + 20);
}, false);

wrap.addEventListener("bookPageMovedRight", function(e) {
 color -= 20; // New active color
 e.pages.left.style.backgroundColor = makeColor(color - 20);
}, false);

What we do is simply increment and decrement the color variable and change the color

of the opposite node appropriately depending on the direction. The listeners need to be

added before the instantiation of the PageView object, or the PageChanged event will be

sent before a listener is created to catch it. The event is sent from the constructor once

the page view is initialized.

CHAPTER 13: Using Touch and Gesture Events 385

Working with Precomputed Gestures
To make the interpretation of classic iPhone gestures easier, Apple has added higher-

level events that encapsulate TouchEvent and will let you focus only on these gestures.

With GestureEvent, there is no TouchList data but only information relative to rotation

and scale (pivot and pinch gestures).

NOTE: The rotation and scale data are also available through the TouchEvent object. However,
gesture events allow you to focus only on this information, whereas touch events will send
constant updates because of the touchmove events, even if there is no actual gesture. You
therefore have a choice between the two, knowing that GestureEvent is less resource hungry.

The scale and rotation properties of the GestureEvent object will let you access the

state of their respective gestures through gesturestart. They initially are set to 1 (scale)

and 0 (rotation) when the touchstart event is sent, and then they change as the user

moves fingers on the screen.

NOTE: With iOS 3.0, the values for scale and rotation are fallacious with the gestureend if
the event occurs immediately after a gesturestart event. In such a case, you would receive a
scale at 0 and an incorrect angle for the rotation. If you want to use gestureend, always check
that the returned values are consistent; you can, for instance, test whether a gesturechange
event has been sent.

These gestures require the use of two fingers. Thus, when the second finger reaches the

screen surface, the gesturestart event is sent just before the touchstart event. Gesture

events are always sent before the associated touch event. The same is therefore true

when the user releases one of two fingers: the gestureend event is sent before the

touchend event. Likewise, gesturechange is sent before touchmove.

The following example illustrates the use of these events:

<!DOCTYPE html>
<html>
<head>
 <title>Gesture Demo</title>
 <meta name="viewport" content="width=device-width;
 initial-scale=1.0; maximum-scale=1.0; user-scalable=0;">
 <style>

 body { margin-top: 50% }

 div {
 margin:-125px auto 0;
 text-align: center;
 color: white;
 font: bold 20px/250px sans-serif;
 width: 250px;

CHAPTER 13: Using Touch and Gesture Events 386

 background: rgba(0,0,255,0.5);
 border: solid 1px blue;
 -webkit-border-radius: 32px;
 }

 </style>
</head>

<body>
 <div>SQUARE</div>

 <script>

 var div = document.getElementsByTagName("div")[0];

 div.addEventListener("gesturestart", startHandler, false);
 div.addEventListener("gesturechange", changeHandler, false);

 function startHandler(event) {
 if (event.target != event.currentTarget) {
 return;
 }
 var computed = window.getComputedStyle(event.target);
 event.target._originalMatrix =
 new WebKitCSSMatrix(computed.webkitTransform);
 }

 function changeHandler(event) {
 if (event.target != event.currentTarget) {
 return;
 }
 event.target.style.webkitTransform = event.target._originalMatrix
 .scale(event.scale).rotate(event.rotation);
 event.preventDefault();
 }

 </script>
</body>
</html>

Unsurprisingly, we start by adding the appropriate handlers to catch events. As the

<div> element holds a text node, if a finger passes over it, two events will be sent for the

same gesture change: one for the main target and the other one for the content of the

<div>. To avoid uselessly applying the same transformation twice, we filter the target to

focus only on the main one.

To make sure the transformation is applied on top of the current state of the object, the

startHandler() function gathers the computed style of the target and stores it in the

_originalMatrix property, which is dynamically added to the target node.

From there, the new matrix can be calculated when the gesturechange event is sent,

using the scale() method from the CSSMatrix object, and the rotation can be applied

using rotate(). Because these methods don’t alter the original matrix, each new

gesturechange event will entail a correct transformation of the scale and rotation

CHAPTER 13: Using Touch and Gesture Events 387

values, which will change together with the movements of the fingers of the user within a

gesture session.

Finally, because the event can be canceled, to make sure the viewport doesn’t move

when the user performs gestures, we use preventDefault() on the event.

Create Your Own Gestures
Using gesture events is rich and makes interpreting the classic iOS gestures much

easier, because the value to apply is already computed. However, this can be limited,

because only two predefined gestures are available.

Interpreting gestures can quickly become a chore as soon as one wants to define each

gesture independently. The popular swipe-to-delete gesture is rather simple to handle,

because all you need to do is record the finger position between the touchstart and

touchend events and check that the line between these points is roughly horizontal. You

could even check the direction of the movement. However, trying to handle more

complex movements, such as letter drawing or shape, is an utterly different story.

One Code, Many Strokes
We are going to build a system that allows, with only one piece of code, to recognize

any stroke. This, if relevant to your web application, can make its use far more

productive. The system implemented is inspired by libraries such as LibStroke or

Xstroke (using C/C++ on Linux systems) and the Graffiti character recognition

application formerly found on PalmOS (Figure 13–3), which has recently been ported to

Android devices. Note that the iPhone already has a similar system to write Chinese

characters.

Figure 13–3. The Graffiti's help screen on PalmOS and the iPhone recognition interface

The movements used on the iPhone generally don’t use more than one finger, because

other movements typically are already interpreted by gesture events, as shown earlier.

Therefore, we are going to use touch events, taking into consideration only the first

CHAPTER 13: Using Touch and Gesture Events 388

finger. The script will first register all the points where the finger passes and will then try

to interpret the sequence.

The interpretation will be handled by projecting the movement against a 3x3 block grid,

numbered from 1 to 9, that will let us extract a signature associated with a specific

shape. As shown in Figure 13–4, the grid has no definite dimensions, and dimensions

will be determined by the amplitude of the movement; the bounding box will adjust

progressively as new points are added.

Figure 13–4. The letters C and E, respectively, generate the signatures 3214789 and 321454789

To make this more precise, it will be necessary to adjust some shapes. Indeed, if a

shape is significantly larger in one direction, interpretation can be imprecise. In such

cases, the grid will be adjusted in order to center the drawing by scaling the smallest

span up (Figure 13–5).

Figure 13–5. A gesture that is exaggeratedly higher than wide needs to be adjusted

Moreover, some characters—a plus sign, for instance—will most likely be traced with a

pressure release at one or several stages. This is why we are going to store several

contiguous sequences if they occur within a definite time length and sum them up to

return the associated signature.

CHAPTER 13: Using Touch and Gesture Events 389

The Bounding Box Object
The bounding box is a simple rectangle that is built using the following definition:

var Rect = function() {
 var i = Infinity;
 this.coords = new WebKitPoint(+i, +i);
 this.extent = new WebKitPoint(-i, -i);
}

Rect.prototype.adjust = function(x, y) {
 if (x < this.coords.x) {
 this.coords.x = x;
 }
 if (x > this.extent.x) {
 this.extent.x = x;
 }
 if (y < this.coords.y) {
 this.coords.y = y;
 }
 if (y > this.extent.y) {
 this.extent.y = y;
 }
}

Rect.prototype.fit = function() {
 var w = (this.extent.x - this.coords.x + 1);
 var h = (this.extent.y - this.coords.y + 1);

 if ((w / h) > 4 || (h / w) > 4) {
 var ax = w < h ? w : 0;
 var ay = w < h ? 0 : h;

 this.coords.x -= ax;
 this.extent.x += ax;
 this.coords.y -= ay;
 this.extent.y += ay;
 }
}

To make this easier to read, we use the WebKitPoint object, which represents a point

with x and y coordinates. The adjust() method allows you to adjust the bounding box

appropriately as coordinates are passed to it when a finger strokes the screen. Finally,

the fit() method adjusts the bounding box if it is at least four times as large in one

direction.

CHAPTER 13: Using Touch and Gesture Events 390

Registering User Strokes
Strokes are recorded, and the signature is generated by the Recognizer object.

var Recognizer = function(element, interpreter) {
 this.element = element;
 this.element.addEventListener("touchstart", this, false);
 this.interpreter = interpreter;

 this.strokes = [];
 this.autoEndTimer = null;
 this.strokeSource = null;
}

As its first parameter, the constructor takes the object that will catch the touches. It can

be either an HTML element with definite dimensions or the document object, which will

let you catch all events of the device screen. The second parameter is a function that

interprets the signatures.

Successive movements, which will be used to determine the final signature, are stored

in the strokes array. To put an end to the figure and determine whether a stroke is part

of the current sequence or starts a new one, we use a timer. The identifier for this timer

is stored in autoEndTimer in order to keep control over it.

Recognizer.prototype.handleEvent = function(event) {
 var x = event.changedTouches[0].pageX;
 var y = event.changedTouches[0].pageY;
 var t = event.type;

 if (event.touches.length != 1) {
 t = "touchend";
 }

 switch (t) {
 case "touchstart":
 this.saveSource(event.touches[0].target);
 this.startStroke();
 this.savePoint(x, y);
 this.doAutoEnd();
 break;

 case "touchmove":
 this.savePoint(x, y);
 this.doAutoEnd();
 break;

 case "touchend":
 this.endStroke();
 this.savePoint(x, y);
 this.doAutoEnd();
 break;
 }

 event.preventDefault();
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13: Using Touch and Gesture Events 391

Recognizer.prototype.saveSource = function(node) {
 if (!this.strokeSource) {
 if (node.nodeType == node.TEXT_NODE) {
 node = node.parentNode;
 }
 this.strokeSource = node;
 }

}

Recognizer.prototype.startStroke = function() {
 this.strokes.push({
 points: [],
 bound : new Rect()
 });
 this.element.addEventListener("touchmove", this, false);
 this.element.addEventListener("touchend", this, false);
}

The recording starts with a touchstart event. We register new listeners to initiate a

sequence only when this event is sent, which prevents the recording of initial points

outside element.

A new object is pushed to the strokes array where all points and the bounding box will

be stored. The bounding box is resized progressively as points are added, which saves

a loop when the signature is processed. For every event, at least one point will be saved,

and the autoEndTimer timer will be reinitialized.

Recognizer.prototype.savePoint = function(x, y) {
 var stroke = this.strokes[this.strokes.length - 1];
 stroke.points.push(new WebKitPoint(x, y));
 stroke.bound.adjust(x, y);
}

Recognizer.prototype.doAutoEnd = function() {
 if (this.autoEndTimer) {
 window.clearTimeout(this.autoEndTimer);
 }
 var that = this;
 this.autoEndTimer = window.setTimeout(function() {
 that.endStroke();
 that.finalizeStrokes();
 }, 500);
}

The user has 500ms to chain two gestures, which is long enough in most cases. Beyond

this limit, the recording will be halted automatically, and listeners will be deleted, if any.

Recognizer.prototype.endStroke = function() {
 this.element.removeEventListener("touchmove", this, false);
 this.element.removeEventListener("touchend", this, false);
}

Once the sequence has come to an end, the finalizeStrokes() method is called to

determine the signature.

Recognizer.prototype.finalizeStrokes = function() {
 var signature = [];

CHAPTER 13: Using Touch and Gesture Events 392

 for (var m = 0; m < this.strokes.length; m++) {
 var bound = this.strokes[m].bound;
 var points = this.strokes[m].points;

 bound.fit();
 var w = (bound.extent.x - bound.coords.x + 1) / 3;
 var h = (bound.extent.y - bound.coords.y + 1) / 3;

 for (var n = 0; n < points.length - 1; n++) {
 var px = points[n].x - bound.coords.x;
 var py = points[n].y - bound.coords.y;
 var mx = px / w << 0; // The bit shift operator allows
 var my = py / h << 0; // very quick Math.floor()

 var value = my * 3 + mx + 1;
 if (value != signature[signature.length - 1]) {
 signature.push(value);
 }
 }
 }

 this.strokes = [];
 this.interpreter(signature.join(''), this.strokeSource);
 this.strokeSource = null;}
}

With each recorded stroke, the bounding box is adjusted if necessary, and the

dimensions for the box grid are calculated. Then, points are adjusted to normalize their

coordinates, and their position on the grid is estimated. If a new grid block is reached,

we add it to the signature. Finally, the strokes array is emptied, and the interpreter is

launched with the final signature as a parameter.

Using the Recognizer Object
From there, using the Recognizer object is very easy, because you simply need to

instantiate the object and define an interpreter for the signature. We are going to use a

list to receive the finger strokes and modify the text style of the list elements

appropriately. For this example, we again build upon our web application template. Here

are the changes to bring to index.html:

<body onload="init()">
 <div class="view" style = "background: white">
...
 <div class="list-wrapper">
 <h2>Apress</h2>

 Books
 Reviews
 Authors
 Contact

 </div>
 </div>

CHAPTER 13: Using Touch and Gesture Events 393

<body>

Then, create a new JavaScript file named strokes.js holding the code for the Recognizer,

along with the following:

function interpreter(signature, source) {
 switch (signature) {
 case "456": // O--->
 sendEvent("SwipeRight", source);
 break;

 case "654": // <---O
 sendEvent("SwipeLeft", source);
 break;

 default:
 console.log("Unknown stroke received " + signature);
 }
}

function sendEvent(type, target) {
 var vendor = "book";
 var event = document.createEvent("Event");

 event.initEvent(vendor + type, true, false);
 target.dispatchEvent(event);
}

As expected, the interpreter receives the signature together with the origin of the stroke.

The signature is then interpreted, and an event is sent to the origin, setting the second

parameter of initEvent() to true and thus allowing bubbling. You then need only

instantiate the object and prepare the listeners whose handlers will modify the styles of

the list elements.

function init() {
 var ul = document.getElementsByTagName("ul")[0];
 var rs = new Recognizer(ul, interpreter);

 /* Change the text color on right-to-left swipe event */
 ul.addEventListener("bookSwipeLeft", function(event) {
 var style = event.target.style;
 style.color = style.color ? "" : "red";
 }, false);

 /* Change the text weight on left-to-right swipe event */
 ul.addEventListener("bookSwipeRight", function(event) {
 var style = event.target.style;
 style.fontWeight = style.fontWeight ? "" : "bold";
 }, false);
}

The new events sent are a right-to-left swipe and its left-to-right counterpart. Each

stroke switches the text from black to red or from normal weight to bold, as shown in

Figure 13–6. Because bubbling is activated for events, it isn’t necessary to add an

independent handler for every list element. The event will reach the list item and move

CHAPTER 13: Using Touch and Gesture Events 394

up to the parent, to which the listener is attached. This allows you to concentrate the

handler treatment.

Figure 13–6. The swipe movement changes the text style

Improve Accuracy
As you can see, implementing new gesture events is rather simple. Nonetheless,

accuracy strongly depends on the stroke initiated by the user and may dwindle

especially when dealing with diagonals. Diagonals will typically span over several

columns and rows, thus multiplying possible paths for a single stroke. An interesting

way to handle this would be to resort to regular expressions in the interpretation phase

to limit the number of successive comparisons required to determine what the stroke

was. This will speed your application up also because the regular expressions engine is

executed natively, unlike custom tests that will grow more complicated as strokes grow

more complex.

Another approach is to work with directions rather than a grid, seeking to determine the

orientation of strokes rather than trying to position points. This method is used in many

applications such as Firefox’s FireGestures extension and has proven very accurate and

efficient.

CHAPTER 13: Using Touch and Gesture Events 395

Summary
The unique relationship established by touch between the user and the device should be

totally taken into account when developing your applications. Not only can the correct

use and handling of touches and gestures let you greatly enhance user experience: with

a bit of imagination, you can also bring new functionality and make your applications

stand out in the Web crowd.

This all requires that you fully understand how these events work and how users are

likely to use their device and react to the interface of your applications. More than ever,

the best way to go further with touch and gesture events is to experience your own

applications and experiments.

397

397

 Chapter

Location-Aware Web
Applications
The App Store offers a myriad of applications that bring users services based on where

they are at some particular moment, such as Where by uLocate, a multilocation-based

services aggregator, or Foursquare, which offers a new way to discover your city.

By crossing information from growing spatial-related databases with the approximate

position of the user, you get to suggest the perfect place to eat homemade chili con

carne, customize the user experience by giving the impression you actually know about

the user, give the relevant afternoon’s weather, or show a map with the appropriate

directions to any address. Since its very first release, the iPhone has featured ways to

locate the user on a world map. Even though it didn’t primarily ship with an Assisted

Global Positioning System (A-GPS) chip, it used a hybrid algorithm to determine its

position: by synthesizing data from triangulation—via cell towers, a method widely used

in cell phones—and using information gathered from the network through the Wi-Fi

Positioning System (WPS), it could return its location within reasonable time.

Triangulation became more efficient as the number of cell towers increased but never

yielded results with an accuracy better than 100 meters; deducing position from network

information could be very precise and fast but still depended on the network’s density.

The solution was good in most cases, but there was still room for improvement.

NOTE: Geolocation on all devices is pretty tough on the battery’s life, so always keep this in
mind, and use these features only when required for the end user. For instance, prefer caching
data rather than requesting a new position on every page load.

Moreover, the system in use made this feature available only to native iPhone

applications using the Core Location API. iOS 3.0 brings the exciting possibility to

access geographical data directly with JavaScript, thanks to a new API accessible to

Mobile Safari. This chapter will get you going with this new, rich tool available to you.

14

CHAPTER 14: Location-Aware Web Applications 398

The Geolocation API
The implementation for this API is based on a W3C specification. It allows you to

determine the geographic position of the host device using the previously named

sources and is very easy to start using. All the API methods are accessible with the

navigator.geolocation object, and they let you easily request the user’s position, either

once or repeatedly, tracking the user’s movement (if any).

Privacy Considerations
Granting access to such information about users without them knowing should always

be controlled to some extent. To respect the end user’s privacy, iOS will always ask for

a user’s permission before sending any information about their position, as in the Maps

and Camera applications (see Figure 14–1).

Figure 14–1. All iPhone applications ask for the user’s authorization before sending location data

Setup Considerations
Before testing the API on your own device, make sure the location service is active. You

will find it in the Settings application, under the General submenu. It would be even

“cleaner” to reset previously granted geolocation request authorizations, to work on a

tabula rasa, for instance. This is achieved by navigating to Settings General Reset
Reset geolocation alerts.

CHAPTER 14: Location-Aware Web Applications 399

Also, when debugging on a desktop browser, don’t forget to check for the actual

availability of the API—this will save you precious time debugging code that simply

cannot be interpreted. This is done simply with the following code that checks for the

Geolocation object:

If (window.navigator.geolocation) {
 /* The API is available */
} else {
 /* Fallback message */
}

Likewise, targeting Mobile Safari, not all your users will have the latest version of the

browser—especially on older versions of the iPod touch, for which the relevant update is

either sold for a cost or not available at all. Generally speaking, proceeding this way will

make your application available in better conditions to more users, and planning for

errors will help you offer a better user experience.

Getting the Current Position
The most obvious and probably most common use of the API will be to ask for the

user’s present position. As stated earlier, you will use the Geolocation object, and you

will access the getCurrentPosition() method.

window.navigator.geolocation.getCurrentPosition(
 function(position) {
 /* do something with the position object data */
 }
);

Because every request takes some time, which could quickly freeze the user’s device,

all requests are asynchronous. You will need to pass a callback function as a parameter

to be called when data becomes available, as illustrated earlier.

Longitude, Latitude, and More
When the request is successful, the callback is called using the position parameter,

which contains data about the user’s location. This object makes eight properties

available, as shown in Table 14–1.

CHAPTER 14: Location-Aware Web Applications 400

Table 14–1. Properties of the Position Object

Property Description

position.timestamp Time at which the location information was determined

(milliseconds).

position.coords.accuracy The accuracy of the latitude/longitude information returned

(meters; the lower, the better).

position.coords.latitude The user’s current latitude (decimal degrees).

position.coords.longitude The user’s current longitude (decimal degrees).

position.coords.altitudeAccuracy The accuracy of the altitude information returned (meters).

This is often set to null.

position.coords.altitude The user’s current altitude (meters). The same restrictions

apply.

position.coords.heading The direction in which the user is heading (decimal

degrees). This is often set to null.

position.coords.speed The user’s current speed. The same restrictions apply

(meters/second).

With varying performance and precision and as long as no error occurs (for example, the

user refuses the request), the first method properties will return a value whatever device

is used, be it an older iPhone, an iPod touch, or an iPad. However, as you can see, not

all data is necessarily available. Heading and speed, for instance, obviously require that

several location points have been recorded with a sufficient accuracy and therefore

need tracking to return values, as we will soon explain. Depending on the device that is

used—and the location technique it uses—not all data can be made available.

Besides, because using GPS usually takes time before satellites are reached, this

location method will often be deferred by the device, causing performance to increase

but returning less accurate data. It will be resorted to for tracking, because the request

for position information is repeated, leaving enough time for GPS acquisition.

When testing your web application, you will often have to proceed outdoors, especially

when relying on GPS precision, because GPS hardly works—if at all—indoors.

Therefore, whether you are expecting information from the basic properties or from the

more advanced ones, you should always handle possible errors and approximation.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14: Location-Aware Web Applications 401

Handling Errors from Requests
Luckily enough, the getCurrentPosition() takes another optional parameter that gives

you access to code and description for the occurring error. This gives you some latitude

to understand and then handle the error. Here’s an example of how to do this:

/* Request the user's position */
window.navigator.geolocation.getCurrentPosition(successCallback, failureCallback);

function successCallback(position) {
 /* Do something with the position object data */
}

function failureCallback(error) {
 /* Do something with the error object */
}

There are two properties to the error object, as shown in Table 14–2.

Table 14–2. Properties of the Error Object

Property Description

error.code One of the following error codes:

error.UNKNOWN_ERROR (0)

error.PERMISSION_DENIED (1)

error.POSITION_UNAVAILABLE (2)

error.TIMEOUT (3)

error.message A message describing what happened.

Whereas the error.code property yields persistent error codes, the error.message

property may be quite different depending on the device running the function.

Obviously, a single error code may cover several real-life errors. For instance,

PERMISSION_DENIED is returned when the user refuses the request but also when the

geolocation service on the device is disabled. However, the error message should shed

light on the code, which is why both properties are useful together. Please note that

indeed the error.message property is meant only for debugging purposes; it is by no

means supposed to be seen on the user’s end.

WARNING: If an exception occurs within your success callback function, the failure callback
function will be called with an UNKNOWN_ERROR code. Always double-check whether the error
you are getting really is a location error or comes from your own code.

CHAPTER 14: Location-Aware Web Applications 402

Accuracy, Timeout, and Cached Location
The W3C specification provides three options to refine your request, using an object-

type parameter along with your callbacks. You can specify how long your request may

take to succeed, how long the position yielded may have been cached before the

request, and whether to require extra accuracy. These options are invoked as follows:

window.navigator.geolocation.getCurrentPosition(successCallback, failureCallback, {
 timeout: 0,
 maximumAge: 60000,
 enableHighAccuracy: false
});

There are many cases where there’s no need to require an updated position of the user.

For an application returning a list of trendy restaurants based on a user’s location,

chances are the user will often be in the same bounds. In such cases, you may want to

use cached data from the user’s device.

The maximumAge option tells the device to look for this kind of data before trying to

determine the user’s actual position and allows you to set an age limit for this data. As

we have seen previously, another advantage of this solution is that it decreases the drain

on the battery.

The default value for maximumAge is 0, meaning the device will try to return an updated

value for each request; if set to Infinity, the user agent will necessarily return a cached

value, if any. If none exists, it will acquire a new position.

The timeout attribute forces a time limit in milliseconds for the location acquisition to

complete. The default value is Infinity which lets you imagine how the timeout option

can be useful when developing an application. If not specified, the application will run

until the terminal returns the requested information, even if this information is for some

reason not available. Specifying a value for timeout, a TIMEOUT error will be sent to the

error callback when the limit is reached.

In the previous example, if no value for the position is cached, the function’s failure

callback will be called immediately. Please note that whatever time the user takes to

grant access to their position information is not taken into account.

Combining these options can make your application more responsive. However, when

you do need this extra precision, the third option, enableHighAccuracy, tells the API to

get the closest answer possible to the user’s actual location. This option by default is set

to false.

Keep in mind that users usually care about hyper-local information, so you may want to

try to offer accurate positioning. The accuracy will increase as you poll for location. This

can be helped by using the tracking functionality of the API. As a last resort, if the

location is not available, you can rely on a text field so that users can specify their city or

ZIP code, which is often the last acceptable level of precision.

