

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

 i

Pro iOS Design and
Development

HTML5, CSS3, and JavaScript with Safari

■ ■ ■

Andrea Picchi

Pro iOS Web Design and Development: HTML5, CSS3, and JavaScript with Safari

Copyright © 2011 by Andrea Picchi

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3246-9

ISBN-13 (electronic): 978-1-4302-3247-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor:Matthew Moodie
Technical Reviewer: Daniel Paterson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Morgan Engel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Ginny Munroe
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Servies
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

To my parents, Gianni and Carla, for their endless support.

To my fiancée and “Mia Principessa,” Simona, source of strength, love, and will.

—Andrea Picchi

iv

Contents at a Glance

Contents .. v

About the Author .. xi

About the Technical Reviewer .. xii

Acknowledgments ... xiii

Preface ... xiv

Introduction ... xxv

■Chapter 1: Think Mobile Touch .. 1

■Chapter 2: Agile Project Building for iOS Devices ... 9

■Chapter 3: Web Development for iOS Devices ... 51

■Chapter 4: User Interface Design for iOS Devices 121

■Chapter 5: iPhone UI Design: Think Simple ... 179

■Chapter 6: iPad UI Design: Think Inverted ... 203

■Chapter 7: Web Standards for WebKit: Maximizing Mobile Safari 243

■Chapter 8: Native iOS Environment Development .. 319

■Chapter 9: Native iOS Design Implementation ... 347

■Chapter 10: Optimizing iOS WebApps .. 361

■Chapter 11: Testing iOS WebApps ... 389

■Chapter 12: Maximizing the Market for iOS WebApps 413

■Chapter 13: Looking Beyond the Mobile Web to Ubiquitous Computing 427

Index ... 437

v

Contents

Contents at a Glance .. iv
About the Author .. xi
About the Technical Reviewer .. xii
Acknowledgments ... xiii
Preface ... xiv
Introduction ... xxv

■Chapter 1: Think Mobile Touch .. 1

Why the Mobile Web? ... 1
From Desktop to Mobile ... 2
Mobile Market .. 4
Why Mobile Now? .. 5
A Mobile-Oriented Approach .. 6
Mobile-Oriented Guidelines ... 6

Apple’s Mobile Hardware .. 8
Summary .. 8

Agile Project Building for iOS Devices .. 9
Implementing a Mobile Information Architecture ... 9

What Is Information Architecture and Why Is It Important? ... 10
Abiding by the Golden Rules of Mobile Strategy .. 21
Content-Out Approach ... 22
Representing an Information Architecture with a Site Map ... 23
Sketching an Information Architecture with Wireframes ... 26
Visualizing Interactions Through Prototypes .. 28

Systematic Approach to Mobile Design .. 31
Accessibility in Apple Devices ... 32
Usability in iOS Devices ... 36
iPhone Page Model .. 40
iPhone User Interface ... 41
iPad Block Model ... 44
iPad User Interface .. 47
Tools for Apple Mobile Design ... 49

Summary .. 50

■ CONTENTS

vi

Web Development for iOS Devices .. 51
Web Development Tools ... 52

Development Frameworks ... 52
Mobile Web Site ... 60

Mobile Applications ... 60
Web Development Model .. 61

Web Development Model: Pros and Cons .. 62
Four Different Approaches to a WebApp .. 66
WebApp and Native App: What Makes the Difference for the User ... 69
Web Standards: HTML, CSS, and JavaScript ... 73
Browser Support for Standards: WebKit and Safari ... 106

SDK Development Model .. 115
Apple’s Objective-C, Cocoa Touch, and Xtools Model .. 115
Hi, I’m a Mac .. 118
Tools and Frameworks for Apple Mobile Development ... 119

Summary .. 120

User Interface Design for iOS Devices .. 121
User Interface Design ... 121

What Is an Interface? ... 123
Everything Is an Interface .. 125
Negative Space .. 130
Color Psychology .. 138
The Interface Hierarchy ... 147
Reading Patterns ... 148
The User Interface Design Process .. 157

iPhone and iPad Compatible User Interface Design .. 160
Research .. 161
Structure .. 164
Aesthetic .. 167
Interaction .. 168
Deliverables ... 170

iPad Native-Like User Interface Design .. 170
Research .. 170
Structure .. 171
Aesthetic .. 172
Interaction .. 173
Deliverables ... 173

iPhone Native-Like User Interface Design .. 173
Research .. 174
Structure .. 174
Aesthetic .. 176
Interaction .. 176
Deliverable ... 177
Tools for User Interface Design .. 177

Summary .. 178

iPhone UI Design: Think Simple .. 179
User Interface Sketching .. 179

■ CONTENTS

vii

Think Simple ... 180
The iPhone is an On-the-Go Device ... 180
The Essence of the iPhone Page Model ... 180
iPhone Limitations ... 181
The Nature of Users’ Cognitive Resources ... 181

Anatomy of Sketching ... 181
Design Using Tools ... 184

Explore the Balsamiq Mockups Interface .. 185
Represent Connections .. 187

Designing with Adobe Fireworks .. 188
Creating a Canvas .. 189
Organize Levels .. 191
Layout Design .. 192
Interface Design ... 193
Reuse Design ... 198
Tools for User Interface Design .. 201

Summary .. 201

iPad UI Design: Think Inverted ... 203
User Interface Sketching .. 203
Think Inverted ... 204

Inverted Simplicity ... 205
Remove and Prioritize .. 206
Hide and Shape .. 207
Shrink and Group ... 209
Key Points of the Simplicity-Complexity Paradox .. 210
Sketching the UI ... 210

Design Using Tools ... 213
Design with Adobe Fireworks ... 219

iPad-Compatible Version ... 220
iPad Native-Like Version .. 233

Summary .. 242

Web Standards for WebKit: Maximizing Mobile Safari 243
Comparing iPhone and iPad for Web Presentation ... 244
HTML5 ... 244

HTML5 Markup Syntax ... 244
HTML5 Re-Definitions .. 246
HTML5 Semantics .. 246
HTML5 Media ... 249

CSS3 ... 272
Prefixes .. 273
Rounded Borders ... 274
Border Images ... 274
Gradients .. 275
Box Sizing .. 276
Box Shadow ... 277
Outline .. 278
Background Size .. 278

■ CONTENTS

viii

Background Origin ... 279
Multiple Backgrounds .. 279
Text Shadow .. 280
Text Overflow ... 281
Word Wrapping .. 281
Web Fonts .. 282
Tap Highlight .. 282
Multiple Columns ... 283
Spanning Columns ... 284
Transitions ... 284
Transforms ... 285
Animation ... 286
Keyframes .. 289
Reflections ... 289

Javascript ... 290
Adding Javascript to a Webpage ... 292
Javascript Structure .. 293
Data Categories ... 293
Reserved Words ... 295
Variables .. 296
Operators ... 298
Conditional Statements .. 300
Loop Statements .. 302
Functions ... 303
Variable Scope ... 304
Arrays ... 305
Strings ... 307
Objects ... 308
BOM (Browser Object Model) ... 309
DOM (Document Object Model) .. 310
Compare DOM and HTML Structure ... 312
Working with DOM ... 314
Some Javascript Best Practices .. 316
Resource on Web Standards .. 317

Summary .. 318

Native iOS Environment Development .. 319
Setting up the Environment .. 319
Defining Viewport ... 321
Full-Screen Mode Application ... 323
Adding the Springboard Icon .. 324
Application Startup Image .. 325
Application Redirecting ... 326
Setting up the Head Section ... 327
Native Link Emulation ... 328
Native Text Emulation ... 328
Native Element Emulation ... 329
Native Scrolling Emulation .. 330
Native iOS Service Interaction .. 330

■ CONTENTS

ix

The Phone Application ... 330
The Mail Application .. 331
The SMS Application .. 332
The Maps Application .. 332

Touch Events and Gesture Interactions .. 334
Touch Event Paradigm: Touch Is Not a Click ... 334
Native and Customized Touch Event Handler .. 339
Create Touchable Design Elements ... 340
Orientation Change Event .. 340
Orientation Change Media Query ... 342

Expand a Framework for iOS .. 343
Resources for Coding .. 345
Summary .. 345

Native iOS Design Implementation ... 347
iPhone Page Model Implementation ... 347
Implement the Native-Like Page Structure ... 347
iPhone Native Interface Emulation .. 348

The Top Bar Section ... 349
The Page Title Element .. 350
The Breadcrumb Bar .. 352
The Hero Content Area ... 353
The Menu Area ... 356
The Footer Section ... 358

Summary .. 360

Optimizing iOS WebApps .. 361
iPad and iPhone Compatibility .. 361
Performance Optimization .. 361

Code Optimization .. 362
Image Optimization .. 366
Application Compressing ... 369
Usability Optimization .. 371

Offline WebApp ... 375
The Manifest File ... 375

Mobile SEO .. 378
Anatomy of a Search Engine .. 379
Search Engine Oriented Design ... 380
Resource on Optimization and SEO ... 387

Summary .. 388

Testing iOS WebApps .. 389
Web Development Lifecycles .. 389
Web Application Testing ... 390
Agile Tests .. 391
Heat Map Tests ... 393
Organizing a Test .. 394

Creating Use-Cases ... 394
Creating the Assets .. 398

Performing a Test ... 400

■ CONTENTS

x

Paper Prototype ... 401
Electronic Prototype ... 403

Evaluating a Test .. 404
Variables and Feedback to Evaluate ... 405

Number of Touches .. 405
Number of Mistakes ... 406
Estimated Time of Arrival ... 406
Collecting Feedback ... 407
Evaluation Techniques ... 409

Resources on Testing ... 412
Summary .. 412

Maximizing the Market for iOS WebApps ... 413
Use Your Mobile Strategy ... 413
How to Promote Your WebApp .. 414

Use Beta Invitation Testers .. 414
Use Press Releases .. 415
Create a WebApp Web Site .. 415
Use E-mail Marketing .. 417
Create YouTube Video Tutorials ... 418
Submit to Apple WebApp Portal ... 419
Submit to Other WebApp Portals ... 420
Use the Virality of Social Networks .. 422

Monetizing a WebApp ... 424
Resources on WebApp Market .. 425
Summary .. 426

Looking Beyond the Mobile Web to Ubiquitous Computing 427
The Explosion of Mobile Devices, Wireless, and Cellular Communications .. 427
Next-Generation User Experience with Touchscreen and Multitouch Technology ... 428
New Technology, New Usability, and New Opportunity .. 429
How the Multitouch-Screen Revolution Will Change Next-Generation Computing ...430

From Domestic to Ubiquitous Computing and Ambient Intelligence ..432
Resources for Telecommunication and Ubiquitous Computing ... 434

Summary .. 434

Index ... 437

xi

About the Author

With a background in psychology (University of Padova) and computer science
(University of Pisa), Andrea Picchi started designing WebApps for the new
Apple device in 2007 when the first iPhone was launched on the market. After
the first release of the Apple SDK in 2008, he started developing Native Apps
using Objective-C.

He also worked with the SimBin Development Team AB on the videogame
RACE07—The Official WTCC Game project—and supported the group’s iPhone
iUI Developers, iPhoneWebDev and iPhone Application Development
course at Stanford University.

In recent years, Andrea Picchi has spoken at many important conferences
around Europe, twice at the WhyMCA Mobile Developer Conference with a talk
on “The Cognitive Paradigm of Touch-Screen Devices” and another on “A

Cognitive Approach to the User-Centered Design for Mobile Design and Development.” He also
spoke at IASummit with a speech on “Cognitive Design and Optimization of Touch-Screen
Interfaces” and at UXConference with a speech on “Cognitive Optimization of Mobile Touch
Contexts.”

In 2011 he also started to teach “iOS WebApps” in a course also available on iTunesU and
“Mobile Device Development” in a first-level Master, both organized by the Computer Science
Department of the University of Pisa.

Today, as a mobile project manager, his priority has been to implement a cognitive approach
to touch-screen interface design in both mobile and ubiquitous computing contexts. He also
continues his work designing and developing for iOS with both the web model (using HTML5,
CSS3, JavaScript) and SDK model (using Cocoa-Touch in Objective-C).

xii

About the Technical Reviewer

Daniel Paterson has a master’s degree in comparative literature, and he
penned a memoir on integrating literary theory into fictional works, taking
novels by Umberto Eco, Milan Kundera, and David Lodge as examples. After
his university years, Daniel entered web development and joined
Newsweb/Lagardère Active in April 2009. Passionate about the Web as about
many other things, he enjoys every opportunity to work on interesting projects
and to develop his skills.

xiii

Acknowledgments

This book could not have been written without the fine folks at Apress.
Steve Anglin, who started everything rolling by contacting me and offering this great

opportunity. Thanks, Steve. Adam Heath, who managed the project, and Kelly Moritz, who
organized my schedule and deadlines. The development editor, Matthew Moodie, and the
technical reviewer, Daniel Paterson, who drew on their experience to show me how to turn
something good into something great.

A very special thanks to Carl Willat and Clay Andres.
Carl Willat worked with me on the project from day one. Carl read and reviewed everything I

wrote in this book and helped me to explain all my ideas in more elegant and correct form.
Clay Andres’s unique combination of charisma, deep knowledge, and professionalism

inspires everyone around him. Clay is able to look beyond ordinary ways of thinking and see the
shortest path for bringing a project to success. I can’t image a better editorial director for any
author.

Finally, thanks to my parents, Gianni and Carla, for their endless support and to my fiancée,
Simona, for faithfully supporting me in all the bad and good moments and for being the center of
everything that has value in my life.

—Andrea Picchi

xiv

Preface

 “A journey of a thousand miles begins with a single step . . .”

—Lao-Tzu

Mobile Device Evolution
These are exciting times for those who live and work with technology every day, whether they are
young people who have been using technology since birth, or, like many others, have had to
adapt to it.

It is an exciting moment because in recent years there is no other example of technology that
has changed our lives so dramatically as has the evolution of the mobile device.

Since in knowing the past you’ll be more prepared to understand the present and help create
the future, in this book we’ll precede our discussion of how to get there with a short history of
smartphones, with our beloved iPhone or iPad in hand.

Humble Beginnings: The Early Mobile Web
Everything started in 1908, when Nathan B. Stubblefield of Murray, Kentucky was issued the first
USpatent for a wireless telephone.

Forty years later, the zero generation (0G) of mobile telephones was introduced. Mostly used
as car phones, they were meant to connect mobile users in cars to the fixed public telephone
network.

The zero generation was not officially categorized as mobile device technology since it did
not support the automatic change of channel frequency during calls (Handover), which would
allow the user to move from one cell (the present-day radio base station covered area) to another.

■ PREFACE

xv

Figure 1. The zerogeneration: Mobile car phone (1960s)

In the 1960s, a new full-duplex VHF/UHF radio system launched by Bell Systems, and
subsequently improved by AT&T, called “Improved Mobile Telephone Service” (IMTS), brought
many improvements, such as direct dialing rather than connection through an operator, and
higher bandwidth.

The first-generation (1G) cellular systems, developed between the late 1960s and the early
1970s, were analog, and still based on IMTS technology. The systems were “cellular” because
coverage areas were split into smaller hexagonal areas called “cells,” each of which were served
by a low-power transmitter and receiver.

NOTE: A cellular system is a radio network made up of a number of radio cells, each served by at
least one fixed-location transceiver (device that is both a transmitter and receiver) known as a
base station. These cells cover different areas and combine to provide radio transmission over a

wider range than that of one cell.

The simple structure of the cellular mobile-radio network consists of the following:

■ PSTN: Public switched telephone network

■ HLR: Home location register

■ MSC: Mobile switching center

■ VLR: Visitor location register

■ RBS: Radio base station

■ PREFACE

xvi

Figure 2. The common (and simple) PCS (Personal Communication Service) network architecture

The 1G analog systems for mobile communications saw two key improvements during 1070s: the
invention of the microprocessor, and the digitization of the control link between the mobile
phone and the cell site.

NOTE: A microprocessor incorporates most or all of the functions of a computer’s central

processing unit (CPU) on a single integrated circuit (IC or microchip).

In 1973 Dr. Martin Cooper at Motorola invented the first modern portable handset. Legend
has it that his first call was to his rival Joel Engel, head of research at Bell Labs, giving him the
news about how the competition between them had turned out.

The first commercial handheld cellular phone was launched by Motorola only ten years later
in 1983 and called DynaTAC. This brick-like phone had a weight of 28 ounces (0.8Kg) and a price
of “only” $4,000.

HISTORICAL NOTE: Martin Cooper, the inventor of world’s first cellular phone, the Motorola
DynaTAC, first had the idea from watching Captain James T. Kirk talk over his communicator in
the famous Star Trek TV series in the 1960s.

In today’s world, talking on the go seems normal, but back in the early 1960s when Star Trek

was first aired, most people’s phones worked only with cords.

Expanding Mobile’s Reach: GSM Device
The second generation (2G) ofdigital cellular systems was first developed at the end of the 1980s.
These systems digitized not only the control link but also the voice signal.

The new systems provided better quality and higher capacity at a lower cost to consumers.
GSM (Global System for Mobile Communication, originally Groupe Special Mobile) was the first
commercially operated digital system using TDMA protocol (time division multiple access) for its
channel access method.

■ PREFACE

xvii

NOTE: A channel access method allows several terminals connected to the same multi-point
transmission medium to transmit over and receive to share its capacity.

Fundamental forms of channel access schemes are as follows:

■ FDMA: Frequency division multiple access

■ TDMA: Time division multiple access

■ CDMA: Code division multiple access

■ SDMA: Space division multiple access

GSM networks pioneered low-cost implementation of the “Short Message Service” (SMS),
also known as text messaging, which has since been supported on other mobile phone standards
as well. The new GSM standard also includes a worldwide emergency telephone number
feature.This three-digit number is localized, and some countries have a different emergency
number for each of their various emergency services.A few common numbers are 112, 999, and
911.

In the 1990s, along with the new way of transmitting information, a new generation of small
100–200g handheld devices started replacing the brick-sized phones. This change was made
possible thanks to technological advancements that included smaller batteries and more energy-
efficient electronics. The 1990s were the glory years of Motorola, Inc. and itsfamous MicroTAC
phone, which was released in 1989 and remained a status symbol for almost a decade.

In 1997, the GSM system was extended with a packet data capability by the new GPRS
(general packet radio service), and again in 1999 with a higher-speed data transmission protocol
called EDGE (Enhanced Data Rates for GSM Evolution). Those two new versions of GSM protocol
were called 2.5G and 2.75G networks, respectively.

In the same year, Nokia launched 7110, the first terminal with WAP (Wireless Application
Protocol), which for the first time permitted Internet access directly from the phone. “A small
step for a protocol but a giant leap for mankind.”

NOTE: WAP 1.0 standard, released in 1998, describes a complete software stack for mobile
Internet access. Nokia was also a co-founding member of the WAP standard.

A WAP browser provides all the basic service of a computer-based web browser but is simplified

to operate within the restrictions of a mobile phone. Users can connect to WAP sites written in or
dynamically converted to WML (Wireless Markup Language) and access them via the WAP

browser.

After having released itsfirst phone in 1992 (the Nokia 1011), in the 2000s Nokia took control
of the mobile devices market from Motorola and, with 1.2 billion phones in use and more than
806 different devices made and sold, still leads it today.

■ PREFACE

xviii

Figure 3. The 2G generation: GSM devices (1990s)

Another Step Forward: UMTS Device
The third-generation (3G) systems promised faster communications services, including voice,
fax, and Internet anytime and anywhere, with seamless global roaming. 3G technologies were an
answer to the International Telecommunications Union’s IMT-2000 specification and were
originally supposed to be a single, unified, worldwide standard, but in practice the 3G world has
been split into three camps: UMTS, CDMA2000, and TD-SCDMA.

NOTE: The UMTS standards are as follows:

■ UMTS: Based on W-CDMA technology, it is the solution generally preferred by countries using
 GSM, centered in Europe. UMTS is managed by the 3GPP organization also responsible for

 GSM, GPRS, and EDGE.

■ CDMA2000: This is an outgrowth of the earlier 2G CDMA standard IS-95. CDMA2000’s
 primary proponents are outside the GSM zone in the Americas, Japan, and Korea. It is

 managed by 3GPP2, which is separate and independent from UMTS’s 3GPP.

■ TD-SCDMA: This technology is being developed in the People’s Republic of China by the

 companies Datang and Siemens.

The first (pre-commercial) 3G network was developed in Japan in 2001 and supported
144 Kbits of bandwidth with high-speed movement (e.g., vehicles), 384 Kbits (e.g., on campus),
and 2 Mbits for stationary use (e.g., in-building).

■ PREFACE

xix

NOTE: 3G systems are intended to provide a global mobility with a wide range of services
including telephony, paging, messaging, Internet, and broadband data. The simple structure of
the 3G network consists of the following:

IP: IP-based network
PSTN: Public switched telephone network
CN: Core network

UTRAN: UMTS Terrestrail Radio Access Network
VLR: Visitor location register

Figure 4. The common (and simple) PCS (Personal Communication Service) network architecture

The last evolution of 3G protocol is the HSDPA (high speed downlink packet access),
developed in 2005 and called 3.5G. 3.5G is a packet-based protocol data service in W-CDMA
downlink with data transmission up to 8–10 Mbits.

Expanding Mobile Capabilities: Smartphones
The first smartphone was called Simon and was designed by IBM in 1992 and shown as a concept
product that year at COMODEX (Computer Dealer’s Exhibition), the computer industry trade
show held in Las Vegas.

Simon was released to the public in 1993 and sold by BellSouth. Besides being a mobile
phone, it also contained a calendar, address book, world clock, calculator, notepad, games, and
mail and fax capabilities.

The next attempt was in 1996 by Nokia, with itsmobile device called “Communicator.” This
distinctive palmtop computer-style smartphone was the result of a collaborative effort with

■ PREFACE

xx

Hewlett-Packard, combining an early successful and expansive HP personal digital assistant
(PDA) with Nokia’s bestselling phone around that time. The Nokia 9000 Communicator was the
first true smartphone, with an operating system called GEOS 3.0.

The Ericsson R380, released in 2000, was the first phone sold as a “smartphone” and the
world’s first touch-screen phone. The R380 had the usual PDA functions and a large touch-screen
combined with an innovative flip so it could also be used as normal phone. It was also the first
commercially available Symbian OS (5.0) phone. However, it could not run native third-party
applications.

Figure 5. The 3G generation: Smartphones (2000s)

NOTE: There is no industry standard definition of a smartphone, but we can see it as a “mobile
phone offering advanced capabilities that runs complete operating system software providing a
standardized interface and platform for application developers.”

Source: SmartphoneAppsPedia

In 2002, Handspring released the Palm OS Treo smartphone, utilizing a full keyboard that
combined wireless web browsing, e-mail, calendar, and contact organizer with mobile third-
party applications that could be downloaded or synced with a computer.

Also in 2002, RIM released the BlackBerry, which was the first smartphone optimized for
wireless e-mail use. By December 2009, it had achieved a total customer base of 32 million
subscribers.

Redefining Mobile’s Reach: The Next-Generation Protocols

The fourth-generation (4G) system is a successor to 3G and aims to provide a wide range of data
rates up to ultra-broadband (gigabit speed) Internet access to mobile as well as stationary users.
The name of this new project is LTE (Long Term Evolution) and is a set of enhancements to the
UMTS (Universal Mobile Telecommunications Systems) architecture.

The LTE specification provides downlink peak rates of at least 100 Mbits and an uplink of at
least 50 Mbits with a RTT (round-trip time) of less than 10 ms.

But beyond these numbers, the most important point of the LTE draft is the “Persuasive
Network” that describes an amorphous, and at present entirely hypothetical concept, where the
user can be simultaneously connected to several wireless access technologies and can seamlessly
move between them (vertical handoff). The access technologies can be Wi-Fi, UMTS, EDGE, or
any other future access technology.

■ PREFACE

xxi

NOTE: Vertical handoff refers to a network node changing the type of connectivity it uses to

access a supporting infrastructure, usually to support node mobility.

The 4G network will be based on OFDM (orthogonal frequency division multiplexing)
protocol and will probably use smart antennas.

NOTE: Smart antennas are antenna arrays with smart signal processing algorithms used to

identify spatial signal signatures such as the direction of arrival (DOA) of the signal and use them

to track and locate the antenna beam on the mobile device.

The Mobile WiMAX (IEEE 802.16) mobile broadband access standard is also branded 4G and
offers peak data rates of 128 Mbits downlink and 56 Mbits uplink.

Advanced Human-Device Interaction: Touch-Screen Devices
On June 29, 2007, when the first iPhone was introduced at “MacWorld Conference and Expo” by
Apple, the mobile market changed irreversibly. Increasing numbers of handsets with touch
screens have started to appear on the market following the lead set by Apple’s iPhone.

The touch screen has gained popularity and become more common on handsets, helping to
make the handsets more intuitive, pleasant, and efficient to use.

Handsets with intuitive user interface allowed quick and easy access to various applications
and services.Alternatively many smartphones and high-end handsets with useful and innovative
features have been commercial failures simply because their user interface was too complex and
difficult for convenient use.

NOTE: A touch screen is an electronic visual display that can detect the presence and location of
a touch (typically a finger or a pen) within the display area.

There are a few types of touch-screen technologies:

■ Capacitive (used on iPhone)

■ Resistive

■ Surface acoustic wave

■ Strain gauge

■ Optical imaging

■ Dispersive signal technology

■ Acoustic pulse recognition

■ Coded LCD on bidirectional screen

■ PREFACE

xxii

On November 11, 2008, HTC produced the “Touch HD,” a device with a much larger screen
than its predecessors. This device, like all other HTC devices, runs Windows Mobile and the HTC
proprietary user interface TouchFLO 3D.

On June 6, 2009, Palm released its Palm Pre, a smartphone with a multi-touch screen and a
sliding QWERTY keyboard based on webOS, the new Linux-based operating system from Palm.

HISTORICAL NOTE: The QWERTY keyboard layout was devised and created in the early 1870s
by Christopher Latham Sholes (1819–1890), a newspaper editor and printer who lived in

Milwaukee, Wisconsin. This layout takes its name from the first six characters at the left of the
keyboard’s top row.

Source: Wikipedia

On January 5, 2010, Google launched its “Nexus One,” a smartphone with touch-screen
technology based on Android OS, Google’s open source mobile operating system. As with the
Apple iPhone, the large capacitive touch screen is capable of handling multi-touch gestures.

Unfortunately for competing brands, Apple’s real secret was not just the touch screen, as
many people thought, but what the iPhone was capable of achieving through touch-screen
technology: a brand new user interface experience.

I say “unfortunately” because although any brand can make use of the latest advanced
“projected capacitive” technology, not every brand has an operating system like iOS, for
implementing all the services and killer applications that help make an iOS device unique.

That’s why, from an operative system point of view, Apple is at least a few years ahead of all
other competitors, and that’s why one good development team, the people from Google, focused
first of all on developing itsAndroid OS and then later the Nexus Series smartphone.

NOTE: Later in this book, we will analyze how this technology changed the paradigm used for
building every user interface dedicated to the mobile world. Fornow the key idea to remember is

that the more complex the structure you need to implement, the simpler must be the interface

design with which the user interacts.

Figure 6. Steve Jobs presenting the iPhone (2007) and introducing the iPad (2010)

■ PREFACE

xxiii

On January 27, 2010, Apple launched the iPad to fill the gap between the iPhone and the
MacBook. Apple iPad runs iOS 3.2 (called iPhone OS at the time), with a resolution of 1024x768
pixels and offers new native applications optimized for this new environment.

The iPad’s screen is composed of a single piece of multi-touch glass, with no up or down, left
or right. There is no single orientation, and therefore it can be positioned to fit the user’s needs.
That’s really the big thing behind the Apple iPad, and that’s why, if with the Apple iPhone we
were able to achieve a new device experience, with the iPad we will be able to bring this
experience to thousands of potential users who, until now, had never thought about a having a
“computer” in their lives.

READING NOTE: If you want to analyze how multi-touch technology will impact the desktop

computer’s future and how our lives will probably change in accordance with this revolution,

jump to last chapter.

I like to think of the iPad as the Wii of the mobile ecosystem. The Nintendo Wii was criticized by
the hardcore gamers, but what they didn’t realize was that the Nintendo Wii was meant for
everyone but them.

CITATION: “We all want things to be simpler, and now here is a simple thing. I think it will be a

huge success.”

Steve Wozniak, co-founder of Apple, Inc.

On June 7, 2010, Apple lunched the latest version of the iPhone, called iPhone 4, and everything
changed again. The iPhone 4 runs the fourth generation of the iPhone OS firmware, released
initially on June 21, 2010 and renamed iOS 4. The new smartphone from Apple introduced
FaceTime, the video calling feature, HD video recording, and Multitasking, where the user can
use multiple applications at the same time.

NOTE: Multitasking and iOS5 run only on iPhone 4 S, iPhone 4, iPhone 3G S,iPad, and iPad2. The

last firmware version for the iPhone 2G is 3.1.3, released on February 2, 2010, and for iPhone 3G

it is 4.2.1, released on November 2010.

The iPhone 4 S and iPhone 4 have a 960 x 640 resolution based on the new retina display
developed by Apple with 326 ppi. It’s called retina display because is beyond the retina capability
of perceive no more than 300 ppi.

■ PREFACE

xxiv

Figure 7. Mobile devices history timeline

For this reason, thanks also to touch-screen technology, the future is full of opportunities for
those who want to design and develop for iPhone and, even more, for iPad.

xxv

Introduction

 “The only true voyage of discovery . . .would be not to visit strange lands but to
possess other eyes . . .”

—Marcel Proust

Who Needs This Book
This book is for a designer and/or a developer whowants to start designing or developing iOS user
interfaces or iOS WebApps (iPhone, iPod Touch, and iPad).

This book is writtenwith simplicity in mind, and the goal is to bring you along in the entire
process involved in designing and developing for Apple’s mobile devices, implementing a real
use case called “The Store.”

You will design and develop using web standards like HTML5, CSS3, and JavaScript, and you
will not need any of those skills for reading this book.We will use HTML5 and CSS3 from the
basics.We will provide a JavaScript crash course and will also use a JavaScript Framework for
making things easier and faster.

What You Will Learn from This Book
We split this book into three logical parts in order to achieve a better learning-oriented path.

In Part One, we will introduce the foundations of designing and developing for the mobile
web and then how to transcend them.

In Chapter 1,“Think Mobile Touch,” you will learn how to think in a mobile-oriented way,
learning the mobile device’s evolution, analyzing Apple’s unique style.

In Chapter 2,“Agile Project Building for iOS Devices,” you will learn how to implement a
mobile information architecture through steps from the basic strategies to sketching and
prototyping. We will also show a systemic approach to iOS mobile design, introducing first the
content-out approach and then the page models and user-interface models, including the new
inverted approach used with the iPad. You will also see accessibility and usability in Apple
devices.

In Chapter 3,“Web Development for iOS Devices,” you will learn how to use the web
standards and some useful tools for developing your iOS WebApp fasterand more easily. You will
be introduced to the framework that we will use in our case study, and, analyzing both
NativeApps and WebApps, you will see the differences between a web development model using
web standards and the SDK development model using Cocoa Touch and Objective-C. You will
also see the different levels of approach to designing and developing a WebApp.

■ INTRODUCTION

xxvi

NOTE: This book is focused on design and development for iOS, using web standards like
HTML5, CSS3, and JavaScript; therefore we will not use Cocoa Touch Framework or the Object-C

language in any of the projects of this book.

In Part Two, we will go deep into designing for iPhone and iPad, analyzing methodologies,
best practices, and some useful tools for speeding up your workflow.

In Chapter 4,“User Interface Design for iOS Devices,” you will start the real iOS user interface
design process for mobile, working with both iPhone and iPad devices,also introducing the
concepts behind a cognitive approach to the iOS user interface design process. You will be
introduced to the concepts of positive-negative and active-passive interface; you will see the laws
of perception, the color phycology, and how to use the most common reading patterns in iOS
design. In the end, we will analyze the single elements of the iPhone and iPad user interface.

In Chapter 5,“iPhone UI Design: Think Simple,” you will go deep intothe iPhone user
interface design process, and you will learn the concepts and rules of this particular way to design
user interfaces. You will see how to start from the sketch phase, using pen and paper, and go to
the design phase, using Adobe Fireworks, analyzing every single graphic element of our use case
user interface.

In Chapter 6,“iPad UI Design: Think Inverted,” you will go deep intothe iPad user interface
design, and you will learn the concepts and rules of this particular way to design user interfaces.
You will be introduced to the invert-simplicity concept, and you’ll see how to prioritize, shape,
and group the iPad user interface elements. You will see the simplicity-complexity paradox
keypoints, and you will see how to start from the sketch phase, using pen and paper, and go to
the design phase, using Adobe Fireworks, analyzing every single graphic element of our use case
user interface.

In Part Three,we will start to extend the web standards development for both iOS devices,
iPhone and iPad.

In Chapter 7,“Web Standards for WebKit: Maximizing Mobile Safari,” we will start comparing
the iPhone and the iPad, and we will present pros and cons of hybrid and dedicated webpages.
We will approach the web standards like HTML5, presenting the re-defined tags from HTML4 and
the brand new ones like <canvas>, <video>, and <audio>, using these tags for adding features to
our WebApp use case. We will approach CSS3 with all the new Level 3 properties, and JavaScript
with a real crash course analyzing also the BOM (Browser Object Model) and the DOM
(Document Object Model).

In Chapter 8,“Native iOS Environment Development,” you will learn how to develop a
WebApp, emulating the iOS environment from thevisual fundamentals, like going into full-screen
mode, adding a springboard icon, or interacting with iOS services like the map, phone, SMS, or e-
mail applications. You will be introduced to the touch event and gesture interaction in iOS
devices,also seeing some examples of custom touch event handlers, including the orientation
change event. In the end of the chapter, you will see how to expand the iOS Web Framework used
for our use case.

In Chapter 9,“Native iOS Design Implementation,” we will work over the web concept and
the code behind the iOS webpages. You will learn how to emulate the native iPhone
interface,watching the code that, step by step, implements every single user interface element in
your WebApp, or how to simulate the new iPad interface. In both cases, we will finish with a real
case study.

In Chapter 10,“Optimizing iOS WebApp,” we will introduce how to optimize our WebApp or
mobile webpage and all our assets used in our environment. You will learn how to optimize your
WebApp performance minimizing bandwidth usage, how to optimize your WebApp code using
web standards best practices, and how to compress your WebApp. You will also learn how to
optimize the usability of your WebApp, addressing the most common usability problems that
could affect your users. You will learn how to make your WebApp available offline, using the new
HTML5 cache manifest feature, and in the last part of the chapter you will see how to use the new
mobile SEO tools from Google and how to design your WebApp in a search engine–oriented way.

In Chapter 11,“Testing iOS WebApps,” you will see the web development lifecycle, and you
will learn how to test your WebApp or mobile webpage for iPhone or iPad using an agile

■ INTRODUCTION

xxvii

approach. We will show how to choose the right test in order to save your budget, how to
organize your test with Unified Modeling Language (UML), and how to evaluate your test’s
resultsin the right way. The chapter will end with some real examples.

In Part Four, we will examine the future of mobile web-based devices, how this revolution
will change our daily lives, and how this technology will impact the future of desktop computers.

In Chapter 12,“Maximizing the Market for iOS WebApps,” we will show how to maximize the
market for iOS WebApps. You will learn how to promote your WebApp using different
approaches like beta testers. You will see how to submit your WebApp to the Apple WebApp
Portal and to other third-party portals and how to use the virality of social networks toreach all
your potential users. In the last part of the chapter, you will see some tools for monetizing your
WebApp.

In Chapter 13,“Looking Beyond the Mobile Web to Ubiquitous Computing,” we will look
behind the mobile web, discussing the explosion of mobile devices and wireless
communications. We will also analyze the next-generation usability with multi-touch-screen
technology, how the future will change for desktop computers, and how it will change our daily
lives.

Where Will the Journey Through This Book Take You?
Reading this book, you will master the entire design and development flow; you will have a
complete overview ofthe entire workflow involved in design and development for iOS in the real
world; you will know exactly “what to do and how to do it” as a designer and/or developer.

This book will give you a mobile-oriented mentality, a solid knowledge of Apple’s mobile
device features, and the knowledge of all web standards involved in the design and development
process.

Mastering the concepts and techniques used in this book, you will takeyour first step as a
designer and developer, and, at the end of this journey, you will be ready to start your own first
mobile project on iOS.

How Will You Get Started and Then How Will You Use
What You’ve Learned?
The structure of this book is extremely learning-oriented because the entire book’s structure is
based on the real workflow used in design and development for iOS and implemented in this
book on a real use case called “The Store.”

Reading each chapter, you will go through this workflow, and, besides learning the web
standards, the specific techniques, the tools, and everything else you need for design and
development, you will experience learning the real workflow path used in every mobile-oriented
project.

1

 Chapter

Think Mobile Touch
“A small step for man, one giant leap for mankind…”

—Neil Armstrong

These are exciting times for those who live and work with technology every day, whether

they are young people who have used technology all their lives or they are like those

who have adapted to it. These are exciting times because in recent years, no other

example of technology has changed our lives so dramatically as the evolution of the

mobile device.

In this book, you see how the mobile revolution has changed the way we develop

applications and how touch screen technology brings new variables to the table. First,

you learn how to use new touch design techniques to design a touch-based user

interface. Then, you learn how to adapt the same touch-based design principles to the

specific needs of the iPhone and iPad. We base our project on an agile version of the

standard Information Architecture process for optimizing both user and single-developer

(or small team) needs.

After the design phase, you learn how to implement the design in the development

phase and how to use web standards and WebKit-based frameworks to achieve the

project goals.

As a final step in the process, you learn how to test a mobile touch application and how

to evaluate tests in a user-centered way before releasing the application through the

Apple WebApp portal or other third-party portals.

Why the Mobile Web?
A mobile market exists, it’s growing day by day, and it’s a revolution that impacts our

way of life like few others. The question is, “Why should we invest time and resources in

this market?”

1

CHAPTER 1: Think Mobile Touch 2

From Desktop to Mobile
The history of computing has had five main cycles according to Morgan Stanley (shown

in Figure 1–1): mainframe computing (1960s), micro computing (1970s), personal

computing (1980s), desktop Internet computing (1990s), and mobile Internet computing

(2000s). Looking at the mobile Internet computing era, you can identify the reasons for

this evolution.

Figure 1–1. Technology cycles in computing history

First, the new touch screen technology increases the interface’s usability while reducing

the frustration of mobile web browsing. Second is the incredible evolution of social

networks such as Facebook and Twitter. Third are the new VoIP services that stand as

attractive alternatives to traditional 2G and 3G cellular communication, which has been

the new cheap data plans local ISPs have offered in the last few years.

The iPhone is at the center of this process because it catalyzed these three factors (also

pioneering some of them) and as you can see from Figure 1–2, it has gained and

maintained its dominant position on the market month after month. This is another good

reason for starting to design and develop for the iPhone and iPad today. The time

invested learning a language such as Objective-C (for native applications) or web

standards (for web applications) is surely worth the effort in a short period of time.

CHAPTER 1: Think Mobile Touch 3

Figure 1–2. Top manufactures on the market in 2011 (source: MobileMix)

The nonstop evolution of mobile devices will, in the near future, involve some

interactions that push the mobile ecosystem to optimize some of its services and

present them as standard features for all devices while introducing other new services

such as the ones in the following:

Augmented Reality

The mobile device can “browse” Reality using information from services over the Web.

Mobile Device as Wallet

We can make safe payments from our devices, transforming an ordinary smartphone

into a debit or credit card. MCommerce also becomes more common.

TV on the Go

Mobile users get broad access to traditional and mobile-oriented content created by

professional companies and ordinary users.

“Smart” Mobile Networks

This enables mobile phones to automatically connect to all available access points

located in the user’s nearby area.

Global Positioning Services

The user’s position is automatically updated and exported for use by private and public

applications.

CHAPTER 1: Think Mobile Touch 4

Internet in Your Pocket

Today, you can browse the Internet with just a few touch screen devices on the market,

but in the future, even “mass-production” mobile phones will come with HTML

browsers.

Improved Ergonomics and Usability

Most users know that to run an application or enter inputs on a “mass-production”

device, it’s necessary to perform a lot of clicks on the phone keypad. In the near future,

many such devices will be equipped with touch screen technology.

Mobile Market
Over 4 billion people own or have access to a mobile device today. Of those, almost 50

percent have access to the web through a mobile device and that number grows with

each passing year.

Today, six major mobile operating systems are on the market:

 iOS

 Symbian OS

 Android

 RIM OS

 Windows Phone 7

 WebOS

You can see the different percentages of each OS worldwide in Figure 1–3.

CHAPTER 1: Think Mobile Touch 5

Figure 1–3. Operating system share in 2011 (source: MobileMix).

According to these percentages, the first good reason to start to design and develop for

mobile devices today is that the market is large and there are more work opportunities

than those in the desktop market.

With a mobile market that has become so greatly expanded, today more people access

the web via mobile devices than with desktop computers. For services such as email,

RSS, or social networks, the disparity between mobile Internet access and desktop

Internet access is even larger. Today, these three services, shown in recent MobileMix

reports, are the most used on mobile devices. (“Sixty percent of U.S. traffic came from

WiFi-capable devices, and the iPhone is used more on WiFi than other smartphones.”

May, 2011 Report, page 17.) Speaking for myself, I can hardly imagine going to work

every day without the ability to access RSS feeds and emails on my iPhone.

Why Mobile Now?
With the growth path evident in the evolution of mobile devices, you get the final reason

to invest time in developing Apple devices. The reason is that those types of services

are unavailable on nontouch screen devices and on some non-Apple devices that do

have touch screens.

Today is the right moment to jump on board the train of mobile device development,

because the center of our (computer) activities is definitely moving from the inside of our

house to inside our pocket.

CHAPTER 1: Think Mobile Touch 6

A Mobile-Oriented Approach
Design and development for mobile devices requires a small change of paradigm;

technologies involved are different, user interfaces are different, and even environmental

conditions are different because most of the time, your applications and services are

used outdoors and not in a quiet and comfortable room.

Despite that, the only suggestion that you always need to keep in mind is common and

obvious: Try to walk in the shoes of mobile users and everything will be fine.

In Part II of this book, we work with iPhone and iPad; for now, we show you some

general points to remember in approaching the mobile-oriented paradigm for touch

devices.

Mobile-Oriented Guidelines
To work with the issues that mobile site design presents and to get a result that is as

user-friendly and useful as your standard site, some creative problem-solving skills are

required, incluing:

 Understanding the hardware and software available

 Giving the user the feeling of visiting the standard site

 Giving the user the option to visit the standard site

 Designing for both portrait and landscape views

 Including only important content from your standard site

 Prioritizing your content for a linear user experience

 Optimizing your navigation for fingers

 Optimizing your code to reduce bandwidth usage

 Minimizing the use of images to reduce bandwidth usage

 Ensuring your redirects work properly

 Testing, testing, and testing!

Your goal as designer and developer is to build One Web, where the same information

is available and optimized for different devices, as detailed in Figure 1–4.

CHAPTER 1: Think Mobile Touch 7

ONE WEB DEFINED

The W3C defines the concept of One Web as follows:

“One Web means making, as far as is reasonable, the same information and services available to users
irrespective of the device they are using. However, it does not mean that exactly the same information is
available in exactly the same representation across all devices. The context of mobile use, device
capability variations, bandwidth issues, and mobile network capabilities all affect the representation.
Furthermore, some services and information are more suitable for and targeted at particular user
contexts.”

From “W3C Mobile Web Best Practice 1.0,” Chapter 3.1

In accordance with the W3C standards, don’t be afraid to offer different versions of your

content, because the content’s role is to bring a message to the users; for this reason,

focus on offering the same (optimized) message and not necessarily the exact same

content.

Figure 1–4. The one-web paradigm visually

This concept is the same one used in cross-browser design; unfortunately, many

designers still believe that designing a cross-browser website means achieving the

same website look in all of the existing browsers.

From a content-out point of view (and not only from that standpoint), the cross-browser

design’s primary function is to make the same message available through different

browsers.

NOTE: We explain in depth the content-out approach in Chapter 2.

CHAPTER 1: Think Mobile Touch 8

Apple’s Mobile Hardware
One of the key points that you in this book is that “the hardware is not as important; the

user experience is the real killer application.” Despite that, having a deep knowledge of

the hardware you use in your project is fundamental and required for designing and

developing quality works.

Often people ask for guidance in designing a web site or a web application to be

compatible with different models of the same device and the answer is always the same:

If you design a web site, optimize your work for the oldest device because a website is a

general resource and you need to guarantee to the users the availability of its functions.

If you design an iOS web application, you need to guarantee that a set of functions is

available from the oldest device to the newest one and that a subset of those functions

is optimized only for the newest device. A reasonable ratio might be 30 percent to 70

percent with 70 percent of functions made available to all device models.

Summary
This chapter showed how and with which technologies computing has gone through

four generations. It also showed how devices that run iOS on top of their advanced

capabilities are the best solution for both native and web developers.

This chapter described a general approach to the mobile-oriented paradigm and some

basic principles for working around the issues that mobile web site and web application

design present.

You were introduced to some killer services based on touch-screen devices and saw

how almost all of them are used on the go. In addition, you saw how designers and

developers need to approach this new type of mobile context to optimize the mobile

user experience.

9

 Chapter

Agile Project Building
for iOS Devices

“...the thing that has struck me the most is the difference between how
we think people use the web site and how they actually use them.”

—Steve Krug

The Mobile Strategy and Information Architecture Processes are two of the most
important variables in the project flow. With these processes, you build the foundation of
a web site or web application. Everything that follows is built on top of what you create
at that stage.

For that reason, this chapter covers many fundamental details of these important
processes, first defining a mobile strategy and then showing how to implement the
Information Architecture Process.

Next, you will learn the three main steps in the Information Architecture process and
how to adapt these steps in designing an iOS web application. I will discuss the “golden
rules” of this approach and how usability and accessibility interact with each other in the
process.

In the last part of this chapter, I will examine the iPhone and iPad design models and
analyze their user interface elements.

Implementing a Mobile Information Architecture
Along our journey through this book, you will follow a visual flow (see Figure 2–1) so that
you’ll have a clear idea of where we are at any given point and how we’ll get to where
we’re trying to go. The first step in the mobile project flow is the analysis phase. In this
phase, you’ll define your mobile strategy. The bigger your project is, the more important
this first step will be. Planning a sound mobile strategy can mitigate the project’s major
risks.

2

CHAPTER 2: Agile Project Building for iOS Devices 10

Figure 2–1. Mobile Project Flow - Step 1.1: Information Architecture

After the first step of analysis, you are ready to begin the Information Architecture
Process. Your role is to interpret content for the mobile context. In the Mobile
Information Architecture Process, you need to discover the kinds of information or
service you want to deliver or offer, matching this information to the needs of the users.
This process involves determining the appropriate metadata structure to use according
to the environment of each user.

The user's immediate environment is the main difference between a mobile and desktop
context, where user-information interaction is always the same and never changes.

NOTE: As you'll see, working with mobile applications isn’t that different from working with

desktop projects. I'll go through the process to make sure you see the whole picture.

What Is Information Architecture and Why Is It Important?
Information Architecture (also known as IA) is the foundation of every project, and
according to Richard Saul Wurman (from the AIA (American Institute of Architects)
National Conference, 1976) we can define the information architect as follows:

 The individual who organizes the patterns inherent in data, making
complex information clear.

 A person who creates the structure or map of information that allows
others to find their personal path to knowledge.

 A member of the emerging 21st century professional occupation that
addresses the needs of the age, focusing upon clarity, human
understanding, and the science of the organization of information.

Success is not guaranteed just because your new web site or web application has
great-looking visual design or offers the newest services on the market, because a

CHAPTER 2: Agile Project Building for iOS Devices 11

well-engineered product can still fail if it has poor Information Architecture. From
desktop to mobile, Information Architecture is one of the most underestimated steps
in almost every project.

In using the Mobile Information Architecture, we will define not only how our information
will be structured, but also how users will interact with it in a specific environment.

Information Architecture is not a fixed process; it can be adapted from context to
context, optimizing the ratio between effort and achievements. The following is my
personal view on this process, presented in 9 phases.

The Nine Phases of Information Architecture
The full Information Architecture process is composed of nine phases:

 Information research (IR),

 Information management (IM),

 Content architecture (CA),

 Experience design (XD),

 User experience (UX),

 Information design (ID),

 Usability engineering (UE),

 Interaction design (ID), and

 Human – computer interaction (HCI).

After the first IR (information research) phase, moving clockwise around the circle (see
Figure 2–2) from IM (information management) through to HCI (human – computer
interaction), the relative depth of detail increases.

In the IM phase, consultants concern themselves with very little detail, instead taking in
the big picture.

CHAPTER 2: Agile Project Building for iOS Devices 12

Figure 2–2. Information Architecture Process: from design to implementation

Obviously in this process there is room for iteration (as in most modern development
methodologies), but generally the level of detail progresses as time moves forward.

Now it’s time to see the nine phases in detail.

Information Research (IR)
This is the first step, where the collecting of information starts. It’s a crucial phase,
because future decisions will be made using the following information:

 Techniques used,

 Market analysis,

 Competitor comparison,

 Output documents, and

 Project requirements.

Information Management (IM)
This is the strategic part of the process. The purpose of this activity is to plan the overall
approach an organization will take towards managing the information. The Information
management approach involves

CHAPTER 2: Agile Project Building for iOS Devices 13

 Techniques used,

 Brainstorming,

 Process diagrams,

 Flowcharts,

 Roadmaps,

 Information management strategies,

 Output documents,

 Information management specifications, and

 Mobile strategies.

Content Architecture (CA)

This is where you design, at a fairly broad level, the content that will be found within a
web site or application and how it will be structured and organized. To do this, you may
rely on

 Techniques used,

 Content-out approach,

 Semantic markups,

 Site maps,

 Mind maps,

 Blueprints,

 Grey box wireframes,

 Swimlane charts,

 Electronic prototypes,

 Output documents, and

 Content specifications.

Experience Design (XD)

This takes a broader view of design beyond that of the asset and considers the total
experience a user will have. The process involves the following:

 Techniques used,

 Integrated marketing campaigns,

 Multichannel strategy,

 Customer lifecycle plan,

4

CHAPTER 2: Agile Project Building for iOS Devices 14

 Customer relationship management strategies,

 Flowcharts,

 Site map, and

 Output documents,

 Experience design specification.

User Experience (UX)
This is where you design the way a web site’s or an application’s content is organized in
accordance with different user contexts:

 Techniques used,

 Wireframes,

 Paper prototypes,

 Electronic prototypes,

 Output documents,

 User experience specification, etc.

Information Design (ID)
This is the practice of designing how information is conveyed, either in textual or graphic
terms:

 Techniques used,

 Paper prototypes,

 Page templates,

 Wireframes,

 Output documents,

 Information design specification, to name a few.

Usability Engineering (UE)
This is focused on engineering the user experience, typically through design patterns.

CHAPTER 2: Agile Project Building for iOS Devices 15

DEFINITION: Design Pattern

“A reusable solution to a commonly occurring problem within a given context.
A design pattern is not a finished design that can be transformed directly into code. It is a

description or template for how to solve a problem that can be used in many different situations.”

(Wikipedia)

If we apply an iterative process, UE could also make use of research conducted at the
HCI level to solve usability problems. The focus, after all, is much more about the
following nuts and bolts of the interface than about aesthetics:

 Outcomes and artifacts,

 Detailed wireframes,

 Paper prototypes,

 Electronic prototypes,

 Flowcharts,

 Output documents, and

 Usability engineering specification.

Interaction Design (ID)
This is the phase where you start designing a user interface that enables the user to
interact with the site or application. The following are tools that can be used to improve
Interaction Design:

 Outcomes and artifacts

 Storyboards

 Interaction sequence diagrams

 Interactive prototypes

 State diagrams

 Output documents

 Interaction design specifications

Human – Computer Interaction (HCI)

This is the most detailed activity, concerned with the science and mechanics of how
users interact with computer systems or mobile devices.

 Outcomes and artifacts

CHAPTER 2: Agile Project Building for iOS Devices 16

 Task analysis

 User scenarios

 Electronic prototypes

 Output documents

 Human – computer interaction specification

An Agile and Optimized Information Architecture Process for iOS
Design and Development
The Apple app store paradigm gives many individual developers the opportunity to work
alone on their apps, or at least grouped in small teams. In my experience, a single
designer or a small development team working on small or medium projects doesn’t
need to follow and strictly apply all the phases defined in the Information Architecture
Process. Of course, all of the principles in the IA process are important, but you can
group them into a few activities, saving work time without losing efficiency.

I truly believe in agile processes, and an agile and optimized Information Architecture
Process for iPhone and iPad is the best way to ensure balance between working time
and results.

In your iPhone and iPad optimized project flow, the Information Architecture involves the
following phases.

1. Information Research (IR)

Used technique: competitor comparison

2. Information Management (IM)

Used technique: brainstorming, flowchart, roadmap

3. Content Architecture (CA)

Used technique: content-out, site map, mind maps, GB wireframes

4. Experience Design (XD)

Used technique: flowchart, site map, GB wireframes

5. User Experience (UX)

Used technique: wireframes, paper prototypes

6. Information Design (ID)

Used technique: wireframes, paper prototypes, page templates

7. Usability Engineering (UE)

Used technique: paper prototypes, electronic prototypes, flowchart

CHAPTER 2: Agile Project Building for iOS Devices 17

8. Interaction Design (ID)

Used technique: interaction sequence diagrams

9. Human – Computer Interaction (HCI)

Used technique: electronic prototypes

NOTE: The Agile Process has a feedback request to all members of the team at the end of each
step. You can omit this request only if you are working as a freelancer. However, you shouldn’t

forget it when work in a team.

As you can see, you used common techniques in the IA process for more than one
single activity, because the best way to create a good balance between work time and
results is to follow two principles:

 Choose the most agile and optimized techniques for mobile contexts.
For example, in the (4th) UX phase, use paper prototypes instead of
electronic prototypes.

 Use the most common techniques in the flow.
For example, by using paper prototypes you can “reuse” your artifact
for the (4th) UX, (5th) ID, and (6th) UE phases.

NOTE: By “reuse” I don’t mean that you’ll use exactly the same artifact from one process for
another, because when moving forward in the IA process, the detail level of your artifact
increases.

Reusing the same artifact means starting from the original one and developing it to cause the

artifact to evolve, and using this artifact evolution in the following step in the project flow, thus

avoiding the cost of implementing and using a new technique for each step of the process.

At this point, you have seen the entire Information Architecture Process. Now, you also
know how to modify this process in order to optimize your working time in small- and
medium-sized projects. Now, let me show all of this visually.

The flow depicted in Figure 2–3 visually shows where to apply IA technique reuse in the
Information Architecture Process.

CHAPTER 2: Agile Project Building for iOS Devices 18

Figure 2–3. Agile Information Architecture Process optimized for iPhone and iPad design

Just to be clear, the agile process is usually the better choice, especially for a big
project, but here, the key point is that in small and medium projects we don’t need to
design and develop our products following the entire IA flow.

Overview of the Three Main Processes in Information Architecture
The nine Information Architecture phases are included in the three main processes (as
shown in Figure 2–4):

 Discovery,

 Analysis, and

 Architecture.

The discovery process is where you start to collect information about the web site or the
application’s market context. This process includes the IR phase.

The analysis process is where you start to work with the collected information by
planning the right approach to developing a mobile strategy. The analysis process
includes the Information Management (IM) phase.

CHAPTER 2: Agile Project Building for iOS Devices 19

The architecture process is where the design work is done. The architecture process
includes the Experience Design (XD), Content Architecture (CA), User Experience (UX),
Information Design (ID), Usability Engineering (UE), Interaction Design (ID), and Human –
Computer Interaction (HCI) phases.

Figure 2–4. The three processes in the Information Architecture framework

As you can see so far, mobile Information Architecture isn’t that different from how you
might design the architecture of a desktop project. I have added only one point: the user
context.

The user context (as shown in Figure 2–5) is a filter that changes the user experience.

Figure 2–5. Information Architecture framework: content, context, and user

Imagine lying down on your sofa to read the latest feeds from your RSS reader in peace
and quiet, and think about what that feels like. Now, imagine the same experience in the
subway or, even worse, on a crowded bus at 7:30 in the morning.

In picturing these scenarios, you can understand that a user’s experience changes
dramatically when the context for the experience changes.

CHAPTER 2: Agile Project Building for iOS Devices 20

EXAMPLE: The same context can have difference instances.

- Context: “Reading RSS Feeds”

- Context instances: Sofa RSS Reading, Walking RSS Reading, Subway RSS

Reading, and Bus RSS Reading

For this reason, modeling the context instances with care is a key factor in our project.
Making a mistake and forgetting a specific instance can cost “1” in the analysis phase,
but the same mistake will cost “10” in the design phase and “100” in the development
phase.

Forgetting an instance’s context results is a relatively small mistake in the analysis
phase, because we can always take a pen and add an entry to our context instances
checklist. Designing a user interface using incomplete information from the analysis
phase means designing an interface that might never match all the users’ needs.
Starting the development phase based on a badly designed interface means releasing
services that some users will never be able to take advantage of. The error costs in the
Information Architecture Process can be seen in Figure 2–6.

Figure 2–6. Error costs in the Information Architecture Process

For this reason, once you have gone further in your project flow, things change. If you
need to step back in the project flow in order to handle a mistake in your Information
Architecture, the entire project flow will be affected by deadlines and time horizons;
perhaps even business goals will change during the delay.

Now, you can see how to optimize the working time spent in each IA phase, using an
agile and optimized version of this process.

CHAPTER 2: Agile Project Building for iOS Devices 21

Abiding by the Golden Rules of Mobile Strategy
Mobile is a different medium and is governed by a different set of rules. But, once you
have defined an agile Information Architecture Process, you can start to approach the
general architectural case abiding by some golden rules.

Understand Users and Their Needs
Try to understand who the users are, what they are looking for from the web site or web
application, and where they will be physically located when they use it.

Design with Mobility in Mind
I have already discussed context instances, understanding that context is crucial when
creating any mobile product. Predicting user contexts could be difficult, because it is
impossible to anticipate all possible circumstances that could affect the user
experience.

Targeting mobile users ensures that your product can be used anywhere and at any
time. Once you have the application’s goals clearly in mind, try to picture all possible
application scenarios, and then interview potential users about their usual mobile
application contexts.

Don’t Convert, Create
Simply porting a desktop web site or web application to a mobile device is a big
mistake. We must create a new product rather than reimagine it for the small screen.
Creating, rather than converting, experiences specifically for mobile devices enables
users to get information both faster and in a more friendly fashion.

Keep It Simple
If there is a rule we must never forget, it’s this one: iPhone and iPad are intelligent
computers, but people want to use them in a simple way. People use Apple mobile
devices (often) while they are doing something else like walking, talking, listening to
music or speech, driving (please, don’t do that!), and so on. A human being’s cognitive
resources are limited, and if we use a part of those resources during some other
functional activity, we won’t be able to manage complex structures like a typical
desktop user interface at the same time. Following this principle, the more
straightforward your application is, the better the mobile experience of your users will
be. If you understand this key point, you also begin to appreciate Apple’s decision to
use iOS instead of a full version of OSX on the iPad.

CHAPTER 2: Agile Project Building for iOS Devices 22

Content-Out Approach
Web sites are created to deliver information. In the early days of the web, design played
no part in a web site’s existence. Today, we still see content as the most important part
of a web site or web application, and everything must start from here (as shown in
Figure 2–7).

The content-out approach is a ground-up approach where the content shows the
designer how the final layout should be. The designers use the content to set the
boundary of their possibilities and make the whole process easier and faster.

Figure 2–7. HTML W3C compliant markup (left) and its semantic markup implementation (right) on the Wall

Street Journal and New York Times web sites

The content-out approach is closely related to semantic markup. The objective of this
technique is to mark up the structure of the web content using the appropriate semantic
elements. The elements are used according to their meaning, not because of the way
they appear visually.

From top to bottom, this is a generic hierarchy of semantic meanings.

1. Navigation (main)

2. Branding area

3. Content main

CHAPTER 2: Agile Project Building for iOS Devices 23

4. Supplementary content

5. Navigation (supplementary)

6. Site information

NOTE: The semantic approach is part of the “Web Content Accessibility Guidelines 2.0”
(WCAG20) published by the W3C “Web Accessibility Initiative” (WAI) to support the development

of more accessible web content.

Here are some steps that we use each time we employ the content-out approach.

1. Define the content.

2. Convert the content to HTML5.

3. Use semantic markup to set content hierarchies.

4. Use gray box wireframe to allocate layout space and proportion.

5. Design and style the layout.

In other words, in constructing the webpage, all content must be produced and
converted to HTML5 before any markup, wireframe, or CSS3 styling takes place. Once
you have put all our content into an unstyled webpage, you’re free to go ahead in the
process and think about which kind of design might best fit your content.

Representing an Information Architecture with a Site Map
Once you accomplish the information research and information management phases,
and build the foundation of your project with the content-out approach, you are ready to
represent the information and work on the content architecture and experience design
phases, as show in Figure 2–8.

CHAPTER 2: Agile Project Building for iOS Devices 24

Figure 2–8. Agile Information Architecture Process at phases 3 and 4: representing Information Architecture

After defining the content with a content-out approach, the first item we use to define
our mobile Information Architecture is the site map. It visually represents how all our
content is connected and provides a clear path of how the user will travel through the
informational space.

Mobile site maps are not dissimilar from site maps used on the web, but there is an
important difference, as we see next.

Limited Chances for Mistakes
Information architects are always debating about which is the best choice—site maps
that are wide or deep. Like everything else in computer science, this choice is never
black and white.

NOTE: Content architecture is where you start to insert the content in place, showing how it’s
organized. The best tool for organizing your content will be the wireframe, but all content you

insert in the wireframe will be the implementation of what you represented previously on the site

map.

CHAPTER 2: Agile Project Building for iOS Devices 25

On a desktop site map, you might decide to choose either a wide or a deep site map in
order to answer a specific web site need, as show in Figure 2–9. In a mobile site map,
you have only one choice: the wide site map. This occurs because the user experience
is totally different from that of the desktop, and everything should be reachable in 2 to 4
linear taps.

Figure 2–9. Visual comparison between wide (the structure on the left) and deep site (the structure on the right)
map

Imagine using your iPhone to browse a page with the structures represented in Figure 2–
10, in which both structures have three links in the primary level of navigation. By
browsing the wide structure and choosing link number 1, you have a 100% chance of
choosing the right path for our information. By browsing the deep structure and
choosing link number 3, you have only a 33% chance of choosing the right path, and
your chance drops to 25% if you choose link number 1.

Now, picture how many links you might face in a typical web site. How much risk is
there of the user making a wrong choice? If users sitting at their desktop computer go
down the wrong path, in a glance they can see how to return to the primary navigation
level. But with an iPhone, this is not the right way to find peace in your (binary) life.

In this phase, you build the foundation of user experience by testing, at a very basic
level, which kinds of interactions the user will have with the web site or web application.

NOTE: We can define interaction in user experience as a kind of action that occurs between a
human and a human interface every time the human uses the interface in order to achieve a goal

or get a resource.

By working on the content architecture representing your site map structure, you also
start to work (even if indirectly) on the user experience.

Provide Orientation Showing the Navigation Path
Providing orientation in the mobile user experience is a key factor, and for this reason
it’s important to keep in mind that we need to show on every page both its page title
and navigation path. With a two-level structure and a tabbed navigation menu, we can
omit the navigation path, because in this case both page title and navigation path

CHAPTER 2: Agile Project Building for iOS Devices 26

provide the same information. Using a tab-based interface, we need to highlight the tab
of the current page, exactly the way it’s done, for example, on YouTube’s video page.).

NOTE: Showing the navigation path in a page means showing a certain site map path, from point

A to point B. If you prefer, you can look at a navigation path as a single site map instance.

A mobile user has a limited amount of cognitive resources available for browsing and
can easily experience a lost-in-space feeling. If our user interface is not based on tabs,
we can use breadcrumbs to achieve the same goal and avoid user frustration.

If we have a wide site map, we can insert a few tabs in the interface or insert a drop-
down menu. This kind of menu is handled very well by the iPhone and iPad, even when
it contains a long list of options. In Figure 2–10, we have two good examples of tab
navigation and drop-down menu: Google and The New York Times.

Figure 2–10. Good examples of a tabbed menu and a drop-down menu: Google and The New York Times

Sketching an Information Architecture with Wireframes
The site map showed how content is organized in the informational space. Now, it’s
time to work on user experience using your second information architecture tool:
wireframes. Currently, you are phase four of the agile Information Architecture Process,
as show in Figure 2–11.

CHAPTER 2: Agile Project Building for iOS Devices 27

Figure 2–11. Agile Information Architecture Process at phase 4: sketching Information Architecture

Using wireframes, you lay out information on the page, making information space
tangible. Working with wireframes provides a visual for the site map and defines how the
user will interact with the experience.

The first approach is to sketch the wireframe structure with some freehand drawing, as
can be seen in Figure 2–12. I believe in designing freehand, even more so when I need
to create something, because the creative process is closely related to manual activity.

CHAPTER 2: Agile Project Building for iOS Devices 28

Figure 2–12. A handmade tool for drawing an iPhone or iPod wireframe (Image Cultured Code)

Once your idea becomes more tangible, you can use a printed sheet for redesigning the
structure in a more detailed way.

I find wireframes to be the most valuable information deliverable, because they clearly
communicate the layout idea and because you can reuse part of those deliverables for
the next phase in the project flow: prototypes.

The only shortcoming that wireframes have is their inability to communicate complex
structures; this is where prototypes come in.

Visualizing Interactions Through Prototypes
Prototyping might sound redundant or time-consuming, and many developers prefer to
jump in and start coding things, but as mentioned before, prototypes come into play
because after having wireframed a structure, you need to work on details.

With prototypes, you are at phases 5, 6, 7, and 8 (see Figure 2–13) where you can enter
the information design, usability engineering, interaction design, and human – computer
interaction phases.

CHAPTER 2: Agile Project Building for iOS Devices 29

Figure 2–13. Agile Information Architecture Process at phases 5, 6, 7, and 8: visualizing Information Architecture

Working on your prototype also mitigates many of the major risks in the design phases,
and in the end saves you time and money.

Prototypes (paper and electronic) are also the fastest possible way to design, iterate,
and discuss concepts as a group. Once a prototype has been created, there is a solid
foundation (even in a sketch form) that can be discussed, and which brings the concept
to life.

A typical prototyping iteration path in a development team is

1. Sketch out your ideas,

2. Present to team,

3. Critique with team,

4. Bring it to life, and

5. Go back to step 1 (to iterate the process).

If you design a web site, you use the wireframe structure for producing the page
templates.

CHAPTER 2: Agile Project Building for iOS Devices 30

Continuing in your agile approach to design and development, you see two ways of
working with prototypes: paper and electronic.

Paper Prototype
The basic level is the paper prototype (pictured in Figure 2–14), which we can produce
on printed-out wireframes by using stencil tools to design an accurate user interface, or
even sketch the structure freehand with pen and paper.

Figure 2–14. A paper prototype tool compared with a real iPhone

The paper prototype is also useful in the test phase. Using it gives you the chance to
reuse your work in the usability tests phase. You will see this technique more in depth in
Chapter 11.

Electronic Prototype
The next level is the electronic prototype. With this tool, you can analyze how the
prototyped structure behaves. With the electronic prototype, you simulate the human –
interface interaction and have valid feedback before you code it.

A good solution is to use a lightweight structure based on HTML5, CSS, and JavaScript
filled with temporary content and data. Loading this prototyped structure into your
device produces the nearest possible experience of the final product, because you can
see how much content will be displayed on the screen. Working with a remote file and a
server with an electronic prototype, you can also start to deal with loading times and
network latency. Electronic prototypes are also important for continuing your work on
usability in the phase called usability engineering, in which you use more detailed
prototypes as a base.

Electronic prototypes are also useful as support for the human – computer interaction
phase where, using interaction sequence diagrams, you work on human – machine
interaction and interaction design.

CHAPTER 2: Agile Project Building for iOS Devices 31

Figure 2–15. A completed agile Information Architecture Process

In Chapter 3, I present the framework for building web sites and web applications for
iPhone and iPad. Once you understand the framework structure, you’ll be able to define
a template for speeding up the electronic prototype's implementation phase.

Systematic Approach to Mobile Design
As you saw in the mobile information process, the best way to achieve a goal is to set a
path from where you are in comparison to where the goal is. In the design phase, there
are no nine phases named as in the IA process, but there is still a systematic approach
in order to stay focused on the path and optimize the entire workflow.

There are two important stages when working on your design: its accessibility and its
usability. Accessibility and usability are closely related to each other, but the more
important consideration is giving all users access to your web site or web application,
followed by designing and optimizing its usability.

3

CHAPTER 2: Agile Project Building for iOS Devices 32

Accessibility in Apple Devices
According to W3C, web accessibility refers to the practice of making web sites and web
applications accessible to people of all levels of ability. There is an overlap between
MWBP (Mobile Web Best Practice) and WBP (Web Best Practice), because in most
cases they have similar obstacles and similar solutions. Two of the most important
needs that mobile web accessibility aims to address are visual and audio needs.

NOTE: On December 11, 2008, the WAI (Web Accessibility Initiative) released WCAG 2.0 as a
recommendation. WCAG consists of a set of guidelines on making content accessible, primarily
for disabled users, but also for all user devices, including highly limited ones such as mobile

phones and smartphones.

Addressing (at least) video and audio needs will make your web site or web application
accessible to most of your potential users, as can be seen in Figure 2–16. But
unfortunately, this is not always easy to achieve and sometimes even many well-known
and successful products have at least some lack of accessibility.

Figure 2–16. Three accessibility services: Zoom (left), VoiceOver (center), and White on Black (right)

The W3C WCAG 2.0 provides guidelines to make your web site or web application more
accessible. Unfortunately, WCAG was not written with touch screen devices in mind, but
most concepts behind the following points are reasonably applicable to both the iPhone
and iPad.

 Use standard technologies properly.

 Provide a finger-friendly navigation structure.

 Provide orientation information on every web page.

CHAPTER 2: Agile Project Building for iOS Devices 33

 Provide control of font size.

 Provide good contrast among text, images, and background.

 Provide a high-contrast version of the web page.

 Provide a spoken version of the web page, as seen in Figure 2–17.

The iPhone and iPad have some new features that make them accessible for disabled
users. For example, disabled users are not forced to remember long keyboard
combinations to find what they are looking for: to select and open an item, users need to
tap or double-tap it. In order for users to benefit from such features, designers and
developers must know those features in order to optimize content and services.

VoiceOver
This feature makes your iPhone or iPad the first gesture-based screen reader that
enables the user to physically interact with items on the screen. VoiceOver works with
the iPhone and iPad’s touch screens to let the user interact directly with objects on the
screen. This makes it possible for users with impaired vision to access content and
orient themselves on the site map.

Figure 2–17. Accessibility features: VoiceOver

VoiceOver is a device feature, independent from your web site or web application, that
lets you benefit without any special effort on your part; however, good user interface
design practices must be applied in order to avoid creating a frustrating navigation
experience for the user. Soon, you will examine good user interface practices.

CHAPTER 2: Agile Project Building for iOS Devices 34

Voice Control
In addition to gestures, you can use voice commands to play music or make phone
calls. All you need to do is press and hold the home button, listen for the audio prompt,
and speak the name from the address book or the name of the artist from the iTunes
playlist.

Zoom
With this function, seen in Figure 2.18, the user can magnify the entire Spotlight or
Unlock screen, or any other screen application either native or purchased.

Figure 2–18. Accessibility features: the Zoom

Once enabled, one double-tap with three fingers instantly zooms in and out 200%, and
the user can double-tap and drag three fingers to dynamically adjust the magnification
between 100% and 500%.

White on Black
Users that prefer high contrast can use this option to change the display to white on
black, as shown in Figure 2–19. This reverse polarity effect works in all applications
including Home, Unlock, and Spotlight.

CHAPTER 2: Agile Project Building for iOS Devices 35

Figure 2–19. Accessibility features: the White on Black

The iPhone and iPad color menus are perfect for this kind of color inversion, but if you
use insufficient color contrast for your web site or web application, the result won’t be
satisfactory. Use a color palette with sufficient contrast when designing the user
interface in order to prevent this side effect.

Captioning
Both the iPhone and iPad support the playback of open captions, closed captions, and
subtitling. Captions appear on the onscreen just like the closed captions that the user
can see on TV. You can create your own using the appropriate tool.

Audible, Visible, and Vibrating Alerts
These options deliver both audible and visual alerts to the user. The user can set these
alerts for phone calls, new text messages, new and sent e-mails, and calendar events.

Accessibility Software Features
From iOS5 on, Apple has introduced several significant advancements to accessibility in
iOS devices. These new features make it easier for people with mobility, hearing, vision,
or cognitive disabilities to get the most from their iOS devices. First, a new way to add
certain features has been added, letting the user recall them quickly by touching a
specific point on the touch-screen. Using this new menu, the user can access some
setting functions and even get immediately back to the dashboard, bypassing the Home
Button.

One relevant feature is the use of LED Flash and customizable vibration on incoming
calls. When someone calls an iPhone, the LED Flash turns on and the custom vibration
starts. A new Assistive Touch feature enables the user to customize gestures as macro

CHAPTER 2: Agile Project Building for iOS Devices 36

shortcuts. Apple has also added a Speak Selection feature with an adjustable Speaking
Rate slider for vocalizing text selections. Even older features have been improved, such
as the VoiceOver that now includes custom element labeling.

