
HTML5
Using Games to Learn HTML5 and JavaScript

CONTENTS

i

The Essential Guide to
HTML5

Using Games to Learn HTML5 and JavaScript

Jeanine Meyer

CONTENTS

The Essential Guide to HTML5: Using
Games to Learn HTML5 and JavaScript

Copyright © 2010 by Jeanine Meyer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3383-1

ISBN-13 (electronic): 978-1-4302-3384-8

Printed and bound in the United States of America (POD)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, logos, or image we use the names, logos, or images only in an editorial fashion and to the benefit of

the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as such, is not to be
taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Distributed to the book trade worldwide by Springer Science+Business Media LLC., 233 Spring Street, 6th Floor, New York,

NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit

www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page

at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in
the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any

loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits
President and Publisher:

Paul Manning

Lead Editor:
Ben Renow-Clarke

Technical Reviewer:
Cheridan Kerr

Editorial Board:
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell,
Michelle Lowman, Matthew Moodie,

Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick,

Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor:
Debra Kelly

Copy Editor:
Sharon Terdeman

Compositor:
Bronkella Publishing

Indexer:
Brenda Miller

Artist:
April Milne

Cover Artist;
Corné van Dooren

Cover Designer:
Anna Ishchenko

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.friendsofed.com

CONTENTS

iii

To Daniel, Aviva, Anne, Esther, and Joseph, who is still in our lives, and for the newest members of

the family: Allison, Liam, and Grant.