CHAPTER 14: Location-Aware Web Applications 403

Putting the User on a Map with Google Maps
To make the use of the data returned by the location API, we are going to make an

example where the user is situated on a map using Google Maps.

Google Maps comes with a rich API that is used, among others, by the MapKit

framework from Cocoa Touch in native applications. It will bring the same functionality

to you as the Maps application on the iPhone. Its assets include that it is free, doesn’t

require preliminary registration, and is quite easy to use with JavaScript.

Showing the Map
Let’s start with the beginning: displaying the map. What our web application is going to

do is let the user show a position on a satellite view, with the level of precision

represented by a circle.

Begin by creating a new project based on your web application template, and modify

the index.html file as follows:

...
 <title>Geolocation Example</title>
...
<body>
 <div class="view">
 <div id="map"></div>

 <div class="header-wrapper">
 <h1>Geolocation</h1>
 </div>
 </div>
</body>

The <div> identified as map is the area that will hold the map. We want it to take up the

available space, with a translucent header overlapping. Here are the styles to achieve

this:

<head>
...
 <style>

 .header-wrapper {
 background-color: rgba(0,0,0,0.65);
 position: absolute;
 top: 0;
 width: 100%;
 }

 .view { height: 100%; }

 #map { min-height: 100%; }

 </style>
</head>

CHAPTER 14: Location-Aware Web Applications 404

Now, we can call the Google Maps API to render the map inside our container. The

sensor parameter tells the API if the device has location functionality; we set this to true.

<head>
...
 </style>
 <script src="http://maps.google.com/maps/api/js?sensor=true"></script>
 <script>
 var ns = google.maps; // Namespace
 var map;

 function init() {
 var latlng = new ns.LatLng(0, 0);
 var options = {
 zoom: 2,
 center: latlng,
 disableDefaultUI: true,
 scaleControl: true,
 mapTypeId: ns.MapTypeId.SATELLITE
 };

 map = new ns.Map(document.getElementById("map"), options);
 }

 </script>
</head>
<body onload="init()">

Because we are going to use the methods of the Map object, we store it inside the global

variable map. Once the page has loaded, we call the init() function; this initializes the

map by giving it a base location, the intersection of the equator, and the Greenwich

meridian (0,0).

Because for now we cannot tell where the user is, we set the zoom factor to 2, which in

the Google Maps API represents a 2000km scale. In satellite view, the zoom can range

from 0 (10.000km) to 22 (2m). There is no particular step between the values: each one

represents a scale determined in the API. Besides, all are not always available,

depending on the map type.

The center property positions the map with the location passed in the parameters in the

middle of the area. You will be able to modify this later using the setCenter() method of

the Map object.

In order not to show useless controls on the map, we pass the disableDefaultUI

property set to true as a parameter. This means controls to change the map type or the

scaling slider won’t appear. However, we are going to show the current scale in the

bottom-left area of the map, which is hidden by default, by setting the scaleControl to

true.

Next, we instantiate a new Map object to which we pass the element where the

SATELLITE mode map will be rendered and the parameters listed earlier. Other available

display modes are listed in Table 14–3.

http://maps.google.com/maps/api/js?sensor=true

CHAPTER 14: Location-Aware Web Applications 405

Table 14–3. Available Map Display Modes

Constant Description

HYBRID Displays a transparent layer of major streets on a satellite view.

ROADMAP Displays a street map.

SATELLITE Displays a satellite view.

TERRAIN Displays a map with shaded relief and terrain along with roads.

This parameter is mandatory, because there is no default value. You can already load

this code to see the intermediate result and change the value for the map type to test

what is available to you. The map rendered is shown in Figure 14–2.

Figure 14–2. A full-screen view of the world

Because Google Maps is fully adapted to Mobile Safari, you can use the same touch

controls as with the native Maps application—double-tap, pinch to zoom, and so on.

Centering the Map on the Location of the User
Now that your map is correctly displayed, you can position the user on the map using

the Geolocation API. To do this, we will add a button to the header of your application

and add some code to launch the location request.

CHAPTER 14: Location-Aware Web Applications 406

...
 <style>

 .header-wrapper .header-button {
 background-color: #2070e9;
 }
...
 </style>
...
 <div class="header-wrapper">
 <h1>Geolocation</h1>
 <button class="header-button" onclick="locate()" disabled>Locate</button>
 </div>

By default, the button we add is disabled so that the user cannot ask for their location

before the map is initialized. Here is the JavaScript that will add functionality to your

button:

function button(active) {
 document.getElementsByTagName("button")[0].disabled = !active;
}

function locate() {
 button(false);
 window.navigator.geolocation.getCurrentPosition(successCallback, failureCallback);
}

And we modify the init() function to activate our button:

function init() {
...
 button(true);
}

Finally, let’s add callbacks to process the data returned by getCurrentLocation() and

handle possible errors:

function successCallback(position) {
 var latlng = new ns.LatLng(position.coords.latitude, position.coords.longitude);
 map.setCenter(latlng);
 map.setZoom(17);
 button(true);
}

function failureCallback(error) {
 switch (error.code) {
 case error.PERMISSION_DENIED:
 alert("Positioning failed. Please check that the location service
 is on and that you have accepted location for the application.");
 break;

 case error.TIMEOUT:
 case error.POSITION_UNAVAILABLE:
 alert("Positioning failed. This often occurs when you are indoors.");
 break;

 default:
 alert("Unexpected error occurred.");

CHAPTER 14: Location-Aware Web Applications 407

 }
 button(true);
}

If the request succeeds, after creating a new LatLng object using the coordinates found

by the device, we change the alignment of the map so that it is centered on the position

of the user, and we set the zoom value to 17 (50m in satellite view) with setZoom(). If an

error occurs, we inform the user as accurately as possible to help find a solution, and we

reactivate the button.

Marking the Position of the User
The map now focuses on where the user is, but this is obviously frustrating for the user,

who would rather know his exact position, not only an area. The Google Maps API

allows you to add various types of data to your maps, such as markers. For our

example, we are going to create a custom marker using a canvas; here is the function

that will let us create different colored bullets without resorting to any image:

var bullet = document.createElement("canvas");

function createBullet(color) {
 /* Always clear the canvas */
 bullet.width = 16;
 bullet.height = 16;

 /* Get the drawing context */
 var ctx = bullet.getContext("2d");

 /* Create a gradient using the color argument */
 var main = ctx.createRadialGradient(5, 6, 1, 0.5, 6, 20);
 main.addColorStop(0, color);
 main.addColorStop(1, "white");

 /* Create the shiny effect */
 var shine = ctx.createRadialGradient(5, 6, 0.5, 5, 6, 40);
 shine.addColorStop(0, "white");
 shine.addColorStop(0.038, "black");
 shine.addColorStop(1, "white");

 /* Set the drawing styles */
 ctx.strokeStyle = color;
 ctx.fillStyle = main;
 ctx.lineWidth = 2;

 /* Draw the bullet */
 ctx.beginPath();
 ctx.arc(8, 8, 7, 0, Math.PI * 2, false);
 ctx.stroke();
 ctx.fill();

 /* Then apply the shiny effect */
 ctx.save();
 ctx.globalCompositeOperation = "lighter";
 ctx.fillStyle = shine;

CHAPTER 14: Location-Aware Web Applications 408

 ctx.fill();
 ctx.restore();

 /* Bolder stroke */
 ctx.strokeStyle = "rgba(0,0,0,0.25)";
 ctx.stroke();

 return bullet.toDataURL();
}

The name says it all: the createBullet() function creates a bullet with the expected

color and returns the content of the canvas using the toDataURL() method. The resulting

image can then be used for your markers.

var markerBullet;

function drawMarker(latlng, color) {
 if (markerBullet) {
 markerBullet.setPosition(latlng);
 } else {
 markerBullet = new ns.Marker({
 position: latlng,
 map: map,
 icon: createBullet(color),
 zIndex: 1,
 });
 }
}

Because it is likely that several spots may be successively indicated and we do not want

to create a new canvas for each one, we save the first instance of our marker and

change only its position.

The constructor of the Marker object takes the LatLng object for the position, the map to

which the position should be attached, and the icon to represent the position that we

create using createBullet().

function successCallback(position) {
...
 drawMarker(latlng, "#0072f9"); // A blue marker
}

From there, every time the web application receives a new position, it will be marked

with a blue bullet.

CHAPTER 14: Location-Aware Web Applications 409

Showing Accuracy
There is still one piece of information that we want to display, and that is the accuracy.

Because the position returned by the location API can be more or less precise

depending on the position of the user and the positioning method internally used (WPS,

GPS, and so on), the user may find it useful to know how accurate the indicated position

is. In our web application, we are going to represent it visually using another object from

the Google Maps API, namely, Circle. Because it is closely related to the position, we

modify the drawMarker() function.

var markerBullet, markerCircle;

function drawMarker(latlng, accuracy, color) {
...
 if (markerCircle) {
 markerCircle.setCenter(latlng);
 } else {
 markerCircle = new ns.Circle({
 center: latlng,
 radius: accuracy,
 map: map,

 fillColor: color,
 fillOpacity: 0.25,
 strokeColor: color,
 strokeOpacity: 0.65,
 strokeWeight: 2,
 zIndex:0
 });
 }
}

Following the same principle as for the marker, we resort to only one instance of the

Circle object. It too is initialized with the LatLng and Map objects. The radius is set in

meters and will be set by the value returned by the Geolocation API. In addition to these

parameters, you can define colors for the fill and stroke of your indicator, as well as its

opacity. As done earlier, you now simply have to modify your success callback to take

accuracy into account.

function successCallback(position) {
...
 drawMarker(latlng, position.coords.accuracy, "#0072f9"); // A blue marker
}

This will bring the user a satisfying positioning service, displaying not only their position

but also the accuracy of the positioning, as shown in Figure 14–3.

CHAPTER 14: Location-Aware Web Applications 410

Figure 14–3. The user position is displayed on the map along with the accuracy

With the Google Maps API, you can go much further, from using itineraries defined on

the Google servers to showing information with the Street View mode. Because there is

a lot to discover and use for impressive applications, we invite you to study the online

documentation at http://code.google.com/apis/maps/.

Tracking the User’s Position
You have learned how to request the user’s position and how to display this information

on a map, and you now should have a pretty clear idea of how to do this most efficiently

depending on the applications you are planning for this data.

Let’s now concentrate on another feature of the Geolocation API: the ability to track

changes in a device’s situation. By keeping up with a user’s location, you will be able to

respond to events as they occur, for instance in an itinerary application or in conjunction

with some geotagging utility.

Registering for Updates
This functionality is accessed with the watchPosition() method. This method is used in

the same manner as getCurrentPosition(), with the same parameters. However,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://code.google.com/apis/maps

CHAPTER 14: Location-Aware Web Applications 411

whereas the latter sends a position and ends, the former will send a position and run

again.

The watchPosition() method also returns a unique identifier, which in time can be used

to stop the tracking. The easiest way to call this function is as follows:

var watchId = window.navigator.geolocation.watchPosition(successCallback);

The repeated request will come to an end when the clearWatch() function is called with

the relevant ID as a parameter:

window.navigator.geolocation.clearWatch(watchId);

It seems a reasonable choice to leave this option always available to the end user, who

should always have control over their device and usually will know why they launched

the application and thus when to stop it.

Nonetheless, clearWatch() can also be triggered on some specific event depending on

the use of watchPosition(), for instance when the user reaches the requested

destination with an itinerary application.

Specific Behavior of the Watcher
Because watchPosition() is an iterative function, it is useful to understand what

happens when the user quits the application without calling the clearWatch() function,

when the device runs out of battery, or whatever else.

When the user returns to the launcher, if there is enough room to cache the application’s

state, the function will be temporarily suspended and will resume when the browser is

launched again. If an error occurs, the update attempt will continue, and the API will call

the failure callback.

You can check this behavior using the following code:

window.navigator.geolocation.watchPosition(successCallback, failureCallback);

function successCallback(position) {
 var msg = 'Position: ' +
 position.coords.longitude + ', ' +
 position.coords.latitude;
 console.info(msg + '\nAt ' + (new Date()).toTimeString());
}

function failureCallback(error) {
 var err = error.message + ' (' + error.code + ')';
 console.error(err + '\nAt ' + (new Date()).toTimeString());
}

Load a page running this code, quit Mobile Safari, and activate or deactivate the

geolocation service. You will see that the position update goes on, meaning neither

errors nor quitting an application stops the API’s operation.

If the user denies access to the geolocation service, the API will continue sending error

messages, although no second chance will be given to the user to change his answer to

CHAPTER 14: Location-Aware Web Applications 412

the request. However, in this case, after the user has quit Mobile Safari and restarted it,

the authorization pop-up will appear again; under these circumstances, it is

understandable that the API keeps the polling active in this way.

Being aware of this special behavior, the developer should anticipate it by building

appropriate callbacks to inform the user of a problem with tracking or stop the tracking

with the clearWatch() method after a defined number of attempts.

Watching Position on Google Maps
To illustrate this tracking possibility, we are going to modify the previous Google Maps

example to take tracking into account, first by binding the following code to our button:

var firstRun, trackerID, failedCount = 0;

function swapAction() {
 var button = document.getElementsByTagName("button")[0];

 if (trackerID == undefined) {
 trackerID = window.navigator.geolocation.watchPosition(
 successCallback, failureCallback);

 button.textContent = "Stop";
 button.style.backgroundColor = "#c6323d"; // Turn to red
 firstRun = true;
 } else {
 window.navigator.geolocation.clearWatch(trackerID);
 trackerID = undefined;
 button.textContent = "Track";
 button.style.backgroundColor = "";
 }
}

It is important here to let the user stop the tracking whenever he wants, because

tracking can be hard on the battery life of the device, because the user will want to stop

if he stops moving, and because, depending on the location method used, the data

returned by the tracking may not be satisfying. To do this, we are going to change the

Track button into a Stop button when tracking is occurring. The swapAction() function

will be used altogether for this, for the stop action itself and to halt the tracking if an

error occurs.

Then, we slightly alter the successCallback() function.

function successCallback(position) {
 var latlng = new ns.LatLng(position.coords.latitude, position.coords.longitude);
 map.panTo(latlng);

 if (firstRun) {
 map.setZoom(17);
 firstRun = false;
 }
...
 failedCount = 0;
}

CHAPTER 14: Location-Aware Web Applications 413

Here, we replace setCenter() with panTo(). The advantage of the panTo() function over

setCenter() is that it slides to a new position rather than jumping to it. Besides, we

zoom for only the first position; this way, if the user changes the zoom factor, his choice

will not be discarded when his position changes.

Because our request has been successful in this case, we set the error counter to 0. On

the other side, the failure callback needs slightly more work.

function failureCallback(error) {
 /* Stop the tracking after 100 errors */
 if (error.code != error.PERMISSION_DENIED) {
 failedCount++;
 if (failedCount < 100) {
 return;
 }
 }

 failedCount = 0;
 swapAction();

 switch (error.code) {
...
 }
 button(true);
}

Reception may not always be optimal, which means that location may not succeed with

every attempt, but most likely it will succeed enough to send satisfying data. Therefore,

we cannot throw an error to the user with every failure, nor can we halt the tracking on

the first failure. Because several calls can be performed every second, we fix a limit to

the number of failures at 100, which should approximately mean a 30- to 60-second wait

before an error message is sent to the user. After that, the process will be halted.

From Data to Math
The Geolocation API provides you with useful methods to get static data but no helper

function to process this data and truly “draw” it in space. Here are a few calculations

that may be handy in your workflow. We are going to explain these formulas to some

extent so you can understand what is happening; nevertheless, as long as you know

what result they yield, you can just copy the snippets and use them in your code.

Distance Between Two Points
If you are going to take your user from one point to another, it is likely that the distance

to go will be welcome information. Because you have already learned to find the

coordinates of the current and prospective positions of the user, this is rather easily

deducted.

CHAPTER 14: Location-Aware Web Applications 414

Latitude and longitude lines cross each other throughout the map, forming a more or

less regular grid. For now we will consider it regular so we can calculate any distance

between two points with some elementary mathematical rules.

Provided that one latitude degree (φ) roughly represents 69 miles and one longitude

degree (λ) spans approximately 53 miles, we apply the Pythagorean theorem: our

distance is the hypotenuse of an imaginary triangle following the latitude and longitude

“sides.” The following formula returns the distance in miles between two given points:

And here is how the formula translates to JavaScript:

function computeDistance(p1, p2) {
 var lat1 = p1.coords.latitude;
 var lat2 = p2.coords.latitude;
 var lng1 = p1.coords.longitude;
 var lng2 = p2.coords.longitude;

 return Math.sqrt(Math.pow(69 * (lat2 - lat1), 2)
 + Math.pow(53 * (lng2 - lng1), 2));
}

This will often be your best choice to determine a distance. However, it is an

approximation. Indeed, because the earth is an oblate spheroid, latitude and longitude

are arcs, not straight lines, meaning the distance between two points will vary

depending where you are on the globe, especially for longitude degrees. A longitude

degree’s length gets smaller as you get closer to either pole.

Sharper Distance Between Two Points
Several methods using spherical geometry can be used to calculate exact distances on

curvy lines. Without superfluous detail, here is how to use the Haversine formula to

determine the distance between the two points a and b:

where

This is the JavaScript implementation of this formula (3959 being the earth’s mean

radius, r, in miles):

function computeDistance(p1, p2) {
 var lat1 = toRad(p1.coords.latitude);
 var lat2 = toRad(p2.coords.latitude);
 var lng1 = toRad(p1.coords.longitude);
 var lng2 = toRad(p2.coords.longitude);

 var deltaLat = (lat2 - lat1);

CHAPTER 14: Location-Aware Web Applications 415

 var deltaLng = (lng2 - lng1);

 var calc = Math.pow(Math.sin(deltaLat / 2) , 2) +
 Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(deltaLng / 2) , 2);

 return 3959 * 2 * Math.asin(Math.sqrt(calc));
}

/* Convert degree to radian */
function toRad(deg) {
 return deg * Math.PI / 180;
}

Although this method is quite precise, it is more complex and may take about three

times longer to calculate. Again, when you do not need such precision, the first formula

is the one to use.

The Direction to Take
Using two points, as for distances, it is possible to calculate the direction to take, called

bearing. This can be easily mistaken with heading, a value available from the API, but

they are two distinct notions. Heading is the direction currently taken by the user while

moving; bearing is the direction to take, regardless of any idea of movement. In other

words, the bearing is the angle between a line connecting two points and a longitude

line and can be determined as such:

This translates to the following, using JavaScript:

function computeBearing(p1, p2) {
 var lat1 = toRad(p1.coords.latitude);
 var lat2 = toRad(p2.coords.latitude);
 var lng1 = toRad(p1.coords.longitude);
 var lng2 = toRad(p2.coords.longitude);

 var deltaLng = (lng2 - lng1);

 var y = Math.cos(lat2) * Math.sin(deltaLng);
 var x = Math.cos(lat1) * Math.sin(lat2) -
 Math.sin(lat1) * Math.cos(lat2) * Math.cos(deltaLng);

 return (toDeg(Math.atan2(y, x)) + 360) % 360;
}

/* Convert radian to degree */
function toDeg(rad) {
 return rad * 180 / Math.PI;
}

To optimize our code, we use Math.atan2() rather than Math.atan() to simplify

formulation; it has the advantage of taking into account the signs of both values and

CHAPTER 14: Location-Aware Web Applications 416

places the angle in correct quadrant. However, because atan2() returns a value ranging

from -180 to +180, we need to normalize the angle to range from 0 to 360 degrees.

Building a Compass Web App
In the following section, we are going to use some of the elements introduced in this

book to build a compass web application from scratch. Canvas will be used to draw the

elements of our compass, while more lightweight (and thus less choppy) CSS

animations will be used to bring it to life.

NOTE: For this real-life example, we recommend you do your testing outdoors to increase the
probability of gathering more precise coordinates (with the use of A-GPS). Also be careful that
your application will not work from the simulator, because the API will only return Apple’s
location in California. However, in iPad mode, the API will use information from the network and
will at least work for polling.

This application is going to use the data returned by the Geolocation API functions we

have previously been through; therefore, building it can also be a convenient way to

actually test the accurateness of the data in various situations to build better

applications downhill.

Figure 14–4 shows all the graphic elements of the compass that we are going to build

using the Canvas API. This will give us great control over the rendering while keeping the

weight of required files lower than with regular images.

Figure 14–4. The constitutive elements of our compass

Because canvas elements are quite consuming of CPU time—they are not drawn on the

hardware—it would be too heavy to draw the animations directly using the API,

especially dealing with complex elements. Therefore, to move the needles and the dial

of the compass, we are going to resort to CSS transitions presented in Chapter 9.

Create the Mobile Elements
As a beginning, we are going to build all the mobile elements from the compass.

Although these are going to be drawn using the Canvas API, we will use the elements as

CHAPTER 14: Location-Aware Web Applications 417

images to simplify the code. First comes the object that will hold the functions to create

elements. Create a new file named compass.js, and add the following:

var Compass = function(size) {
 this.dialGraduations = new Image();
 this.bearingNeedle = new Image();
 this.headingNeedle = new Image();
 this.dialShine = new Image();

 this.builder = document.createElement("canvas");
 this.setSize(size);
}

The canvas and the images are created dynamically so that our object is independent

from the code from which it is used. You will simply need to specify the node where the

compass elements should be added. The constructor takes the size of the expected

canvas as a parameter. This is first defined as a 140 by 140 pixel frame that will then be

scaled using the scale() method. Because we are going to use only vector graphics for

rendering, quality loss will be no problem.

Compass.prototype.setSize = function(size) {
 /* Original size of the canvas = 140x140 */
 var scale = size / 140;
 this.builder.width = 140 * scale;
 this.builder.height = 140 * scale;

 this.context = this.builder.getContext("2d");
 this.context.scale(scale, scale);
 this.context.translate(70, 70);
}

Compass.prototype.clear = function() {
 this.context.clearRect(-70, -70, 140, 140);
}

Compass.prototype.render = function(node) {
 this.clear();
 this.drawDialGraduations();
 this.dialGraduations.src = this.builder.toDataURL();

 this.clear();
 this.drawBearingNeedle();
 this.bearingNeedle.src = this.builder.toDataURL();

 this.clear();
 this.drawHeadingNeedle();
 this.headingNeedle.src = this.builder.toDataURL();

 this.clear();
 this.drawDialShine();
 this.dialShine.src = this.builder.toDataURL();

 /* Append nodes to the document */
 node.appendChild(this.dialGraduations);
 node.appendChild(this.bearingNeedle);
 node.appendChild(this.headingNeedle);
 node.appendChild(this.dialShine);
}

CHAPTER 14: Location-Aware Web Applications 418

Each element has its own creation method. At each stage, we empty the canvas and call

the relevant method to create an element. Then, the canvas is transformed into a data

URL in order to be passed to an image, and it is added to the node passed as a

parameter to the main function.

The Graduations
All elements are drawn using vector graphics, and the dial is the part that requires the

most code, while still remaining quite simple.

NOTE: In this operation, we are cheating a little, because the text API is not supported yet as of
iOS 3.2 but will be in the next major version of the OS. To give our compass more style and give
an illustration of the text API, we are using it all the same.

