
Lubbers
Albers
Salim

US $44.99

Shelve in
Web Design/HTML

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro HTML5 Programming
Pro HTML5 Programming shows you how you can build web applications that fea-
ture unparalleled functionality, speed, and responsiveness. Packed with practical, real-
world examples of HTML5 features in action, this book shows you how to develop
cutting-edge HTML5 web applications using Canvas, SVG, Web and Offline Storage,
WebSocket, Audio/Video, Forms, Geolocation, and more. You’ll learn how to take full
advantage of the most popular, useful, and powerful HTML5 APIs.

First you’ll discover how the Canvas API offers a simpler way to spruce up your
user interface without plugins. From there, you’ll see how the Geolocation API can
help customize a user’s experience based on location and how the Communication
and WebSocket APIs offer you increasingly powerful ways to communicate with other
websites and stream real-time data to a web application. Pro HTML5 Programming
helps you to increase the usability of your forms, get your website to work offline, and
manage data better.

This book shows you how to unlock the power of the latest, cutting-edge HTML5
web technology. It will sharpen your web design and development skills, giving you an
extra edge that will help make your applications stand out.

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

iv

Contents at a Glance

 Foreword... xv
 About the Authors.. xvi
 About the Technical Reviewer .. xvii
 Acknowledgments ... xviii
 Introduction ... xix
 Chapter 1: Overview of HTML5..1

 Chapter 2: Using the Canvas API ..23

 Chapter 3: Working with Scalable Vector Graphics..63

 Chapter 4: Working with Audio and Video ..83

 Chapter 5: Using the Geolocation API ...107

 Chapter 6: Using the Communication APIs ...135

 Chapter 7: Using the WebSocket API ..159

 Chapter 8: Using the Forms API..193

 Chapter 9: Working with Drag-and-Drop ..217

 Chapter 10: Using the Web Workers API...241

 Chapter 11: Using the Storage APIs..263

 Chapter 12: Creating Offline Web Applications..295

 Chapter 13: The Future of HTML5 ...313

 Index ...323

C H A P T E R 1

1

Overview of HTML5

This book is about HTML5 Programming. Before you can understand HTML5 programming, however,
you need to take a step back and understand what HTML5 is, a bit of the history behind it, and the
differences between HTML 4 and HTML5.

In this chapter, we get right to the practical questions to which everyone wants answers. Why
HTML5, and why all the excitement just now? What are the new design principles that make HTML5
truly revolutionary—but also highly accommodating? What are the implications of a plugin-free
paradigm; what’s in and what’s out? What’s new in HTML, and how does this kick off a whole new era for
web developers? Let’s get to it.

The Story So Far—The History of HTML5
HTML goes back a long way. It was first published as an Internet draft in 1993. The ’90s saw an
enormous amount of activity around HTML, with version 2.0, versions 3.2, and 4.0 (in the same year!),
and finally, in 1999, version 4.01. In the course of its development, the World Wide Web Consortium
(W3C) assumed control of the specification.

After the rapid delivery of these four versions though, HTML was widely considered a dead-end; the
focus of web standards shifted to XML and XHTML, and HTML was put on the back burner. In the
meantime, HTML refused to die, and the majority of content on the web continued to be served as
HTML. To enable new web applications and address HTML’s shortcomings, new features and
specifications were needed for HTML.

Wanting to take the web platform to a new level, a small group of people started the Web Hypertext
Application Working Group (WHATWG) in 2004. They created the HTML5 specification. They also began
working on new features specifically geared to web applications—the area they felt was most lacking. It
was around this time that the term Web 2.0 was coined. And it really was like a second new web, as static
web sites gave way to more dynamic and social sites that required more features—a lot more features.

The W3C became involved with HTML again in 2006 and published the first working draft for
HTML5 in 2008, and the XHTML 2 working group stopped in 2009. Another two years passed, and that is
where we stand today. Because HTML5 solves very practical problems (as you will see later), browser
vendors are feverishly implementing its new features, even though the specification has not been
completely locked down. Experimentation by the browsers feeds back into and improves the
specification. HTML5 is rapidly evolving to address real and practical improvements to the web
platform.

MOMENTS IN HTML

Brian says: “Hi, I’m Brian, and I’m an HTML curmudgeon.

CHAPTER 1  OVERVIEW OF HTML5

2

I authored my first home page back in 1995. At the time, a ‘home page’ was something you created to talk
about yourself. It usually consisted of badly scanned pictures, <blink> tags, information about where you
lived and what you were reading, and which computer-related project you were currently working on.
Myself and most of my fellow ‘World Wide Web developers’ were attending or employed by universities.

At the time, HTML was primitive and tools were unavailable. Web applications hardly existed, other than a
few primitive text-processing scripts. Pages were coded by hand using your favorite text editor. They were
updated every few weeks or months, if ever.

We’ve come a long way in fifteen years.

Today, it isn’t uncommon for users to update their online profiles many times a day. This type of
interaction wouldn’t have been possible if not for the steady, lurching advances in online tools that built on
each previous generation.

Keep this in mind as you read this book. The examples we show here may seem simplistic at times, but
the potential is limitless. Those of us who first used tags in the mid-1990s probably had no idea that
within ten years, many people would be storing and editing their photos online, but we should have
predicted it.

We hope the examples we present in this book will inspire you beyond the basics and to create the new
foundation of the Web for the next decade.”

The Myth of 2022 and Why It Doesn’t Matter
The HTML5 specification that we see today has been published as a working draft—it is not yet final. So
when does it get cast in stone? Here are the key dates that you need to know. The first is 2012, which is
the target date for the candidate recommendation. The second date is 2022, which is the proposed
recommendation. Wait! Not so fast! Don’t close this book to set it aside for ten years before you consider
what these two dates actually mean.

The first and nearest date is arguably the most important one, because once we reach that stage,
HTML5 will be complete. That’s just around the corner. The significance of the proposed
recommendation (which we can all agree is a bit distant) is that there will then be two interoperable
implementations. In other words, two browsers equipped with completely interoperable
implementations of the entire specifications—a lofty goal that actually makes the 2022 deadline seem
ambitious. After all, we haven’t even achieved that in HTML4 and only recently for CSS2!

What is important, right now, is that browser vendors are actively adding support for many very cool
new features, and some of those are already in the Final Call for comments phase. Depending on your
audience, you can start using many of these features today. Sure, any number of minor changes will
need to be made down the road, but that’s a small price to pay for enjoying the benefits of living on the
cutting edge. Of course, if your audience uses Internet Explorer 6.0, many of the new features won’t work
and will require emulation—but that’s still not a good reason to dismiss HTML5. After all, those users,
too, will eventually be jumping to a later version. Many of them will probably move to Internet Explorer
9.0 right away, and that version of IE supports many more HTML5 features. In practice, the combination
of new browsers and improving emulation techniques means you can use many HTML5 features today
or in the very near future.

CHAPTER 1  OVERVIEW OF HTML5

3

Who Is Developing HTML5?
We all know that a certain degree of structure is needed, and somebody clearly needs to be in charge of
the specification of HTML5. That challenge is the job of three important organizations:

• Web Hypertext Application Technology Working Group (WHATWG): Founded in
2004 by individuals working for browser vendors Apple, Mozilla, Google, and
Opera, WHATWG develops HTML and APIs for web application development and
provides open collaboration of browser vendors and other interested parties.

• World Wide Web Consortium (W3C): The W3C contains the HTML working group
that is currently charged with delivering their HTML5 specification.

• Internet Engineering Task Force (IETF): This task force contains the groups
responsible for Internet protocols such as HTTP. HTML5 defines a new
WebSocket API that relies on a new WebSocket protocol, which is under
development in an IETF working group.

A New Vision
HTML5 is based on various design principles, spelled out in the WHATWG specification, that truly
embody a new vision of possibility and practicality.

• Compatibility

• Utility

• Interoperability

• Universal access

Compatibility and Paving the Cow Paths
Don’t worry; HTML5 is not an upsetting kind of revolution. In fact, one of its core principles is to keep
everything working smoothly. If HTML5 features are not supported, the behavior must degrade
gracefully. In addition, since there is about 20 years of HTML content out there, supporting all that
existing content is important.

A lot of effort has been put into researching common behavior. For example, Google analyzed
millions of pages to discover the common ID and Class names for DIV tags and found a huge amount of
repetition. For example, many people used DIV id="header" to mark up header content. HTML5 is all
about solving real problems, right? So why not simply create a <header> element?

Although some features of the HTML5 standard are quite revolutionary, the name of the game is
evolution not revolution. After all, why reinvent the wheel? (Or, if you must, then at least make a better
one!)

Utility and the Priority of Constituencies
The HTML5 specification is written based upon a definite Priority of Constituencies. And as priorities go,
“the user is king.” This means, when in doubt, the specification values users over authors, over
implementers (browsers), over specifiers (W3C/WHATWG), and over theoretical purity. As a result,
HTML5 is overwhelmingly practical, though in some cases, less than perfect.

CHAPTER 1  OVERVIEW OF HTML5

4

Consider this example. The following code snippets are all equally valid in HTML5:

id="prohtml5"
id=prohtml5
ID="prohtml5"

Sure, some will object to this relaxed syntax, but the bottom line is that the end user doesn’t really
care. We’re not suggesting that you start writing sloppy code, but ultimately, it’s the end user who suffers
when any of the preceding examples generates errors and doesn’t render the rest of the page.

HTML5 has also spawned the creation of XHTML5 to enable XML tool chains to generate valid
HTML5 code. The serializations of the HTML or the XHTML version should produce the same DOM
trees with minimal differences. Obviously, the XHTML syntax is a lot stricter, and the code in the last two
examples would not be valid.

Secure by Design
A lot of emphasis has been given to making HTML5 secure right out of the starting gate. Each part of the
specification has sections on security considerations, and security has been considered up front. HTML5
introduces a new origin-based security model that is not only easy to use but is also used consistently by
different APIs. This security model allows us to do things in ways that used to be impossible. For
example, it allows us to communicate securely across domains without having to revert to all kinds of
clever, creative, but ultimately Non-secure hacks. In that respect, we definitely will not be looking back
to the good old days.

Separation of Presentation and Content
HTML5 takes a giant step toward the clean separation of presentation and content. HTML5 strives to
create this separation wherever possible, and it does so using CSS. In fact, most of the presentational
features of earlier versions of HTML are no longer supported, but will still work, thanks to the
compatibility design principle mentioned earlier. This idea is not entirely new, though; it was already in
the works in HTML4 Transitional and XHTML1.1. Web designers have been using this as a best practice
for a long time, but now, it is even more important to cleanly separate the two. The problems with
presentational markup are:

• Poor accessibility

• Unnecessary complexity (it’s harder to read your code with all the inline styling)

• Larger document size (due to repetition of style content), which translates into
slower-loading pages

Interoperability Simplification
HTML5 is all about simplification and avoiding needless complexity. The HTML5 mantra? “Simple is
better. Simplify wherever possible.” Here are some examples of this:

• Native browser ability instead of complex JavaScript code

• A new, simplified DOCTYPE

• A new, simplified character set declaration

CHAPTER 1  OVERVIEW OF HTML5

5

• Powerful yet simple HTML5 APIs

We’ll say more about some of these later.
To achieve all this simplicity, the specification has become much bigger, because it needs to be

much more precise—far more precise, in fact, than any previous version of the HTML specification. It
specifies a legion of well-defined behaviors in an effort to achieve true browser interoperability by 2022.
Vagueness simply will not make that happen.

The HTML5 specification is also more detailed than previous ones to prevent misinterpretation. It
aims to define things thoroughly, especially web applications. Small wonder, then, that the specification
is over 900 pages long!

HTML5 is also designed to handle errors well, with a variety of improved and ambitious error-
handling plans. Quite practically, it prefers graceful error recovery to hard failure, again giving A-1 top
priority to the interest of the end user. For example, errors in documents will not result in catastrophic
failures in which pages do not display. Instead, error recovery is precisely defined so browsers can
display “broken” markup in a standard way.

Universal Access
This principle is divided into three concepts:

• Accessibility: To support users with disabilities, HTML5 works closely with a
related standard called Web Accessibility Initiative (WAI) Accessible Rich Internet
Applications (ARIA). WAI-ARIA roles, which are supported by screen readers, can
be already be added to your HTML elements.

• Media Independence: HTML5 functionality should work across all different devices
and platforms if at all possible.

• Support for all world languages: For example, the new <ruby> element supports
the Ruby annotations that are used in East Asian typography.

A Plugin–Free Paradigm
HTML5 provides native support for many features that used to be possible only with plugins or complex
hacks (a native drawing API, native video, native sockets, and so on).

Plugins, of course, present many problems:

• Plugins cannot always be installed.

• Plugins can be disabled or blocked (for example, the Apple iPad does not ship with
a Flash plugin).

• Plugins are a separate attack vector.

• Plugins are difficult to integrate with the rest of an HTML document (because of
plugin boundaries, clipping, and transparency issues).

Although some plugins have high install rates (Adobe Flash, for example), they are often blocked in
controlled corporate environments. In addition, some users choose to disable these plugins due to the
unwelcome advertising displays that they empower. However, if users disable your plugin, they also
disable the very program you’re relying on to display your content.

Plugins also often have difficulty integrating their displays with the rest of the browser content,
which causes clipping or transparency issues with certain site designs. Because plugins use a self-

CHAPTER 1  OVERVIEW OF HTML5

6

contained rendering model that is different from that of the base web page, developers face difficulties if
pop-up menus or other visual elements need to cross the plugin boundaries on a page. This is where
HTML5 comes on the scene, smiles, and waves its magic wand of native functionality. You can style
elements with CSS and script with JavaScript. In fact, this is where HTML5 flexes its biggest muscle,
showing us a power that just didn’t exist in previous versions of HTML. It’s not just that the new
elements provide new functionality. It’s also the added native interaction with scripting and styling that
enables us to do much more than we could ever do before.

Take the new canvas element, for example. It enables us to do some pretty fundamental things that
were not possible before (try drawing a diagonal line in a web page in HTML 4). However, what’s most
interesting is the power that we can unlock with the APIs and the styling we can apply with just a few
lines of CSS code. Like well-behaved children, the HTML5 elements also play nicely together. For
example, you can grab a frame from a video element and display it on a canvas, and the user can just
click the canvas to play back the video from the frame you just showed. This is just one example of what
a native code has to offer over a plugin. In fact, virtually everything becomes easier when you’re not
working with a black box. What this all adds up to is a truly powerful new medium, which is why we
decided to write a book about HTML5 programming, and not just about the new elements!

What’s In and What’s Out?
So, what really is part of HTML5? If you read the specification carefully, you might not find all of the
features we describe in this book. For example, you will not find Geolocation and Web Workers in there.
So are we just making this stuff up? Is it all hype? No, not at all!

Many pieces of the HTML5 effort were originally part of the HTML5 specification and were then
moved to separate standards documents to keep the specification focused. It was considered smarter to
discuss and edit some of these features on a separate track before making them into official
specifications. This way, one small contentious markup issue wouldn’t hold up the show of the entire
specification.

Experts in specific areas can come together on mailing lists to discuss a given feature without the
crossfire of too much chatter. The industry still refers to the original set of features, including
Geolocation, and so on as HTML5. Think of HTML5, then, as an umbrella term that covers the core
markup, as well as many cool new APIs. At the time of this writing, these features are part of HTML5:

• Canvas (2D and 3D)

• Cross-document messaging

• Geolocation

• Audio and Video

• Forms

• MathML

• Microdata

• Server-Sent events

• Scalable Vector Graphics (SVG)

• WebSocket API and protocol

• Web origin concept

CHAPTER 1  OVERVIEW OF HTML5

7

• Web storage

• Indexed database

• Application Cache (Offline Web Apps)

• Web Workers

• Drag and Drop

• XMLHttpRequest Level 2

As you can see, a lot of the APIs we cover in this book are on this list. How did we choose which APIs
to cover? We chose to cover features that were at least somewhat baked. Translation? They’re available in
some form in more than one browser. Other (less-baked) features may only work in one special beta
version of a browser, while others are still just ideas at this point.

As far as browser support goes, there are some excellent online resources that you can use to check
current (and future) browser support. The site www.caniuse.com provides an exhaustive list of features
and browser support broken down by browser version and the site www.html5test.com checks the
support for HTML5 features in the browser you use to access it.

Furthermore, this book does not focus on providing you with the emulation workarounds to make
your HTML5 applications run seamlessly on antique browsers. Instead, we will focus primarily on the
specification of HTML5 and how to use it. That said, for each of the APIs we do provide some example
code that you can use to detect its availability. Rather than using user agent detection, which is often
unreliable, we use feature detection. For that, you can also use Modernizr—a JavaScript library that
provides very advanced HTML5 and CSS3 feature detection. We highly recommend you use Modernizr
in your applications, because it is hands-down the best tool for this.

MORE MOMENTS IN HTML

Frank says: “Hi, I’m Frank, and I sometimes paint.

One of the first HTML canvas demonstrations I saw was a basic painting application that mimicked the
user interface of Microsoft Paint. Although it was decades behind the state of the art in digital painting and,
at the time, ran in only a fraction of existing browsers, it got me thinking about the possibilities it
represented.

When I paint digitally, I typically use locally installed desktop software. While some of these programs are
excellent, they lack the characteristics that make web applications so great. In short, they are
disconnected. Sharing digital paintings has, to date, involved exporting an image from a painting
application and uploading it to the Web. Collaboration or critiques on a live canvas are out of the question.
HTML5 applications can short-circuit the export cycle and make the creative process fit into the online
world along with finished images.

The number of applications that cannot be implemented with HTML5 is dwindling. For text, the Web is
already the ultimate two-way communication medium. Text-based applications are available in entirely
web-based forms. Their graphical counterparts, like painting, video editing, and 3D modeling software, are
just arriving now.

http://www.caniuse.com
http://www.html5test.com

CHAPTER 1  OVERVIEW OF HTML5

8

We can now build great software to create and enjoy images, music, movies, and more. Even better, the
software we make will be on and off the Web: a platform that is ubiquitous, empowering, and online.”

What’s New in HTML5?
Before we start programming HTML5, let’s take a quick look at what’s new in HTML5.

New DOCTYPE and Character Set
First of all, the DOCTYPE for web pages has been greatly simplified. Compare, for example, the following
HTML4 DOCTYPEs:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

Who could ever remember any of these? We certainly couldn’t. We would always just copy and paste
some lengthy DOCTYPE into the page, always with a worry in the back of our minds, “Are you absolutely
sure you pasted the right one?” HTML5 neatly solves this problem as follows:

<!DOCTYPE html>

Now that’s a DOCTYPE you might just remember. Like the new DOCTYPE, the character set declaration
has also been abbreviated. It used to be

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Now, it is:

<meta charset="utf-8">

You can even leave off the quotation marks around “utf-8” if you want to. Using the new DOCTYPE
triggers the browser to display pages in standards mode. For example, Figure 1-1 shows the information
you will see if you open an HTML5 page in Firefox, and you click Tools ➤ Page Info. In this example, the
page is rendered in standards mode.

http://www.w3.org/TR/html4/loose.dtd

CHAPTER 1  OVERVIEW OF HTML5

9

Figure 1-1. A page rendered in standards-compliant mode

When you use the new HTML5 DOCTYPE, it triggers browsers to render the page in standards-
compliant mode. As you may know, Web pages can have different rendering modes, such as Quirks,
Almost Standards, and Standards (or no-quirks) mode. The DOCTYPE indicates to the browser which
mode to use and what rules are used to validate your pages. In Quirks mode, browsers try to avoid
breaking pages and render them even if they are not entirely valid. HTML5 introduces new elements and
has marked others as obsolete (more on this in the next section). If you use these obsolete elements,
your page will not be valid. However, browsers will continue to render them as they used to.

New and Deprecated Elements
HTML5 introduces many new markup elements, which it groups into seven different content types.
These are shown below in Table 1-1.

Table 1-1. HTML5 Content Types

Content Type Description

Embedded Content that imports other resources into the document, for example audio, video,
canvas, and iframe

Flow Elements used in the body of documents and applications, for example form, h1, and
small

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1  OVERVIEW OF HTML5

10

Heading Section headers, for example h1, h2, and hgroup

Interactive Content that users interact with, for example audio or video controls, button, and
textarea

Metadata Elements—commonly found in the head section— that set up the presentation or
behavior of the rest of the document, for example script, style, and title

Phrasing Text and text markup elements, for example mark, kbd, sub, and sup

Sectioning Elements that define sections in the document, for example article, aside, and title

Most of these elements can be styled with CSS. In addition, some of them, such as canvas, audio,

and video, can be used by themselves, though they are accompanied by APIs that allow for fine-grained
native programmatic control. These APIs will be discussed in much more detail later in this book.

It is beyond the scope of this book to discuss all these new elements, but most of the sectioning
elements (discussed in the next section) are new. The canvas, audio, and video elements are also new in
HTML5.

Likewise, we’re not going to provide an exhaustive list of all the deprecated tags (there are many
good online resources online for this), but many of the elements that performed inline styling have been
marked as obsolete in favor of using CSS, such as big, center, font, and basefont.

Semantic Markup
One content type that contains many new HTML5 elements is the sectioning content type. HTML5
defines a new semantic markup to describe an element’s content. Using semantic markup doesn’t
provide any immediate benefits to the end user, but it does simplify the design of your HTML pages.
What’s more, it will make your pages more machine-readable and accessible. For example, search and
syndication engines will definitely be taking advantage of these elements as they crawl and index pages.

As we said before, HTML5 is all about paving the cow paths. Google and Opera analyzed millions of
pages to discover the common ID names for DIV tags and found a huge amount of repetition. For
example, since many people used DIV id="footer" to mark up footer content, HTML5 provides a set of
new sectioning elements that you can use in modern browsers right now. Table 1-2 shows the different
semantic markup elements.

Table 1-2. New Sectioning HTML5 Elements

Sectioning Element Description

header Header content (for a page or a section of the page)

footer Footer content (for a page or a section of the page)

section A section in a web page

article Independent article content

CHAPTER 1  OVERVIEW OF HTML5

11

aside Related content or pull quotes

nav Navigational aids

All of these elements can be styled with CSS. In fact, as we described in the utility design principle

earlier, HTML5 pushes the separation of content and presentation, so you have to style your page using
CSS styles in HTML5. Listing 1-1 shows what an HTML5 page might look like. It uses the new DOCTYPE,
character set, and semantic markup elements—in short, the new sectioning content. The code file
(sample.html) is available in the code/intro folder.

Listing 1-1. An Example HTML5 Page

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" >
 <title>HTML5</title>
 <link rel="stylesheet" href="html5.css">
</head>

<body>
 <header>
 <h1>Header</h1>
 <h2>Subtitle</h2>
 <h4>HTML5 Rocks!</h4>
 </header>

 <div id="container">
 <nav>
 <h3>Nav</h3>
 Link 1
 Link 2
 Link 3
 </nav>
 <section>
 <article>
 <header>
 <h1>Article Header</h1>
 </header>
 <p>Lorem ipsum dolor HTML5 nunc aut nunquam sit amet, consectetur adipiscing
elit. Vivamus at
 est eros, vel fringilla urna.</p>
 <p>Per inceptos himenaeos. Quisque feugiat, justo at vehicula pellentesque,
turpis
 lorem dictum nunc.</p>
 <footer>
 <h2>Article Footer</h2>
 </footer>
 </article>

http://www.example.com
http://www.example.com
http://www.example.com

CHAPTER 1  OVERVIEW OF HTML5

12

 <article>
 <header>
 <h1>Article Header</h1>
 </header>
 <p>HTML5: "Lorem ipsum dolor nunc aut nunquam sit amet, consectetur
 adipiscing elit. Vivamus at est eros, vel fringilla urna. Pellentesque
odio</p>
 <footer>
 <h2>Article Footer</h2>
 </footer>
 </article>
 </section>
 <aside>
 <h3>Aside</h3>
 <p>HTML5: "Lorem ipsum dolor nunc aut nunquam sit amet, consectetur adipiscing
 elit. Vivamus at est eros, vel fringilla urna. Pellentesque odio
rhoncus</p>
 </aside>
 <footer>
 <h2>Footer</h2>
 </footer>
 </div>
</body>
</html>

Without styles, the page would be pretty dull to look at. Listing 1-2 shows some of the CSS code that
can be used to style the content. The code file (html5.css) is available in the code/intro folder. This style
sheet uses some of the new CSS3 features, such as rounded corners (border-radius) and rotate
transformations (transform: rotate();). CSS3—just like HTML5 itself—is still under development, and
it is modularized with subspecifications for easier browser uptake (for example, transformation,
animation, and transition are all areas that are in separate subspecifications).

Experimental CSS3 features are prefixed with vendor strings to avoid namespace conflicts should
the specifications change. To display rounded corners, gradients, shadows, and transformations, it is
currently necessary to use prefixes such as -moz- (for Mozilla), o- (for Opera), -webkit- (for WebKit-
based browsers such as Safari and Chrome), and -ms- (for Internet Explorer) in your declarations.

Listing 1-2. CSS File for the HTML5 Page

body {
 background-color:#CCCCCC;
 font-family:Geneva,Arial,Helvetica,sans-serif;
 margin: 0px auto;
 max-width:900px;
 border:solid;
 border-color:#FFFFFF;
}

header {
 background-color: #F47D31;
 display:block;
 color:#FFFFFF;
 text-align:center;

CHAPTER 1  OVERVIEW OF HTML5

13

}

header h2 {
 margin: 0px;
}

h1 {
 font-size: 72px;
 margin: 0px;
}

h2 {
 font-size: 24px;
 margin: 0px;
 text-align:center;
 color: #F47D31;
}

h3 {
 font-size: 18px;
 margin: 0px;
 text-align:center;
 color: #F47D31;
}

h4 {
 color: #F47D31;
 background-color: #fff;
 -webkit-box-shadow: 2px 2px 20px #888;
 -webkit-transform: rotate(-45deg);
 -moz-box-shadow: 2px 2px 20px #888;
 -moz-transform: rotate(-45deg);
 position: absolute;
 padding: 0px 150px;
 top: 50px;
 left: -120px;
 text-align:center;

}

nav {
 display:block;
 width:25%;
 float:left;
}

nav a:link, nav a:visited {
 display: block;
 border-bottom: 3px solid #fff;
 padding: 10px;
 text-decoration: none;
 font-weight: bold;

CHAPTER 1  OVERVIEW OF HTML5

14

 margin: 5px;
}

nav a:hover {
 color: white;
 background-color: #F47D31;
}

nav h3 {
 margin: 15px;
 color: white;
}

#container {
 background-color: #888;
}

section {
 display:block;
 width:50%;
 float:left;
}

article {
 background-color: #eee;
 display:block;
 margin: 10px;
 padding: 10px;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 -webkit-box-shadow: 2px 2px 20px #888;
 -webkit-transform: rotate(-10deg);
 -moz-box-shadow: 2px 2px 20px #888;
 -moz-transform: rotate(-10deg);
}

article header {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 padding: 5px;

}

article footer {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 padding: 5px;
}

CHAPTER 1  OVERVIEW OF HTML5

15

article h1 {
 font-size: 18px;
}

aside {
 display:block;
 width:25%;
 float:left;
}

aside h3 {
 margin: 15px;
 color: white;
}

aside p {
 margin: 15px;
 color: white;
 font-weight: bold;
 font-style: italic;
}

footer {
 clear: both;
 display: block;
 background-color: #F47D31;
 color:#FFFFFF;
 text-align:center;
 padding: 15px;
}

footer h2 {
 font-size: 14px;
 color: white;
}

/* links */
a {
 color: #F47D31;
}

a:hover {
 text-decoration: underline;
}

CHAPTER 1  OVERVIEW OF HTML5

16

Figure 1-2 shows an example of the page in Listing 1-1, styled with CSS (and some CSS3) styles. Keep
in mind, however, that there is no such thing as a typical HTML5 page. Anything goes, really, and this
example uses many of the new tags mainly for purposes of demonstration.

Figure 1-2. An HTML5 page with all the new semantic markup elements

One last thing to keep in mind is that browsers may seem to render things as if they actually
understand these new elements. The truth is, however, that these elements could have been renamed
foo and bar and then styled, and they would have been rendered the same way (but of course, they
would not have any benefits in search engine optimization). The one exception to this is Internet
Explorer, which requires that elements be part of the DOM. So, if you want to see these elements in IE,
you must programmatically insert them into the DOM and display them as block elements. A handy
script that does that for you is html5shiv (http://code.google.com/p/html5shiv/).

http://code.google.com/p/html5shiv/

CHAPTER 1  OVERVIEW OF HTML5

17

Simplifying Selection Using the Selectors API
Along with the new semantic elements, HTML5 also introduces new simple ways to find elements in
your page DOM. Table 1-3 shows the previous versions of the document object allowed developers to
make a few calls to find specific elements in the page.

Table 1-3. Previous JavaScript Methods to Find Elements

Function Description Example

getElementById() Returns the element with the
specified id attribute value

<div id="foo">
getElementById("foo");

getElementsByName() Returns all elements whose name
attribute has the specified value

<input type="text" name="foo">
getElementsByName("foo");

getElementsByTagName() Return all elements whose tag name
matches the specified value

<input type="text">
getElementsByTagName("input");

With the new Selectors API, there are now more precise ways to specify which elements you would

like to retrieve without resorting to looping and iterating through a document using standard DOM. The
Selectors API exposes the same selector rules present in CSS as a means to find one or more elements in
the page. For example, CSS already has handy rules for selecting elements based on their nesting,
sibling, and child patterns. The most recent versions of CSS add support for more pseudo-classes—for
example, whether an object is enabled, disabled, or checked—and just about any combination of
properties and hierarchy you could imagine. To select elements in your DOM using CSS rules, simply
utilize one of the functions shown in Table 1-4.

Table 1-4. New QuerySelector Methods

Function Description Example Result

querySelector() Return the first
element in the page
which matches the
specified selector
rules(s)

document.querySelector("input.error"); Return the
first input
field with a
style class of
“error”

querySelectorAll() Returns all
elements which
match the specified
rule or rules

document.querySelectorAll("#results
td");

Return any
table cells
inside the
element with
id results

It is also possible to send more than one selector rule to the Selector API functions, for example:

// select the first element in the document with the
// style class highClass or the style class lowClass
var x = document.querySelector(“.highClass”, “.lowClass”);

CHAPTER 1  OVERVIEW OF HTML5

18

In the case of querySelector(), the first element that matches either rule is selected. In the case of
querySelectorAll(), any element matching any of the listed rules is returned. Multiple rules are comma-
separated.

The new Selector API makes it easy to select sections of the document that were painful to track
before. Assume, for example, that you wanted the ability to find whichever cell of a table currently had
the mouse hovering over it. Listing 1-3 shows how this is trivially easy with a selector. The example files
for this (querySelector.html and querySelectorAll.html) are located in the code/intro directory.

Listing 1-3. Using the Selector API

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Query Selector Demo</title>

 <style type="text/css">
 td {
 border-style: solid;
 border-width: 1px;
 font-size: 300%;
 }

 td:hover {
 background-color: cyan;
 }

 #hoverResult {
 color: green;
 font-size: 200%;
 }
 </style>
</head>

<body>
 <section>
 <!-- create a table with a 3 by 3 cell display -->
 <table>
 <tr>
 <td>A1</td> <td>A2</td> <td>A3</td>
 </tr>
 <tr>
 <td>B1</td> <td>B2</td> <td>B3</td>
 </tr>
 <tr>
 <td>C1</td> <td>C2</td> <td>C3</td>
 </tr>
 </table>

 <div>Focus the button, hover over the table cells, and hit Enter to identify them
 using querySelector('td:hover').</div>

CHAPTER 1  OVERVIEW OF HTML5

19

 <button type="button" id="findHover" autofocus>Find 'td:hover' target</button>
 <div id="hoverResult"></div>

 <script type="text/javascript">
 document.getElementById("findHover").onclick = function() {
 // find the table cell currently hovered in the page
 var hovered = document.querySelector("td:hover");
 if (hovered)
 document.getElementById("hoverResult").innerHTML = hovered.innerHTML;
 }
 </script>
 </section>

</body>
</html>

As you can see from this example, finding the element a user is hovering over is a one-line exercise
using:

var hovered = document.querySelector("td:hover");

■ Note Not only are the Selector APIs handy, but they are often faster than traversing the DOM using the legacy
child retrieval APIs. Browsers are highly optimized for selector matching in order to implement fast style sheets.

It should not be too surprising to find that the formal specification of selectors is separated from the
specification for CSS at the W3C. As you’ve seen here, selectors are generally useful outside of styling.
The full details of the new selectors are outside the scope of this book, but if you are a developer seeking
the optimal ways to manipulate your DOM, you are encouraged to use the new Selectors API to rapidly
navigate your application structure.

JavaScript Logging and Debugging
Though they’re not technically a feature of HTML5, JavaScript logging and in-browser debugging tools
have been improved greatly over the past few years. The first great tool for analyzing web pages and the
code running in them was the Firefox add-on, Firebug.

Similar functionality can now be found in all the other browsers’ built-in development tools: Safari’s
Web Inspector, Google’s Chrome Developer Tools, Internet Explorer’s Developer Tools, and Opera’s
Dragonfly. Figure 1-3 shows the Google Chrome Developer Tools (use the shortcut key CTRL + Shift + J
on Windows or Command + Option + J on Mac to access this) that provide a wealth of information about
your web pages; these include a debugging console, an elements View, a resource view, and a script
view, to name just a few.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1  OVERVIEW OF HTML5

20

Figure 1-3. Developer Tools view in Chrome

Many of the debugging tools offer a way to set breakpoints to halt code execution and analyze the
state of the program and the current state of the variables. The console.log API has become the de facto
logging standard for JavaScript developers. Many browsers offer a split-pane view that allows you to see
messages logged to the console. Using console.log is much better than making a call to alert(), since it
does not halt program execution.

window.JSON
JSON is a relatively new and increasingly popular way to represent data. It is a subset of JavaScript syntax
that represents data as object literals. Due to its simplicity and natural fit in JavaScript programming,
JSON has become the de facto standard for data interchange in HTML5 applications. The canonical API
for JSON has two functions, parse() and stringify() (meaning serialize or convert to string).

To use JSON in older browsers, you need a JavaScript library (several can be found at
http://json.org). Parsing and serializing in JavaScript are not always as fast as you would like, so to
speed up things, newer browsers now have a native implementation of JSON that can be called from
JavaScript. The native JSON object is specified as part of the ECMAScript 5 standard covering the next
generation of the JavaScript language. It is one of the first parts of ECMAScript 5 to be widely
implemented. Every modern browser now has window.JSON, and you can expect to see quite a lot of JSON
used in HTML5 applications.

http://json.org

CHAPTER 1  OVERVIEW OF HTML5

21

DOM Level 3
One of the most maligned parts of web application development has been event handling. While most
browsers support standard APIs for events and elements, Internet Explorer differs. Early on, Internet
Explorer implemented an event model that differed from the eventual standard. Internet Explorer 9 (IE9)
now supports DOM Level 2 and 3 features, so you can finally use the same code for DOM manipulation
and event handling in all HTML5 browsers. This includes the ever-important addEventListener() and
dispatchEvent() methods.

Monkeys, Squirrelfish, and Other Speedy Oddities
The latest round of browser innovations isn’t just about new tags and new APIs. One of the most
significant recent changes is the rapid evolution of JavaScript/ECMAScript engines in the leading
browsers. Just as new APIs open up capabilities that were impossible in last-generation browsers,
speedups in the execution of the overall scripting engine benefit both existing web applications and
those using the latest HTML5 features. Think your browser can’t handle complex image or data
processing, or the editing of lengthy manuscripts? Think again.

For the last few years, browser vendors have been in a virtual arms race to see who could develop
the fastest JavaScript engine. While the earliest iterations of JavaScript were purely interpreted, the
newest engines compile script code directly to native machine code, offering speedups of orders of
magnitude compared to the browsers of the mid-2000s.

The action pretty much began when Adobe donated its just-in-time (JIT) compilation engine and
virtual machine for ECMAScript—code named Tamarin—to the Mozilla project in 2006. Although only
pieces of the Tamarin technology remain in the latest versions of Mozilla, the donation of Tamarin
helped spawn new scripting engines in each of the browsers, with names that are just as intriguing as the
performance they claim.

Table 1-5. Web Browser JavaScript Engines

Browser Engine Name Notes

Apple Safari Nitro (otherwise know
as SquirrelFish Extreme)

Released in Safari 4 and refined in
version 5, it introduces byte code optimizations and a
context-threaded native compiler.

Google
Chrome

V8 Since Chrome 2, it uses generational garbage collection for
high memory scalability without interruptions.

Microsoft
Internet
Explorer

Chakra Introduced in IE 9, Chakra focuses on background
compilation and an efficient type system and
demonstrates a tenfold improvement over IE8.

Mozilla Firefox JägerMonkey Refined from version 3.5, this combines fast interpretation
with native compilation from trace trees.

Opera Carakan This one uses register-based byte code and selective
native compilation and claims improvements of 75% on
version 10.50.

CHAPTER 1  OVERVIEW OF HTML5

22

All in all, this healthy competition among browser vendors is bringing the performance of JavaScript
ever closer to that of native desktop application code.

STILL MORE MOMENTS IN HTML

Peter says: “Speaking of competition, and speedy oddities, my name is Peter and running is my thing—a
lot of running.

Ultra running is a great sport where you meet great people. While running the last miles of a 100-mile race
or a 165-mile trail run, you really get to know people in a very new way. At that point, you’re really
stripped down to your essence, the place where great friendships can happen. There’s still the element of
competition, to be sure, but most of all there’s a deep sense of camaraderie. But I digress here.

To keep track of how my friends are doing in races that I can’t attend (for example, when I am writing an
HTML5 book), I usually follow along on the race websites. Not surprisingly, the ‘live tracking’ options are
often quite unreliable.

A few years ago, I stumbled upon a site for a European race that had all the right ideas. They gave GPS
trackers to the front runners and then displayed these racers on a map (we’ll build some similar
demonstrations in this book using Geolocation and WebSocket). Despite the fact that it was quite a
primitive implementation (users had to actually click “refresh the page” to see updates!), I could instantly
see the incredible potential.

Now, just a few years later, HTML5 provides us with tools to build these sorts of live race tracking websites
with APIs such as Geolocation for location-aware applications and WebSockets for real-time updates.
There’s no doubt in my mind—HTML5 has crossed the finish line a winner!”

Summary
In this chapter, we have given you a general overview of the essentials of HTML5.

We charted the history of its development and some of the important dates coming up. We also
outlined the four new design principles behind the HTML5 era that is now dawning: compatibility,
utility, interoperability, and universal access. Each one of these principles opens the door to a world of
possibilities and closes the door on a host of practices and conventions that are now rendered obsolete.
We then introduced HTML5’s startling new plugin-free paradigm, and we reviewed what’s new in
HTML5, such as a new DOCTYPE and character set, lots of new markup elements, and we discussed the
race for JavaScript supremacy.

In the next chapter, we’ll begin by exploring the programming side of HTML5, starting with the
Canvas API.

C H A P T E R 2

23

Using the Canvas API

In this chapter, we’ll explore what you can do with the Canvas API—a cool API that enables you to
dynamically generate and render graphics, charts, images, and animation. We’ll walk you through using
the basics of the rendering API to create a drawing that can scale and adjust to the browser environment.
We’ll show you how to create dynamic pictures based on user input in a heatmap display. Of course,
we’ll also alert you to the pitfalls of using Canvas and share tricks to overcome them.

This chapter presumes only a minimal amount of graphics expertise, so don’t be afraid to jump in
and try out one of the most powerful features of HTML5.

Overview of HTML5 Canvas
An entire book could be written about the use of the Canvas API (and it wouldn’t be a small book).
Because we have only a chapter, we’re going to cover (what we think is) the most commonly used
functionality in this very extensive API.

History
The canvas concept was originally introduced by Apple to be used in Mac OS X WebKit to create
dashboard widgets. Before the arrival of canvas, you could only use drawing APIs in a browser through
plug-ins such as Adobe plug-ins for Flash and Scalable Vector Graphics (SVG), Vector Markup Language
(VML) only in Internet Explorer, or other clever JavaScript hacks.

Try, for example, to draw a simple diagonal line without a canvas element—it sounds easy, but it is a
fairly complex task if you do not have a simple two-dimensional drawing API at your disposal. Canvas
provides just that, and because it is an extremely useful thing to have in the browser, it was added to the
HTML5 specification.

Early on, Apple hinted at possibly reserving the intellectual property rights in the WHATWG draft of
the canvas specification, which caused concern at the time among some followers of web
standardization. In the end, however, Apple disclosed the patents under the W3C's royalty-free patent
licensing terms.

SVG versus Canvas

Peter says: “Canvas is essentially a bitmap canvas, and as such images that are drawn on a canvas are
final and cannot be resized in the way that Scalable Vector Graphic (SVG) images can. Furthermore, objects
drawn on a canvas are not part of the page’s DOM or part of any namespace—something that is
considered a weakness if you need hit detection or object-based updates. SVG images, on the other hand

CHAPTER 2  USING THE CANVAS API

24

can be scaled seamlessly at different resolutions and allow for hit detection (knowing precisely where an
image is clicked).

Why then, would the WHATWG HTML5 specification not use SVG exclusively? Despite its obvious
shortcomings, the HTML5 Canvas API has two things going for it: it performs well because it does not have
to store objects for every primitive it draws, and it is relatively easy to implement the Canvas API based on
many of the popular two-dimensional drawing APIs found in other programming languages. Ultimately, it is
better to have one bird in the hand than two in the bush.”

What Is a Canvas?
When you use a canvas element in your web page, it creates a rectangular area on the page. By default,
this rectangular area is 300 pixels wide and 150 pixels high, but you can specify the exact size and set
other attributes for your canvas element. Listing 2-1 shows the most basic canvas element that can be
added to an HTML page.

Listing 2-1. A Basic Canvas Element

<canvas></canvas>

Once you have added a canvas element to your page, you can use JavaScript to manipulate it any
way you want. You can add graphics, lines, and text to it; you can draw on it; and you can even add
advanced animations to it.

The Canvas API supports the same two-dimensional drawing operations that most modern
operating systems and frameworks support. If you have ever programmed two-dimensional graphics in
recent years, you will probably feel right at home with the Canvas API because it is designed to be similar
to existing systems. If you haven’t, you’re about to discover how much more powerful a rendering
system can be than the previous images and CSS tricks developers have used for years to create web
graphics.

To programmatically use a canvas, you have to first get its context. You can then perform actions on
the context and finally apply those actions to the context. You can think of making canvas modifications
as similar to database transactions: you start a transaction, perform certain actions, and then commit
the transaction.

Canvas Coordinates
As shown in Figure 2-1, coordinates in a canvas start at x=0,y=0 in the upper-left corner—which we will
refer to as the origin—and increase (in pixels) horizontally over the x-axis and vertically over the y-axis.

CHAPTER 2  USING THE CANVAS API

25

Figure 2-1. x and y coordinates on a canvas

When Not to Use Canvas
Although the canvas element is great and very useful, you should not use the canvas element when
another element will suffice. For example, it would not be a good idea to dynamically draw all the
different headings for an HTML document on a canvas instead of simply using heading styles (H1, H2,
and so on) that are meant for that purpose.

Fallback Content
In case your web page is accessed by a browser that does not support the canvas element or a subset of
the Canvas API features, it is a good idea to provide an alternate source. For example, you can provide an
alternate image or just some text that explains what the user could be enjoying if they actually used a
modern browser. Listing 2-2 shows how alternate text can be specified inside a canvas element. Browsers
that do not support the canvas element will simply render this fallback content.

Listing 2-2. Use of Fallback Text Inside a Canvas Element

<canvas>
 Update your browser to enjoy canvas!
</canvas>

Instead of the previous text shown, you can also point to an image that can be displayed in case the
browser does not support the canvas element.

CHAPTER 2  USING THE CANVAS API

26

What About Canvas Accessibility?

Peter says: “Providing alternate images or alternate text raises the subject of accessibility—an area in
which the Canvas specification is, unfortunately, still lacking significantly. For example, there is no native
method for inserting text alternatives for images that are being inserted into a canvas, and there is no
native method to provide alternate text to match text generated with the canvas text API. At the time of this
writing, there are no accessibility hooks that can be used with the dynamically generated content in a
canvas, but a task force is working on designing them. Let’s hope this improves with time.”

One of the current proposals from the HTML5 designers for handling alternate, accessible canvas

content is to use this fallback content section. However, in order for this to be useful for screen readers
and other accessibility tools, the fallback content needs to be keyboard navigable even when a canvas is
supported and displayed. While some browsers are supporting this capability now, you should not rely
on it to support users with special needs. Using a separate section of the page to display canvas
alternatives is recommended for now. As an added bonus, many users might enjoy using alternative
controls or displays as a better way to quickly understand and navigate the page or application.

Future iterations of the Canvas API might also include focusable sub-areas of the canvas display and
controls to interact with them. If your image display requires significant interaction, however, consider
using SVG as an alternative to the Canvas API. SVG also allows drawing, but it integrates with the
browser DOM as well.

CSS and Canvas
As with most HTML elements, CSS can be applied to the canvas element itself to add borders, padding,
margins, etc. Additionally, some CSS values are inherited by the contents of the canvas; fonts are a good
example, as fonts drawn into a canvas default to the settings of the canvas element itself.

Furthermore, properties set on the context used in canvas operations follow the syntax you may
already be familiar with from CSS. Colors and fonts, for example, use the same notation on the context
that they use throughout any HTML or CSS document.

Browser Support for HTML5 Canvas
With the arrival of Internet Explorer 9, all browser vendors now provide support for HTML5 Canvas, and
it is already in the hands of a majority of users. This is a major milestone in web development, allowing
2D drawing to thrive on the modern Web.

In spite of the dwindling market share of previous versions of Internet Explorer, it is still a good idea
to first test whether HTML5 Canvas is supported before you use the APIs. The section “Checking for
Browser Support” later in this chapter will show you how you can programmatically check for browser
support.

Using the HTML5 Canvas APIs
In this section, we’ll explore the use of the Canvas APIs in more detail. For the sake of illustration—no
pun intended—we will use the various Canvas APIs to build a logo-like display of a forest scene with
trees and a beautiful trail-running path suitable for a long-distance race event. Although our example

CHAPTER 2  USING THE CANVAS API

27

will not win any awards for graphical design, it should serve to illustrate the various capabilities of
HTML5 Canvas in a reasonable order.

Checking for Browser Support
Before you use the canvas element, you will want to make sure there is support in the browser. This way,
you can provide some alternate text in case there is no support in their antique browser. Listing 2-3
shows one way you can use to test for browser support.

Listing 2-3. Checking for Browser Support

try {
 document.createElement("canvas").getContext("2d");
 document.getElementById("support").innerHTML =
 "HTML5 Canvas is supported in your browser.";
} catch (e) {
 document.getElementById("support").innerHTML = "HTML5 Canvas is not supported 
 in your browser.";
}

In this example, you try to create a canvas object and access its context. If there is an error, you will
catch it and know that Canvas is not supported. A previously defined support element on the page is
updated with a suitable message to reflect whether there is browser support or not.

This test will indicate whether the canvas element itself is supported by the browser. It will not
indicate which capabilities of the Canvas are supported. At the time of this writing, the API is stable and
well-supported, so this should generally not be an issue to worry about.

Additionally, it is a good idea to supply fallback content to your canvas element, as shown in Listing
2-3.

Adding a Canvas to a Page
Adding a canvas element in an HTML page is pretty straight-forward. Listing 2-4 shows the canvas
element that can be added to an HTML page.

Listing 2-4. The Canvas Element

<canvas height="200" width="200"></canvas>

The resulting canvas will show up as an “invisible” 200 × 200 pixel rectangle on your page. If you
want to add a border around it, you could use the HTML code shown in Listing 2-5 to style the canvas
with normal CSS borders.

Listing 2-5. Canvas Element with a Solid Border

<canvas id="diagonal" style="border: 1px solid;" width="200" height="200">
</canvas>

Note the addition of the ID diagonal to make it easy to locate this canvas element programmatically.
An ID attribute is crucial to any canvas because all the useful operations on this element must be done
through scripting. Without an ID, you will have difficulty locating the element to interoperate with it.

Figure 2-2 shows what the canvas in Listing 2-5 would look like in a browser.

CHAPTER 2  USING THE CANVAS API

28

Figure 2-2. A simple HTML5 canvas element on an HTML page

Not very exciting, but as any artist would tell you, it is full of potential. Now, let’s do something with
this pristine canvas. As mentioned before, it is not easy to draw a diagonal line on a web page without
HTML5 Canvas. Let’s see how easy it is now that we can use Canvas. Listing 2-6 shows how, with just a
few lines of code, you can draw a diagonal line on the canvas we added to the page earlier.

Listing 2-6. Creating a Diagonal Line on a Canvas

<script>
 function drawDiagonal() {
 // Get the canvas element and its drawing context
 var canvas = document.getElementById('diagonal');
 var context = canvas.getContext('2d');

 // Create a path in absolute coordinates
 context.beginPath();
 context.moveTo(70, 140);
 context.lineTo(140, 70);

 // Stroke the line onto the canvas
 context.stroke();
 }

 window.addEventListener("load", drawDiagonal, true);
</script>

Let’s examine the JavaScript code used to create the diagonal line. It is a simple example, but it
captures the essential flow of working with the Canvas API:

You first gain access to the canvas object by referencing a particular canvas’s ID value. In this
example, the ID is diagonal. Next, you create a context variable and you call the canvas object’s
getContext method, passing in the type of canvas you are looking for. You pass in the string “2d” to get a
two-dimensional context—the only available context type at this time.

■ Note Much work has already been completed on a three-dimensional version of the Canvas context. Version
1.0 of the WebGL specification, a joint effort from browser vendors and the Khronos Group, was released in early
2011. WebGL is based on the same concepts and designs as the popular OpenGL library, bringing a similar API to
JavaScript and HTML5. To create a three-dimensional drawing context in a supporting browser, you simply use

CHAPTER 2  USING THE CANVAS API

29

the string "webgl" as the argument to getContext. The resulting context has an entirely new set of drawing APIs:
capabilities that are thorough and complex enough for their own book. Although some browsers are shipping
implementations of WebGL today, not all vendors are on board. However, the potential of three-dimensional
rendering on the Web is compelling enough that we expect rapid uptake of support in the next few years. For more
information, consult the WebGL site at the Khronos Group (http://www.khronos.org/webgl). We will touch on
WebGL in a little more detail in the final chapter of this book.

You then use the context to perform drawing operations. In this case, you can create the diagonal
line by calling three methods—beginPath, moveTo, and lineTo—passing in the line’s start and end
coordinates.

The drawing methods moveTo and lineTo do not actually create the line; you finalize a canvas
operation and draw the line by calling the context.stroke(); method. Figure 2-3 shows the diagonal
line created with the example code.

Figure 2-3. Diagonal line on a canvas

Triumph! Although this simple line may not appear to be the start of a revolution, keep in mind that
drawing a diagonal line between two arbitrary points using classic HTML techniques was a very difficult
maneuver involving stretched images, strange CSS and DOM objects, or other forms of black magic. Let
us never speak of them again.

As you can see from this example’s code, all operations on the canvas are performed via the context
object. This will hold true for the rest of your interaction with the canvas because all the important
functions with visual output are accessible only from the context, not the canvas object itself. This
flexibility allows the canvas to support different types of drawing models in the future, based on the type
of context that is retrieved from the canvas. Although we will frequently refer in this chapter to actions
we will take on the canvas, keep in mind that this actually means that we will be working with the
context object that the canvas supplies.

As demonstrated in the previous example, many operations on the context do not immediately
update the drawing surface. Functions such as beginPath, moveTo, and lineTo do not modify the canvas
appearance immediately. The same is true of many functions that set the styling and preferences of the
canvas. Only when a path is stroked or filled does it appear on the display. Otherwise, the canvas will
only be immediately updated when images are displayed, text is shown, or rectangles are drawn, filled,
or cleared.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.khronos.org/webgl

CHAPTER 2  USING THE CANVAS API

30

Applying Transformations to Drawings
Now let’s look at another wayto draw on the canvas using transformation. In the following example, the
result is identical to the previous example, but the code used to draw the diagonal line is different. For
this simple example, you could argue that the use of transformation adds unnecessary complexity.
However, you can think of using transformation as a best practice for more complex canvas operations.
You’ll see that we’ll use it a lot throughout the remaining examples, and it is critical to understanding the
Canvas API’s complex capabilities.

Perhaps the easiest way to think of the transformation system—at least, the easiest way that does
not involve a great amount of mathematical formulae and hand-waving—is as a modification layer that
sits between the commands you issue and the output on the canvas display. This modification layer is
always present, even if you choose not to interact with it.

Modifications, or transformations in the parlance of drawing systems, can be applied sequentially,
combined, and modified at will. Every drawing operation is passed through the modification layer to be
modified before it appears on the canvas. Although this adds an extra layer of complexity, it also adds
tremendous power to the drawing system. It grants access to the powerful modifications that modern
image-editing tools support in real time, yet in an API that is only as complex as it absolutely needs to be.

Don’t be fooled into thinking that you are optimizing performance if you don’t use transformation
calls in your code. The canvas implementation uses and applies transformations implicitly in its
rendering engine, whether or not you call them directly. It is wiser to understand the system up front
because it will be crucial to know if you step outside the most basic drawing operations.

A key recommendation for reusable code is that you usually want to draw at the origin (coordinate
0,0) and apply transformations—scale, translate, rotate, and so forth—to modify your drawing code into
its final appearance, as shown in Figure 2-4.

Figure 2-4. Overview of transformation and drawing at the origin

Listing 2-7 shows this best practice in action using the simplest transform: translate.

CHAPTER 2  USING THE CANVAS API

31

Listing 2-7. Using Translation to Create a Diagonal Line on a Canvas

<script>
 function drawDiagonal() {
 var canvas = document.getElementById('diagonal');
 var context = canvas.getContext('2d');

 // Save a copy of the current drawing state
 context.save();

 // Move the drawing context to the right, and down
 context.translate(70, 140);

 // Draw the same line as before, but using the origin as a start
 context.beginPath();
 context.moveTo(0, 0);
 context.lineTo(70, -70);
 context.stroke();

 // Restore the old drawing state
 context.restore();
 }

 window.addEventListener("load", drawDiagonal, true);
</script>

Let’s examine the JavaScript code used to create this second, translated diagonal line.

1. First, you access the canvas object by referencing its ID value (in this case,
diagonal).

2. You then retrieve a context variable by calling the canvas object’s getContext
function.

3. Next, you want to save the still unmodified context so you can get back to its
original state at the end of the drawing and transformation operation. If you do
not save the state, the modifications you’re making during the operation
(translate, scale, and so on) will continue to be applied to the context in future
operations, and that might not be desirable. Saving the context state before
transforming it will allow us to restore it later.

4. The next step is to apply the translate method to the context. With this
operation, the translation coordinates you supply will be added to the eventual
drawing coordinates (the diagonal line) at the time any drawing is rendered,
thus moving the line to its final location, but only after the drawing operation
is complete.

5. After the translation has been applied, you can perform the normal drawing
operations to create the diagonal line. In this case, you can create the diagonal
line by calling three methods—beginPath, moveTo, and lineTo—this time
drawing at the origin (0,0) instead of coordinates 70,140.

CHAPTER 2  USING THE CANVAS API

32

6. After the line has been sketched, you can render it to the canvas (for example,
draw the line) by calling the context.stroke method.

7. Finally, you restore the context to its clean original state, so that future canvas
operations are performed without the translation that was applied in this
operation. Figure 2-5 shows the diagonal line created with the example code.

Figure 2-5. Translated diagonal line on a canvas

Even though your new line looks remarkably like the old one, you created it using the power of
transformations, something that will become more apparent as we progress through the rest of this
chapter.

Working with Paths
Although we could offer many more exciting examples for drawing lines, we are ready now to progress to
something a bit more complex: paths. Paths in the HTML5 Canvas API represent any shape you care to
render. Our original line example was a path, as you might have gathered from the conspicuous
beginPath call used to start it off. But paths can be as complicated as you desire, with multiple line and
curve segments and even subpaths. If you are looking to draw almost any shape on a canvas, the path
API will be your focus point.

When embarking on any routine to draw a shape or path, the first call you make is beginPath. This
simple function takes no arguments, but it signals to the canvas that you wish to start a new shape
description. This function is mostly useful to the canvas so that it can calculate the interior and exterior
of the shape you are creating for later fills and strokes.

A path always tracks the concept of a current location, which defaults to the origin. The canvas
internally tracks the current location, but you will modify it with your drawing routines.

Once the shape is begun, you can use a variety of functions on the context to plot the layout of your
shape. You’ve already seen the simplest context pathing functions in action:

• moveTo(x, y): moves the current location to a new destination of (x, y) without
drawing.

• lineTo(x, y): moves the current location to a new destination of (x, y) drawing a
straight line from the current position to the new one.

Essentially, the difference between these two calls is that the first is akin to lifting a drawing pen and
moving to a new location, whereas the second tells the canvas to leave the pen on the paper and move it
in a straight line to the new destination. However, it is worth pointing out again that no actual drawing
occurs until you stroke or fill the path. At present, we are merely defining the positions in our path so that
it can be drawn later.

4

CHAPTER 2  USING THE CANVAS API

33

The next special pathing function is a call to closePath. This command is very similar in behavior to
the lineTo function, with the difference being that the destination is automatically assumed to be the
origination of the path. However, the closePath also informs the canvas that the current shape has
closed or formed a completely contained area. This will be useful for future fills and strokes.

At this point, you are free to continue with more segments in your path to create additional
subpaths. Or you can beginPath at any time to start over and clear the path list entirely.

As with most complex systems, it is often better to see them in action. Let’s depart from our line
examples and use the Canvas API to start to create a new scene that illustrates a forest with a trail-
running path. This scene will serve as a logo of sorts for our race event. And as with any picture, we will
start with a basic element, which in this case is the canopy of a simple pine tree. Listing 2-8 shows how
to draw the pine tree’s canopy.

Listing 2-8. Function That Creates a Path for a Tree Canopy

function createCanopyPath(context) {
 // Draw the tree canopy
 context.beginPath();

 context.moveTo(-25, -50);
 context.lineTo(-10, -80);
 context.lineTo(-20, -80);
 context.lineTo(-5, -110);
 context.lineTo(-15, -110);

 // Top of the tree
 context.lineTo(0, -140);

 context.lineTo(15, -110);
 context.lineTo(5, -110);
 context.lineTo(20, -80);
 context.lineTo(10, -80);
 context.lineTo(25, -50);

 // Close the path back to its start point
 context.closePath();
}

As you can see from the code, we used the same move and line commands from before, but more of
them. These lines form the branches of a simple tree shape, and we close the path back at the end. Our
tree will leave a notable gap at the bottom, and we will use this in future sections to draw the trunk.
Listing 2-9 shows how to use that canopy drawing function to actually render our simple tree shape onto
a canvas.

Listing 2-9. Function That Draws a Tree on the Canvas

function drawTrails() {
 var canvas = document.getElementById('trails');
 var context = canvas.getContext('2d');

 context.save();
 context.translate(130, 250);

CHAPTER 2  USING THE CANVAS API

34

 // Create the shape for our canopy path
 createCanopyPath(context);

 // Stroke the current path
 context.stroke();
 context.restore();
}

All the calls in this routine should be familiar to you already. We fetch the canvas context, save it for
future reference, translate our position to a new location, draw the canopy, stroke it onto the canvas, and
then restore our state. Figure 2-6 shows the results of our handiwork, a simply line representation of a
tree canopy. We’ll expand on this as we go forward, but it’s a good first step.

Figure 2-6. A simple path of a tree canopy

Working with Stroke Styles
The Canvas API wouldn’t be powerful or popular if developers were stuck using simple stick drawings
and black lines. Let’s use the stroke styling capabilities to make our canopy a little more tree-like. Listing
2-10 shows some basic commands that can modify the properties of the context in order to make the
stroked shape look more appealing.

Listing 2-10. Using a Stroke Style

// Increase the line width
context.lineWidth = 4;

// Round the corners at path joints
context.lineJoin = 'round';

// Change the color to brown
context.strokeStyle = '#663300';

// Finally, stroke the canopy
context.stroke();

CHAPTER 2  USING THE CANVAS API

35

By adding the above properties before stroking, we change the appearance of any future stroked
shapes—at least until we restore the context back to a previous state.

First, we increase the width of the stroked lines to four pixels.
Next, we set the lineJoin property to round, which causes the joints of our shape’s segments to take

on a more rounded corner shape. We could also set the lineJoin to bevel or miter (and the
corresponding context.miterLimit value to tweak it) to choose other corner options.

Finally, we change the color of the stroke by using the strokeStyle property. In our example, we are
setting the color to a CSS value, but as you will see in later sections, it is also possible to set the
strokeStyle to be an image pattern or a gradient for fancier displays.

Although we are not using it here, we could also set the lineCap property to be either butt, square, or
round to specify how lines should display at the endpoints. Alas, our example has no dangling line ends.
Figure 2-7 shows our spruced-up tree canopy, nowstroked with a wider, smoother, brown line instead of
the flat black line from before.

Figure 2-7. Stylish stroked tree canopy

Working with Fill Styles
As you might expect, stroking is not the only way to affect the appearance of canvas shapes. The next
common way to modify a shape is to specify how its paths and subpaths are filled. Listing 2-11 shows
how simple it is to fill our canopy with a pleasant, green color.

Listing 2-11. Using a Fill Style

// Set the fill color to green and fill the canopy
context.fillStyle = '#339900';
context.fill();

First, we set the fillStyle to the appropriate color. As we will see later, it is also possible to set the
fill to be a gradient or an image pattern. Then, we simply call the context’s fill function to let the canvas
fill all the pixels inside all the closed paths of our current shape, as shown in Figure 2-8.

CHAPTER 2  USING THE CANVAS API

36

Figure 2-8. Filled tree canopy

Because we stroked our canopy before filling it, the fill covers part of the stroked path. This is due to
the fact that the wide stroke—in our case, four pixels wide—is centered along the line of the path shape.
The fill applies to all pixels on the interior of the shape, and as such it will cover half of the stroked line
pixels. Should you prefer the full stroke to appear, you can simply fill before stroking the path.

Filling Rectangular Content
Every tree deserves a strong foundation. Thankfully, we left space for our tree trunk in the original shape
path. Listing 2-12 shows how we can add the simplest rendering of a tree trunk by using the fillRect
convenience function.

Listing 2-12. Using the fillRect Convenience Function

// Change fill color to brown
context.fillStyle = '#663300';

// Fill a rectangle for the tree trunk
context.fillRect(-5, -50, 10, 50);

Here, we once again set a brown fill style. But instead of explicitly drawing the corners of our trunk
rectangle using the lineTo ability, we will draw the entire trunk in one step by using fillRect. The
fillRect call takes the x and y location, as well as the width and height, and then immediately fills it with
the current fill style.

Although we are not using them here, corresponding functions exist to strokeRect and clearRect.
The former will draw the outline of the rectangle based on a given position and dimension, while the
latter will remove any content from the rectangular area and reset it to its original, transparent color.

CHAPTER 2  USING THE CANVAS API

37

Canvas Animations

Brian says: “The ability to clear rectangles in the canvas is core to creating animations and games using
the Canvas API. By repeatedly drawing and clearing sections of the canvas, it is possible to present the
illusion of animation, and many examples of this already exist on the Web. However, to create animations
that perform smoothly, you will need to utilize clipping features and perhaps even a secondary buffered
canvas to minimize the flickering caused by frequent canvas clears. Although animations are not the focus
of this book, check out the ‘Practical Extra’ sections of this chapter for some tips on using HTML5 to
animate your pages.”

Figure 2-9 shows our simple, flatly filled tree trunk attached to our previous canopy path.

Figure 2-9. Tree with filled rectangular trunk

Drawing Curves
The world, particularly the natural world, is not filled with straight lines and rectangles. Fortunately, the
canvas provides a variety of functions for creating curves in our paths. We will demonstrate the simplest
option—a quadratic curve—to form a path through our virtual forest. Listing 2-13 demonstrates the
addition of two quadratic curves.

Listing 2-13. Drawing a Curve

// Save the canvas state and draw the path
context.save();

context.translate(-10, 350);
context.beginPath();

// The first curve bends up and right

CHAPTER 2  USING THE CANVAS API

38

context.moveTo(0, 0);
context.quadraticCurveTo(170, -50, 260, -190);

// The second curve continues down and right
context.quadraticCurveTo(310, -250, 410,-250);

// Draw the path in a wide brown stroke
context.strokeStyle = '#663300';
context.lineWidth = 20;
context.stroke();

// Restore the previous canvas state
context.restore();

As before, one of the first things we will do is save our canvas context state, because we will be
modifying the translation and stroke options here. For our forest path, we will start by moving back to
the origin and drawing a first quadratic curve up and to the right.

As shown in Figure 2-10, the quadraticCurveTo function begins at the current drawing location and
takes two x, y point locations as its parameters. The second one is the final stop in our curve. The first
one represents a control point. The control point sits to the side of the curve (not on it) and acts almost
as a gravitational pull for the points along the curve path. By adjusting the location of the control point,
you can adjust the curvature of the path you are drawing. We draw a second quadratic curve up and to
the right to complete our path; then stroke it just as we did for our tree canopy before (only wider).

Figure 2-10. Quadratic curve start, end, and control points

Other options for curves in the HTML5 Canvas API include the bezierCurveTo, arcTo, and arc
functions. These curves take additional control points, a radius, or angles to determine the

CHAPTER 2  USING THE CANVAS API

39

characteristics of the curve. Figure 2-11 shows the two quadratic curves stroked on our canvas to create a
path through the trees.

Figure 2-11. Quadratic curves for a path

Inserting Images into a Canvas
Images can be extremely handy to display inside a canvas. They can be stamped, stretched, modified
with transformations, and often be the focus of the entire canvas. Thankfully, the Canvas API includes a
few simple commands for adding image content to the canvas.

But images also add a complication to the canvas operations: you must wait for them to load.
Browsers will usually be loading images asynchronously as your page script is rendering. However, if you
attempt to render an image onto a canvas before it has completely loaded, the canvas will fail to render
any image at all. As such, you should be careful to make sure the image is loaded completely before you
attempt to render it.

To solve this problem in our simple forest trail example, we will load an image of a bark texture to
use directly in the canvas. In order to make sure that the image has completed loading before we render,
we will switch the loading code to only execute as a callback from image loading completion, as shown
in Listing 2-14.