CONTENTS

iv

Contents at a Glance

Contents at a Glance.. iv

Contents... v

About the Author .. x

About the Technical Reviewer ... xi

Acknowledgments ... xii

Introduction .. xiii

Chapter 1: The Basics ... 1

Chapter 2: Dice Game ... 21

Chapter 3: Bouncing Ball .. 67

Chapter 4: Cannonball and Slingshot ... 97

Chapter 5: The Memory (aka Concentration) Game .. 141

Chapter 6: Quiz.. 179

Chapter 7: Mazes ... 213

Chapter 8: Rock, Paper, Scissors .. 259

Chapter 9: Hangman .. 287

Chapter 10: Blackjack.. 317

Index... 347

CONTENTS

v

Contents

Contents at a Glance.. iv

Contents... v

About the Author .. x

About the Technical Reviewer ... xi

Acknowledgments ... xii

Introduction .. xiii

Chapter 1: The Basics ... 1

Introduction ...1

Critical requirements ...3

HTML5, CSS, and JavaScript features ..4

Basic HTML structure and tags ..4

JavaScript programming ...10

Building the application and making it your own ..11

Testing and uploading the application..19

Summary ..19

Chapter 2: Dice Game ... 21

Introduction ...21

Critical requirements ...24

HTML5, CSS, and JavaScript features ..24

Pseudo-random processing and mathematical expressions..24

Variables and assignment statements...25

Programmer-defined functions ...26

Conditional statements: if and switch ..27

Drawing on the canvas ..29

Building the application and making it your own ..38

Throwing a single die ...40

Throwing two dice ..47

The complete game of craps ...55

CONTENTS

vi

Testing and uploading the application..65

Summary ..65

Chapter 3: Bouncing Ball .. 67

Introduction ...67

Critical requirements ...70

HTML5, CSS, JavaScript features ...70

Drawing a ball, image, and gradient ..70

Building the application and making it your own ..80

Testing and uploading the application..96

Summary ..96

Chapter 4: Cannonball and Slingshot ... 97

Introduction ...97

Critical requirements ...100

HTML5, CSS, and JavaScript features ..101

Arrays and programmer-defined objects ..101

Rotations and translations for drawing...103

Drawing line segments...107

Mouse events for pulling on the slingshot..108

Changing the list of items displayed using array splice ..110

Distance between points ...110

Building the application and making it your own ..111

Cannonball: with cannon, angle, and speed ..118

Slingshot: using a mouse to set parameters of flight ..128

Testing and uploading the application..140

Summary ..140

Chapter 5: The Memory (aka Concentration) Game .. 141

Introduction ...141

Critical requirements ...146

HTML5, CSS, JavaScript features ...146

Representing cards ...146

Using Date for timing ...147

Providing a pause ..148

CONTENTS

vii

Drawing text ...149

Drawing polygons ..151

Shuffling cards...152

Implementing clicking on a card..152

Preventing certain types of cheating ...153

Building the application and making it your own ..154

Testing and uploading the application..177

Summary ..177

Chapter 6: Quiz.. 179

Introduction ...179

Critical requirements ...183

HTML5, CSS, and JavaScript features ..184

Storing and retrieving information in arrays ...184

Creating HTML during program execution ..186

Changing elements by modifying CSS using JavaScript code ...189

Text feedback using form and input elements ...190

Presenting video..191

Building the application and making it your own ..193

Testing and uploading the application..210

Summary ..210

Chapter 7: Mazes ... 213

Introduction ...213

Critical requirements ...218

HTML5, CSS, and JavaScript features ..219

Representation of walls and the token ...219

Mouse events to build and position a wall ..219

Detecting the arrow keys ..220

Collision detection: token and any wall ..222

Using local storage ..224

Encoding data for local storage ..230

Radio buttons...231

CONTENTS

viii

Building the application and making it your own ..232

Creating the second maze application ...246

Testing and uploading application ..257

Summary ..257

Chapter 8: Rock, Paper, Scissors .. 259

Introduction ...259

Critical requirements ...262

HTML5, CSS, and JavaScript features ..263

Providing graphical buttons for the player ...263

Generating the computer move ..267

Starting off ...274

Building the application and making it your own ..275

Testing and uploading the application..284

Summary ..285

Chapter 9: Hangman .. 287

Introduction ...287

Critical requirements ...295

HTML5, CSS, JavaScript features ...295

Storing a word list as an array defined in an external script file ..295

Generating and positioning HTML markup, then making the markup be buttons, and then disabling the

buttons ...296

Creating progressive drawings on a canvas ..298

Maintaining the game state and determining a win or loss ..300

Checking a guess and revealing letters in the secret word by setting textContent301

Building the application and making it your own ..302

Testing and uploading the application..315

Summary ..315

Chapter 10: Blackjack.. 317

Introduction ...317

Critical requirements ...322

HTML5, CSS, and JavaScript features ..323

Building the application and making it your own ..330

CONTENTS

ix

Testing and uploading the application..346

Summary ..346

Index... 347

CONTENTS

x

About the Author

Jeanine Meyer is a Full Professor at Purchase College/State University of New

York. She teaches courses for mathematics/computer science and new media

majors, as well as a mathematics class for humanities students. The web site for

her academic activities is http://faculty.purchase.edu/jeanine.meyer.

Before coming to academia, she was a Research Staff Member and Manager at

IBM Research, working on robotics and manufacturing research and later as a

consultant for IBM's educational grant programs.

For Jeanine, programming is both a hobby and a vocation. Every day she plays

computer puzzles online (set game, kakuru, hashi, hitori and—often, still—tetris), and she does the

crossword puzzle and ken ken in the newspaper (by hand and in ink—it s easier that way). She enjoys

cooking, baking, eating, gardening, travel, and a moderate amount of walking. She greatly enjoys listening

to her mother play piano and occasionally plays the flute. She is an active volunteer for progressive

causes and candidates.

http://faculty.purchase.edu/jeanine.meyer

CONTENTS

xi

About the Technical Reviewer

Cheridan Kerr has been involved in Web Development and Design since 1997 when she began working in

a research team for the Y2K Millennium Bug. It was here she learned about the Internet and promptly fell in

love with the medium. In her career she has been responsible for web sites in the early 00s such as Weight

Watchers Australia and Quicken.com.au, and she worked as Creative Services Manager of Yahoo!7 in

Australia on clients such as Toyota, 20th Century Fox, and Ford. Currently she is working as Head of

Digital for an Australian advertising agency.

CONTENTS

xii

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University of New York for

their inspiration, stimulation, and support.

Thanks to the crew at friends of ED: Ben Renow-Clarke, who encouraged me even before I quite grasped

the idea of writing this book; Debra Kelly, who is an excellent project manager—which I needed; Cheridan

Kerr, the technical reviewer, who provided important suggestions; and the art manager and many others I

don't know by name.

And lastly, thanks to you, the reader. I am confident you can build on these ideas to make wonderful web

sites.