Compass.prototype.drawDialGraduations = function() {
 var ctx = this.context;
 ctx.save();

 ctx.beginPath();

 ctx.strokeStyle = "white";
 ctx.arc(0, 0, 15, 0, Math.PI * 2, false);
 ctx.stroke();

 /* Draw cardinal points */
 ctx.fillStyle = "white";
 ctx.textAlign = "center";
 ctx.lineWidth = 0.75;

 for (var n = 0; n < 4; n++) {
 /* Letter place holder */
 ctx.save();
 ctx.beginPath();
 ctx.arc(0, -34, 7, 0, Math.PI * 2, false);
 ctx.fillStyle = "rgba(0, 0, 128, 0.3)";
 ctx.fill();
 ctx.restore();

 /* Cardinal letter */
 ctx.font = "bold 9px Georgia";
 ctx.fillText("NESW".substr(n, 1), 0, -31);

 /* Inner arrow */
 ctx.beginPath();
 ctx.moveTo(-3, -15);
 ctx.lineTo(0, -30);
 ctx.lineTo(3, -15);
 ctx.fill();

 /* Graduation */
 ctx.beginPath();

CHAPTER 14: Location-Aware Web Applications 419

 ctx.moveTo(0, -42);
 ctx.lineTo(0, -39);
 ctx.stroke();

 /* Next letter... */
 ctx.rotate(90 * Math.PI / 180);
 }

 ctx.rotate(45 * Math.PI / 180);
 for (var n = 0; n < 4; n++) {
 /* Smaller cardinal letters */
 ctx.font = "bold 5px Georgia";
 ctx.fillText("NESESWNW".substr(n * 2, 2), 0, -34);

 /* Smaller inner arrow */
 ctx.beginPath();
 ctx.moveTo(-2,-15);
 ctx.lineTo(0, -25);
 ctx.lineTo(2, -15);
 ctx.fill();

 /* Smaller graduation */
 ctx.beginPath();
 ctx.moveTo(0,42);
 ctx.lineTo(0,40);
 ctx.stroke();

 /* Next smaller letters... */
 ctx.rotate(90 * Math.PI / 180);
 }

 /* Graduations */
 ctx.globalAlpha = 0.75;
 for (var n = 0; n < 360 / 5; n++) {
 ctx.beginPath();
 ctx.moveTo(0,42);
 ctx.lineTo(0,41);
 ctx.stroke();
 ctx.rotate(5 * Math.PI / 180);
 }

 ctx.restore();
}

First we draw the central circle, and the four cardinal points with the corresponding

arrows pointing outward. With each iteration, we operate a 90-degree rotation to draw

the next point. Once the four cardinal points have been drawn, we add secondary

graduations using the same process. Finally, we draw graduations every five degrees.

Using the save() and restore() methods prevents altering the state of the canvas for

following drawings.

CHAPTER 14: Location-Aware Web Applications 420

The Needles
The code for the bearing needle is much shorter. It is slightly translucent and drops a

shadow on its background so that it is visible while not drawing too much attention.

Compass.prototype.drawBearingNeedle = function() {
 var ctx = this.context;
 ctx.save();

 ctx.shadowColor = "rgba(0, 0, 0, 0.3)";
 ctx.shadowOffsetX = 2;
 ctx.shadowOffsetY = 1;
 ctx.shadowBlur = 2;

 ctx.fillStyle = "rgba(0, 0, 128, 0.75)";
 ctx.strokeStyle = "white";

 ctx.beginPath();
 ctx.moveTo(-7, 0);
 ctx.lineTo(0, -38);
 ctx.lineTo(7, 0);
 ctx.lineTo(0, 18);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();

 ctx.restore();
}

Once the shadow configuration has been defined, we draw the outline and the fill of the

needle using only one path.

The heading needle is a little more complex. Although it uses the same shadow

configuration as the bearing needle, its shape and details take several elements to build.

Compass.prototype.drawHeadingNeedle = function() {
 var ctx = this.context;
 ctx.save();

 ctx.shadowColor = "rgba(0, 0, 0, 0.3)";
 ctx.shadowOffsetX = 2;
 ctx.shadowOffsetY = 1;
 ctx.shadowBlur = 2;

 /* White part */
 ctx.beginPath();
 ctx.moveTo(-5, 0);
 ctx.lineTo(0, 40);
 ctx.lineTo(5, 0);
 ctx.fillStyle = "white";
 ctx.fill();

 /* Red part */
 ctx.beginPath();
 ctx.moveTo(-5, 0);
 ctx.lineTo(0, -40);
 ctx.lineTo(5, 0);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14: Location-Aware Web Applications 421

 ctx.fillStyle = "red";
 ctx.fill();

 /* Emboss effect */
 ctx.beginPath();
 ctx.moveTo(5, 0);
 ctx.lineTo(0, -43);
 ctx.lineTo(0, 43);
 ctx.fillStyle = "rgba(0, 0, 0, 0.2)";
 ctx.fill();

 /* Screw */
 ctx.beginPath();
 ctx.arc(0, 0, 3, 0 ,Math.PI * 2, false);
 ctx.fillStyle = "white";
 ctx.fill();
 ctx.stroke();

 ctx.restore();
}

Every part of this needle is drawn using a separate path, and an emboss effect is added

using a black translucent path, superimposed on the white and red parts. Finally, we

draw the pinhead by which the needles are fixed to the compass dial.

The Dial Shine
The final part of the compass is not mobile but needs to be drawn all the same, because

it will be shown above all the compass elements.

Compass.prototype.drawDialShine = function() {
 var ctx = this.context;
 ctx.save();

 var shine = ctx.createLinearGradient(0, -60, 0, 20);
 shine.addColorStop(0, "white");
 shine.addColorStop(1, "rgba(255, 255, 255, 0)");

 ctx.lineWidth = 0.25;
 ctx.strokeStyle = "rgba(255,255,255,0.55)";
 ctx.fillStyle = shine;

 ctx.beginPath();
 ctx.arc(0, 0, 42, Math.PI, Math.PI * 2, false);
 ctx.quadraticCurveTo(0, -17, -43, 0);
 ctx.fill();
 ctx.stroke();

 ctx.restore();
}

Using paths again, we draw half a circle, and using a Bézier curve, we draw the inner

curve, as shown in Figure 14–4. The quadratic curve has only one control point, which

greatly simplifies positioning of the arc. The fill is applied using the gradient defined in

the shine variable.

CHAPTER 14: Location-Aware Web Applications 422

Render the Compass
Now, we can draw the missing part of the compass, namely, the frame, which unlike our

other elements will be used directly as a canvas element. To do this, we use the render()

method, which calls dedicated drawing methods after the mobile parts have been created.

Compass.prototype.render = function(node) {
...
 this.dialShine.src = this.context.canvas.toDataURL();

 this.clear();
 this.drawCompassFrame();
 this.drawDialBackground();
 this.drawDirectionArrow();

 /* Append nodes to the document */
 node.appendChild(this.builder);
...
}

The first method draws the compass frame.

Compass.prototype.drawCompassFrame = function() {
 var ctx = this.context;
 ctx.save();

 var frame = this.context.createRadialGradient(0, 0, 0, 0, 0, 56);
 frame.addColorStop(0.85, "#e7ba5a");
 frame.addColorStop(0.9, "#fcd97c");
 frame.addColorStop(1, "#e7ba5a");

 ctx.beginPath();
 ctx.arc(0, 0, 56, 0, Math.PI * 2, false);
 ctx.strokeStyle = "#444";

 ctx.save();
 ctx.shadowColor = "rgba(0, 0, 0, 0.75)";
 ctx.shadowOffsetX = 1;
 ctx.shadowOffsetY = 1;
 ctx.shadowBlur = 4;
 ctx.stroke();
 ctx.fillStyle = frame;
 ctx.fill();
 ctx.restore();

 /* Shiny effect */
 ctx.beginPath();
 ctx.fillStyle = "rgba(255, 255, 255, 0.4)";
 ctx.arc(2, 2, 48, 0, Math.PI * 2, false);
 ctx.fill();

 ctx.beginPath();
 ctx.fillStyle = "rgba(0, 0, 0, 0.1)";
 ctx.arc(-2, -2, 48, 0, Math.PI * 2, false);
 ctx.fill();

 ctx.restore();
}

CHAPTER 14: Location-Aware Web Applications 423

The frame is built from a disc that uses the golden radial gradient frame, which mimics

depth. To make the effect even more realistic, we add two semitranslucent discs on top

of this.

Compass.prototype.drawDialBackground = function() {
 var ctx = this.context;
 ctx.save();

 var back = this.context.createLinearGradient(-50, -50, 50, 50);
 back.addColorStop(0, "#122a91");
 back.addColorStop(1, "#61a1f4");

 ctx.beginPath();
 ctx.fillStyle = back;
 ctx.arc(0, 0, 43, 0, Math.PI * 2, false);
 ctx.fill();
 ctx.stroke();

 ctx.beginPath();
 ctx.fillStyle = "white";
 ctx.moveTo(-1, -38);
 ctx.lineTo(0, -41);
 ctx.lineTo(1, -38);
 ctx.fill();

 ctx.restore();
}

The dial background uses only a blue gradient-filled disc. A small arrow is added to the

upper part of the dial that shows the current direction, which should make the position

on graduations more readable.

Compass.prototype.drawDirectionArrow = function() {
 var ctx = this.context;
 ctx.save();
 ctx.translate(0, -59);

 ctx.strokeStyle = "rgba(0, 0, 0, 0.25)";

 ctx.beginPath();
 ctx.moveTo(-10, 0);
 ctx.lineTo(0, -10);
 ctx.lineTo(10, 0);
 ctx.stroke();

 ctx.strokeStyle = "rgba(255, 255, 255, 0.25)";

 ctx.beginPath();
 ctx.moveTo(-10, 0);
 ctx.lineTo(10, 0);
 ctx.stroke();

 ctx.restore();
}

CHAPTER 14: Location-Aware Web Applications 424

The last element to be added to the compass is another arrow, which will indicate the

direction where the user is heading. This arrow will not move: it only gives a constant

indication of which way the user is pointing in order to make the compass more

readable.

Add Elements to the Document
The document to which we add our compass elements is based on the web application

template created in Chapter 4. Simply modify the index.html file as follows:

<body onload="init()">
 <div class="view">
 <div class="header-wrapper">
 <h1>Heading</h1>
 </div>

 <div id="compass"><div></div></div>
 </div>
</body>

To make the presentation of the page more appropriate and attractive, add the following

styles to a new compass.css style sheet. They add a brown gradient background and a

translucent header.

.view {
 background: -webkit-gradient(radial,
 0 0, 0, 0 0, 300,
 from(#a98), to(#654));
}

.header-wrapper { background-color: transparent; }

For all our elements to fit appropriately together in the available space, also add the

following rules to your style sheet:

#compass div {
 position: relative;
 margin: 0 auto;
 top: 10px;
}

#compass canvas {
 display: block;
 margin: 0 auto;
}

#compass img {
 position: absolute;
 top: 0;
 left: 0;
}

To complete the first part of our compass building, you will have to add to the

compass.js file the code to initialize the compass.

CHAPTER 14: Location-Aware Web Applications 425

const COMPASS_SIZE = 220;

var compass = new Compass(COMPASS_SIZE);

function init() {
 var target = document.querySelector("#compass div");
 target.style.width = COMPASS_SIZE + "px";
 compass.render(target);
}

Next, we want to add the code necessary to gather, process, and display the positioning

data.

Prepare the Document to Receive Location Data
To explain the method used to calculate distance and bearing, we are going to calculate

the distance of the user from Apple’s headquarter and the direction that should be taken

to go there. In addition, we will also display the position of the user (longitude and

latitude). The following elements are added to the HTML document:

...
 <div id="compass"><div></div></div>

 <div class="list-wrapper">
 <div id="location">latitude | longitude</div>

 0Distance to Apple's Headquarter
 0Bearing
 0Current Speed
 0Location Accuracy

 </div>
...

The following style rules will make our fields stick to the bottom of the screen:

.list-wrapper {
 position: absolute;
 width: 100%;
 bottom: 0;
 border-top: solid 1px black;
}

#location {
 position: absolute;
 bottom: 140px;
 font-size: 10px;
 color: white;
 text-shadow: rgba(0,0,0,0.7) 0 -1px 0;
 width: 100%;
 text-align: center;
}

.list-wrapper li {
 font-size: 12px;
 line-height: 1;

CHAPTER 14: Location-Aware Web Applications 426

}

.list-wrapper li span { float: right; }

The header and the list items will be updated from the callback to the watchPosition()

method.

Use Location Data
The heading (the direction the user is taking) is available only when the user is moving

and the precision of the data gathered by the device is great enough, because we need

two points to determine this piece of information. As previously, we are going to use

tracking. Here is how the initialization function should be modified:

function init() {
...
 window.navigator.geolocation.watchPosition(successCallback,
 null, { enableHighAccuracy: true });
}

As stated earlier, the data available needs to be accurate enough for the API to

determine the heading. For that, we force the enableHighAccuracy parameter to true to

make sure the A-GPS is activated if available. Everything else happens in the

successCallback() function shown here:

var appleLocation = {
 coords: {
 latitude : 37.331689,
 longitude: -122.030731
 }
}

function successCallback(position) {
 /* Append location information */
 var loc = document.getElementById("location");
 loc.textContent = position.coords.latitude + " | " + position.coords.longitude;

 /* Read and compute data */
 var heading = position.coords.heading || 0;
 var accuracy = position.coords.accuracy;
 var speed = position.coords.speed;

 var bearing = computeBearing(position, appleLocation);
 var distance = computeDistance(position, appleLocation);

 /* Show current formatted heading */
 var header = document.querySelector(".header-wrapper h1");
 header.innerHTML = getAngleString(heading);

 var list = document.querySelectorAll("li span");
 list[0].textContent = round(distance, 3) + "mi";
 list[1].innerHTML = getAngleString(bearing);
 list[2].textContent = round(speed, 2) + "m/s";
 list[3].textContent = round(accuracy, 2) + "m";
}

CHAPTER 14: Location-Aware Web Applications 427

First, we display the current position of the user inside the location container. Then, we

read the values for heading, accuracy and speed, and we calculate the bearing and the

distance using the appleLocation position. Our data is then added to the header

(heading) and to the list (all other elements).

The callback uses two utility functions that let us format the angle by indicating the

position on the compass rose (four cardinal points with four intermediate positions) and

round off the floating-point values with a precision passed as a parameter.

function getAngleString(angle) {
 var position = ((angle + 45 / 2) / 45 | 0) % 8 * 2;
 return (angle * 10 | 0) / 10 + "°" + ("N NEE SES SWW NW".substr(position, 2));
}

function round(value, prec) {
 prec = Math.pow(10, prec);
 return ((value || 0) * prec << 0) / prec;
}

At this stage, if you launch the web application, the data will appear where expected,

but no element of the compass will move. The final step is to translate information into a

visual change to the compass.

Animate the Compass
To animate the transition from one state of the needles and dial graduations to another,

we are going to use CSS animations, as presented in Chapter 9. On a regular compass,

the dial itself doesn’t move: the holder takes the compass, waits for the needle to point

north, and then turns the compass to know which way he is turning. In order not to

make users repeatedly turn their device around, we are going to make the dial turn—

slightly off-time from the heading needle to produce a realistic effect. Likewise, the

bearing needle will move more slowly to make the compass more readable.

The animation of the elements does not take much code. Simply add the following to

your compass.css file:

#compass img {
...
 -webkit-transform-origin: 50% 50%;
 -webkit-transform: rotate(0);
 -webkit-transition-property: -webkit-transform;
 -webkit-transition-timing-function: ease-out;
}

This, of course, only handles the animation itself. The states of the elements are handled

with JavaScript. The rotation can occur only if heading data is available. This is checked

in the following code:

function successCallback(position) {
...
 if (position.coords.heading != null) {
 compass.setHeading(heading);
 compass.setBearing(bearing - position.coords.heading);
 }

CHAPTER 14: Location-Aware Web Applications 428

}

The bearing should adjusted relatively to the heading so that the needle points in the

right direction relatively to the direction of the user. Therefore, we subtract the angle of

the heading to the angle of the bearing. Here are the relevant functions:

Compass.prototype.setBearing = function(deg) {
 this.rotate(this.bearingNeedle, deg);
}

Compass.prototype.setHeading = function(deg) {
 this.rotate(this.headingNeedle, -deg);
 this.rotate(this.dialGraduations, -deg);
}

Our three elements are going to move off-time. The duration of the animations is defined

using the following code, which should be added to the constructor of the Compass

object:

var Compass = function(size) {
...
 this.dialShine = new Image();

 this.dialGraduations.style.webkitTransitionDuration = "2s";
 this.bearingNeedle.style.webkitTransitionDuration = "5s";
 this.headingNeedle.style.webkitTransitionDuration = "3s";
...
}

The rotate() method is somewhat more complicated, because there are chances that a

new heading value will be received before the animation has completed. In such a case,

it is necessary to begin the next rotation from the current position of the animation so

that the element doesn’t jump from one position to another. To do this, we resort to the

CSSMatrix object.

Compass.prototype.rotate = function(item, deg) {
 var gs = window.getComputedStyle(item);
 var mx = new WebKitCSSMatrix(gs.webkitTransform);

 var current = toDeg(Math.acos(mx.a));
 /* Adjust quadrant */
 if (mx.b < 0) {
 current = 360 - current;
 }
 var delta = deg - current;
 item.style.webkitTransform = mx.rotate(delta);
}

First, we read the current matrix, which reflects the position of the transition. This will let

us deduce the angle currently applied to the element. Then, we apply a clockwise

rotation using the 2D matrix.

CHAPTER 14: Location-Aware Web Applications 429

Using this matrix and a little trigonometry, we can evaluate the current angle by reading

the arccosine of the first element (mx.a) of the matrix and position the angle on the

correct quadrant based on the sign of the sine (mx.b). The new angle to apply can then

be calculated by subtracting the desired angle from the current angle. The rotate()

method allows you to simply apply the new angle and resume the animation to its new

position. Figure 14–5 shows the final result.

Figure 14–5. The compass and data relative to the user’s position

Prevent Staggering Needles
Because the position is sent several times a second, a new value for the heading can be

sent while the rendering engine is still handling the rotation matrix. In such a case, there

is a risk that the current position be considered as the initial position (before rotation),

which will cause the needles to jump from one point to another. To prevent this behavior

and not let the engine run useless calculations, we are going to temporize the reading of

received data.

var prevTime = 0;

function successCallback(position) {
 if ((new Date() - prevTime) < 1500) {
 return;
 }
 prevTime = new Date().getTime();
...
}

CHAPTER 14: Location-Aware Web Applications 430

This way, the data will be read every second and a half only, leaving the rendering

engine sufficient time to apply the current matrix during the transition and actually

produce the expected effect.

Summary
The Geolocation API allows you to get useful data and build new types of applications

and opens a path for innovative developing on modern devices. Because the API is an

implementation of a W3C specification, applications built for the iPhone, iPod touch, or

iPad could soon be used on all modern browsers.

Quite practically, Apple has made this API available on Mobile Safari before bringing it to

the desktop version. Likewise, it is an excellent move to get familiar with this API,

because localized services are very likely to become more and more popular—entailing

a new expectation for users. The most intelligent use of this API may well be to use it to

add value to location-unspecific applications, as an extra service for the user. So, jump

in and go further with this opportunity.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

431

431

 Chapter

A Better Handling of
Client-Side Data Storage
For years, when data needed to be stored on the client to enhance a page or actually

allow it to work properly, developers could rely only on cookies. Although this has

worked well for various applications, cookies have limitations that make them somewhat

unfit for developing complex functionality. Size limits are not a problem when storing an

identifier or some information from a session—such as shopping cart data—but they

easily become impossible to handle when dealing with more complex tasks, such as

calendar synchronization.

This doesn’t mean client-side storage isn’t a profitable practice: limiting the amount of

data transitioning between the client and the server naturally makes a page more

responsive, thus making for a better user experience. However, when dealing with

cookies, this is only partly true, because cookies are sent with every request (be it the

download of an image, a style sheet, or whatever else), uselessly making each sent

element heavier during the transfer.

In this chapter, you will dive into the new client-side storage options available to

developers through JavaScript APIs and learn how to handle offline mode correctly

using new features from HTML5.

Different Storage Areas
To make client-side storage persistence more flexible and work beyond the limitations

imposed by cookies, it is now possible to rely on the Web Storage API, maintained by

the WHATWG. This specification defines a new Storage interface implemented by the

new localStorage and sessionStorage properties of the window object.

Among the advantages of this storage mode over cookies is a size limit of 5MB instead

of 4KB; this limit is applicable to the fully qualified domain name (FQDN). Once this

quota has been reached, you will no longer be able to store data to the client, and a

QUOTA_EXCEEDED_ERR will be sent (Figure 15–1).

15

CHAPTER 15: A Better Handling of Client-Side Data Storage 432

Figure 15–1. An error is sent upon attempt to store data beyond the maximum limit

One could say that the sessionStorage property is analogous to session cookies, which

are available across browsing contexts and are deleted when the user quits the

browsing application. However, the meaning of session in this case is slightly different

whether you are talking about cookies or the sessionStorage property. The

localStorage property behaves more or less like a cookie that would never expire,

meaning data stored using this property will be persistent until it is deleted with a script

or on an action by the user. Both properties work much like cookies, except that there is

no path implication to access the stored data as with cookies but instead an origin rule

based on the scheme/host/port tuple.

How to Use New Storage Capabilities
Data storage using the Web Storage API, as when creating cookies, relies on key/value

pairs. The key can be defined as any valid string—including an empty string. The value,

in the current implementation of the API in Mobile Safari, can also only be a valid string.

Consequently, if you try to store an object, the stored data will be the object after its

toString() method has been called. Because, according to the specification, you

should be able to store many kinds of objects as clones (not as references), chances are

storing objects should be a feature soon available.

This limitation on types applies to all objects, including numeric values. If for instance

you want to use a key to store a counter, don’t forget to convert the data retrieved back

to a Number object before incrementing or decrementing it, or the string will simply be

concatenated with 1. Also, because strings are stored using UTF-16, a character takes

two bytes, thus taking more space; therefore, to store a Date object for instance, you

should rather store the value of the getTime() method than that returned by toString().

These limitations, however, are trivial compared to the process to set or retrieve values

with cookies. Such basic operations are extremely straightforward with the Web Storage

API. The API provides specific methods to insert, read, or delete values.

/* Write data */
window.localStorage.setItem("myKey", "myValue");
window.localStorage.setItem("anotherKey", "myOtherValue");

/* Read data */
var value1 = window.localStorage.getItem("myKey");
var value2 = window.localStorage.getItem("anotherKey");

/* Delete data */
window.localStorage.removeItem("myKey");

All keys are easily accessed independently, because you can browse stored data as you

would an object. The following code does the same as the previous code:

CHAPTER 15: A Better Handling of Client-Side Data Storage 433

/* Write data */
window.localStorage.myKey = "myValue";
window.localStorage.anotherKey = "myOtherValue";

/* Read data */
var value1 = window.localStorage.myKey; // "myValue"
var value2 = window.localStorage.anotherKey; // "myOtherValue"

/* Delete data */
delete window.localStorage.myKey;

To work with the Storage object as a whole, you can also rely on two useful methods:

the clear() method, which will reset the object by deleting all pairs, and the key()

method, which will allow you to target a key by index rather than by name.

for (var i = 0; i < window.localStorage.length; i++) {
 console.log(i + ": " + window.localStorage.key(i));
}

--- result ---
0: myKey
1: anotherKey

As often with key/value pair collections, the order in which keys appear isn’t predictable;

it should, however, remain constant as long as no key has been modified.

Specific Behavior of sessionStorage
A session cookie is valid in whatever the window or tab the user is browsing in until the

user quits the browser. This means, for instance, that whatever items a user would have

put in the online shopping cart will be kept in memory if the user opens a new document

in their current window, opens the same site in a different window, or closes the tab

where the online store site was open.

The drawback in this solution is that a user wanting to browse the same shopping site

with two different carts—in order to use different credit cards or be delivered to two

different addresses or whatever else—would need to shop in two different browsers (for

instance, Safari and Firefox) or complete the first session, close the browser, and then

move on to the second session.

The sessionStorage object works differently. Whereas cookies are related to a browser

session and the localStorage object creates a unique instance of the Storage object for

one origin, sessionStorage creates an instance of the Storage object for each browsing

context, which is inherited by any browsing context created by the initial one. This

means that a frame (child browsing context) will have access to the same

sessionStorage object as its host document; yet, if a new window (auxiliary browsing

context) is opened from the parent window, this new browsing context will have access

to a copy of the initial Storage object, which will then be altered independently from the

first object.

Using Mobile Safari, this is true only for windows opened by a script. Indeed, a window

opened because of a target attribute will be considered as opened after a deliberate

CHAPTER 15: A Better Handling of Client-Side Data Storage 434

action by the user. This means when a user opens a new window or tab, it will be

attributed a new empty sessionStorage object. Of course, the content of the object will

be accessible only from the same origin. You can refer to Chapter 11 for more detail

about browsing contexts.

Being Notified of Storage Area Modification
Every time a storage area is modified, a storage event is raised, which cannot be

canceled and doesn’t bubble. It can be caught like any other event from the DOMWindow

object.

window.addEventListener("storage", function(event) {
 /* do something with the StorageEvent object */
}, false);

This event is sent to all documents using the modified storage area, except the

document from which the area was altered. This means that no event will be fired if only

the document from which the storage area is modified uses the storage area. On the

contrary, if this document holds an <iframe>, whether the storage area is modified from

the <iframe> or from the main document, the other browsing context will be notified.