Listing 2-14. Loading the Image

// Load the bark image
var bark = new Image();
bark.src = "bark.jpg";

// Once the image is loaded, draw on the canvas
bark.onload = function () {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2  USING THE CANVAS API

40

 drawTrails();
}

As you can see, we’ve added an onload handler to the bark.jpg image to call the main drawTrails
function only when the image loading has completed. This guarantees that the image will be available to
the next calls we add to the canvas rendering, as shown in Listing 2-15.

Listing 2-15. Drawing an Image on a Canvas

// Draw the bark pattern image where
// the filled rectangle was before
context.drawImage(bark, -5, -50, 10, 50);

Here, we have replaced the previous call to fillRect with a simple routine to display our bark image
as the new trunk for our tree. Although the image is a subtle replacement, it provides more texture to our
display. Note that in this call, we are specifying an x, y, width, and height argument in addition to the
image itself. This option will scale the image to fit into the 10 × 50 pixel space that we have allocated for
our trunk. We could also have passed in source dimensions to have more control over the clipping area
of the incoming image to be displayed.

As you can see in Figure 2-12, the change to the appearance of our trunk is only slightly different
from the filled rectangle we used before.

Figure 2-12. Tree with an image used for trunk

CHAPTER 2  USING THE CANVAS API

41

Using Gradients
Not satisfied with the tree trunk? Well, neither are we. Let’s take another approach to drawing our tree
trunk that uses a little more finesse: gradients. Gradients allow you to apply a gradual algorithmic
sampling of colors as either a stroke or fill style, just like the patterns were applied in the last section.
Creating gradients requires a three-step process:

1. Create the gradient object itself.

2. Apply color stops to the gradient object, signaling changes in color along the
transition.

3. Set the gradient as either a fillStyle or a strokeStyle on the context.

It is perhaps easiest to think of gradients as a smooth change of color that moves along a line. For
example, if you supply points A and B as the arguments to the creation of a gradient, the color will be
transitioned for any stroke or fill that moves in the direction of point A to point B.

To determine what colors are displayed, simply use the addColorStop function on the gradient
object itself. This function allows you to specify an offset and a color. The color argument is the color you
want to be applied in the stroke or fill at the offset position. The offset position is a value between 0.0 and
1.0, representing how far along the gradient line the color should be reached.

If you create a gradient from point (0,0) to point (0,100) and specify a white color stop at offset 0.0
and a black offset at offset 1.0, then when the stroke or fill occurs, you will see the color gradually shift
from white (the beginning color stop) to black (the end color stop) as the rendering moves from point
(0,0) to point (0,100).

As with other color values, it is possible to supply an alpha (for example, transparency) value as part
of the color and make that alpha value transition as well. To do so, you will need to use another textual
representation of the color value, such as the CSS rgba function that includes an alpha component.

Let’s see this in more detail with a code sample that applies two gradients to a fillRect representing
our final tree trunk, as shown in Listing 2-16.

Listing 2-16. Using a Gradient

// Create a 3 stop gradient horizontally across the trunk
var trunkGradient = context.createLinearGradient(-5, -50, 5, -50);

// The beginning of the trunk is medium brown
trunkGradient.addColorStop(0, '#663300');

// The middle-left of the trunk is lighter in color
trunkGradient.addColorStop(0.4, '#996600');

// The right edge of the trunk is darkest
trunkGradient.addColorStop(1, '#552200');

// Apply the gradient as the fill style, and draw the trunk
context.fillStyle = trunkGradient;
context.fillRect(-5, -50, 10, 50);

// A second, vertical gradient creates a shadow from the
// canopy on the trunk
var canopyShadow = context.createLinearGradient(0, -50, 0, 0);

CHAPTER 2  USING THE CANVAS API

42

// The beginning of the shadow gradient is black, but with
// a 50% alpha value
canopyShadow.addColorStop(0, 'rgba(0, 0, 0, 0.5)');

// Slightly further down, the gradient completely fades to
// fully transparent. The rest of the trunk gets no shadow.
canopyShadow.addColorStop(0.2, 'rgba(0, 0, 0, 0.0)');

// Draw the shadow gradient on top of the trunk gradient
context.fillStyle = canopyShadow;
context.fillRect(-5, -50, 10, 50);

Applying these two gradients creates a nice, smooth light source on our rendered tree as shown in
Figure 2-13, making it appear curved and covered by a slight shadow from the canopy above. Let’s keep
it.

Figure 2-13. Tree with gradient trunk

Besides the linear gradient used in our example, the Canvas API also supports a radial gradient
option that allows you to specify two circular representations in which the color stops are applied to the
cone between the two circles. The radial gradient uses the same color stops as the linear gradient, but
takes its arguments in the form shown in Listing 2-17.

Listing 2-17. Example of Applying a Radial Gradient

createRadialGradient(x0, y0, r0, x1, y1, r1)

In this example, the first three arguments represent a circle centered at (x0, y0) with radius r0, and
the last three arguments represent a second circle centered at (x1, y1) with radius r1. The gradient is
drawn across the area between the two circles.

CHAPTER 2  USING THE CANVAS API

43

Using Background Patterns
Direct rendering of images has many uses, but in some cases it is beneficial to use an image as a
background tile, similar to the capability available in CSS. We’ve already seen how it is possible to set a
stroke or fill style to be a solid color. The HTML5 Canvas API also includes an option to set an image as a
repeatable pattern for either a path stroke or fill.

To make our forest trail appear a bit more rugged, we will demonstrate the capability by replacing
the previous stroked trail curve with one that uses a background image fill. In doing so, we’ll swap out
our now-unused bark image for a gravel image that we will put to use here. Listing 2-18 shows we
replace the call to drawImage with a call to createPattern.

Listing 2-18. Using a Background Pattern

// Replace the bark image with
// a trail gravel image
var gravel = new Image();
gravel.src = "gravel.jpg";
gravel.onload = function () {
 drawTrails();
}

// Replace the solid stroke with a repeated
// background pattern
context.strokeStyle = context.createPattern(gravel, 'repeat');
context.lineWidth = 20;
context.stroke();

As you can see, we are still calling stroke() for our path. However, this time we have set a
strokeStyle property on the context first, passing in the result of a call to context.createPattern. Oh,
and once again the image needs to be previously loaded in order for the canvas to perform the
operation. The second argument is a repetition pattern that can be one of the choices shown in Table 2-
1.

Table 2-1. Repetition Patterns

Repeat Value

repeat (Default) The image is repeated in both directions

repeat-x The image is repeated only in the X dimension

repeat-y The image is repeated only in the Y dimension

no-repeat The image is displayed once and not repeated

Figure 2-14 shows the result of the use of a background image rather than an explicitly drawn image

to represent our trail.

CHAPTER 2  USING THE CANVAS API

44

Figure 2-14. A trail with a repeating background pattern

Scaling Canvas Objects
What kind of forest has only one tree? Let’s fix that right away. To make this a little easier, we will adjust
our code sample to isolate the tree drawing operations to a single routine, called drawTree, as shown in
Listing 2-19.

Listing 2-19. Function to Draw the Tree Object

// Move tree drawing into its own function for reuse
function drawTree(context) {
 var trunkGradient = context.createLinearGradient(-5, -50, 5, -50);
 trunkGradient.addColorStop(0, '#663300');
 trunkGradient.addColorStop(0.4, '#996600');
 trunkGradient.addColorStop(1, '#552200');
 context.fillStyle = trunkGradient;
 context.fillRect(-5, -50, 10, 50);

 var canopyShadow = context.createLinearGradient(0, -50, 0, 0);
 canopyShadow.addColorStop(0, 'rgba(0, 0, 0, 0.5)');
 canopyShadow.addColorStop(0.2, 'rgba(0, 0, 0, 0.0)');
 context.fillStyle = canopyShadow;
 context.fillRect(-5, -50, 10, 50);

 createCanopyPath(context);

 context.lineWidth = 4;
 context.lineJoin = 'round';
 context.strokeStyle = '#663300';

CHAPTER 2  USING THE CANVAS API

45

 context.stroke();

 context.fillStyle = '#339900';
 context.fill();
}

As you can see, the drawTree function contains all the code we previously created to draw the
canopy, trunk, and trunk gradient. Now we will use one of the transformation routines—
context.scale—to draw a second tree at a new location and with a larger size, as shown in Listing 2-20.

Listing 2-20. Drawing the Tree Objects

// Draw the first tree at X=130, Y=250
context.save();
context.translate(130, 250);
drawTree(context);
context.restore();

// Draw the second tree at X=260, Y=500
context.save();
context.translate(260, 500);

// Scale this tree twice normal in both dimensions
context.scale(2, 2);
drawTree(context);
context.restore();

The scale function takes two factors for the x and y dimensions as its arguments. Each factor tells
the canvas implementation how much larger (or smaller) to make the size in that dimension; an X factor
of 2 would make all subsequent draw routines twice as wide, while a Y factor of 0.5 would make all
subsequent operations half as tall as before. Using these routines, we now have an easy way to create a
second tree in our trails canvas, as shown in Figure 2-15.

CHAPTER 2  USING THE CANVAS API

46

Figure 2-15. Tree with a larger scale

Always Perform Shape and Path Routines at the Origin

Brian says (and really means it, this time): “This example illustrates one of the reasons why it is a good
idea to perform shape and path routines at the origin; then translate them when complete, as we do here
in our code. The reason is that transforms such as scale and rotate operate from the origin.

If you perform a rotate transform to a shape drawn off origin, a rotate transform will rotate the shape
around the origin rather than rotating in place. Similarly, if you performed a scale operation to shapes
before translating them to their proper position, all locations for path coordinates would also be multiplied
by the scaling factor. Depending on the scale factor applied, this new location could even be off the canvas
altogether, leaving you wondering why your scale operation just ‘deleted’ the image.”

Using Canvas Transforms
Transform operations are not limited to scales and translates. It is also possible to rotate the drawing
context using the context.rotate(angle) function or even to modify the underlying transform directly
for more advanced operations such as shearing of the rendered paths. If you wanted to rotate the display
of an image, you would merely need to call the series of operations shown in Listing 2-21.

CHAPTER 2  USING THE CANVAS API

47

Listing 2-21. A Rotated Image

context.save();

// rotation angle is specified in radians
context.rotate(1.57);
context.drawImage(myImage, 0, 0, 100, 100);

context.restore();

In Listing 2-22, however, we will show how you can apply an arbitrary transform to the path
coordinates to radically alter the display of our existing tree path in order to create a shadow effect.

Listing 2-22. Using a Transform

// Create a 3 stop gradient horizontally across the trunk
// Save the current canvas state for later
context.save();

// Create a slanted tree as the shadow by applying
// a shear transform, changing X values to increase
// as Y values increase
// With this transform applied, all coordinates are
// multiplied by the matrix.
context.transform(1, 0,-0.5, 1, 0, 0);

// Shrink the shadow down to 60% height in the Y dimension
context.scale(1, 0.6);

// Set the tree fill to be black, but at only 20% alpha
context.fillStyle = 'rgba(0, 0, 0, 0.2)';
context.fillRect(-5, -50, 10, 50);

// Redraw the tree with the shadow effects applied
createCanopyPath(context);
context.fill();

// Restore the canvas state
context.restore();

Modifying the context transform directly as we’ve done here is something you should attempt only
if you are familiar with the matrix mathematics underpinning two-dimensional drawing systems. If you
check the math behind this transform, you will see that we are shifting the X values of our drawing by a
factor of the corresponding Y values in order to shear the gray tree being used as a shadow. Then, by
applying a scale factor of 60%, the sheared tree is decreased in size.

Note that the sheared “shadow” tree is rendered first, so that the actual tree appears above it in Z-
order (the order in which the canvas objects overlap). Also, the shadow tree is drawn using the CSS
notation for RGBA, which allows us to set the alpha value to only 20% of normal. This creates the light,
semitransparent look for the shadow tree. Once applied to our scaled trees, the output renders as shown
in Figure 2-16.

CHAPTER 2  USING THE CANVAS API

48

Figure 2-16. Trees with transformed shadows

Using Canvas Text
As we approach the end of our trail creation, let’s demonstrate the power of the Canvas API text
functions by adding a fancy title to the top of our display. It is important to note that text rendering on a
canvas is treated the same way as any other path object: text can be stroked or filled, and all rendering
transformations and styles can apply to text just as they do to any other shape.

As you might expect, the text drawing routines consist of two functions on the context object:

• fillText (text, x, y, maxwidth)

• strokeText (text, x, y, maxwidth)

Both functions take the text as well as the location at which it should be drawn. Optionally, a
maxwidth argument can be provided to constrain the size of the text by automatically shrinking the font
to fit the given size. In addition, a measureText function is available to return a metrics object containing
the width of the given text should it be rendered using the current context settings.

As is the case with all browser text display, the actual appearance of the text is highly configurable
using context properties that are similar to their CSS counterparts, as shown in Table 2-2.

CHAPTER 2  USING THE CANVAS API

49

Table 2-2. Possible Settings for Background Pattern Repetition

Property Values Note

font CSS font string Example: italic Arial, sans-serif

textAlign start, end, left, right, center Defaults to start

textBaseline top, hanging, middle, alphabetic, ideographic, bottom Defaults to alphabetic

All these context properties can be set to alter the context or accessed to query the current values. In

Listing 2-23, we will create a large text message with the font face Impact and fill it with the background
pattern of our existing bark image. In order to center the text across the top of our canvas, we will declare
a maximum width and a center alignment.

Listing 2-23. Using Canvas Text

// Draw title text on our canvas
context.save();

// The font will be 60 pixel, Impact face
context.font = "60px impact";

// Use a brown fill for our text
context.fillStyle = '#996600';
// Text can be aligned when displayed
context.textAlign = 'center';

// Draw the text in the middle of the canvas with a max
// width set to center properly
context.fillText('Happy Trails!', 200, 60, 400);
context.restore();

As you can see from the result in Figure 2-17, the trail drawing just got a whole lot—you guessed it—
happier.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2  USING THE CANVAS API

50

Figure 2-17. Background pattern-filled text

Applying Shadows
Finally, we will use the built-in canvas shadow API to add a blurred shadow effect to our new text
display. Like many graphical effects, shadows are best applied in moderation, even though the Canvas
API allows you to apply shadows to any operation we have already covered.

Once again, shadows are controlled by a few global context properties, as shown in Table 2-3.

Table 2-3. Shadow Properties

Property Values Note

shadowColor Any CSS color Can include an alpha component

shadowOffsetX Pixel count Positive values move shadow to the right, negative left

shadowOffsetY Pixel count Positive values move shadow down, negative up

shadowBlur Gaussian blur Higher values cause blurrier shadow edges

CHAPTER 2  USING THE CANVAS API

51

The shadow effect is triggered on any path, text, or image render if the shadowColor and at least one
of the other properties is set to a nondefault value. Listing 2-24 shows how we can apply a shadow to our
new trails title text.

Listing 2-24. Applying a Shadow

// Set some shadow on our text, black with 20% alpha
context.shadowColor = 'rgba(0, 0, 0, 0.2)';

// Move the shadow to the right 15 pixels, up 10
context.shadowOffsetX = 15;
context.shadowOffsetY = -10;

// Blur the shadow slightly
context.shadowBlur = 2;

With these simple additions, the canvas renderer will automatically apply shadows until the canvas
state is restored or the shadow properties are reset. Figure 2-18 shows the newly applied shadows.

Figure 2-18. Title with shadowed text

As you can see, the shadow generated by CSS is positional only and not in sync with the
transformational shadow we created for our tree. For the sake of consistency, you should probably only
use one approach to drawing shadows in a given canvas scene.

CHAPTER 2  USING THE CANVAS API

52

Working with Pixel Data
One of the most useful—albeit nonobvious—aspects of the Canvas API is the ability for developers to
easily get access to the underlying pixels in the canvas. This access works in both directions: it is trivial to
get access to the pixel values as a numerical array, and it is equally easy to modify those values and apply
them back to the canvas. In fact, it is entirely possible to manipulate the canvas entirely through the
pixel value calls and forgo the rendering calls we’ve discussed in this chapter. This is made possible by
the existence of three functions on the context API.

First up is context.getImageData(sx, sy, sw, sh). This function returns a representation of the
current state of the canvas display as a collection of integers. Specifically, it returns an object containing
three properties:

• width: The number of pixels in each row of the pixel data

• height: The number of pixels in each column of the pixel data

• data: A one-dimensional array containing the actual RGBA values for each pixel
retrieved from the canvas. This array contains four values for each pixel—a red,
green, blue, and alpha component—each with a value from 0 to 255. Therefore,
each pixel retrieved from the canvas becomes four integer values in the data array.
The data array is populated by pixels from left to right and top to bottom (for
example, across the first row, then across the second row, and so on), as shown in
Figure 2-19.

Figure 2-19. Pixel data and the internal data structure that represents it

CHAPTER 2  USING THE CANVAS API

53

The data returned by the call to getImageData is limited to the region defined by the four parameters.
Only canvas pixels contained in the rectangular region surrounded by the source x, y, width, and height
parameters will be retrieved. Therefore, to access all pixel values as data, you should pass in
getImageData(0, 0, canvas.width, canvas.height).

Because there are four image data values representing each pixel, it can be a little tricky to calculate
exactly which index represents the values for a given pixel. The formula is as follows.

For any pixel at coordinate (x,y) in a canvas with a given width and height, you can locate the
component values:

• Red component: ((width * y) + x) * 4

• Green component: ((width * y) + x) * 4 + 1

• Blue component: ((width * y) + x) * 4 + 2

• Alpha component: ((width * y) + x) * 4 + 3

Once you have access to the object with image data, it is quite easy to modify the pixel values in the
data array mathematically, because they are each simply integers from 0 to 255. Changing the red, green,
blue, or alpha values for one or more pixels makes it easy to update the canvas display by using the
second function: context.putImageData(imagedata, dx, dy).

putImageData allows you to pass in a set of image data in the same format as it was originally
retrieved; that’s quite handy because you can modify the values the canvas originally gave you and put
them back. Once this function is called, the canvas will immediately update to reflect the new values of
the pixels you passed in as the image data. The dx and dy parameters allow you to specify an offset for
where to start applying your data array into the existing canvas, should you choose to use one.

Finally, if you want to start from scratch with a set of blank canvas data, you can call
context.createImageData(sw, sh) to create a new set of image data tied to the canvas object. This set of
data can be programmatically changed as before, even though it does not represent the current state of
the canvas when retrieved.

There is yet another way to get data out of a canvas: the canvas.toDataURL API. This function gives
you a programmatic way to retrieve the current rendering data of a canvas in a text format, but in this
case the format is a standard representation of the data that browsers can interpret as images.

A data URL is a string containing the data of an image—such as a PNG—that a browser can display
just like a normal image file. The format of a data URL is best illustrated with an example:

data:image/png;base64, WCAYAAABkY9jZxn…

This example shows that the format is the string data: followed by a MIME type (such as image/png),
followed by a flag indicating whether or not the data is encoded in base64 format, and then the text
representing the data itself.

Don’t worry about the format, as you won’t be generating it yourself. The important point is that
with a simple call, you can get the content of a canvas delivered to you in one of these special URLs.
When you call canvas.toDataURL(type), you can pass in a type of image you would like the canvas data
generated in, such as image/png (the default) or image/jpeg. The data URL returned to you can be used as
the source of image elements in a page or CSS styles, as shown in Listing 2-25.

Listing 2-25. Creating an Image from a Canvas

var myCanvas = document.getElementById("myCanvas");

// draw operations into the canvas...

CHAPTER 2  USING THE CANVAS API

54

// get the canvas data as a data URL
var canvasData = myCanvas.toDataURL();

// set the data as the source of a new image
var img = new Image();
img.src = canvasData;

You don’t have to use a data URL right away. You could even store the URL in your browser’s local
storage for later retrieval and manipulation. Browser storage will be covered later in this book.

Implementing Canvas Security
There is an important caveat to using pixel manipulation, as described in the previous section. Although
most developers would use pixel manipulation for legitimate means, it is quite possible that the ability to
fetch and update data from a canvas could be used for nefarious purposes. For this reason, the concept
of an origin-clean canvas was specified, so that canvases that are tainted with images from origins other
than the source of the containing page cannot have their data retrieved.

As shown in Figure 2-20, if a page served up from http://www.example.com contains a canvas
element, it is entirely possible that the code in the page could try to render an image from
http://www.remote.com inside the canvas. After all, it is perfectly acceptable to render images from
remote sites inside any given web page.

Figure 2-20. Local and remote image sources

However, before the arrival of the Canvas API, it was not possible to programmatically retrieve the
pixel values of a downloaded image. Private images from other sites could be displayed in a page but not
read or copied. Allowing scripts to read image data from other origins would effectively share users'
photographs and other sensitive online image file with the entire web.

In order to prevent this, any canvas that contains images rendered from remote origins will throw a
security exception if the getImageData or toDataURL functions are called. It is perfectly acceptable to
render remote images into a canvas from another origin as long as you (or any other scriptwriter) do not
attempt to fetch the data from that canvas after it has been tainted. Be aware of this limitation and
practice safe rendering.

http://www.example.com
http://www.remote.com

CHAPTER 2  USING THE CANVAS API

55

Building an Application with HTML5 Canvas
There are many different application possibilities for using the Canvas API: graphs, charts, image
editing, and so on. However, one of the most intriguing uses for the canvas is to modify or overlay
existing content. One popular type of overlay is known as a heatmap. Although the name implies a
temperature measurement, the heat in this case can refer to any level of measurable activity. Areas on
the map with high levels of activity are colored as hot (for example, red, yellow, or white). Areas with less
activity show no color change at all, or minimal blacks and grays.

For example, a heatmap can be used to indicate traffic on a city map, or storm activity on a global
map. And situations such as these are easy to implement in HTML5 by combining a canvas display with
an underlying map source. Essentially, the canvas can be used to overlay the map and draw the heat
levels based on the appropriate activity data.

Let’s build a simple heatmap using the capabilities we learned about in the Canvas API. In this case,
our heat data source will be not external data, but the movement of our mouse across the map. Moving
the mouse over a portion of the map will cause the heat to increase, and holding the mouse at a given
position will rapidly increase the temperature to maximum levels. We can overlay such a heatmap
display(shown in Figure 2-21) on a nondescript terrain map, just to provide a sample case.

Figure 2-21. The heatmap application

Now that you’ve seen the end result of our heatmap application, let’s step through the code sample.
As usual, the working examples are available online for your download and perusal.

Let’s start with the HTML elements declared in this example. For this display, the HTML consists of
only a title, a canvas, and a button we can use to reset the heatmap. The background display for the
canvas consists of a simple mapbg.jpg applied to the canvas via CSS as shown in Listing 2-26.

Listing 2-26. The Heatmap Canvas Element

<style type="text/css">
 #heatmap {
 background-image: url("mapbg.jpg");
 }

CHAPTER 2  USING THE CANVAS API

56

</style>

<h2>Heatmap </h2>
<canvas id="heatmap" class="clear" style="border: 1px solid ; " height="300"
 width="300"> </canvas>
<button id="resetButton">Reset</button>

We also declare some initial variables to be used later in the example.

 var points = {};
 var SCALE = 3;
 var x = -1;
 var y = -1;

Next, we will set the canvas to have a high transparency value for its global drawing operations, and
set the composite mode to cause new draws to lighten the underlying pixels rather than replace them.

Then, as shown in Listing 2-27, we will set a handler to change the display—addToPoint—every time
the mouse moves or one-tenth of a second passes.

Listing 2-27. The loadDemo Function

function loadDemo() {
 document.getElementById("resetButton").onclick = reset;

 canvas = document.getElementById("heatmap");
 context = canvas.getContext('2d');
 context.globalAlpha = 0.2;
 context.globalCompositeOperation = "lighter"

function sample() {
 if (x != -1) {
 addToPoint(x,y)
 }
 setTimeout(sample, 100);
}

canvas.onmousemove = function(e) {
 x = e.clientX - e.target.offsetLeft;
 y = e.clientY - e.target.offsetTop;
 addToPoint(x,y)
}

 sample();
}

If the user clicks Reset, the entire canvas area is cleared and reset to its original state by using the
canvas’ clearRect function, as shown in Listing 2-28.

Listing 2-28. The reset Function

function reset() {
 points = {};
 context.clearRect(0,0,300,300);

CHAPTER 2  USING THE CANVAS API

57

 x = -1;
 y = -1;
}

Next we create a lookup table of colors to use when drawing heat on the canvas. Listing 2-29 shows
how the colors range in brightness from least to greatest, and they will be used to represent varying
levels of heat on the display. The greater the value of the intensity, the brighter the returned color.

Listing 2-29. The getColor Function

function getColor(intensity) {
 var colors = ["#072933", "#2E4045", "#8C593B", "#B2814E", "#FAC268", "#FAD237"];
 return colors[Math.floor(intensity/2)];
}

Whenever the mouse moves or hovers over an area of the canvas, a point is drawn. The point grows
in size (and brightness) the longer the mouse stays in the immediate area. As shown in Listing 2-30, we
use the context.arc function to draw a circle of a given radius, and we draw a brighter, hotter color for
larger radius values by passing the radius to our getColor function.

Listing 2-30. The drawPoint Function

function drawPoint(x, y, radius) {
 context.fillStyle = getColor(radius);
 radius = Math.sqrt(radius)*6;

 context.beginPath();
 context.arc(x, y, radius, 0, Math.PI*2, true)

 context.closePath();
 context.fill();
}

In the addToPoint function—which you will recall is accessed every time the mouse moves or hovers
over a point—a heat value is increased and stored for that particular point on the canvas. Listing 2-31
shows that the maximum point value is 10. Once the current value of heat for a given pixel is found, the
appropriate pixel is passed to drawPoint with its corresponding heat/radius value.

Listing 2-31. The addToPoint Function

function addToPoint(x, y) {
 x = Math.floor(x/SCALE);
 y = Math.floor(y/SCALE);

 if (!points[[x,y]]) {
 points[[x,y]] = 1;
 } else if (points[[x,y]]==10) {
 return
 } else {
 points[[x,y]]++;
 }
 drawPoint(x*SCALE,y*SCALE, points[[x,y]]);
}

CHAPTER 2  USING THE CANVAS API

58

Finally, the initial loadDemo function is registered to be called whenever the window completes
loading.

window.addEventListener("load", loadDemo, true);

Together, these one hundred or so lines of code illustrate how much you can do with the Canvas API
in a short amount of time, without using any plug-ins or external rendering technology. With an infinite
number of data sources available it is easy to see how they can be visualized simply and effectively.

Practical Extra: Full Page Glass Pane
In the example application, you saw how you can apply a canvas on top of a graphic. You can also apply
a canvas on top of the entire browser window or portions of the same—a technique commonly referred
to as glass pane. Once you have positioned the glass pane canvas on top of a web page, you can do all
kinds of cool and handy things with it.

For example, you can use a routine to retrieve the absolute position of all the DOM elements on a
page and create a step-by-step help function that can guide users of a web application through the steps
they must perform to start and use the application.

Or, you can use the glass pane canvas to scribble feedback on someone’s web page using the mouse
events for drawing input. Some things to keep in mind if you try to use a canvas in this capacity:

• You will need to set the canvas positioning to absolute and give it a specific
position, width, and height. Without an explicit width and height setting, the
canvas will remain at a zero pixel size.

• Don’t forget to set a high Z-index on the canvas so that it floats above all the
visible content. A canvas rendered under all the existing content doesn’t get much
chance to shine.

• Your glass pane canvas can block access to events in the content below, so be
sparing in how you use it and remove it when it is unnecessary.

Practical Extra: Timing Your Canvas Animation
Earlier in the chapter, we mentioned that it is a common practice to animate elements on a canvas. This
could be used for gaming, transitional effects, or simply to replace animated GIFs in an existing web
page. But one area where JavaScript has been lacking is a reliable way to schedule your animation
updates.

Today, most developers use the classic setTimeout or setInterval calls to schedule changes to a web
page or application. Both of these calls allow you to schedule a callback after a certain number of
milliseconds, which then allows you to make changes to the page during the callback. However, there
are some significant problems with using that approach:

• As a developer, you need to guess at the appropriate number of milliseconds in
the future to schedule the next update. With the modern Web running on a wider
variety of devices than ever, it is tricky to know the suggested frame rate for a high-
powered desktop device versus a mobile phone. And even if you guess how many
frames to schedule per second, you may end up competing with other pages or
machine load.

CHAPTER 2  USING THE CANVAS API

59

• It is more common than ever for users to browse with multiple windows or tabs,
even on mobile devices. If you use setTimeout and setInterval to schedule your
page updates, these will continue to happen even when the page is in the
background. Running your scripts when they aren’t even visible is a great way to
convince users that your web application is draining their phone battery!

As an alternative, many browsers now offer a requestAnimationFrame function on the window object.
This function takes a callback as its argument, and the callback will be invoked whenever the browser
deems it appropriate for the animation to be updated.

Let’s add another example (Listing 2-32) of our trail scene, this one with a crudely animated rain
storm to signify the cancellation of our upcoming race. This code builds on the previous examples, and
redundant code is not listed here.

Listing 2-32. Basic Animation Frame Request

// create an image for our rain texture
var rain = new Image();
rain.src = "rain.png";
rain.onload = function () {
 // Start off the animation with a single frame request
 // once the rain is loaded
 window.requestAnimFrame(loopAnimation, canvas);
}

// Previous code omitted…

// this function allows us to cover all browsers
// by aliasing the different browser-specific
// versions of the function to a single function
window.requestAnimFrame = (function(){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 // fall back to the old setTimeout technique if nothing
 // else is available
 function(/* function */ callback, /* DOMElement */ element){
 window.setTimeout(callback, 1000 / 60);
 };
})();

// This function is where we update the content of our canvas
function drawAFrame() {
 var context = canvas.getContext('2d');

 // do some drawing on the canvas, using the elapsedTime
 // as a guide for changes.
 context.save();

 // draw the existing trails picture first
 drawTrails();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2  USING THE CANVAS API

60

 // Darken the canvas for an eerie sky.
 // By only darkening most of the time, we create lightning flashes
 if (Math.random() > .01) {
 context.globalAlpha = 0.65;
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 400, 600);
 context.globalAlpha = 1.0;
 }

 // then draw a rain image, adjusted by the current time
 var now = Date.now();
 context.fillStyle = context.createPattern(rain, 'repeat');

 // We'll draw two translated rain images at different rates to
 // show thick rain and snow
 // Our rectangle will be bigger than the display size, and
 // repositioned based on the time
 context.save();
 context.translate(-256 + (0.1 * now) % 256, -256 + (0.5 * now) % 256);
 context.fillRect(0, 0, 400 + 256, 600 + 256);
 context.restore();

 // The second rectangle translates at a different rate for
 // thicker rain appearance
 context.save();
 context.translate(-256 + (0.08 * now) % 256, -256 + (0.2 * now) % 256);
 context.fillRect(0, 0, 400 + 256, 600 + 256);
 context.restore();

 // draw some explanatory text
 context.font = '32px san-serif';
 context.textAlign = 'center';
 context.fillStyle = '#990000';
 context.fillText('Event canceled due to weather!', 200, 550, 400);
 context.restore();
}

// This function will be called whenever the browser is ready
// for our application to render another frame.
function loopAnimation(currentTime) {
 // Draw a single frame of animation on our canvas
 drawAFrame();

 // After this frame is drawn, let the browser schedule
 // the next one
 window.requestAnimFrame(loopAnimation, canvas);
}

Once we update our drawing, we can see the animating rain on top of our trail (see Figure 2-22).

CHAPTER 2  USING THE CANVAS API

61

Figure 2-22. Still shot of canvas with rain animation

It is up to the browser to decide how often to call the animation frame callback. Pages in the
background will be called less frequently, and the browser may clip the rendering to the element
provided to the requestAnimationFrame call (“canvas” in our example) to optimize drawing resources.
You aren’t guaranteed a frame rate, but you are spared the work of scheduling for different
environments!

This technique is not limited to the Canvas API. You can use requestAnimationFrame to make
changes anywhere on the page content or CSS. There are other ways to produce movement on a web
page—CSS animations come to mind—but if you are working with script-based changes, the
requestAnimationFrame function is the way to go.

Summary
As you can see, the Canvas API provides a very powerful way to modify the appearance of your web
application without resorting to odd document hacks. Images, gradients, and complex paths can be
combined to create nearly any type of display you may be looking to present. Keep in mind that you
generally need to draw at the origin, load any images you want to display before attempting to draw
them, and be mindful of tainting your canvas with foreign image sources. However, if you learn to
harness the power of the canvas, you can create applications that were never possible in a web page
before.

C H A P T E R 3

63

Working with Scalable Vector
Graphics
In this chapter, we’ll explore what you can do with another graphics feature in HTML5: Scalable Vector
Graphics. Scalable Vector Graphics, or SVG, is an expressive language for two dimensional graphics.

Overview of SVG
In this section we’ll look at the standard vector graphics support in HTML5 browsers, but first, let’s
review a couple of graphics concepts: raster and vector graphics.

In raster graphics, an image is represented by a two dimensional grid of pixels. The HTML5 Canvas
2d API is an example of a raster graphics API. Drawing with the Canvas API updates the canvas’s pixels.
PNG and JPEG are examples of raster image formats. The data in PNG and JPEG images also represents
pixels.

Vector graphics are quite different. Vector graphics represent images with mathematical
descriptions of geometry. A vector image contains all of the information needed to draw an image from
high-level geometric objects such as lines and shapes. As you can tell by the name, SVG is an example of
vector graphics. Like HTML, SVG is a file format that also has an API. SVG combined with the DOM APIs
form a vector graphics API. It is possible to embed raster graphics such as PNG images inside of SVG, but
SVG is primarily a vector format.

History
SVG has been around for a few years. SVG 1.0 was published as a W3C recommendation in 2001. SVG
was originally available in browsers with the use of a plugin. Shortly afterward, browsers added native
support for SVG images.

Inline SVG in HTML has a shorter history. A defining characteristic of SVG is that it is based on XML.
HTML, of course, has a different syntax, and you cannot simply embed XML syntax inside of HTML
documents. Instead, it has special rules for SVG. Prior to HTML5, it was possible to embed SVG as
elements inside an HTML page or link to self-contained .svg documents. HTML5 introduced inline SVG,
in which SVG elements themselves can appear in HTML markup. Of course, in HTML, the syntax rules
are more relaxed than in XML. You can have unquoted attributes, mixed capitalization, and so on. You
will still need to use self-closing tags when appropriate. For example, you can embed a circle into your
HTML document with just a little markup:

<svg height=100 width=100><circle cx=50 cy=50 r=50 /></svg>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

64

Understanding SVG
Figure 3-1 shows an HTML5 document with the Happy Trails! image we drew with the canvas API in
Chapter 2. If you read the title of this chapter, you can probably guess that this version was drawn with
SVG. SVG lets you do many of the same drawing operations as the canvas API. Much of the time, the
results can be visually identical. There are some important invisible differences, however. For one thing,
the text is selectable. You don’t get that with canvas! When you draw text onto a canvas element, the
characters are frozen as pixels. They become part of the image and cannot change unless you redraw a
region of the canvas. Because of that, text drawn onto a canvas is invisible to search engines. SVG, on the
other hand, is searchable. Google, for instance, indexes the text in SVG content on the web.

Figure 3-1. SVG version of Happy Trails!

SVG is closely related to HTML. If you choose, you can define the content of an SVG document with
markup. HTML is a declarative language for structuring pages. SVG is a complimentary language for
creating visual structures. You can interact with both SVG and HTML using DOM APIs. SVG documents
are live trees of elements that you can script and style, just like HTML. You can attach event handlers to
SVG elements. For example, you can use click event handlers to make SVG buttons or shaped clickable
regions. That is essential for building interactive applications that use mouse input.

Additionally, you can view and edit the structure of the SVG in your browser’s development tool. As
you can see in Figure 3-2, inline SVG embeds directly into the HTML DOM. It has a structure you can
observe and change at runtime. You can dig into SVG and see its source, unlike an image that is just a
grid of pixels.

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

65

Figure 3-2.Looking at the SVG elements in ChromeWeb Inspector

In Figure 3-2, the highlighted text element contains the following code:

< text y="60" x="200" font-family="impact" font-size="60px"
 fill="#996600" text-anchor="middle">
 Happy Trails
</text>

In the development environment you can add, remove, and edit SVG elements. The changes take
effect instantly in the active page. This is extremely convenient for debugging and experimenting.

RETAINED-MODE GRAPHICS

Frank says: “There are two schools of thought in graphics API design. Immediate-mode graphics like
canvas provide a drawing interface. API calls cause a drawing action to occur immediately, hence the
name. The counter style to immediate mode-graphics is called retained-mode. In retained-mode graphics,
there is a model of the visual objects in the scene that is retained over time. There is an API to manipulate

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

66

the scene graph, and the graphics engine redraws the scene when it changes. SVG is retained-mode
graphics in which its scene graph is the document. The API to manipulate SVG is the W3C DOM API.

There are JavaScript libraries that build-retained mode APIs on top of canvas. Some also provide sprites,
input handling, and layers. You may choose to use such a library, but remember that these features and
more are native in SVG!”

Scalable Graphics
When you magnify, rotate, or otherwise transform SVG content, all of the lines making up the image are
crisply redrawn. SVG scales without losing quality. The vector information that makes up an SVG
document is preserved when it is rendered. Contrast that with pixel graphics. If you magnify a pixel
graphic like a canvas or an image, it becomes blurry. That is because the image is composed of pixels
that can only be resampled at a higher resolution. The underlying information—the paths and shapes
that went into making the image—is lost after drawing (see Figure 3-3).

Figure 3-3. Closeups of SVG and canvas at 500% magnification

Creating 2D Graphics with SVG
Let’s look again at the Happy Trails! image from Figure 3-1.Every visible part of this SVG drawing has
some corresponding markup. The complete SVG language is quite extensive, and all of its details and
nuances will not fit in this chapter. However, to get a glimpse of the breadth of the SVG vocabulary, here
are some of the features used to draw Happy Trails:

• Shapes

• Paths

• Transformations

• Patterns and Gradients

• Reusable Content

• Text

Let’s look at each of these in turn before we combine them into a complete scene. Before we can do
that, though, we’ll need to see how to add SVG to a page.

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

67

Adding SVG to a Page
Adding inline SVG to an HTML page is as simple as adding any other element.

There are several ways to use SVG on the Web, including as elements. We will use inline SVG
in HTML, because it will integrate into the HTML document. That will let us later write an interactive
application that seamlessly combines HTML, JavaScript, and SVG (see Listing 3-1).

Listing 3-1. SVG Containing a Red Rectangle

<!doctype html>
<svg width="200" height="200">
</svg>

That’s it! No XML namespace necessary. Now, between the start and end svg tags, we can add
shapes and other visual objects. If you want to split the SVG content out into a separate .svg file, you will
need to change it like so:

<svg width="400" height="600" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
</svg>

Now it is a valid XML document with the proper namespace attributes. You will be able to open that
document with a wide variety of image viewers and editors. You can also refer to an SVG file from HTML
as a static image with code such as . One downside to that approach is that the
SVG document is not integrated into the DOM the way inline SVG content is. You won’t be able to script
interaction with the SVG elements.

Simple Shapes
The SVG language includes basic shape elements such as rectangles, circles, and ellipses. The size and
position of shape elements are defined with attributes. For rectangles, these are width and height. For
circles, there is an r attribute for radius. All of these use the CSS syntax for distances, so they can be
pixels, points, ems, and so on. Listing 3-2 is a very short HTML document containing inline SVG. It is just
a gray rectangle with a red outline that is 100 pixels by 80 pixels in size, and it is displayed in Figure 3-4.

Listing 3-2. SVG Containing a Red Rectangle

<!doctype html>
<svg width="200" height="200">
 <rect x="10" y="20" width="100" height="80" stroke="red" fill="#ccc" />
</svg>

Figure 3-4. An SVG rectangle in an HTML document

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

68

SVG draws objects in the order they appear in the document. If we add a circle after the rectangle, it
appears on top of the first shape. We will give that circle an 8 pixel wide blue stroke and no fill style (see
Listing 3-3), so it stands out, as shown in Figure 3-5.

Listing 3-3. A Rectangle and a Circle

<!doctype html>
<svg width="200" height="200">
 <rect x="10" y="20" width="100" height="80" stroke="red" fill="#ccc" />
 <circle cx="120" cy="80" r="40" stroke="#00f" fill="none" stroke-width="8" />
</svg>

Figure 3-5. A rectangle and a circle

Note that the x and y attributes define the position of the top-left corner of the rectangle. The circle,
on the other hand, has cx and cy attributes, which are the x and y values for the center of the circle. SVG
uses the same coordinate system as the canvas API. The top-left corner of the svg element is position 0,0.
See Chapter 2 for the details of the canvas coordinate system.

Transforming SVG Elements
There are organizational elements in SVG intended to combine multiple elements so that they can be
transformed or linked to as units. The <g> element stands for “group.” Groups can be used to combine
multiple related elements. As a group, they can be referred to by a common ID. A group can also be
transformed as a unit. If you add a transform attribute to a group, all of that group’s contents are
transformed. The transform attribute can include commands to rotate (see Listing 3-4 and Figure 3-6),
translate, scale, and skew. You can also specify a transformation matrix, just as you can with the canvas
API.

Listing 3-4. A Rectangle and a Circle Within a Rotated Group

<svg width="200" height="200">
 <g transform="translate(60,0) rotate(30) scale(0.75)" id="ShapeGroup">
 <rect x="10" y="20" width="100" height="80" stroke="red" fill="#ccc" />
 <circle cx="120" cy="80" r="40" stroke="#00f" fill="none" stroke-width="8" />
 </g>
</svg>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

69

Figure 3-6. A rotated group

Reusing Content
SVG has a <defs> element for defining content for future use. It also has an element named <use> that
you can link to your definitions. This lets you reuse the same content multiple times and eliminate
redundancy. Figure 3-7 shows a group used three times at different transformed positions and scales.
The group has the id ShapeGroup, and it contains a rectangle and a circle. The actual rectangle and circle
shapes are just defined the one time inside of the <defs> element. The defined group is not, by itself,
visible. Instead, there are three <use> elements linked to the shape group, so three rectangles and three
circles appear rendered on the page (see Listing 3-5).

Listing 3-5. Using a Group Three Times

<svg width="200" height="200">
 <defs>
 <g id="ShapeGroup">
 <rect x="10" y="20" width="100" height="80" stroke="red" fill="#ccc" />
 <circle cx="120" cy="80" r="40" stroke="#00f" fill="none" stroke-width="8" />
 </g>
 </defs>

 <use xlink:href="#ShapeGroup" transform="translate(60,0) scale(0.5)"/>
 <use xlink:href="#ShapeGroup" transform="translate(120,80) scale(0.4)"/>
 <use xlink:href="#ShapeGroup" transform="translate(20,60) scale(0.25)"/>
</svg>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

70

Figure 3-7. Three use elements referencing the same group

Patterns and Gradients
The circle and rectangle in Figure 3-7 have simple fill and stroke styles. Objects can be painted with
more complex styles, including gradients and patterns (see Listing 3-6). Gradients can be linear or radial.
Patterns can be made up of pixel graphics or even other SVG elements. Figure 3-8 shows a rectangle with
a linear color gradient as well as a circle with a gravel texture. The texture comes from a JPEG image that
is linked to from an SVG image element.

Listing 3-6. Texturing the Rectangle and Circle

<!doctype html>
<svg width="200" height="200">
 <defs>
 <pattern id="GravelPattern" patternUnits="userSpaceOnUse"
 x="0" y="0" width="100" height="67" viewBox="0 0 100 67">
 <image x="0" y="0" width="100" height="67" xlink:href="gravel.jpg"></image>
 </pattern>

 <linearGradient id="RedBlackGradient">
 <stop offset="0%" stop-color="#000"></stop>
 <stop offset="100%" stop-color="#f00"></stop>
 </linearGradient>
 </defs>

 <rect x="10" y="20" width="100" height="80"
 stroke="red"
 fill="url(#RedBlackGradient)" />
 <circle cx="120" cy="80" r="40" stroke="#00f"
 stroke-width="8"
 fill="url(#GravelPattern)" />
</svg>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

71

Figure 3-8. A rectangle with a gradient fill and a circle with a pattern fill

SVG Paths
SVG has freeform paths as well as simple shapes. Path elements have d attributes. The “d” stands for
data. Inside the value of the d attribute, you can specify a series of path drawing commands. Each
command might take coordinate arguments. Some of the commands are M for moveto, L for lineto, Q
for quadratic curve, and Z for closing the path. If these remind you of the canvas drawing API, that is no
coincidence. Listing 3-7 uses a path element to draw a closed tree canopy shape using a series of lineto
commands.

Listing 3-7. SVG Path Defining a Tree Canopy

 <path d="M-25, -50
 L-10, -80
 L-20, -80
 L-5, -110
 L-15, -110
 L0, -140
 L15, -110
 L5, -110
 L20, -80
 L10, -80
 L25, -50
 Z" id="Canopy"></path>

You can fill a path by closing it with the Z command and giving it a fill attribute, just like the
rectangle we drew earlier. Figure 3-9 shows how to draw a tree by combining a stroked closed path and a
filled closed path.

Figure 3-9. A stroked path, a filled path, and both paths

Similarly, we can create an open path with two quadratic curves to form a trail. We can even give it
texture. Note the stroke-linejoin attribute in Listing 3-8. This makes a round connection between the
two quadratic curves. Figure 3-10 shows a mountain trail drawn as an open path.

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

72

Listing 3-8. SVG Path Defining a Twisting Trail

 <g transform="translate(-10, 350)" stroke-width="20" stroke="url(#GravelPattern)" stroke-
linejoin="round">
 <path d="M0,0 Q170,-50 260, -190 Q310, -250 410,-250" fill="none"></path>
 </g>

Figure 3-10. An open path containing two quadratic curves

Using SVG Text
SVG also supports text. Text in SVG is selectable within the browser (see Figure 3-11). Should they
choose to, browsers and search engines could also allow users to search for text inside of SVG text
elements. This has major usability and accessibility benefits.

SVG Text has attributes that are similar to CSS style rules for HTML. Listing 3-9 shows a text element
that has font-weight and font-family attributes. As in CSS, font-family can be a single font-family name
like “sans-serif” or a list of fallbacks like “Droid Sans, sans-serif” in the order you prefer.

Listing 3-9. SVG Text

<svg width="600" height="200">
 <text
 x="10" y="80"
 font-family="Droid Sans"
 stroke="#00f"
 fill="#0ff"
 font-size="40px"
 font-weight="bold">
 Select this text!
 </text>
</svg>

Figure 3-11. Selecting SVG text

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

73

Putting the Scene Together
We can combine all of the preceding elements to make an image of happy trails. The text is, naturally, a
text element. The tree trunks are composed of two rectangles. The tree canopies are two paths. The trees
cast shadows, which use the same geometry given a gray fill color and a transformation that skews them
down and to the right. The winding path that cuts across the image is another path with an image
pattern for texture. There is also a little bit of CSS to give the scene an outline.

Listing 3-10 provides the complete code for trails-static.html.

Listing 3-10. Complete Code for trails-static.html

<title>Happy Trails in SVG</title>

<style>
 svg {
 border: 1px solid black;
 }
</style>

<svg width="400" height="600">

 <defs>
 <pattern id="GravelPattern" patternUnits="userSpaceOnUse" x="0" y="0" width="100"
height="67" viewBox="0 0 100 67">
 <image x=0 y=0 width=100 height=67 xlink:href="gravel.jpg" />
 </pattern>
 <linearGradient id="TrunkGradient">
 <stop offset="0%" stop-color="#663300" />
 <stop offset="40%" stop-color="#996600" />
 <stop offset="100%" stop-color="#552200" />
 </linearGradient>

 <rect x="-5" y="-50" width=10 height=50 id="Trunk" />
 <path d="M-25, -50
 L-10, -80
 L-20, -80
 L-5, -110
 L-15, -110
 L0, -140
 L15, -110
 L5, -110
 L20, -80
 L10, -80
 L25, -50
 Z"
 id="Canopy"
 />
 <linearGradient id="CanopyShadow" x=0 y=0 x2=0 y2=100%>
 <stop offset="0%" stop-color="#000" stop-opacity=".5" />
 <stop offset="20%" stop-color="#000" stop-opacity="0" />
 </linearGradient>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

74

 <g id="Tree">
 <use xlink:href="#Trunk" fill="url(#TrunkGradient)" />
 <use xlink:href="#Trunk" fill="url(#CanopyShadow)" />
 <use xlink:href="#Canopy" fill="none" stroke="#663300"
 stroke-linejoin="round" stroke-width="4px" />
 <use xlink:href="#Canopy" fill="#339900" stroke="none" />
 </g>

 <g id="TreeShadow">
 <use xlink:href="#Trunk" fill="#000" />
 <use xlink:href="#Canopy" fill="000" stroke="none" />
 </g>
 </defs>

 <g transform="translate(-10, 350)"
 stroke-width="20"
 stroke="url(#GravelPattern)"
 stroke-linejoin="round">
 <path d="M0,0 Q170,-50 260, -190 Q310, -250 410,-250"
 fill="none" />
 </g>

 <text y=60 x=200
 font-family="impact"
 font-size="60px"
 fill="#996600"
 text-anchor="middle" >
 Happy Trails!
 </text>

 <use xlink:href="#TreeShadow"
 transform="translate(130, 250) scale(1, .6) skewX(-18)"
 opacity="0.4" />
 <use xlink:href="#Tree" transform="translate(130,250)" />

 <use xlink:href="#TreeShadow"
 transform="translate(260, 500) scale(2, 1.2) skewX(-18)"
 opacity="0.4" />

 <use xlink:href="#Tree" transform="translate(260, 500) scale(2)" />
</svg>

 Building an Interactive Application with SVG
In this section, we’ll expand on the static example. We will add HTML and JavaScript to make the
document interactive. We will take advantage of the capabilities of SVG in an application that would
require considerably more code to implement with the canvas API.

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

75

Adding Trees
We need just a single button element in this interactive application. The click handler for the button
adds a new tree at a random location within the 600x400 pixel SVG region. The new tree is also randomly
scaled by an amount between 50% and 150%. Each new tree is actually a <use> element referencing the
“Tree” group containing multiple paths. The code uses the namespaced document.createElementNS()
call to create a <use> element. It links it with the xlink:href attribute to the previously defined Tree
group. It then appends the new element to the SVG element tree (see Listing 3-11).

Listing 3-11. Add Tree Function

 document.getElementById("AddTreeButton").onclick = function() {
 var x = Math.floor(Math.random() * 400);
 var y = Math.floor(Math.random() * 600);
 var scale = Math.random() + .5;
 var translate = "translate(" +x+ "," +y+ ") ";

 var tree = document.createElementNS("http://www.w3.org/2000/svg", "use");
 tree.setAttributeNS("http://www.w3.org/1999/xlink", "xlink:href", "#Tree");
 tree.setAttribute("transform", translate + "scale(" + scale + ")");
 document.querySelector("svg").appendChild(tree);
 updateTrees();
 }

Elements are rendered in the order they appear in the DOM. This function always adds trees as new
child nodes at the end of the SVG element’s list of child nodes. That means that newer trees will appear
on top of older trees.

This function ends with a call to updateTrees(), which we will see next.

Adding the updateTrees Function
The updateTrees function runs when the document initially loads as well as any time trees are added or
removed. It is responsible for updating the text that displays the number of trees in the forest. It also
attaches a click handler function to each tree (see Listing 3-12).

Listing 3-12 updateTrees Function

 function updateTrees() {
 var list = document.querySelectorAll("use");
 var treeCount = 0;
 for (var i=0; i<list.length; i++) {
 if(list[i].getAttribute("xlink:href")=="#Tree") {
 treeCount++;
 list[i].onclick = removeTree;
 }
 }
 var counter = document.getElementById("TreeCounter");
 counter.textContent = treeCount + " trees in the forest";
 }

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

76

An important thing to note about this code is that it keeps no state in JavaScript regarding the tree
count. Every time an update occurs, this code selects and filters all of the trees from the live document to
get the latest count.

Adding the removeTree Function
Now, let’s add the function that removes trees when they are clicked (see Listing 3-13).

Listing 3-13. removeTree Function

 function removeTree(e) {
 var elt = e.target;
 if (elt.correspondingUseElement) {
 elt = elt.correspondingUseElement;
 }
 elt.parentNode.removeChild(elt);
 updateTrees();

 }

The first thing we do here is check the target of the click event. Due to differences in DOM
implementations, the event target could be either the tree group or a use element linked to that group.
Either way, this function simply removes that element from the DOM and calls the updateTrees()
function.

If you remove a tree that is on top of another tree, you don’t have to do anything to redraw the lower
content. This is one of the benefits of developing against a retained-mode API. You simply manipulate
the tree (no pun intended) of elements, and the browser takes care of drawing the necessary pixels.
Similarly, when the text updates to display the latest tree count, it stays below the trees. If you want the
text to appear above the trees, you will have to append the trees to the document before the text
element.

Adding the CSS Styles
To make the interaction more discoverable, we will add some CSS that changes the appearance of the
tree beneath the mouse cursor:

g[id=Tree]:hover {
 opacity: 0.9;
 cursor: crosshair;
 }

Whenever you hover over an element with an id attribute equal to “Tree,” that element will become
partially transparent, and the mouse cursor will change to a crosshair.

The one pixel black border around the entire SVG element is also defined in CSS.

 svg {
 border: 1px solid black;
 }

And that’s it! Now you have an interactive application using inline SVG in HTML5 (see Figure 3-12).

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

77

Figure 3-12. The final document with a few trees added

The Final Code
For completeness, Listing 3-14 provides the entire trails-dynamic.html file. It contains all of the SVG
from the static version as well as the script that makes it interactive.

Listing 3-14. The Entire trails-dynamic.html Code

<!doctype html>
<title>Happy Trails in SVG</title>

<style>
 svg {
 border: 1px solid black;
 }
 g[id=Tree]:hover {
 opacity: 0.9;
 cursor: crosshair;
 }
</style>

<div>
 <button id="AddTreeButton">Add Tree</button>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

78

</div>

<svg width="400" height="600">

 <defs>
 <pattern id="GravelPattern" patternUnits="userSpaceOnUse" x="0" y="0" width="100"
height="67" viewBox="0 0 100 67">
 <image x=0 y=0 width=100 height=67 xlink:href="gravel.jpg" />
 </pattern>
 <linearGradient id="TrunkGradient">
 <stop offset="0%" stop-color="#663300" />
 <stop offset="40%" stop-color="#996600" />
 <stop offset="100%" stop-color="#552200" />
 </linearGradient>

 <rect x="-5" y="-50" width=10 height=50 id="Trunk" />
 <path d="M-25, -50
 L-10, -80
 L-20, -80
 L-5, -110
 L-15, -110
 L0, -140
 L15, -110
 L5, -110
 L20, -80
 L10, -80
 L25, -50
 Z"
 id="Canopy"
 />
 <linearGradient id="CanopyShadow" x=0 y=0 x2=0 y2=100%>
 <stop offset="0%" stop-color="#000" stop-opacity=".5" />
 <stop offset="20%" stop-color="#000" stop-opacity="0" />
 </linearGradient>
 <g id="Tree">
 <use xlink:href="#Trunk" fill="url(#TrunkGradient)" />
 <use xlink:href="#Trunk" fill="url(#CanopyShadow)" />
 <use xlink:href="#Canopy" fill="none" stroke="#663300"
 stroke-linejoin="round" stroke-width="4px" />
 <use xlink:href="#Canopy" fill="#339900" stroke="none" />
 </g>
 </defs>

 <g transform="translate(-10, 350)"
 stroke-width="20"
 stroke="url(#GravelPattern)"
 stroke-linejoin="round">
 <path d="M0,0 Q170,-50 260, -190 Q310, -250 410,-250"
 fill="none" />
 </g>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

79

 <text y=60 x=200
 font-family="impact"
 font-size="60px"
 fill="#996600"
 text-anchor="middle" >
 Happy Trails!
 </text>
 <text y=90 x=200
 font-family="impact"
 font-size="20px"
 fill="#996600"
 text-anchor="middle" id="TreeCounter">
 </text>

 <text y=420 x=20
 font-family="impact"
 font-size="20px"
 fill="#996600"
 text-anchor="left">
 <tspan>You can remove a</tspan>
 <tspan y=440 x=20>tree by clicking on it.</tspan>
 </text>

 <use xlink:href="#Tree" transform="translate(130,250)" />
 <use xlink:href="#Tree" transform="translate(260, 500) scale(2)" />
</svg>

<script>
 function removeTree(e) {
 var elt = e.target;
 if (elt.correspondingUseElement) {
 elt = elt.correspondingUseElement;
 }
 elt.parentNode.removeChild(elt);
 updateTrees();
 }

 document.getElementById("AddTreeButton").onclick = function() {
 var x = Math.floor(Math.random() * 400);
 var y = Math.floor(Math.random() * 600);
 var scale = Math.random() + .5;
 var translate = "translate(" +x+ "," +y+ ") ";

 var tree = document.createElementNS("http://www.w3.org/2000/svg", "use");
 tree.setAttributeNS("http://www.w3.org/1999/xlink", "xlink:href", "#Tree");
 tree.setAttribute("transform", translate + "scale(" + scale + ")");
 document.querySelector("svg").appendChild(tree);
 updateTrees();
 }

 function updateTrees() {
 var list = document.querySelectorAll("use");

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

80

 var treeCount = 0;
 for (var i=0; i<list.length; i++) {
 if(list[i].getAttribute("xlink:href")=="#Tree") {
 treeCount++;
 list[i].onclick = removeTree;
 }
 }
 var counter = document.getElementById("TreeCounter");
 counter.textContent = treeCount + " trees in the forest";
 }

 updateTrees();
</script>

SVG TOOLS

Frank says: “Because of SVG’s long history as a standard format for vector graphics, there are many useful
tools for working with SVG images. There is even an open-source editor called SVG-edit that runs in the
browser. You can embed it in your own applications! On the desktop, Adobe Illustrator and Inkscape are two
powerful vector graphics applications that can both import and export SVG. I’ve found Inkscape to be very
useful for creating new graphics (see Figure 3-13).

SVG tools tend to work with standalone .svg files, not SVG embedded in HTML, so you may need to convert
between the two formats.”

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3  WORKING WITH SCALABLE VECTOR GRAPHICS

81

Figure 3-13. Modifying the stroke of a text element in Inkscape

Summary
In this chapter, you have seen how SVG in HTML5 provides a powerful way to create applications with
interactive two dimensional graphics.

First we looked at a scene drawn using SVG embedded in an HTML5 document. We examined the
elements and attributes that made up the drawing. We saw how you can define and reuse content
definitions, group and transform elements, and draw with shapes, paths, and text.

Finally, we added JavaScript to an SVG document to make an interactive application. We used CSS,
DOM manipulation, and events to take advantage of SVG’s nature as a live document.

Now that we’ve seen how SVG brings vector graphics to HTML5, we’ll turn our attention to audio-
visual elements that bring more complex media to your application.

C H A P T E R 4

83

Working with Audio and Video

In this chapter, we’ll explore what you can do with two important HTML5 elements—audio and video—
and we’ll show you how they can be used to create compelling applications. The audio and video
elements add new media options to HTML5 applications that allow you to use audio and video without
plugins while providing a common, integrated, and scriptable API.

First, we’ll discuss audio and video container files and codecs, and why we ended up with the
codecs supported today. We’ll go on to describe lack of common codec support—the most important
drawback for using the media elements—and we’ll discuss how we hope that this won’t be such a big
issue in the future. We’ll also show you a mechanism for switching to the most appropriate type of
content for the browser to display.

Next, we’ll show you how you can use control audio and video programmatically using the APIs and
finally we’ll explore the use of the audio and video in your applications.

Overview of Audio and Video
In the following sections, we’ll discuss some of the key concepts related to Audio and video: containers
and codecs.

Video Containers
An audio or video file is really just a container file, similar to a ZIP archive file that contains a number of
files. Figure 4-1 shows how a video file (a video container) contains audio tracks, video tracks, and
additional metadata. The audio and video tracks are combined at runtime to play the video. The
metadata contains information about the video such as cover art, title and subtitle, captioning
information, and so on.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

84

Figure 4-1. Overview of the video container

Some of the popular video container formats include the following:

• Audio Video Interleave (.avi)

• Flash Video (.flv)

• MPEG 4 (.mp4)

• Matroska (.mkv)

• Ogg (.ogv)

Audio and Video Codecs
Audio and video coders/decoders (codecs) are algorithms used to encode and decode a particular audio or
video stream so that they can be played back. Raw media files are enormous, so without encoding, a
video or audio clip would consist of tremendous amounts of data that could be too large to transmit
across the Internet in a reasonable amount of time. Without a decoder, the recipient would not be able
to reconstitute the original media source from the encoded form. A codec is able to understand a specific
container format and decodes the audio and video tracks that it contains.

Some example audio codecs are the following:

• AAC

• MPEG-3

• Ogg Vorbis

Example video codecs are the following:

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

85

• H.264

• VP8

• Ogg Theora

The Codec Wars and the Tentative Truce
Some of the codecs are patent-encumbered, while others are freely available. For example, the Vorbis
audio codec and the Theora video codec are freely available, while the use of the MPEG-4 and H.264
codecs are subject to license fees.

Originally, the HTML5 specification was going to require that certain codecs were supported.
However, some vendors did not wish to include Ogg Theora as it was not part of their existing hardware
and software stacks. Apple's iPhone, for example, includes hardware accelerated decoding for h264
video but not Theora. Free systems, on the other hand, cannot include proprietary for-pay codecs
without hurting downstream distribution. On top of that, the performance that certain proprietary
codecs provide is a factor in the browser uptake of free codecs. This situation has led to a stalemate;
there does not appear to be a single codec that all browser vendors are willing to implement.

For now, the codec requirement has been dropped from the specification. However, this decision
may be revisited in the future. For now, understand the current browser support and understand that
you may need to re-encode your media for different environments. (You should probably be doing this
already.)

We do expect that support for different codecs will increase and converge over time, making the
choice of common media types easy and ubiquitous. It is also possible that one codec will grow to be the
de facto standard codec for the Web. Additionally, the media tags have a built in mechanism for
switching to the most appropriate type of content for the browser to display to make supporting
different environments easy.

Here Comes WebM

Frank says: “Google introduced the WebM video format in May 2010. WebM is a new format for audio and
video intended to clear up the murky media format situation on the Web. WebM files have the .webm
extension and consist of VP8 video and Ogg Vorbis audio in a container based on Matroska. Google
released the WebM specification and software under permissive licenses covering source code and patent
rights. As a high quality format that is free for both implementers and publishers, WebM represents a
significant development in the codec landscape.”

Audio and Video Restrictions
There are a few things that are not supported in the Audio and video specification:

• Streaming audio and video. That is, there is currently no standard for bitrate
switching in HTML5 video; only full media files are supported by current
implementations. However, there are aspects of the spec that are designed to
support streaming media in the future once the formats are supported.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

86

• Media is restricted by HTTP cross-origin resource sharing. See Chapter 6 for more
information about cross-origin resource sharing (CORS).

• Full-screen video is not scriptable because it could be considered a security
violation to let a scriptable element take over the full screen. However, browsers
have the option of letting users choose to view videos in full screen through
additional controls.

Browser Support for Audio and Video
Due to the fractured codec support, simply knowing which browsers support the new audio and video
elements is not enough; you also need to know which codecs are supported. Table4-1 shows which
browsers support which codecs at the time of this writing.

Table 4-1. Audio and Video Codec and Container Support

Browser Codec and Container Support

Chrome Ogg (Theora and Vorbis)
WebM (VP8 and Vorbis)
MPEG 4 (H.264 and AAC)

Firefox Ogg (Theora and Vorbis)
WebM (VP8 and Vorbis)

Internet Explorer MPEG 4 (H.264 and AAC)

Opera Ogg (Theora and Vorbis)
WebM (VP8 and Vorbis)

Safari MPEG 4 (H.264 and AAC)

Note also that Google announced it will drop support for the MP4 format, but that has not

happened yet. Also, there is a plugin that can be used to play WebM in Internet Explorer 9. It is always
good idea to first test whether audio and video are supported. The section “Checking for Browser
Support” later in this chapter will show you how you can programmatically check for browser support.

Using the Audio and Video API
In this section, we’ll explore the use of the audio and video in your applications. There are two main
benefits to using the new media tags over previous video-embedding techniques—usually videos are
embedded using the Flash, QuickTime, or Windows Media plugins—that aim to make life easier for
users and developers:

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

87

• The new audio and video tags remove deployment hurdles by being part of the
native browser environment. Although some plugins have high install rates, they
are often blocked in controlled corporate environments. Some users choose to
disable these plugins due to the... ostentatious… advertising displays those
plugins are also capable of, which also removes their capability to be used for
media playback. Plugins are also separate vectors of attack for security issues. And
plugins often have difficulty integrating their displays with the rest of browser
content, causing clipping or transparency issues with certain site designs. Because
plugins use a self-contained rendering model that is different from that of the base
web page, developers face difficulties if elements such as popup menus or other
visual elements need to cross plugin boundaries in a page.

• The media elements expose a common, integrated, and scriptable API to the
document. As a developer, your use of the new media elements allows very simple
ways to script the control and playback of content. We will see multiple examples
of this later in the chapter.

Of course, there is one primary drawback to using the media tags: lack of common codec support, as
discussed in the earlier sections of this chapter. However, we expect that support for codecs will increase
and converge over time, making the choice of common media types easy and ubiquitous. Plus, the
media tags have a built-in mechanism for switching to the most appropriate type of content for the
browser to display, as you will soon see.

Checking for Browser Support
The easiest way to check for support of the video and audio tags is to dynamically create one or both
with scripting and check for the existence of a function:

var hasVideo = !!(document.createElement('video').canPlayType);

This simple code line will dynamically create a video element and check for the existence of the
canPlayType() function. By using the !! operator, the result is converted to a Boolean value, which
indicates whether or not a video object could be created.

However, if video or audio support is not present, you may choose to use an enabling script that
introduces media script tags into older browsers, allowing the same scriptability but using technologies
such as Flash for playback.

Alternatively, you can choose to include alternate content between your audio or video tags, and the
alternate content will display in place of the unsupported tag. This alternate content can be used for a
Flash plugin to display the same video if the browser doesn’t support the HTML5 tags. If you merely wish
to display a text message for nonsupporting browsers, it is quite easy to add content inside the video or
audio elements as shown in Listing 4-1.