CONTENTS

xiii

Introduction

There s been considerable enthusiasm about the new capabilities of HTML5, and even suggestions that

no other technologies or products are necessary to produce dynamic, engrossing, interactive web sites.

That may be overstating things, but it is true the new features are exciting. It now is possible, using just

HTML5, Cascading Style Sheets, and JavaScript, to draw lines, arcs, circles and ovals on the screen and

specify events and event handling to produce animation and respond to user actions. You can include

video and audio on your web site with standard controls, or place the video or audio in your application

exactly when needed. You can create forms that validate the input and provide immediate feedback to

users. You can use a facility similar to cookies to store information on the client computer. And you can

use new elements, such as header and footer, to help structure your documents.

This book is based on my teaching practices and past writings. Delving into the features of a technology

or general programming concepts is best done when there is a need. Games, especially familiar and

simple ones, supply the need and thus the motivation and much of the explanation. When learning a new

programming language, my first step is to program the game of craps. If I can build a ballistics simulation

with animation, such as the slingshot game, and make a video or audio clip play when a specific condition

occurs, I am happy. If I can construct my own maze of walls, draw a stick figure for hangman, and store

information on the player's computer, I am ecstatic. And that s what we do in this book. As you see how to

build these simple games, you ll build your expertise as well.

This goal of this book, developed with considerable help from the friends of ED staff and the technical

reviewer, is to prepare you to produce your own web sites, including games and other dynamic

applications, with a gentle introduction to the essentials of HTML5 and programming.

At the time of writing this book, not all browsers support all the HTML5 features. The applications have

been tested using Chrome, FireFox, and Safari.

Who is this book for?
This book is for people who want to learn how HTML 5 can help build dynamic, exciting web sites. It s for

you if you know something about programming and want to see what HTML 5 brings to the table. And it s

also for you if you have no programming experience whatsoever. Perhaps you re a web designer or web

site owner and you want to know how to make things happen behind the scenes. With this book, we want

to showcase the new features of HTML5 and demystify the art of programming. Programming is an art, and

creating appealing games and other applications requires real talent. However, if you can put together

words to form sentences and sentences to form paragraphs, and you have some sense of logic, you can

program.

How is this book structured?
The book consists of 10 chapters, each organized around a familiar game or similar application. There is

considerable redundancy among the chapters so you can skip around if you like, though the games do get

more complex. Each chapter starts by listing the technical features that will be covered and describing the

application. We look first at the critical requirements in a general sense: what do we need to implement the

application, independent of any specific technology. We then focus on the features of HTML5, CSS,

CONTENTS

xiv

JavaScript, or general programming methodology that satisfy the requirements. Finally, we examine the

implementation of the application in detail. I break out the code line by line in a table, with comments next

to each line. In the cases where multiple versions of a game are described, only the new lines of code are

annotated. This isn't to deprive you of information, but encourage you to see what is similar, what is

different, and how you can build applications in stages. Each chapter includes suggestions on how to

make the application your own, and how to test and upload the application to a web site. The summary at

the end of each chapter highlights what you ve learned and what you ll find ahead.

Conventions used in this book
The applications in this book each are HTML documents. The JavaScript is in a script element in the head

element and the CSS is in the style element in the head element. The body element contains the static

html, including any canvas elements. Several examples depend on external image files and one example

requires external video files and another external audio files.

 Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are used

throughout:

• Important words or concepts are normally highlighted on the first appearance in italic type.

• Code is presented in fixed-width font.

• The complete code for each application is presented in table with the left hand column holding

each statement and the right hand column holding an explanatory comment.

• Pseudo-code is written in italic fixed-width font.

• Sometimes code won t fit on a single line in a book. Where this happens, I use an arrow like this:

➥.

So, with the formalities out of the way, let s get started.

INTRODUCTION

1

Chapter 1

The Basics

In this chapter, we will cover

• the basic structure of an HTML document

• the html, head, title, script, style, body, img, and a elements

• a Cascading Style Sheet (CSS) example

• a JavaScript code example, using Date and document.write

Introduction
Hypertext Markup Language (HTML) is the language for delivering content on the Web. HTML is not owned

by anyone, but is the result of people working in many countries and many organizations to define the

features of the language. An HTML document is a text document which you can produce using any text

editor. HTML documents contain elements surrounded by tags—text that starts with a < symbol and ends

with a > symbol. An example of a tag is . This particular tag will display the image

held in the file home.gif. These tags are the markup. It is through the use of tags that hyperlinks, images,

and other media are included in web pages.