The storage event allows you to control modifications, for instance allowing only

changes originating from the main document. However, you should be careful not to

provoke infinite event exchange, for instance by setting each browsing context to refuse

modifications by another. That the storage event is not sent to the document where the

action took place also is a step to prevent this.

Table 15–1 lists the properties of the StorageEvent object passed as a parameter to the

handler. Note that where the working draft specifies a url property, the WebKit

implementation uses the uri property.

Table 15–1. Properties of the StorageEvent Object

Property Description

event.storageArea The storage area that has been modified.

event.key The key whose value has been added, modified, or removed from the

Storage object.

event.oldValue The value associated with the key before modification.

event.newValue The value associated with the key after modification.

event.uri The address of the document from which the modification was run.

When using the setItem() and removeItem() methods, the property values key,

oldValue, and newValue are set as shown in Table 15–1. On the other side, using

clear(), all three properties will be set to null, letting you easily identify when this

CHAPTER 15: A Better Handling of Client-Side Data Storage 435

method is called to change item values. In all cases, the storageArea and uri properties

will be set, letting you identify the origin of the event.

Security and Privacy Considerations
As when working with cookies or cross-document communication, you will run into

restrictions that originate in security risks. First, although the size limit on the Storage

object is far less restrictive than that of cookies, it is set in order to prevent denial-of-

service attacks.

Access to a storage area is limited to the scheme/host/port tuple, and it is currently not

possible to relax the access to storage using the domain property of the Document object,

accessible with DOM Level 1, which is a limitation compared to cookies but also makes

this kind of storage more secure, especially if you use a shared host name.

Last, when the stored data is very sensitive, you should limit the usage of storage areas

to secure areas relying on SSL—or its successor TLS—thus giving access to the data

only if a valid certificate is given, validating the origin of requests. This is critical to

protect user privacy.

Caching Ajax Requests
One interesting application of local storage is to cache data from Ajax requests. Of

course, you can use HTTP caching, but this is less reliable.

The Base Document
To illustrate how you can cache data from Ajax requests, we are going to syndicate a

RSS feed from Apple and display it appropriately for users. We again build upon our

web application template, applying the following changes to the body:

<body onload="init()">
 <div class="view">
 <div class="header-wrapper">

 <h1>Apple's RSS Feed</h1>

 </div>

 <div class="list-wrapper">
 <h2>Latest News</h2>
 <ul id="feed" class="template">

 #{title}<small>#{dateFormatted}
 #{contentFormatted}</small>

 </div>
 </div>
</body>

CHAPTER 15: A Better Handling of Client-Side Data Storage 436

If you have been through Chapter 12, you will notice that we are going to use the client-

side rendering method used to process content loaded using Ajax. You can refer to

Chapter 12 if you need further detail on this method and to get the functions required for

this example.

We need to initialize the request to gather content from the feed. This is done with the

following code:

/* Apple's news feed */
var feedUrl = "http://images.apple.com/main/rss/hotnews/hotnews.rss";

function init() {
 refresh();
}

function refresh() {
 var xml = new XMLHttpRequest();
 xml.onreadystatechange = showFeed;
 xml.open("get", "proxy.php?url=" + encodeURIComponent(feedUrl));
 xml.send();
}

function showFeed() {
 if (this.readyState == this.DONE && this.status == 200) {
 processFeed(this.responseXML);
 }
}

function processFeed(xml) {
 var arr = [];
 var all = xml.getElementsByTagName("item");
 var list = document.getElementById("feed");

 /* Compute resulting HTML */
 var html = "";
 for (var i = 0; i < all.length; i++) {
 var data = {
 title: getText(all[i], "title"),
 content: getText(all[i], "description"),
 date: new Date(getText(all[i], "pubDate")),
 link: getText(all[i], "link")
 };
 html += applyTemplate(list.innerHTML, data);
 }

 /* Append content to the document */
 appendContent(list, html);
}

function getText(node, name) {
 var item = node.getElementsByTagName(name);
 return item.length && item[0].hasChildNodes() ?
 item[0].firstChild.nodeValue : null;
}

Because we gather XML, we need to turn the markup into an object for use in our

template. This is done with the processFeed() method. Luckily, RSS feeds are simple

http://images.apple.com/main/rss/hotnews/hotnews.rss

CHAPTER 15: A Better Handling of Client-Side Data Storage 437

enough, and this operation doesn’t require too much code. We then use the getText()

method to make reading the text nodes easier.

Our template has two formatted values; we therefore need to add the two relevant

formatters to display the expected values in the template.

var formatters = {
 "date": formatDate,
 "content": formatContent
};

function formatDate(value, data) {
 if (typeof value == "string") {
 value = new Date(value);
 }
 return ("0" + value.getDate()).substr(-2) + "/" +
 ("0" + (value.getMonth() + 1)).substr(-2) + " -- ";
}

function formatContent(value, data) {
 return value.replace(/<.+?>/g, "").substr(0, 200) + "...";
}

function processFeed(xml) {
...
 html += applyTemplate(list.innerHTML, data, formatters);
...
}

Our first step will end with an addition to the main.css file, which will give the specific

styles to our list items.

.group-wrapper ul li a,

.list-wrapper ul li a {

...
}

.group-wrapper ul li a:active,
.list-wrapper ul li a:active {
...
}

.group-wrapper ul li a:active *,

.list-wrapper ul li a:active * {

...
}

.list-wrapper ul li a {
 margin: -10px;
 text-decoration: none;
 color: inherit;
}

.list-wrapper ul li a span {
 display: block;
 margin-right: 24px;
 overflow: hidden;
 text-overflow: ellipsis;
 white-space: nowrap;

CHAPTER 15: A Better Handling of Client-Side Data Storage 438

}

.list-wrapper ul li a small {
 display: block;
 margin-right: 24px;
 font-size: 13px;
 line-height: 15px;
 height: 30px;
 overflow: hidden;
 color: gray;
}

Now, if you load the HTML file into a browser, you will see that the feed is loaded and

appropriately displayed, as shown in Figure 15–2.

Figure 15–2. The Apple feed is loaded using Ajax and rendered on the client

This is a rather common way to display a feed. Unless you use HTTP caching, the user

will see an up-to-date feed every time he refreshes the page. Now, we are going to take

this further by loading the feed from cache by default and leaving the choice to the user

of when to refresh the display. Using this method, your application would load faster and

give enhanced control to the user—a win-win system.

Adding Caching Capabilities
To let the user decide when to refresh the list, we will first create the appropriate button.

Let’s add a Refresh button to our header, as follows:

CHAPTER 15: A Better Handling of Client-Side Data Storage 439

...
 <div class="header-wrapper">
 <h1>Apple’s RSS Feed</h1>
 <button class="header-button" onclick="refresh()">
 Refresh
 </button>
 </div>
...

As in Chapter 12, the will be used to hide the text and display a spinner while the

content is loading. The function used to refresh the feed is the one used earlier.

However, when the processFeed() function is called a second time, the template will no

longer be readable from the markup, because the HTML content has already been

modified: it needs to be saved beforehand. This is best done with sessionStorage,

because the template needn’t be stored beyond the session (the template will be

available again for a new session), and you may moreover want to change your template

at some stage—which could cause errors. This is how the function is modified:

function processFeed(xml) {
...
 var list = document.getElementById("feed");
 if (window.sessionStorage.template == undefined) {
 window.sessionStorage.template = list.innerHTML;
 }
...
 html += applyTemplate(window.sessionStorage.template, data, formatters);
...
}

To activate the spinner, you will need the BigSpinner object, created in Chapter 7. Add it

to your code, and use it as follows:

var spinner = new BigSpinner();

function init() {
 spinner.init("spinner", "white");
...
}

function refresh() {
...
 buttonState(true);
}

function showFeed() {
 if (this.readyState == this.DONE && this.status == 200) {
 processFeed(this.responseXML);
 buttonState(false);
 }
}

function buttonState(loading) {
 var but = document.querySelector("button.header-button");

 if (loading) {
 but.disabled = true;

CHAPTER 15: A Better Handling of Client-Side Data Storage 440

 but.className += " spinning";
 spinner.animate();
 } else {
 but.disabled = false;
 but.className = but.className.replace(" spinning", "");
 spinner.stop();
 }
}

Now, while the feed list is loading, the user will be informed of the application activity.

A first level of cache thus relies on sessionStorage. The second cache level, using

localStorage, will store the XML data and a loaded time to determine whether to send

the Ajax request.

function showFeed() {
 if (this.readyState == this.DONE && this.status == 200) {
 /* The date will be serialized as string */
 window.localStorage.feedDate = new Date();
 window.localStorage.feedXML = this.responseText;
 processFeed(this.responseXML);
 buttonState(false);
 }
}

Because it isn’t possible to store anything else than strings, we store the XML as text

using responseText. This will be transformed to XML later using the DOMParser object.

We also record the date to calculate the cache Time To Live (TTL).

Our cache is now ready for use. This is handled from the refresh() method.

function refresh() {
 var last = new Date(window.localStorage.feedDate || 0);
 var ttl = new Date() - 1000 * 60 * 60 * 1;

 if (last <= ttl) {
...
 } else {
 var xml = (new DOMParser()).parseFromString(
 window.localStorage.feedXML, "text/xml");
 processFeed(xml);
 }
}

The date is serialized as a string, which can be easily reversed by passing the resulting

string to the constructor of the Date object. This way, we can calculate the time elapsed

since the last cache was stored and allow the Ajax request to run only if this time is

more than one hour ago. Otherwise, we use the parseFromString() method of the

DOMParser object to convert our text to an XML document.

NOTE: The DOMParser object is actually part of no standard but is implemented in some way on
most browsers including Mobile Safari, so you can safely rely on it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15: A Better Handling of Client-Side Data Storage 441

Currently, when the user clicks the Refresh button, the script will use the cache if that

seems reasonable or load the content anew otherwise.

Sending Client Data to the Server
One issue with cookies is that they are automatically sent with every request to the

server—needlessly increasing data transfer sizes—which of course is an especially bad

thing when working with unreliable connections.

Storage area data isn’t sent this way. However, you may actually need to send data from

a storage area to the server, for instance when a user validates a cart. To do this, you

can catch the check-out form validation event and add information necessary to

process the shopping cart. Supposing our product IDs have been stored under the

products key, we could use code similar to this:

<script>

 /* Sample content */
 window.sessionStorage.products = "3,5,9,100";

 function appendData(form) {
 var products = form.elements["products"];
 products.value = window.sessionStorage.products || "";
 }

</script>

<form method="get" action="checkout.php" onsubmit="appendData(this)">
 <input type="hidden" name="products">
 <input type="submit" value="Checkout">
</form>

When the form is submitted, the value of the products input is updated with the values

from the sessionStorage (if any), and the form is submitted with the relevant data.

When several properties from the storage area have to be passed to the form, it is

possible to iterate through the elements of the form to check whether a property is

available for each element. Hence, by using the same names for the storage area

properties and the form fields, you can easily create a generic function to facilitate data

exchange.

function exchangeData(form) {
 var all = form.elements;

 for (var i = 0; i < all.length; i++) {
 var data = window.sessionStorage.getItem(all[i].name);
 if (data) {
 all[i].value = data;
 }
 }
}

CHAPTER 15: A Better Handling of Client-Side Data Storage 442

This function is basic. Of course, to be functional in real-life cases, the script should, for

instance, handle different input types, such as check boxes, whose value shouldn’t be

changed but should be checked or unchecked.

You could also use a similar method directly on classic links:

<script>

 function appendData(link) {
 var url = link.href;
 link.search += (link.search ? "&" : "") + "products=" +
 encodeURIComponent(window.sessionStorage.products);
 }

</script>

Checkout

This method yields the same results as the previous. By modifying the Location object

of the link passed as a parameter to the appendData() function, we add the data to the

query string. The server-side script will have the necessary data available to process the

user cart.

SQL Local Database
The Storage API, like cookies, offers a useful way to handle rather simple data.

However, there is another alternative to store data on the client when needs are more

specific. The Web Database specification, which is maintained by an entity of the W3C,

will let you take client side storage further.

Although this API is more complex to use than the Storage API, the handling of data is

made more flexible, for instance with the use of powerful sorting, more advanced

possibilities as for data structure, and easier update processes. Moreover, more data

types are available for storage.

Data stored using the Database API can be queried using Structured Query Language

(SQL), a language used by most relational database management systems (RDBMSs),

like mySQL, SQL Server, or Oracle. The SQL dialect implemented in all browsers to date

is based on a subset of SQLite 3.6.19.

NOTE: The functioning of RDBMSs and how to use SQL is beyond the range of this book. Quite a
few commands will be used and explained in our examples, but you can find thorough
information in the SQLite documentation at www.sqlite.org.

This API can be used in your web applications, because it is already implemented in

WebKit browsers. However, the current implementation of the API functions is a mix of

synchronous and asynchronous versions. In other words, for now opening the database

will be a synchronous operation, while querying it will be done asynchronously.

http://www.sqlite.org

CHAPTER 15: A Better Handling of Client-Side Data Storage 443

Opening the Database
With a classic DBMS, a new database is generally created with the SQL command

CREATE DATABASE. In the case of web databases, in order to protect data integrity when

the schema changes and limit errors, the database creation is done with the

openDatabase() function from the WindowDatabase interface. No actual SQL command

related to the creation or modification of the database itself is available.

var db = window.openDatabase("Apress", "1.0", "Apress Storage Demo", 10 * 1024 * 1024);

The first parameter sets the physical name for the databases that will be used to store

data on the disk. The second should be used to specify a version for the database. This

is useful, because it will prevent the client code from using a database that has evolved

and from attempting to add data that might cause errors, thus making the web

application unstable. If an error occurs on the version number, an INVALID_STATE_ERR
fatal exception will be sent. The third parameter sets the logical name for the database,

which will be used by the browser to display messages.

Finally, the size of the database is given in bytes, which again defaults to 5MB. Fixing a

value lower than the default will not actually reduce the maximum size of the database;

however, fixing a limit higher than this default (as in our example), the user is sent a

message inquiring whether the space required by the current operation should be

allotted, as shown in Figure 15–3.

Figure 15–3. A message is sent when the estimated amount of data exceeds the default maximum

CHAPTER 15: A Better Handling of Client-Side Data Storage 444

If the user refuses the request, the openDatabase() function will return null. If the

operation is successful, the function will return a Database object allowing you to query

the data of the database. If the database doesn’t exist when the function is executed, it

will be created. In this case, in recent versions of WebKit, you can pass a callback

function as the final parameter that will let you interact with the database after creation.

However, this feature isn’t implemented yet in Mobile Safari, so you will need to initiate

the database by other means.

var globalDB = window.openDatabase("Apress", "1.0",
 "Apress Storage Demo", 1 * 1024 * 1024);
checkDatabase(globalDB);

function checkDatabase(db) {
 /* Transaction created */
 db.transaction(
 function(tran) {
 tran.executeSql("SELECT 1 FROM News LIMIT 1");
 },

 /* Failed? The database should not be initialized */
 function() {
 initDatabase(db);
 },

 /* Success? The database is already initialized */
 function() {
 /* Start database jobs */
 }
);
}

function initDatabase(db) {

 /* Create the database schema using the 'db' Database object */

}

The checkDatabase() function attempts to execute a simple request on the expected

data model with the transaction() method (that takes three parameters) and the

executeSql() method, which we will see later. We intentionally limit the result to one row

in order for the query to be executed quickly, avoiding the retrieval of a potentially heavy

result set. If the query succeeds, we can assume that the database schema has already

been created. At this point, because we have asked for a specific version, the job can

begin, because we know that the schema is correct. Otherwise, an error is raised, and

we call the schema creation function.

Creating Tables
Once you have a Database object available to you, you can use transactions, as shown

previously, to modify the contents of the database. A transaction lets you group one or

several queries, which are generally interdependent. If one query fails, all will be

canceled. Just like you can’t create a database using the CREATE DATABASE command

directly, you cannot use the BEGIN TRANSACTION, ROLLBACK, or COMMIT command without

throwing an error. These are encapsulated inside methods from the API, and you should

CHAPTER 15: A Better Handling of Client-Side Data Storage 445

use the transaction() method of the Database object to execute read/write operations.

This method takes a callback function as parameter, which will be passed a

SQLTransaction when it is called.

The first step to work with a database is to create tables that will hold the data. As

previously, we are going to store news from an RSS feed, so we will need two tables:

one holding the information source and one holding the news from each feed.

function initDatabase(db) {
 db.transaction(function(transaction) {
 createSchema(transaction);
 });
}

function createSchema(tran) {
 var schema = [
 "CREATE TABLE Source (" +
 " SourceID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT," +
 " Name VARCHAR(100) NOT NULL," +
 " URL VARCHAR(100) NOT NULL," +
 " LastUpdated DATETIME NULL" +
 ")",

 "CREATE TABLE News (" +
 " NewsID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT," +
 " SourceID INTEGER NOT NULL," +
 " GUID CHAR(32)," +
 " Title VARCHAR(200) NOT NULL," +
 " Content TEXT NOT NULL," +
 " Date DATETIME NOT NULL," +
 " TargetURL VARCHAR(100) NOT NULL," +
 " FOREIGN KEY (SourceID) REFERENCES Source(SourceID)" +
 ")"
];

 executeSequence(tran, schema);
}

NOTE: Although we have specified limits for fields such as CHAR or VARCHAR, these are not yet
taken into account by the current implementation of web SQL, and these types are simply
considered as regular strings. The same is true for DATETIME field types. However, this is
necessary to guarantee forward compatibility.

function executeSequence(tran, list) {
 var i = -1;

 /* Transaction created */
 (function recursive(tran) {
 if (++i < list.length) {
 tran.executeSql(list[i], null, recursive);
 }
 })(tran);

}

CHAPTER 15: A Better Handling of Client-Side Data Storage 446

The initialization of transactions is asynchronous, which means the scripting engine will

immediately move to the following statement after the call to transaction(), without

waiting for the callback to be executed. However, as a transaction produces a global

lock on the database, transactions most probably will be called one after the other. This

asynchronous behavior allows for more flexibility from the point of view of the user,

because the web application will not be paralyzed during heavy operations.

The executeSql() method, unsurprisingly, lets you run SQL statements. Like the

transaction() method, this function works asynchronously. However, one request can

take longer than another, which can cause errors when, as in our example, queries

depend on the success of previous queries. In our example, the second request holds a

reference to the table created by the first request in order to guarantee the referential

integrity of data. Therefore, rather than looping through our queries, we define a

recursive function that will iterate through the list of requests and execute the next only

when the previous has completed.

As you can see in this example, the executeSql() function takes several parameters.

The following is its signature:

transaction.executeSql(command, parameters, successCallback, failureCallback);

function successCallback(transaction, resultSet) { ... }
function failureCallback(transaction, error) { ... }

The first parameter is the SQL query to be executed. Then, an array of parameters

should be passed to secure the query—which we will explain shortly. The two final

parameters are callback functions. In our example, we use the first parameter to execute

the next query every time a query is successful. It receives the current transaction as the

first parameter and, if any, the result of the just-completed query as the second

parameter. The failure callback receives a SQLError as its second parameter, which will

let you handle the problem. Because an error isn’t necessarily fatal, you can also resume

the transaction from the failure callback. Such a case will be treated separately in a

subsequent section.

Adding Data to Tables
Our database is now ready to hold data. First, we are going to populate the Source table,

using the INSERT instruction. This still happens within the database initialization phase.

function initFeedList(tran) {
 var sql = ["INSERT INTO Source (Name, URL) VALUES(?, ?)"];

 var data = [
 ["New York Times", "http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml"],
 ["Financial Times", "http://www.ft.com/rss/world/us"]
];

 executeSequence(tran, sql, data);
}

http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml
http://www.ft.com/rss/world/us

CHAPTER 15: A Better Handling of Client-Side Data Storage 447

Here, we use parametrized queries. In a query, a parameter is represented by a question

mark, and for each question mark there needs to be an entry in the array passed as a

parameter to executeSql(). This technique will not only save you the cumbersome

building of long strings, it is above all a solid protection against SQL injection attacks.

We will get into more detail about this in the upcoming section about security.

Because queries are run asynchronously, we need to chain the calls using callbacks.

Moreover, because creating tables and inserting initial data is an atomic and sequential

operation, the same transaction has to be used so that, if an error should occur, all

operations are canceled. Therefore, we pass a reference to initFeedList() to the

createSchema() function, which will be called after the tables have been created.

function initDatabase(db) {
 db.transaction(function(transaction) {
 createSchema(transaction, initFeedList);
 });
}

To make parametrized queries usable, we need to improve the executeSequence()

method in order to pass the parameters. Also, because a query can be used several

times for a same data set, we add the possibility to loop through a set of queries for a

set of given parameters.

function createSchema(tran, next) {
...
 executeSequence(tran, schema, null, next);
}

function executeSequence(tran, list, params, next) {
 params = params || [];
 var max = Math.max(list.length, params.length);
 var i = -1;

 (function recursive(tran) {
 if (++i < max) {
 tran.executeSql(list[i % list.length], params[i], recursive);

 /* Sequence completed */
 } else if (next) {
 next(tran);
 }
 })(tran);
}

We calculate the utmost size between the list and the params parameters to go through

a sufficient number of iterations to use all available data. Then, to execute the following

instructions set, we test for the next parameter, and if it is set, we execute the function

referred to. This way, the insertion will occur after the tables are created and never

during their creation.

CHAPTER 15: A Better Handling of Client-Side Data Storage 448

Querying Data from the Tables
Our database is now fully initialized. To fill the News table, we are going to fetch data

from the Source table and send Ajax requests to gather data.

function checkDatabase(db) {
...
 function() {
 /* Start database jobs */
 refresh(db);
 });
...
}

function initDatabase(db) {
 db.transaction(function(transaction) {
 createSchema(transaction, initFeedList);
 }, null, function() {
 refresh(db);
 });
}

function refresh(db) {
 /* Always display the previous content */
 processFeed(db);

 /* Then try to refresh the News table */
 db.transaction(function (tran) {
 tran.executeSql("SELECT SourceID, URL, LastUpdated FROM Source", null,
 function(tran, res) {
 for (var i = 0; i < res.rows.length; i++) {
 var row = res.rows.item(i);
 var last = row.LastUpdated || new Date(0);
 var ttl = new Date() - 1000 * 60 * 10; // 10 minutes
 /* If the feed needs update */
 if (last <= ttl) {
 loadFeed(row.URL, db, row.SourceID);
 }
 }
 }
);
 });
}

First, we add the relevant calls to the refresh() function from the success callback of

the checking transaction. Then, using the new transaction created in refresh(), we read

the data returned by the query from the SQLResultSet object, which holds all the rows

resulting from the query inside the rows property. This property is a list of type

SQLResultSetRowList whose elements are accessible only through the item() method.

Table 15–2 gives detail for the ResultSet object properties.

CHAPTER 15: A Better Handling of Client-Side Data Storage 449

Table 15–2. Properties of the SQLResultSet Object

Property Description

result.insertId When data is inserted into a table that has a field of type

AUTOINCREMENT, this property holds the value of the last generated

identity. If no such field is set, it holds the row number of the inserted

line. If there is no insertion, trying to access this property will raise a

INVALID_ACCESS_ERR exception.

result.rowsAffected Returns the number of lines that have been modified by a query, or 0 if

nothing was altered (for instance, if the query was a SELECT statement).

result.rows A list of lines returned by the query.

Every column is accessible by name, like an object property, with the same case as

when it was created in the table. The length property will let you know how many lines

are in the result set.