Usability in iOS Devices
According to usability guru Jakob Nielsen, “usability is a Quality Attribute that assesses
how easy interfaces are to use.” Although accessibility mainly affects a subset of users,
usability affects 100% of your users.

Careful and thoughtful work in information research can mitigate potential usability
problems such as the one shown in Figure 2–20. In 2008, an interesting study on iPhone
usability from Create with Context called “How People Really Use the iPhone” showed
how hard it is sometimes for designers and developers to predict user behavior.

Figure 2–20. Usability study: How People Really Use the iPhone (Image: Create with Context).

Create with Context’s study arrived at eight general rules for iPhone design and
development, which now can also be applied to the iPad. Those rules are as follows:

 Take advantage of learned behavior.

“Oh, this works just like the calendar”

 Avoid interaction inconsistencies.

“This is weird, cancel is usually over there”

 Provide a clear conceptual link across widgets.

“This button must be related to that box, since they’re next to each
other”

CHAPTER 2: Agile Project Building for iOS Devices 37

 Put space between action widgets.

“Oh man, I didn’t mean to send that SMS!”

 Plan for accidental overswiping.

“I keep accidentally changing to a different screen”

 Don’t rely exclusively on multi-touch.

“It’s hard to do this while I’m holding something in the other hand”

 Provide visual feedback for taps.

“Did it hit that button? I’m not sure”

 Provide interaction affordances.

“It’s obvious that you’re supposed to swipe left-and-right”

NOTE: A complete presentation of the study is available on Slideshare at

http://www.slideshare.net/createwithcontext/how-people-really-use-the-

iphone-presentation.

For a downloadable PDF, visit

http://www.createwithcontext.com/how-people-really-use-the-iphone.html.

These problems are both fundamental to product usability and difficult to prevent at the
same time, because the more you master something, the less you are able to put
yourself in a newbie’s shoes. That’s one reason why great professors are so rare.

When to Work on Usability
So far, you have seen how important accessibility and usability are in your project in
order to provide a good level of user experience to the widest possible range of users.
Here, the most important question is this: when should you work on usability?

I can identify a few critical moments when working carefully on usability can improve the
global perceived quality of your project. These points are the following:

1. Before Starting the Project

You need to collect information about your competitors and see how they have
solved specific application problems to achieve the project goals.

You need to understand the user application contexts and figure out how you can
optimize them.

2. Before Starting to Design

http://www.slideshare.net/createwithcontext/how-people-really-use-the-iphone-presentation
http://www.slideshare.net/createwithcontext/how-people-really-use-the-iphone-presentation
http://www.slideshare.net/createwithcontext/how-people-really-use-the-iphone-presentation
http://www.createwithcontext.com/how-people-really-use-the-iphone.html

CHAPTER 2: Agile Project Building for iOS Devices 38

If you adapt a desktop web site or a web application, you need to decide what to
keep (because it works in a mobile context) and what to discard (because it
doesn’t) from the web page structure. Create a site map to test and analyze the
web site or web application content structure.

3. In the Design Phase

Prioritize all web page contents.

Represent the site map using a wireframe, paper prototype, and an electronic
prototype.

4. In the Test Phase

Use the prototypes to test the level of user experience.

You can see how the usability principles are applied in many phases of the project flow.
In the following chapter, I will introduce a checklist that can help you to achieve a high
level of user experience in your projects.

Differences Between iPhone and iPad Usability
The iPhone and the iPad run iOS, and they share the same navigation paradigm, but
their use of different displays with differently sized elements changes the user’s
perception of the user interface to some degree, with resulting changes in usability and
quality of user experience.

This brings us to the subject of iPad read-tap font asymmetry. On every iPhone web site
or web application, if a font is too small to be read it is also too small to be touched.

NOTE: Here, when I say “fonts,” I refer to all the font-based structures such as navigation bars,

side menus, forms, simple paragraphs, and so on.

In the iPad world, this doesn’t happen in every context. Sometimes a font is big enough
to be read but too small to be touched. In this case, we say that fonts are not finger-
friendly. In this book, you see how to handle this situation using CSS3 style sheets.

From the standpoint of usability, this sets an important boundary between what works
on the iPhone and what works on the iPad. Another important difference is the absence
of the bottom bar in the iPad viewport.

Without the bottom bar, the quality of user experience is decreased, because that part
of the navigation structure is missing. The user can work around this situation, tapping
the Status Bar to quickly slide up to the top of the page and access the navigation
structure in the Safari Bar. Unfortunately, not all users know this iOS feature, and too
often they struggle trying to slide up to the top when looking for the navigation structure.

CHAPTER 2: Agile Project Building for iOS Devices 39

These are the two main points to remember when you contextualize your iPhone and
iPad web pages. In the next section, you will see where and when in the project flow you
need to apply your usability principles.

Mobile Accessibility and Usability Checklist
The following is a general list of accessibility and usability items to look for when
designing a project.

Accessibility

 Reasonable site load time

 Adequate text-to-background contrast

 Easy-to-read font size/spacing

 Sparing use of extra JavaScript

 Alt tags for images

 Custom not-found/404 page

 Optimized print style sheet

 Optimized native device service integration

 Optimized layout for different iPhone models

 Optimized layout for both portrait and landscape

 Optimized images for both portrait and landscape

 Provided link to standard site

Usability: Navigation

 Main navigation easily identifiable

 Navigation labels clear and concise

 Reasonable number of buttons/links

 Company logo linked to home page

 Finger-friendly links and icons

 Consistent and easy-to-identify links

 Highlighted current location

 Back button in the page header

 Descriptive in-text links

 Customized spotlight screen icon

CHAPTER 2: Agile Project Building for iOS Devices 40

 Return of relevant error messages

 Easy-to-access site search

Usability: Content

 Wide site content map structure

 Negative space in the page design

 Clear visual page hierarchy

 Prioritized content

 Critical content above the fold

 Explanatory HTML page titles

 Major headings clear and descriptive

 Style and colors consistent

 Text emphasis sparingly used

 URLs meaningful and user-friendly

It’s important that in your next project, starting from this general list, you contextualize
your own usability checklist based on what is most important for your project.

iPhone Page Model
The iPhone page model refers to the fundamental building block of each iPhone’s page.
Every web site, web application, and even native application is based on this concept,
and all iPhone content has a linear structure in one column.

Using the page model, the iPhone supports both portrait and landscape orientation in
320Í480 and 480Í320, at 163 ppi (pixels per inch) for the iPhone 2G, 3G, and 3GS, and in
640Í960 and 960Í640 at 326 ppi for the iPhone 4. Each orientation has its advantages;
generally speaking, the portrait orientation is better for lists, whereas the landscape
orientation makes most content easier to read.

The page model is the conceptual structure shared by the web site or web application
contents and is shown by the screen inside a zone called the visible area, as seen in
Figure 2–21.

The iPhone page model is based on five sections.

 Branding area

 Navigation (main)

 Content

 Navigation (sub)

 Site information

CHAPTER 2: Agile Project Building for iOS Devices 41

NOTE: Within native applications (developed using Objective-C and Apple SDK) and web
applications that simulate the native iPhone user interface, the branding area and navigation

sections are often merged into a single header with no navigation.

Each time the user interacts with a link, a new page is loaded inside the visible area of
the screen (visible area is analyzed in the next section, "iPhone User Interface"), and the
old page is completely replaced. This happens in both portrait and landscape view.

Figure 2–21. The iPhone page model in thumbnail (left) and full-screen view (right) with semantic markup

The iPhone structure page is also persistent, meaning that it preserves its structure and
doesn’t change when the user switches from portrait to landscape orientation. This
concept might sound rather obvious, but as you will see when I analyze the iPad Block
Model, it isn’t a fixed rule.

Now that we understand the iPhone page model, it’s time to analyze its user interface.

iPhone User Interface
The iPhone user interface is an iconographic and touch-based software that works on a
capacitive touch-screen display. This interface is composed of two logical parts.

 Native user interface (NUI)

 Visible area

The NUI and the visible area together take the entire available screen area. From top to
bottom, the iPhone screen area is composed of four different parts.

 Status Bar (part of NUI)

 URL Bar (part of NUI)

CHAPTER 2: Agile Project Building for iOS Devices 42

 Visible area

 Bottom Bar (part of NUI)

The NUI consists of all those elements that appear at either the top or the bottom of an
iPhone page. There are different types of NUI used on the various native or web
applications, but for the Mobile Safari Web Browser, there are just three, as summarized
in Table 2–1.

Table 2–1. Elements and Functionalities of the iPhone’s Native User Interface

NUI Element Functionality Size in Pixel

Status Bar Displays overall iPhone status: network connectivity, battery
charge, and current time

Portrait: 20px
Landscape: 20px

URL Bar Displays the web page title and major web functions: the URL
bar, search field, and reload button

Portrait: 60px
Landscape: 60px

Bottom Bar Displays web page navigation functions: back and forward,
bookmark button, and tab navigator

Portrait: 44px
Landscape: 32px

The Status Bar and the URL Bar don’t change their sizes when switching between
portrait and landscape modes, but the Bottom Bar changes from 44px in the portrait
mode to 32px in the landscape mode, as shown in Figure 2–22. This means that the
available visible area doesn’t have a fixed size.

As previously mentioned, every iPhone’s page is shown inside a zone of the screen
called the visible area. The visible area doesn’t take 100% of the available screen,
because the NUI takes away 124px in portrait view and 112px in landscape view.

CHAPTER 2: Agile Project Building for iOS Devices 43

Figure 2–22. Amount of visible area available in portrait and landscape view with URL Bar

NOTE: On the iPhone, the user can always choose to show the Debug Console underneath the

location bar, stealing 50 pixels from the visible area.

This fact is important because depending on an iPhone’s orientation, we have different
amounts of screen real estate available to us. The iPhone 4’s display area, despite the
higher resolution of its Retina Display, will have the same proportions and relative sizes
between user interface elements like the Status Bar, the URL Bar, and the Bottom Bar.
From the user point of view, besides having a screen with better definition and increased
readability, nothing will change in the way he or she interacts with the iPhone 4. In
Figure 2–23, we can see the dramatically improved clarity and sharpness delivered by
the new Retina Display.

CHAPTER 2: Agile Project Building for iOS Devices 44

Figure 2–23. The resolution delivered by the Retina Display

Table 2–2 shows the percentages of 3.5 inches of available screen in each orientation
for all iPhone models.

Table 2–2. Amount of iPhone Available Screen Real Estate in Both Portrait and Landscape View

 Mode Visible Area with URL Visible Area without URL

 Portrait 74% 87%

 Landscape 65% 84%

iPad Block Model
iPad content is structured over a block model concept. The entire page is no longer the
building block of the content; the concept is based on blocks inside the content page.
On the iPhone, information is shown linearly, whereas iPad content is based mainly on a
few different variations of a two-column layout.

The iPhone and iPad support two types of orientation, but both portrait in 768x1024 and
landscape in 1024x768 (both at 132 ppi) are somewhat less defined compared with the
163 ppi of the old iPhone’s display and the 328 ppi of the new Retina Display of the
iPhone 4. Just as with the iPhone, each orientation has its advantages, but this time not
in terms of space, because the amount of screen real estate available is enough for
doing almost everything easily, using either view.

The exciting new thing about the iPad is that the double orientation option and the new
screen resolution give us the capability to design two kinds of layouts. We can have two
layouts optimized for their screen resolutions with the possibility to add or remove
assets in each design.

Exactly as in 2007, when the first iPhone came out, a good example and an implicit
guideline comes directly from Apple designers. In Figure 2–27, we can see how the

CHAPTER 2: Agile Project Building for iOS Devices 45

native Note application uses the Block Model to present two different kinds of layouts.
The user in landscape view interacts with a two blocks-based layout where he or she
can view a to-do list in the left block and the selected to-do list entry in the right and
main block.

Figure 2–24. An example of a two block model application: Note for iPad

As introduced in the previous section, the iPad information structure is not strictly
persistent as with the iPhone. As we have seen so far, this is not a problem, but an
exciting opportunity for us.

NOTE: In this case, the two blocks are in two columns, but this equality is not true all the time. In

other cases, the added or removed block (in portrait or landscape orientation) could be a

supplementary navigation, some kind of call-to-action button, or some other useful thing.

Looking at the Note application, we can see that the missing block in the portrait view
contains some useful information the user might need, even when he or she is in the
portrait view. For this reason, it is always a good practice to provide access to this
block, even when it is not displayed in a given orientation.

Once again, Apple designers have provided us with a simple solution: using a pop-up menu,
accessible by a button in the header’s application. Consequently, we can access this part of
the information without needing to change orientation, as shown in Figure 2–25. The block
model used, like with the iPhone, is shown inside the visible area.

CHAPTER 2: Agile Project Building for iOS Devices 46

Figure 2–25. An example of a two block model application: portrait view access to landscape content

The iPad block model is also based on the same five sections:

 Branding area,

 Navigation (main),

 Content,

 Navigation (sub), and

 Site information.

When a user interacts with a link, the kind of behavior we have is more similar to what
we see when interacting with a desktop page. Because the iPad supports a native
resolution of 768x1024 or 1024x768, most designers don’t feel the necessity to design
and develop a specific structure optimized for this device.

In the developer community, we talk quite a lot about how to optimize web pages, and
for the new Apple devices, we see guidelines on how to implement HTML5 markup or
use HTML5 video player instead of the Adobe Flash player.

A web site invariably needs a completely different version of itself in order to be fully
compatible with the iPhone, but with a few code modifications, you can turn your web
content into content totally compliant with the iPad. The problem is that web sites
designed for mouse navigation could be a bad experience for a mobile user who has
vision issues or slightly larger than average fingers, as seen in Figure 2–26.

At this point, we can only rely on the zoom function offered by Mobile Safari in order to
have an enjoyable experience, but for me, this is not the best way to show how
designers can be creative and with their ideas improve the user’s daily life.

CHAPTER 2: Agile Project Building for iOS Devices 47

Figure 2–26. Official TIME web site: having an iPad-ready web site doesn’t mean that we did the job right

Now that I have discussed the iPad block model, you’re ready to analyze its user
interface.

iPad User Interface
The iPad runs the same operating system as the iPhone (iOS); therefore, we have pretty
much the same user interface look and feel. The iPad user interface is still composed of
two logical parts, but with a difference in the following.

 Native User Interface (NUI)

 Visible area

Once again, the NUI and the visible area together take up the entire available screen
area, but this time from top to bottom. The iPad’s screen area is composed of three
different parts.

 Status Bar (part of NUI)

 URL Bar (part of NUI)

 Visible area

NOTE: Some native applications like YouTube or iTunes use a Bottom Bar, as we saw in the iOS

UI. This Bottom Bar is 48px height and is used to offer advanced options to the user.

The NUI consists of all those elements that appear at either the top or the bottom of an
iPhone page. As designers and developers for Apple devices, we are interested in the
Safari Web Browser Interface because our web site and web application will be
rendered inside this application.

Even on the iPad, we have different types of NUI used on the various native or web
applications, but for the Mobile Safari Web Browser, there are just two (the third is
optional), as summarized in Table 2–3.

CHAPTER 2: Agile Project Building for iOS Devices 48

Table 2–3. Elements and Functionality of the iPad’s Native User Interface

NUI Element Functionality Size in Pixel

Status Bar Displays overall iPhone status: network connectivity, battery
charge, and current time

Portrait: 20px
Landscape: 20px

URL Bar Displays the web page title and major web functions: the URL
bar, search field, and reload button

Portrait: 44px
Landscape: 44px

Bottom Bar Displays application advanced options: Most Viewed
(YouTube), Playlists (iTunes), and so on

Portrait: 48px
Landscape: 48px

The visible area still doesn’t take 100% of the available screen, because the NUI takes
away 66px in both portrait and landscape view. The result is that with the URL Bar, we
have 94% of the visible area available in portrait view and 92% available in landscape
view. Without the URL Bar, we reach almost 100% of total screen availability; we have
98% in portrait and 97% in landscape orientation.

NOTE: On the iPad, the user can always choose to show the Bookmarks Bar underneath the

location bar, stealing 28 pixels from the visible area.

Compared with the iPhone we can note a significant relative increase in available visible
area in both orientations, as can be seen in Figure 2–27.

Figure 2–27. Amount of visible area available in portrait and landscape view with the URL Bar

CHAPTER 2: Agile Project Building for iOS Devices 49

With a 9.7-inch display and almost 100% of the available screen real estate, we have
room to improve the mobile user experience dramatically and offer a degree of
interaction never seen before. Table 2–4 shows the percentages of available screen.

Table 2–4. Amount of iPad Available Screen Real Estate in Both Portrait and Landscape View

 Mode Visible Area with URL Visible Area without URL

 Portrait 94% 98%

 Landscape 92% 97%

Tools for Apple Mobile Design
Tools used in this chapter are both purchased and freeware. This list shows some of
these useful tools that you can take advantage of for designing your next web site or
web application.

Table 2–5. Some Tools for Designing iPhone and iPad Web Sites and Web Applications

Name Scope Type

Operating

System

 Timeline 3D Roadmap Application OSX

 XMind Mind Map, Site Map Application OSX – Win - Linux

 OmniGraffle Site Map, Wireframe Software OSX - iOS

 Cacoo
Site Map, Wireframe,
UML

Web App OSX – Win - Linux

 App SketchBook Wireframe Tool - - -

 iPhone UI Stencil Wireframe Tool - - -

 iPad UI Stencil Wireframe Tool - - -

 iPhone GUI PSD Wireframe Image OSX – Win - Linux

 iPad GUI PSD Wireframe Image OSX – Win - Linux

 Balsamic Mockup Wireframe Application OSX – Win - Linux

 iPhone Mockup Wireframe Web App OSX – Win - Linux

 Prototyping for
iPhone

Electronic Prototype Firework PlugIn OSX - Win

 iPlotz Electronic Prototype Web App OSX – Win - Linux

 LiveView Electronic Prototype Application OSX - iOS

CHAPTER 2: Agile Project Building for iOS Devices 50

Summary
In this chapter, you started your journey as a mobile designer and developer. Beginning
with the Information Architecture Process and its nine steps, I illustrated which tools are
best for each step of the process, defining an agile variation of the typical, and more
complex, IA process.

I presented accessibility in Apple device design, and you saw how and with what
hardware and software features you can address accessibility problems.

In the last part of the chapter, I discussed iPhone and iPad usability, showing how to
deal with it, and I provided a usability checklist for controlling the project before jumping
to the implementation phase. I also presented the iPhone and iPad user interface and
the paradigms for its content: the iPhone page model and the iPad block model.

At the end, I provided a list of tools used in this chapter to help the designer in his or her
next mobile project.

51

 Chapter

Web Development for iOS
Devices

“…You’ve got everything you need if you know how to write apps using
the most modern web standards...
…so developers, we think we’ve got a very sweet story for you. YOU
can begin building your iPhone apps today...”

—Steve Jobs

The Web Development process involves many technologies and many principles, and
for that reason, this chapter will introduce many subjects and will be—I’m afraid—quite
long.

In the first part, we will present the concept of frameworks, explaining how they’re
generally structured. Then we will introduce two Frameworks for developing a WebApp
on iOS devices.

First we will look at four different approaches to WebApps and then go over the
differences between a Mobile Web Site and a WebApp. We will also explain the
differences between a WebApp and a Native Application and will show the pros and
cons of the Web Development Model.

In the middle part of the chapter, we will present one of the core arguments of the book,
namely Web Standards. We will introduce the new tags of HTML5 and the new
properties of CSS3, and then we will cover the best practices of JavaScript.

In the last part of this chapter, we will analyze the browser support of Safari Mobile and
WebKit Engine and we will introduce a fundamental concept that relates to any type of
touch development process: a finger is not a mouse.

We will explore some development tools for Safari, and because it’s important that a
developer have a clear idea of the possibilities offered by both web and native
development processes, we’ll introduce the SDK (Native) Development Model.

3

CHAPTER 3: Web Development for iOS Devices 52

Web Development Tools
Many tools are available to help make web development projects quicker and more
productive. In addition to a handy text editor like Espresso (shown in Figure 3–1) with
Smart Snippets, Code Folding and Code Sense functions, you will find plenty of tools,
utilities, and frameworks that can greatly increase development speed, reduce
debugging and testing time, and improve the quality of your output.

Figure 3–1. Espresso is a good web editor with many useful features, such as LivePreview.

The tools listed in Table 3–30, at the end of this chapter, consist of a variety of utilities,
optimizers, and testing and debugging tools aimed at helping us create web sites and
WebApps more efficiently.

The most important tool for a web developer is the framework that he will use as the
foundation of the project, so let’s analyze some useful iPhone and iPad frameworks.

Development Frameworks
As mentioned in “iPad Block Model” in Chapter 2, the tendency in iPad design is to use
the desktop approach, relying on the iPad’s capability of rendering these kinds of pages
perfectly.

For this reason we have very little choice of iPad frameworks available on the net (e.g.,
JQuery Mobile, Sencha Touch). If we want to develop for the iPhone the story is
completely different. These days we have many iPhone frameworks available that we
can download for free from the internet.

For our purposes we will use one of the best frameworks available for developing a web
site or a WebApp for iPhone: the iWebKit Framework.

CHAPTER 3: Web Development for iOS Devices 53

What is a Framework and How is it Structured?
A framework in computer programming is an abstraction that allows common code that
provides generic functionally to be overridden or customized by user code to provide
more specific functionality.

A framework has these specific features:

 Control

The overall program’s flow of control is not dictated by the caller, but
by the framework.

 Behavior

A framework has a default behavior. This default behavior must be a
useful behavior and not a series of no-ops (No Operation Performed).

 Extensibility

A framework is extendible by the user through selective overriding or
customized by user code that provides specific functionality.

 Modifiability

The framework code is not allowed to be modified. The user can
extend the framework, but not modify its code.

In our context, a WebApp framework is software that is designed to support the
development of dynamic web sites or WebApps. This kind of framework aims to
alleviate the overhead associated with common activities performed in web
development, and to promote code reuse.

The frameworks proposed share the same structure and provide 3 kinds of resources:

 HTML Templates (page-name.html)

The HTML templates are presented as examples; all we need to do is
use these as our starting point and customize those pages according
to our particular needs.

 CSS File (file-name.css)

The CSS file defines the page, Apple native-like layout and all the Tags
used in the HTML pages.

 JavaScript File (file-name.js)

The JavaScript file defines the native-like behavior used in all HTML
pages

The changes from one framework to another will be the project (documents) structure,
how the files are organized, and the CSS class names or the JavaScript function names

CHAPTER 3: Web Development for iOS Devices 54

that we use. Apart from that, they’re all functionally identical in terms of end-user
interaction.

NOTE: We can achieve the same final result with different frameworks. It’s a good idea to work

with the framework that offers the “best” features for our development requirements.

Now it’s time to see what those frameworks have to offer.

iWebKit 5 Framework for iPhone
The iWebKit Framework 5.04 (Figure 3–2) divides the user interface (UI) into different
<div> elements for the top bar, the content area, the footer, and other block elements.
Assigning a specific id to the <div> we can classify it as a specific type of user interface
element.

Figure 3–2. The iWebKit for the iPhone Homepage

Linking the Framework Elements
In order to link the framework elements, we need to insert into the HTML document
head a link from the page to the CSS and JavaScript files.

<meta content="yes" name="apple-mobile-web-app-capable" />
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" type="text/css" />
<script src="javascript/functions.js" type="text/javascript" language="JavaScript" >
</script>

UI Element: Header Bar

The Content Bar serves as a container for the page title. Usually at either side of this
region we have one or more back or navigation buttons. This region is defined using:

<div id="topbar"></div>

CHAPTER 3: Web Development for iOS Devices 55

Inside the Header Bar we will add a Title:

<div id="topbar">
 <div id="title">iWebKit 5 Demo</div>
</div>

Then we add a navigation button:

<div id="topbar">
 <div id="title">iWebKit 5 Demo</div>
 <div id="leftbutton">
 PC Site
 </div>
</div>

The id="leftbutton" specifies a single left button to include on the header bar. We can
also include a right button on the right side of the header bar using id="rightbutton".

Alternatively, we can add multiple navigation buttons to the header using either <div
id="leftnav"></div> or <div id="rightnav"></div>. Multiple buttons enable us to
achieve a visual navigation path, just like a clickable breadcrumb trail in a desktop web
site.

For example, notice the navigations in the header for the page shown below in Figure 3–3.
We can choose to step back to the last visited page (the “Forms” page) or to jump back
to the homepage (the house icon).

Figure 3–3. The iWebKit Framework: Header Bar (left) and Navigation-Path (right)

It is also important to offer a button that can take the user to the desktop version of our
web site (see Figure 3–3, left). This is because a fundamental step in our Mobile
Information Architecture was to prioritize and select the content as a subset of the
original desktop version. In other words, sometimes the user can’t access all of the
information that can be found in the desktop version of the web site using the mobile
app.

http://iwebkit.net

CHAPTER 3: Web Development for iOS Devices 56

Below the Header bar, we can also add a supplemental navigation tribar, using <div
id="tributton"></div>.

<div id="tributton">
 <div class="links">
 Home
 Changelog
 About
 </div>
</div>

UI Element: Content Region
The Content Region serves as a container for all of the content elements of a page. This
region is defined using:

<div id="content"></div>

All of the page content will be placed inside this kind of content wrapper, as shown in
Figure 3–4.

Figure 3–4. The iWebKit Framework: The Content Region (left) and the Gray Title (right)

UI Element: Content Box Container
The Content Box serves as a container for the content. Usually, on top of this region, we
have a Title that is defined using a and both elements are defined using:

Features

The class graytitle defines the title with the typical iOS embossed style, and just below
this tag we have the Content Box container defined using:

<ul class="pageitem">

Inside this pageitem container we can define many different types of elements, each with
its own style defined inside a CSS class or id.

CHAPTER 3: Web Development for iOS Devices 57

UI Element: Text Box
With the textbox class, we define a box for the text, often used as a page’s description.

<li class="textbox"></div>

In Figure 3–5, we can see how the textbox contains two other elements, a Text Box
Header and a Description.

Figure 3–5. The iWebKit Framework: The Content Box Container (left) and the Text Box Header and Description
(right)

UI Element: Text Box Header and Description
Inside the textbox, we can define any kind of standard HTML content, but in this case
we use a framework class to add a header using:

 Discover iWebKit 5

Then, we can add a paragraph of description:

<li class="textbox">
 Discover iWebKit 5
 <p>Welcome to this demo. please "touch" around to discoverÉ
 iWebKit's features!</p>

UI Element: Menu Items
The Menu Items are the main components of our user interface. Now we will define a
setting-like menu, which is defined using:

<li class="menu">

 The Technologies

CHAPTER 3: Web Development for iOS Devices 58

Each row is composed of a list element <li class="menu"> that contains a link
element <a> that wraps three other tags: an image on the left , a text
, and an icon on the right .

If we want to add more links (rows), we need to add other blocks like those described
above.

UI Element: Footer
A footer, as shown in Figure 3–6, can be useful for adding any relevant information
about the site, in this case about the framework. The footer is defined using:

<div id="footer">
 Powered by iWebKit
</div>

Figure 3–6. The iWebKit Framework: The bottom part of its Homepage and the App Store List Page

So far, we have analyzed the iWebKit homepage and its structure. This framework, as
shown in Figure 3–7, offers many other page styles, including:

 Classic List

 App Store List

 iTunes Classic List

 iTunes Music List

 iPod List

Even with all of these options, the approach is always the same: open the code, analyze
it, and then start customizing it following your project requirements. We can start to use
a framework without knowing it, by using the source code.

http://iwebkit.net

CHAPTER 3: Web Development for iOS Devices 59

Figure 3–7. The iWebKit Framework: The other Page List Styles and the App Store List Page

What follows is an exercise to help you get to know the iWebKit Framework.

EXPLORING THE IWEBKIT FRAMEWORK

Here is an exercise that will increase your knowledge of every framework style or page element that you
might encounter. The following are guidelines, showing step by step what you need to do in this exercise.

1. Download the iWebKit Framework from: http://iwebkit.net/

2. Open the file “applist.html” in your favorite development IDE.

3. Open a preview of the page “applist.html” in Mobile Safari using your Device

4. Start by inserting Comments in the code explaining the characteristic of each tag. If
you need an example, have a look back to the paragraph above where I introduced the
iWebKit Homepage.

5. Try to Add, Remove, or Customize Framework Elements.

Repeat this exercise for all the other page styles in the iWebKit framework. Once you have finished this
exercise, you will have completed the first step of preparing yourself to start using and customizing the
framework.

The preceding is really just an introduction to the iWebKit structure; we will see how to
use this framework in detail from Chapter 8 (“Creating WebApps: Mobile Application
Development”) on.

Mobile Web Site
A mobile iPhone or iPad web site is one designed specifically for Apple devices and
should not be confused with viewing a site made for desktop browsers on a mobile

http://iwebkit.net/

CHAPTER 3: Web Development for iOS Devices 60

browser. These kinds of web sites are characterized by the typical style of the iOS
environment.

As we have seen earlier, in the Information Architecture section of this book, the content
is never the same between desktop and mobile versions. In most cases, a mobile web
site offers a subset of the main content, and in a prioritized way. But first let’s see how
the mobile market has evolved.

The mobile web before Apple’s devices was like the Web of ten years earlier: slow,
expensive to use, and not much to look at.

NOTE: In computing, resolution independence is the concept whereby elements on a computer

screen can be drawn at sizes independent from the pixel grid.

We can presume some general pros and cons of a mobile web site, as follows:

PROS

 Created with the same Web Standards used for the Desktop Version

 Easy to Maintain and Publish

 Offers an Extra Level of User Experience (Device Core-Features
Interaction)

 Offers Services on the Go

CONS

 Offered Content is Limited

 Loads slowly, due to Network Latency

Mobile Applications
A mobile iPhone or iPad WebApp is a one that does not need to be downloaded from
the App Store and installed on the device. Using HTML, CSS, and JavaScript, WebApps
are able to provide a native-like application experience to the end user while running
inside the Mobile Safari browser. Figure 3–8 shows two well-known WebApps:
MobileMe and GoogleLatitude.

NOTE: From now on in this book, I will use the word native to refer to real native applications for
iOS and the term native-like to mean our WebApp that’s built to emulate the (real) native user

interface for iOS.

A WebApp with a native application-like experience offers a different paradigm. This
real-time paradigm is based on touches that perform an action within the current view.
As we will see in the next section, “Four Different Approaches to WebApp,” this is a level

CHAPTER 3: Web Development for iOS Devices 61

4 (Native-Like) experience and represents the highest level of user experience possible
on this kind of device. This experience is very different from the desktop one, which is
based on page metaphors in which a click equals a refresh of the content in view.

Figure 3–8. Two Famous WebApps: MobileMe from Apple (left) and Google Latitude from Google (right)

By using WebKit, the iPhone (and to an even greater extent the iPad) can render
WebApps that have not been optimized for mobile devices in a perfectly usable way,
including DHTML- and Ajax-powered content.

For this reason, we now see that the majority of usage of the mobile web is coming from
devices with better browsers (typically WebKit Engine based Browsers), in some
markets by a factor of 7:1.

Before looking at the pros and cons of WebApp, we need to examine the Web
Development Model (WDM).

Web Development Model
The Web Development Model (WDM) is used to develop iPhone and iPad (web)
applications using web standards like HTML, CSS and JavaScript.

Web Development Model: Pros and Cons
As we saw in Chapter 2, different projects have different requirements. Some
applications are a better fit with the web development model (WDM) than are others.
Knowing the pros and cons will help us make the right decision about which path might
be more appropriate.

Many things have changed since 2008 when the first SDK was released and the
WebApp vs. Native App battle began. Today, in 2011, following the latest version of

CHAPTER 3: Web Development for iOS Devices 62

HTML and CSS and the recent worldwide network upgrades, things are markedly
different.

Although differences between Native Apps and WebApps still exist, the tea leaves seem
to show that in the future this gap will be narrowed to some extent. In May 2010, at the
I/O Developer Conference, Google announced that soon Android-based WebApps will
have access to local hardware capabilities (motion sensor, camera and Google’s voice
recognition). To me, this fact suggests that once Android WebApps are able to access
hardware features, iOS WebApps will not wait very long to follow the same path and fill
this last gap between WebApps and Native Apps

While we’re waiting for this exciting day, we meanwhile need to make a thorough study
of our project in order to clearly understand its needs and be able to choose the right
approach in order to achieve the project’s goals.

Essentially, a WebApp is a better option when:

1. We need to update our content frequently.

2. We don’t need any of the Apple Store features.

3. We don’t need especially fast graphic performance.

4. We are not dependent on native functionality.

5. We are not dependent on running our app in the background.

6. We are not dependent on sending (push) notifications.

If our application is not a Game, doesn’t need the Camera, GPS, Accelerometer,
Multimedia sound/graphics, heavy videos, or complete offline access, then it’s probably
a good idea to write a WebApp. An example of a good WebApp is the Gmail WebApp
for iPad shown in Figure 3–9.

Native applications are certainly supposed to be faster because we can define our
caching strategies, our network services, and our event/threading model. Native
applications are also under control of the user, who decides what to install, update, and
uninstall. The only part that involves networking is the process of getting the installation
package. WebApps are instead under control of the server, which could eventually go
off-line, in which case updates would have to be initiated and implemented by the
application’s creator.

CHAPTER 3: Web Development for iOS Devices 63

Figure 3–9. Google provides us with a good example of how to develop a WebApp for the iPad.

Native applications also get access to the camera, GPS (not just a single geolocation as
in a WebApp), and other cool hardware features like the accelerometer. They can also
preserve and access data in their own local data storage, and are even able to use
SQLite, access data from another application, and allow complete offline access to their
contents.

Native applications are also featured on the iTunes App Store page, providing a lot of
free traffic, promotion, and income.

Figure 3–10. Google Reader: Comparison between the MobileRSS Native UI (left) and the Google Web UI (right)

CHAPTER 3: Web Development for iOS Devices 64

On the other hand, the speed of the JavaScript engine in Safari has greatly improved,
and we are now able to write WebApps that have the same performance as a native
application, at least in most cases. Using the HTML caching system we can also provide
offline access to the data of our WebApp. In Figure 3–10, we can see how we can
achieve a native-like user experience with the Google Reader WebApp. Figure 3–10 also
shows a comparison between the native app MobileRSS and the native-like app Google
Reader.

If our application is not a game, doesn’t need the camera, GPS, accelerometer,
multimedia sound/graphics, heavy videos, or complete offline access, then it’s probably
a good idea to write a WebApp. Now, we can resume our previous discussion,
compiling two easy-to-read lists with some important pros and cons of WebApps, which
we will go on to discuss further.

Some pros of WebApps are:

 Objective-C skills are not required

 Apple development program subscription is not required

 Developing on a Mac running OSX is not required

 Web standards skills are reusable in other development areas

 Development life cycle is fast

 Bug fixing is in real time

 An enterprise WebApp doesn’t require an enterprise license

 A WebApps don’t require Download and Installation

 WebApps are accessible to Apple and non-Apple devices

 WebApps will run on every device (mobile or desktop) with a browser

 WebApps are packable in native app with tools like PhoneGap

 We don’t have to share our revenue with Apple

Some cons of WebApps are:

 In some heavy contexts, WebApps are slower than native apps

 Some sophisticated UI effects are difficult to achieve

 Data stored in the file systems are not accessible

 Some hardware features are not accessible

 A personal payment system is required if we want to charge for the app

Some of these points are very relevant. I love Objective-C, I enjoy programming and I
like the native approach paradigm, but in using the WDM, many creative web designers
and developers will be able to reuse their (web standards) skills and start to work on
iPhone and iPad in no time.

CHAPTER 3: Web Development for iOS Devices 65

Being able to fix a bug in a timely fashion will also be an important advantage. With the
WDM, fixing a bug is matter of days, sometimes hours, and we just need to fix the bug
and upload the fix to the server. Every time we fix a bug in our native application, a new
Approval Process from Apple begins. This process is out of the developer’s control, and
can sometimes be stressful. In Chapter 12, we will see how to partially remedy that
problem, but in the general case this issue will still stand.

Another important “pro” to discuss is that, from a developer perspective, building
WebApps instead of native ones provides the opportunity to produce cross-platform
applications.

I know what you’re thinking: Who cares about cross platform development? I’m not here
to tell you to develop for Android or WebOS (although perhaps considering those
devices in the Information Architecture Process might not be such a crazy idea), but I
will suggest that developing a project with a high level of portability is a goal whose
value you might not want to underestimate. In developing an iOS WebApp, you will be
able to create the same WebApp for Android or WebOS with minimal modifications to
your code.

Today, cross platform development doesn’t only mean developing for different brands.
With the old iPhone with its 480x320 pixel resolution at 163 ppi, the new iPhone 4 and
iPhone 4 S with 960x640 pixel high resolution at 326 ppi, the iPad with 1024Í768 pixel
resolution at 132 ppi and the new iPod line, we have to be able to handle many different
devices with similar services and operating systems.

NOTE: Remember that, with the 4th Generation of iPhones, we have two different screen
resolutions: 640x960 at 326 ppi for the new iPhone 4 and iPhone 4 S , and 320x480 at 163 ppi
for the old models. We also have 2 different firmware histories: both the iPhone 2G and 3G run

the old iPhone OS 3.1.3 (or earlier) and the iPhone 3G S, the iPhone 4 and iPhone 4 S and the
iPad run the latest iOS firmware available; furthermore, multitasking is available only from iOS 4

on.

These devices must be considered differently, because their hardware is different, their
performances are different, and the services each offers are different. What we have is a
pseudo cross-platform scenario, which I call the “Inside Cross-Platform” context.
Every year, a new iPhone model is introduced, and from now on, every year a new iPad
model will be announced, and so it’s better to be ready to develop with an inside cross-
platform approach, because what we’ve seen so far is only the beginning.

A final and very relevant pro is that a WebApp can be packed as a native app with an
open source tool like PhoneGap. You can have the best of both worlds in this way:
writing a WebApp and then also producing a native application from it.

CHAPTER 3: Web Development for iOS Devices 66

Four Different Approaches to a WebApp
When we develop a web site for a WebApp that can run in a browser, we can choose
from four different approaches. All of these 4 kinds of WebApps are written using the
same web standards, such as HTML4, HTML4, CSS2, CSS3, and JavaScript (version
1.6 and some features from 1.7 and 1.8), but the quality of the user experience offered is
different for each level.

Level 1: Compatible
This is the ground-level approach to development and aims to provide a fully compatible
structure with all of Apple’s mobile devices. This kind of structure is marked up using
HTML4 and CSS2 and is based on blocks, in order to be easily navigable and zoomable,
as shown in Figure 3–11. Nevertheless, it’s still too desktop-oriented for mobile users.

Figure 3–11. A Compatible Web site: The Official W3C Web site doesn’t have an Optimized Layout for iPad.

This level of approach also has to avoid non-supported technologies like Flash, Java,
and other plug-ins, and really doesn’t do anything specifically aimed at iPhone or iPad
users. The main goal here is to make sure that no barriers are placed to prevent a
satisfactory browsing experience.

Every online W3C standard WebApp that doesn’t use non-supported technologies is in
this first category.

CHAPTER 3: Web Development for iOS Devices 67

Level 2: Optimized
The second level of support for Apple devices is meant to provide a basic level of mobile
user experience. This means that the layout is still desktop-oriented and although the
web site or WebApp is marked up using HTML5, CSS3, and offers user interaction using
JavaScript, it uses them in a very basic way, and won’t support the latest features
offered by the WebKit browsing engine. Neither does it provide any hardware interaction
like GPS geolocation, or one touch SMS and phone calls. Figure 3–12 shows an
example of an optimized WebApp.

Figure 3–12. An Optimized Web site: The TED Web site uses the HTML <video> tag in its Pages.

Every web site or WebApp should be in this category at least, particularly if there is an
active redirect to a dedicated or native resource. The iPad-ready web sites promoted on
the official Apple web site are in this second category.

Level 3: Dedicated
The main difference in this third level of support is the tailored viewport dimension. This
is the first step into a real mobile user experience. However, although these web sites
and WebApps are tailored for iPhone or iPad viewing, they do not seek to emulate the
native iOS user interface. Figure 3–13 shows an example of a dedicated WebApp.

CHAPTER 3: Web Development for iOS Devices 68

Figure 3–13. A Dedicated WebApp: The use of Spaces in the Gmail page is iPad Oriented.

These sites and applications are marked up using HTML5, CSS3, and offer user
interaction through JavaScript, but use these standards in a very basic way without
supporting the latest features offered by the WebKit browsing engine, and without
offering hardware interaction like GPS geolocation, or one touch SMS and phone calls.

In this third level of approach, we have all the iPhone and iPad dedicated (mobile)
versions of a WebApp.

Level 4: Native-Like
The native-like approach provides the highest level of mobile user experience and aims
to emulate the native iOS user interface, providing a direct integration with device
services, including Phone, Messages, Mail, Contacts, Maps, and geolocation service
through GPS or GSM triangulation. Figure 3–14 shows an example of a native-like
WebApp.

CHAPTER 3: Web Development for iOS Devices 69

Figure 3–14. A Native-Like WebApp: The Apple Store Use Case (re)Designed using a Native-like Structure

It is important to consider and evaluate which of these degrees of development
approach we want to utilize in the Information Architecture Process, in order to be
consistent in the project and with the client‘s needs.

WebApp and Native App: What Makes the Difference for the
User
Developing a WebApp that runs on Mobile Safari has some basic differences from one
that runs as a native application. So far, we have seen these differences from a
development prospective.

The next question is: are there any tangible differences for the end-user? How will the
user experience change when the mobile user relies on a WebApp?

User Interface (UI)
As we saw in Chapter 2, the web and native application user interface consists of two
parts: the native user interface (NUI) and the visible area.

Generally speaking, the Native User Interface changes as it goes from native to
WebApps. It is composed of the following modules:

 WebApp

Status Bar

URL Bar (Mobile Safari)

CHAPTER 3: Web Development for iOS Devices 70

Header Bar

Bottom Bar (not available on iPad)

 Native Application

Status Bar

Header Bar

Bottom Bar

When rendering our WebApp inside Mobile Safari, we have to deal with an added bar
between the Status and the Header Bar, as shown in Figure 3–15. We can work around
this difference using meta tags and we achieve the exact look and feel of a native
application.

Figure 3–15. From WebApp to Native-Like Look and Feel: Gmail on iPhone.

You will see how to emulate the native application look and feel in Chapter 8. The
bottom part of the NUI also changes from native to WebApp and is composed of:

 WebApp

Application Options and Features Bar

 Native Application

Mobile Safari Bottom Bar

This is an unsolvable problem, because we can’t hide it through meta tags. What we can
do is to place a footer on top of it, but this practice will steal more pixels from the visible
area and this is not recommended in most cases.

CHAPTER 3: Web Development for iOS Devices 71

Figure 3–16. Native and WebApp UI Comparison: Two Different Bottom Bars

Personally, I don’t consider this last point to be a real problem. Having the Mobile Safari
Bottom Bar visible, as shown in Figure 3–16, makes sense to me. Since we use Mobile
Safari as the natural environment for our applications, from a semantic perspective it’s
like having a native bottom bar.

User Experience (UX)
User experience is a broad topic and pervades many areas of our web (and native)
applications. On top of that, we can identify a major area where those differences
between native and WebApps are remarkable: the application controls.

In a native application, the user can change many of his application’s settings and in this
way have some sort of control over the user experience. In mathematical terms, he can
define a few subsets of the user experience. This is impossible in a WebApp because,
apart creating option pages that emulate the look and feel of native option pages, the
only options we can interact with are the Mobile Safari Settings. Those settings will not
modify the user experience, because the browser and the WebApp are two different
entities. In other words, the settings you can change in Mobile Safari are not the
WebApp’s settings.

CHAPTER 3: Web Development for iOS Devices 72

Figure 3–17. Native and WebApp UI Comparison: Two Different Ways to Present an Application’s Options

A good example of a workaround for this problem is given to us by the Google
Interface, which presents a subset of useful options using a dropdown menu, as
shown in Figure 3–17. This example of good design doesn’t really solve the problem,
but it does considerably improve the user experience.

Another tangible difference is that the WebApp needs to be opened after we have
opened the browser. The launching operation is divided into two steps: opening the
browser, and opening the WebApp.

For this problem, we can use the ability of iOS to create a Springboard Icon that links to
our WebApp, which we can launch using just one tap, exactly as we do with every other
native application. We cover this point in Chapter 8.

Human Computer Interaction (HCI)
The user has a more responsive (human computer) interaction with a native compiled
application than with a Safari-based WebApp. This is true for two reasons:

 Interpretive nature of web scripting

 Network dependence of WebApp

However, in spite of technological constraints, we can perform an optimization phase in
order to achieve acceptable performance. Some of these techniques will be covered in
Chapter 10.

In Table 3–1, we can see another instance of intra-platform, because we have to deal
with three kinds of network protocols implemented on different hardware: four different
versions of the iPhone, one version of the iPad, and one version of the iPod Touch.

CHAPTER 3: Web Development for iOS Devices 73

Table 3–1. Network Protocols Implemented in Apple’s Mobile Devices

 Network Name Network Protocol Network Bandwidth

 Wi-Fi 811.11 54 Mbps

 3G UMTS Up to 7.2 Mbps

 2G EDGE 70-135 Kbps, 200 Kbps burst

Next, we will introduce web standards, the new features available with HTML and CSS,
and JavaScript best practices.

Web Standards: HTML, CSS, and JavaScript
In this book, we will assume that you already know the basics of HTML, CSS, and
JavaScript. We will approach HTML, CSS and JavaScript in an Apple device oriented
way in Chapter 7, but in this book we will not be covering the basics of web standards.
The reason is that it will be impossible to cover all of those three (very important) topics
from their basics and keep the focus on and achieve our main goal: presenting the
basics of how to design and develop for iPhone and iPad.

NOTE: If you need to approach HTML and CSS foundations, a good book to look at is “Beginning

HTML with CSS and XHTML” from Apress.

If you need to approach JavaScript and DOM foundations, a good book to look at is “Beginning
JavaScript with DOM Scripting and Ajax: From Novice to Professional” Christian Heilmann

(Apress 2006).

However, before we get to Chapter 7, what we’ll explore now is the role of those web
standards in the development phase and how we’ll use these newly introduced features
for our purposes. In the meantime, if you need to go back-to-basics with web standards,
find a good book and fill in any gaps in your missing knowledge.

Figure 3–18. iPhone and iPad WebApp based on 3 Web Standards: HTML, CSS and JavaScript

CHAPTER 3: Web Development for iOS Devices 74

In the following pages, you will find two tables, one with the new tags in HTML, and one
with all the <video> tag attributes, to use as a small standard reference.

As shown in Figure 3–18, HTML, CSS and JavaScript are used to achieve the following
goals:

 HTML: Page structure (in semantic terms)

 CSS: Page presentation (in aesthetic terms)

 JavaScript: Page behavior (in user-interaction terms)

HTML: Introducing the New Features
HTML is designed to be the successor to HTML4 and aims to improve interoperability
and reduce development costs by making precise rules on how to handle all HTML
elements, and how to recover from errors.

Behind that, HTML also allows developers to create cross-platform design through
expressing the content more semantically. An example is the group of new tags like
<header>, <nav>, <section>, <aside>, and <footer> that make the content more
machine-readable and therefore make it easier for the mobile browser and search
engine to treat content properly.

Some of the new features in HTML are also functions for embedding audio, video,
graphic, client-side data storage, and interactive documents. Five of the most exciting
features introduced with HTML are:

 Web Workers

Allows hyper-threading for web browser (supported from iOS5).
Separate background threads are used to do processing without
affecting the performance of a webpage. This is an important feature
when we develop WebApps and (often) when we rely on heavy script
to perform functions.

 Video Element

Embed video without having to rely on third-party (often proprietary)
plugins or codecs (which are not available on Apple mobile devices).
Now embedding and manipulating a video is as easy as embedding
and controlling an image.

 Canvas

Allows us to render graphics and images on the fly. In certain
situations in our mobile context, saving bandwidth by using a canvas
instead of an image is extremely advantageous.

CHAPTER 3: Web Development for iOS Devices 75

 Application Caches

Gives the ability to store a WebApp locally and access it without
having to connect to the internet. This is a giant step forward for
anyone who develops WebApps, because now he has a valid
alternative to native applications.

 Geolocation

This API defines location information with a high-level interface (GPS) associated with
the device hosting the API. This is another great feature, because previously only native
applications could interact with cool hardware features like GPS (even if only for a single
geolocation service).Is important to remark that the semantic nature of HTML requires
an in-depth understanding of the precise meaning of each tag. We can go deeper on
this important point by reading the official HTML Reference on the W3C web site.

NOTE: The official W3C HTML Elements Reference is available at:

 http://dev.w3.org/HTML/html-author/#the-elements

In Table 3–2, I've listed alphabetically all the new tags in HTML. These tags will be
added to the old, supported, and non-deprecated tags from HTML4. HTML is still a
work in progress; you can see the full reference going to the official webpage at:
www.w3.org/TR/HTML/.

Table 3–2. New Tags in HTML (Ordered Alphabetically)

 Name Device

<article> Defines an Article

<aside> Defines Content Aside from the Page Content

<audio> Defines Audio Content

<canvas> Defines Graphics

<command> Defines a Command Button

<datalist> Defines a Dropdown List

<details> Defines Details of an Element

<embed> Defines External Interactive Content or Plug-in

<figcaption> Defines the Caption of a Figure Element

<figure> Defines a Group of Media Content, and its Captions

http://dev.w3.org/HTML/html-author/#the-elements
http://www.w3.org/TR/HTML/

CHAPTER 3: Web Development for iOS Devices 76

 Name Device

<footer> Defines a Footer for a Section or Page

<header> Defines a Header for a Section or Page

<hgroup> Defines Information about a Section in a Document

<keygen> Defines a Generated Key in a Form

<mark> Defines Marked Text

<meter> Defines Measurement within a Predefined Range

<nav> Defines Navigation Links

<output> Defines some Types of Output

<progress> Defines progress of a Task of any kind

<rp>
Used in Ruby Annotation for the Benefit of Browsers that don’t Support Ruby
Annotation

<rt> Defines Explanation to Ruby Annotation

<ruby> Defines Ruby Annotation

<section> Defines a Section

<source> Defines a Media Resource

<summary> Defines the Header of a “detail” Element

<time> Defines a date/time

<video> Defines a Video

The new <video> tag is by far the most famous tag in whole HTML list because of the
well-known controversy between Apple and Adobe about Flash technology support. An
example is shown in Figure 3–19.

CHAPTER 3: Web Development for iOS Devices 77

Figure 3–19. The HBO Web site: The iOS does not support Adobe Flash Technology and instead embraces the
HTML Video Standard.

Today, if we want to insert video compatible with any of Apple’s devices, we need to
use this tag. For this reason, in Table 3–7, we show each <video> attribute with its
related description.

Table 3–3. Video Tags Attributes in HTML (Ordered Alphabetically)

 Attribute Description

autoplay When set to true, the video plays as soon as it buffered

controls If set to true, the user is shown playback controls

end Defines the endpoint of a video. if it’s not defined, the video plays to the end.

height Defines the height of the video player

loopend Defines the ending point of a loop

loopstart Defines the starting point of a loop

playcount Defines the number of times a video clip is played. default value is set to 1

poster Defines the URL of a “poster image” to show before the video begin to play

src Defines the URL of the video

CHAPTER 3: Web Development for iOS Devices 78

 Attribute Description

start
Defines the startpoint of a video. if it’s not defined, the video starts from the
beginning

width Defines the width of the video player

The HTML code is:

<video src="videos/name-of-the-video.mov" controls="true"É
 poster="images/video-preview.jpg" width="300" height="200" />

Developing for desktop using HTML also brings a compatibility issue to browsing
support, but in our context (Apple mobile devices) this problem doesn’t exist, because
Mobile Safari supports all the new tags and features from the last HTML draft. We will
consider the entire HTML standard in a more detailed way in Chapter 7.

CSS 3: Introducing the New Features
The old CSS2 specification was too large and complex to be updated in one big chunk,
so it has been broken down into smaller pieces from the World Wide Web Consortium
(W3C). Some modules included are:

 The Box Model

 Multi-Column Layout

 Background and Borders

 Lists Module

 Text Effects

 Hyperlink Presentation

 Speech Module

NOTE: CSS is still a “work in progress” project, and you can have a better look over the complete

list of modules at: www.w3.org/Style/CSS/current-work.

The main impact of CSS is the ability to use new selectors and properties in order to
achieve new design features such as animation or gradients, and to achieve current
design features in a much easier way.

Now we will see some of the most common properties that will be found in every
framework that we’ll use in designing and developing for the iPhone and iPad. Knowing
these properties will be useful in Chapter 8 when we expand our frameworks.

http://www.w3.org/Style/CSS/current-work

CHAPTER 3: Web Development for iOS Devices 79

NOTE: Until all the CSS modules reach recommended status, every browser vendor has the
faculty to decide how to implement those properties. For this reason, a proprietary prefix is
placed in front of every property.

The point of vendor-specific prefixes is to let other rendering engines know that the property can
be safely ignored without creating an error, and at the same time let the developer know that
those properties are experimental and not fully supported, even if planned by the W3C.

Once CSS has been completely defined, supported, and officially becomes a Web Standard, all
these prefixes will be removed.

An example is:

border-radius: 3px;

-webkit-border-radius: 3px; (WebKit-based Browser implementation)
-moz-border-radius: 3px; (Gecko-based Browser implementation)

Safari (and other webkit based browsers) have supported border-radius with the -webkit-

prefix since version 3 (no longer needed from version 5 onward).

At present, when working with desktop web sites and WebApps, we need to specify the
same property several times, at least once for each of the most common browsers, in
order to achieve a minimum level of CSS property accessibility.

NOTE: In our Apple devices context, the only thing we need to do is take care of WebKit CSS

implementation, because we will only use WebKit-based browsers like Safari.

Border Radius
Achieving rounded borders using CSS2 coding can be tricky, and as we well know, iOS
has rounded borders everywhere. Numerous methods available, but none is terribly
straightforward. This requires us to use additional markup and to create individual
images for each border.

Using CSS, creating a rounded border is incredibly fast and easy. As shown in the
Table 3–4, we can apply this property to all corners or to individual corners, and width
and color are easily altered.

The CSS syntax is:

-webkit-border-radius: <length>;

CHAPTER 3: Web Development for iOS Devices 80

Table 3–4. Border Radius Property in CSS.

 Name border-radius

Value: [length | percentage]

Initial: [0]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Figure 3–20. Examples of Rounded Border Property in CSS (images Christian Krammer).

Border Images
Border images are one of the most useful additions—take note that all of the big buttons
that slide in from the bottom on the iPhone can also be designed with this property. CSS
has the ability to repeat or stretch a border image as you choose, as shown in Table 3–5
and Figure 3–21.

The CSS syntax is:

-webkit-border-image: <source> <slice> <width> <outset> <repeat>;

CHAPTER 3: Web Development for iOS Devices 81

Table 3–5. Border Image Property in CSS.

 Name border-image

Value: [none | length]
[number | percentage]
[length | percentage | number | auto]
[length | percentage]
[stretch | repeat | round]

Initial: [none]
[100%]
[1]
[0]
[stretch]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Figure 3–21. Examples of Border Image Property in CSS (images Christian Krammer).

CHAPTER 3: Web Development for iOS Devices 82

Gradients
A gradient is a browser-generated image specified entirely in CSS, which consists of
smooth fades between several colors. Gradients are specified using the -webkit-
gradient function and can be passed in place of an image URL. There are two types of
gradients, linear and radial. You can specify multiple in-between color values, called
color stops, and the gradient function interpolates the color values between them.

The function you use to create a color stop is called color-stop. You pass this function
as a parameter to the -webkit-gradient function to specify the start, intermediate, and
end colors in both a linear and a radial gradient. The colors between the specified color
stops are interpolated, as shown in Table 3.6 and Figure 3–22.

The CSS syntax is:

-webkit-gradient (<gradient-line> <color-stop> <color-stop> <color-stop>);
-webkit-gradient (<gradient-line> <color-stop> <color-stop> <color-stop>);

Table 3–6. Gradient Property in CSS.

 Name gradient()

Value: [gradient-line]
[color-stop]
[color-stop]
[color-stop]

Initial: [top]
[transparent]
[transparent]
[transparent]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Name color-stop()

Value: [color]
[length | percentage]

Initial: [transparent]
[0%]

CHAPTER 3: Web Development for iOS Devices 83

 Name gradient()

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Percentages: N/A

Media: Visual

Figure 3–22. Examples of Gradient Property in CSS (images Christian Krammer).

Box Sizing
The new Box Model is one of the most extensive areas of the CSS draft. This box sizing
aspect allows you to define certain elements to fit an area in a certain way. If, for some
reason, we want to design a two-column bordered box in our user interface and place
the two boxes side by side, it can be achieved using this model. This forces the browser
to render the box with the specified width and height, and place the border and padding
inside the box.

The box size property in CSS is shown in Table 3–7 and the CSS syntax is:

-webkit-box-sizing: <box-sizing value>;

CHAPTER 3: Web Development for iOS Devices 84

Table 3–7. Box Size Property in CSS.

 Name box-sizing

Value: [content-box | border-box | inherit]

Initial: [content-box]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Box Shadow
Adding a box shadow was difficult with CSS2; usually we needed to use additional
markup. While I wait to switch to a full CSS web site in the near future, for the time being
I have personally added an additional <div> to my web site in order to add a paper-
shadow-effect to the main content. The CSS alternative is more elegant and clean.

The box shadow property in CSS is shown in Table 3–8 and the CSS syntax is:

-webkit-box-shadow: <offset-x> <offeset-y> <blur radius> <color>;

Table 3–8. Box Shadow Property in CSS.

 Name box-shadow

Value: [offset]
[offset]
[offset }
[color]

Initial: [0]
[0]
[0]

[transparent]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 85

Figure 3–23 shows an example of the box shadow property in CSS.

Figure 3–23. Examples of Box Shadow Property in CSS (images Christian Krammer).

Outline
Setting an element outline is already available in CSS2, but in CSS includes the ability to
offset the outline away from its element, by a value that we define. It differs from a
border in two ways:

 Outlines do not take up space

 Outlines may be non-rectangular

NOTE: All Outline Shapes are rectangular, but an outline can be an agglomeration of rectangle.

The outline property in CSS is shown in Table 3–9 and the CSS code is:

outline: <width> <style> <color>;
outline-offset: <offset>;

CHAPTER 3: Web Development for iOS Devices 86

Table 3–9. Outline Property in CSS.

 Name outline

Value: [width | inherit]
[auto | style | inherit]
[color | invert | inherit]

Initial: [medium]
[none]
[invert]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Background Size
Before CSS, background size was determined by the actual size of the image used. This
new CSS property makes it possible to specify the needed size of the background
image in terms of percentage or pixels. When emulating the iOS user interface, we
always try to use CSS properties instead of images wherever possible.

In any case, the background-size property, where it is needed, will allow us to re-use
images in several different contexts and also expand a background to fill an area more
accurately.

The background size property in CSS is shown in Table 3–10 and the CSS syntax is:

-webkit-background-size: <length-x> <length-y>;

Table 3–10. Background Size Property in CSS.

 Name background-size

Value: [auto | length | percentage]

Initial: [auto]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 87

Figure 3–24 shows examples of the background size property in CSS.

Figure 3–24. Examples of Background Size Property in CSS (images Christian Krammer).

Background Origin
CSS also allows us to specify how the position of a background is calculated, as shown
in Table 3–11. This allows great flexibility in terms of placing a background image.

The CSS syntax is:

background-origin: <origin-value>;

Table 3–11. Background Origin Property in CSS.

 Name background-origin

Value: [content-box | border-box | padding-box]

Initial: [padding-box]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 88

Figure 3–25 shows examples of the background origin property in CSS.

Figure 3–25. Examples of Background Origin Property in CSS (images Christian Krammer).

Multiple Backgrounds
The new ability to use multiple backgrounds is a great time saver, and allows us to
achieve effects that previously required more than one <div>. The Multiple Background
property, combined with the background size gives us a powerful tool in order to reduce
the gap between a native UI look-and-feel and our emulated (web) user interface.

The multiple background property in CSS is shown in Table 3–12 and the CSS code is:

background: <source-1> <position> <repeat>, <source-n> <position> <repeat>;

Table 3–12. Multiple Backgrounds Property in CSS.

 Name background

Value: [image | none]
[length | percentage]
[repeat | no-repeat]

Initial: [none]
[0% 0%]
[repeat]

Applies to: all elements

inherited: no

CHAPTER 3: Web Development for iOS Devices 89

 Name background

Percentages: N/A

Media: Visual

Computed Value: as specified

Figure 3–26 shows examples of the multiple background property in CSS.

Figure 3–26. Examples of (Multiple) Background Property in CSS (images Christian Krammer).

Text Shadow
Text shadow is a fundamental CSS property for who want to emulate the native iOS user
interface. Almost all the text in iOS is embossed and personally I find it very readable.

The text shadow property in CSS is shown in Table 3–13 and the CSS code is:

-webkit-text-shadow: <offset-x> <offeset-y> <blur radius> <color>;

CHAPTER 3: Web Development for iOS Devices 90

Table 3–13. Text Shadow Property in CSS.

 Name text-shadow

Value: [image | none]
[length | percentage]
[repeat | no-repeat]

Initial: [none]
[0% 0%]
[repeat]

Applies to: all elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Examples of the text shadow property are shown in Figure 3–27.

Figure 3–27. Examples of Text Shadow Property in CSS (images Christian Krammer).

Text Overflow
Text overflow is another fundamental property involved in iOS native user interface
emulation. The ellipsis in a menu title indicates that the menu allows more than a simple
tap-see-result action (e.g., Choose a Network...) but often in the iPhone environment,
the title overflows the Header Bar, even more often if we use buttons on the left and
right of this bar to help the user better navigate the content.

In this case, the text overflow Text Overflow property allows us to clip the text with some
nice ellipses ("...") as a visual hint to the user that the text has been clipped. With the
iPad, this problem no longer exists because of the larger screen.

The text overflow property is shown in Table 3–14 and the CSS syntax is:

text-shadow: <overflow-value>;

CHAPTER 3: Web Development for iOS Devices 91

Table 3–14. Text Overflow Property in CSS.

 Name text-overflow

Value: [clip | ellipsis | ellipsis-word | inherit]

Initial: [clip]

Applies to: all block-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Word Wrapping
With CSS2, if a word is too long to fit within one line of an area, it expands outside. This
is not a very common occurrence, but happens from time to time. The new word
wrapping ability, shown in Table 3–15, allows us to force the text to wrap, even if it
means splitting it mid-word.

Table 3–15. Word Wrapping Property in CSS.

 Name word-wrap

Value: [normal | break-word]

Initial: [normal]

Applies to: all elements

inherited: yes

Percentages: N/A

Media: Visual

Computed Value: as specified

IMAGINE CSS

The CSS syntax is:

word-wrap: <wrap-value>;

The CSS code is:

word-wrap: break-word;

CHAPTER 3: Web Development for iOS Devices 92

Web Fonts
This new property will be a revolutionary change for web design, but for those of us who
need to work with the native iOS user interface, this property is not that useful. because
we have Helvetica in the Safari Font Stack. Using the web font property could mean
downloading potentially heavy files and having some strange logos to represent textually.

The web font property in CSS is shown in Table 3–16 and the CSS syntax is:

@font-face { <font-family>; <source>; }

Table 3–16. Web Font Property in CSS.

 Name @font-face

Value: [family-name]

Initial: [N/A]

Applies to: all font face and font family

inherited: no

Percentages: N/A

Media: Visual

Computed Value: N/A

Tap Highlight
In the touch screen device paradigm, the hover status as we know it in the desktop user
experience doesn’t exist, but with this useful WebKit extension we can highlight a link or
a JavaScript-clickable element. The alpha channel is also supported.

The tap highlight property in CSS is shown in Table 3–17 and the CSS syntax is:

-webkit-tap-highlight-color: <color>;

Table 3–17. Tap Highlight Property in CSS.

 Name tap-highlight-color

Value: [color]

Initial: [rgba(0,0,0,0)]

Applies to: link, JavaScript clickable elements

inherited: yes

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 93

Multiple Columns
The multi column property is much more exciting from a desktop perspective, because
the iPhone and iPad user interface doesn’t use multi column layout very often. In some
cases, this property can still be useful for achieving some nice content presentation.
This property allows us to specify into how many columns our text should be split, and
how they should appear.

There are four properties that relate to the multiple column layout in CSS that allow us to
set the number of columns, width, amount of gap separating each column, and the
border between each. The 4 properties are:

 column-count

 column-width

 column-gap

 column-rule

The multiple columns property in CSS is shown in Table 3–18 and the CSS syntax is:

.twoColumnLayout { <number-of-column> <width> <gap> <rule> }

Table 3–18. Multiple Columns Property in CSS.

 Name column-span

Value: [integer | auto]
[length | auto]
[length | normal]
[color]

Initial: [auto]
[auto]
[normal]
[same as for ‘color’ in CSS21]

Applies to: non-replaced block-level elements (except table elements),
table cells, inline block elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: the absolute length

CHAPTER 3: Web Development for iOS Devices 94

Spanning Columns
This property is used in case we want an element to span more than one column;
usually we use it for headings, tables or images.

The span column property in CSS is shown in Table 3–19 and the CSS syntax is:

column-span: <number-of-column>;

Table 3–19. Span Column Property in CSS.

 Name column-span

Value: [1 | all]

Initial: [1]

Applies to: static, non-floating elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Transitions

The transition property can be used to spread a CSS property value modification such
as height, width, or color over time. Not all properties can be animated with a transition,
but all the important properties for iPhone and iPad development are in the list.

The first value refers to the property being transitioned, the second value controls the
duration, and the third controls the type of transition.

The transitions property in CSS is shown in Table 3–20 and the CSS syntax is:

-webkit-transition: <property> <time> <function>;

Table 3–20. Transition Property in CSS.

 Name transition

Value: [none | all | property]
[time]
[ease | linear | ease-in | ease-out | ease-in-out | cubic-bezier]

CHAPTER 3: Web Development for iOS Devices 95

 Name transition

Initial: [all]
[0]
[ease]

Applies to: all elements, :before and :after pseudo elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Figure 3–28 shows examples of the transition property in CSS.

Figure 3–28. Examples of Transition Property in CSS (images Christian Krammer).

Transforms
Transforms are used for modifying the geometry of objects through mathematical
operations. This property is fundamental for emulating some of the typical iOS effects
between pages, and it is useful for creating interesting visual effects and animations.

In the transform property, a list of transform functions will be used as values, and is
applied in the order provided. Exactly as they are for the other CSS values, the individual
transform functions are separated by white space.

The transform property works together with the transform-origin property to set the
point of origin from where the transition takes place.

Available transform functions are:

 matrix(number, number, number, number, number, number)
specifies a 2D transformation in the form of a transformation matrix of
six values. matrix(a,b,c,d,e,f) is equivalent to applying the
transformation matrix [a b c d e f].

CHAPTER 3: Web Development for iOS Devices 96

 translate(translate-value, translate-value) specifies a 2D translation
by the vector [tx, ty], where tx is the first translation-value parameter
and ty is the optional second translation-value parameter. If ty is not
provided, ty has zero as a value.

 translateX(translation-value) specifies a translation by the given
amount in the X direction.

 translateY(translation-value) specifies a translation by the given
amount in the Y direction.

 scale(number, number) specifies a 2D scale operation by the [sx,sy]
scaling vector described by the 2 parameters. If the second parameter
is not provided, it is takes a value equal to the first.

 scaleX(number) specifies a scale operation using the [sx,1] scaling
vector, where sx is given as the parameter.

 scaleY(number) specifies a scale operation using the [1,sy] scaling
vector, where sy is given as the parameter.

 rotate(angle) specifies a 2D rotation by the angle specified in the
parameter about the origin of the element, as defined by the
transform-origin property.

 skew(angle, angle) specifies a skew transformation along the X and Y
axes. The first angle parameter specifies the skew on the X axis. The
second angle parameter specifies the skew on the Y axis. If the
second parameter is not given then a value of 0 is used for the Y angle
(e.g., no skew on the Y axis).

 skewX(angle) specifies a skew transformation along the X axis by the
given angle.

 skewY(angle) specifies a skew transformation along the Y axis by the
given angle.

The transform property in CSS is shown in Table 3–21 and the CSS syntax is:

-webkit-transition: <transform function> <type of effect>;
-webkit-transition-origin: <transform origin>;

Table 3–21. Transform Property in CSS.

 Name Transform

Value: [none | transform function | transform function]

Initial: [none]

Applies to: block-level and inline-level elements

inherited: no

CHAPTER 3: Web Development for iOS Devices 97

 Name Transform

Percentages: Refer the size of the element’s box

Media: Visual

Computed Value: as specified

Name transform-origin

Value: [percentage | length | left | center | right]

Initial: [50% 50%]

Applies to: block-level and inline-level elements

inherited: no

Percentages: Refer the size of the element’s box

Media: Visual

Computed Value: for length the absolute value, otherwise a percentage

Figure 3–29 shows examples of the transform property in CSS.

Figure 3–29. Examples of Transform Property in CSS (images Christian Krammer).

CHAPTER 3: Web Development for iOS Devices 98

Animation
Animation, similar to transition, modifies properties over time. Using the transition
property, we achieve a one-way effect from one value to another. This kind of property
is useful for emulating iOS page transitions or creating Flash-Like animations.

Using the animation property, we can provide any number of intermediate values that
are not necessarily linear, achieving fairly complex animations. These intermediate
values are called keyframes and are the foundation of all animation processes.

NOTE: A key frame in animation and filmmaking is a drawing that defines the starting and

ending points of any smooth transition. They are called "frames" because their position in time is
measured in frames on a strip of film. A sequence of keyframes defines which images the viewer
will see, whereas the position of the keyframes on the film, video, or animation timeline defines

the timing of the movement.

The animation property in CSS is shown in Table 3–22 and the CSS syntax is:

animation-name: <name>;
animation-duration: <time>;
animation-iteration-count: <integer>;
animation-timing-function: <function>;
@keyframes <name> {
 from {
 left: <start-x>;
 top: <start-y>;
 }
 to {
 left: <destination-x>;
 top: <destination-y>;
 }
}

Table 3–22. Animation Property in CSS.

 Name transform

Value: [animation-name]
[animation-duration]
[animation-timing-function]
[animation-delay]
[animation-iteration-count]
[animation-direction]

Initial: see individual properties

Applies to: block-level and inline-level elements

inherited: no

CHAPTER 3: Web Development for iOS Devices 99

 Name transform

Percentages: N/A

Media: Visual

Computed Value: as specified

In our frameworks, the JavaScript takes care of the user interface’s behavior, but the
animation property offers a valid alternative in many other situations. This property is
also the most complex of all CSS modules. For this reason, we will analyze all its
properties in detail. More details are shown in Table 3–23.

Table 3–23. Further Details of Animation Property in CSS.

 Name animation-name

Value: [none | name]

Initial: { none]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Name animation-duration

Value: [time]

Initial: [0]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 100

 Name animation-timing-function

Value: [ease | linear | ease-in | ease-out | ease-in-out | cubic-bezier]

Initial: [ease]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

 Name animation-iteration-count

Value: [infinite | integer |

Initial: { 1]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

 Name animation-direction

Value: [normal | alternate]

Initial: [normal]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 101

 Name animation-play-state

Value: [running | pause]

Initial: [running]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

 Name animation-delay

Value: [time]

Initial: [0]

Applies to: block-level and inline-level elements

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

Keyframes
Keyframes are used to specify the values for animating properties at various points
during the animation. The keyframes specify the behavior of one cycle of the animation;
the animation may iterate one or more times.

Keyframes are specified using a specialized CSS at-rule. A @keyframes rule consists of
the keyword @keyframes, followed by the identifier animation-name that gives a name for
the animation, followed by a set of style rules.

The CSS grammar for the keyframes rule is:

keyframes-rule: '@keyframes' IDENT '{' keyframes-blocks '}';
keyframes-blocks: [keyframe-selectors block] ;
keyframe-selectors: ['from' | 'to' | PERCENTAGE] [',' ['from' | 'to' |É
 PERCENTAGE]];

CHAPTER 3: Web Development for iOS Devices 102

The example below will produce an animation that moves an element from (0, 0) to
(100px, 100px) over five seconds and repeats itself nine times (for a total of ten
iterations). Note that we didn’t use all the properties listed above because we didn’t
need them to achieve this particular effect.

Reflections
No other CSS property is so typically Apple-style as is the reflection property. Reflection
is used on every product presentation in the Apple store and combined with the use of
negative space, it is a valuable tool for achieving nice clean design.

NOTE: Negative space, in art, is the space around and between the subject(s) of an image.
Negative space may be most evident when the space around a subject, and not the subject itself,

forms an interesting or artistically relevant shape, and such space is occasionally used to artistic
effect as the "real" subject of an image. The use of negative space is a key element of artistic

composition and visual design.

The box-reflection property is composed of 3 arguments or values in order to achieve the
final effect. The first argument sets the direction of the reflection. The second argument
specifies the offset of the reflection. The third argument is a mask applied to the reflection
and passed using a property called gradient. Details are shown in Table 3–24.