Basic HTML can include directives for formatting in a language called Cascading Style Sheets (CSS) and

programs for interaction in a language called JavaScript. Browsers, such as Firefox and Chrome, interpret

the HTML along with any CSS and JavaScript to produce what we experience when we visit a web site.

HTML holds the content of the web site, with tags providing information on the nature and structure of the

content as well as references to images and other media. CSS specifies the formatting. The same content

can be formatted in different ways. JavaScript is a programming language that s used to make the web

site dynamic and interactive. In all but the smallest working groups, different people may be responsible

for the HTML, CSS, and JavaScript, but it s always a good idea to have a basic understanding of how

these different tools work together. If you are already familiar with the basics of HTML and how CSS and

JavaScript can be added together, you may want to skip ahead to the next chapter. Still, it may be worth

casting your eye over the content in this chapter, to make sure you are up to speed on everything before

we start on the first core examples.

CHAPTER 1

2

The latest version of HTML (and its associated CSS and JavaScript) is HTML5. It is generating

considerable excitement because of features such as the canvas for displaying pictures and animation;

support for video and audio; and new tags for defining common document elements such as header,

section, and footer. You can create a sophisticated, highly interactive web site with the new HTML5. As

of this writing, not all browsers accept all the features, but you can get started learning HTML5, CSS, and

JavaScript now. Learning JavaScript will introduce you to general programming concepts that will be

beneficial if you try to learn any other programming language or if you work with programmers as part of a

team.

The approach I ll use in this book is to explain HTML5, CSS, and JavaScript concepts in the context of

specific examples, most of which will be familiar games. Along the way, I ll use small examples to

demonstrate specific features. Hopefully, this will help you both understand what you want to do and

appreciate how to do it. You will know where we are headed as I explain the concepts and details.

The task for this chapter is to build a web page of links to other web sites. In this way, you ll get a basic

understanding of the structure of an HTML document, with a small amount of CSS code and JavaScript

code. For this and other examples, please think of how to make the project meaningful to you. The page

could be a list of your own projects, favorite sites, or sites on a particular topic. For each site, you ll see

text and a hyperlink. The second example includes some extra formatting in the form of boxes around the

text, pictures, and the day's date and time. Figure 1-1 and Figure 1-2 show the different examples I ve

created.

Figure 1-1. An annotated list of games

THE BASICS

3

Figure 1-2. Favorite sites, with extra formatting

When you reload the Favorite Sites page, the date and time will change to the current date and time

according to your computer.

Critical requirements
The requirements for the list of links application are the very fundamental requirements for building a web

page containing text, links, and images. For the example shown in Figure 1-1, each entry appears as a

paragraph. In the example shown in Figure 1-2, in contrast, each entry has a box around it. The second

example also includes images and a way to obtain the current day, date, and time. Later applications will

require more discussion, but for this one we ll go straight to how to implement it using HTML, CSS, and

JavaScript.

CHAPTER 1

4

HTML5, CSS, and JavaScript features
As I noted, HTML documents are text, so how do we specify links, pictures, formatting, and coding? The

answer is in the markup, that is, the tags. Along with the HTML that defines the content, you ll typically

find CSS styles, which can be specified either inside the HTML document or in an external document. You

might also include JavaScript for interactivity, again specified in the HTML document or in an external

document. We ll start with a look at how you can build simple HTML tags, and how you can add inline CSS

and JavaScript all within the same document.

Basic HTML structure and tags

An HTML element begins with a starting tag, which is followed by the element content and an ending tag.

The ending tag includes a / symbol followed by the element type, for example /head. Elements can be

nested within elements. A standard HTML document looks like this:

<html>
 <head>
 <title>Very simple example
 </title>
 </head>
 <body>
 This will appear as is.
 </body>
</html>

Note that I ve indented the nested tags here to make them more obvious, but HTML itself ignores this

indentation (or whitespace, as it s known), and you don t need to add it to your own files. In fact, for most

of the examples throughout this book I won t be indenting my code.

This document consists of the html element, indicated by the starting tag <html> and ending with the

closing tag: </html>.