Updating Data
Once the last update time has been checked, if needed, we launch the Ajax requests to

retrieve the data that we will then extract from the RSS feed.

function loadFeed(url, db, id) {
 var xml = new XMLHttpRequest();
 xml.onreadystatechange = function() {
 feedLoaded(this, db, id);
 }
 xml.open("get", "proxy.php?url=" + encodeURIComponent(url));
 xml.send();
}

function feedLoaded(xhr, db, id) {
 if (xhr.readyState == xhr.DONE && xhr.status == 200) {
 updateFeed(xhr.responseXML, db, id);
 }
}

function updateFeed(xml, db, id) {
 db.transaction(function (tran) {
 tran.executeSql("UPDATE Source SET LastUpdated = ? WHERE SourceID = ?",
 [new Date(), id]);

 var all = xml.getElementsByTagName("item");
 for (var i = 0; i < all.length; i++) {
 var params = [];

 params.push(getText(all[i], "title"));
 params.push(getText(all[i], "description"));
 params.push(new Date(getText(all[i], "pubDate")));
 params.push(getText(all[i], "link"));
 params.push(id);

CHAPTER 15: A Better Handling of Client-Side Data Storage 450

 params.push(getText(all[i], "guid"));

 upsertNews(tran, params);
 }
 });
}

function upsertNews(tran, params) {
 var len = params.length;
 var guid = params[len - 1];
 var id = params[len - 2];

 tran.executeSql(
 "SELECT NewsID FROM News WHERE SourceID = ? AND GUID = ?", [id, guid],

 function(tran, res) {
 var sql = (res.rows.length == 0) ?
 "INSERT INTO News (Title, Content, Date, TargetURL, SourceID, GUID) " +
 " VALUES(?, ?, ?, ?, ?, ?)"
 :
 "UPDATE News SET " +
 " Title = ?, Content = ?, Date = ?, TargetURL = ? " +
 "WHERE SourceID = ? AND GUID = ?";
 tran.executeSql(sql, params);
 }
);
}

The loadFeed() function launches the Ajax requests one after another, without delaying

for the previous request to complete. Then, after each response from the server, we

immediately browse the XML with the processFeed() function. At this stage, the

LastUpdated field is changed in the Source table, and for each news entry from the feed,

we add entries in the relevant table. Here, there is no need to synchronize the line

updating, because the order in which this operation is done is unimportant. Therefore, a

bulk insert is good enough, and we will be able to order the news later with a request

such as SELECT...ORDER BY.

If you are familiar with DBMSs, you may be used to running some kind of custom UPSERT
(UPdate or inSERT). When dealing with the Web Database API, there is no stored

procedure to do this, and there is no conditional statement applicable in the SQL

language. The only way to perform such an operation is to chain a SELECT command to

determine whether data is available with an UPDATE (if data is available) or an INSERT (if

not). Our key here for the selection is the SourceID/GUID couple, because although a

GUID is supposed to be unique globally, it is really unique only at the level of its source.

NOTE: For UPDATE operations, we could have used the NewsID returned by the SELECT
operation. However, using the same parameters array makes the code simpler.

Our News table now holds information from our two feeds. If you test this on Desktop

Safari, it is possible to use the Storage section of the Web Inspector introduced in

Chapter 3 to read the data stored in the database, simply by clicking the Apress

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15: A Better Handling of Client-Side Data Storage 451

database from the left pane and running a request from the built-in command prompt,

as shown in Figure 15–4.

> SELECT Title, Date, Name
 FROM News
 INNER JOIN Source
 ON News.SourceID = Source.SourceID
 ORDER BY Date DESC

Figure 15–4. The news list resulting from a SQL query in Desktop Safari’s Web Inspector

You can now modify the Web Storage example to use the database rather than cache.

Using Database in Place of Storage
To use Web Database rather than Web Storage for our sample application, you simply

need to modify the init() function and add a success handler to the updateFeed()

function to gather data after each feed has been updated.

function init() {
 spinner.init("spinner", "white");
 checkDatabase(globalDB);
}

function updateFeed(xml, db, id) {
 db.transaction(function (tran) {
...
 }, null, function() {

CHAPTER 15: A Better Handling of Client-Side Data Storage 452

 processFeed(db);
 });
}

Then, you would adapt processFeed() so that the data is no longer gathered from

localStorage but is retrieved from the client database.

function processFeed(db) {
 db.transaction(function (tran) {
 tran.executeSql("\
 SELECT Title AS title, Content AS content, \
 Date AS date, TargetURL AS link \
 FROM News ORDER BY Date DESC \
 LIMIT 10", null, processFeedCallback
);
 });
}

function processFeedCallback(tran, res) {
 var all = res.rows;
 var list = document.getElementById("feed");
 if (sessionStorage.template == undefined) {
 sessionStorage.template = list.innerHTML;
 }

 /* Compute resulting HTML */
 var html = "";
 for (var i = 0; i < all.length; i++) {
 var data = all.item(i);
 html += applyTemplate(sessionStorage.template, data, formatters);
 }

 /* Append content to the document */
 appendContent(list, html);
}

To maintain the same rendering logic as when reading data directly from the feed, we

use an alias on the columns so that property names are consistent with the template.

Naturally, we keep the template cache, because several successive calls can be run

after the update of each feed.

You could also add another feed to the Source table and check the resulting data using

the Web Inspector.

Handling Transaction and Query Errors
As indicated previously, the transaction() method can also take a failure and success

callback, just like the executeSql() method. Here is the callback signature:

database.transaction(initCallback, errorCallback, successCallback);

function initCallback(transaction) { ... }
function failureCallback(error) { ... }
function successCallback() { ... }

CHAPTER 15: A Better Handling of Client-Side Data Storage 453

The first function is a failure callback that will receive a SQLError object, with a message

property holding the reason of the failure (thoroughly described) and a code property

holding the corresponding error code. Table 15–3 lists the possible error codes common

to SQL transactions and requests using executeSql(), with their meanings. Unlike other

APIs implemented in Mobile Safari, the specification constants are currently not

available, and error codes don’t exactly match; therefore, you can only use the

numerical codes. The second function is a success callback that doesn’t take any

parameter.

Table 15–3. Error Codes Applicable to Transactions and Queries

Constant Description

error.UNKNOWN_ERR (0) An unknown error, unrelated to the database, has been raised.

Generally, this is caused by an error in a callback.

error.DATABASE_ERR (1) An error related to the database has occurred. This is sent, for

instance, in the case of syntax errors or when a table or field name

isn’t found.

error.VERSION_ERR (2) The requested version number isn’t the same as the database

version. This error will be used when the database schema should

be updated.

error.TOO_LARGE_ERR (3) The result set for the query is too large to be returned. To avoid this

error, you should resort to the LIMIT and OFFSET instructions, for

instance, to paginate the results.

error.QUOTA_ERR (4) The space allocated to the database has been outgrown. This also

occurs when the request for the database to grow is refused by the

user.

error.TIMEOUT_ERR (5) The lock for a transaction wasn’t obtained within a reasonable time.

This is generally sent when another transaction is taking too long to

execute, preventing a normal behavior of the database.

error.CONSTRAINT_ERR (6) A foreign key violation has occurred. This would happen, for

instance, if you tried to insert a line in News for a sourceID that

doesn’t exist.

Both can be useful, for instance, to trace the behavior of the API and bring the user

relevant information when an error occurs, inviting to try again. We can modify our

function to build a more precise response regarding the relevancy of initializing the

database.

function checkDatabase(db) {
...
 /* Failed? The database should not be initialized */
 function(error) {
 if (error.code == 1) { // Unknown table
 initDatabase(db);

CHAPTER 15: A Better Handling of Client-Side Data Storage 454

 } else {
 alert("An error occurred:\n" + error.message);
 }
 },
...
}

Both of these methods will be called after the execution of the transaction contents—

here, the calls to executeSql(). If a request fails, the execution will be halted, and the

whole transaction will be rolled back, and the database will return to its state prior to the

transaction operations. If all requests succeed, the transaction will be committed, and

the database will be updated.

However, it is possible to continue the transaction after an error from within a SQL

command. The failure callback of the executeSql() method can return a value indicating

if the error is fatal and if it is possible to resume the transaction. The value false will

allow you to continue the transaction, while the value true will halt it. If no value is

returned, true will be implied. The upsertNews() function could be changed to

implement this.

function upsertNews(tran, params) {
...
 tran.executeSql(
...
 tran.executeSql(sql, params, null, function() {
 /* Do not stop transaction on error */
 return false;
 });
...
);
}

Proceeding this way, if an update of insert fails, whatever the reason, other requests will

not be affected and will continue updating the table.

Maintaining Coherent Access with Versioning
During a database life cycle, there always comes a time when it is necessary to evolve.

Of course, you can apply tests similar to those used previously and check whether a

table is available on initialization and attempt to create one if not, but this would dilute

the schema maintenance logic throughout the code. Moreover, if the structure of an

existing table should change, it is preferable to control the database version on a higher

level and apply necessary modifications.

We have seen that the openDatabase() method takes a parameter allowing you to ask

for a specific version for the database. If, when the function is called, the version stored

in the browser doesn’t match, an INVALID_STATE_ERR exception is raised. This DOM

exception isn’t very explicit and will not let you determine whether the error is a version

problem. To handle version evolution, you will need to pass an empty string as a version

parameter and read the version property of the Database object.

CHAPTER 15: A Better Handling of Client-Side Data Storage 455

WARNING: In Mobile Safari, the value of the version property will be modified only if the user
closes all open browser windows on the domain holding the database. Thus, even after the
version has changed, the former schema version will still appear, executing the migration code
again. For such cases, remember to add a verification querying, for instance, the new schema.

With the value of this property, you can use the asynchronous changeVersion() method

to evolve the database schema. Here is its signature:

database.changeVersion(oldVersion, newVersion,
 changeCallback, errorCallback, successCallback);

Each callback receives parameters equivalent to those of the transaction() method.

Thus, the first will receive a SQLTransaction object allowing you to execute modification

queries, and the second will receive a SQLError object. You can use them as shown

here:

var globalDB = window.openDatabase("Apress", "",
 "Apress Storage Demo", 1 * 1024 * 1024);

if (globalDB.version == "1.0") {
 /* Do database evolution job to new version */
 globalDB.changeVersion("1.0", "1.2",
 changeCallback, errorCallback, successCallback);

} else if (globalDB.version == "1.2") {
 /* Always check the schema if the expected version is correct */
 checkDatabase(globalDB);

} else {
 throw("Unexpected database version number.");
}

function changeCallback(tran) {
 tran.executeSql("ALTER TABLE Source RENAME TO Feed");
}

function errorCallback(err) {
 alert("An error occurred:\n" + err.message);
}

function successCallback() {
 alert("Database successfully updated to version 1.2!");
 refresh(globalDB);
}

Once the update has completed, of course, you will no longer have access to the former

version of the database. The version number, to the scripting engine, is no more than a

string; therefore, there is no actual version evolution, simply a version change. If the

oldVersion parameter doesn’t match the current database version, a VERSION_ERR

exception will be raised.

CHAPTER 15: A Better Handling of Client-Side Data Storage 456

Deleting the Database
Creating a database is very simple. However, suppressing a database can prove trickier.

Dropping a database cannot be done from JavaScript, and the SQL command DROP
DATABASE isn’t available either. Deleting a database, luckily, is possible, but only on an

action by the user. This obviously is very handy in the development stage.

With Desktop Safari
On Desktop Safari and most WebKit-based browsers, deleting a database can be done

from the preferences panel. Go to Safari Preferences... and select the Security tab. The

window shown in Figure 15–5 should appear.

Figure 15–5. The security panel on Desktop Safari

Here, click the Show Databases button at the bottom of the screen to trigger a list of

databases. You can then simply remove any of them using the Remove button. This

way, you can test your code as many times as you need on a clean basis.

With Mobile Safari
In Mobile Safari, once a database has been created, a new menu item appears in the

browser preferences, as shown in Figure 15–6. From there, it is possible to access a list

of databases from the Settings application, under Safari Database.

CHAPTER 15: A Better Handling of Client-Side Data Storage 457

Figure 15–6. Database preferences in Mobile Safari

Simply tap the Edit button in the upper-right side of the screen, and select the database

to delete. The options here are less rich than on the Desktop version; for instance, it is

not possible to set an initial size for a database.

Security Again
For security reasons, the same limitations for Web Storage apply to web databases,

namely, a strict limit on the scheme/host/port tuple. Accessing data between

subdomains is possible using the HTML5 Cross-Document Messaging API, as explained

in Chapter 11.

You should be careful with Web Database storage when storing critical data, such as

user passwords or personal information. Nonreversible encryption such as MD5 should

be preferred, because reversible encrypting would imply that the encryption key would

be somewhere in the code. Of course, because Mobile Safari has no Web Inspector, you

could legitimately think that your database is safe, but because a web application can

be viewed in any browser, you should apply security measures taking the greater risk

into account.

One security risk to be extra careful with when using web databases is SQL injection,

which should make you very careful when building your queries. This kind of attack is

frequent when coping with concatenated queries, where single quotes in a variable are

not escaped, which allows for other queries to be inserted. This is especially easily done

x

CHAPTER 15: A Better Handling of Client-Side Data Storage 458

as requests will be readable from the client. Here is an example where a user enters his

name, which is passed in the query:

var name = "'; DELETE FROM Source --";
var sql = "SELECT * FROM Source WHERE Name='" + name + "' AND URL IS NOT NULL";

The semicolon is an instruction separator, and the double hyphen (--) begins a

comment. Hence, this code should be interpreted as follows—emptying the Source

table:

SELECT * FROM Source WHERE Name=''; DELETE FROM Source --' AND URL IS NOT NULL;

The first step to prevent this of course is to escape all single quotes inside user input by

replacing them with two single quotes (''), but it is preferable to use the secured version

of executeSql(), passing an array of parameters.

var sql = "SELECT * FROM Source WHERE Name=? AND URL IS NOT NULL";
transaction.executeSql(sql, [name]);

This way, as previously seen, the scripting engine will replace every question mark with

the relevant value from the table automatically, and no injection will be possible. Always

double-check your code for this and thoroughly think your queries through before

moving them online, both for selection and for parameter lists.

Offline Web Application Cache
In addition to new storage possibilities, you can also make all or part of your web

application available offline by storing resources in your users’ devices thanks to new

caching possibilities brought by HTML5. This can take your web applications another

step closer to a native application experience, because, depending on the use they

make of your applications, users could see no difference between online and offline

usage. Also, this allows for shorter load times in all circumstances. This specification is

supported in Mobile Safari with iOS 2.1 and newer.

How Does It Work?
When your pages are first loaded inside the browser, an attached manifest document

will be loaded holding information on how to handle resources from your application.

This way, on subsequent connections to the application, the relevant files would be

expectedly cached and would not be loaded from the server.

Once the manifest file has been read, no file set for caching will be checked on the

server or loaded anew unless the manifest file has been changed. The manifest file is

compared byte to byte, meaning that a change in the modification date will not force

reevaluation. Neither changes on the server for other files nor HTTP headers indicating a

more recent version will trigger a new download by the browser.

However, always remember that when the cache is renewed, the new version of the files

will not be used by the client until the web application has been refreshed, in a way

similar to updates on a desktop computer. Therefore, it can be desirable to be able to

CHAPTER 15: A Better Handling of Client-Side Data Storage 459

notify the user when new versions of files are available. This can be done using a

specific API that will let you control cache and receive notifications during file updates.

We will cover the relevant events in an upcoming section.

The Manifest File
Basically, the manifest file will let you list files to be cached together with rules on how to

handle the web application elements. It bears the special .manifest extension and is a

simple UTF-8 encoded file, necessarily served with the text/cache-manifest content

type to be interpreted by the browser. You can use a byte order mark (BOM) to sign the

file. Be careful that most servers for now do not send this MIME type with their default

configuration, which is mandatory for the manifest to work.

NOTE: Naturally, running local tests for this file isn’t easy, because you cannot cut the
connection to the server. The only way to run local tests is to load your application, stop the local
server, and check what is displayed then by reloading the web application. Also note that the
manifest file is not shown in the Resource Viewer section of Safari’s Web Inspector, which
doesn’t help checking if it has been loaded.

Using the following cache.manifest file, we can simply cache the web application

example developed in this chapter to make it available offline or when the user suffers

from bad connection speeds.

CACHE MANIFEST
index.html
styles/main.css
scripts/main.js

The CACHE MANIFEST line is required as the first line in the file and should have no extra

space or line feed. It acts as a file signature that identifies the file as the cache manifest

to the browser. The URLs can be either absolute or relative, but be careful that relative

paths are relative to the directory where the manifest is hosted. Therefore, for the sake

of consistency, it is a good practice to place the manifest file in the same directory as

the HTML file it is called from.

NOTE: Although the file from which the manifest is called is automatically cached, following the
specification, we add it to the manifest too.

The manifest will be used in the document from which it is included. It should be called

using the new manifest attribute on the <html> tag. As with any other attribute allowing

to pull remote files, it can take both relative and absolute paths.

<html manifest="cache.manifest">
...

CHAPTER 15: A Better Handling of Client-Side Data Storage 460

This is the simplest possible definition of a manifest file, which will let you store elements

on the device without having to download them with every page load. You can simply

list resources to cache, but it is also possible to more precisely determine how the

cache should be handled.

The CACHE Sections
The files to be cached can be defined in a specific section of the manifest file resorting

to the CACHE directive. You can define several sections in a similar way, which can be

useful to order your file indications. You can also make your file more easily readable by

humans by adding comments, as illustrated here:

CACHE MANIFEST

Our cached resources

CACHE:
index.html
styles/main.css
scripts/main.js

Any kind of file can be registered for caching, even images or server-side scripts. Of

course, server-side scripts will be stored after their execution, so be careful when using

this feature. This is possible because the cache application not only stores data but also

stores resource metadata, such as HTTP headers.

The NETWORK Sections
The use of a manifest file makes the web application work in offline mode, which means

that files not listed in the manifest file will not be downloaded, even if the device is

connected to a network. This behavior can be changed from the NETWORK section. In this

section, you can specify resources that should be downloaded from the server if a

network is available, which will be especially useful for dynamic elements of your

applications.

The section simply holds an online white list, similarly to what is found under the CACHE
section. However, this section functions differently: each URL is a prefix match pattern.

Thus, you will be able to target all resources from a given directory by listing only this

directory. Be careful not to uselessly list the same prefix several times.

In our previous example, using only a CACHE section in our manifest file would keep our

web application from working, because the proxy used to gather the RSS feed could not

be accessed. To change this, we simply add the following to our manifest:

NETWORK:
proxy.php

Our proxy uses the url parameter from the query string to know which feed should be

downloaded, but as proxy.php is a prefix, authorization to access the full URL is given

by the browser.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15: A Better Handling of Client-Side Data Storage 461

You can also use the * wildcard to allow access to all resources. This naturally is taken

into account for resources not listed under the CACHE section, which has precedence

over other sections. Of course, this makes writing your manifest file much easier and

reduces the risks of forgetting files and ending up with a partially functional application.

The FALLBACK Sections
For cases where the network is necessary to fetch a resource that is not cached but no

network is available, it is possible to define one or several fallback sections.

Under these sections, lines are built by space- or tab-separated element couples. The

first element is a fallback namespace defining a prefix match pattern that will let you

target a set of resources from some URL, as done under the NETWORK section. All

resources matching this namespace will be cached, and if the resource listed as the

second element is not available, this will be used instead.

To observe the behavior of this section, we are going to specify a static RSS feed

(default.xml) as the default, for cases where the network is not available.

<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">
<channel>
 <title>Offline Application Cache</title>
 <description />
 <link>http://www.apress.com/</link>

 <item>
 <title>Fallback Element</title>
 <description>This is a fallback resource cached to be used
 when the network is not available.</description>
 <link>http://www.apress.com/</link>
 <guid>http://www.apress.com/guid/</guid>
 <pubDate>Mon, 01 Aug 2011 00:00:00 +0000</pubDate>
 </item>
</channel>
</rss>

The relevant files will be listed in the manifest as follows:

FALLBACK:
proxy.php default.xml

Thus, when the network is unavailable, the RSS file will be used in place of the proxy

call, and the only available element will be added for every feed to be gathered. You can

use this section not only for unavailable networks but also to handle any other missing

file problem, such as HTTP 404 errors.

Beware, however, that the browser will not necessarily use the most specific prefix to

use the relevant resource; hence, the declaration order is important. In the following

example, the first line will be used for all fallbacks, because it will match all resources,

including those that would be matched by the second line.

http://www.apress.com/</link
http://www.apress.com/</link
http://www.apress.com/guid/</guid

CHAPTER 15: A Better Handling of Client-Side Data Storage 462

FALLBACK:
./ any.html
proxy.php default.xml

In such a case, you should specify the most specific prefixes first, moving down to the

less specific. Also consider thinking a well-organized directory structure to make the

process easier. This will probably be beneficial for your directory structure anyway.

Controlling the Cache with JavaScript
HTML5 allows control over the cache based on a JavaScript API attached to an

ApplicationCache object. Every page that has a manifest automatically has an instance

of the ApplicationCache object attached to it; it can be accessed from the DOMWindow

object.

var cache = window.applicationCache;

With this instance, you will be able to check the state of the cache, for instance by

checking that the manifest file has been considered, reading its status property.

Table 15–4 shows all the possible states for the cache of the current page. If it is

UNCACHED, your manifest file has not been loaded. In such a case, you should typically

check that the content type is correct and that your file holds no errors.

Table 15–4. applicationCache State Constants

Constant Description

cache.UNCACHED (0) The document isn’t cached.

cache.IDLE (1) The document is available from cache and is the most recent. This

is the state when the page is loaded for the first time, or the

application has been reloaded after an update, and all resources

have been loaded.

cache.CHECKING (2) The document is available from cache and is checking for an

update.

cache.DOWNLOADING (3) The document is available from cache and is currently downloading

updates or new resources.

cache.UPDATEREADY (4) The document is available from cache and has finished

downloading updates or new resources. These will be available on

the next access to the application.

cache.OBSOLETE (5) The document available from cache is obsolete, which means the

manifest is no longer available. The browser receives an HTTP 404

(Not Found) status or a 410 status (Gone).

This can be used to check whether the browser has downloaded a new version and

notify the user:

CHAPTER 15: A Better Handling of Client-Side Data Storage 463

if (window.applicationCache.status == window.applicationCache.UPDATEREADY) {
 if (window.confirm("A new version is available.\nDo you want to use it now?")) {
 window.location.reload();
 }
}

This status will not necessarily be available straightaway. If you check this status while

resources are loading, the sent state will be CHECKING. Therefore, it is useful to add

listeners for the update and download processes, as we will soon see.

You can also control cache directly from the JavaScript, using the methods presented in

Table 15–5.

Table 15–5. Cache-Related Methods

Method Description

cache.update() Force the verification and the update of cache, if the resources are

available from the server. An INVALID_STATE_ERR exception will be

sent if no cache is associated to the document.
cache.swapCache() Activates new cache resources if available (UPDATEREADY). Throws

an INVALID_STATE_ERR exception otherwise.

For instance, even if the status is set to IDLE and the manifest file has just been

modified, a call to the update() method will force the cache to be reloaded. The status

will then change to UPDATEREADY after the new resources have been downloaded. A call

to swapCache() will force the new resources to be used, and the status will return to

IDLE.

Of course, the current page will not be automatically updated, and you will have to wait

for the next web application launch for the user to see the changes. However, you can

also read the new resources using JavaScript. If the call to update() was successful and

the downloading is complete, you can call an updated resource as follows:

/* Update an iframe */
var iframe = document.getElementById("myIframe");
iframe.src = iframe.src;

/* Update the first image of the document */
var image = document.images[0];
image.src = image.src;

You can also associate a newly cached resource:

image.src = "newlyCachedImage.png";

In Safari, surprisingly, the cache is available before the call to swapCache(), although this

is meant to switch the application cache. Therefore, you should run such operations only

after a swapCache() call, instead of simply after a call to update().

CHAPTER 15: A Better Handling of Client-Side Data Storage 464

Reacting to Events Sent by the Application Cache
During the execution cycle of the application update, a number of events are sent to let

the application know what is happening and react accordingly. These events are listed in

Table 15–6.

Table 15–6. Cache Update Events

Event Description

checking The browser is attempting to download the manifest for the first

time or is checking whether an update is available.

noupdate The manifest hasn’t been changed.

downloading The download of resources listed in the manifest has begun, either

to gather the resources for the first time or to update the cache.

progress The browser is downloading the resources listed in the manifest.

cached The resources listed in the manifest have all been downloaded, and

the application is now available from cache. This is sent only on

first download.

updateready The resources form the cache have all been downloaded anew.

obsolete The manifest is no longer available, and the server has sent a 404

or 410 status. The cache will be deleted the next time the

application is launched.

error The manifest has not been found or contains errors.

These events can be registered using the regular DOM method or using the

ApplicationCache object properties.

window.applicationCache.addEventListener("updateready", doSomethingHandler, false);

/* or... */
window.applicationCache.onupdateready = doSomethingHandler;

The sequence of events necessarily begins with the checking event, because the

document holds a reference to the manifest in the <html> tag.