The CSS syntax is:

-webkit-box-reflect: <direction> <offset> <mask-box-image>;

Table 3–24. Reflection Property in CSS.

 Name box-reflect

Value: [above | below | left | right]
[offset]
[gradient()]

Initial: none

Applies to: all images

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

CHAPTER 3: Web Development for iOS Devices 103

 Name gradient

Value: [gradient()]
[from()]
[color-stop()]

Initial: none

Applies to: all images

inherited: no

Percentages: N/A

Media: Visual

Computed Value: as specified

JavaScript: Introducing Best Practices.
Browser-based development is the predominant platform for JavaScript, and usually it’s
executed in the context of a webpage. One of the considerations when writing
JavaScript for iPhone or iPad is the abysmal performance offered by these devices, as
illustrated in Figure 3–30.

Figure 3–30. JavaScript Performance Comparison between Mac OS X (left) and iOS (right)

In these cases, following best practices for high-performance code becomes even more
important. The following will present some best practice principles that will help us to
develop a cleaner and faster code in our iPhone and iPad web sites and WebApps.

CHAPTER 3: Web Development for iOS Devices 104

Make the Code Understandable
This first point is pretty easy to explain: choose easy to understand and short names for
variables and functions. Is always a good practice to describe a value with your variable
or function name.

Do Not Use Global Variables
Using global variables is usually a terrible idea because we run the risk of our code
being overwritten by any other JavaScript that is added to the page after ours.

Use a Strict Coding Style
We must always use valid code. In general, browsers are very forgiving JavaScript
parsers, but using a lax coding style will hurt us when we shift to another environment or
hand our project over to another developer. The JavaScript Validator will help us achieve
validity.

NOTE: In difference to HTML and CSS, W3C doesn’t offer any official Validator Service for our
JavaScript code, fortunately Douglas Crockford, the founder of JSON and JSmin, has created
JSLint a JavaScript Verifier.

JSLint is available at: www.jslint.com/

Comment the Code as Much as Needed
It’s important to remember that no matter how good your code is, still it never explains
itself. When commenting our code, it’s also important to avoid “line comment”. Using /*
*/ is much safer, because it doesn’t cause errors when a line break is removed.

Do Not Use Mixed Technologies
We can use JavaScript in many contexts, such as calculation, conversion, access
outside resources (Ajax), and to define the behavior of an interface (event handling). For
anything else, it’s a good idea to stick with the technology we already have to do the
job.

A good example would be if we were to try to change the presentation using JavaScript.
That’s really a bad approach, because people shouldn’t have to change the JavaScript
code to change a presentation’s look-and-feel. All of the frameworks we’ll be using put
this principle into practice. It lets us use many customized user interface components
without writing a single line of JavaScript code.

http://www.jslint.com/

CHAPTER 3: Web Development for iOS Devices 105

Use Shortcut Notation
Using shortcut notation, we can keep our code snappy and easier to read, once we
become familiar enough with it.

Modularize the Code
Keeping the code modularized and specialized is always a time saving practice for a
developer. Especially when we are beginners we have a tendency to write single
functions to achieve all of our (behavior) goals. Unfortunately, as we start extending our
code, we face the risk of writing the same code in several functions. In order to avoid
this, it is important to write smaller, generic helper functions that fulfill one specific task.

Allow Progressive Enhancement
In writing our code, we must use JavaScript only to achieve specific behaviors. In any
other cases we must use other web standards like HTML and CSS. The point here is to
avoid a lot of JavaScript-dependent code. Developing in this way we will provide
progressive enhancement and a first level of optimization, because DOM generation is
slow and expansive.

DEFINITION: Progressive enhancement is a strategy for web design that emphasizes
accessibility... Progressive enhancement uses web technologies in a layered fashion that allows
everyone to access the basic content and functionality of a web page, more advanced browser

software or more experience an enhanced version of the page.

—(source Wikipedia)

Allow for Maintenance and Customization
All of the things that are likely to change in our code should not be scattered throughout
the code. A good practice is to put these bits of code into a configuration object and
make it public, so that maintenance and customization will be easier to achieve.

Do Not Code Heavy Nesting Loops

Nesting loops inside of loops is always a bad idea, because it means taking care of
several iterator variables. We can achieve the same result in a cleaner way using
specialized tool methods.

Optimize the Loops
In JavaScript, loops can get terribly slow, most of the time because of bad coding. A
good guideline is to always keep computation-heavy code outside of loops.

CHAPTER 3: Web Development for iOS Devices 106

Make a Minimum Use of DOM
As we previously said, DOM generation is slow and expansive, so it is important to
remember not to abuse it, or to overuse and scatter it about instead of using group
operations.

Always Test Any Element
We can’t simply trust any data that come in. An example of how to avoid this is to test
data that get into our function as to its format using typeof, or to test availability of DOM
elements before altering or using them.

Use JavaScript only to Add Behaviors
While writing our JavaScript code, it is hard keep track of the quality of the HTML we
produce. We know in any case that JavaScript aims to implement behaviors in our web
site or WebApp, and for this reason, if we find ourselves creating lots of HTML in
JavaScript, we might be doing something wrong.

Develop Code for Humans First
As good practice, at certain points in the development process we always optimize our
code. Is important to remember that live code is done for machines, and development
code is done for humans, so we don’t want to optimize prematurely and punish
ourselves or the other developers who have to take over from us.

Browser Support for Standards: WebKit and Safari
When developing web sites or WebApps for the iPhone and iPad, the browser
represents the foundation of all our projects. The Apple browser was developed over the
WebKit browser engine, and uses web standards like:

 HTML, HTML4, XHTML, XHTML-MP

 CSS, CSS2

 JavaScript

 AJAX

 SVG

 Other technologies for text, video, audio, etc.

Think of Safari as being like your best friend (and maybe it is, since you will spend more
time in front of this browser than with all your real friends): the better you know it, the
less you will have problems with it.

CHAPTER 3: Web Development for iOS Devices 107

Both Safari and Mobile Safari are based on the same WebKit browser engine and both
support the full CSS2 specifications, passing the CSS Acid3 Test with a 100% score
(see Figure 3–31). Both browsers also support almost all of the new CSS specifications,
and personally I assume that all my iPhone or iPad web sites and WebApp support all
CSS specifications, because all of the useful properties for development are supported.
Safari also introduced some new WebKit properties like CSS -webkit-reflection, and -
webkit-tap-highlight-color that we hope will be included in the CSS specification
soon.

Figure 3–31. Acid3 Test on Safari (left) and on Mobile Safari (right)

The most famous behavior difference between Safari and Mobile Safari is the position:
fixed issue (supported only from iOS5 on). This may become a problem when we want
to insert some kind of UI element, like a fixed footer (or header), in the bottom (or upper)
part or our web site or WebApp. In this case, if the user scrolls up and down the page so
does the UI element.

In order to understand what and why this happens, we need to remember that what we
see on the iPhone (and in some cases on the iPad) is just a viewport into the full HTML
page.

NOTE: The viewport area in a desktop context is the visible portion of a 2D area, which is larger

than the visualization screen.

It’s like having an open book in front of us, and in our hands a piece of paper with a
square hole of 320x416 pixels cut out of the middle. Once we’ve laid the paper down onto
the book’s page surface, if we want to read the page we need to move the 320x416
square hole (the viewport) around and position it over the words we want to read. This is
exactly what the Mobile Safari viewport does, and as we flick and scroll, we are moving
the viewport around while the web site behind it stays static. The Figure 3–32 below,
shows exactly this principle.

s

CHAPTER 3: Web Development for iOS Devices 108

Figure 3–32. Comparison between iOS and OS X Viewport dimensions.

Therefore, the CSS property is valid and working. Because the viewport is moving rather
than the page, the element appears to move. We have several methods for fixing this
problem and we will see various ways to do it in Chapter 8.

The Mobile Safari browser is a Class A browser, meaning that it is comparable to a
desktop-grade browser. In this section we saw how important is that a browser provide
support for web standards, in the next section we will see the iOS limitation and
constraints and what this does mean for a Web Developer.

iOS Limitation and Constraints
Since the iPhone and the iPad are mobile devices, they must obviously have constraints,
and since nothing is infinite in this world (mathematical infinity apart), they’ve obviously
got to have some limitations.

In the end, I always react positively to limitations and constraints, even if in the
beginning sometimes they can make me upset, nervous, or even angry. I still remember
the day when I realized that the old iOS firmware (called iPhone OS) didn’t allow any
multi-tasking features for native and third party applications, and it’s probably better to
forget what passed through my mind in those brief moments.

Our role as human beings and developers is to turn limitations and constraints into
opportunities, giving value to everything that comes into our lives and everything that
crosses our paths.

CHAPTER 3: Web Development for iOS Devices 109

What we have facing us today are some hardware and software limitations and
constraints. Table 3–28 shows the most important of these.

Table 3–28. iPhone and iPad Limitation and Constraints

 Software Resource Limitation

Opened Pages in Mobile Safari 8

Downloaded Resource over 3G 20MB

Non-Streamed Media Files 10MB

JavaScript Stack and Object Allocation 10MB

JavaScript Execution Limit 5 Seconds for each Top-Level Entry Point

PDF, Word, Excel Documents 30MB

PNG, GIF, TIFF Images 8MB

JPEG Images 128MB

Animated GIF 2MB

 Technology Area Technology Not Supported

Web Technology Flash Media Based, Java Applet

Mobile Technology WML

HTML input type=”file”, Tooltip

CSS hover, position: fixed

Bookmark Icon .ico file

JavaScript Event Several Mouse-Related Events

JavaScript Commands showModalDialog(), print()

Security
DSA Keys, Diffie-Hellman Protocol, Self-Signed
Certificates, Custom x.509 Certificates

As we can see from the second part of the table, in many cases the non-supported
technologies are not fundamental, and in other cases we have great substitutions or nice
workarounds; so let’s think positive!

An example of how to redesign the user experience following the touch screen paradigm
is the following. Imagine we’re browsing from our desktop a webpage, and we’re going

CHAPTER 3: Web Development for iOS Devices 110

to click on link in a menu. A dropdown menu with a few options is generated, and
hovering over these options causes a description for that item to appear in an info box
nearby. Clicking on the link takes us to another page.

This kind of user experience doesn’t exist on the iPhone or iPad, because the CSS
hover property is not supported.

What we can do is design an interface optimized for iPhone or iPad and let the info box
appear when the link is tapped for the first time, and activate the link when the user
makes a second tap, taking him to the desired page. A WebKit extension called tap-
highlight-color can also used to cause the tapped element to be all or partially
obscured by a color.

In the next paragraph, we will see how important is for a design to also provide support
for the first line of user interface: the fingers.

A Finger is not a Mouse: The Importance of being Finger-Friendly
The first thing we need to master as iPhone or iPad developers (but also as general
touch-devices developers), is that a finger is not a mouse. This is important to keep in
mind for several reasons.

When we browse a webpage with our mouse, we move a pointer over the page. The
pointer is just few pixels wide and just one or two pixels wide at the top. Looking at it
from a finger perspective, we can have a tiny user with thin fingers, and a big user with
fat fingers. Most users will be in the middle, but almost all will be unable to use their
finger to tap a typical link from a desktop webpage. It doesn’t matter what kind of link
we are talking about it, a finger un-friendly link is unacceptable in any kind of touch
design, as shown in Figure 3–33.

Figure 3–33. Links are Completely Finger Un-Friendly without using the Zoom Function.

Now, I can hear you saying, Thank God we have the Zoom! You are right, but our golden
rule regarding mobile UX is that everything should be easily accessible with a minimal
number of actions. On touch devices, we must design links with a minimum height of
30px. With a link height 30px, and the use of the right amount of non-touchable space
between links, you can assume that almost all of your users will be able to tap the link
and use the interface.

Another important aspect is that finger input does not always correspond to mouse
input. A mouse has a left and a right button, a scroll in the middle, and it can move
quickly to any place the user wants to go.

CHAPTER 3: Web Development for iOS Devices 111

Many developers have said that the point here is to support all of the possible mouse-
events in order to increase the touch user experience. I totally disagree. For me, the
point is to design a user experience from zero, forget about the classic mouse user
experience, and move forward without even a glance backward.

In Table 3–29, we display which gestures to implement for an optimized touch user
experience, and how they change according to different contexts: web site, WebApp,
and native application.

Table 3–29. Finger Gestures and Mouse Events Comparison in Web site, WebApp, and Native App

 Gesture Result Web site WebApp Native App

Tap Equivalent to a Left Click* Yes Yes Yes

Double-Tap Zoom and Center a Block of Content Yes No No

Flick Scroll the Page Yes Yes Yes

Pinch Open Zoom In on Content Yes No No

Pinch Out Zoom Out on Content Yes No No

Touch & Hold 1 Copy, Cut, and Paste Yes Yes Yes

Touch & Hold 2 Display an Info Bubble Yes Yes No

Touch & Hold 3 Equivalent to a Right Click* No No Yes

*Comparison use a (more common) Right-Hand Mouse Configuration

We also have several mouse interactions that have no gesture event equivalents on an
iPhone or iPad, and some others that just belong to the past because they are not
interesting in a touch screen paradigm. These interactions include:

 Hover Effects

 Hover-Generated Content

 Drag Window Applications

 A Few Click-Based Interactions

Inside Progressive Enhancement
Progressive enhancement is a practice of using layered techniques to allow anyone to
access our content, regardless of his capabilities. Some techniques are related to
communication while others focus on interaction.

To adopt a progressive enhancement paradigm, we just need to start from a content-
out approach, as we saw in Chapter 2. Starting from the basic layer of marking up our

CHAPTER 3: Web Development for iOS Devices 112

text with a content-out approach using HTML, we add an extra layer for the
presentation using CSS, and a final layer for the behavior using JavaScript.

This approach is part of the web standards best-practices that we need to apply, but
when we’re developing for Apple devices it’s not enough to guarantee the final results.
In this context, we have other variables to handle in order to provide a graceful
degradation of our user experience. That’s where inside progressive enhancement
enters the scene, as shown in Figure 3–34.

Figure 3–34. Progressive Enhancement Paradigm on Web Site and WebApp

As we saw in the section about pro and cons of a WebApp and what makes the
difference between native and WebApp, the problem to consider is the inside cross-
platform instance. Here, our main goal is to let the user experience gently degrade
from the last iPhone or iPad available on the market to its first ancestor (iPhone 2G
and iPad 3G).

A useful guideline for providing inside progressive enhancement is composed of the
following points:

 Have a Device Plan: know which device model will be your primary target.

 Plan Different Versions of the same WebApp if you want to reach
different kinds of devices like the iPhone/iPod and iPad, and then optimize
separately each single user experience.

 Develop a Common Denominator between all supported devices in order
to share a basic (and common) level of user experience. Visualize how to
achieve different versions from the same Content-Out code in order to
optimize each user experience.

 Use Web Standards in a Semantic Way, and mark up the content with
HTML using a Content-Out approach. Begin to work on this first level of
page usability before adding any CSS style.

 Use CSS to add a presentation Layer.

CHAPTER 3: Web Development for iOS Devices 113

 Use JavaScript to provide User Interaction.

 Use Usability Tests in all phases of Information Architecture and
Development to ensure that the user experience improves incrementally
despite hardware differences

Developer Resources and Tools for Safari
The new version of Safari brings some new development features. These features are
not available on Mobile Safari, but if we need to work on specific tasks like JavaScript
debugging, or monitoring the assets activity, we can always use the desktop version for
iPhone and iPad projects.

Figure 3–35. Safari Development Tools: Databases (left), JavaScript Debugger (center), Resources (right).

We can access all of the developer tools in Safari 5 from the menu bar by turning on the
Develop menu in the Advanced pane of Safari preferences, as shown in Figure 3–35. In
this way, we will have one-click access to all of the developer features.

Web Inspector
The Web Inspector is the Developer Tools command center where a Web Developer can
easily access every available tool. All of the features that you will see in the next
paragraph are accessible via Web Inspector.

Elements
With this tool, we can access the webpage’s structure. With Elements Pane, we can
also make changes to DOM and CSS code and see immediately a preview of changes.

CHAPTER 3: Web Development for iOS Devices 114

Resources
With this tool, we can access the application’s resource, thereby allowing us to view and
modify local data and SQL database information. We can also have information on
accessed domains.

Network
With this tool, we can monitor how resources are loaded over the network and we can
deal with any sort of loading delay issue.

Script
With this tool, we can examine our JavaScript code and debugging at run-time. This tool
also provides information over all of the resources used by our JavaScript code.

Timeline

With this code, we have a window over the interaction timeline of our WebApp. We can
see how a webpage has been loaded and rendered.

Developer Tools for Mobile Safari
Mobile Safari has an integrated Debug Console, shown in Figure 3–36. It is not like
working with the desktop version of this browser, but it can be useful for checking errors
in our web site or WebApp.

Figure 3–36. The Mobile Safari Debug Console

To activate this function, you need to go in the Settings page, enter the Safari page
settings and choose Developer. In the developer page, toggle on the option Debug

CHAPTER 3: Web Development for iOS Devices 115

Console. Once activated, the Debug Console will display a (limited) list of console
messages.

SDK Development Model
In 2002, Apple launched Mac OS X, and at that time it made a complete suite of
application development tools available to every user of the Macintosh. Since the
appearance of OS X version 10.3, called Panther, those tools have been presented as
parts of an integrated development environment called Xcode. All OS X applications
such as Safari, iTunes, Mail, or iChat are developed by Apple using the same Xcode
tool.

In this section, we will give a brief introduction to this paradigm and its components,
because even if this book is about web development models, it's good for a developer
to have a 360-degree perspective on the Apple development world.

Apple’s Objective-C, Cocoa Touch, and Xtools Model
The Xtools IDE, Cocoa Touch Framework, and the Objective-C language comprise the
trinity of every iOS developer. Everything starts from here.

Xcode IDE
When we talk about Xtools, in 99% of situations we’re referring to the Xcode IDE, to the
Interface builder, and to the iPhone/iPad Simulator.

Xcode is an IDE. With this tool, we can also manage all of our testing devices, and
automatically package into iPhone/iPad applications with the proper certificates, and
install applications on the iPhone/iPad itself.

The remote debugger function can also connect to the device in real-time, managing
breakpoints as the application is controlled on the device and providing a good tool for
real-time testing.

The iPhone/iPad Simulator
The iPhone/iPad simulator runs our application in much the same way as an actual
iPhone/iPad device. This tool is every developer’s best friend in the first phase of
testing. Using the iPhone/iPad simulator, we can even simulate the touch gestures by
using a mouse, and we can also provide a good resource for creating a video tutorial for
our application.

CHAPTER 3: Web Development for iOS Devices 116

Objective-C Language
Objective-C is an object-oriented language with a dynamic class system built as a
superset over the standard C language. This language is built on top of Cocoa (Mac OS
X) and Cocoa Touch (iOS) frameworks.

Objective-C also introduced a garbage collector optimized for multi-core Macs, but as
iOS developers, we can forget about this feature because, on iOS, we must manually
optimize our memory usage .

Cocoa Touch Framework
The Cocoa Touch framework drives all of the iOS applications and shares many proven
patterns found on the Mac, but it is built with a special focus on touch-based interfaces
and optimization.

The Cocoa Touch framework is composed of the following parts:

 Foundation framework

 UIKit framework

 Collection of frameworks

Foundation Framework
The Foundation framework is a layer that abstracts many of the underlying operative
system elements, such as primitive types, bundle management, file operations, and
networking, from the user interface objects in UIKit that we’ll introduce next. This
framework is the gateway to everything not explicitly part of the user interface, and
defines a base layer of Objective-C classes.

In addition to providing a set of useful primitive object classes, it introduces several
paradigms that define functionality not covered by the Objective-C language. The
Foundation framework is designed with these goals in mind:

 Provide a small set of basic utility classes

 Make software development easier by introducing consistent
conventions for things such as deallocation

 Support Unicode strings, object persistence, and object distribution.

 Provide a level of OS independence to enhance portability

The Foundation framework includes the root object class, classes representing basic
data types such as strings and byte arrays, collection classes for storing other objects,
classes representing system information such as dates, and classes representing
communication ports.

CHAPTER 3: Web Development for iOS Devices 117

This framework introduces several paradigms to avoid confusion in common situations,
and to introduce a level of consistency across class hierarchies.

UIKit Framework

Mac OSX programmers use a framework called AppKit that supplies all of the windows,
buttons, menus, graphics contexts, and event handling mechanisms that have come to
define the OS X experience. The Cocoa Touch equivalent is called UIKit. The UIKit
framework provides the classes needed to construct and manage an application’s user
interface for iPhone, iPad, and iPod Touch. It provides an application object, event
handling, drawing model, windows, views, and controls specifically designed for a touch
screen interface.

In addition to UIKit, the Cocoa Touch collection of frameworks includes everything
needed to create world-class iPhone and iPad applications, from 3D graphics to
professional audio, to networking, and even special device access APIs to control the
camera, or to get location information from the GPS hardware.

Examples of those frameworks include:

 Audio and Video

 Core Audio

 OpenAL

 Media Library

 AV Foundation

 Graphic and Animation

 Core Animation

 OpenGL ES

 Quartz 2D

 Data Management

 Core Data

 SQLite

 Networking and Internet

 Bonjour

 WebKit

 BSD Socket

Cocoa Touch is built upon the Model-View-Controller paradigm and includes powerful
Objective-C frameworks that perform entire tasks in just a few lines of code, while

CHAPTER 3: Web Development for iOS Devices 118

providing the foundational C-language APIs to give direct access to the system when
needed.

NOTE: The Model–View–Controller (MVC) is a software architectural pattern used in software

engineering. The pattern isolates "domain logic" (the application logic for the user) from input

and presentation (GUI), permitting independent development, testing, and maintenance of each.

The SDK Development Life Cycle
When we develop with the SDK development model, the life cycle is basically the same.
What changes is just that we have a startup phase where we need to sign up for the
Apple development program and a final phase where we submit our application to Apple
for the approval process.

In Figure 3–37, we represent the three phases: design, implementation, and testing,
under the common name of “Build”, but the process structure is the same we see in
Chapter 2.

The life cycle also shows how the last step changes, because the native application will
go into the iTunes App Store, and not online as all WebApps do.

Figure 3–37. SDK Development Model Life Cycle

We will not be going further into Objective-C, Cocoa Touch, and Xtools, because this
book is focused on designing and developing WebApps using web standards.

Hi, I’m a Mac
I want to end this chapter by sharing with you the words of Steve Jobs at WWDC 2007
about web development for the iPhone using Web Standards. I know that if Steve Jobs

CHAPTER 3: Web Development for iOS Devices 119

said something, it was always going to be self-servingly pro-Apple, but I also feel that
many of his quotations are very inspiring.

 “…the full Safari engine is inside of iPhone. And so, you can write
amazing Web 2.0 and Ajax Apps that look exactly and behave exactly
like apps on the iPhone…”

“…they can make a call, can send email, they can even look up a
location on Google Maps…”

“…you’ve got everything you need if you know how to write apps using
the most modern web standards…”

“…so developers, we think we’ve got a very sweet story for you. YOU
can begin building your iPhone apps today…”

Tools and Frameworks for Apple Mobile Development
Tools used in this chapter are both freeware and paid. Table 3–30 lists some of those
useful tools that you can use for designing your next web site or WebApp.

Table 3–30. Frameworks and Tools Used for Develop iPhone and iPad Web sites and WebApps

 Name Type URL Target Device

iWebKit Framework snippetspace.com/ iOS

Sencha Touch Framework http://www.sencha.com/ iOS, Android, …

JQuery Mobile Framework http://jquerymobile.com/ iOS, Android, …

PhoneGap Framework www.phonegap.com/ iOS, Android, …

 Name Type URL Operative System

Espresso Web Editor macrabbit.com/espresso/ OSX

CSS Edit CSS Editor macrabbit.com/cssedit/ OSX

BBedit Code Editor barebones.com/products/bbedit/ OSX

Taco Web Editor www.tacosw.com OSX

Aqua(E)macs Editor aquamacs.org OSX

GNU Emacs Code Editor gnu.org/software/emacs/ OSX – Win - Linux

Notepad++ Code Editor notepad-plus-plus.org/ Win

http://www.sencha.com/
http://jquerymobile.com/
http://www.phonegap.com/
http://www.tacosw.com

CHAPTER 3: Web Development for iOS Devices 120

 Name Type URL Operative System

HTML Validator validator.w3.org/ OSX – Win - Linux

CSS Validator jigsaw.w3.org/css-validator/ OSX – Win - Linux

JavaScript Validator www.jslint.com/ OSX – Win - Linux

Summary
In this chapter, we introduced the concepts behind frameworks and we saw how a
framework approach and structure in the development phase gives useful building
blocks to the developer.

In the second part, we examined the web development model, its pros and cons, and
four different ways to approach WebApp development. We also analyzed what makes
the difference for the user of a WebApp, comparing native and WebApp user (and
developer) experiences. Webkit and Safari were introduced, and we presented the
typical device limitations and constraints and introduced the inside cross-platform
concept.

In the third and last part of this chapter, we looked at the SDK development model,
introducing Xtools, Objective-C and the Cocoa Touch framework. By illustrating the
native application life cycle, we also saw how the use of other open source tools like
PhoneGap allows us to develop a native application starting from a WebApp that was
developed using web standards.

http://www.jslint.com/

121

 Chapter

User Interface Design for
iOS Devices

“Simplicity is the ultimate sophistication”

—Leonardo da Vinci

The user interface design phase is one of the most important stages of your entire
project. The user interface is the foundation of everything in your WebApp: content,
functions, and all types of services are all accessed through the elements that compose
your user interface.

In this chapter, we define what an interface is inside a touch-screen ecosystem. We
explore the concept of positive and negative space as it comes into play in the user
interface design phase and see how the rule of perceptions helps us to conceptualize
our interface design in our minds.

We discuss color psychology theory, suggesting how you can combine colors in an
effective and pleasing way, and look at how colors affect the user’s mood. Then we
examine user reading patterns and see how you can influence them with your interface
design.

In the last part of this chapter, we examine the user interface design process through all
its phases and then we implement it in three different projects: one compatible with
iPad, one with a native-like structure specific to iPad, and one with a native-like
structure only for the iPhone.

User Interface Design
Most designers place simplicity above all else, and so do we. We value simple things,
because they easily do all the things we need and none of the things we don’t.
Simplicity is harmonious. Leonardo da Vinci is quoted as saying, “simplicity is the

4

CHAPTER 4: User Interface Design for iOS Devices 122

ultimate sophistication.” You should always keep this quote in mind when you sit in front
of your computer to design your user interfaces. To be simple is to be elegant.

Over the years, we have seen how Apple style has changed, evolving its own
interpretation of “simplicity,”. In Figure 4–1, you can see how the surrounding world has
been influenced by this style.

Figure 4–1. Different brand, same style: Apple (left) and Palm (right).

Palm is a big company that has changed the way of marketing its brand following the
path blazed by Apple. Even the most recent ads of other companies, like Microsoft, are
inspired by this way of thinking. Simplicity is quickly becoming the foundation of the new
technology revolution, which is based on a touch-screen display.

Having completed the Analysis phase in step 0 of our project flow, we pass to the
Design phase in step 1. In this phase, we start to work on our interface. As we can see
from Figure 4–2, the user interface design is a sub-step of the entire Design phase and
everything that is designed and approved in this phase is developed in the next phase of
the project flow called “Implementation.”

CHAPTER 4: User Interface Design for iOS Devices 123

Figure 4–2. The user interface design phase in the project flow context

The user interface design process that is examined in this chapter is based on simplicity.
After introducing some important subjects, such as negative and positive space, active
and passive space, the theory behind color psychology, and reading patterns, we
discuss how to go from the first step of compatibility, the compatible WebApp, to the full
compatible native-like approach.

Before we start, we need to introduce an important new concept: what does the word
“interface” really mean in the touch-screen ecosystem? Let’s take a look at that now.

What Is an Interface?
As designers, you are familiar with the concept of user interface, but there are many
kinds of interfaces all around us. Anytime we have an object we want to control or
interact with, there is some kind of interface between this object and ourselves. The
interface gives us a simple method to achieve our goal.

DEFINITION: Interface

Point of Interaction between two systems.

CHAPTER 4: User Interface Design for iOS Devices 124

DEFINITION: User interface
Visual part of a computer application or operating system through which a user interacts with a

computer or software.

With a device like the iPhone or the iPad, we have two kinds of interfaces, as shown in
Figure 4–3:

 Software interface

 Hardware interface

iOS offers us some different software interfaces, and each different iPhone view has its
own particular type. An address book style view uses the typical list approach interface
with edge-to-edge links, the About Us style view might use a rounded rectangle
approach.

Figure 4–3. The types of iPhone’s interfaces: software interface (left) and hardware interface (right).

Beneath the software interfaces, we have a more primitive layer of interaction offered by
the hardware interfaces. These software and hardware interfaces enable the user to
interact with every aspect of the device. Using the hardware interface shown in Table 4–1,
you can adjust the mic and speaker volume, turn the device on and off, and, with the
touch-screen, use all the software interfaces offered by the operating system.

Table 4–1. Two Examples of Hardware Interface Interaction.

 Goal Interface Feedback

Adjust the volume up or down External buttons Pop up box

Put in sleep mode the display External button Click FX

CHAPTER 4: User Interface Design for iOS Devices 125

When we use any kind of mobile software on iOS devices, we also use the touch screen
to perform the interaction. The display in our touch-screen context is also a hardware
interface. This is an important point because it leads us straight to a new kind of
paradigm that we have never seen before with the classic desktop or with the old mobile
phone approach: everything is an interface.

Everything Is an Interface
What do we mean by this? With these words, we refer to iOS, in which every part in your
software becomes an interface because of its touch-screen capabilities. In this chapter,
we see how to design every WebApp part that is technically touchable and not just the
“classic interface” used in the past by the desktop paradigm.

Using the touch screen, you can zoom, pinch, scroll, and do other gestural movements.
These gestures enable the user to interact with all objects contained in the entire
viewport—in other words, with all visible parts of our WebApp. Figure 4–4 shows how,
with a touch-screen device, even the content must be treated as an interface, which is a
passive interface in this case.

Figure 4–4. The kind of iPhone’s interfaces: active interface (left) and passive interface (right).

In the classic navigation paradigm, when you use a mouse (or a stick in older mobile
phones), you typically point to or choose only linkable parts of a WebApp. Nobody
attempts to click in a dead-zone with the expectation that some action will occur.

NOTE: The word dead-zone refers to a non-clickable zone inside the layout. Because it’s non-

clickable, a dead-zone part of a layout doesn’t offer any level of interaction to the user.

Once you have understood this important concept, you can appreciate that every part of
your interface, and every part of your WebApp, needs to be designed with care.

CHAPTER 4: User Interface Design for iOS Devices 126

From now on, we will use active interface for the touchable or clickable part of our
interface, and we will use passive interface for the merely touchable (zoomable) parts of
our layout. Remember that the active interface is based on software capability (links) and
the passive interface is based on hardware capability (touch-screen display). In Figure 4–4,
you can see the active and passive interfaces in an iPhone and iPad “compatible”
website.

As designers, being aware of this concept dramatically improves your design skills and
raises the level of user experience offered by your project.

The new touch paradigm also changes the requirements of your interfaces and layouts,
so the question now is, how should you design your touch interface and layout with this
in mind?

Your touch interface and layout design is based on:

 A Cognitive Use of Colors

Moods obtained using color reinforces the brand message.

 A New Visual Hierarchy

Prioritizing interfaces and layouts, optimizing for touch-screen devices.

 A New Touch-Screen Reading Pattern Structure

Optimizing the touch-screen UX in both native-like and compatible
projects.

 A Cognitive Use of Passive and Active Negative Space

Both active and negative spaces are based on the laws of perception.

Now that you know the tools to use, the question is, “What do you want to achieve using
these tools?”

In designing your interface and layout, you should strive for:

 Unity
Create harmony between the interface and the layout elements.

 Balance
Create a visual equilibrium using the interface and the layout elements.

 Hierarchy
Prioritize the interface and the layout elements.

 Dominance
Create focal points on the interface and the layout elements.

All of these are important to understand as concepts. But being aware of them,
recognizing them, and using them in your design is another matter altogether and
requires practice.

CHAPTER 4: User Interface Design for iOS Devices 127

Figure 4–5. The tools and the goals in the user interface design phase.

First, we introduce a fundamental concept for this new touch paradigm: the negative
space concept. You see how this simple idea completely changes your design style, and
how closely related it is to the touch-screen paradigm.

The Rules of Perception in User Interface Design
The rules of perception are fundamental for every kind of designer. These rules are the
filters that are used for interactions in life and are the foundation of our experiences. The
role of these rules is to interpret and integrate single stimulus from the external
environment into a single continuative form.

When designing interfaces for your Apple device, it is important to be aware of these
rules in order to achieve specific goals with your design. Sometimes, you may want to
transmit passion, energy, simplicity, or just be minimalist. The rules of perception help
you to achieve better results in terms of quality and make the whole process even
easier.

The Law of Proximity states that proximal elements in the perceptive field are perceived
as a single entity. You can use this rule to create semantically–based groups or entities
to the design.

CHAPTER 4: User Interface Design for iOS Devices 128

Figure 4–6. Law of Proximity in two-column design.

The Law of Similarity states that similar elements in the perceptive field are perceived as
part of the same entity based on its geometry, color, or dimension. You can use this rule
to create consistency in design between non-proximal elements.

Figure 4–7. Law of Similarity in Site menu and in product details.

The Law of Continuity states that continual elements in the perceptive field are
perceived as joined into a single entity with a pattern and a direction. You can use this
rule to create and add visual patterns and connections to the design.

Figure 4–8. Law of Continuity in cover flow design.

CHAPTER 4: User Interface Design for iOS Devices 129

The Law of Closure states that some kinds of elements in the perceptive field are
perceived as a certain form, even if some visual information is missing. We can use this
rule to create visual forms or elements into design where physically it is not possible. In
Figure 4–9, you can see how almost all corners are physically opened (red circles in
Figure 4–9), but the mind, using the Law of Closure, fills this information gap and
perceives continuative lines (and forms).

Figure 4–9. Law of Closure in layout page design.

The Law of Common Fate states that elements with the same direction in the perceptive
field are perceived as a single moving entity. You can use this rule to create movement
and add direction to the design.

Figure 4–10. Law of Common Fate in spotlight design.

The Law of Figure Ground Relationship states that Elements in the perceptive field are
perceived as the union of its form with its background. You can use this rule to create
connection between single elements, create dominance, and add contrast into design.

CHAPTER 4: User Interface Design for iOS Devices 130

Figure 4–11. Law of Figure Ground Relationship in logo design.

The Law of Past Experience states that elements in the perceptive field are perceived in
accordance with our past experience and its meanings. Past experience is stored in
long-term memory and current experience is compared to already stored information.
An example is shown in Figure 4–12. The word is not complete but, according to the
Law of Past Experience, you are able to determine that the correct word is “iPhone4.”
You can use this rule to optimize every kind of visual perception related with the design
and its user experience.

Figure 4–12. Law of Past Experience in logo design

Negative Space
In Chapter 3, we began to understand why space in your interface and layout is such an
important consideration. Users perform actions using their fingers and need more
physical space in order to interact with your interfaces in a comfortable way.

In addition, as you learned in the previous section, consider that every figure you see is
in relationship with a ground. To us as designers, this means that every part of our
interface or layout is in close relationship with the space around it. Working with this
space, you can dramatically change the emotional effect on the user and change the
level of user experience.

For our purposes, negative space, also known as whitespace, can be generally defined
as the area of a certain page or interface not occupied by content. For a designer,
negative space is the space between specific items on the page and does not have to
be white or solid in color; it might contain gradients, patterns, or background objects.

CHAPTER 4: User Interface Design for iOS Devices 131

DEFINITION: Negative space
The space around and between the subject or subjects of an image. The negative space might be
most evident when the surrounding space, and not the subject itself, forms an interesting or

artistically relevant shape. The use of negative space is a key element of artistic composition.

Designing a webpage or a user interface involves taking diverse objects and arranging
them in a logical, functional, and attractive manner. The key concept to remember is that
the attractiveness of your interface goes well beyond the design elements you use; you
must also take into account the aesthetic quality of the negative space surrounding
those elements.

The physical space occupied by each element is in relation to all the other items on the
page. This physical space has its own rules. These rules, from the simple to the
complex, depend on context. They all share the same key-point: they are subject to the
influence of negative space.

Figure 4–13. An example of perfect use of negative space in logo design (image Richard Fonteneau).

The first thing you need to learn is how to see negative space in your interface or layout.
What you must do is retrain your brain to look not only at the content, but also at the
inverse of the content. If you think of an element as the combination of an item and the
space around the item itself, your brain, using a process called the Law of Figure
Ground, combines both the item and the negative space around it in order to represent
the element.

Even though you are now familiar with the concept behind negative space, deciding on
the right amount of negative space for your design requires a great deal on visual
sensitivity and skill. Basically, the right amount of negative space is dictated by three
factors:

 Mood You Want to Obtain
(a portfolio website needs more space than an online magazine)

 Quantity of Information to Be Delivered
(because negative space is expensive)

 Medium You Are Designing for
(iPhone, iPad, desktop PC, Printer, and so on, might require different
amounts)

CHAPTER 4: User Interface Design for iOS Devices 132

Before understanding how to manipulate negative space, you need to consider the two
kinds that might be important in our design:

Active Negative Space
(Used to lead the viewer from one element to another)

Passive Negative Space
(Used for creating balance, harmony, and breathing room)

Now, we offer some approaches to help make use of this powerful tool easier.

Passive Negative Space
This kind of negative space is important for obtaining certain moods and to reinforce the
message behind your brand. In Figure 4–14, you can see the large amount of passive
negative space used on the Apple website. Apple makes extensive use of this technique
in order to promote and spread its brand in just the right way. At this point, it’s important
to remember that effective use of negative space is not just a matter of quantity but one
of proper utilization. Sometimes it will be a good idea to add more space, and at other
times you will want to eat up some of the empty space in your design.

Figure 4–14. The use of passive negative space on the official Apple website.

In order to improve your interface and layout design in this example, you need to
analyze the current amount and appropriateness of negative space, and then decide
which areas have too much of it and which areas have too little. In the case of the Apple
website (Figure 4–14), you can see how lots of solid passive negative space can create a
classy, elegant, and upscale vibe.

What else can you achieve with passive negative space?

CHAPTER 4: User Interface Design for iOS Devices 133

Create Separate Groups of Content
You can use passive negative space to separate different groups or areas of
information, less space to separate similar groups, and more space to separate groups
that are more different. You also create sub-grouping by the way you configure the
quantity of space you use.

Typically, this technique uses both a margin and a padding value on the elements. In
Figure 4–15, you can see how the right amount of passive negative space creates
separate groups of content, where each piece of content is composed of an image and
a textual description.

Figure 4–15. The use of negative space to create groups of content and eliminate visual tension.

Eliminate Visual Tension
When a shape is not balanced with other shapes, it suffers aesthetically and the user’s
cognitive reaction to this unbalanced relationship is a visual tension. Look at Figure 4–16
(and compare it with Figure 4–15) and pay attention where your eyes automatically go
when you look at these shapes.

CHAPTER 4: User Interface Design for iOS Devices 134

Figure 4–16. An example of visual tension between two groups of content.

Your eyes probably automatically went in the upper-left part of Figure 4–9 where the
unbalanced relationship between two groups of content creates a visual tension.

You can use passive negative space to give some rest to the eyes and eliminate visual
tension. Typically, this technique uses a margin value between layout elements. You can
see an example of how to create separate groups of content in Figure 4–16.

Spotlight an Element
You can use passive negative space to spotlight an important element of your interface
or layout. A classic example is placing the logo far from the navigation bar (or vice-
versa). In this way, you give the element the space it needs to be noticed by the user.

With these techniques, a margin value is typically used between the spotlighted element
and the rest of the element’s design.

CHAPTER 4: User Interface Design for iOS Devices 135

Figure 4–17. The use of negative space to spotlight an element and create dominance.

Create Dominance

You can use the passive negative space to create element dominance inside your
interface or layout. Generally, you achieve element dominance using negative space
combined with other techniques, but a nice and easy trick to achieve it is to let an
element eat another element’s negative space. An element that does this tends to stand
out, and this technique works even more effectively if the layout or interface elements
are equally spaced.

Typically, this technique uses a negative margin value between the dominant element
and the adjacent elements. You can achieve the same visual effect without using any
margin value and working on the element’s perspective and position, as shown in
Figure 4–18.

CHAPTER 4: User Interface Design for iOS Devices 136

Figure 4–18. A graphic way to achieve element rominance by eating negative space

Improve Reading Experience and Understanding
You can use passive negative space to improve the user’s reading experience and
understanding on-the-go. When the user attempts to operate a mobile device on-the-
go, he/she is always struggling to understand its content because of the circumstances
and distractions of the busy real world. Achieving the goal of a good reading experience
and user comprehension is equally important on both the iPhone and the iPad, but,
because its screen is so much smaller, it is especially important to maintain a high
quality user experience on the iPhone.

Typically, this technique manipulates not only the size of the characters, but also
passive negative space through the use of line-height, word-space, and letter-space
value between words and characters. In Figure 4–19, you can see how the use of the
line-height property increases readability of the text and gives you more breathing
room in the layout.

CHAPTER 4: User Interface Design for iOS Devices 137

Figure 4–19. Finger-friendly icons and well-spaced paragraphs.

Offer a High Level of User Experience

You can use passive negative space to design touch-friendly interfaces and layouts. In
your WebApp, everything is an interface, and because a finger needs more room than a
mouse pointer does, the negative space plays a fundamental role. The worst enemy of
every interface is the feeling of frustration generated by a non-touch friendly design. This
problem is more common in a compatible WebApp than it is in a native-like one,
because the framework used for a native-like, interface-based project guarantees a
comfortable navigation to the user.

Typically, this technique uses a line-height value for the main content part and a margin
value between the groups of elements composing an interface. In Figure 4–11, you can
see how the icons are extremely finger friendly for a compatible website. The whole
highlighted zone is touchable, and the element has a width of 73px and a line-height
of 1.5em. With this kind of structure, it’s actually hard to tap in the wrong place.

Active Negative Space
Once you have defined your content using passive negative space, it’s time to define a
navigation path for the user using active negative space. Active negative space is
important for grabbing the attention of and guiding the user in his journey through the
content of your WebApp.

By predicting the navigation path of your user, you are able to optimize the content and
therefore the user experience. In Figure 4–20, you can see how, in the Apple website,
the bold style is used to direct attention to critical points of the content. In this case, the

CHAPTER 4: User Interface Design for iOS Devices 138

active negative space is the space created by the bold style—in other words, the space
that the bold style adds around all the bold characters.

Figure 4–20. The use of negative space and positive space (dashed rectangle) in the official Apple Website.

The active negative space shape creates a path inside the content. In Figure 4–20, you
have three different linear paths (from left to right) where the user is free to jump from
one to another but always inside the “swim-lines” shaped by the bold characters.

In the final analysis, you can add more room to your composition (interface or layout) to
better emphasize or structure the content, and create some sort of path navigation for
the user.

A pre-requisite for the active negative space is correct use of the passive negative
space, because, if the content complexity is too great, it will be impossible for the user’s
cognitive process to create any kind of navigation path inside the content. In these
cases, the mind is unable to isolate any kind of pattern for deciding how to read the
content because of the high level of background noise.

Color Psychology
The psychology of color is a complex subject in design theory. The colors you use in
your interfaces and layouts significantly impact how the user will perceive your WebApp.

NOTE: As you read in Chapter 2, colors are also fundamental if you want to guarantee a high
level of accessibility to your WebApp. When you choose your palette, you must keep this point in

mind as much as your brand message.

CHAPTER 4: User Interface Design for iOS Devices 139

This book does not cover this aspect in depth, but in order to design simple and
effective interfaces, you need to know how to reinforce your message using this
powerful tool.

Color can be described in three ways:

 By its name

 By its purity

 By its light/dark value

According to this three-way scheme, some of the terms that are used to describe colors
are:

 Hue
The actual color of an object. Green is a hue, as are red, yellow, blue,
purple, and so on.

 Intensity
The brightness or dullness of a color. Adding white or black to a color
lowers its intensity. An intense and highly saturated color has a high
chroma.

 Saturation
The degree of purity of a hue. Pure hues are highly saturated. When
gray is added the color becomes desaturated.

 Chroma
The purity of a hue in relation to gray. When there is no shade of gray
in a color, a color has a high chroma. Adding shades of gray to a hue
reduces its chroma.

 Luminance
The measure of the amount of light reflected from a color. Adding
white to a hue makes it lighter and increases its value or luminance.
Consequently, adding black makes it darker and lowers the value or
luminance.

 Tone
The result of adding gray to a hue. Shades and tints are tones at the
extremes.

 Shade
The result of adding black to a hue to produce a darker hue.

 Tint
The result of adding white to a hue to produce a lighter hue.

In Figure 4–21, you can observe the Munsell color scheme and see how value, hue, and
chroma work together.

CHAPTER 4: User Interface Design for iOS Devices 140

Figure 4–21. The Munsell color scheme (image Jacobolus).

HISTORICAL NOTE: Albert Henry Munsell (1858-1918) was an American painter, teacher of art,
and the inventor of the Munsell color system, an early attempt at creating an accurate system for

numerically describing colors.

The colors are typically presented using a wheel where they are divided into two basic
groups:

 Warm colors
Red, orange, yellow

 Cool colors
Blue, purple, green

Warm colors evoke emotions ranging from feelings of warmth, comfort, and coziness, to
anger and aggression. As a rule, cool colors are described as calm and tranquil but can
also be associated with sadness or indifference.

Using colors as triggers, you can guide the user in his/her experience, directing his/her
attention and creating a visual (reading) path through your content.

How Colors Affect User Mood
It is important to remember that color meanings have their roots in human history, and
this means that some meanings are shared by all people in the world, and others are
typical of certain cultures and might change over the years.

Despite some differences in color meanings from one culture to another, there are many
common factors shared by colors. The most important factor for us is that the user’s

CHAPTER 4: User Interface Design for iOS Devices 141

reaction to color is instantaneous, unconscious, and directly affects his moods. In the
following, we present the meaning of all the basic colors in order to help you choose the
right one when designing your user interface.

Blue
This color is seen as trustworthy, dependable, and committed. Blue is the color of the
sky and the ocean, and is perceived as a constant of our lives. It invokes rest and
causes the body to produce chemicals that are calming. Despite that, not all blues are
serene and sedate; electric or brilliant blue becomes dynamic and dramatic.

Blue is the least gender-specific color, having equal appeal to both men and women.

The physical and mental effects are as follows:

 Stimulates calm

 Stimulates cooling

 Encourages and aids intuition

Green
This color occupies more space in the spectrum visible to the human eye. Green is the
most pervasive color in the natural world, and natural greens, from forest to lime, are
seen as tranquil and refreshing, with a natural balance of cool and warm (blue and
yellow) undertones.

The physical and mental effects are as follows:

 Promotes relaxation

 Stimulates smoothing

 Offers a sense of renewal, self-control, and harmony

Yellow

This color shines with optimism, enlightenment, and happiness. Shades of golden yellow
carry a positive sense and, in general, optimism, energy, and creativity.

The physical and mental effects are as follows:

 Stimulates mental activity

 Stimulates memory

 Encourages communication

CHAPTER 4: User Interface Design for iOS Devices 142

Red
This color has more personal association than any other color. Red is recognized as a
stimulant and exciting. The amount of this color directly influences the level of energy
perceived. Red draws attention and a keen use of this color as an accent can
immediately focus attention on a particular element.

The physical and mental effects are as follows:

Stimulates energy

Increases enthusiasm

Encourages action and confidence

Offers a sense of protection from fears and anxiety

Orange
This color is a relative of red and is more controversial than any other color in the
spectrum. Orange can bring both positive and negative associations and generally elicits
a stronger “love it” or “hate it” response from people. Fun and flamboyant orange
radiates warmth and energy, and some tones, such as terra cotta, have a broad appeal.

The physical and mental effects are as follows:

Stimulates creativity

Stimulates activity and enthusiasm

Encourages socialization

Purple
This color embodies the balance of red stimulation and blue calm. This dichotomy can
cause unrest or uneasiness unless the undertone is clearly defined. At which point, the
purple takes on the characteristic of its undertone. Purple gives a sense of mystical and
royal qualities, and is often recognized as creative and eccentric.

The physical and mental effects are as follows:

Stimulates calm

Encourages creativity

Offers a sense of spirituality

Brown
This color says stability, reliability, and approachability. Brown is the color of the earth
and is associated with all things natural or organic.

CHAPTER 4: User Interface Design for iOS Devices 143

The physical and mental effects are as follows:

 Evokes stability

 Gives a feeling of wholesomeness

 Offers a sense of orderliness

White
This color projects purity, cleanliness, and neutrality. White is also related to cleanliness
and safety through its association with bright light.

The physical and mental effects are as follows:

 Stimulates and aids mental clarity

 Enables fresh beginnings

 Encourages us to clear clutter or obstacles

 Evokes purification of thoughts or actions

Gray
This color is timeless, practical, and solid. Gray is the color of intellect, knowledge, and
wisdom and can mix well with any color, but an overuse can bring a feeling of loss or
depression. If used in silver undertones, this color can be associated with a smart and
strong character.

The physical and mental effects are as follows:

 Evokes traditionalism and seriousness

 Gives a feeling of expectancy

 Offers a sense of intelligence and wisdom

Black
This color is authoritative and powerful. Black can evoke strong emotions and its
overuse can be overwhelming.

The physical and mental effects are as follows:

 Evokes a sense of potential and possibility

 Gives a feeling of inconspicuousness

 Offers a sense of mystery and formality

When you design an interface for a website or a web application, it is important to
analyze every possible task that the user might want to do when interacting with your
user interface. Some tasks work best in a certain environment, whereas others are better

CHAPTER 4: User Interface Design for iOS Devices 144

accomplished in a totally different one. One example of this might be an online shopping
cart, where using too much black in your interface might inadvertantly create an
ominous feeling of mystery, potentially increasing the percentage of check-out aborts by
your users. In Table 4–2, we have a summary of some of the emotions and feelings
associated with colors.

Table 4–2. Major Emotion and Feeling Related to Colors.

 Color Emotions / Feelings

Blue Depth, stability, professionalism, loyalty, reliability, honor, trust

Green Durability, reliability, safety, honesty, optimism, harmony, freshness, relaxing

Yellow Comfort, liveliness, intellect, happiness, energy

Red Strength, boldness, excitement, determination, desire, courage, enthusiasm

Orange Enthusiasm, cheerfulness, affordability, stimulation, creativity

Purple Nobility, luxury, mystery, royalty, elegance, magic

Brown Endurance, confident, casual, reassuring, earthy

White Cleanliness, purity, newness, peace, innocence, simplicity, freshness

Gray Conservatism, traditionalism, intelligence, seriousness, wisdom

Black Power, elegance, sophistication, formality, strength, mystery

How to Combine the Colors
Once you know the meaning of each color, the obvious question is how do you choose
the right colors for your design? The simple answer is that you should always choose
one or more colors that reinforce the design message, but what happens if you want to
create a palette for your design based on several colors? How can you put together
more than one color?

We have three types of patterns to help us create a palette for your design.

Monochromatic Color Scheme
This pattern uses a single color in varying shades (see Figure 4–20). The result is a
soothing and pleasing palette that is pleasing to the eye, especially in the blue or green
hues.

CHAPTER 4: User Interface Design for iOS Devices 145

Analogous Color Scheme
This pattern uses colors that are adjacent to each other on the color wheel.

Figure 4–22. An example of a monochromatic color scheme (left) and analogous color scheme (right).

Complementary Color Scheme
This pattern uses high contrast colors selected from opposite positions on the color
wheel (see Figure 4–21). The result is to put together a warm color with a cool color in a
way that’s pleasing to the eye.

Split Complementary Color Scheme
This pattern uses one color and then two more colors that are adjacent to the
complement of the initial color.

CHAPTER 4: User Interface Design for iOS Devices 146

Figure 4–23. An example of a complementary color scheme (left) and split complementary color scheme (right),

Triadic Color Scheme
This pattern uses three colors equally spaced from each other around the color wheel
(see Figure 4–22). The result is a harmonious color scheme.

Tetradic Color Scheme
This pattern uses colors at the corner of a rectangle inscribed on the color wheel.

Figure 4–24. An example of a triadic color scheme (left) and tetradic color scheme (right).

CHAPTER 4: User Interface Design for iOS Devices 147

Using these six patterns, you can create many palettes based on various kinds of colors.
In Figure 4–24, you can see an example of how to choose colors following the triple and
complementary color scheme.

At the end of this chapter, we suggest some tools for choosing or generating colors for
your palette. However, it’s always important to remember what meaning is behind a
certain color. In order to be coherent with the brand of your WebApp, you need to
choose the right colors.

The Interface Hierarchy
The primary role of your active interface is to create a connection between different
parts of your content, and, for the passive interface, to give a general structure to your
overall content. Beyond that, both active and passive interfaces have a more important
role: to guide the user.

Interfaces guide the user through your content. Your interface must also be prioritized
because the different parts of your content are prioritized, too. Directing the user
through your content is an important goal to keep in mind when you design your user
interfaces.

The prioritized content you use for an iPad native-like version is a proper subset of your
desktop content and the prioritized content you use for a native-like iPhone version is a
proper subset of your iPad content and desktop.

When we introduced the concept of Mobile Information Architecture, you saw how
important it is to prioritize content in a mobile device. But how do you prioritize your
interfaces when implementing a visual hierarchy?

NOTE: A visual hierarchy is used in page design to help the viewer process information. Visual

hierarchy is the order in which most people see and identify your content’s elements.

Besides the use of active and negative space previously introduced in this chapter, you
will now learn wjat other tools can help you implement a visual hierarchy in your active
and passive interfaces.

You can create a hierarchy in your design by adjusting the visual weight of your
elements. More visual weight is generally seen as more important and more easily
noticed by the user, and less visual weight is seen as less important.

 Size
Larger elements carry more weight and focus the user’s attention.

 Color
Some colors are perceived as having more weight than others. Red
seems to be the heaviest, whereas yellow seems to be the lightest.

CHAPTER 4: User Interface Design for iOS Devices 148

 Density
Increasing the number of elements in a certain space gives more
weight to that space.

 Value
A darker object has more weight than a lighter object. The reason why
red is perceived as the heaviest color is still unknown.

 Negative Space
Using the Law of Perception, you can create many levels of hierarchy.

As you can see from Figure 4–26, hierarchy helps to give order to your active and
passive interfaces. Hierarchy priority interfaces with and aids in communication. In
Figure 4–26, you can see how much heavier the reading experience is with the hierarchy
on the right. This creates extra demands on the user’s cognitive resources and results in
a less satisfactory user experience.

Figure 4–25 Differences between good content hierarchy (left) and bad content hierarchy (right).

Creating our hierarchy should begin with thoughtful consideration of the page’s goal.
Only when you intellectically decide on the hierarchy of uour page should you attempt to
visually design that hierarchy.

Reading Patterns
The first time we run a usability test on a WebApp, we always receive the results with a
surprised face. The fact is the reality that the user reading pattern is totally different from
what you expected when you were designing your interface.

CHAPTER 4: User Interface Design for iOS Devices 149

In reality, the phrase “reading pattern” is appropriate because users don’t actually read
pages, they scan them. They skim them looking for words or phrases that catch their
eye. Now the question is: why do users do this? We can suggest several answers.

 User Is Usually in a Hurry

The user browsing the web is motivated by the desire to save time,
because he knows that the answer is somewhere nearby and his
objective is just to discover where he needs to look.

 User Knows He/She Doesn’t Need to Read Everything

The user knows that most of time he/she will be interested in only a
portion of the content offered by a page. For this reason, the user will
only look for relevant bits of content and ignore all other parts that
he/she deem as irrelevant.

 User Has Learned to Scan Using Other Media in the Past

The user, in past experiences with magazines, newspapers, or books,
has learned to scan content in order to find the parts they they’re
interested in.

NOTE: Reading patterns vary according to the different reading-directions adopted by different
cultures. It is important to remember that what we discuss in this section applies only to right-to-

left reading cultures.

Despite the fact that users scan content instead of reading it, in the world of left-to-right
readers, we can still isolate some reading patterns. These patterns are highly influenced
by images that appear in the content but the interesting thing here is that, instead of
using a micro or macro linear pattern, the user tends to read using an “F” or a “Z”
pattern on our WebApp. This means that we have two different major approaches to
content, both based on conventions that the user has adopted during 10 or 20 years or
more of content browsing.

Users have been trained to pay attention to certain spots because that’s where the most
important information usually resides. For this reason, it is important to remember that if
we deviate from these conventional patterns in designing our interfaces, we do so at our
peril.

The Z-Shaped Pattern
The Z reading pattern is the typical pattern that comes to mind when we think about
reading web content. Typically, we start from the left-top position where the logo is
situated, and then drop down to the content’s first paragraph, where we start the Z
movement.

If the user is satisfied with the content after he reads the first line of the paragraph, he
will continue reading and jump to the next line of the same paragraph.

CHAPTER 4: User Interface Design for iOS Devices 150

Figure 4–26. The Z-shaped pattern in the Apple Genius Bar page.

The story changes when, after having read the first line of the paragraph, the user
decides that the content is not what he was looking for. In this case, the user will jump
directly to the first line of the next paragraph or the next portion of content.

This changes the height of each Z sub-pattern and the number of Z sub-patterns that
compose the overall Z reading pattern. In Figure 4–27, we can see how the Z pattern
changes depending on whether the user is interested in the first line of a paragraph.

Implications of the Z-Shaped Pattern
The Z pattern is closely related to the classic reading pattern from hard-copy
newspapers, magazines, or journals, and shares the same implications:

 User Can Jump from One Paragraph to Another

If the user is not interested in the first line of the paragraph, he will
jump to the first line of the next paragraph or the next group of
content.

 User Will Always Look in the Left-Bottom Part of the Pattern

The designer can be assured that the user will look at a certain part of
the content, and he can make use of this information by placing some
important call-to-action buttons in this zone.

The Z pattern is more common in non-expert users or more generally when a user finds
interesting content. Despite the fact that it’s generally not the most common pattern, it’s
important to keep it in mind because the user will tend to switch to this kind of pattern
every time he/she finds an interesting bit of content. This means that a user can start

CHAPTER 4: User Interface Design for iOS Devices 151

with a different pattern and then switch to a Z pattern before returning again to the
original one.

The F-Shaped Pattern
The F reading pattern is typically composed of two horizontal stripes followed by a
vertical stripe. The F can also stand for fast, because this is the typical pattern used by a
user in a hurry-mode.

This pattern is composed of three eye movements:

1. The user reads in a horizontal movement across the upper part of the content
area. This element forms the F’s top bar.

2. The user then moves down the page a bit and begins to read across in a shorter
second horizontal movement. This element forms the F’s lower bar.

3. The user scans the content’s left side in a vertical movement. This element forms
the F’s vertical stem.

In this mode, the user’s reading patterns are not always composed of exactly three parts
and are not always like the letter F, but we can easily recognize the pattern even in its
different variations.

Figure 4–27. The F-shaped pattern in the Apple Support page.

Anyone familiar with object-oriented programming can see that the F reading pattern is
like the super-class and that different user behaviors are like different implementations
of the super class.

CHAPTER 4: User Interface Design for iOS Devices 152

Implications of the F-Shaped Pattern
The implications of the F pattern show how important it is to follow a guideline in the
design phase in order to optimize the user experience. These implications are as follows:

User Won’t Read the Content thoroughly in a Word-by-Word
Manner

Exhaustive reading is rare, especially during Internet research. Some
users might read a larger portion of your contents but most won’t.

Most Important Information Must Be Stated in the First Two
Paragraphs

That’s the only way to have some hope that the user will actually read
the content. Reading more of the first paragraph probably will drive the
user deeper into the content.

Begin Paragraphs with Information-Carrying Words

This is because the stem of the “F” pattern will have less chance of
grabbing the user’s attention than will the top bar. In this part of the
pattern, the user reads only the first words of the paragraph.

Insert the Most Important Links of the User Interface on the Left
Side

The F pattern decreases the user attention from left-to-right; links on
the far right part of the user interface are less likely to be noticed.

An important factor concerning the F reading pattern is that it might also be influenced
by the browsing context. If a user looks for something that contains numbers, a price for
example, the F pattern could be transformed in an “E” or a “Comb” pattern.

Images in Reading Patterns
Images are a powerful tool of web design. By using the correct image, you can explain a
concept or evoke a feeling and so improve the level of user experience and the
likelihood of passing the right message to the user.

A tool can be used in either one of two ways, one good and the other bad. Using the
wrong image can waste space in your layout, confusing the user, and breaking his
reading pattern without a constructive purpose.

What can really catch the user’s attention and draw him to an image? According to the
latest research from the Norman Nielsen Group, the images users choose to look at
have the following characteristics:

 High Contrast and High Quality
Crisp and colorful.

CHAPTER 4: User Interface Design for iOS Devices 153

 Cropped rather than Overlay Reduced
When necessary fit a small space.

 Easy to Interpret and Almost Iconic
When are not excessively detailed.

 Highly Related to the Content
To the content of the page.

 Possess Magnetic Features
When an image is full of charisma.

Magnetic features are important in an image, but what kind of image is a magnetic one?
Magnetic images include the following:

 Approachable and Smiling Faces

 People Looking at the Camera

 Sexual Anatomy

 Appetizing Food

 Clear Instruction or Information

 Shape Dynamism

In choosing your images, you also need to know what kind of images users ignore.
These kinds of images have the following characteristics:

 Low Contrast and Low Quality

 Cold, Fake, or Too Polished

 Busy for the Space

 Generic, or Obvious Stock Art People or Objects

 Not Related to the Content

 Boring

When you use bad images in your layout, the user perceives them as obstacles in
his/her journey through the content. They alter the user’s reading pattern, absorb an
extra amount of their cognitive resources, and generally decrease the quality of his/her
experience.

Influencing the Reading Pattern
The rules about the reading pattern are general ones that are applicable to the majority
of situations. The interesting thing is that, in some cases, we can influence the reading
pattern using some strong visual hierarchy.

In Figure 4–29, we can see how, in some cases, a strong visual hierarchy can disrupt the
user focus and break the “F” or “Z” pattern rule. In this example, everything is

CHAPTER 4: User Interface Design for iOS Devices 154

intentionally designed to optimize the brand message without compromising the user’s
reading experience.

The strong visual hierarchy guides the user from the page title, through the image, to the
spotlighted page sub-title, and, in the end, to the sub-section of the website. These
kinds of design techniques are important for anyone who wants to bring their design
skills to the next level, because they can make the difference between a good design
and a professional one.

Figure 4–28. The eye-tracking test (left) and the corresponded heat map (right).

As we can see in Figure 4–29 (right), eye-tracking tests are often represented with a heat
map. A heat map is a graphical representation of data where the values taken by a
variable in a two dimensional table are represented as colors. A heat map adds the third
dimension to the eye-tracking test table representing large values with red colors and
smaller values with blue colors.

There is also another side of the coin. As Stan Lee has written “with great power there
must also come—great responsibility.” This is true because, if a designer is not aware of
these rules, he will risk unwittingly altering the reading pattern and compromising the
interface hierarchy by incorporating non-essential information on the page. In other
words, visitors might leave the page before finding what they were looking for, because
they might think it isn’t present in the content.

HISTORICAL NOTE: Stan Lee is an American writer, editor, and memoirist, who introduced

complex, naturalistic characters, and a thoroughly shared universe into superhero comic books.

CHAPTER 4: User Interface Design for iOS Devices 155

DEFINITION: A shared universe is a fictional universe to which more then one writer contributes.

(source Wikipedia)

As the final point of this section, we want to point out that these days the user doesn’t
have an optimized reading pattern for touch-screen devices, at least not for devices with
anything bigger than iPhone’s 3.5-inch display. The iPad’s 9.7-inch display will change
the user’s browsing habits in the next few years, and so will Safari Mobile’s capability to
break the vertically–oriented reading flow, which enables the user to jump from one
point to another using a double-touch, or by zooming and pinching on the content. This
tendency will probably create a new tablet reading flow composed of many micro F and
Z reading patterns.

As designers and developers, you need to pay attention to collecting as much feedback
as possible. Nowadays, the user is the only source of reliable information for
establishing a new approach to designing the next generation of touch-screen user
experience.

Reading Pattern Guideline
So far, we have presented the F and Z paths, the most common user reading patterns.
We saw how, in some cases, it can be useful to change these patterns in order to
achieve specific goals.

Eye-tracking studies have revealed valuable information about how people read and
interact with websites and web applications. What we can learn from these studies are
some tactics to optimize our interfaces.

These tactics are summarized as follows:

 Logo in the Top-Left Positions Works Best

As we saw in the first part of this section, the user has been trained
over the years to look in the upper left part of a page for specific kinds
of information, such as brand logos. Only famous brands, well–known
throughout the world and recognized immediately by the user, have
the option to break this rule.

 Tagline under the Logo Improves General Page Understanding

This is related to the previous point. When the user looks at the logo, a
tagline underneath gives him a better understanding of the logo and a
better chance of understanding the content, and there will be less
likelihood of his leaving the page.

 Navigation at the Top of the Page Works Best

As primary navigation, a horizontal navigation bar works better than a
vertical one on the side.

CHAPTER 4: User Interface Design for iOS Devices 156

 Headline Must Grab Attention in Less than 1 Second

You need to grab the user attention in a fast way and get to the point
instantly.

 Headlines Draw User’s Eyes before Pictures Do

If you use a strong headline, you can dominate any other influence,
even from images. In Figure 4–27, you can see how the headline “iPod
Touch” has been reduced to a light weight compared with the image in
order to avoid interfering with it.

 Pure Reading Patterns Are Appropriate Only “Above the Fold”

Today, scrolling a page is not the source of frustration and confusion
that it was in the 90s. Now, with a touch-screen device, the user is
able to scroll down a page faster than he/she ever could with a mouse.
This means that reading patterns “below the fold” have become much
more unpredictable. If your design works because of certain eye
movement patterns on the part of the user, you must be sure that
every important element of your design is in the first visible part of your
WebApp where the user “reads” using a higher degree of focus on the
content.

 User Often Scans Only the First Few Words of a Headline

This means that long headlines don’t work well. In these cases, the
user scans the first few words before deciding whether to continue
reading. For this reason, it’s important to front-load the headlines with
the most interesting and provocative words.

 People Scan the Left Side of a List of Headlines

This is related to the previous point. When presented with a list of
headlines or links, the user will scan down the left side of the list,
looking at the first couple of words, to find something he/she is
interested in. The user will not necessarily read each line from
beginning to end. For the same reason we discussed before, you need
to insert the most mind-catching words up front.

 Bigger Font Size Improves the User Experience

If the user is not forced to zoom in and out, his/her level of frustration
decreases and, inversely proportionally, the user experience is
improved. Implementing this approach with an iPhone is not always
possible but when designing an iPad-compatible WebApp, this is an
important requirement to remember.

 Short Paragraphs Encourage Reading

Big blocks of type look imposing and difficult to read. For this reason,
it’s better to organize the content into a flow of ideas rather than large,
distinct paragraphs.

CHAPTER 4: User Interface Design for iOS Devices 157

 More Negative Space Between Paragraph Helps to Focus User
Attention

If a user is searching for something in your content, having “enough”
space between paragraphs will suggest a landing point, emphasizing
the first line of the following paragraph.

 Multimedia Works Better than Text for Unfamiliar or Conceptual
Information

Or to put it another way, “one picture is worth a thousand words.”
Reading relies on people having some understanding of the subject.
The more unfamiliar a user is with a subject, the faster and more easily
he/she will understand it if you use a multimedia message instead of
text.

 Call-to-Action Buttons at the End of the Reading Pattern Work
Best

The natural position for a call-to-action button is at the end of a
reading pattern. The button could be placed at the end of the content
and/or at the end of a single paragraph.

 Strong Visual Hierarchy can Influence User Reading Pattern

By adding some weight and dynamics with an image or a headline, we
can change the structure of a reading pattern.

Most of these tactics work in both a desktop and mouse context and a touch-screen
and finger context because the user is not a variable but a constant in this equation.
What is a variable are the hardware interfaces that the user uses to interact with the
software interfaces. In the next paragraphs, we will see how this slightly changes the
user experience in certain cases.

It is also important, where possible, to continue to design using these conventions and
habits in order to offer a smooth transition between a desktop PC–user experience and
the new touch-screen user experience. The passage of time and natural human
evolution do the rest. Now, we are ready to look at the user interface design process.

The User Interface Design Process
This process involves some steps that you have already seen in Chapter 2. You start the
process by planning the interface. You sketch its structure and study the level and type
of interaction that happen between the user and the interface. You create the aesthetic
of the interface, and finally produce a deliverable for the development phase. If you
remember the Information Architecture Process presented in the Chapter 2, you will go
smoothly through the following phases.

CHAPTER 4: User Interface Design for iOS Devices 158

Research
The research phase is too often misunderstood and overlooked; sometimes because we
are working with a small budget and sometimes just because it is less tangible than
other phases in the process.

Despite that, the fact is that without good research, you can’t truly understand the
requirements of your interface, or have an idea of what your competitors in the market
have done before. Even worse, you won’t have a clear idea of what will be the level and
type of interaction you want from your interface.

As you previously saw in Chapter 2, the information that is collected in this phase is
fundamentally important for the final result, and an error at this point dramatically
impacts the entire process.

Structure
Designing the structure of our interfaces, you need to consider two cases:

 Active Interface
Interface based on active links—for example, Navigation Bar

 Passive Interface
Interface based on passive negative space—for example, page layout

You start by designing the passive interfaces using the negative space concept to
choose which layout areas will be filled with a portion of your content and which will be
left blank. As you now know, negative areas are important in our layout for cognitive and
interactive reasons.

Once you define the negative and positive space of your layout, you start designing the
active interface and sketching its content structure. The tools upi use are a flow chart
and then a site map to plan the active interface’s content.

In keeping with our content-out approach, once you have a clear idea about the
interface’s content, you start to organize its visual structure. The visual structure is
sketched using wireframes and paper prototypes.

Aesthetic
Once you know the structure of your interfaces, you can take a deep breath and keeping
in mind the rules of perception, enjoy the next step: designing the interface’s aesthetic.
This is usually the most satisfying part of the process for every designer. For this step,
you use your preferred graphic design program. In the following section, we assume that
you’re going to use Adobe Fireworks, but the choice is up to you. It’s important to
remember that working on the aesthetic part of our interfaces means working on both
design style and typography.

CHAPTER 4: User Interface Design for iOS Devices 159

Interaction
Once the interfaces are structured and designed to your aesthetic satisfaction, you need
to work on their interaction with the user. For this phase, use sequence diagrams for
developing the use-cases, and electronic prototypes to test them in a real environment.
If you need to develop a simple use-case for your interfaces that doesn’t have a
complex context, and you just want to have an idea of “what the user will do,” you can
use use-case diagrams, saving both time and effort. Working on the interface’s
interaction means working on navigation elements, form elements, audio and video
elements, and passive interfaces based on negative space.

Deliverables
When the artistic part of your interaction design work is finished, you need to produce
deliverables for the next phase of development. To accomplish this last step of the
process, you work on the design composition, electronic prototype, and style guide.

Design Composition
Design composition is the artwork that shows the entire interface, composed of active
and passive interfaces. This deliverable is also used to show the client the project’s
status because it serves as a picture of what will eventually be your WebApp.

Electronic Prototypes

An electronic prototypes is an interactive version of our design based on HTML5, CSS3,
and Javascript. We have several frameworks available on the Internet that can help us to
develop our electronic prototype without wasting much time. In the last paragraph of
this chapter, you will find the tools used in the interface design process.

Style Guides

By designing style guides, you ensure that the brand will be carried through the next
phase of development. Style guides are like page templates where the designer shows
how certain sections of the design can be applied to a page, regardless of the variable
content.

If you are an independent designer and developer working by yourself, you can skip
some of these deliverables, such as design composition or electronic prototypes, but we
still suggest that you produce some style guides just in case you ever need to go back
to your project at some point in the future. Style guides help you avoid mistakes that
might happen because you forget the message, the style, or other details of your
project.

CHAPTER 4: User Interface Design for iOS Devices 160

Figure 4–29. The mobile information process applied to the interface design process.

As you might notice, we applied the same process that we used in our mobile
information architecture process. In fact, the interface design process is a micro-cycle
inside the mobile information architecture process and is based on the same pattern.

In the next section, we implement the interface design process, and we design an
iPhone and iPad compatible layout for a WebApp.

iPhone and iPad Compatible User Interface Design
For a WebApp to be iPhone and iPad compatible, it must satisfy the first level of Apple
device compatibility. As you saw in the Chapter 3, to be iPhone and iPad ready doesn’t
mean having an HTML5 and CSS3 compliant layout; it means that it is designed in a
touch-screen oriented way.

From the standpoint of iPhone development, this problem is less important because,
although Safari Mobile has revolutionized the mobile browsing experience in the past
three years, a real native-like layout is needed in order to let the user experience an
optimized level of interaction with the WebApp. For this reason, if a WebApp is not
touch-screen optimized for the iPhone, it’s not such a bad thing. The compatible version

CHAPTER 4: User Interface Design for iOS Devices 161

is not the primary source of information for an iPhone, because a native version of the
same layout is also released in most cases.