HTML documents typically have a head and a body element, as this one has. This head element contains

one element, title. The HTML title shows up different places in different browsers. Figure 1-3 shows the

title, "Very Simple Example" at the top-left portion of the screen and also on a tab in Firefox.

Figure 1-3. The HTML title in two places in Firefox

THE BASICS

5

In most cases, you will create something within the body of the web page that you ll think of as a title, but it

won t be the HTML title! Figure 1-3 also shows the body of the web page: the short piece of text. Notice

that the words html, head, title and body do not appear. The tags “told” the browser how to display the

HTML document.

We can do much more with text, but let's go on to see how to get images to appear. This requires an img

element. Unlike html, head, and body elements that use starting and ending tags, the img element just

uses one tag. It is called a singleton tag. Its element type is img (not image) and you put all the information

with the tag itself using what are termed attributes. What information? The most important item is the name

of the file that holds the image. The tag

tells the browser to look for a file with the name frog and the file type jpg. In this case, the browser looks in

the same directory or folder as the HTML file. You can also refer to image files in other places and I ll show

this later. The src stands for source. It is termed an attribute of the element. The slash before the >

indicates that this is a singleton tag. There are common attributes for different element types, but most

element types have additional attributes. Another attribute for img elements is the width attribute.

This specifies that the image should be displayed with a width of 200 pixels. The height will be whatever is

necessary to keep the image at its original aspect ratio. If you want specific widths and heights, even if

that may distort the image, specify both width and height attributes.

Tip: You ll see examples (maybe even some of mine) in which the slash is omitted and which work

just fine, but it is considered good practice to include it. Similarly, you ll see examples in which there

are no quotation marks around the name of the file. HTML is more forgiving in terms of syntax

(punctuation) than most other programming systems. Finally, you ll see HTML documents that start

with a very fancy tag of type !DOCTYPE and have the HTML tag include other information. At this

point, we don't need this so I will keep things as simple as I can (but no simpler, to quote Einstein).

Producing hyperlinks is similar to producing images. The type of element for a hyperlink is a and the

important attribute is href.

Jeanine Meyer's Academic
Activities

As you can see, this element has a starting and ending tag. The content of the element, whatever is

between the two tags—in this case, Jeanine Meyer's Academic Activities—is what shows up in blue and

underlined. The starting tag begins with a. One way to remember this is to think of it as the most important

element in HTML, so it uses the first letter of the alphabet. You can also think of an anchor, which is what

the a actually stands for, but that isn't as meaningful for me. The href attribute (think hypertext

reference) specifies the web site where the browser goes when the hyperlink is clicked. Notice that this is

a full Web address (called a Universal Resource Locator, or URL, for short).

We can combine a hyperlink element with an img element to produce a picture on the screen that a user

can click on. Remember that elements can be nested within other elements. Instead of putting text after

the starting <a> tag, put an tag:

http://faculty.purchase.edu/jeanine.meyer

CHAPTER 1

6

Let s put these examples together now:

<html>
<head>
<title>Second example </title>
</head>
<body>
This will appear as is.

Jeanine Meyer's Academic
 Activities

</body>
</html>

I created the HTML file, saved it as second.html, and then opened it up in the Chrome browser. Figure 1-4

shows what is displayed.

Figure 1-4. Example with images and hyperlinks

This produces the text; the image in its original width and height; the image with the width fixed at 200

pixels and height proportional; a hyperlink that will take you to my web page (I promise); and another link

that uses an image that will also take you to my web page. However, this isn't quite what I had in mind. I

wanted these elements spaced down the page.

This demonstrates something you need to remember: HTML ignores line breaks and other white space. If

you want a line break, you have to specify it. One way is to use the br singleton tag. I ll show other ways

later. Take a look at the following modified code. Notice that the
 tags don t need to be on a line by

themselves.

http://faculty.purchase.edu/jeanine
http://faculty.purchase.edu/jeanine.meyer
http://faculty.purchase.edu/jeanine.meyer

THE BASICS

7

<head>
<title>Second example </title>
<body>
This will appear as is.

Jeanine Meyer's Academic
 Activities

</body>
</html>

Figure 1-5 shows what this code produces.