Listing 4-1. Simple Video Element

<video src="video.webm" controls>
 Your browser does not support HTML5 video.
</video>

However, if you choose to use an alternative method to render video for browsers without HTML5
media support, you can use the same element content section to provide a reference to an external
plugin displaying the same media as shown in Listing 4-2.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

88

Listing 4-2. Video Element with Flash Fallback

<video src="video.webm" controls>
 <object data="videoplayer.swf" type="application/x-shockwave-flash">
 <param name="movie" value="video.swf"/>
 </object>
 Your browser does not support HTML5 video.
</video>

By embedding an object element that displays a Flash video inside the video element, the HTML5
video will be preferred if it is available, and the Flash video will be used as a fallback. Unfortunately, this
requires multiple versions of the video to be served up until HTML5 support is ubiquitous.

Accessibility
Making your web applications accessible to everyone isn’t just the right thing to do; it’s good business,
and, in some cases, it’s the law! Users with limited vision or hearing should be presented with alternative
content that meets their needs. Keep in mind that the alternative content located between the video and
audio elements is only displayed if the browser does not support those elements at all and, therefore, is
not suitable for accessible displays where the browser may support HTML5 media but the user may not.

The emerging standard for video accessibility is Web Video Text Tracks (WebVTT), formerly known
as Web SubRip Text (WebSRT) format. At the time of this writing, it is only just starting to appear in some
early builds of browsers. WebVTT uses a simple text file (*.vtt) that starts with the word WEBVTT on the
first line. The vtt file must be served up with the mime type text/vtt. Listing 4-3 shows the contents of
an example vtt file.

Listing 4-3. WebVTT File

WEBVTT

1
00:00:01,000 --> 00:00:03,000
What do you think about HTML5 Video and WebVTT?...

2
00:00:04,000 --> 00:00:08,000
I think it’s great. I can’t wait for all the browsers to support it!

To use the vtt file in your video element, add the track element pointing to the vtt file as shown in the
following example:

<video src="video.webm" controls>
 <track label="English" kind="subtitles" srclang="en" src="subtitles_en.vtt" default>
 Your browser does not support HTML5 video.
</video>

You can add multiple track elements. Listing 4-4 shows how you can support English and Dutch
subtitles using track elements pointing to a vtt file.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

89

Listing 4-4. Using WebVTT Tracks in a Video Element

<video src="video.ogg" controls>
 <track label="English" kind="subtitles" srclang="en" src="subtitles_en.vtt">
 <track label="Dutch" kind="subtitles" srclang="nl" src="subtitles_nl.vtt">
 Your browser does not support HTML5 video.
</video>

The WebVTT standard supports more than just subtitles. It also allows for captions and cue settings
(instructions for how text is rendered). The full WebVTT syntax is beyond the scope of this book. See the
WHATWG specification at www.whatwg.org/specs/web-apps/current-work/webvtt.html for more details.

Understanding Media Elements
Due to a wise design decision, there is much commonality between the audio and video elements in
HTML5. Both audio and video support many of the same operations—play, pause, mute/unmute, load,
and so on—and therefore, the common behavior was separated out into the media element section of
the specification. Let’s start examining the media elements by observing what they have in common.

The Basics: Declaring Your Media Element
For the sake of example, we will use an audio tag to try out the common behaviors of HTML5 media. The
examples in this section will be very media-heavy (surprise!), and they are included in the code/av folder
of the support files that come with this book.

For the very simplest example (the example file audio.html), let’s create a page that shows an audio
player for a soothing, satisfying, and very public domain audio clip: Johann Sebastian Bach’s “Air”
(shown in Listing 4-5).

Listing 4-5. HTML Page with an Audio Element

<!DOCTYPE html>
<html>
 <title>HTML5 Audio </title>
 <audio controls src="johann_sebastian_bach_air.ogg">
 An audio clip from Johann Sebastian Bach.
 </audio>
</html>

This clip assumes that the HTML document and the audio file—in this case,
johann_sebastian_bach_air.ogg—are served from the same directory. As shown in Figure 4-2, viewing
this in a browser supporting the audio tag will show a simple control and play bar representing the audio
to play. When the user clicks the play button, the audio track starts as expected.

http://www.whatwg.org/specs/web-apps/current-work/webvtt.html

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

90

Figure 4-2. Simple audio controls

The controls attribute tells the browser to display common user controls for starting, stopping, and
seeking in the media clip, as well as volume control. Leaving out the controls attribute hides them, and
leaves the clip with no way for the user to start playing.

The content between the audio tags is a text representation of what the browser will display if it does
not support the media tag. This is what you and your users will see if they are running an older browser.
It also gives the opportunity to include an alternate renderer for the media, such as a Flash player plugin
or a direct link to the media file.

Using the Source
Finally, we come to the most important attribute: src. In the simplest setup, a single src attribute points
to the file containing the media clip. But what if the browser in question does not support that container
or codec (in this case, Ogg and Vorbis)? Then, an alternate declaration is shown in Listing 4-6; it includes
multiple sources from which the browser can choose (see the example file audio_multisource.html).

Listing 4-6. An Audio Element with Multiple Source Elements

<audio controls>
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 An audio clip from Johann Sebastian Bach.
</audio>

In this case, we include two new source elements instead of the src attribute on the audio tag. This
allows the browser to choose which source best suits the playback capabilities it has and use the best fit
as the actual media clip. Sources are processed in order, so a browser that can play multiple listed source
types will use the first one it encounters.

 Note Place the media source files with the best user experience or lowest server load highest in any source
list.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

91

Running this clip in a supported browser may not change what you see. But if a browser supports
the MP3 format and not the Ogg Vorbis format, the media playback will now be supported. The beauty
of this declaration model is that as you write code to interact with the media file, it doesn’t matter to you
which container or codec was actually used. The browser provides a unified interface for you to
manipulate the media, no matter which source was matched for playback.

However, there is another way to give the browser hints about which media source to use. Recall
that a container for media can support many different codec types, and you will understand that a
browser may be misled into which types it does or does not support based on the extension of the
declared source file. If you specify a type attribute that does not match your source, the browser may
refuse to play the media. It may be wise to include the type only if you know it with certainty. Otherwise,
it is better to omit this attribute and let the browser detect the encoding as shown in Listing 4-7 (in the
example file audio_type.html). Also note that the WebM format allows only one audio codec and one
video codec. That means the .webm extension or the video/webm content-type tells you everything you
need to know about the file. If a browser can play .webm, it should be able to play any valid .webm file.

Listing 4-7. Including Type and Codec Information in an Audio Element

<audio controls>
 <source src="johann_sebastian_bach_air.ogg" type="audio/ogg; codecs=vorbis">
 <source src="johann_sebastian_bach_air.mp3" type="audio/mpeg">
 An audio clip from Johann Sebastian Bach.
</audio>

As you can see, the type attribute can declare both the container and codec type. The values here
represent Ogg Vorbis and MP3, respectively. The full list is governed by RFC 4281, a document
maintained by the Internet Engineering Task Force (IETF), but some common combinations are listed in
Table 4-2.

Table 4-2. Media Types and Attribute Values

Type Attribute Value

Theora video and Vorbis audio in an Ogg
container

type='video/ogg; codecs="theora, vorbis"'

Vorbis audio in an Ogg container type='audio/ogg; codecs=vorbis'

WebM video in a Matroska container type='video/webm; codecs="vp8, vorbis"'

Simple baseline H.264 video and low complexity
AAC audio in an MP4 container

type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'

MPEG-4 visual simple profile and low
complexity AAC audio in an MP4 container

type='video/mp4; codecs="mp4v.20.8,
mp4a.40.2"'

Taking Control
You’ve already seen that the default playback controls can be displayed by using the controls attribute
in the video or audio tag. As you might expect, leaving out this attribute will not display controls when

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

92

the media is displayed, but it will also not show anything at all in the case of audio files, as the only visual
representation of an audio element is its controls. (A video without controls still displays the video
content.) Leaving out the controls attribute should not display any content that affects the normal
rendering of the page. One way to cause the media to play is to set another attribute in the tag: autoplay
(see Listing 4-8 and the example file audio_no_control.html).

Listing 4-8. Using the Autoplay Attribute

<audio autoplay>
 <source src="johann_sebastian_bach_air.ogg" type="audio/ogg; codecs=vorbis">
 <source src="johann_sebastian_bach_air.mp3" type="audio/mpeg">
 An audio clip from Johann Sebastian Bach.
</audio>

By including the autoplay attribute, the media file will play as soon as it is loaded, without any user
interaction. (Note that autoplay is not supported everywhere. For example, it is disabled on iOS.)
However, most users will find this highly annoying, so use autoplay with caution. Playing audio without
prompting may be intended to create an atmospheric effect or, worse, to force an advertisement on the
user. But it also interferes with other audio playing on the user’s machine, and can be quite detrimental
to users who rely on audible screen readers to navigate web content. Note also that some devices, like
the iPad, prevent autoplay and even automatically playing a media file (triggered by a page load event,
for example).

If the built-in controls do not suit the layout of your user interface, or if you need to control the
media element using calculations or behaviors that are not exposed in the default controls, there are
many built-in JavaScript functions and attributes to help you, too. Table 4-3 lists some of the most
common functions.

Table 4-3. Common Control Functions

Function Behavior

load() Loads the media file and prepares it for playback. Normally does not need
to be called unless the element itself is dynamically created. Useful for
loading in advance of actual playback.

play() Loads (if necessary) and plays the media file. Plays from the beginning
unless the media is already paused at another position.

pause() Pauses playback if currently active.

canPlayType(type) Tests to see whether the video element can play a hypothetical file of the
given MIME type.

The canPlayType(type) method has a non-obvious use case: by passing in a MIME type of an

arbitrary video clip to a dynamically created video element, you can use a simple script to determine
whether the current browser supports that type. For example, the following code provides a quick way to
determine whether the current browser can support playing videos with MIME type of fooType without
displaying any visible content in the browser window:

var supportsFooVideo = !!(document.createElement('video').canPlayType(‘fooType’));

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

93

Note that this function returns the very non-binary “null,” “maybe,” or “probably,” with probably being
the best possible scenario.

Table 4-4 shows a few of the read-only attributes on media elements.

Table 4-4. Read-only Media Attributes

Read-only Attribute Value
duration The duration of the full media clip, in seconds. If the full duration is not

known, NaN is returned.

paused Returns true if the media clip is currently paused. Defaults to true if the
clip has not started playing.

ended Returns true if the media clip has finished playing.

startTime Returns the earliest possible value for playback start time. This will usually
be 0.0 unless the media clip is streamed and earlier content has left the
buffer.

error An error code, if an error has occurred.

currentSrc Returns the string representing the file that is currently being displayed or
loaded. This will match the source element selected by the browser.

Table 4-5 shows some of the attributes on the media elements that allow scripts to modify them and

affect the playback directly. As such, they behave similar to functions.

Table 4-5. Scriptable Attribute Values

Attribute Value
autoplay Sets the media clip to play upon creation or query whether it is set to autoplay.

loop Returns true if the clip will restart upon ending or sets the clip to loop (or not
loop).

currentTime Returns the current time in seconds that has elapsed since the beginning of the
playback. Sets currentTime to seek to a specific position in the clip playback.

controls Shows or hides the user controls, or queries whether they are currently visible.

volume Sets the audio volume to a relative value between 0.0 and 1.0, or queries the
value of the same.

muted Mutes or unmutes the audio, or determines the current mute state.

autobuffer Tells the player whether or not to attempt to load the media file before
playback is initiated. If the media is set for auto-playback, this attribute is
ignored.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

94

Between the various functions and attributes, it is possible for a developer to create any media
playback user interface and use it to control any audio or video clip that is supported by the browser.

Working with Audio
If you understand the shared attributes for both audio and video media elements, you’ve basically seen
all that the audio tag has to offer. So let’s look at a simple example that shows control scripting in action.

Audio Activation
If your user interface needs to play an audio clip for users, but you don’t want to affect the display with a
playback timeline or controls, you can create an invisible audio element—one with the controls
attribute unset or set to false—and present your own controls for audio playback. Consider the simple
code in Listing 4-9, also available in the sample code file audioCue.html.

Listing 4-9. Adding Your Own Play Button to Control Audio

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Audio cue</title>

 <audio id="clickSound">
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 </audio>

 <button id="toggle" onclick="toggleSound()">Play</button>

 <script type="text/javascript">
 function toggleSound() {
 var music = document.getElementById("clickSound");
 var toggle = document.getElementById("toggle");

 if (music.paused) {
 music.play();
 toggle.innerHTML = "Pause";
 }
 else {
 music.pause();
 toggle.innerHTML ="Play";
 }
 }
 </script>
</html>

Once again, we are using an audio element to play our favorite Bach tune. However, in this example
we hide user controls and don’t set the clip to autoplay on load. Instead, we have created a toggle button
to control the audio playback with script:

<button id="toggle" onclick="toggleSound()">Play</button>

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

95

Our simple button is initialized to inform the user that clicking it will start playback. And each time
the button is pressed, the toggleSound() function is triggered. Inside the toggleSound() function, we first
gain access to the audio and button elements in the DOM:

if (music.paused) {
 music.play();
 toggle.innerHTML = "Pause";
}

By accessing the paused attribute on the audio element, we can check to see whether the user has
already paused playback. The attribute defaults to true if no playback is initiated, so this condition will
be met on the first click. In that case, we call the play() function on the clip and change the text of the
button to indicate that the next click will pause the clip:

else {
 music.pause();
 toggle.innerHTML ="Play";
}

Conversely, if the music clip is not paused (if it is playing), we will actively pause() it and change the
button text to indicate that the next click will restart play. Seems simple, doesn’t it? That’s the point of
the media elements in HTML5: to create simple display and control across media types where once a
myriad of plugins existed. Simplicity is its own reward.

Working with Video
Enough with simplicity. Let’s try something more complicated. The HTML5 video element is very similar
to the audio element, but with a few extra attributes thrown in. Table 4-6 shows some of these attributes.

Table 4-6. Additional Video Attributes

Attribute Value

poster The URL of an image file used to represent the video content before it has
loaded. Think “movie poster.” This attribute can be read or altered to
change the poster.

width, height Read or set the visual display size. This may cause centering, letterboxing,
or pillaring if the set width does not match the size of the video itself.

videoWidth,
videoHeight

Return the intrinsic or natural width and height of the video. They cannot
be set.

The video element has one other key feature that is not applicable to the audio element: it can be

provided to many functions of the HTML5 Canvas (see Chapter 2).

Creating a Video Timeline Browser
In this more complex example, we’ll show how a video element can have its frames grabbed and
displayed in a dynamic canvas. To demonstrate this capability, we’ll build a simple video timeline

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

96

viewer. While the video plays, periodic image frames from its display will be drawn onto a nearby
canvas. When the user clicks any frame displayed in the canvas, we’ll jump the playback of the video to
that precise moment in time. With only a few lines of code, we can create a timeline browser that users
can use to jump around inside a lengthy video.

Our sample video clip is the tempting concession advert from the mid-20th century movie theaters,
so let’s all go to the lobby to get ourselves a treat (see Figure 4-3).

Figure 4-3. The video timeline application

Adding the Video and the Canvas Element
We start with a simple declaration to display our video clip:

<video id="movies" autoplay oncanplay="startVideo()" onended="stopTimeline()"
autobuffer="true" width="400px" height="300px">
 <source src="Intermission-Walk-in.ogv">
 <source src="Intermission-Walk-in_512kb.mp4">
</video>

As most of this markup will look familiar to you from the audio example, let’s focus on the
differences. Obviously, the <audio> element has been replaced with <video>, and the <source> elements
point to the Ogg and MPEG movies that will be selected by the browser.

The video has, in this case, been declared to have autoplay so that it starts as soon as the page loads.
Two additional event handler functions have been registered. When the video is loaded and ready to
begin play, the oncanplay function will trigger and start our routine. Similarly, when the video ends, the
onended callback will allow us to stop creating video frames.

Next, we’ll add a canvas called timeline into which we will draw frames of our video at regular
intervals.

<canvas id="timeline" width="400px" height="300px">

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

97

Adding Variables
In the next section of our demo, we begin our script by declaring some values that will let us easily tweak
the demo and make the code more readable:

// # of milliseconds between timeline frame updates
var updateInterval = 5000;
// size of the timeline frames
var frameWidth = 100;
var frameHeight = 75;

// number of timeline frames
var frameRows = 4;
var frameColumns = 4;
var frameGrid = frameRows * frameColumns;

updateInterval controls how often we will capture frames of the video—in this case, every five
seconds. The frameWidth and frameHeight set how large the small timeline video frames will be when
displayed in the canvas. Similarly, the frameRows, frameColumns, and frameGrid determine how many
frames we will display in our timeline:

// current frame
var frameCount = 0;

// to cancel the timer at end of play
var intervalId;

var videoStarted = false;

To keep track of which frame of video we are viewing, a frameCount is made accessible to all demo
functions. (For the sake of our demo, a frame is one of our video samples taken every five seconds.) The
intervalId is used to stop the timer we will use to grab frames. And finally, we add a videoStarted flag to
make sure that we only create one timer per demo.

Adding the updateFrame Function
The core function of our demo—where the video meets the canvas—is where we grab a video frame and
draw it onto our canvas:

// paint a representation of the video frame into our canvas
function updateFrame() {
 var video = document.getElementById("movies");
 var timeline = document.getElementById("timeline");

 var ctx = timeline.getContext("2d");

 // calculate out the current position based on frame
 // count, then draw the image there using the video
 // as a source
 var framePosition = frameCount % frameGrid;
 var frameX = (framePosition % frameColumns) * frameWidth;
 var frameY = (Math.floor(framePosition / frameRows)) * frameHeight;

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

98

 ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY, frameWidth, frameHeight);

 frameCount++;
}

As you’ve seen in Chapter 2, the first thing to do with any canvas is to grab a two-dimensional
drawing context from it:

var ctx = timeline.getContext("2d");

Because we want to populate our canvas grid with frames from left to right, top to bottom, we need
to figure out exactly which of the grid slots will be used for our frame based on the number of the frame
we are capturing. Based on the width and height of each frame, we can then determine exact X and Y
coordinates at which to begin our drawing:

var framePosition = frameCount % frameGrid;
var frameX = (framePosition % frameColumns) * frameWidth;
var frameY = (Math.floor(framePosition / frameRows)) * frameHeight;

Finally, we reach the key call to draw an image onto the canvas. We’ve seen the position and scaling
arguments before in our canvas demos, but instead of passing an image to the drawImage routine, we
here pass the video object itself:

ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY, frameWidth, frameHeight);

Canvas drawing routines can take video sources as images or patterns, which gives you a handy way
to modify the video and redisplay it in another location.

 Note When a canvas uses a video as an input source, it draws only the currently displayed video frame.
Canvas displays will not dynamically update as the video plays. Instead, if you want the canvas content to update,
you must redraw your images as the video is playing.

Adding the startVideo Function
Finally, we update frameCount to reflect that we’ve taken a new snapshot for our timeline. Now, all we
need is a routine to regularly update our timeline frames:

function startVideo() {

 // only set up the timer the first time the
 // video is started
 if (videoStarted)
 return;

 videoStarted = true;

 // calculate an initial frame, then create
 // additional frames on a regular timer
 updateFrame();

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

99

 intervalId = setInterval(updateFrame, updateInterval);

Recall that the startVideo() function is triggered as soon as the video has loaded enough to begin
playing. First, we make sure that we are going to handle the video start only once per page load, just in
case the video is restarted:

 // only set up the timer the first time the
 // video is started
 if (videoStarted)
 return;

 videoStarted = true;

When the video starts, we will capture our first frame. Then, we will start an interval timer—a timer
that repeats continuously at the specified update interval—which will regularly call our updateFrame()
function. The end result is that a new frame will be captured every five seconds:

 // calculate an initial frame, then create
 // additional frames on a regular timer
 updateFrame();
 intervalId = setInterval(updateFrame, updateInterval);

Handling User Input
Now all we need to do is handle user clicks for the individual timeline frames:

// set up a handler to seek the video when a frame
// is clicked
var timeline = document.getElementById("timeline");
timeline.onclick = function(evt) {
 var offX = evt.layerX - timeline.offsetLeft;
 var offY = evt.layerY - timeline.offsetTop;

 // calculate which frame in the grid was clicked
 // from a zero-based index
 var clickedFrame = Math.floor(offY / frameHeight) * frameRows;
 clickedFrame += Math.floor(offX / frameWidth);

 // find the actual frame since the video started
 var seekedFrame = (((Math.floor(frameCount / frameGrid)) *
 frameGrid) + clickedFrame);

 // if the user clicked ahead of the current frame
 // then assume it was the last round of frames
 if (clickedFrame > (frameCount % 16))
 seekedFrame -= frameGrid;

 // can't seek before the video
 if (seekedFrame < 0)
 return;

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

100

Things get a little more complicated here. We retrieve the timeline canvas and set a click-handling
function on it. The handler will use the event to determine which X and Y coordinates were clicked by
the user:

 var timeline = document.getElementById("timeline");
 timeline.onclick = function(evt) {
 var offX = evt.layerX - timeline.offsetLeft;
 var offY = evt.layerY - timeline.offsetTop;

We then use the frame dimensions to figure out which of the 16 frames was clicked by the user:

 // calculate which frame in the grid was clicked
 // from a zero-based index
 var clickedFrame = Math.floor(offY / frameHeight) * frameRows;
 clickedFrame += Math.floor(offX / frameWidth);

The clicked frame should be only one of the most recent video frames, so determine the most recent
frame that corresponds to that grid index:

 // find the actual frame since the video started
 var seekedFrame = (((Math.floor(frameCount / frameGrid)) *
 frameGrid) + clickedFrame);

If the user clicks ahead of the current frame, jump back one complete cycle of grid frames to find the
actual time:

 // if the user clicked ahead of the current frame
 // then assume it was the last round of frames
 if (clickedFrame > (frameCount % 16))
 seekedFrame -= frameGrid;

And finally, we have to safeguard against any case in which the user clicks a frame that would be
before the start of the video clip:

 // can't seek before the video
 if (seekedFrame < 0)
 return;

Now that we know what point in time the user wants to seek out, we can use that knowledge to
change the current playback time. Although this is the key demo function, the routine itself is quite
simple:

 // seek the video to that frame (in seconds)
 var video = document.getElementById("movies");
 video.currentTime = seekedFrame * updateInterval / 1000;

 // then set the frame count to our destination
 frameCount = seekedFrame;

By setting the currentTime attribute on our video element, we cause the video to seek to the
specified time and reset our current frame count to the newly chosen frame.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

101

 Note Unlike many JavaScript timers that deal with milliseconds, the currentTime of a video is specified in
seconds.

Adding the stopTimeline Function
All that remains for our video timeline demo is to stop capturing frames when the video finishes playing.
Although not required, if we don’t take this step, the demo will continue capturing frames of the finished
demo, blanking out the entire timeline after a while:

// stop gathering the timeline frames
function stopTimeline() {
 clearInterval(intervalId);
}

The stopTimeline handler will be called when another of our video handlers—onended—is triggered
by the completion of video playback.

Our video timeline is probably not full-featured enough to satisfy power users, but it took only a
short amount of code to accomplish. Now, on with the show.

The Final Code
Listing 4-10 shows the complete code for the video timeline page.

Listing 4-10. The Complete Video Timeline Code

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Video Timeline</title>

 <video id="movies" autoplay oncanplay="startVideo()" onended="stopTimeline()"
autobuffer="true"
 width="400px" height="300px">
 <source src="Intermission-Walk-in.ogv">
 <source src="Intermission-Walk-in_512kb.mp4">
 </video>

 <canvas id="timeline" width="400px" height="300px">

 <script type="text/javascript">

 // # of milliseconds between timeline frame updates
 var updateInterval = 5000;

 // size of the timeline frames
 var frameWidth = 100;
 var frameHeight = 75;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

102

 // number of timeline frames
 var frameRows = 4;
 var frameColumns = 4;
 var frameGrid = frameRows * frameColumns;

 // current frame
 var frameCount = 0;

 // to cancel the timer at end of play
 var intervalId;

 var videoStarted = false;

 function startVideo() {

 // only set up the timer the first time the
 // video is started
 if (videoStarted)
 return;

 videoStarted = true;

 // calculate an initial frame, then create
 // additional frames on a regular timer
 updateFrame();
 intervalId = setInterval(updateFrame, updateInterval);

 // set up a handler to seek the video when a frame
 // is clicked
 var timeline = document.getElementById("timeline");
 timeline.onclick = function(evt) {
 var offX = evt.layerX - timeline.offsetLeft;
 var offY = evt.layerY - timeline.offsetTop;

 // calculate which frame in the grid was clicked
 // from a zero-based index
 var clickedFrame = Math.floor(offY / frameHeight) * frameRows;
 clickedFrame += Math.floor(offX / frameWidth);

 // find the actual frame since the video started
 var seekedFrame = (((Math.floor(frameCount / frameGrid)) *
 frameGrid) + clickedFrame);

 // if the user clicked ahead of the current frame
 // then assume it was the last round of frames
 if (clickedFrame > (frameCount % 16))
 seekedFrame -= frameGrid;

 // can't seek before the video
 if (seekedFrame < 0)
 return;

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

103

 // seek the video to that frame (in seconds)
 var video = document.getElementById("movies");
 video.currentTime = seekedFrame * updateInterval / 1000;

 // then set the frame count to our destination
 frameCount = seekedFrame;
 }
 }

 // paint a representation of the video frame into our canvas
 function updateFrame() {
 var video = document.getElementById("movies");
 var timeline = document.getElementById("timeline");

 var ctx = timeline.getContext("2d");

 // calculate out the current position based on frame
 // count, then draw the image there using the video
 // as a source
 var framePosition = frameCount % frameGrid;
 var frameX = (framePosition % frameColumns) * frameWidth;
 var frameY = (Math.floor(framePosition / frameRows)) * frameHeight;
 ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY, frameWidth, frameHeight);

 frameCount++;
 }

 // stop gathering the timeline frames
 function stopTimeline() {
 clearInterval(intervalId);
 }

 </script>

</html>

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples, but which nonetheless apply to
many types of HTML5 applications. We present to you some short, but common, practical extras here.

Background Noise in a Page
Many a web site has attempted to entertain its viewers by playing audio by default for any visitors. While
we don’t condone this practice, Audio support makes it quite easy to achieve this, as shown in Listing 4-
11.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

104

Listing 4-11. Using the Loop and Autoplay Attributes

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Background Music</title>

 <audio autoplay loop>
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 </audio

 <h1>You're hooked on Bach!</h1>

</html>

As you can see, playing a looping background sound is as easy as declaring a single audio tag with
the autoplay and loop attributes set (see Figure 4-4).

Figure 4-4. Using autoplay to play music when a page loads

Losing Viewers in the <Blink> of an eye

Brian says: “With great power comes great responsibility, and just because you can, doesn’t mean you
should. If you want an example, just remember the <blink> tag!”

Don’t let the power of easy audio and video playback seduce you into using it where it isn’t appropriate. If
you have a compelling reason to enable media with autoplay—perhaps a media browser in which the
user is expecting content to start on load—make sure to provide a clear means for disabling that feature.
Nothing will turn users from your site faster than annoying content that they can’t easily turn off.”

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

105

Mouseover Video Playback
Another way to use simple scripting effectively with video clips is to trigger the play and pause routines,
based on mouse movement over the video. This could be useful in a site that needs to display many
video clips and let the user choose which ones to play. The video gallery can display short preview clips
on when a user moves the mouse over them and a full video display when the user clicks. It is quite easy
to achieve this affect using a code sample similar to Listing 4-12 (see the example file
mouseoverVideo.html).

Listing 4-12. Mouse Detection on a Video Element

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Mouseover Video</title>

 <video id="movies" onmouseover="this.play()" onmouseout="this.pause()"
 autobuffer="true"
 width="400px" height="300px">
 <source src="Intermission-Walk-in.ogv" type='video/ogg; codecs="theora, vorbis"'>
 <source src="Intermission-Walk-in_512kb.mp4" type='video/mp4; codecs="avc1.42E01E,
 mp4a.40.2"'>
 </video>
</html>

By simply setting a few extra attributes, the preview playback can trigger when a user points at the
video, as shown in Figure 4-5.

CHAPTER 4  WORKING WITH AUDIO AND VIDEO

106

Figure 4-5. Mouseover video playback

Summary
In this chapter, we have explored what you can do with the two important HTML5 elements audio and
video. We have shown you how they can be used to create compelling web applications. The audio and
video elements add new media options to HTML5 applications that allow you to use audio and video
without plugins, while at the same time providing a common, integrated, and scriptable API.

First, we discussed the audio and video container files and codecs and why we ended up with the
codecs supported today. We then showed you a mechanism for switching to the most appropriate type
of content for the browser to display, and we showed you how to make video accessible using WebVTT.

Next, we showed you how you can use control audio and video programmatically using the APIs and
finally we looked at how you can use of the HTML5 audio and video in your applications.

In the next chapter, we'll show how you can use Geolocation to tailor your application's output to
the whereabouts of your users with a minimal amount of code.

C H A P T E R 5

107

Using the Geolocation API

Let’s say you want to create a web application that offers discounts and special deals on running shoes
in stores that your application’s users are within walking (or running) distance away from. Using the
Geolocation API, you can request users to share their location and, if they agree, you can provide them
with instructions on how to get to a nearby store to pick up a new pair of shoes at a discounted rate.

Another example of the use of Geolocation could be an application that tracks how far you have run
(or walked). You can picture using an application in a browser on a mobile phone that you turn on when
you start a run. While you’re on the move, the application tracks how far you have run. The coordinates
for the run can even be overlaid on a map, perhaps even with an elevation profile. If you’re running a
race against other competitors, the application might even show your opponents’ locations.

Other Geolocation application ideas could be turn-by-turn GPS-style navigation, social networking
applications that allow you to see exactly where your friends are, so you can pick the coffee shop you
want to visit, and many more unusual applications.

In this chapter, we’ll explore what you can do with Geolocation—an exciting API that allows users to
share their location with web applications so that they can enjoy location-aware services. First, we'll take
a look at the source of Geolocation location information―the latitude, longitude and other
attributes―and where they can come from (GPS, Wi-Fi, cellular triangulation, and so on). Then, we'll
discuss the privacy concerns around using Geolocation data and how browsers work with this data.

After that, we’ll dive into a practical discussion about the two different position request functions
(methods) within the Geolocation API: the one-shot position request and repeated position updates, and
we'll show you how and when to use them. Next, we'll show you how to build a practical Geolocation
application using the same API, and we'll finish up with a discussion about a few additional use cases
and tips.

About Location Information
Using the Geolocation API is fairly straightforward. You request a position and, if the user agrees, the
browser returns location information. The position is provided to the browser by the underlying device
(for example, a laptop or a mobile phone) on which the Geolocation–enabled browser is running. The
location information is provided as a set of latitude and longitude coordinates along with additional
metadata. Armed with this location information, you can then build a compelling, location-aware
application.

Latitude and Longitude Coordinates
The location information consists primarily of a pair of latitude and longitude coordinates like the ones
shown in the following example, which shows the coordinates for beautiful Tahoe City, located on the
shore of Lake Tahoe, America’s most beautiful mountain lake:

CHAPTER 5  USING THE GEOLOCATION API

108

Latitude: 39.17222, Longitude: -120.13778

In the preceding example, the latitude (the numerical value indicating distance north or south of the
equator is 39.17222) and the longitude (the numerical value indicating distance east or west of
Greenwich, England) is -120.13778.

Latitude and longitude coordinates can be expressed in different ways:

• Decimal format (for example, 39.17222)

• Degree Minute Second (DMS) format (for example, 39° 10' 20')

 Note When you use the Geolocation API, coordinates are always returned in the decimal format.

In addition to latitude and longitude coordinates, Geolocation always provides the accuracy of the
location coordinates. Additional metadata may also be provided, depending on the device that your
browser is running on. These include altitude, altitudeAccuracy, heading, and speed. If this additional
metadata is not available it will be returned as a null value.

Where Does Location Information Come From?
The Geolocation API does not specify which underlying technology a device has to use to locate the
application's user. Instead, it simply exposes an API for retrieving location information. What is exposed,
however, is the level of accuracy with which the location was pinpointed. There is no guarantee that the
device's actual location returns an accurate location.

Location, Location

Peter says: “Here is a funny example of that. At home, I use a wireless network. I opened the Geolocation
example application shown in this chapter in Firefox and it figured out that I was in Sacramento (about 75
miles from my actual physical location). Wrong, but not too surprising, because my Internet Service
Provider is located in downtown Sacramento.

Then, I asked my sons, Sean and Rocky, to browse to the same page on their iPhones (using the same Wi-
Fi network). In Safari, it looked like they were located in Marysville, California—a town that is located 30
miles from Sacramento. Go figure!”

CHAPTER 5  USING THE GEOLOCATION API

109

A device can use any of the following sources:

• IP address

• Coordinate triangulation

• Global Positioning System (GPS)

• Wi-Fi with MAC addresses from RFID, Wi-Fi, and Bluetooth

• GSM or CDMA cell phone IDs

• User defined

Many devices use a combination of one or more sources to ensure an even higher accuracy. Each of
these methods has its own pros and cons, as explained in the next sections.

IP Address Geolocation Data
In the past, IP address–based geolocation was the only way to get a possible location, but the returned
locations often proved unreliable. IP address–based geolocation works by automatically looking up a
user’s IP address and then retrieving the registrant's physical address. Therefore, if you have an ISP that
provides you with an IP address, your location is often resolved to the physical address of your service
provider that could be miles away. Table 5-1 shows the pros and cons of IP address–based geolocation
data.

Table 5-1. Pros and Cons of IP Address–based Geolocation Data

Pros Cons

Available everywhere Not very accurate (wrong many times,
but also accurate only to the city level)

Processed on the server side Can be a costly operation

Many websites advertise based on IP address locations. You can see this in action when you travel to

another country and suddenly see advertisements for local services (based on the IP address of the
country or region you are visiting).

GPS Geolocation Data
As long as you can see the sky, GPS can provide very accurate location results. A GPS fix is acquired by
acquiring the signal from multiple GPS satellites that fly around the earth. However, it can take awhile to
get a fix, which does not lend itself particularly well for applications that must start up rapidly.

Because it can take a long time to get a GPS location fix, you might want to query for the user’s
location asynchronously. To show your application’s users that a fix is being acquired, you can add a
status bar. Table 5-2 shows the pros and cons of GPS–based geolocation data.

CHAPTER 5  USING THE GEOLOCATION API

110

Table 5-2. Pros and Cons of GPS–based Geolocation Data

Pros Cons

Very accurate It can take a long time getting a location
fix, which can drain a user’s device’s
batteries

 Does not work well indoors

 May require additional hardware

Wi-Fi Geolocation Data
Wi-Fi–based geolocation information is acquired by triangulating the location based on the user's
distance from a number of known Wi-Fi access points, mostly in urban areas. Unlike GPS, Wi-Fi is very
accurate indoors as well as in urban areas. Table 5-3 shows the pros and cons of Wi-Fi–based
geolocation data.

Table 5-3. Pros and Cons of Wi-Fi–based Geolocation Data

Pros Cons

Accurate Not good in rural areas with few wireless
access points

Works indoors

Can get fix quickly and cheaply

Cell Phone Geolocation Data
Cell phone–based geolocation information is acquired by triangulating the location based on the user's
distance from a number of cell phone towers. This method provides a general location result that is fairly
accurate. This method is often used in combination with Wi-Fi– and GPS–based geolocation
information. Table 5-4 shows the pros and cons of cell phone–based geolocation data.

CHAPTER 5  USING THE GEOLOCATION API

111

Table 5-4. Pros and Cons of Cell Phone–based Geolocation Data

Pros Cons

Fairly accurate Requires a device with access to a cell
phone or cell modem

Works indoors Not good in rural areas with fewer cell
phone towers

Can get fix quickly and cheaply

User–Defined Geolocation Data
Instead of programmatically figuring out where the user is, you can also allow users to define their
location themselves. An application may allow users to enter their address, ZIP code, or some other
details; your application can then use that information to provide location-aware services. Table 5-5
shows the pros and cons of user–defined geolocation data.

Table 5-5. Pros and Cons of User–defined Geolocation Data

Pros Cons

Users may have more accurate
location data than programmatic
services

Allows geolocation services for
alternate locations

User entry might be faster than
detection

Can also be very inaccurate, especially if
the location changes

Browser Support for Geolocation
Geolocation was one of the first HTML5 features to be fully embraced and implemented, and it is
available in all the major browsers now. For a complete overview of the current browser support,
including mobile support, refer to http://caniuse.com and search for Geolocation.

If you have to support older browsers, it’s always a good idea to first see whether Geolocation is
supported before you use the API. The section “Checking for Browser Support” later in this chapter will
show you how you can programmatically check for browser support.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://caniuse.com

CHAPTER 5  USING THE GEOLOCATION API

112

Privacy
The Geolocationspecification mandates that a mechanism is provided to protect the user's privacy.
Furthermore, location information should not be made available unless the application’s users grant
their express permission.

This makes sense and addresses the “big brother” concerns users often raise about Geolocation
applications. However, as you can see from some of the possible use cases for HTML 5 Geolocation
applications, there is usually an incentive for the user to share this information. For example, users
might be OK with sharing their location if this could let them know about a rare 50% discount on a pair
of running shoes that are ready to be picked up in a store located just a few blocks away from where they
happen to be drinking coffee. Let’s take a closer look at the browser and device privacy architecture
shown in Figure 5-1.

Figure 5-1. Geolocation browser and device privacy architecture

The following steps are shown in the diagram:

1. A user navigates to a location-aware application in the browser.

2. The application web page loads and requests coordinates from the browser by
making a Geolocation function call. The browser intercepts this and requests
user permission. Let's assume, in this case, that the permission is granted.

3. The browser retrieves coordinate information from the device it is running on.
For example, a combination of IP address, Wi-Fi, and possibly GPS
coordinates. This is an internal function of the browser.

4. The browser sends these coordinates to a trusted external location service,
which returns location coordinates that can now be sent back to the host of the
Geolocation application.

CHAPTER 5  USING THE GEOLOCATION API

113

 Important The application does not have direct access to the device; it can only query the browser to access
the device on its behalf.

Triggering the Privacy Protection Mechanism
When you access a web page that uses the Geolocation API, the privacy protection mechanism should
kick in. Figure 5-2 shows what this looks like in Firefox.

Figure 5-2. The notification bar is triggered in Firefox when the Geolocation API is used.

The mechanism is triggered when the Geolocation code is executed. Simply adding Geolocation
code that is not called anywhere (for example, in an onload method) does not do anything. If, however,
the Geolocation code is executed, for example, in a call to navigator.geolocation.getCurrentPosition
(explained in more detail later on), the user is prompted to share their location with the application.
Figure 5-3 shows what happens on Safari, running on an iPhone.

Figure 5-3. The notification dialog box is triggered in Safari when the Geolocation API is used.

Apart from providing the necessary mechanism to request permission to share your location, some
implementations (Firefox, for example) also allow you to remember the permission granted to the site
for the next time you enter. This is similar to how you can remember passwords for certain sites in your
browser.

 Note if you've given permission to always give your location to a site in Firefox and later change your mind,
you can easily revoke that permission by going back to the site and selecting Page Info from the Tools menu.
Then change the setting for Share Location on the Permissions tab.

CHAPTER 5  USING THE GEOLOCATION API

114

Dealing with Location Information
Location data is sensitive information, so when you receive it, you must be careful about handling,
storing, and retransmitting the data. Unless users give permission to store data, you should always
dispose of the data after the task for which it was required is complete.

Therefore, if you retransmit the location data, it is recommended that you first encrypt the data.
Regarding the collection of geolocation data, your application should prominently show the following:

• That you are collecting location data

• Why you are collecting location data

• How long the location data is kept

• How you are securing the data

• How and with whom the location data is shared (if it is)

• How users can check and update their location data

Using the Geolocation API
In this section, we’ll explore the use of the Geolocation API in more detail. For the sake of illustration,
we’ve created a simple browser page—geolocation.html. Remember that you can download all the code
from the book's page on apress.com or on the companion website http://prohtml5.com.

Checking for Browser Support
Before you call the Geolocation API functions, you will want to make sure that there is support in the
browser for what you’re about to do. This way, you can provide some alternate text, prompting the users
of your application to dump their dinosaur-like browsers or install a plugin such as Gears, which
augments the existing browser functionality. Listing 5-1 shows one way you can use to test for browser
support.

Listing 5-1. Checking for Browser Support

function loadDemo() {
 if(navigator.geolocation) {
 document.getElementById("support").innerHTML = "Geolocation supported.";

} else {
 document.getElementById("support").innerHTML = "Geolocation is not supported in
 your browser.";
 }
}

In this example, you test for browser support in the loadDemo function, which might be called when
the application’s page is loaded. A call to navigator.geolocation (you can also use Modernizr) will
return the Geolocation object if it exists, or trigger the failure case if it does not. In this case, the page is
updated to reflect whether there is browser support or not by updating a previously defined support
element on the page with a suitable message.

http://prohtml5.com

CHAPTER 5  USING THE GEOLOCATION API

115

Position Requests
There are two types of position requests:

• One-shot position request

• Repeated position updates

One-Shot Position Requests
In many applications, it will be acceptable to retrieve the user’s location only once, or only by request.
For example, if someone is looking for the nearest movie theater showing today’s popular movie in the
next hour, the simplest form of the Geolocation API shown in Listing 5-2 can be used.

Listing 5-2. One-Shot Position Request

void getCurrentPosition(in PositionCallback successCallback,
 in optional PositionErrorCallback errorCallback,
 in optional PositionOptions options);

Let’s take a look at this core function call in more detail.
First, this is a function that is available on the navigator.geolocation object, so you will need to

have already retrieved this object in your script. As noted previously, make sure that you have a good
fallback handler if your browser does not support Geolocation.

The function takes one required parameter, and two optional ones.

• The successCallback function parameter tells the browser which function you
want called when the location data is made available. This is important because
operations such as fetching location data may take a long time to complete. No
user wants the browser to be locked up while the location is retrieved, and no
developer wants his program to pause indefinitely—especially because fetching
the location data will often be waiting on a user to grant permission. The
successCallback is where you will receive the actual location information and act
on it.

• However, as in most programming scenarios, it is good to plan for failure cases. It
is quite possible that the request for location information may not complete for
reasons beyond your control, and for those cases you will want to provide an
errorCallback function that can present the user with an explanation, or perhaps
make an attempt to try again. While optional, it is recommended that you provide
one.

• Finally, an options object can be provided to the Geolocation service to fine-tune
the way it gathers data. This is an optional parameter that we will examine later.

Let’s say that you’ve created a JavaScript function on our page named updateLocation() in which
you update the contents of the page with the new location data. Similarly, you’ve created a
handleLocationError() function to handle the error cases. We’ll examine the details of those functions
next, but that means that your core request to access the user’s position would look something like this:

navigator.geolocation.getCurrentPosition(updateLocation, handleLocationError);

CHAPTER 5  USING THE GEOLOCATION API

116

The updateLocation() Function

So, what happens in our updateLocation() call? It’s actually quite simple. As soon as the browser has
access to the location information, it will call updateLocation() with a single parameter: a position
object. The position will contain coordinates—as the attribute coords—and a timestamp for when the
location data was gathered. While you may or may not need the timestamp, the coords attribute
contains the crucial values for the location.

The coordinates always have multiple attributes on them, but it is up to the browser and the
hardware of the user’s device whether they will have meaningful values. The following are the first three
attributes:

• latitude

• longitude

• accuracy

These attributes are guaranteed to have values and are fairly self-explanatory. latitude and
longitude will contain the Geolocation service’s best determined value of the user’s location specified in
decimal degrees. accuracy will contain a value in meters that specifies how close the latitude and
longitude values are to the actual location, with a 95% confidence level. It can therefore be used to
display a proximity radius around the location to give people a visual clue about the accuracy. Due to the
nature of Geolocation implementations, approximation will be common and coarse. Make sure to check
the accuracy of the returned values before you present them with any certainty. Recommending a user
to visit a “nearby” shoe store that is actually hours away could have unintended consequences.

The other attributes of the coordinates are not guaranteed to be supported, but they will return a
null value if they are not available (for example, if you’re on a desktop computer, you’re unlikely to have
access to this information):

• altitude—the height of the user’s location, in meters

• altitudeAccuracy—once again in meters, or null if no altitude is provided

• heading—direction of travel, in degrees relative to true north

• speed—ground speed in meters per second

Unless you are sure that your users have devices with access to such information, it is
recommended that you not rely on them as critical to your application. While global positioning devices
are likely to provide this level of detail, simple network triangulation will not.

Now let’s take a look at a code implementation of our updateLocation() function that performs
some trivial updates with the coordinates (see Listing 5-3).

Listing 5-3. Example of Using the updateLocation() Function

function updateLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var accuracy = position.coords.accuracy;
 var timestamp = position.timestamp;

 document.getElementById("latitude").innerHTML = latitude;
 document.getElementById("longitude").innerHTML = longitude;

CHAPTER 5  USING THE GEOLOCATION API

117

 document.getElementById(“accuracy”).innerHTML = accuracy
 document.getElementById("timestamp").innerHTML = timestamp;•
}

In this example, the updateLocation() callback is used to update the text in different elements of our
page; we put the value of the longitude attribute in the longitude element, the latitude attribute in the
latitude element, and accuracy and timestamp in their corresponding fields.

The handleLocationError() Function

Handling errors is very important for a Geolocation application because there are many moving parts
and therefore many possibilities for the location calculation services to go awry. Fortunately, the API
defines error codes for all the cases you will need to handle, and it sets them on the error object passed
to your error handler as the code attribute. Let’s look at them in turn:

• PERMISSION_DENIED (error code 1)—The user chose not to let the browser have
access to the location information.

• POSITION_UNAVAILABLE (error code 2)—The technique used to determine the user’s
location was attempted, but failed.

• TIMEOUT (error code 3)—A timeout value was set as an option, and the attempt to
determine the location exceeded that limit.

In these cases, you will probably want to let the user know that something went wrong. You may
want to retry getting the values in the case of an unavailable or timed-out request.

Listing 5-4 shows an example of an error handler in action.

Listing 5-4. Using an Error Handler

 function handleLocationError(error) {
 switch(error.code){
 case 0:
 updateStatus("There was an error while retrieving your location: " +
 error.message);
 break;
 case 1:
 updateStatus("The user prevented this page from retrieving a location.");
 break;
 case 2:
 updateStatus("The browser was unable to determine your location: " +
 error.message);
 break;
 case 3:
 updateStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

The error codes are accessed from the code attribute of the provided error object, while the message
attribute will give access to a more detailed description of what went wrong. In all cases, we call our own
routine to update the status of the page with the necessary info.

CHAPTER 5  USING THE GEOLOCATION API

118

Optional Geolocation Request Attributes

With both the normal and error cases handled, you should turn your attention to the three optional
attributes that you can pass to the Geolocation service in order to fine-tune how it gathers its data. Note
that these three attributes can be passed using shorthand object notation, making it trivial to add them
to your Geolocation request calls.

• enableHighAccuracy—This is a hint to the browser that, if available, you would like
the Geolocation service to use a higher accuracy-detection mode. This defaults to
false, but when turned on, it may not cause any difference, or it may cause the
machine to take more time or power to determine location. Use with caution.

 Note Curiously, the high accuracy setting is only a toggle switch: true or false. The API was not
created to allow the accuracy to be set to various values or a numeric range. Perhaps this will be
addressed in future versions of the specification.

• timeout—This optional value, provided in milliseconds, tells the browser the
maximum amount of time it is allowed to calculate the current location. If the
calculation does not complete in this amount of time, the error handler is called
instead. This value defaults to Infinity, or no limit.

• maximumAge—This value indicates how old a location value can be before the
browser must attempt to recalculate. Again, it is a value in milliseconds. This value
defaults to zero, meaning that the browser must attempt to recalculate a value
immediately.

 Note You might be wondering what the difference is between the timeout and maximumAge
options. Although similarly named, they do have distinct uses. The timeout value deals with the
duration needed to calculate the location value, while maximumAge refers to the frequency of the
location calculation. If any single calculation takes longer than the timeout value, an error is
triggered. However, if the browser does not have an up-to-date location value that is younger than
maximumAge, it must refetch another value. Special values apply here: setting the maximumAge to “0”
requires the value to always be re-fetched, while setting it to Infinity means it should never be
refetched.

The Geolocation API does not allow you to tell the browser how often to recalculate the position.

This is left entirely up to the browser implementation. All we can do is tell the browser what the
maximumAge is of the value it returns. The actual frequency is a detail we cannot control.

Let’s update our location request to include an optional parameter using shorthand notation, as
shown in the following example:

navigator.geolocation.getCurrentPosition(updateLocation,handleLocationError,
 {timeout:10000});

CHAPTER 5  USING THE GEOLOCATION API

119

This new call ensures that any request for location that takes longer than 10 seconds (10,000
milliseconds) should trigger an error, in which case the handleLocationError function will be called with
the TIMEOUT error code. We can combine the Geolocation calls that we discussed so far and display the
relevant data on a page as shown in Figure 5-4.

Figure 5-4. Geolocation data displayed on a mobile device

Repeated Position Updates
Sometimes you have to make repeated position requests. Thankfully, the designers of the Geolocation
API made it trivial to switch from an application that requests a user location one time to one that
requests the location at regular intervals. In fact, it’s largely as trivial as switching the request call, as
shown in the following examples:

• One-shot update:
navigator.geolocation.getCurrentPosition(updateLocation,
handleLocationError);

CHAPTER 5  USING THE GEOLOCATION API

120

• Repeated updates:
navigator.geolocation.watchPosition(updateLocation, handleLocationError);

This simple change will cause the Geolocation service to call your updateLocation handler
repeatedly as the user’s location changes, rather than one time. It acts as though your program is
watching the location and will let you know whenever the location changes.

Why would you want to do this?
Consider a web page that gives turn-by-turn directions as the viewer moves around town. Or a page

that constantly updates to show you the nearest gas station as you drive down the highway. Or even a
page that records and sends your location so that you can retrace your steps. All these services become
easy to build once the location updates flow into your application right as they are changing.

Turning off the updates is also simple. Should your application no longer need to receive regular
updates about the user’s location, you need merely make a call to the clearWatch() function, as shown
in the following example:

navigator.geolocation.clearWatch(watchId);

This function will inform the Geolocation service that you no longer want to receive updates on a
user’s location. But what is the watchID and where did it come from? It is actually the return value from
the watchPosition() call. It identifies the unique monitor request in order to allow us to cancel it later.
So, if your application ever needs to stop receiving location updates, you would write some code, as
shown in Listing 5-5.

Listing 5-5. Using watchPostion

var watchId = navigator.geolocation.watchPosition(updateLocation,
 handleLocationError);
// do something fun with the location updates!

// OK, now we are ready to stop receiving location updates
navigator.geolocation.clearWatch(watchId);

Building an Application with Geolocation
So far, we’ve mainly focused on single-shot location requests. Let’s see how powerful the Geolocation
API can really be by using its multirequest feature to build a small but useful application: a web page
with a distance tracker.

If you’ve ever wanted a quick way to determine how far you’ve traveled in a certain amount of time,
you would normally use a dedicated device such as a GPS navigation system or a pedometer. Using the
power of the Geolocation service, you can create a web page that tracks how far you have traveled from
where the page was originally loaded. Although less useful on a desktop computer, this page is ideal for
the millions of web-enabled phones that ship with Geolocation support today. Simply point your
smartphone browser to this example page, grant the page permission to access your location, and every
few seconds it will update with the distance you just traveled and add it to a running total (see Figure 5-
5).

CHAPTER 5  USING THE GEOLOCATION API

121

Figure 5-5. Our Geolocation example application in action

This sample works by using the watchPosition() capability we discussed in the last section. Every
time a new position is sent to us, we will compare it to the last known position and calculate the distance
traveled. This is accomplished using a well-known calculation known as the Haversine formula, which
allows us to calculate distance between two longitude and latitude positions on a sphere. Listing 5-6
displays what the Haversine formula tells us.

Listing 5-6. The Haversine Formula

If you're hoping to learn how the Haversine formula works, you’ll be sorely disappointed. Instead,

we’ll present you a JavaScript implementation of the formula, which allows anyone to use it to calculate
the distance between two positions (see Listing 5-7).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5  USING THE GEOLOCATION API

122

Listing 5-7. A JavaScript Haversine Implementation

 Number.prototype.toRadians = function() {
 return this * Math.PI / 180;
 }

 function distance(latitude1, longitude1, latitude2, longitude2) {
 // R is the radius of the earth in kilometers
 var R = 6371;

 var deltaLatitude = (latitude2-latitude1).toRadians();
 var deltaLongitude = (longitude2-longitude1).toRadians();
 latitude1 = latitude1.toRadians(), latitude2 = latitude2.toRadians();

 var a = Math.sin(deltaLatitude/2) *
 Math.sin(deltaLatitude/2) +
 Math.cos(latitude1) *
 Math.cos(latitude2) *
 Math.sin(deltaLongitude/2) *
 Math.sin(deltaLongitude/2);
 var c = 2 * Math.atan2(Math.sqrt(a),
 Math.sqrt(1-a));
 var d = R * c;
 return d;
 }

If you want to know why or how this formula works, consult a teenager’s math textbook. For our
purposes, we have written a conversion from degrees to radians, and we provided a distance() function
to calculate the distance between two latitude and longitude position values.

If we check the user’s position and calculate the distance traveled at frequent and regular intervals,
it gives a reasonable approximation of distance traveled over time. This assumes that the user is moving
in a straight direction during each interval, but we’ll make that assumption for the sake of our example.

Writing the HTML Display
Let’s start with the HTML display. We kept it quite simple for this exercise because the real interest is in
the script driving the data. We display a page with the pertinent Geolocation data. In addition, we’ll put a
few status text indicators in place so that the user can see the summary of distance traveled (see Listing
5-8).

Listing 5-8. Code for the Distance Tracker HTML Page

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" >
 <title>Geolocation</title>
 <link rel="stylesheet" href="geo-html5.css" >
</head>

CHAPTER 5  USING THE GEOLOCATION API

123

<body onload="loadDemo()">

 <header>
 <h1>Odometer Demo</h1>
 <h4>Live Race Data!</h4>
 </header>

 <div id="container">

 <section>
 <article>
 <header>
 <h1>Your Location</h1>
 </header>

 <p class="info" id="status">Geolocation is not supported in your browser.</p>

 <div class="geostatus">
 <p id="latitude">Latitude: </p>
 <p id="longitude">Longitude: </p>
 <p id="accuracy">Accuracy: </p>
 <p id="timestamp">Timestamp: </p>
 <p id="currDist">Current distance traveled: </p>
 <p id="totalDist">Total distance traveled: </p>
 </div>

 </article>
 </section>

 <footer>
 <h2>Powered by HTML5, and your feet!</h2>
 </footer>

 </div>
.
.
.
 </body>
</html>

These values are all defaulted for now and are populated once data starts flowing into the
application.

Processing the Geolocation Data
Our first JavaScript code section should look familiar. We’ve set a handler—loadDemo()—that will
execute as soon as the page completes loading. This script will detect if Geolocation is supported in the
browser and use a status update functions to change the status message at the top of the page to indicate
what it finds. It will then request a watch of the user’s position, as shown in Listing 5-9.

CHAPTER 5  USING THE GEOLOCATION API

124

Listing 5-9. Adding the loadDemo() and Status Update Functions

 var totalDistance = 0.0;
 var lastLat;
 var lastLong;

 function updateErrorStatus(message) {
 document.getElementById("status").style.background = "papayaWhip";
 document.getElementById("status").innerHTML = "Error: " + message;
 }

 function updateStatus(message) {
 document.getElementById("status").style.background = "paleGreen";
 document.getElementById("status").innerHTML = message;
 }

 function loadDemo() {
 if(navigator.geolocation) {
 document.getElementById("status").innerHTML = "HTML5 Geolocation is supported in your
browser.";
 navigator.geolocation.watchPosition(updateLocation, handleLocationError,
 {timeout:20000});
 }
 }

Note that we are setting a maximumAge option on our position watch: {maximumAge:20000}. This will
tell the location service that we don’t want any cached location values that are greater than 20 seconds
(or 20,000 milliseconds) old. Setting this option will keep our page updating at regular intervals, but feel
free to adjust this number and experiment with larger and smaller cache sizes.

For error handling, we’ll use the same routine we identified earlier, as it is generic enough to work
for our distance tracker. In it we’ll check the error code of any error we receive and update the status
message on the page accordingly as shown in Listing 5-10.

Listing 5-10. Adding the Error Handling Code

 function handleLocationError(error) {
 switch(error.code)
 {
 case 0:
 updateErrorStatus("There was an error while retrieving your location. Additional
details: " +
 error.message);
 break;
 case 1:
 updateErrorStatus("The user opted not to share his or her location.");
 break;
 case 2:
 updateErrorStatus("The browser was unable to determine your location. Additional
details: " +
 error.message);
 break;

CHAPTER 5  USING THE GEOLOCATION API

125

 case 3:
 updateErrorStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

The bulk of our work will be done in our updateLocation() function. Here we will update the page
with our most recent values and calculate the distance traveled, as shown in Listing 5-11.

Listing 5-11. Adding the updateLocation() Function

 function updateLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var accuracy = position.coords.accuracy;
 var timestamp = position.timestamp;

 document.getElementById("latitude").innerHTML = "Latitude: " + latitude;
 document.getElementById("longitude").innerHTML = "Longitude: " + longitude;
 document.getElementById("accuracy").innerHTML = "Accuracy: " + accuracy + " meters";
 document.getElementById("timestamp").innerHTML = "Timestamp: " + timestamp;

As you might expect, the first thing we will do when we receive an updated set of position
coordinates is to record all the information. We gather the latitude, longitude, accuracy, and timestamp,
and then update the table values with the new data.

You might not choose to display a timestamp in your own application. The timestamp number used
here is in a form primarily useful to computers, which won’t be meaningful to an end user. Feel free to
replace it with a more user-friendly time indicator or remove it altogether.

The accuracy value is given to us in meters and might at first seem unnecessary. However, any data
depends on its accuracy. Even if you don’t present the user with the accuracy values, you should take
them into account in your own code. Presenting inaccurate values could give the user a skewed idea of
his or her location. Therefore, we will throw out any position updates with an unreasonably low
accuracy, as shown in Listing 5-12.

Listing 5-12. Ignoring Inaccurate Accuracy Updates

 // sanity test... don't calculate distance if accuracy
 // value too large
 if (accuracy >= 30000) {
 updateStatus("Need more accurate values to calculate distance.");
 return;
 }

The Easiest Way to Travel

Brian says: “Keeping track of position accuracy is vital. As a developer, you won’t have access to the
methodologies a browser uses to calculate position, but you will have access to the accuracy attribute.
Use it!

CHAPTER 5  USING THE GEOLOCATION API

126

Sitting here in my backyard hammock on a lazy afternoon, I monitored my position on a geolocation–
enabled cell phone browser. I was surprised to see that over the course of only a few minutes, my reclined
body was reported to travel half a kilometer in distance at varying speeds. As exciting as this might sound,
it is a reminder that data is only as accurate as its source permits.”

Finally, we will calculate the distance traveled, assuming that we have already received at least one

accurate position value before. We will update the totals of travel distance and display them for the user,
and we will store the current values for future comparison. To keep our interface a little less cluttered, it
is a good idea to round or truncate the calculated values, as shown in Listing 5-13.

Listing 5-13. Adding the Distance Calculation Code

 // calculate distance
 if ((lastLat != null) && (lastLong != null)) {
 var currentDistance = distance(latitude, longitude, lastLat, lastLong);
 document.getElementById("currDist").innerHTML =
 "Current distance traveled: " + currentDistance.toFixed(2) + " km";
 totalDistance += currentDistance;
 document.getElementById("totalDist").innerHTML =
 "Total distance traveled: " + currentDistance.toFixed(2) + " km";
 updateStatus("Location successfully updated.");

 }
 lastLat = latitude;
 lastLong = longitude;

 }

That’s it. In fewer than 200 lines of HTML and script, we’ve created a sample application that
monitors the viewer’s position over time and demonstrated nearly the entire Geolocation API, complete
with error handling. Although this example is inherently less interesting when viewed on a desktop
computer, try it out on your favorite geolocation–enabled phone or device and see how mobile you truly
are during the course of a day.

The Final Code
The full code sample is shown in Listing 5-14.

Listing 5-14. Complete Distance Tracker Code

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" >
 <title>Geolocation</title>
 <link rel="stylesheet" href="geo-html5.css" >
</head>

CHAPTER 5  USING THE GEOLOCATION API

127

<body onload="loadDemo()">

 <header>
 <h1>Odometer Demo</h1>
 <h4>Live Race Data!</h4>
 </header>

 <div id="container">

 <section>
 <article>
 <header>
 <h1>Your Location</h1>
 </header>

 <p class="info" id="status">Geolocation is not supported in your browser.</p>

 <div class="geostatus">
 <p id="latitude">Latitude: </p>
 <p id="longitude">Longitude: </p>
 <p id="accuracy">Accuracy: </p>
 <p id="timestamp">Timestamp: </p>
 <p id="currDist">Current distance traveled: </p>
 <p id="totalDist">Total distance traveled: </p>
 </div>

 </article>
 </section>

 <footer>
 <h2>Powered by HTML5, and your feet!</h2>
 </footer>

 </div>

 <script>

 var totalDistance = 0.0;
 var lastLat;
 var lastLong;

 Number.prototype.toRadians = function() {
 return this * Math.PI / 180;
 }

 function distance(latitude1, longitude1, latitude2, longitude2) {
 // R is the radius of the earth in kilometers
 var R = 6371;

 var deltaLatitude = (latitude2-latitude1).toRadians();
 var deltaLongitude = (longitude2-longitude1).toRadians();
 latitude1 = latitude1.toRadians(), latitude2 = latitude2.toRadians();

CHAPTER 5  USING THE GEOLOCATION API

128

 var a = Math.sin(deltaLatitude/2) *
 Math.sin(deltaLatitude/2) +
 Math.cos(latitude1) *
 Math.cos(latitude2) *
 Math.sin(deltaLongitude/2) *
 Math.sin(deltaLongitude/2);

 var c = 2 * Math.atan2(Math.sqrt(a),
 Math.sqrt(1-a));
 var d = R * c;
 return d;
 }

 function updateErrorStatus(message) {
 document.getElementById("status").style.background = "papayaWhip";
 document.getElementById("status").innerHTML = "Error: " + message;
 }

 function updateStatus(message) {
 document.getElementById("status").style.background = "paleGreen";
 document.getElementById("status").innerHTML = message;
 }

 function loadDemo() {

 if(navigator.geolocation) {
 document.getElementById("status").innerHTML = "HTML5 Geolocation is supported in your
 browser.";
 navigator.geolocation.watchPosition(updateLocation, handleLocationError,
 {timeout:10000});
 }
 }

 function updateLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var accuracy = position.coords.accuracy;
 var timestamp = position.timestamp;

 document.getElementById("latitude").innerHTML = "Latitude: " + latitude;
 document.getElementById("longitude").innerHTML = "Longitude: " + longitude;
 document.getElementById("accuracy").innerHTML = "Accuracy: " + accuracy + " meters";
 document.getElementById("timestamp").innerHTML = "Timestamp: " + timestamp;

 // sanity test... don't calculate distance if accuracy
 // value too large
 if (accuracy >= 30000) {
 updateStatus("Need more accurate values to calculate distance.");
 return;
 }

CHAPTER 5  USING THE GEOLOCATION API

129

 // calculate distance
 if ((lastLat != null) && (lastLong != null)) {
 var currentDistance = distance(latitude, longitude, lastLat, lastLong);

 document.getElementById("currDist").innerHTML =
 "Current distance traveled: " + currentDistance.toFixed(2) + " km";

 totalDistance += currentDistance;
 document.getElementById("totalDist").innerHTML =
 "Total distance traveled: " + currentDistance.toFixed(2) + " km";
 updateStatus("Location successfully updated.");

 }

 lastLat = latitude;
 lastLong = longitude;

 }

 function handleLocationError(error) {
 switch(error.code)
 {
 case 0:
 updateErrorStatus("There was an error while retrieving your location. Additional
 details: " + error.message);
 break;
 case 1:
 updateErrorStatus("The user opted not to share his or her location.");
 break;
 case 2:
 updateErrorStatus("The browser was unable to determine your location. Additional
 details: " + error.message);
 break;
 case 3:
 updateErrorStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

 </script>

</body>

</html>

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples, but which nonetheless apply to
many types of HTML5 applications. We present to you some short, common, and practical extras here.

CHAPTER 5  USING THE GEOLOCATION API

130

What’s My Status?
You might have already noticed that a large portion of the Geolocation API pertains to timing values.
This should not be too surprising. Techniques for determining location—cell phone triangulation, GPS,
IP lookup, and so on—can take a notoriously long time to complete, if they complete at all. Fortunately,
the API gives a developer plenty of information to create a reasonable status bar for the user.

If a developer sets the optional timeout value on a position lookup, she is requesting that the
geolocation service notify her with an error if the lookup takes longer than the timeout value. The side
effect of this is that it is entirely reasonable to show the user a status message in the user interface while
the request is underway. The start of the status begins when the request is made, and the end of the
status should correspond to the timeout value, whether or not it ends in success or failure.

In Listing 5-15, we’ll kick off a JavaScript interval timer to regularly update the status display with a
new progress indicator value.

Listing 5-15. Adding a Status Bar

 function updateStatus(message) {
 document.getElementById("status").innerHTML = message;
 }

 function endRequest() {
 updateStatus("Done.");
 }

 function updateLocation(position) {
 endRequest();
 // handle the position data
 }

 function handleLocationError(error) {
 endRequest();

 // handle any errors
 }

 navigator.geolocation.getCurrentPosition(updateLocation,
 handleLocationError,
 {timeout:10000});
 // 10 second timeout value

updateStatus(“Requesting Geolocation data…”);

Let’s break that example down a little. As before, we’ve got a function to update our status value on
the page, as shown in the following example.

function updateStatus(message) {
 document.getElementById("status").innerHTML = message;
}

Our status here will be a simple text display, although this approach applies equally well for more
compelling graphical status displays (see Listing 5-16).

CHAPTER 5  USING THE GEOLOCATION API

131

Listing 5-16. Showing the Status

navigator.geolocation.getCurrentPosition(updateLocation,
 handleLocationError,
 {timeout:10000});
 // 10 second timeout value

updateStatus(“Requesting location data…”);

Once again, we use the Geolocation API to get the user’s current position, but with a set timeout of
ten seconds. Once ten seconds have elapsed, we should either have a success or failure due to the
timeout option.

We immediately update the status text display to indicate that a position request is in progress.
Then, once the request completes or ten seconds elapses—whichever comes first—you use the callback
method to reset the status text, as shown in Listing 5-17.