Things change when we get to the iPad because the 9.7-inch display offers a 1024Í768
pixel resolution. This means that a compatible layout might be a reasonable option in a
WebApp mobile strategy. An iPad native-like layout will always offer the best user
experience for the user, but for the iPad, a compatible version is still able to offer the
next best thing.

Now, let’s (re)design a touch-screen oriented version of the official Apple website while
making sure to apply all the principles previously presented. The Apple website is well-
designed. From an aesthetic point of view, it’s impeccable, and we have used it in
almost all of our design examples so far, despite the fact that it is not very touch-screen
oriented or as cognitively optimized as it could be.

Research
The research phase is based on many techniques, from the simple use of a search
engine looking for competitors to advanced market research techniques. In this phase,
you use flowcharts and a site map so that you have a visual representation of the
content and its deployment.

The research phase aims to understand three points:

 Competitor Comparison

Ascertain how different the actual design is compared with that of your
competitors. This is a wide-ranging research task and covers many
areas from branding to market projection, comparing everything from
offered services to user experience.

 Weak Points Research

Identify the weak points in the design structure.

 Design’s Improvement

Identify ways to improve the actual design.

Working on the Apple website use-case, we left out the competitor comparison because
the Apple brand is one of the most beautiful and functional on the market and doesn’t
need to be improved. In this use-case, we go straight to point 2: Weak Point Research.

It’s a different story when we look at things in terms of usability, especially touch-screen
usability. The first thing that the Weak Point Research tells us about the Apple website is
that its three-column layout structure leaves something to be desired.

This structure consists of a main content area bordered on either side by a narrow
sidebar column. The three-column structure was and remains a popular choice for blogs
and online stores. Two of the most famous stores in the world are based on this kind of
layout: the Apple Store and Amazon.

CHAPTER 4: User Interface Design for iOS Devices 162

Figure 4–30. The three-columns layout structure used by Amazon.com.

From a logical point of view, the three-column layout might seem like a good choice
because it enables us to isolate three different kinds of content. In a blog, there is
usually a menu or assorted links related to the website in the left column, and various
kinds of advertisements in the one on the right.

In recent years, many blogs have converted their structure to a more functional and
usable two-column layout, but the same thing hasn’t happened to the majority of online
store sites. With the two-column layout, we usually have the main menu and other links
related to the website in the left column, and the shopping cart with some promotional
banners in the right column.

We can summarize the pros of three-column layout as the following:

Symmetry Can Be Pleasing

Three Columns Offer Three Different Content Areas

Centered Main Content Helps the User to Focus on It

The following are cons of the three-column layout:

Symmetry Works Against Visual Content Hierarchy

Symmetry Consumes More Cognitive Resources from the User

CHAPTER 4: User Interface Design for iOS Devices 163

 Two Sidebars Introduce Visual Noise, Distracting from Content

 Three-Column Layout Makes the Reading Pattern Unpredictable

In addition to these layout problems, there is also a lack of usability when users need to
interact with the active interfaces using a small screen-based device like an iPhone. In
this context, the user is often obliged to use the zoom function in order to increase
content readability.

Browsing with an iPad is a different story because the iPad user, with his 9.7-inch
display, can browse compatible and native-like WebApps equally well. In this case, the
user has a high expectation about the usability of both compatible and native-like
contents.

Figure 4–31. User must zoom in for have a comfortable touch-interaction with a sidebar’s link.

As we suggest in the previous chapter, links must be finger-friendly and touchable
without forcing the user to use the zoom function, because the lack of negative space
increases the risk of touching the wrong spot. In the Structure phase, we see how to
overcome this problem in our current use-case.

Often a report is produced at the end of the Research phase. Usually this report is used
to show the client, but it is for our reference in this case. We can summarize the results
of our research phase as follows:

 Web Site Information

Apple Store (www.apple.com)

 Strong Point

Use of block model page

http://www.apple.com

CHAPTER 4: User Interface Design for iOS Devices 164

Use of visual hierarchy

Brand and identity

 Weak Points

Three-column layout structure

Most active interfaces are not touch-friendly

 Improvement Points

Use of two-column layout structure

Use of passive negative space on active interfaces

Now that we collected all the information, we have a better idea of what works and what
doesn’t work in our project, and we are ready to move to the next step: the (re)design.

Structure
The research phase tells you everything ou need to know about the design, in that you
come to know its weak points and how to improve them. The first step is to sketch the
structure using a wireframe technique using two-column layout, but it is important to
keep in mind the goal you want to achieve.

The structure phase needs to achieve the following goals:

 Offer a Better Layout Structure

The two-column layout offers a better structure for presenting and
finding the content, enabling the user to save his limited cognitive
resources for understanding the content instead of looking for it.

 Offer a Touch-Friendly Interface

Enable the average user to browse the content without using the zoom
function, improving the level of user experience.

In the next section, we see how to approach these goals designing a touch-friendly
layout and then working on touch-friendly typography.

Touch-Screen Layout
At this point, you need to keep in mind the strong point of the existing design and keep
everything working well in the structure. You should keep the original block structure
because it’s perfect for any kind of touch-screen device with a zoom function, and
working in this way you won’t have to alter the passive negative space between each
single block of content.

CHAPTER 4: User Interface Design for iOS Devices 165

Figure 4–32. The new iPad two-column layout structure based on the old web three-column layout.

In Figure 4–34, we can see how, from top to bottom, we have left untouched the Primary
Navigation Bar of 980x38 pixels (Figure 4–34, Number 1) and likewise the space
between this bar and the Breadcrumb Bar.

We took the Breadcrumb Bar and, without changing its height of 30 pixels, we
transformed it into a Secondary Navigation Bar of 980 pixels (Figure 4–34, Number 2),
adding several links to the various Apple Store instances.

CHAPTER 4: User Interface Design for iOS Devices 166

Figure 4–33. The new two-column layout structure based on the old three-column layout.

We moved the main content (Figure 4–34, number 3) to the left and kept the 8-pixel
gutter we merged the two sidebars in a semantic way. Instead of placing them side by
side, we grouped each single sidebar and its content into a single sidebar composed of
a two-column box. Using this box, the user can easily find information about the subject
at a glance without scrolling down as far as he would have needed to in the old design.

Inside the sidebar, we increased the box header (Figure 4–34, number 7) height from 24
to 32 pixels and the sub-title row (Figure 4–34, number 8) height from 24 to 30 pixels.
We also changed the typography inside the sidebar box, which we will discuss next.

Touch-Screen Typography
So far you have tried to create a more conformable space for user’s fingers by
increasing various heights in the structure until you reach a minimum height of 30 pixels.
As is shown in Chapter 3, we can be pretty safe with a target of 30 pixels, considering
the average finger dimensions of our users. If you have the opportunity, you can set a
lower-bound of 40 pixels for each single space in our layout, but in this case, it’s not
possible without introducing the risk of breaking the light visual equilibrium of the
design.

CHAPTER 4: User Interface Design for iOS Devices 167

From top to bottom, we change the font size in the Primary Navigation Bar (Figure 4–35,
number 1), increasing the value from 12 to 14 pixels, and, in the Secondary Navigation
Bar (Figure 4–35, number 2), we increase the value from 10 to 12 pixels.

Figure 4–34. The (re)design order of the new two-column layout structure.

In the Sidebar main menu, we change the font side from 14 to 16 pixels and set a line
height of 20 pixels for the left column (Figure 4–35, number 5) and a font size of 14
pixels with a line height of 18 pixels for the right column (Figure 4–35, number 6).

In the Sidebar Box Header (Figure 4–35, number 7), we increased the font size from 12
to 14 pixels and the size of the call-to-action circle from 13 to 16 pixels. In the content
list part of the sidebar box (Figure 4–35, number 9), we increased the font size value
from 10 to 12 pixels and we set the line height to 20 pixels.

Aesthetic
The aesthetic part of the design is almost the same; we want to change a few things so
they work better with the new structure.

We integrate the call center icon into the Sidebar Main Header (Figure 4–35, number 4)
and we remove the search engine box in order to avoid redundancy in the design after
we move the Sidebar Main Header from the left to the right side of the page. In the right

CHAPTER 4: User Interface Design for iOS Devices 168

part of the (re)design, the sidebar main header is under the Primary Navigation Bar,
which already includes its own search engine box.

Figure 4–35. The before (left) and after (right) the (re)design. Interfaces are more accessible and finger friendly.

The call center icon in the Sidebar Main Header (Figure 4–35, number 4) uses the same
technique we saw in Figure 4–10 for creating dominance in the visual hierarchy and
attracting the user’s attention. The icon eats some of the negative space between the
Sidebar Main Header and the Secondary Navigation Bar.

Interaction
What we have done so far serves to guarantee a touch-friendly interaction that, in most
cases, doesn’t require any use of the zoom function. Increasing the font size value,
resetting the line height values, and increasing the row space in the sidebar enables the
user to touch every link without the risk of tapping on the wrong spot. These simple
changes have had an enormous impact on the quality of user experience.

CHAPTER 4: User Interface Design for iOS Devices 169

Figure 4–36. The (re)designed iPad interface now offers the user a conformable touch-interaction.

Once all the interfaces are ready to be tested, you need to develop some use-cases and
then implement it using the Sequence diagrams or the Use-Case diagrams if we work
with low complexity cases. Figure 4–35 represents an example of a Use-Case diagram
for the two use-cases: Buy the New iPhone and Search the New iPhone.

Figure 4–37. An example of UML Use-Case diagram for representing a user interface interaction.

Please note that the user icon is not the standard one. We use this icon for two reasons.
The first is because, when possible, we always try not to offend our eyes when we work,
and so we avoid the sort of generic “We are a PC” styles that are too often adopted as
standard. The second is because these diagrams are exclusively for our own reference,
or at least for our small team. If we need to share our diagrams with our teams or when
we work for a big company, we must use standard notation.

The next step is to test the use-case/s using an electronic prototype. In order to do that,
we need to use an HTML5, CSS3, and Javascript framework. By using electronic
prototypes, we can have a realistic idea of the real finger-friendly capabilities of our
interfaces. If, for some reason, we must move on in the process without having the time
or the budget to do any electronic prototypes tests, we have to be sure to do at least
few quick tests with paper prototypes.

CHAPTER 4: User Interface Design for iOS Devices 170

Deliverables
When the interaction phase is complete, we need to prepare deliverables for the next
phase in the process: the implementation. If you are working by yourselves, deliverables
are useful only if you need to get back on the project months after it is released, so that
you can remember at a glance important points about your design. When you work in a
team, you must be sure that your deliverables “talk for us” and show your design clearly,
avoiding any possible doubt in the developer’s mind.

As previously explained, you produce three kinds of deliverables: a design composition,
a design style guide, and an electronic prototype. The design composition, as the name
implies, shows the composition of your design, and the design style guide shows, using
templates, how to apply our design to various types of pages. If you have an important
message to pass on, you can also analyze, explain, or highlight a specific part of your
design, adding notes and description. The electronic prototype shows how the design
works in an interactive way. The same prototype is used by us and the developer for the
startup phase of implementation.

iPad Native-Like User Interface Design
Designing an iPad version of your website and web application is not as important
because you are creating the iPhone version. If the compatible version has a touch-
screen optimized structure and offers a high quality user experience, it’s most important
to first focus your energy on designing an iPhone version of your content.

The iPad’s browsing capabilities enables the user to do so with a high level of user
experience through any desktop content. Nevertheless, developing a native-like
experience for an iPad user should always be your first priority. A native-like structure
always offers a higher level of user experience.

You will be seeing many iPad native-like WebApps in the near future, so we suggest that
you don’t omit this option, but make sure to include it in your project roadmap.

Research
When you perform the research phase for the compatible version, you are working on all
our planned versions simultaneously. This is because we reuse our research results for
our other iPad versions and later for the iPhone research step. In this way, we optimize
the budget, saving money and time, and amortize a fixed cost in our process.

Market research tells us which portion of our content to insert in our iPad version and
which is better left exclusively for the compatible version.

CHAPTER 4: User Interface Design for iOS Devices 171

Structure
When you work on the native-like version of your site or application, you can’t redesign
the structure as you previously did in the compatible version. The compatible version
was focused on improving the structure in order to offer a finger-friendly user
experience. Here, the emphasis is on how to prioritize the content with respect to the
native-like structure.

How to prioritize your content is a choice that relies on market research and is not up to
the designer. When the research phase has determined which part of the content to
include and which parts to leave for the desktop version, only then can you start to
organize the native-like layout.

Compared with an iPhone native-like version, the iPad native-like version can offer a
large portion of the desktop content, and it can include all of it in some cases. When that
happens, our job is simply to give it a native-like and optimized structure, without having
to cut anything.

Figure 4–38. The iPad native two-column layout structure and its (re)design order.

As seen in Figure 4–39, from top to bottom and left to right, you insert the Store menu
(Figure 4–39, number 1) in the top position in order to enable the user to choose a
contextualized path from his/her first touch.

CHAPTER 4: User Interface Design for iOS Devices 172

Just below that, we insert the option to change the store and its configuration
(Figure 4–39, number 2), and then we insert the option to directly access service
support (Figure 4–39, number 3).

The main content, which is not related to the links in the sidebar, shows the hero image
(Figure 4–39, number 4) and, below that, all of the entry level products (Figure 4–39,
number 5) with a link to their specific pages. This zone is exactly the same as the
compatible and original designs, because it is the most finger-friendly part of the entire
site.

Aesthetic
The iPad native-like structure offers a lot of space in the content column. The main goal
is to be consistent with a strong brand aesthetic and to be able to offer it with an
optimized structure. In the iPad version, it’s easy because we just need to scale it to the
content column size and the work will be done. This time the room offered by the 9.7-
inch iPad display made our job easy.

Figure 4–39. The iPad native-like (re)design of our Apple Store use-case.

From top to bottom in the content column (Figure 4–40, number 4), you insert the hero
image, which in the compatible version played the role of an intro page. As we said, the
style is exactly the same as what you saw in the original and compatible versions.

Below the hero image, you insert the entry level product box. Every product has its entire
visible area touchable, and it is just like inserting another menu in the content column. In this

CHAPTER 4: User Interface Design for iOS Devices 173

way, we can insert just the essential entries in the Store menu (Figure 4–40, number 1),
reducing the cognitive noise in the user experience.

Interaction
What you need to do in this phase is test the consistency of your interfaces and see
whether the user using these interfaces is able to access the specific content that
he/she is looking for. We can set up some preliminary tests based on the most important
use-cases for checking the user interface consistency and the quality of the user
experience.

Figure 4–40. The (re)designed iPad native-like interface offer is now the highest level of user experience.

The big advantage to using a native-like structure is that you have a solid foundation for
your content. Nevertheless, that doesn’t prevent us from inserting the wrong content,
the wrong links, or using the wrong typography. We must pay attention to these details,
because they are exactly what we test for in this phase.

Deliverables
At the end of the process, you need to produce the same deliverables as you did for the
compatible version based on design composition, style guide, and electronic prototype.

iPhone Native-Like User Interface Design
An iPhone native-like interface is the only way to offer a quality user experience,
because a native-like interface is the only solution that optimizes the use of the 3.5-inch

CHAPTER 4: User Interface Design for iOS Devices 174

built-in iPhone display. Unfortunately, the Apple Store offers an incredible amount of
content and so prioritizing forces us to make some tough decisions in this example.

When you prioritize the content, as you must do in every mobile WebApp, you are forced
to cut some important parts. This is the main reason why an iPhone version of the Apple
website has not yet been developed as of this writing. What you can do is prioritize its
content and offer a link to the desktop version of the site if the user is looking for
something that is not offered by the iPhone version.

Research
What was said about the research phase in the iPad process still applies for the
compatible version. In the iPhone interface design process, the research phase even
more pressingly needs to address the problem of prioritizing content. We use only the
most important content, like we did with the iPad version, and we might even change
the presentation order.

Once the market research has told you which portion of your content will be included in
your iPhone version, it’s time to move on to the next step of the process.

Structure
Working on the iPhone native-like version, exactly as was done with the iPad native-like
version, we can’t change the structure because that structure is the strength of the
native-like solution. As you saw in Chapter 2, the iPhone adopts a structure called
“iPhone Page Model.”

The structure phase aims to achieve the following goals:

 Apply the Original Brand to the iPhone Page Model

It is important to develop a connection between the compatible and
the iPhone versions, ensuring that the brand is carried across the
design.

 Offer the Prioritized Part of Contents

If we want to retain a high quality user experience, you can’t insert all
your content in the iPhone page model. You need to prioritize the
content and choose the most important parts to include and leave the
rest exclusively for the compatible version.

 Use an Appropriate Link Structure

The right link structure enables the user to access your content in a
comfortable way, even if there is a large quantity of information.

 Provide Orientation to the User

In a mobile context, it’s easy for the user to lose his orientation inside our
site map, and this probability is even greater when there is a lot of content.

CHAPTER 4: User Interface Design for iOS Devices 175

What you do, to an even greater extent than you did in the iPad native-like version, is to
prioritize your content for the native-like structure. This time, only the most crucial
elements of the content will be available to the user. A link to the desktop version guides
him/her to the other parts if needed.

NOTE: We always try to avoid deep mobile site maps because the (mobile) user can easily lose
his orientation. When for some reason, you have no choice, it is important to use an appropriate
navigation structure and to show clearly the navigation path using a breadcrumb or other

technique as described in the Chapter 2.

Starting from top to bottom, we find the Branding area (Figure 4–43, number 1) and
inside this area, we design the breadcrumb in order to provide orientation to the user.
Semantically speaking, the Branding area also contains the part below, called the “hero
image” (Figure 4–41, number 2). The hero image visually represents the main message
of the page and changes to one of the other images each time the user loads the page.
In this case, you have three hero images available.

Figure 4–41. The iPhone native-like one-column layout structure and its (re)design order.

Below the Branding area, you design the Content area, adopting edge-to-edge
navigation (Figure 4–41, number 3) with only three basic options. Because the iPhone
version is loaded automatically, you need to give the user the ability to switch back to
the compatible version, or if he/she needs it, direct access to the support page. In case
the user needs to enter the store, he can touch the first link and the store homepage will
load.

NOTE: In modern web design, you always try to avoid intro pages but in this case we keep the

structure of the original design that offers a big visual message using an introductory page.

At the end of the page, you have the Site Information part. You use the same approach
used by Apple in mobile pages, like MobileMe with a minimalist approach, inserting only
the Apple logo without any kind of supplementary information.

CHAPTER 4: User Interface Design for iOS Devices 176

Aesthetic
When we work on a mobile version of a site like the Apple Store with a strong brand and
a lot of sexy visual appeal and great design, the aesthetic phase becomes the easiest
part of the job. In these cases, what we need to do is just keep the look-and-feel of the
desktop site and adapt it for the smaller screen without ruining it.

The (layout) rules in a native-like version are even more strict than those in the iPad
version. Here there is little room for fancy design but the laws of perception still help us
to offer your user a better visual hierarchy and a pleasant look.

Figure 4–42. The iPhone native-like (re)design of our Apple Store use-case.

The Branding area keeps the style of the Sidebar Main Header (Figure 4–35, number 4)
designed for the iPad compatible version with the breadcrumb sitting below that. We
always insert the hero image in the Branding area. Below that, we apply the same style
to the Content area.

Usually, designers don’t use too much space to display an image in an iPhone version
because the limited available room in a 3.5-inch display is often perceived as a problem
to solve instead of an opportunity. With this (re)design, we want to break this rule and
we are happy to report that the latest (native) application called Apple Store and
developed by Apple uses the same approach.

Interaction
If the Aesthetic phase is limited by the strict layout rules of the native-like structure, the
same rules make it much easier to work on the Interaction phase because they offer
some standard structures that have been specially developed to enable the user to have
a comfortable interaction with the mobile device.

CHAPTER 4: User Interface Design for iOS Devices 177

Figure 4–43. The (re)designed iPhone native-like interface offer now the highest level of user experience.

Exactly as we did for the iPad version, we just need to test the right use of the interfaces
offered by the native-like environment. If the user touches a link intending to access a
specific piece of information and is successful, this means that your interface works
correctly and you did a good job. If this doesn’t work, you can try inserting different
interface parts, as you might with pieces in a jigsaw puzzle, until everything works
correctly (at least inside the test context) and you have created a semantically correct
structure.

Deliverable
At the end of the process, if you created compatible iPad and iPhone versions in your
project, you might have the option of sending all the deliverables together to the
developer team but this is possible only when working on small projects. For a larger
project, and where possible, it is always preferable to create some sort of parallel
workflow between the different parts of the team.

Tools for User Interface Design
Tools used in this chapter are both application and web application types. Table 4-3 lists
some of the useful tools that you can use for designing your next user interfaces.

CHAPTER 4: User Interface Design for iOS Devices 178

Table 4–3. Tools Used for Design iPhone and iPad User Interfaces.

 Name Type URL Operative System

Feng-Gui Web App http://www.feng-gui.com/ OSX – Win - Linux

ColoRotate Web App http://www.colorotate.org/ OSX – Win - Linux

ColorGrab Web App http://colourgrab.com/ OSX – Win - Linux

Pictaculos Web App http://pictaculous.com/ OSX – Win - Linux

Contrast-A Web App http://www.dasplankton.de/ContrastA/ OSX – Win - Linux

WhatFontIs Web App http://www.whatfontis.com/ OSX – Win - Linux

Little Snapper Application http://www.realmacsoftware.com/littlesnapper/ OSX

Summary
In this chapter, we introduced the interface design process. You saw that designing for a
touch device means having a different approach to the interface design concept
because of the zoom function that every device offers to the user, so that everything
becomes touchable and everything becomes an interface.

We introduced a new concept, defining what active and passive interfaces are in a
touch-screen design process, and learning how we can use them for optimizing the
structure inside our WebApp.

Following this new approach, we also explored the use of active and passive negative
space, the foundation of color psychology, and how colors affect users’ moods.

We introduced the visual hierarchy concept, the most common user reading patterns,
and discussed how to use a strong visual hierarchy to influence those patterns and
achieve specific goals in your design.

In the second part, we worked on a compatible design using the Apple Store use-case.
We presented the use of negative space and touch-oriented typography to optimize the
user experience of a desktop-based website for Apple’s tablet and its 9.7-inch display.
In the third part, we used the same approach but oriented to an iPad native version of
our Apple Store use-case. Always following the same interface design process, we
designed an iPhone version of the Apple Store website in the fourth part.

http://www.feng-gui.com/
http://www.colorotate.org/
http://colourgrab.com/
http://pictaculous.com/
http://www.dasplankton.de/ContrastA/
http://www.whatfontis.com/
http://www.realmacsoftware.com/littlesnapper/

179

 Chapter

iPhone UI Design:
Think Simple

 “Less is more…”

—Ludwing Mies van der Rohe

This chapter is all about user interface design for the iPhone. We will first introduce the

basic concept for designing that interface, which is “think simple” and will then look at

iPhone users’ experiences and the nature of users’ cognitive resource limitations.

After this brief introduction, we will explore the anatomy of sketching using freehand

sketching techniques and will explain how to mock up a user interface with some useful

tools, such as Balsamiq. We will explore Balsamiq’s interface and show how to optimize it.

Next, we will jump directly into Adobe Fireworks and explain how to design a user

interface pixel by pixel. When designing a user interface, you need to control every pixel

of all the elements. Adobe Fireworks provides better tools and interfaces for working

with pixels because it enables you to keep the user interface elements under more

constant control and move and modify them more easily than with Adobe Photoshop.

Adobe Fireworks also offers a better export tool compared to Photoshop, allowing you

to better optimize the weight of each graphic element. Everything you design in this

book can also be achieved using Adobe Photoshop, so feel free to use it if you prefer.

In the last part, we will show you how to reuse your design to create a use case and

provide a visual representation of the user experience.

User Interface Sketching
In Chapter 4, you learned about the interface design process and saw an iPhone version

of “The Store” use case. Chapter 4 focused on the interface design principles used to

design an amazing touch interface.

5

CHAPTER 5: iPhone UI Design: Think Simple 180

In this chapter and the next, we will explain in detail how we designed our touch-

optimized interface. We will also go through the whole creativity process from the sketch

to the final product.

Think Simple
Less is often more. Therefore, “think simple” is the leitmotif of our iPhone design and

development activities. In previous chapters, we built the foundation to better

understand why the “think simple” concept is the right approach to optimize the mobile

experience on a small device like the iPhone.

NOTE: A leitmotif is a musical term referring to a recurring theme associated with a particular

idea. By extension, the word has also been used in other life contexts to mean any sort of

recurring theme, practice, or idea.

In the next paragraphs, we discuss the main points behind the “think simple” concept,

thus tying together what you learned in the previous chapters.

The iPhone is an On-the-Go Device
For the majority of users, the iPhone is used on the go. If you are at home or work and

have a desktop, notebook, or tablet, you will probably not use the iPhone.

This probability is even greater since the iPad was released. Before the iPad, it was likely

someone who needed to use a mobile service would use the iPhone. However, this has

changed now that millions of iPads have been sold.

To use an iPhone on the go, users require resources with a simple structure that allow

the device to function in various contexts.

The Essence of the iPhone Page Model
The iPhone page model is the basic structure of all our works. It is a linear and simple

structure and works perfectly with the iPhone. However, it doesn’t allow designers and

developers to present content in a more detailed way.

The linear flow of the content browsed with the iPhone is perfect for a mobile context

and it is important to stick with this concept without trying to add any techniques used

with desktops or tablets. Even the multitasking feature introduced in iOS4 used the page

model, which enabled users to use multiple applications, although just one page at a

time.

CHAPTER 5: iPhone UI Design: Think Simple 181

iPhone Limitations
The iPhone is based on a 3.5–inch display and no matter how brilliantly designed or

developed a WebApp is, the amount of screen estate remains the same. Even the retina

display has the same dimensions and user interface proportions inside the visible area

are the same. This means that, despite better readability of the user-interface elements,

the level of user experience remains the same.

We also need to remember that, despite the fact the iPhone revolutionized the user

experience and the paradigm behind browsing the mobile web, it still remains a small

phone optimized for mobile content that has limited hardware features. For example, the

new touch keyboard was a huge improvement over the qwerty used in the old

smartphones because it can change following the application needs and can be used in

portrait and landscape modes. However, with a 3.5–inch display, it will always be limited

to a subset of possible use cases.

The Nature of Users’ Cognitive Resources
Everything in this world is finite and most things are accessible in a limited way. This is

just the way things are. In our mobile context, the screen dimension is limited, as is the

available bandwidth, the services offered, and the RAM. Thus, users’ cognitive

resources are limited.

Because user experience is born and develops in the brain, users’ cognitive resources

affect their iPhone experiences. It is important to be aware of this. Limited cognitive

resources imply the user interface must be optimized in a simple way and we must

realize that some contexts require more cognitive resources than others.

In the end, the best we can do is never forget the words of Leonardo da Vinci:

“Simplicity is the last sophistication.”

Anatomy of Sketching
Sketching might appear to be an easy part of the whole design process. You take a pen

and a piece of paper and you’re done. After all, you don’t have to paint the Sistine

Chapel! However, nothing could be further from the truth. Sketching a view, as it is

called in native development, means syncing your hand with the creative part of your

mind. For this reason, a simple thing like sketching requires years of practice.

HISTORICAL NOTE: The first example of modern sketching dated back to the first half of the
fifteenth century in Siena when Mariano di Jacobi detto Taccola produced a set of four volumes

on civil and military technology called De Ingenisis.

CHAPTER 5: iPhone UI Design: Think Simple 182

Fortunately for us, sketching a view is simpler than other kinds of engineering or

architectural sketching; however, the foundations are the same. Before sketching a use

case, you must keep the following points in mind.

Quick
A sketch must aim to give only an impression.

Direct
A sketch uses simple and clear wording.

Minimal
A sketch includes only what is required to communicate the message.

Freedom
A sketch gives a sense of openness because it is composed of

instinctual lines instead of tight, precise lines.

Grouped
A sketch makes sense in contexts created by other sketches.

Suggest
A sketch doesn’t explicitly state something, but explores a concept

that suggests a design and development path.

Now that you have a better idea of what a sketch means, the first step is to sketch your

ideas using pen and paper. This is an important step because your mind is better

connected to your hand than your mouse.

In the sketching phase, you will:

1. do some freehand sketching on white paper,

2. create logical connections between sketches, and

3. redesign your freehand sketches using a stencil.

Figure 5–1 shows three iPhone views sketched on paper. For these sketches, we used a

handmade wood stencil with 1:1 dimensions. As you might notice, a standard X box was

used to represent all the images. This is a standard practice for wireframe design but is

also recommended for sketching in order to focus solely on representing the page

structure. More information regarding the best practices for sketching a user interface

will follow in chapter 6 when we detail the iPad use case.

When starting a project from scratch, creating logical connections between views will

help you clarify your ideas and contextualize your design. It is a good idea to print all the

views, post them on a wall, and discuss your ideas with others.

CHAPTER 5: iPhone UI Design: Think Simple 183

Figure 5–1. A freehand sketch of “The Store” use case.

For this use case, you don’t need to work on logical (content) connections because you

are working on a (re)design. Working on a (re)design means you already prioritized the

content from the desktop version and produced an optimized iPhone site map showing

the content structure and relationships.

Figure 5–2. The first step of the interface design process.

If you work with a development team and need to present your work, you might need to

redesign your sketch using a stencil. Figure 5–3 shows how a freehand sketch can be

redesigned using a stencil.

CHAPTER 5: iPhone UI Design: Think Simple 184

Figure 5–3. Redesigning a sketch using the UI stencil for the iPhone.

Once you have sketched your idea using pen and paper and redesigned it using a

stencil, you are ready to compose your view using a tool. In the next section, you will

see how to use a tool to transform your original sketch into the final design using Adobe

Fireworks.

Design Using Tools
When the idea is clear in your mind, move to the second step of the process, which is

designing a version of your views using tools. For our project, we chose Balsamiq

Mockups (we inserted links to the appropriate web pages at the end of the chapter for

all the other tools used in this book).

Balsamiq is a zenware program, meaning it helps you get “in the zone” and stay there.

Balsamiq is the perfect program for the second step of the interface design process (see

Figure 5–4).

NOTE: Zenware means zen software, software that helps you get focused, achieve the ultra-
productive cognitive state known as flow, and stay there. The goal of zenware is to disappear,
supporting you when you need it but staying out of your way as much as possible. You should

forget the software is there at all.

This program offers almost the same speed and rough feel as sketching with a pencil,

but with the advantage of the digital medium. For example, enlarging containers is just a

drag operation, rearranging elements doesn’t require starting over, and your wireframes

will be clear enough that you’ll be able to make sense of them tomorrow.

CHAPTER 5: iPhone UI Design: Think Simple 185

Figure 5–4. The second step of the interface design process.

Explore the Balsamiq Mockups Interface
Balsamiq Mockups have a tool bar from which you can select an element category, as

follows.

 All
You can see all the available elements.

 Big
You can see all the big elements in all the categories, including the iPhone

and many other images, such as the cover flow.

 Buttons
You can see all the buttons, including the iPhone ON/OFF switch toggle.

 Common Elements
You can see all the common elements in all the categories.

 Containers
You can see all the container elements. Despite having a general

rectangle container, this category is more useful for desktop projects.

 Layout
You can see all the elements in order to compose a layout.

 Markup
You can see useful elements to mark up your work.

 Media
You can see all the media elements, including icons, cover flow, images,

and video player elements.

CHAPTER 5: iPhone UI Design: Think Simple 186

 Text
You can see all the text elements, such as titles, navigation bars,

breadcrumbs, tree panes, and other desktop-like objects.

 iPhone
You can see all the iPhone elements, including the keyboard, value

picker, iOS menu, and the alert box. This category is shown in Figure 5–5.

Figure 5–5. The Balsamiq Mockups application: the iPhone section.

The Balsamiq paradigm is pretty simple. Drag and drop your element, modify it, and

compose your mockup. Figure 5–6 shows some of the elements used to compose “The

Store” use case mockup.

CHAPTER 5: iPhone UI Design: Think Simple 187

Figure 5–6. The Balsamiq Mockups paradigm: drag, drop, and modify.

Represent Connections
When the first view is ready, copy and paste it in order to create another instance to

modify. The goal now is to create a few views side by side to represent a relationship

and give a visual feeling about the context.

CHAPTER 5: iPhone UI Design: Think Simple 188

Figure 5–7. The sketching phase with Balsamiq Mockups.

Figure 5–7 shows the link between three views. This image shows the action “Go to the

iPhone Accessories Page” in “The Store” use case.

Figure 5–8. The Unified Modeling Language (UML) use case diagram for “Go to the iPhone Accessories Page”.

Once all your views and relationships are worked out, the work with Balsamiq Mockups

is finished and you are ready to refine the aesthetic part of your views using a graphic

program.

Designing with Adobe Fireworks
After using a tool such as Balsamiq to compose a mockup from your sketch, it’s time to

enter the third phase of the process and switch to a graphic program such as Adobe

Photoshop or Fireworks to work on the aesthetic aspect. Adobe Photoshop is probably

the best graphic program for manipulating bitmaps, but if you work on a WebApp design

using many vector shapes and need to control, move, transform, or modify pixels,

Fireworks is the best option.

Adobe Fireworks is much more web-oriented than Photoshop. A good example of this is

the property tool, located in the lower left corner of the interface. The property tool

provides constant feedback to the designer about the X and Y coordinates of an

element and its dimensions in pixels. The Property box is useful during the user interface

design process. Another example is the export tool; the Fireworks optimization algorithm

CHAPTER 5: iPhone UI Design: Think Simple 189

works much better and gives better results compared with the one in Photoshop. From

this point of view, Fireworks is even better than Photoshop.

Figure 5–9. The third step of the interface design process.

NOTE: In the next section, we introduce the functions used to design “The Store” use case. We
show all the commands, where they can be found, and the keyboard shortcuts inside

parentheses.

We learn this lesson from Andy Clarke, the author of Transcending CSS: The Fine Art of
Web Design.

Creating a Canvas
With Adobe Fireworks open, you need to create a new document. Choose File New
(N).

Figure 5–10. Adobe Fireworks: create a new document.

CHAPTER 5: iPhone UI Design: Think Simple 190

Now create a new document with the following canvas size.

 Width: 320 (px)

 Height: 480 (px)

 Resolution: 163 (ppi)

This canvas size follows the iPhone 2G, 3G, and 3GS display capability, but if you want

to work with the new Retina Display, you need to set the following canvas size.

 Width: 640 (px)

 Height: 960 (px)

 Resolution: 326 (ppi)

Figure 5–11. Adobe Fireworks: a new blank document.

Both resolutions have the same proportion inside the 3.5–inch iPhone screen.

CHAPTER 5: iPhone UI Design: Think Simple 191

Organize Levels
Your design will be deployed on a few levels. For this reason, the first thing to do is

create some folders to organize your assets and keep your environment clean. Using a

semantic approach, create the following folders.

 iOS ui

 Branding Area

 Content Area

 Info Area

 Background

 Templates

Figure 5–12. Adobe Fireworks: a semantic structure for the asset’s folders.

The first folder, called “iOS ui”, will contain the Status Bar and the Bottom Bar. The next

folders—Branding, Content, and Info Area—will contain the WebApp. Below these

folders, create two levels called “Background” and “Templates.” Inside the Branding,

Content, and Info Area, add two more folders, one called “Text” and another called

“Icon.”

CHAPTER 5: iPhone UI Design: Think Simple 192

Layout Design
The first thing to do is add another folder called “Rulers.” This folder will contain four

lines, two lines for fixing the Visible Screen boundaries and two lines to fix 10 px

padding on the side. After adding the rulers, insert a background layer by choosing

Select Rectangle Tool (U).

Figure 5–13. Adobe Fireworks: the Visible Area and Padding Rulers.

Now draw a rectangle measuring 320 480 px. This rectangle will be the basic

background color for your canvas, but more importantly, it will be used to align the

canvas object with the Align function. The new rectangle is drawn inside the Background

folder in order to be under the iOS interface assets of the iOS folder.

NOTE: The Align function is a relative function. We can’t just select an object and look for the
Align function because it will be unavailable. Being a relative function in this environment means
you need to pass two or more objects to the function to align. This is necessary because the

function will align “something” to “something else.”

Now that you have prepared your canvas, you are ready to add the design elements.

CHAPTER 5: iPhone UI Design: Think Simple 193

Interface Design
Using the Rectangle tool, add the following elements.

 Header Bar

Rectangle: 45 480 px

Gradient: Linear

Color: #566E93, #314F7B

 Breadcrumb Bar

Rectangle: 20 480px

Color: #FFFFFF

Figure 5–14. Adobe Fireworks: the Branding Area.

After adding the two bars, add the text by choosing Select Text tool (T). The text is

defined as follows.

 Header Text

Font: Myriad Pro, Regular, 30 pt

Drop Shadow: 1 px solid, #3B4C66, 270 deg

CHAPTER 5: iPhone UI Design: Think Simple 194

 Breadcrumb Text

Font: Myriad Pro, Light Semi-Condensed, 12 pt

To align the Page Title in the middle of the Header Text, select the Header Text and the

White Background by choosing Modify Align Center Horizontal (5).

The last element to add is the House Icon. Draw this manually, defining it as follows:

 House Icon

Size: 14 11 px

Color: #2B2B2B

Now that the Branding Area is complete, move to the Content Area. Select the

Background Level and use the Rectangle tool to draw a rectangle as content

background, defined as follows.

Content Background

Rectangle: 350 480 px

Color: #D8D8D8

Now that the gray background is defined, add some light to the top part of the Content

Area by choosing Select Line tool (N). The line is defined as follows.

 Content Area Light

Line: 1 480 px

Color: #FFFFFF

CHAPTER 5: iPhone UI Design: Think Simple 195

Figure 5–15. Adobe Fireworks: the Content Area.

The next step is to insert the Hero Content by choosing Select Rounded Rectangle. Create

two Rounded Rectangles, as follows.

 Hero Content 1

Rectangle: 190 300 px

Color: #FFFFFF

 Hero Content 2

Rectangle: 190 302 px

Color: #FFFFFF

Border: 1 px solid #000000

When the rounded rectangle is drawn, select both rectangles, resize the corners, and

flatten the images by choosing Modify Flatten Selection (Z).

CHAPTER 5: iPhone UI Design: Think Simple 196

Figure 5–16. Adobe Fireworks: the Hero Content Area.

NOTE: When using a Soft Line border, it’s hard to have a sharp 1 px angle border because of the
anti-aliasing. It is therefore necessary to use a little trick in order to have the same sharp border

effect as in the implementation phase when working with the CSS. Put the Hero Content 1 on top
of the Hero Content 2. Because the Hero Content 2 is 302 px wide and the Hero Content 1 is only

300 px, only a 1 px border will remain visible.

When the Hero Content Area is ready, insert the text, as follows.

 Hero Heading

Font: Helvetica, Bold, 22 pt

Color: #000000

 Hero Sub-Heading

Font: Helvetica, Regular, 12 pt

Color: #666666

Below the two headings, insert the iPhones 4 image and three 6 px circles representing

the Hero Carousel.

CHAPTER 5: iPhone UI Design: Think Simple 197

Figure 5–17. Adobe Fireworks: the Edge-to-Edge menu in the Content Area.

After the Hero Content, design the Menu Area based on an edge-to-edge structure. Use

the Rounded Rectangle tool to design a rectangle, as follows.

 Menu Area

Rectangle: 300 132 px

Color: #FFFFFF

Border: 1 px solid #000000

The height of the menu is the standard 44 px of each menu entry. The text entries are

defined as follows.

 Main Menu Text Entry

Font: Helvetica, Bold, 16 pt

Color: #111111

On the left side of each Menu Entry, we have a 34 px height icon and on the far left, a

6 12 px right arrow.

CHAPTER 5: iPhone UI Design: Think Simple 198

NOTE: As with the Hero Content Area, use a Soft Line border. This means that if you want to
achieve a sharp 1 px border, you need to apply the same technique that uses two overlapped

boxes.

Now that the designs for the Menu Area and Content Area are completed, add the Info

Area. Like the Apple brand logo, the design for this area should be minimalist, containing

only the logo and nothing else. Figure 5–18 shows the whole design with the Info Area in

the bottom part.

Figure 5–18. Adobe Fireworks: the entire design with the Info Area in the bottom part.

At this point, the process is complete. The assets produced in this process are reused to

create the electronic prototype useful for a humble first test of the usability and to

prepare the next implementation step in the mobile information architecture process.

Reuse Design
Reuse is an important word in the design and development world. Reusing generally

saves both time and effort, providing a solid and tested base for projects. This practice

is more useful in native development, where reusable code is a fundamental part of the

process; even a small piece of tested code can save developers a lot of effort. Design

patterns share the same paradigm with code or design reuse practices, where we

identify problems or requirements and provide a solution or code/design/pattern.

CHAPTER 5: iPhone UI Design: Think Simple 199

In our design project flow, we used the view we created for “The Store” home page in

designing two other views, “The Store” shop page and “The Store” shop iPhone page.

We encourage you to implement this reuse approach in all your future projects.

Figure 5–19. “The Store” use case: the three iPhone views.

In our process, we reused the view we designed for “The Store” home page to design

two more views. This helped give a more tangible feeling about the final WebApp design

would look like. The other views we designed are “The Store” shop, the “Shop” page,

and “The Store” shop iPhone page.

Looking at Figure 5–19, you can see a few small differences between the home page

and the other two pages. This is because we wanted to create dominance in the home

page using a bigger Hero Content page based on an image carousel. Achieving this

result was possible thanks to the only three text entries in the Main Menu. In this way,

both the Hero Content Area and the Main Menu are in the Visible Area and do not

require users to scroll.

Figure 5–20. User interface interaction in the “Go to the iPhone Accessories Page” use case.

CHAPTER 5: iPhone UI Design: Think Simple 200

On the home page, the main message relies on the Hero Content Area; the Main Menu

offers only obvious options, such as “Enter the Store”. In the other views, the main

message is contained in the Main Menu and the (reduced) Hero Content Area merely

lets users know at a glance whether their page is desired. The Hero Content Area also

offers information about some products and tempts users to buy them. However, this is

not related to the user experience and is only a secondary goal from a marketing point

of view.

Once all the views or pages for your WebApp are designed, you can give users a visual

representation by creating a few use cases, as shown in Figure 5–20, or by giving an

overview of the interface-content relationship, as shown in Figure 5–21. Both are useful

for the other members of the team and for yourself in case you need to check the

interface consistency before moving to the implementation phase.

Figure 5–21. A partial representation of the interface-content relationship in “The Store” use case.

CHAPTER 5: iPhone UI Design: Think Simple 201

Tools for User Interface Design
The tools used in this chapter are both physical tools and software applications.

Table 5–1 lists some useful tools you can use to design your next user interface.

Table 5–1. Tools used to design iPhone and iPad user interfaces.

 Name Type URL Operating System

UI Stencil Tool www.uistencils.com/ --- --- ---

Balsamiq Mockups Application http://www.balsamiq.com/ OSX/Win/Linux

Adobe Fireworks Application www.adobe.com/products/fireworks.html OSX/Win

Adobe Photoshop Application www.adobe.com/products/photoshop.html OSX/Win

Gimp OSX Application http://gimp.lisanet.de/ OSX

Gimp Application www.gimp.org/ Linux

Summary
In the first part of this chapter, we analyzed the interface design process and discussed

the anatomy of sketching and the “think simple” paradigm. We discussed how the

iPhone limitations, the iPhone page model, and users’ cognitive resources influence

design style and explained how all these elements are the source of the “think simple”

design paradigm.

In the second part, we explained how to improve a basic sketch made with pen and

paper using a tool like Balsamiq Mockups. We explained that you can start to create

some content and interface connections to create an initial visual representation of the

concept design.

In the third part of this chapter, we told you how to design a user interface using Adobe

Fireworks. We approached the process step-by-step, from the creation of a new canvas

to the interface design. At the end of the process, we introduced the idea of reusing your

design to create two more views or pages and we suggested making a visual

representation of the interface-content relationship as a deliverable for the

implementation phase.

http://www.uistencils.com/
http://www.balsamiq.com/
http://www.adobe.com/products/fireworks.html
http://www.adobe.com/products/photoshop.html
http://gimp.lisanet.de/
http://www.gimp.org/

CHAPTER 5: iPhone UI Design: Think Simple 202

203

 Chapter

iPad UI Design:
Think Inverted

“ . . if you would create something,
you must be something . . .”

—Johann Wolfgang von Goethe

After working on the iPhone user interface in the previous chapter, you will now be able

to start working on the iPad version of your project. When you work on a project for

Apple’s tablet, you need to choose if you want a compatible user interface or a native-

like user interface. There is no right or wrong approach, because everything is dictated

by the project requirements.

In this chapter, you will see how to apply both approaches. In the past chapter, you saw

how “think simple” was the basic concept for designing an iPhone user interface. Now,

you will see how the iPad design requires a switch of perspective for optimizing the

device capabilities.

First, a new approach to simplicity called “think inverted,” will be introduced, and then

you will learn how to design an iPad-compatible user interface from a desktop interface,

showing the principles behind this important step of the project flow.

Then, like in the iPhone chapter, you will learn how to sketch the user interface, and after

that, you will learn how to design it with Adobe Fireworks. The whole design process will

be presented separately for both the iPad-compatible and iPad native-like versions.

User Interface Sketching
In Chapter 5, you designed the iPhone version of your Apple Store use case. In

Chapter 6, you will work with the same procedure, but you will be presented with both

the compatible and the iPad native-like versions. Since both versions share most of the

6

CHAPTER 6: iPad UI Design: Think Inverted 204

iPad principles but not exactly the same ones, it will be identified when something is

specifically needed for one of the versions.

Instead of using the iPhone for presenting the compatible version, you will use the iPad,

because, for the iPhone, it is better to switch to a native-like version every time it is

possible, while with an iPad this is not always true.

Think Inverted
This section’s heading doesn’t say everything, and it probably doesn’t show any direct

relationship with the iPad. The meaning behind this title could sound like: continue to

think simple, but in an inverted way. This defines an inverted (simple) approach. The

inverted approach arises from the intermediate position of this new device, just between

a pure mobile device like the iPhone and a pure fixed desktop like an iMac or a Mac Pro.

The term “inverted” stands for a different approach that requires an opposite approach

to achieve the same goals achieved with the iPhone version.

In the iPad native-like version, it is necessary to re-factor your thinking because of the

new concepts behind the portrait and landscape orientations. In the portrait mode, the

device presents a one-column layout, and in landscape mode, it presents a two-column

layout.

Figure 6–1. The achieving process of simplicity from a desktop and mobile point of view

This means that you will often need to use two opposite approaches for the same

content in order to optimize both orientations. In the two-column design offered by the

landscape orientation, you should use the left (small) column as support for the main

content. The left column provides orientation to the user and makes it easier to browse

complex sites or application contents.

In the portrait orientation, the single-column design doesn’t have this navigation

support, and for this reason, the user must access the left column as a pop-up menu,

using the button placed in the header. This fact suggests using a second CSS file for

modifying the main content structure, including some design elements that will

compensate for the missing left column. Providing some navigation information inside

CHAPTER 6: iPad UI Design: Think Inverted 205

the main content, you will be able to reduce the access to the left column through the

pop-up menu, and increase the quality of the user experience.

In the iPad-compatible version, re-factoring is necessary because you will work on a

desktop version, but you will need to apply some rules from the mobile (touch)

environment in order to optimize the user touch experience. Desktop and mobile rules,

before the iPad, lived and were applied in two separate worlds. In this new kind of

design style, you will merge two types of approaches, like the desktop and the mobile

one, using a common background that is based on the simplicity concept. Before the

iPad came out, these two types of approaches pointed in opposite directions.

As can be learned from the chaos theory, sometimes making things simpler requires

more complex procedures in the design phase. As you will see in the next section,

sometimes you will need to add features to reduce complexity and make a pattern

simpler.

Inverted Simplicity
How can you use simplicity to point in a direction, in order to achieve your design goals,

which point in the opposite direction? Examples of this concept are prioritizing the

content (mobile approach), keeping a desktop-like structure (desktop approach), or

presenting the content with a desktop structure (desktop approach) and a mobile-

oriented structure (mobile approach). Each case is an example of two forces that point

in opposite directions.

Now you will see, one more time, how the simplicity concept will be a fundamentally

common factor between apparently different things, and you will see that your design

goals influence these opposite forces to point in the same direction.

NOTE: The simplicity theory is a cognitive theory that seeks to explain the attractiveness of some
kind of human-environment interaction with human minds. This theory claims that interesting
situations appear simpler than expected to the observer. A well-known implementation of this
theory is Ockham’s razor (from the name of the English logician and theologian, and Franciscan

friar, William of Ockham).

From a cognitive perspective, simplicity is the property of a domain that requires very little

information to be exhaustively described. The opposite of simplicity is complexity.

The Google home page is the perfect example of inverted simplicity—how to present a

very complex thing in a very easy way. As Marissa Mayer, vice president of Search

Products and User Experience at Google said, “Google has the functionality of a really

complicated Swiss army knife, but the home page is simple, elegant, and can slip in

your pocket.”

CHAPTER 6: iPad UI Design: Think Inverted 206

NOTE: Marissa Mayer graduated with honors in computer science at Stanford University, has
notable public involvement with Google Search and Gmail, and can be considered highly
responsible for the success of these UIs. Fortune magazine lists her as one of the 50 most

powerful women in the world, and the youngest woman ever to make the list. She is credited

with shaping the design of Google Maps, Google Earth, iGoogle, and more.

Google makes good use of this concept, and so does Apple. Its all-in-one iMac is the

perfect example of how to reduce complexity by making things simpler.

Before starting to sketch out an iPad use case, in the next section, you will see how to

apply simplicity to your design, and apply some of the rules behind this concept.

Remove and Prioritize
“Remove” sounds easy, but think about it—how will you know what to take away from

your design? This is the main question that every designer will face when trying to

achieve simplicity. This question triggers three main fears

 Fear of missing something: Designers fear that removing elements

from the design will decrease the probability of the user finding what

he needs. Designers struggling with this fear add endless content

without applying any sort of content prioritizing.

 Fear of being misunderstood: Designers fear that removing elements

from the design will decrease the probability of the user understanding

the content’s message. Designers struggling with this fear add

technical information or many instructions where they are not strictly

necessary.

 Fear of failure: Designers fear that removing elements from the design

will increase the probability of failure. Designers struggling with this

fear rely on the quantity of information instead of the quality.

Overcoming these fears is important for a designer. Through the simplicity concept, you

can reduce the noise level in your web site or web application, and this fact will make

useful content or features more prominent. This is a fundamental concept behind every

great (simple) design.

The next question is how will you know when you have made something as simple as

possible? Unfortunately, there isn’t an answer for that; your experience will help you the

most, besides a good phase of testing. In your interface design process, good

guidelines should be as follows

 Understand the core of a design element: See the element globally in

the web site or web application context.

CHAPTER 6: iPad UI Design: Think Inverted 207

 Decide if removing the element could increase the global design value:

You need to be sure that removing the element will not disrupt the

design.

When you remove an element, it is always because you saw it as a part of a puzzle, and

you decided to remove it. If you do not see its global meaning in the design, you’ll never

have a chance to increase the global value of your design.

Hide and Shape
Sometimes it is not possible to remove elements or sub-elements from your design.

What you can do in this case is hide these elements, in order to focus the (limited) user-

cognitive resources only on the most important parts and keep these elements available

for a secondary type of user.

It’s important to remember your secondary users, but you don’t want to confuse or

distract your main target user from the main design message. A good example of this

concept is the structure of the product pages of the Apple Store web site. The message

is nice and clean in the main product page, but there is a toolbar on the top of each

product for letting the advanced user have access to the hardware specifics.

Figure 6–2. The iPhone 4 page: Hiding and shaping in content design

In Figure 6–2, you can see how the main target user isn’t distracted from the message

behind the design, but the advanced user is also satisfied with all of the specifics; note

that this type of strategy works well because the advanced user is not frustrated when

looking for content, due to the fact that they don’t have to scan a web site or web

CHAPTER 6: iPad UI Design: Think Inverted 208

application’s content structure. This kind of user interaction doesn’t happen with a

beginner user.

This step will dramatically impact the global level of user experience, because if you

forget about one kind of audience, you will lose a great number of potential users.

Picture the following two situations

 The Apple Store shows, in the iPhone main page, all the hardware

features without hiding any type of element or content—CPU, RAM,

Wi-Fi, features, applications; everything. A beginner user will get lost in

the endless list of incomprehensible words, and he will probably not

establish any kind of relationship with the new phone. This will mean

only one thing: in 90% of cases, he will never buy an iPhone 4.

 The iPhone main page shows only basic information about the phone,

and no links to specific hardware information are provided. The

advanced user will probably see the new phone as a phone for the

inexperienced user, will not be satisfied by the type of relationship

established with the brand through the web page, and he will never

buy the new iPhone.

Figure 6–3. The Apple Support page: Hiding and shaping in content design

Figure 6–3 shows another example of shrinking a portion of content, and at the same

time, hiding entries in a classic drop-down menu. The drop-down menu can replace a

horizontal menu in a design. The Apple Store uses this approach in the Support page

when this type of menu hides a portion of content, and at the same time an entry from

an alternative horizontal menu.

CHAPTER 6: iPad UI Design: Think Inverted 209

These are only two kinds of examples of how using the hide and shape concept in a

strategic manner can really increase the level of user experience.

Shrink and Group
Sometimes there is also a situation where an element or a portion of content can’t be

removed or hidden. The typical situation is when this element or portion of content is

very important to the secondary type of user and must be accessed quickly. In this case,

you will use the shrink and group approach. To achieve a perfect level of organization in

your groups, a scheme has to be developed. Shrinking an element or a portion of

content could mean visually reducing its size, and in doing so, reducing the impact of

the user’s attention. The element or portion of content is still available but it doesn’t

have a primary role in the message for the user anymore.

Figure 6–4. The iTunes page: Shrinking and grouping in content design

Figure 6–4 shows how the three portions of content are too important for the general

understanding of the page to hide or take away from the design. The solution is to shrink

it and group it below the main image, giving the user the opportunity to read it easily, if

necessary. In the element highlighted in Figure 6–4, designers from Apple applied the

laws of similarity, proximity, and symmetry.

As a last point, it is important to remember that for shrinking and grouping, sometimes

you need to add, instead of take away an element or a portion of content in your design.

CHAPTER 6: iPad UI Design: Think Inverted 210

Key Points of the Simplicity-Complexity Paradox
So far, you have seen that by applying these three fundamental concepts you can

reduce complexity and increase simplicity in your design. You can also see that, in a

mobile context, simplicity is deeply related to a high quality of user experience.

The important fact is that simplicity is naturally related to complexity, and both are just

two different expressions of the same event that happens in our minds. For this reason,

it is totally futile trying to eliminate complexity using simplicity because, as the chaos

theory suggests about the simplicity-complexity paradox, complex patterns contain

simpler patterns within them that are reflections of more complex patterns.

A few important key points:

 Simplicity can’t eliminate complexity: Using the simplicity concept, you

can’t eliminate complexity from your design; simplicity needs

complexity in order to stand out in our minds.

 Simplicity can drive you to complexity: Removing, hiding, or shrinking

the wrong element in your design increases the global-level

complexity.

 Simplicity is subjective: Simplicity is a perception and has its origin in

the user’s mind. You can’t assume that every user will perceive the

same level of simplicity in your design.

Now, it’s time to go to the practical part and start to analyze the compatible and native-

like iPad versions of your Apple Store use case.

Sketching the UI
In this section, you will learn how to apply the three simplicity principles to your

compatible and native-like versions. Starting from the iPad-compatible version, you can

see the relationship between the sketch and the final design composition in Figure 6–5.

When working on this version, besides the fact of being finger-friendly and optimizing

the structure for an effort-free touch user experience, the design approach is not so far

from the one you use for a desktop version.

Apply the Remove and Prioritize principle, by removing the Special Deals box and the

Financing Option box. Despite that, the most important step is removing the layout

dominance over the content.

The user needs more cognitive resources in his browsing experience if he needs to look

for important information in two opposite places. As you well know, since the cognitive

resources are limited, if the navigation structure takes away too many resources from

the user, a small quantity will remain available to the user for understanding the content.

This will decrease the level of user experience.

CHAPTER 6: iPad UI Design: Think Inverted 211

As a result of this step, you will prioritize the main content over the content structure and

some navigation elements over others.

Figure 6–5. The iTunes page: Shrinking and grouping in content design

You should apply the Hide and Shape principle, hiding the Software box and the Gift

Cards box from the Popular Accessories box. These boxes will be hidden but still

accessible with one touch from the new Popular Accessories box, using one of the

“more..” links. You should also hid some of the iPhone and iPad top sellers items; the

box will show random items from the top ten, and the complete top ten is available

using the “more..” link at the bottom of the list.

You should apply the Hide and Group principle, merging and hiding the two side bars

into one bigger side bar. Merging the two columns will group the navigation elements,

and as result, you will group the user focus into (only) one zone of your layout. More

than any other design improvements, it is the level of use experience that really changes.

Analyzing the native-like iPad version of your use case in Figure 6–6, you can see how

the design approach is much more mobile-oriented compared to the previous

compatible version.

This time, because of the limited screen real estate available, compared to a desktop

monitor, you will apply the Remove and Prioritize principle in a more aggressive way.

CHAPTER 6: iPad UI Design: Think Inverted 212

You will need to integrate the Hero Image from the store index page in the home page,

and insert only the Main Content box as a support for the main Hero Image message.

In the side bar, you need to prioritize the four shop options for contextualizing your

shopping according with one device and the possibility of a non-standard user changing

the profile of the shop. Because you have aggressively prioritized the navigation and

main content, you have opened the possibility of switching to the compatible version of

the store, and, as a last option, you should insert a shortcut to customer support.

Figure 6–6. The iTunes page: Shrinking and grouping in content design

The first principle, Remove and Prioritize, is the dominant in this mobile approach, and

the Hide and Shape principles and the Shrink and Group principles have less

application. Once you understand this fact, you will be able to hide almost all of the

content behind the following four options, Shop Mac, iPod, iPhone, and iPad, and you

won’t need to shrink any part of the design because you applied the remove principle to

some sensible design elements.

CHAPTER 6: iPad UI Design: Think Inverted 213

Design Using Tools
The sketches are ready, and this means that you are ready to use the Balsamiq

Mockups tool, the same one you used for your iPhone mockup. The Balsamiq Mockups

tool offers some great design elements for your compatible version that, even while

touch-oriented, still has a desktop-like structure. The native-like version will be designed

using Adobe Fireworks because, so far, you don’t have any optimized tools for

representing an iPad sketch.

Select the Big Menu, and use the Browser Window element to represent your iPad

Safari application, as in Figure 6–7. It doesn’t look exactly like the iPad Safari window,

but it will work for your purposes:

 Browser Windows

Width: 1024px

Height: 2000px

Figure 6–7. Balsamiq Mockups: The browser window.

w

CHAPTER 6: iPad UI Design: Think Inverted 214

Once your browser window is open, select the Common Menu, and drag a Menu Bar

element for the primary navigation bar, and another Menu Bar element for the secondary

navigation bar, as follows:

 Primary Navigation Bar

Width: 980px

Height: 36px

 Secondary Navigation Bar

Width: 980px

Height: 30px

Figure 6–8 illustrates how you can complete the primary navigation bar by using the

Button element for representing the search engine bar.

Now that the navigation area is done, you can drag the Rectangle/Canvaz/Panel element

from the Common Menu, and design it as follows:

 Content Main Area

Width: 626px

Height: 385px

Figure 6–8. Balsamiq Mockups: The primary and second navigation bar and the content main area

CHAPTER 6: iPad UI Design: Think Inverted 215

Below the content main area, there is the spotlight area, which can be drawn by

dragging an Image element from the Common Menu with the following dimensions:

 Spotlight Area

Width: 628px

Height: 250px

Next is the Staff Picks box. It is drawn by using a Dialog/Window element from the

Common Menu, as seen as follows:

 Staff Picks Box

Width: 628px

Height: 425px

Figure 6–9. Balsamiq Mockups: The spotlight area and the Staff Picks box

Below the Staff Picks box, draw the Accessories box using the Rectangle/Canvas/Panel

element, and after that, draw the Informational box using the Dialog/Window element.

Both of these elements should be selected from the Common Menu. The two elements

have the following dimensions:

CHAPTER 6: iPad UI Design: Think Inverted 216

 Accessories Box

Width: 628px

Height: 215px

 Informational Box

Width: 628px

Height: 395px

Figure 6–10. Balsamiq Mockups: The Accessories box and the Informational box

You are now finished with the content-related part of your design. Now, you need to

insert the navigation-related area, and draw the side bar. Using the

Rectangle/Canvas/Panel, draw the side bar main header, and add another

Rectangle/Canvas/Panel element for the side bar main menu. The two elements have

the following dimensions:

 Side Bar Main Header

Width: 340px

Height: 80px

CHAPTER 6: iPad UI Design: Think Inverted 217

 Side Bar Main Menu

Width: 340px

Height: 165px

Figure 6–11. Balsamiq Mockups: The side bar main header, the side bar main menu, and the search engine bar

Next, the New to the Store box is drawn by using a Dialog/Window element. Below the

New to the Store box, in order to design the Popular Accessories box, the two Balsamiq

elements are combined. Drag a Rectangle/Canvas/Panel element for the Popular

Accessories box header and a Dialog/Window element for the rest of the box, including

the side bar subtitle row, plus the side bar content list.

CHAPTER 6: iPad UI Design: Think Inverted 218

Figure 6–12. Balsamiq Mockups: The side bar main header and side bar main menu

In the end, the site information area will have many links. In order to draw these links,

select the Text Menu and drag two Label/String of Text elements. Use a Horizontal

Rule/Separator element to select the Layout Menu.

CHAPTER 6: iPad UI Design: Think Inverted 219

Figure 6–13. Balsamiq Mockups: The site information area

The mock up is now ready and can be exported by using Mockup Export Snapshot, and

then transferred to a PNG File. For the native-like iPad version, you will need to change

your approach, because, so far, there isn’t an optimized mockup tool on the market. If

you need to mock up a design composition, you can use OmniGraffle. But you need to

design a sketch, and it’s much better to jump directly inside Adobe Fireworks and merge

the sketch and design phase in one single step. This is what you will do for the native-

like iPad version in the next section.

Design with Adobe Fireworks
So far, you have sketched both the compatible and native-like iPad versions, but you

have mocked up only the compatible one using the Balsamiq Mockups tool. In the next

section, you will learn the standard design composition approach for the compatible

version, and then, learn how to merge the sketch and design phase using a gray box

design for the native-like version.

CHAPTER 6: iPad UI Design: Think Inverted 220

iPad-Compatible Version
In this section, you will start to work on the compatible version, and then you will present

the native-like one, with both versions following the same process used for the iPhone

process.

Create a Canvas
Once you’ve opened Adobe Fireworks, you’ll need to create a new document, using

File New (N).

Figure 6–14. Adobe Fireworks: Create a new document

Your document should have the following canvas sizes:

 Width: 768 (px)

 Height: 1024 (px)

 Resolution: 132 (ppi)

This canvas, in accordance with the iPad 9.7-inch IPS display, uses a 132-ppi

resolution. Remember that the iPhone, with its traditional LCD 3.5 display, uses 163 ppi

on the standard display, and a 326–ppi resolution on the Retina display.

NOTE: The IPS (in-plane switching) is an LCD technology that aligns the liquid crystal cells in a

horizontal direction. In this method, the electrical field is applied through each end of the crystal,
but this requires two transistors for each pixel instead of the single transistor needed for a
standard thin-film transistor (TFT) display.

While most older LCD technologies on smartphones have a 35-degree viewing angle, the new
IPS display offers the Apple users a viewing angle of up to 180 degrees. This technology can be

found in the Apple iMac, iPad, and in the latest iPhone 4 with its Retina display.

CHAPTER 6: iPad UI Design: Think Inverted 221

The good news about working with the iPad is that you don’t have to deal with different

display resolutions like with the iPhone—at least not until the next iPad version comes

out.

Organize Levels
Your design will be deployed on several levels, so the first thing you’ll want to do is

create some folders for organizing assets and keeping the working environment clean.

As you know, the iPad and the iPhone run off of the same operating system; the iOS.

This means that the user interface elements have different widths and heights but have

the same semantic meanings, so the levels of organization of your workspace will look

exactly the same, except for an extra folder called Safari, where you will insert the Safari

user interface asset.

Based on the semantic approach, you will create the following folders:

 iOS

 Safari

 Branding Area

 Content Area

 Info Area

 Background

 Templates

CHAPTER 6: iPad UI Design: Think Inverted 222

Figure 6–15. Adobe Fireworks: A semantic structure for the assets’ folders

The last folder is the Template folder, which is used to collect a copy of certain

important assets that you can use for the critical part of your design composition.

Layout Design
Now, you will add the Rulers folder for your design composition boundaries. You will

draw four lines, but this time, working inside the Safari environment, you will not have a

bottom bar, instead, you will have the Safari URL bar.

On the sides, the boundary lines limit a 15px margin, on the top they limit a 20px for the

iOS status bar, and on the bottom the limit is 58px for the Safari URL bar. Once you’ve

added the rulers, you can add a background layer, using the Select Rectangle Tool (U).

CHAPTER 6: iPad UI Design: Think Inverted 223

Figure 6–16. Adobe Fireworks: The visible area and padding rulers

Now, you’ll draw a white rectangle, with the dimensions of 768 x 1024px, in the

Background folder. This rectangle will be the basic background color for your canvas,

and as you saw with the iPhone version, it will also activate the Align function for the

canvas objects.

Now that you’ve prepared your canvas, everything is ready to start adding the design

elements.

Interface Design
Starting at the top, you will design the primary navigation bar (PNB) and the secondary

navigation bar (SNB). You will leave 22px of margin on each canvas side, and 20px on

the top and bottom. The following elements will be added by using Select Rounded

Rectangle:

 Primary Navigation Bar

Width: 980px

Height: 36px

Gradient: Linear

CHAPTER 6: iPad UI Design: Think Inverted 224

Color: #848484, #CACACA

 Secondary Navigation Bar

Width: 980px

Height: 30px

Gradient: Linear

Color: #ECECEC, #F7F7F7

Border: 1px solid #CBCBCB

Figure 6–17. Adobe Fireworks: The primary (1) and secondary navigation bars (2)

Every single primary navigation bar button has a fixed dimension. It is as follows:

 Primary Navigation Bar Button

Width: 100px

Height: 36px

Right Border: 3px (1px + 1px + 1px)

Height: 36px

CHAPTER 6: iPad UI Design: Think Inverted 225

The right border of the primary navigation bar button is composed of 3px, and each

single pixel is defined as follows:

 PNB Right Border Left Vertical Line

Gradient: Linear

Color: #8C8C8C, #CECECE

 PNB Right Border Center Vertical Line

Gradient: Linear

Color: #727272, #B6B6B6

 PNB Right Border Right Vertical Line

Gradient: Linear

Color: #8C8C8C, #CECECE

Next, add your text by using the Select Text tool (T). The text will be defined as follows:

 Navigation Bar Text

Font: Myriad Pro, Regular, 16pt

Color: #262626

Drop Shadow: 1px solid, #FFFFFF, 270deg

 Breadcrumb Bar Text

Font: Lucida Grande, Regular, 12pt

Color: #666666

Moving down in your design, the next area to work on is the content main area. Select

the Background Level, and use the rounded rectangle tool (Select Rounded Rectangle)

to draw a rectangle in the content background. This is defined as follows:

 Content Main Area

Width: 628px

Height: 385px

Color: #FFFFFF

Border: 1px solid #CBCBCB

CHAPTER 6: iPad UI Design: Think Inverted 226

Figure 6–18. Adobe Fireworks: The content main area (3)

Below the content main area, draw another rounded rectangle (Select Rounded

Rectangle) for the spotlight area. This should be drawn as follows:

 Spotlight Area

Width: 628px

Height: 250px

Color: #FFFFFF

Border: 1px solid #CBCBCB

Below the spotlight area, draw three more rounded rectangles (Select Rounded

Rectangle) for the Staff Picks, Accessories, and Information boxes. This should be

drawn as follows:

 Staff Picks Box

Width: 628px

Height: 425px

Color: #FFFFFF

CHAPTER 6: iPad UI Design: Think Inverted 227

Border: 1px solid #CBCBCB

 Accessories Box

Width: 628px

Height: 215px

Color: #FFFFFF

Border: 1px solid #CBCBCB

 Information Box

Width: 628px

Height: 395px

Color: #FFFFFF

Border: 1px solid #CBCBCB

Figure 6–19. Adobe Fireworks: The spotlight (4) and Staff Picks area (5)

The height of each box is not very important here because it changes according to the

type of content. What is important, in order to keep the same look-and-feel of the

CHAPTER 6: iPad UI Design: Think Inverted 228

desktop version, is to be consistent with the (general) content box header. This is done

by using the following values:

 (General) Content Box Header

Width: 628px

Height: 24px

Gradient: Linear

Color: #224272, #5C6F8D

 Informational Content Box Header

Width: 628px

Height: 24px

Gradient: Linear

Color: #999999, #C2C2C2

The text used in the (general) content box header is as follows:

 (General) Content Box Header Text

Font: Lucida Grande, Regular, 12pt

Color: #FFFFFF

CHAPTER 6: iPad UI Design: Think Inverted 229

Figure 6–20. Adobe Fireworks: The side bar main header (9) and the side bar main menu (10-11)

The next step is to insert the side bar main header by using the Select Rounded

Rectangle tool. You’ll need to create a rounded rectangle with the following

qualifications:

 Side Bar Main Header

Width: 340px

Height: 80px

 Gradient: Linear

Color: #294876, #5B7396, #A9B5C8

Border: 1px solid #5E7598

NOTE: For designing a linear gradient with three colors, you will need to add one color to the two
offered by the default for Adobe Fireworks. For adding a color, just double-click on the color

stripe.

CHAPTER 6: iPad UI Design: Think Inverted 230

The text used in the side bar main header is as follows:

 (General) Content Box Header Text

Font: Myriad Pro, Regular, 30pt

Color: #FFFFFF

Drop Shadow: 1px solid, #3B4C66, 90deg

The side bar main menu is located below the side bar main header. Draw the rounded

rectangle, using the rectangle tool (Select Rounded Rectangle) as follows:

 Side Bar Main Menu

Width: 340px

Height: 165px

Color: #FFFFFF

Border: 1px solid #CBCBCB

The text used in the side bar main menu is as follows:

 Side Bar Main Menu Text Right Column

Font: Myriad Pro, Regular, 20pt

Color: #333333

 Side Bar Main Menu Text Right Column

Font: Myriad Pro, Regular, 16pt

Color: #333333

CHAPTER 6: iPad UI Design: Think Inverted 231

Figure 6–21. Adobe Fireworks: The side bar content list (14)

The bottom part of the side bar is composed of three more boxes: the New to the Store,

the Popular Accessories, and the Top Sellers boxes. Every box is composed of three

parts (except for the New to the Store box, which is composed of two parts), identified

as follows:

 Side Bar Box Header

Gradient: Linear

Color: #224272, #5C6F8D

Font: Myriad Pro, Regular, 18pt, #FFFFFF

 Side Bar Sub Title Row

Color: #EFEFEF

Border: 1px solid #CBCBCB

Font: Myriad Pro, Regular, 16pt

Icon: Circle, 16px

CHAPTER 6: iPad UI Design: Think Inverted 232

 Side Bar Content List

Color: #FFFFFF

Border: 1px solid #CBCBCB

Font: Myriad Light, Regular, 16pt

The last element of your design is the information area. This area is not wrapped inside a

box and shows some general information concerning the following text:

 Site Information Area Text

Font: Myriad Pro, Regular, 12pt

Color: #999999

 Site Information Area Link

Font: Myriad Pro, Regular, 12pt

Color: #0085CF

Figure 6–22. Adobe Fireworks: The Information box (7) and the site information area (8)

The design composition is complete when your compatible version is complete. Once

everything is complete, you are ready to start to work on your native-like version.

CHAPTER 6: iPad UI Design: Think Inverted 233

iPad Native-Like Version
The canvas values and the workspace organization are the same as the ones you saw

for the compatible version. Nothing will change in your design composition setup. What

will change is the canvas dimension, because you will have to switch from a portrait

orientation to a landscape orientation.

Create a Canvas
Once you’ve opened Adobe Fireworks, you’ll need to create a new document, using File

 New (N).

Figure 6–23. Adobe Fireworks: Create a new document

Your document should have the following canvas sizes:

 Width: 1024px

 Height: 960px

 Resolution: 132ppi

Gray Box Design
The gray box design will represent your paper sketch-up, and will be the foundation for

your design composition. This is another approach to the design phase. The final goal is

a design composition for both approaches; every approach is subjective, and it’s up to

you (or your team) to choose the one to use.