Figure 1-5. Text, images, and links with line breaks

There are many HTML element types: the h1 through h6 heading elements produce text of different sizes;

there are various elements for lists and tables, and others for forms. CSS, as we ll see in a moment, is also

used for formatting. You can select different fonts, background colors, and colors for the text, and control

the layout of the document. It s considered good practice to put formatting in CSS, interactivity in

JavaScript, and keep the HTML for the content. HTML5 provides new structural elements, such as

article, section, footer, and header, and this makes it even easier to put the formatting in CSS. Doing

http://faculty.purchase.edu/jeanine.meyer
http://faculty.purchase.edu/jeanine.meyer

CHAPTER 1

8

this lets you easily change the formatting and the interactions. Formatting, including document layout, is a

large topic. In this book, I stick to the basics.

Using cascading style sheets

CSS is a special language just for formatting. A style is essentially a rule that specifies how a particular

element will be formatted. This means you can put style information in a variety of places: a separate file,

a style element located in the head element, or a style within the HTML document, perhaps within the one

element you want to format in a particular way. The styling information cascades, trickles down, unless a

different style is specified. To put it another way, the style closest to the element is the one that s used.

For example, you might use your official company fonts as given in the style section in the head element

to flow through most of the text, but include specification within the local element to style one particular

piece of text. Because that style is closest to the element, it is the one that is used.

The basic format includes an indicator of what is to be formatted followed by one or more directives. In the

application for this chapter (available at www.friendsofed.com/downloads.html), I ll specify the

formatting for elements of type section, namely a border or box around each item, margins, padding, and

alignment, and a background of white. The complete HTML document in Listing 1-1 is a mixture (some

would say a mess!) of features. The elements body and p (paragraph) are part of the original version of

HTML. The section element is one of the new element types added in HTML5. The section element does

need formatting, unlike body and p, which have default formatting that the body and each p element will

start on a new line. CSS can modify the formatting of old and new element types. Notice that the

background color for the text in the section is different from the background color for the text outside the

section.

In the code in Listing 1-1, I specify styles for the body element (there is just one) and the section element

If I had more than one section element, the styling would apply to each of them. The style for the body

specifies a background color and a color for the text. CSS accepts a set of 16 colors by name, including

black, white, red, blue, green, cyan, and pink. You can also specify color using RGB (red green blue)

hexadecimal codes, but you ll need to use a graphics program, such as Adobe Photoshop, Corel Paint

Shop Pro, or Adobe Flash Professional to figure out the RGB values, or you can experiment. I used Paint

Shop Pro to determine the RGB values for the green in the frog head picture and used that for the border

as well.

The text-align directives are just what they sound like: they indicate whether to center the material or

align it to the left. The font-size sets the size of text in pixels. Borders are tricky and don t appear to be

consistent across browsers. Here I ve specified a solid green border of 4 pixels. The width specification

for section indicates that the browser should use 85 percent of the window, whatever that is. The

specification for p sets the width of the paragraph at 250 pixels. Padding refers to the spacing between

the text and the borders of the section. The margin is the spacing between the section and its

surroundings.

Listing 1-1. A Complete HTML Document with Styles

<html>
<head>
<title>CSS example </title>
<style>
body {
 background-color:tan;

http://www.friendsofed.com/downloads.html

THE BASICS

9

 color: #EE015;
 text-align:center;
 font-size:22px;
}
section {
 width:85%;
 border:4px #00FF63 solid;
 text-align:left;
 padding:5px;
 margin:10px;
 background-color: white;
}

p {
 width: 250px;
}
</style>
</head>
<body>
The background here is tan and the text is the totally arbitrary RED GREEN BLUE
 value #EE015.

<section>Within the section, the background color is white. There is text with
 additional HTML markup, followed by a paragraph with text. Then, outside the
 section there will be text, followed by an image, more text and then a
 hyperlink. <p>The border color of the section matches the color of the
 frog image. </p></section>

As you may have noticed, I like origami. The next image represents a frog head.

If you want to learn how to fold it, go to

the Meyer Family
 Origami Page

</body>
</html>

This produces the screen shown in Figure 1-6.

http://faculty.purchase.edu/jeanine.meyer/origami

CHAPTER 1

10

Figure 1-6. Sample CSS styles

Tip: Don t be concerned if you don t understand everything immediately—you ll find lots of help on the

Web. In particular, see the official source for HTML 5 at http://dev.w3.org/html5/
spec/Overview.html.