Listing 5-17. Resetting the Status Text

 function endRequest() {
 updateStatus("Done.");
 }

 function updateLocation(position) {
 endRequest();
 // handle the position data
 }

A simple extra, but easy to extend.
This technique works well for one-shot position lookups because it is easy for the developer to

determine when a position lookup request starts. The request starts as soon as the developer calls
getCurrentPosition(), of course. However, in the case of a repeated position lookup via
watchPosition(), the developer is not in control of when each individual position request begins.

Furthermore, the timeout does not begin until the user grants permission for the geolocation service
to access position data. For this reason, it is impractical to implement a precise status display because
the page is not informed during the instant when the user grants permission.

Show Me on a Google Map
One very common request for geolocation data is to show a user’s position on a map, such as the
popular Google Maps service. In fact, this is so popular that Google itself built support for Geolocation
into its user interface. Simply press the Show My Location button (see Figure 5-6); Google Maps will use
the Geolocation API (if it is available) to determine and display your location on the map.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5  USING THE GEOLOCATION API

132

Figure 5-6. Google Map’s Show My Location button

However, it is also possible to do this yourself. Although the Google Map API is beyond the scope of
this book, it has (not coincidentally) been designed to take decimal latitude and longitude locations.
Therefore, you can easily pass the results of your position lookup to the Google Map API, as shown in
Listing 5-18. You can read more on this subject in Beginning Google Maps Applications, Second Edition
(Apress, 2010).

Listing 5-18. Passing a Position to the Google Map API

//Include the Google maps library
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

// Create a Google Map… see Google API for more detail
var map = new google.maps.Map(document.getElementById("map"));

function updateLocation(position) {
 //pass the position to the Google Map and center it

CHAPTER 5  USING THE GEOLOCATION API

133

 map.setCenter(new google.maps.LatLng(
 parseFloat(position.coords.latitude),
 parseFloat(position.coords.longitude));
navigator.geolocation.getCurrentPosition(updateLocation,
 handleLocationError);

Summary
This chapter discussed Geolocation. You learned the Geolocation location information—latitude,
longitude, and other attributes—and where they can come from. You also learned about the privacy
concerns that accompany Geolocation and you’ve seen how the Geolocation API can be used to create
compelling, location–aware web applications.

In the next chapter, we’ll demonstrate how HTML5 lets you communicate between tabs and
windows as well as between pages and servers with different domains.

C H A P T E R 6

135

Using the Communication APIs

In this chapter, we’ll explore what you can do with two of the important building blocks for real-time,
cross-origin communication: Cross Document Messaging and XMLHttpRequest Level 2 and we’ll show
you how they can be used to create compelling applications. Both of these building blocks add new
communication options to HTML5 applications and allow applications served from different domains to
safely communicate with each other.

First, we’ll discuss the postMessage API and the origin security concept—two key elements of
HTML5 communication—and then we’ll show you how the postMessage API can be used to
communicate between iframes, tabs, and windows.

Next, we’ll discuss XMLHttpRequest Level 2—an improved version of XMLHttpRequest. We’ll show
you in which areas XMLHttpRequest has been improved. Specifically, we’ll show you how you can use
XMLHttpRequest to make cross-origin requests and how to use the new progress events.

Cross Document Messaging
Until recently, communications between frames, tabs, and windows in a running browser was entirely
restricted due to security concerns. For instance, while it might be handy for certain sites to share
information from inside the browser, it would also open up the possibility for malicious attacks. If
browsers granted the ability to programmatically access the content loaded into other frames and tabs,
sites would be able to steal whatever information they could get from another site's content using
scripting. Wisely, the browser vendors restricted this access; attempting to retrieve or modify content
loaded from another source raises a security exception and prevents the operation.

However, there are some legitimate cases for content from different sites to be able to communicate
inside the browser. The classic example is the "mashup", a combination of different applications such as
mapping, chat, and news from different sites, all combined together to form a new meta-application. In
these cases, a well-coordinated set of applications would be served by direct communication channels
inside the browser itself.

To meet this need, the browser vendors and standards bodies agreed to introduce a new feature:
Cross Document Messaging. Cross Document Messaging enables secure cross-origin communication
across iframes, tabs, and windows. It defines the postMessage API as a standard way to send messages. As
shown in the following example, it is very simple to send a message with the postMessage API.

chatFrame.contentWindow.postMessage('Hello, world', 'http://www.example.com/');

To receive messages, you just have to add an event handler to your page. When a message arrives,
you can check its origin and decide whether or not to do something with the message. Listing 6-1 shows
an event listener that passes the message to a messageHandler function.

http://www.example.com/

CHAPTER 6  USING THE COMMUNICATION APIS

136

Listing 6-1. An Event Listener for Message Events

window.addEventListener(“message”, messageHandler, true);
function messageHandler(e) {
 switch(e.origin) {
 case “friend.example.com”:
 // process message
 processMessage(e.data);
 break;
 default:
 // message origin not recognized
 // ignoring message
 }
}

A message event is a DOM event with data and origin properties. The data property is the actual
message that the sender passed along and the origin property is the sender’s origin. Using the origin
property, it is easy for the receiving side to ignore messages from untrusted sources; the origin can
simply be checked against a list of allowed origins.

As shown in Figure 6-1, the postMessage API provides a way to communicate between a chat widget
iframe hosted at http://chat.example.net and an HTML page that contains the chat widget iframe
hosted at http://portal.example.com (two different origins).

Figure 6-1. postMessage communication between an iframe and a main HTML page

In this example, the chat widget is contained in an iframe from another origin, so it does not have
direct access to the parent window. When the chat widget receives a chat message, it can use
postMessage to send a message to the main page so that the page can alert the user of the chat widget

http://chat.example.net
http://portal.example.com

CHAPTER 6  USING THE COMMUNICATION APIS

137

that a new message has been received. Similarly, the page can send messages about the user’s status to
the chat widget. Both the page and the widget can listen for messages from each other by adding the
respective origins to a whitelist of allowed origins.

Figure 6-2 shows a real-life example of using the postMessage API in action. It is an HTML5 Slide
viewer application called DZSlides, built by Firefox engineer and HTML5 evangelist Paul Rouget
(http://paulrouget.com/dzslides). In this application, the presentation and its container communicate
using the postMessage API.

Figure 6-2. Real-life use of postMessage API in DZSlides application

Before the introduction of postMessage, communicating between iframes could sometimes be
accomplished by direct scripting. A script running in one page would attempt to manipulate another
document. This might not be allowed due to security restrictions. Instead of direct programmatic access,
postMessage provides asynchronous message passing between JavaScript contexts. As shown in Figure 6-
3, without postMessage, cross origin communication would result in security errors, enforced by
browsers to prevent cross-site scripting attacks.

http://paulrouget.com/dzslides

CHAPTER 6  USING THE COMMUNICATION APIS

138

Figure 6-3. Cross-site scripting error in earlier version of Firefox and Firebug

The postMessage API can be used for communicating between documents with the same origin, but
it is particularly useful when communication might otherwise be disallowed by the same-domain policy,
which is enforced by browsers. However, there are reasons to use postMessage for messaging between
same-origin documents as well because it provides a consistent, easy-to-use API. The postMessage API is
used whenever there is communication between JavaScript contexts, such as with HTML5 Web Workers.

Understanding Origin Security
HTML5 clarifies and refines domain security by introducing the concept of an origin. An origin is a
subset of an address used for modeling trust relationships on the Web. Origins are made up of a scheme,
a host, and a port. For example, a page at https://www.example.com has a different origin than one at
http://www.example.com because the scheme differs (https vs. http). The path is not considered in the
origin value, so a page at http://www.example.com/index.html has the same origin as a page at
http://www.example.com/page2.html because only the paths differ.

HTML5 defines the serialization of origins. In string form, origins can be referred to in APIs and
protocols. This is essential for cross-origin HTTP requests using XMLHttpRequest, as well as for
WebSockets.

Cross-origin communication identifies the sender by origin. This allows the receiver to ignore
messages from origins it does not trust or does not expect to receive messages from. Furthermore,
applications must opt-in to receiving messages by adding an event listener for message events. Because
of this, there is no risk of messages interfering with an unsuspecting application.

Security rules for postMessage ensure that messages cannot be delivered to pages with unexpected—
and possibly undesired—origins. When sending a message, the sender specifies the receiver’s origin. If
the window on which the sender is calling postMessage does not have that specific origin (for instance, if
the user has navigated to another site) the browser will not transmit that message.

Likewise, when receiving a message, the sender’s origin is included as part of the message. The
message’s origin is provided by the browser and cannot be spoofed. This allows the receiver to decide
which messages to process and which to ignore. You can keep a white list and process only messages
from documents with trusted origins.

Be careful with External input

Frank says: “Applications that process cross-origin messages should always verify the source origin of
every message. Furthermore, message data should be treated with caution. Even if a message comes from

https://www.example.com
http://www.example.com
http://www.example.com/index.html
http://www.example.com/page2.html

CHAPTER 6  USING THE COMMUNICATION APIS

139

a trusted source, it should be treated with the same caution as any other external input. The following two
examples show a method of injecting content that can lead to trouble, as well as a safer alternative.

// Dangerous: e.data is evaluated as markup!
element.innerHTML = e.data;

// Better
element.textContent = e.data;

As a best practice, never evaluate strings received from third parties. Furthermore, avoid using eval with
strings originating from your own application. Instead, you can use JSON with window.JSON or the json.org
parser. JSON is a data language that is meant to be safely consumed by JavaScript, and the json.org
parser is designed to be paranoid.”

Browser Support for Cross Document Messaging
All major browsers, including Internet Explorer 8 and later, support the postMessage API. It is always a
good idea to first test if HTML5 Cross Document Messaging is supported, before you use it. The section
“Checking for Browser Support” later in this chapter will show you how you can programmatically check
for browser support.

Using the postMessage API
In this section, we’ll explore the use of the HTML5 postMessage API in more detail.

Checking for Browser Support
Before you call postMessage, it is a good idea to check if the browser supports it. The following example
shows one way to check for postMessage support:

if (typeof window.postMessage === “undefined”) {
 // postMessage not supported in this browser
}

Sending Messages
To send messages, invoke postMessage on the target window object, as shown in the following example:

window.postMessage(“Hello, world”, “portal.example.com”);

The first argument contains the data to send, and the second argument contains the intended
target. To send messages to iframes, you can invoke postMessage on the iframe’s contentWindow, as
shown in the following example:

document.getElementsByTagName(“iframe”)[0].contentWindow.postMessage(“Hello, world”,
“chat.example.net”);

CHAPTER 6  USING THE COMMUNICATION APIS

140

Listening for Message Events
A script receives messages by listening for events on the window object, as shown in Listing 6-2. In the
event listener function, the receiving application can decide to accept or ignore the message.

Listing 6-2. Listening for Message Events and Comparing Origins Against a Whitelist

var originWhiteList = [“portal.example.com”, “games.example.com”, “www.example.com”];

function checkWhiteList(origin) {
 for (var i=0; i<originWhiteList.length; i++) {
 if (origin === originWhiteList[i]) {
 return true;
 }
 }
 return false;
}

function messageHandler(e) {
 if(checkWhiteList(e.origin)) {
 processMessage(e.data);
 } else {
 // ignore messages from unrecognized origins
 }
}

window.addEventListener(“message”, messageHandler, true);

 Note The MessageEvent interface defined by HTML5 is also part of HTML5 WebSockets and HTML5 Web
Workers. The communication features of HTML5 have consistent APIs for receiving messages. Other
communication APIs, such as the EventSource API and Web Workers, also use MessageEvent to deliver messages.

Building an Application Using the postMessage API
Let’s say that you wanted to build the aforementioned portal application with its cross-origin chat
widget. You can use Cross Document Messaging to communicate between the portal page and the chat
widget, as shown in Figure 6-4.

CHAPTER 6  USING THE COMMUNICATION APIS

141

Figure 6-4. Portal page with cross-origin chat widget iframe

In this example, we show how a portal might embed widgets from third parties in iframes. Our
example shows a single widget from chat.example.net. The portal page and widget then communicate
using postMessage. In this case, the iframe represents a chat widget that wants to notify the user by
blinking the title text. This is a common UI technique found in applications that receive events in the
background. However, because the widget is isolated in an iframe served from a different origin than the
parent page, changing the title would be a security violation. Instead, the widget uses postMessage to
request that the parent page perform the notification on its behalf.

The example portal also sends messages to the iframe to inform the widget that the user has
changed his or her status. Using postMessage in this way allows a portal such as this to coordinate with
widgets across the combined application. Of course, because the target origin is checked when the
message is sent, and the event origin is checked when it is received, there is no chance that data leaks
out accidentally or is spoofed.

 Note In this example application, the chat widget is not connected to a live chat system, and notifications are
driven by the application’s users clicking Send Notification. A working chat application could use Web Sockets,
as described in Chapter 7.

CHAPTER 6  USING THE COMMUNICATION APIS

142

For the sake of illustration, we created a few simple HTML pages: postMessagePortal.html and
postMessageWidget.html. The following steps highlight the important parts of building the portal page
and the chat widget page. The sample code for the following examples is located in the
code/communication folder.

Building the Portal Page
First, add the chat widget iframe hosted at the different origin:

<iframe id="widget" src="http://chat.example.net:9999/postMessageWidget.html"></iframe>

Next, add an event listener messageHandler to listen for message events coming from the chat
widget. As shown in the following example code, the widget will ask the portal to notify the user, which
can be done by flashing the title. To make sure the message comes from the chat widget, the message’s
origin is verified; if it does not come from http://chat.example.net:9999, the portal page simply ignores
it.

var trustedOrigin = "http://chat.example.net:9999";

function messageHandler(e) {
 if (e.origin == trustedOrigin) {
 notify(e.data);
 } else {
 // ignore messages from other origins
 }
}

Next, add a function to communicate with the chat widget. It uses postMessage to send a status
update to the widget iframe contained in the portal page. In a live chat application, it could be used to
communicate the user’s status (available, away, and so on).

function sendString(s) {
 document.getElementById("widget").contentWindow.postMessage(s, targetOrigin);
}

Building the Chat Widget Page
First, add an event listener messageHandler to listen for message events coming from the portal page. As
shown in the following example code, the chat widget listens for incoming status-change messages. To
make sure the message comes from the portal page, the message’s origin is verified; if it does not come
from http://portal.example.com:9999, the widget simply ignores it.

var trustedOrigin = "http://portal.example.com:9999";
function messageHandler(e) {
 if (e.origin === trustedOrigin {
 document.getElementById("status").textContent = e.data;
 } else {
 // ignore messages from other origins
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://chat.example.net:9999
http://chat.example.net:9999
http://portal.example.com:9999
http://portal.example.com:9999

CHAPTER 6  USING THE COMMUNICATION APIS

143

}

Next, add a function to communicate with the portal page. The widget will ask the portal to notify
the user on its behalf and uses postMessage to send a message to the portal page when a new chat
message is received, as shown in the following example:

function sendString(s) {
 window.top.postMessage(s, trustedOrigin);
}

The Final Code
Listing 6-3 shows the complete code for the Portal page postMessagePortal.html.

Listing 6-3. Contents of postMessagePortal.html

<!DOCTYPE html>
<title>Portal [http://portal.example.com:9999]</title>
<link rel="stylesheet" href="styles.css">
<style>
 iframe {
 height: 400px;
 width: 800px;
 }
</style>
<link rel="icon" href="http://apress.com/favicon.ico">
<script>

var defaultTitle = "Portal [http://portal.example.com:9999]";
var notificationTimer = null;

var trustedOrigin = "http://chat.example.net:9999";

function messageHandler(e) {
 if (e.origin == trustedOrigin) {
 notify(e.data);
 } else {
 // ignore messages from other origins
 }
}

function sendString(s) {
 document.getElementById("widget").contentWindow.postMessage(s, trustedOrigin);
}

function notify(message) {
 stopBlinking();
 blinkTitle(message, defaultTitle);
}

http://apress.com/favicon.ico
http://chat.example.net:9999

CHAPTER 6  USING THE COMMUNICATION APIS

144

function stopBlinking() {
 if (notificationTimer !== null) {
 clearTimeout(notificationTimer);
 }
 document.title = defaultTitle;
}

function blinkTitle(m1, m2) {
 document.title = m1;
 notificationTimer = setTimeout(blinkTitle, 1000, m2, m1)
}

function sendStatus() {
var statusText = document.getElementById("statusText").value;
 sendString(statusText);
}

function loadDemo() {
 document.getElementById("sendButton").addEventListener("click", sendStatus, true);
 document.getElementById("stopButton").addEventListener("click", stopBlinking, true);
 sendStatus();
}
window.addEventListener("load", loadDemo, true);
window.addEventListener("message", messageHandler, true);

</script>

<h1>Cross-Origin Portal</h1>
<p>Origin: http://portal.example.com:9999</p>
Status <input type="text" id="statusText" value="Online">
<button id="sendButton">Change Status</button>
<p>
This uses postMessage to send a status update to the widget iframe contained in the portal
page.
</p>
<iframe id="widget" src="http://chat.example.net:9999/postMessageWidget.html"></iframe>
<p>
 <button id="stopButton">Stop Blinking Title</button>
</p>

Listing 6-4 shows the code for the portal page postMessageWidget.html.

Listing 6-4. Contents of postMessageWidget.html

<!DOCTYPE html>
<title>widget</title>
<link rel="stylesheet" href="styles.css">
<script>

var trustedOrigin = "http://portal.example.com:9999";

http://portal.example.com:9999

CHAPTER 6  USING THE COMMUNICATION APIS

145

function messageHandler(e) {
 if (e.origin === "http://portal.example.com:9999") {
 document.getElementById("status").textContent = e.data;
 } else {
 // ignore messages from other origins
 }
}

function sendString(s) {
 window.top.postMessage(s, trustedOrigin);
}

function loadDemo() {
 document.getElementById("actionButton").addEventListener("click",
 function() {
 var messageText = document.getElementById("messageText").value;
 sendString(messageText);
 }, true);

}
window.addEventListener("load", loadDemo, true);
window.addEventListener("message", messageHandler, true);

</script>
<h1>Widget iframe</h1>
<p>Origin: http://chat.example.net:9999</p>
<p>Status set to: <strong id="status"> by containing portal.<p>

<div>
 <input type="text" id="messageText" value="Widget notification.">
 <button id="actionButton">Send Notification</button>
</div>

<p>
This will ask the portal to notify the user. The portal does this by flashing the title. If
the message comes from an origin other than http://chat.example.net:9999, the portal page will
ignore it.
</p>

The Application in Action
To see this example in action, there are two prerequisites: the pages have to be served up by a web server
and the pages have to be served up from two different domains. If you have access to multiple web
servers (for example, two Apache HTTP servers) on separate domains, you can host the example files on
those servers and run the demo. Another way to accomplish this on your local machine is to use Python
SimpleHTTPServer, as shown in the following steps.

1. Update the path to the Windows hosts file
(C:\Windows\system32\drivers\etc\hosts) and the Linux version (/etc/hosts)
by adding two entries pointing to your localhost (IP address 127.0.0.1), as
shown in the following example:

http://portal.example.com:9999
http://chat.example.net:9999

CHAPTER 6  USING THE COMMUNICATION APIS

146

127.0.0.1 chat.example.net
127.0.0.1 portal.example.com

 Note You must restart your browser after modifying the host file to ensure that the DNS entries
take effect.

2. Install Python 2, which includes the lightweight SimpleHTTPServer web server.

3. Navigate to the directory that contains the two example files
(postMessageParent.html and postMessageWidget.html).

4. Start Python as follows:

python -m SimpleHTTPServer 9999

5. Open a browser and navigate to
http://portal.example.com:9999/postMessagePortal.html. You should now
see the page shown in Figure 6-4.

XMLHttpRequest Level 2
XMLHttpRequest is the API that made Ajax possible. There are many books about XMLHttpRequest and
Ajax. You can read more about XMLHttpRequest programming in John Resig’s Pro JavaScript
Techniques, (Apress, 2006).

XMLHttpRequest Level 2—the new version of XMLHttpRequest—has been significantly enhanced.
In this chapter, we will be covering the improvements introduced in XMLHttpRequest Level 2. These
improvements are centered on the following areas:

• Cross-origin XMLHttpRequests

• Progress events

• Binary Data

Cross-Origin XMLHttpRequest
In the past, XMLHttpRequest was limited to same-origin communication. XMLHttpRequest Level 2

allows for cross-origin XMLHttpRequests using Cross Origin Resource Sharing (CORS), which uses the
origin concept discussed in the earlier Cross Document Messaging section.

Cross-origin HTTP requests have an Origin header. This header provides the server with the
request’s origin. This header is protected by the browser and cannot be changed from application code.
In essence, it is the network equivalent of the origin property found on message events used in Cross
Document Messaging. The origin header differs from the older referer [sic] header in that the referer is a
complete URL including the path. Because the path may contain sensitive information, the referer is
sometimes not sent by browsers attempting to protect user privacy. However, the browser will always
send the required Origin headers when necessary.

Using cross-origin XMLHttpRequest, you can build web applications that use services hosted on
different origins. For example, if you wanted to host a web application that used static content from one

http://portal.example.com:9999/postMessagePortal.html

CHAPTER 6  USING THE COMMUNICATION APIS

147

origin and Ajax services from another, you could use cross-origin XMLHttpRequest to communicate
between the two. Without cross-origin XMLHttpRequest, you would be limited to same-origin
communication. This would constrain your deployment options. For example, you might have to deploy
the web application on a single domain or set up a subdomain.

As shown in Figure 6-5, cross-origin XMLHttpRequest allows you to aggregate content from
different origins on the client side. Additionally, you can access secured content with the user’s
credentials if the target server allows it, providing users with direct access to personalized data. Server-
side aggregation, on the other hand, forces all content to be funneled through a single server-side
infrastructure, which can create a bottleneck.

Figure 6-5. Difference between client-side and server-side aggregation

The CORS specification dictates that, for sensitive actions—for example, a request with credentials,
or a request other than GET or POST—an OPTIONS preflight request must be sent to the server by the

CHAPTER 6  USING THE COMMUNICATION APIS

148

browser to see whether the action is supported and allowed. This means that successful communication
may require a CORS-capable server. Listings 6-5 and 6-6 show the HTTP headers involved in a cross-
origin exchange between a page hosted on www.example.com and a service hosted on www.example.net.

Listing 6-5. Example Request Headers

POST /main HTTP/1.1
Host: www.example.net
User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090910 Ubuntu/9.04
(jaunty) Shiretoko/3.5.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/
Origin: http://www.example.com
Pragma: no-cache
Cache-Control: no-cache
Content-Length: 0

Listing 6-6. Example Response Headers

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Server: Kaazing Gateway
Date: Mon, 02 Nov 2009 06:55:08 GMT
Content-Type: text/plain
Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Credentials: true

Progress Events
One of the most important API improvements in XMLHttpRequest has been the changes related to
progressive responses. In the previous version of XMLHttpRequest, there was only a single
readystatechange event. On top of that, it was inconsistently implemented across browsers. For
example, readyState 3 (progress) never fires in Internet Explorer. Furthermore, the readyState change
event lacked a way to communicate upload progress. Implementing an upload progress bar was not a
trivial task and involved server-side participation.

XMLHttpRequest Level 2 introduces progress events with meaningful names. Table 6-2 shows the
new progress event names. You can listen for each of these events by setting a callback function for the
event handler attribute. For example, when the loadstart event fires, the callback for the onloadstart
property is called.

http://www.example.com
http://www.example.net
http://www.example.net
http://www.example.com/
http://www.example.com
http://www.example.com

CHAPTER 6  USING THE COMMUNICATION APIS

149

Table 6-1. New XMLHttpRequest Level 2 Progress Event Names

Progress Event Name

loadstart

progress

abort

error

load

loadend

The old readyState property and readystatechange events will be retained for backward

compatibility.

“Seemingly Arbitrary” Times

In the XMLHttpRequest Level 2 specification’s description for the readystatechange event (maintained for
backward compatibility), the readyState attribute is described as changing at, get this, “some seemingly
arbitrary times for historical reasons.”

Browser Support for HTML5 XMLHttpRequest Level 2
HTML5 XMLHttpRequest is already supported in many browsers at the time of this writing. Due to the
varying levels of support, it is a good idea to first test if HTML5 XMLHttpRequest is supported, before
you use these elements. The section “Checking for Browser Support” later in this chapter will show you
how you can programmatically check for browser support.

Using the XMLHttpRequest API
In this section, we’ll explore the use of the XMLHttpRequest in more detail. For the sake of illustration,
we’ve created a simple HTML page—crossOriginUpload.html. The sample code for the following
examples is located in the code/communication folder.

Checking for Browser Support
Before you try to use XMLHttpRequest Level 2 functionality—such as cross-origin support—it is a good
idea to check if it is supported. You can do this by checking whether the new withCredentials property is
available on an XMLHttpRequest object as shown in Listing 6-7.

CHAPTER 6  USING THE COMMUNICATION APIS

150

Listing 6-7. Checking if Cross-Origin Support Is Available in XMLHttpRequest

var xhr = new XMLHttpRequest()
if (typeof xhr.withCredentials === undefined) {
 document.getElementById("support").innerHTML =
 "Your browser does not support cross-origin XMLHttpRequest";
} else {
 document.getElementById("support").innerHTML =
 "Your browser doessupport cross-origin XMLHttpRequest";
}

Making Cross-Origin Requests
To make a cross-origin XMLHttpRequest, you must first create a new XMLHttpRequest object, as shown
in the following example.

var crossOriginRequest = new XMLHttpRequest()

Next, make the cross-origin XMLHttpRequest by specifying an address on a different origin as
shown in the following example.

crossOriginRequest.open("GET", "http://www.example.net/stockfeed", true);

Make sure, you listen for errors. There are many reasons why this request might not succeed. For
example, network failure, access denied, and lack of CORS support on the target server.

WHY NOT JSONP?

Frank says: “One common way to fetch data from another origin is JSONP (JSON with padding). JSONP
involves creating a script tag with the URL of a JSON resource. The URL has a query parameter containing
the name of a function to invoke when the script loads. It is up to the remote server to wrap the JSON data
with a call to the named function. This has serious security implications! When you use JSONP, you must
completely trust the service providing the data. A malicious script could take over your application.

With XMLHttpRequest (XHR) and CORS, you receive data instead of code, which you can parse safely. It’s
far safer than evaluating external input.”

Using Progress Events
Instead of numerical states representing different stages of the request and response, XMLHttpRequest
Level 2 provides named progress events. You can listen for each of these events by setting a callback
function for the event handler attribute.

Listing 6-8 shows how callback functions are used to handle progress events. Progress events have
fields for the total amount of data to transfer, the amount that has already transferred, and a Boolean
value indicating whether the total is known (it may not be in the case of streaming HTTP).
XMLHttpRequest.upload dispatches events with the same fields.

http://www.example.net/stockfeed

CHAPTER 6  USING THE COMMUNICATION APIS

151

Listing 6-8. Using the onprogress Event

crossOriginRequest.onprogress = function(e) {
 var total = e.total;
 var loaded = e.loaded;

 if (e.lengthComputable) {
 // do something with the progress information
 }
}
crossOriginRequest.upload.onprogress = function(e) {
 var total = e.total;
 var loaded = e.loaded;

 if (e.lengthComputable) {
 // do something with the progress information
 }
}

Binary Data
Browsers that support new binary APIs such as Typed Array (which is necessary for WebGL and
programmable audio) may be able to send binary data with XMLHttpRequest. The XMLHttpRequest
Level 2 specification includes support for calling the send() method with Blob and ArrayBuffer (aka
Typed Array) objects (see Listing 6-9).

Listing 6-9. Sending a Typed Array of Bytes

var a = new Uint8Array([8,6,7,5,3,0,9]);
var xhr = new XMLHttpRequest();
xhr.open("POST", "/data/", true)
console.log(a)
xhr.send(a.buffer);

This makes an HTTP POST request with a binary content body. The content length is 7, and the
body contains the bytes 8,6,7,5,3,0,9.

XMLHttpRequest Level 2 also exposes binary response data. Setting the responseType attribute to
“text,” “document,” “arraybuffer,” or “blob” controls the type of object returned by the response
property. To see the raw bytes contained by the HTTP response body, set the responseType to
“arraybuffer” or “blob.”

In the next chapter, we’ll see how WebSocket can be used to send and receive binary data using the
same types.

Building an Application Using XMLHttpRequest
In this example, we’ll look at uploading race geolocation coordinates to a web server hosted on a
different origin. We use the new progress events to monitor the status of the HTTP request including the
upload percentage. Figure 6-6 shows the application in action.

CHAPTER 6  USING THE COMMUNICATION APIS

152

Figure 6-6. A Web Application That Uploads Geolocation Data

For the sake of illustration, we’ve created the HTML file crossOrignUpload.html. The following steps
highlight the important parts of building the cross-origin upload page shown in Figure 6-5. The sample
code for the following examples is located in the code/communication folder.

First, create a new XMLHttpRequest object, as shown in the following example.

var xhr = new XMLHttpRequest();

Next, do check if cross-origin XMLHttpRequest is supported in the browser, as shown in the
following example.

if (typeof xhr.withCredentials === undefined) {
 document.getElementById("support").innerHTML =
 "Your browser doesnot support cross-origin XMLHttpRequest";
} else {
 document.getElementById("support").innerHTML =
 "Your browser does support cross-origin XMLHttpRequest";
}

Next, set callback functions to handle the progress events and calculate the uploaded and
downloaded ratios.

xhr.upload.onprogress = function(e) {
 var ratio = e.loaded / e.total;
 setProgress(ratio + "% uploaded");
}

xhr.onprogress = function(e) {
 var ratio = e.loaded / e.total;
 setProgress(ratio + "% downloaded");
}

xhr.onload = function(e) {
 setProgress("finished");
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6  USING THE COMMUNICATION APIS

153

xhr.onerror = function(e) {
 setProgress("error");
}

Finally, open the request and send the string containing the encoded geolocation data. This will be a
cross-origin request because the target location is a URL with a different origin than the page.

var targetLocation = "http://geodata.example.net:9999/upload";
xhr.open("POST", targetLocation, true);

geoDataString = dataElement.textContent;
xhr.send(geoDataString);

The Final Code
Listing 6-10 shows the complete application code—the contents of the crossOriginUpload.html file.

Listing 6-10. Contents of crossOriginUpload.html

<!DOCTYPE html>
<title>Upload Geolocation Data</title>
<link rel="stylesheet" href="styles.css">
<link rel="icon" href="http://apress.com/favicon.ico">
<script>

function loadDemo() {
 var dataElement = document.getElementById("geodata");
 dataElement.textContent = JSON.stringify(geoData).replace(",", ", ", "g");

 var xhr = new XMLHttpRequest()
 if (typeof xhr.withCredentials === undefined) {
 document.getElementById("support").innerHTML =
 "Your browser does not support cross-origin XMLHttpRequest";
 } else {
 document.getElementById("support").innerHTML =
 "Your browser does support cross-origin XMLHttpRequest";
 }

 var targetLocation = "http://geodata.example.net:9999/upload";

 function setProgress(s) {
 document.getElementById("progress").innerHTML = s;
 }

 document.getElementById("sendButton").addEventListener("click",
 function() {
 xhr.upload.onprogress = function(e) {
 var ratio = e.loaded / e.total;
 setProgress(ratio + "% uploaded");
 }

http://geodata.example.net:9999/upload
http://apress.com/favicon.ico
http://geodata.example.net:9999/upload

CHAPTER 6  USING THE COMMUNICATION APIS

154

 xhr.onprogress = function(e) {
 var ratio = e.loaded / e.total;
 setProgress(ratio + "% downloaded");
 }

 xhr.onload = function(e) {
 setProgress("finished");
 }

 xhr.onerror = function(e) {
 setProgress("error");
 }

 xhr.open("POST", targetLocation, true);

 geoDataString = dataElement.textContent;
 xhr.send(geoDataString);
 }, true);

}
window.addEventListener("load", loadDemo, true);

</script>

<h1>XMLHttpRequest Level 2</h1>
<p id="support"></p>

<h4>Geolocation Data to upload:</h4>
<textarea id="geodata">
</textarea>
</div>

<button id="sendButton">Upload</button>

<script>
geoData = [[39.080018000000003, 39.112557000000002, 39.135261, 39.150458, 39.170653000000001,
39.190128000000001, 39.204510999999997, 39.226759000000001, 39.238483000000002,
39.228154000000004, 39.249400000000001, 39.249533, 39.225276999999998, 39.191253000000003,
39.167993000000003, 39.145685999999998, 39.121620999999998, 39.095761000000003, 39.080593,
39.053131999999998, 39.02619, 39.002929000000002, 38.982886000000001, 38.954034999999998,
38.944926000000002, 38.919960000000003, 38.925261999999996, 38.934922999999998,
38.949373000000001, 38.950133999999998, 38.952649000000001, 38.969692000000002,
38.988512999999998, 39.010652, 39.033088999999997, 39.053493000000003, 39.072752999999999], [-
120.15724399999999, -120.15818299999999, -120.15600400000001, -120.14564599999999, -
120.141285, -120.10889900000001, -120.09528500000002, -120.077596, -120.045428, -120.0119, -
119.98897100000002, -119.95124099999998, -119.93270099999998, -119.927131, -
119.92685999999999, -119.92636200000001, -119.92844600000001, -119.911036, -119.942834, -
119.94413000000002, -119.94555200000001, -119.95411000000001, -119.941327, -
119.94605900000001, -119.97527599999999, -119.99445, -120.028998, -120.066335, -
120.07867300000001, -120.089985, -120.112227, -120.09790700000001, -120.10881000000001, -
120.116692, -120.117847, -120.11727899999998, -120.14398199999999]];
</script>

CHAPTER 6  USING THE COMMUNICATION APIS

155

<p>
 Status: ready
</p>

The Application in Action
To see this example in action, there are two prerequisites: the pages have to be served up from different
domains, and the target page has to be served up by a web server that understands CORS headers. A
CORS-compliant Python script that can handle incoming cross-origin XMLHttpRequests is included in
the example code for this chapter. You can run the demo on your local machine by performing the
following steps:

1. Update your hosts file (C:\Windows\system32\drivers\etc\hosts on Windows
or /etc/hosts on Unix/Linux) by adding two entries pointing to your localhost
(IP address 127.0.0.1) as shown in the following example:

127.0.0.1 geodata.example.net
127.0.0.1 portal.example.com

 Note You must restart your browser after modifying the host file to ensure the DNS entries take
effect.

2. Install Python 2, which includes the lightweight SimpleHTTPServer web server,
if you did not do so for the previous example.

3. Navigate to the directory that contains the example file
(crossOrignUpload.html) and the Python CORS server script (CORSServer.py).

4. Start Python in this directory as follows:
python CORSServer.py 9999

5. Open a browser and navigate to
http://portal.example.com:9999/crossOriginUpload.html. You should now
see the page shown in Figure 6-6.

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples, but that nonetheless apply to
many types of HTML5 applications. We present to you some short, but common, practical extras here.

Structured Data
Early versions of postMessage only supported strings. Later revisions allowed other types of data
including JavaScript objects, canvas imageData, and files. Support for different object types will vary by
browser as the specification develops.

http://portal.example.com:9999/crossOriginUpload.html

CHAPTER 6  USING THE COMMUNICATION APIS

156

In some browsers, the limitations on JavaScript objects that can be sent with postMessage are the
same as those for JSON data. In particular, data structures with cycles may not be allowed. An example
of this is a list containing itself.

Framebusting
Framebusting is a technique for ensuring that your content is not loaded in an iframe. An application
can detect that its window is not the outermost window (window.top) and subsequently break out of its
containing frame, as shown in the following example.

if (window !== window.top) {
 window.top.location = location;
}

Browsers supporting the X-Frame-Options HTTP header will also prevent malicious framing for
resources that set that header to DENY or SAMEORIGIN. However, there may be certain partner pages
that you want to selectively allow to frame your content. One solution is to use postMessage to
handshake between cooperating iframes and containing pages, as shown in the Listing 6-11.

Listing 6-11. Using postMessage in an iframe to Handshake with a Trusted Partner Page

var framebustTimer;
var timeout = 3000; // 3 second framebust timeout

if (window !== window.top) {
 framebustTimer = setTimeout(
 function() {
 window.top.location = location;
 }, timeout);
}

window.addEventListener(“message”, function(e) {
 switch(e.origin) {
 case trustedFramer:
 clearTimeout(framebustTimer);
 break;
 }
), true);

Summary
In this chapter, you have seen how HTML5 Cross Document Messaging and XMLHttpRequest Level 2
can be used to create compelling applications that can securely communicate cross-origin.

First, we discussed postMessage and the origin security concept—two key elements of HTML5
communication—and then we showed you how the postMessage API can be used to communicate
between iframes, tabs, and windows.

Next, we discussed XMLHttpRequest Level 2—an improved version of XMLHttpRequest. We
showed you in which areas XMLHttpRequest has been improved; most importantly in the
readystatechange events area. We then showed you how you can use XMLHttpRequest to make cross-
origin requests and how to use the new progress events.

CHAPTER 6  USING THE COMMUNICATION APIS

157

Finally, we wrapped up the chapter with a few practical examples. In the next chapter, we’ll
demonstrate how HTML5 WebSockets enables you to stream real-time data to an application with
incredible simplicity and minimal overhead.

C H A P T E R 7

159

Using the WebSocket API

In this chapter, we’ll explore what you can do with the most powerful communication feature in the
HTML5 specification: WebSocket, which defines a full-duplex communication channel that operates
through a single socket over the web. WebSocket is not just another incremental enhancement to
conventional HTTP communications; it represents a large advance, especially for real-time, event-
driven web applications.

WebSocket provides such an improvement from the old, convoluted “hacks” that are used to
simulate a full-duplex connection in a browser that it prompted Google’s Ian Hickson—the HTML5
specification lead—to say:

“Reducing kilobytes of data to 2 bytes…and reducing latency from 150ms to 50ms is
far mor e th an marginal . In fac t, these tw o f actors alon e ar e enough to mak e
WebSocket seriously interesting to Google.”

—www.ietf.org/mail-archive/web/hybi/current/msg00784.html

We’ll show you in detail just why WebSocket provides such a dramatic improvement, and you’ll see
how—in one fell swoop—WebSocket makes all the old Comet and Ajax polling, long-polling, and
streaming solutions obsolete.

Overview of WebSocket
Let’s take a look at how WebSocket can offer a reduction of unnecessary network traffic and latency by
comparing HTTP solutions to full duplex “real time” browser communication with WebSocket.

Real-Time and HTTP
Normally when a browser visits a web page, an HTTP request is sent to the web server that hosts that
page. The web server acknowledges this request and sends back the response. In many cases—for
example, for stock prices, news reports, ticket sales, traffic patterns, medical device readings, and so
on—the response could be stale by the time the browser renders the page. If you want to get the most
up-to-date real-time information, you can constantly refresh that page manually, but that’s obviously
not a great solution.

Current attempts to provide real-time web applications largely revolve around polling and other
server-side push technologies, the most notable of which is “Comet”, which delays the completion of an
HTTP response to deliver messages to the client.

http://www.ietf.org/mail-archive/web/hybi/current/msg00784.html

CHAPTER 7  USING THE WEBSOCKET API

160

With polling, the browser sends HTTP requests at regular intervals and immediately receives a
response. This technique was the first attempt for the browser to deliver real-time information.
Obviously, this is a good solution if the exact interval of message delivery is known, because you can
synchronize the client request to occur only when information is available on the server. However, real-
time data is often not that predictable, making unnecessary requests inevitable and as a result, many
connections are opened and closed needlessly in low-message-rate situations.

With long-polling, the browser sends a request to the server and the server keeps the request open
for a set period of time. If a notification is received within that period, a response containing the
message is sent to the client. If a notification is not received within the set time period, the server sends a
response to terminate the open request. It is important to understand, however, that when you have a
high message-volume, long-polling does not provide any substantial performance improvements over
traditional polling.

With streaming, the browser sends a complete request, but the server sends and maintains an open
response that is continuously updated and kept open indefinitely (or for a set period of time). The
response is then updated whenever a message is ready to be sent, but the server never signals to
complete the response, thus keeping the connection open to deliver future messages. However, since
streaming is still encapsulated in HTTP, intervening firewalls and proxy servers may choose to buffer the
response, increasing the latency of the message delivery. Therefore, many streaming solutions fall back
to long-polling in case a buffering proxy server is detected. Alternatively, TLS (SSL) connections can be
used to shield the response from being buffered, but in that case the setup and tear down of each
connection taxes the available server resources more heavily.

Ultimately, all of these methods for providing real-time data involve HTTP request and response
headers, which contain lots of additional, unnecessary header data and introduce latency. On top of
that, full-duplex connectivity requires more than just the downstream connection from server to client.
In an effort to simulate full-duplex communication over half-duplex HTTP, many of today’s solutions
use two connections: one for the downstream and one for the upstream. The maintenance and
coordination of these two connections introduces significant overhead in terms of resource
consumption and adds lots of complexity. Simply put, HTTP wasn’t designed for real-time, full-duplex
communication as you can see in the Figure 7-1, which shows the complexities associated with building
a web application that displays real-time data from a back-end data source using a publish/subscribe
model over half-duplex HTTP.

Figure 7-1. The complexity of real-time HTTP applications

CHAPTER 7  USING THE WEBSOCKET API

161

It gets even worse when you try to scale out those solutions. Simulating bidirectional browser
communication over HTTP is error-prone and complex and all that complexity does not scale. Even
though your end users might be enjoying something that looks like a real-time web application, this
“real-time” experience has a high price tag. It’s a price that you will pay in additional latency,
unnecessary network traffic and a drag on CPU performance.

Understanding WebSocket
WebSocket was first defined as “TCPConnection” in the Communications section of the HTML5
specification by Ian Hickson (lead writer of the HTML5 specification). The specification evolved and
changed to WebSocket, which is now an independent specification (just like Geolocation, Web Workers
and so on), to keep the discussion focused.

Both TCPConnection and WebSocket are names that refer to lower-level networking interfaces. TCP
is a fundamental transport protocol for the Internet. WebSocket is a transport protocol for web
applications. It provides a bidirectional stream of data that arrives in order, much like TCP. As with TCP,
higher-level protocols can run over WebSocket. To be part of the Web, rather than connecting to an
Internet host and port, WebSocket connects to URLs.

WHAT DO WEBSOCKET AND MODEL TRAINS HAVE IN COMMON?

Peter says: “Ian Hickson is quite the model train enthusiast; he has been planning ways to control trains
from computers ever since 1984 when Marklin first came out with a digital controller, long before the web
even existed.

At that time, Ian added TCPConnection to the HTML5 specification, he was working on a program to control
a model train set from a browser and he was using the prevalent pre-WebSocket “hanging GET” and XHR
techniques to achieve browser to train communication. The train-controller program would have been a lot
easier to build if there was a way to have socket communication in a browser—much like traditional
asynchronous client/server communication model that is found in “fat” clients. So, inspired by what could
be possible, the (train) wheels had been set in motion and the WebSocket train had left the station. Next
stop: the real-time web.”

The WebSocket Handshake
To establish a WebSocket connection, the client and server upgrade from the HTTP protocol to the
WebSocket protocol during their initial handshake, as shown in Figure 7-2. Note that this connection
description represents draft 17 of the protocol.

CHAPTER 7  USING THE WEBSOCKET API

162

Figure 7-2. The WebSocket Upgrade handshake

Listing 7-1. The WebSocket Upgrade Handshake

From client to server:

GET /chat HTTP/1.1
Host: example.com
Connection: Upgrade
Sec-WebSocket-Protocol: sample
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: 7cxQRnWs91xJW9T0QLSuVQ==
Origin: http://example.com

[8-byte security key]

From server to client:

HTTP/1.1 101 WebSocket Protocol Handshake
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: 7cxQRnWs91xJW9T0QLSuVQ==
WebSocket-Protocol: sample

Once established, WebSocket messages can be sent back and forth between the client and the server
in full-duplex mode. This means that text-based messages can be sent full-duplex, in either direction at
the same time. On the network each message starts with a 0x00 byte, ends with a 0xFF byte, and contains
UTF-8 data in between.

http://example.com

CHAPTER 7  USING THE WEBSOCKET API

163

The WebSocket Interface
Along with the definition of the WebSocket protocol, the specification also defines the WebSocket
interface for use in JavaScript applications. Listing 7-2 shows the WebSocket interface.

Listing 7-2. The WebSocket Interface

[Constructor(DOMString url, optional DOMString protocols),
 Constructor(DOMString url, optional DOMString[] protocols)]
interface WebSocket : EventTarget {
 readonly attribute DOMString url;

 // ready state
 const unsigned short CONNECTING = 0;
 const unsigned short OPEN = 1;
 const unsigned short CLOSING = 2;
 const unsigned short CLOSED = 3;
 readonly attribute unsigned short readyState;
 readonly attribute unsigned long bufferedAmount;

 // networking
 [TreatNonCallableAsNull] attribute Function? onopen;
 [TreatNonCallableAsNull] attribute Function? onerror;
 [TreatNonCallableAsNull] attribute Function? onclose;
 readonly attribute DOMString extensions;
 readonly attribute DOMString protocol;
 void close([Clamp] optional unsigned short code, optional DOMString reason);

 // messaging
 [TreatNonCallableAsNull] attribute Function? onmessage;
 attribute DOMString binaryType;
 void send(DOMString data);
 void send(ArrayBuffer data);
 void send(Blob data);
};

Using the WebSocket interface is straightforward. To connect a remote host, just create a new
WebSocket instance, providing the new object with a URL that represents the end-point to which you
wish to connect. Note that a ws:// and wss:// prefix indicates a WebSocket and a secure WebSocket
connection, respectively.

A WebSocket connection is established by upgrading from the HTTP protocol to the WebSocket
protocol during the initial handshake between the client and the server, over the same underlying
TCP/IP connection. Once established, WebSocket data frames can be sent back and forth between the
client and the server in full-duplex mode. The connection itself is exposed via the message event and send
method defined by the WebSocket interface. In your code, you use asynchronous event listeners to
handle each phase of the connection life cycle.

myWebSocket.onopen = function(evt) { alert("Connection open ..."); };
myWebSocket.onmessage = function(evt) { alert("Received Message: " + evt.data); };
myWebSocket.onclose = function(evt) { alert("Connection closed."); };

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7  USING THE WEBSOCKET API

164

A Dramatic Reduction in Unnecessary Network Traffic and Latency
So how efficient can WebSocket be? Let’s compare a polling application and a WebSocket application
side by side. To illustrate polling, we will examine a web application in which a web page requests real-
time stock data from a web server using a traditional polling model. It does this by polling a Java Servlet
that is hosted on a web server. A message broker receives data from a fictitious stock price feed with
continuously updating prices. The web page connects and subscribes to a specific stock channel (a topic
on the message broker) and uses an XMLHttpRequest to poll for updates once per second. When
updates are received, some calculations are performed and the stock data is displayed as shown in
Figure 7-3.

Figure 7-3. Example JavaScript stock ticker application

It all sounds great, but a look under the hood reveals there are some serious issues with this
application. For example, in Mozilla Firefox with Firebug, you can see that GET requests hammer the
server at one-second intervals. Looking at the HTTP headers reveals the shocking amount of overhead
that is associated with each request. Listings 7-3 and 7-4 show the HTTP header data for just a single
request and response.

CHAPTER 7  USING THE WEBSOCKET API

165

Listing 7-3. HTTP Request Header

GET /PollingStock//PollingStock HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.5) Gecko/20091102
 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/PollingStock/
Cookie: showInheritedConstant=false; showInheritedProtectedConstant=false;
 showInheritedProperty=false; showInheritedProtectedProperty=false;
 showInheritedMethod=false; showInheritedProtectedMethod=false;
 showInheritedEvent=false; showInheritedStyle=false; showInheritedEffect=false

Listing 7-4. HTTP Response Header

HTTP/1.x 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/html;charset=UTF-8
Content-Length: 21
Date: Sat, 07 Nov 2009 00:32:46 GMT

Just for fun (ha!), we can count all the characters. The total HTTP request and response header
information overhead contains 871 bytes and that does not even include any data. Of course, this is just
an example and you can have less than 871 bytes of header data, but there are also common cases where
the header data exceeded 2,000 bytes. In this example application, the data for a typical stock topic
message is only about 20 characters long. As you can see, it is effectively drowned out by the excessive
header information, which was not even required in the first place.

So, what happens when you deploy this application to a large number of users? Let’s take a look at
the network overhead for just the HTTP request and response header data associated with this polling
application in three different use cases.

• Use case A: 1,000 clients polling every second: Network traffic is (871 × 1,000) =
871,000 bytes = 6,968,000 bits per second (6.6 Mbps)

• Use case B: 10,000 clients polling every second: Network traffic is (871 × 10,000) =
8,710,000 bytes = 69,680,000 bits per second (66 Mbps)

• Use case C: 100,000 clients polling every 1 second: Network traffic is
(871 × 100,000) = 87,100,000 bytes = 696,800,000 bits per second (665 Mbps)

That’s an enormous amount of unnecessary network overhead. Consider if we rebuilt the
application to use WebSocket, adding an event handler to the web page to asynchronously listen for
stock update messages from the message broker (more on that in just a little bit). Each of these messages
is a WebSocket frame that has as little as two bytes of overhead (instead of 871). Take a look at how that
affects the network overhead in our three use cases.

http://www.example.com/PollingStock/

CHAPTER 7  USING THE WEBSOCKET API

166

• Use case A: 1,000 clients receive 1 message per second: Network traffic is
(2 × 1,000) = 2,000 bytes = 16,000 bits per second (0.015 Mbps)

• Use case B: 10,000 clients receive 1 message per second: Network traffic is
(2 × 10,000) = 20,000 bytes = 160,000 bits per second (0.153 Mbps)

• Use case C: 100,000 clients receive 1 message per second: Network traffic is
(2 × 100,000) = 200,000 bytes = 1,600,000 bits per second (1.526 Mbps)

As you can see in Figure 7-4, WebSocket provides a dramatic reduction of unnecessary network
traffic compared to the polling solution.

Figure 7-4. Comparison of the unnecessary network overhead between the polling WebSocket traffic

And what about the reduction in latency? Take a look at Figure 7-5. In the top half, you can see the
latency of the half-duplex polling solution. If we assume, for this example, that it takes 50 milliseconds
for a message to travel from the server to the browser, then the polling application introduces a lot of
extra latency, because a new request has to be sent to the server when the response is complete. This
new request takes another 50ms and during this time the server cannot send any messages to the
browser, resulting in additional server memory consumption.

In the bottom half of the figure, you see the reduction in latency provided by the WebSocket
solution. Once the connection is upgraded to WebSocket, messages can flow from the server to the

CHAPTER 7  USING THE WEBSOCKET API

167

browser the moment they arrive. It still takes 50 ms for messages to travel from the server to the browser,
but the WebSocket connection remains open so there is no need to send another request to the server.

Figure 7-5. Latency comparison between the polling and WebSocket applications

WebSocket provides an enormous step forward in the scalability of the real-time web. As you have
seen in this chapter, WebSocket can provide a 500:1 or—depending on the size of the HTTP headers—
even a 1000:1 reduction in unnecessary HTTP header traffic and 3:1 reduction in latency.

Writing a Simple Echo WebSocket Server
Before you can use the WebSocket API, you need a server that supports WebSocket. In this section we’ll
take a look at how a simple WebSocket “echo” server is written. To run the examples for this chapter, we
have included a simple WebSocket server written in Python. The sample code for the following examples
is located in the WebSocket section of the book web site.

CHAPTER 7  USING THE WEBSOCKET API

168

WEBSOCKET SERVERS

There are lots of WebSocket server implementations out there already and even more under development.
The following are just a few of the existing WebSocket servers:

Kaazing’s WebSocket Gateway includes full client-side WebSocket emulation support for browsers without
native implementation of WebSocket, which allows you to code against the WebSocket API today and have
your code work in all browsers.

To run the Python WebSocket echo server accepting connections at ws://localhost:8000/echo,
open a command prompt, navigate to the folder that contains the file, and issue the following
command:

python websocket.py

We have also included a broadcast server that accepts connections at
ws://localhost:8080/broadcast. Contrary to the echo server, any WebSocket message sent to this
particular server implementation will bounce back to everyone that is currently connected. It’s a very
simple way to broadcast messages to multiple listeners. To run the broadcast server, open a command
prompt, navigate to the folder that contains the file, and issue the following command:

python broadcast.py

Both scripts make use of the example WebSocket protocol library in websocket.py. You can add
handlers for other paths that implement additional server- side behavior.

 Note This is only a server for the WebSocket protocol, and it cannot respond to HTTP requests. The handshake
parser is not fully HTTP compliant. However, because WebSocket connections begin with an HTTP request and rely
on the Upgrade header, other servers can serve both WebSocket and HTTP on the same port.

Let’s see what happens when a browser tries to communicate with this server. When the browser
makes a request to the WebSocket URL, the server sends back the headers that finish the WebSocket
handshake. A WebSocket handshake response must contain an HTTP/1.1 101 status code and Upgrade
connection headers. This informs the browser that the server is switching from the HTTP handshake to
the WebSocket protocol for the remainder of the TCP session.

• Kaazing WebSocket Gateway—a Java-based WebSocket Gateway

• mod_pywebsocket—a Python-based extension for the Apache HTTP Server

• Netty—a Java network framework which includes WebSocket support

• node.js—a server-side JavaScript framework on which multiple WebSocket servers
have been written

3

CHAPTER 7  USING THE WEBSOCKET API

169

 Note If you are implementing a WebSocket server, you should refer to the protocol draft at the IETF at
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol or the latest specification.

write out response headers
self.send_bytes("HTTP/1.1 101 Switching Protocols\r\n")
self.send_bytes("Upgrade: WebSocket\r\n")
self.send_bytes("Connection: Upgrade\r\n")
self.send_bytes("Sec-WebSocket-Accept: %s\r\n" % self.hash_key(key))

if "Sec-WebSocket-Protocol" in headers:
 protocol = headers["Sec-WebSocket-Protocol"]
 self.send_bytes("Sec-WebSocket-Protocol: %s\r\n" % protocol)

WebSocket Framing
After the handshake, the client and server can send messages at any time. Each connection is
represented in this server by a WebSocketConnection instance. The WebSocketConnection’s send function,
shown in Figure 7-6, writes out a message according to the WebSocket protocol. The bytes preceding the
data payload mark the frame length and type. Text frames are UTF-8 encoded. In this server, each
WebSocket connection is an asyncore.dispatcher_with_send, which is an asynchronous socket wrapper
with support for buffered sends.

Data sent from the browser to the server is masked. Masking is an unusual feature of the WebSocket
protocol. Every byte of payload data is XORed with a random mask to ensure that WebSocket traffic does
not look like other protocols. Like the Sec-WebSocket-Key hash, this is meant to mitigate an arcane form
of cross-protocol attack against non-compliant network infrastructure.

Figure 7-6. Components of a WebSocket frame

 Note There are many other asynchronous I/O frameworks for Python and other languages. Asyncore was
chosen because it is included in the Python standard library. Note also that this implementation uses draft 10 of
the protocol. This is a simple example designed for testing and illustration.

http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol

CHAPTER 7  USING THE WEBSOCKET API

170

WebSocketConnection inherits from asyncore.dispatcher_with_send and overrides the send method
in order to frame text and binary messages.

def send(self, s):
 if self.readystate == "open":
 self.send_bytes("\x00")
 self.send_bytes(s.encode("UTF8"))
 self.send_bytes("\xFF")
Handlers for WebSocketConnections in websocket.py follow a simplified dispatcher interface. The

handler’s dispatch() method is called with the payload of each frame the connection receives. The
EchoHandler sends back each message to the sender.

class EchoHandler(object):
 """
 The EchoHandler repeats each incoming string to the same WebSocket.
 """

 def __init__(self, conn):
 self.conn = conn

 def dispatch(self, data):
 self.conn.send("echo: " + data)

The basic broadcast server broadcast.py works in much the same way, but in this case when the
broadcast handler receives a frame, it sends it back on all connected WebSockets as shown in the
following example:

class BroadcastHandler(object):
 """
 The BroadcastHandler repeats incoming strings to every connected
 WebSocket.
 """

 def __init__(self, conn):
 self.conn = conn

 def dispatch(self, data):
 for session in self.conn.server.sessions:
 session.send(data)

The handler in broadcast.py provides a lightweight message broadcaster that simply sends and
receives any data. This is sufficient for the purposes of our example. Be aware that this broadcast service
does not perform any input verification as would be desirable in a production message server. A
production WebSocket server should, at the very least, verify the format of incoming data.

For completeness, Listings 7-5 and 7-6 provide the complete code for websocket.py and
broadcast.py. Note that this is just an example server implementation; it is not suited for production
deployment.

Listing 7-5. Complete Code for websocket.py

#!/usr/bin/env python

import asyncore
import socket

CHAPTER 7  USING THE WEBSOCKET API

171

import struct
import time
from hashlib import sha1
from base64 import encodestring

class WebSocketConnection(asyncore.dispatcher_with_send):

 TEXT = 0x01
 BINARY = 0x02

 def __init__(self, conn, server):
 asyncore.dispatcher_with_send.__init__(self, conn)

 self.server = server
 self.server.sessions.append(self)
 self.readystate = "connecting"
 self.buffer = ""

 def handle_read(self):
 data = self.recv(1024)
 self.buffer += data
 if self.readystate == "connecting":
 self.parse_connecting()
 elif self.readystate == "open":
 self.parse_frame()

 def handle_close(self):
 self.server.sessions.remove(self)
 self.close()

 def parse_connecting(self):
 """
 Parse a WebSocket handshake. This is not a full HTTP request parser!
 """
 header_end = self.buffer.find("\r\n\r\n")
 if header_end == -1:
 return
 else:
 header = self.buffer[:header_end]
 # remove header and four bytes of line endings from buffer
 self.buffer = self.buffer[header_end + 4:]
 header_lines = header.split("\r\n")
 headers = {}

 # validate HTTP request and construct location
 method, path, protocol = header_lines[0].split(" ")
 if method != "GET" or protocol != "HTTP/1.1" or path[0] != "/":
 self.terminate()
 return

 # parse headers

CHAPTER 7  USING THE WEBSOCKET API

172

 for line in header_lines[1:]:
 key, value = line.split(": ")
 headers[key] = value

 headers["Location"] = "ws://" + headers["Host"] + path

 self.readystate = "open"
 self.handler = self.server.handlers.get(path, None)(self)

 self.send_server_handshake_10(headers)

 def terminate(self):
 self.ready_state = "closed"
 self.close()

 def send_server_handshake_10(self, headers):
 """
 Send the WebSocket Protocol draft HyBi-10 handshake response
 """
 key = headers["Sec-WebSocket-Key"]

 # write out response headers
 self.send_bytes("HTTP/1.1 101 Switching Protocols\r\n")
 self.send_bytes("Upgrade: WebSocket\r\n")
 self.send_bytes("Connection: Upgrade\r\n")
 self.send_bytes("Sec-WebSocket-Accept: %s\r\n" % self.hash_key(key))

 if "Sec-WebSocket-Protocol" in headers:
 protocol = headers["Sec-WebSocket-Protocol"]
 self.send_bytes("Sec-WebSocket-Protocol: %s\r\n" % protocol)

 def hash_key(self, key):
 guid = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"
 combined = key + guid
 hashed = sha1(combined).digest()
 return encodestring(hashed)

 def parse_frame(self):
 """
 Parse a WebSocket frame. If there is not a complete frame in the
 buffer, return without modifying the buffer.
 """
 buf = self.buffer
 payload_start = 2

 # try to pull first two bytes
 if len(buf) < 3:
 return
 b = ord(buf[0])
 fin = b & 0x80 # 1st bit
 # next 3 bits reserved
 opcode = b & 0x0f # low 4 bits

CHAPTER 7  USING THE WEBSOCKET API

173

 b2 = ord(buf[1])
 mask = b2 & 0x80 # high bit of the second byte
 length = b2 & 0x7f # low 7 bits of the second byte

 # check that enough bytes remain
 if len(buf) < payload_start + 4:
 return
 elif length == 126:
 length, = struct.unpack(">H", buf[2:4])
 payload_start += 2
 elif length == 127:
 length, = struct.unpack(">I", buf[2:6])
 payload_start += 4

 if mask:
 mask_bytes = [ord(b) for b in buf[payload_start:payload_start + 4]]
 payload_start += 4

 # is there a complete frame in the buffer?
 if len(buf) < payload_start + length:
 return

 # remove leading bytes, decode if necessary, dispatch
 payload = buf[payload_start:payload_start + length]
 self.buffer = buf[payload_start + length:]

 # use xor and mask bytes to unmask data
 if mask:
 unmasked = [mask_bytes[i % 4] ^ ord(b)
 for b, i in zip(payload, range(len(payload)))]
 payload = "".join([chr(c) for c in unmasked])

 if opcode == WebSocketConnection.TEXT:
 s = payload.decode("UTF8")
 self.handler.dispatch(s)
 if opcode == WebSocketConnection.BINARY:
 self.handler.dispatch(payload)
 return True

 def send(self, s):
 """
 Encode and send a WebSocket message
 """

 message = ""
 # always send an entire message as one frame (fin)
 b1 = 0x80

 # in Python 2, strs are bytes and unicodes are strings
 if type(s) == unicode:
 b1 |= WebSocketConnection.TEXT
 payload = s.encode("UTF8")

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7  USING THE WEBSOCKET API

174

 elif type(s) == str:
 b1 |= WebSocketConnection.BINARY
 payload = s

 message += chr(b1)

 # never mask frames from the server to the client
 b2 = 0
 length = len(payload)
 if length < 126:
 b2 |= length
 message += chr(b2)
 elif length < (2 ** 16) - 1:
 b2 |= 126
 message += chr(b2)
 l = struct.pack(">H", length)
 message += l
 else:
 l = struct.pack(">Q", length)
 b2 |= 127
 message += chr(b2)
 message += l

 message += payload

 if self.readystate == "open":
 self.send_bytes(message)

 def send_bytes(self, bytes):
 try:
 asyncore.dispatcher_with_send.send(self, bytes)
 except:
 pass

class EchoHandler(object):
 """
 The EchoHandler repeats each incoming string to the same WebSocket.
 """

 def __init__(self, conn):
 self.conn = conn

 def dispatch(self, data):
 try:
 self.conn.send(data)
 except:
 pass

class WebSocketServer(asyncore.dispatcher):

CHAPTER 7  USING THE WEBSOCKET API

175

 def __init__(self, port=80, handlers=None):
 asyncore.dispatcher.__init__(self)
 self.handlers = handlers
 self.sessions = []
 self.port = port
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(("", port))
 self.listen(5)

 def handle_accept(self):
 conn, addr = self.accept()
 session = WebSocketConnection(conn, self)

if __name__ == "__main__":
 print "Starting WebSocket Server"
 WebSocketServer(port=8080, handlers={"/echo": EchoHandler})
 asyncore.loop()

You may have noticed an unusual key calculation in the WebSocket handshake. This is intended to
prevent cross-protocol attacks. In short, this should stop malicious WebSocket client code from spoofing
connections to non-WebSocket servers. Hashing a GUID and a random value is enough to positively
identify that the responding server understands the WebSocket protocol.

Listing 7-6. Complete Code for broadcast.py

#!/usr/bin/env python

import asyncore
from websocket import WebSocketServer

class BroadcastHandler(object):
 """
 The BroadcastHandler repeats incoming strings to every connected
 WebSocket.
 """

 def __init__(self, conn):
 self.conn = conn

 def dispatch(self, data):
 for session in self.conn.server.sessions:
 session.send(data)

if __name__ == "__main__":
 print "Starting WebSocket broadcast server"
 WebSocketServer(port=8080, handlers={"/broadcast": BroadcastHandler})
 asyncore.loop()

CHAPTER 7  USING THE WEBSOCKET API

176

Now that we’ve got a working echo server, we need to write the client side. The web browsers
implement the connecting half of the WebSocket Protocol. We can use the API from JavaScript to
communicate with our simple server.

Using the WebSocket API
In this section, we’ll explore the use of WebSocket in more detail.

Checking for Browser Support
Before you use the WebSocket API, you will want to make sure there is support in the browser for what
you’re about to do. This way, you can provide some alternate text, prompting the users of your
application to upgrade to a more up-to-date browser. Listing 7-7 shows one way you can test for browser
support.

Listing 7-7. Checking for Browser Support

function loadDemo() {

 if (window.WebSocket) {

 document.getElementById("support").innerHTML = "HTML5 WebSocket is supported in your
 browser.";
 } else {
 document.getElementById("support").innerHTML = "HTML5 WebSocket is not supported in
 your browser.";
 }
}

In this example, you test for browser support in the loadDemo function, which might be called when
the application’s page is loaded. A call to window.WebSocket will return the WebSocket object if it exists, or
trigger the failure case if it does not. In this case, the page is updated to reflect whether there is browser
support or not by updating a previously defined support element on the page with a suitable message.

Another way to see if WebSocket is supported in your browser, is to use the browser’s console
(Firebug or Chrome Developer Tools for example). Figure 7-7 shows how you can test whether
WebSocket is supported natively in Google Chrome (if it is not, the window.WebSocket command returns
“undefined.”)

CHAPTER 7  USING THE WEBSOCKET API

177

Figure 7-7. Testing WebSocket support in Google Chrome Developer Tools

Basic API Usage
The sample code for the following examples is located on the book web site in the WebSocket section.
This folder contains a websocket.html file and a broadcast.html file (and a tracker.html file used in the
following section) as well as the WebSocket server code shown previously that can be run in Python.

Creating a WebSocket object and Connecting to a WebSocket Server
Using the WebSocket interface is straight-forward. To connect to an end-point, just create a new
WebSocket instance, providing the new object with a URL that represents the end-point to which you
wish to connect. You can use the ws:// and wss:// prefixes to indicate a WebSocket and a WebSocket
Secure connection, respectively.

url = "ws://localhost:8080/echo";
w = new WebSocket(url);

When connecting a WebSocket, you have the option of listing the protocols your application can
speak. The second argument to the WebSocket constructor can be a string or array of strings with the
names of the “subprotocols” that your application understands and wishes to use to communicate.

w = new WebSocket(url, protocol);

You can even list several protocols:

w = new WebSocket(url, [“proto1”, “proto2”]);

Hypothetically, proto1 and proto2 are well defined, perhaps even registered and standardized,
protocol names that both the client and server can understand. The server will select a preferred
protocol from the list. When the socket opens, its protocol property will contain the protocol that the
server chose.

onopen = function(e) {
 // determine which protocol the server selected

CHAPTER 7  USING THE WEBSOCKET API

178

 log(e.target.protocol)
}

Protocols you might use include Extensible Messaging and Presence Protocol (XMPP, or Jabber),
Advanced Message Queuing Protocol (AMQP), Remote Frame Buffer (RFB, or VNC) and Streaming Text
Oriented Messaging Protocol (STOMP). These are real-world protocols spoken by many clients and
servers. Using a standard protocol ensures interoperability between web applications and servers from
different organizations. It also opens the door for public WebSocket services. You can speak to a server
using a known protocol. Client applications that understand the same protocol can then connect and
participate.