Figure 6–24 shows you that you are reserving 78px in your composition of the browser

window, and also shows you how to use the rectangle tool (Select Rectangle Tool (U)) to

design the side bar header and content header. The side bar header and the content

header should meet the following qualifications:

 Side Bar Header

Width: 300px

Height: 44px

CHAPTER 6: iPad UI Design: Think Inverted 234

Color: #999999

Text: Helvetica, Bold, 20pt

Text Shadow: 1px solid, #333333, 270deg

 Content Main Header

Width: 724px (723px Content + 1px Left Border)

Height: 44px

Color: #999999

Text: Helvetica, Bold, 20pt

Text Shadow: 1px solid, #333333, 270deg

Figure 6–24. Adobe Fireworks: The side bar and content main header

Two areas of your design have now been allocated, so you can start to use the side bar

to add elements. Using the rectangle tool (Select Rectangle Tool (U)), add nine entries

from Menu elements and two menu titles that adhere to the following requirements:

CHAPTER 6: iPad UI Design: Think Inverted 235

 Menu Entry

Width: 300px

Height: 44px

Color: #999999

Bottom Border: 1px solid, #ADADAD (Last Element #666666)

 Menu Title

Width: 300px

Height: 26px

Color: #999999

Top Border: 1px solid, #CCCCCC

Bottom Border: 1px solid, #666666

Text: Helvetica, Bold, 18pt

Text Shadow: 1px solid, #333333, 270deg

Figure 6–25. Adobe Fireworks: The side bar menu elements and titles

CHAPTER 6: iPad UI Design: Think Inverted 236

The side bar is now finished, and you can now jump to the content main area in the other

column. Using the rounded rectangle tool (Select Rounded Rectangle), design the Hero

box, the Products box, and the Site Information box, so that they look like the following:

 Hero Box

Width: 644px

Height: 237px

Border: 1px solid, #666666

 Products Box

Width: 644px

Height: 402px

Border: 1px solid, #666666

 Site Information Box

Width: 644px

Height: 62px

Border: 1px solid, #666666

Figure 6–26. Adobe Fireworks: The Hero box and the Products box

CHAPTER 6: iPad UI Design: Think Inverted 237

Figure 6–27 illustrates the final gray box that you will use as a foundation for your design

composition. Since the structure was already made in the design phase, you will just

need to change the element colors, and add texts, icons, and images.

Figure 6–27. Adobe Fireworks: The gray box design dimensions

The next step is starting the design composition by organizing the workspace and

creating the folders for your assets.

Organize Levels
The workspace will use the same folders, levels, and hierarchy. Based on a semantic

approach, you will create the following folders:

 iOS

 Safari

 Branding Area

 Content Area

 Info Area

 Background

 Templates

CHAPTER 6: iPad UI Design: Think Inverted 238

Figure 6–28. Adobe Fireworks: A semantic structure for the assets’ folders

Layout Design
Now that the gray box is ready, you can add another folder, called Rulers, to your design

composition boundaries. Select this folder (layer), and draw four red lines using the line

tool (Select Line Tool (N)). The three lines will set the browser window boundary and the

20px padding boundary for the content main area.

CHAPTER 6: iPad UI Design: Think Inverted 239

Figure 6–29. Adobe Fireworks: The gray box design with the rulers

Due to the gray box design, your work will now be easier. You will no longer need to

design any other elements but just change its color. Starting from the side bar, you will

change the element colors to the following:

 Side Bar Area

 Background: #FFFFFF

 Side Bar Header (Store Menu)

 Gradient: Linear

 Color: #294876, #F4F5F7

 Menu Title (Change Store, Get Support)

 Border Top: 1px solid, #CCCCCC

 Border Bottom: 1px solid, #666666

 Menu Entry (Generic Menu Element)

 Color: #FFFFFF

 Border Top: 1px solid, #F0F0F0

CHAPTER 6: iPad UI Design: Think Inverted 240

 Border Bottom: 1px solid, #D1D1D1 (last entry #666666)

Figure 6–30. Adobe Fireworks: The colored design without the contents

Continuing with the content side, you will change the element colors to the following:

 Content Area

Background: #E1E6EB

 Content Box (Hero Box, Products Box, Site Information Box)

Color: #F7F7F7

Border: 1px solid, #828282

Everything is now ready for the content. In the side bar, start to add the text entry and

an icon to its left side, as follows:

 Menu Entry Icon & Text

Width: “variable following the icon design”

Height: 34px

Text: Helvetica, Bold, 16pt

CHAPTER 6: iPad UI Design: Think Inverted 241

The side bar is complete, so now you can jump to the content main area, and add the

following text in the three boxes

 Hero Box

Title Text: Helvetica, Bold, 50pt, #000000

SubTitle Text: Helvetica, Bold, 20pt, #000000

 Products Box

Description Text: Lucida Grande, Bold, 11pt, #000000

Price Text: Lucida Grande, Bold, 11pt, #666666

 Site Information Box

Text: Lucida Grande, Bold, 10pt, #999999

Link: Lucida Grande, Bold, 10pt, #0085CF

 Footer Apple Logo

Width: “variable following the icon design”

Height: 20px

Figure 6–31. Adobe Fireworks: The final native-like design composition

CHAPTER 6: iPad UI Design: Think Inverted 242

Apart from the dimensions of the menu icons that are a part of the layout structure, the

image dimensions are related to the content’s meaning and can be changed without

affecting the global structure. This is the main reason why these design element

dimensions weren’t reported.

The design compositions are complete. You have everything necessary to advance to

the next big step of your project flow; the implementation phase. In Chapter 7, you will

start introducing the three languages that are used in this book: HTML, CSS3, and

JavaScript.

Tools for User Interface Design
The tools used (and not used but suggested) in this chapter are both physical tools and

applications. Table 6–1 lists some of the useful tools for designing your next user

interface.

Table 6–1. Tools Used for Designing iPhone and iPad User Interfaces

 Name Type URL Operative system

UI Stencil Tool www.uistencils.com/ - - -

OmniGraffle Pro Application www.balsamiq.com/ OSX - iOS

Adobe Design Suite Application
www.adobe.com/products/creati

vesuite/design/
OSX – WIN - LINUX

Gimp Application www.gimp.org/ OSX – WIN - LINUX

Summary
In the first part of this chapter, you analyzed the interface design process, and presented

the anatomy of sketching and the “think simple” paradigm. The iPhone’s limitations, the

iPhone’s page model, and how cognitive resources influence your design style were all

discussed. How all three of these elements are the foundation of the “think simple”

design paradigm was also discussed.

In the second part of this chapter, the Balsamiq Mockups tool was used to improve the

basic sketch made with pen and paper. The content, an interface connection, and the

first visual representation of the concept design were all created.

In the third part of this chapter, Adobe Fireworks was used to design a user interface.

This process was approached step-by-step, from the creation of a new canvas to the

interface design. At the end of the process, design reuse for creating two more views or

pages from the presented home page was introduced, and a visual representation of the

interface-content relationship as a deliverable for the implementation phase was also

introduced.

http://www.uistencils.com/
http://www.balsamiq.com/
http://www.adobe.com/products/creati
http://www.gimp.org/

243

 Chapter

Web Standards for
WebKit: Maximizing
Mobile Safari

”It’s not just what it looks like and feels like..
Design is how it works.”

—Steve Jobs

In this rather long chapter, we talk about web standards from a mobile Safari point of
view. In the first part, we introduce HTML5, its markup syntax, its new tags, and how it
has redefined some tags from HTML4. We discuss the semantics of HTML5 and the
<video> and <audio> tags. We also introduce the <canvas> tag, and at the end of this
section, we show a live example of a slideshow implemented in the “Store” use case.

In the second part, we look at CSS Level3, its new properties, and its syntax. We
enumerate all of the values that can be used with these new properties.

In the last part of the chapter, we discuss Javascript’s fundamentals: its syntax,
statements, functions, and methods. We also look at the Browser Object Model (BOM)
and the Document Object Model (DOM), and we show how you can use these to change
a webpage dynamically.

NOTE: This chapter covers the basics of each technology area, so if you are confident in HTML5,
CSS3, and Javascript, feel free to skip to the next chapter, or to the relevant section in this

chapter, for a refresher on those areas in which you are rusty.

7

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 244

Comparing iPhone and iPad for Web Presentation
As discussed previously, the iPhone and iPad are two different devices. One common
denominator between these two devices is their HTML5 semantic structure.

What is different in these two devices is how they present the content represented in our
projects by two different CSS3 style sheets and Javascript behavior. The iPhone is
based on a Page Model Paradigm, whereas the iPad is based on a Block Model
Paradigm, or a Multiple Page Model Paradigm.

In this chapter, we look at how the web standards play a common role behind these
differences and how to use them to develop better web sites and web applications.

HTML5
The physicist Tim Berners-Lee developed the Hypertext Markup Language (HTML) in
1989 while he was working at Organisation Européenne pour la Recherche Nucléaire
(CERN).

In 1991, HTML was mentioned publicly for the first time and in 1995, it reached the 2.0
version. HTML passed through the 3.2 and 4.0 versions in 1997 and reached the well
known 4.0.1 version in 1999. Work on HTML5 started in 2004 and will reach the status
of “proposed recommendation” version, which is scheduled for 2022.

The 2022 date might sound too far away for designers and developers, but we can focus
ourselves on what we can do with this language today. In 2012, HTML5 will reach the
status of candidate recommendation, which means that some of the most interesting
features such as audio, video, and canvas tags, web workers, geolocation, application
caches, and the HTML5 semantic tags are currently available and can be used.

We introduce application caches in Chapter 10, but the following sections introduce the
foundation of this new web standard.

HTML5 Markup Syntax
A markup language is designed for the processing, definition, and presentation of text;
the codes used to specify the formatting are called tags. HTML5 defines an HTML
markup syntax that is compatible with HTML4 and XHTML1; most of HTML4.0.1 has
survived in HTML5.

HTML5 is designed to be the successor to HTML4 and aims to improve interoperability
and reduce development costs by making precise rules on how to handle all HTML
elements, and for the first time for a markup language, on how to recover from errors.
Error handling is not as important for web designers and web developers as it is for
browser makers and testers.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 245

Those who have used XHTML know that XHTML forced us to use XML syntax, with
quotes on all the attributes, closed tags, and lowercase code. Everything is valid code in
HTML5: uppercase, lowercase, quotes, no quotes, self-closing tags or not, and so on.
This attitude brings us back to the late ’90s where, before XHTML 1.0, this non-rule
produced the worst HTML code ever seen since Berners-Lee turned on his first server in
1989.

As you might understand, we don’t like the looseness of the HTML5 syntax and
encourage bringing an XHTML-like clean style to HTML5—even more if you work in a
team where consistency is important at every level.

A new approach in HTML5 embraces the deprecated element. In past HTML versions,
the designer or developer was advised to not use deprecated elements in code and
browsers didn’t include deprecated elements in their specifications. Because HTML5
aims to be backwards compatible instead of declaring an element as deprecated and

deleting it from its specification, it declares it as obsolete maintaining the rendering
element rules in its specification. We can define this type of approach as user-friendly or
user experience oriented because, from HTML5 on, if an HTML5 compatible browser
encounters an obsolete element, it will still be able to render it and offer a higher level of
user experience.

We can also notice how in many areas the new HTML5 syntax is simplicity driven The
doctype declaration is a good example of this attitude. We compare the iWebKit
Framework 5.0.4 XHTML and the new HTML5 doctype declaration in the following code:

<!-- XHTML DocType -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- HTML5 DocType -->
<!DOCTYPE html>

We can see how the new doctype declaration is simpler. This approach also simplifies
the character encoding declaration where the charset attribute is the only attribute
necessary to specify UTF-8 encoding. The next example shows the new HTML5
character encoding declaration syntax compared with the old (and still allowed)
HTML4.0.1 used for the iWebKit Framework 5.0.4.

<!-- XHTML DocType -->
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<!-- HTML5 DocType -->
<meta charset=”UTF-8”>

This evolution also brings about a change in the syntax of the most representative tag in
the whole HTML history—the one that turned our text into hypertext: the <a> tag. The
(X)HTML specifics implement the <a> tag as an inline element, forcing us to use multiple
tags every time we need to create a headline. In HTML5 the <a> tag is still an inline tag

with the difference that in HTML5, nesting block level elements are no longer invalid.

The following code is an example of the <a> tag in (X)HTML and in HTML5.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 246

<!-- (X)HTML <a> Tag -->
<h2>Portfolio</h2>
<p>Find out more about my last Book.</p>

<!-- HTML5 <a> Tag -->

<h2>Portfolio</h2>
<p>Find out more about my last Book.</p>

As you might have noticed, HTML5 is more evolutionary rather than revolutionary, and it
does not dramatically change the story of markup.

HTML5 Re-Definitions
Although many HTML4 elements have been brought into HTML5 essentially unchanged,
several historically presentational ones have been given semantic meanings (Figure 7–1).
The WC3's HTML5 recommendation redefines the elements shown in Table 7–1.

Table 7–1. Video Tags Attributes in HTML5 (Ordered Alphabetically)

 Tag HTML4 Definition HTML5 Definition

<i> Italic Span of text offset from its surrounding content without
conveying any extra emphasis or importance, and for
which the conventional typographic presentation is italic
text

 Bold Span of text offset from its surrounding content without
conveying any extra emphasis or importance, and for
which the conventional typographic presentation is bold
text

 Emphasis Span of text with emphatic stress

 Strong emphasis Span of text with strong importance

HTML5 Semantics
Besides the few new syntax rules introduced so far, the most notable feature embraces
the tag’s semantic. HTML5 has a natural semantic-oriented attitude and enables
developers to create cross-platform design through expressing the content more
semantically. To achieve this, HTML5 introduces some new tags, such as <header>,
<nav>, <section>, <aside>, and <footer>, to structure our web site or web application
and render the content more machine-readable and therefore make it easier for the
mobile browser and search engine to treat content properly.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 247

Figure 7–1. HTML4 and HTML5 comparison in two simple iPhone page structures

HTML5 also introduces a few new inline elements such as <mark>, <time>, <meter>, and
<progress> that with the previous elements (such as , , , and so on)
are renamed from “inline” to “text-level semantics.” In Table 7–2, we alphabetically list
all the new tags in HTML5. These tags are added to the previous, supported, and non-
deprecated tags from (X)HTML specifics. Some of the new media tags are introduced in
the next section.

Table 7–2. New Tags in HTML5 (Ordered Alphabetically)

 HTML5 STRUCTURE TAGS

 Name Description

<article> Defines an article

<aside> Defines content aside from the page content

<command> Defines a command button

<datalist> Defines a drop-down list

<details> Defines details of an element

<figcaption> Defines the caption of a figure element

<figure> Defines a group of media content, and its captions

<footer> Defines a footer for a section or page

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 248

 Name Description

<header> Defines a header for a section or page

<hgroup> Defines information about a section in a document

<keygen> Defines a generated key in a form

<mark> Defines marked text

<meter> Defines measurement within a predefined range

<nav> Defines navigation links

<output> Defines some types of output

<progress> Defines progress of a task of any kind

<rp>
Used in Ruby annotation for the benefit of browsers that don’t support Ruby
annotation

<rt> Defines explanation to ruby annotation

<ruby> Defines ruby annotation

<section> Defines a section

<summary> Defines the header of a “detail” element

<time> Defines a date/time

 HTML5 MEDIA TAGS

 Name Description

<audio> Defines audio content

<canvas> Defines graphics

<embed> Defines external interactive content or plug-in

<source> Defines a media resource

<video> Defines a video

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 249

HTML5 Media
Web standards such as XHTML, CSS, and Javascript provide us everything we need to
publish text and images and they add interaction to our projects. The problem comes
when we are working with audio and video. In order to insert audio and video contents,
we used to rely on external plug-ins like Adobe Flash. HTML5 fills this gap by
introducing new tags to embed audio and video without requiring external plug-ins.

The Video Tag
The new <video> tag is by far the most famous tag in the HTML5 list, because of the
well-known controversy between Apple and Adobe about Flash technology support. It
enables us to play a video in our web site or web application directly in the browser. This
feature is valid only for the desktop browser. In an iPhone or iPad environment, the
video is not a real embedded video because it doesn’t play directly in the browser.

iOS always launches the built-in media player, which occupies the full screen where the
user can use the Done button to return to the web site or web application. The <video>
tag structure used for the TV Ads page of our “The Store” use-case is the following:

… … …

<div id="heroTvads">

 <video width="100%" height="148" src="videos/iphone_facetime.mp4" controls
poster="pics/poster-facetime.jpg"></video>
</div>

… … …

The controls attribute tells the browser whether it has to show the video controls, and
the poster attribute is an image used as a placeholder for the video. Not only is it a good
practice to always add the control attribute to the <video> tag, it must be remembered
that Safari Mobile ignores the control attribute. Controls are always visible, and the
true/false attribute is not required (even on Safari Desktop). Another important behavior
to remember about the <video> tag is that the autoplay attribute is ignored by Safari on
iOS.

The <video> tag can be styled through CSS like every other HTML5 element. In the
example we use only four attributes but this new tag has many other attributes that help
us to offer a more rich experience to our user. In Table 7–3 we show each <video>
attribute with its related description.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 250

Table 7–3. Video Tag Attributes in HTML5 (Ordered Alphabetically)

 Attribute Value Description

audio muted Defines the default state of the audio

autoplay (*) true | false Boolean value for automatically play the file

controls (*) true | false Boolean value for display the audio controls

end
numeric value Defines the endpoint of a video (if it’s not defined, the

video plays to the end)

height pixels Defines the height of the video player

loop true | false Boolean value for repeatedly play the file

loopend numeric value Defines the ending point of a loop

loopstart numeric value Defines the starting point of a loop

playcount
numeric value Defines the number of times a video clip is played

(default value is set to 1)

poster
src Defines the URL of a “poster image” to show before the

video begins to play

preload true | false Boolean value for load the video when the page loads

src url Defines the URL of the video file

start
numeric value Defines the startpoint of a video (if it’s not defined, the

video starts from the beginning)

width pixels Defines the width of the video player

(*) ignored by Safari Mobile on iOS

Table 7–4 shows the video formats supported by iOS.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 251

Table 7–4. Video Formats Supported by iOS

 Video Format Profile

H.264 Up to 720p, 30 fps

MPEG-4 Up to 2.5 Mbps, 640x480 px

M-JPG Up to 35 Mbps, 1280x720 px

The Audio Tag
The <audio> tag is the other important media tag introduced in HTML5. It enables us to
play audio files with a native audio playback within the browser. The <audio> tag works
in the same way as the <video> tag, although its attributes are a subset of the <video>
tag. The <audio> tag has the following structure:

<audio src="audioName.mp3" controls autobuffer></audio>

In this example we use one attribute to show the audio control to the user and one
attribute to buffer the audio file in advance. Like some of the <video> attributes, these
are Boolean attributes that don’t have a value to specify as shown in the following
example:

// (X)HTML5 syntax
<audio src="audioName.mp3" controls=”true” autobuffer=”true”></audio>
// HTML5 syntax
<audio src="audioName.mp3" controls autobuffer></audio>

If you prefer an XML-like syntax, you can specify the attribute value but it isn’t
necessary. All of the attributes defined for the <audio> tag are reported in Table 7–5.

Table 7–5. Audio Tag Attributes in HTML5 (Ordered Alphabetically)

 Attribute Description

autobuffer Boolean value to buffer the file in advance

autoplay Boolean value to automatically play the file

controls Boolean value to display the audio controls

loop Boolean value to repeatedly play the file

loopend Defines the ending point of a loop

loopstart Defines the starting point of a loop

playcount Boolean value to load the video when the page loads

src Defines the URL of the audio file

start
Defines the startpoint of a video (if it’s not defined, the video
starts from the beginning)

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 252

Table 7.6 shows the audio formats supported by iOS.

Table 7–6. Audio Format Supported by iOS

 Audio Format Profile

AAC 8-320 Kbps

HE-ACC 8-320 Kbps

MP3 8-320 Kbps

MP3 VBR - - -

Audible - - -

Audible Enhanced Audio - - -

AAX, AAX+ - - -

Apple Lossless - - -

AIFF - - -

WAV - - -

The Canvas Tag
The <audio> and <video> tags are two of the most important tags in the evolution of
HTML5, and we use these tags often in our Web Site or Web application. The <canvas>
tag represents a huge step forward in graphic capabilities for the web, as it enables Web
developers to build many of the same events and effects that native applications have
had for years. In spite of the downside of a GPU overhead, we can use dynamic images
to save bandwidth and reduce image loading latency.

HTML Canvas vs. SVG Pixels vs. Vectors
HTML5 Canvas and Scalable Vector Graphics (SVG) are both web technologies that
enable us to create rich graphics in the browser, but they are fundamentally different
from each other.

The HTML5 Canvas specification is a Javascript API that enables us to code
programmatic drawing operations. Canvas, by itself, enables a web developer to define
a canvas context object, which can then be drawn. We can also insert images (for
example, .png or .jpg) and anything else the browser is capable of loading.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 253

To do the actual drawing, you have two options:

 2D drawing context

 3D drawing context

On the other hand, SVG is an XML-based vector graphics format. SVG content can be
static or it can be dynamic, interactive, and animated. With SVG, we can do more than
simple vector graphics and animations; we can develop highly interactive WebApps with
scripting, advanced animation events, and filters.

SVG is still in the process of being optimized for even closer integration with HTML and
CSS in the browser. SVG 1.1 is a W3C Recommendation and is, at the time of this
writing, the most recent version of the full specification. Besides SVG 1.1, we have SVG
Tiny 1.2 (www.w3.org/TR/SVGTiny12/), which is also a W3C Recommendation that
targets mobile devices. We can follow the SVG roadmap at
www.w3.org/Graphics/SVG/WG/wiki/Roadmap.

The HTML Canvas and SVG also represent a good alternative to Adobe Flash on iOS
devices. For this reason, we hope that the future web, based on open HTML5 standards,
will fully accommodate SVG.

HTML Canvas and SVG Comparison
At first glance, Canvas and SVG appear to be different techniques that achieve the same
thing; however, several important differences exist between the two. Table 7–7 shows
some of these.

Table 7–7. Differences between HTML Canvas and SVG

 HTML Canvas SVG

Drawing is done with pixels Drawing is done with vectors

Elements are drawn programmatically Elements are part of page’s DOM

High performance for pixel-based operations
High accessibility because of XML syntax
foundation

Animation is not built in Animation and effects are built-in

HTML Canvas and SVG are not mutually exclusive, and we can find good ways to use
them together in the same web page (for example, canvas as background with SVG on
top); we can draw SVG on a canvas or vice versa. Here’s a list of some of the
advantages and disadvantages of HTML Canvas and SVG.

http://www.w3.org/TR/SVGTiny12/
http://www.w3.org/Graphics/SVG/WG/wiki/Roadmap

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 254

HTML Canvas

Advantages

 High 2D drawing performance

 Constant performance level on fixed canvas dimensions

 Option of saving the resulting images as png or jpg

Disadvantages

 No DOM nodes for drawn elements

 No animation API

 Poor text-rendering capabilities

SVG (Scalable Vector Graphics)

Advantages

 Resolution independent

 Built-in animation support

 Full control of each element using SVG DOM API

Disadvantages

 Introduce (DOM) rendering latency

In terms of practice implementations the bottom line is that, other than in an HTML
Canvas+SVG approach (as in game applications where we can render raster graphics
dynamically using canvas and animate them with SVG), HTML Canvas should be used
to generate raster graphics. SVG, on the other hand, should be used for resolution-
independent user interfaces and highly interactive animations.

The Canvas Element
The HTML Canvas element provides web pages with a place (a canvas) where using

Javascript code a Web developer can draw free-form graphics of all kinds, such as
lines, shapes, images, and even texts on-the-fly. The downside is that once we draw
something in the <canvas>, they become part of the page’s DOM and the Javascript
engine forgets them.

A web page can have more than one <canvas>, and these can overlap and be used
beside other standards like SVG. When we draw an object in the <canvas>, the
coordinate system starts at the upper left, with increasing value of x going from left to
right and increasing value of y from top to bottom, as shown in Figure 7–2.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 255

Figure 7–2. The starting Canvas coordinate system and background color

The following code shows the basic canvas syntax and attributes:

<canvas id="heroCanvas width="460" height="300">
 Fallback Content
</audio>

The <canvas> tag typically has an ID attribute because Javascript uses it to access the
drawing area. The default <canvas> dimensions are 300x150, but we can set them using
width and height attributes in the tag.

If the user has disabled the Javascript engine and the browser doesn’t understand what
the <canvas> tag is, the Fallback Content will be displayed. In this particular case even

the width and height attributes are ignored; to avoid this problem we can set width and
height using CSS in order to keep the design behavior unchanged.

#canvasHero
{
 display: inline-block; // only on non-floated element
 height: 300px;
 width: 460px;
}

Table 7–8. The HTML Canvas Basic Attributes and Methods

 Attribute Description

width Width in pixels of the canvas

height Height in pixels of the canvas

 Methods Description

toDataURL(type) Convert the content into static image

getContext(ctxID) Get the drawing context

The toDataURL() method in Table 7–8 converts the content of the image into a static
image, typically .png. In the HTML Canvas specifications, only image/.png support is
mandatory but other formats can be supported.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 256

The getContext() method in Table 7–8 retrieves the drawing context for the canvas.
This context contains information about the canvas and provides all the drawing
methods for that particular context.

<html>
<head>
 <title>Canvas Test</title>
 <style type="text/css">
 #canvasTest01 {
 border: solid 2px black;
 background-color: #CCC;
 }
 </style>
</head>
<body>

 <h1>Canvas Example 01</h1>
<canvas id="canvasTest01" width="300" height="200">
 Please Enable Javascript Engine
</canvas>
</body>
</html>

Figure 7–3. The HTML 2D API in action: drawing a basic shape using Canvas and CSS

Basic Shapes and Lines
In the first example shown in Figure 7–3, we see how to draw the canvas using CSS.
Now let’s move to the next level and see how we can use Javascript to affect the way
the canvas looks in the browser. Drawing on a <canvas> requires the following steps:

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 257

1. Retrieve a reference to Canvas element.

2. Get the drawing context from the element using getContext().

3. If the getContext returned result is not null we can use the drawing API.

An example of this approach is the following example:

<canvas id="canvasTest" width="300" height="200">
 Please Enable Javascript Engine
</canvas>
 function drawOnCanvas() {
 var ctxElement = document.getElementById(“canvasTest”);
 var ctx = ctxElement.getContext("2d");
 if (ctx != null) {
 // we can draw using Canvas 2D API
 }
}

We define a function and in the body function we retrieve the reference to the canvas
that we stored in the variable ctxElement, and then we make a request for the 2D API. If
the result of the test is not null, we can draw using the 2D API.

The 2D Canvas API provides several methods and is broken up into three groups as
shown in Figure 7–4.

Figure 7–4. The HTML 2D API divided into three groups

In the next example, we see how to fill the rectangle using a method from the 2D API.
First we get a reference for the canvas element using the getElementById method, and

we make a request for the 2D API exactly as in the previous example. Then we fill the
rectangle using the fillStyle and fillRect methods. Rectangles are the only primitive
shape supported by canvas. This differs from SVG, which also supports the ellipse as a
primitive shape. In Table 7–9 we can see the three basic methods that operate on
rectangles.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 258

Table 7–9. The HTML Canvas Rectangle Methods

 Method Description

fillRect(x,y,w,h) Fills the rectangle with the current fillStyle

strokeRect(x,y,w,h) Outlines the rectangle with the current strokeStyle

clearRect(x,y,w,h) Erases the rectangle, making the area transparent

(x,y) are the starting points from the upper-left corner of the rectangle

(w,h) are the width and height of the rectangle

The fillStyle method sets the color of the style to be applied to the rectangle and
the fillRect sets the starting and the ending coordinates for the operation. The
ending coordinates are retrieved from the width and height <canvas> attributes value.
In Figure 7–5 we can see the final result.

Figure 7–5. The HTML 2D API in action: drawing a basic shape using Canvas and Methods

The following full code is from our current example.

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest02');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 259

 ctx.fillStyle = "#F00";
 ctx.fillRect(0,0, ctx.canvas.width,
ctx.canvas.height);
 }
 }
 </script>
</head>
<body>

 <h1>Canvas Example 02</h1>
 <canvas id="canvasTest02" width="400" height="300">Please Enable Javascript
Engine</canvas>
</body>
</html>

In the next example we can see how to draw two shapes—one filled with a color as we
did previously and one with a stroke. We also see how to use the clearRect(x,y,w,h)
method over the two drawn shapes. In Figure 7–6 we can see the final result.

Figure 7–6. The HTML 2D API in action: drawing and clearing shapes

Let’s look at the following code from our drawing and clearing shapes example shown in
Figure 7–6.

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest03');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 ctx.strokeStyle = "#F00";
 ctx.lineWidth = 10;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 260

 ctx.strokeRect(25,25,280,250);

 ctx.fillStyle = "#333";
 ctx.fillRect(320, 25, 280, 250);

 ctx.clearRect(15, 100, 500, 100);
 }
 }
 </script>
</head>
<body>

 <h1>Canvas Example 03</h1>
 <canvas id="canvasTest03" width="600" height="300">Please Enable Javascript
Engine</canvas>
</body>
</html>

Lines are somewhat different from shapes. Lines can be created using a variety of
settings that determine how they join together and how they end. In Table 7–10 we can
see the methods that operate on lines.

Table 7–10. The HTML Canvas Line Methods

 Method Description

beginPath() Begins a new set of path-drawing operations

moveTo(x,y) Moves (without drawing) the pen to the given coordinates

lineTo(x,y) Draws a line from the current position to the given coordinates

lineWidth Sets the pixel width of the line

lineCap Sets how lines end: butt (default), round, and square

lineJoin Sets how lines join together: miter (default), round, and bevel

miterLimit Sets the limit at which line joins are cut off

Stroke() Collects all of the current path commands and draws them

In the following example, we see how to draw a line and how the threelineCap method’s
attributes work. As shown in Figure 7–7, by using the three attributes we can achieve
three different effects.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 261

Figure 7–7. The HTML 2D API in action: lineCap method

The following code is from the lineCap method example shown in Figure 7–7.

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest04');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 ctx.strokeStyle="#F00";
 ctx.lineWidth=10;

 ctx.beginPath();
 ctx.moveTo(50,10);
 ctx.lineTo(50,390);
 ctx.moveTo(450,10);
 ctx.lineTo(450,390);
 ctx.stroke();

 ctx.lineWidth = 80;
 ctx.strokeStyle="#000";

 ctx.lineCap="butt";
 ctx.beginPath();
 ctx.moveTo(50,50);
 ctx.lineTo(450,50);
 ctx.stroke();

 ctx.lineCap="round";
 ctx.beginPath();

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 262

 ctx.moveTo(50,200);
 ctx.lineTo(450,200);
 ctx.stroke();

 ctx.lineCap="square";
 ctx.beginPath();
 ctx.moveTo(50,350);
 ctx.lineTo(450,350);
 ctx.stroke();
 }
 }
 </script>
</head>
<body>

 <h1>Canvas Example 04</h1>
 <canvas id="canvasTest04" width="600" height="600">Please Enable Javascript
Engine</canvas>
</body>
</html>

We use a red line to show how the lineCap method works; in this way we can see from
which point the end of the line is modified. In the next section, we see how to draw
complex shapes.

Complex Shapes
We have seen how to draw simple shapes and now we draw some shapes with more
complexity, such as paths. A path is a set of points, like a straight line is a set of points
in mathematics.

A path can be either open or closed; a closed path always has an end point that is the
same as the start point. A context can have one and only one current path. In Table 7–
11 we can see the methods that operate on a type of path called an arc. Arcs are
curves that are a portion of a circle; a circle is considered a 360-degree arc.

Table 7–11. The HTML Canvas Arc Methods

 Method Description

beginPath() Begins a new set of path-drawing operations.

arc(x,y,r,sA,eA,aC)
Adds an arc to the current path. The arc starts at x,y with a
radious of r, a starting angle of sA and an ending angle of eA.
The aC argument is false if the arc is clockwise.

arcTo(x1,y1,x2,y2,r)
Adds an arc to the current path that starts at the current pen
position. The arc has a radious of r.

closePath() Closes the current drawing path.

Note: Angles are in radians.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 263

In Figure 7–8 we can see a simple path drawn using arcs.

Figure 7–8. The HTML 2D API in action: drawing using arcs

The following code is an example shown in Figure 7–8.

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest06');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 ctx.strokeStyle = "#C00";
 ctx.fillStyle = "#CCC";
 ctx.lineWidth = 5;

 ctx.beginPath();
 ctx.arc(75,75,50,0, Math.PI*2, true);

 ctx.moveTo(110,75);
 ctx.arc(75,75,35,0, Math.PI, false);

 ctx.moveTo(65,65);
 ctx.arc(60,65,5,0, Math.PI*2, true);

 ctx.moveTo(95,65);
 ctx.arc(90,65,5,0, Math.PI*2, true);

 ctx.stroke();

}

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 264

 }
 </script>
</head>
<body>

 <h1>Canvas Example 06</h1>
 <canvas id="canvasTest06" width="800" height="600">Please Enable Javascript
Engine</canvas>
</body>
</html>

Arcs are not the only paths we can draw using the Canvas 2D API. Canvas also lets us
draw Bezier and quadratic curves. Bezier curves are drawn from a start point to an end
point using two control points to determinate the curve. Quadratic curves are like Bezier
curves but they use only one control point to determine the curve. This means that
Bezier curves using two control points can draw curves of more complexity compared to
quadratic curves.

Figure 7–9. The HTML 2D API in action: Canvas curves implementation

In Figure 7–9 we can see the difference between a Bezier curve with two control points
and a quadratic curve with only one control point. In Table 7–12 we can see the
methods that operate on Bezier and quadratic curves.

Table 7–12. The HTML Canvas Curve Methods

 Method Description

beginPath() Begins a new set of path-drawing operations

bezierCurveTo(cx1,cy1,cx2,cy2,end1,end2) Draws a Bezier curve from the current pen
position using the two control points cx1,cy1
and cx2,cy2 and ending at the point end1,end2

quadraticCurveTo(cx,cy,x,y) Draws a quadratic curve from the current pen
position using the control point cx,cy and
ending at the point x,y

closePath() Closes the current drawing path

Note: Angles are in radians.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 265

In Figure 7–10, we can see how to draw a simple golf club using quadratic curves.

Figure 7–10. The HTML 2D API in action: drawing using quadratic curves

The following code is the example shown in Figure 7–10.

<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest06');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 ctx.strokeStyle = "#C00";
 ctx.fillStyle = "#CCC";
 ctx.lineWidth = 5;

 ctx.beginPath();
 ctx.moveTo(75,25);
 ctx.quadraticCurveTo(25,25,25,62.5);
 ctx.quadraticCurveTo(25,100,30,100);
 ctx.quadraticCurveTo(50,120,130,125);
 ctx.quadraticCurveTo(140,1000,160,100);
 ctx.quadraticCurveTo(100,60,120,40);
 ctx.quadraticCurveTo(125,25,75,25);

 ctx.stroke();

}
 }
 </script>
</head>
<body>

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 266

 <h1>Canvas Example 06</h1>
 <canvas id="canvasTest06" width="800" height="600">Please Enable Javascript
Engine</canvas>
</body>
</html>

Using Clipping Paths
In the previous section we saw examples of paths. Now we see how to use a path to
define a mask that defines a region where a drawing takes place, and outside of that
space, where a drawing has no effect. By default the clipping path is defined by the

entire canvas. In Table 7–13 we can see the methods used to work with a clipping path.

Table 7–13. The HTML Canvas Clipping Methods

 Method Description

clip() Create a clipping region defined on the current path

drawImage Insert the clipped image in the canvas

In the following example we use an arc to define a 360-degree circle mask. The code
for this example is shown in the following:

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {
 var ctxElement = document.getElementById('canvasTest07');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 var img = document.getElementById("spartan");

 ctx.arc(ctx.canvas.width/2, ctx.canvas.height/2,
150,0,2*Math.PI);
 ctx.clip();

 ctx.drawImage(img,0,0);

}
 }
 </script>
</head>
<body>

 <h1>Canvas Example 07</h1>
 <canvas id="canvasTest07" width="800" height="200">Please Enable Javascript
Engine</canvas>

</body>
</html>

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 267

Next we see how to manipulate canvas objects.

Manipulate Canvas Objects
Besides the possibility to draw some complex shapes, canvas also provides some
advanced operations to transform, scale, or rotate canvas objects. In Tables 7–14 and
7–15, we can see the methods used for these advanced operations.

Table 7–14. The HTML Canvas: Advanced Methods and Operations

 Method Description

translate(x,y) Moves the origin by the amounts of x,y

scale(x,y) Scales drawing operation by multiplies x,y

rotate(angle) Rotates subsequent drawing operations by angle

In addition to the built-in transforms in Table 7–14, we can also define our own
transformation using the two methods in Table 7–15.

Table 7–15. The HTML Canvas Custom Transformation Methods

 Method Description

transform(a,b,c,d,e,f) Adds the given transform to the current one

setTransform(a,b,c,d,e,f) Sets the current transform to the given arguments

Canvas also has a setting for the default compositing method that determines how new
content is drawn onto the canvas surface. We have 12 different compositing methods
listed in Table 7–16.

Table 7–16. The HTML Canvas Compositing Methods

 Method Description

source-over Adds the shape on top of the existing content.

source-in Shape is drawn only where both shapes overlap.

source-out Shape is drawn only where two shapes don’t overlap.

source-atop
Shape is drawn only where there is overlap in the existing
content.

lighter Color values determine color of overlapping shapes.

xor Shapes are transparent where both overlap.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 268

 Method Description

destination-over Shape is drawn behind the existing one.

destination-in
Existing content is kept where shape and existing content
overlap.

destination-out Existing content is kept where it doesn’t overlap.

destination-atop
Existing canvas is kept where it overlaps. Shape is drawn
behind the existing content.

darker Color values are subtracted where shapes overlap.

In Figure 7–11 we can see how the method in Table 7–16 operates.

Figure 7–11. The HTML 2D API in action: composition methods

The previous canvas advanced operations are used when we need to develop a web
game using HTML; however, it’s important that a developer know all the possibilities
provided by a “standard” like the fifth version of HTML.

The Canvas State
Each context we draw in our canvas maintains a drawing state. The drawing state is
accessible and manageable using some specific methods.

This state is saved on a stack of saved states. This means that we can save a state by
inserting it on top of the stack and restore a state by popping off the last state on top of
the stack and restoring it.

The drawing state, also called the canvas state, keeps track of several values from
different properties and attributes such as the following:

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 269

1. Current method values (for example, fillStyle, strokeStyle, and so on)

2. Current transformation matrix

3. Current clipping region

The canvas state is used to restore a set of values for a shape without having to
manually keep track of them. Table 7–17 shows the state methods for HTML Canvas.

Table 7–17. The HTML Canvas State Methods

 Method Description

save() Saves the current state on top of the stack

restore() Restores the first state on top of the stack

In the following example, we first draw a rectangle with some color and stroke values,
and then we save the canvas state. Next we draw another rectangle with different color

and stroke values, and then before drawing a third rectangle we restore the canvas

state. The restore method applies the previously saved state to the third rectangle as
shown in Figure 7–12.

Figure 7–12. The HTML 2D API: save() and restore() methods in action

The code of the preceding example shown in Figure 7–12 is the following

<html>
<head>
 <title>Canvas Test</title>
 <script>
 window.onload = function() {

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 270

 var ctxElement = document.getElementById('canvasTest05');
 var ctx = ctxElement.getContext("2d");
 if (ctx) {

 ctx.strokeStyle = "#F00";
 ctx.fillStyle = "#CCC";
 ctx.lineWidth = 10;

 ctx.fillRect(25,25,180,200);
 ctx.strokeRect(25,25,180,200);

 ctx.save();

 ctx.strokeStyle = "#000";
 ctx.fillStyle = "#FFF";
 ctx.lineWidth = 5;
 ctx.fillRect(230,25,180,200);
 ctx.strokeRect(230,25,180,200);

 ctx.restore();

 ctx.fillRect(435, 25, 180, 200);
 ctx.strokeRect(435,25,180,200);
}
 }
 </script>
</head>
<body>

 <h1>Canvas Example 05</h1>
 <canvas id="canvasTest05" width="800" height="600">Please Enable Javascript
Engine</canvas>
</body>
</html>

When we work on complex contexts, the save() and restore() methods save us from
the manual work of keeping track of current and past canvas states every time we need
to apply minor changes to a certain shape.

For a look at the latest HTML5 Canvas draft version, visit the official W3C page available
at www.w3.org/TR/html5/the-canvas-element.html.

Creating a Canvas Slideshow
Now we build a slideshow for our “The Store” use-case. We use three different images
that are drawn by the canvas as well as a Javascript function that takes care of sliding
the three images over time. For a review of Javascript, see the section, “Javascript,”
later in this chapter.

The first step is to open our index.html and insert the <canvas> in our hero area as
follows:

… … …
<div id="hero">
 <canvas id='heroCanvas' width='298' height='150'></canvas>

http://www.w3.org/TR/html5/the-canvas-element.html

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 271

</div>
… … …

Now we need to create a new file called heroCanvas.js and save it in the Javascript
folder of our framework.

var imagePaths = [
 "pics/hero-slide_01.png", "pics/hero-slide_02.png", "pics/hero-slide_03.png"
];
var showCanvas = null;
var showCanvasCtx = null;
var img = document.createElement("img");
var currentImage = 0;

The first part of the code shown previously initializes the variables we need for the
slideshow. The variable imagePaths is an array with all the images that are displayed in
the slideshow, a couple of variables that refer to the canvas context, a variable img that
stores a new image element created using the createElement() DOM method, and then
an index variable that keeps track of the current image displayed in the slideshow.

window.onload = function () {
 showCanvas = document.getElementById('heroCanvas');
 showCanvasCtx = showCanvas.getContext('2d');

 img.setAttribute('width','298');
 img.setAttribute('height','150');
 switchImage();

 setInterval(switchImage,2500);
}

Now we can write and set of functions that start when the window’s object is loaded. In
the first block of the function’s code, we get a reference to the canvas, and then we
make a request for the Canvas 2D API. In the second block we set the width and height
of the images to be displayed and then we call the switchImage() function, which we
see later in the chapter. In the last block we set the slideshow interval between each
image at 2.5 seconds.

function switchImage() {
 img.setAttribute('src',imagePaths[currentImage++]);
 img.onload = function() {
 if (currentImage >= imagePaths.length)
 currentImage = 0;

 showCanvasCtx.drawImage(img,0,0,298,150);
 }
}

Now we come to the switchImage() function, which does all the hard work in this
example. First this function sets the source of the image function to the current image
index value in the array. When the image loads we run a function that checks to see
whether the current image is greater than the image path array. If it’s greater, the
function resets the index to zero restarting the counter to the beginning. Lastly we call
the drawImage() function on the canvas context to draw the image using the given
coordinates. The switchImage() function is called each time the interval time goes off, or

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 272

in other words every 2.5 seconds. In the following, we have the entire Javascript code
with the function definition on top of the Javascript file, which is the recommendation.

<head>
...
...
...

 <script type="text/Javascript" src="Javascript/heroCanvas.js"></script>
</head>

As the last step, we need to import the Javascript file as an external file inserting a
<script> in the <head> section as shown previously. In Figure 7–13 we can see the
canvas slideshow in action.

Figure 7–13. The HTML 2D API: the Canvas slideshow in action

As we have now seen, canvas brings to the table a new set of opportunities for those
who are interested in developing a WebApp. Next we see how the new CSS level 3
gives us more help in developing WebApp for iOS devices.

CSS3
The old CSS2 specification was too large and complex to be updated in one large
document specification, so it is divided into smaller document specifics from the World
Wide Web Consortium (W3C). Some modules include the following:

The Box Model

Multi-Column Layout

Background and Borders

Lists Module

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 273

 Text Effects

 Hyperlink Presentation

 Speech Module

NOTE: CSS3 is still a “work in progress” project, and you can have a look at the complete list of

modules here: www.w3.org/Style/CSS/current-work.

The main impact of CSS3 is the capability to achieve the current design features in a
much easier way and to use new selectors and properties to introduce new design
features such as animation or gradients effects.

Now we see some of the most common properties that are found in every iPhone and
iPad framework available to design and develop for iPhone and iPad. We master these
properties in Chapter 8 when we expand on our frameworks.

Prefixes
Until all of the CSS3 modules reach recommended status, every browser vendor has the
faculty to decide how to implement these properties. For this reason, a proprietary prefix
is placed in front of every property.

The point of vendor-specific prefixes is to let other rendering engines know that the
property can be safely ignored without creating an error. At the same time, it lets the
developer know that those properties are experimental and not fully supported, even if
planned by the W3C.

Once CSS3 has been completely defined, supported, and officially becomes a Web
Standard, all of these prefixes will be removed.

An example is the following:

border-radius: 3px;
-webkit-border-radius: 3px; (WebKit-based Browser implementation)
-moz-border-radius: 3px; (Gecko-based Browser implementation)

At present, when working with desktop websites and web applications we need to
specify the same property several times, at least once for each of the most common
browsers, in order to achieve a minimum level of CSS3 properties accessibility.

In our Apple devices context, we need to take care of WebKit CSS3 implementation,
because we use only WebKit-based browsers like Safari.

http://www.w3.org/Style/CSS/current-work

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 274

Rounded Borders
Achieving rounded borders using CSS2 coding is not a simple task As we well know,
iOS has rounded borders everywhere. Numerous methods are available to create CSS2
rounded borders but these require additional markup and individual images for each
border.

Using CSS3, creating a rounded border is incredibly fast and easy. We can apply this
property to one or to all corners, or to individual corners. Table 7–18 shows the CSS
Level 3 rounded border property.

The CSS syntax is the following:

-webkit-border-radius: <length>;

Table 7–18. The CSS Level 3 Rounded Border Property

 Name border-radius

Value: [length | percentage]

Initial: [0]

Applies to: all elements

inherited: no

Border Images
Border images are one of the most useful additions note that all of the big buttons that
slide from the bottom on the iPhone can also be designed with this property. CSS3 has
the capability to repeat or stretch a border image as you choose. Table 7–19 shows the
CSS Level 3 border image property.

The CSS syntax is the following:

-webkit-border-image: <source> <slice> <width> <outset> <repeat>;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 275

Table 7–19. The CSS Level 3 Border Image Property

 Name border-image

Value: [none | length]

[number | percentage]

[length | percentage | number | auto]

[length | percentage]

[stretch | repeat | round]

Initial: [none]

[100%]

[1]

[0]

[stretch]

Applies to: all elements

Gradients
A gradient is a browser-generated image specified entirely in CSS, which consists of
smooth fades between several colors. Gradients are specified using the -webkit-
gradient function and can be passed in place of an image URL. Two types of gradients
are recognized: linear and radial. You can specify multiple in-between color values,
called color stops, and the gradient function interpolates the color values between them.

The function you use to create a color stop is called color-stop. You pass this function
as a parameter to the -webkit-gradient() function to specify the start, intermediate,
and end colors in both a linear and a radial gradient. The colors between the specified
color stops are interpolated. Table 20 shows the CSS Level 3 radient roperty.

The CSS syntax is the following:

-webkit-gradient (<gradient-line> <color-stop1> <color-stop2> <color-stopN>);
-webkit-gradient (<gradient-line> <color-stop1> <color-stop2> <color-stopN>);

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 276

Table 7–20. The CSS Level 3 Gradient Property

 Name gradient()

Value: [gradient-line]

[color-stop]

[color-stop]

[color-stop]

Initial: [top]

[transparent]

[transparent]

[transparent]

Applies to: all elements

 Name color-stop()

Value: [color]

[length | percentage]

Initial: [transparent]

[0%]

Applies to: all elements

Percentages: N/A

Box Sizing
The new Box model is one of the most extensive areas of the CSS3 draft. This box-
sizing aspect enables you to define certain elements to fit an area in a certain way. If we
want to design a two-column bordered box in our user interface and place the two
boxes side by side, it can be achieved using this property. This forces the browser to
render the box with the specified width and height, and place the border and padding in
the box. Table 7–21 shows the CSS Level 3 box sizing property.

The CSS syntax is the following:

-webkit-box-sizing: <box-sizing value>;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 277

Table 7–21. The CSS Level 3 Box Sizing property

 Name box-sizing

Value: [content-box | border-box | inherit]

Initial: [content-box]

Applies to: all elements

Box Shadow
Adding a box shadow is another effect that is difficult to achieve using CSS2
specification because usually we need to use additional image and markup. Although
we wait to switch to a full CSS3 website in the near future, for the time being we add an
additional <div> to our desktop website in order to add a paper-shadow effect to the
main content. The CSS3 alternative is more elegant and clean. Table 7–22 shows the
CSS Level 3 box shadow property.

The CSS syntax is the following:

-webkit-box-shadow: <offset-x> <offeset-y> <blur radius> <color>;

Table 7–22. The CSS Level 3 Box Shadow Property

 Name box-shadow

Value: [offset]

[offset]

[offset }

[color]

Initial: [0]

[0]

[0]

[transparent]

Applies to: all elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 278

Outline
Setting an element outline is already available in CSS2, but in CSS3 includes the
capability to offset the outline away from its element, by a value we define. It differs from
a border in two ways:

 Outlines do not take up space.

 Outlines can be non-rectangular.

Table 7–23 shows the CSS Level 3 outline property The CSS code is the following:

outline: <width> <style> <color>;
outline-offset: <offset>;

Table 7–23. The CSS Level 3 Outline Property

 Name Outline

Value:

[width | inherit]

[auto | style | inherit]

[color | invert | inherit]

Initial:

[medium]

[none]

[invert]

Applies to: all elements

Background Size
Before CSS3, background size was determined by the actual size of the image used.
With this new CSS3 property it is possible to specify in terms of percentage or pixels
how large a background image should be. Emulating the iOS user interface, we always
try to use CSS properties instead of images everywhere possible.

In any case, the background size property, where it is needed, enables us to reuse
images in several different contexts and it also expands a background to fill an area
more accurately.

Table 7–24 shows the CSS level 3 background size property The CSS syntax is the
following:

-webkit-background-size: <length-x> <length-y>;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 279

Table 7–24. The CSS Level 3 Background Size Property

 Name background-size

Value: [auto | length | percentage]

Initial: [auto]

Applies to: all elements

Background Origin
CSS3 also enables us to specify how the position of a background is calculated. This
enables great flexibility in terms of placing a background image.

Table 7–25 shows the CSS background origin property. The CSS syntax is the following:

background-origin: <origin-value>;

Table 7–25. The CSS Level 3 Background Origin Property

 Name background-origin

Value: [content-box | border-box | padding-box]

Initial: [padding-box]

Applies to: all elements

Multiple Backgrounds
The new CSS3 capability to use multiple backgrounds is a great time saver and it
enables us to achieve effects that previously required more than one <div>. This
property, combined with the background size, gives us a powerful tool for reducing the
gap between a native UI look-and-feel and our emulated (web) user interface.

Table 7–26 shows the CSS Level 3 multiple background property. The CSS code is the
following:

background: <source-1> <position> <repeat>, <source-n> <position> <repeat>;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 280

Table 7–26. The CSS Level 3 Multiple Background Property

 Name background

Value: [image | none]

[length | percentage]

[repeat | no-repeat]

Initial: [none]

[0% 0%]

[repeat]

Applies to: all elements

Text Shadow
Text shadow is a fundamental CSS3 property to emulate the native iOS user interface.
Almost all of the text in iOS is embossed and very readable.

Table 7–27 shows the CSS Level 3 text shadow property. The CSS code is the
following:

-webkit-text-shadow: <offset-x> <offeset-y> <blur radius> <color>;

Table 7–27. The CSS Level 3 Text Shadow Property

 Name text-shadow

Value: [image | none]

[length | percentage]

[repeat | no-repeat]

Initial: [none]

[0% 0%]

[repeat]

Applies to: all elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 281

Text Overflow
Text overflow is another fundamental property involved in iOS native user interface
emulation. Often in the iPhone environment the title overflows the Header Bar, even
more often if we use buttons on the left and right of this bar to help navigate the content.

This property enables us to clip the text with ellipsis (“...”) as a visual hint to the user that
the text has been clipped. With the iPad, this problem no longer exists because of the
larger screen.

Table 7–28 shows the CSS Level 3 text overflow property. The CSS syntax is the following:

text-shadow: <overflow-value>;

Table 7–28. The CSS Level 3 Text Overflow Property

 Name text-overflow

Value: [clip | ellipsis | ellipsis-word | inherit]

Initial: [clip]

Applies to: all block-level elements

Word Wrapping
With CSS2, if a word is too long to fit within one line of an area, it expands outside. This
is not a common occurrence but happens from time to time. The new word wrapping
capability enables us to force the text to wrap, even if it means splitting it mid-word.
Table 7–29 shows the CSS Level 3 word wrapping property.

Table 7–29. The CSS Level 3 Word Wrapping Property

 Name word-wrap

Value: [normal | break-word]

Initial: [normal]

Applies to: all elements

Inherited: yes

The CSS syntax is the following:

word-wrap: <wrap-value>;

The CSS code is the following:

word-wrap: break-word;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 282

Web Fonts
Although this new property is a revolutionary change for web design, for those of us who
need to work with the native iOS user interface this property is not that useful, because
we have Helvetica in the Safari Font Stack. The property can end up being a handy tool
if we should ever have some strange logos to represent textually.

Table 7–30 shows the CSS Level 3 web fonts property. The CSS syntax is the following:

@font-face { <font-family>; <source>; }

Table 7–30. The CSS Level 3 Web Fonts Property

 Name @font-face

Value: [family-name]

Initial: [N/A]

Applies to: all font face and font family

Tap Highlight
In the touch-screen device paradigm, the hover status (as we know it in the desktop
user experience) doesn’t exist, but with this useful WebKit extension we can highlight a
link or a Javascript-clickable element. The alpha channel is also supported.

Table 7–31 shows the CSS level 3 tap highlights property. The CSS syntax is the
following:

-webkit-tap-highlight-color: <color>;

Table 7–31. The CSS Level 3 Tap Highlights Property

 Name tap-highlight-color

Value: [color]

Initial: [rgba(0,0,0,0)]

Applies to: link, Javascript clickable elements

Inherited: yes

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 283

Multiple Columns
The multi-columns property is much more exciting from a desktop prospective, because
the iPhone and iPad user interface doesn’t use a multi-columns layout very often. In
some cases this property can still be used to achieve some nice content presentation.
This property enables us to specify how many columns our text should be split, and how
they should appear.

Four properties relate to the multiple column layout in CSS3, enabling us to set the
number of columns, width, amount of gap separating each column, and the border
between each. The four properties are

 Column-count (number of columns)

 Column-width (width of columns)

 Column-gap (gap between columns)

 Column-rule (border between the columns)

Table 7–32 shows the CSS Level 3 multiple columns property. The CSS syntax is the
following:

.twoColumnLayout { <number-of-column> <width> <gap> <rule> }

Table 7–32. The CSS Level 3 Multiple Columns Property

 Name column-span

Value: [integer | auto]

[length | auto]

[length | normal]

[color]

Initial: [auto]

[auto]

[normal]

[same as for ‘color’ in CSS21]

Applies to: non-replaced block-level elements (except table elements),
table cells, inline block elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 284

Spanning Columns
This property is used in case we want an element to span more than one column;
usually we use it for headings, tables, and images.

Table 7–33 shows the CSS Level 3 spanning columns property. The CSS syntax is the
following:

column-span: <number-of-column>;

Table 7–33. The CSS Level 3 Spanning Columns Property

 Name column-span

Value: [1 | all]

Initial: [1]

Applies to: static, non-floating elements

Transitions
The transition property can be used to modify a CSS property such as height, width, or
color over time. Not all properties can be animated with a transition, but all the important
properties for iPhone and iPad development are in the list.

The first value refers to the property that is transitioned, the second value controls the
duration, and the third controls the type of transition.

Table 7–34 shows the CSS Level 3 transition property. The CSS syntax is the following:

-webkit-transition: <property> <time> <function>;

Table 7–34. The CSS Level 3 Transition Property

 Name transition

Value: [none | all | property]

[time]

[ease | linear | ease-in | ease-out | ease-in-out | cubic-bezier]

Initial: [all]

[0]

[ease]

Applies to: all elements, :before and :after pseudo elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 285

Transforms
Transforms are used to modify the geometry of objects through mathematical
operations. This property is fundamental for emulating some of the typical iOS effects
between pages, and is used to create interesting visual effects and animations.

In the transform property, a list of transform functions are used as values and are
applied in the order provided. Exactly as they are for the other CSS3 values, the
individual transform functions are separated by white space.

The transform property works together with the transform-origin property to set the
point of origin from where the transition takes place.

Available transform functions are

matrix(number, number, number, number, number, number)
Specifies a 2D transformation in the form of a transformation matrix (3X3) of six values.
Matrix (a,b,c,d,e,f) is equivalent to applying the transformation matrix [a b c d e f].

translate(translate-value, translate-value)
Specifies a 2D translation by the vector [tx, ty], where tx is the first translation-value
parameter and ty is the optional second translation-value parameter. If <ty> is not
provided, ty has a zero value.

translateX(translation-value)
Specifies a translation by the given amount in the X direction.

translateY(translation-value)
Specifies a translation by the given amount in the Y direction.

scale(number, number)
Specifies a 2D scale operation by the [sx,sy] scaling vector described by the two
parameters. If the second parameter is not provided, it is takes a value equal to the first.

scaleX(number)
Specifies a scale operation using the [sx,1] scaling vector, where sx is given as the
parameter.

scaleY(number)
Specifies a scale operation using the [1,sy] scaling vector, where sy is given as the
parameter.

rotate(angle)
Specifies a 2D rotation by the angle specified in the parameter about the origin of the
element, as defined by the transform-origin property.

skew(angle, angle)
Specifies a skew transformation along the X and Y axes. The first angle parameter
specifies the skew on the X axis. The second angle parameter specifies the skew on the
Y axis. If the second parameter is not given, a value of 0 is used for the Y angle (for
example, no skew on the Y axis).

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 286

skewX(angle)
Specifies a skew transformation along the X axis by the given angle.

skewY(angle)
Specifies a skew transformation along the Y axis by the given angle.

Table 7–35 shows the CSS Level 3 transform property. The CSS syntax is the following:

-webkit-transition: <transform function> <type of effect>;
-webkit-transition-origin: <transform origin>;

Table 7–35. The CSS Level 3 Transform Property

 Name transform

Value: [none | transform function | transform function]

Initial: [none]

Applies to: block-level and inline-level elements

Percentages: Refer the size of the element’s box

 Name transform-origin

Value: [percentage | length | left | center | right]

Initial: [50% 50%]

Applies to: block-level and inline-level elements

Percentages: Refer the size of the element’s box

Animation
Animation, similar to transition, modifies properties over time. Using the transition
property, we achieve a one-way effect from one value to another; this kind of property is
useful for page transition, but has a limited value for building any kind of visual effect.

Using the Animation property, we can provide any number of intermediate values that
are not necessarily linear, to achieve complex animations. These intermediate values are
called keyframes and are the foundation of all animation processes.

NOTE: keyframe in animation and filmmaking is a drawing that defines the starting and ending
points of any smooth transition. They are called "frames" because their position in time is
measured in frames on a strip of film. A sequence of keyframes defines which images the viewer
will see, whereas the position of the keyframes on the film, video, or animation timeline defines

the timing of the movement.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 287

Table 7–36 shows the CSS Level 3 animation property. The CSS syntax is the following:

animation-name: <name>;
animation-duration: <time>;
animation-iteration-count: <integer>;
animation-timing-function: <function>;
@keyframes <name> {
 from {
 left: <start-x>;
 top: <start-y>;
 }
 to {
 left: <destination-x>;
 top: <destination-y>;
 }
}

Table 7–36. The CSS Level 3 Animation Property

 Name Transform

Value: [animation-name]

[animation-duration]

[animation-timing-function]

[animation-delay]

[animation-iteration-count]

[animation-direction]

Initial: see individual properties

Applies to: block-level and inline-level elements

In our frameworks, the Javascript takes care of the user interface’s behavior, but the
animation property offers a valid alternative in many situations. This property is also the
most complex of all CSS3 modules; for this reason, we analyze all its properties in detail,
as shown in Table 7–37.

Table 7–37. The CSS Level 3 Animation Property

 Name animation-name

Value: [none | name]

Initial: { none]

Applies to: block-level and inline-level elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 288

 Name animation-duration

Value: [time]

Initial: [0]

Applies to: block-level and inline-level elements

 Name animation-timing-function

Value: [ease | linear | ease-in | ease-out | ease-in-out | cubic-bezier]

Initial: [ease]

Applies to: block-level and inline-level elements

 Name animation-iteration-count

Value: [infinite | integer |

Initial: { 1]

Applies to: block-level and inline-level elements

 Name animation-direction

Value: [normal | alternate]

Initial: [normal]

Applies to: block-level and inline-level elements

 Name animation-play-state

Value: [running | pause]

Initial: [running]

Applies to: block-level and inline-level elements

 Name animation-delay

Value: [time]

Initial: [0]

Applies to: block-level and inline-level elements

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 289

Keyframes
Keyframes are used to specify the values for animating properties at various points
during the animation. The keyframes specify the behavior of one cycle of the animation;
the animation might iterate one or more times.

Keyframes are specified using a specialized CSS at-rule. A @keyframes rule consists of
the keyword "@keyframes", followed by the identifier "animation-name" that gives a name
for the animation, followed by a set of style rules.

The CSS grammar for the keyframes rule is the following:

keyframes-rule: '@keyframes' IDENT '{'keyframes-blocks'}';
keyframes-blocks: [keyframe-selectors block] ;
keyframe-selectors: ['from' | 'to' | PERCENTAGE] [',' ['from' | 'to' | PERCENTAGE]
];

Reflections
No other CSS3 property is so typically Apple-style as is the reflection property.
Reflection is used on every product presentation in the Apple store, and combined with
the use of negative space it is a valuable tool for achieving clean design.

NOTE: As we saw analyzing the Laws of Perceptions, negative space, in art, is the space around
and between the subject(s) of an image.

Negative space is most evident when the space around a subject, and not the subject itself,
forms an interesting or artistically relevant shape. This space is occasionally used as an artistic

effect of the "real" subject of an image. The use of negative space is a key element of artistic

composition and visual design.

The reflection property is composed of three arguments or values in order to achieve the
final effect. The first argument sets the direction of the reflection. The second argument
specifies the offset of the reflection. The third argument is a mask applied to the
reflection passed using the gradient property.

Table 7–38 shows the CSS Level 3 reflection property. The CSS syntax is the following:

-webkit-box-reflect: <direction> <offset> <mask-box-image>;

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 290

Table 7–38. The CSS Level 3 Reflection Property

 Name box-reflect

Value: [above | below | left | right]

[offset]

[gradient()]

Initial: None

Applies to: all images

 Name Gradient

Value: [gradient()]

[from()]

[color-stop()]

Initial: None

Applies to: all images

Javascript
So far using the HTML5 markup language, we have built the structure of our web site or
Web application. We have then used the CSS3 style sheet to modify its visual
presentation. Now it’s time to work on its behavior and it’s at this point that Javascript
comes into the picture. Javascript is a complicated subject that is difficult to cover
comprehensively here, so this section is a crash-course.

Javascript was developed in 1995 by the Netscape team and appeared for the first time
in Netscape 2. Javascript’s original name was LiveScript but in 1996 since the Sun
Java Language was a big deal at the time, Netscape and Sun worked out an agreement
to change its name to Javascript. In retrospect this was a big mistake because
Javascript and Java have nothing to do with each other; Javascript is not based on Java
and it’s not a light version of Java. Calling this scripting language Javascript might have
served some marketing purpose, but it also created a lot of confusion around it.

In 1996 Microsoft made its own version for Internet Explorer 3, which was called

Jscript. In 1997 Netscape submitted the Javascript language to the European Computer
Manufacturers Association (ECMA) in order to create an independent and official
standard edition that was called ECMAScript (ECMA-262), although everybody in the IT
world continued to call it Javascript. In 1999, ECMAScript 3 was published and in 2009
came ECMAScript 5, retrocompatible with ECMAScript 3 versions of the language.
Mobile Safari partially supports ECMAScript 5 from iOS4.3.2 whereas almost all new
features are supported with iOS5.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 291

Javascript is a client-side scripting language for interacting with web pages. Unlike other
non-scripting program languages, Javascript works only inside specific applications (for
example, web browsers such as Safari Mobile). The operating system (such as iOS) runs
the web browser, the web browser contains a page, and the page contains the
Javascript. We can see this principle in Figure 7–14.

Figure 7–14. Relationship between web browser, web page, and Javascript code

Javascript is a scripting language and is intentionally limited, which means for example
that it can’t access the file system, a database, or hardware. The reason for this
approach is that Javascript is not meant to be a general-purpose programming
language but is designed to manipulate web pages.

When a user opens the browser and requests a webpage from a webserver, the
webserver sends HTML and CSS back to the browser as plain text, letting the browser
take care of interpreting, rendering, and finally displaying the final content. As discussed,
Javascript is a client-side language, and this means that it works in the same way as
HTML and CSS files: the webserver sends the Javascript to the browser, which then
interprets and runs it. We can see these steps in Figure 7–15.

Figure 7–15. Interaction between a web browser and a web server

The client-side approach is opposite to the server-side approach that we have with
languages such as PHP or Ruby on Rails, which are executed on the webserver and
whose results are delivered to the browser.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 292

Adding Javascript to a Webpage
The Javascript code is embedded on a webpage using the <script> element. In the
CSS rules, a piece of Javascript code can be inserted using two approaches:

Inline
The code is written directly in the HTML document.

Imported
The code is imported, referring to an external Javascript document.

In this book we use inline Javascript for demonstration purposes, but for most real

projects importing the Javascript code is considered to be a good practice. In the

following two examples we start with the first program in any programming language,
the Hello, World! program.

<html>
<head>
 <title>Javascript Test</title>
</head>
<body>
 <h1>Javascript Test Page</h1>
 <script>
 alert("Hello, world!");
 </script>
</body>
</html>

The previous Javascript code shows the inline technique in which the code is inserted
inline between the two <script> tags.

<head>
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<script src="Javascript/helloWorld.js"></script>
<title> Javascript Test Page </title>
</head>

The previous code shows the imported technique where the code is imported using the
src attribute.

At this point we might ask ourselves, “Where do we insert the Javascript code?” The
browser reads and interprets all the code from top to bottom, meaning that Javascript is
interpreted and run as soon as the browser has read it. This means that according to
the position of the code in the web page, Javascript can cause page rendering delays,
slowing all of our pages down. In addition, it’s considered a good practice to insert the
Javascript code at the bottom part of the <body> section just before the closing
</body> tag, as shown in the previous Hello World example.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 293

Javascript Structure
Javascript is an interpreted language, as opposed to compiled, another type of
language. Compiled languages need to be run through a special program called a
compiler that converts the code we wrote into machine code that can be run by the CPU
that’s controlled by the operating system. As we have seen, we don’t need to do that
with Javascript; using the browser we simply make a request to the webserver that
sends back to the browser the plain text version of the Javascript code that the browser
interprets and runs.

Javascript is also case sensitive, meaning that the following pieces of code are different
from each other in Javascript:

alert(“Hello World!”); // correct Javascript syntax
Alert(“Hello Wolrd!”); // incorrect Javascript syntax

A Javascript statement is typically written on one line and must finish with a semicolon,
as shown in the previous example. The semicolon has the same role as the full stop or
period in English. When we have a long statement, we can promote readability by
splitting it into multiple lines, using the semicolon only at the end of the statement.

Javascript is case sensitive but space insensitive, meaning that it doesn’t care about
blank space between different pieces of the language. The following statements are all
correct and interpreted in the same way:

alert("Hello World!"); // correct Javascript syntax
alert ("Hello World!"); // correct Javascript syntax

We can insert single-line comments into Javascript code by using two forward slashes

as in the preceding examples. If we need to insert a multiple-line comment we can use
the combination forward slash asterisk, and close the comment using its flip side, the
asterisk forward slash, as shown in the following example.

/* this is
a multiple line
comment */

Data Categories
In Javascript we have two types of data: Primitive and Reference. The Primitive data
type is irreducible and the primitive value is stored on the stack, which means directly in
the location of the variable access. The Reference data type is composed and is an
object, and the reference value is stored in the heap, which means that the value in the
variable is a pointer to a location in memory where the object is stored. The following list
shows the two categories of data:

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 294

Primitive Data
Number
Boolean
String
Null
Undefined

Reference Data
Object
Function
Array
Date
Error
RegExp

Those new to stack and heap will be a little bit disoriented trying to understand their
nature. For our purpose the concept that is important to understand is that a stack is a

zone of memory with a Last In First Out (LIFO) policy where the application keeps track

of its memory needs. The heap is another zone in the memory where objects are stored
and reachable by pointers at any moment of time. Figure 7–16 show how primitive and
reference type works in practice.

Figure 7–16. Primitive and reference data in Javascript

Figure 7–17 shows how stack and heap works with primitive and reference data types.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 295

Figure 7–17. Primitive and reference data in Javascript

From a developer point of view, this different way to store data in memory doesn’t have
any visible effect on the program perception.

Reserved Words
Reserved words have a place in every language, Javascript included. Javascript
describes a set of reserved words that we can’t use as identifiers for functions and
variables. If we use a reserved word, naming a function or a variable often will not
receive an error, and then the word will be considered a keyword and we will get a
keyword error.

In Table 7–39, we can see the most common reserved words in Javascript.

Table 7–39. Reserved Words in Javascript (Alphabetic Order)

abstract enum int short

Boolean export interface static

byte extends long super

char final native synchronized

class float package throws

const goto private transient

debugger implements protected volatile

double import public

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 296

Javascript also describes a set of keywords that indicate the beginnings or endings of
Javascript statements. Keywords, like reserved words, are reserved and we can’t use
them for naming functions or variables. If we try to use one keyword for naming a
variable or a function, we will probably get an error message, such as “Identifier
expected.” Table 7–40 displays all of the keywords in Javascript.

Table 7–40. Keywords in Javascript (Alphabetic Order)

break else new var

case finally return void

catch for switch while

continue function this with

default if throw

delete in try

do instanceof typeof

Variables
Working with programming languages means also keeping track of many pieces of
different types of data. For this purpose every program language has variables. A
variable is a container that abstracts a piece of physical memory that physically stores
the data. In Figure 7–18 we can see how we might picture the physical memory in a
linear form.

Figure 7–18. Device memory represented in a linear (vector) form

When data is stored in memory, we can access it with two basic operations called read
and write. Using the read operation we can retrieve the value of a variable stored in the
memory, whereas by using write we can update the value of a variable.

In Javascript we create a variable using the reserved word “var” followed by the name
of the variable and then the semicolon. The following examples show some variable
declarations. We must remember that Javascript is case sensitive.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 297

var varName; // generic variable declaration
var userEmail; // variable for an email address
var todayDate; // variable for a date

The name that we use for a variable must be written as one word, with no spaces
between letters because spaces aren’t allowed in a variable declaration. The name can
be made up of letters, numbers, underscore symbols, or dollar signs, but it can’t start
with a number. The following examples demonstrate this rule.

var todayDate; // correct declaration
var 2012todayDate; // incorrect declaration
var todayDate2012; // correct declaration

The declaration we saw in previous examples creates an undefined variable, meaning
that the variable has no value. In order to assign a value to the variable, we need to use
the equal operator followed by an allowed value as shown in Figure 7–19.

Figure 7–19. Undefined (left) and defined (right) variables

The declaration can also be split into two statements, but this approach is rarely used
because it increases the number of lines of code and doesn’t improve code readability.

var score; // first step of variable declaration
score = 3005; // second step of variable declaration
var score = 3005; // compact approach to variable declaration

In Javascript we can also omit the first step and write only the second step as shown in
the preceding example. Javascript first looks for a variable called “score” and if it is not
found, it creates it ex-novo. It is considered a bad practice to omit the reserved word
"var" because that can lead to unexpected behavior by Javascript and decrease code
readability.

To declare multiple variables, we can create them using only one line instead of
spreading them across multiple lines.

var score; // single approach
var hightScore; // single approach
var score, hightScore; // compact approach
var score = 3005; // single approach
var hightScore = 19733005; // single approach
var score = 3005, hightScore = 19733005; // compact approach

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 298

In many other programming languages when we declare a data type (for example,
variable) we don’t just give the variable a name, but we also need to specify the exact
data type that will be stored in the variable itself. In Javascript we can’t do that.
Javascript is a “weakly typed language” as opposed to other languages such as Java
that are “strongly typed languages.” In Javascript we use the reserved word “var” to
create a generic variable that stores any type of data, such as integers, Booleans,
strings, and so on. Therefore, Javascript doesn’t treat different types of data differently;
it uses a generic variable type for storing any type of available data.

Operators
Every statement we write always involves at least one operation: assigning a value,
moving data from one place to another, and adding and subtracting are a few examples.
In order to perform operations, we need operators.

The most common operators are the arithmetic ones but we also have logic operators,
assignment operators, Boolean operators, and many others. We can group these
operators into six functional categories, as follows:

Assignment
Assigns a value to its left operand based on the value of its right
operand.

Logical
Returns a logical value based on the logical operator.

Comparison
Returns a logical value based on the comparison operator.

Combinational
Returns a result without affecting either operand, including string and
mathematical operators.

Bitwise
Returns a number value based on its operands treated as a sequence of
32-bit value.

Other Types

Operators that don’t fall into standard groups include the Comma
Operator (,), Dot Operator (.), Conditional Operator (?:), Delete Operator
(delete), New Operator (new), In Operator (in), Typeof Operator (typeof),
Instanceof Operator (instanceof), and the Void Operator (void).

In general, operators require one or more operands as values and an output, following a
simple (mathematical) expression structure example:

"operand" "operator" "operand" "operator" "output"
90 + 10 = 100

Table 7–41 lists some of the most common Javascript operators.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 299

Table 7–41. Common Javascript Operators

 Operator Name

= Assignment

== Equal (value)

=== Identical (value and type)

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

<< Shift Left

>> Shift Right

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

&& Logical AND

|| Logical OR

! Logical Exclusive OR

?: Conditional

In Javascript, as in other programming languages, we have operator precedence
meaning that some operators are treated as having more importance than others. The
more important an operator is, the higher its precedence, meaning that it is executed
before any other operator with a lower precedence.

score = 100 + 100 * 2; // score value is 210
score = (100 + 100) * 2; // score value is 400

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 300

As we can see from our example, if we need to create a specific order we can use
parentheses as we often do in mathematical operations.