There are many things you can do with CSS. You can use it to specify formatting for types of elements, as

shown above; you can specify that elements are part of a class; and you can identify individual elements

using the id attribute. In Chapter 6 where we create a quiz, I use CSS to position specific elements in the

window and then JavaScript to move them around.

JavaScript programming

JavaScript is a programming language with built-in features for accessing parts of an HTML document,

including styles in the CSS element. It is termed a scripting language to distinguish it from compiled

languages, such as C++. Compiled languages are translated all at once, prior to use, while scripting

languages are interpreted line by line by browsers. This text assumes no prior programming experience or

knowledge of JavaScript, but it may help to consult other books, such as Getting Started with

JavaScript, by Terry McNavage (friends of ED, 2010), or online sources such as

http://en.wikipedia.org/wiki/JavaScript. Each browser owns its version of JavaScript.

An HTML document holds JavaScript in a script element, located in the head element. To display the

time and date information as shown in Figure 1-2, I put the following within the head element of the HTML

document:

<script>
document.write(Date());
</script>

JavaScript, like other programming languages, is made up of statements of various types. In later

chapters, I ll show you assignment statements, compound statements such as if and switch and for

http://dev.w3.org/html5
http://en.wikipedia.org/wiki/JavaScript

THE BASICS

11

statements, and statements that create what are called programmer-defined functions. A function is one

or more statements that work together in a block and can be called anytime you need that functionality.

Functions save writing out the same code over and over. JavaScript supplies many built-in functions.

Certain functions are associated with objects (more on this later) and are called methods. The code

document.write("hello");

is a JavaScript statement that invokes the write method of the document object with the argument

"hello". An argument is additional information passed to a function or method. Statements are

terminated by semicolons. This piece of code will write out the literal string of characters h, e, l, l, o as part

of the HTML document.

The document.write method writes out anything within the parentheses. Since I wanted the information

written out to change as the date and time change, I needed a way to access the current date and time, so

I used the built-in JavaScript Date function. This function produces an object with the date and time.

Later, you ll see how to use Date objects to compute how long it takes for a player to complete a game. For

now, all I want to do is display the current date and time information, and that s just what the code

document.write(Date());

does. To use the formal language of programming: this code calls (invokes) the write method of the

document object, a built-in piece of code. The period (.) indicates that the write to be invoked is a

method associated with the document produced by the HTML file. So, something is written out as part of

the HTML document. What is written out? Whatever is between the opening parenthesis and the closing

parenthesis. And what is that? It is the result of the call to the built-in function Date. The Date function

gets information maintained by the local computer and hands it off to the write method. Date also

requires the use of parentheses, which is why you see so many. The write method displays the date and

time information as part of the HTML document, as shown in Figure 1-2. The way these constructs are

combined is typical of programming languages. The statement ends with a semi-colon. Why not a period?

A period has other uses in JavaScript, such as indicating methods and also for decimal points for

numbers.

Natural languages, such as English, and programming languages have much in common: different types

of statements; punctuation using certain symbols; and a grammar for the correct positioning of elements.

In programming, we use the term notation instead of punctuation, and syntax instead of grammar. Both

programming languages and natural languages also let you build up quite complex statements out of

separate parts. However, there is a fundamental difference: As I tell my students, chances are good that

much of what I say in class is not grammatically correct, but they ll still understand me. But when you re

“talking” to a computer via a programming language, your code must be perfect in terms of the grammatical

rules of the language to get what you want. The good news is that unlike a human audience, computers do

not exhibit impatience or any other human emotion so you can take the time you need to get things right.

There s also some bad news that may take you a while to appreciate: If you make a mistake in grammar—

termed a syntactic error—in HTML, CSS, or JavaScript, the browser still tries to display something. It s up

to you figure out what and where the problem is when you don't get the results you wanted in your work.

Building the application and making it your own
You build an HTML document using a text editor and you view/test/play the document using a browser.

Though you can use any text editor program to write the HTML, I suggest TextPad for PCs and

TextWrangler for Macs. These are shareware, which makes them relatively inexpensive. Don t use a word

CHAPTER 1

12

processing program, which may insert non-text characters. Notepad also works, though TextPad has

benefits such as color-coding that I ll demonstrate. To use the editor, you open it up and type in the code.