Then, if the document has no application cache associated with it, and if the manifest

contains no error, the downloading event will be triggered, followed by a series of

progress events, until all listed resources have been fetched. The sequence will

terminate with the cached event, indicating the application cache has been created and

that the web application is now cached.

If the document already has an application cache associated with it and the browser

hasn’t detected any changes in the manifest, a noupdate event will be sent, and the

CHAPTER 15: A Better Handling of Client-Side Data Storage 465

sequence will halt immediately. Otherwise, the sequence will be the same as earlier but

will finish with a updateready event instead of a cached event. In such a case, you can

call the swapCache() method, as shown earlier.

If the manifest isn’t accessible or the manifest contains errors (such as a signature

problem, an unavailable resource...), the sequence will be interrupted with an error

event. Still, if a cache exists and the manifest file isn’t found, an obsolete event will be

sent, and the cache will be deleted from the device.

The specifications plan for the progress event to be of ProgressEvent type, allowing you

to follow the progress of the download. As illustrated in Chapter 12 dealing with Ajax,

this type will let you determine whether the downloading is computable using the

lengthComputable property and will then evaluate the loading time with the loaded and

total properties.

For the moment, the progress event type is not supported on iOS, nor is it implemented

in Desktop Safari. It will return a regular Event object. You can, yet, resort to this event

using a callback, because there will be no warranty that the progress would be

computable anyway.

Deleting Cache
Once a web application is cached, it is no longer possible to delete it. Indeed, the user

emptying the browser cache will not affect the offline application cache. Thus, the only

way users can delete the cache is to visit the site again, hopeful they will have an option

to unload the application.

If your manifest is a dynamic file (a PHP script, for instance), it is possible to offer this

option by setting a cookie that will be read by the manifest script in order to return a 404

error if the cache should be deleted.

<script>

function switchMode(online) {
 var now = new Date().getTime();
 var tenYears = 1000 * 60 * 60 * 24 * 365 * 10;
 var expires = new Date(now + tenYears) * (online ? +1 : -1);
 document.cookie = "online=true; expires=" + expires;
}

</script>
...
 <div class="header-wrapper">
...
 <button onclick="switchMode(true)">No Cache</button>
 </div>
...

The PHP manifest could look something like this:

<?php
 $code = ($_COOKIE['online'] == 'true') ? 410 : 200;
 header('Content-type: text/cache-manifest', true, $code);

?>CACHE MANIFEST

CHAPTER 15: A Better Handling of Client-Side Data Storage 466

When the user clicks the No Cache button, a new online cookie will be created with the

boolean value true. The expiration date is set far enough in the future not to expire.

When the manifest file is accessed again, the script will check for the cookie using the

$_COOKIE hash table and will send a response relevant to the value of online. The web

application will finally receive an obsolete event, as explained earlier.

Is the User Online?
Whether an offline application cache is associated with the current document or not, you

can easily check the state of the network. This piece of information can be gathered

from the onLine property of the navigator object. This way, it is possible to prevent

downloading some elements from the JavaScript, such as the RSS feed used

previously, if the network is not available, thus preventing access to the callback

content.

function refresh(db) {
 /* Always display the previous content */
 processFeed(db);

 /* Do not try to download feeds if not online */
 if (!window.navigator.onLine) {
 return;
 }
...
}

In addition to this property, Mobile Safari has support for two new events; when the

state of the network changes, either an online event (if the onLine property changes

from false to true) or an offline event (the user is disconnected) is sent. This should let

you fine-tune the loading and behavior of your application for the best user experience.

Summary
Naturally, you can dynamically generate your manifest file using PHP or any other

server-side scripting language, similarly to what we did in Chapter 6 to generate a list of

images for our Photos-like album. This opens a full range of possibilities to develop

complex yet flexible applications.

Making your applications work both online and offline in a satisfying manner is a great

step toward a native application–like experience, and the different storage APIs should

let you customize your data behavior to most of what your application requires.

Combine this with full-screen mode, a user interface, and behavior similar to that of iOS,

and users will wonder why they ever went to the App Store.

467

467

Index

■ Special Characters
and Numbers

!important statement, 115
#coverflow container, 276
$_COOKIE hash table, 466
$_SERVER['DOCUMENT_ROOT'] variable,

24
$data variable, 357
% button, 59
%d format, 48
%f format, 48
%i format, 48
%o format, 48
%s format, 48
3D aspect, preserving with CSS, 265–266

■ A
a command, Vi utility, 16, 25
AAC (MPEG-4 Advanced Audio Coding),

250
AAC-LC (Advanced Audio Coding - Low

Complexity), 250
abort() method, 232, 346
Access-Control-Allow-Origin header, 359
accuracy, and gestures, 394–395
activate() method, 241
Adaptive Multi-Rate (AMR), 251
adaptive styles method, 152
ADC (Apple Developer Connection), 10–11
Add as Snippet context menu option,

Komodo Edit utility, 5
Add port. option, 20
Add to home screen option, 77
Add web site context menu option, 26
addColorStop() method, 174
addEventListener() method, 285, 310–311,

345, 367–369, 371, 373

address bar, hiding web applications, 85–86
adjust() method, 389
adjustHeight() function, 86
adjustVideo() function, 229
AdLib framework, 69
ads, showing thoughtfully, 92–95
Advanced Audio Coding - Low Complexity

(AAC-LC), 250
Advanced Packaging Tool (APT), 22
Advanced tab

HandBrake, 253
Safari, 30

advantages of web applications, 71–73
App Store not necessary, 72–73
cross-platform, 71–72
hardware access for, 72

A-GPS (Assisted Global Positioning
System), 397

Ajax, 343–365
building HTTP request, 343–348

events for, 346–347
GET and POST requests for, 344–

345
HTTP status codes for, 347–348
open() method for, 344
request states for, 345–346
and XMLHttpRequest object, 344

client-side rendering using JSON, 354–
356

formatting variables, 355–356
using template variables, 354–355

cross-origin communication for, 356–360
using CORS, 359–360
using JSONP, 357–358
using proxies, 356–357

feedback during processing, 363–365
and excessive waiting times, 364–

365
visual feedback, 363–364

requests, caching, 435–440
add caching capabilities, 438–440

Index 468

base document, 435–438
return formats for, 348–353

and JSON security considerations,
353

parsing JSON, 352–353
parsing XML, 349–352

Twitter trends example, 360–363
feed for, 360
rendering data, 360–363

ajax.DONE (4) constant, 345
ajaxHandler() function, 345, 347, 350
ajax.HEADERS_RECEIVED (2) constant, 345
ajax.LOADING (3) constant, 345
ajax.OPENED (1) constant, 345
ajax.UNSENT (0) constant, 345
ALAC (Apple Lossless Audio Codec), 250
alert() method, 46
alignment

of box model for CSS, 161–162
of text, in <canvas> tag, 186–187

Allow a program through Windows Firewall
option, Control Panel, 20

alpha channel, for colors with CSS, 135–136
AMR (Adaptive Multi-Rate), 251
Anamorphic combo box, HandBrake, 254
Animal constructor, 306
animate() method, 170, 172, 311
<animateTransform> tag, 209
animating compass, in compass web app,

427–429
animation-delay property, 283
animation-duration property, 283
animationend event, 285
animationiteration event, 285
animation-iteration-count property, 283, 285
animation-name property, 282–283
animationName property, 285
animation-name property, 285
animations, with CSS, 282–285

events for, 285
evolution curve, 284–285
key frames, 282–283
properties for, 283–284
starting and timing, 283

animationstart event, 285
animation-timing-function property, 284
Apache

on Mac OS, 14–15
virtual hosts for web server with, 24–25

Apache config file, 25
apache2 configuration file, 15

app header, buttons in, 150–152
App Store, and web applications, 72–73
appendChild() method, 351
appendData() function, 442
Apple Developer Connection (ADC), 10–11
Apple Lossless Audio Codec (ALAC), 250
apply() method, and execution context of

JavaScript, 308–310
applySVGBackground() function, 204
APT (Advanced Packaging Tool), 22
apt-get command, 22
arcs, in <canvas> tag, 177–178
arcTo() method, 177
arguments property, 309
Assisted Global Positioning System (A-

GPS), 397
async parameter, 344
atan2() method, 416
ATTACHED state, 380
audio

embedding in web apps, 224–225
supported formats, for media content in

web apps, 250–251
audio codec option, HandBrake, 255
Audio tab, HandBrake, 255
<audio> tag, 219, 225, 233, 250
Audits pane, in Web Inspector, 61–63
AUTOINCREMENT field type, 448
autoplay attribute, 224
Average bitrate option, HandBrake, 254
Average column, 59

■ B
 tag, 290, 292, 294
back face visibility, three-dimensional

effects with CSS, 266–268
background-clip property, 126–127
background-color property, 84
background-image property, 205, 286
background-origin property, 125–126
background-repeat property, 175
backgrounds, with CSS, 124–135

background-clip property, 126–127
background-origin property, 125–126
clipping of, 128
multilayer, 134–135
photo gallery with, 130–133
sizing, 128–130

background-size property, 129–130, 202
_base property, 308

Index 469

baseline, of text in <canvas> tag, 185–186
BEGIN TRANSACTION command, 444
beginPath() method, 176
bezierCurveTo() method, 178
big.css file, 114
.bigSpinner class, 171
bind() function, 317
black option, content attribute, 80
black-translucent option, content attribute,

80
<body> tag, 37
BOM (byte order mark), 459
border property, 154
border-image declaration, 146
border-image property, 288
border-radius property, 85
bounding box object, for gestures, 388–389
box model, for CSS, 158–162

efficiency of, 158–159
flexibility of, 160–161
ordering of, 159–160
packing and alignment of, 161–162

box shadows, with CSS, 148–149
box-align property, 161–162
box-direction property, 159–160
box-flex property, 161, 291
box-ordinal-group property, 159
box-orient property, 160
box-pack property, 161–162
box-shadow property, 147–148
box-sizing property, 143
breakpoints, for JavaScript debugging, 50–

51
browsers, 6–7

Firefox, 7
Internet Explorer, 7
Opera, 7
and support for web standards, 8
WebKit engine, 6–7

buffered property, 227
buildList() function, 242, 246
buttons, in app header, 150–152
buttonState() function, 364
byte order mark (BOM), 459

Inetpubwwwroot directory, 21
WindowsSystem32drivers\ directory, 24

■ C
CACHE sections, 460–461
cache.CHECKING (2) constant, 462

cached event, 464
cached location, in location-aware web

applications, 402
cache.DOWNLOADING (3) constant, 462
cache.IDLE (1) constant, 462
cache.manifest file, 459
cache.OBSOLETE (5) constant, 462
cache.swapCache() method, 463
cache.UNCACHED (0) constant, 462
cache.update() method, 463
cache.UPDATEREADY (4) constant, 462
calcMode attribute, 209
calcPosition() method, 230
calculator.html file, 327, 339
call() method, and execution context of

JavaScript, 308–310
Call Stack pane, for JavaScript debugging,

53
callbacks, and execution context of

JavaScript, 310–312
calling priority, of handlers, 367–368
callout, disabling with CSS, 120–121
Calls column, 59
cancelling Multi-Touch events, 376
canplay event, 232
canplaythrough event, 232
Canvas API, 171–175, 181, 189, 191, 201,

208
<canvas> tag, 165–195

clipping to drawing area, 188–189
colors for, 174
compositing and transparency for, 189–

190
getContext() method for, 167–172
gradients for, 174–175
manipulating pixels in, 191–195
patterns for, 175
saving and restoring states of, 183
shadows in, 187–188
shapes in, 175–181

arcs, 177–178
basics of, 172–173
curves, 178–179
line styles, 179–180
native-style menus with, 180–181

text in, 183–187
alignment of, 186–187
baseline of, 185–186
drawing, 184–185

transformations for, 181–183
captions keyword, 240

Index 470

capture stage, and events for touch, 369–
370

Cédille application, 212
center property, 404
changedTarget property, 376
changedTouches property, 374–375
changeVersion() method, 455
chapter type, 243
chapters, for media content in web apps,

243–247
chapters keyword, 240
CHAR field type, 445
checkBuffered() function, 229
checkDatabase() function, 444
checking event, 464
CHECKING state, 463
checkPlayed() function, 229
childWin window, 333
chown command, 22
<circle> tag, 197
class selector, 39
clear() method, 48, 433–434
clearInterval() method, 311
clearWatch() function, 411–412
clickHandler() function, 87
client-side data storage, 431–466

offline web application cache, 458–466
checking state of network, 466
controlling with JavaScript, 462–463
deleting, 465–466
how it works, 458–459
manifest file, 459–462
reacting to events sent by, 464–465

Web Database API, 442–458
adding data to tables, 446–447
creating tables, 444–446
deleting database, 455–457
handling transaction and query

errors, 452–454
maintaining coherent access with

versioning, 454–455
opening database, 442–444
querying data from tables, 447–449
security issues, 457–458
updating data, 449–451
using database in place of storage,

451–452
Web Storage API, 431–442

caching Ajax requests, 435–440
notification of storage area

modification, 434

security and privacy considerations,
435

sending client data to server, 441–
442

sessionStorage, behavior of, 433–
434

using, 432–433
client-side rendering, using JSON, 354–356

formatting variables, 355–356
using template variables, 354–355

clip() method, 188–189
clipping

<canvas> tag, to drawing area, 188–189
of backgrounds with CSS, 128

Clock application, 102–103
closePath() method, 176–177
clutter, avoiding, 96–97
CMSs (content management systems), 18
Cocoa Touch framework, 129
code isolation, in JavaScript, 314–317
code property, 452
colors

for <canvas> tag, 174
with CSS, 135–137

alpha channel for, 135–136
hsl() definitions, 136–137

color-stop() function, 140–142
color-stop(0, <color>) function, 140
color-stop(1, <color>) function, 140
column-gap property, 154
column-rule property, 154
columns layout, with CSS, 152–157

column flow, 152–155
magazine example, 155–157

column-width property, 155
COMMIT command, 444
Communication API, 322
compass web app, 416–430

adding elements to document, 424–425
animating compass, 427–429
creating mobile elements, 416–418
dial shine, 421
graduations, 418–419
needles, 420–421
preparing document to receive location

data, 425–426
preventing staggering needles, 429–430
rendering compass, 422–424
using location data, 426–427

compass.css file, 424, 427
compass.js file, 417, 424

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Index 471

completed event, for CSS transitions, 274
compositing for <canvas> tag, 189–190
computed Style, 39
Computer Management option, Control

Panel, 26
conext.arc(x, y, radius, startAngle,

endAngle, anticlockwise) method,
176

CONNECT method, 344
console, logging to, 46–48
console.assert(condition) function, 47
console.count(name); function, 47
console.debug(format, .); function, 47
console.dir(object); function, 47
console.dirxml(node); function, 47
console.error(format, .); function, 47
console.groupEnd(); function, 47
console.group(format, .); function, 47
console.info(format, .); function, 47
console.log() function, 47
console.log(format, .); function, 47
console.profile() function, 57
console.profileEnd() function, 57
console.profileEnd(name); function, 47
console.profile(name); function, 47
console.timeEnd(name); function, 47
console.time(name); function, 47
console.trace(); function, 47
console.warn(format, .); function, 47
constructor property, 308
constructors, in JavaScript, 303–304
content attribute, 76, 80
content management systems (CMSs), 18
content.html file, 333
Content-Type header, 345
context.arcTo(cpx1, cpy1, cpx2, cpy2,

radius) method, 176
context.beginPath() method, 176
context.bezierCurveTo(cp1x, cp1y, cp2x,

cp2y, x, y) method, 176
context.closePath() method, 176
context.fill() method, 176
context.lineTo(x, y) method, 176
context.moveTo(x, y) method, 176
context.quadraticCurveTo(cpx, cpy, x, y)

method, 176
context.rect(x, y, w, h) method, 176
context.stroke() method, 176
controls attribute, 225
Cookies pane, in Storage Inspector, 61

copy/paste function, disabling with CSS,
119–120

CORS (Cross-Origin Resource Sharing),
cross-origin communication for
Ajax using, 359–360

Cover Flow example, with CSS, 274–282
animation for, 278–281
flipping current cover, 280
main document, 275–278
preventing unexpected behavior, 281–

282
coverflow.js file, 276
CREATE DATABASE command, 442, 444
Create template from project menu option,

Komodo Edit utility, 88
createBullet() function, 408
createElement() method, 206, 224
createElementNS() function, 210
createElements() method, 379–380
createEvent() method, 383
createIcons() function, 295
createImageData() method, 195
createPattern() method, 175
createSchema() function, 447
createShadows() function, 295
cross-document communication, 321–341

encapsulating API, 335–339
implementing scripts, 338–339
object for host document, 335–337
object for widget, 337–338

example of, 325–330
handling response, 329–330
hosted document, 327
main document, 325–326
sending message, 328–329

with HTML5, 323–325
API for, 323–324
data type support, 324
and security, 325

limitations of, 322–323
Mobile Safari behavior for, 330–331
for subdomains, 340–341

changing domain properties, 340–
341

and security, 341
between windows, 332–335

notifying page is loaded, 333–334
properties of window object, 334–

335
cross-document messaging API, 324, 340–

341

Index 472

cross-origin communication, for Ajax, 356–
360

using CORS, 359–360
using JSONP, 357–358
using proxies, 356–357

Cross-Origin Resource Sharing (CORS),
359–360

cross-platform, web applications, 71–72
CSS, 117–163, 257–298

animations, 282–285
events for, 285
evolution curve, 284–285
key frames, 282–283
properties for, 283–284
starting and timing, 283

backgrounds, 124–135
background-clip property, 126–127
background-origin property, 125–126
clipping of, 128
multilayer, 134–135
photo gallery with, 130–133
sizing, 128–130

borders, 142–147
drawn with images, 145–147
rounded corners, 143–145
sizing, 142–143

box model, 158–162
efficiency of, 158–159
flexibility of, 160–161
ordering of, 159–160
packing and alignment of, 161–162

buttons in app header with, 150–152
colors, 135–137

alpha channel for, 135–136
hsl() definitions, 136–137

columns layout, 152–157
column flow, 152–155
magazine example, 155–157

combining with JavaScript, 268–270
accessing current styles, 268
native object to compute matrices,

268–270
Cover Flow example, 274–282

animation for, 278–281
flipping current cover, 280
main document, 275–278
preventing unexpected behavior,

281–282
disabling

callout with, 120–121

copy/paste functionalities with, 119–
120

gradients, 137–142
color handling for, 140–142
sizing, 139
syntax for, 137–140

selectors, 121–124
overview, 121–122
repetitive layout patterns with, 122–

124
shadows, 147–150

box, 148–149
example of, 150
text, 149–150

special effects with, 285–288
masks, 287–288
reflections, 286–287

tab bar with masks example, 288–298
icons for, 292–296
images as icons, 297–298
initial tab bar, 289–291
placeholder for icons, 291–292

targeting WebKit specifically, 162–163
three-dimensional effects, 262–268

back face visibility, 266–268
functions for, 263
preserving 3D aspect, 265–266
setting perspective, 263–265

transforming elements, 257–262
custom transformations with

matrices, 261–262
distorting, 261
and origin of transformation, 262
rotating, 259–260
scaling, 260
support for, 258
translating element coordinates, 260

transitions, 270–274
completed event, 274
initiating, 271–272
property for, 271
timing function curve, 272–273

user feedback with, 118–119
in Web Inspector, 38–40

cubic-bezier() function, 273, 284
cURL API, 356
curl_exec() function, 357
curl_getinfo() function, 357
curl_init() function, 357
current position, in location-aware web

applications, 399–402

Index 473

accuracy, 402
cached location, 402
handling errors from requests, 401
longitude and latitude, 399–400
timeout, 402

currentTarget property, 369–370
currentTime property, 227, 233, 245
Curtis, Nick, 216
curves, in <canvas> tag, 178–179
Cut() function, 217

■ D
Dashcode, 5–6
data processing, in location-aware web

applications, 413–416
direction to take, 415–416
distance between two points, 413–414
sharper distance between two points,

414–415
data property, 242
data type support, for cross-document

communication with HTML5, 324
Databases pane, in Storage Inspector, 61
DATETIME field type, 445
Debug Console, Safari, 32–33
default behavior, preventing events for

touch, 370
default option, content attribute, 80
defaultPlaybackRate property, 233
default.xml file, 461
__defineGetter__ method, 314
<defs> tag, 208
descriptions keyword, 240
design guidelines, for user experience, 105–

109
adaptability, 105–106
using lists, 106–109

Desktop Safari, deleting database with, 456
DETACHING state, 381
Develop menu, for WebKit Developer tools,

30–32
Develop option, Safari, 30
Developer Tools window, in Web Inspector,

35–36
/Developer/Platforms/iPhoneSimulator.platfo

rm/Developer/Applications/ folder,
9

development environment, 13–63
JavaScript debugging, 46–57

and breakpoints, 50–51

Call Stack pane, 53
and exceptions, 54–55
interactive shell for, 48
logging to console, 46–48
Scope Variables pane, 54
stepping buttons for, 52
Watch Expressions pane, 53

Linux, 22
Mac OS, 14–16

Apache on, 14–15
PHP script engine for, 15–16

Web Inspector, 34–44
Audits pane in, 61–63
CSS in, 38–40
Developer Tools window, 35–36
Elements Inspector in, 37–38
error notifications in, 36
Metrics pane in, 40–43
Profile tab in, 57–60
Resources viewer, 44–46
searching in, 43–44
Storage Inspector in, 60–61
Timeline tab in, 55–57

web server for applications, 13–14
multiple hosts for, 23–24
testing, 27–28
virtual hosts for, 24–27

WebKit Developer tools, 29–34
Develop menu, 30–32
and Mobile Safari, 32–34

Windows, 16–22
PHP script engine for, 17–20
security settings for, 20–22

development tools, 3–11
ADC, 10–11
browsers, 6–7

Firefox, 7
Internet Explorer, 7
Opera, 7
WebKit engine for, 6–7

source editors
Dashcode, 5–6
Komodo Edit, 3–5

testing
using real device, 10
using simulator for iPhone and iPad,

9–10
and web standards, 8–9

device-height constant, 76
device-width constant, 76, 106

Index 474

DHCP (Dynamic Host Configuration
Protocol), 28

dial shine, in compass web app, 421
Disable Caches option, Safari Develop

menu, 32
disableDefaultUI property, 404
display, table-cell rule, 115
displayName property, 53
distance between two points, in location-

aware web applications, 413–415
distorting elements, with CSS, 261
<div> element, 133, 386
DocumentEvent interface, DOM, 383
document.getElementById() method, 324
dog.makeNoise() method, 307, 310
DOM, parsing with JavaScript, 350
DOMContentLoaded event, 45
DOMWindow navigator.platform property,

225
downloading event, 464
draw() method, 318
drawImage() method, 192–193, 295
drawing area, clipping <canvas> tag to,

188–189
drawMarker() function, 409
DROP DATABASE command, 455
dummy element, 363
duration property, 227, 233
durationchange event, 232
Dynamic Host Configuration Protocol

(DHCP), 28

■ E
ease keyword, 273
ease-in keyword, 273
ease-in-our keyword, 273
ease-out keyword, 273
Edit Breakpoint. context menu option, 51
Edit button, 457
edition mode, Vi utility, 25
elapsedTime property, 274, 285
element coordinates, for CSS, 260
Elements Inspector, in Web Inspector, 37–

38
Elements tab, 37
email type, 100
<embed> tag, 224
embedding

audio in web apps, 224–225
video in web apps, 220–224

getting video info, 221–222
placeholder for, 222–223
playing, 222–223

emptied event, 232
Enable Vi emulation option, Komodo Edit

utility, 16
enableHighAccuracy option, 402
encoding media, for web apps, 251–256

using HandBrake, 253–256
using QuickTime Player, 251–253

end() method, 226
ended event, 232–233
error event, 346, 464
error notifications, in Web Inspector, 36
error.code property, 401
error.CONSTRAINT_ERR (6) constant, 453
error.DATABASE_ERR (1) constant, 453
error.message property, 401
error.QUOTA_ERR (4) constant, 453
errors, in location-aware web applications,

401
error.TIMEOUT_ERR (5) constant, 453
error.TOO_LARGE_ERR (3) constant, 453
error.UNKNOWN_ERR (0) constant, 453
error.VERSION_ERR (2) constant, 453
esc command, Vi utility, 16
/etc/ directory, 23–24
eval() function, 352–353
Event Listeners pane, for Metrics pane, 42–