As a final example, we see the conditional operator, whose general syntax is the
following

Condition ? true : false

Essentially, we have a condition, and we specify what happens if the condition is true
and what happens if it’s false.

var gameScore = 500;
var highScore = 350;
highScore = (game > highScore) ? gameScore : hightScore;

In our example we show the assignment with the conditional operator. First we test

whether the game score was higher than the existing high score. In this case 500 is
greater than 350, and the conditional operator returns and assigns 500 to the variable
highScore, updating the best record value.

Conditional Statements
Each time we use a programming language, we need to ask and answer two
questions{what are they?]. In Javascript as with other languages, we have some
conditional statements that address these needs. The first conditional statement is the
if statement, shown in the following code example:

if (condition) {
// action code here
}

The if statement has a condition in parentheses. If the condition is true, the code in
braces will be executed. The part of the code in braces is the body of the statement.
Braces are not needed to write an if statement, but the approach without using braces
is considered a bad practice because the code readability decreases as the code’s
complexity increases.

The condition can be evaluated only as true or false. To implement this, we usually use
operators like those shown in the following example:

if (a<10) {
// action code here
}
if (b==10) {
// action code here
}
if (c!=10) {
// action code here
}

The if statement enables us to address only one choice: if the condition is true, do
something. If we need to have an alternative to our main case, we can use the if-else
statement. With the if-else statement, the else-branch is executed if the test on the
condition returns false.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 301

if (condition) {
// action code here
} else {
 // action code here
}

Next, let’s look at a simple if-else statement. We use the score variable in creating two
options:

var score = 500;

if (score>100) {
alert("Congrats, New Record!");
} else {
 alert("Sorry, Try Again!");
}

In Figure 7–20, we can see what happens when we run the preceding code on Safari
Mobile.

Figure 7–20. The conditional if statement in action

We can also nest the if or if-else statement, but it’s considered a good practice not to
go beyond two levels of nested statements because the code’s readability decreases.

if (condition) {
// action code here
} else {
 // action code here
 if (condition) {
 // nested code here
 }
}

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 302

If we have a Javascript code with a complex logic, instead of using a deep nested
conditional statement it’s much better to break it apart and implement it in different
functions.

Loop Statements
Often we need to execute our code multiple times, such as when we change the
background of more than one element, hide multiple elements in some specific context,
and so on. The most basic kind of loop is implemented in the while statement.

while(condition) {
 // action code here
 increment/decrement operator
}

In the while loop, we execute the body of the statement until the condition is true. The
increment/decrement operator guarantees that the while exits after a finite number of
times; otherwise, the while executes what an infinite loop.

var a = 1;

while(a<10) {
 alert(a);
 a++;
}

Another loop statement is the do-while. The do-while statement is a variant of the while
statement but with one important difference. The do-while statement always executes at
least once.

var a = 1;

do {
 alert(a);
 a++;
} while(a<10);

The do-while executes at least once so that the body of the statement comes before the
condition, meaning that the first time the body is executed and only after that the
condition is checked for the first time.

The last loop statement we examine is the for statement. The for statement takes all
the logical parts we use in the while statement and compacts them into one single line.
For this reason we can always convert a for statement into a while statement and vice
versa.

for(index variable; condition, increment/decrement) {
 // action code here
}

The following code shows an implementation of a for cycle using the same logical part
used in the while statement:

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 303

for(var i=1; i<10; i++) {
 alert(a);
}

The for statement is common in Javascript and as we have seen, it is also similar to the

while statement. Only experience tells us when a for statement is preferable to a while
statement and vice versa.

Functions
When our code gets large and complex, it’s considered a good practice to break large
Javascript elements into smaller reusable modular pieces. We do this by taking different
parts of Javascript code, wrapping them up, and giving them a name. This is the logical
approach behind creating Javascript functions.

function functionName() {
 // action doce here
}

Function is the reserved word used for creating a function. Next we choose a name
followed by parentheses. In the parentheses is the place where the function expects to
have data passed into it; in this case, the function doesn’t take any data.

After the function is declared, we can call it in our HTML code using its name as shown
in the next example.

functionName();

Writing our function code doesn’t officially tells us where we insert our Javascript code
because the Javascript engine first scans the entire code checking for functions before
running anything. Nevertheless it’s considered a good practice to define a function on
top of our Javascript file, and then call it later.

function functionName() {
 // action here
}
… … …
… … …
… … …
functionName();

A function might also have one or more parameters. These are specified in parentheses
as shown in the following example:

function functionName(parameters) {
 // action here
}

In the next example, we write a sum function that takes two parameters and returns the
sum using the alert box:

<html>
<head>
 <title>Javascript Test</title>
</head>

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 304

<body>
 <h1>Javascript Test Page</h1>
<script>
 function sum(a,b) {
 var mySum = a+b;
 alert(mySum);
 }
 sum(10,15);
</script>
</body>
</html>

In Figure 7–21, we can see the result tested using Safari Mobile.

Figure 7–21. The sum() function in action

In Javascript we are not required to return any type of value from our functions but in
case we need to send information back from a function, we can use the return reserved
word as follows:

function sum(a,b) {
var mySum = a+b;
 alert(mySum);
 return mySum;
}

Variable Scope
The concept of variable scope refers to the area in which certain variables are
accessible. Variable scope is a fundamental concept with every programming language
and involves several more concepts. A variable can have a local scope or a global
scope.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 305

A local variable has a local scope and is a variable declared in a function, meaning that
we can’t access this variable from outside the function. This kind of variable exists until
the function ends. From the other side we have a global scope where the variable is
declared at the top-level block of a scripting block, is outside any kind of function
declared inside the scripting block, and is accessible from anywhere in the document.
This kind of variable exists until the document closes.

When writing the sum function, we use the variable mySum to store the sum result. Every
variable declared in a function is a local variable, which means that it is restricted to it
and doesn’t exist outside the function itself. In this case, mySum is a local variable with a
local scope and is not visible outside the function.

var mySum;
function sum(a,b) {
mySum = a+b;
 alert(mySum);
 return mySum;
}

If we need a variable visible through the entire code, we need to declare the variable
outside the function. In this case the variable is a global variable. In the previous
example, we declare mySum outside the function, and we assign the add result in the
function’s body.

In Javascript, variable scope can be only global or local. For those who use other
programming languages, this might sound a bit strange but as we previously
mentioned, Javascript is an intentionally limited language that is focused on and
oriented to its goals: manipulating web pages.

Arrays
So far we have learned how to store a value in a variable. Sometimes we need to store
multiple values in the same object. This type of object is an array and can be declared
using one of the following two syntaxes.

var myArray = []; // shorthand declaration
var myArray = new Array(); // longhand declaration
var myArray = Array(); // longhand declaration
var myArray = Array(5); // array with 5 slots

In Javascript we can create an array with a fixed number of elements (as shown in one

of our previous examples), but in Javascript arrays are dynamic and in this language
that value is not fixed or specified.

Because arrays are objects they have properties that we can retrieve. In Table 7–42, we
can see these array properties.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 306

Table 7–42. Javascript Array Properties

 Property Description

constructor Returns the function that created the array

length Sets or returns the number of elements in an array

prototype Identical (value and type)

Because arrays are objects, they also have methods. In Javascript, we can see a
method as a function that belongs to an object. A method can be called using the
following syntax.

objectName.methodName();

In Table 7–43, we can see the methods that operate on the type of object called arrays.

Table 7–43. Javascript Array Methods

 Method Description

concat() Joins two or more arrays and returns a copy of the joined arrays

indexOf() Returns true if the array is the specified object

join() Joins the elements of an array into a string

pop() Removes the last element of an array and returns the element

push() Adds an element to the end of an array and returns the new length

reverse() Reverses the order of the elements of an array

shift() Removes the first element from an array and returns the element

slice() Selects a part of an array and returns the part

sort() Sorts the elements of an array

splice() Adds or removes elements from an array

toString() Converts an array to a string and returns the string

unshift() Adds an element to the beginning of an array and returns the new length

valueOf() Returns the primitive value of an array

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 307

Arrays are one of the most used objects in Javascript and in fact are almost everywhere,
primarily because most of them are created by the Javascript engine for dealing with
many different situations that arise. We see more on this when we work with DOM a little
later on.

Strings
To assign a string value to a variable, we need to surround our word or phrase with
quotes or double quotes. Both types of quotes are allowed; mixed up quotes, such as
those in the next example, are not allowed:

var myString = "double quoted string"; // correct syntax
var myString = "single quoted string"; // correct syntax
var myString = 'mixed quoted string"; // incorrect syntax

If we use single quotes and we want to insert a quote or a double quote in our string, we
need to use the backslash prefix in order to tell the Javascript engine to close the string.

var myString = "don’t use single quotes"; // correct syntax
var myString = 'don’t use single quotes'; // incorrect syntax
var myString = 'don\’t use single quotes'; // correct syntax

Strings can be treated as array objects (array of characters) and applied to it one of the
methods we previously saw for the arrays. For the same reason a string object has the
same properties previously seen for the array objects, which is shown in the Table 7–44.

Table 7–44. Javascript String Properties

 Property Description

constructor Returns the function that created the array

length Sets or returns the number of elements in an array

prototype Identical (value and type)

In the same way string objects have methods that operate on this type of Javascript
object. String object methods are shown in Table 7–45.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 308

Table 7–45. Javascript String Methods

 Method Description

charArt() Returns a character at the specific index

charCodeAt() Returns the Unicode of the character at the specific index

concat() Joins two or more strings and returns the joined string

fromCharCode() Converts Unicode values to characters

indexOf() Returns the position of the first found occurrence of a specified string

lastIndexOf() Returns the position of the last found occurrence of a specified string

match()
Searches for a match between a string and a regular expression and returns
the match

replace()
Searches for a match between a string and a substring (or a regular
expression) and replaces the matches substring with the new substring

search()
Searches for a match between a string and a regular expression and returns
the position of the match

slice() Extracts a part of a string and returns the part

split() Splits a string into an array of substrings

substr() Extracts the specified number of characters from a string

substring() Extracts characters from a string between two specified indices

toLowerCase() Converts a string to lowercase letters

toUpperCase() Converts a string to uppercase letters

valueOf() Returns the primitive value of a string

Remember that Javascript is case sensitive, which is important when we work with
strings.

Objects
As previously mentioned Javascript supports the concept of objects. An object can be
pictured as a container for various data and behaviors. Data are stored, for example, in
variables or arrays, whereas behaviors are represented by methods and functions.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 309

Figure 7–22. Three variables (left) and three object’s properties (right)

In Figure 7–22, we see how variables can be wrapped into a container (an object). Once
we do this, the data are one level deeper in the container object. If we need to access
data in an object, we can use the following syntax. When a variable is outside an object,
it’s called “variable” and when is in an object is called “property.”

var player = new Object(); // create a new object called "player"
player.name = "Andrea";
player.score = 500;
player.scoreRank = 1;

objectName.propertyName // generic syntax for property declaration

When we declare a Javascript object, we can also use shorthand as shown in the next
example. We declare a variable and assign a set of properties surrounded by a pair of
braces to it.

var player = { name:"Andrea", score: 500, scoreRank:1 }

In the braces we use three name value pairs to create the same object we created
previously using four different lines of code.

BOM (Browser Object Model)
The Browser Object Model (BOM) describes methods and interfaces for working with
the browser. The browser itself is an object and can be accessed from its top to the
bottom status bar by referencing the top-level object window. From the top-level object
window, we can access important information contained in other (sub) objects such as
the following:

Navigator
Contains information about the browser engine type or version.

Location
Holds the current URL displayed in the browser.

History
Contains the history list of the browser.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 310

Frames
Provides an array of the frames within the current page.

Document
Represents the current page in the browser.

Because no official standards exist for the BOM, each browser defines its own
properties and methods for these and other objects; however, the BOM provides some
de facto standards like having a window and a navigator object. Notice how the BOM
also covers the document that is also covered by the DOM creating an overlap effect.
Without going any further in this situation, we can say that in our WebApp we will always
use the DOM to access and modify document elements.

DOM (Document Object Model)
DOM stands for Document Object Model. The word “document” refers not to the entire
WebApp but just to its single webpage. The word “object” refers to the individual parts of

the documents, to all things that can be manipulated as individual pieces. In Figure 7–23,
we can see the individual objects of a page from our “The Store” use-case. A single
object can be a heading element, an entire ordered list, or a single element in the same
unordered list or even the whole document.

Figure 7–23. Developer view (right) and design view (right) over some document’s objects

The word “model” refers to the diagram that represents a webpage. This diagram is
based on a tree structure that connects the single part of a document; each single part
is a node and is represented in the example in Figure 7–24.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 311

Figure 7–24. The node structure (left) and the visual design structure (right)

A node in the diagram can have a parent represented by the node directly above itself
and can have children represented by nodes directly below. The model refers to the
page diagram structure but it’s actually just a set of terms that we can agree on and a
set of standards we can use.

This means that what we have defined so far is an agreed-upon set of terms (Model) that
describe how to interact with the single piece (Object) of a webpage (Document). The
DOM is not a language; it’s a convention and because Javascript agrees on that, it’s
available in Javascript.

DOM works in terms of nodes, and we don’t just have nodes that represent the single
document elements but we also have nodes that represent the various attributes that a
node can have. Officially in Javascript there are twelve types of nodes, but in practice we
are interested in only three of them: element, attribute, and text nodes. In Figure 7–25 we
can see the DOM of an unordered list.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 312

Figure 7–25. The code (left) and its DOM structure (right)

The important point to grasp here is that a node doesn’t contain (directly) the attribute or
the text. According to the DOM, each node relative to an element that contains some
text or attributes has a child node for the text or for the attribute.

Now we see how to work with DOM.

Compare DOM and HTML Structure
Just as we saw previously for the DOM map, the HTML document has a hierarchical tree
where the single HTML elements are the nodes of the tree. Although this is true, it’s
important to clarify that the HTML hierarchy structure is not identical to the DOM
hierarchy structure. Every HTML element has its own attributes that are not represented
in the HTML hierarchy but in order to be accessed must be represented in the DOM
node hierarchy. The following example illustrates this point

<html>
 <head>
 <title>DOM Structure Test</title>
 </head>
 <body>
 <section id="intro">
 <h1>The DOM Structure</h1>
 <p id="paragraph1">Lorem ipsum dolor sit amet</p>
 </section>
 </body>
</html>

In Figure 7–26 we can see the comparison between the HTML and the DOM structure.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 313

Figure 7–26. HTML and DOM structure comparison

Figure 7–26 also shows how HTML attributes that are not represented in the HTML
element structure are a type of special node in the DOM structure because they don’t
participate in the parent-child relationship. Nevertheless, they are still objects and
therefore accessible via Javascript call. Table 7–46 shows the most common node types
in Javascript.

Table 7–46. Most Common Node Type in Javascript.

 Node Type Node Code Description

Element 1 Represents a single HTML element

Attr 2 Represents a single node attribute

Text 3 Represents the text in an element or attribute node

Comment 8 Represents the contents of an HTML comment

Document 9 Represents the whole HTML document

DocumentType 10 Represents the attributes of a DTD

Document Fragment 11 Represents a (temporary) fragment of HTML document

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 314

Working with DOM
The DOM works in terms of nodes, so for us the main question is: how can we grab one
of these nodes? The key consideration is whether the node is unique or not and
therefore whether or not it has an ID. If the element we are after has a unique ID, we can
use what’s probably the most important method of the DOM:

document.getElementById("elementId");

The way we use this method is to combine it with a variable declaration that stores the
returned element as shown in the next example.

var myElement = document.getElementById("edgeMenu");

In this case the method returns the unordered list used for the previous example in
Figure 7–26. In Table 7–47 we can see three of the most useful methods defined by the
DOM.

Table 7–47. Javascript Most Used Methods

 Property Description

getElementById() Returns the fist element with the specified id

getElementsByName() Returns the fist element with the specified name

getElementsByTagName() Returns the fist element with the specified tagname

If we use the getElementByTagName(), we can grab a set of elements with just one
method call. In this situation, Javascript creates an array and inserts all the returned
elements. The syntax for the getElementByTagName() is the following, and this code
returns all the elements in the documents.

var myListElements = document.getElementsByTagName("li");
myListElements[3]; // return the fourth links in position three inside the array

In our example we use the getElementById and getElelmentsByTagName methods on
the document object, but we use them on all the document’s objects. In the next
example we don’t want all the links in the document but only the links in a specific
menu.

var myEdgeMenu = document.getElementsById("edgeMenu");
var edgeMenuLinks = myEdgeMenu.getElementsByTagName("li");

First, we grab the edgeMenu element using its ID and then call the
getElementsByTagName() on this node. The result is that the method returns only the
elements of the edgeMenu.

The next question is: what can we do if we want to not just simply grab a node, but also
change it? When we write HTML code we can change an element modifying its attribute
or attributes, sometimes even adding one or more attributes. Examples are changing the
src attribute of an image or a link in the heading or some other attributes in a <div> or a
list.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 315

Once we grab an element we can use two different types of elements to achieve our

goal: one for getting an attribute and one for setting an attribute. In Table 7–48 we can
see these methods.

Table 7–48. Javascript Setter and Getter Attribute Methods

 Property Description

getAttribute() Returns the specified attribute name

setAttribute() Sets the specified attribute name at the specified attribute value

When we want to get an attribute, we pass the name of the attribute to the method in
string format surrounded by double quotes. When we want to set an attribute we pass
the name of the attribute and the value of the attribute, always in string format
surrounded by double quotes. The syntax is the following:

elementName.getAttribute("align");
elementName.setAttribute("align", "left");

So far we have changed only the attribute of an element but sometimes we might need
to change not only the attribute, but also the content of an element. The best way is by
creating it manually and inserting individual DOM nodes in the document, which
changes the page on the fly. The process requires two steps:

1. Create the element.

2. Add the element to the document.

In the next example, we add an entry to our edgeMenu or in other words we add a
element to the unordered list that we used for our menu.

var newEdgeMenuElement = document.createElement("li");
edgeMenu.appendChild(newEdgeMenuElement);

After we create and append a new node to the edgeMenu, we might need to add text to
it. We can do this using the following syntax:

var newMenuText = document.createTextNode("Watch TV Ads");
newEdgeMenuElement.appendChild(newMenuText);

So far we used two new methods to create nodes, and in Table 7–49 we can see some
useful methods for manipulating the DOM tree structure.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 316

Table 7–49. Javascript Methods to Manipulate the DOM Structure

 Property Description

appendChild() Adds a node at the end of the list of childer node

cloneNode() Clones a node

compareDocumentPosition() Compares the document position of two nodes

hasAttributes() Returns true if the node has any attributes

hasChildNodes() Returns true if the node has any childs nodes

insertBefore() Inserts a child before an existing child node

isEqualNode() Checks whether two nodes are equal

isSameNode() Checks whether two nodes are the same nodes

removeChild() Removes a child node

replaceChild() Replaces a child node

Now we insert the same new item into our edgeMenu but this time between the first and
the second elements instead of at the end as we did in the previous example.

var newEdgeMenuElement = document.createElement("li");
var secondMenuItem = edgeMenu.getElementsByTagName("li") [1];
edgeMenu.insertBefore(newEdgeMenuElement, seconfItem);

The first step uses the same code we used in the previous example, so we start by
creating the new element. In the second step we grab the second element in
the edgeMenu using the getElementByTagName method, because the element doesn’t
have an ID and we specified the [1] second position in the edgeMenu structure. In the
third step we use the insertBefore method that inserts the new before the second
element in the edgeMenu.

Some Javascript Best Practices
Generally speaking a program language has many rules that a developer must to follow
to write complain code. These rules specify what you must write to create a valid code.
When we approach the best practice, we switch from what we must write to what we
should write in order to create high quality code. Essentially, best practice aims to
achieve clarity, readability, and meaning.

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 317

Name convention
A name for a variable, a function, or an object should be meaningful and should be in
camelcase with the first letter in lowercase. The object’s name should start with an
uppercase letter.

Brace style
The dominant style in Javascript is the most traditional brace style from C-based
languages. If we have an if or a while statement, the curly braces opens on the same line
as the keyword (if, while, and so on), and the code is indented in the block and closed
curly braced in a line by itself.

Function declaration
When we declare a function, we should always define it before any attempt to call it and
we always should use curly braces to define a block even if there is only one statement
after the keyword (if, while, and so on).

Syntax
Always use semicolons to end of a statement and always use the keyword “var” when
declaring a variable.

For more information on this subject, use a search engine and search for Javascript
style guidelines. There are guidelines written by individuals from Mozilla, Yahoo, and
Google.

Resource on Web Standards
In Table 7–50, we have the official resource about the three web standards presented in
this chapter. If you are new to one or more of these technologies, continue to build your
web standard foundations using the following official sources.

Table 7–50. Tools Used to Design iPhone and iPad User Interfaces

 Name URL

HTML5 http://dev.w3.org/html5/spec/

CSS3 www.w3.org/TR/CSS/

Javascript https://developer.mozilla.org/en/JavascriptJavascript

http://dev.w3.org/html5/spec/
http://www.w3.org/TR/CSS/
https://developer.mozilla.org/en/JavascriptJavascript

CHAPTER 7: Web Standards for WebKit: Maximizing Mobile Safari 318

Summary
This chapter discussed web standards. In the first part we introduced HTML5, the web
standard that structures all our web site and web applications. We introduced the new
markup tags and focused our attention on its new semantic-oriented approach. We also
analyzed the new HTML5 media tags such as <audio>, <video>, and <canvas> tags.

In the second part we presented the new CSS3 properties that enable us to emulate the
native iOS environment in a simple and better way compared with the old CSS2
specification.

In the third and final part we worked on Javascript, viewing its implementation and
working on its foundations.

In the next chapters, we use this knowledge to put our hands on and expand the iPhone
and iPad HTML5, CSS3, and Javascript frameworks.

319

 Chapter

Native iOS Environment
Development

My goal wasn’t to die the richest man in the cemetery.
It was to go to bed at night saying, we’ve done something wonderful.

—Steve Jobs

In this chapter, we will see how to work in an iOS environment, how to emulate it in our

WebApp, and how to optimize its use.

First, we will set up an environment for testing our work on a local network. Next, we will

introduce a viewport and see how we can optimize it for developing full-screen

WebApps. We will explain how to create a springboard icon, as in native applications,

and how to customize a startup image.

We will specify the JavaScript code for redirecting a user from a desktop to our iPhone

WebApp and from our iPhone WebApp to a desktop, and explain how to emulate native

link and design element behavior once a user has approached our WebApp.

We will also see how to interact with iPhone features, such as phone, mail, and GPS,

and how to handle user gesture interaction and device orientation change.

Setting up the Environment
Before placing a WebApp on a public, live web server, it is better to work in a private

environment, using a server on a desktop computer. This configuration will make the

development and testing phases easier.

8

CHAPTER 8: Native iOS Environment Development 320

In order to do this, we need to perform the following steps:

1. Create a folder in: /user/UserName/Sites/MySharedFolder

2. Go to System Preferences Sharing

3. Enable the service Web Sharing

NOTE: The iPhone or the iPad and the desktop computer must be connected to the same Wi-Fi

network in order to establish a connection using the local URL address.

From this point on, we will save everything in this local folder and will access it using the

local URL: http://desktopIPaddress/~folderName.

Figure 8–1. The Sharing box preferences.

Figure 8–1 shows the Sharing box with the service to enable and the IP address to use.

The IP address shown in Figure 8–1 is related to my desktop computer; yours will have

the same structure but will be slightly different.

Once the network environment is set, an HTML5-compliant editor is needed.

Unfortunately, not every editor currently available is compatible with HTML5 syntax; be

sure to check HTML5 compatibility before starting your project.

CHAPTER 8: Native iOS Environment Development 321

Defining Viewport
The viewport is the rectangular area that the user sees when looking at the iPhone or

iPad display, and represents an important concept in the world of web design. The

viewport dimensions are defined by two values: device-width and device-height. As we

learned in previous chapters, different models of the iPhone have different display

resolutions; nevertheless device-width and device-height values are set by default at the

same value for all iPhone models. In both portrait and landscape modes, there will

always be a 320 480 px viewport area. This approach ensures that, even with double-

pixel resolution, the ratio between viewport elements remains unchanged, as shown in

Figure 8–2, ensuring that existing iPhone WebApps continue to function as expected.

<meta name="viewport" content="width=640"/>

Even if it’s not indicated by the code just shown, you can still have “full 100% real

pixels” on Retina display devices.

Figure 8–2. The iPhone viewport and its sections in non-WebApp (left) and WebApp mode (right).

The default value for the viewport is set to a width of 980 px; this value is the reason a

compatible WebApp with a fixed-width structure should be set as 980 px wide. In

addition, when the viewport tag is not present, Safari loads the page as a 980 px-wide

page and shrinks it to the viewport. This is equal to the following viewport metatag

declaration:

<meta name="viewport" content="width=980; user-scalable=1;"/>

Having a 980 px default value means that the old iPhone models will scale down this

value by a factor of approximately 3.06:1 or 2.04:1, while the iPhone4 will scale down by

a factor of 2.04:1 or 1.02:1. Furthermore, the best option for iPhone and iPad web

CHAPTER 8: Native iOS Environment Development 322

designers and developers is using the viewport metatag for letting the web page fit the

width of the device; the viewport metatag properties can be seen in Table 8–1.

In order to achieve this, a constant called device-width needs to be used. The following

example shows a typical viewport metatag for a WebApp with two meta-keys: name and

content.

<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=no;"/>

This meta-key content has multiple properties separated by a comma. The constant

device-width refers to the width of the device that browses the page. This means that

the value will change from device to device, as shown in the following example:

width=768 (device-width in px for iPad on)

width=480 (device-width in px for iPhone4 on)

width=320 (device-width in px for iPhone 2G, 2G, 3GS)

You can also decide to match the device height instead of its width using the constant

device-height.

The other property, initial-scale, sets the initial zoom on the web page once it is loaded.

The default value of 1 sets the page to the iPhone display resolution.

The last property, user-scalable, sets the capability for the user to zoom in or out using a

pinch gesture on the screen. When it is set to no, no zooming is allowed. The user

scalability property should be set to no for every native iPhone and iPad WebApp, while

it should be set to yes on iPad-compatible projects.

Table 8–1. Viewport Metatag Properties.

 Name Default Value Min Value Max Value

width 980 200 10000

height Calculated 223 10000

initial-scale Fit to Screen Minimum Scale Maximum Scale

user-scalable Yes - - - - - -

minimum-scale 0.25 >0 10

maximum-scale 1.6 >0 10

As a final note, remember that the viewport metatag will not in any way affect the

rendering of desktop web pages.

CHAPTER 8: Native iOS Environment Development 323

Full-Screen Mode Application
The first and major aesthetic difference between a native application and a WebApp is

the presence of the Safari URL bar in the latter. Working with Safari and its engine,

WebKit, provides a measure of control over this situation.

Figure 8–3. Comparison between a native application (left) and a WebApp (right) in non-WebApp mode.

Using the apple-mobile-web-app-capable metatag, you can specify the browser to hide

the URL bar, thus providing a native-like look and feel to the user.

<meta name="apple-mobile-web-app-capable" content="yes" />

The full-screen mode will work only if the web page is launched from a link in the

springboard. We will see how to add a web page to the iPhone or iPad springboard in

the next section.

The iPhone and iPad status bar is fixed, and we are unable to hide it. Despite that fact,

we can change how it looks using the following metatag:

<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />

Table 8–2. AppleMobileWebAppStatusBarStyle Content Meta-key Properties.

 Name Description

default (gray) Set the default (gray) background.

Content is displayed below the status bar.

black Set a black background.

Content is displayed below the status bar.

black-translucent Set a black translucent background.

Content is displayed on the entire screen partially obscured.

CHAPTER 8: Native iOS Environment Development 324

This metatag works only if the full-screen mode metatag is previously declared;

otherwise it will be ignored by the browser. The best approach is always to choose the

Status Bar style according to the application color palette, but if you want to increase

the visible area, the only option is to use the black-translucent version. The default

Status Bar style in the springboard is set to black-translucent from iOS4 onwards.

Adding the Springboard Icon
The second difference between a native application and a WebApp is that a native

application is launched from the home screen, also known as a springboard. We can

replicate this sort of native pattern by designing a customized icon and adding a web

page shortcut to the springboard, and then launch the page directly from there.

The customized springboard icon has some specific characteristics; some are a “must,”

while others are just a “should,” and can be considered best practices.

 Measure: 57 57 px (iPhone 2G, 3G, 3GS) (required)

 Measure: 114 114 px (iPhone 4 on) (required)

 Measure: 72 72 px (iPad, iPad2) (required)

 Corners: 90 Degree

 Style: No Shine or Gloss

 Name: apple-touch-icon.png

 Name: apple-touch-icon-precomposed.png

 Format: Portable Network Graphic (PNG) (required)

 Location: Root Directory (required)

If we want to prevent Safari from adding effects like gloss and shine to our icon, we

need to use the name apple-touch-icon-precomposed.png.

When the custom image is ready, we can link it to the web page using the following

metatag:

<link rel="apple-touch-icon" href="/apple-touch-icon.png"/>

Even if, in theory, it’s possible to use different springboard icons for different pages, it is

strongly recommended that you use only one image for all your web pages—one

WebApp, one springboard icon.

CHAPTER 8: Native iOS Environment Development 325

Figure 8–4. Adding a springboard (home screen) icon.

Users can add the springboard icon to their iPhone or iPad home screens using the plus

button “+” in the Safari bottom bar and then clicking the “Add to Home Screen” button,

as shown in Figure 8–4.

Application Startup Image
A web site, and even more often a WebApp, takes several seconds to load completely.

We can cover this delay using a startup image, also known as a splash screen, which is

displayed while the web page is loading.

Figure 8–5. WebApp startup image in action.

CHAPTER 8: Native iOS Environment Development 326

This kind of image must have some specific dimensions based on the principle that we

need to cut off from the image the 20 px of space used by the status bar. The startup

image is typically a portrait image, is in PNG format, and has exactly the following

measurements:

 320 460 px (iPhone 2G, 3G, 3GS)

 480 940 px (iPhone4 on)

 768 1004 px (iPad, iPad2)

Once we have our startup image, we need to link it using the following metatag:

<link rel="apple-touch-startup-image" href="/startup-image.png">

As for the springboard icon, if we link it using the metatag, the startup image does not

need to be placed in the root directory; however, this is considered best practice.

Application Redirecting
When we develop a native-like WebApp for iOS, we need to keep in mind that this

optimized mobile version is, most of time, not the first choice in terms of availability for

the user.

The first thing that will happen in 99% of cases when a user comes to your index web

page is that the web server sends the web client the standard desktop version. In

addition, we need to know when a user is browsing from a mobile device in order to

redirect him to the specific mobile version of our content.

We can achieve this using one of two techniques: JavaScript or CSS. These are not the

only solutions available; we can achieve the same result very efficiently from the server

(Apache or PHP, for instance), but in this text we are focusing on web standards in a

broader sense. For this reason, we will show only HTML, CSS, and JavaScript solutions.

I recommend that you use JavaScript code for your project, but it’s also important to

remember that in some other cases, CSS detection via media query can be helpful.

<link rel="stylesheet" media="all and (max-device-width: 480px)" href="iphone.css">
<link rel="stylesheet" media="all and (min-device-width: 481px) and (max-device-width:
1024px) and (orientation:portrait)" href="ipad-portrait.css">
<link rel="stylesheet" media="all and (min-device-width: 481px) and (max-device-width:
1024px) and (orientation:landscape)" href="ipad-landscape.css">
<link rel="stylesheet" media="all and (min-device-width: 1025px)" href="ipad-
landscape.css">

In this example, we used three CSS files—one for iPhone, and two for iPad. We also used

the ipad-landscape.css file for desktop machines, with a minimum width of 1025 px.

Assuming that we developed a compatible version for our project for both desktop and

iPad users, the following code will be used in the compatible index web page for

redirecting the iPhone user to the iPhone native-like version.

<script type="text/javascript">

CHAPTER 8: Native iOS Environment Development 327

 if ((navigator.userAgent.indexOf('iPhone') != -1) ||
(navigator.userAgent.indexOf('iPod') != -1) ||
(navigator.userAgent.indexOf('iPad') != -1))
 {
 document.location = "http://www.iphone.store.com/";
 }
</script>

The JavaScript code will do a test on the device “user agent,” detecting both iPhone

and iPod users. We also need to ensure that an iPad or desktop user will not

accidentally browse to the iPhone version, so we need to detect these users employing

another small JavaScript code, but this time on the iPhone web page.

<script language="javascript" type="text/javascript">
 if((navigator.userAgent.match(/Macintosh/i)) ||
 (navigator.userAgent.match(/Windows/i)) ||
 (navigator.userAgent.match(/Linux/i)))
 {
 location.replace("http://www.store.com/");
 }
</script>

This time, the JavaScript code will detect the Macintosh, Linux, and Windows “user

agent” and will redirect these desktop users to their specific version.

Figure 8–6. WebApp redirecting in action: From desktop to mobile (iPhone) version.

Setting up the Head Section
All the code developed so far is to be inserted into the <head> of our web page. Now it’s

time to take a bird’s eye view of the entire <head> section. The following code is the

<head> of the Apple Store use case based on iWebKit 5.0.4.

http://www.iphone.store.com/
http://www.store.com/

CHAPTER 8: Native iOS Environment Development 328

<head>
<meta charset="utf-8">
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="viewport" content="minimum-scale=1.0, maximum-scale=0.6667,É
 width=device-width, user-scalable=no" />
<meta name="description" content="The Store iPhone Use Case" />
<link rel="apple-touch-startup-image" href="pics/startup-image.png" />
<link rel="apple-touch-icon" href="/apple-touch-icon.png" />
<link rel="stylesheet" type="text/css" media="screen" href="css/style.css" />
<script type="text/javascript" src="javascript/functions.js"></script>
<title>The Store</title>
<script language="javascript" type="text/javascript">
 if((navigator.userAgent.match(/iPhone/i)) ||
 (navigator.userAgent.match(/iPod/i)) ||
 (navigator.userAgent.indexOf('iPad') != -1)))
 {
 location.replace("http://www.iphone.apple.com/");
 }
</script>
</head>

The <head> code intentionally doesn’t contain any type of SEO metatags because we

will introduce this subject in Chapter 10. Now, we will jump to the <body> section of our

web page; in the next section, we’ll see how to interact with the native services provided

by the Apple mobile device.

Native Link Emulation
The default Safari mobile behavior provides a transparent highlight color as an active

state to every link that has been clicked. When designing a web site, this feature could

be useful, but when working on a WebApp with, presumably, many well-designed

buttons, this feature would not be visually appealing. We can override this default Safari

behavior using the following CSS rule:

* {
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

The syntax of this CSS rule uses the “*” symbol in order to attach it to all the active

design elements. We include the RGBA code for using the alpha channel and specify a

total transparent color for the element.

Native Text Emulation
A handy feature on Safari is that it is able to resize text automatically and reformat it for

use on a small screen. By default, iOS overwrites the site’s font size to allow the text to be

read without any problems when the user zooms over a paragraph. When designing a

native-like WebApp, we don’t need this feature and can disable it with the following rule:

* {
 -webkit-text-size-adjust: none;
}

http://www.iphone.apple.com/

CHAPTER 8: Native iOS Environment Development 329

A native-like WebApp is designed for use on the iPhone and does not need any help

from Safari to make it more readable.

Native Element Emulation
The copy and paste feature is useful while browsing a web site but, as for the active link

state, it is less useful with a WebApp. This feature remains active on all the design

elements, making even the header bar of your web page selectable. The following CSS

rule creates a more comfortable and native-like environment for the user.

* {
 -webkit-user-select: none;
}

.copiable {
 -webkit-user-select: text;
}

For this purpose, two different CSS rules can be used for disabling the copy and paste

feature on all the design elements and texts, using another rule for creating a CSS class

that targets only some specific cases where the copy and paste feature can actually be

useful. The implementation of this rule depends on the kind of content provided; if we

have a lot of “copiable” text, it can sometimes be useful to reverse the rule.

Figure 8–7. Native design element emulation: Unwanted copy and paste feature in action.

Another feature that is useful to disable when we work on a WebApp is the default Safari

callout behavior. Every time the user touches and holds an element such as a link, the

browser displays a callout containing information about the link, such as opening it in

another window. We can disable the callout behavior using the following CSS rule:

* {
 -webkit-touch-callout: none;
}

CHAPTER 8: Native iOS Environment Development 330

We want to prevent this behavior because links used in a WebApp are typically

dedicated to internal navigation, and we want to prevent the user from using it and going

outside it. If this rule is set to none, the user can hold any link or image as long as he/she

wants without getting the default Safari behavior.

Native Scrolling Emulation
One of the most important features available from iOS5 (beta2) is support for the new

CSS rule for overflow-scrolling. Until now, there was a noticeable difference in

momentum between scrolling a native app and scrolling a native-like WebApp. This

behavior was an obstacle for those who wanted to emulate the native look-and-feel of

iOS applications.

This new rule provides a native way to scroll content inside a fixed size (width and

height) HTML element—for instance, the main <div>—and to reduce or eliminate the

GPU overhead caused by the implementation of custom scrolling. An implementation of

this rule follows:

.scrollableElement
{
 overflow-y: scroll;
 -webkit-overflow-scrolling: touch;
}

The position—fixed and overflow—scroll rules will change the way layouts are designed

on iPhone, taking another important step forward in the native look-and-feel emulation

process.

Native iOS Service Interaction
Service interaction is one of the drawbacks of developing web applications instead of

native applications. Previously, we introduced the pros and cons of this choice; in this

section, we will focus only on what we can do and how we can achieve it.

A WebApp is able to interact with the most important, and most used, services provided

by iOS: Phone, Mail, SMS, and Maps. This type of user interaction is made using the

<a> tag, as with every other ordinary link in our web page, and has the following

structure:

linkName

In the next section, we will see how to implement these special types of links for adding

an extra level of interaction to our WebApp.

The Phone Application
We can add a link to the Phone application using the following link syntax:

Call 1–305-555–5555

CHAPTER 8: Native iOS Environment Development 331

Using this syntax, Safari will automatically create a phone link on your web page. If the

Phone application is not installed on the device, as in the iPad and iPod, we will get a

warning message when touching this type of link.

Another good practice is to check the iPhone agent in order to prevent this type of error.

Checking the iPhone agent filters access to the service, allowing only iPhone users with

phone capability. The following code performs this type of check using the JavaScript

“onclick” event handler:

<a href="tel:1–305-555–5555" onclick="return (navigator.userAgent.indexOf('iPhone')É
 != -1)">1–305-555–5555

iOS provides only partial support to the RFC 2086 protocol. This means that if the

number contains special characters like “*” or “#”, the device will not attempt to call the

number. This happens because iOS, for security reasons, doesn’t implement all the

special characters in the tel scheme.

iOS number detection is on by default; sometimes you don’t want some numbers to be

interpreted as phone numbers. In this case, switch off the iOS number detection, adding

the following metatag in the <head> section, telling the iPhone to ignore it.

<meta name ="format-detection" content ="telephone=no">

It’s important to note that if a phone number is inside an <a> link, it will continue to be

displayed as a phone link.

The Mail Application
You can add a link to the Mail application using the following link syntax:

Andrea Picchi

Safari will automatically create a link to the Mail application that will be opened in a new

window. You can also embed text directly in the e-mail form that will be opened by the

link using the following syntax:

<a href="mailto:info@andreapicchi.it?subject=Book%20Feedback&body=É
Keep%20Up%20the%20Good%20Work!">Send a Feedback to Andrea Picchi

The iOS implements the mailto scheme specified in the RFC 236 and allows you to use

some optional mailto attributes, as shown in Table 8–3.

Table 8–3. Optional Mailto Attributes Supported by iOS.

 Name Syntax

Body Message body=messageText

Subject Message subject=subjectText

Multiple Recipients mailto=emailAddress1,emailAddress2,emailAddressN

CC Recipient cc=emailAddress

BCC Recipient bcc=emailAddress

mailto:info@andreapicchi.it

CHAPTER 8: Native iOS Environment Development 332

As you can see from the last code example, the HTTP convention says to use the “?”

character (?subject=...) for the first attribute and use the “&” for the other follower

attributes (&body=...).

The SMS Application
We can add a link to the SMS application using the following link syntax:

1–305-555–5555

The sms scheme will tell Safari to open the SMS application. Unlike the Mail application,

with the sms scheme, we can’t add text.

The target phone number is an optional parameter, and if we just want to open the SMS

application with a blank page, we can use the following syntax:

Launch the SMS Application

As for the Phone application, if the SMS application is not installed on the device, as in

the case of the iPad and iPod, we will get a warning message when touching this type of

link.

<a href="sms:1–305-555–5555" onclick="return (navigator.userAgent.indexOf('iPhone')É
 != -1)">1–305-555–5555

The preceding code performs the same agent check used with the tel protocol in order

to prevent iPod users from accessing a baseband-based service.

The Maps Application
You can add a link to the Maps application using the following link syntax:

Cupertino

The Maps application doesn’t have its own maps scheme, and the map link is specified

using a regular HTTP protocol syntax. Safari reroutes the HTTP request to the Google

map server at maps.google.com and then opens its HTTP response using the Maps

application.

As with the Mail application, we can combine parameters to provide more information to

the Maps application using the “?” character. The following example shows my office in

Tuscany, Italy:

<a href="http://maps.google.com/maps?q=via+dell+olmo+50,É
+livorno,+italy+(Andrea+Picchi's+Office)&t=h&z=7">Andrea Picchi's Office

The “+” character is used for passing the application a phrase composed of multiple words,

while the rounded parentheses are used for creating a label. The “t” parameter is used for

specifying a hybrid map with the “h” value, and the “z” setting the zoom level at 7.

The Google Maps application has a long list of parameters, but the Maps application

doesn’t support them all. The Google Maps parameters supported by iOS are shown in

Table 8–4.

http://maps.google.com/maps?q=cupertino
http://maps.google.com/maps?q=via+dell+olmo+50

CHAPTER 8: Native iOS Environment Development 333

Figure 8–8. The Maps application: Cupertino, CA, USA.

Table 8–4. Google Maps Application Parameters Supported by iOS (Alphabetical Order)*.

 Name Description

cid= Custom ID used by Google for identifying businesses

daddr= Destination address used with driving directions

latlng= Custom ID used by Google for identifying businesses

ll=
Latitude and longitude points for the map center point; must be in decimal format

and comma-separated

near= Location part of the query

q= Query parameter

saddr= Source address used with driving directions

sll= Latitude and longitude points for a business search

spn= Approximate latitude and longitude span

sspn= Custom longitude and latitude span used by Google

t= Type of map to display

z= Zoom level

*Complete list of parameter values at http://mapki.com/wiki/Google_Map_Parameters

http://mapki.com/wiki/Google_Map_Parameters

CHAPTER 8: Native iOS Environment Development 334

Touch Events and Gesture Interactions
Previously, we saw that a mouse pointer is not a finger and how different it is to design

for fingers instead of a mouse pointer. Here, we need to do another paradigm switch,

exactly as we did for the pointing concept.

Users employ gestures for browsing web pages and emulate behaviors that they

formerly used with a mouse. For this reason, finger actions and gestures have to

emulate mouse events. Before the touch era, every event on a web page was triggered

only by a mouse movement; button rollover, drop-down menus, and simple links are just

a few examples of this type of interaction.

However, the flow of events generated by finger actions is not the same as that

generated by a mouse pointer, and a finger event flow is generated by one or more

finger touches, depending on whether the selected element is touchable, non-touchable,

or scrollable.

NOTE: Whenever we use the word “touchable,” we refer to a “clickable” design element like a
link, a drop-down menu, or whatever element triggers a standard mouse event inside the web

page structure.

If a finger touches a non-touchable design element, events are generated or added to

the gesture event flow. For this reason, when designing for iOS, we need to switch from

a “mouse-oriented design paradigm” to a more appropriate “touchable-oriented design

paradigm.”

Touch Event Paradigm: Touch Is Not a Click
A touchable element is defined by a design element associated with an event handler.

Using the mouse-based web paradigm, we could define it as a clickable element.

Single-finger user actions, two-finger user actions, and more complex gestures are built

on top of the WebKit engine used by Safari Mobile. The WebKit engine plays a major

role in this game, providing touch support similar to the gesture support built into the

native iOS SDK. These types of events are triggered by the user every time his finger or

fingers touch the capacitive display of an iOS-based device.

The single- and multi-touch events emulate classic mouse navigation, triggering mouse-

related events, while gesture events are captured in addition to the mouse-emulating

events, providing an extra level of interaction and possibilities. The WebKit engine and

the capacitive display support three types of events:

 Single-touch events: Composed of one single touch at a time on the capacitive

display, this type of event is comparable to 99% of mouse-based actions. We

will see these events in Table 8–5.

CHAPTER 8: Native iOS Environment Development 335

 Multi-touch events: Composed of two or more simultaneous touches on

different parts of the display. We will see these events in Table 8–6.

 Gesture events: Composed of one or more touch events plus a specific

movement of the finger or fingers on the capacitive display; gesture events are

implementable using seven DOM (Document Object Model) event classes,

which are shown in Table 8–7.

Single-touch Events
All the basic and browsing-related mouse events are typically triggered by one or two

finger touches and are listed in Tables 8–5 and 8–6.

Table 8–5. Standard DOM Event Classes for Recognizing iOS Single-finger Touch-based Events.

 Description Finger Gesture Mouse Event

User touches a non-touchable element Single touch (None)

User touches a non-touchable element

and an info bubble appears

Single touch (None)

User touches a scrollable element

and pans the display

Single touch onscroll

User touches a touchable element Single touch mouseover

mousemove

mouseout

User touches a touchable element

and the content changes

Single touch mouseover

mousemove

mouseout

mousedown

mouseup

click

User touches and holds a touchable element Single touch (None)

User zooms in or out on a design element Double touch onscroll

Three of the five single-finger touch actions represented in Table 8–5 are visually

represented using flow charts in Figure 8–9.

CHAPTER 8: Native iOS Environment Development 336

Figure 8–9. Comparing overtime single-finger actions (flowcharts from official Safari reference).

Multi-touch Events
In contrast, there are two-finger touch events, not as often used in a browsing session,

but equally important in order to provide a solid level of user experience. Table 8–6

shows the two-finger touch events.

Table 8–6. Standard DOM Event Classes for Recognizing iOS Two-finger Touch-based Events.

 Description Finger Gesture Mouse Event

User pinches a design element in or out Double (separate) touch (None)

User touches a non-scrollable element

and pans the display
Double (separate) touch mousewheel

User touches a scrollable element

and pans the display
Double (separate) touch onscroll

Two of the three two-finger touch actions represented in Table 8–6 are visually

represented using flow charts in Figure 8–10.

CHAPTER 8: Native iOS Environment Development 337

Figure 8–10. Comparing overtime two-finger actions (flowcharts from official Safari reference).

Gesture Events
A gesture could be composed of single- or multi-finger movements on the display. The

single- and multi-touch actions seen so far are more related to mouse events and

emulate the standard mouse-oriented browsing session. Besides the great increase in

user experience, this is just one side of the touch era—the retrocompatible one. What

really makes the difference is the gesture support provided by Safari and Apple iOS and

offered by the iPhone 3.5-inch and the iPad 9.7-inch capacitive display.

Table 8–7. Standard DOM Event Classes for Recognizing iOS Gesture Touch-based Events.

 Name Description

touchstart When a finger touches the display

touchmove When a finger moves across the display

touchend When a finger leaves the display

touchcancel When the system cancels a touch event

gesturestart When two or more fingers touch the display

gesturechange When two or more fingers move during a gesture on the display

gestureend When one or no finger touches the display touches the display

A gesture is composed of one or more finger movements, and a gesture event is a

collection of touches triggered by these single or multiple finger movements. Table 8–7

shows the touch and gesture events involved in this context.

CHAPTER 8: Native iOS Environment Development 338

In order to use touch or gesture events, we need to convert them into individual

touches. This can be achieved using the object properties of every event. Every event is

an object and every object has properties. Using the properties of the object shown in

Table 8–8, we can reach every single touch inside a gesture event.

Table 8–8. Event Object Properties: Accessing Single-Touch Objects Inside a Gesture Event Flow.

 Name Description

touches Array with all the touches on a web page

changedTouches Array with the recent changed touches on a web page

targetTouches Array with all the current touches for a design element

target The design element that generated the touch event

Because event objects produce standard arrays, we can use JavaScript array functions

and syntax to access these properties. This means that if we want the array with all the

touch objects on the web page, we can use the following JavaScript syntax:

event.touches;

If we want to access the first touch object on the web page, we can use the following

JavaScript syntax:

event.touches[0];

We know that we need to access single-touch objects for manipulating gesture events,

but what next? Just as every event object has its properties, every touch object has its

own properties.

Table 8–9. Touch Object Properties: Accessing Single-touch Properties Inside a Touch Object.

 Name Description

identifier Unique identifying number for the touch event

clientX X coordinates of the touch object relative to the viewport

clientY Y coordinates of the touch object relative to the viewport

screenX X coordinates of the touch object relative to the screen

screenY Y coordinates of the touch object relative to the screen

pageX X coordinates of the touch object relative to the web page

pageY Y coordinates of the touch object relative to the web page

scale Multiplier of the default (1.0) pinch in or out value

rotate Finger rotation value of a gesture

CHAPTER 8: Native iOS Environment Development 339

In this case, if we want to know the exact coordinates of the first touch object on the

web page, we can use the following JavaScript syntax:

event.touches[0].pageX;
event.touches[0].pageY;

Once we access a single-touch object, we can use its properties, shown in Table 8–9,

for creating every type of gesture interaction.

Combining JavaScript code and CSS properties, we can create custom touch handling

support. Every time we write custom touch handling support, a good practice is to

disable the default Safari behavior. This will be the subject of the next section.

Native and Customized Touch Event Handler
In the previous section, we saw that the most used event inside a typical browsing

session is the event related to mouse behavior emulation. Some of these well-known

activities are one-finger panning, zoom pinching and unpinching, and touch-and-hold.

We also said that most of the DOM events supported by Safari Mobile and related to

this type of activity are natively handled by the Apple iOS and are provided for free.

Besides these natively supported events, sometimes a project requires a way to

customize multi-touch and gesture events. In this case, we can turn off the default Safari

behavior, giving the developer the opportunity to implement his fancy touch and gesture

support. For example, to prevent scrolling on an element in iOS 2.0, implement the

touchmove and touchstart event handlers as follows:

function touchMove(event)
 {
 // prevent scrolling on this element
 event.preventDefault();

… … …
 }

Similarly, we can prevent pinch open and pinch close gestures, implementing

gesturestart and gesturechange event handlers as follows:

function gestureChange(event)
 {
 // disable browser zoom in and out
 event.preventDefault();

… … …
 }

If we implement the function for the touchmove and touchstart event handlers, we will

prevent scrolling in our WebApp, while if we implement it for gesturestart and

gesturechange, we will prevent both open and close pinching.

CHAPTER 8: Native iOS Environment Development 340

Create Touchable Design Elements
A touch event flow is a collection of single touches, and we know that a design element

must be touchable to join this flow during a gesture action. What if we want to interact

with a design element that Safari doesn’t consider touchable?

Element Name

Paying the price of adding a non-semantic element to the code, we can

transform a non-touchable element into a touchable element by adding an empty click

handler to the element, as shown in the preceding code. If the element is inside a

semantic HTML5 tag, we can use it instead of a semantic-empty element. The

following example shows how to register handlers for gesture events inside a generic

<div> element:

<div
ongesturestart="gestureStart(event);"
ongesturechange="gestureChange(event);"
ongestureend="gestureEnd(event);"
>
</div>

After registering the handler in the HTML5 code, we can implement our handler using

JavaScript and the following syntax:

function gestureStart(event) {
 /* Handler Javascript Code Here */
}

function gestureChange(event) {
 /* Handler Javascript Code Here */
}

function gestureEnd(event) {
 /* Handler Javascript Code Here */
}

In the next section, we will see a special type of gesture event; a gesture that doesn’t

interact with the capacitive display but with the whole device. This gesture is the well-

known and widely used device orientation change.

Orientation Change Event
With the iPhone, and even more with the iPad, users change the orientation of their

devices constantly according to their needs. Using a framework for a WebApp, we can

rely on it for orientation change support. Every time the user changes device orientation,

the framework handles it and changes the layout for us. In addition, for a solid

developer, it is important to know what’s behind the scenes and how to change or add

custom behaviors for a specific project requirement.

We can see the device orientation change as a special type of gesture where the user

interacts with his/her whole hand on the whole device. The orientationchange event is

CHAPTER 8: Native iOS Environment Development 341

measured via hardware by the accelerometer. Besides notifying that an orientation

change has occurred, iOS also maintains a special “orientation” property in the window

object with the four values shown in Table 8–10.

Table 8–10. The Orientation Values Returned by the “Orientation” Object.

 Value Description

0 Portrait view

90 Landscape view (turned counterclockwise)

180 Portrait view (flipped over)*

-90 Landscape view (turned clockwise)

* Currently supported only by iPad, not iPhone

The orientation value inside the window object always reflects the current device

orientation. The following code adds an orientation handler to the <body> and

implements the updateOrientation JavaScript method to display the current orientation.

<!DOCTYPE HTML>
<head>
<title>Orientation Change Test</title>
<script type="text/javascript" language="javascript">
function updateOrientation()
{
 var displayString = "Orientation : ";
 switch(window.orientation)
 {
 case 0:
 displayString += "Portrait";
 break;
 case 90:
 displayString += "Landscape (left, screen turnedÉ
 counterclockwise)";
 break;
 case 180:
 displayString += "Portrait (upside-down portrait)";
 break;
 case -90:
 displayString += "Landscape (right, screen turned clockwise)";
 break;
 }
 document.getElementById("output").innerHTML = displayString;
}
</script>
</head>
 <body onorientationchange="updateOrientation();">
 <div id="output"></div>
</body>
</html>

CHAPTER 8: Native iOS Environment Development 342

Every time the orientationchange event occurs, the updateOrientation method is invoked

and the displayed string inside the <div id=”output”> element is updated.

Orientation Change Media Query
Working with the orientationchange event is a solid way to implement any kind of switch

based on device orientation, but it is not the only way. The orientationchange event also

offers options to a developer, but in some contexts, we can accomplish something

similar without using JavaScript. In this case, we will describe how to use a media query.

A media query is a media type composed of one or more expressions that check one or

more conditions of certain media features. The concept is the same as the one used

with the orientationchange; what will change is the language used and its syntax.

The iWebKit framework used for the Apple Store use case employs the same approach.

The following small piece of code shows one example from this framework style.css file.

@media screen and (max-width: 320px)
{
 #topbar {
 height: 44px;
 }
 #title {
 line-height: 44px;
 height: 44px;
 font-size: 16pt;
 }
}

As previously mentioned, it is always considered best practice to develop three different

versions of the WebApp in order to optimize the iPhone, the iPad, and the desktop PC

hardware and software characteristics—or at least one mobile version for the iPhone

and one compatible version for both the iPad and the desktop PC. In addition, the next

example shows a general case where we need to handle seven CSS style sheets for the

same web page.

@media only screen and (device-width: 320px) and (orientation: portrait) {
 /* CSS Rules for iPhone 2G, 3G, 3GS in Portrait Orientation */
}

@media only screen and (device-width: 480px) and (orientation: landscape) {
 /* CSS Rules for iPhone 2G, 3G, 3GS in Landscape Orientation */
}

@media only screen and (device-width: 480px) and (orientation: portrait) {
 /* CSS Rules for iPhone4 in Portrait Orientation */
}

@media only screen and (device-width: 960px) and (orientation: landscape) {
 /* CSS Rules for iPhone4 in Landscape Orientation */
}

@media only screen and (device-width: 768px) and (orientation: portrait) {
 /* CSS Rules for iPad in portrait orientation */

CHAPTER 8: Native iOS Environment Development 343

}

@media only screen and (device-width: 1024px) and (orientation: landscape) {
 /* CSS Rules for iPad in Landscape Orientation */
}

@media only screen and (device-width: 980px) {
 /* CSS Rules for Fixed Width Desktop and iPad Compatible Version */
}

The Retina display and its 480 960 px display resolution slightly complicated the

media query code for the iPhone case, forcing us to add two more cases. Before the

Retina display, we always used the min-device-width and max-device-width for

targeting the iPhone 320 480 px resolution case.

Nowadays, it is no longer possible to use this option because when there is a value of

“480” for the device-width property, there is no way of knowing whether it is an old

iPhone 2G, 3G, or 3GS in landscape orientation or the new iPhone4 in portrait

orientation. Moreover, we added the portrait and landscape test to the media query,

creating two new cases for identifying the iPhone model when the “device-width” is set

to 480 px.

Expand a Framework for iOS
Frameworks are the Holy Grail for a developer; they reduce development times, offering

all the tools required for building a web page. A framework offers the building blocks

needed to design and develop our project requirements.

Because perfection isn’t possible, sometimes a framework doesn’t match all of our

needs. In these cases, we are unable to design and develop our specific project

requirements with the building blocks offered by our framework. When we face such a

situation, the only solution is to expand the framework, adding and developing what we

need.

The iWebKit framework contains many files in the root directory; focus on the following:

 css: // style sheet directory

 images: // ui images

 index.html: // index web page

 javascript: // js framework directory

 thumbs: // web page images

When we develop a project, we always need to look for updates, which include both

framework core functionality and project specifics. Because newer versions of the

framework could be released from its developer at any time, we must maintain, as much

as possible, the original framework structure.

If the framework update does not dramatically change its core functions and its folders

and files structure, we will easily be able to update our WebApp. Not changing the

CHAPTER 8: Native iOS Environment Development 344

original framework files and structure will allow us to upload the entire framework, just

overriding a few files and directories.

Here is a practical example of what will happen when we start to design the Apple Store

use case. The context will be the following:

 Problem: Implement the Apple Store use case.

 Solution: Emulate the native application behavior using the framework

core functions. Use the framework building blocks for designing the

web page structure. Expand the framework when we need to add or

design something that is not provided or supported by the framework

templates.

The iWebKit framework provides some templates, but our “The Store” use case is totally

different from all of them. For this reason, we will need to expand our framework. What

we will do is use the same folders offered by the framework (keeping the framework

directory structure untouched), and, instead of modifying the original framework files, we

will add what we need (remaining ready for a future framework update). Despite that

fact, the downside of this approach will be that overwriting many rules instead of

replacing them will add more code to the framework and more HTTP requests from our

WebApp. The right approach will be dictated by the WebApp context.

Figure 8–11. Apple Store use case: The Store home page structure.

We will work on the HTML5 structure, and save the new document in the root with all

the other web pages. Subsequently, we will start to design the layout, working on a CSS

style sheet that we’ll save in the “css” folder. In addition, we will save all the additional

images for the layout design in the “pics” folder.

 #topbar (pre-defined customized)

 #title (pre-defined customized)

 #breadcrumb (designed from sketch)

CHAPTER 8: Native iOS Environment Development 345

 #hero (designed from sketch)

 .greytitle (pre-defined untouched)

 .pageitem (pre-defined customized)

In Figure 8–11 and in the preceding list, we can see how we used some pre-defined

framework structures with just a few customizations, while we needed to add a few

more structures designed from scratch.

Resources for Coding
Unfortunately, there are only a few HTML5-compliant editors on the market. Table 8–11

indicates one of the HTML5 editors used in this chapter and a valid freeware alternative.

Here are the official resources for the three web standards presented in this chapter. If

you are new to one or more of these technologies, I recommend you continue to build

your web standard foundations using the following official sources.

Table 8–11. Tools Used for Designing iPhone and iPad User Interfaces.

 Name Type URL Operating System

SSEdit Pro Application http://seeditmaxi.cachefly.net/ OSX

Espresso Application http://macrabbit.com/espresso/ OSX

Coda Application www.panic.com/coda/ OSX

Smultron Application http://smultron.sourceforge.net/ OSX

Notepad++ Application http://notepad-plus-plus.org/ Win

BlueFish Application http://bluefish.openoffice.nl/ Linux

Summary
In this chapter, we introduced the fundamental characteristics of a WebApp. First, using

some examples, we saw how to set up a development environment, and then we

introduced typical web application characteristics.

We presented the most important native iOS applications for a WebApp and how to

interact with its services, presenting all the steps necessary for emulating a native-like

environment.

We introduced the touch event paradigm and how to use single- and multi-touch events

for emulating a traditional mouse browsing session. We also saw more complex gesture

events and how to prevent them in case we need to develop custom gesture handling

for our WebApp.

http://seeditmaxi.cachefly.net/
http://macrabbit.com/espresso/
http://www.panic.com/coda/
http://smultron.sourceforge.net/
http://notepad-plus-plus.org/
http://bluefish.openoffice.nl/

CHAPTER 8: Native iOS Environment Development 346

Lastly, we saw a special type of gesture, the device orientation change, how to use it via

JavaScript, and how to achieve something comparable via media query. We saw when

and how to expand the framework for achieving functionality that is not defined and

natively supported by the framework itself.

347

 Chapter

Native iOS Design
Implementation

“If everything seems under control . . .
 you’re not going fast enough!”

—Mario Andretti

In the previous chapter, we laid out the main points of how to set up an iOS

environment, and in this chapter, we see how to implement some of these same aspects

in our “The Store” use case.

First we see how to implement the iPhone page model and WebApp mode using

metatags. In the second part, we see step by step how to implement the native-like

interface of our use case. Each new element is presented using a top-down approach,

always showing the code used for implementing the element.

iPhone Page Model Implementation
In the first part of this book about design, we saw that because of the iPhone’s display

dimension, iPhone web pages are structured on a page model paradigm. On top of that,

the first thing we need to set up in our WebApp is the page structure.

Implement the Native-Like Page Structure
The code in this chapter is written on top of the iWebKit 5.04 framework and implements

the page structure of our “The Store” use case. For our use case, we also wrote some

custom HTML and CSS code. We use a caption to mark custom CSS and Framework

code and a bold text style to mark the relative HTML code.

<!DOCTYPE html>
<html lang="en">

9

CHAPTER 9: Native iOS Design Implementation 348

<head>
<meta charset="utf-8">
<title>The Store (U.S.)</title>
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
<link href="startup-image.png" rel="apple-touch-startup-image" />
<link href="apple-touch-icon.png" rel="apple-touch-icon" />
<script type="text/javascript" src="javascript/functions.js"></script>
</head>
<body>

/* page content will be here */

</body>
</html>

Some SEO metatags are intentionally missing from the <head> of our web page because

we want to remain focused on the subject of this chapter. We see how to optimize our

code using the SEO technique in Chapter 10.

The single page structure is the foundation of all our future web pages. Now we need to

continue implementing our “The Store” use case by beginning to add the design

element that emulates the native look of iOS for iPhone.

iPhone Native Interface Emulation
The native interface emulation starts with the apple-mobile-web-app-capable metatag.

Without this tag, all our future efforts will vanish because the web page will not match

the iPhone display dimensions and will not be in the WebApp mode.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>The Store (U.S.)</title>
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,É
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
<link href="startup-image.png" rel="apple-touch-startup-image" />
<link href="apple-touch-icon.png" rel="apple-touch-icon" />
<script type="text/javascript" src="javascript/functions.js"></script>
</head>
<body>
<div id="topbar">
 <div id="title">The Store</div>
</div>

/* page content will be here */

</body>
</html>

CHAPTER 9: Native iOS Design Implementation 349

The Top Bar Section
In the <body> section, we insert the native-like Top Bar using a <div id="topbar">.

… … …

<body>
<div id="topbar">
 <div id="title">The Store</div>
</div>

/* page content will be here */

</body>

… … …

Then in Listings 9–1 and 9–2 we override some of its iWebKit CSS framework default

rules.

Listing 9–1. iWebKit Framework Top Bar Section

/* from framework style.css stylesheet */

#topbar {

 position: relative;
 left: 0;
 top: 0;
 width: auto;
 background: -webkit-gradient(linear, 0% 0%, 0% 100%, from(#cdd5df),É
 color-stop(3%, #b0bccd), color-stop(50%, #889bb3), color-stop(51%, #8195af),É
 color-stop(97%, #6d84a2), to(#2d3642));
 margin-bottom: 13px;
}

/* for max-width: 320px */
#topbar {
 height: 44px;
}

/* for min-width: 321px */
#topbar {
 height: 32px;
}

Listing 9–2. Custom Top Bar Section

/* from custom iphone.css stylesheet */

#topbar {
 height: 44px;
 background: -webkit-gradient(linear, 0% 0%, 0% 100%, from(#566E93),É
 to(#314F7B));
}

CHAPTER 9: Native iOS Design Implementation 350

With these rules, we override the default background gradient value, and we fix the top bar

height at 44 pixels in the portrait and landscape orientations, as shown in Figure 9–1.

Figure 9–1. “The Store” use case: the empty page (left) and the page title inside the Top Bar (right)

The Page Title Element
Inside the Top Bar, we have the native-like Page Title added using a <div id="title">

and customized. Listings 9–3 to 9–6 override a few other CSS rules from the default

framework values:

… … …

<body>
<div id="topbar">
 <div id="title">The Store</div>
</div>

/* page content will be here */

</body>

… … …

Listing 9–3. iWebKit Framework Page Style Element

/* from framework style.css stylesheet */

#title {
 position: absolute;
 font-weight: bold;
 top: 0;
 left: 0;
 right: 0;
 padding: 0 10px;
 text-align: center;
 text-overflow: ellipsis;
 white-space: nowrap;

CHAPTER 9: Native iOS Design Implementation 351

 overflow: hidden;
 color: #FFF;
 text-shadow: rgba(0,0,0,0.6) 0 -1px 0;
 }

Listing 9–4. Custom Page Title Element

/* from custom iphone.css stylesheet */

#title {
 color: #FFF;
 font-family: "Lucida Grande", Helvetica;
 font-size: 30px;
 text-shadow: #3B4C66 0 1px 0;
}

Listing 9–5. iWebKit Framework Page Style Element

/* from framework style.css stylesheet */

/* for max-width: 320px */
#title {
 line-height: 44px;
 height: 44px;
 font-size: 16pt;
}

/* for min-width: 321px */
#title {
 line-height: 32px;
 height: 32px;
 font-size: 13pt;
}

Listing 9–6. Custom Page Title Element

/* from custom iphone.css stylesheet */

#title {
 color: #FFF;
 font-family: "Lucida Grande", Helvetica;
 font-size: 30px;
 text-shadow: #3B4C66 0 1px 0;
}

Notice how we use the Helvetica font instead of the Myriad Pro as we did in the design

phase. Myriad Pro is a commercial font and is not free to use.

NOTE: Unlike the Helvetica font, Myriad Pro is not in the iOS Font Stack.
If we want to use this font, in addition to buying it, we need to use the @font-face CSS3 property

as shown in Chapter 7.

CHAPTER 9: Native iOS Design Implementation 352

HEADING TAG EXERCISE

The iWebKit 5.04 framework doesn’t use the HTML heading tags (for example, h1, h2, … , h6) for makeup
in the title section. The <h1> heading tag defines the most important title of the page whereas the <h6>
heading tag defines the least important. At the end of the chapter, try to implement these tags.

 Use the <h1> tag instead of the standard <div> used by the iWebKit 5.0.4 framework.

 According to the text semantics, add other heading tags if necessary.

Repeat the same approach with the other page of “The Store” use case. You can download the use case
source code from the Apress web site.

The Breadcrumb Bar
The second design element to add to the page structure is the Breadcrumb Bar and is

added using <div id="breadcrumb"> as follows:

<head>
<meta charset="utf-8" />
<title>The Store (U.S.)</title>
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,É
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
<link href="startup-image.png" rel="apple-touch-startup-image" />
<link href="apple-touch-icon.png" rel="apple-touch-icon" />
<script type="text/javascript" src="javascript/functions.js"></script>
</head>
<body>
<div id="topbar">
 <div id="title"> The Store</div>
</div>
<div id="breadcrumb">
 <img src="pics/breadcrumb_house.png" width="20" height="16"
/>

 <img src="pics/breadcrumb_home.png" width="35" height="16"
/>

</div>

/* other page content will be here */

</body>
</html>

The breadcrumb contains three kinds of images: the house icon, the separator arrow,

and the page name, as shown in Figure 9–2. In the last link, the href property doesn’t

have any value ("#") because it refers to the actual loaded page.

CHAPTER 9: Native iOS Design Implementation 353

Figure 9–2. “The Store” use case: the Breadcrumb Bar (left) and the Hero Content area (right)

The breadcrumb is not a design structure offered by the iWebKit framework Therefore,

we didn’t override any default value from the CSS stylesheet; instead, we developed

from sketch as shown in Listing 9–7.

Listing 9–7. Custom Breadcrumb Bar

/* from custom iphone.css stylesheet */

/* from custom iphone.css stylesheet */
#breadcrumb {
 background: #FFF;
 border-bottom: 1px solid #676767;
 font-family: "Lucida Grande", Helvetica;
 font-size: 11px;
 height: 16px;
 margin: -13px 0px 13px;
 text-align: center;
}

The Hero Content Area
Below the breadcrumb we have another design element developed from sketch, the

Hero Content area. The Hero Content is added using a <div id="hero"> element and

contains three image links as in the following:

<head>
<meta charset="utf-8" />
<title> The Store (U.S.)</title>
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,É
 user-scalable=no" name="viewport" />
<script src="javascript/functions.js" type="text/javascript"></script>
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
<link href="startup-image.png" rel="apple-touch-startup-image" />

CHAPTER 9: Native iOS Design Implementation 354

<link href="apple-touch-icon.png" rel="apple-touch-icon" />
<script type="text/javascript" src="javascript/functions.js"></script>

</head>
<body>
<div id="topbar">
 <div id="title"> The Store</div>
</div>
<div id="breadcrumb">
 <img src="pics/breadcrumb_house.png" width="20" height="16"
/>

 <img src="pics/breadcrumb_home.png" width="35" height="16"
/>

</div>
<div id="hero">

</div>

/* other page content will be here */

</body>
</html>

The “The Store” use case often has three images with three different associated links to

increase the level of user experience giving him or her more options to jump from one

point to another in the sitemap. In addition, it’s up to the developer to handle this

opportunity in a different way. In Listing 9–8, we can see the CSS stylesheet used to

design this element.

Listing 9–8. Custom Content Hero Area

/* from custom iphone.css stylesheet */

/* from custom iphone.css stylesheet */
#hero {
 border: 1px solid #676767;
 border-top: none;
 background: #FFF;
 font-family: "Lucida Grande", Helvetica;
 font-size: 12px;
 height: 150px;
 margin: -13px 10px 13px 10px;
 padding-top: 4px;
 text-align: center;
 -webkit-border-bottom-left-radius: 10px;
 -webkit-border-bottom-right-radius: 10px;
}

CHAPTER 9: Native iOS Design Implementation 355

Now we approach the lower part of our web page dedicated to the content. On this

specific page, the content is represented only by a menu, but on the other shop pages,

use this section to add any sort of content.

<head>
<meta charset="utf-8" />
<title>The Store (U.S.)</title>
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
<link href="startup-image.png" rel="apple-touch-startup-image" />
<link href="apple-touch-icon.png" rel="apple-touch-icon" />
<script type="text/javascript" src="javascript/functions.js"></script>
</head>
<body>
<div id="topbar">
 <div id="title"> The Store</div>
</div>
<div id="breadcrumb">
 <img src="pics/breadcrumb_house.png" width="20" height="16"
/>

 <img src="pics/breadcrumb_home.png" width="35" height="16"
/>

</div>
<div id="hero">

</div>
<div id="content">
 Browse Store
 <ul class="pageitem">
 <li class="menu">

 Shop Mac

 <li class="menu">

 Shop iPod

 <li class="menu">

 Shop iPhone

CHAPTER 9: Native iOS Design Implementation 356

 <li class="menu">

 Shop iPad

</div>

/* other page content will be here */

</body>
</html>

The Menu Area
The Menu area is wrapped inside a <div id="content"> and contains two main design

elements: a title and a menu, as shown in Figure 9–3.

Figure 9–3. “The Store” use case: the Menu Title (left) and the Edge-To-Edge Navigation (right)

We insert the Menu Title using a <div class="graytitle">. This element is provided by

the iWebKit framework and is styled by the CSS rules in Listing 9–9.

Listing 9–9. The Menu Title Element

/* from framework style.css stylesheet */

.graytitle {
 position: relative;
 font-weight: bold;

CHAPTER 9: Native iOS Design Implementation 357

 font-size: 17px;
 right: 20px;
 left: 9px;
 color: #4C4C4C;
 text-shadow: #FFF 0 1px 0;
 padding: 1px 0 3px 8px;
}

Below the title we have the typical iPhone Edge-to-Edge Navigation wrapped inside a

<ul id="pageitem">. This element is also provided by the iWebKit framework and is styled

by the CSS rules in Listing 9–10:

Listing 9–10. The Edge-to-Edge Navigation Area

/* from framework style.css stylesheet */

.pageitem {
 -webkit-border-radius: 8px;
 background-color: #FFF;
 border: #878787 solid 1px;
 font-size: 12pt;
 overflow: hidden;
 padding: 0;
 position: relative;
 display: block;
 height: auto;
 width: auto;
 margin: 3px 9px 17px;
 list-style: none;
}
.pageitem li:first-child, .pageitem li.form:first-child {
 border-top: 0;
}
.pageitem li:first-child:hover, .pageitem li:first-child a {
 -webkit-border-top-left-radius: 8px;
 -webkit-border-top-right-radius: 8px;
}
.pageitem li:last-child:hover, .pageitem li:last-child a {
 -webkit-border-bottom-left-radius: 8px;
 -webkit-border-bottom-right-radius: 8px;
}

The list items of this unordered list are the single menu entries. Each entry is added

using a <li class="menu"> and is composed by three elements wrapped inside a link

element, as shown in Figure 9–4.