This example does not use a standard protocol. We aren’t introducing external dependencies or
taking the space to implement a complete standard protocol. As an example, it uses the WebSocket API
directly, just as you would if you were starting to write code for a new protocol.

Adding Event Listeners
WebSocket programming follows an asynchronous programming model; once you have an open socket,
you simply wait for events. You don’t have to actively poll the server anymore. To do this, you add
callback functions to the WebSocket object to listen for events.

A WebSocket object dispatches three events: open, close, and message. The open event fires when a
connection is established, the message event fires when messages are received, and the close event fires
when the WebSocket connection is closed. The error event fires in response to unexpected failure. As in
most JavaScript APIs, there are corresponding callbacks (onopen, onmessage, onclose, and onerror) that
are called when the events are dispatched.

w.onopen = function() {
 log("open");
 w.send("thank you for accepting this websocket request");
}
w.onmessage = function(e) {
 log(e.data);
}
w.onclose = function(e) {
 log("closed");
}
w.onerror = function(e) {
 log(“error”);
}

Let’s have another look at that message handler. The data attribute on the message event is a string
if the WebSocket protocol message was encoded as text. For binary messages, data can be either a Blob
or an ArrayBuffer, depending on the value of the WebSocket’s binaryType property.

w.binaryType = "arraybuffer";
w.onmessage = function(e) {
 // data can now be either a string or an ArrayBuffer
 log(e.data);
}

CHAPTER 7  USING THE WEBSOCKET API

179

Sending Messages
While the socket is open (that is, after the onopen listener is called and before the onclose listener is
called), you can use the send function to send messages. After sending one or more messages, you can
also call close to terminate the connection, or you can also leave the connection open.

document.getElementById("sendButton").onclick = function() {
 w.send(document.getElementById("inputMessage").value);
}

That’s it. Bidirectional browser communication made simple. For completeness, Listing 7-8 shows
the entire HTML page with the WebSocket code.

In more advanced uses of WebSocket, you may want to measure how much data is backed up in the
outgoing buffer before calling send(). The bufferedAmount attribute represents the number of bytes that
have been sent on the WebSocket that have not yet been written onto the network. This could be useful
for throttling the rate at which the application sends data.

document.getElementById("sendButton").onclick = function() {
 if (w.bufferedAmount < bufferThreshold) {
 w.send(document.getElementById("inputMessage").value);
 }
}

In addition to strings, WebSocket can send binary data. This is especially useful to implement binary
protocols, such as the standard Internet protocols typically layered on top of TCP. The WebSocket API
supports sending Blob and ArrayBuffer instances as binary data.

var a = new Uint8Array([8,6,7,5,3,0,9]);
w.send(a.buffer);

Listing 7-8. websocket.html Code

<!DOCTYPE html>
<title>WebSocket Test Page</title>

<script>
 var log = function(s) {
 if (document.readyState !== "complete") {
 log.buffer.push(s);
 } else {
 document.getElementById("output").textContent += (s + "\n")
 }
 }
 log.buffer = [];

 if (this.MozWebSocket) {
 WebSocket = MozWebSocket;
 }

 url = "ws://localhost:8080/echo";
 w = new WebSocket(url);
 w.onopen = function() {

CHAPTER 7  USING THE WEBSOCKET API

180

 log("open");
 // set the type of binary data messages to ArrayBuffer
 w.binaryType = "arraybuffer";

 // send one string and one binary message when the socket opens
 w.send("thank you for accepting this WebSocket request");
 var a = new Uint8Array([8,6,7,5,3,0,9]);
 w.send(a.buffer);
 }
 w.onmessage = function(e) {
 log(e.data.toString());
 }
 w.onclose = function(e) {
 log("closed");
 }
 w.onerror = function(e) {
 log("error");
 }

 window.onload = function() {
 log(log.buffer.join("\n"));
 document.getElementById("sendButton").onclick = function() {
 w.send(document.getElementById("inputMessage").value);
 }
 }
</script>

<input type="text" id="inputMessage" value="Hello, WebSocket!"><button
id="sendButton">Send</button>
<pre id="output"></pre>

Running the WebSocket Page

To test the websocket.html page that contains the WebSocket code, open a command prompt,
navigate to the folder that contains the WebSocket code, and issue the following command to host the
HTML file:

python -m SimpleHTTPServer 9999

Next, open another command prompt, navigate to the folder that contains the WebSocket code, and
issue the following command to run the Python WebSocket server:

python websocket.py

Finally, open a browser that supports WebSocket natively and navigate to
http://localhost:9999/websocket.html.

Figure 7-8 shows the web page in action.

CHAPTER 7  USING THE WEBSOCKET API

181

Figure 7-8. websocket.html in action

The example code folder also contains a web page that connects to the broadcast service that was
created in the previous section. To see that action, close the command prompt that is running the
WebSocket server and navigate to the folder that contains the WebSocket code, and issue the following
command to run the python WebSocket server.

python broadcast.py

Open two separate browsers that supports WebSocket natively and navigate (in each browser) to
http://localhost:9999/broadcast.html.

Figure 7-9 shows the broadcast WebSocket server in action on two separate web pages.

CHAPTER 7  USING THE WEBSOCKET API

182

Figure 7-9. broadcast.html in action in two browsers

Building a WebSocket Application
Now that we’ve seen the basics of WebSocket, it’s time to tackle something a little more substantial.
Previously, we used the HTML5 Geolocation API to build an application that allowed us to calculate
distance traveled directly inside our web page. We can utilize those same Geolocation techniques, mixed
together with our new support for WebSocket, and create a simple application that keeps multiple
participants connected: a location tracker.

 Note We’ll be using the broadcast WebSocket server described above, so if you aren’t familiar with it you
should consider taking some time to learn its basics.

In this application, we’ll combine WebSocket and Geolocation by determining our location and
broadcasting it to all available listeners. Everyone who loads this application and connects to the same
broadcast server will regularly send their geographic location using the WebSocket. At the same time, the
application will listen for any messages from the server and update in real-time display entries for
everyone it hears about. In a race scenario, this sort of application could keep runners informed of the
location of all their competitors and prompt them to run faster (or slow down).

CHAPTER 7  USING THE WEBSOCKET API

183

This tiny application does not include any personal information other than latitude and longitude
location. Name, date of birth, and favorite ice cream flavor are kept strictly confidential.

YOU WERE WARNED!

Brian says: “This application is all about sharing your personal information. Granted, only a location is
shared. However, if you (or your users) didn’t understand the browser warning that was offered when the
Geolocation API was first accessed, this application should be a stark lesson in how easy it will be to
transmit sensitive data to remote locations. Make sure your users understand the consequences of
agreeing to submit location data.

When in doubt, go above and beyond in your application to let the user know how their sensitive data can
be used. Make opting out the easiest path of action.”

But that’s enough warnings… Let’s dig into the code. As always, the entire code sample is located
online for your perusal. We’ll focus on the most important parts here. The finished application will look
like Figure 7-10. Although ideally, this would be enhanced by overlaying it on a map.

Figure 7-10. The Location Tracker application

Coding the HTML File
The HTML markup for this application will be kept deliberately simple so that we can focus on the data
at hand. How simple?

<body onload="loadDemo()">

<h1>HTML5 WebSocket / Geolocation Tracker</h1>

<div>Geolocation: <p id="geoStatus">HTML5 Geolocation is
 not supported in your browser.</p></div>
<div>WebSocket: <p id="socketStatus">WebSocket is not
 supported in your browser.</p></div>

</body>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7  USING THE WEBSOCKET API

184

Simple enough that we only include a title and a few status areas: one status area for Geolocation
updates, and another to log any WebSocket activity. The actual visuals for location data will be inserted
into the page as messages are received in real-time.

By default, our status messages indicate that a viewer’s browser does not support either Geolocation
or WebSocket. Once we detect support for the two HTML5 technologies, we’ll update the status with
something a little friendlier.

<script>

 // reference to the WebSocket
 var socket;

 // a semi-unique random ID for this session
 var myId = Math.floor(100000*Math.random());

 // number of rows of data presently displayed
 var rowCount = 0;

The meat of this application is once again accomplished via the script code. First, we will establish a
few variables:

• A global reference to our socket so that any function can access it later.

• A random myId number between 0 and 100,000 to identify our location data
online. This number is merely used to correlate changes in location over time back
to the same source without using more personal information such as names. A
sufficiently large pool of numbers makes it unlikely that more than one user will
have the same identifier.

• A rowCount which holds how many unique users have transmitted their location
data to us. This is largely used for visual formatting.

The next two functions should look familiar. As in other example applications, we’ve provided
utilities to help us update our status message. This time, there are two status messages to update.

 function updateSocketStatus(message) {
 document.getElementById("socketStatus").innerHTML = message;
 }

 function updateGeolocationStatus(message) {
 document.getElementById("geoStatus").innerHTML = message;
 }

It is always helpful to include a user-friendly set of error messages whenever something goes wrong
with location retrieval. If you need more information on the error handling associated with Geolocation,
consult Chapter 5.

 function handleLocationError(error) {
 switch(error.code)
 {
 case 0:
 updateGeolocationStatus("There was an error while retrieving your location: " +
 error.message);
 break;
 case 1:

CHAPTER 7  USING THE WEBSOCKET API

185

 updateGeolocationStatus("The user prevented this page from retrieving a
 location.");
 break;
 case 2:
 updateGeolocationStatus("The browser was unable to determine your location: " +
 error.message);
 break;
 case 3:
 updateGeolocationStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

Adding the WebSocket Code
Now, let’s examine something more substantial. The loadDemo function is called on the initial load of our
page, making it the starting point of the application.

 function loadDemo() {
 // test to make sure that sockets are supported
 if (window.WebSocket) {

 // the location of our broadcast WebSocket server
 url = "ws://localhost:8080";
 socket = new WebSocket(url);
 socket.onopen = function() {
 updateSocketStatus("Connected to WebSocket tracker server");
 }
 socket.onmessage = function(e) {
 updateSocketStatus("Updated location from " + dataReturned(e.data));
 }
 }

The first thing we do here is set up our WebSocket connection. As with any HTML5 technology, it is
wise to check for support before jumping right in, so we test to make sure that window.WebSocket is a
supported object in this browser.

Once that is verified, we make a connection to the remote broadcast server using the connect string
format described above. The connection is stored in our globally declared socket variable.

Finally, we declare two handlers to take action when our WebSocket receives updates. The onopen
handler will merely update the status message to let the user know that we made a successful
connection. The onmessage will similarly update the status to let the user know that a message has
arrived. It will also call our upcoming dataReturned function to show the arriving data in the page, but
we’ll tackle that later.

Adding the Geolocation Code
The next section should be familiar to you from Chapter 5. Here, we verify support for the Geolocation
service and update the status message appropriately.

 var geolocation;
 if(navigator.geolocation) {
 geolocation = navigator.geolocation;

CHAPTER 7  USING THE WEBSOCKET API

186

 updateGeolocationStatus("HTML5 Geolocation is supported in your browser.");
 }

 // register for position updates using the Geolocation API
 geolocation.watchPosition(updateLocation,
 handleLocationError,
 {maximumAge:20000});
 }

As before, we watch our current location for changes and register that we want the updateLocation
function called when they occur. Errors are sent to the handleLocationError function, and the location
data is set to expire every twenty seconds.

The next section of code is the handler which is called by the browser whenever a new location is
available.

 function updateLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var timestamp = position.timestamp;

 updateGeolocationStatus("Location updated at " + timestamp);

 // Send my location via WebSocket
 var toSend = JSON.stringify([myId, latitude, longitude]);
 sendMyLocation(toSend);
 }

This section is similar to, but simpler than, the same handler in Chapter 5. Here, we grab the
latitude, longitude, and timestamp from the position provided by the browser. Then, we update the
status message to indicate that a new value has arrived.

Putting It All Together
The final section calculates a message string to send to the remote broadcast WebSocket server. The
string here will be JSON encoded:

"[<id>, <latitude>, <longitude>]"

The ID will be the randomly calculated value already created to identify this user. The latitude and
longitude are provided by the geolocation position object. We send the message directly to the server as
a JSON encoded string.

The actual code to send the position to the server resides in the sendMyLocation() function.

 function sendMyLocation(newLocation) {
 if (socket) {
 socket.send(newLocation);
 }
 }

If a socket was successfully created—and stored for later access—then it is safe to send the message
string passed into this function to the server. Once it arrives, the WebSocket message broadcast server
will distribute the location string to every browser currently connected and listening for messages.
Everyone will know where you are. Or, at least, a largely anonymous “you” identified only by a random
number.

CHAPTER 7  USING THE WEBSOCKET API

187

Now that we’re sending messages, let’s see how those same messages should be processed when
they arrive at the browser. Recall that we registered an onmessage handler on the socket to pass any
incoming data to a dataReturned() function. Next, we will look at that final function in more detail.

 function dataReturned(locationData) {
 // break the data into ID, latitude, and longitude
 var allData = JSON.parse(locationData);
 var incomingId = allData[1];
 var incomingLat = allData[2];
 var incomingLong = allData[3];

The dataReturned function serves two purposes. It will create (or update) a display element in the
page showing the position reflected in the incoming message string, and it will return a text
representation of the user this message originated from. The user name will be used in the status
message at the top of the page by the calling function, the socket.onmessage handler.

The first step taken by this data handler function is to break the incoming message back down into
its component parts using JSON.parse. Although a more robust application would need to check for
unexpected formatting, we will assume that all messages to our server are valid, and therefore our string
separates cleanly into a random ID, a latitude, and a longitude.

 // locate the HTML element for this ID
 // if one doesn't exist, create it
 var incomingRow = document.getElementById(incomingId);
 if (!incomingRow) {
 incomingRow = document.createElement('div');
 incomingRow.setAttribute('id', incomingId);

Our demonstration user interface will create a visible <div> for every random ID for which it
receives a message. This includes the user’s ID itself; in other words, the user’s own data will also be
displayed only after it is sent and returned from the WebSocket broadcast server.

Accordingly, the first thing we do with the ID from our message string is use it to locate the display
row element matching it. If one does not exist, we create one and set its id attribute to be the id returned
from our socket server for future retrieval.

 incomingRow.userText = (incomingId == myId) ?
 'Me' :
 'User ' + rowCount;

 rowCount++;

The user text to be displayed in the data row is easy to calculate. If the ID matches the user’s ID, it is
simply ‘me’. Otherwise, the username is a combination of a common string and a count of rows, which
we will increment.

 document.body.appendChild(incomingRow);
 }

Once the new display element is ready, it is inserted into the end of the page. Regardless of whether
the display element is newly created or if it already existed—due to the fact that a location update was
not the first for that particular user—the display row needs to be updated with the current text
information.

 // update the row text with the new values
 incomingRow.innerHTML = incomingRow.userText + " \\ Lat: " +
 incomingLat + " \\ Lon: " +

CHAPTER 7  USING THE WEBSOCKET API

188

 incomingLong;

 return incomingRow.userText;
 }

In our case, we will separate the user text name from the latitude and longitude values using a
backslash (properly escaped, of course). Finally, the display name is returned to the calling function for
updating the status row.

Our simple WebSocket and Geolocation mashup is now complete. Try it out, but keep in mind that
unless there are multiple browsers accessing the application at the same time, you won’t see many
updates. As an exercise to the reader, consider updating this example to display the incoming locations
on a global Google Map to get an idea of where HTML5 interest is flourishing at this very moment.

The Final Code
For completeness, the Listing 7-9 provides the entire tracker.html file.

Listing 7-9. The tracker.html Code

<!DOCTYPE html>
<html lang="en">

<head>
<title>HTML5 WebSocket / Geolocation Tracker</title>
<link rel="stylesheet" href="styles.css">
</head>

<body onload="loadDemo()">

<h1>HTML5 WebSocket / Geolocation Tracker</h1>

<div>Geolocation: <p id="geoStatus">HTML5 Geolocation is
 not supported in your browser.</p></div>
<div>WebSocket: <p id="socketStatus">WebSocket is not
 supported in your browser.</p></div>

<script>

 // reference to the WebSocket
 var socket;

 // a semi-unique random ID for this session
 var myId = Math.floor(100000*Math.random());

 // number of rows of data presently displayed
 var rowCount = 0;

 function updateSocketStatus(message) {
 document.getElementById("socketStatus").innerHTML = message;
 }

 function updateGeolocationStatus(message) {

CHAPTER 7  USING THE WEBSOCKET API

189

 document.getElementById("geoStatus").innerHTML = message;
 }

 function handleLocationError(error) {
 switch(error.code)
 {
 case 0:
 updateGeolocationStatus("There was an error while retrieving your location: " +
 error.message);
 break;
 case 1:
 updateGeolocationStatus("The user prevented this page from retrieving a
 location.");
 break;
 case 2:
 updateGeolocationStatus("The browser was unable to determine your location: " +
 error.message);
 break;
 case 3:
 updateGeolocationStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

 function loadDemo() {
 // test to make sure that sockets are supported
 if (window.WebSocket) {

 // the location where our broadcast WebSocket server is located
 url = "ws://localhost:8080";
 socket = new WebSocket(url);
 socket.onopen = function() {
 updateSocketStatus("Connected to WebSocket tracker server");
 }
 socket.onmessage = function(e) {
 updateSocketStatus("Updated location from " + dataReturned(e.data));
 }
 }

 var geolocation;
 if(navigator.geolocation) {
 geolocation = navigator.geolocation;
 updateGeolocationStatus("HTML5 Geolocation is supported in your browser.");

 // register for position updates using the Geolocation API
 geolocation.watchPosition(updateLocation,
 handleLocationError,
 {maximumAge:20000});
 }
 }

 function updateLocation(position) {

CHAPTER 7  USING THE WEBSOCKET API

190

 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var timestamp = position.timestamp;

 updateGeolocationStatus("Location updated at " + timestamp);

 // Send my location via WebSocket
 var toSend = JSON.stringify([myId, latitude, longitude]);
 sendMyLocation(toSend);
 }

 function sendMyLocation(newLocation) {
 if (socket) {
 socket.send(newLocation);
 }
 }

 function dataReturned(locationData) {
 // break the data into ID, latitude, and longitude
 var allData = JSON.parse(locationData)
 var incomingId = allData[1];
 var incomingLat = allData[2];
 var incomingLong = allData[3];

 // locate the HTML element for this ID
 // if one doesn't exist, create it
 var incomingRow = document.getElementById(incomingId);
 if (!incomingRow) {
 incomingRow = document.createElement('div');
 incomingRow.setAttribute('id', incomingId);

 incomingRow.userText = (incomingId == myId) ?
 'Me' :
 'User ' + rowCount;

 rowCount++;

 document.body.appendChild(incomingRow);
 }

 // update the row text with the new values
 incomingRow.innerHTML = incomingRow.userText + " \\ Lat: " +
 incomingLat + " \\ Lon: " +
 incomingLong;

 return incomingRow.userText;
 }

</script>
</body>
</html>

CHAPTER 7  USING THE WEBSOCKET API

191

Summary
In this chapter, you have seen how WebSocket provides a simple, yet powerful mechanism for creating
compelling, real-time applications.

First we looked at the nature of the protocol itself, and how it interoperates with existing HTTP
traffic. We compared the network overhead demands of current polling-based communication
strategies versus the limited overhead of WebSocket.

To illustrate WebSocket in action, we explored a simple implementation of a WebSocket server to
show how simple it is to implement this protocol in practice. Similarly, we examined the client-side
WebSocket API, noting the ease of integration it provides with JavaScript.

Finally, we walked through a more complex sample application which combined the power of
Geolocation with WebSocket to demonstrate how well the two technologies can work together.

Now that we've seen how HTML5 brings TCP-style network programming to the browser, we'll turn
our attention to gathering more interesting data than just a user’s current location. In the next chapter,
we look at the enhancements made to form controls in HTML5.

C H A P T E R 8

193

Using the Forms API

In this chapter, we’ll explore all the new capabilities at your command with a longstanding technology:
HTML Forms. Forms have been the backbone of the explosion of the Web since they first appeared.
Without form controls, web business transactions, social discussions, and efficient searches would
simply not be possible.

Sadly, HTML5 Forms is one of the areas in greatest flux in both specification and implementation, in
spite of having been in design for many years. There’s good and bad news. The good news is that the
progress in this area, while incremental, is increasing fairly rapidly. The bad news is that you’ll need to
tread carefully to find the subset of new form controls that will work in all your target browsers. The
forms specification details a large set of APIs, and it is not uncommon to find that each major new
release of an HTML5-compliant web browser adds support for one or more form controls and some of
the helpful validation features.

Regardless, we’ll use this chapter to help you navigate through the virtual sea of controls and find
which ones are ready to use today, and which are nearing release.

Overview of HTML5 Forms
If you are already familiar with forms in HTML—and we assume you are if you are interested in pro
HTML programming—then you will find the new additions in HTML5 to be a comfortable fit on a solid
foundation. If you aren’t yet familiar with the basics of form usage, we recommend any of the numerous
books and tutorials on creating and handling form values. The topic is well covered at this point, and
you will be happy to know that:

• Forms should still be encapsulated in a <form> element where the basic
submission attributes are set.

• Forms still send the values of the controls to the server when the user or the
application programmer submits the page.

• All of the familiar form controls—text fields, radio buttons, check boxes, and so
on—are still present and working as before (albeit with some new features).

• Form controls are still fully scriptable for those who wish to write their own
modifiers and handlers.

CHAPTER 8  USING THE FORMS API

194

HTML Forms Versus XForms
You may have heard references to XForms in the last few years, long before the HTML5 effort gained
much traction. XForms is an XML-centric, powerful, and somewhat complex, standard for specifying
client-side form behavior that has been developed in its own W3C working group for nearly ten years.
XForms harnesses the full power of XML Schema to define precise rules for validation and formatting.
Unfortunately, no current major browser supports XForms without additional plug-ins.

HTML5 Forms are not XForms.

Functional Forms
HTML5 Forms has instead focused on evolving the existing, simple HTML Forms to encompass more
types of controls and address the practical limitations that web developers face today. There is an
important note to keep in mind, especially as you compare form implementations across different
browsers.

 Note The most important concept to grasp about HTML5 Forms is that the specification deals with functional
behavior and semantics, not appearances or displays.

For example, while the specification details the functional APIs for elements such as color and date
pickers, number selectors, and email address entry, the specification does not state how browsers
should render these elements to end users. This is a great choice on multiple levels. It allows browsers to
compete on innovate ways to provide user interaction; it separates styling from semantics; and it allows
future or specialized user input devices to interact in ways that are natural to their operation. However,
until your targeted browser platforms support all the form controls in your application, make sure you
provide enough contextual information for the user to know how to interact with a fallback rendering.
With the right tips and descriptions, users will have no trouble with your application, even if it falls back
to alternate content when presented with unknown input types.

HTML5 Forms encompasses a great number of new APIs and elements types, and support for them
is all over the map now. In order to wrap our heads around all the new functionality, we will address it by
breaking it into two categories

• New input types

• New functions and attributes

However, before we even start with that, let’s take a quick assessment of how the HTML5 Form
specifications are supported in today’s browsers.

Browser Support for HTML5 Forms
Browser support for HTML5 Forms is growing, but still limited. The major browser vendors all support
many of the form controls, with Opera taking the lead in early implementations. However, the
specification is stable.

Checking for browser support is less useful in the context of the new Forms, as they have been
designed to degrade gracefully in older browsers. Largely, this means that it is safe for you to use the new

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8  USING THE FORMS API

195

elements today, because older browsers will fall back to simple text field displays for any input types that
they do not understand. However, as we’ll see later in this chapter, this raises the importance of multi-
tier form validation, as it is not sufficient to rely on the presence of browser validators to enforce the data
types for your form controls, even if you assume full modern-browser support.

Now that we have surveyed the browser landscape, let’s take a look at the new form controls added
in the HTML5 specification.

An Input Catalog
One of the best places to get a catalog of all the new and changed elements in HTML5 is the markup list
maintained at the W3C site itself. The W3C keeps a catalog page file at http://dev.w3.org/html5/markup/

This page denotes all the current and future elements in an HTML page. New and changed elements
are noted in the catalog list. However, “new” in this list only means that the element has been added
since the HTML4 specification—not that the element is implemented in browsers or in a final
specification yet. With that warning in place, let’s take a look at the new form elements arriving with
HTML5, starting with the ones that are being implemented today. Table 8-1 lists the new type attributes.
For example, many HTML developers will be intimately familiar with <input type="text"> and <input
type="checkbox">. The new input types follow a similar model to the existing ones.

Table 8-1. New HTML5 Form Elements Appearing in Browsers

Type Purpose

tel Telephone number

email Email address text field

url Web location URL

search Term to supply to a search engine. For example, the search bar atop a browser.

range Numeric selector within a range of values, typically visualized as a slider

number A field containing a numeric value only

What do these new input types provide? In terms of programmatic APIs… not a lot. In fact, in the

case of the types for tel, email, url, and search, there are no attributes distinguishing them from the
simplest input type of text.

So, what do you get exactly by specifying that an input is of a specialized type? You get specialized
input controls. (Restrictions may apply. Offer void in many desktop browsers.)

Let’s illustrate with an example. By specifying that an input is of type email

<input type="email">

rather than using the conventional standard, which states that a field is merely of type text

<input type="text">

http://dev.w3.org/html5/markup/

CHAPTER 8  USING THE FORMS API

196

you provide a hint to the browser to present a different user interface or input where applicable. You also
provide the browser the ability to further validate the field before submission, but we’ll cover that topic
later in this chapter.

Mobile device browsers have been some of the quickest to take up support for these new form input
types. On a phone, every key press or tap is a higher burden on a user who may not have a full keyboard.
Consequently, the mobile device browsers support these new input types by displaying a different input
interface based on the type declared. In the Apple iPhone, the standard onscreen keyboard display for an
input with type text appears as it does in Figure 8-1.

Figure 8-1. Onscreen keyboard display for an input with type text

However, when an input field is marked as being of type e-mail, the iPhone presents a different
keyboard layout customized for e-mail entry, as shown in Figure 8-2.

Figure 8-2. Onscreen keyboard display for an input with type e-mail

Note the subtle tweaks to the space bar area of the keyboard to allow for the @ symbol and easy
access to the period. Similar tweaks to the keyboard layout are done for type URL and type search.
However, in the desktop version of the Safari browser—and in any browser that does not explicitly

CHAPTER 8  USING THE FORMS API

197

support the types for e-mail, URL, search, and tel—only the normal text input field will be displayed.
Future browsers, even the desktop versions, may provide visual hints or cues to the user to indicate that
the field is of a certain subtype. Opera, for example, will display a small envelope icon next to a field to
indicate that it is expecting an e-mail address. However, it is safe to use these types in your web
applications today, as any browser will either optimize for the type or simply do nothing at all.

Another specialized type that is gaining traction in browsers now is the <input type="range">. This
specialized input control is designed to let users pick from within a range of numbers. For example, a
range control could be used in a form to select an age from a range that limits access to minors under the
age of, say, 18. By creating a range input and setting its special min and max values, a developer can
request that a page display a constrained numerical picker that only operates within the specified
bounds. In the Opera browser, for example, the control:

<input type="range" min="18" max="120">

gives a convenient way to pick a suitable value for age-restricted material. In the Opera browser, it
displays as follows:

Unfortunately, the range input itself doesn’t display a numerical representation of the browser.

Moreover, without one, it is practically impossible for the user to know what the currently selected value
happens to be. To fix this, one can easily add an onchange handler to update a display field based on
changes to the current range value as shown in Listing 8-1.

 Note Why don’t range elements contain visual displays by default? Perhaps it is so that user interface
designers can customize the exact position and appearance of displays. Making the display optional adds a bit of
work, but much more flexibility.

The new form controls now include a simple output element, which is designed just for this type of
operation. An output is a form element, which simply holds a value. As such, we can use it to display the
value of our range control.

Listing 8-1. onchange Handler to Update an output

<label for="age">Age</label>
<input id="age" type="range" min="18" max="120" value="18" onchange="ageDisplay.value=value">
<output id="ageDisplay">18</output>

This gives a nice display to our range input, as follows:

Opera and the WebKit-based browsers—Safari and Chrome—have now added support for the type

range element. Firefox support is planned, but not yet scheduled as of this writing. Firefox will fall back
to a simple text element when presented with a range input type.

CHAPTER 8  USING THE FORMS API

198

Another of the new form elements that has gained widespread support is the progress element. The
progress element does exactly what you might expect; it displays the percentage of a task that is
completed in a handy visual format.

Progress can be either determinate or indeterminate. Think of indeterminate progress as a task that
takes an unknown amount of time, yet one where you want to assure the user that some progress is
being made. To show an indeterminate progress element, simply include one with no attributes:

<progress></progress>

An indeterminate progress bar usually displays a bar in motion, but with no indicator of the overall
percentage complete.

A determinate progress bar, on the other hand, shows an actual percentage-style display of the

completed work. To trigger a determinate progress bar display, set the value and max attributes on the
element. The percentage of the bar displayed as completed is calculated by dividing the value you set by
the max you set. They can be any values you choose, to make calculation easier. For example, to show
30% completion, we can create a progress element such as:

<progress value=”30” max=”100”></progress>

With these values set, the user can quickly see how much of your long-running operation or multi-
step process is complete. Using script to change the value attribute, it is easy to update the display to
indicate progress toward a final goal.

Here Be Dragons

Brian says: “The phrase ‘Here be dragons’ is said to have been used in history to denote dangerous areas
on maps where unknown perils lurk. The same could be said for the following form elements. Although
they are specified, and have been for lengths of time now, most are lacking in actual implementation.

As such, expect large changes between now and the time that browser developers have had a chance to
play with the designs, smooth the rough edges, and respond with feedback and changes. Rather than rely
on the following components as inevitable, take them as a sign of the direction in which HTML5 forms are
moving. If you attempt to use them today, the risk you take is your own…”

Additional form elements that are planned but not widely supported yet include the ones listed in

Table 8-2.

CHAPTER 8  USING THE FORMS API

199

Table 8-2. Future HTML5 Form Elements

Type Purpose

color Color selector, which could be represented by a wheel or swatch picker

datetime Full date and time display, including a time zone, as shown in Figure 8-3

datetime-local Date and time display, with no setting or indication for time zones

time Time indicator and selector, with no time zone information

date Selector for calendar date

week Selector for a week within a given year

month Selector for a month within a given year

Although some early implementations of these elements are beginning to appear in leading edge

browsers (for example, the datetime display in Opera as shown in Figure 8-3), we won’t focus on them in
this chapter as they are likely to undergo significant change. Stay tuned to future revisions!

Figure 8-3. Display for an input of type datetime

CHAPTER 8  USING THE FORMS API

200

Using the HTML5 Forms APIs
Now that we’ve spent some time familiarizing ourselves with the new form element types, let’s turn to
the attributes and APIs that are present on both the old and new form controls. Many of them are
designed to reduce the amount of scripting needed to create a powerful web application user interface.
You may find that the new attributes give you the power to enhance your user interface in ways that you
had not considered. Or, at the very least, you may be able to remove blocks of script in your existing
pages.

New Form Attributes and Functions
First, we’ll consider new attributes, functions, and a few elements that did not previously exist in earlier
versions of HTML. Like the new input types, it is generally safe to use these attributes today, whether or
not your target browser supports them. This is because the attributes will be safely ignored by any
browser on the market today if the browser does not understand them.

The placeholder Attribute
The placeholder attribute gives input controls an easy way to provide descriptive, alternate hint text
which is shown only when the user has not yet entered any values. This is common in many modern
user interface frameworks, and popular JavaScript frameworks have also provided emulation of this
feature. However, modern browsers have it built-in.

To use this attribute, simply add it to an input with a text representation. This includes the basic text
type, as well as the semantic types such as email, number, url, etc.

<label>Runner: <input name="name" placeholder="First and last name"></label>

In a modern browser, this causes the field to display a faint version of the placeholder text which will
disappear whenever the user or application puts focus into the field, or whenever there is a value
present.

The same attribute, when running in a non-supporting browser, will just be ignored, causing the

default field behavior to display.

Similarly, whenever a value is entered in the field, the placeholder text will not appear.

CHAPTER 8  USING THE FORMS API

201

The autocomplete Attribute
The autocomplete attribute, introduced in Internet Explorer 5.5, has finally been standardized. Hooray!
(Browsers have been supporting the attribute for nearly as long as its inception, but having a specified
behavior helps everyone.)

The autocomplete attribute tells the browser whether or not the value of this input should be saved
for future. For example:

<input type="text" name="creditcard" autocomplete="off">

The autocomplete attribute should be used to protect sensitive user data from insecure storage in
the local browser files. Table 8-3 shows the different behavior types.

Table 8-3. Autocomplete Behavior in Input Controls

Type Purpose

on The field is not secure, and its value can be saved and restored.

off The field is secure, and its value should not be saved.

unspecified Default to the setting on the containing <form>. If not contained in a form, or no value is
set on the form, then behave as if on.

The autofocus Attribute
The autofocus attribute lets a developer specify that a given form element should take input focus
immediately when the page loads. Only one attribute per page should specify the autofocus attribute.
Behavior is undefined if more than one control is set to autofocus.

 Note Only one autofocus control per page is difficult to achieve if your content is being rendered into a portal or
shared content page. Do not rely on autofocus if you are not in complete control of the page.

To set the focus automatically to a control such as a search text field, simply set the autofocus
attribute on that element alone:

<input type="search" name="criteria" autofocus>

Like other boolean attributes, no value needs to be specified for the true case.

CHAPTER 8  USING THE FORMS API

202

 Note Autofocus can annoy users if they are not expecting a focus change. Many users utilize keystrokes for
navigation, and switching focus to a form control subverts that ability. Use it only when it is a given that a form
control should take all default keys.

The spellcheck Attribute
The spellcheck attribute can be set on input controls with text content, as well as the textarea. When
set, it suggests to the browser whether or not spelling feedback should be given. A normal representation
of this element is to draw a red dotted line under text that does not map any entry in the currently set
dictionary. This hints to the user to double-check the spelling or to get a suggestion from the browser
itself.

Note that the spellcheck attribute needs a value. You can’t just set the attribute alone on the
element.

<textarea id=”myTextArea” spellcheck=”true”>

Also note that most browsers will default to leaving the spellcheck on, so unless the element (or one
of its parent elements) turns off spellchecking, it will display by default.

The list Attribute and the datalist Element
The list attribute and datalist element combine to let a developer specify a list of possible values for
an input. To use this combination:

1. Create a datalist element in your document with its id set to a unique value.
The datalist can be located anywhere in the document.

2. Populate the datalist with as many option elements as needed to represent the
full set of suggestions for values of a control. For example, a datalist
representing e-mail contacts should contain all of the contact e-mail addresses
as individual option children.

<datalist id="contactList">
 <option value="x@example.com" label="Racer X">
 <option value="peter@example.com" label="Peter">
</datalist>

3. Link the input element to the datalist by setting the list attribute to a value
which is the id of the associated datalist.

<input type="email" id="contacts" list="contactList">

On a supporting browser this produces a customized list control like the following:

mailto:x@example.com
mailto:peter@example.com

CHAPTER 8  USING THE FORMS API

203

The min and max Attributes
As seen before in our example for <input type="range">, the min and max attributes allow a numerical
input to be constrained to minimum and maximum values. One, both, or neither of these attributes can
be provided as necessary, and the input control should adjust accordingly to increase or decrease the
range of acceptable values. For example, to create a range control representing a level of confidence in
ability from zero% to 100%, the following code could be used as follows:

<input id="confidence" name="level" type="range" min="0" max="100" value="0">

This would create a range control with a minimum zero value and maximum of 100, which,
coincidentally, are the default values for the same.

The step Attribute
Also, for input types which expect numerical values, the step attribute specifies the granularity of
increments or decrements in value as the range is adjusted. For example, our confidence level range
control listed above can be set up with a step attribute of five as follows:

<input id="confidence" name="level" type="range" min="0" max="100" step="5" value="0">

This would limit the acceptable values to be increments of five from the starting value. In other
words, only 0, 5, 10, 15, … 100 would be allowed either through typed input or through a slider control,
depending on the browser representation of the input.

The default step value is dependent on the type of control to which it is applied. For a range input,
the default step is one. To accompany the step attribute, HTML5 introduces two functions on the input
element that allow the value to be controlled: stepUp and stepDown.

As you might expect, these functions increment or decrement the current value, respectively. As you
might also expect, the amount by which the value is increased or decreased is the value of the step. As
such, the value of a numeric input control can be tweaked without direct input from the user.

The valueAsNumber Function
The new valueAsNumber function is a handy way to convert the value of a control from text to number…
and back! That is the case because the valueAsNumber is both a getter and a setter function. When called
as a getter, the valueAsNumber function converts the text value of an input field into a number type upon
which calculations are allowed. If the text value does not cleanly convert into a number type, then the NaN
value (Not-a-Number) is returned.

The valueAsNumber can also be used to set the value of an input to a numeric type. For example, our
confidence range could be set using a call such as:

document.getElementById("confidence").valueAsNumber(65);

Make sure the number meets the requirements of the min, max, and step, or an error will be thrown.

The required Attribute
If any input control has the required attribute set, then a value must be set on it before its form can be
submitted. For example, to set a text input field as required, simply add the attribute as shown here:

CHAPTER 8  USING THE FORMS API

204

<input type="text" id="firstname" name="first" required>

If no value is set on this field, either programmatically or by the user, the ability to submit this form
is blocked. The required attribute is the simplest type of form validation, but the capabilities of
validation are vast. Let’s discuss form validation in more detail now.

Checking Forms with Validation
Before we get too deep into specifics, let’s review what form validation really entails. At its core, form
validation is a system for detecting invalid control data and flagging those errors for end users. In other
words, form validation is a series of checks and notifications that let a user correct the controls of a form
before submitting it to the server.

But what is form validation, really?
It is an optimization.
Form validation is an optimization because it alone is not sufficient to guarantee that forms

submitted to the server are correct and valid. It is an optimization because it is designed to help a web
application fail fast. In other words, it is better to notify a user that a page contains invalid form controls
right inside the page, using the browser’s built-in processing. Why bother with the expense of a network
round trip just so the server can inform a user that there was a typo in the data entry? If the browser has
all the knowledge and capability to catch errors before they leave the client, we should take advantage of
that.

However, browser form checking is not sufficient to handle all errors.

Malicious or Misunderstood?

Brian says: “Even though the HTML5 specification goes a long way in improving the ability to check forms
within the browser, it is still not a replacement for server validation. It may never be.

Obviously, there are many error conditions that require server interaction to verify, such as whether or not
a credit card is authorized to make a purchase, or even basic authentication. However, even mundane
validation cannot rely solely on clients. Some users may be using browsers that don’t support the form
validation features. A few may turn off scripting altogether, which can end up disabling all but the simplest
attribute-based validators. Yet other users can utilize an assortment of tools such as the Greasemonkey
browser add-on to modify a page’s content to their…. err, content. This could include removing all form
validation checks. Ultimately, it is not sufficient to rely on client-side validation as the sole means of
checking any important data. If it exists on the client, it can be manipulated.

HTML5 Form validation lets users get important feedback fast, but don’t rely on it for absolute
correctness!”

That being said, HTML5 does introduce eight handy ways to enforce correctness on form control

entry. Let’s examine them in turn, starting with the object that gives us access to their status: the
ValidityState.

The ValidityState can be accessed from any form control in a browser that supports HTML5 Form
validation:

var valCheck = document.myForm.myInput.validity;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8  USING THE FORMS API

205

This simple command grabs a reference to the ValidityState object of a form element
conspicuously named myInput. This object contains handy references to each of the eight possible
validity statuses, as well as an overall validity summary check. You can get the overall state of this form
by calling:

valCheck.valid

This call will provide a Boolean value which informs us whether or not all validity constraints are
currently met on this particular form control. Think of the valid flag as a summary: if all eight
constraints are passing, the valid flag will be true. Otherwise, if any of the validity constraints fail, the
valid attribute will be false.

 Note The ValidityState object is a live object. Once you grab a reference to it, you can keep a hold of it and
the validity checks it returns will update as needed when changes occur.

As mentioned before, there are eight possible validity constraints on any given form element. Each
can be accessed from the ValidityState by accessing the field with the appropriate name. Let’s look at
what they mean, how they can be enforced on a form control, and how you can use the ValidityState to
check for them:

valueMissing
Purpose: Ensure that some value is set on this form control
Usage: Set the required attribute on the form control to true
Usage example: <input type="text" name="myText" required>
Details: If the required attribute is set on a form control, the control will be in an invalid state unless

the user or a programmatic call sets some value to the field. For example, a blank text field will fail a
required check, but will pass as soon as any text is entered. When blank, the valueMissing will return
true.

typeMismatch
Purpose: Guarantee that the type of the value matches expectations (number, email, URL, and so

on)
Usage: Specify one of the appropriate type attributes on the form control
Usage example: <input type="email" name="myEmail">
Details: Special form control types aren’t just for customized phone keyboards! If your browser can

determine that the value entered into a form control doesn’t conform to the rules for that type—for
example, an email address without an @ symbol—the browser can flag this control as having a type
mismatch. Another example would be a number field that cannot parse to a valid number. In either case,
the typeMismatch will return true.

patternMismatch
Purpose: Enforce any pattern rule set on a form control which details specific valid formats
Usage: Set the pattern attribute on the form control with the appropriate pattern
Usage example: <input type="number" name="creditcardnumber" pattern="[0-9]{16}" title="A

credit card number is 16 digits with no spaces or dashes">

CHAPTER 8  USING THE FORMS API

206

Details: The pattern attribute gives developers a powerful and flexible way of enforcing a regular
expression pattern on the value of a form control. When a pattern is set on a control, the
patternMismatch will return true whenever the value does not conform to the rules of the pattern. To
assist users and assistive technology, you should set the title on any pattern-controlled field to describe
the rules of the format.

tooLong
Purpose: Make sure that a value does not contain too many characters
Usage: Put a maxLength attribute on the form control
Usage example: <input type="text" name="limitedText" maxLength="140">
Details: This humorously-named constraint will return true if the value length exceeds the

maxLength. While form controls will generally try to enforce the maximum length during user entry,
certain situations including programmatic settings can cause the value to exceed the maximum.

rangeUnderflow
Purpose: Enforce the minimum value of a numeric control
Usage: Set a min attribute with the minimum allowed value
Usage example: <input type="range" name="ageCheck" min="18">
Details: In any form controls that do numeric-range checking, it is possible for the value to get

temporarily set below the allowable range. In these cases, the ValidityState will return true for the
rangeUnderflow field.

rangeOverflow
Purpose: Enforce the maximum value of a numeric control
Usage: Set a max attribute with the maximum allowed value
Usage example: <input type="range" name="kidAgeCheck" max="12">
Details: Similar to its counterpart rangeUnderflow, this validity constraint will return true if the value

of a form control becomes greater than the max attribute.

stepMismatch
Purpose: Guarantee that a value conforms to the combination of min, max, and step
Usage: Set a step attribute to specify the granular steps of a numeric value
Usage example: <input type="range" name="confidenceLevel" min="0" max="100" step="5">
Details: This constraint enforces the sanity of the combinations of min, max, and step. Specifically,

the current value must be a multiple of the step added to the minimum value. For example, a range from
0 to 100 with steps at every 5 would not allow a value of 17 without stepMismatch returning true.

customError
Purpose: Handle errors explicitly calculated and set by the application code
Usage: Call setCustomValidity(message) to put a form control into the customError state
Usage example: passwordConfirmationField.setCustomValidity("Password values do not

match.");
Details: For those cases where the built-in validity checks don’t apply, the custom validity errors can

suffice. Application code should set a custom validity message whenever a field does not conform to
semantic rules.

One common use case for custom validity is when consistency between controls is not achieved, for
example if password confirmation fields don’t match. (We’ll delve into this specific example in the

CHAPTER 8  USING THE FORMS API

207

“Practical Extras” section.) Whenever a custom validity message is set, the control will be invalid and
return the customError constraint as true. To clear the error, simply call setCustomValidity("") on the
control with an empty string value.

Validation Fields and Functions
Together, these eight constraints allow a developer to find out exactly why a given form control is failing
a validation check. Or, if you don’t care which specific reason is causing the failure, simply access the
Boolean value valid on the ValidityState; it is an aggregate of the other eight constraints. If all eight
constraints return false, then the valid field will return true. There are a few other helpful fields and
functions on the form controls which can assist you in programming for validation checking.

The willValidate Attribute

The willValidate attribute simply indicates whether validation will be checked on this form control at
all. If any of the above constraints—e.g. the required attribute, pattern attribute, etc.—are set on the
control, the willValidate field will let you know that validation checking is going to be enforced.

The checkValidity Function

The checkValidity function allows you to check validation on the form without any explicit user input.
Normally, a form’s validation is checked whenever the user or script code submits the form. This
function allows validation to be done at any time.

 Note Calling checkValidity on a form control doesn’t just check validation, it causes all resulting events and
UI triggers to occur just as if the form had been submitted.

The validationMessage Attribute

This attribute isn’t yet supported by any current browser versions, but it might be by the time you read
this. The validationMessage attribute lets you query programmatically a localized error message that the
browser would display based on the current state of validation. For example, if a required field has no
value, the browser might present an error message to the user that “This field requires a value.” Once
supported, this is the text string that would be returned by the validationMessage field, and it would
adjust according to the current state of validation on the control.

Validation Feedback
On the subject of validation feedback… one topic we’ve avoided thus far is how and when the browser
should present the user with feedback on a validation error. The specification does not dictate the terms
of how the user interface is updated to present an error message, and existing implementations differ
fairly significantly. Consider the case for Opera. In Opera 10.5, the browser indicates that a validation
error has occurred by marking the field in error with a popup message and a flashing red field:

CHAPTER 8  USING THE FORMS API

208

In contrast, at the time of this writing the Google Chrome 13 browser only navigates to the offending

field and puts the focus there when an error is found. What is the correct behavior?
Neither is specified. However, if you would like to take control of the feedback shown to the user

when a validation error occurs, there is an appropriate handler for you to do so: the invalid event.
Whenever a form is checked for validity—either due to the form being submitted, or due to the

checkValidity function being called directly—any form in an invalid state will be delivered an invalid
event. This event can be ignored, observed, or even cancelled. To add an event handler to a field which
will receive this notification, add some code similar to Listing 8-2.

Listing 8-2. Adding Event Handlers for Invalid Events

// event handler for "invalid" events
function invalidHandler(evt) {
 var validity = evt.srcElement.validity;

 // check the validity to see if a particular constraint failed
 if (validity.valueMissing) {
 // present a UI to the user indicating that the field is missing a value
 }

 // perhaps check additional constraints here…

 // If you do not want the browser to provide default validation feedback,
 // cancel the event as shown here
 evt.preventDefault();
}

// register an event listener for "invalid" events
myField.addEventListener("invalid", invalidHandler, false);

Let’s break that code snippet down a bit.
First, we declare a handler to receive invalid events. The first thing we do inside that handler is

check the source of the event. Recall that the invalid event is fired on the form control with a validation
error. Therefore, the srcElement of the event will be the misbehaving form control.

From the source, we grab the validity object. Using this ValidityState instance, we can check its
individual constraint fields to determine exactly what went wrong. In this case, since we know that our
field has a required attribute on it, we first check to see if the valueMissing constraint has been violated.

If our check succeeds, we can modify the user interface on the page to inform the user that a value
needs to be entered for the field in error. Perhaps an alert or an informative error region could be
displayed? This is up to you to decide.

Once we’ve told the user what the error is and how to correct it, we need to decide if we want the
browser itself to display its built-in feedback. By default, the browser will do just that. To prevent the
browser from showing its own error message, we can call evt.preventDefault() to stop the default
handling and take care of the matter entirely ourselves.

CHAPTER 8  USING THE FORMS API

209

Once again, the choice here is yours. The HTML5 Forms API provides you with the flexibility to
achieve a customized API or to fall back to default browser behavior.

Turning Off Validation
In spite of the power behind the validation API, there are… (ahem) valid reasons why you might want to
turn off validation on a control or an entire form. The most common reason is that you might choose to
submit the temporary contents of a form to be saved or retrieved for later, even if the contents aren’t
quite valid yet.

Imagine the case of a user who is entering a complex order entry form, but needs to run an errand
midway through the process. Ideally, you might present the user with a “save” button which stores the
values of the form by submitting them to the server. However, if the form was only partially completed,
validation rules might prevent the content from being submitted. The user would be very displeased if
she had to complete or abandon the form due to an unexpected interruption.

To handle this, a form itself can be programmatically set with the attribute noValidate, which will
cause it to forego any validation logic otherwise present and simply submit the form. Naturally, this
attribute can be set either via script or original markup.

A more useful way to turn off validation is to set a formNoValidate attribute on a control such as a
form submit button. Take the following submit button, set up as a “save” button, for example:

<input type="submit" formnovalidate name="save" value="Save current progress">
<input type="submit" name="process" value="Process order">

This snippet will create a two normal looking submit buttons. The second will submit the form, as
usual. However, the first button is marked with the noValidate attribute, causing all validation to be
bypassed when it is used. This allows the data to be submitted to the server without checking for
correctness. Of course, your server will need to be set up to handle unvalidated data, but best practices
dictate that this should be the case at all times.

Building an Application with HTML5 Forms
Now, let’s use the tools we’ve described in this chapter to create a simple signup page which showcases
new features in HTML5 Forms. Turning back to our familiar Happy Trails Running Club, we’ll create a
page for race registration that incorporates new form elements and validation.

As always, the source code for the demo files we show here is available in the code/forms folder.
Therefore, we’ll spend less attention on the CSS and peripheral markup, and more on the core of the
page itself. That being said, let’s start with a look at the finished page shown in Figure 8-4, then break it
down into sections to tackle one-by-one.

CHAPTER 8  USING THE FORMS API

210

Figure 8-4. Example page with race signup form

This signup page demonstrates many of the elements and APIs we’ve explored in this chapter,
including validation. Although the actual display may look somewhat different on your browser, it
should degrade gracefully even if the browser does not support a particular feature.

On to the code!
The header, navigation, and footer have all been seen before on our previous examples. The page

now contains a <form> element.

 <form name="register">
 <p><label for="runnername">Runner:</label>
 <input id="runnername" name="runnername" type="text"
 placeholder="First and last name" required></p>
 <p><label for="phone">Tel #:</label>
 <input id="phone" name="phone" type="tel"
 placeholder="(xxx) xxx-xxx"></p>
 <p><label for="emailaddress">E-mail:</label>
 <input id="emailaddress" name="emailaddress" type="email"
 placeholder="For confirmation only"></p>
 <p><label for="dob">DOB:</label>
 <input id="dob" name="dob" type="date"
 placeholder="MM/DD/YYYY"></p>

CHAPTER 8  USING THE FORMS API

211

In this first section, we see the markup for the four primary inputs: name, phone, email, and
birthday. For each, we’ve set a <label> with descriptive text and tied it to the actual control using the for
attribute. We’ve also set placeholder text to show a description to the user of just what type of content
belongs there.

For the runner name text field, we’ve made it a required value by setting the required attribute. This
will cause form validation to kick in with a valueMissing constraint if nothing is entered. On the phone
input, we’ve declared it to be of type tel. Your browser may or may not display this field differently or
provide optimized keyboards.

Similarly, the e-mail field has been marked of type e-mail. Any specific handling is up to the
browser. Some browsers will throw a typeMismatch constraint if they detect that the entered value is not
a valid email.

Finally, the date-of-birth field is declared as type date. Not many browsers support this yet, but
when they do, they will automatically render a date picking control on this input.

 <fieldset>
 <legend>T-shirt Size: </legend>
 <p><input id="small" type="radio" name="tshirt" value="small">
 <label for="small">Small</label></p>
 <p><input id="medium" type="radio" name="tshirt" value="medium">
 <label for="medium">Medium</label></p>
 <p><input id="large" type="radio" name="tshirt" value="large">
 <label for="large">Large</label></p>
 <p><label for="style">Shirt style:</label>
 <input id="style" name="style" type="text" list="stylelist" title="Years of
 participation"></p>
 <datalist id="stylelist">
 <option value="White" label="1st Year">
 <option value="Gray" label="2nd - 4th Year">
 <option value="Navy" label="Veteran (5+ Years)">
 </datalist>
 </fieldset>

In our next section, we set out the controls to be used to T-shirt selection. The first few controls are a
standard set of radio buttons for selecting a shirt size.

The next section is more interesting. Here, we exercise the list attribute and its corresponding
<datalist> element. In the <datalist>, we declare a set of types that should be displayed for this list
with distinct values and labels, representing the types of T-shirts available based on veteran status.
Although this list is quite simple, the same technique can be used for lengthy lists of dynamic elements.

 <fieldset>
 <legend>Expectations:</legend>
 <p>
 <label for="confidence">Confidence:</label>
 <input id="confidence" name="level" type="range"
 onchange="confidenceDisplay.value=(value +'%')"
 min="0" max="100" step="5" value="0">
 <output id="confidenceDisplay">0%</output></p>
 <p><label for="notes">Notes:</label>
 <textarea id="notes" name="notes" maxLength="140"></textarea></p>
 </fieldset>

In our final section of controls, we create a slider for the user to express his or her confidence in
completing the race. For this, we use an input of type range. Since our confidence is measured in

CHAPTER 8  USING THE FORMS API

212

percentages, we set a minimum, a maximum, and step value on the input. These force a constraint within
normal percentage ranges. Additionally, we constrain the movement of the value to 5% step increments,
which you will be able to observe if your browser supports a range slider interface control. Although it
should not be possible to trigger them through simple control interactions, there are possible validation
constraints on this control for rangeUnderflow, rangeOverflow, and stepMismatch.

Because a range control does not show a textual representation of its value by default, we will add
an <output> to our application for that purpose. The confidenceDisplay will be manipulated through the
onchange handler of the range control, but we’ll see that in action in just a minute.

Finally, we add a <textarea> to contain any extra notes from the registrant. By setting a maxLength
constraint on the notes control, we allow it to achieve a tooLong constraint, perhaps if a lengthy value is
pasted into the field.

 <p><input type="submit" name="register" value="Register"></p>
 </form>

We finish off our control section with a submit button that will send in our form registration. In this
default example, the registration is not actually being sent to any server.

There are a few scripts we still need to describe: how we will override the browser’s built-in form
validation feedback and how we will listen for events. Although you might find the browser’s default
handling of form errors to be acceptable, it is always good to know your options.

<script type="text/javascript">

 function invalidHandler(evt) {
 // find the label for this form control
 var label = evt.srcElement.parentElement.getElementsByTagName("label")[0];

 // set the label's text color to red
 label.style.color = 'red';

 // stop the event from propagating higher
 evt.stopPropagation();

 // stop the browser's default handling of the validation error
 evt.preventDefault();
 }

 function loadDemo() {
 // register an event handler on the form to
 // handle all invalid control notifications
 document.register.addEventListener("invalid", invalidHandler, true);
 }

 window.addEventListener("load", loadDemo, false);

</script>

This script shows how we override the handling of validation errors. We start by registering event
listeners for the special event type invalid. In order to capture invalid events on all form controls, we
register the handler on the form itself, making sure to register for event capture so that events will arrive
at our handler.

// register an event handler on the form to

CHAPTER 8  USING THE FORMS API

213

// handle all invalid control notifications
document.register.addEventListener("invalid", invalidHandler, true);

Now, whenever any of our form elements triggers a validation constraint, our invalidHandler will be
called. In order to provide more subtle feedback than some of the prominent browsers do by default, we
will color the label of the offending form field red. To do so, first we locate the <label> by traversing to
the parent.

// find the label for this form control
var label = evt.srcElement.parentElement.getElementsByTagName("label")[0];

// set the label's text color to red
label.style.color = 'red';

After setting the label to be a lovely red color, we want to stop the browser or any other handler from
double handling our invalid event. Using the power of DOM, we call preventDefault() to stop any
browser default handling of the event, and stopPropagation() to keep other handlers from getting
access.

// stop the event from propagating higher
evt.stopPropagation();

// stop the browser's default handling of the validation error
evt.preventDefault();

And with just a few simple steps, we’ve provided a validated form with our own special interface
validation code!

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples, but which nonetheless apply to
many types of HTML5 applications. We present to you some short, but common, practical extras here.

The Password Is: Validation!
One handy way to use the HTML5 Form validation support for custom validators is to implement the
common technique of verifying passwords during a password change. The standard technique is to
provide two password fields which must match before the form is submitted successfully. Here, we
provide a way to utilize the setCustomValidation call to make sure that two password fields are matched
before the form submits.

Recall that the customError validation constraint gives you a chance to set an error on a form control
whenever the standard constraint rules do not apply. Specifically, one good reason to trigger the
customError constraint is when the validation depends on the concurrent state of multiple controls, such
as the two password fields here.

Because the ValidityState object is assumed to be live once a reference to it is obtained, it is a good
idea to set the custom error on the ValidityState whenever the password fields are mismatched and
immediately clear the error whenever the fields match again. A good approach for achieving this is to use
the onchange event handler for the password fields.

<form name="passwordChange">
 <p><label for="password1">New Password:</label>
 <input type="password" id="password1" onchange="checkPasswords()"></p>

CHAPTER 8  USING THE FORMS API

214

 <p><label for="password2">Confirm Password:</label>
 <input type="password" id="password2" onchange="checkPasswords()"></p>
</form>

As you can see here, on a trivial form with two password fields, we can register a function to execute
every time the value of one of the passwords changes.

function checkPasswords() {
 var pass1 = document.getElementById("password1");
 var pass2 = document.getElementById("password2");

 if (pass1.value != pass2.value)
 pass1.setCustomValidity("Your passwords do not match. Please recheck that your
 new password is entered identically in the two fields.");
 else
 pass1.setCustomValidity("");
}

Here is one way to handle the password matching. Simply grab the values of the two password
fields, and if they do not match, set a custom error. For the sake of a validation routine, it is probably
acceptable just to set the error on one of the two password fields. If they do match, set the empty string
as the custom error to clear it; this is the specified way for removing a custom error.

Once you’ve got the error set on the field, you can use the approaches described earlier in this
chapter to show feedback to the user and let her change the passwords to match, as expected.

Forms Are Stylin’
In order to help developers distinguish among form controls that have specific validation characteristics,
the developers of CSS have helpfully added a set of pseudo-classes that can be used to set styles on form
controls based on the state of their validity. In other words, if you desire form elements on your page to
change style automatically based on whether or not they are currently complying with validation (or
not), you can set these style pseudo-classes in your rules. These functions are very similar to long-
standing pseudo classes such as :visited and :hover on links. Table 8-4 shows the new pseudo-classes
proposed for the CSS Selectors Level 4 specification can be used to select form elements.

Table 8-4. CSS Pseudoclasses for HTML5 Form Validation

Type Purpose

valid This pseudo-class selects any form element that passes all validity rules. In other words,
this form element has state that is ready to be submitted.

invalid This pseudo-class selects any form element that has errors or problems preventing it
from being submitted. Selectors with this class are useful for showing users errors on the
page.

in-range This pseudo-class only selects elements such as inputs of type range where the current
value is safely between the minimum and maximum values.

out-of- This pseudo-class selects elements with inputs that have values outside of the accepted

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8  USING THE FORMS API

215

range range.

required Any elements that have been marked as required will be selected by this pseudo-class.

optional Form elements that are not marked as required fall into this pseudo-class. Only form
elements fit this category.

With these pseudo-classes, it is easy to mark form controls in a page with visual styling that changes

as the form elements themselves adjust. For example, to show all invalid form elements with a red
background, you can simply use the CSS rule:

:invalid {
 background-color:red;
}

These pseudo-classes will adjust automatically as the user enters input. No code is required!

Summary
In this chapter, you have seen how to take something old—HTML forms—and make it into something
new by using new elements, attributes, and APIs available in HTML5. We’ve seen new controls for
advanced input types, with even more to come. We’ve seen how client validation can be integrated
directly into form controls in order to prevent unnecessary server round trips to process bad data.
Overall, we’ve seen ways to reduce the amount of scripting you need to create full-featured applications
user interfaces.

In the next chapter, we’ll investigate how browsers give you the ability to spawn independent
execution environments to handle long-running tasks: HTML5 Web Workers.

C H A P T E R 9

217

Working with Drag-and-Drop

Traditional drag-and-drop has been popular with users since the days of the original Apple Macintosh.
But today’s computers and mobile devices have much more sophisticated drag-and-drop behavior.
Drag-and-drop is used in file management, transferring data, diagramming, and many other operations
where moving an object is more naturally envisioned with a gesture than a key command. Ask
developers on the street what drag-and-drop encompasses, and you are likely to get a myriad of different
answers depending on their favorite programs and current work assignments. Ask non-technical users
about drag-and-drop, and they may stare at you blankly; the feature is now so ingrained into computing
that it does not often get called out by name anymore.

And yet, HTML has not had drag-and-drop as a core feature in its many years of existence. Although
some developers have used the built-in ability to handle low-level mouse events as a way to hack up
primitive drag-and-drop, those efforts paled in comparison to the type of drag-and-drop features that
have been available in desktop applications for decades. With the arrival of a well-specified set of drag-
and-drop functionality, HTML applications have advanced one step closer to matching the capabilities
of their desktop counterparts.

Web Drag-and-Drop: The Story So Far
You may have seen examples of drag-and-drop on the Web already and are wondering if these are uses
of HTML5 drag-and-drop. The answer? Probably not.

The reason is that HTML and DOM have exposed low-level mouse events since the early days of
DOM events, and that has been sufficient for creative developers to craft a rudimentary drag-and-drop
capability. When coupled with CSS positioning, it is possible to approximate a drag-and-drop system
through the creation of complex JavaScript libraries and a firm knowledge of DOM events.

For example, by handling the following DOM events, it is possible to move items around in a web
page if you code a set of logical steps (and some caveats):

• mousedown: The user is starting some mouse operation. (Is it a drag or just a click?)

• mousemove: If the mouse is not up yet, a move operation is starting. (Is it a drag or a
select?)

• mouseover: The mouse has moved over an element. (Is it one of the ones I want to
drop on?)

• mouseout: The mouse has left an element that will no longer be a possible place to
drop. (Do I need to draw feedback?)

• mouseup: The mouse has released, possibly triggering a drop operation. (Should the
drop complete on this location based on where it started from?)

CHAPTER 9  WORKING WITH DRAG-AND-DROP

218

Although modeling a crude drag-and-drop system using low-level events is possible, it suffers from
some notable drawbacks. First, the logic necessary to handle the mouse events is more complex than
you might imagine, as each of the listed events has many edge cases that must be accounted for.
Although some were in the previous list, the reality is that there are enough of them to warrant their own
chapter. During these events, CSS must be carefully updated to provide feedback to the user about the
possibility of dragging or dropping at any particular location.

However, an even more serious drawback is that this type of ad hoc drag-and-drop implementation
relies on total control of the system. If you try mixing your app content with other content in the same
page, things quickly spiral out of control when different developers start using events for their own
means. Similarly, if you try to drag-and-drop content from someone else’s code, you may have trouble
unless the two codebases are carefully coordinated beforehand. Also, ad hoc drag-and-drop does not
interact with the user’s desktop or work across windows.

The new HTML5 drag-and-drop API has been designed to address these limitations, borrowing from
the way drag-and-drop has been provided in other user interface frameworks.

 Note Even when properly implemented, beware of the limitations of drag-and-drop in any application. Mobile
devices that use drag gestures to navigate might not function correctly if drag behavior is overridden. Also, drag-
and-drop can interfere with drag selection. Take care to use it sparingly and appropriately.

Overview of HTML5 Drag-and-Drop
If you have used the drag-and-drop APIs in programming technologies such as Java or Microsoft MFC,
then you’re in luck. The new HTML5 drag-and-drop API is closely modeled on the concepts of these
environments. Getting started is easy, but mastering the new functionality means that you will need to
become acquainted with a new set of DOM events, though this time at a higher level of abstraction.

The Big Picture
The easiest way to learn the new API is to map it to the concepts with which you are already familiar. If
you are reading a book on pro HTML5 programming, we’ll make a bold assumption that you are
experienced with using drag-and-drop in your day-to-day computing. Nonetheless, we can start by
putting some standard terms on the major concepts.

As shown in Figure 9-1, when you (as a user) start a drag-and-drop operation, you start by clicking
and dragging the pointer. The item or region where you began the drag is known as the drag source.
When you release the pointer and complete the operation, the region or item you are targeting at the
end is known as the drop target. As the mouse moves across the page, you may traverse a series of drop
targets before you actually release the mouse.

CHAPTER 9  WORKING WITH DRAG-AND-DROP

219

Figure 9-1. Drag sources and drop targets

So far, so good. But simply holding down the mouse and moving it to another part of an application
is not what constitutes a drag-and-drop. Rather, it is the feedback during the operation that makes for a
successful interaction. Consider your own uses of drag-and-drop in past experiences; the ones that are
the most intuitive are those where the system is giving constant updates to let you know what will
happen if you release at this point in time:

• Does the cursor indicate that the current position is a valid drop target, or does it
imply a rejection with a “forbidden” cursor indicator?

• Does the cursor imply to the user that the operation will be a move, link, or a copy,
such as with a “plus” sign indicator on the cursor?

• Does the area or target you are hovering over change its appearance in any way to
indicate that it is currently selected as a drop if you release right now?

In order to give similar feedback to users over the course of an HTML drag-and-drop operation, the
browsers will emit a whole slew of events over the course of a single drag. This proves quite handy, as
during these events we will have full power to change the DOM and style of the page elements to give
just the type of feedback that users will be expecting.

Beyond the drag source and drop target, there is one more key concept to learn in the new API: the
data transfer. The specification describes the data transfer as the set of objects used to expose the drag
data store that underlies a drag-and-drop operation. However, it may be easier just to think of the data
transfer as being the central control of drag-and-drop. The operation type (e.g., move, copy, or link), the
image to use as feedback during the drag, and the retrieval of the data itself are all managed here.

Regarding the data itself, the dataTransfer mechanism for completing the drop directly addresses
one of the limitations of the old ad hoc drag-and-drop techniques described previously. Instead of
forcing all drag sources and drop targets to be aware of each other, the data transfer mechanism works
similar to a network protocol negotiation. In this case, the negotiation is performed via Multipurpose
Internet Mail Exchange (MIME) types.