43
event.AT_TARGET (2) constant, 370
event.BUBBLING_PHASE (3) constant, 370
event.CAPTURING_PHASE (1) constant, 370
event.data property, 323–324
event.key property, 434
EventListener interface, 371
event.newValue property, 434
event.oldValue property, 434
event.origin property, 323
eventPhase property, 369
events

for Ajax HTTP request, 346–347
for animations with CSS, 285
for media content in web apps, 232–233
for Mobile Safari, 372
for touch, 367–372

calling priority of handlers, 367–368
and capture stage, 369–370
handlers based on object methods,

371–372
preventing default behavior, 370

Index 475

propagation of, 370
event.source property, 323
event.storageArea property, 434
event.target property, 274
event.uri property, 434
evolution curve, for animations with CSS,

284–285
exceptions, for JavaScript debugging, 54–

55
Exceptions button, 20
exec() method, 354–355
Execute Script. menu option, 217
executeSequence() method, 447
executeSql() method, 444, 446, 452–454,

458
execution context, of JavaScript, 308–312

apply() method, 308–310
call() method, 308–310
and funcRef() method, 310
handlers and callbacks, 310–312

export dialog box, 214
ext command, 22
extract() method, 238
eyeColor property, 307

■ F
FALLBACK sections, manifest file, 461–462
feedback during processing, using Ajax,

363–365
and excessive waiting times, 364–365
visual feedback, 363–364

file, // URL scheme, 323
fill() method, 176
fillStyle property, 175
finalizeStrokes() method, 391
Firebug Lite tool, 63
Firebug tool, 63
Firefox browser, 7
fit() method, 389
.flip class, 280
font window, 214
 tag, 213–214
FontForge tool, 213–214, 216
FontMetrics property, 185
fonts, preinstalled and downloadable, 211–

218
for.in statement, 313
formats, for Ajax returned data, 348–353

and JSON security considerations, 353
parsing JSON, 352–353

parsing XML, 349–352
formatTime() function, 230
FQDN (fully qualified domain name), 431
<frame> tag, 330
<frameset> tag, 330
frameworks

Cocoa Touch, 129
MooTools, 353
PastryKit, 69

from() function, 140
from(<color>) function, 140
full-screen, for stand-alone mode, 79–81
fully qualified domain name (FQDN), 431
funcRef() method, and execution context of

JavaScript, 310
function curve, timing of for CSS transitions,

272–273
function keyword, 302
functions, for three-dimensional effects with

CSS, 263
Functions column, 59

■ G
<g> tag, 208–209
gallery.css file, 132
General submenu, Settings application, 398
Generate() function, 217
Generate Fonts. menu option, 214
geolocation API, 397–399

privacy considerations, 398
setup considerations, 398–399

gesturechange event, 385–386
gestureend event, 385
gestures

creating, 387–395
and accuracy, 394–395
bounding box object for, 388–389
one piece of code for, 388–395
registering user strokes, 389–392
using recognizer object, 392–393

precomputed, 384–386
gesturestart event, 385
GET request, for Ajax HTTP request, 344–

345
getComputedStyle() method, 268
getContext() method, for <canvas> tag,

167–172
getCSSCanvasContext() method, 168
getCurrentLocation() method, 406
getCurrentPosition() method, 399, 401, 410

Index 476

getElementById() function, 59
getFilteredIndex() method, 241
getImageData() method, 194
getJSON() function, 361
getMatrix() function, 279
getResponseHeader() method, 346
getSVG() function, 205
getSVGDocument() method, 207
getters and setters, in JavaScript, 313–314
getText() method, 436
getTime() method, 432
globalAlpha property, 190
globalCompositeOperation property, 189–

191
Google Maps

putting user on map with, 403–410
centering map on location of user,

405–407
marking position of user, 407–408
showing accuracy, 408–410
showing map, 403–405

watching users's position on, 412–413
Google Maps API, 407
Gradient Editor tool, 141
gradients

for <canvas> tag, 174–175
with CSS, 137–142

color handling for, 140–142
sizing, 139
syntax for, 137–140

graduations, in compass web app, 418–419
Graffiti application, 387
graphical user interface (GUI), 67
.group-wrapper, 108
GUI (graphical user interface), 67

■ H
<h1> heading, 44
HandBrake, encoding media for web apps

using, 253–256
handleAsyncState() function, 238
handleChapter() method, 245
handleEvent() method, 371, 379, 381
handleFrameMessage() function, 329, 333
handleParentMessage() function, 329, 338
handlers

events for touch
based on object methods, 371–372
calling priority of, 367–368

and execution context of JavaScript,
310–312

hash property, 206
Haversine formula, 414
HE-AAC (High Efficiency Advanced Audio

Coding), 250
<head> tag, 75, 326
header-button class, 152
height attribute, 196, 210, 221, 224, 260
height property, 76, 221, 318
Hewitt, Joe, 70
hide() function, 93
hiding address bar, web applications, 85–86
High Efficiency Advanced Audio Coding

(HE-AAC), 250
hosts.js file, 335
href attribute, 80, 210
hsl() definitions, colors with CSS, 136–137
hsl() function, 136, 384
html variable, 350, 363
<html> tag, 459, 464
HTML5

cross-document communication with,
323–325

API for, 323–324
data type support, 324
and security, 325

web standards for, 8
HTMLAudioElement interface, 224
HTMLMediaElement interface, 226–227
HTTP status codes, for Ajax HTTP request,

347–348
HTTP_ORIGIN variable, 360
HYBRID constant, 405

■ I
i button, Safari, 30
<i> tag, 290, 292, 294
icon, for stand-alone mode, 77–78
id attribute, 166
id selector, 39
IDE (integrated development environment), 3
<iframe> tag, 196
IIS (Internet Information Services), 16, 20
IIS Manager view, 26
iLBC (Internet Low Bitrate Codec), 251
images directory, 130–131
 tag, 167, 197–199, 205, 260
Inbound Rules option, Control Panel, 21
incrementCounter() function, 53

Index 477

index_code.php file, 131
INDEX_SIZE_ERR exception, 226–227, 245
index.html file, 82, 130, 325, 332, 338, 403,

424
index.php file, 130
inheritance, in JavaScript, 305–308

prototype chain, 307–308
prototype-based, 305–306
shared properties, 306–307

init() method, 170, 277, 318, 404, 406, 451
initChevron() function, 203
initEvent() method, 383, 393
initFeedList() method, 447
initialize() method, 306
Initial-scale property, 76
initTabBarIcons() function, 294, 297
innerHTML method, 363
innerHTML property, 41, 329, 350
input elements, 101
input types, and user experience, 100–101
INSERT instruction, 446
Inspect Element context menu option,

Safari, 30, 37
inspect(object); function, 47
install option, apt-get command, 22
Install PHP button, 17
integrated development environment (IDE), 3
interactive shell, for JavaScript debugging,

48
Internet & Wireless section, Apple menu, 14
Internet Explorer, 7
Internet Information Service Manager option,

26
Internet Information Services (IIS), 16, 20
Internet Information Services Manager

administrative tool, 20
Internet Low Bitrate Codec (iLBC), 251
INVALID_ACCESS_ERR exception, 448
INVALID_STATE_ERR exception, 245, 443,

454, 463
iOS Dashboard style, 149
ipconfig command, 22
iPhone & iPod Touch profile option,

HandBrake, 253
iPhoneOS, UI for web apps, 109–110
item() method, 448
iUI framework, 70

■ J
JavaScript, 301–319

code isolation, 314–317
combining with CSS, 268–270

accessing current styles, 268
native object to compute matrices,

268–270
controlling offline web application cache

with, 462–463
debugging, 46–57

and breakpoints, 50–51
Call Stack pane, 53
and exceptions, 54–55
interactive shell for, 48
logging to console, 46–48
Scope Variables pane, 54
stepping buttons for, 52
Watch Expressions pane, 53

execution context of, 308–312
apply() method, 308–310
call() method, 308–310
and funcRef() method, 310
handlers and callbacks, 310–312

getters and setters in, 313–314
inheritance in, 305–308

prototype chain, 307–308
prototype-based, 305–306
shared properties, 306–307

libraries in, creating, 316–317
methods in, accessing, 312–313
object-oriented programming with, 302–

305
constructors in, 303–304
objects in, 302–303
prototypes in, 304–305

procedural model of, 301–302
properties in, accessing, 312–313
spinner animation example, 317–319
web standards for, 8–9

JavaScript API, 166–167
jQTouch framework, 70
jQuery library, 70
JSON

client-side rendering using, 354–356
formatting variables, 355–356
using template variables, 354–355

parsing, 352–353
security considerations for, 353

json_encode() function, 357
JSONP, cross-origin communication for

Ajax using, 357–358
json.php file, 357

Index 478

■ K
key() method, 433
key frames, for animations with CSS, 282–

283
kind attribute, 240
Komodo Edit, 3–5, 16, 27

■ L
label attribute, 233
language, auto-selection, 239–240
lastIndex property, 355
latitude, 399–400
length property, 226, 449
lengthComputable property, 346, 465
 element, 123
libraries, creating in JavaScript, 316–317
/Library/Webserver/Documents/ folder, 15
limitations, of cross-document

communication, 322–323
line styles, in <canvas> tag, 179–180
linear keyword, 273
Linear PCM (linear pulse-code modulation),

250
<link> tag, 36, 39, 78–79, 87, 114
Linux, 22
lists, and user experience, 106–109
Live Preview option, HandBrake, 256
load() method, 247–248
load event, 45, 346
loaded() method, 338
loaded property, 346
loadeddata event, 232
loadedmetadata event, 222, 232, 247
loadFeed() function, 450
loadImage() function, 133
Loading timeline, 55
loadResource() method, 238
loadstart event, 346
local() function, 214
Local Storage pane, in Storage Inspector,

61
localStorage property, 431–432
location-aware web applications, 397–430

building compass web app, 416–430
adding elements to document, 424–

425
animating compass, 427–429
creating mobile elements, 416–418
dial shine, 421

graduations, 418–419
needles, 420–421
preparing document to receive

location data, 425–426
preventing staggering needles, 429–

430
rendering compass, 422–424
using location data, 426–427

geolocation API, 397–399
privacy considerations, 398
setup considerations, 398–399

getting current position, 399–402
accuracy, 402
cached location, 402
handling errors from requests, 401
longitude and latitude, 399–400
timeout, 402

processing data, 413–416
direction to take, 415–416
distance between two points, 413–

414
sharper distance between two

points, 414–415
putting user on map with Google Maps,

403–410
centering map on location of user,

405–407
marking position of user, 407–408
showing accuracy, 408–410
showing map, 403–405

tracking user's position, 410–413
registering for updates, 410–411
specific behavior of watcher, 411–

412
watching position on Google Maps,

412–413
logging to console, JavaScript debugging,

46–48
longitude, 399–400
loop attribute, 233

■ M
Mac OS, 14–16

Apache on, 14–15
PHP script engine for, 15–16

magazine.html file, 155
magnifying glass tool, 43
mailto, URL scheme, 110
main view, 45

Index 479

main.css file, 83, 118, 150, 180, 203, 290,
364, 437

main.js file, 86–87, 118, 180
makeNoise() method, 304, 306, 308, 310
Manage security settings, for Windows

firewall option, 20
Manager administrative tool, Internet

Information Services, 20
Manager option, Internet Information

Service, 26
manifest attribute, <html> tag, 459
manifest file, 459–462

CACHE sections, 460
FALLBACK sections, 461–462
NETWORK sections, 460–461

map variable, 404
MapKit framework, 403
masks, with CSS, 287–288
Math.atan() method, 415
Math.atan2() method, 415
matrices

combining CSS with JavaScript, native
object to compute, 268–270

custom transformations with, 261–262
matrix() function, 257, 261, 268–270
matrix3d() function, 263, 268–270
matrix.inverse() method, 269
matrix.multiply(matrix) method, 269
matrix.rotateAxisAngle(x, y, z, angle)

method, 270
matrix.rotate(x, y, z) method, 269
matrix.scale(x, y, z) method, 269
matrix.setMatrixValue(newMatrix) method,

269
matrix.toString() method, 270
matrix.translate(x, y, z) method, 269
maximumAge option, 402
maximum-scale property, 76
maxWidth parameter, 184
measureText() method, 184–186
media attribute, 87, 114
media content in web apps, 219–256

audio formats supported, 250–251
chapters for, 243–247
embedding audio, 224–225
embedding video, 220–224

getting video info, 221–222
placeholder for, 222–223
playing, 222–223

encoding for, 251–256
using HandBrake, 253–256

using QuickTime Player, 251–253
events supported for, 232–233
playing automatically, 247–248
ranges for, 227–232
reasonable amounts of, 225
subtitles for, 234–243

displaying, 234–238
language auto-selection, 239–240
methods for, 240–243

video formats supported, 248–250
media.HAVE_CURRENT_DATA (2) constant,

245
media.HAVE_ENOUGH_DATA (4) constant,

245
media.HAVE_FUTURE_DATA (3) constant,

245
media.HAVE_METADATA (1) constant, 245
media.HAVE_NOTHING (0) constant, 245
message parameter, postMessage()

method, 324
messaging API, 339
metadata keyword, 240
methods

in JavaScript, accessing, 312–313
for subtitles, for media content in web

apps, 240–243
metrics

of Mobile Safari, 74
of viewport, 75–76

Metrics pane, in Web Inspector, 40–43
Event Listeners pane for, 42–43
Properties pane for, 41–42

minimum-scale property, 76
MMS (Multimedia Messaging Services), 251
Mobile Safari

behavior for cross-document
communication, 330–331

deleting database with, 456–457
and web applications, 73–75

and app considerations for, 75
is full-featured, 73–74
metrics of, 74

and WebKit Developer tools, 32–34
Mobile Safari resize algorithm, 129
Model-View-Controller (MVC), 6
MooTools framework, 353
More button, 309
mouse events, for Mobile Safari, 372
moveNodes() method, 382–383
moveSlides() function, 279
moveTo() method, 177

Index 480

MP3 (MPEG-1 audio layer 3), 250
MPEG-4 Advanced Audio Coding (AAC),

250
multilayer, backgrounds with CSS, 134–135
Multimedia Messaging Services (MMS), 251
multiple hosts, for web server, 23–24

Unix system, 23
Windows system, 24

multitasking user experience, 91
Multi-Touch events, 373–376

cancelling, 376
handling, 373
overview, 373
unlimited touch points for, 374–376

MVC (Model-View-Controller), 6
myTimer() function, 49–50, 53–54, 59

■ N
Nakano, Tomoaki, 212
native-style features in web apps, menus

with <canvas> tag, 180–181
navigation, and user experience, 91–92
navigator.language property, 233
navigator.userAgent property, 225
needles, in compass web app

overview, 420–421
preventing staggering needles, 429–430

NETWORK sections, manifest file, 460–461
networkState property, 247–248
new _com property, 336
new keyword, 303–304, 306
New Live Folder menu option, Komodo Edit

utility, 130
New project from template menu option,

Komodo Edit utility, 88
New Project menu option, Komodo Edit

utility, 82
New Rule option, Control Panel, 21
No Cache button, 466
<noframes> tag, 330
no-repeat rule, 202
noupdate event, 464
number type, 100

■ O
<object> tag, 196–197, 199, 205–206
object-oriented programming, with

JavaScript, 302–305

constructors in, 303–304
objects in, 302–303
prototypes in, 304–305

objects, in JavaScript, 302–303
obsolete event, 464, 466
offline web application cache, 458–466

checking state of network, 466
controlling with JavaScript, 462–463
deleting, 465–466
how it works, 458–459
manifest file, 459–462

CACHE sections, 460
FALLBACK sections, 461–462
NETWORK sections, 460–461

reacting to events sent by, 464–465
offsetHeight property, DOM, 221
offsetWidth property, DOM, 221
onclick attribute, 368
onLine property, 466
onreadystatechange event, 346
onreadystatechange property, 345
open() method, for Ajax HTTP request, 344
Open File. menu option, QuickTime Player,

251
openDatabase() function, 442–443, 454
OpenType Font (OTF), 213
Opera, 7
option menu, 40
ordering of box model, for CSS, 159–160
origin property, 380
_originalMatrix property, 386
OTF (OpenType Font), 213
Output Settings, HandBrake, 255
overflow property, 276

■ P
<p> tag, 44, 122, 339
packing of box model, for CSS, 161–162
page view state, 379
PageChanged event, 382–384
PageMovedLeft event, 382
PageMovedRight event, 382
pageview-group container, 378
pageview-wrapper class, 378
pageX property, 376
pageY property, 376
panTo() function, 413
parse() method, 238, 240, 242
parseFromString() method, 440
PastryKit framework, 69

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Index 481

patterns, for <canvas> tag, 175
pause() method, 245
pause event, 232
paused property, 245
perspective, three-dimensional effects with

CSS, 263–265
perspective() function, 263
phone element, 101
photo gallery, with CSS, 130–133
PHP file template, Komodo Edit utility, 27
PHP script engine

for Mac OS, 15–16
for Windows, 17–20

PHP5 module, 16
Picture Settings button, HandBrake, 254
Picture tab, HandBrake, 254
pixels, and <canvas> tag, 191–195
placeholder, for video in web apps, 222–223
play() method, 223–225, 232, 246–247
playbackRate property, 233
played container, 230
played property, 227
playing media content, in web apps

automatically, 247–248
<polygon> element, 201
<polyline> element, 201
position, fixed rule, 372
position property, 40, 258
position.coords.accuracy property, 400
position.coords.altitude property, 400
position.coords.altitudeAccuracy property,

400
position.coords.heading property, 400
position.coords.latitude property, 400
position.coords.longitude property, 400
position.coords.speed property, 400
position.timestamp property, 400
POST request, for Ajax HTTP request, 344–

345
poster attribute, <video> tag, 222, 253
postMessage() method, 324, 334, 336
precomposed option, 78
Preferences window, Safari, 30
prepareFlipCurrent() function, 280
prepareFlipSide() function, 280
preventDefault() method, 370, 372, 386
preventing default behavior, events for

touch, 370
Preview in browser menu option, Komodo

Edit utility, 83
Preview Window button, HandBrake, 256

print function, 47
privacy considerations, geolocation API, 398
procedural model, of JavaScript, 301–302
processFeed() function, 436, 439, 450–451
products key, 441
Profile tab

Developer Tools window, 35
in Web Inspector, 57–60

Profiles icon, 57
progress event, 346, 464–465
ProgressEvent type, 465
Project menu, Komodo Edit utility, 88
propagation, of events for touch, 370
properties

for animations with CSS, 283–284
in JavaScript

accessing, 312–313
shared, 306–307

Properties pane, for Metrics pane, 41–42
propertyName property, 274
prototypes, in JavaScript, 304–305

chain of, 307–308
prototype-based inheritance, 305–306

proxies, cross-origin communication for
Ajax using, 356–357

proxy.php script, 356, 361
push() method, 309
putImageData() method, 195

■ Q
quadraticCurveTo() method, 178
Quality section, HandBrake, 254
querySelector() method, 93
QuickTime Player, encoding media for web

apps using, 251–253

■ R
ranges, for media content in web apps, 227–

232
ratechange event, 232–233
readyState property, 238, 245, 345–346
recognizer object, for gestures, 392–393
Record button, 57
<rect> tag, 197
reflections, with CSS, 286–287
refresh() function, 440, 448
Refresh button, 438, 440
rel attribute, 78

Index 482

Reload button, 59
removeEventListener() method, 311, 368,

373
removeItem() methods, 434
render() method, 422
Rendering timeline, 55
request method, 344
resize algorithm, Mobile Safari, 129
Resources viewer, in Web Inspector, 44–46
responseText property, 238, 347–348
responseXML property, 347
responsiveness, and user experience, 103–

105
handling taps, 105
handling wait times, 103–104

restore() method, 183, 189, 419
restoring states, of <canvas> tag, 183
result.insertId property, 448
result.rows property, 449
result.rowsAffected property, 448
return formats, for Ajax, 348–353

and JSON security considerations, 353
parsing JSON, 352–353
parsing XML, 349–352

reveal() function, 93
rgb() function, 135, 205
ROADMAP constant, 405
ROLLBACK command, 444
rotate() method, 182, 257, 259, 386, 428–

429
rotate3d() function, 263
rotateX() function, 263
rotateY() function, 263
rotateZ() function, 263
rotating elements, with CSS, 259–260
Run ActiveX Control option, 18
Run Add-on option, 18

■ S
Safari, deleting database with, 456–457
SATELLITE constant, 405
save() method, 183, 189, 419
Save For Web. menu option, QuickTime

Player, 251
saving states, of <canvas> tag, 183
scale() method, 257, 260, 386, 417
scaleX() method, 260
scaleY() method, 260
scaling elements, with CSS, 260

Scope Variables pane, for JavaScript
debugging, 54

screen orientation, handling changes of, 86–
87

<script> tag, 36, 49, 358
Scripting timeline, 55
scripting window, 217
scripts directory, 86–87
Scripts tab, 49
scripts/gallery.js file, 132
scrolling events, for Mobile Safari, 372
scrollTop() method, 86
SDK (Software Development Kit), 9
search type, 100
searching in Web Inspector, 43–44
security

and cross-document communication
with HTML5, 325
for subdomains, 341

Windows, settings for, 20–22
Security Center option, Control Panel

window, 20
Security tab, 456
SECURITY_ERR exception, 191, 344
seekable property, 227
seeked event, 232–233
seeking property, 232–233
Select() function, 217
SELECT command, 450
SELECT statement, 448
<select> tag, 110, 242
selectors, and CSS, 121–124

overview, 121–122
repetitive layout patterns with, 122–124

Self column, 59
send() method, 345, 347
sendEvent() method, 382–383
sendMessageToFrame() function, 329
sensor parameter, 404
Services and Applications section, 26
Session Storage pane, in Storage Inspector,

61
sessionStorage, behavior of, 433–434
setAttribute() method, 208, 312
setAttributeNS() function, 210
setCenter() method, 404, 413
setCharacteristic() method, 313
setColor() method, 309
setInterval() method, 310
setItem() method, 434
setters and getters, in JavaScript, 313–314

Index 483

setTimeout() method, 310
Settings application, 398, 456
setTitle() method, 336
setTransformation() method, 270
setup() function, 238, 242, 247
setZoom() method, 407
shadowBlur property, 188
shadowColor property, 187
shadowOffsetY property, 188
shadows

in <canvas> tag, 187–188
with CSS, 147–150

box, 148–149
example of, 150
text, 149–150

shapes, in <canvas> tag, 175–181
arcs, 177–178
basics of, 172–173
curves, 178–179
line styles, 179–180
native-style menus with, 180–181

shared properties, inheritance in JavaScript,
306–307

shine variable, 421
shouldDisplay() method, 238
shouldStop property, 245
Show Databases button, 456
Show Develop menu in menu bar option,

Safari, 30
Show Error Console option, Safari Develop

menu, 31
Show Web Inspector option, Safari Develop

menu, 31
showImages() function, 133
showTrends() method, 361
simplicity of user experience

adapting text size, 99
allowing space for touch, 98
avoiding clutter, 96–97
avoiding multiplying steps, 102
and input types, 100–101
limiting user-supplied information, 101–

102
user interface concerns, 97–98

simulator for iPhone and iPad
testing using, 9–10
vs. using real device, 10

Size view, 45
sizing

of backgrounds with CSS, 128–130
of gradients with CSS, 139

skew() method, 257, 261, 270
skewX() method, 261
skewY() method, 261
slide() function, 278–279, 282
.slide class, 279
SMIL (Synchronized Multimedia Integration

Language), 195, 207
Snippet Editor menu, Safari, 31
Software Development Kit (SDK), 9
someFunc() function, 316
source editors

Dashcode, 5–6
Komodo Edit, 3–5

Source table, 446, 458
space, allowing for taps, 98
special effects, with CSS, 285–288

masks, 287–288
reflections, 286–287

spinner animation example, and JavaScript,
317–319

.spinning class, 364
splash screen, for stand-alone mode, 79
SQLResultSetRowList list type, 448
src attribute, 196
staggering needles, preventing, 429–430
stand-alone mode, for web applications, 77–

81
icon for, 77–78
running app full-screen, 79–81
splash screen for, 79
status bar for, 80

start() method, 226
Start Page, Komodo Edit utility, 4
startHandler() function, 386
starting for animations, with CSS, 283
startTime property, 227
startup.png file, 83
states, of <canvas> tag, 183
status bar, and stand-alone mode, 80
status property, 357
stepping buttons, for JavaScript debugging,