CHAPTER 9: Native iOS Design Implementation 358

Figure 9–4. “The Store” use case: the Edge-to-Edge Menu Structure (left) and the Footer (right)

Each link <a> element contains an image , a text , and another

image inserted as a background image of a <span="arrow"> element. In the following, we

isolate the single menu entry code to better understand its structure. Each menu link

must have three images with the same image width in order to be consistent with the

menu layout.

… … …

<li class="menu">

 /* icon */
 Shop iPhone /* text */
 /* arrow */

… … …

The Footer Section
The last design element in the page is the Footer. In our “The Store” use case, the

Footer is minimal and contains only the Apple logo. The Footer is added using a <div

id="footer"> and is styled by the CSS rules in Listing 9–11.

Listing 9–11. The Footer Section

/* from framework style.css stylesheet */

#footer {
 text-align: center;
 position: relative;
 margin: 20px 10px 0;
 height: auto;
 width: auto;

CHAPTER 9: Native iOS Design Implementation 359

 bottom: 10px;
}

The following code shows the entire “The Store” use case page structure with the

Footer included.

<!DOCTYPE html>
<html manifest="cache-iphone.manifest">

<head>
 <meta charset="utf-8" />
 <title>The Store (U.S.)</title>
 <meta name="apple-mobile-web-app-capable" content="yes" />
 <meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,É
 user-scalable=no" name="viewport" />
 <link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
 <link href="css/iphone.css" rel="stylesheet" media="screen" type="text/css" />
 <link href="startup-image.png" rel="apple-touch-startup-image" />
 <link href="apple-touch-icon.png" rel="apple-touch-icon" />
 <script type="text/javascript" src="javascript/functions.js"></script>
</head>
<body>
<div id="topbar">
 <div id="title"> The Store</div>
</div>
<div id="breadcrumb">
 <img src="pics/breadcrumb_house.png" width="20" height="16"
/>

 <img src="pics/breadcrumb_home.png" width="35" height="16"
/>

</div>
<div id="hero">

</div>
<div id="content">
 Browse Store
 <ul class="pageitem">
 <li class="menu">

 Shop Mac

 <li class="menu">

 Shop iPod

 <li class="menu">

CHAPTER 9: Native iOS Design Implementation 360

 Shop iPhone

 <li class="menu">

 Shop iPad

</div>

<div id="footer">

</div>
</body>
</html>

Summary
In the first part of the chapter, we saw how to implement the iPhone page model

paradigm using the “The Store” use case.

In the second part of this chapter, we saw in practice how to emulate the native

application interface in WebApp. We saw step by step the entire process of adding code

after code for the fundamental design elements of our WebApps.

The entire code of our “The Store” use case is available on the Apress web site.

361

 Chapter

Optimizing iOS WebApps
“Perfection is achieved not when there is nothing more to add, but
when there is nothing more to take away.”

—Antoine de Saint-Exupéry

This chapter is about web optimization and search engine optimization (SEO). First we

talk about iPhone and iPad compatibility, and then we show how to optimize the

performance of a WebApp. We also suggest some rules for optimizing the code,

reducing HTTP requests, and minimizing DOM access.

We then demonstrate how to compress a WebApp, optimize its usability, and make it

capable of working offline. Finally we look at a mobile SEO approach to WebApps,

analyzing first the anatomy of a search engine and then exploring how to implement a

search engine oriented design. We also look at the principles behind the Google

algorithm and some useful mobile SEO tools.

iPad and iPhone Compatibility
Beside the fact that the user experience is totally different between iPhone and iPad

users, most of the concepts behind good optimization are common to both devices.

Some of these concepts are implemented in different ways in order to optimize specific

aspects of the device, whereas others are equally applied in order to increase the level

of user experience.

Performance Optimization
Optimizing the performance of our WebApp is not a development approach that we can

perform only at the end of our project workflow. It is something that, exactly as for the

test phase, is applied for the duration of the project. Obviously, at the end of the

Development Phase we apply some optimization techniques to our WebApp, but it is

10

CHAPTER 10: Optimizing iOS WebApps 362

most efficient to incorporate some good habits from the beginning in order to reduce

mistakes and shorten the overall development time (See Figure 10–1).

Figure 10–1. Optimization best practice applied along the whole project workflow process

When we optimize our web pages, it is important to know what can be optimized. For

those who know the Vilfredo Pareto Principle, you also know that 80% of the

consequences come from 20% of the causes, which means that it will be hard to get

positive results without knowing exactly what to target with our optimization process.

Coming up we’ll look at some of the best practices, presented as rules, in order to

clearly present a pragmatic approach to a performance optimization process applicable

to our WebApp.

Code Optimization
Code optimization is the first step of any type of optimization technique because

everything is based on code—everything is coded in our web pages. Good code can

save bandwidth, reduce rendering delay, and improve the page’s readability and

maintainability overtime.

The following are some best practices to keep in mind when writing any type of code in

our WebApp.

Rule 1: Use Web Standards Complaint Code
Use HTML5, CSS3, and JavaScript compliant code. Besides clean HTML5 syntax, this

also means inserting our style sheet in the <head> part of the page and (except the link

CHAPTER 10: Optimizing iOS WebApps 363

to the iWebKit Framework) the JavaScript in the bottom of our web pages. This is

because style sheets in the top of the page significantly speed up the loading time. On

the other hand, insert the JavaScript in the bottom of the web page so the JavaScript

code does not block HTTP requests. This is because when JavaScript is downloading,

the browser will not start any other resource downloads, even if the resource is on a

different hostname.

NOTE: An alternative to this rule is to insert the Desktop-Mobile Redirect JavaScript code at the
top of the page. We can do that because in this case it is more important to execute the script

than render and load the web page.

This rule helps the parser work faster and helps reduce the overall rendering delay.

Rule 2: Write Slim Code
Write slim code. Remove unnecessary or redundant parts of the code and avoid using

tab and space where it is not strictly necessary. Don’t use CSS expressions if you can

achieve the same result with other techniques. CSS rules are evaluated more frequently

than we can imagine and can negatively affect the performance of our web page.

NOTE: In our use-case, for illustration purposes, we overwrite many CSS rules in order to present
both the original iWebKit Framework and our use-case custom code. In a real project, keep the

number of overwritten CSS rules to a minimum.

Choose short and meaningful names for comments and CSS ID and class or JavaScript

variables and functions. Don’t hesitate to adopt xHTML5 syntax, if you like to write

XHTML code, and combine CSS rules to a good level of factorization inside your style

sheet. Use Gzip compression or minify HTML5, CSS, and JavaScript code, but always

remember to store an uncompressed version for development purpose in the project.

This rule reduces the overall weight of our web page and, by default, the rendering and

loading delays.

Rule 3: Reduce HTTP Requests
It is important to always keep one eye on the number of imported resources (images

included). More files imported into our web page equals more rendering and loading

latency from the browser. Minimizing the number of HTTP requests speeds up the web

page loading time. With this in mind, it may be a good idea to consider adding HTTP

caching to our web pages.

HTTP caching, also known as web cache, is based on good principles, but it is almost

unusable in Apple Safari because of its specification limits. The following list summarizes

some of the main limits of HTTP caching:

CHAPTER 10: Optimizing iOS WebApps 364

 Single resource must be less than 15kB (non-compressed)
Web pages designed for iPhones should reduce the size of each

component to 15kB (25kB before iOS3) or less for optimal caching

behavior. The iPhone is able to cache 105 15kB components.

Attempting to cache one more file results in removing an existing one

from the cache.

 Global cached resources must be less than 1.5MB
Although the iPhone is able to cache multiple components, the

maximum cache limit for multiple components is around 1.5MB

(500kB before iOS3). Maximum bytes available in the cache are

around 105 * 15 = 1575kB.

 Powering off the device clears the HTTP cache

If the user needs to force a hard reset, components in the cache will

be lost. The reason is that, on the iPhone, Safari allocates memory

from the system memory to create cached components but does not

save the cached components in persistent storage.

 Closing the tab clears the HTTP cache

Closing all tabs except the blank one and then closing Safari clears the

cache.

We can see from a development point of view that this type of cache is unreliable

because it is cleared too often and can’t cache the majority of the resources in a modern

web page. Even the most compressed JavaScript Framework or CSS are a struggle to

get under 15K, and none of the images used in almost every WebApp are under this

limit. The offline features provided by HTML5 are a better option for our goals, and we

introduce them later in this chapter.

Figure 10–2. WebApp resource requests according to the HTTP/1.1 protocol

The best reason for following this rule, besides reducing the rendering time of our web

pages, is that the HTTP/1.1 protocol specifies that a browser can download only two

resources in parallel per hostname, as shown in Figure 10–2.

CHAPTER 10: Optimizing iOS WebApps 365

A workaround for this sort of bottleneck is to spread our external resources over multiple

hostnames. Lastly we can’t forget to avoid all HTTP redirects in our web pages. The

HTTP redirect is accomplished using the 301 or 302 status code, and in both cases it

adds a delay to the average page loading time, thereby decreasing the quality of user

experience.

This rule reduces the loading time by reducing the communications delays between the

client side and server side.

Rule 4: Combine CSS and JavaScript Files
This rule must take into account the project’s complexity, but the basic idea is that we

combine all our CSS rules and JavaScript code into one single file instead of having

multiple files. This will reduce the HTTP header’s weight and the latency of imported

multiple resources in our web pages due to TCP slow starts, as shown in Figure 10–3.

A side effect of this approach is that we are forced to update larger files, even for small

code updates; however, this is often a path that brings more positive effects than

negative.

Figure 10–3. Transfer latency time: comparison between single and multiple JavaScript files

In our “The Store” use-case, the iWebKit JavaScript Framework Core and the CSS are

all inside a single .js and .css file minified with an optimization program. We can keep

the logical structure of our code in a development version (non-minified) of these files

and subsequently add header and single comments to make the code maintenances

and its feature updates easier. In the resource section at the end of this chapter, you will

find some online minify resources.

Rule 5: Minimize DOM
In our project, the hard work is done by the framework, but we still need to write

JavaScript code to accomplish some of the project requirements. In this case, the rule is

simple: minimize the DOM access and the number of DOM objects.

CHAPTER 10: Optimizing iOS WebApps 366

This rule will reduce the web page loading time and user experience delays every time

the web page runs a JavaScript.

Image Optimization
An important step in the Optimization Phase is image optimization. Image optimization is

another example of a good habit that doesn’t contain any great secret. Simply put,

optimizing the images of our WebApp can dramatically improve the performance of our

web pages by making them lighter and reducing loading delays.

The following are some best practices to keep in mind when we work on our WebApp’s

images.

Rule 6: Optimize Color Depth
After we design an image, we need to optimize its weight by exporting it using the right

image format. If it’s a photo, we need to use a good compression ratio in JPG format. If

it’s a user interface image, it is important to check the number of colors used. If we use

fewer than 256 colors, we can export it in PNG8. In most cases, exporting in PNG8

renders a smaller image than exporting as a 256-color GIF. Using similar colors also

helps to keep the color count and the image weight low.

We should also stress that exporting images using a graphic program like Adobe

Photoshop, Fireworks, or Gimp will add unwanted metadata that will increase the image

weight. We can see the metadata imposed on an image in Fireworks by accessing the

Metadata Panel and browsing File ➤ File Info (T) or using F.

A workaround is to optimize our images using a program like PNGOut that will make

them as slim as possible.

This rule reduces the web page loading time and increases the level of user experience.

Rule 7: Use CSS Sprites
The word “sprite” might remind you of the’80s, when people played all day with

Commodore 64 or ZX Spectrum games. Because in computer science everything that is

old sooner or later will become new again, web developers adopted the idea behind the

old Sprite management and brought it to the CSS world. Look at the following Figure

(10–4) for an example.

CHAPTER 10: Optimizing iOS WebApps 367

Figure 10–4. The CSS Sprite techniques used for Design Checkbox in the iWebKit Framework

To use the CSS Sprite technique, first we group two or more images into a single

background image, then we set via CSS the single image width and height, and finally

we adjust the background position using the CSS margin rule to display only the portion

necessary. With this approach we can use a single background image and display

several different graphics (single images) with it, thereby saving server requests and

speeding up page load times.

/* from framework style.css stylesheet */
input[type="checkbox"] {
 width: 94px;
 height: 27px;
 background: url('../images/checkbox.png');
 -webkit-appearance: none;
 border: 0;
 float: right;
 margin: 8px 4px 0 0;
}

input[type="checkbox"]:checked {
 background-position: 0 27px;
}

The CSS background rule shows every image from the coordinates 0px, 0px; this

guarantees that if we set a height of 27px, the OFF state would be showed by default. In

this case, the Sprite technique shows the ON state by using an offset of 27px,

demonstrated by the second CSS rule.

If we use many images for our user interface, the CSS Sprite technique can help to

reduce the global loading time of our web pages and avoid the typical white flash of the

traditional rollover technique. Because the image loading time is larger than the

rendering time, using a traditional image rollover technique creates a white flash every

time the browser loads the rollover image for the first time.

CHAPTER 10: Optimizing iOS WebApps 368

SPRITE EXERCISE

In our “The Store” use-case, we design the Breadcrumb Bar using a few images. Implement the Sprite
techniques to speed up the rendering time.

 Use a Sprite with all the Breadcrumb images.

 Group two or more Sprite Breadcrumb images and compare the rendering time with
the single Sprite approach.

Compare the result and determine which approach is best for our specific use-case.

This rule reduces the web page loading time and the user experience delays every time

the web page runs JavaScript.

Rule 8: Use CSS Rules Instead of Images
This rule may sound strange, but because the image optimization process aims to

reduce the weight of images globally, use CSS rules every time it is possible instead of

bitmap images.

CSS TEXT EXERCISE

In our “The Store” use-case, we design the Breadcrumb Bar using few images. Implement the CSS
technique to speed up the rendering time even more.

 Use text instead of images for all the Breadcrumb links.

 Align the House Icon with the Breadcrumb text.

Compare the rendering time of both the Sprite and CSS approaches.

We need to use CSS rules for everything involved in our user interface and insert images

only in rare cases. If we must use an image for a user interface element, it must have its

color depth optimized. If we need to insert many images we need to insert these images

into CSS Sprites. We should also use CSS rules for each small design detail such as

borders, backgrounds, or gradients.

This rule reduces the web page loading time and user experience delays every time the

web page runs a JavaScript.

Rule 9: Never Scale Images
Always use images with appropriate dimensions according to the device viewport or

design element width and height. It is never a good idea to rely on Safari to scale an

image for the right fit. The only exception to this rule is when we want to insert an image

inside a single device WebApp (only for iPhone or iPad). In this case inserting an image

CHAPTER 10: Optimizing iOS WebApps 369

with a width value of 100% will fit both the landscape (bigger) and portrait (smaller)

orientations.

This rule reduces the web page loading time and user experience delays every time the

web page runs a JavaScript. While it is important to follow this rule, remember that it is

also important to specify the image width and height, as this will also help to reduce

rendering times.

IMAGE OPTIMIZATION EXERCISE

All the images used in our “The Store” use-case are in PNG format. Try to determine when it is possible to
optimize some of these images using another format like JPG or GIF. Don’t forget that some formats don’t
support the Alpha Transparency.

Choose a graphic program and open some of the images used in the “The Store” use-case located in the
directory “/images” and inside the directory “/pics”.

 Export the images using a different format.

 Export the images using the same format with a different setting.

Compare the image weight and the image quality, and then see whether you can replace some of these
images with optimized images.

Application Compressing
Safari supports GZIP compression (RFC 1952), so compressing some of the resources

of our WebApp is often a good idea as this will result in an increase in the level of user

experience. We can decide when to compress our HTML5 documents, CSS3 style

sheets, or JavaScript code, whereas we don’t want to compress images or PDF files

because these are already compressed. Compressing images or PDF files adds CPU

overhead and potentially increases the file size.

From the server side, in order to use GZIP-compressed resources in our WebApp, the

server must be configured to provide compressed resources when requested. From the

other side the client must be able support this type of files.

The Request/Respond process represented in Figure 10–4 can be resumed in the

following three steps:

 Client

Connect to the server

Send a request with GZIP support: “accept-Encoding: gzip”

 Server

Acknowledge GZIP support

Compress resource with Gzip algorithm

CHAPTER 10: Optimizing iOS WebApps 370

Send GZIP-encoded resource: “content-Encoding: gzip”

 Client

Receive GZIP-encoded resource

Decompress GZIP-encoded resource

Display (or use) the resource

Figure 10–5. The GZIP-compressed resource request: the HTTP/1.1 protocol in action

The following code is an example of the header of a HTTP/1.1 request and response for

a GZIP resource (also shown in Figure 10–5).

GET / HTTP/1.1
...
Accept-Encoding: gzip
...

After the server receives the client request, determine whether the requested resource is

available in a compressed version. If yes, the server sends it to the client adding the

following string to the response.

HTTP/1.1 200 OK
...
Content-Encoding: gzip
...

There is not a limit to the file that we can compress using GZIP, and this is the easiest

way to achieve a significant reduction of the web page weight. The GZIP compression

can reduce the weight by approximately 70%.

Despite that, and because perfection doesn’t exist in this world, generally speaking

GZIP compression has a few negative aspects.

CHAPTER 10: Optimizing iOS WebApps 371

 First we need to work with a browser that supports GZIP compression.

In our context this is not an issue because Safari and WebKit-based

browsers support GZip.

 Second, as previously stated, we can’t compress images or PDF files

because they are already compressed.

 Third, it is important to remember that because Safari needs to

decompress these resources on-the-fly, in some cases this process

can add CPU cycles and overhead to the application and eliminate the

possible benefits. Perform a test in order to ensure that this overhead

does not eliminate the possible benefits gained.

Usability Optimization
Usability is a fundamental necessity of our project, and it is always a good idea to test

usability before arriving at the end of the project flow. Testing our work during a certain

phase in the project flow can tell us whether we match the project requirement and give

us a feedback on the achieved level of usability.

In Chapter 2, we saw that an error can be propagated through the project flow and how

its cost increases along with its propagation. A good phase of testing eliminates, or at

least mitigates, this cause-effect process.

Figure 10–6. The usability optimization: tests scheduled on each project flow’s phase

We can perform our usability optimization at different levels in every step of our project

flow, and we can do it again at the end of the project flow before the final release of our

WebApp. Following our diverse approach, we can schedule different types of tests

CHAPTER 10: Optimizing iOS WebApps 372

according to the level of detail of the project. Figure 10–6 shows a type of approach that

begins with the Paper Prototype Test and the Electronic Prototype Test and schedules a

live test on a real mobile device for the Pre-Release Test Phase.

Compared to a simple web site, a WebApp needs a more accurate phase of testing, so

we encourage you never to overlook this phase. Even if you work on a simple project,

experience will tell you how hard or soft your project will need to be tested.

We have two types of usability tests depending on the subjects involved.

Usability inspection

Typically performed by an evaluator that is not the designer or the

developer and has no involvement with the project. Usability

inspection should be performed from the early phase of design. An

example of usability inspection is the Cognitive Walkthrough, in which

the evaluator simulates the user’s problem-solving process for a

specific task.

Usability test

Typically performed by the designer or the developer on a user.

Usability tests are performed in the Design Phase, Implementation

Phase, and Release Phase using different types of tests. An example

of a usability test is the Prototype Test where the designer or

developer tests the multiple user aspect of the design, including

services and specific functions.

The Cognitive Walkthrough is an inexpensive form of test; however, although this

approach is used more often in software development than web development, the

Prototype Test is a valid option for our mobile design and development context. For this

reason, we present the Prototype Tests in Chapter 11, in which we see in detail how to

organize, perform, and evaluate the test.

For now it is important to introduce the anatomy of a usability test as well as a few more

important concepts. A usability test, like a Prototype Test, is structured by the following

steps:

1. Choose testing environment.
We need to choose the test environment according to the type of prototype test

we choose to perform and the project requirements.

2. Create use-case.
We need to create a use-case that will define a task for the user that will verify

one or more use-case requirements from the project requirements.

3. Prepare test assets.
We need to prepare and re-use the assets that we will use to perform the test.

4. Select users.
We need to choose the right user according to the use-case requirements.

CHAPTER 10: Optimizing iOS WebApps 373

5. Perform test session.
We need to run the test to verify the use-case requirements.

6. Debrief test.
We need to debrief the test with the user and with the observers.

7. Evaluate test.
We need to evaluate the test according to the use-case requirements.

8. Create findings and recommendations.
We need to provide findings and recommendations that will drive designers and

developers to improve the project.

These eight steps require us to choose the users according to the application profile.

However, we don’t know how many users we need in order to gather reliable data for

the test. We answer this question in the following section.

How Usability Problems Affect Users
We can define a problem as something that is difficult to deal with, solve, or overcome.

Testing a project usually means finding something that can represent a problem for the

user.

If we choose the “right” user for our use-case, even a single user test will give us reliable

information to improve our project. However, no matter how “right” one user can be,

their voice will still remain one in the crowd. The risk that a user performed a certain

action by accident or was influenced by personal un-representative contexts is too high

to create an entire test based on a single piece of user feedback.

The logical conclusion might be to add as many users as possible to discover as many

problems as possible. While this approach may look like the right one, it is not. Those

who have some probability and statistic knowledge know that there is a value that

represents the best ratio between effort and result and that behind this value the result is

minimal compared with the effort. For this reason, choosing a large group of users will

not be the best approach to the problem.

It’s best to choose a smaller group as a sample size to discover as many problems as

possible. This path brings us to Jim Lewis, who published a study in 1982 that

described how binomial distribution can be used to model the sample size. This study

was supported by Robert Virzi in 1992. Virzi found that 80% of usability problems are

found by the first four to five users and that severe problems are more likely to be

discovered by the first few users.

CHAPTER 10: Optimizing iOS WebApps 374

Figure 10–7. Usability problems: different groups could discover different types of problems

The problem of selecting a sample size seems to be solved because four to five users

should be the right number for our test session. Even the Nielsen studies in early 1990s

confirmed this size. Unfortunately, problems don’t uniformly affect users, as Woolrych

and Cockton showed in their studies in 2001. This means that a simple estimate of

problem frequency with the binomial distribution is misleading.

For this reason, the best approach we can choose for a medium to large project is to set

a few four-to-five user groups in order to represent different category of users, as shown

in Figure 10–7, and discover as many problems as possible. In practice we need to

perform a test with a group, fix the discovered problems, and then re-perform the test

with another group. Probability and statistic studies on usability problems are long and

complex, but by simplifying the conclusions (as in Figure 10–8) we can see that with an

average number of 18 users we can discover 85% of the problems. This is supported by

Jakob Nielsen and Thomas Landauer in their speech “A mathematical model of the

finding of usability problems,” at the Proceedings of ACM INTERCHI Conference

(Amsterdam, The Netherlands).

Figure 10–8. Usability Problems Study: We need 18 users to discover the 85% of the usability problems.

CHAPTER 10: Optimizing iOS WebApps 375

For a simple project, like a web site or a low-complex WebApp, we can rely on a single

group of four to five users and fill the remaining gap by using our experience. We can

also apply the cycle approach to the single group by testing the first three users, fixing

the problems, and then testing the other two users. The data will not be as complete as

in a multi-group approach, but the approach will be more agile and the feedback will still

be useful.

Offline WebApp
In this book we always focus on emulating the native application environment and

behavior with our web pages. It's obvious that our web pages are dependent on Internet

access in order to provide any kind of service, but they are also dependent on the

Internet in order to retrieve the various design elements of the web page itself.

Using the HTML5 Offline feature, we can address this issue by storing any type of

resource inside the cache of our WebApp. The files that need to be cached are declared

in a file called Manifest File. Once the files are cached, Safari looks for the Manifest File

before beginning any server-side processing while avoiding downloading files previously

downloaded and stored.

NOTE: Safari evaluates the content of the Manifest File to determine whether or not to update it.
The file date or any other attribute will not be evaluated as we used to see in an HTTP Conditional

GET Request. If we want to force an update, we can do it via JavaScript.

The application cache persists between browser sessions, which means that a

previously cached resource can be viewed or continue to work without any network

support or if the iOS is in Airplane Mode.

The Manifest File
A manifest file is a simple text file hosted on the application’s web server that lists all the

static resources that need to be downloaded and cached by our WebApp. A Manifest

File is composed by two main parts and one optional part:

 Cache Manifest Declaration

 Cache Manifest URL List

 Cache Types Declaration (not required)

The iWebKit framework doesn’t use any Manifest File because from the 5.04 version it

replaced most of its user interface images with a CSS3 approach. Despite that, from our

use-case it is important to cache at least all the product’s images and provide the users

offline access to the catalogue.

The Cache Manifest file should begin with the uppercase prefix “CACHE MANIFEST.”

Below that we can define, always using an uppercase prefix, three (sub) section headers

CHAPTER 10: Optimizing iOS WebApps 376

corresponding to three types of different behaviors according to the WebApp

requirements:

 CACHE MANIFEST

This is the Cache Manifest header.

 CACHE
Resources are always loaded from the cache, even in online mode.

 NETWORK
Resources are always loaded from the server, even if the file is listed

under the CACHE header. This is an exception to the CACHE rule.

 FALLBACK
Resources are used as replacements for other resources that fail to

load or load incompletely.

If we list the resources right after the “CACHE MANIFEST” declaration header without

specifying any of the three types of (sub) headers, the default CACHE type will be

applied to all the listed resources. A typical cache manifest file looks like the following

code:

CACHE MANIFEST
CACHE
Comment on Cache Rule Files
file01
file02
fileN
NETORK
Comment on Network Rule Files
file01
file02
fileN
FALLBACK
Comment on Cache Rule Files
file01
file02
fileN

Below the header we can also insert comments using the prefix “#”. This feature is often

used to mark the cache version, modify the Manifest File, and force an update of the

cache. The following code shows the Manifest File of our “The Store” use-case. If we

need to cache an entire folder, like in “The Store” use-case, we can simply insert the

absolute folder path and all the files will be added by default to the cache manifest

whitelist.

CACHE MANIFEST
WebApp Images inside the pic folder
http://www.thestore.com/images
WebApp Images inside the images folder
http://www.thestore.com/images

In this code we use an absolute path, but a relative path is also allowed; it’s totally up to

you. After creating the Manifest File, we need to save it using the extension “.manifest”.

http://www.thestore.com/images
http://www.thestore.com/images

CHAPTER 10: Optimizing iOS WebApps 377

For the “The Store” use-case, we use “cache-iphone.manifest” and we save in the

application root directory.

The next step is to link the Manifest File in our web pages inside the <html> tag using

the attribute manifest as shown in the following code:

<html manifest="cache-iphone.manifest">

The Manifest File must be served using the “text/cache-manifest” MIME type, so the last

step is to add the “text/cache-manifest” content type inside an “.htaccess” file, which is

in turn placed inside the web root directory. If it’s not done in this order, Safari will not

recognize the Manifest File.

AddType text/cache-manifest .manifest

Now everything is in place, but because our application looks to the resource list in the

Manifest File to understand whether the manifest file needs to be updated or not, we

need to use JavaScript if we want to force this update process.

NOTE: We can make a change in the Manifest File by using a single comment line in the file.
This generates an update from our WebApp the next time the Manifest File is checked. However

the JavaScript approach is recommended because it provides more possibilities to the developer.
If a failure occurs while downloading the manifest file (its parent file or a resource specified in

the cache manifest file), the entire download/update process fails.

We can access the cache using the window.applicationCache JavaScript object and

update it in three steps using the update() and swapCache() methods:

1. Test whether the (old) cache is ready to be updated.

2. Update the (new) cache.

3. Swap the old cache with the updated cache.

In Table 10–1 we can see the three items used for the cache update process.

Table 10–1. The JavaScript object and the two JavaScript methods involved in the cache updated process

 Name Description

window.applicationCache.status Check whether the cache is ready to be updated

update() Update the cache

swapCache() Swap the old cache with the updated cache

When we check the applicationCache object using the status property, we observe

different returns according to the cache status. Table 10–2 shows the possible value

returned by the status property.

CHAPTER 10: Optimizing iOS WebApps 378

Table 10–2. The values returned by the status property applied to the “applicationCache” object

 Name Value Description

window.applicationCache.UNCACHED 0 Cache is not available

window.applicationCache.IDLE 1 Cache is up to date

window.applicationCache.CHECKING 2 Manifest File checked for update

window.applicationCache.DOWNLOADING 3 Downloading the new cache

window.applicationCache.UPDATEREADY 4 New cache ready to be updated

window.applicationCache.OBSOLETE 5 Cache deleted because obsolete

Now we are ready to put everything into practice by writing an if statement to test the

value of the status of the applicationCache object and, if ready, perform a cache

update:

if (window.applicationCache.status == window.applicationCache.UPDATEREADY)
{
 applicationCache.update();
 applicationCache.swapCache();
}

At this point of the workflow our WebApp is almost ready for the Release Phase, but

before we think about releasing it we need to take care of another important aspect of

the optimization, an aspect that is based on the relationship between our WebApp and a

search engine. We see how to work on this part in the next paragraph.

Mobile SEO
SEO is an important step of our project workflow. SEO is more fundamental for a web

site than for a WebApp because compared to a web site, a WebApp rarely relies on

search engine results to promote itself. Despite this fact, SEO should be behind every

stage of a WebApp design as well.

CHAPTER 10: Optimizing iOS WebApps 379

Figure 10–9. SEO best practices applied along and behind the whole project workflow process

The SEO Phase brings to the table some rules that are valuable for both web sites and

WebApps. As we previously saw for accessibility, usability, and code or image

optimization, optimizing our web pages for search engines is an approach that runs from

the beginning to the end and behind our project workflow. Working on a complete SEO

plan is beyond the scope of this book, but in the following sections we see some key

points that make our web site rank higher and our WebApp friendlier to major search

engines.

Anatomy of a Search Engine
There is much more behind the minimal user interface of a search engine like Google.

Unfortunately we can’t know every detail of how a search engine works because this is

proprietary information. In spite of this fact, every search engine is composed of a few

known parts that, in a general way, can help us to understand how they work.

 Crawlers, Spiders, and Robots

Crawlers, spiders, and robots are programs that crawl the web in

search of web pages to index in a database. Google is an example of

a crawler-based search engine, and its crawler scans the web

collecting information about every URL.

 User Interface (UI)

User interface is where the user writes his query. The minimal user

interface offered by Google is just one example of the front-end of

every search engine.

CHAPTER 10: Optimizing iOS WebApps 380

Search Engine Database

Search engine databases contain multiple data points about each

stored URL. These data could be arranged in many different ways and

every search engine has its own way to accomplish this job. How

every search engine arranges these types of data is a closely guarded

secret; an example is the PageRank method used by Google.

 Search Engine Algorithm

Search Engine Algorithm is the heart of every search engine, which is

the part that makes everything works. This algorithm evaluates one or

more inputs (words inserted by the user in the search engine user

interface) and generates an output and searches the database where

URLs and keywords are stored. This algorithm, which can be

catalogued as a Problem Solver Algorithm, is composed of multiple

algorithms that analyze different web site parts. Every search engine

has its own implementation of this algorithm.

 Search Engine Result Page (SERP)

The Search Engine Result Page, besides the search engine user

interface, is the only part that is visible to the user. This page is a

collection of links catalogued in a specific order by the Search Engine

Algorithm.

In the following section, we see how to design and implement our web pages in order to

be more search engine friendly.

Search Engine Oriented Design
Optimizing our web page for a search engine is important from the early phases of our

project workflow. A search engine oriented design is a title that stands for an approach

used during our Design Phase. Let’s take a look at the steps of the Design Phase.

Domain Title
The first step of any SEO approach starts even before we can open our graphic program

or code editor. Choosing the wrong domain can ruin all the future efforts to gain a good

positioning on a search engine. Despite the crucial moment of this step, the solution is

simple: insert the primary keyword in the domain name.

http://iphone.thestore.com /* iPhone Third Level Domain Name */

This is an example of the hypothetic name of our “The Store” use-case. Inserting the

primary keyword in the domain name guarantees that our WebApp will be stored using a

word that will be used as primary keyword in the next steps of the SEO Optimization

Phase.

http://iphone.thestore.com

CHAPTER 10: Optimizing iOS WebApps 381

Page Title
The HTML page title is one of the most important tags to optimize. The page title

displays as the first line in the SERP, and it’s the most meaningful source for our

WebApp. A good title is short and includes the main keyword or keywords that identify

our web page.

<title>The Store</title> /* Store Index
Page Title */
<title>The Store (U.S.)</title> /* US Home Page Title */
<title>The Store (U.S.) | Contact Us</title> /* Contacts Page Title */

We must write a unique title for each page and every title must include the name of the

WebApp. The code shows three examples for the “The Store” use-case.

Meta Tags
There was a time where meta tags were the holy grail of SEO, but nowadays the

situation has changed due to the abuse of this type of tag from webmasters. An

important tag to optimize is the description meta tag. A search engine like Google uses

this tag to display a description of our web page as the second and third (if the text is

long enough) line in the SERP. A good description tag includes our keyword (or

keywords) and is informative. The following code is an example from the “The Store”

use-case.

<meta name="description" content="Apple designs and creates iPod and iTunes,É
 Mac laptop and desktop computers, the OS X operating system, and theÉ
 revolutionary iPhone and iPad." /> /* Store Index Page Description Metatag */

Another important meta tag is the keyword tag; it’s not fundamental but it’s still

important. As we can see from the following code, in our “The Store” use-case the

choice is easy because a big brand like Apple needs only one keyword: Apple. In other

projects, more than one keyword works fine; just don’t abuse it.

<meta name="Keywords" content="Apple" /> /* Store Index Page Keywords Metatag */

Keywords must match the words and phrases that potential visitors will use when

searching for your site.

Content
Content is important to optimize our web pages. In the end, what users are looking for is

just a small piece of content to read. The point is that now we need to distinguish the

case where the user lands on the Compatible page, on the iPad page, or on the iPhone

page.

Generally, in a SEO content optimization, we need to use the keyword(s) specified in the

keyword’s metatag in a few strategic points of our web page:

 The page header (primary keyword)

 The page tagline (secondary keyword)

CHAPTER 10: Optimizing iOS WebApps 382

 The page content (primary and secondary keyword)

 The page links (primary keyword, only wherever is possible)

If we think in a Google-oriented way, it is important to use our keyword(s) in the upper

part of our web page because it’s the most important (meaningful) part for the crawlers.

Because the iPad, and even more the iPhone, version has strictly prioritized contents,

this can make our job both easier and harder.

Prioritized content can make our job easier because we assume that this type of content

is based on important keywords and short meaningful paragraphs in order to deliver the

message in the most direct and fastest way.

At the same time, prioritized content can make our job harder because sometimes the

content is so short that it is practically impossible to organize in a meaningful way for

both humans and crawlers.

Figure 10–10. Search engine oriented design: an example of the use of the primary key “iPhone”

The way to approach the situation is to stick with our prioritized content on our mobile

version and play a little bit more with the content of the compatible version where we

have more space and a chance to achieve good results.

The last thing we need to avoid is the pitfall of keyword stuffing. Keyword stuffing,

simply put, is using a keyword too many times or forcing it in a paragraph with the sole

purpose of increasing its usage. Don’t use keywords if they don’t make sense in context.

This can lower the quality score of our webpage.

CHAPTER 10: Optimizing iOS WebApps 383

Links
A web page without links is like a lost island in the ocean; it is there, but almost no one

knows that it exists or, if they do, how to reach it. The role of a link is to connect our web

page with other relevant information, both internal and external to the web page itself.

Another reason why links are so important is that links have a great value on the final

weight of our WebApp SEO score. More precisely, inbound and outbound links have a

“weight” whereas internal links serve only a better “crawl” of the site.

Google with its famous algorithm, developed by Larry Page and Sergey Bring in 1998

and patented by Stanford University, was the first to assign dynamic and different values

to inbound and outbound links in a web page. The real specifics of the Google page

rank algorithm are unknown because it is one of the closed secrets of the company;

despite that, some details are known.

The Google PageRank Concept
The probability that a random user visits a web page is called its PageRank. The Google

PageRank concept uses Google's global link structure to determine an individual page's

value. The PageRank gives an approximation of a page’s importance and quality.

The algorithm that implements this concept interprets a link from web page A to web

page B as a vote, by web page A, for web page B. The Google PageRank Algorithm

looks at more than the sheer volume of votes or links a page receives and analyzes the

page that casts the vote. Votes cast by web pages that have high a PageRank value

because they are themselves important or are favorably viewed as “established firms” in

the Web community weigh more heavily and help to make other pages look established

as well.

The Google PageRank Algorithm Concept

The PageRank value of web page A is given as follows:

PR(A) = (1-d) + d(PR(T1)/C(T1) + … … … + PR(Tn)/C(Tn))

Here, the PageRank given by an outbound link equals the document's PageRank score

PR(Ti) divided by the (normalized) number of outbound links C(Ti).

 PR(A): PageRank value of page A

 PR(T1): PageRank value of page 1 pointing to age A

 C(T1): Number of links off page 1, which points to page A

 PR(Tn): PageRank value of a page n pointing to page A

 C(Tn): Number of links off page n, which points to page A

v

CHAPTER 10: Optimizing iOS WebApps 384

 d: Dampening factor: The probability that, on each page, a random

surfer will request another random page. Nominally this value is set to

0.85 and could be set between 0 and 1.

Let’s assume a small universe of four web pages with the following relationship, as also

shown in Figure 10–11.

 Page A: Doesn’t link any page

 Page B: Link to page A and page C

 Page C: Link to page A

 Page D: Link to page A, page B, and page C

With a universe of four web pages, the initial approximation value of the PageRank

would be evenly divided between these four web pages and is 0.25 (0.25 * 4 = 1).

Assuming a damping factor of 0.85 for each page provides the following equation:

PR(A) = (1-d) + d(PR(B)/2 + PR(C)/1 + PR(D)/3)

PR(A) = (0.15) + 0.85(0.25/2 + 0.25/1 + 0.25/3)

PR(A) = (0.15) + 0.85(0.125 + 0.250 + 0.083)

PR(A) = (0.15) + 0.85(0.458)

PR(A) = (0.15) + 0.3893

PR(A) = 0.5393

In Figure 10–11 we can see the calculation of the PageRank value from our example

using a mathematical notation.

Figure 10–11. The Google page rank algorithm: web page B, C, D add their PageRank value to web page A

Figure 10–12 shows the same concept in which web page A receives a Page Rank value

according to the PageRank value of each other web page that is linked to it.

CHAPTER 10: Optimizing iOS WebApps 385

Figure 10–12. The Google Page Rank Algorithm: web page B, C, D add their PageRank value to web page A

Ingoing and outgoing links play an important role in the life of a WebApp, but links do

much more than link other web pages. Links are also catalogued as internal and

external. External links leave the web page and help the crawler to reach every page of

your WebApp. In this case external links play the same role of a sitemap. That’s why a

sitemap is highly suggested in any web project. The same role is played by

Breadcrumbs that link to many other (relevant) pages. On the other hand, an internal link

is a link that, instead of pointing to a different web page, points to the web page itself.

Images
Search engines see web pages as text pages, which means that they don’t understand

images. Images have a fundamental role in our web sites and WebApps because as

human beings we understand images much better than text. For this reason, we never

avoid images in our projects.

The point here is to not rely on images when we need to give meaning to the web page.

For example, don’t insert important text messages in our images, such as calls-to-action

or important titles. The role of the image is to support the content with a different, and

possibly more powerful, series of symbols which readers can interpret.

Consider adding text messages as a companion to every image in a web page and an

alt attribute to communicate with the crawler. Following the code is in the <div> that

wraps the Hero Content in our “The Store” use-case home page.

If we need to insert extra information about an element, we can choose to add the title

attribute. We can also choose not to insert the alt attribute when the image doesn’t

CHAPTER 10: Optimizing iOS WebApps 386

have any relevant meaning for the crawler and thus the web page. An example of this is

the following code from the images used as icons in the edge-to-edge menu. The

following piece of code refers to only one menu entry.

<li class="menu">

Shop Mac

This image doesn’t specify any alt attribute in the tag. However, if you add a tag

with a description, it will not be considered a mistake.

<li class="menu">

Shop Mac

That piece of code shows a suitable description for this example.

JavaScript Code
JavaScript helps us to build a better WebApp and to emulate the native-app look, but

this doesn’t mean that it is always SEO-friendly. The solution is to externalize our

JavaScript code exactly as we did for the Framework Core used in our “The Store” use-

case.

<script src="javascript/functions.js" type="text/javascript"></script>

Apart from rare cases, we need to import all our JavaScript code, wherever included, in

order to make our web page more SEO-friendly. On the other hand, this will add loading

latency to our web page, but as we have established, perfection doesn’t belong in this

world. In these cases we need to interpret the context and choose the right approach

according to our project scope, goals, and dimension.

Mobile SEO Tools
Nowadays we have many tools to monitor our web pages, from WebApps like Google

Analytics to a few native iOS applications. Google analytics is a fast an easy way to

monitor traffic and have a clear idea about how our WebApp interacts with users.

Google Analytics was developed by Urchin in 2005 and has been publically available to

users since 2006. The benefits that come from using a tool like Google Analytics are

various. Google Analytics helps you determine exactly which is the most effective web

page, understand the average amount of time spent browsing our web pages, or and

even understand which visitor became an effective user. These and many other types of

data are organized in textual and graphic reports that are easy to analyze.

CHAPTER 10: Optimizing iOS WebApps 387

Google Analytics
After registering a Google account, we are able to log in to the Google analytics page

located at http://www.google.com/analytics. Once logged in, we are able to add our

WebApp from the Google Analytics Control Panel in few steps.

At this point, it is important to create and add a Sitemap to our WebApp in order to be

sure that every URL will be discovered by the Google’s normal crawling process. The

Sitemap can also be used to provide metadata to Google about specific types of

content like images, videos, news, and so on.

The last step before the data from our project is collected by Google Analytics is to add

a snippet of code from the Control Panel to all our web pages just before the head

closing tag. Information is collected and visualized using a few different Dashboard

views. We have a Dashboard where all the information is visualized together for a glance

at all the information at once, but we can also switch minimizing information in a single

view. Some of these views are as follows:

 Content Overview

 Pageview Display

 Visits View

 Bounce Rate View

 Traffic Sources View

 Referring Sites View

 Search Engine View

It is important to remember that data are not collected in real time, and the statistics

aren’t available until midnight PST of each day. Google Analytics also takes a few hours

to fully update all the statistics entries. In case our web pages are able to generate more

than a million page views per month, it is useful to remind you that besides the free

service offered by Google Analytics, there exists a Premium version of the service

available for larger sites.

Resource on Optimization and SEO
In Table 10–3 we have some of the tools used in this chapter to optimize our project. If

you are new to one or more of these technologies, we recommend you to continue the

project using the following service.

http://www.google.com/analytics

CHAPTER 10: Optimizing iOS WebApps 388

Table 10–3. Tools Used for Optimization and SEO

 Name Type URL Operative System

Minify CSS WebApp http://www.minifyjavascript.com/ OSX – Win - Linux

Minify CSS WebApp http://www.minifycss.com/ OSX – Win - Linux

SpriteMe WebApp http://spriteme.org/ OSX – Win - Linux

Yahoo SmushIt WebApp http://www.smushit.com/ OSX – Win - Linux

PNGOut Application http://advsys.net/ken/utils.htm OSX – Win - Linux

Google Webmaster

Tools
WebApp

https://www.google.com/webmasters/
tools/ OSX – Win - Linux

Google Analytics WebApp http://www.google.com/analytics/ OSX – Win - Linux

Summary
In this chapter we worked on optimization. In the beginning of the chapter, we

established the proper way to work on performance-oriented optimization by first

explaining how to write and produce good images and then learning how to compress

our WebApp.

In the second part of the chapter we worked on usability optimization and introduced

two types of approaches and tests also standardized in UML (Unified Modeling

Language). We also saw how problems really affect our users and how to choose the

right user sample for our purposes.

The third part of the chapter dealt with offline applications, and we saw how to use the

Manifest File to cache single or multiple files of our WebApp.

In the final section we worked on a search engine oriented optimization in which we first

introduced the concept behind the Mobile SEO and then introduced the anatomy of a

search engine. We ended by working on the part of our web pages that needs to be

optimized to make it search engine friendly.

We also introduced the concept behind the famous Google algorithm and we saw how a

tool like Google Analytics can help us to gather important information that can be used

to plan the right mobile strategy and make important decisions on our WebApp.

http://www.minifyjavascript.com/
http://www.minifycss.com/
http://spriteme.org/
http://www.smushit.com/
http://advsys.net/ken/utils.htm
https://www.google.com/webmasters/
http://www.google.com/analytics/

389

 Chapter

Testing iOS WebApps
Be a yardstick of quality. Some people aren’t used to an environment
where excellence is expected.

—Steve Jobs

After seeing how to optimize our web application in the last chapter, we now approach

the test phase. After an introduction about lifecycles and agile testing approaches, we

will see how to organize a test, first creating a use-case and then the assets needed for

testing it.

We will perform a test and then learn how to evaluate it using specific kinds of feedback,

such as design or emotional feedback, and variables, such as the number of used

touches, the number of mistakes, and the estimated time of arrival.

Web Development Lifecycles
In application development, we can apply two major types of lifecycles: the waterfall

lifecycle and the iterative-incremental lifecycle. The waterfall lifecycle is defined as a

sequential development model with clearly defined deliverables for every phase. In the

waterfall lifecycle, there is minimal feedback from one phase to another.

11

CHAPTER 11: Testing iOS WebApps 390

Figure 11–1. The waterfall lifecycle (left) and the iterative-incremental lifecycle (right).

The iterative-incremental lifecycle is defined through cycles (iterative) developed in a

smaller portion of time (incremental). Compared to a waterfall lifecycle, an iterative-

incremental lifecycle enables more flexibility in accommodating new requirements of

change. Figure 11–1 presents a graphical comparison between a waterfall and an

iterative-incremental lifecycle. In the next section, we will see how to approach the test

phase at the end of the implementation phase.

Web Application Testing
In our simplified workflow, when we exit the development phase, we enter directly into

the test phase. Particularly in iterative lifecycles, different levels of testing should occur

at all stages of the process. As we now understand, different project flows can be

implemented with different lifecycles according to project context and requirements.

As we will also learn, every project phase is overlapped by at least one other phase; this

is also true for the test phase.

In our workflow, as shown in Figure 11–2, the test phase is performed after the

implementation phase and before the release phase. It is used to conduct tests on

performance, accessibility, usability, and more generally, on user experience.

CHAPTER 11: Testing iOS WebApps 391

Figure 11–2. The project flow: simplified version with the test phase only at the end of the flow.

The testing approach depends on the nature of the web site or web application.

Generally, in accordance with the specific moment in the project flow, we can choose

different types of tests. In the next section, we will see agile approaches to tests, which

are more comfortable for single developers or small development groups.

Agile Tests
In the first step of our project flow, we work with wireframes to implement an early

version of our contents. From the wireframes, the next step is to create paper

prototypes to get a better idea about both the content and layout of our future web

pages.

The paper prototype test is the first level of useful testing to determine whether our

design is correct in terms of user experience. This type of test is inexpensive because it

can be prepared and performed by a single designer without any specific tools. Paper

prototype tests can identify both user interface design and content-related problems.

A paper prototype test makes it easy to determine whether the user struggles with our

interface by looking for a specific button or trying to orient him- or herself during a

browsing session. Paper prototype tests can also show whether our content is in the

right place and provides the right level of information to the user.

Paper prototype tests are performed in the design phase before moving on to the

development phase (Figure 11–3). These tests are usually performed by the designer

and are based on the same sketch used to define the web site or web application

design.

CHAPTER 11: Testing iOS WebApps 392

Figure 11–3. The paper test performed between the design and the implementation phases of the flow.

The second level of agile tests is the electronic prototype tests. These tests are

performed by the designers as a final step in the design phase. Because each step often

slightly overlaps the next, this type of test can be prepared by the designers and

performed by the developers. Electronic prototypes can also be prepared and used by

both the designer and the developer, allowing the designer introduce the work to the

developer who will use the electronic prototypes as the starting point for his/her job.

If the electronic prototype runs on a mobile device, it offers virtually the same experience

to the user and is reliable. It can also run on a desktop machine and provide a good level

of feedback. The difference between a real mobile scenario and any other electronic

prototype is the environment.

Figure 11–4. A real environment can dramatically change the user experience (Image Miss HG).

The environment can create significant differences in laboratory tests aiming to evaluate

a real mobile experience (Figure 11–4). The best way to approach the problem is to

perform preliminary paper prototype tests on the design, perform electronic prototype

tests on the functions and services, and then develop an alpha version of the web site or

web application to test in a real environment.

These types of tests are virtually free because paper and electronic prototypes have

already been produced as a regular step in the design phase of the project workflow.

CHAPTER 11: Testing iOS WebApps 393

Heat Map Tests
Another type of test that is easy and inexpensive to set up and perform is the heat map
pseudo test. We use the prefix “pseudo” because the real heat map test requires tools

for eye-tracking that most development teams don’t have (Figure 11–5).

As a workaround for this lack of technology, we can use one of the many online services

(for example, Feng-GUI) offered by companies that use heuristic algorithms as a

replacement for real eye-tracking. These heuristic algorithms are usually accurate and,

along with their usability and accessibility, provide good feedback.

Typically, the process for using an online heat map service is standard and includes the

following steps:

1. Register an account for the heat map service.

2. Insert the absolute path or upload a print-screen of the web page.

3. Download the heat map in an image format.

Some services are similar to Google analytics and offer a script to insert into web pages.

While logged into our account, we can check the web page statistics and see the heat

maps. This type of service should be considered accurate because we can analyze the

web page over time with real users.

Figure 11–5. The eye-tracking test (left) and the corresponding heat map (right).

We introduced the heat maps technique in Chapter 4 to analyze reading patterns to

show the basics of a good design and what can negatively influence the user

experience. The point is that heat maps can reveal a design mistake and give early

feedback during the design phase. By watching a heat map, we can determine if the

user’s attention might be hijacked by some unwanted design element. By using a heat

CHAPTER 11: Testing iOS WebApps 394

map, we can test our design element hierarchy and check whether the reading pattern

correctly follows the content.

We should also note that a heat map test is less informative in a small display context

such as the iPhone, compared to the 9.7-inch context of an iPad. Despite this

shortcoming, a heat map test still offers important information about our design to help

prevent design-error propagation in the project flow.

Organizing a Test
Every detail of every test must be planned and organized in order to produce reliable

feedback. The agile approach we chose is based on artifact recycling, allowing us to

work on ideas and assets that we used for previous workflow phases. The artifact

recycling approach contributes to keeping the preparation phase as lean as possible. In

the following sections, we will see how to plan and create use-cases and how to

perform a test.

Creating Use-Cases
The main thing to remember is that paper prototypes (shown in Figure 11–6) are design-

oriented and work best in design tests, which means that they provide more reliable

feedback on design details. Electronic prototypes can also give feedback on design

details, but because they implement at specific levels of some or all of the functions and

services offered by the web site or application, they are mostly used to collect feedback

about functions and services.

Figure 11–6. Developing paper views for use-cases (Image Resenfeld Media).

CHAPTER 11: Testing iOS WebApps 395

The first step in the preparation phase is to create a use-case. When working on a web

site or application, we can picture a browsing session with a specific user action path.

Perhaps we want to test whether the contact page is easily reachable or whether a

specific service is useful. Imagination and experience are your best friends in this phase.

Typically, textual use-cases are used in combination with use-case diagrams to better

understand the project requirements in the analysis phase. In the test phase, this

combination still offers the best results because the diagram can be seen as a graphic

summary of the use-case, providing an idea of “who does what” and “who interacts with

what,” while the description provides a better understanding of the individual steps

involved in the interaction between the actor (user) and the system (user interface,

server, and so on).

Creating a Textual Use-Case
Now we are facing a fork in the road because designers and developers typically

possess different background knowledge and use different tools. Not all designers know

UML, whereas almost all developers know this useful modeling language; it is used in

almost every object-oriented project.

For those who don’t know UML, the textual use-case approach offers everything one

needs to present and organize a test; familiarity with the tools offered by UML will

definitely help in both the analysis and test phases of the project flow.

UML is beyond the scope of this book. However, in this chapter, we will present two

ways to represent a use-case: textually and visually. In this section, we will present the

textual way to represent a UML use-case, while in the next section we will do so visually,

using diagrams.

NOTE: UML stands for Unified Modeling Language and is a standardized, general-purpose
modeling language used in software engineering. UML includes various types of visual models,
but for our purposes, we present only two of them:

■ Textual use-case

■ Use-case diagram

A simple book that can introduce you in simple terms to all the tools offered by the Unified
Modeling Language is UML Distilled, by Mike Fowler.

For more information, visit http://martinfowler.com/books.html.

When working with a team, we usually represent a use-case using both textual and

graphic tools. If you work as a single designer or developer, you can choose which tool

you prefer, assuming that you have every aspect and detail of your project clearly in

mind.

http://martinfowler.com/books.html

CHAPTER 11: Testing iOS WebApps 396

The easiest and most intuitive way to create a use-case is the textual way. The first step

is to write the header for your use-case, choosing the title that corresponds to the user’s

task, the level of detail, the actor, and the device used, which identifies the context. “The

Main Successful Scenario” is the title of our use-case. The second step is to define the

scenario by writing the body of our use-case in a numbered sequence of steps, where

the actor (user) performs a number of actions to achieve his or her goals. Every step

represents an interaction between the system (user interface, server, and so on) and the

actor (user). The following is an example of a textual use-case taken from our Apple

Store use-case.

Call the Apple Store Support

Level: Sea level (a.k.a. User goal level)

Actor: User

Device: iPhone

1. The user browses the menu by selecting the Support link.

2. The user browses the menu by selecting the Contact Us link.

3. The user browses the menu by selecting the “1-800-275-2273” link.

4. The device asks for confirmation of the call to the number “1-800-275-2273.”

5. The user makes a call to Support.

In a use-case, there are five different levels of detail, shown from top to bottom in the

following list:

1. Cloud level (Summary goal)

2. Kite level (Summary goal)

3. Sea level (User goal level)

4. Fish level (Sub-functional goal)

5. Clam level (Sub-functional goal)

We can work on a different level of detail by setting a different level, as shown in the

following example:

Call Support

Level: Kite level

Actor: User

Device: iPhone

1. The user goes to the Contact page.

2. The user clicks the Support number.

CHAPTER 11: Testing iOS WebApps 397

3. The device asks for confirmation.

4. The user calls Support.

Figure 11–7. The use-case: the textual use-case and its implementation on a paper prototype.

In the first phase of our project flow, called analysis, the textual use-case was employed

to identify the requirements of our project, but it can now be re-used in the test phase to

compare the expected behavior from the textual use-case with the real user’s behavior

from the prototype test. Each entry in our textual use-case should match the actions

performed by the user to complete the task. Figure 11–7 illustrates the use-case called

“Call the Support.”

Creating a Use-Case Diagram
A use-case diagram is a visual representation of the system boundary and its

interactions with the external world. Those who interact with the system from the

external world are the actors. An actor can be either a user or another system.

The system is represented by a square or rectangle that shows the system boundaries.

Every use-case is represented as an oval that encloses the name of the use-case. The

actor is represented by a stylized human, with an identity below it.

The use-case diagram uses a factorization approach, which means that a use-case can

include another use-case, as shown in Figure 11–8. When a use-case includes another

use-case, an arrow points to it, showing the word <<include>>.

CHAPTER 11: Testing iOS WebApps 398

Figure 11–8. Use-case: comparison between the diagram and the textual description.

In our example, the Contact Support use-case includes another use-case called “Make

a Call.” If we refer to the Sea Level Detail of the textual description, the Contact Support

use-case represents points 1 and 2, whereas the Make a Call use-case represents

points 3, 4, and 5. In the Kite Level Detail, only point 1 belongs to the Contact Support

use-case whereas points 2, 3, and 4 belong to the Make a Call use-case.

Use-case diagrams play a functional role in the test phase through organization and

offering a visual reference to each test.

Creating the Assets
When the textual use-case and the use-case diagram are ready, we can begin to work

on the test assets. We need to prepare two different types of assets: one type for the

paper prototype and one type for the electronic prototype.

Paper Prototype
Paper prototypes are directly inspired by, or even recycled from, the paper prototype

used in the design phase. Basically, we need to design a paper prototype for each step

of our use-case, which means that paper prototypes and numbered points from the

textual description have a one-to-one relationship, as illustrated in Figure 11–9.

CHAPTER 11: Testing iOS WebApps 399

Figure 11–9. One-to-one relationship between two textual use-case entries and two paper prototypes.

Each paper prototype represents a view of a specific moment in the test in the same

way a frame is a view of a specific moment in a movie clip. Paper prototypes always use

some colors for reducing the gap in the brain between the perception of a simple piece

of paper and a real image of a fully working device. A good approach is to use the

Pantone Color Chart if you use a graphic program for choosing colors and design of

your papers, or a Pantone pen if you use a handmade approach.

Electronic Prototype
Electronic prototypes are designed and developed as the last step before jumping into

the implementation phase. As long as you haven't skipped this phase you should have

an electronic prototype ready for the test phase.

Generally, an electronic prototype doesn’t offer 100% of the functionality that the final

release provides; the goal of this type of test is to perform checks in order to prevent

errors and avoid their propagation in the implementation phase.

Nevertheless, in a web context, the electronic prototype is based on the same technology

as the final release (HTML5, CSS3, and JavaScript), so this type of prototype is often very

close to the final product that will be released (and is shown in Figure 11–10).

CHAPTER 11: Testing iOS WebApps 400

Figure 11–10. The textual use-case (left) and the WebApp views (right).

In Chapter 2, we suggested a framework plug-in to easily develop an electronic

prototype of our project. Whatever approach we choose, the concept is always the

same: create an HTML5, CSS3, and JavaScript model in order to be able to test a

specific function or a specific service. According to the grade of functions and services

offered by the electronic prototype, we can perform different grades of tests and have

different grades of feedback.

Performing a Test
Once the assets are made, and assuming that the user is ready, we can start to perform

the prototype tests. Any room with a table and two chairs is a perfect location for a

paper prototype test.

Paper and electronic tests look different, the assets are different, the role of the tester in

the test is different, and even the grade of feedback is different, yet the idea behind both

types of tests is the same. Both could be categorized as task-oriented tests. We will see

how the same idea drives these tests in the following sections.

CHAPTER 11: Testing iOS WebApps 401

Figure 11–11. Paper prototype test: the paper view and the paper landing view relationship.

In these tests, the paper view is a physical paper page (an asset) while the paper landing
view (another asset) is a link destination page. “Landing” is a relative prefix to increase

the level of communication and better understand the context and relationship between

two pages, which is useful when we need to analyze and discuss the results of the test.

Paper Prototype
The use-case that we need to perform with the user is represented by a phrase or an

order that starts the use-case, and mentally leads the user through his actions. Referring

to our Call Support use-case, a good phrase or order to start the test is Contact Support

by Phone.

Call Support

Level: Sea level (a.k.a. User goal level)

Actor: User

Device: iPhone

Order: Contact the Support by Phone (for the user)

1. The user browses the menu by selecting the Support link.

2. The user browses the menu by selecting the Contact Us link.

3. The user browses the menu by selecting the “1-800-275-2273” link.

4. The device asks to confirm the call to the “1-800-275-2273” number.

5. The user makes a call to Support.

CHAPTER 11: Testing iOS WebApps 402

Once we introduce the order to the user, we show him the first and initial paper view

(Figure 11–11), represented by “Page 01” in Figure 11–9 as we saw earlier. We ask the

user to voice his thoughts during his experience and for every action he performs. The

tester records all comments describing the user experience.

Figure 11–12. Paper prototype test: the textual description used to drive the paper test.

The user interacts with the paper prototype while the role of the tester is to replace the

paper view with one relative to the user’s action. In our example, if the user touches the

Support link, the tester replaces the paper represented by Page 01 with the new landing

paper view represented by Page 02, as in Figure 11–13.

Figure 11–13. Paper prototype test: tester changes the paper views (Image Samuel Mann).

In the optimum case, the prototype test will finish when the user is able to achieve his

task, and in the worst case, when he quits. In any case, the tester must record the user’s

experience, describing how the user achieved a task or why he failed.

CHAPTER 11: Testing iOS WebApps 403

Electronic Prototype
After learning as much as possible from the paper prototype tests, we are ready to

perform the electronic variation called the electronic prototype test (see Figure 11–14).

The test procedure remains the same; what changes is the level of user experience and

the possibility for the tester to test functions and services that had not yet been

implemented in the paper prototype test phase.

The electronic test can be performed using a desktop computer, which is the case if you

use the Fireworks PlugIn. You will generally want to use a browser with a mobile user

agent as a test environment.

Figure 11–14. Electronic prototype test: textual description used for driving the electronic test.

Of course, because a web site or application typically shares the same technology used

to develop electronic prototypes, a better version of this test could run directly inside the

mobile device. In this case, we can have an electronic prototype that offers different

levels of functionality or service from ~0% to ~100%.

An electronic prototype that is used only to test the design and level of feedback but

provides almost none of the functions and services is comparable to a paper prototype.

A prototype that provides most of the available functions and services produces a level

of feedback comparable to the release version.

In both desktop and mobile versions of the electronic prototype test, the tester plays the

same role that he played in the paper prototype test, except that he does not manually

change the views during the test. The tester assigns the user certain tasks to

accomplish while recording notes about the user’s experience.

CHAPTER 11: Testing iOS WebApps 404

Evaluating a Test
Once all the prototype tests are complete, we need to work on our gathered data and

feedback to evaluate the test and the project. It is important to remember that a test’s

feedback is only as reliable as the test model. This means that your prototype must

simulate or represent the final release as much as possible.

The problem is that, in this context, where a short-circuit is obvious, we need to use

prototype assets that look like the final release in order to get reliable feedback.

However, we did perform prototype tests to understand how to design the final release

and/or to verify that the actual design is correct before implementing the final release

(see Figure 11–15). The bottom line is that a test is just a test, and reliability is based on

tests performed on incomplete prototypes.

Figure 11–15. Paper prototype test: two types of assets used by the tester to perform and evaluate the test.

This fact is more apparent in a paper prototype test where paper seldom represents a

real user interface and where poor color or details interact in different ways with the

cognitive perception that is the foundation of every user’s experience. These are things

related to the visceral level of design—one of the three levels of design (along with

behavioral and reflective) that Donald Norman explains in Emotional Design. Failure to

create a link with the visceral level of design results in failure to anticipate the real user

experience because it dismisses the level of effect, or emotional response, that a

prototype can elicit in a user in a particular context.

NOTE: Donald Norman is an academic in the field of cognitive science, design, and usability
engineering and a co-founder and consultant with the Nielsen Norman Group.

For more information, visit http://www.jnd.org/books.html.

http://www.jnd.org/books.html

CHAPTER 11: Testing iOS WebApps 405

In contrast, the electronic prototype shares the same technology with the final release,

so the test and the feedback will be more accurate. The percentage of accuracy can

change according to the number of functions and services implemented in the

prototype.

Variables and Feedback to Evaluate
Generally speaking, a test can have a structure from very simple to very complex.

Complex tests return rich and accurate feedback but also require resources and effort

that are often beyond the scope of a small development team, let alone a single

designer or developer.

Continuing with the agile approach, we use several variables and types of feedback in

order to get a clear idea of what level of experience our design, functions, and services

can trigger in the user’s mind.

Number of Touches
The first variable to manage is the number of touches required by a user to accomplish a

task. The number of touches is defined by the shortest path tree (SPT) from the starting

point to the ending point of the content tree. The beginning point can be our home page

or another page somewhere in the content tree for performing a more specific task.

Figure 11–16 shows the steps necessary for the Call Support use-case. The path looks

simple, but the simplified content tree represented by Figure 11–16 doesn’t represent

the internal links between web pages.

Figure 11–16. The number of touches used to accomplish the Call the Support task.

The SPT algorithm is used in other and more complex areas, but in our use-case the

same concept is easily implemented by counting on the site map or content tree the

number of touches needed to accomplish the task. The number of touches is reported

by the tester in the use-case paper description as a reference.

CHAPTER 11: Testing iOS WebApps 406

Number of Mistakes
The second variable is the number of mistakes that the user makes while trying to

accomplish his or her task. There are two categories of mistakes:

 Touch error. When the user touches the wrong link (Figure 11–17 left).

 Touch misidentification. When the user touches a non-touchable

area (Figure 11–17 right).

When a user touches a wrong link, this means that he or she touched a link that brought

him or her away from the ending point and that the link doesn’t belong to the shortest

path of the task. This type or mistake can either be the fault of the user or the design.

The tester needs to determine whether the design is correct and the user made a

mistake triggered by the environment or some other cause, or whether the wrong design

triggered the user’s mistake.

Figure 11–17. The types of user (touch) mistakes: wrong link (left) and non-touchable area (right).

It is different when the user touches a non-touchable area thinking that he/she touched

a link. In 99% of these cases, the mistake was triggered by a design error. Design errors

could mean a context with a lack of user orientation, or just a wrong user interface

design. In any case, this type of mistake calls our attention to some detail that we

apparently overlooked in the design phase.

Estimated Time of Arrival
The third variable is the estimated time of arrival (ETA) (Figure 11–18), the time that the

user needs in order to accomplish the task. The ETA is calculated against the tester,

who knows the content tree and is able to pass the task.

CHAPTER 11: Testing iOS WebApps 407

Usually, the shortest path time is used as the lower-bound for the test, as taken by the

experienced tester. The lower-bound defines the optimum, a standard that in practice is

almost never matched by the user during a test. The closer the user is to this estimated

time, the better he or she can accomplish the task and (presumably) the higher the level

of user experience.

Figure 11–18. Call Support use-case: calculating the estimated time of arrival (ETA).

The ETA is reported in the use-case paper description as a reference for the tester.

Collecting Feedback
In addition to these three variables, there are three types of feedback that the tester can

collect from the user’s comments.

Design Feedback
The first type of feedback is design feedback about the quality of the user interface. In the

design part of this book, we learned that, in the touch-oriented world, every part of the

design is an interface that collects feedback about every design element. Figure 11–19

illustrates two different emotional feedbacks for the same user interface.

CHAPTER 11: Testing iOS WebApps 408

Figure 11–19. Call Support use-case: two different design feedbacks for the same interface.

Although this type of feedback can be useful in the paper prototype test to indicate the

correctness of our design, it has more weight if gathered during the electronic prototype

test because the implemented interface is almost the same as the release version and

the information contains more useful details.

Expectation Feedback
The second type of feedback is expectation feedback about the design and service

expectations of the user. This type of feedback is gathered every time the user lands on

a web page that doesn’t match his expectation or touches a link thinking that it

represents a different service from the one implemented. Figure 11–20 shows what can

happen when a user has a different mental representation of the landing page behind a

link.

Figure 11–20. Buy an iPhone Dock use-case: the expectation doesn’t match the design in the landing page.

The weight of this type of feedback is almost the same on both paper and electronic

prototype tests. These tests are useful for understanding how semantically our design,

functions, and services are represented in the user’s mind and whether this meaning

corresponds to our original plans.

CHAPTER 11: Testing iOS WebApps 409

Emotional Feedback
The last type of feedback is emotional feedback about the inner feelings of the user

during the test session. This type of feedback has more weight for the electronic

prototype test session and often isn’t even gathered in the paper prototype test session.

Emotional feedback is triggered by two types of stimuli. One is absolute and triggered

by colors, design elements, and everything involved in the identity of the project. In

Figure 11–21, this stimulus is represented by the iPhone.

The other type of feedback is relative and involves the environment and the changes that

this type of stimulus triggers in the user’s inner world, as shown in Figure 11–21. The

word “environment” refers to everything belonging to the physical world (except the

mobile device) outside of the human user.

Figure 11–21. Emotional feedback is triggered by two types of stimuli: absolute and relative.

This type of feedback can give important information about the user’s inner world during

the test. This type of feeling is important as part of the global communication that comes

from our web site or application. In order to test a relative stimulus, such as the

environment, we need to implement an electronic prototype directly on the mobile

device and go outside, allowing the user interface to join the real world.

Evaluation Techniques
Evaluating a test can be difficult, especially when working with a large amount of data

and a wide-ranging project. We can apply statistical methods from a discipline called

descriptive statistics in order to obtain reliable values. After performing a prototype test,

we no longer need this type of approach, and an agile method can still provide reliable

values without involving heavy calculations and complex mathematical skills.

CHAPTER 11: Testing iOS WebApps 410

Test Variable Evaluation
The simpler way to evaluate the variables involved in the prototype test is to count the

number of occurrences of each variable and compare it to the number of occurrences in

the actual test. In UML, the entity used to estimate (or represent) the expected value

from a use-case test is called Oracle. In our test, the Oracle is represented by a set of

variable values represented by natural numbers.

In our prototype tests, there are three natural numbers related to three types of

variables: one for the number of touches, one for the number of mistakes, and one for

the time of arrival.

The simplest method is to set a lower-bound for each variable that has to be matched in

the test. Figure 11–22 shows a textual representation of the variable values in the use-

case textual description. In our example, we set these values equal to the passed test

(the user is four touches away from the Call the Support link), which means that the test

will be either passed or failed.

Figure 11–22. A textual use-case with notes about the variable values.

Once we set the minimum value for each variable, we need to set the variable’s modal
operator for the test. Variable modal operators set a verb for each variable showing how

the expectation value should match. Generally, only a few modal operators are used. We

use two for our purpose: “must” and “should.”

The modal operator shows whether a variable’s value must be matched or just should

be matched in order to pass the test. We present only a simple example of a prototype

test: for more complex projects and tests, it is a good idea to add a certain level of

matching for each variable.

Our use-case test can be passed by performing only four touches, with no touch

mistakes. The “should” attribute of the ETA variable says that the value of this variable is

not a “must” for passing the test. In some cases, a more reliable result can be achieved

CHAPTER 11: Testing iOS WebApps 411

by including some sub-set of passed cases, setting a percentage to match for each

variable.

Test Feedback Evaluation
When working with variables, the most important thing is to know how to set them. After

this difficult part is done, all that is left is to compare the data. This approach is more

technical but doesn’t require a great deal of skill or experience from the tester.

A completely different scenario is the feedback evaluation. This is because we will not

have a number with which to compare and our experience will play a fundamental role.

For this reason, we can introduce any experimental method or technique to evaluate the

feedbacks, as long as we specify the procedure.

Figure 11–23. The textual use-case with notes about the user feedbacks

Collect the three types of feedback. Figure 11–23 shows an example of how we can

note the user feedback. When everything is in place, we need to remember that every

feedback has weight. The weight of a feedback is its inner value in relationship to the

context. A user might report confusion with our interface, but the level of stress in a

specific context might be the result of decreased cognitive resources, or these patterns

might have been conditioned by another application or some ambient variables. For this

reason, the tester’s experience and practice are needed to gather reliable information

from the user’s feedback.

CHAPTER 11: Testing iOS WebApps 412

Resources on Testing
Table 11–1 provides some of the tools used in this chapter for testing our project.

Table 11–1. Tools Used for Testing WebApp.

 Name Type URL Operating System

Feng-Gui WebApp http://www.feng-gui.com/ OSX – Win - Linux

yUML WebApp http://yuml.me/ OSX – Win - Linux

Agilian Application http://www.visual-paradigm.com/ OSX - Win

OmniGraffle Application http://www.omnigroup.com/ OSX - iOS

Summary
In this chapter, we saw the importance of planning a testing phase and how this phase

can be performed along the entire project flow—not just at the end of the process.

We began by showing how heat maps are a reliable source of feedback for the designer

and developer. We then introduced paper and electronic prototypes. We saw how these

two types of tests help the tester gather different types of feedback.

We discussed how to organize a test by applying artifact recycling from the previous

steps of the process flow. We saw how to create a test and a use-case using different

levels of detail. We used UML notations, introducing the use-case textual description

and the use-case diagram.

We then saw how to perform a test with paper and electronic prototypes. We saw how

to create and recycle the assets, and that the electronic prototype was performed in the

early phase of design while the electronic prototype was performed at the end of the

design phase before passing on to the implementation phase.

We also saw that the electronic prototype, because it shares the same technology with

the web site or application, can be used to test the project outside the office in a real-

world scenario.

Finally, we saw how to evaluate a test and the variables and types of feedback involved

in this process. We presented three types of variables (number of touches, number of

mistakes, and estimated time of arrival) and three types of feedback (design,

expectation, and emotional feedback) used in the evaluation.

http://www.feng-gui.com/
http://yuml.me/
http://www.visual-paradigm.com/
http://www.omnigroup.com/

413

 Chapter

Maximizing the Market
for iOS WebApps

Talent wins games, but teamwork and intelligence wins championships.

—Michael Jordan

In this chapter, you will learn how to promote a WebApp. You will see how using some

specific approaches can help guarantee that the WebApp has good visibility, even

before it’s released on the net.