 Note MIME types are the same types used to attach files to e-mail. They are an Internet standard that is used
pervasively in all types of Web traffic, and they are very common in HTML5. In short, MIME types are standardized

CHAPTER 9  WORKING WITH DRAG-AND-DROP

220

text strings used to classify the type of unknown content, such as “text/plain” for plain text and “image/png” for
PNG images.

The purpose of using MIME types is to allow the source and target to negotiate on which format best
suits the needs of the drop target. As shown in Figure 9-2, during a drag start, the dataTransfer object is
loaded up with data representing all reasonable types, or “flavors,” by which the data can be transferred.
Then, when the drop completes, the drop handler code can scan the available types of data and decide
which MIME type format best suits its needs.

For example, imagine a list item in a web page representing a person. There are many different ways
to represent the data for a person; some are standard, some are not. When a drag starts on a particular
person’s list item, the drag start handler can declare that the person’s data is available in a few formats,
as shown in Table 9-1.

Table 9-1.Examples of MIME Types in Data Transfer of a Person

MIME Type Result

text/plain A standard MIME type for unformatted text. We can use it as the
most common representation, such as the person’s name.

image/png A standard MIME type for PNG images. Here, it could represent the
person’s picture in PNG format.

image/jpeg The standard MIME type for JPEG images. It could be used to
transfer the person’s picture in that format.

text/x-age
A non-standard MIME type (as indicated by the x- prefix). We could
use this format to transfer our own types of information, such as the
person’s age.

When the drop completes, the drop handler can query for a list of available data types. From the

provided list, the handler can choose which type is most appropriate. A text list drop target may choose
to grab the text/plain “flavor” of data to retrieve the person’s name, while a more advanced control
might choose to retrieve and display the person’s PNG image as a result of the drop. And, if the source
and target have coordinated on non-standard types, the target could also retrieve the person’s age at the
time of the drop.

CHAPTER 9  WORKING WITH DRAG-AND-DROP

221

Figure 9-2. Drag and drop negotiation of data “flavors”

It is this negotiation process that allows for drag sources and drop targets to be decoupled. As long
as the drag sources provide data in a choice of MIME types, the drop target can choose which format
suits its operation the best, even if the two came from different developers. In later sections of this
chapter, we’ll explore how even more unusual MIME types, such as files, can be used.

Events to Remember
Now that we’ve explored the key concepts of the drag-and-drop API, let’s focus on the events that can be
used throughout the process. As you’ll see, the events operate at a higher level than the mouse events
previously utilized to mock up a drag-and-drop system. However, drag-and-drop events extend the
DOM mouse event. Therefore, you still have access to the low-level mouse information, such as
coordinates, if you need it.

Propagation and Prevention
But before we focus on drag and-drop-itself, let’s refresh on two DOM event functions that have been
around since the browsers standardized on DOM Level 3 events: the stopPropagation and
preventDefault functions.

Consider the case where one element in a page is nested inside another element. We will refer to
them as the child and parent elements, respectively. The child takes up some, but not all, of the visible
space of the parent. Although we are only referring to two elements in our example, in practice a web
page often has many levels of nesting.

When a user clicks a mouse on the child, which element should actually receive the event: the child,
the parent, or both? And if both, in which order? The answer to this question was settled by the World
Wide Web Consortium (W3C) in the DOM events specification. Events flow from a parent, through
intermediaries, and down to the most specific child first in a process known as “event capture.” Once the
child has had access to the event, the event flows back up the element hierarchy via a process known as
“event bubbling.” Together, these two flows allow developers to catch and process the event in the way
that is most suitable to their page architecture. Only elements with handlers actually registered will
process the event, which keeps the system lightweight. The overall approach is a compromise among

CHAPTER 9  WORKING WITH DRAG-AND-DROP

222

different behaviors from multiple browser vendors, and it is consistent with other native development
frameworks, some of which capture and some of which bubble.

However, at any time a handler can call the stopPropagation function on the event, which will stop
it from further traversing down the event capture chain or up through the bubbling phase.

 Note Microsoft has provided a great interactive demo of event models at
http://ie.microsoft.com/testdrive/HTML5/ComparingEventModels

Browsers also have default implementations for how some events will be handled. For example,
when a user clicks on a page link, the default behavior is to navigate the browser to the destination
specified by the link. Developers can prevent this by intercepting the event in a handler and calling
preventDefault on it. This allows code to override the default behaviors of some built-in events. It is also
how a developer can cancel a drag-and-drop operation in an event handler.

Both stopPropagation and preventDefault will be handy in our examples of the drag-and-drop API.

Drag-and-Drop Event Flow
When a user initiates a drag-and-drop operation in an HTML5-ready browser, a series of events trigger
at the start and continue throughout the course of the whole operation. We will examine them in turn
here.

dragstart

The dragstart event is fired on an element in the page when the user begins to drag on it. In other
words, once the mouse is down and the user moves the mouse, the dragstart is initiated. The dragstart
event is of key importance, as it is the only event where the dataTransfer can have data set on it using
the setData call. This means that in a dragStart handler, the possible data types need to be set up so that
they can be queried at the end of the drop, as described previously.

Interception!

Brian says: “If you are wondering why the data types can only be set during the dragStart event, there’s
actually a very good reason for that.

Because drag-and-drop has been designed to work across windows and across content from various
sources, it would be a security risk if drag event listeners were able to insert or replace data when the
drag passed over them. Imagine a malicious section of code with event listeners inserted that queried and
replaced drag data of any drag travelling by. This would misrepresent the intentions of the drag source,
and as such any data replacements after the start are forbidden.”

http://ie.microsoft.com/testdrive/HTML5/ComparingEventModels

CHAPTER 9  WORKING WITH DRAG-AND-DROP

223

drag

The drag event can be thought of as the continuous event of a drag operation. As the user moves the
mouse cursor around the page, the drag event is called repeatedly on the drag source. The drag event will
fire a few times each second during the operation. Although the visuals of the drag feedback can be
modified during a drag event, the data on the dataTransfer is off-limits.

dragenter

When the drag crosses into a new element on the page, a dragenter event fires on that element. This
event is a good time to set drop feedback on the element based on whether or not it can receive the drop.

dragleave

Conversely, the browser will fire a dragleave event whenever the user moves the drag out of the element
where dragenter was previously called. Drop feedback can be restored at this time, as the mouse is no
longer over this target.

dragover

The dragover event is called at frequent intervals as the mouse moves over an element during a drag
operation. Unlike its counterpart drag event, which is called on the drag source, this event is called on
the current target of the mouse.

drop

The drop event is called on the current mouse target when the user releases the mouse. Based on the
result of the dataTransfer object, this is where the code to handle the drop should be executed.

dragend

The final event in the chain, dragend fires on the drag source, indicating that the drag completed. It is
particularly suitable for cleaning up the state used during the drag, as it is called regardless of whether or
not the drop completes.

Altogether, there are plenty of ways for you to intercept the drag-and-drop operations and take
action. The drag-and-drop event chain is summarized in Figure 9-3.

CHAPTER 9  WORKING WITH DRAG-AND-DROP

224

Figure 9-3. Drag-and-drop event flow

Drag Participation
Now that you’ve seen the different events that can be triggered during a drag-and-drop operation, you
might be wondering what it takes to mark elements in your web application as draggable. That’s easy!

Aside from a few elements—such as text controls—elements in a page are not draggable by default.
In order to mark a specific element as draggable, however, all you need to do is add one attribute:
draggable.

<div id=”myDragSource” draggable=”true”>

Simply by adding that attribute, you cause the browser to fire the aforementioned events. Then, you
only need to add the event handlers to manage them.

Transfer and Control
Before we move into our example, let’s assess the dataTransfer object in more detail. The dataTransfer
is available from every drag-and-drop event, as shown in Listing 9-1.

Listing 9-1. Retrieving the dataTransfer Object

Function handleDrag(evt) {
 var transfer = evt.dataTransfer;
 // …
}

CHAPTER 9  WORKING WITH DRAG-AND-DROP

225

As discussed in Listing 9-1, the dataTransfer is used to get and set the actual drop data during the
negotiation between source and target. This is done using the following functions and properties:

• setData(format, data): Calling this function during dragStart allows you to
register one transfer item under a MIME type format.

• getData(format): This function allows the registered data item for a given type to
be retrieved.

• types: This property returns an array of all currently registered formats.

• items: This property returns a list of all items and their associated formats
together.

• files: This property returns any files associated with the drop. This is discussed in
more detail in a later section.

• clearData(): Calling this function with no argument clears out all registered data.
Calling it with a format argument removes only that specific registration.

Two more functions can be used to alter the feedback during a drag operation:

• setDragImage(element, x, y): Tells the browser to use an existing image element
as the drag image, which will display alongside the cursor to hint to the user about
the drag operation effects. If x and y coordinates are provided, then those
coordinates will be considered as the drop point for the mouse.

• addElement(element): By calling this function with a provided page element, you
tell the browser to draw that element as a drag feedback image.

A final set of properties allows the developer to set and/or query the types of drag operations that
are allowed:

• effectAllowed: Setting this property to one of none, copy, copyLink, copyMove,
link, linkMove, move, or all tells the browser that only the type(s) of operations
listed here are to be allowed for the user. For example, if copy is set, only copy
operations will be allowed, and move or link operations will be prevented.

• dropEffect: This property can be used to determine which type of operation is
currently underway or set to force a particular operation type. The types of
operations are copy, link, and move. Or, the value none can be set to prevent any
drop from happening at that point in time.

Together, these operations give a fine level of control over drag-and-drop. Now, let’s see them in
action.

Building an Application with Drag-and-Drop
Using the concepts we’ve already learned, we’ll build a simple drag-and-drop page in the theme of our
Happy Trails Running Club. This page lets the club race organizers drag members of the club into one of
two lists: racers and volunteers. In order to sort them into competitive groups, racers will be sorted by
their age. Volunteers, on the other hand, are only sorted by their names, as their ages don’t matter when
they are not competing.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9  WORKING WITH DRAG-AND-DROP

226

The sorting of the lists is done automatically. The application itself will show feedback indicating
where proper drop areas are for members into the two lists as shown in Figure 9-4.

Figure 9-4. Example page showing racers sorted into lists

All of the code for this example is included with the book’s samples in the code/draganddrop
directory. We’ll step through the page and explain how it works in practice.

First, let’s look at the markup for the page. At the top, we’ve declared the data on our club members
(see Listing 9-2).

Listing 9-2. Markup Displaying Draggable Member Names and Ages

<p>Drag members to either the Racers or Volunteers list.</p>

<ul id="members">
 <li draggable="true" data-age="38">Brian Albers
 <li draggable="true" data-age="25">Frank Salim
 <li draggable="true" data-age="47">Jennifer Clark
 <li draggable="true" data-age="18">John Kemble
 <li draggable="true" data-age="20">Lorraine Gaunce
 <li draggable="true" data-age="30">Mark Wang
 <li draggable="true" data-age="41">Morgan Stephen
 <li draggable="true" data-age="39">Peter Lubbers

CHAPTER 9  WORKING WITH DRAG-AND-DROP

227

 <li draggable="true" data-age="33">Vanessa Combs
 <li draggable="true" data-age="54">Vivian Lopez

As you can see, each of the member list elements is marked as draggable. This tells the browser to let
drags start on each of them. The next thing you’ll notice is that the age of a given member is encoded as
a data attribute. The data- notation is a standard way to store non-standard attributes on an HTML
element.

Our next section contains the target lists (see Listing 9-3).

Listing 9-3. Markup for Drop List Targets

<div class="dropList">
<fieldset id="racersField">
<legend>Racers (by Age):</legend>
<ul id="racers">
</fieldset>
</div>

<div class="dropList">
<fieldset id="volunteersField">
<legend>Volunteers (by Name):</legend>
<ul id="volunteers">
</fieldset>
</div>

The unordered lists identified as racers and volunteers are the ultimate destinations where our
members will be inserted. The fieldsets surrounding them serve as functional equivalents of a moat
around a castle. When the user drags into the fieldset, we’ll know that they have exited the contained
list and we’ll update our visual feedback accordingly.

Speaking of feedback, there are a few CSS styles in our page that are important to note (see Listing 9-
4).

Listing 9-4. Styles for Drag-and-Drop Demo

#members li {
 cursor: move;
}

.highlighted {
 background-color: yellow;
}

.validtarget {
 background-color: lightblue;
}

First, we make sure that every member in our source list shows a move cursor. This gives a hint to
the user that the items are draggable.

Next, we define two style classes: highlighted and validtarget. These are used to draw background
colors on our lists as the drag-and-drop is in progress. The validtarget background will be displayed on
our destination lists during the entire drag to hint that they are valid drop targets. When the user actually

CHAPTER 9  WORKING WITH DRAG-AND-DROP

228

moves a member over a target list it will change to the highlighted style, indicating that the user is
actually over a drop target.

To keep track of the state on our page, we’ll declare a few variables (see Listing 9-5).

Listing 9-5. List Item Declarations

 // these arrays hold the names of the members who are
 // chosen to be racers and volunteers, respectively
 var racers = [];
 var volunteers = [];

 // these variables store references to the visible
 // elements for displaying who is a racer or volunteer
 var racersList;
 var volunteersList;

The first two variables will serve as internal arrays, which keep track of which members are in the
racers and volunteers lists. The second two variables are only going to be used as handy references to the
unordered lists containing the visual display of members in the respective lists.

Now, let’s set all of our page items up to handle drag-and-drop (see Listing 9-6).

Listing 9-6. Event Handler Registration

 function loadDemo() {

 racersList = document.getElementById("racers");
 volunteersList = document.getElementById("volunteers");

 // our target lists get handlers for drag enter, leave, and drop
 var lists = [racersList, volunteersList];
 [].forEach.call(lists, function(list) {
 list.addEventListener("dragenter", handleDragEnter, false);
 list.addEventListener("dragleave", handleDragLeave, false);
 list.addEventListener("drop", handleDrop, false);
 });

 // each target list gets a particular dragover handler
 racersList.addEventListener("dragover", handleDragOverRacers, false);
 volunteersList.addEventListener("dragover", handleDragOverVolunteers, false);

 // the fieldsets around our lists serve as buffers for resetting
 // the style during drag over
 var fieldsets = document.querySelectorAll("#racersField, #volunteersField");
 [].forEach.call(fieldsets, function(fieldset) {
 fieldset.addEventListener("dragover", handleDragOverOuter, false);
 });

 // each draggable member gets a handler for drag start and end
 var members = document.querySelectorAll("#members li");
 [].forEach.call(members, function(member) {
 member.addEventListener("dragstart", handleDragStart, false);
 member.addEventListener("dragend", handleDragEnd, false);

CHAPTER 9  WORKING WITH DRAG-AND-DROP

229

 });

 }

 window.addEventListener("load", loadDemo, false);

When the window initially loads, we call a loadDemo function to set up all of our drag-and-drop event
handlers. Most of them don’t need event capture, and we will set the capture argument accordingly.
Both the racersList and the volunteersList will receive handlers for dragenter, dragleave, and drop
events, as these are fired on drop targets. Each list will receive a separate dragover event listener, as that
will allow us to easily update the drag feedback based on the target the user is currently dragging over.

As mentioned previously, we are also adding dragover handlers on the fieldsets surrounding the
target lists. Why do we do this? To make it easier to detect when a drag has exited our target lists.
Although it is easy for us to detect that a user has dragged an item over our list, it is not so easy to
determine when the user has dragged an item out of our list. This is because the dragleave events fire
both when an item is dragged out of our list and when the item is dragged over a child already in the
destination list. Essentially, when you drag from a parent element over one of its contained children, the
drag exits the parent and enters the child. Although this provides a lot of information, it actually makes it
tricky to know when a drag is leaving the outer boundaries of a parent element. Therefore, we will use a
notification that we are dragging over an element surrounding our list to inform us that we have exited
the list. More information on this will be provided later.

This Way to the eGRESS

Brian says: “One of the more counter-intuitive aspects of the drag-and-drop specification is the order of
events. Although you might expect that a dragged item would exit one target before it entered another,
you’d be wrong!

The order of events fired during a drag from element A into element B is that a dragenter event is fired on
element B before the dragleave is fired on element A. This maintains consistency with the HTML mouse
event specification, but it is one of the odder aspects of the design. There are more of these quirks ahead,
to be sure.”

Our final set of handlers registers dragstart and dragend listeners on every draggable club member

in our initial list. We will use them to initialize and clean up any drag. You might notice that we don’t add
handlers for the drag event, which fires periodically on the drag source. As we will not be updating the
appearance of the dragged item, it will be unnecessary for our example.

Now, we’ll go through the actual event handlers in turn, based on the order in which they generally
fire (see Listing 9-7).

s

CHAPTER 9  WORKING WITH DRAG-AND-DROP

230

Listing 9-7. dragstart Event Handler

 // called at the beginning of any drag
 function handleDragStart(evt) {

 // our drag only allows copy operations
 evt.effectAllowed = "copy";

 // the target of a drag start is one of our members
 // the data for a member is either their name or age
 evt.dataTransfer.setData("text/plain", evt.target.textContent);
 evt.dataTransfer.setData("text/html", evt.target.dataset.age);

 // highlight the potential drop targets
 racersList.className = "validtarget";
 volunteersList.className = "validtarget";

 return true;
 }

The handler for dragstart is called on the draggable item where the users begin the operation. It is a
somewhat special handler, as it sets up the capabilities of the entire process. First, we set the
effectAllowed, which tells the browser that only copies are allowed when dragging from this element—
no moves or links.

Next, we preload all of the possible flavors of data that might be requested at the end of a successful
drop. Naturally, we want to support a text version of our element, so we set the MIME type text/plain to
return the text inside our draggable node, (i.e., the club member’s name).

For our second data flavor, we would like the drop operation to transfer another type of data about
the drag source; in our case, it is the age of the club member. Unfortunately, due to bugs, not all
browsers support user-defined MIME types such as application/x-age yet, which would be the best fit
for such an arbitrary flavor. Instead, we will reuse another commonly supported MIME format—
text/html—to stand in for an age flavor for now. Hopefully the WebKit browsers will address this
limitation soon.

Don’t forget that the dragstart handler is the only handler where data transfer values can be set.
Attempting to do so in other handlers will fail in order to prevent rogue code from changing the data
mid-drag.

Our final action in the start handler is purely for demo purposes. We will change the background
color of our potential drop target lists to give the user a hint about what is possible. Our next handlers
will process events as the dragged item enters and leaves elements on the page (see Listing 9-8).

Listing 9-8. dragenter and dragleave Event Handlers

 // stop propagation and prevent default drag behavior
 // to show that our target lists are valid drop targets
 function handleDragEnter(evt) {
 evt.stopPropagation();
 evt.preventDefault();
 return false;
 }

 function handleDragLeave(evt) {

CHAPTER 9  WORKING WITH DRAG-AND-DROP

231

 return false;
 }

The dragleave event is not used by our demo, and we handle it purely for illustrative purposes.
The dragenter event, however, can be handled and canceled by calling preventDefault on it when it

is fired over a valid drop target. This informs the browser that the current target is a valid drop target, as
the default behavior is to assume that any target is not a valid drop target.

Next, we will look at the dragover handlers (see Listing 9-9). Recall that these fire at regular intervals
whenever the drag hovers over the elements in question.

Listing 9-9. dragover Handler for Outer Container

 // for better drop feedback, we use an event for dragging
 // over the surrounding control as a flag to turn off
 // drop highlighting
 function handleDragOverOuter(evt) {

 // due to Mozilla firing drag over events to
 // parents from nested children, we check the id
 // before handling
 if (evt.target.id == "racersField")
 racersList.className = "validtarget";

 else if (evt.target.id == "volunteersField")
 volunteersList.className = "validtarget";

 evt.stopPropagation();
 return false;
 }

Our first of three dragover handlers will be used only to adjust the drag feedback. Recall that it is
difficult to detect when a drag has left a target, such as our intended racers and volunteers lists.
Therefore, we use a drag movement over the fieldsets surrounding the lists to indicate that the drag has
exited the vicinity of the lists. This allows us to turn off the drop highlighting on the lists accordingly.

Note that our simple code, as listed, will change the CSS className repeatedly if the user hovers in
the fieldset area. For optimization purposes, it is good practice to only change the className once, as it
may cause the browser to do more work than necessary.

Finally, we stop propagation of the event to any other handlers in the page. We don’t want any other
handlers to override our logic. In the next two dragover handlers, we take a different approach (see
Listing 9-10).

Listing 9-10. dragover Handler for Target Lists

 // if the user drags over our list, show
 // that it allows copy and highlight for better feedback
 function handleDragOverRacers(evt) {
 evt.dataTransfer.dropEffect = "copy";
 evt.stopPropagation();
 evt.preventDefault();

 racersList.className = "highlighted";
 return false;

CHAPTER 9  WORKING WITH DRAG-AND-DROP

232

 }

 function handleDragOverVolunteers(evt) {
 evt.dataTransfer.dropEffect = "copy";
 evt.stopPropagation();
 evt.preventDefault();

 volunteersList.className = "highlighted";
 return false;
 }

These two handlers, while somewhat verbose, are listed in full to clarify our demo. The first handles
dragover events in the racers list, and the second handles dragover events identically in the volunteers
list.

The first action we take is to set the dropEffect to indicate that only copies are allowed on this node,
not moves or links. This is a good practice, even though our original dragstart handler already limited
the drag-and-drop operation to be copy-only.

Next we prevent other handlers from accessing the event and cancel it. Canceling a dragover event
has an important function: it tells the browser that the default operation—not allowing a drop here—is
not valid. Essentially, we are telling the browser that it should not not allow a drop; and so, the drop is
allowed. Although this may seem counter-intuitive, recall that preventDefault is used to tell the browser
not to do its normal built-in operation for an event. For example, calling preventDefault on a click on a
link tells the browser to not navigate to the link’s reference. The specification designers could have
created a new event or API for this dragover, but they opted to keep to the API patterns that were already
used throughout HTML.

We will also give the user visual feedback by changing the background color to yellow via the
highlighted CSS class whenever the user drags over our lists. The main work of the drag-and-drop is
done in the drop handler, which we examine next in Listing 9-11.

Listing 9-11. Drop Handler for Target Lists

 // when the user drops on a target list, transfer the data
 function handleDrop(evt) {
 evt.preventDefault();
 evt.stopPropagation();

 var dropTarget = evt.target;

 // use the text flavor to get the name of the dragged item
 var text = evt.dataTransfer.getData("text/plain");

 var group = volunteers;
 var list = volunteersList;

 // if the drop target list was the racer list, grab an extra
 // flavor of data representing the member age and prepend it
 if ((dropTarget.id != "volunteers") &&
 (dropTarget.parentNode.id != "volunteers")) {
 text = evt.dataTransfer.getData("text/html") + ": " + text;
 group = racers;
 list = racersList;

CHAPTER 9  WORKING WITH DRAG-AND-DROP

233

 }

 // for simplicity, fully clear the old list and reset it
 if (group.indexOf(text) == -1) {
 group.push(text);
 group.sort();

 // remove all old children
 while (list.hasChildNodes()) {
 list.removeChild(list.lastChild);
 }

 // push in all new children
 [].forEach.call(group, function(person) {
 var newChild = document.createElement("li");
 newChild.textContent = person;
 list.appendChild(newChild);
 });
 }

 return false;
 }

Once again, we start by preventing the default drop behavior and preventing the control from
propagating to other handlers. The default drop event depends on the location and type of element
dropped. For example, dropping an image dragged in from another source displays it in the browser
window, and dropping a link into a window navigates to it by default. We want total control of drop
behavior in our demo, so we cancel any default behaviors.

Recall that our demo shows how multiple data flavors set up in the dragstart can be retrieved from
a dropped element. Here, we see how that retrieval completes. By default, we get the plain text data
representing the club member’s name by using the text/plain MIME format. If the user drops into the
volunteers list, this is sufficient.

However, if the user is dropping the club member into the racers list, we take one additional step to
fetch the age of the club member, which we previously set using the text/html flavor during dragstart.
We prepend it to the club member’s name to display both age and name in the racers list.

Our final block of code is a simple, albeit unoptimized, routine to clear out all previous members of
the target list, add our new member (if he didn’t exist already), sort, and refill the list. The end result is a
sorted list containing the old members and the newly dropped member, if he was not present before.

Regardless of whether or not the user completed the drag-and-drop, we need a dragend handler to
clean up (see Listing 9-12).

Listing 9-12. dragend Handler for Clean Up

 // make sure to clean up any drag operation
 function handleDragEnd(evt) {

 // restore the potential drop target styles
 racersList.className = null;
 volunteersList.className = null;
 return false;
 }

CHAPTER 9  WORKING WITH DRAG-AND-DROP

234

A dragend handler is called at the end of the drag, whether or not a drop actually occurred. If the
user canceled the drag or completed it, the dragend handler is still called. This gives us a good place to
clean up any state we changed at the beginning of the process. Not surprisingly, we reset the CSS classes
of our lists to their default, unstyled state.

Sharing Is Caring

Brian says: “If you are wondering whether or not the drag-and-drop functionality is worth all of the event
handler code, don’t forget one of the key benefits of the API: sharing drags across windows and even
across browsers.

Because the design of HTML5 drag-and-drop was built to mirror that of desktop capabilities, it is not
surprising that it also supports sharing across applications. You can try this out by loading our example in
multiple browser windows and dragging members from one source list to the racers and volunteers lists of
another window. Although our simple highlighting feedback was not designed for this case, the actual drop
capability works across windows and even across browsers if they support the API.” Our drag-and-drop
example is a simple one, but it illustrates the full capability of the API.

Getting Into the dropzone
If you’re thinking that handling all of the drag-and-drop events is complicated, you’re not alone. The
authors of the specification have designed an alternative, shorthand mechanism to support drop events:
the dropzone attribute.

The dropzone provides developers with a compact way to register that an element is willing to accept
drops without coding up lengthy event handlers. The attribute consists of a few space-separated
patterns that, when provided, allow the browser to automatically wire up the drop behavior for you (see
Table 9-2).

Table 9-2.Tokens of the dropzone Attribute

Token Result

copy, move, link Only one of the three operation types is allowed. If none is
specified, copy is assumed.

s:<mime>
Using the characters s: followed by a MIME type indicates
that data of that MIME type is allowed to be dropped on the
element.

f:<mime>
Using the characters f: followed by a MIME type indicates
that files of that MIME type are allowed to be dropped on the
element.

Borrowing from our example application, the racers list element could be specified as having the

following attribute:

CHAPTER 9  WORKING WITH DRAG-AND-DROP

235

<ul id="racers" dropzone=”copy s:text/plain s:text/html” ondrop=”handleDrop(event)”>

This provides a quick way of telling the browser that copy operations for elements that support
either the plain text or HTML data format are allowed to drop on our list.

The dropzone is not supported by most major browser vendors at the time of writing, but support for
it is likely forthcoming.

Handling Drag-and-Drop for Files
If you’ve ever wanted an easier way to add files to your web application, or you’ve wondered how some
of the newest sites allow you to drag files directly into a page and upload them, the answer is the HTML5
File API. Although the size and status of the entire W3C File API is out of scope for this discussion, many
browsers already support a subset of the standard, which allows files to be dragged into an application.

 Note The W3C File API is documented online at www.w3.org/TR/FileAPI.

The File API contains functionality for asynchronously reading files in a web page, uploading them
to servers while tracking process, and turning files into page elements. However, affiliated specifications
such as drag-and-drop use a subset of the File API, and that is the area where we will focus our attention
in this chapter.

Recall that we’ve already alluded to file drag-and-drop twice in this chapter. First, the dataTransfer
object contains a property named files, which will contain a list of files attached to the drag, if
appropriate. For example, if a user drags a file or set of files in from the desktop into your application’s
web page, the browser will fire drag-and-drop events where the dataTransfer.files object has a value.
Additionally, browsers that support the previously mentioned dropzone attribute allow files of specific
MIME types to be valid drops on an element by using the f: MIME type prefix.

 Note Currently, the Safari browser only supports drag-and-drop operations for files. Drags initiated inside a
page will fire most drag-and-drop events, but drop events only occur if the type of drag is a file.

As usual, you cannot access the files during most drag-and-drop events, because they are protected
for security reasons. Although some browsers might let you get access to the list of files during drag
events, no browser will let you get access to the file data. In addition, the dragstart, drag, and dragend
events that are fired at the drag source element are not triggered in a file drag-and-drop, as the source is
the file system itself.

The file items in our file list support the following properties:

• name: The full filename with extension

• type: The MIME type of the file

• size: The size of the file in bytes

• lastModifiedDate: The timestamp for when the file contents were last modified

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.w3.org/TR/FileAPI

CHAPTER 9  WORKING WITH DRAG-AND-DROP

236

Let’s walk through a simple example of file drag-and-drop where we will show the characteristics of
any file dropped onto our page, shown in Figure 9-5. This code is contained in the fileDrag.html example
included with the book.

Figure 9-5. Demo page displaying the characteristics of dropped files

The HTML for our demo is actually quite simple (see Listing 9-13).

Listing 9-13. Markup for File Drop Demo

<body>
<div id="droptarget">
<div id="status"></div>
</div>
</body>

We have only two elements in the page. A drop target where files will be dropped and a status
display area.

As with our last example, we will register drag-and-drop event handlers during page load (see
Listing 9-14).

CHAPTER 9  WORKING WITH DRAG-AND-DROP

237

Listing 9-14. Loading and Initialization Code for File Drop Demo

 var droptarget;

 // set the status text in our display
 function setStatus(text) {
 document.getElementById("status").innerHTML = text;
 }

 // ...

 function loadDemo() {

 droptarget = document.getElementById("droptarget");
 droptarget.className = "validtarget";

 droptarget.addEventListener("dragenter", handleDragEnter, false);
 droptarget.addEventListener("dragover", handleDragOver, false);
 droptarget.addEventListener("dragleave", handleDragLeave, false);
 droptarget.addEventListener("drop", handleDrop, false);

 setStatus("Drag files into this area.");
 }

 window.addEventListener("load", loadDemo, false);

This time, the drop target receives all of the event handlers. Only a subset of handlers is needed, and
we can ignore events that take place at the drag source.

When the user drags files into our drop target, we will display what we know about the drop
candidates (see Listing 9-15).

Listing 9-15. File Drop Drag Enter Handler

 // handle drag events in the drop target
 function handleDragEnter(evt) {

 // if the browser supports accessing the file
 // list during drag, we display the file count
 var files = evt.dataTransfer.files;

 if (files)
 setStatus("There are " + evt.dataTransfer.files.length +
 " files in this drag.");
 else
 setStatus("There are unknown items in this drag.");

 droptarget.className = "highlighted";

 evt.stopPropagation();
 evt.preventDefault();

w

CHAPTER 9  WORKING WITH DRAG-AND-DROP

238

 return false;
 }

Although some browsers allow access to the dataTransfer files mid-drag, we will handle the case
where that information is off-limits. When the count is known, we will display it in the status.

Handling dragover and dragleave events is straightforward (see Listing 9-16).

Listing 9-16. File drop dragover and dragleave Handlers

 // preventing the default dragover behavior
 // is necessary for successful drops
 function handleDragOver(evt) {
 evt.stopPropagation();
 evt.preventDefault();

 return false;
 }

 // reset the text and status when drags leave
 function handleDragLeave(evt) {
 setStatus("Drag files into this area.");

 droptarget.className = "validtarget";

 return false;
 }

As always, we must cancel dragover events to allow drops to be handled by our own code rather
than the browser’s default behavior, which is usually to display them inline. For a dragleave, we only set
the status text and style to indicate that drops are no longer valid when the mouse leaves. The bulk of our
work is done in the drop handler (see Listing 9-17).

Listing 9-17. File Drop Handler

 // handle the drop of files
 function handleDrop(evt) {
 // cancel the event to prevent viewing the file
 evt.preventDefault();
 evt.stopPropagation();

 var filelist = evt.dataTransfer.files;

 var message = "There were " + filelist.length + " files dropped.";

 // show a detail list for each file in the drag
 message += "";

 [].forEach.call(filelist, function(file) {
 message += "";
 message += "" + file.name + " ";
 message += "(" + file.type + ") : ";

CHAPTER 9  WORKING WITH DRAG-AND-DROP

239

 message += "size: " + file.size + " bytes - ";
 message += "modified: " + file.lastModifiedDate;
 message += "";
 });

 message += "";

 setStatus(message);
 droptarget.className = "validtarget";

 return false;
 }

As discussed previously, it is necessary to cancel the event using preventDefault so that the
browser’s default drop code is never triggered.

Then, because we have more access to data in the drop handler than during the drag, we can inspect
the files attached to the dataTransfer and discover the characteristics of the dropped files. In our
example, we will merely display the properties of the files, but with full use of the HTML5 File API, you
can read in the contents for local display or upload them to the server powering your application.

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples but which nonetheless apply to
many types of HTML5 applications. We present to you a short, but common, practical extra here.

Customizing the Drag Display
Usually, the browser will default the visual cursor indicator for a drag operation. An image or link will
move with the cursor (sometimes sized down for practical viewing), or a ghosted image of the dragged
element will hover at the drag position.

However, if you need to change the default drag image display, the API provides you with a simple
API for doing just that. It is only possible to change the drag image during the dragstart handler—once
again due to security concerns—but you can do so easily by simply passing the element that represents
the appearance of the cursor to the dataTransfer.

 var dragImage = document.getElementById("happyTrails");
 evt.dataTransfer.setDragImage(dragImage, 5, 10);

Note the offset coordinates passed to the setDragImage call. These x and y coordinates tell the
browser which pixel inside the image to use as the point underneath the mouse cursor. For example, by
passing in the values 5 and 10 for x and y, respectively, the image will be positioned such that the cursor
is 5 pixels from the left and 10 pixels from the top, as shown in Figure 9-6.

CHAPTER 9  WORKING WITH DRAG-AND-DROP

240

Figure 9-6. Demo page with a drag image set to the Happy Trails logo

The drag image does not need to be an image, however. Any element can be set as the drag image; if
it is not an image, the browser will create a visual snapshot of it to serve as the cursor display.

Summary
The drag-and-drop API can be a tricky one to master. It involves the correct handling of many events,
some of which may be hard to manage if your drop target layout is complex. However, if you are looking
for drag operations that cross windows or browsers, or even interact with the desktop, you will need to
learn the subtleties of the API. By design, it combines the power of native application drag-and-drop
while still working inside the security restrictions of an environment where data must be protected from
third-party code.

For more information on using dropped files as application data, make sure to check out the W3C
File API. In the next chapter, we will examine the Web Workers API, which will allow you to spawn
background scripts outside of your main page to speed up execution and improve the user experience.

C H A P T E R 10

241

Using the Web Workers API

JavaScript is single-threaded. As a result, long-lasting computations (not necessarily due to poorly
written code) will block the UI thread and make it impossible to add text to text boxes, click buttons, use
CSS effects, and, in most browsers, open new tabs until control has returned. As an answer to that
problem, HTML5 Web Workers provide background-processing capabilities to web applications and
typically run on separate threads so that JavaScript applications using Web Workers can take advantage
of multicore CPUs. Separating long-running tasks into Web Workers also avoids the dreaded slow-script
warnings, shown in Figure 10-1, that display when JavaScript loops continue for several seconds.

Figure 10-1. Slow script warning in Firefox

As powerful as Web Workers are, there are also certain things they cannot do. For example, when a
script is executing inside a Web Worker it cannot access the web page’s window object (window.document),
which means that Web Workers don’t have direct access to the web page and the DOM API. Although
Web Workers cannot block the browser UI, they can still consume CPU cycles and make the system less
responsive.

Let’s say you want to create a web application that has to perform some background number
crunching, but you do not want those tasks to interfere with the interactivity of the web page itself. Using
Web Workers, you can spawn a Web Worker to perform the tasks and add an event listener to listen to
messages from the Web Worker as they are sent.

Another use case for Web Workers could be an application that listens for broadcast news messages
from a back-end server, posting messages to the main web page as they are received from the back-end
server. This Web Worker might use Web Sockets or Server-Sent Events to talk to the back-end server.

In this chapter, we’ll explore what you can do with Web Workers. First, we’ll discuss how Web
Workers work and the level of browser support available at the time of this writing. Then, we’ll discuss
how you can use the APIs to create new workers and how to communicate between a worker and the
context that spawned it. Finally, we’ll show you how you can build an application with Web Workers.

CHAPTER 10  USING THE WEB WORKERS API

242

Browser Support for Web Workers
The majority of the modern web browsers support Web Workers. Check the web site http://caniuse.com
(search for Web Workers) for the most up-to-date support matrix. While there are polyfill (emulation)
libraries available for most other APIs—for example, for HTML5 Canvas there are libraries such as
excanvas.js and flashcanvas.js that provide an emulation of the Canvas APIs (using Flash under the
covers)—an emulation for Web Workers does not make a lot of sense, however. You can either call your
worker code as a worker, or run the same code inline in your page, blocking the UI thread. The improved
responsiveness of the worker-based page may just be enough to have people upgrade to a more modern
browser (at least we hope it will).

Using the Web Workers API
In this section, we’ll explore the use of the Web Workers API in more detail. For the sake of illustration,
we’ve created a simple browser page: echo.html. Using Web Workers is fairly straightforward—you
create a Web Worker object and pass in a JavaScript file to be executed. Inside the page you set up an
event listener to listen to incoming messages and errors that are posted by the Web Worker and if you
want to communicate from the page to the Web Worker, you call postMessage to pass in the required
data. The same is true for the code in the Web Worker JavaScript file—event handlers must be set up to
process incoming messages and errors, and communication with the page is handled with a call to
postMessage.

Checking for Browser Support
Before you call the Web Workers API functions, you will want to make sure there is support in the
browser for what you’re about to do. This way, you can provide some alternate text, prompting the users
of your application to use a more up-to-date browser. Listing 10-1 shows the code you can use to test for
browser support.

Listing 10-1. Checking for Browser Support

function loadDemo() {
 if (typeof(Worker) !== "undefined") {
 document.getElementById("support").innerHTML =
 "Excellent! Your browser supports Web Workers";
 }
}

In this example, you test for browser support in the loadDemo function, which might be called when
the page is loaded. A call to typeof(Worker) will return the window’s global Worker property, which will
be undefined if the browser doesn’t support the Web Workers API. In this example, the page is updated
to reflect whether there is browser support by updating a previously defined support element on the
page with a suitable message, as shown at the top of Figure 10-2.

http://caniuse.com

CHAPTER 10  USING THE WEB WORKERS API

243

Figure 10-2. Example of showing whether Web Workers is supported

Creating Web Workers
Web Workers are initialized with the URL of a JavaScript file, which contains the code the worker will
execute. This code sets event listeners and communicates with the script that spawned it. The URL for
the JavaScript file can be a relative or absolute URL with the same origin (the same scheme, host, and
port) as the main page:

worker = new Worker("echoWorker.js");

Inline Workers
To start a worker you need to point to a file. You may have seen some examples of script elements that
have the type javascript/worker, as shown in the following example:

 <script id="myWorker" type="javascript/worker">

Don’t let this fool you into thinking that you can simply set the type of a script element to run the
JavaScript code as a Web Worker. In this case, the type information is used to signal the browser and its
JavaScript engine not to parse and run the script. In fact, the type may as well have been anything other
than text/javascript. The script example shown is a building block for inline Web Workers—a feature
that can be used only if your browser also supports the File System API (Blob Builder or File Writer). In
that case you can programmatically find the script block (in the previous case, the element with the
myWorker id) and write the Web Worker JavaScript file to disk. After that, you can call the inline Web
Worker in your code.

Shared Workers
There is yet another type of worker, which is not widely supported at the time of this writing: the shared
Web Worker. A shared Web Worker is like a normal Web Worker, but it can be shared across multiple
pages on the same origin. Shared Web Workers introduce the notion of ports that are used for
PostMessage communication. Shared Web Workers can be useful for data synchronization among
multiple pages (or tabs) on the same origin or to share a long-lived resource (like a WebSocket) among
several tabs.

The syntax for starting a shared Web Worker is as follows:

sharedWorker = new SharedWorker(sharedEchoWorker.js');

CHAPTER 10  USING THE WEB WORKERS API

244

Loading and Executing Additional JavaScript
An application composed of several JavaScript files can contain <script> elements that synchronously
load JavaScript files as the page loads. However, because Web Workers do not have access to the
document object, there is an alternative mechanism for synchronously importing additional JavaScript
files from within workers—importScripts:

importScripts("helper.js");

Importing a JavaScript file simply loads and executes JavaScript into an existing worker. Multiple
scripts can be imported by the same call to importScripts. They are executed in the order specified:

importScripts("helper.js", "anotherHelper.js");

Communicating with Web Workers
Once the Web Worker is spawned, you can use the postMessage API to send data to and from Web
Workers. This is the same postMessage API that is used for cross-frame and cross-window
communication. postMessage can be used to send most JavaScript objects, but not functions or objects
with cyclic references.

Let’s say that you want to build a simple Web Worker example that allows users to send a message to
a worker, which in turn echoes back the message. This example may not be very useful in real life, but
it’s useful enough to explain the concepts you need to build more complex examples. Figure 10-3 shows
this example web page and its Web Worker in action. The code for this simple page is listed at the end of
this section.

CHAPTER 10  USING THE WEB WORKERS API

245

Figure 10-3. A simple web page that uses Web Workers

To set up proper communication with your Web Worker, code has to be added to the main page (the
page that calls the Web Worker) as well as the worker JavaScript file.

Coding the Main Page
To communicate from the page to the Web Worker, you call postMessage to pass in the required data. To
listen to incoming messages and errors that are sent by the Web Worker to the page, you set up an event
listener.

To set up communication between the main page and the Web Worker, first add the call to
postMessage to the main page, as follows:

document.getElementById("helloButton").onclick = function() {
 worker.postMessage("Here's a message for you");
}

In the preceding example, a message is sent to the Web Worker when the user clicks the Post a
Message button. Next, add an event listener to the page that listens for messages from the Web Worker:

worker.addEventListener("message", messageHandler, true);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10  USING THE WEB WORKERS API

246

function messageHandler(e) {
 // process message from worker
}

Coding the Web Worker JavaScript File
You must now add similar code to the Web Worker JavaScript file—event handlers must be set up to
process incoming messages and errors, and communication with the page is handled with a call to
postMessage.

To complete the communication between the page and the Web Worker, first, add the call to
postMessage; for example, inside a messageHandler function:

function messageHandler(e) {
 postMessage("worker says: " + e.data + " too");
}

Next, add an event listener to the Web Worker JavaScript file that handles messages coming from
the main page:

addEventListener("message", messageHandler, true);

In this example, the messageHandler function is called immediately when the message is received so
that the message can be echoed back.

Note that if this was a shared worker, you would use a slightly different syntax (using a port):

sharedWorker.port.addEventListener("message", messageHandler, true);
sharedWorker.port.postMessage("Hello HTML5");

In addition, the worker can listen to a connect event for incoming connections. You can use this to
count active connections.

Handling Errors
Unhandled errors in a Web Worker script fire error events on the Web Worker object. Listening for these
error events is especially important when you are debugging scripts that make use of Web Workers. The
following shows an example of an error handling function in a Web Worker JavaScript file that logs
errors to the console:

function errorHandler(e) {
 console.log(e.message, e);
}

To handle the errors, you must add an event listener to the main page:

worker.addEventListener("error", errorHandler, true);

Most browsers don’t have a great way to step through Web Worker code yet, but Google Chrome
offers Web Worker debugging capabilities in its Chrome Developer Tools (in the Scripts tab, look for
Worker inspectors), as shown in Figure 10-4.

CHAPTER 10  USING THE WEB WORKERS API

247

Figure 10-4. Web Worker debugging options in Chrome Developer Tools

Stopping Web Workers
Web Workers don’t stop by themselves; but the page that started them can stop them. If the page is
closed, Web Workers will be garbage-collected, so rest assured you won’t have any zombie workers
hanging around performing background tasks. However, you may want to reclaim resources when a
Web Worker is no longer needed―perhaps when the main page is notified that the Web Worker has
finished its tasks. You may also wish to cancel a long-running task in response to user actions. Calling
terminate stops the Web Worker. A terminated Web Worker will no longer respond to messages or
perform any additional computations. You cannot restart a worker; instead, you can create a new worker
using the same URL:

worker.terminate();

Using Web Workers within Web Workers
The Worker API can be used inside Web Worker scripts to create subworkers:

var subWorker = new Worker("subWorker.js");

CHAPTER 10  USING THE WEB WORKERS API

248

Lots of Workers

Peter says: “If you spawn a Worker that recursively spawns subworker with the same JavaScript source
file, you will see some interesting results, to say the least.”

Using Timers
Although Web Workers cannot access the window object, they can make use of the full JavaScript timing
API, typically found on the global window:

var t = setTimeout(postMessage, 2000, "delayed message");

Example Code
For completeness, Listings 10-2 and 10-3 show the code for the simple page and the Web Worker
JavaScript file.

CHAPTER 10  USING THE WEB WORKERS API

249

Listing 10-2. Simple HTML Page That Calls a Web Worker

<!DOCTYPE html>
<title>Simple Web Workers Example</title>
<link rel="stylesheet" href="styles.css">

<h1>Simple Web Workers Example</h1>
<p id="support">Your browser does not support Web Workers.</p>

<button id="stopButton" >Stop Task</button>
<button id="helloButton" >Post a Message</button>

<script>
 function stopWorker() {
 worker.terminate();
 }

 function messageHandler(e) {
 console.log(e.data);
 }

 function errorHandler(e) {
 console.warn(e.message, e);
 }

 function loadDemo() {
 if (typeof(Worker) !== "undefined") {
 document.getElementById("support").innerHTML =
 "Excellent! Your browser supports Web Workers";

 worker = new Worker("echoWorker.js");
 worker.addEventListener("message", messageHandler, true);
 worker.addEventListener("error", errorHandler, true);

 document.getElementById("helloButton").onclick = function() {
 worker.postMessage("Here's a message for you");
 }

 document.getElementById("stopButton").onclick = stopWorker;
 }
}

window.addEventListener("load", loadDemo, true);
</script>

Listing 10-3. Simple Web Worker JavaScript File

function messageHandler(e) {
 postMessage("worker says: " + e.data + " too");
}
addEventListener("message", messageHandler, true);

CHAPTER 10  USING THE WEB WORKERS API

250

Building an Application with Web Workers
So far, we’ve focused on using the different Web Worker APIs. Let’s see how powerful the Web Workers
API can really be by building an application: a web page with an image-blurring filter, parallelized to run
on multiple Web Workers. Figure 10-5 shows what this application looks like when you start it.

Figure 10-5. Web Worker–based web page with image-blurring filter

This application sends image data from a canvas to several Web Workers (you can specify how
many). The Web Workers then process the image with a simple box-blur filter. This may take several
seconds, depending on the size of the image and the computational resources available (even machines

CHAPTER 10  USING THE WEB WORKERS API

251

with fast CPUs may have load from other processes, causing JavaScript execution to take more wall-
clock time to complete). Figure 10-6 shows the same page after running the blur filtering process for a
while.

Figure 10-6. Image-blurring web page after running for a while

However, because the heavy lifting takes place in Web Workers, there is no danger of slow-script
warnings and, therefore, no need to manually partition the task into scheduled slices—something you
would have to consider if you could not use Web Workers.

CHAPTER 10  USING THE WEB WORKERS API

252

Coding the blur.js Helper Script
Inside the blur.js application page, we can use a straightforward implementation of a blur filter that
loops until it has completely processed its input, as shown in Listing 10-4.

Listing 10-4. A JavaScript Box-blur Implementation in the File blur.js

function inRange(i, width, height) {
 return ((i>=0) && (i < width*height*4));
}

function averageNeighbors(imageData, width, height, i) {
 var v = imageData[i];

 // cardinal directions
 var north = inRange(i-width*4, width, height) ? imageData[i-width*4] : v;
 var south = inRange(i+width*4, width, height) ? imageData[i+width*4] : v;
 var west = inRange(i-4, width, height) ? imageData[i-4] : v;
 var east = inRange(i+4, width, height) ? imageData[i+4] : v;

 // diagonal neighbors
 var ne = inRange(i-width*4+4, width, height) ? imageData[i-width*4+4] : v;
 var nw = inRange(i-width*4-4, width, height) ? imageData[i-width*4-4] : v;
 var se = inRange(i+width*4+4, width, height) ? imageData[i+width*4+4] : v;
 var sw = inRange(i+width*4-4, width, height) ? imageData[i+width*4-4] : v;

 // average
 var newVal = Math.floor((north + south + east + west + se + sw + ne + nw + v)/9);

 if (isNaN(newVal)) {
 sendStatus("bad value " + i + " for height " + height);
 throw new Error("NaN");
 }
 return newVal;
}

function boxBlur(imageData, width, height) {
 var data = [];
 var val = 0;
 for (var i=0; i<width*height*4; i++) {
 val = averageNeighbors(imageData, width, height, i);
 data[i] = val;
 }

 return data;
}

In brief, this algorithm blurs an image by averaging nearby pixel values. For a large image with
millions of pixels, this takes a substantial amount of time. It is very undesirable to run a loop such as this
in the UI thread. Even if a slow-script warning did not appear, the page UI would be unresponsive until
the loop terminated. For this reason, it makes a good example of background computation in Web
Workers.

CHAPTER 10  USING THE WEB WORKERS API

253

Coding the blur.html Application Page
Listing 10-5 shows the code for the HTML page that calls the Web Worker. The HTML for this example is
kept simple for reasons of clarity. The purpose here is not to build a beautiful interface, but to provide a
simple skeleton that can control the Web Workers and demonstrate them in action. In this application, a
canvas element that displays the input image is injected into the page. We have buttons to start blurring
the image, stop blurring, reset the image, and specify the number of workers to spawn.

Listing 10-5. Code for the Page blur.html

<!DOCTYPE html>
<title>Web Workers</title>
<link rel="stylesheet" href = "styles.css">

<h1>Web Workers</h1>

<p id="status">Your browser does not support Web Workers.</p>

<button id="startBlurButton" disabled>Blur</button>
<button id="stopButton" disabled>Stop Workers</button>
<button onclick="document.location = document.location;">Reload</button>

<label for="workerCount">Number of Workers</label>
<select id="workerCount">
 <option>1</option>
 <option selected>2</option>
 <option>4</option>
 <option>8</option>
 <option>16</option>
</select>

<div id="imageContainer"></div>
<div id="logOutput"></div>

Next, let’s add the code to create workers to the file blur.html. We instantiate a worker object,
passing in a URL of a JavaScript file. Each instantiated worker will run the same code but be responsible
for processing different parts of the input image:

function initWorker(src) {
 var worker = new Worker(src);
 worker.addEventListener("message", messageHandler, true);
 worker.addEventListener("error", errorHandler, true);
 return worker;
}

Let’s add the error handling code to the file blur.html, as follows. In the event of an error in the
worker, the page will be able to display an error message instead of continuing unaware. Our example
shouldn’t encounter any trouble, but listening for error events is generally a good practice and is
invaluable for debugging.

function errorHandler(e) {

CHAPTER 10  USING THE WEB WORKERS API

254

 log("error: " + e.message);
}

Coding the blurWorker.js Web Worker Script
Next, we add the code that our workers use to communicate with the page to the file blurWorker.js (see
Listing 10-6). As the Web Workers finish blocks of computation, they can use postMessage to inform the
page that they have made progress. We will use this information to update the image displayed on the
main page. After creation, our Web Workers wait for a message containing image data and the
instruction to commence blurring. This message is a JavaScript object containing the type of message
and the image data represented as an array of Numbers.

Listing 10-6. Sending and Handling Image Data in the File blurWorker.js

function sendStatus(statusText) {
 postMessage({"type" : "status",
 "statusText" : statusText}
);
}

function messageHandler(e) {
 var messageType = e.data.type;
 switch (messageType) {
 case ("blur"):
 sendStatus("Worker started blur on data in range: " +
 e.data.startX + "-" + (e.data.startX+e.data.width));
 var imageData = e.data.imageData;
 imageData = boxBlur(imageData, e.data.width, e.data.height, e.data.startX);

 postMessage({"type" : "progress",
 "imageData" : imageData,
 "width" : e.data.width,
 "height" : e.data.height,
 "startX" : e.data.startX
 });
 sendStatus("Finished blur on data in range: " +
 e.data.startX + "-" + (e.data.width+e.data.startX));
 break;
 default:
 sendStatus("Worker got message: " + e.data);
 }
}
addEventListener("message", messageHandler, true);

Communicating with the Web Workers
In the file blur.html, we can use our workers by sending them some data and arguments that represent a
blur task. This is done by using postMessage to send a JavaScript object containing the Array of RGBA
image data, the dimensions of the source image, and the range of pixels for which the worker is
responsible. Each worker processes a different section of the image based on the message it receives:

CHAPTER 10  USING THE WEB WORKERS API

255

function sendBlurTask(worker, i, chunkWidth) {
 var chunkHeight = image.height;
 var chunkStartX = i * chunkWidth;
 var chunkStartY = 0;
 var data = ctx.getImageData(chunkStartX, chunkStartY,
 chunkWidth, chunkHeight).data;

 worker.postMessage({'type' : 'blur',
 'imageData' : data,
 'width' : chunkWidth,
 'height' : chunkHeight,
 'startX' : chunkStartX});
}

Canvas Image Data

Frank says: “postMessage is specified to allow efficient serialization of imageData objects for use with
the canvas API. Some browsers that include the Worker and postMessage APIs may not support the
extended serialization capabilities of postMessage yet.

Because of this, our image processing example presented in this chapter sends imageData.data (which
serializes like a JavaScript Array) instead of sending the imageData object itself. As the Web Workers
compute their tasks, they communicate their status and results back to the page. Listing 10-6 shows how
data is sent from the worker(s) to the page after the blur filter has processed it. Again, the message
contains a JavaScript object with fields for image data and coordinates marking the boundaries of the
processed section.”

On the HTML page side, a message handler consumes this data and uses it to update the canvas

with the new pixel values. As processed image data comes in, the result is immediately visible. We now
have a sample application that can process images while potentially taking advantage of multiple CPU
cores. Moreover, we didn’t lock up the UI and make it unresponsive while the Web Workers were active.
Figure 10-7 shows the application in action.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10  USING THE WEB WORKERS API

256

Figure 10-7. The blur application in action

The Application in Action
To see this example in action, the page blur.html has to be served up by a web server (for example,
Apache or Python’s SimpleHTTPServer). To following steps show how you can use Python
SimpleHTTPServer to run the application:

1. Install Python.

v

CHAPTER 10  USING THE WEB WORKERS API

257

2. Navigate to the directory that contains the example file (blur.html).

3. Start Python as follows:

python -m SimpleHTTPServer 9999

4. Open a browser and navigate to http://localhost:9999/blur.html. You
should now see the page shown in Figure 10-7.

5. If you leave it running for a while, you will see the different quadrants of the
image blur slowly. The number of quadrants that blur at the same time
depends on the number of workers you started.

Example Code
For completeness, Listings 10-7, 10-8, and 10-9 contain the full code for the example application.

Listing 10-7. Content of the File blur.html

<!DOCTYPE html>
<title>Web Workers</title>
<link rel="stylesheet" href = "styles.css">

<h1>Web Workers</h1>

<p id="status">Your browser does not support Web Workers.</p>

<button id="startBlurButton" disabled>Blur</button>
<button id="stopButton" disabled>Stop Workers</button>
<button onclick="document.location = document.location;">Reload</button>

<label for="workerCount">Number of Workers</label>
<select id="workerCount">
 <option>1</option>
 <option selected>2</option>
 <option>4</option>
 <option>8</option>
 <option>16</option>
</select>

<div id="imageContainer"></div>
<div id="logOutput"></div>
<script>

var imageURL = "example2.png";
var image;
var ctx;
var workers = [];

function log(s) {
 var logOutput = document.getElementById("logOutput");

CHAPTER 10  USING THE WEB WORKERS API

258

 logOutput.innerHTML = s + "
" + logOutput.innerHTML;
}

function setRunningState(p) {
 // while running, the stop button is enabled and the start button is not
 document.getElementById("startBlurButton").disabled = p;
 document.getElementById("stopButton").disabled = !p;
}

function initWorker(src) {
 var worker = new Worker(src);
 worker.addEventListener("message", messageHandler, true);
 worker.addEventListener("error", errorHandler, true);
 return worker;
}

function startBlur() {
 var workerCount = parseInt(document.getElementById("workerCount").value);
 var width = image.width/workerCount;

 for (var i=0; i<workerCount; i++) {
 var worker = initWorker("blurWorker.js");
 worker.index = i;
 worker.width = width;
 workers[i] = worker;

 sendBlurTask(worker, i, width);
 }
 setRunningState(true);
}

function sendBlurTask(worker, i, chunkWidth) {
 var chunkHeight = image.height;
 var chunkStartX = i * chunkWidth;
 var chunkStartY = 0;
 var data = ctx.getImageData(chunkStartX, chunkStartY,
 chunkWidth, chunkHeight).data;

 worker.postMessage({'type' : 'blur',
 'imageData' : data,
 'width' : chunkWidth,
 'height' : chunkHeight,
 'startX' : chunkStartX});
}

function stopBlur() {
 for (var i=0; i<workers.length; i++) {
 workers[i].terminate();
 }
 setRunningState(false);
}

CHAPTER 10  USING THE WEB WORKERS API

259

function messageHandler(e) {
 var messageType = e.data.type;
 switch (messageType) {
 case ("status"):
 log(e.data.statusText);
 break;
 case ("progress"):
 var imageData = ctx.createImageData(e.data.width, e.data.height);

 for (var i = 0; i<imageData.data.length; i++) {
 var val = e.data.imageData[i];
 if (val === null || val > 255 || val < 0) {
 log("illegal value: " + val + " at " + i);
 return;
 }

 imageData.data[i] = val;
 }
 ctx.putImageData(imageData, e.data.startX, 0);

 // blur the same tile again
 sendBlurTask(e.target, e.target.index, e.target.width);
 break;
 default:
 break;
 }
}

function errorHandler(e) {
 log("error: " + e.message);
}

function loadImageData(url) {

 var canvas = document.createElement('canvas');
 ctx = canvas.getContext('2d');
 image = new Image();
 image.src = url;

 document.getElementById("imageContainer").appendChild(canvas);

 image.onload = function(){
 canvas.width = image.width;
 canvas.height = image.height;
 ctx.drawImage(image, 0, 0);
 window.imgdata = ctx.getImageData(0, 0, image.width, image.height);
 n = ctx.createImageData(image.width, image.height);
 setRunningState(false);
 log("Image loaded: " + image.width + "x" + image.height + " pixels");
 };
}

CHAPTER 10  USING THE WEB WORKERS API

260

function loadDemo() {
 log("Loading image data");

 if (typeof(Worker) !== "undefined") {
 document.getElementById("status").innerHTML = "Your browser supports Web Workers";

 document.getElementById("stopButton").onclick = stopBlur;
 document.getElementById("startBlurButton").onclick = startBlur;

 loadImageData(imageURL);

 document.getElementById("startBlurButton").disabled = true;
 document.getElementById("stopButton").disabled = true;
 }

}

window.addEventListener("load", loadDemo, true);
</script>

Listing 10-8. Content of the File blurWorker.js

importScripts("blur.js");

function sendStatus(statusText) {
 postMessage({"type" : "status",
 "statusText" : statusText}
);
}

function messageHandler(e) {
 var messageType = e.data.type;
 switch (messageType) {
 case ("blur"):
 sendStatus("Worker started blur on data in range: " +
 e.data.startX + "-" + (e.data.startX+e.data.width));
 var imageData = e.data.imageData;
 imageData = boxBlur(imageData, e.data.width, e.data.height, e.data.startX);

 postMessage({"type" : "progress",
 "imageData" : imageData,
 "width" : e.data.width,
 "height" : e.data.height,
 "startX" : e.data.startX
 });
 sendStatus("Finished blur on data in range: " +
 e.data.startX + "-" + (e.data.width+e.data.startX));
 break;
 default:
 sendStatus("Worker got message: " + e.data);
 }
}

CHAPTER 10  USING THE WEB WORKERS API

261

addEventListener("message", messageHandler, true);

Listing 10-9. Content of the File blur.js

function inRange(i, width, height) {
 return ((i>=0) && (i < width*height*4));
}

function averageNeighbors(imageData, width, height, i) {
 var v = imageData[i];

 // cardinal directions
 var north = inRange(i-width*4, width, height) ? imageData[i-width*4] : v;
 var south = inRange(i+width*4, width, height) ? imageData[i+width*4] : v;
 var west = inRange(i-4, width, height) ? imageData[i-4] : v;
 var east = inRange(i+4, width, height) ? imageData[i+4] : v;

 // diagonal neighbors
 var ne = inRange(i-width*4+4, width, height) ? imageData[i-width*4+4] : v;
 var nw = inRange(i-width*4-4, width, height) ? imageData[i-width*4-4] : v;
 var se = inRange(i+width*4+4, width, height) ? imageData[i+width*4+4] : v;
 var sw = inRange(i+width*4-4, width, height) ? imageData[i+width*4-4] : v;

 // average
 var newVal = Math.floor((north + south + east + west + se + sw + ne + nw + v)/9);

 if (isNaN(newVal)) {
 sendStatus("bad value " + i + " for height " + height);
 throw new Error("NaN");
 }
 return newVal;
}

function boxBlur(imageData, width, height) {
 var data = [];
 var val = 0;

 for (var i=0; i<width*height*4; i++) {
 val = averageNeighbors(imageData, width, height, i);
 data[i] = val;
 }

 return data;
}

Summary
In this chapter, you have seen how Web Workers can be used to create web applications with
background processing. This chapter showed you how Web Workers (and inline and shared Web
Workers) work. We discussed how you can use the APIs to create new workers and how you

CHAPTER 10  USING THE WEB WORKERS API

262

communicate between a worker and the context that spawned it. Finally, we showed you how you can
build an application with Web Workers. In the next chapter, we’ll demonstrate more ways that HTML5
lets you keep local copies of data and reduce the amount of network overhead in your applications.

C H A P T E R 11

263

Using the Storage APIs

In this chapter, we will explore what you can do with HTML5 Web Storage—sometimes referred to as
DOMStorage—an API that makes it easy to retain data across web requests. Before the Web Storage API,
remote web servers needed to store any data that persisted by sending it back and forth from client to
server. With the advent of the Web Storage API, developers can now store data directly on the client side
in the browser for repeated access across requests or to be retrieved long after you completely close the
browser, thus reducing network traffic.

We’ll first look at how Web Storage differs from cookies and then explore how you can store and
retrieve data. Next, we will look at the differences between localStorage and sessionStorage, the
attributes and functions that the storage interface provides, and how you can handle Web Storage
events. We wrap up with a look at Web SQL Database API and a few practical extras.

Overview of Web Storage
To explain the Web Storage API, it is best to review its predecessor, the intriguingly named cookie.
Browser cookies—named after an age-old programming technique for passing small data values
between programs—are a built-in way of sending text values back and forth from server to browser.
Servers can use the values they put into these cookies to track user information across web pages.
Cookie values are then transmitted back and forth every time a user visits a domain. For example,
cookies can store a session identifier that allows a web server to know which shopping cart belongs to a
user by storing a unique ID in a browser cookie that matches the server’s own shopping cart database.
Then, as a user moves from page to page, the shopping cart can be updated consistently. Another use for
cookies is to store local values into an application so that these values can be used on subsequent page
loads.

Cookie values can also be used for operations that are slightly less desirable to users, such as
tracking which pages a user visits for the sake of targeted advertising. As such, some users have
demanded that browsers include functionality to allow them to block or remove cookies either all of the
time or for specific sites.

Love them or hate them, cookies have been supported by browsers since the earliest days of the
Netscape browser, back in the mid-1990s. Cookies are also one of the few features that have been
consistently supported across browser vendors since the early days of the Web. Cookies allow data to be
tracked across multiple requests, as long as that data is carefully coordinated between the server and the
browser code. Despite their ubiquity, cookies have some well-known drawbacks:

• Cookies are extremely limited in size. Generally, only about 4KB of data can be set
in a cookie, meaning they are unacceptable for large values such as documents or
mail.

CHAPTER 11  USING THE STORAGE APIS

264

• Cookies are transmitted back and forth from server to browser on every request
scoped to that cookie. Not only does this mean that cookie data is visible on the
network, making them a security risk when not encrypted, but also that any data
persisted as cookies will be consuming network bandwidth every time a URL is
loaded. As such, the relatively small size of cookies makes more sense.

In many cases, the same results could be achieved without involving a network or remote server.
This is where the HTML5 Web Storage API comes in. By using this simple API, developers can store
values in easily retrievable JavaScript objects that persist across page loads. By using either
sessionStorage or localStorage, developers can choose to let those values survive either across page
loads in a single window or tab or across browser restarts, respectively. Stored data is not transmitted
across the network, and is easily accessed on return visits to a page. Furthermore, larger values can be
persisted using the Web Storage API values as high as a few megabytes. This makes Web Storage suitable
for document and file data that would quickly blow out the size limit of a cookie.

Browser Support for Web Storage
Web Storage is one of the most widely adopted features of HTML5. In fact, since the arrival of Internet
Explorer 8 in 2009 all currently shipping browser versions support Web Storage in some capacity. At the
time of this publication, the market share of browsers that do not support storage is dwindling down
into single digit percentages.

Web Storage is one of the safest new APIs to use in your web applications today because of its
widespread support. As usual, though, it is a good idea to first test if Web Storage is supported before you
use it. The subsequent section “Checking for Browser Support” will show you how you can
programmatically check if Web Storage is supported.

Using the Web Storage API
The Web Storage API is surprisingly simple to use. We’ll start by covering basic storage and retrieval of
values and then move on to the differences between sessionStorage and localStorage. Finally, we’ll
look at the more advanced aspects of the API, such as event notification when values change.

Checking for Browser Support
The storage database for a given domain is accessed directly from the window object. Therefore,
determining if a user’s browser supports the Web Storage API is as easy as checking for the existence of
window.sessionStorage or window.localStorage. Listing 11-1 shows a routine that checks for storage
support and displays a message about the browser’s support for the Web Storage API. Instead of using
this code, you can also use the JavaScript utility library Modernizr, which handles some cases that may
result in a false positive.

CHAPTER 11  USING THE STORAGE APIS

265

Listing 11-1. Checking for Web Storage Support

function checkStorageSupport() {

 //sessionStorage
 if (window.sessionStorage) {
 alert('This browser supports sessionStorage');
 } else {
 alert('This browser does NOT support sessionStorage');
 }

 //localStorage
 if (window.localStorage) {
 alert('This browser supports localStorage');
 } else {
 alert('This browser does NOT support localStorage');
 }
}

Figure 11-1 shows this check for storage support in action.