52
stop() method, 172
Stop button, 412
stopPropagation() method, 370
Storage Inspector, in Web Inspector, 60–61

Cookies pane in, 61
Databases pane in, 61
Local Storage pane in, 61
Session Storage pane in, 61

Storage interface, 431

Index 484

storageArea property, 434
Street View mode, 410
stroke() method, 176, 189
strokes.js file, 392
strokeStyle property, 175
 tag, 44
style attribute, 39
style property, 268
<style> tag, 39
styles directory, 114, 132
Styles pane, 41
styles.css style sheet, 107
subdomains, cross-document

communication for, 340–341
changing domain properties, 340–341
and security, 341

subtitles, for media content in web apps,
234–243

displaying, 234–238
language auto-selection, 239–240
methods for, 240–243

subtitles keyword, 240
successCallback() function, 412, 426
sudo command, 22
supported formats, for media content in web

apps
audio, 250–251
video, 248–250

<svg> tag, 196, 214
svgLoaded() function, 206
swapAction() function, 412
swapCache() method, 463, 465
Synchronized Multimedia Integration

Language (SMIL), 195, 207
syntax, for gradients with CSS, 137–140
SYNTAX_ERR exception, 324
System Preferences, Apple menu, 14

■ T
tab bar with masks example, with CSS,

288–298
icons for, 292–296
images as icons, 297–298
initial tab bar, 289–291
placeholder for icons, 291–292

table property, 114
tables

adding data to, 446–447
creating, 444–446
querying data from, 447–449

Tabs & Sidebars menu, Komodo Edit utility,
4

taps
allowing space for, 98
responsiveness of, and user experience,

105
:target pseudoclass, 289, 291–292
:target pseudoselector, 75
:target pseudoselector, CSS, 75
targetOrigin parameter, postMessage()

method, 324–325
targetTouches property, 374, 376
tel, URL scheme, 110
tel type, 100
Template folder, 88
template variables, client-side rendering

using JSON, 354–355
Terminal window, 15–16, 22, 24
TERRAIN constant, 405
test() method, 353
testing

using real device, 10
using simulator for iPhone and iPad, 9–

10
web server for applications, 27–28

text, in <canvas> tag, 183–187
alignment of, 186–187
baseline of, 185–186
drawing, 184–185

Text API, 183, 418
text shadows, with CSS, 149–150
text size, adapting, 99
textAlign property, 186
textBaseline property, 185–186
textContent property, 329
text-shadow property, 147, 149–150
text-stroke-color property, 150
text-stroke-width property, 150
this keyword, 303
three-dimensional effects, with CSS, 262–

268
back face visibility, 266–268
functions for, 263
preserving 3D aspect, 265–266
setting perspective, 263–265

Time To Live (TTL), 440
Timed Text Markup Language (TTML), 234
Timeline tab, in Web Inspector, 55–57
timeout, in location-aware web applications,

402
TIMEOUT type error, 402

Index 485

timeupdate event, 222, 232, 238, 245
timing

for animations with CSS, 283
function curve, for CSS transitions, 272–

273
Title link, 339
<title> element, 329, 339
TLD (top-level domain), 23
to() function, 140
to(<color>) function, 140
toDataURL() method, 172, 408
top-level domain (TLD), 23
toString() method, 303, 324, 432
Total column, 59
total property, 346
touch

allowing space for, 98
events for, 367–372

calling priority of handlers, 367–368
and capture stage, 369–370
handlers based on object methods,

371–372
preventing default behavior, 370
propagation of, 370

events with Mobile Safari, 372
mouse events, 372
scrolling, 372

Multi-Touch events, 373–376
cancelling, 376
handling, 373
overview, 373
unlimited touch points for, 374–376

page view example with, 377–384
container for, 378
creating custom events, 382–383
elements for, 378–382
handling custom events, 384
overview, 377

touchcancel event, 376
touch.clientX property, 376
touch.clientY property, 376
touchend event, 373, 376, 381
touchendHandler() method, 381
touches property, 374, 376
touch.identifier property, 376
touchmove event, 373
touch.pageX property, 376
touch.pageY property, 376
touch.screenX property, 376
touch.screenY property, 376
touchstart event, 373–374, 385, 391

touch.target property, 376
TRACE method, 344
Track button, 412
TRACK method, 344
<track> tag, 233–234, 237, 239
tracking user's position, in location-aware

web applications, 410–413
registering for updates, 410–411
specific behavior of watcher, 411–412
watching position on Google Maps, 412–

413
transaction() method, 444–446, 452, 455
transform() method, 182, 270
transform attribute, 201
transform property, 257–258
transformations, for <canvas> tag, 181–183
transforming elements, with CSS, 257–262

custom transformations with matrices,
261–262

distorting, 261
and origin of transformation, 262
rotating, 259–260
scaling, 260
support for, 258
translating element coordinates, 260

transform-origin property, 262
transform-style property, 266
transform-timing-function keywords, 273
transformToFragment() method, 351
transition-delay property, 271
transitionend event, 274, 381
TransitionEvent type, 274
transitions, with CSS, 270–274

completed event, 274
initiating, 271–272
property for, 271
timing function curve, 272–273

translate() method, 182, 257, 260, 279
translate3d() method, 272, 380
translateX() method, 260, 380
translateY() method, 260
translating element coordinates, for CSS,

260
transparency, and <canvas> tag, 189–190
TrueType Font (TTF), 213
try.catch statement, 55
TTF (TrueType Font), 213
TTL (Time To Live), 440
TTML (Timed Text Markup Language), 234
Twitter trends example, using Ajax, 360–363

feed for, 360

Index 486

rendering data, 360–363
Typefaces application, 212

■ U
UNCACHED state, 462
Unix, multiple hosts for web server with, 23
update() method, 463
UPDATE operation, 450
updateFeed() function, 451
updateready event, 464
updates, for web applications, 73
updateTime() function, 230
updatetime event, 230
upsertNews() function, 454
uri property, 434
url() function, 214
url parameter, 344, 460
url type, 100
<use> tag, 209–210
user experience, 89–116

and app focus, 102
design guidelines for, 105–109

adaptability, 105–106
using lists, 106–109

giving users control, 95
iPad user interface, 110–115

considerations for, 110–112
targeting for, 113–115

iPhoneOS user interface, 109–110
and multitasking, 91
and navigation, 91–92
responsiveness, 103–105

handling taps, 105
handling wait times, 103–104

showing ads thoughtfully, 92–95
simplicity of

adapting text size, 99
allowing space for touch, 98
avoiding clutter, 96–97
avoiding multiplying steps, 102
and input types, 100–101
limiting user-supplied information,

101–102
user interface concerns, 97–98

user feedback, with CSS, 118–119
user strokes, registering for gestures, 389–

392
user-scalable property, 76
/Users/username/Sites/ folder, 14
.useSpinner class, 171

■ V
v parameter, 221
var keyword, 315
VARCHAR field type, 445
vector graphics, 195–211

animation of, 207–210
bugs with, 210–211
coordinates system for, 196–199
drawing shapes with, 200–201
interoperability of, 201–207
using in documents, 196

version property, 454
VERSION_ERR exception, 455
Vi utility, 16, 23–25
video

embedding in web apps, 220–224
getting video info, 221–222
placeholder for, 222–223
playing, 222–223

supported formats for media content in
web apps, 248–250

Video Codec option, HandBrake, 255
Video tab, HandBrake, 254–255
<video> tag, 219, 221, 223, 225, 233, 239,

253
video.css style sheet, 228
video.js file, 229, 238
View and create firewall rules section,

Control Panel, 21
.view container, 107
View menu, Komodo Edit utility, 82
.view rule, 84
viewBox attribute, 198–199
viewport, metrics of, 75–76
viewport meta tag, 76
virtual hosts, for web server, 24–27

with Apache, 24–25
on Windows, 26–27

visual feedback, during processing, 363–364
volume property, 233
volumechange event, 232–233

■ W
W3C (World Wide Web Consortium), 8, 74
W3C WebApps Working Group (WWAWG),

61
wait times

feedback during processing, using Ajax,
364–365

Index 487

and user experience, 103–104
waiting event, 232
WAITING state, 381–382
Watch Expressions pane, for JavaScript

debugging, 53
watchPosition() method, 411, 426
Web App Template project, 82
web applications, 67–88

advantages of, 71–73
App Store not necessary, 72–73
cross-platform, 71–72
hardware access for, 72
updates for, 73

example project for, 81–87
click handler for, 87
document template for, 82–85
handling screen orientation changes,

86–87
hiding address bar, 85–86

and focus of app, 102
iPhone revolution of, 67–70
and Mobile Safari, 73–75

and app considerations for, 75
is full-featured, 73–74
metrics of, 74

not easier than native apps, 73
overview, 70
stand-alone mode for, 77–81

icon for, 77–78
running app full-screen, 79–81
splash screen for, 79
status bar for, 80

viewport metrics, 75–76
Web Database API, 442–458

adding data to tables, 446–447
creating tables, 444–446
deleting database, 455–457

with Desktop Safari, 456
with Mobile Safari, 456–457

handling transaction and query errors,
452–454

opening database, 442–444
querying data from tables, 447–449
security issues, 457–458
updating data, 449–451
using database in place of storage, 451–

452
versioning, 454–455

Web Hypertext Application Technology
Working Group (WHATWG), 74

Web Inspector, 34–44

Audits pane in, 61–63
CSS in, 38–40
Developer Tools window, 35–36
Elements Inspector in, 37–38
error notifications in, 36
Metrics pane in, 40–43

Event Listeners pane for, 42–43
Properties pane for, 41–42

Profile tab in, 57–60
Resources viewer, 44–46
searching in, 43–44
Storage Inspector in, 60–61

Cookies pane in, 61
Databases pane in, 61
Local Storage pane in, 61
Session Storage pane in, 61

Timeline tab in, 55–57
Web Optimized option, HandBrake, 255
Web PI (Web Platform Installer), 17
web server for applications, 13–14

multiple hosts for, 23–24
testing, 27–28
virtual hosts for, 24–27

with Apache, 24–25
on Windows, 26–27

Web Sharing check box, Apple menu, 14
Web Sharing option, System Preferences,

16
web standards, 8–9
Web Storage API, 431–442

caching Ajax requests, 435–440
add caching capabilities, 438–440
base document, 435–438

notification of storage area modification,
434

security and privacy considerations, 435
sending client data to server, 441–442
sessionStorage, behavior of, 433–434
using, 432–433

WebKit Developer tools, 29–34
Develop menu, 30–32
and Mobile Safari, 32–34

WebKit engine, 6–7, 162–163
WebKit interpreter, Web Inspector window,

36
webkit-canvas() function, 287, 294, 364
webkit-gradient() function, 84, 139
webkit-mask-box-image property, 288
webkit-tap-highlight-color property, 105,

118
webkit-touch-callout property, 121

Index 488

webkitTransform property, 268
webkit-transform-3d condition, 263
webkitTransitionEnd event, 274
webkit-user-select property, 119
WHATWG (Web Hypertext Application

Technology Working Group), 74
widget.js file, 337
width attribute, 196, 210, 221, 224, 260
width property, 76, 221, 318
Wi-Fi Positioning System (WPS), 397
window property, 302
window.location.hash method, JavaScript,

75
window.navigator.language command, 240
window.navigator.standalone property, 79
window.orientation property, 87
Windows, 16–22

PHP script engine for, 17–20
security settings for, 20–22
web server with

multiple hosts for, 24
virtual hosts for, 26–27

windows, cross-document communication
between, 332–335

notifying page is loaded, 333–334

properties of window object, 334–335
window.setTimeout() function, 86, 224
World Wide Web Consortium (W3C), 8, 74
WPS (Wi-Fi Positioning System), 397
:wq command, Vi utility, 16, 25
WWAWG (W3C WebApps Working Group),

61

■ X, Y
xlink, herf attribute, 209
XLST, and Ajax returned data, 350–352
XML, Ajax return format, 349–352

parsing DOM with JavaScript, 350
using XLST, 350–352

XMLHttpRequest object, for Ajax HTTP
request, 344

XMLHttpRequest readystate Attribute, 345

■ Z
zip element, 101

zoom property, 149, 260

Index

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	What You Need to Know
	What’s in This Book
	Are You Ready?

	Getting Started with Web App Development
	Development Tools
	The Source Editor
	Varanus Komodoensis
	Make Yourself Comfortable

	What About Dashcode?
	Using the Right Browser
	The WebKit
	The Gecko and the Fox
	Opera
	Internet Explorer, Lost at Sea

	Developing Web-Wise
	Acid...Acid...Acid
	HTML5 Conformance
	A Satellite in Your Browser

	Developing for iOS
	Using the iPhone and iPad Simulator
	Using a Real Device Anyway
	The ADC Is Your Friend

	Summary

	Development Environment
	Serving the Web Application
	Mac OS, Making Things Easy
	An Apache in Your Mac
	The Script Engine

	Windows, Choose Your Weapons
	An All-in-One Installation Process
	Security Settings

	Linux, Take Control
	Handling Multiple Hosts
	Unix-Based System
	Windows-Based System

	Configuring Multiple Web Sites
	Apache 2: Get Carried Away
	The Windows Case

	Have You Made It?
	Bet You Have!

	Introducing Developer and Debugging Tools
	Making Friends with WebKit’s Developer Tools
	Enabling the Develop Menu
	The Develop Menu Exposed
	Developing on Mobile Safari

	Overview of the Web Inspector
	The Developer Tools Window
	Error Notifications

	Master Your Code
	Make the Document Yours
	Dig Your Style
	Editing Styles
	Metrics
	Advanced Search

	The Resources Viewer
	Debugging JavaScript
	Logging to the Console
	Using the Interactive Shell
	Let the Debugger Do the Job

	The Life Cycle of Your Page
	Profiling Your Scripts
	Understanding the Profiles
	Filtering with the Search Field

	Client-Side Data Storage
	Database Storage
	Cookies
	Other Storage Features

	Auditing Your Page
	Still Unsure?
	Summary

	Web App Design with HTML5 and CSS3
	The Anatomy of a Web Application
	The iPhone Revolution
	Belief in Web Apps
	But What is a Web App Exactly?

	Planet of the Apps: Who Rules
	Cross-Platform Master
	Hardware Access Is No Forbidden Weapon Anymore
	Free Your Content
	Release Model
	Web Apps: Not the Little Brother Anymore

	Web Apps on Mobile Safari
	Master the Browser
	Browser Metrics
	Think “Web App”

	Configuring the Viewport
	Seriously Appy: Using Stand-Alone Mode
	Showcasing a Proper Icon
	Running Your Application Full-Screen
	An Awesome Startup
	Tweaking the Status Bar
	Staying in Stand-Alone Mode

	Build Your First Web App Base Project
	Your Document Template in Komodo Edit
	Hiding Mobile Safari’s Address Bar
	Handling Screen Orientation Changes
	Final Touch

	Ready to Go

	User Experience and Interface Guidelines
	From the Web on the Desktop to the Mobile Web
	Forget the Desktop
	Change Navigation Habits
	Show Ads Thoughtfully
	Let Users Decide by Themselves

	Simplicity and Ease of Use
	Avoid Clutter
	User Interface

	Avoid Unnecessary Interaction
	Make Use of New Input Types Capabilities
	Ponder Upon User-Supplied Information
	Avoid Multiplying Steps

	The Spirit: Be Focused
	Make Things Responsive
	Make Your Web App Responsive
	Make Your Web App Reactive

	iOS Interface Design Good Practices
	Adaptability
	List vs. Icon Approach

	Considering UI Alternatives
	Mimicking the iOS UI
	Building the iPad Experience

	Be Creative and Innovative
	Summary

	Interesting CSS Features for Your Web Application User Interface
	Improving the User Experience with CSS
	User Feedback
	Disabling Copy/Paste Functionalities
	Control Over Callout

	Selectors
	Overview of Available CSS Selectors
	Position in Suite Selectors: Structural Pseudoclasses

	Advanced Handling of Backgrounds
	Origin of the Background
	Global Background Clipping
	Text-Based Background Clipping
	Sizing the Background
	Developing a Photos-Like Gallery
	Multilayer Backgrounds

	Colors
	The Alpha Channel
	New Color Definitions

	Using Gradients
	Basic Syntax
	Changing the Size of the Gradient
	Complete Gradient Syntax
	Advanced Color Handling

	Boxes and Borders
	Box Sizing
	Rounded Box Corners
	Borders Drawn with Images

	Shadows
	Box Shadows
	Text Shadows
	Text Effect with Shadows and Outline

	Adding a Button to Your Header
	Columns Layout
	CSS Column Properties
	Porting Press Content to the Web

	The Flexible Box Model
	A Clean and Flexible Way to Handle Column Layouts
	Ordering Boxes
	Flexibility
	Packing and Alignment

	Targeting WebKit Specifically
	Summary

	Bitmap and Vector Graphics and Downloadable Fonts with Canvas and SVG
	Working with the Canvas Area
	The Drawing Context
	Drawing Simple Shapes
	Colors, Gradients, and Patterns
	More Complex Shapes with Paths
	Applying Transformations
	Simplifying Drawing State Modifications
	Using Text
	Shadows
	Clipping and Compositing
	Working with Canvas Pixels

	Using Vector Graphics
	Inserting SVG into Your Documents
	Understanding the Coordinates System
	Drawing Shapes
	Interoperability
	Communication
	Animation with and Without Scripting
	Coping with Temporary Bugs

	Preinstalled and Downloadable Fonts
	Summary

	Embedding Audio and Video Content in Your Web Application
	Embedding Video Content
	Getting Information About the Video
	The Video Placeholder
	Playing the Video

	Embedding Audio Content
	Keep Things Reasonable
	Take Control Over Your Content
	Understanding and Using Ranges
	A Number of Supported Events

	Adding Subtitles and Chapters to Your Media
	Creating Your Own Custom Subtitles
	Easier Media Browsing with Chapters

	Workarounds...Let’s Go
	Media Content for the iPhone and iPad
	Understanding Video Formats
	Dealing with Supported Audio Formats
	Encoding for the Web

	Summary

	Handling Transformations, Animations, and Special Effects with CSS
	Transform Your Elements
	Checking Transform Support
	Applying Rotations
	Translating Element Coordinates
	Scaling Page Contents
	Distorting Elements
	Custom Transformations with Matrices
	The Origin of the Transformation

	Working in a Three-Dimensional Environment
	New Transform Functions
	Setting the Perspective
	Preserving the 3D Aspect
	Back Face Visibility

	Combining Styles with JavaScript
	Accessing Current Styles
	A Native Object to Compute Matrices

	Transitions
	The transition CSS Property
	Initiating a Transition
	Timing Function Curve
	Telling When the Transition Is Completed

	Getting Ready for a Cover Flow–Like Experience
	The Main Document
	The Cover Flow Animation
	Flipping the Current Cover
	Final Touch to the Animation
	Double-Check: Preventing Unexpected Behavior

	Advanced Animations and Key Frames
	Key Frames
	Starting and Timing the Animation
	Animation Properties
	The Evolution Curve
	Working with Events

	Special Effects with CSS
	Creating Reflections
	Using Real Masks

	Create an iOS-Like Tab Bar Using Masks
	Getting the Initial Tab Bar Ready
	A Placeholder for Icons
	Icons Management
	Creating Icons
	Custom Icons Using an Image

	Summary

	Going Futher with JavaScript and Web Standards
	An Object-Oriented JavaScript Programming Primer
	From the Procedural Model...
	...to Object-Oriented Programming
	A First Custom Object
	Using a Proper Constructor
	Better Performance with Prototype

	Implementing Inheritance
	Prototype-Based Inheritance
	Shared Properties
	The Prototype Chain

	The Execution Context
	Using the call() and apply() Methods
	Taking Care of the Execution Context
	Setting the Proper Context with Handlers and Callbacks

	Accessing Properties and Methods
	Defining Getters and Setters
	Code Isolation and Libraries
	Isolating Your Code
	Creating a Library

	Enhancing Your Spinner Animation
	Summary

	Cross-Document Communication
	Cross-Document Communication Limitations
	Communication, the HTML5 Way
	The Cross-Document Messaging API
	Data Type Support and Handling
	Security Considerations

	Case Study
	The Main Document
	The Hosted Document
	Let’s Send a Message
	Handling the Response

	Specific Mobile Safari Behavior with <iframe>
	Working with Proper Windows
	Notify the Page Is Loaded
	Properties of the Window Object

	Encapsulating the API to Ease Communication
	An Object for the Host Document
	An Object for the Widget
	The Host Document and the Widgets

	Relaxing Subdomain Communication
	Changing the Domain
	Security

	The Last Message

	Ajax and Dynamic Content
	Building an HTTP Request
	Requests Using the XMLHttpRequest Object
	The open() Method
	Sending Requests Using GET or POST
	Handling the Request State
	Handling Progress Events
	Checking the Response

	Handling Return Formats
	Most Common Return Formats
	Parsing XML for Use in HTML Documents
	Specificities When Parsing JSON
	JSON Security Considerations

	Client-Side Rendering Using Returned Data
	Handling Template Variables
	Formatting Variables

	Cross-Origin Communication
	Using Proxies
	The JSONP Way
	The Cross-Origin Resource Sharing

	Real-Life Example: Display Twitter Trends
	The Twitter Trends Feed
	Fetching and Rendering Data

	Be Kind to the Waiting User
	Adding Visual Feedback
	Handling Excessive Waiting Times

	Summary

	Using Touch and Gesture Events
	How to Handle Events
	Calling Priority of Handlers
	The Capture Stage
	Control Over Event Propagation
	Preventing Default Behavior
	Handlers and Object Methods

	Classic Events with Mobile Safari
	Behavior of Mouse Events
	Scrolling Information

	Multi-Touch Events
	New Interaction Processes
	Handling Multi-Touch Events
	Unlimited Touch Points
	Cancelled Touch Events

	A Page View Built with Touch and Transform
	What We Are Going to Do
	The Container
	Bring Elements and Interaction
	Creating Custom Events
	Handling Custom Events

	Working with Precomputed Gestures
	Create Your Own Gestures
	One Code, Many Strokes
	The Bounding Box Object
	Registering User Strokes
	Using the Recognizer Object
	Improve Accuracy

	Summary

	Location-Aware Web Applications
	The Geolocation API
	Privacy Considerations
	Setup Considerations

	Getting the Current Position
	Longitude, Latitude, and More
	Handling Errors from Requests
	Accuracy, Timeout, and Cached Location

	Putting the User on a Map with Google Maps
	Showing the Map
	Centering the Map on the Location of the User
	Marking the Position of the User
	Showing Accuracy

	Tracking the User’s Position
	Registering for Updates
	Specific Behavior of the Watcher
	Watching Position on Google Maps

	From Data to Math
	Distance Between Two Points
	Sharper Distance Between Two Points
	The Direction to Take

	Building a Compass Web App
	Create the Mobile Elements
	The Graduations
	The Needles
	The Dial Shine
	Render the Compass
	Add Elements to the Document
	Prepare the Document to Receive Location Data
	Use Location Data
	Animate the Compass
	Prevent Staggering Needles

	Summary

	A Better Handling of Client-Side Data Storage
	Different Storage Areas
	How to Use New Storage Capabilities
	Specific Behavior of sessionStorage
	Being Notified of Storage Area Modification
	Security and Privacy Considerations
	Caching Ajax Requests
	Sending Client Data to the Server

	SQL Local Database
	Opening the Database
	Creating Tables
	Adding Data to Tables
	Querying Data from the Tables
	Updating Data
	Using Database in Place of Storage
	Handling Transaction and Query Errors
	Maintaining Coherent Access with Versioning
	Deleting the Database
	Security Again

	Offline Web Application Cache
	How Does It Work?
	The Manifest File
	Controlling the Cache with JavaScript
	Reacting to Events Sent by the Application Cache
	Deleting Cache
	Is the User Online?

	Summary

	Index
	¦ Special Characters
	and Numbers
	A
	¦
	¦B
	¦ C
	¦ D
	¦ E
	¦ G
	¦ F
	¦ H ¦I
	¦ J
	¦ K
	L
	¦
	¦ M
	¦ N
	¦ P
	¦ O
	¦ Q
	¦ R
	¦ S
	¦ T
	¦ V
	¦ U
	¦ W
	¦ X, Y
	¦ Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