We will talk about Beta Tester invitations and about press releases; you will see the

benefits of creating a web site for the WebApp and how to create awareness using video

social networks, such as YouTube.

We will also show you how to submit the WebApp to the Apple WebApp Portal and what

other options the net offers in addition to the official Apple portal. Finally, we will discuss

monetizing your WebApp and which services you can use for doing so.

Use Your Mobile Strategy
Previously, in Chapter 2, we worked on a mobile strategy and discussed how this

strategy is important in order to achieve goals and mitigate mistakes, ultimately creating

a successful project. The keys to a winning marketing plan is knowing exactly what your

Web application has to offer and the profile of your potential users. This is why the

mobile strategy elaborated in the early phase of your project becomes crucial at this

point.

Using the information gathered while developing your mobile strategy, you are able to

better market your Web application, targeting a specific range of user profiles. Chapter 12

introduces some of the best approaches for doing this.

12

CHAPTER 12: Maximizing the Market for iOS WebApps 414

How to Promote Your WebApp
Assuming that your mobile strategy is on track and that you know the range of user

profiles you want to target, you can consider how to promote your WebApp. As you will

see in the following sections, various techniques can be used in order to reach a wider

range of potential users.

These techniques can change according to the state of development of the Web

applications. In the early phase of release, use Beta Invitations for both tests and

introducing the Web application to a small number of important users. As shown in

Figure 12–1, once the Web application is ready, you can design a web site to create an

identity and/or create a YouTube channel where you can insert video tutorials about the

most important features.

Figure 12–1. A Wordpress theme to promote native and WebApps (source: image from Templatic).

At this point, the Web application is ready to be released to the press on major Apple-

oriented blogs and inserted in some major WebApp portals where you can gain visibility

among potential users. Once the Web application is live on the major WebApp portals,

it’s time to use the viral nature of social networks to create positive hype around your

Web application.

Use Beta Invitation Testers
The first step in your marketing plan begins even before the Web application is released.

After the alpha tests are performed internally by the designers and developers, the Web

application enters the beta test phase where real users test it in their own environments.

CHAPTER 12: Maximizing the Market for iOS WebApps 415

The Beta Invitation Phase involves a small group of users, chosen for their profile and

potential connections with other important users. This kind of user is chosen because

he/she represents a significant profile for testing the Web application; he/she also has

important connections with potential users that are not reachable through other

channels of communication.

In your Web application, it would be a good idea to create an account in advance for the

Beta Tester and send this and other information to the user before he/she approaches

the Web application. This will create a more comfortable environment for the tester and

will help him contextualize all the services and functions, decreasing his learning curve.

A good choice for a Beta Tester could be a designer or a developer from another team,

a user involved in a specific business who can spread the word about the Web

application, or an important blogger or journalist. A testimonial to this strategy is Walter

S. Mossberg, an American journalist and principal technology columnist for The Wall
Street Journal, who always receives a version of the latest device from Apple before it is

actually released to every Apple Store. In reality, the role Mossberg plays in the equation

is more like a Beta Reviewer than a Beta Tester, but the concept behind the Apple

strategy is the same.

Use Press Releases
The press is always the first link for all types of news, and digital news is no exception.

It’s important to distribute press releases regarding your launch to major Apple-oriented

blogs on the net. You must be sure to provide a complete description and screenshots

of crucial functions for your WebApp, making sure that details are not left in the hands of

the blogger.

Create a WebApp Web Site
Creating a web site or Web application means spreading word of its identity over the

Internet, being indexed by search engines, and representing a point of support for every

potential user. Many designers and developers overlook this step in both native and

Web application processes, which is a serious mistake. A web site is one of the best

communication channels for every type of application.

When designing a web site, it is important that you keep the identity of your Web

application and the primary user’s target profile in mind so that you are not only

pursuing your personal design tastes. In this phase, the choice of colors and the type of

lines that will be used in the design are crucial. Creating an aggressive design for a

primarily female Web application might work against you in your promotional campaign.

CHAPTER 12: Maximizing the Market for iOS WebApps 416

Figure 12–2. The native application Twitterrific offers a good example of an application Web site.

In Chapter 4, we discussed color psychology and the relationship between colors and

users’ moods. Along with the right choice of colors and lines, it is important that the web

site includes the following sections:

 Functionalities. This is what the Web application can do for the user,

stated clearly and directly. Functionalities can also be presented as a

preview on the home page, as shown in Figure 12–2.

 Version history. It is important take note of all updates and new

functions implemented in the Web application to create a background

for the developers and a reference for the users.

 Tutorials. It is important that, on the web site, the user is able to find a

tutorial, which will help him to use all the major functions and services

implemented.

 About. When possible, it is important to give a clear representation of

your team. Giving credit to the entire team will help your app look even

more professional to your users.

 Support. It is important to offer support to the user for any issues that

may arise regarding the services and functions implemented in the

Web application. Providing good support is key for any team that

wants to create return customers.

 Social sharing options. It is fundamental to provide a social sharing

option in order to let the user spread the news about the Web

application. From all the options available, the Twitter and Facebook

sharing options are a must; it is also important to offer Facebook-like

buttons.

CHAPTER 12: Maximizing the Market for iOS WebApps 417

 Community (optional). It is important to provide a place where

developers can meet each other, share, and grow together. This

option is only for open source projects where developers work from

different places without the opportunity to meet face to face.

 Blog (optional). It is important to update the development status of

the Web application. An active blog gives a positive image to the

users, and acts as good support, helping to create return customers.

The best examples of application web sites are from those dedicated to native iOS

applications because the need to sell behind a native iOS project brings native

developers to adopt this technique before comparing web developers; a good example

is provided by the Twitterrific app web site, as shown in Figure 12–2. The benefits are

the same for both development approaches.

Finally, it is important to always implement an Add to Home Screen function for both

iPad and iPhone users. This is considered a good practice to implement in every

WebApp for two reasons. First, not all users bookmark pages, even if they perceive

them as interesting; second, when adding to the home screen, a Web application is

considered the last step in the native emulation process. Accessing a native-like

WebApp without the possibility of launching it from the home screen dramatically

decreases the user’s native-like experience.

Use E-mail Marketing
After creating your App-promoting eb site, it is a good idea to encourage your potential

users to sign up for newsletters that deliver information about the status of your

WebApp, introduce new features, or announce bug fixes.

CHAPTER 12: Maximizing the Market for iOS WebApps 418

Figure 12–3. The native app “Shall I Buy” is a good example of e-mail marketing.

Figure 12–3 shows a web site that implements this approach, which works to provide

updates once the WebApp has exited the Beta Testing Phase and is available to all

users online.

Create YouTube Video Tutorials
Video tutorials are a good way to offer support to users of your Web application,

especially beginners; these tutorials simply and directly explain how to properly use the

application’s services and functions. YouTube videos can be embedded in your

application web site’s tutorial section. The YouTube channel has great visibility in a

search engine such as Google.

In the past, many big names, such as Apple, had their own YouTube channels (see

Figure 12–4). Recent channel features now enable users to customize channel styles

and themes, offering the developer the opportunity to match a specific user identity.

CHAPTER 12: Maximizing the Market for iOS WebApps 419

Figure 12–4. Apple’s official YouTube channel on a desktop, iPad, and iPhone.

Opening a YouTube channel is easy; it only takes a few minutes to register an account

at http://www.youtube.com. You must remember to choose the right title, description,

and tags when you use the upload video form. Good titles and tags are required in order

to maximize the possibility of the video being indexed accurately on the Google search

engine, making it easier for the user to view all important information at a glance.

The description under every video is composed of a three-line preview plus a (more info)

link that shows the entire description content. In the three line preview, be sure to insert

everything that is needed to describe the content of the video, going into detail only after

the third line. This guarantees the highest possible level of user experience during

his/her interaction with your videos.

Submit to Apple WebApp Portal
The Apple WebApp portal is the closest thing to the App Store for a eb developer. This

portal doesn’t offer the same visibility to all the Web applications submitted as does the

App Store using different channels, but it remains the best option for promoting any type

of WebApp.

Exactly as in the world of the App Store, in order to submit a project, it is necessary to

register a developer account with Apple. The difference here is that, in this case, even

the free version will suffice for submission of a Web application to the portal.

http://www.youtube.com

CHAPTER 12: Maximizing the Market for iOS WebApps 420

Figure 12–5. The official Apple WebApps portal on an iPad (left) and on an iPhone (right).

From the Apple WebApp portal, as shown in Figure 12–5, click in the banner situated in

the right sidebar titled “Submitting Applications.” You will be redirected to the Apple

Development Center at http://developer.apple.com/devcenter/safari/ where, once

logged in using your Apple ID, you will be able to access the Apple iPhone Web

Application Form. At the end of the form, you can insert a 320 436 pixel application

screenshot and a 128 128 pixel product application icon.

You can also manage your submissions from the Apple Development Center by

updating or changing any type of information regarding your web applications.

Submit to Other WebApp Portals
The are several reasons why the use of the Apple Store WebApp portal is the best

option for any web developer aiming to promote his or her application. First, the portal is

an official source and is supervised by Apple personnel; second, it is well organized. The

Apple WebApp portal is not the only way to go; other good options to promote your

Web application are available.

OpenAppMkt, available at http://openappmkt.com/, is a WebApp portal in pure Apple

style; it is well organized and offers several options, such as a sharing toolbar and a box

for user reviews, that even the Apple portal doesn’t offer. From a user standpoint,

OpenAppMkt requires a free user account where a user inserts his e-mail information,

which will be used to send the Web application directly to the developer’s e-mail

account.

http://developer.apple.com/devcenter/safari/
http://openappmkt.com/

CHAPTER 12: Maximizing the Market for iOS WebApps 421

Figure 12–6. OpenAppMkt on an iPad.

If you want to submit your Web application, you need to register a developer account.

From the developer dashboard’s sidebar, you can click the Submit New App button and

fill in the form with all the Web application’s information You also need to provide an

App icon, choose the correct category, and specify whether your Web application is

designed for iPhone and/or iPad and its price.

OpenAppMkt is a great resource for a web developer, also providing revenue handling

at an interest rate of 80–20%. This approach is similar to that used by the App Store.

Figure 12–6 displays the Developer tab where you can upload your WebApp information.

Figure 12–7. The Add to Home function of OpenAppMkt in action.

CHAPTER 12: Maximizing the Market for iOS WebApps 422

Figure 12–7, shows that the OpenAppMkt has applied the best practice of inserting the

reminder “Add to Home Screen” into the WebApp for both iPad and iPhone users,

increasing the native-like experience.

Figure 12–8. The eHub web site is a constantly updated resource for Web applications.

Another good WebApp portal is eHub (see Figure 12–8), available at

http://emilychang.com/ehub/. This portal hosts desktop projects as well as mobile Web

applications and generates a large amount of Internet traffic.

Use the Virality of Social Networks
Building a web site is a fundamental step for the marketing plan of a Web application;

adding a blog is also a good way to update users about bug fixes and new features.

Social networks offer a perfect platform for various types of promotion, from personal to

business.

Subscribing to a social network gives you the opportunity to post any type of update. It

is even faster than a blog and gives you the opportunity to find and create new

important relationships, as shown in Figure 12–9. In this respect, not all social networks

are equal; for example, platforms such as Twitter and LinkedIn (which are able to import

tweets inside a personal home page) are more business-oriented than Facebook.

However, it is important to optimize any communication channel available.

http://emilychang.com/ehub/

CHAPTER 12: Maximizing the Market for iOS WebApps 423

Figure 12–9. An example of social network interconnection (source: image from Labrow Marketing).

Speaking of general WebApp projects, the first step might be to create a LinkedIn

account. LinkedIn (see Figure 12–9) is a business-oriented social network platform and

is the best channel for creating important links with designers, developers, and

professional teams around the world. A LinkedIn profile is complete and offers a great

opportunity to show off your knowledge and past experience, also offering the ability to

send invitations to your e-mail contacts and to import your Twitter Timeline and your

SlideShare Presentations, while creating a powerful connection with many of your

channels.

The second step might be to create a Twitter account. The account can be personal or

dedicated to the Web application. Twitter is a creative micro-blogging social network

platform. This means that, in addition to private users, many professional designers and

developers use it to share news and updates on their projects. With its post limit of140

characters, Twitter is perfect for short and fast project updates. Your personal Twitter

home page can be customized by modifying the background image and the color

palette of the theme to match any personal identity.

The third step might be to create a Facebook page for your WebApp. Facebook is the

least business-oriented of these three networks because the percentage of people that

use Facebook for professional purposes is minimal compared with Twitter and,

especially, LinkedIn. Nevertheless, the smart use of Facebook might enable you to reach

new potential users—those who are not already big WebApp users or who are returning

customers. In this phase, it’s also important to bear in mind that different projects have

different requirements and priorities. Choose the right social network to reach your

target user profile.

CHAPTER 12: Maximizing the Market for iOS WebApps 424

Figure 12–10. The virality of distribution on social media networks (image Intersection Consulting).

Monetizing a WebApp
It is not as easy to monetize a Web application as it is a native application because you

can’t rely on App Store support. The App Store assumes the responsibility of selling

your native application. The application promotion is just a plus; the App Store offers

good visibility of almost all Apps submitted to it. The music changes when it is

necessary to raise income from a Web application that needs to be promoted from zero.

In addition to the opportunities offered by portals like OpenAppMkt, the two best ways

to raise income are through Google AdSense and PayPal donations.

Figure 12–11. The Google AdSense Service Registration page on iPad.

CHAPTER 12: Maximizing the Market for iOS WebApps 425

Google AdSense offers the opportunity to insert and display targeted ads in your

content and earn money from them. The service works on both mobile and desktop

platforms, having a specific section for Web applications. After registering an account

on Google AdSense, you need to add a snippet of code to your Web application, as in

Google Analytics. Google AdSense also offers the ability to customize mobile ads to

best match the look and feel of your Web application design.

PayPal is a well-known and widely used platform. You can use PayPal donations with

your Web application in order to raise funds from it. In this case, it is a good idea to add

the Donate button to both the application web site and the Web application. PayPal is

an effective income generator if your Web application is a specific one and effectively

solves user problems with its function or service.

Resources on WebApp Market
Table 12–1 lists the major WebApp portals and social networks for promoting any type

of WebApp using the Internet. We have included the links to PayPal and AdSense for

those interested in monetizing their project.

Table 12–1. Tools Used to Design iPhone and iPad User Interfaces.

 Name Type URL

Apple WebDev Center WebDev Portal http://developer.apple.com/devcenter/safari/

Apple WebApps WebApp Portal http://www.apple.com/webapps/

OpenAppMkt WebApp Portal http://openappmkt.com/

Myijump WebApp Portal http://myijump.com/

eHub WebApp Portal http://emilychang.com/ehub/

WebApp TV WebApp Portal http://webapp.tv/

App Site Showcase http://www.appsites.com/

YouTube Video Portal http://www.youtube.com/

Twitter Social Network http://twitter.com/

Facebook Social Network http://www.facebook.com/

LinkdIn Social Network http://www.linkedin.com/

Google AdSense WebApp https://www.google.com/adsense

PayPal WebApp https://www.paypal.com/

http://developer.apple.com/devcenter/safari/
http://www.apple.com/webapps/
http://openappmkt.com/
http://myijump.com/
http://emilychang.com/ehub/
http://webapp.tv/
http://www.appsites.com/
http://www.youtube.com/
http://twitter.com/
http://www.facebook.com/
http://www.linkedin.com/
https://www.google.com/adsense
https://www.paypal.com/

CHAPTER 12: Maximizing the Market for iOS WebApps 426

Summary
This chapter discussed how to maximize the market for Web applications by showing

that the Web application market is not comparable to the native app market because of

the App Store paradigm.

In the first part of the chapter, we introduced how a mobile strategy developed in the

early phase of a project can be useful for planning a promotional campaign and a

marketing strategy for your projects.

In the second part of this chapter, we presented several approaches for achieving your

marketing goals. We used (VIP) Beta Testers to both test and promote an application,

and then we created a web site to introduce the Web application to search engines and

to the Internet. After creating a web site, we created a YouTube channel to promote the

application and provide video support to import video tutorials to the web site.

In the third part of this chapter, once the main structure around our Web application was

built, we submitted it to the Apple WebApp portal as well as to other portals, such as the

OpenAppMkt. We also saw how portals like OpenAppMkt can help us to raise income

with the paradigm used with native applications in the App Store.

In the fourth part of this chapter, we used the virality of social networks to disseminate

information about our Web application to specific types of users on LinkedIn and Twitter

and to various types of potential users on Facebook.

In the last part of the chapter, we presented two methods for monetizing our Web

application. The ADSense Service can provide developers with a good average income.

We also saw how the PayPal Service works better with Web applications that solve

important problems and generate a feeling of gratitude in the user, prompting him/her to

make a donation.

427

 Chapter

Looking Beyond the
Mobile Web to Ubiquitous
Computing

... The people who are crazy enough to think they can change the world
are the ones who do.

Steve Jobs

The Explosion of Mobile Devices, Wireless, and
Cellular Communications
Delivering the keynote speech at an American Institute of Business event in Palm

Springs in 2011, Google CEO Dr. Eric Schmidt provided some staggering predictions

regarding mobile usage.

“Everything we’ve talked about and everything you’re going to hear says, ‘do mobile,’”

Schmidt declared. “We look at the charts internally and it’s happening faster than all of

our predictions. This is the future, and everybody will adapt.”

According to Schmidt, the CEO of one of the most revolutionary companies in the world,

over the next few years, between 1.5 and 2 billion people will get connected. “This is a

vision that includes everyone. It does not discriminate based on the amount of money

you have, as long as you have some sort of mobile device,” Schmidt continued.

These numbers seem enormous when compared with the predicted expansion of any

other technology, but the fact is that according to a recent article by the ITU (the UN’s

International Telecommunication Agency), the growth of mobile usage has already

eclipsed the Google CEO’s lofty predictions. “With the world’s population exceeding 6.8

billion, nearly one person in three surfs online,” said Susan Teltscher, ITU’s head of

13

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 428

market information and statistics. Even President Barack Obama said that his plan to

double the size of the broadcasting spectrum reserved for wireless devices is mostly

aimed at addressing the growing mobile-device market.

New and upcoming mobile video applications will contribute to make up a large portion

of the enormous traffic demand from mobile and media center devices. For instance,

FaceTime on iPhone and iPad will dramatically impact network capabilities around the

world.

According to the Cisco Global Mobile Data Traffic Forecast and recent Morgan Stanley

reports, by 2015, nearly every human on Earth will have a mobile device, and tablet

penetration will help raise the average mobile connection to 1.118 megabytes per

month. The highest growth rates are in India, with 158 percent, and in the Middle East

and Africa, with annual rates of 129 percent. This is followed by other countries and

regions such as Latin America, Asia Pacific, South Africa, and Mexico.

Although home devices such as media centers and desktop computers in the near

future will stay on existing networks, which will be improved as time goes on , mobile

devices, such as smartphones and tablets, will have to wait to move to the upcoming 4G

technologies, which they will need in order to efficiently run new video-based

applications.

Next-Generation User Experience with Touchscreen
and Multitouch Technology
The key term in the title of this section is “user experience.” Multitouch technology

brings to everyone—private users and professional developers alike—new benefits and

opportunities. The impact of this type of technology has been so great that now we think

of it as a revolution in the history of electronics. Figure 13–1 shows some examples of

new application environments available on multitouch devices.

At first glance, the basis of this revolution seems to be multitouch-screen technology,

but as you previously learned in this book, everything happens in the user’s mind. From

this point of view, a touchscreen is merely a trigger, not the event. The event is the

change in the user’s experience.

This improved level of user experience comes from the new multitouch paradigm, which

the mobile user is able to utilize through the development of multitouch-screen

technology. This advancement has fundamentally changed the relationship between the

environment and the user. This is the evolutionary chain of the new multitouch user

experience.

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 429

Figure 13–1. New application environments available on multitouch-technology devices

New Technology, New Usability, and New
Opportunity
When the first iPhone was launched in 2007, the mobile community benefited from a

device that was able to provide a new browsing experience. Before 2007, surfing the net

from a cellular phone or any other mobile device wasn’t nearly as pleasant as it is today.

As a result, the mobile market began to grow with incredible speed, and even four years

later, it’s still growing rapidly.

In 2007, the only way to develop software for Apple’s new device was to write web

applications, but many countries weren’t ready for this type of revolution. With the

exception of the HTML5 cache feature, all web applications are, to some degree,

dependent on Internet access, and many countries weren’t able to offer inexpensive

24/7 contracts to satisfy users’ new requirements, thereby limiting the device’s

enormous potential.

In 2008, Apple released its first SDK, and the second-generation iPhone. At the same

time, the iPhone app store opened its doors to thousands and thousands of new native

applications. These new applications brought new patterns for old tasks, offering a new

and improved level of user experience. The enhanced usability of these native

applications changed user habits and created brand new habits, taking the iPhone

where no cellular or mobile device had been before.

The revolution had begun but was incomplete until 2010, when Apple introduced the

iPad. The last barrier represented by the iPhone’s small 3.5-inch display was finally

overcome. The new 9.7-inch, multitouch display of the iPad boosted the level of user

experience, setting a new standard for browsing the net. It was able to hit markets that

the iPhone, because of its small display, had been unable to reach.

The iPad revolution is visible every day. Doctors, professors, lawyers, and musicians, as

well as companies such as airline companies and car factories, have incorporated the

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 430

new tablet into their daily activities or retail products, increasing the quality of their jobs

and products and creating new types of activities.

The new and improved level of usability and user experience makes it possible—for the

first time in the history of computers—to bring electronic devices to all categories of

users, even those that had previously been unreachable. One category is children. For

them, using a multitouch-based interface is more natural compared to using a mouse-

based interface. This enables tablets to be used early on, for many types of school

activities in which, for cognitive and logistical reasons, using a PC would be impractical,

as shown in Figure 13–2.

Figure 13–2. The new opportunities offered by a multitouch-technology device (image source: the LMU|LA School
of Education)

Another new category is that of older users—people who have never used a PC before

in their lives or who struggle to use one. I’m sure that you can come up with an example

of a parent who has been unable to surf the net before getting his hands on an iPad and

who immediately afterward started surfing with no problem. My mother was one such

person. She had never been able to use a PC, and now she surfs the net like a geek,

watching news channels on YouTube, checking weather forecasts, and reading the local

newspaper.

However, the multitouch revolution is far from complete, and in keeping with this

revolution, the next big step in this process will occur when these small mobile devices

encourage the creation of larger touchscreen-based systems, ones that will ultimately

enter our work and home environments. The computer-saturated future that we have

become accustomed to seeing in sci-fi movies and television series is perhaps not so far

away as we might think.

How the Multitouch-Screen Revolution Will Change
Next-Generation Computing
The world is in the middle of a mobile network revolution. In this revolution, we can

identify two distinct forces: smartphones and tablets. This conclusion might seem

obvious, but its implications are deeper than you might think.

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 431

On one hand, mobile devices such as the iPhone changed the lifestyles of many users

and introduced them to new ways of working or of simply accomplishing ordinary tasks.

Smartphones, before any other device, were responsible for pushing the enormous

network growth I talked about earlier, and these devices led one of the most exciting

technology revolutions in computer history.

It's certainly true that some applications, such as YouTube, run perfectly on small

displays, such as the iPhone’s screen; other applications, such as Netflix, look much

better on the iPad’s 9.7-inch display. This, too, will contribute to the growth of

broadband demand for video applications.

Larger-format video is not the only important feature of a tablet like the iPad. In addition

to their bigger displays, tablets also have a touchscreen interface and portable

capabilities. Before tablets, the only mobile objects capable of sending and receiving

data from the Internet were laptops, and to use one was a different experience for the

user.

Figure 13–3. Crestron (left) and Savant (right) applications for home automation

This new approach brought users numerous innovative applications, such as those

shown in Figure 13–3. Many companies became familiar with tablets in order to integrate

their functionalities into the company’s projects. Developers working on products for the

home were the first to realize the possibility of making their products compatible with

the iPad. Media centers, home surveillance systems, and other types of remotely

controlled systems are just a few examples of such products, and there will be even

more such products in the future.

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 432

From Domestic to Ubiquitous Computing and Ambient
Intelligence
Domestic and house automation are two aspects of a singular new type of connection

between mobile devices and a user’s environment, a connection that has resulted in

what is called “ubiquitous computing.” What exactly is ubiquitous computing?

In 1991, Marc Weiser, in his seminal paper “The Computer for the 21st Century",” noted

that “The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.” That’s the core

concept behind ubiquitous computing.

The decade of the ’80s was that of the microprocessor, symbolized by the personal

computer. It was the decade when we actually built our computers. The decade of the

’90s was that of networks and communication, the decade when people connected

computers together. It was symbolized by the World Wide Web. The decade of the ’00s

was the decade when personal computers turned into small devices and became

portable. It was symbolized first by the laptop and then by the smartphone. In the

present decade, computers are everywhere, are connected everywhere, and are

embedded everywhere. Every part of the world has become connected to the network,

searchable through the network, and usable by the user. Figure 13–4 shows an example

of ubiquitous computing. This project is called vrFlora and was presented at the

UbiComp Conference. It shows an adaptive response suitable to a user’s situation.

Figure 13–4. The project vrFlora at the UbiComp conference (image source: Sejin Oh)

The ubiquitous computing era arrived at the moment we realized that the computer had

become invisible. In this era, people are no longer “users” in the strict meaning of the

word but are “subjects.” The user becomes a subject the moment that a person and

computer switch from having a one-way relationship to having a two-way relationship. In

other words, subjects are used by technology in the same way they use it themselves. A

subject can walk down a street and interact with the touch interface of his or her

smartphone connected to a GPS satellite; simultaneously, he or she can be watched by

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 433

the video interface of a surveillance camera and be monitored through the sensor

interface of a biometric system.

An example of a primitive implementation of ubiquitous computing can be seen in

augmented-reality applications that can be run on both the iPhone and the iPad (see

Figures 13–5 and 13–6). These AR applications have taken the first step toward a new

paradigm of user experience, but the stream of data that they produce still flows in only

one direction: from the object to the user.

Figure 13–5. An implementation of augmented reality (image Earthmine)

As computers become smaller and as their parallel processing increases exponentially,

ubiquitous computing will bring about a new type of environment, one capable of

interacting with a subject in both directions, sending and retrieving data and also

implementing what is called “ambient intelligence.” When the bridge between the World

Wide Web and its users (subjects) is completed, the computing world will enter into a

new era.

Today, we can do a lot with mobile devices, both smartphones and tablets, to build a

little piece of that future. The web is the link between every device involved in the

“ubiquitous paradigm,” and this brings exciting opportunities for every designer and

developer because the sky is the limit when it comes to ubiquitous computing.

Remember, “... the people who are crazy enough to think they can change the world are

the ones who do.”

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 434

Figure 13–6. Objects in an environment are transformed into objects in an interface (image Fibre Design).

Resources for Telecommunication and Ubiquitous
Computing
In the following table, I list some resources where you can get more information about

telecommunications, the actual growth of mobile markets, and new aspects of

ubiquitous computing.

Table 13–1. Resource on Mobile Technology

 Name Type URL

ITU web site http://www.itu.int/

Mobile Mix web site http://www.millennialmedia.com/

UbiComp web site http://www.ubicomp.org/

earthmine web site http://www.earthmine.com/

Summary
In this chapter, you saw what will come next in the mobile revolution and what

ubiquitous computing will become. This is the next step in the evolution of combining

new network capabilities and new mobile technologies.

First, you saw that the first mobile revolution is far from finished and that it still causes

the mobile market and broadband demand to grow.

http://www.itu.int/
http://www.millennialmedia.com/
http://www.ubicomp.org/
http://www.earthmine.com/

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 435

Next, you discovered how new touchscreen technologies will foster a new generation of

usability and how this will bring new opportunities for both designers and developers.

You also read how the touchscreen revolution will change the next generation of

computing and how domestic and ambient intelligence are part of the next evolutionary

stage.

Finally, I analyzed how ubiquitous computing developed over the past decades, and I

introduced the key concept of how the new ubiquitous computing paradigm will change

the role of the user, transforming the way a user interacts with surrounding technologies

and turning him or her into a system.

CHAPTER 13: Looking Beyond the Mobile Web to Ubiquitous Computing 436

 437

Index

■ A
accessibility, 32–36

alerts, 35

captions, 35

software features, 35

voice control, 34

VoiceOver feature, 33

white on black feature, 34

zoom feature, 34

active interface, 125–126, 147, 158

active negative space, 137–138

Adobe Fireworks program, 188–201,

219–242

canvas, 189–190

design

of interface, 198

of layout, 192

reuse, 198–200

organizing levels, 191

tools for UI design, 201

versions of

iPad-compatible, 220–232

iPad native-like, 233–242

aesthetics, for design

native-like, 172–176

of UIs, 158, 167–168

agile information architecture, and

optimized information

architecture, 16–18

agile projects

design, 31–49

information architecture

content-out approach, 22–23

mobile strategy, 21

phases of, 11–16

processes, 16–20

prototypes, 28–31

representing with site map, 23–26

sketching with wireframes, 26–28

agile testing, 391–392

AIA (American Institute of Architects),

10

algorithms, Google PageRank concept,

383–385

Align function, 192

ambient intelligence, Domotic

computing and, 432–433

American Institute of Architects (AIA),

10

analogous color schemes, 145

animation, in CSS 3, 98–99

Animation property, CSS 3, 286–287

appendChild() method, 316

Apple Mobile Design, 49

Apple WebApp portal, 419–420

AppleMobileWebAppStatusBarStyle,

323

applicationCache, 377–378

applications

compressing, 369–371

full-screen mode, 323–324

mobile, 60

redirecting, 326–327

service interaction

Mail application, 331–332

Maps application, 332

Phone application, 330–331

SMS application, 332

startup image, 325–326

web, 390–391

Webapps, 66–69, 414–423

Beta Invitation testers, 414–415

Index 438

compatible approach to, 66

dedicated approach to, 67–68

email marketing, 417–418

vs. native apps, 69–73

native-like approach to, 68–69

with Offline feature, 375–378

optimized approach to, 67

press releases, 415

social networks, 422–423

submitting to WebApp portals,

419–422

web site for, 415–417

Array() method, 305

arrays, Javascript, 305–307

artifact recycling, 394

Artifact Recycling approach, 394

assets, prototypes

electronic, 399–400

paper, 398–399

attributes, HTML5 Canvas, 254–256

audible option, 35

<audio> tag, HTML5, 251

■ B
Background Origin property, CSS 3,

279

Background property, 88

Background Size property, CSS 3, 278

backgrounds, in CSS 3

multiple backgrounds, 88

origin of backgrounds, 87

size of backgrounds, 86

Balsamiq Mockups interface, 185–186

basic shapes and lines, HTML5 Canvas,

256–262

beginPath() method, 260, 262, 264

behaviors, adding in JavaScript

language, 106

best practices, Javascript, 316–317

Beta Invitation Phase, 415

Beta Invitation testers, 414–415

black, color psychology and user mood,

143–144

block model, iPad, 44–47

blue, color psychology and user mood,

141

<body> section, 348–350, 352,

354–355, 359

BOM (Browser Object Model), 309–310

Border Images property, CSS 3, 274

borders, in CSS 3

border radius, 79

images, 80

Bottom Bar, 42–43, 47–48

Box Shadow property, CSS 3, 277

Box Sizing property, CSS 3, 276

boxes, in CSS 3

box sizing, 83

shadows, 84

Breadcrumb Bar, 352–353

brown, color psychology and user

mood, 142–143

Browser Object Model (BOM), 309–310

browser support, for web standards

being finger-friendly, 110–111

limitation and constraints, 108–110

progressive enhancement, 111–113

resources and tools for Safari

browser, 113–114

tools for mobile Safari browser,

114–115

browsers, Safari

mobile, tools for, 114–115

resources and tools for, 113–114

Elements, 113

Network, 114

Resources, 114

Script, 114

Timeline, 114

Web Inspector, 113

■ C
CA (content architecture), 13

Cache Manifest file, 375

Canvas, HTML5

attributes and methods, 254–256

basic shapes and lines, 256–262

canvas state (drawing state),

268–270

Index 439

clipping paths, 266–267

complex shapes, 262–265

creating slideshow, 270–272

manipulating objects, 267

overview, 252–253

versus SVG, 253–254

canvas state (drawing state), HTML5

Canvas, 268–270

<canvas> tag, HTML5, 252

canvases, Adobe Fireworks program

iPad-compatible version, 220–221

iPad native-like version, 233

overview, 189–190

captions, 35

Cascading Style Sheets. See CSS

Cascading Style Sheets 3. See CSS 3

charArt() method, 308

charCodeAt() method, 308

Clarke, Andy, 189

clip() method, 266

clipping paths, HTML5 Canvas,

266–267

cloneNode() method, 316

closed captions, 35

closePath() method, 262, 264

closing tabs, 364

Cocoa Touch framework, 116–118

Foundation framework, 116–117

UIKit framework, 117–118

code

developing for humans, 106

in JavaScript language

commenting, 104

heavy nesting loops, 105

modularizing, 105

strict coding style, 104

understandable code, 104

optimization, 362–366

combining CSS and Javascript

code files, 365

minimizing DOM, 365–366

reducing HTTP requests,

363–365

web standards complaint,

362–363

writing slim, 363

cognitive resources, of users, 181

color, depth of, 366

color-stop() method, 82, 103, 276, 290

colors, psychology of, 138–147

color schemes, 144–147

and user mood, 140–144

columns, in CSS 3

multiple columns, 93

spanning columns, 94

commenting, code, in JavaScript

language, 104

communications, mobile devices and,

427–428

compareDocumentPosition() method,

316

compatible approach, to Webapps, 66

complementary color schemes, 145

complex shapes, HTML5 Canvas,

262–265

composition, in design, 159

compressing, applications, 369–371

computing, ubiquitously, 427–435

Domotic computing and ambient

intelligence, 432–433

mobile devices and

communications, 427–428

multitouch technology

effect on next-generation

computing, 430–431

next-generation computing with

touch screen and, 428

new technology, usability, and

opportunity, 429–430

resources for telecommunication

and, 434

concat() method, 308

conditional statements, Javascript,

300–302

connections, representing, 187–188

containers, content box, 56

contat() method, 306

content architecture (CA), 13

content box containers, 56

content-out approach, 22–23

content regions, 56

createElement() method, 271

Index 440

CSS 3 (Cascading Style Sheets 3)

Animation property, 286–287

Background Origin property, 279

Background Size property, 278

Border Images property, 274

Box Shadow property, 277

Box Sizing property, 276

Gradients property, 275

keyframes, 289

Multiple Background property, 279

Multiple Columns property, 283

new features of

animation, 98–99

backgrounds, 86–88

border images, 80

border radius, 79

boxes, 83–84

columns, 93–94

gradients, 82

keyframes, 101–102

outline, 85

reflections, 102

tap highlight, 92

text, 89–91

transforms, 95–96

transitions, 94

web fonts, 92

word wrapping, 91

Outline property, 278

Reflection property, 289

Rounded Borders property, 274

Spanning Columns property, 284

Tap Highlights property, 282

Text Overflow property, 281

Text Shadow property, 280

Transform property, 285–286

Transition property, 284

Web Fonts property, 282

Word Wrapping property, 281

CSS (Cascading Style Sheets)

files, combining with Javascript code

files, 365

rules of, using instead of images,

368

sprites, 366–368

CSS class, 53, 56

CSS file, 53

CSS property, 86, 89, 94, 102, 108, 284

ctx.beginPath() method, 261–263, 265

ctx.clip() method, 266

ctx.restore() method, 270

ctx.save() method, 270

ctx.stroke() method, 261–263, 265

customization, allowing maintenance

and, 105

■ D
data categories, Javascript, 293–295

dead-zone, 125

dedicated approach, to Webapps,

67–68

definitions, HTML5, 246

deliverables, for design

native-like, 173–177

of UIs, 159–160, 170

descriptions, headers and, for text

boxes, 57

designs

aesthetics for

native-like, 172–176

of UIs, 158, 167–168

composition in, 159

deliverables for

native-like, 173–177

of UIs, 159–160, 170

elements, for touch events and

gestures, 340

feedback, 407–408

gray box design, Adobe Fireworks

program, 233–237

hardware, for mobile design, 8

ID phase, 14

for iPad, 170–173

aesthetic, 172–173

deliverables, 173

interaction, 173

research phase, 170

structure, 171–172

for iPhone, 173–177

aesthetic, 176

deliverable, 177

Index 441

interaction, 176–177

research phase, 174

structure, 174–175

tools for UI design, 177

mobile, 1–8

hardware for, 8

history of, 2–4

market for, 4–5

mobile-oriented approach, 6

mobile-oriented guidelines, 6–7

reasons for investing in now, 5

native design implementation

native interface emulation,

348–359

native-like page structure,

347–348

page model, 347

perception rules for, 127–130

research phases for

native-like, 170–174

of UIs, 158–164

reuse of, 198–200

search engine oriented design,

380–387

content, 381–382

domain title, 380

images, 385–386

Javascript code, 386

links, 383–385

meta tags, 381

page title, 381

SEO tools, 386–387

sketching, 179–184, 210–212

UI design, 204–212

hiding and shaping elements,

207–209

removing and prioritizing

elements, 206–207

shrinking and grouping elements,

209

simplicity-complexity paradox,

210

sketching UI, 210–212

XD phase, 13–14

Developer tab, 421

development frameworks, 52–59

description of, 53–54

iWebKit 5 for iPhone, 54–59

linking framework elements, 54

UI elements, 54–59

development life cycles, SDKs, 118

<div class="greytitle">, 356

<div id="footer">, 358

<div id="hero"> element, 353

<div id="title">, 350

<div id="topbar"> tag, 349

<div> tag, 352

Document Object Model. See DOM

DOM classes, 335

DOM (Document Object Model)

Javascript, 106

versus HTML structure, 312–313

overview, 310–312

working with, 314–316

minimizing, 365–366

DOM method, 271

domain titles, 380

dominance, achieving with passive

negative space, 135

Domotic computing, and ambient

intelligence, 432–433

drawImage() method, 271

drawing state (canvas state), HTML5

Canvas, 268–270

drawOnCanvas() method, 257

■ E
eHub WebApp portal, 420–422

electronic prototypes, 17, 30–31, 49,

159, 399–403

element emulation, 329–330

elements

Page Title, 350–352

testing, in JavaScript language, 106

Elements tool, for Safari browser, 113

email marketing, 417–418

emotional feedback, 409

emulation

native environment

element emulation, 329–330

Index 442

link emulation, 328

scrolling emulation, 330

text emulation, 328–329

native interface, 348–359

Breadcrumb Bar, 352–353

footer section, 358–359

Hero Content area, 353–355

Menu Area, 356–358

Page Title element, 350–352

top bar section, 349–350

ergonomics, and usability, of mobile

devices, 4

ETA (Estimated Time Of Arrival),

406–407

evaluating tests, variables for, 405–411

evaluation techniques, 409–411

test feedback, 411

test variable, 410–411

expectation feedback, 408

experience design (XD) phase, 13–14

■ F
F-shaped reading patterns, 151–152

Facebook, 416, 422–423, 425–426

fear of being misunderstood, 206

fear of failure, 206

fear of missing something, 206

feedback, 407–409

design, 407–408

emotional, 409

expectation, 408

finger-friendly development, 110–111

fonts, web, in CSS 3, 92

footers, 58–59, 358–359

Foundation framework, 116–117

frameworks

Cocoa Touch, 116–118

Foundation framework, 116–117

UIKit framework, 117–118

expanding, 343–345

iWebKit, 353, 356–357

iWebKit 5 framework, for iPhone,

54–59

linking framework elements, 54

UI elements, 54–59

linking elements of, 54

for mobile development, 119

UIKit, 117–118

from() method, 103, 290

fromCharCode() method, 308

full-screen mode, 323–324

function() method, 258–259, 261, 263,

265–266, 269, 271

functionalities, 416

functionName() method, 303

functions, Javascript, 303–304

■ G
gesture events, 335, 337–339

gestures, touch events and, 334–343

design elements for, 340

native and customized handler for,

339

orientation change event, 340–342

paradigm, 334–339

getAttribute() method, 315

getContext() method, 256–257

getElementById() method, 314

getElementByTagName() method, 314

getElementsByName() method, 314

getElementsByTagName() method, 314

global cached resources, 364

Global Positioning System (GPS), 3

global variables, in JavaScript language,

104

Google analytics, 387

Google Maps, 332–333

Google PageRank concept, algorithm,

383–385

GPS (Global Positioning System), 3

gradient() method, 82, 102–103,

275–276, 290

gradients, in CSS 3, 82

Gradients property, CSS 3, 275

gray box design, Adobe Fireworks

program, 233–237

gray, color psychology and user mood,

143

green, color psychology and user

mood, 141

Index 443

grouping elements, shrinking elements

and, 209

guidelines, mobile-oriented, 6–7

GZIP compression, 369–371

■ H
<h1> tag, 352

handlers, for touch events and

gestures, 339

hardware, for mobile design, 8

hasAttributes() method, 316

hasChildNodes() method, 316

HCI (human computer interaction),

15–16, 72–73

head sections, 327–328

<head> tag, 348, 352–353, 355, 359,

362

header bars, 54–56

headers, and descriptions, 57

Heat Map test, 393–394

Hero Content area, 353–355

hiding elements, and shaping elements,

207–209

highlighting, tap, in CSS 3, 92

HTML structure, versus DOM structure,

312–313

HTML5 (Hypertext Markup Language 5),

244–272

< audio> tag, 251

<canvas> tag, 252

<video> tag, 249

Canvas

attributes and methods, 254–256

basic shapes and lines, 256–262

canvas state (drawing state),

268–270

clipping paths, 266–267

complex shapes, 262–265

creating canvas slideshow, 270–

272

manipulating objects, 267

overview, 252–253

versus SVG, 253–254

definitions, 246

markup syntax, 244–246

new features of, 74–78

semantics, 246–247

SVG, 252–253

HTTP (Hypertext Transfer Protocol),

reducing requests, 363–365

human computer interaction (HCI),

15–16, 72–73

Hypertext Markup Language 5. See

HTML5

Hypertext Transfer Protocol (HTTP),

reducing requests, 363–365

■ I
IA (information architecture)

content-out approach, 22–23

mobile strategy, 21

phases of, 11–16

HCI, 15–16

ID, 14

IM, 12–13

IR, 12

IxD, 15

UE, 14–15

UX, 14

XD, 13–14

processes

agile and optimized, 16–18

three main, 18–20

prototypes, 28–31

electronic, 30–31

paper, 30

representing with site map, 23–26

limiting user mistakes, 24–25

providing orientation with

navigation path, 25–26

sketching with wireframes, 26–28

icons, springboard, 324–325

ID (interaction design) phase, 14–15

IDEs (Integrated Development

Environment), Xcode, 115

IM (information management) phase,

12–13

image optimization, 366–369

avoiding scaling, 368–369

color depth, 366

Index 444

CSS sprites, 366–368

using CSS rules instead of, 368

images

in reading patterns, 152–153

search engine oriented design,

385–386

startup, 325–326

incremental cycles, 389–390

indexOf() method, 306, 308

information architecture. See IA

Information Architecture Process, 10,

12, 16, 18, 50

information management (IM) phase,

12–13

information research (IR) phase, 12

insertBefore() method, 316

Integrated Development Environment

(IDEs), Xcode, 115

interaction design (ID) phase, 14–15

interaction, with users, 159, 168–169,

173–177

interfaces

definition of, 123–125

designing with Adobe Fireworks

program, 198, 223–232

hierarchy of, 147–148

Internet, 4

inverted simple approach, to UI design,

204–212

hiding and shaping elements,

207–209

removing and prioritizing elements,

206–207

shrinking and grouping elements,

209

simplicity-complexity paradox, 210

sketching UI, 210–212

iOS devices, 9, 36

iPad

Adobe Fireworks program

compatible with, 220–232

canvas, 220–221

interface design, 223–232

layout design, 222–223

organizing levels, 221–222

block model, 44–47

designing UIs compatible with,

160–170

aesthetic, 167–168

deliverables, 170

interaction, 168–169

research phase, 161–164

structure, 164–167

versus iPhone for web presentation,

244

iPhone/iPad simulator, 115

native-like design for, 170–173

Adobe Fireworks program,

233–242

aesthetic, 172–173

deliverables, 173

interaction, 173

research phase, 170

structure, 171–172

usability, 38

user interface, 47–49

Web optimization and compatibility,

361

iPhone

designing UIs compatible with,

160–170

aesthetic, 167–168

deliverables, 170

interaction, 168–169

research phase, 161–164

structure, 164–167

development for using web

standards, 118–119

versus iPad for web presentation,

244

native interface emulation, 348–359

Breadcrumb Bar, 352–353

footer section, 358–359

Hero Content area, 353–355

Menu Area, 356–358

Page Title element, 350–352

top bar section, 349–350

native-like design for, 173–177

aesthetic, 176

deliverable, 177

interaction, 176–177

research phase, 174

Index 445

structure, 174–175

tools for UI design, 177

page model, 40–41, 50, 180, 347

usability, 38

user experience limitations of, 181

user interface, 41

using on the go, 180

viewport, 321

Web optimization and compatibility,

361

iPhone/iPad simulator, 115

IR (information research) phase, 12

isEqualNode() method, 316

isSameNode() method, 316

iterative cycles, 389–390

iterative-incremental lifecycle, 389–390

iWebKit 5 framework, for iPhone, 54–59

linking framework elements, 54

UI elements, 54–59

iWebKit framework, 353, 356–357

■ J
Javascript, 290–317

adding to webpage, 292

arrays, 305–307

best practices, 316–317

best practices for, 103–106

adding behaviors, 106

allowing maintenance and

customization, 105

code, 104–106

DOM, 106

global variables, 104

mix technologies, 104

optimizing loops, 105

progressive enhancement, 105

shortcut notation, 105

testing elements, 106

BOM, 309–310

conditional statements, 300–302

data categories, 293–295

DOM

versus HTML structure, 312–313

overview, 310–312

working with, 314–316

files, combining with CSS files, 365

functions, 303–304

loop statements, 302–303

objects, 308–309

operators, 298–300

reserved words, 295–296

search engine oriented design, 386

strings, 307–308

structure, 293

variable scope, 304–305

variables, 296–298

JavaScript file, 53, 272, 303

Javascript object, 307, 309

Javascript statement, 293, 296

join() method, 306

■ K
keyframes, in CSS 3, 101–102, 289

■ L
Landscape mode, 49

lastIndexOf() method, 308

Law of Closure, 129

Law of Common Fate, 129

Law of Continuity, 128

Law of Figure Ground, 129–131

Law of Past Experience, 130

Law of Proximity, 127–128

Law of Similarity, 128

layouts

designing, with Adobe Fireworks

program, 192, 222–223, 238–242

for touch-screen devices, 164–166

Lee, Stan, 154

<li class="menu">, 357

life cycles, development, SDKs, 118

lifecycles, web development, 389–390

link emulation, 328

LinkedIn, 422–423, 426

linking, framework elements, 54

links, Google PageRank concept,

383–385

loop statements, Javascript, 302–303

loops, in JavaScript language, 105

Index 446

■ M
Mail application, 331–332

Mailto attributes, 331

maintenance, allowing customization

and, 105

manifest attribute, 377

manifest files, 375–378

manipulating objects, HTML5 Canvas,

267

Maps application, 332–333

market, for mobile design, 4–5

markup syntax, HTML5, 244–246

match() method, 308

media queries, 342–343

Menu Area, 356–358

menu items, 57–58

meta tags, 381

methods, HTML5 Canvas, 254–256

mix technologies, in JavaScript

language, 104

mobile applications, 60

mobile design, 1–8

hardware for, 8

history of, 2–4

augmented reality, 3

GPS, 3

improved ergonomics and

usability, 4

Internet, 4

making payments, 3

smart networks, 3

TV, 3

market for, 4–5

mobile-oriented approach, 6

mobile-oriented guidelines, 6–7

reasons for investing in now, 5

mobile development, tools and

frameworks for, 119

mobile devices, and communications,

427–428

mobile Safari browser, tools for,

114–115

mobile strategies, 21, 413

mobile websites, 60

modularizing, code, in JavaScript

language, 105

monetizing, WebApps, 424

monochromatic color schemes, 144

multi-touch events, 335–336

Multiple Background property, CSS 3,

279

Multiple Columns property, CSS 3, 283

multitouch technology, next-generation

computing

effect on, 430–431

with touch screen and multitouch

technology, 428

Munsell color scheme, 139–140

■ N
native apps, Webapps vs., 69–73

HCI, 72–73

UI, 69–71

UX, 71–72

native design implementation

iPhone

native interface emulation,

348–359

page model, 347

native-like page structure, 347–348

native environment, 319–346

applications

full-screen mode, 323–324

redirecting, 326–327

startup image, 325–326

configuring, 319–320

defining viewport, 321–322

emulation

elements, 329–330

links, 328

scrolling, 330

text, 328–329

expanding frameworks, 343–345

head section, 327–328

resources for coding, 345

service interaction, 330–332

springboard icon, 324–325

touch events and gestures, 334–343

design elements for, 340

native and customized handler

for, 339

Index 447

orientation change event,

340–342

touch event paradigm, 334–339

native-like approach, to Webapps,

68–69

native-like design

for iPad, 170–173

aesthetic, 172–173

deliverables, 173

interaction, 173

research phase, 170

structure, 171–172

for iPhone, 173–177

aesthetic, 176

deliverable, 177

interaction, 176–177

research phase, 174

structure, 174–175

tools for UI design, 177

native-like page structure, 347–348

native user interface (NUI), 41–42,

47–48

navigation paths, providing orientation

with, 25–26

negative space, passive, 130–138

active negative space, 137–138

dominance, 135

eliminating visual tension, 133–134

improving reading experience, 136

separating groups of content, 133

spotlighting elements, 134

user experience, 137

nesting loops, heavy, 105

Network tool, for Safari browser, 114

networks, smart, 3

next-generation computing

effect of multitouch technology on,

430–431

with touch screen and multitouch

technology, 428

Nielsen, Jakob, 36

notation shortcut, in JavaScript

language, 105

Note application, 45

NUI (native user interface), 41–42,

47–48

■ O
Object() method, 309

Objective-C class, 116

Objective-C language, 116

objectName.methodName() method,

306

objects, Javascript, 308–309

Offline feature, WebApp with, 375–378

open captions, 35

OpenAppMkt WebApp portal, 420–422

operators, Javascript, 298–300

optimized approach, to Webapps, 67

optimized information architecture, agile

information architecture and,

16–18

orange, color psychology and user

mood, 142

orientation change events, 340–343

orientation, providing with navigation

path, 25–26

Outline property, CSS 3, 278

outlines, in CSS 3, 85

Overflow property, 90

overflow, text, 90–91

■ P, Q
page model, iPhone, 40, 180, 347

page structure, native-like, 347–348

Page Title element, 350–352

page titles, 381

paper prototypes, 17, 30, 391, 398–401

passive interface, 125–126, 147

passive negative space, 132–138

active negative space, 137–138

dominance, 135

eliminating visual tension, 133–134

improving reading experience, 136

separating groups of content, 133

spotlighting elements, 134

user experience, 137

patterns, 148–157

F-shaped, 151–152

guidelines for, 155–157

images in, 152–153

Index 448

influencing, 153–155

Z-shaped, 149–151

payments, making with mobile devices,

3

perception, rules for UI design, 127–130

performance, 361–375

application compressing, 369–371

code optimization, 362–366

combining CSS and Javascript

code files, 365

minimizing DOM, 365–366

reducing HTTP requests,

363–365

web standards complaint,

362–363

writing slim, 363

image optimization, 366–369

avoiding scaling, 368–369

color depth, 366

CSS sprites, 366–368

using CSS rules instead of, 368

usability optimization, 371–375

Phone application, 330–331

pixels, versus vectors, 252–253

PNB (primary navigation bar), 214,

223–225

PNG (Portable Network Graphic), 324

pop() method, 306

Portable Network Graphic (PNG), 324

Portrait mode, 49

presentation, web, 244

press releases, 415

primary navigation bar (PNB), 214,

223–225

Primitive data type, 293

print() method, 109

prioritizing elements, removing

elements and, 206–207

progressive enhancement

of browser support, 111–113

in JavaScript language, 105

promoting, 413–426

mobile strategy, 413

WebApps, 414–423

Beta Invitation testers, 414–415

email marketing, 417–418

monetizing, 424

press releases, 415

resources on market, 425

social networks, 422–423

submitting to WebApp portals,

419–422

web site for, 415–417

YouTube video tutorials, 418–419

prototypes, 28–31

electronic, 30–31, 159, 399–403

paper, 30, 398–401

purple, color psychology and user

mood, 142

push() method, 306

■ R
reading

improving experience with passive

negative space, 136

patterns of, 148–157

F-shaped, 151–152

guidelines for, 155–157

images in, 152–153

influencing, 153–155

Z-shaped, 149–151

red, color psychology and user mood,

142

redirecting, applications, 326–327

Reference data type, 293

Reflection property, CSS 3, 289

reflections, in CSS 3, 102

removeChild() method, 316

removing elements, and prioritizing

elements, 206–207

replace() method, 308

replaceChild() method, 316

research phases, for design

native-like, 170–174

of UIs, 158–164

reserved words, Javascript, 295–296

Resources tool, for Safari browser, 114

restore() method, 269–270

Retina Display, 43–44

reuse, of designs, 198–200

reverse() method, 306

Index 449

Rounded Borders property, CSS 3, 274

rules of perception, in UI design,

127–130

■ S
Safari Bar, 38

Safari browser

mobile, tools for, 114–115

resources and tools for, 113–114

Elements, 113

Network, 114

Resources, 114

Script, 114

Timeline, 114

Web Inspector, 113

save() method, 269–270

Scalable Vector Graphics, HTML5. See

SVG

scaling images, avoiding, 368–369

Script tool, for Safari browser, 114

scrolling emulation, 330

SDKs (Software Development Kits),

115–119

development for iPhone using web

standards, 118–119

development life cycle, 118

models for

Cocoa Touch framework,

116–118

iPhone/iPad simulator, 115

Objective-C language, 116

SDK development life cycle, 118

Xcode IDE, 115

tools and frameworks for mobile

development, 119

Search Engine Algorithm, 380

search engine databases, 380

Search Engine Optimization. See SEO

search engine oriented design, 380–387

content, 381–382

domain title, 380

images, 385–386

Javascript code, 386

links, 383–385

meta tags, 381

page title, 381

SEO tools, 386–387

Search Engine Result Page (SERP), 380

search engines, anatomy of, 379–380

search() method, 308

secondary navigation bar (SNB), 214,

223

semantics, HTML5, 246–247

SEO (Search Engine Optimization),

378–387

resources on optimization and, 387

search engine oriented design,

380–387

content, 381–382

domain title, 380

images, 385–386

Javascript code, 386

links, 383–385

meta tags, 381

page title, 381

SEO tools, 386–387

search engines, anatomy of,

379–380

SERP (Search Engine Result Page), 380

service interaction, applications,

330–332

Mail, 331–332

Maps, 332

Phone, 330–331

SMS, 332

setAttribute() method, 315

shadows, in CSS 3

box shadow, 84

text shadow, 89–90

shaping elements, hiding elements and,

207–209

Sharing box, 320

shift() method, 306

shortcut notation, in JavaScript

language, 105

showModalDialog() method, 109

shrinking elements, and grouping

elements, 209

Sidebar Main Header, 167–168, 176

simplicity-complexity paradox, 210

Index 450

simplicity, of UI, 180–181

iPhone, 180–181

user cognitive resources, 181

simulators, iPhone/iPad, 115

single resource, 364

single-touch events, 334–335

site maps, representing information

architecture with, 23–26

limiting user mistakes, 24–25

providing orientation with navigation

path, 25–26

Sizing property, 277

sketching, UI design, 179–184, 210–212

slice() method, 306, 308

slideshow, HTML5 Canvas, 270–272

smart networks, 3

SMS application, 332

SNB (secondary navigation bar), 214,

223

social media networks, 424

social network interconnection, 423

social networks, promoting WebApps

on, 422–423

social sharing options, 416

Soft Line border, 196, 198

Software Development Kits. See SDKs

sort() method, 306

, 358

<span="arrow"> element, 358

spanning columns, in CSS 3, 94

Spanning Columns property, 284

splash screens, 325–326

splice() method, 306

split complementary color schemes,

145

split() method, 308

spotlighting, with passive negative

space, 134

springboard icons, 324–325

sprites, CSS, 366–368

SQL database, 114

startup images, 325–326

Status Bar, 38, 41–43, 47–48

String object, 307

strings, Javascript, 307–308

Stroke() method, 260

structures

for design

native-like, 171–175

of UIs, 158, 164–167

Javascript, 293

style guides, 159–160

substr() method, 308

substring() method, 308

subtitling, 35

sum() method, 304

SVG (Scalable Vector Graphics), HTML5

versus Canvas, 253–254

overview, 252–253

swapCache() method, 377–378

switchImage() method, 271

■ T
tabs, closing, 364

tap highlight, in CSS 3, 92

Tap Highlights property, CSS 3, 282

Task-Oriented Test, 400

technologies, in JavaScript language,

104

technology, ubiquitous computing,

429–430

tel protocol, 330–332

telecommunication, resources for

ubiquitous computing and, 434

test feedback evaluation, 411

test variable evaluation, 410–411

testing, 389–412

agile, 391–392

elements, in JavaScript language,

106

evaluating, variables for, 405–411

Heat Map, 393–394

introduction to, 389

organizing, 394–400

assets, 398–400

use-cases, 394–398

performing, 400–403

electronic prototype, 403

paper prototype, 401

resources on, 412

web application, 390–391

Index 451

web development lifecycles,

389–390

tetradic color schemes, 146–147

text

overflow, 90–91

shadow, 89–90

text boxes, header and description, 57

text emulation, 328–329

Text Overflow property, CSS 3, 281

Text Shadow property, CSS 3, 280

Textual Use Cases, 395–397

TFT (thin-film transistor), 220

Timeline tool, for Safari browser, 114

toDataURL() method, 255

toLowerCase() method, 308

tools

for mobile development, 119

for mobile Safari browser, 114–115

for Safari browser, 113–114

Elements, 113

Network, 114

Resources, 114

Script, 114

Timeline, 114

Web Inspector, 113

SEO, 386–387

for UI design, 177, 201, 242

Balsamiq Mockups interface,

185–186

representing connections,

187–188

for web development

frameworks, 52–59

mobile website, 60

Tools command, 113

top bar section, 349–350

toString() method, 306

touch events

finger-friendly development,

110–111

and gestures, 334–343

design elements for, 340

native and customized handler

for, 339

orientation change event,

340–342

touch event paradigm, 334–339

touch-screens

devices

layout for, 164–166

typography for, 166–167

next-generation computing with

multitouch technology and, 428

toUpperCase() method, 308

Transform property, CSS 3, 285–286

transforms, in CSS 3, 95–96

Transition property, CSS 3, 284

transitions, in CSS 3, 94

triadic color schemes, 146

tutorials, YouTube video, 418–419

TV, viewing with mobile devices, 3

Twitter, 416, 422–423, 425–426

typography, for touch-screen devices,

166–167

■ U
ubiquitous computing, 427–435

Domotic computing and ambient

intelligence, 432–433

mobile devices and

communications, 427–428

multitouch technology

effect on next-generation

computing, 430–431

next-generation computing with

touch screen and, 428

new technology, usability, and

opportunity, 429–430

resources for telecommunication

and, 434

UE (usability engineering) phase, 14–15

UIKit framework, 117–118

UIs (User Interfaces), 121, 178–179,

201–203

Adobe Fireworks program, 188–201,

219–242

canvas, 189–190

design, 192–200

organizing levels, 191

tools for UI design, 201

versions of, 220–242

Index 452

color psychology, 138–147

color schemes, 144–147

and user mood, 140–144

designing, 157–160

aesthetic, 158

deliverables, 159–160

interaction, 159

native-like, 170–177

research phase, 158

structure, 158

elements of

content box container, 56

content region, 56

footer, 58–59

header bar, 54–56

menu items, 57–58

text box, 57

interfaces

definition of, 123–125

hierarchy of, 147–148

inverted simple approach to,

204–212

hiding and shaping elements,

207–209

removing and prioritizing

elements, 206–207

shrinking and grouping elements,

209

simplicity-complexity paradox,

210

sketching UI, 210–212

for iOS devices, 125–130

iPhone and iPad compatible,

160–170

aesthetic, 167–168

deliverables, 170

interaction, 168–169

research phase, 161–164

structure, 164–167

negative space, 130–138

reading patterns, 148–157

F-shaped, 151–152

guidelines for, 155–157

images in, 152–153

influencing, 153–155

Z-shaped, 149–151

simplicity of, 180–181

iPhone, 180–181

user cognitive resources, 181

sketching design, 203–204

anatomy of, 181–184

overview, 179–180

tools for designing, 184–188,

213–219

Balsamiq Mockups interface,

185–186

representing connections,

187–188

Webapps vs. native apps, 69–71

<ul id="pageitem">, 357

UML (Unified Modeling Language), 395,

410, 412

unshift() method, 306

update() method, 377–378

URL Bar, 41–43, 47–48

usability, 30–31, 36–40

ergonomics and, of mobile devices,

4

inspection, 372

optimization, 371–375

test, 372

ubiquitous computing, 429–430

usability engineering (UE) phase, 14–15

Usability Problems study, 374

use-cases, 394–398

Textual, 395–397

Use-Case Diagram, 397–398

user experience

effect of problems with usability on,

373–375

improving with passive negative

space, 137

limitations of iPhone, 181

user experience phase. See UX

User Interfaces. See UIs

users

cognitive resources of, 181

interaction with, 159, 168–169

limiting mistakes of, 24–25

mood of, color psychology and,

140–144

needs of, 21

Index 453

UX (user experience) phase, 14

finger-friendly development,

110–111

Webapps vs. native apps, 71–72

■ V
valueOf() method, 306, 308

variable scope, Javascript, 304–305

variables

for evaluating tests, 405–411

collecting feedback, 407–409

ETA, 406–407

number of mistakes, 406

number of touches, 405

techniques, 409–411

global, in JavaScript language, 104

Javascript, 296–298

vectors, versus pixels, 252–253

version history, 416

vibrating alerts, 35

<video> tag, HTML5, 249

video tutorials, YouTube, 418–419

Viewport Metatag properties, 322

viewports, defining, 321–322

Virzi, Robert, 373

visible option, 35

visual tension, eliminating with passive

negative space, 133–134

voice control, 34

VoiceOver feature, 33

■ W
WAI (Web Accessibility Initiative), 23, 32

waterfall lifecycle, 389–390

WDM (Web Development Model), 51,

61–62

Web Accessibility Initiative (WAI), 23, 32

web applications, 390–391

web development

introduction to, 51

lifecycles, 389–390

mobile applications, 60

model for

pros and cons of, 62

web standards, 73, 106

Webapps, 66–69

SDK, 115–119

development for iPhone using

web standards, 118–119

models for, 115–118

tools and frameworks for mobile

development, 119

tools for, 60

development frameworks, 52–59

mobile website, 60

Web Development Model (WDM), 51,

61–62

web fonts, in CSS 3, 92

Web Fonts property, CSS 3, 282

Web Inspector tool, for Safari browser,

113

Web optimization, 361–388

iPad and iPhone compatibility, 361

Offline feature, WebApp with,

375–378

performance, 361–375

application compressing,

369–371

code optimization, 362–366

image optimization, 366–369

usability optimization, 371–375

SEO, 378–387

resources on optimization and,

387

search engine oriented design,

380–387

search engines, 379–380

web sites, for promoting WebApps,

415–417

web standards, 243–318

browser support for, 106–115

being finger-friendly, 110–111

limitation and constraints,

108–110

progressive enhancement,

111–113

resources and tools for Safari,

113–114

tools for mobile Safari, 114–115

code complaint with, 362–363

Index 454

comparing iPhone and iPad for web

presentation, 244

CSS 3, 272–289

Animation property, 286–287

Background Origin property, 279

Background Size property, 278

Border Images property, 274

Box Shadow property, 277

Box Sizing property, 276

Gradients property, 275

keyframes, 289

Multiple Background property,

279

Multiple Columns property, 283

new features of, 78, 102

Outline property, 278

Reflection property, 289

Rounded Borders property, 274

Spanning Columns property, 284

Tap Highlights property, 282

Text Overflow property, 281

Text Shadow property, 280

Transform property, 285–286

Transition property, 284

Web Fonts property, 282

Word Wrapping property, 281

development for iPhone using,

118–119

HTML, new features of, 74–78

HTML5, 244–272

< audio> tag, 251

<canvas> tag, 252

<video> tag, 249

Canvas, 252–272

definitions, 246

markup syntax, 244–246

semantics, 246–247

SVG, 252–253

Javascript, 290–317

adding to webpage, 292

arrays, 305–307

best practices, 103–106, 316–317

BOM, 309–310

conditional statements, 300–302

data categories, 293–295

DOM, 310–316

functions, 303–304

loop statements, 302–303

objects, 308–309

operators, 298–300

reserved words, 295–296

strings, 307–308

structure, 293

variable scope, 304–305

variables, 296–298

resource on web standards, 317

WebApp mode, 321, 323

WebApp portal, 419–420, 422, 426

Webapps, 66–69, 414–423

Beta Invitation testers, 414–415

compatible approach to, 66

dedicated approach to, 67–68

email marketing, 417–418

vs. native apps, 69–73

HCI, 72–73

UI, 69–71

UX, 71–72

native-like approach to, 68–69

with Offline feature, 375–378

optimized approach to, 67

press releases, 415

social networks, 422–423

submitting to WebApp portals

Apple, 419–420

eHub, 420–422

OpenAppMkt, 420–422

web site for, 415–417

webpage, adding Javascript to, 292

websites, mobile, 60

white, color psychology and user mood,

143

white on black effect, 34

whitespace, 130

window.applicationCache, 377–378

wireframes, 23–24, 26–29, 38

word wrapping, in CSS 3, 91

Word Wrapping property, 281

Wordpress theme, 414

Index 455

■ X
Xcode IDE, 115

XD (experience design) phase, 13–14

■ Y
yellow, color psychology and user

mood, 141

YouTube video tutorials, 418–419

■ Z
Z-shaped reading patterns, 149–151

zen software, 184

ZenWare, 184

zenware program, 184

zoom function, 34

	Cover
	Contents at a Glance
	Contents
	xiAbout the Author
	xiiAbout the Technical Reviewer
	Acknowledgments
	Preface
	Mobile Device Evolution

	Introduction
	Who Needs This Book
	What You Will Learn from This Book
	Where Will the Journey Through This Book Take You?
	How Will You Get Started and Then How Will You UseWhat You’ve Learned?

	Think Mobile Touch
	Why the Mobile Web?
	From Desktop to Mobile
	Mobile Market
	Why Mobile Now?
	A Mobile-Oriented Approach
	Mobile-Oriented Guidelines

	Apple’s Mobile Hardware
	Summary

	Agile Project Building for iOS Devices
	Implementing a Mobile Information Architecture
	What Is Information Architecture and Why Is It Important?
	Abiding by the Golden Rules of Mobile Strategy
	Content-Out Approach
	Representing an Information Architecture with a Site Map
	Sketching an Information Architecture with Wireframes
	Visualizing Interactions Through Prototypes

	Systematic Approach to Mobile Design
	Accessibility in Apple Devices
	Usability in iOS Devices
	iPhone Page Model
	iPhone User Interface
	iPad Block Model
	iPad User Interface
	Tools for Apple Mobile Design

	Summary

	Web Development for iOS Devices
	Web Development Tools
	Development Frameworks
	Mobile Web Site

	Mobile Applications
	Web Development Model
	Web Development Model: Pros and Cons
	Four Different Approaches to a WebApp
	WebApp and Native App: What Makes the Difference for the User
	Web Standards: HTML, CSS, and JavaScript
	Browser Support for Standards: WebKit and Safari

	SDK Development Model
	Apple’s Objective-C, Cocoa Touch, and Xtools Model
	Hi, I’m a Mac
	Tools and Frameworks for Apple Mobile Development

	Summary

	User Interface Design for iOS Devices
	User Interface Design
	What Is an Interface?
	Everything Is an Interface
	Negative Space
	Color Psychology
	The Interface Hierarchy
	Reading Patterns
	The User Interface Design Process

	iPhone and iPad Compatible User Interface Design
	Research
	Structure
	Aesthetic
	Interaction
	Deliverables

	iPad Native-Like User Interface Design
	Research
	Structure
	Aesthetic
	Interaction
	Deliverables

	iPhone Native-Like User Interface Design
	Research
	Structure
	Aesthetic
	Interaction
	Deliverable
	Tools for User Interface Design

	Summary

	iPhone UI Design: Think Simple
	User Interface Sketching
	Think Simple
	The iPhone is an On-the-Go Device
	The Essence of the iPhone Page Model
	iPhone Limitations
	The Nature of Users’ Cognitive Resources

	Anatomy of Sketching
	Design Using Tools
	Explore the Balsamiq Mockups Interface
	Represent Connections

	Designing with Adobe Fireworks
	Creating a Canvas
	Organize Levels
	Layout Design
	Interface Design
	Reuse Design
	Tools for User Interface Design

	Summary

	iPad UI Design: Think Inverted
	User Interface Sketching
	Think Inverted
	Inverted Simplicity
	Remove and Prioritize
	Hide and Shape
	Shrink and Group
	Key Points of the Simplicity-Complexity Paradox
	Sketching the UI

	Design Using Tools
	Design with Adobe Fireworks
	iPad-Compatible Version
	iPad Native-Like Version

	Summary

	Web Standards for WebKit: Maximizing Mobile Safari
	Comparing iPhone and iPad for Web Presentation
	HTML5
	HTML5 Markup Syntax
	HTML5 Re-Definitions
	HTML5 Semantics
	HTML5 Media

	CSS3
	Prefixes
	Rounded Borders
	Border Images
	Gradients
	Box Sizing
	Box Shadow
	Outline
	Background Size
	Background Origin
	Multiple Backgrounds
	Text Shadow
	Text Overflow
	Word Wrapping
	Web Fonts
	Tap Highlight
	Multiple Columns
	Spanning Columns
	Transitions
	Transforms
	Animation
	Keyframes
	Reflections

	Javascript
	Adding Javascript to a Webpage
	Javascript Structure
	Data Categories
	Reserved Words
	Variables
	Operators
	Conditional Statements
	Loop Statements
	Functions
	Variable Scope
	Arrays
	Strings
	Objects
	BOM (Browser Object Model)
	DOM (Document Object Model)
	Compare DOM and HTML Structure
	Working with DOM
	Some Javascript Best Practices
	Resource on Web Standards

	Summary

	Native iOS Environment Development
	Setting up the Environment
	Defining Viewport
	Full-Screen Mode Application
	Adding the Springboard Icon
	Application Startup Image
	Application Redirecting
	Setting up the Head Section
	Native Link Emulation
	Native Text Emulation
	Native Element Emulation
	Native Scrolling Emulation
	Native iOS Service Interaction
	The Phone Application
	The Mail Application
	The SMS Application
	The Maps Application

	Touch Events and Gesture Interactions
	Touch Event Paradigm: Touch Is Not a Click
	Native and Customized Touch Event Handler
	Create Touchable Design Elements
	Orientation Change Event
	Orientation Change Media Query

	Expand a Framework for iOS
	Resources for Coding
	Summary

	Native iOS Design Implementation
	iPhone Page Model Implementation
	Implement the Native-Like Page Structure
	iPhone Native Interface Emulation
	The Top Bar Section
	The Page Title Element
	The Breadcrumb Bar
	The Hero Content Area
	The Menu Area
	The Footer Section

	Summary

	Optimizing iOS WebApps
	iPad and iPhone Compatibility
	Performance Optimization
	Code Optimization
	Image Optimization
	Application Compressing
	Usability Optimization

	Offline WebApp
	The Manifest File

	Mobile SEO
	Anatomy of a Search Engine
	Search Engine Oriented Design
	Resource on Optimization and SEO

	Summary

	Testing iOS WebApps
	Web Development Lifecycles
	Web Application Testing
	Agile Tests
	Heat Map Tests
	Organizing a Test
	Creating Use-Cases
	Creating the Assets

	Performing a Test
	Paper Prototype
	Electronic Prototype

	Evaluating a Test
	Variables and Feedback to Evaluate
	Number of Touches
	Number of Mistakes
	Estimated Time of Arrival
	Collecting Feedback
	Evaluation Techniques

	Resources on Testing
	Summary

	Maximizing the Market for iOS WebApps
	Use Your Mobile Strategy
	How to Promote Your WebApp
	Use Beta Invitation Testers
	Use Press Releases
	Create a WebApp Web Site
	Use E-mail Marketing
	Create YouTube Video Tutorials
	Submit to Apple WebApp Portal
	Submit to Other WebApp Portals
	Use the Virality of Social Networks

	Monetizing a WebApp
	Resources on WebApp Market
	Summary

	Looking Beyond the Mobile Web to Ubiquitous Computing
	The Explosion of Mobile Devices, Wireless, and Cellular Communications
	Next-Generation User Experience with Touchscreen and Multitouch Technology
	New Technology, New Usability, and New Opportunity
	How the Multitouch-Screen Revolution Will Change Next-Generation Computing
	From Domestic to Ubiquitous Computing and Ambient Intelligence
	Resources for Telecommunication and Ubiquitous Computing

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