Figure 11-1. Checking for browser support in Opera

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11  USING THE STORAGE APIS

266

Some browsers do not support sessionStorage for files accessed directly from the file system. Make
sure you serve up the pages from a web server when you run the examples in this chapter! For example,
you can start Python’s simple HTTP server in the code/storage directory as follows:

python -m SimpleHTTPServer 9999

After that, you can access the files at http://localhost:9999/. For example,
http://localhost:9999/browser-test.html.

However, you are free to use any server or URL location to run the examples.

 Note If a user is browsing with his browser set to “private” mode, then localStorage values will not actually
persist once the browser is shut down. This is by design, as users of this mode have explicitly chosen to leave no
traces behind. Nonetheless, your application should respond gracefully if storage values are not available in a later
browsing session.

Setting and Retrieving Values
To begin, we’ll focus on the session storage capability as you learn to set and retrieve simple values in a
page. Setting a value can easily be done in a single statement, which we’ll initially write using the long-
hand notation:

sessionStorage.setItem(‘myFirstKey’, ‘myFirstValue’);

There are a few important points to notice from this storage access statement:

• We can omit the reference to the window for a shorthand notation, as the storage
objects are made available in the default page context.

• The function we are calling is setItem, which takes a key string and a value string.
Although some browsers might support passing in nonstring values, the
specification only allows strings as values.

• This particular call will set into the session storage the string myFirstValue, which
can later be retrieved by the key myFirstKey.

To retrieve the value, the long-hand notation involves making a call to the getItem function. For
example, if we augmented our previous example with the following statement

alert(sessionStorage.getItem(‘myFirstKey’));

The browser raises a JavaScript alert displaying the text myFirstValue. As you can see, setting and
retrieving values from the Web Storage API is very straightforward.

However, there is an even simpler way to access the storage objects in your code. You are also able
to use expando-properties to set values in storage. Using this approach, the setItem and getItem calls
can be avoided entirely by simply setting and retrieving values corresponding to the key-value pair
directly on the sessionStorage object. Using this approach, our value set call can be rewritten as follows:

sessionStorage.myFirstKey = ‘myFirstValue’;

Or even

CHAPTER 11  USING THE STORAGE APIS

267

sessionStorage[‘myFirstKey’] = ‘myFirstValue’;

Similarly, the value retrieval call can be rewritten as:

alert(sessionStorage.myFirstKey);

We’ll use these formats interchangeably in the chapter for the sake of readability.
That’s it for the basics. You now have all the knowledge you need to use session storage in your

application. However, you might be wondering what’s so special about this sessionStorage object. After
all, JavaScript allows you to set and get properties on nearly any object. The difference is in the scope.
What you may not have realized is that our example set and get calls do not need to occur in the same
web page. As long as pages are served from the same origin—the combination of scheme, host, and
port—then values set on sessionStorage can be retrieved from other pages using the same keys. This
also applies to subsequent loads of the same page. As a developer, you are probably used to the idea that
changes made in script will disappear whenever a page is reloaded. That is no longer true for values that
are set in the Web Storage API; they will continue to exist across page loads.

Plugging Data Leaks
How long do the values persist? For objects set into sessionStorage, they will persist as long as the
browser window (or tab) is not closed. As soon as a user closes the window—or browser, for that
matter—the sessionStorage values are cleared out. It is useful to consider a sessionStorage value to be
somewhat like a sticky note reminder. Values put into sessionStorage won’t last long, and you should
not put anything truly valuable into them, as the values are not guaranteed to be around whenever you
are looking for them.

Why, then, would you choose to use the session storage area in your web application? Session
storage is perfect for short-lived processes that would normally be represented in wizards or dialogs. If
you have data to store over the course of a few pages, that you would not be keen to have resurface the
next time a user visits your application, feel free to store them in the session storage area. In the past,
these types of values might be submitted by forms and cookies and transmitted back and forth on every
page load. Using storage eliminates that overhead.

The sessionStorage API has another very specific use that solves a problem that has plagued many
web-applications: scoping of values. Take, for example, a shopping application that lets you purchase
airline tickets. In such an application, preference data such as the ideal departure date and return date
could be sent back and forth from browser to server using cookies. This allows the server to remember
previous choices as the user moves through the application, picking seats and a choice of meals.

However, it is very common for users to open multiple windows as they shop for travel deals,
comparing flights from different vendors for the same departure time. This causes problems in a cookie
system, because if a user switches back and forth between browser windows while comparing prices and
availability, they are likely to set cookie values in one window that will be unexpectedly applied to
another window served from the same URL on its next operation. This is sometimes referred to as
leaking data and is caused by the fact that cookies are shared based on the origin where they are stored.
Figure 11-2 shows how this can play out.

CHAPTER 11  USING THE STORAGE APIS

268

Figure 11-2. Data leakage while using a travel site to compare prices

Using sessionStorage, on the other hand, allows temporary values like a departure date to be saved
across pages that access the application but not leak into other windows where the user is also browsing
for flights. Therefore, those preferences will be isolated to each window where the corresponding flights
are booked.

CHAPTER 11  USING THE STORAGE APIS

269

Local Versus Session Storage
Sometimes, an application needs values that persist beyond the life of a single tab or window or need to
be shared across multiple views. In these cases, it is more appropriate to use a different Web Storage
implementation: localStorage. The good news is that you already know how to use localStorage. The
only programmatic difference between sessionStorage and localStorage is the name by which each is
accessed—through the sessionStorage and localStorage objects, respectively. The primary behavioral
differences are how long the values persist and how they are shared. Table 11-1 shows the differences
between the two types of storage.

Table 11-1. Differences Between sessionStorage and localStorage

sessionStorage localStorage
Values persist only as long as the window or tab
in which they were stored (survives a browser
refresh; not a browser restart).

Values persist beyond window and browser lifetimes.

Values are only visible within the window or tab
that created them.

Values are shared across every window or tab
running at the same origin.

Keep in mind that browsers sometimes redefine the lifespan of a tab or window. For example, some

browsers will save and restore the current session when a browser crashes, or when a user shuts down
the display with many open tabs. In these cases, the browser may choose to keep the sessionStorage
around when the browser restarts or resumes. So, in effect, sessionStorage may live longer than you
think!

Other Web Storage API Attributes and Functions
The Web Storage API is one of the simplest in the HTML5 set. We have already looked at both explicit
and implicit ways to set and retrieve data from the session and local storage areas. Let’s complete our
survey of the API by looking at the full set of available attributes and function calls.

The sessionStorage and localStorage objects can be retrieved from the window object of the
document in which they are being used. Other than their names and the duration of their values, they
are identical in functionality. Both implement the Storage interface, which is shown in Listing 11-2.

Listing 11-2. The Storage Interface

interface Storage {
 readonly attribute unsigned long length;
 getter DOMString key(in unsigned long index);
 getter any getItem(in DOMString key);
 setter creator void setItem(in DOMString key, in any data);
 deleter void removeItem(in DOMString key);
 void clear();
};

Let’s look at the attributes and functions here in more detail.

CHAPTER 11  USING THE STORAGE APIS

270

• The length attribute specifies how many key-value pairs are currently stored in
the storage object. Remember that storage objects are specific to their origin, so
that implies that the items (and length) of the storage object only reflect the items
stored for the current origin.

• The key(index) function allows retrieval of a given key. Generally, this is most
useful when you wish to iterate across all the keys in a particular storage object.
Keys are zero-based, meaning that the first key is at index (0) and the last key is at
index (length – 1). Once a key is retrieved, it can be used to fetch its corresponding
value. Keys will retain their indices over the life of a given storage object unless a
key or one of its predecessors is removed.

• As you’ve already seen, getItem(key) function is one way to retrieve the value
based on a given key. The other is to reference the key as an array index to the
storage object. In both cases, the value null will be returned if the key does not
exist in storage.

• Similarly, setItem(key, value) function will put a value into storage under the
specified key name, or replace an existing value if one already exists under that
key name. Note that it is possible to receive an error when setting an item value; if
the user has storage turned off for that site, or if the storage is already filled to its
maximum amount, a QUOTA_EXCEEDED_ERR error will be thrown during the attempt.
Make sure to handle such an error should your application depend on proper
storage behavior.

Figure 11-3. Quota Exceeded Error in Chrome

CHAPTER 11  USING THE STORAGE APIS

271

• The removeItem(key) function does exactly as you might expect. If a value is
currently in storage under the specified key, this call will remove it. If no item was
stored under that key, no action is taken.

 Note Unlike some collection and data frameworks, removing an item does not return the old value as
a result of the call to remove it. Make sure you’ve stored any copy you need independent of the removal.

• Finally, the clear() function removes all values from the storage list. It is safe to
call this on an empty storage object; as such, a call will simply do nothing.

DISK SPACE QUOTA

Peter says: “The specification recommends that browsers allow five megabytes per origin. Browsers
should prompt the user when the quota is reached in order to grant more space and may also provide
ways for users to see how much space each origin is using.

In reality, the behavior is still a bit inconsistent. Some browsers silently allow a larger quota or prompt for a
space increase, while others simply throw the QUOTA_EXCEEDED_ERR error shown in Figure 11-3, while
others, like Opera, shown in Figure 11-4, implement a nice way to allocate more quota on the fly. The test
file testQuota.html used in this example is located in the code/storage directory.”

Figure 11-4. On-the-fly Quota increase in Opera

CHAPTER 11  USING THE STORAGE APIS

272

Communicating Web Storage Updates
Sometimes, things get a little more complicated, and storage needs to be accessed by more than one
page, browser tab, or worker. Perhaps your application needs to trigger many operations in succession
whenever a storage value is changed. For just these cases, the Web Storage API includes an event
mechanism to allow notifications of data updates to be communicated to interested listeners. Web
Storage events are fired on the window object for every window of the same origin as the storage
operation, regardless of whether or not the listening window is doing any storage operations itself.

 Note Web Storage events can be used to communicate between windows on the same origin. This will be
explored a bit more thoroughly in the “Practical Extras” section.

To register to receive the storage events of a window’s origin, simply register an event listener, for
example:

window.addEventListener("storage", displayStorageEvent, true);

As you can see, the name storage is used to indicate interest in storage events. Any time a Storage
event—either sessionStorage or localStorage—for that origin is raised any registered event listener will
receive the storage event as the specified event handler. The storage event itself takes the form shown in
Listing 11-3.

Listing 11-3. The StorageEvent Interface

interface StorageEvent : Event {
 readonly attribute DOMString key;
 readonly attribute any oldValue;
 readonly attribute any newValue;
 readonly attribute DOMString url;
 readonly attribute Storage storageArea;
};

The StorageEvent object will be the first object passed to the event handler, and it contains all the
information necessary to understand the nature of the storage change.

• The key attribute contains the key value that was updated or removed in the
storage.

• The oldValue contains the previous value corresponding to the key before it was
updated, and the newValue contains the value after the change. If the value was
newly added, the oldValue will be null, and if the value has been removed, the
newValue will be null.

• The url will point to the origin where the storage event occurred.

• Finally, the storageArea provides a convenient reference to the sessionStorage or
localStorage where the value was changed. This gives the handler an easy way to
query the storage for current values or make changes based on other storage
changes.

CHAPTER 11  USING THE STORAGE APIS

273

Listing 11-4 shows a simple event handler, which will raise an alert dialog with the contents of any
storage event fired on the page’s origin.

Listing 11-4. Event Handler that Displays Content of a Storage Event

// display the contents of a storage event
function displayStorageEvent(e) {
 var logged = "key:" + e.key + ", newValue:" + e.newValue + ", oldValue:" +
 e.oldValue +", url:" + e.url + ", storageArea:" + e.storageArea;

 alert(logged);
}

// add a storage event listener for this origin
window.addEventListener("storage", displayStorageEvent, true);

Exploring Web Storage
Since Web Storage is very similar in function to cookies, it is not too surprising that the most advanced
browsers are treating them in a very similar manner. Values that are stored into localStorage or
sessionStorage can be browsed similar to cookies in the latest browsers, as shown in Figure 11-5.

Figure 11-5. Storage values in Google Chrome’s Resources Panel

This interface also grants users the ability to remove storage values as desired and easily see what
values a given web site is recording while they visit the pages. Not surprisingly, the Safari browser has a
similar, unified display for cookies and storage, as it is based on the same underlying WebKit rendering
engine as Chrome is. Figure 11-6 shows the Safari Resources panel.

CHAPTER 11  USING THE STORAGE APIS

274

Figure 11-6. Storage values in Safari’s Resources panel

Like the other browsers, the Opera Dragonfly storage display allows users to not only browse and
delete storage values but also create them as shown in Figure 11-7.

Figure 11-7. Storage values in Opera’s Storage panel

CHAPTER 11  USING THE STORAGE APIS

275

As Web Storage becomes more widely implemented by the various browser vendors, expect both
the capacity and tooling available to users and developers to expand rapidly.

Building an Application with Web Storage
Now, let’s put together what you’ve learned by integrating storage into a web application. As
applications grow more complex, it becomes increasingly important to manage as much data as possible
without server interaction. Keeping data local to the client reduces network traffic and increases
responsiveness by fetching data from a local machine instead of a remote location.

One common problem developers grapple with is how to manage data as users move from page to
page within an application. Traditionally, web applications achieve this by storing data on a server and
moving it back and forth while the user navigates pages. Alternatively, the application may attempt to
keep the user in a single page and update everything dynamically. However, users are prone to wander,
and getting data back into the display quickly when a user returns to your application’s page is a great
way to enhance the user experience.

In our sample application, we’ll show how to store temporary application data locally while the user
moves from page to page on a web site and quickly load it from storage on each page. To accomplish
this, we’ll build on the examples of previous chapters. In Chapter 5, we showed how easy it is to gather a
user’s current location. Then, in Chapter 7, we demonstrated how to take location data and send it to a
remote server so that it can be viewed by any number of interested users. Here, we will go one step
further: we will listen for broadcasted location data delivered via a WebSocket and store it in local
storage so that it is immediately available as users move from page to page.

Imagine that our running club has live location information from its race participants being
broadcast from their mobile devices and shared via a WebSocket server. It would be simple for a web
application to display the current position of every racer live and in real time, as the racers upload new
position information during the race. And a smart web site would cache those race positions to display
them quickly as a user navigated among the pages of the site. That’s exactly what we’re going to build.

In order to achieve this, we’ll need to introduce a demonstration web site that can save and restore
our racer data. We’ve created a three-page example running race site and placed it in our online
resources in the folder code/storage, but you can use any site of your choosing for your own
demonstration. The key here is merely that you have multiple web pages that are easily traversed by a
user. We will insert a bit of dynamic content into those pages to represent a live leader board, or a list of
race participants and their current distance from the finish line. Figure 11-8 shows the three pages that
make up the race site.

Figure 11-8. The example race website

Each of our web pages will contain a common section to display the leader board data. Each entry in
the leader board will show the name of one of our racers and his or her current distance from the finish

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11  USING THE STORAGE APIS

276

line. When any of our pages is loaded, it will make a WebSocket connection to a race broadcast server
and listen for messages indicating the position of a racer. The racers, in turn, will be sending their
current position to the same broadcast server, causing the position data to stream down to the page in
real time.

All of this has been covered in previous chapters related to Geolocation and WebSocket. In fact,
much of the demonstration code here is shared with the examples from earlier in this book. However,
there is one key difference in this example: when the data arrives in the page, we will store it in the
session storage area for later retrieval. Then, whenever a user navigates to a new page, the stored data
will be retrieved and displayed before making a new WebSocket connection. In this way, the temporary
data is transferred from page to page without using any cookies or web server communication.

To keep our data feed small, we’ll send our racer location messages across the web in a simple
format that is easy to read and parse. This format is a String that uses the semicolon character (;) as a
delimiter separating the chunks of data: name, latitude, and longitude. For example, a racer named
Racer X who is at latitude 37.20 and longitude –121.53 would be identified with the following string:

;Racer X;37.20;-121.53

 Note A common technique is to use the JSON format to send object representations between client and server.
We’ll show you how to do that in the section “Practical Extras” later in this chapter.

Now, let’s dig into the code itself. Each of our pages will contain identical JavaScript code to
connect to the WebSocket server, process and display leader board messages, and save and restore the
leader board using sessionStorage. As such, this code would be a prime candidate to include in a
JavaScript library in a real application.

First, we’ll establish a few utility methods that you’ve seen before. To calculate the distance of any
particular racer from the finish line, we need routines to calculate distance between two geolocation
positions as shown in Listing 11-5.

Listing 11-5. Distance Calculation Routine

 // functions for determining the distance between two
 // latitude and longitude positions
 function toRadians(num) {
 return num * Math.PI / 180;
 }

 function distance(latitude1, longitude1, latitude2, longitude2) {
 // R is the radius of the earth in kilometers
 var R = 6371;

 var deltaLatitude = toRadians((latitude2-latitude1));
 var deltaLongitude = toRadians((longitude2-longitude1));
 latitude1 = toRadians(latitude1), latitude2 = toRadians(latitude2);

 var a = Math.sin(deltaLatitude/2) *
 Math.sin(deltaLatitude/2) +
 Math.cos(latitude1) *

CHAPTER 11  USING THE STORAGE APIS

277

 Math.cos(latitude2) *
 Math.sin(deltaLongitude/2) *
 Math.sin(deltaLongitude/2);

 var c = 2 * Math.atan2(Math.sqrt(a),
 Math.sqrt(1-a));
 var d = R * c;
 return d;
 }

 // latitude and longitude for the finish line in the Lake Tahoe race
 var finishLat = 39.17222;
 var finishLong = -120.13778;

In this familiar set of functions—used earlier in Chapter 5—we calculate the distance between two
points with a distance function. The details are not of particular importance, nor are they the most
accurate representation of distance along a racetrack, but they’ll do for our example.

In the final lines, we establish a latitude and longitude for the finish line location of the race. As
you’ll see, we will compare these coordinates with incoming racer positions to determine the racers’
distance from the finish line, and thus, their ranks in the race.

Now, let’s look at a tiny snippet of the HTML markup used to display the page.

 <h2>Live T216 Leaderboard</h2>
 <p id="leaderboardStatus">Leaderboard: Connecting...</p>
 <div id="leaderboard"></div>

Although most of the page HTML is irrelevant to our demonstration, in these few lines, we declare
some named elements with the IDs leaderboardStatus and leaderboard. The leaderboardStatus is
where we will display the connection information for our WebSocket. And the leaderboard itself is where
we will insert div elements to indicate the position information we are receiving from our WebSocket
messages, using the utility function shown in Listing 11-6.

Listing 11-6. Position Information Utility Function

 // display the name and distance in the page
 function displayRacerLocation(name, distance) {
 // locate the HTML element for this ID
 // if one doesn't exist, create it
 var incomingRow = document.getElementById(name);
 if (!incomingRow) {
 incomingRow = document.createElement('div');
 incomingRow.setAttribute('id', name);
 incomingRow.userText = name;

 document.getElementById("leaderboard").appendChild(incomingRow);
 }

 incomingRow.innerHTML = incomingRow.userText + " is " +
 Math.round(distance*10000)/10000 + " km from the finish line";
 }

This utility is a simple display routine, which takes the racer’s name and distance from the finish
line. Figure 11-9 shows what the leader board section looks like on the index.html page.

CHAPTER 11  USING THE STORAGE APIS

278

Figure 11-9. The race leader board

The name is used for two purposes; not only is it placed into the status message for that racer but it
is also used to reference the unique div element where that racer’s status is stored. If a div for our racer
already exists, we will find it when we look it up using the standard document.getElementById() routine.
If a div does not already exist in the page for that racer, we will create one and insert it into the
leaderboard area. Either way, we update the div element corresponding to that racer with the latest
distance from the finish line, which will immediately update it in the display of the page. If you have
already read Chapter 7, this will be familiar to you from the example application we created there.

Our next function is the message processor that will be called whenever data is returned from the
broadcasting race WebSocket server, as shown in Listing 11-7.

Listing 11-7. WebSocket Message Processing Function

 // callback when new position data is retrieved from the websocket
 function dataReturned(locationData) {
 // break the data into ID, latitude, and longitude
 var allData = locationData.split(";");
 var incomingId = allData[1];
 var incomingLat = allData[2];
 var incomingLong = allData[3];

 // update the row text with the new values
 var currentDistance = distance(incomingLat, incomingLong, finishLat, finishLong);

 // store the incoming user name and distance in storage
 window.sessionStorage[incomingId] = currentDistance;

 // display the new user data in the page
 displayRacerLocation(incomingId, currentDistance);
 }

This function takes a string in the format described previously, a semicolon-separated message
containing the name, latitude, and longitude of a racer. Our first step is to split it into its component
parts using the JavaScript split() routine to produce the incomingId, incomingLat, and incomingLong,
respectively.

CHAPTER 11  USING THE STORAGE APIS

279

Next, it passes the racer’s latitude and longitude, as well as the latitude and longitude of the finish
line, to the distance utility method we defined earlier, storing the resulting distance in the
currentDistance variable.

Now that we actually have some data worth storing, we can look at the call which exercises Web
Storage.

 // store the incoming user name and distance in storage
 window.sessionStorage[incomingId] = currentDistance;

In this line, we use the sessionStorage object on the window to store the current distance of the
racer from the finish line as a value under the name and ID of the racer. In other words, we will set a
value on the session storage with the key being the racer’s name and the value being that racer’s
distance from the finish. As you will see momentarily, this data will be retrieved from storage as the user
navigates from page to page on the web site. At the end of the function, we call the displayLocation()
routine we previously defined to make sure that this most recent location update is displayed visually in
the current page.

Now, on to our final function in our storage example—the load routine shown in Listing 11-8 that
fires whenever visitors access the web page.

Listing 11-8. Initial Page Load Routine

 // when the page loads, make a socket connection to the race broadcast server
 function loadDemo() {
 // make sure the browser supports sessionStorage
 if (typeof(window.sessionStorage) === "undefined") {
 document.getElementById("leaderboardStatus").innerHTML = "Your browser does
 not support HTML5 Web Storage";
 return;
 }
 var storage = window.sessionStorage;
 // for each key in the storage database, display a new racer
 // location in the page
 for (var i=0; i < storage.length; i++) {
 var currRacer = storage.key(i);
 displayRacerLocation(currRacer, storage[currRacer]);
 }

 // test to make sure that Web Sockets are supported
 if (window.WebSocket) {

 // the location where our broadcast WebSocket server is located
 url = "ws://websockets.org:7999/broadcast";
 socket = new WebSocket(url);
 socket.onopen = function() {
 document.getElementById("leaderboardStatus").innerHTML = "Leaderboard:

 Connected!";
 }
 socket.onmessage = function(e) {
 dataReturned(e.data);
 }
 }
 }

CHAPTER 11  USING THE STORAGE APIS

280

This is a longer function than the others, and there is a lot going on. Let’s take it step by step. First,
as shown in Listing 11-9, we do a basic error check to make sure that the browser viewing the page
supports sessionStorage by checking for its presence on the window object. If sessionStorage is not
accessible, we simply update the leaderboardStatus area to indicate as much, and then return out of the
loading routine. We won’t be attempting to work around lack of browser storage in this example.

Listing 11-9. Checking for Browser Support

 // make sure the browser supports sessionStorage
 if (typeof(window.sessionStorage) === "undefined") {
 document.getElementById("leaderboardStatus").innerHTML = "Your browser does
 not support HTML5 Web Storage";
 return;
 }

 Note It is possible to rework this demonstration to simply forgo any persistence of data between page
navigations and start each page load with a clean leader board if storage is not supported. However, our goal here
is to show how storage optimizes the experience for both the user and the network.

The next thing we do on page load is to use the storage to retrieve any racer distance results that
have already been served to this or other pages of our website. Recall that we are running an identical
block of script code on every one of our site pages, so that the leader board follows the users as they
browse around various locations. As such, the leader board may already have stored values into storage
from other pages that will be retrieved and displayed here directly on load as shown in Listing 11-10. The
previously saved values will follow the user during navigation, as long as the user does not close the
window, tab, or browser, thus clearing out the session storage.

Listing 11-10. Displaying Stored Racer Data

 var storage = window.sessionStorage;

 // for each key in the storage database, display a new racer
 // location in the page
 for (var i=0; i < storage.length; i++) {
 var currRacer = storage.key(i);
 displayRacerLocation(currRacer, storage[currRacer]);
 }

This is an important section of code. Here, we query the session for its length—in other words, the
number of keys the storage contains. Then, we grab each key using storage.key() and store it into the
currRacer variable, later using that variable to reference the key’s corresponding value with
storage[currRacer]. Together, the key and its value represent a racer and that racer’s distance, which
were stored on a visit to a previous page.

Once we have a previously stored racer name and distance, we display them using the
displayRacerLocation() function. This all happens very quickly on page load, causing the page to
instantaneously fill its leader board with previously transmitted values.

CHAPTER 11  USING THE STORAGE APIS

281

 Note Our sample application relies on being the only application that stores values into the session storage
area. If your application needs to share the storage object with other data, you will need to use a more nuanced
key strategy than simply storing the keys at root level. We’ll look at another storage strategy in the “Practical
Extras” section.

Our last piece of load behavior is to hook up the page to the racer broadcast server using a simple
WebSocket, as shown in Listing 11-11.

Listing 11-11. Connecting to the WebSocket Broadcast Service

 // test to make sure that WebSocket is supported
 if (window.WebSocket) {

 // the location where our broadcast WebSocket server is located
 // for the sake of example, we’ll just show websockets.org
 url = "ws://websockets.org:7999/broadcast";
 socket = new WebSocket(url);
 socket.onopen = function() {
 document.getElementById("leaderboardStatus").innerHTML = "Leaderboard:
 Connected!";
 }
 socket.onmessage = function(e) {
 dataReturned(e.data);
 }
 }

As we did before in our WebSocket chapter, we first check to make sure that the browser supports
WebSocket by checking for the existence of the window.WebSocket object. Once we have verified that it
exists, we connect to the URL where our WebSocket server is running. This server broadcasts racer
location messages of the semicolon-separated format listed previously, and whenever we receive one of
those messages via the socket.onmessage callback, we call our previously discussed dataReturned()
function to process and display it. We also use the socket.onopen callback to update our
leaderboardStatus area with a simple diagnostic message to indicate that the socket opened
successfully.

That’s it for our load routine. The final block of code we declare in our script block is the registration
function, which requests that the loadDemo() function is called whenever page load is complete:

 // add listeners on page load and unload
 window.addEventListener("load", loadDemo, true);

As you have seen many times before, this event listener requests that our loadDemo() function will
be called when the window has completed loading.

But how do we get racer data transmitted from the trails to the broadcast WebSocket server and into
our pages? Well, we could actually use the tracker example previously declared in the WebSocket chapter
by simply pointing its connect URL to the broadcast server listed previously. However, we have also
created a very simple racer broadcast source page, shown in Listing 11-12, which serves a similar
purpose. This page would theoretically be run on the mobile devices of the race participants. Although it
does not include any Web Storage code itself, it is a convenient way to transmit the properly formatted

CHAPTER 11  USING THE STORAGE APIS

282

data when run in a browser with both WebSocket and Geolocation support. The file
racerBroadcast.html is available from the web site sample area provided for this book.

Listing 11-12. Contents of the File racerBroadcast.html

<!DOCTYPE html>

<html>

<head>
<title>Racer Broadcast</title>
<link rel="stylesheet" href="styles.css">
</head>

<body onload="loadDemo()">

<h1>Racer Broadcast</h1>

Racer name: <input type="text" id="racerName" value="Racer X"/>
<button onclick="startSendingLocation()">Start</button>

<div>Geolocation: <p id="geoStatus">HTML5 Geolocation not
 started.</p></div>
<div>WebSocket: <p id="socketStatus">HTML5 Web Sockets are
 not supported in your browser.</p></div>

<script type="text/javascript">

 // reference to the Web Socket
 var socket;

 var lastLocation;

 function updateSocketStatus(message) {
 document.getElementById("socketStatus").innerHTML = message;
 }

 function updateGeolocationStatus(message) {
 document.getElementById("geoStatus").innerHTML = message;
 }

 function handleLocationError(error) {
 switch(error.code)
 {
 case 0:
 updateGeolocationStatus("There was an error while retrieving your location: " +
 error.message);
 break;
 case 1:
 updateGeolocationStatus("The user prevented this page from retrieving a
 location.");
 break;

CHAPTER 11  USING THE STORAGE APIS

283

 case 2:
 updateGeolocationStatus("The browser was unable to determine your location: " +
 error.message);
 break;
 case 3:
 updateGeolocationStatus("The browser timed out before retrieving the location.");
 break;
 }
 }

 function loadDemo() {
 // test to make sure that Web Sockets are supported
 if (window.WebSocket) {

 // the location where our broadcast WebSocket server is located
 url = "ws://websockets.org:7999/broadcast";
 socket = new WebSocket(url);
 socket.onopen = function() {
 updateSocketStatus("Connected to WebSocket race broadcast server");
 }
 }
 }

 function updateLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var timestamp = position.timestamp;

 updateGeolocationStatus("Location updated at " + timestamp);

 // Schedule a message to send my location via WebSocket
 var toSend = ";" + document.getElementById("racerName").value
 + ";" + latitude + ";" + longitude;
 setTimeout("sendMyLocation('" + toSend + "')", 1000);
 }

 function sendMyLocation(newLocation) {
 if (socket) {
 socket.send(newLocation);
 updateSocketStatus("Sent: " + newLocation);
 }
 }

 function startSendingLocation() {
 var geolocation;
 if(navigator.geolocation) {
 geolocation = navigator.geolocation;
 updateGeolocationStatus("HTML5 Geolocation is supported in your browser.");
 }
 else {
 geolocation = google.gears.factory.create('beta.geolocation');
 updateGeolocationStatus("Geolocation is supported via Google Gears");

CHAPTER 11  USING THE STORAGE APIS

284

 }

 // register for position updates using the Geolocation API
 geolocation.watchPosition(updateLocation,
 handleLocationError,
 {maximumAge:20000});
 }

</script>
</body>
</html>

We won’t spend too much space covering this file in detail, as it is nearly identical to the tracker
example in Chapter 7. The primary difference is that this file contains a text field for entering the racer’s
name:

Racer name: <input type="text" id="racerName" value="Racer X"/>

The racer’s name is now sent to the broadcast server as part of the data string:

var toSend = ";" + document.getElementById("racerName").value
 + ";" + latitude + ";" + longitude;

To try it out for yourself, open two windows in a browser that supports Web Storage, Geolocation,
and WebSocket, such as Google Chrome. In the first, load the running club’s index.html page. You will
see it connect to the race broadcast site using WebSocket and then await any racer data notifications. In
the second window, open the racerBroadcast.html file. After this page, too, has connected to the
WebSocket broadcast site, enter a name for your racer, and click the Start button. You’ll see that the
racer broadcast has transmitted the location of your favorite racer, and it should show up in the leader
board in your other browser window. Figure 11-10 shows what this looks like.

CHAPTER 11  USING THE STORAGE APIS

285

Figure 11-10. Race page and racerBroadcast.html side by side

Now, navigate to other racing club pages using the Signup and About the Race links on the left side
of the page. Because all of these pages have been configured to load our script, they will immediately
load and populate the leader board with the previous racer data, which was delivered while browsing
other pages. Send more racer status notifications (from the broadcast page), and you’ll see them
propagate through the club site pages as you navigate, as well.

Now that we’ve finished our code, let’s review what we’ve built. We’ve created a simple function
block, suitable for inclusion in a shared JavaScript library, which connects to a WebSocket broadcast
server and listens for racer updates. When an update is received, the script displays the position in the
page and stores it using sessionStorage. When the page is loaded, it checks for any previously stored
racer position values, thus maintaining the state as the user navigates the site. What are some of the
benefits we gain from this approach?

• Reduced network traffic: Race information is stored locally in the browser. Once it
arrives, it sticks around for every page load, rather than using cookies or server
requests to fetch it again.

• Immediate display of values: The browser pages themselves can be cached rather
than loaded from the network, because the dynamic parts of the page—the
current leaderboard status—are local data. This data is rapidly displayed without
any network load time.

• Transient storage: The race data isn’t very useful after the race has completed.
Consequently, we store it in session storage area, meaning it is discarded when the
window or tab is shut down, and it no longer consumes any space.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11  USING THE STORAGE APIS

286

A WORD ABOUT BULLETPROOFING

Brian says: “We’ve accomplished a lot in this example using only a few lines of script code. But don’t be
lulled into thinking everything is this easy in a real, publicly accessible website. We took some shortcuts
that simply are not acceptable for a production application.

For example, our message format does not support similarly named racers and would best be replaced by
a unique identifier representing each racer. Our distance calculation is “as the crow flies” and not truly
indicative of progress in an off-road race. Standard disclaimers apply—more localization, more error
checking, and more attention to detail will make your site work for all participants.”

This same technique we demonstrated in this example can be applied to any number of data types:

chat, e-mail, and sports scores are other examples that can be cached and displayed from page to page
using local or session storage just as we’ve shown here. If your application sends user-specific data back
and forth from browser to server at regular intervals, consider using Web Storage to streamline your
flow.

The Future of Browser Database Storage
The key-value Storage API is great for persisting data, but what about indexed storage that can be
queried? HTML5 applications will eventually have access to indexed databases as well. The exact details
of the database APIs are still solidifying, and there are two primary proposals.

The Web SQL Database
One of the proposals, Web SQL Database, has been implemented in Safari, Chrome, and Opera. Table
11-2 shows the browser support for Web SQL Database.

Table 11-2. Browser Support for HTML5 Web SQL Database

Browser Details

Chrome Supported in version 3.0 and greater

Firefox Not supported

Internet Explorer Not supported

Opera Supported in version 10.5 and greater

Safari Supported in version 3.2 and greater

Web SQL Database allows applications access to SQLite through an asynchronous JavaScript

interface. Although it will not be part of the common Web platform nor the eventual recommended
database API for HTML5 applications, the SQL API can be useful when targeting a specific platform such

CHAPTER 11  USING THE STORAGE APIS

287

as mobile Safari. In any case, this API shows off the power of databases in the browser. Just like the other
storage APIs, the browser can limit the amount of storage available to each origin and clear out the data
when user data is cleared.

The Fate of Web SQL Database

Frank says: “Even though Web SQL DB is already in Safari, Chrome, and Opera, it will not be implemented
in Firefox and it is listed as ‘stalled’ on the WHATWG wiki. The specification defines an API for executing
SQL statements given as strings and defers to SQLite for the SQL dialect. Since it is undesirable for a
standard to require a specific implementation of SQL, Web SQL Database has been surpassed by a newer
specification, Indexed Database (formerly WebSimpleDB), which is simpler and not tied to a specific SQL
database version. Browser implementations of Indexed Database are currently in progress, and we’ll cover
them in the next section.”

Because Web SQL Database is already implemented in the wild, we are including a basic example

but omiting the complete details of the API. This example demonstrates the basic use of the Web SQL
Database API. It opens a database called mydb, creates a racers table if a table by that name does not
already exist, and populates the table with a list of predefined names. Figure 11-11 shows this database
with racers table in Safari’s Web Inspector.

Figure 11-11. Database with racers table in Safari’s Web Inspector

To begin, we open a database by name. The window.openDatabase() function returns a Database
object through which database interaction takes place. The openDatabase() function takes a name as
well as an optional version and description. With an open database, application code can now start
transactions. SQL statements are executed in the context of a transaction using the

CHAPTER 11  USING THE STORAGE APIS

288

transaction.executeSql() function. This simple example uses executeSql() to create a table, insert
racer names into the table, and later query the database to create an HTML table. Figure 11-12 shows the
output HTML file with the list of names retrieved from the table.

Figure 11-12. sql.html displaying the results of SELECT * FROM racers

Database operations can take some time to complete. Instead of blocking script execution until a
result set is available, queries run in the background. When the results are available, a function given as
the third argument to executeSQL() is called back with the transaction and the result set as arguments.

Listing 11-13 shows the complete code for the file sql.html; the sample code shown is also located
in the code/storage folder.

Listing 11-13. Using the Web SQL Database API

<!DOCTYPE html>
<title>Web SQL Database</title>
<script>

 // open a database by name
 var db = openDatabase('db', '1.0', 'my first database', 2 * 1024 * 1024);

 function log(id, name) {
 var row = document.createElement("tr");
 var idCell = document.createElement("td");
 var nameCell = document.createElement("td");
 idCell.textContent = id;
 nameCell.textContent = name;
 row.appendChild(idCell);
 row.appendChild(nameCell);

CHAPTER 11  USING THE STORAGE APIS

289

 document.getElementById("racers").appendChild(row);
 }

 function doQuery() {
 db.transaction(function (tx) {
 tx.executeSql('SELECT * from racers', [], function(tx, result) {
 // log SQL result set
 for (var i=0; i<result.rows.length; i++) {
 var item = result.rows.item(i);
 log(item.id, item.name);
 }
 });
 });
 }

 function initDatabase() {
 var names = ["Peter Lubbers", "Brian Albers", "Frank Salim"];

 db.transaction(function (tx) {
 tx.executeSql('CREATE TABLE IF NOT EXISTS racers (id integer primary key
 autoincrement, name)');

 for (var i=0; i<names.length; i++) {
 tx.executeSql('INSERT INTO racers (name) VALUES (?)', [names[i]]);
 }

 doQuery();
 });
 }

 initDatabase();

</script>

<h1>Web SQL Database</h1>

<table id="racers" border="1" cellspacing="0" style="width:100%">
 <th>Id</th>
 <th>Name</th>
</table>

The Indexed Database API
A second proposal for browser database storage gained prominence in 2010. The Indexed Database API
is supported by Microsoft and Mozilla and is seen as a counter to the Web SQL Database. Where the Web
SQL Database looks to bring the established SQL language into browsers, the Indexed Database aims to
bring low-level indexed storage capabilities, with the hope that more developer-friendly libraries will be
built on top of the indexed core.

While the Web SQL API supports using query languages to issue SQL statements against tables of
data, the Indexed DB API issues synchronous or asynchronous function calls directly against a tree-like
object storage engine. Unlike Web SQL, the Indexed DB does not work with tables and columns.

CHAPTER 11  USING THE STORAGE APIS

290

The support for the Indexed Database API is growing (see Table 11-3).

Table 11-3. Browser Support for the Indexed Database API

Browser Details

Chrome Supported in current versions

Firefox Supported in current versions

Internet Explorer Supported in version 10+

Opera Not currently supported

Safari Not currently supported

Microsoft and Mozilla have announced that they will not support the Web SQL Database and have

thrown their weight behind the Indexed Database instead. Google’s Chrome has joined in with support,
and as such, it is likely that the Indexed Database is the future of standardized structured storage in the
browser. Among their reasons are the fact that SQL is not a true standard and also that the only
implementation of Web SQL was the SQLite project. With only one implementation and a loose
standard, they could not support WebSQL in the HTML5 specification.

The Indexed Database API eschews query strings in favor of a low-level API that allows values to be
stored directly in JavaScript objects. Values stored in the database can be retrieved by key or using
indexes, and the API can be accessed in either synchronous or asynchronous manner. Like the WebSQL
proposal, indexed databases are scoped by origin so that you can only access the storage created in your
own web pages.

Creation or modification of Indexed Database storage is done under the context of transactions,
which can be classified as either READ_ONLY, READ_WRITE, or VERSION_CHANGE. While the first two
are probably self-explanatory, the VERSION_CHANGE transaction type is used whenever an operation
will modify the structure of the database.

Retrieving records from an Indexed Database is done via a cursor object. A cursor object iterates
over a range of records in either increasing or decreasing order. At any time a cursor either has a value or
does not, due to the fact that it is either in the process of loading or has reached the end of its iteration.

A detailed description of the Indexed Database API is beyond the scope of this book. If you are
intending to implement a query engine on top of the built-in API, you should consult the official
specification at http://www.w3.org/TR/IndexedDB/. Otherwise, you would be wise to wait for one of the
proposed engines layered on top of the standard to be made available to use a more developer-friendly
database API. At this point, no third-party libraries have gained prominence or significant backing.

Why Use a Hammer…

Brian says: “…when you can instead use these ingots, that forge, and the mold of your choosing? On the
Mozilla blog, Arun Ranganathan argued that he would welcome APIs like the Web SQL API being built on
top of the Indexed Database standard. This attitude has perplexed many developers, as there is a
widespread belief that, in order to make the Indexed Database usable, it will require third-party JavaScript

http://www.w3.org/TR/IndexedDB/

CHAPTER 11  USING THE STORAGE APIS

291

libraries built on top of the standard. The Indexed Database itself is simply too complex for most web
developers to use it in its current form.

This begs the question: if developers end up needing third-party libraries to take advantage of the built-in
storage API, wouldn’t it be prudent to simply build that storage in native code rather than as a JavaScript
library that must be downloaded and interpreted at runtime? Time will tell if the Indexed Database suits the
needs of the majority.”

Practical Extras
Sometimes, there are techniques that don’t fit into our regular examples but nonetheless apply to many
types of HTML5 applications. We present to you some short, but common, practical extras here.

JSON Object Storage
Although the specification for Web Storage allows for objects of any type to be stored as key-value pairs,
in current implementations, some browsers limit values to be text string data types. There is a practical
workaround, however, due to the fact that modern versions of browsers contain built-in support for
JavaScript Object Notation (JSON).

JSON is a standard for data-interchange that can represent objects as strings and vice-versa. JSON
has been used for over a decade to transmit objects from browser clients to servers over HTTP. Now, we
can use it to serialize complex objects in and out of Web Storage in order to persist complex data types.
Consider the script block in Listing 11-14.

Listing 11-14. JSON Object Storage

<script>

 var data;

 function loadData() {
 data = JSON.parse(sessionStorage["myStorageKey"])
 }

 function saveData() {
 sessionStorage["myStorageKey"] = JSON.stringify(data);
 }

 window.addEventListener("load", loadData, true);
 window.addEventListener("unload", saveData, true);

</script>

As you can see, the script contains event listeners to register handlers for load and unload events in
the browser window. In this case, the handlers call the loadData() and saveData() functions,
respectively.

In the loadData() function, the session storage area is queried for the value of a storage key, and that
key is passed to the JSON.parse() function. The JSON.parse() routine will take a previously saved string
representation of an object and reconstitute it into a copy of the original. This routine is called every
time the page loads.

CHAPTER 11  USING THE STORAGE APIS

292

Similarly, the saveData() function takes a data value and calls JSON.stringify() on it to turn it into a
string representation of the object. That string is, in turn, stored back into storage. By registering the
saveData() function on the unload browser event, we ensure that it is called every time the user navigates
away or shuts down the browser or window.

The practical result of these two functions is that any object we wish to track in storage, no matter if
it is a complex object type, can be stored and reloaded as users navigate in and out of the application.
This allows developers to extend the techniques we have already shown to nontext data.

A Window into Sharing
As alluded to in an earlier section, the ability for Web Storage events to fire in any window browsing the
same origin has some powerful implications. It means that storage can be used to send messages from
window to window, even if they are not all using the storage object itself. This, in turn implies that we
can now share data across windows that have the same origin.

Let’s see how this works using some code samples. To listen to cross-window messages, a simple
script needs only to register a handler for storage events. Let’s assume that a page running at
http://www.example.com/storageLog.html contains the code shown in Listing 11-15 (the sample file
storageLog.html for this example is also located in the code/storage folder).

Listing 11-15. Cross-Window Communication Using Storage

// display records of new storage events
function displayStorageEvent(e) {
 var incomingRow = document.createElement('div');
 document.getElementById("container").appendChild(incomingRow);

 var logged = "key:" + e.key + ", newValue:" + e.newValue + ", oldValue:" +
 e.oldValue + ", url:" + e.url + ", storageArea:" + e.storageArea;
 incomingRow.innerHTML = logged;
}

// add listeners on storage events
window.addEventListener("storage", displayStorageEvent, true);

After registering an event listener for the storage event type, this window will receive notification of
storage changes in any pages. For example, if a browser window viewing
http://www.example.com/browser-test.html that is currently browsing the same origin sets or changes a
new storage value, the storageLog.html page will receive a notification. Therefore, to send a message to a
receiving window, the sending window need only modify a storage object, and its old and new values
will be sent as part of the notification. For example, if a storage value is updated using
localStorage.setItem(), then the displayStorageEvent() handler in the storageLog.html page hosted at
the same origin will receive an event. By carefully coordinating event names and values, the two pages
can now communicate, a feat which has been difficult to accomplish before. Figure 11-13 shows the
storageLog.html page in action, simply logging storage events it receives.

http://www.example.com/storageLog.html
http://www.example.com/browser-test.html

CHAPTER 11  USING THE STORAGE APIS

293

Figure 11-13. The storageLog.html page logging storage eventsSummary

Summary
In this chapter, we showed how Web Storage can be used as an alternative to browser cookies for
keeping local copies of data across windows, tabs, and (with localStorage) even across browser restarts.
You’ve seen that data can be appropriately segregated between windows by using sessionStorage, and
shared—even across windows—by using storage events. In our full-fledged example, we showed a
practical way to use storage to track data from page to page as users navigate a website, which could just
as easily be applied to other data types. We even demonstrated how nontext data types can be stored
when a page loads or unloads to save and restore the state of a page across visits.

In the next chapter, we’ll show you how HTML5 lets you create offline applications.

C H A P T E R 12

■ ■ ■

295

Creating Offline Web
Applications
In this chapter, we will explore what you can do with offline HTML5 applications. HTML5 applications
do not necessarily require constant access to the network, and loading cached resources can now be
more flexibly controlled by developers.

Overview of HTML5 Offline Web Applications
The first, and most obvious, reason to use the application cache is offline support. In the age of universal
connectivity, offline applications are still desirable. What do you do when you do not have a network
connection? Before you say the days of intermittent connectivity are over, consider the following:

• Do all of the flights you take have onboard Wi-Fi?

• Do you have perfect signal coverage on your mobile Internet device (when was the
last time you saw zero bars)?

• Can you count on having an Internet connection when you give presentations?

As more applications move to the Web, it is tempting to assume 24/7 uninterrupted connectivity for
all users, but the reality of the Internet is that interruptions happen and, in situations like air travel, can
happen predictably for several hours at a time.

Intermittent connectivity has been the Achilles’ heel of network computing systems. If your
applications depend on communication with remote hosts, and those hosts are unreachable, you’re out
of luck. However, when you do have an Internet connection, web applications can always be up-to-date,
because the code loads from a remote location on each use.

If your applications require only occasional communication, they can still be useful as long as the
application resources are stored locally. With the advent of browser-only devices, web applications that
continue to function without continuous connectivity will only grow more important. Desktop
applications that do not require continuous connectivity have historically held that advantage over web
applications.

HTML5 exposes control over application caching to get the best of both worlds: applications built
with web technology that run in the browser and update when they are online but can also be used
offline. However, this new offline application feature must be used explicitly, because current web
servers do not provide any default caching behavior for offline applications.

The HTML5 offline application cache makes it possible to augment an application to run without a
network connection. You do not need a connection to the Internet just to draft an e-mail. HTML5
introduces the offline application cache that allows a Web application to run without network
connectivity.

An application developer can specify specific additional resources comprising an HTML5
application (HTML, CSS, JavaScript, and images) to make an application available for offline use. There
are many use cases for this, for example:

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

296

• Read and compose e-mail

• Edit documents

• Edit and display presentations

• Create to-do lists

Using offline storage can avoid the normal network requests needed to load an application. If the
cache manifest is up to date, the browser knows it does not need to check if the other resources are also
up to date, and most of the application can load very quickly out of the local application cache.
Additionally, loading resources out of a cache (instead of making multiple HTTP requests to see if
resources have been updated) saves bandwidth, which can be especially important for mobile web
applications. Currently, slower loading is one way that web applications suffer in comparison with
desktop applications. Caching can offset that.

The application cache gives developers explicit control over caching. The cache manifest file allows
you to group related resources into a logical application. This is a powerful concept that can give web
applications some of the characteristics of desktop applications. You can use this additional power in
new, creative ways.

Resources identified in the cache manifest file create what is known as an application cache, which
is the place where browsers store the resources persistently, typically on disk. Some browsers give users
a way to view the data in the application cache. For example, the Offline cache device section in the
internal about:cache page in Firefox shows you details about the application cache and a way to view
individual files in the cache, as shown in Figure 12-1.

Figure 12-1. Viewing application cache entries in Firefox

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

297

Similarly, the internal page chrome://appcache-internals/ provides details about the contents of
the different application caches stored on your system. It also provides a way to view the contents and
remove these caches entirely as shown in Figure 12-2.

Figure 12-2. Viewing application cache entries in Chrome

Browser Support for HTML5 Offline Web Applications
For a complete overview of the current browser support, including mobile support, refer to
http://caniuse.com and search for Offline Web Applications or Application Cache. If you have to
support older browsers, it’s always a good idea to first see whether Application Cache is supported
before you use the API. The section “Checking for Browser Support” later in this chapter will show you
how you can programmatically check for browser support.

Using the HTML5 Application Cache API
In this section, we will explore the specifics of how you can use the Offline Web Applications API.

Checking for Browser Support
Before you try to use the Offline Web Applications API, it is a good idea to check for browser support.
Listing 12-1 shows how you can do that.

Listing 12-1. Checking Browser Support for the Offline Web Applications API

if(window.applicationCache) {
 // this browser supports offline applications
}

http://caniuse.com

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

298

Creating a Simple Offline Application
Let’s say that you want to create a one-page application that consists of an HTML document, a style
sheet, and a JavaScript file. To add offline support to your HTML5 application, you include a manifest
attribute on the html element as shown in the Listing 12-2.

Listing 12-2. The manifest Attribute on the HTML Element

<!DOCTYPE html>
<html manifest="application.appcache">
 .
 .
 .
</html>

Alongside the HTML document, provide a manifest file with the *.appcache extension) specifying
which resources to cache. Listing 12-3 shows the contents of an example cache manifest file.

Listing 12-3. Contents of an Example Cache Manifest File

CACHE MANIFEST
example.html
example.js
example.css
example.gif

Going Offline
To make applications aware of intermittent connectivity, there are additional events exposed by HTML5
browsers. Your applications may have different modes for online and offline behavior. Some additions to
the window.navigator object make that easier. First, navigator.onLine is a Boolean property that
indicates whether the browser believes it is online. Of course, a true value of onLine is not a definite
assurance that the servers that your web application must communicate with are reachable from the
user’s machine. On the other hand, a false value means the browser will not even attempt to connect
out over the network. Listing 12-4 shows how you can check to see if your page is online or offline.

Listing 12-4. Checking Online Status

// When the page loads, set the status to online or offline
function loadDemo() {
 if (navigator.onLine) {
 log("Online");
 } else {
 log("Offline");
 }
}

// Now add event listeners to notify a change in online status
window.addEventListener("online", function(e) {
 log("Online");
}, true);

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

299

window.addEventListener("offline", function(e) {
 log("Offline");
}, true);

Manifest Files
Offline applications consist of a manifest listing one or more resources that browser will cache for offline
use. Manifest files have the MIME type text/cache-manifest. The SimpleHTTPServer module in the
Python standard library will serve files with the .manifest extension with the header Content-type:
text/cache-manifest. To configure settings, open the file PYTHON_HOME/Lib/mimetypes.py, and add the
following line:

'.appcache' : 'text/cache-manifest manifest',

Other web servers may require additional configuration. For example, for Apache HTTP Server, you
can update the mime.types file in the conf folder by adding the following line:

text/cache-manifest appcache

If you are using Microsoft IIS, in your website’s home, double-click the MIME Types icon, then add
the .appcache extension with MIME type text/cache-manifest in the Add MIME Type dialog.

The manifest syntax is simple line separated text that starts with CACHE MANIFEST (as the first line).
Lines can end in CR, LF, or CRLF—the format is flexible—but the text must be UTF-8 encoded, which is
the typical output for most text editors. Comments begin with the hash symbol and must be on their
own lines; you cannot append a comment to other non-comment lines in the file.

Listing 12-5. Example Manifest File with All Possible Sections

CACHE MANIFEST
files to cache
about.html
html5.css
index.html
happy-trails-rc.gif
lake-tahoe.JPG

#do not cache signup page
NETWORK
signup.html

FALLBACK
signup.html offline.html
/app/ajax/ default.html

Let’s look at the different sections.
If no CACHE: heading is specified, the files that are listed will be treated as files to be cached (caching

is the default behavior). The following simple manifest specifies that three files (index.html,
application.js, and style.css) must be cached:

CACHE MANIFEST
index.html
application.js

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

300

style.css

Similarly, the following section would do the same (you can use the same CACHE, NETWORK, and
FALLBACK headers multiple times in a manifest file if you want to):

CACHE MANIFEST

Cache section
CACHE:
Index.html
application.js
style.css

By listing a file in the CACHE section, you instruct the browser to serve the file from the application
cache, even if the application is online. It is unnecessary to specify the application's main HTML
resource. The HTML document that initially pointed to the manifest file is implicitly included (this is
called a Master entry). However, if you want to cache multiple HTML documents or if you would like
multiple HTML documents to act as possible entry points for the cacheable application, they should all
be explicitly listed in the cache manifest file.

FALLBACK entries allow you to give alternate paths to replace resources that cannot be fetched. The
manifest in Listing 12-5 would cause requests to /app/ajax/ or subpaths beginning with /app/ajax/ to
fall back to default.html when /app/ajax/* is unreachable.

NETWORK specifies resources that are always fetched using the network. The difference with simply
omitting these files from the manifest is that master entries are cached without being explicitly listed in
the manifest file. To ensure that the application requests the file from the server even if the cached
resource is cached in the application cache, you can place that file in the NETWORK: section.

The ApplicationCache API
The ApplicationCache API is an interface for working with the application cache. A new
window.applicationCache object fires several events related to the state of the cache. The object has a
numerical property, window.applicationCache.status, which indicates the state of the cache. The six
states a cache can have are shown in Table 12-1.

Table 12-1. The Six Cache States

Numerical
Property

Cache Status

0 UNCACHED

1 IDLE

2 CHECKING

3 DOWNLOADING

4 UPDATEREADY

5 OBSOLETE

Most pages on the Web today do not specify cache manifests and are uncached. Idle is the typical

state for an application with a cache manifest. An application in the idle state has all its resources stored

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

301

by the browser with no updates in progress. A cache enters the obsolete state if there was at one point a
valid cache but the manifest is now missing. There are events (and callback attributes) in the API that
correspond to some of these states. For instance, when the cache enters the idle state after an update,
the cached event fires. At that time, an application might notify the user that they can disconnect from
the network and still expect the application to be available in offline mode. Table 12-2 shows some
common events and their associated caches states.

Table 12-2. Common Events and Their Cache States

Event Associated Cache State

onchecking CHECKING

ondownloading DOWNLOADING

onupdateready UPDATEREADY

onobsolete OBSOLETE

oncached IDLE

Additionally, there are events indicating update progress, when no update is available, or when an

error has occurred:

• onerror

• onnoupdate

• onprogress

window.applicationCache has an update() method. Calling update() requests that the browser
update the cache. This includes checking for a new version of the manifest file and downloading new
resources if necessary. If there is no cache or if the cache is obsolete, an error will be thrown.

Application Cache in Action
Although creating the manifest file and using it in an application is relatively simple, what happens
when you update pages on the server is not as intuitive as you might think. The main thing to keep in
mind is that once the browser has successfully cached the application’s resources in the application
cache, it will always serve those pages from the cache first. After that, the browser will do only one more
thing: check if the manifest file has been changed on the server.

To better understand how the process works, let’s step through an example scenario, using the
manifest file shown in Listing 12-5.

1. When you access the index.html page for the very first time (while online), say
on http://www.example.com, the browser loads the page and its subresources
(CSS, JavaScript, and image files).

2. While parsing the page, the browser comes across the manifest attribute in the
html element and proceeds to load all the files listed in the CACHE (default)

http://www.example.com

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

302

and FALLBACK sections in the application cache for the example.com site
(browsers allow about 5 MB of storage space).

3. From now on, when you navigate to http://www.example.com, the browser
will always load the site from the application cache, and it will then attempt to
check if the manifest file has been updated (it can only do the latter when you
are online). This means that if you now go offline (voluntarily or otherwise)
and point your browser at http://www.example.com, the browser will load the
site from the application cache—yes, you can still use the site in its entirety in
offline mode.

4. If you try to access a cached resource while you’re offline, it will load from the
application cache. When you try to access a NETWORK resource
(signup.html), FALLBACK content (offline.html) will be served. NETWORK files
will be available again only if you go back online.

5. So far so good. Everything works as expected. We will now try to step you
through the digital minefield that you must cross when you change content on
the server. When you change, for example, the about.html page on the server
and access that page while you’re in online mode by reloading the page in the
browser, it would be reasonable to expect the updated page to show up. After
all, you’re online and have direct access to the server. However, you will just be
looking at the same old page as before, possibly with a puzzled look on your
face. The reason for this is that the browser will always load the page from the
application cache, and after that it checks only one thing: whether the
manifest file has been updated. Therefore, if you want updated resources to be
downloaded you must make a change to the manifest file as well (do not just
“touch” the file, because that will not be considered a change—it must be a
byte-for-byte change). A common way to make this change is to add a version
comment at the top of the file as shown in Listing 12.5. The browser does not
actually understand the version comment, but it is a good best practice to
follow. Because of this and because it is easy to overlook a new or removed file,
it is recommended that you use some sort of build script to maintain the
manifest file. HTML5 Boilerplate 2.0 (http://html5boilerplate.com) ships with
a build file that can be used to automatically build and version the appcache
file, a great addition to that already great resource.

6. When you make a change to both the about.html page and the manifest file
and subsequently refresh the page in your browser while you’re online you
will, once again, be disappointed to see the same old page. What happened?
Well, even though the browser has now found that the manifest has been
updated and downloaded all of the files again into a new version of the cache,
the page was already loaded from the application cache before the server
check was performed, and the browser does not automatically reload the page
for you in the browser. You can compare this process to how a new version of a
software program (for example, the Firefox browser) can be downloaded in the
background but require a restart of the program to take effect. If you can’t wait
for the next page refresh, you can programmatically add an event listener for
the onupdateready event and prompt the user to refresh the page. A little
confusing at first, but it all actually makes sense when you think about it.

http://www.example.com
http://www.example.com
http://html5boilerplate.com

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

303

Using Application Cache to Boost Performance

Peter says: “One nice side-effect of the application cache mechanism is that you can use it to prefetch
resources. The regular browser cache stores pages that you have visited, but what is stored is dependent
on both client and server configuration (browser settings and expires headers). Therefore, returning to
specific pages by relying on regular browser caching is fickle to say the least—anyone who has ever
attempted to rely on regular browser caching to navigate through the pages of a website while on an
airplane will probably agree here.

Using application cache, however, allows you not only to cache pages as you visit them but also to cache
pages you have not even visited yet; it can be used as an effective prefetching mechanism. When it is
time to use one of those prefetched resources it will be loaded from the application cache on local disk
and not from the server, speeding up the load time dramatically. Used wisely (don’t prefetch Wikipedia),
you can use application cache to dramatically improve performance. One important thing to remember is
that regular browser caching is also still in effect, so watch for false positives, especially if you are trying
to debug application cache behavior.”

Building an Application with HTML5 Offline Web Applications
In this example application, we will track a runner’s location while out on the trail (with intermittent or
no connectivity). For example, Peter goes running, and he will have his new Geolocation–enabled phone
and HTML5 web browser with him, but there is not always a great signal out in the woods around his
house. He wants to use this application to track and record his location even when he cannot use the
Internet.

When offline, the Geolocation API should continue to work on devices with hardware geolocation
(such as GPS) but obviously not on devices that use IP geolocation. IP geolocation requires network
connectivity to map the client's IP address to coordinates. In addition, offline applications can always
access persistent storage on the local machine through APIs such as local storage or Indexed Database.

The example files for this application are located on the book’s page at www.apress.com and at the
book‘s website in the offline code folder, and you can start the demo by navigating to the code/offline
folder and issuing the command:

Python –m SimpleHTTPServer 9999.

Prior to starting the web server, make sure you have configured Python to serve the manifest files
(files with the *.appcache extension) with the correct mime type as described earlier. This is the most
common cause of failure for offline web applications. If it does not work as expected, check the console
in Chrome Developer tools for possible descriptive error messages.

This starts Python’s HTTP server module on port 9999 (you can start it on any port, but you may
need admin privileges to bind to ports lower than 1024. After starting the HTTP server, you can navigate
to http://localhost :9999/tracker.html to see the application in action.

Figure 12-3 shows what happens in Firefox when you access the site for the first time: you are
prompted to opt in to storing data on your computer (note, however, that not all browsers will prompt
you before storing data).

http://www.apress.com

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

304

Figure 12-3. Firefox prompting to store data for the web application

After allowing the application to store data, the application cache process starts and the browser
starts downloading the files referenced in the application cache manifest file (this happens after the page
is loaded, and, therefore, it has minimal impact on the responsiveness of the page. Figure 12-4 shows
how Chrome Developer Tools provide a detailed overview of what is cached for the localhost origin in
the Resources pane. It also provides information in the console about the application cache events that
fire while the page and the manifest were processed.

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

305

Figure 12-4. The Offline Page in Chrome with details about the application cache in Chrome Developer

Tools

To run this application, you will need a web server serving these static resources. Remember that
the manifest file must be served with the content type text/cache-manifest. If your browser supports the
application cache, but the file is served with the incorrect content type, you will receive a cache error. An
easy way to test this is to view the events that fire in the Chrome Developer Tools console as shown in
Figure 12-4; it will tell you if the appcache file is served with the wrong mime type.

To run this application with complete functionality, you will need a server that can receive
geolocation data. The server-side complement to this example would presumably store, analyze, and
make available this data. It may or may not be served from the same origin as the static application.
Figure 12-5 shows the example application running in offline mode in Firefox. You can use File ➤ Work
Offline to turn this mode on in Firefox and Opera. Other browsers do not have this convenience
function, but you can disconnect from the network. Note, however, that disconnecting from the network
does not interrupt the connection to a Python server running on localhost.

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

306

Figure 12-5. The application in offline mode

Creating a Manifest File for the Application Resources
First, in a text editor, create the tracker.appcache file as follows. This manifest file will list the files that
are part of this application:

CACHE MANIFEST
JavaScript
./offline.js
#./tracker.js
./log.js

stylesheets
./html5.css

images

Creating the HTML Structure and CSS for the UI
This is the basic UI structure of the example. Both tracker.html and html5.css will be cached, so the
application will be served from the application cache.

<!DOCTYPE html>
<html lang="en" manifest="tracker.appcache">
<head>
 <title>HTML5 Offline Application</title>
 <script src="log.js"></script>
 <script src="offline.js"></script>
 <script src="tracker.js"></script>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

307

 <link rel="stylesheet" href="html5.css">
</head>

<body>
 <header>
 <h1>Offline Example</h1>
 </header>

 <section>
 <article>
 <button id="installButton">Check for Updates</button>
 <h3>Log</h3>
 <div id="info">
 </div>
 </article>
 </section>
</body>
</html>

There are a couple of things to note in this HTML that pertain to this application's offline
capabilities. The first is the manifest attribute on the HTML element. Most of the HTML examples in this
book omit the <html> element because it is optional in HTML5. However, the ability to cache offline
depends on specifying the manifest file there.

The second thing to note is the button. That will give the user control over configuring this
application for offline use.

Creating the Offline JavaScript
For this example, the JavaScript is contained in multiple .js files included with <script> tags. These
scripts are cached along with the HTML and CSS.

<offline.js>
/*
 * log each of the events fired by window.applicationCache
 */
window.applicationCache.onchecking = function(e) {
 log("Checking for application update");
}

window.applicationCache.onnoupdate = function(e) {
 log("No application update found");
}

window.applicationCache.onupdateready = function(e) {
 log("Application update ready");
}

window.applicationCache.onobsolete = function(e) {
 log("Application obsolete");
}

window.applicationCache.ondownloading = function(e) {

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

308

 log("Downloading application update");
}

window.applicationCache.oncached = function(e) {
 log("Application cached");
}

window.applicationCache.onerror = function(e) {
 log("Application cache error");
}

window.addEventListener("online", function(e) {
 log("Online");
}, true);

window.addEventListener("offline", function(e) {
 log("Offline");
}, true);

/*
 * Convert applicationCache status codes into messages
 */
showCacheStatus = function(n) {
 statusMessages = ["Uncached","Idle","Checking","Downloading","Update Ready","Obsolete"];
 return statusMessages[n];
}

install = function() {
 log("Checking for updates");
 try {
 window.applicationCache.update();
 } catch (e) {
 applicationCache.onerror();
 }
}

onload = function(e) {
 // Check for required browser features
 if (!window.applicationCache) {
 log("HTML5 Offline Applications are not supported in your browser.");
 return;
 }

 if (!navigator.geolocation) {
 log("HTML5 Geolocation is not supported in your browser.");
 return;
 }

 if (!window.localStorage) {
 log("HTML5 Local Storage not supported in your browser.");
 return;

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

309

 }

 log("Initial cache status: " + showCacheStatus(window.applicationCache.status));
 document.getElementById("installButton").onclick = checkFor;
}

<log.js>
log = function() {
 var p = document.createElement("p");
 var message = Array.prototype.join.call(arguments, " ");
 p.innerHTML = message;
 document.getElementById("info").appendChild(p);
}

Check for ApplicationCache Support
In addition to the offline application cache, this example uses geolocation and local storage. We ensure
that the browser supports all of these features when the page loads.

onload = function(e) {
 // Check for required browser features
 if (!window.applicationCache) {
 log("HTML5 Offline Applications are not supported in your browser.");
 return;
 }

 if (!navigator.geolocation) {
 log("HTML5 Geolocation is not supported in your browser.");
 return;
 }

 if (!window.localStorage) {
 log("HTML5 Local Storage is not supported in your browser.");
 return;
 }

 if (!window.WebSocket) {
 log("HTML5 WebSocket is not supported in your browser.");
 return;
 }
 log("Initial cache status: " + showCacheStatus(window.applicationCache.status));
 document.getElementById("installButton").onclick = install;
}

Adding the Update Button Handler
Next, add an update handler that updates the application cache as follows:

install = function() {
 log("Checking for updates");
 try {
 window.applicationCache.update();

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

310

 } catch (e) {
 applicationCache.onerror();
 }
}

Clicking this button will explicitly start the cache check that will cause all cache resources to be
downloaded if necessary. When available updates have completely downloaded, a message is logged in
the UI. At this point, the user knows that the application has successfully installed and can be run in
offline mode.

Add Geolocation Tracking Code
This code is based on the geolocation code from Chapter 4. It is contained in the tracker.js JavaScript
file.

/*
 * Track and report the current location
 */
var handlePositionUpdate = function(e) {
 var latitude = e.coords.latitude;
 var longitude = e.coords.longitude;
 log("Position update:", latitude, longitude);
 if(navigator.onLine) {
 uploadLocations(latitude, longitude);
 }
 storeLocation(latitude, longitude);
}

var handlePositionError = function(e) {
 log("Position error");
}

var uploadLocations = function(latitude, longitude) {
 var request = new XMLHttpRequest();
 request.open("POST", "http://geodata.example.net:8000/geoupload", true);
 request.send(localStorage.locations);
}

var geolocationConfig = {"maximumAge":20000};

navigator.geolocation.watchPosition(handlePositionUpdate,
 handlePositionError,
 geolocationConfig);

Adding Storage Code
Next, add the code that writes updates to localStorage when the application is in offline mode.

var storeLocation = function(latitude, longitude) {
 // load stored location list
 var locations = JSON.parse(localStorage.locations || "[]");
 // add location

http://geodata.example.net:8000/geoupload

CHAPTER 12 ■ CREATING OFFLINE WEB APPLICATIONS

311

 locations.push({"latitude" : latitude, "longitude" : longitude});
 // save new location list
 localStorage.locations = JSON.stringify(locations);
}

This application stores coordinates using HTML5 local storage as described in Chapter 9. Local
storage is a natural fit for offline-capable applications, because it provides a way to persist data locally in
the browser. The data will be available in future sessions. When network connectivity is restored, the
application can synchronize with a remote server.

Using storage here has the added benefit of allowing recovery from failed upload requests. If the
application experiences a network error for any reason, or if the application is closed (by user action,
browser or operating system crash, or page navigation) the data is stored for future transmission.

Adding Offline Event Handling
Every time the location update handler runs, it checks the connectivity status. If the application is
online, it will store and upload the coordinates. If the application is offline, it will merely store the
coordinates. When the application comes back online, it can update the UI to show the online status and
upload any data is stored while online.

window.addEventListener("online", function(e) {
 log("Online");
}, true);

window.addEventListener("offline", function(e) {
 log("Offline");
}, true);

The connectivity status may change while the application is not actively running. For instance, the
user may have closed the browser, refreshed, or navigated to a different site. To handle these cases, our
offline application checks to see if it has come back online on each page load. If it has, it will attempt to
synchronize with the remote server.

// Synchronize with the server if the browser is now online
if(navigator.onLine) {
 uploadLocations();
}

Summary
In this chapter, you have seen how HTML5 Offline Web Applications can be used to create compelling
applications that can be used even when there is no Internet connection. You can ensure that all your
files are cached by specifying the files that are part of the web application in the cache manifest file and
then referencing the files from the main HTML page of the application. Then, by adding event listeners
for online and offline status changes, you can make your site behave differently based on whether an
Internet connection is available or not.

In the final chapter, we will discuss the future of HTML5 programming.

C H A P T E R 13

313

The Future of HTML5

As you have already seen in this book, HTML5 provides powerful programming features. We also
discussed the history behind HTML5’s development and HTML5’s new plugin-free paradigm. In this
chapter, we will look at where things are going. We will discuss some of the features that are not fully
baked yet but hold tremendous promise.

Browser Support for HTML5
Adoption of HTML5 features is accelerating with each new browser update. Several of the features we
covered have actually shipped in browsers while we wrote this book. HTML5 development in browsers is
undeniably gaining tremendous momentum.

Today, many developers still struggle to develop consistent web applications that work with older
browsers. Internet Explorer 6 represents the harshest of the legacy browsers in common use on the
Internet today But even IE6 has a limited lifetime, as it becomes harder and harder to procure any
operating system that supports it. In time, there will be close to zero users browsing the Web with IE6.
More and more users of Internet Explorer are being upgraded to the latest versions. There will always be
an oldest browser to contend with, but that bar rises as time passes; at the time of this writing, the
market share of Internet Explorer 6 is under 10% and falling. Most users who upgrade go straight to a
modern replacement. In time, the lowest common denominator will include HTML5 Video, Canvas,
WebSocket, and whatever other features you may have to emulate today to reach a wider audience.

In this book, we covered features that are largely stable and shipping in multiple browsers. There are
additional extensions to HTML and APIs currently in earlier stages of development. In this chapter, we
will look at some of the upcoming features. Some are in early experimental stages, while others may see
eventual standardization and wide availability with only minor changes from their current state.

HTML Evolves
In this section, we’ll explore several exciting features that may appear in browsers in the near future. You
probably won’t need to wait until 2022 for these, either. There will probably not be a formalized HTML6;
the WHATWG has hinted that future development will simply be referred to as “HTML.” Development
will be incremental, with specific features and their specifications evolving individually, rather than as a
consolidated effort. Browsers will take up features as they gain consensus, and the upcoming features
might even be widely available in browsers well before HTML5 is set in stone. The community
responsible for driving the Web forward is committed to evolving the platform to meet the needs of users
and developers.

CHAPTER 13  THE FUTURE OF HTML5

314

WebGL
WebGL is an API for 3D graphics on the Web. Historically, several browser vendors including Mozilla,
Opera, and Google have worked on separate experimental 3D APIs for JavaScript. Today, WebGL is
progressing along a path toward standardization and wide availability across HTML5 browsers. The
standardization process is taking place with browser vendors and The Khronos Group, the body
responsible for OpenGL, a cross-platform 3D drawing standard created in 1992. OpenGL, currently at
specification version 4.0, is widely used in gaming and computer-aided design applications as a
counterpart and competitor to Microsoft’s Direct3D.

As you saw in Chapter 2, you get a 2D drawing context from a canvas element by calling
getContext("2d") on the element. Unsurprisingly, this leaves the door open for additional types of
drawing contexts. WebGL also uses the canvas element, but through a 3D context. Current
implementations use experimental vendor prefixes (moz-webgl, webkit-3d, etc.) as the arguments to the
getContext() call. In a WebGL-enabled build of Firefox, for example, you can get a 3D context by calling
getContext("moz-webgl") on a canvas element. The API of the object returned by such a call to
getContext() is different from the 2D canvas equivalent, as this one provides OpenGL bindings instead
of drawing operations. Rather than making calls to draw lines and fill shapes, the WebGL version of the
canvas context manages textures and vertex buffers.

HTML in Three Dimensions
WebGL, like the rest of HTML5, will be an integral part of the web platform. Because WebGL renders to a
canvas element, it is part of the document. You can position and transform 3D canvas elements, just as
you can place images or 2D canvases on a page. In fact, you can do anything you can do with any other
canvas element, including overlaying text and video and performing animations. Combining other
document elements and a 3D canvas will make heads-up displays (HUDs) and mixed 2D and 3D
interfaces much simpler to develop when compared to pure 3D display technologies. Imagine taking a
3D scene and using HTML markup to overlay a simple web user interface on it. Quite unlike the
nonnative menus and controls found in many OpenGL applications, WebGL software will incorporate
nicely styled HTML5 form elements with ease.

The existing network architecture of the Web will also complement WebGL. WebGL applications
will be able to fetch resources such as textures and models from URLs. Multiplayer games can
communicate with WebSocket. For example, Figure 13-1 shows an example of this in action. Google
recently ported the classic 3D game Quake II to the Web using HTML5 WebSocket, Audio, and WebGL,
complete with multiplayer competition. Game logic and graphics were implemented in JavaScript,
making calls to a WebGL canvas for rendering. Communication to the server to coordinate player
movement was achieved using a persistent WebSocket connection.

CHAPTER 13  THE FUTURE OF HTML5

315

Figure 13-1. Quake II

3D Shaders
WebGL is a binding for OpenGL ES 2 in JavaScript, so it uses the programmable graphics pipeline that is
standardized in OpenGL, including shaders. Shaders allow highly flexible rendering effects to be applied
to a 3D scene, increasing the realism of the display. WebGL shaders are written in GL Shading Language
(GLSL). This adds yet another single-purpose language to the web stack. An HTML5 application with
WebGL consists of HTML for structure, CSS for style, JavaScript for logic, and GLSL for shaders.
Developers can transfer their knowledge of OpenGL shaders to a similar API in a web environment.

WebGL is likely to be a foundational layer for 3D graphics on the Web. Just as JavaScript libraries
have abstracted over DOM and provided powerful high-level constructs, there are libraries providing
additional functionality on top of WebGL. Libraries are currently under development for scene graphs,
3D file formats such as COLLADA, and complete engines for game development. Figure 13-2 shows
Shader Toy—a WebGL shader workbench built by Inigo Quilez that comes with shaders by nine other
demoscene artists. This particular screenshot shows Leizex by Rgba. We can expect an explosion of high-
level rendering libraries that bring 3D scene creation power to novice Web programmers in the near
future.

CHAPTER 13  THE FUTURE OF HTML5

316

Figure 13-2. Shader Toy is a WebGL shader workbench

Devices
Web applications will need access to multimedia hardware such as webcams, microphones, or attached
storage devices. For this, there is already a proposed device element to give web applications access to
data streams from attached hardware. Of course, there are serious privacy implications, so not every
script will be able to use your webcam at will. We will probably see a UI pattern of prompting for user
permission as seen in the Geolocation and Storage APIs when an application requests elevated
privileges. The obvious application for webcams is video conferencing, but there are many other
amazing possibilities for computer vision in web applications including augmented reality and head
tracking.

Audio Data API
Programmable audio APIs will do for <audio> what <canvas> did for . Prior to the canvas tag, images
on the Web were largely opaque to scripts. Image creation and manipulation had to occur on the
sidelines—namely, on the server. Now, there are tools for creating and manipulating visual media based

CHAPTER 13  THE FUTURE OF HTML5

317

on the canvas element. Similarly, audio data APIs will enable music creation in HTML5 applications.
This will help round out the content-creation capabilities available to web applications and move us
closer to a self-hosting world of tools to create media on and for the Web. Imagine editing audio on the
Web without having to leave the browser.

Simple playback of sounds can be done with the <audio> element. However, any application that
manipulates, analyzes, or generates sound on the fly needs a lower-level API. Text-to-speech, speech-to-
speech translation, synthesizers, and music visualization aren’t possible without access to audio data.

We can expect the standard audio API to work well with microphone input from the data element as
well as files included with audio tags. With <device> and an audio data API, you may be able to make an
HTML5 application that allows users to record and edit sound from within a page. Audio clips will be
able to be stored in local browser storage and reused and combined with canvas-based editing tools.

Presently, Mozilla has an experimental implementation available in nightly builds. The Mozilla
audio data API could act as a starting point for standard cross-browser audio programming capabilities.

Touchscreen Device Events
As Web access shifts ever more from desktops and laptops to mobile phones and tablets, HTML5 is also
continuing to adapt with changes in interaction handling. When Apple introduced the iPhone, it also
introduced into its browser a set of special events that could be used to handle multitouch inputs and
device rotation. Although these events have not yet been standardized, they are being picked up by other
vendors of mobile devices. Learning them today will allow you to optimize your web applications for the
most popular devices now.

Orientation
The simplest event to handle on a mobile device is the orientation event. The orientation event can be
added to the document body:

<body onorientationchange="rotateDisplay();">

In the event handler for the orientation change, your code can reference the window.orientation
property. This property will give one of the rotation values shown in Table 13-1, which is relative to the
orientation the device was in when the page was initially loaded.

Table 13-1. Orientation Values and Their Meanings

Orientation
Value

Meaning

0 The page is being held in the same orientation as its original load.

-90 The device has been rotated 90 degrees clockwise (right) since the original load.

180 The device has been rotated upside-down since the original page load.

90 The device has been rotated 90 degrees counter-clockwise (left) since the page was
originally loaded.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13  THE FUTURE OF HTML5

318

Once the orientation is known, you can choose to adjust the content accordingly.

Gestures
The next type of event supported by mobile devices is a high-level event known as the gesture. Consider
gesture events as representing a multitouch change in size or rotation. This is usually performed when
the user places two or more fingers on the screen simultaneously and pinches or twists. A twist
represents a rotation, while a pinch in or out represents a zoom out or in, respectively. To receive gesture
events, your code needs to register one of the handlers shown in Table 13-2.

Table 13-2. Event Handlers for Gestures

Event Handler Description

ongesturestart A user has placed multiple fingers on the screen and has begun a movement.

ongesturechange The user is in the process of moving multiple fingers in a scale or rotation.

ongestureend The user has completed the scale or rotation by removing fingers.

During the gesture, the event handler is free to check the rotation and scale properties of the

corresponding event and update the display accordingly. Listing 13-1 shows an example usage of the
gesture handlers.

Listing 13-1. Example Gesture Handler

function gestureChange(event) {
 // Retrieve the amount of change in scale caused by the user gesture
 // Consider a value of 1.0 to represent the original size, while smaller
 // numbers represent a zoom in and larger numbers represent a zoom
 // out, based on the ratio of the scale value
var scale = event.scale;

 // Retrieve the amount of change in rotation caused by the user gesture
 // The rotation value is in degrees from 0 to 360, where positive values
 // indicate a rotation clockwise and negative values indicate a counter-
 // clockwise rotation
var rotation = event.rotation;

 // Update the display based on the rotation.
}

// register our gesture change listener on a document node
node.addEventListener("gesturechange", gestureChange, false);

Gesture events are particularly appropriate in applications that need to manipulate objects or
displays, such as in diagramming tools or navigation tools.

CHAPTER 13  THE FUTURE OF HTML5

319

Touches
For those cases where you need low-level control over device events, the touch events provide as much
information as you will likely need. Table 13-3 shows the different touch events.

Table 13-3. Touch Events

Event Handler Description

ontouchstart A finger has been placed on the surface of the touch device. Multitouch events will
occur as more fingers are placed on the device.

ontouchmove One or more of the fingers on the device has moved its location in a drag operation.

ontouchend One or more fingers have been lifted away from the device screen.

ontouchcancel An unexpected interruption has stopped the touch operations.

Unlike the other mobile device events, the touch events need to represent that there are multiple

points of data—the many potential fingers—present at the same time. As such, the API for touch
handling is a little bit more complex as shown in Listing 13-2.

Listing 13-2. Touch API

function touchMove(event) {
// the touches list contains an entry for every finger currently touching the screen
var touches = event.touches;

 // the changedTouches list contains only those finger touches modified at this
 // moment in time, either by being added, removed, or repositioned
varchangedTouches = event.changedTouches;

 // targetTouches contains only those touches which are placed in the node
 // where this listener is registered
vartargetTouches = event.targetTouches;

 // once you have the touches you'd like to track, you can reference
 // most attributes you would normally get from other event objects
varfirstTouch = touches[0];
varfirstTouchX = firstTouch.pageX;
varfirstTouchY = firstTouch.pageY;
}

// register one of the touch listeners for our example
node.addEventListener("touchmove", touchMove, false);

You may find that the device’s native event handling interferes with your handling of the touch and
gesture events. In those cases, you should make the following call:

event.preventDefault();

CHAPTER 13  THE FUTURE OF HTML5

320

This overrides the behavior of the default browser interface and handles the event yourself. Until the
mobile events are standardized, it is recommended that you consult the documentation of the devices
you are targeting with your application.

Peer-to-Peer Networking
We haven’t seen the end of advanced networking in web applications either. With both HTTP and
WebSocket, there is a client (the browser or other user agent) and a server (the host of the URL). Peer-to-
peer (P2P) networking allows clients to communicate directly. This is often more efficient than sending
all data through a server. Efficiency, of course, reduces hosting costs and improves application
performance. P2P should make for faster multiplayer games and collaboration software.

Another immediate application for P2P combined with the device element is efficient video chat in
HTML5. In peer-to-peer video chat, conversation partners would be able to send data directly to each
other without routing through a central server. Outside of HTML5, P2P video chat has been wildly
popular in applications like Skype. Because of the high bandwidth required by streaming video, it is
likely that neither of those applications would have been possible without peer-to-peer communication.

Browser vendors are already experimenting with P2P networking, such as Opera’s Unite technology,
which hosts a simplified web server directly in the browser. Opera Unite lets users create and expose
services to their peers for chatting, file sharing, and document collaboration.

Of course, P2P networking for the web will require a protocol that takes security and network
intermediaries into consideration as well as an API for developers to program against.

Ultimate Direction
So far, we have focused on empowering developers to build powerful HTML5 applications. A different
perspective is to consider how HTML5 empowers users of web applications. Many HTML5 features
allow you to remove or reduce the complexity of scripts and perform feats that previously required
plugins. HTML5 video, for example, lets you specify controls, autoplay, buffering behavior, and a
placeholder image without any JavaScript. With CSS3, you can move animation and effects from scripts
to styles. This declarative code makes applications more amenable to user styles and ultimately returns
power to the people who use your creations every day.

You’ve seen how the development tools in all the modern browsers are exposing information about
HTML5 features like storage, as well as critically important JavaScript debugging, profiling, and
command-line evaluation. HTML5 development will trend toward simplicity, declarative code, and
lightweight tools within the browsers or web applications themselves.

Google feels confident enough about the continuing evolution of HTML that it has released the
Google Chrome operating system, a streamlined operating system built around a browser and media
player. Google’s operating system aims to include enough functionality using HTML APIs to provide a
compelling user experience where applications are delivered using the standardized web infrastructure.
Similarly, Microsoft has announced that Windows 8 will not support any plugins in the new Metro
mode, including the company’s own Silverlight plugin.

Summary
In this book, you have learned how to use powerful HTML5 APIs. Use them wisely!

In this final chapter, we have given you a glimpse of some of the things that are coming, such as 3D
graphics, the new device element, touch events, and P2P networking. Development of HTML5 shows no
sign of slowing down and will be very exciting to watch.

CHAPTER 13  THE FUTURE OF HTML5

321

Think back for a minute. For those of you who have been surfing the Web, or perhaps even
developing for it for ten years or more, consider how far HTML technology has come in just the last few
years. Ten years ago, “professional HTML programming” meant learning to use the new features of
HTML 4. Cutting edge developers at the time were just discovering dynamic page updates and
XMLHttpRequests. The term “Ajax” was still years from introduction, even if the techniques Ajax described
were starting to gain traction. Much of the professional programming in browsers was written to wrangle
frames and manipulate image maps.

Today, functions that took pages of script can be performed with just markup. Multiple new
methods for communication and interaction are now available to all those willing to download one of
the many free HTML5 browsers, crack open their favorite text editors, and try their hands at professional
HTML5 programming.

We hope you have enjoyed this exploration of web development, and we hope it has inspired your
creativity. We look forward to writing about the innovations you create using HTML5 a decade from
now.

323

Index

 A
Accessible Rich Internet Applications (ARIA), 5
addColorStop function, 41
addElement, 225
addEventListener() method, 21
addToPoint function, 57
Almost Standards mode, 9
Animation, canvas, 37, 58–61
Apple Safari, 21
arc function, 38
arcTo function, 38
Asyncore, 169
Audio

activation, 94, 95
API, 86–100, 104–106, 316
codecs, 84, 85
containers, 83, 84
controls, 90
streaming, 85
unsupported, 85
working with, 94, 95

Audio element
background noise in a page, 103, 104
browser support for, 86–88
declaring, 89
playback controls, 91, 92, 94
source, 90, 91
understanding, 89–94

autobuffer attribute, 93
autocomplete attribute, 201
autofocus attribute, 201, 202
autoplay attribute, 92, 93, 104

 B
Background patterns, 43, 44
beginPath function, 29, 32
bezierCurveTo function, 38
Broadcast server, 168, 170
Broadcast.html, 182

Broadcast.py, 170, 175
Browser database storage

future of, 286–288, 291
Browser support

for cookies, 263
for HTML5, 313
for Web SQL Database, 286, 290
for WebSocket API, 176
for Web Storage, 264
for Web Storage API, 264, 265

 C
canPlayType() function, 92
Canvas API, 23

accessibility issues, 26
adding a canvas to a page, 27–29
animations, 37
applying transformations to drawings, 30,

32
background patterns, 43, 44
browser support for, 26, 27
building application with, 55–58, 60, 61
canvas security, 54
concept of, 23
coordinates, 24, 25
creating diagonal line on, 28, 29
CSS, 26
drawing curves, 37–39
drawing operations supported by, 24
fallback content for, 25, 26
gradients, 41, 42
history of, 23
ID attribute, 27
inserting images, 39, 40
overview, 23–26
paths, working with, 32–34
scaling canvas objects, 44–46
vs. SVG, 23
using fill styles, 35–37
using shadows, 50, 51

 INDEX

324

Canvas API (cont.)
using stroke styles, 34, 35
using text, 48–50
using transformations, 46–48
when not to use, 25
working with pixel adata, 52-54

Canvas element, 314
adding, 96
updating content, 98

Canvas image data, 254
Carakan engine, 21
Cell phone geolocation data, 110
Chakra engine, 21
Character set, 8
Chat widgets, 136, 142, 143
checkValidity function, 207
Chrome, Storage panel, 273
clear() function, 271
clearWatch() function, 120
Clipping features, 37
closePath function, 33
Comet applications, 160
Communication API

MessageEvent interface and, 140
postMessage API (see postMessage API)
XMLHttpRequest Level 2 (see

XMLHttpRequest Level 2)
context.createImageData function, 53
context.getImageData function, 52, 53
context.putImageData function, 53
context.rotate(angle) function, 46
context.scale function, 45
Control functions, 92
Control points, 38
controls attribute, 90, 91, 93
Cookies, 263, 264
createImageData function, 53
Cross document messaging, 135–138, 140–146

browser support for, 139
using postMessage API, 139, 140 (see also

postMessage API)
Cross origin resource sharing (CORS), 86, 147,

148
Cross-origin communication. See

XMLHttpRequest Level 2; postMessage API
Cross-origin XMLHttpRequests, 147, 149
Cross-site scripting error, 138
Cross-window communication, 292, 293
CSS pseudoclasses, 214, 215
currentSrc attribute, 93

currentTime attribute, 93, 100
custom validity errors, 206
customError constraint, 206
customError validation constraint, 213

 D
Dashboard widgets, 23
Data

property, 136
sharing across windows, 292, 293
storage, 275 (see also Web Storage API)

Database storage
future of browser, 286–288, 291

<datalist> element, 211
datalist element, 202
dataReturned() function, 185, 186, 281
Device element, 316
Devices, 316
3D graphics, 314
Diagonal lines

on a canvas, 28, 29
using translation, 30–32

Disk space quota, 271
dispatchEvent() method, 21
displayLocation() routine, 279
Distance function, 277
distance() utility method, 279
DOCTYPE, 8, 9
document.getElementById(), 278
drawPoint function, 57
dropEffect, 225
3D shaders, 315
duration attribute, 93

 E
EchoHandler, 170
ECMAScript 5 standard, 20
ECMAScript engine, 21
effectAllowed, 225
Embedded content type, 9
enableHighAccuracy attribute, 118
ended attribute, 93
error attribute, 93
Error messages

user-friendly, 184
Event building process, 221
Event capture process, 221
Event handlers

  INDEX

325

to display content of storage event, 273
for gestures, 318
for invalid events, 208, 209, 212

Event listeners
adding, to WebSocket, 178

evt.preventDefault(), 208
executeSql(), 288
executeSQL(), 288
External input, 138

 F
File racerBroadcast.html, 282–284
Fill styles, 35–37
fillRect convenience function, 36, 37
fillText function, 48
Flash video, 88
Flow content type, 9
Form controls, 193
<form> element, 193
Forms API, 193, 200

autocomplete attribute, 201
autofocus attribute, 201, 202
CSS pseudoclasses, 214, 215
datalist element, 202
form validation

checking, 204–207
passwords, 213, 214
turning off, 209
validation feedback, 207–209
validation fields and functions, 207

list attribute, 202
max attribute, 203
min attribute, 203
placeholder attribute, 200
required attribute, 203
spellcheck attribute, 202
step attribute, 203
valueAsNumber function, 203

framebusting, 157
frameHeight variable, 97
frameWidth variable, 97
Full-screen video, 86
Functional forms, 194

 G
Geolocation API, 107

browser support for, 111
building application with, 120–122

code sample, 126, 128, 129
processing geolocation data, 123–126
writing HTML display, 122, 123

checking for browser support, 114
Google Maps and, 131, 132
location information, 107

cell phone data, 110
GPS data, 109
IP address-based, 109
latitude and longitude coordinates, 107,

108
sources of, 108, 109
user-defined data, 111

location tracker application and, 185, 186
position requests, 115

one-shot, 115–117, 119
repeated, 119, 120

privacy, 112
dealing with location information, 114
privacy protection mechanism, 113

request attributes, optional, 118, 119
status bar, 130, 131
uses of, 107
Wi-Fi–based geolocation data, 110

Gestures, 318
getColor function, 57
getContext() function, 31, 314
getCurrentPosition() function, 131
getElementById() function, 17
getElementsByName() function, 17
getElementsByTagName() function, 17
getImageData function, 52–54
getItem(key) function, 270
GL Shading Language (GLSL), 315
Glass pane, 58
Google Chrome, 21
Google Maps, 131, 132
GPS geolocation data, 109
Gradients, 41, 42

 H
handleLocationError() function, 117
Heading content type, 10
Heads-up displays (HUDs), 314
Heatmaps, 55–58
height attribute, 95
Hickson, Ian, 161
HTML5, 1

3D shaders, 315

 INDEX

326

HTML5 (cont.)
API selector, 18, 19

formal specification, 19
JavaScript methods, 17
QuerySelector methods, 17

audio data API, 316
browser support for, 313
candidate recommendation date, 2
design principles

compatibility and paving, cow paths, 3
interoperability simplification, 4, 5
presentation and content separation, 4
security, 4
universal Access, 5
utility and the priority of constituencies,

3, 4
device elements, 316
DOCTYPE and character set, 8, 9
DOM Level 3, 21
future of begin, 313
future of end, 321
gesture events, 318
history of, 1, 2
HTML definition, 313
JavaScript logging and debugging, 19, 20
location-aware applications and

WebSockets, 22
markup elements, 9, 10
organizations, 3
orientation event, 317
overview end, 22
peer-to-peer networking, 320
plugin–free paradigm

APIs, 7
applications, 7
features, 6
Microsoft Paint, user interface, 7
Modernizr—a JavaScript library, 7
native functionality, 6
problems, 5
specification, 6

semantic markup, 16
CSS3 features, HTML5 page, 12, 13, 15,

16
HTML5 page, CSS styles, 11
Internet Explorer, 16
sectioning content type, 10

three dimensions, 314
touch events, 319
touchscreen device events, 317
video, 320

Web browser JavaScript engines, 21, 22
WebGL, 314
window.JSON, 20

HTML5 drag-and-drop, 217
clean up process, 233
data retrieval, 220
data transfer, 219
demo, styles for, 227
dispaly customization, 239, 240
drag source, 218
draggable member names and ages, 226,

227
dragleave and dragenter, 231
dragover handler, 231
dragstart handler, 230
drop handler, 232, 233
drop list target, 227
drop target, 218
dropzone, 234, 235
event flow, 222, 224

drag, 223
drag participation, 224
dragend fire, 223
dragenter, 223
dragleave, 223
dragover, 223
dragstart, 222
drop, 223
transfer and control, 224, 225

event handler registration, 228
events, 221
feedback, 219
file handling, 235

dataTransfer object, 235
dragover and dragleave handler, 238
file drop demo, 237
file drop drag, 237
fileDrag.html, 236
items, 235
W3C file API, 235

MIME types, 219, 220
negotiation, data flavors, 220, 221
notification, 229
propagation and prevention, 221, 222
racers sorted, 226
successful interaction, 219
variable declaration, 228
Web, 217, 218

HTML5 Forms
browser support, 194, 195
building application with, 209–214

  INDEX

327

functional behavior, 194
new attributes and functions, 200–204
new elements in, 195–199
overview, 193–198
vs. XForms, 194

HTML5 offline web applications, 295
about:cache page, Firefox, 296
application cache API

.appcache extension, 299
browser support, 297
cache manifest file contents, 298
client and server configuration, 303
common events, 301
Content-type: text/cache-manifest, 299
FALLBACK entries, 300
manifest attribute, html element, 298
manifest file, 299, 300
mime.types, 299
navigator.onLine property, 298
NETWORK specification, 300
online status, 298, 299
process, manifest file, 301, 302
SimpleHTTPServer module, 299
Six Cache States, 300
update() method, 301
window.applicationCache object, 300
window.applicationCache.status, 300
window.navigator object, 298

application cache entries, 297
application caching, 295
application resources, 306
applicationCache support, 309
browser support, 297
browser-only devices, 295
cache manifest file, 296
geolocation API, 303
geolocation tracking code, 310
HTML structure and CSS, UI, 306
intermittent connectivity, 295
offline event handling, 311
offline JavaScript, 307–309
offline storage, 296
Python -m SimpleHTTPServer 9999

chrome developer tools, 304, 305
Firefox, 303, 304
offline mode, 305, 306
text/cache-manifest content type, 305

storage code, 310
universal connectivity, 295
update button handler, 309

HTML5 Web SQL Database

browser support for, 286, 290
HTTP request headers, 160, 165
HTTP response headers, 160, 165
HTTP/1.1 101 WebSocket Protocol Handshake,

168

 I
ID attribute, 27
iframes, 136

communication between, 137
communication between HTML page and,

136
Image data, 254
imageData objects, 255
imageData.data, 255
Images inserting into a canvas, 39, 40
Images processing, 254
Indexed databases, 286, 287
Inkscape, 81
<input type=”range”> input control, 197
Interaction handling, 317
Interactive content type, 10
Internet Engineering Task Force (IETF), 3
IP address-based geolocation data, 109
IP geolocation, 303

 J
JägerMonkey engine, 21
JavaScript engine, 21
JavaScript Object Notation (JSON)

object storage, 291, 292
JSON object storage, 291, 292
JSON.parse() function, 291
Just-in-time (JIT) compilation engine, 21

 K
Kaazing WebSocket Gateway, 168
key attribute, 272
Key(index) function, 270

 L
length attribute, 270
lineCap property, 35
lineTo function, 29, 33
lineTo(x, y) function, 32

 INDEX

328

list attribute, 202, 211
load() function, 92
loadData() function, 291
loadDemo() function, 56, 58, 123, 125, 126, 176,

185, 281
localStorage object, 264, 269
Location tracker, 182, 183
Long-polling, 160
loop attribute, 93, 104

 M
max attribute, 203
maximumAge attribute, 118
maxLength constraint, 212
Media controls, 91, 92, 94
Media elements. See Video element; Audio

element
Media source files, 90, 91
Media streaming, 85
Message processor function, 278
MessageEvent interface, 140
messageHandler function, 246
Metadata content type, 10
Microsoft Internet Explorer, 21
mime.types file, 299
min attribute, 203
mod_pywebsocket, 168
Modifications, 30
Mouseover video playback, 105, 106
moveTo function, 29
moveTo(x, y) function, 32
Mozilla

audio data API, 317
Mozilla Firefox, 21
Multipurpose Internet Mail Exchange (MIME),

219, 220
muted attribute, 93

 N
Nitro engine, 21
noValidate attribute, 209

 O
ocket.onmessage callback, 281
oldValue attribute, 272
onchange handler, 197
One-shot position requests, 115–117, 119

onload handler, 40
onmessage handler, 185
onmessage method, 163
onopen handler, 185
ontouchcancel event handler, 319
ontouchend event handler, 319
ontouchmove event handler, 319
ontouchstart event handler, 319
openDatabase() function, 287
OpenGL ES 2, 315
OpenGL shaders, 315
Opera

browser, 21
storage panel, 274

operator, 88
Orientation event, 317, 318
Origin-clean canvas, 54
Origins

comparing against white list, 140
concept of, 138, 147
header, 147
property, 136
security, 138
serialization of, 138

 P
Page load routine, 279
parse() function, 20
Password validation, 213, 214
Path routines, 46
Paths, working with, 32–34
pattern attribute, 205, 206
patternMismatch constraint, 205
pause() function, 92
paused attribute, 93
Peer-to-peer (P2P) networking, 320
Phrasing content type, 10
Pixel data, 52–54
placeholder attribute, 200
play() function, 92, 95
Plugins, 87
Polling, 160
Position information utility function, 277
poster attribute, 95
postMessage API, 135, 244, 255

browser support, 139
building application using, 139–142

application in action, 146
chat widget page, 142, 143

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

  INDEX

329

code, 143–145
portal page, 142

cross-site scripting attacks, 137
event listener for message events, 136
iframe, 136, 137
origin security, 138
receiving messages, 140
secuity rules, 138
sending messages, 139
using, 139, 140

preventDefault(), 213, 221, 222
Priority of Constituencies, 3, 4
Progress element, 198
putImageData function, 53
Python WebSocket echo server, 168

 Q
Quadratic curves, 37, 39
quadraticCurveTo function, 38
Quake II game, 314, 315
querySelector() function, 17
querySelectorAll() function, 17
Quirks mode, 9
QUOTA_EXCEEDED_ERR error, 270, 271

 R
Radial gradient, 42
Range control, 197
Range elements, 197
Range input type, 197
rangeOverflow constraint, 206
rangeUnderflow constraint, 206
Read-only media attributes, 93
readyState attribute, 150
readyState property, 150
readystatechange event, 149, 150
Real-time web

history of, 159–161
removeItem(key) function, 271
Repeated position requests, 119, 120
requestAnimationFrame function, 61
required attribute, 203, 205, 211
Reset function, 56
Reusable code, 30

 S
Safari

Storage panel, 274
saveData() function, 292
Scalable vector graphics (SVG), 23, 63

2D graphics creation, 66
addition, page, 67
basic shapes, 67, 68
closeup images, 66
content definition, 69
elements transformation, 68, 69
elements, ChromeWeb Inspector, 64, 65
Happy Trails!, 64
history, 63
interactive application, 74

AddTree function, 75
CSS style, 76, 77
removeTree function, 76
trails-dynamic.html code, 77–79
updateTrees function, 75, 76

markup document, 64
new file creation, 80, 81
paths, 71, 72
patterns and gradients, 70
text selection, 72
tools, 80
trails-static.html, 73, 74

Scale function, 45
Scaling canvas objects, 44–46
Scriptable media attributes, 94
Sectioning content type, 10
Security, canvas, 54
Send method, 163
sendMyLocation() function, 186
Server validation, 204
sessionStorage object, 264, 266–269, 279, 280
setDragImage, 225
setItem(key, value) function, 270
shadowBlur property, 50
shadowColor property, 50
shadowOffsetX property, 50
shadowOffsetY property, 50
Shadows, 50, 51
shape routines, 46
SimpleHTTPServer module, 299
Slow-script warnings, 241
socket.onmessage handler, 187
socket.onopen callback, 281

 INDEX

330

spellcheck attribute, 202
split() routine, 278
split() utility, 187
SquirrelFish Extreme engine, 21
src attribute, 90, 91
Standards (or no-quirks) mode, 9
startTime attribute, 93
startVideo function, 98, 99
Status bar, 130, 131
step attribute, 203
stepMismatch constraint, 206
stopPropagation(), 213, 221, 222
stopTimeline function, 101
Storage interface, 269
storage.key(), 280
storageArea, 272
StorageEvent interface, 272
StorageEvent object, 272
storageLog.html page, 292, 293
Streaming, 160
stringify() function, 20
stroke styles, 34, 35
strokeStyle property, 43
strokeText function, 48
Structured data, 156
successCallback function, 115

 T
Tamarin technology, 21
TCPConnection, 161
Theora video codec, 85
timeout attribute, 119
toggleSound() function, 95
tooLong constraint, 206
Touch API, 319
Touch events, 319, 320
Touchscreen device events, 317
transaction.executeSql() function, 288
Translate method, 31
Tree Canopy, 71
Two-dimensional context, 28
typeMismatch constraint, 205, 211

 U
update() method, 301
updateFrame function, 97, 98
updateInterval variable, 97
updateLocation() function, 116, 117, 186

User-defined geolocation data, 111

 V
V8 engine, 21
validationMessage attribute, 207
ValidityState object, 204, 205, 213
valueAsNumber function, 203
valueMissing constraint, 205
Vector Markup Language (VML), 23
video

accessibility, 88, 89
attributes, 95
codecs, 84, 85
containers, 83, 84
Flash, 88
full-screen, 86
streaming, 85
unsupported, 85
Video API, 86–100, 104–106

video element
adding, 96
adding variables, 97
browser support for, 86–88
creating video timeline browser, 95–101
declaring, 89
mouseover video playback, 105, 106
playback controls, 91, 92, 94
source, 90, 91
startVideo function, adding, 98, 99
stopTimeline function, adding, 101
timeline code, 101
understanding, 89–94
updateFrame function, adding, 97, 98
using input, handling, 99, 100
working with, 95–101

videoHeight attribute, 95
videoWidth attribute, 95
volume attribute, 93
Vorbis audio codec, 85

 W
watchPosition() function, 120, 121, 131
Web 2.0, 1
Web Accessibility Initiative (WAI), 5
Web Hypertext Application Technology

Working Group (WHATWG), 3
Web Hypertext Application Working Group

(WHATWG), 1

  INDEX

331

Web SQL Database, 286–289, 291
Web storage API, 263

application
checking for browser support, 264, 265,

280
communicating updates, 272, 273
local vs. session storage, 269
plugging data leaks, 267, 268
setting and retrieving values, 266, 267

attributes and functions, 269–271
benefits of, 285
browser support, 263, 264
browser treatment of, 273, 275
building application with begin, 275
building application with end, 286
vs. cookies, 263, 264
cross-window communication, 292, 293
database (see Browser database storage)
indexed database, 289, 290
JSON object storage, 291, 292
storage values, 273, 275

Web Video Text Tracks (WebVTT), 88, 89
Web Workers API, 241, 242

browser support for, 242
building application with, 250, 251

application in action, 256, 257
coding blur.html application page, 253
coding blur.js helper script, 252
coding blurWorker.js Web Worker

script, 254
communicating with Web Workers, 254,

255
example code, 257, 261

checking for browser support, 242, 243
coding JavaScript file, 246
communicating with web workers, 244, 245
creating Web Workers, 243

inline workers, 243
shared workers, 243

example code, 248, 249
handling errors, 246
loading and executing JavaScript, 244
stopping Web Workers, 247
timers, 248
within Web Workers, 247

WebGL, 314, 315
WebSocket, 281

interface, 163
server implementations, 168

WebSocket API, 3, 159

applications
adding event listeners, 178
sending messages, 179, 180, 182

browser support for, 176
building application

adding Geolocation code, 185
adding WebSocket code, 185
coding HTML file, 183, 185
location tracker, 182, 183
tracker HTML code, 188–190

building application
adding Geolocation code, 186

echo server, 167–169
definition, webSocket, 161
framing

broadcast server, 170
broadcast.py code, 175
components, 169
EchoHandler, 170
masking, 169
server communication, 176
websocket.py, 170–175
WebSocketConnection, 170

handshake, 161, 162
interface, 163
network traffic and latency

half-duplex polling solution, 166, 167
HTTP request header, 164, 165
HTTP response header, 165
network overhead, 165
polling, 164, 165
vs. polling solution, 166
reduction, 166
XMLHTTPRequest, 164

protocol, 161, 162
real-time and HTTP

complexity applications, 160
long-polling, 160
polling, 160
request and response headers, 160
streaming, 160
web server, 159

transport protocol, 161
using

begin, 176
creating WebSocket object and

connecting to WebSocket server, 177
WebSocketConnection, 170
WebSocketConnection instance, 169
width attribute, 95
Wi-Fi geolocation data, 110

 INDEX

332

willValidate attribute, 207
Window object, 269
window.openDatabase() function, 287
window.orientation property, 317
window.WebSocket command, 176
World Wide Web Consortium (W3C), 1, 3

 X, Y
XForms, 194
XMLHttpRequest, 146, 164
XMLHttpRequest Level 2

application in action, 156
browser support, 150

client-side vs. server-side aggregation, 148
code for application, 154
cross-origin communication, 147, 149
progress events, 149, 150
using, 150

binary data, 152
building application, 152–154
making cross-origin requests, 151
progress events, 151

 Z
Z-order, 47

Pro HTML5
Programming

Second Edition

  

PETER LUBBERS
BRIAN ALBERS
FRANK SALIM

Pro HTML5 Programming, Second Edition

Copyright © 2011 by Peter Lubbers, Brian Albers, and Frank Salim

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

The W3C logo on the front cover is licensed under Creative Commons Attribution 3.0. The Creative Commons
license applies to the use of the logo provided on the front cover and no other content from this book.

ISBN-13 (pbk): 978-1-4302-3864-5

ISBN-13 (electronic): 978-1-4302-3865-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Tony Pye
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editors: Debra Kelly and Jennifer L. Blackwell
Copy Editors: Heather Lang, Andy Rosenthal, and Nancy Sixsmith
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Illustrations by: Peter Cohen
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to

www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

For my beautiful wife, Vittoria,

and for my sons, Sean and Rocky. I am so proud of you!
And to our cat—Cornelius—may you rest (and hunt) in peace.

—Peter Lubbers

For John. You make it all worthwhile.

—Brian Albers

For people who still read books.

—Frank Salim

v

Contents

 Foreword... xv
 About the Authors.. xvi
 About the Technical Reviewer .. xvii
 Acknowledgments ... xviii
 Introduction ... xix
 Chapter 1: Overview of HTML5..1

The Story So Far—The History of HTML5..1
The Myth of 2022 and Why It Doesn’t Matter ..2

Who Is Developing HTML5? ...3
A New Vision..3

Compatibility and Paving the Cow Paths .. 3
Utility and the Priority of Constituencies .. 3
Interoperability Simplification .. 4
Universal Access .. 5

A Plugin–Free Paradigm ..5
What’s In and What’s Out? ... 6

What’s New in HTML5?..8
New DOCTYPE and Character Set... 8
New and Deprecated Elements .. 9
Semantic Markup ... 10
Simplifying Selection Using the Selectors API.. 17
JavaScript Logging and Debugging.. 19

 CONTENTS

vi

window.JSON ... 20
DOM Level 3 ... 21
Monkeys, Squirrelfish, and Other Speedy Oddities .. 21

Summary ...22

 Chapter 2: Using the Canvas API ..23

Overview of HTML5 Canvas ...23
History .. 23
What Is a Canvas? .. 24
Canvas Coordinates.. 24
When Not to Use Canvas .. 25
Fallback Content... 25
CSS and Canvas.. 26
Browser Support for HTML5 Canvas... 26

Using the HTML5 Canvas APIs ...26
Checking for Browser Support ... 27
Adding a Canvas to a Page ... 27
Applying Transformations to Drawings .. 30
Working with Paths .. 32
Working with Stroke Styles .. 34
Working with Fill Styles .. 35
Filling Rectangular Content .. 36
Drawing Curves .. 37
Inserting Images into a Canvas .. 39
Using Gradients .. 41
Using Background Patterns .. 43
Scaling Canvas Objects .. 44
Using Canvas Transforms... 46
Using Canvas Text .. 48

 CONTENTS

vii

Applying Shadows . .. 50
Working with Pixel Data 52
Implementing Canvas Security. ... 54

Building an Application with HTML5 Canvas . ..55
Practical Extra: Full Page Glass Pane 58
Practical Extra: Timing Your Canvas Animation. .. 58

Summary . ..61

 Chapter 3: Working with Scalable Vector Graphics..63

Overview of SVG63
History . .. 63
Understanding SVG. ... 64
Scalable Graphics. ... 66
Creating 2D Graphics with SVG . .. 66
Adding SVG to a Page 67
Simple Shapes. .. 67
Transforming SVG Elements 68
Reusing Content 69
Patterns and Gradients 70
SVG Paths 71
Using SVG Text 72
Putting the Scene Together . .. 73

Building an Interactive Application with SVG. ..74
Adding Trees. ... 75
Adding the updateTrees Function. ... 75
Adding the removeTree Function 76
Adding the CSS Styles . .. 76
The Final Code. .. 77

Summary . ..81

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 CONTENTS

viii

 Chapter 4: Working with Audio and Video ..83

Overview of Audio and Video ...83
Video Containers... 83
Audio and Video Codecs ... 84
Audio and Video Restrictions.. 85
Browser Support for Audio and Video .. 86

Using the Audio and Video API...86
Checking for Browser Support ... 87
Accessibility.. 88
Understanding Media Elements.. 89
Working with Audio .. 94
Working with Video... 95
Practical Extras... 103

Summary ...106

 Chapter 5: Using the Geolocation API ...107

About Location Information ...107
Latitude and Longitude Coordinates... 107
Where Does Location Information Come From? ... 108
IP Address Geolocation Data .. 109
GPS Geolocation Data ... 109
Wi-Fi Geolocation Data ... 110
Cell Phone Geolocation Data... 110
User–Defined Geolocation Data.. 111

Browser Support for Geolocation...111
Privacy ...112

Triggering the Privacy Protection Mechanism.. 113
Dealing with Location Information.. 114

 CONTENTS

ix

Using the Geolocation API..114
Checking for Browser Support ... 114
Position Requests ... 115

Building an Application with Geolocation ..120
Writing the HTML Display ... 122
Processing the Geolocation Data.. 123
The Final Code.. 126

Practical Extras..129
What’s My Status?.. 130
Show Me on a Google Map... 131

Summary ...133

 Chapter 6: Using the Communication APIs ...135

Cross Document Messaging ..135
Understanding Origin Security.. 138
Browser Support for Cross Document Messaging.. 139
Using the postMessage API .. 139
Building an Application Using the postMessage API .. 140

XMLHttpRequest Level 2..146
Cross-Origin XMLHttpRequest .. 147
Progress Events.. 149
Browser Support for HTML5 XMLHttpRequest Level 2 ... 150
Using the XMLHttpRequest API... 150
Building an Application Using XMLHttpRequest ... 152

Practical Extras..156
Structured Data .. 156
Framebusting ... 157

Summary ...157

 CONTENTS

x

 Chapter 7: Using the WebSocket API ..159

Overview of WebSocket...159
Real-Time and HTTP... 159
Understanding WebSocket ... 161

Writing a Simple Echo WebSocket Server ...167

Using the WebSocket API ..176
Checking for Browser Support ... 176
Basic API Usage.. 177

Building a WebSocket Application...182
Coding the HTML File.. 183
Adding the WebSocket Code .. 185
Adding the Geolocation Code.. 185
Putting It All Together... 186
The Final Code.. 188

Summary ...191

 Chapter 8: Using the Forms API..193

Overview of HTML5 Forms...193
HTML Forms Versus XForms .. 194
Functional Forms.. 194
Browser Support for HTML5 Forms .. 194
An Input Catalog ... 195

Using the HTML5 Forms APIs...200
New Form Attributes and Functions ... 200
Checking Forms with Validation ... 204
Validation Feedback ... 207

Building an Application with HTML5 Forms...209
Practical Extras... 213

 CONTENTS

xi

Summary ...215

 Chapter 9: Working with Drag-and-Drop ..217

Web Drag-and-Drop: The Story So Far ..217

Overview of HTML5 Drag-and-Drop...218
The Big Picture ... 218
Events to Remember .. 221
Drag Participation... 224
Transfer and Control... 224

Building an Application with Drag-and-Drop...225
Getting Into the dropzone ... 234

Handling Drag-and-Drop for Files..235

Practical Extras..239
Customizing the Drag Display... 239

Summary ...240

 Chapter 10: Using the Web Workers API...241

Browser Support for Web Workers ..242
Using the Web Workers API ...242

Checking for Browser Support ... 242
Creating Web Workers.. 243
Loading and Executing Additional JavaScript .. 244
Communicating with Web Workers .. 244

Coding the Main Page..245
Handling Errors... 246
Stopping Web Workers ... 247
Using Web Workers within Web Workers ... 247
Using Timers... 248
Example Code... 248

 CONTENTS

xii

Building an Application with Web Workers..250
Coding the blur.js Helper Script.. 252
Coding the blur.html Application Page ... 253
Coding the blurWorker.js Web Worker Script ... 254
Communicating with the Web Workers .. 254
The Application in Action.. 256
Example Code... 257

Summary ...261

 Chapter 11: Using the Storage APIs..263

Overview of Web Storage ..263
Browser Support for Web Storage...264

Using the Web Storage API ..264
Checking for Browser Support ... 264
Setting and Retrieving Values .. 266
Plugging Data Leaks... 267
Local Versus Session Storage .. 269
Other Web Storage API Attributes and Functions ... 269
Communicating Web Storage Updates ... 272
Exploring Web Storage ... 273

Building an Application with Web Storage...275

The Future of Browser Database Storage..286
The Web SQL Database .. 286
The Indexed Database API .. 289

Practical Extras..291
JSON Object Storage .. 291
A Window into Sharing ... 292

Summary ...293

 CONTENTS

xiii

 Chapter 12: Creating Offline Web Applications..295

Overview of HTML5 Offline Web Applications..295
Browser Support for HTML5 Offline Web Applications ... 297

Using the HTML5 Application Cache API..297
Checking for Browser Support ... 297
Creating a Simple Offline Application... 298
Going Offline ... 298
Manifest Files ... 299
The ApplicationCache API... 300
Application Cache in Action.. 301

Building an Application with HTML5 Offline Web Applications......................................303
Creating a Manifest File for the Application Resources.. 306
Creating the HTML Structure and CSS for the UI .. 306
Creating the Offline JavaScript... 307
Check for ApplicationCache Support .. 309
Adding the Update Button Handler ... 309
Add Geolocation Tracking Code.. 310
Adding Storage Code.. 310
Adding Offline Event Handling .. 311

Summary ...311

 Chapter 13: The Future of HTML5 ...313

Browser Support for HTML5 ..313
HTML Evolves ..313

WebGL .. 314
Devices ... 316
Audio Data API .. 316
Touchscreen Device Events.. 317
Peer-to-Peer Networking.. 320

 CONTENTS

xiv

Ultimate Direction... 320
Summary ...320

 Index ...323

 xv

Foreword

In June 2004, representatives from the semantic web community, major browser vendors, and the W3C
met in San Jose, California to discuss the standards body’s response to the rise of web applications. At
the end of the second day, a vote was held to decide whether the W3C should augment HTML and the
DOM to address the new requirements of web applications. Minutes from the event record the
anonymous and curious result, “8 for, 14 against.”

This schism lead to a divergence in effort: two days later, the WHATWG was formed from the major
browser vendors to solve emerging issues. Meanwhile, the W3C pushed forward with the XHTML2
specification, only to drop it five years later to focus on an aligned HTML5 effort with the WHATWG.

Now, seven years since, we stand to benefit greatly from the passionate minds that have designed
HTML5. The features both codify de facto standards that have been in use for years and lay the
groundwork for next-generation web applications. Putting them to use means a more engaging and
responsive web experience for your users and, oftentimes, far less code for you.

In this book, you'll find a well-designed learning curve bringing you up to speed on the features
within HTML5 and its associated specifications. You'll learn best practices of feature detection,
appropriate use cases, and a lot of the whys that you won’t find in the specifications. The code examples
are not plain, trivial uses of each API but instead lead you through building actual web applications. I
hope this book is able to serve you well, and I hope you’ll be as excited about the next generation of the
web as I am.

Paul Irish

Google Chrome Developer Advocate,
Modernizr & HTML5 Boilerplate Developer

 xvi

About the Authors

 Peter Lubbers is the senior director of technical communication
at Kaazing. An HTML5 and WebSockets enthusiast, Peter is a
frequent speaker at international events and teaches HTML5
training courses worldwide. Prior to joining Kaazing, Peter worked
for almost ten years as an information architect at Oracle, where
he wrote award-winning books and developed patent-pending
software solutions. A native of the Netherlands, Peter served as a
Special Forces commando in the Royal Dutch Green Berets. Peter
lives on the edge of the Tahoe National Forest in California, and in
his spare time, he bungee jumps and runs ultramarathons. And,
yes, he owns the original HTML5 license plate. You can follow
Peter on Twitter (@peterlubbers).

  Brian Albers is the vice president of research and development at Kaazing.
His career in web development spans a decade and a half, including his most
recent position as a senior development manager at Oracle. Brian is a regular
speaker at conferences, such as Web 2.0 Expo, AJAXWorld Expo, and JavaOne,
where he focuses on Web and user interface technologies. A native Texan and
current California resident, Brian spends as much time as possible escaping to
Hawaii. When he cannot relax on the beach, Brian can be found frequenting a
variety of virtual worlds in his spare time.

 Frank Salim is one of the original engineers at Kaazing who helped craft the
WebSockets gateway and client strategy. Frank is a San Diego native currently
residing in Mountain View, California. He holds a degree in computer science
from Pomona College. When he is not programming, Frank enjoys reading,
painting, and inline skating.

xvii

About the Technical Reviewer

� Tony Pye has a background in software consultancy, web
development, and engineering. However, instead of taking his technical
expertise into manufacturing, he took the path to geekdom and in 2003
became a partner and Head of Development at INK Digital Agency, one
of the UK’s top 100 creative agencies*

As well as having an extensive knowledge of current software and
coding standards, Tony keeps a sharp eye to the future, watching for
emerging technologies, thus ensuring his development team remains at
the forefront of an ever-changing digital landscape. Although businesses
face many challenges, Tony has the underpinning knowledge and
experience to define their technical problems and produce innovative
digital solutions for a range of commercial environments. While he is

particularly proud of his mobile application development and a self-service touchscreen kiosk web
application, which was a first for the fitness industry, he is very coy when it comes to talking about his
development work on multi-million pound e-commerce web sites. Generally, though, Tony is a
“thoroughly good egg,” and for anyone that has a digital dilemma he is the man that can find a solution.
If you’d like to talk to Tony about digital development or anything else for that matter; drop him a line:
tony@inkdigitalagency.com.

*Recognized by the 2010 Recommended Agencies Register survey

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

mailto:tony@inkdigitalagency.com

xviii

Acknowledgments

I’d like to thank my wife, Vittoria, for her love and patience, and my talented sons, Sean and Rocky—
reach for the stars, boys!

Thanks to my parents, Herman and Elisabeth, my sister, Alice, and my brother, David, for always
believing in me, and to my late grandmother Gebbechien whose courageous acts during the Nazi
occupation of Holland were a great lesson to our family.

To my coauthors, the never-tiring Brian and the code-generating human Frank, it has been an
honor to work with both of you.

Thanks also to Clay at Apress for all your support, and, finally, thanks to Jonas and John at Kaazing
for pushing us to write a “real” book—an “unofficial e-book” would still be just a figment of our
imagination, I am sure!

—Peter Lubbers

To my parents, Ken and Patty Albers, I offer my deepest love and appreciation for the sacrifices you
made to bring me so many opportunities. Without your encouragement and the values you instilled in
me, I would never have completed this or any other major life journey. You’ve been guiding me every
step of the way.

To John, my deepest thanks for your patience every time that extra hour of work stretched to two,
three, or more. You amaze and inspire me.

To Pitch, Bonnie, and Penelope, a scritch on the chin and a promise that dinner won’t be so late any
more. To the cats who came before, your purrs stay with me.

To my coworkers at Kaazing, much appreciation for the chance to work with the best and the
brightest.

And a special thanks to the editorial staff at Apress for first believing that the time was right for an
HTML5 book and then for having patience with us while we attempted to document a rapidly moving
target.

—Brian Albers

I’d like to thank my parents, Mary and Sabri, who are responsible for my existence and without whom
this book would literally not be possible.

—Frank Salim

xix

Introduction

HTML5 is brand new. Indeed, it isn’t even completely finished yet. And if you listen to some ornery
pundits, they’ll tell you that HTML5 won’t be ready for ten years or more!

Why, then, would anyone think that now’s the time for a book called Pro HTML5 Programming?
That’s easy. Because for anyone who’s looking for an extra edge to make your web application stand
above the rest, the time for HTML5 is right now. The authors of this book have been working with,
developing, and teaching HTML5 technologies for more than two years now and can claim with
certainty that adoption of the new standards is accelerating at dizzying speeds. Even over the course of
writing this book, we’ve been forced to continually update chapters and reevaluate our assumptions
about what is ready to use.

Most users don’t really understand the power that’s available in the browsers they are now using.
Yes, they might notice some minor interface enhancement after their favorite browser has automatically
updated. But they might have no idea that this new browser version just introduced a free-form drawing
canvas or real-time network communication, or any number of other potential upgrades.

With this book, we aim to help you unlock the power HTML5.

Who This Book Is For
The content in this book is intended for the experienced web application developer who is familiar with
JavaScript programming. In other words, we won’t be covering the basics of web development in this
text. There are many existing resources to get you up to speed in the fundamentals of web programming.
That said, if you see yourself in any of the following bullets, this book will likely provide you with useful
insight and information you are looking for:

• You sometimes find yourself thinking, “If only my browser could. . .”

• You find yourself using page source and developer tools to dissect a particularly
impressive website.

• You enjoy reading the release notes of the latest browser updates to find out
what’s new.

• You are looking for ways to optimize or streamline your applications.

• You are willing to tailor your website to provide the best possible experience for
users on relatively recent browsers.

If any of these apply to you, this book may be a good fit with your interests.
While we take care to point out the limitations of browser support where appropriate, our aim is not

to give you elaborate workarounds to make your HTML5 application run seamlessly on a ten-year-old
browser. Experience has shown that the workarounds and baseline browser support are evolving so
rapidly that a book like this is not the best vehicle for such information. Instead, we will focus on the

  INTRODUCTION

xx

specification of HTML5 and how to use it. Detailed workarounds can be found on the Internet and will
become less necessary over time.

An Overview of This Book
The thirteen chapters of this book cover a selection of popular, useful, and powerful HTML5 APIs. In
some cases, we have built on the capabilities introduced in earlier chapters to provide you with richer
demonstrations.

Chapter 1, “Introduction to HTML5,” starts off with the background of past and current versions of
the HTML specification. The new high-level semantic tags are presented, along with basic changes and
the rationale behind all the recent developments in HTML5. It’s good to know this terrain.

Chapter 2, “Using the Canvas API”, Chapter 3, “Working with SVG,” and Chapter 4, “Working with
Audio and Video,” describe the new visual and media elements. In these chapters, the focus is on finding
simpler ways to spruce up your user interface without plugins or server-side interaction.

Chapter 5, “Using the Geolocation API,” introduces a truly new feature that was not easily emulated
before now—the ability for an application to identify the user’s current location and use that to
customize the experience. Privacy is important here, so we cover some of the caveats, as well.

The next two chapters, “Using the Communication APIs” and “Using the WebSocket API,” present
increasingly powerful ways that HTML5 lets you communicate with other websites and stream real-time
data to an application with both simplicity and minimal overhead. The techniques in these chapters will
enable you to simplify the many overly complex architectures deployed on the Web today.

Chapter 8, “Using the Forms API,” presents you with minimal tweaks you can make to your desktop
or mobile web applications today to increase usability, as well as more fundamental changes you can
make to detect page entry errors in very common usage scenarios. Chapter 9, “Using the Drag and Drop
API,” elaborates on the new Drag and Drop API features and shows how you can use them.

Chapters 10, 11, and 12—“Using the Web Workers API,” “Using the Storage API,” and “Creating
Offline Web Applications”—deal with the internal plumbing of your applications. Here, you will find
ways to optimize the existing functionality to obtain better performance and better data management.

Finally, Chapter 13, “The Future of HTML5,” will give you a tasty preview of what’s still to come.

Example Code and Companion Web Site
The code for the examples shown in this book is available online in the Source Code section of the
Apress web site. Visit www.apress.com, click Source Code, and look for this book’s title. You can download
the source code from this book’s home page. In addition, we are hosting a companion site for the book
at www.prohtml5.com, from which you can also download the sample code and some practical extras.

Contacting the Authors
Thank you for buying this book. We hope you enjoy reading it and that you find it a valuable resource.
Despite our best effort to avoid errors, we realize that things sometimes slip through the cracks, and
we’d like to express, in advance, our regrets for any such slip-ups. We welcome your personal feedback,
questions, and comments regarding this book’s content and source code. You can contact us by sending
us e-mail at prohtml5@gmail.com.

http://www.apress.com
http://www.prohtml5.com
mailto:prohtml5@gmail.com

	Cover
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	An Overview of This Book
	Example Code and Companion Web Site
	Contacting the Authors

	Overview of HTML5
	The Story So Far—The History of HTML5
	The Myth of 2022 and Why It Doesn’t Matter
	Who Is Developing HTML5?
	A New Vision
	Compatibility and Paving the Cow Paths
	Utility and the Priority of Constituencies
	Interoperability Simplification
	Universal Access

	A Plugin–Free Paradigm
	What’s In and What’s Out?

	What’s New in HTML5?
	New DOCTYPE and Character Set
	New and Deprecated Elements
	Semantic Markup
	Simplifying Selection Using the Selectors API
	JavaScript Logging and Debugging
	window.JSON
	DOM Level 3
	Monkeys, Squirrelfish, and Other Speedy Oddities

	Summary

	Using the Canvas API
	Overview of HTML5 Canvas
	History
	What Is a Canvas?
	Canvas Coordinates
	When Not to Use Canvas
	Fallback Content
	CSS and Canvas
	Browser Support for HTML5 Canvas

	Using the HTML5 Canvas APIs
	Checking for Browser Support
	Adding a Canvas to a Page
	Applying Transformations to Drawings
	Working with Paths
	Working with Stroke Styles
	Working with Fill Styles
	Filling Rectangular Content
	Drawing Curves
	Inserting Images into a Canvas
	Using Gradients
	Using Background Patterns
	Scaling Canvas Objects
	Using Canvas Transforms
	Using Canvas Text
	Applying Shadows
	Working with Pixel Data
	Implementing Canvas Security

	Building an Application with HTML5 Canvas
	Practical Extra: Full Page Glass Pane
	Practical Extra: Timing Your Canvas Animation

	Summary

	Working with Scalable Vector Graphics
	Overview of SVG
	History
	Understanding SVG
	Scalable Graphics
	Creating 2D Graphics with SVG
	Adding SVG to a Page
	Simple Shapes
	Transforming SVG Elements
	Reusing Content
	Patterns and Gradients
	SVG Paths
	Using SVG Text
	Putting the Scene Together

	Building an Interactive Application with SVG
	Adding Trees
	Adding the updateTrees Function
	Adding the removeTree Function
	Adding the CSS Styles
	The Final Code

	Summary

	Working with Audio and Video
	Overview of Audio and Video
	Video Containers
	Audio and Video Codecs
	Audio and Video Restrictions
	Browser Support for Audio and Video

	Using the Audio and Video API
	Checking for Browser Support
	Accessibility
	Understanding Media Elements
	Working with Audio
	Working with Video
	Practical Extras

	Summary

	Using the Geolocation API
	About Location Information
	Latitude and Longitude Coordinates
	Where Does Location Information Come From?
	IP Address Geolocation Data
	GPS Geolocation Data
	Wi-Fi Geolocation Data
	Cell Phone Geolocation Data
	User–Defined Geolocation Data

	Browser Support for Geolocation
	Privacy
	Triggering the Privacy Protection Mechanism
	Dealing with Location Information

	Using the Geolocation API
	Checking for Browser Support
	Position Requests

	Building an Application with Geolocation
	Writing the HTML Display
	Processing the Geolocation Data
	The Final Code

	Practical Extras
	What’s My Status?
	Show Me on a Google Map

	Summary

	Using the Communication APIs
	Cross Document Messaging
	Understanding Origin Security
	Browser Support for Cross Document Messaging
	Using the postMessage API
	Building an Application Using the postMessage API

	XMLHttpRequest Level 2
	Cross-Origin XMLHttpRequest
	Progress Events
	Browser Support for HTML5 XMLHttpRequest Level 2
	Using the XMLHttpRequest API
	Building an Application Using XMLHttpRequest

	Practical Extras
	Structured Data
	Framebusting

	Summary

	Using the WebSocket API
	Overview of WebSocket
	Real-Time and HTTP
	Understanding WebSocket

	Writing a Simple Echo WebSocket Server
	Using the WebSocket API
	Checking for Browser Support
	Basic API Usage

	Building a WebSocket Application
	Coding the HTML File
	Adding the WebSocket Code
	Adding the Geolocation Code
	Putting It All Together
	The Final Code

	Summary

	Using the Forms API
	Overview of HTML5 Forms
	HTML Forms Versus XForms
	Functional Forms
	Browser Support for HTML5 Forms
	An Input Catalog

	Using the HTML5 Forms APIs
	New Form Attributes and Functions
	Checking Forms with Validation
	Validation Feedback

	Building an Application with HTML5 Forms
	Practical Extras

	Summary

	Working with Drag-and-Drop
	Web Drag-and-Drop: The Story So Far
	Overview of HTML5 Drag-and-Drop
	The Big Picture
	Events to Remember
	Drag Participation
	Transfer and Control

	Building an Application with Drag-and-Drop
	Getting Into the dropzone

	Handling Drag-and-Drop for Files
	Practical Extras
	Customizing the Drag Display

	Summary

	Using the Web Workers API
	Browser Support for Web Workers
	Using the Web Workers API
	Checking for Browser Support
	Creating Web Workers
	Loading and Executing Additional JavaScript
	Communicating with Web Workers

	Coding the Main Page
	Handling Errors
	Stopping Web Workers
	Using Web Workers within Web Workers
	Using Timers
	Example Code

	Building an Application with Web Workers
	Coding the blur.js Helper Script
	Coding the blur.html Application Page
	Coding the blurWorker.js Web Worker Script
	Communicating with the Web Workers
	The Application in Action
	Example Code

	Summary

	Using the Storage APIs
	Overview of Web Storage
	Browser Support for Web Storage
	Using the Web Storage API
	Checking for Browser Support
	Setting and Retrieving Values
	Plugging Data Leaks
	Local Versus Session Storage
	Other Web Storage API Attributes and Functions
	Communicating Web Storage Updates
	Exploring Web Storage

	Building an Application with Web Storage
	The Future of Browser Database Storage
	The Web SQL Database
	The Indexed Database API

	Practical Extras
	JSON Object Storage
	A Window into Sharing

	Summary

	Creating Offline Web Applications
	Overview of HTML5 Offline Web Applications
	Browser Support for HTML5 Offline Web Applications

	Using the HTML5 Application Cache API
	Checking for Browser Support
	Creating a Simple Offline Application
	Going Offline
	Manifest Files
	The ApplicationCache API
	Application Cache in Action

	Building an Application with HTML5 Offline Web Applications
	Creating a Manifest File for the Application Resources
	Creating the HTML Structure and CSS for the UI
	Creating the Offline JavaScript
	Check for ApplicationCache Support
	Adding the Update Button Handler
	Add Geolocation Tracking Code
	Adding Storage Code
	Adding Offline Event Handling

	Summary

	The Future of HTML5
	Browser Support for HTML5
	HTML Evolves
	WebGL
	Devices
	Audio Data API
	Touchscreen Device Events
	Peer-to-Peer Networking
	Ultimate Direction

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