Figure 1-7 shows what the TextPad screen looks like.

Figure 1-7. Starting off in TextPad

You will want to save your work frequently and, most important, save it as the file type .html. In TextPad,

click on File ➤ Save As and then change the Save as type to HTML, as shown in Figure 1-8.

Figure 1-8. Saving a file as type HTML

THE BASICS

13

Notice that I gave the file a name and that I can also change the folder from My Documents to something

else if I want. After saving the file, and clicking on Configure ➤ Word Wrap (to make the long lines visible

on the screen), the window appears as shown in Figure 1-9.

Figure 1-9. After saving the file as HTML and invoking word wrap

The color coding, which you ll see only after the file is saved as HTML, indicates tags and quoted strings.

This can be valuable for catching many errors.

Now let s delve into the HTML coding, first for the list of annotated links and then for the favorite sites. The

code uses the features described in the previous section. Table 1-1 shows the complete code for this

application: paragraphs of text with links to different files, all located in the same folder.

CHAPTER 1

14

Table 1-1. The “My games” Annotated Links Code

Code Explanation

<html> Opening html tag

<head> Opening head tag

<title>Annotated links</title> Opening title tag, the title text and closing

title tag

<body> Opening body tag

<h1>My games</h1> Opening h1 tag, text and then closing h1

tag. This will make “My games” appear in a

big font. The actual font will be the default.

<p> Opening p for paragraph tag

The Dice game presents
the game called craps.

Text with an a element. The opening a tag

has the attribute href set to the value

craps.html. Presumably this is a file in the

same folder as this HTML file. The contents

of the a element—whatever is between the

<a> and the —will be displayed, first in

blue and then in mauve once clicked, and

underlined.

</p> Closing p tag

<p> Opening p tag

The Cannonball is
a ballistics simulation. A ball appears to move
on the screen in an arc. The program determines
when the ball hits the ground or the target. The
player can adjust the speed and the angle.

See the previous case. The a element here

refers to the cannonball.html file and the

displayed text is Cannonball.

</p> Closing p tag

<p> Opening p tag

THE BASICS

15

Code Explanation

The Slingshot
simulates shooting a slingshot. A ball moves on
the screen, with the angle and speed depending
on how far the player has pulled back on the
slingshot using the mouse.

See previous. This paragraph contains the

hyperlink to slingshot.html.

</p> Closing p tag

<p> Opening p tag

The Concentration/memory
game presents a set of plain rectangles you
can think of as the backs of cards. The player
clicks on first one and then another and
pictures are revealed. If the two pictures
represent a match, the two cards are removed.
Otherwise, the backs are displayed. The game
continues until all matches are made. The time
elapsed is calculated and displayed.

See previous. This paragraph contains the

hyperlink to memory.html.

</p> Closing p tag

<p> Opening p tag

The Quiz game presents
the player with 4 boxes holding names of
countries and 4 boxes holding names of capital
cities. These are selected randomly from a
larger list. The player clicks to indicate
matches and the boxes are moved to put the
guessed boxes together. The program displays
whether or not the player is correct.

See previous. This paragraph contains the

hyperlink to quiz1.html

</p> Closing p tag

<p> Opening p tag

CHAPTER 1

16

Code Explanation

The Maze program is a
multi-stage game. The player builds a maze by
using the mouse to build walls. The player then
can move a token through the maze. The player
can also save the maze on the local computer
using a name chosen by the player and retrieve
it later, even after closing the browser or
turning off the computer.

See previous. This paragraph contains the

hyperlink to maze.html.

</p> Closing p tag

</body> Closing body tag

</html> Closing html tag

The Favorite Site code has the features of the annotated list with the addition of formatting: a green box

around each item and a picture in each item. See Table 1-2.

Table 1-2. The Favorites Sites Code

Code Explanation

<html> Opening html tag

<head> Opening head tag

<title>Annotated links</title> Complete title element: opening and closing tag and

Annotated links in between

<style> Opening style tag. This means we re now going to use

CSS.

Article { Start of a style. The reference to what is being styled is all

section elements. The style then has a brace - {. The

opening and closing braces surround the style rule we re

creating, much like opening and closing tags in HTML.

 width:60%; The width is set to 60% of the containing element. Note

that each directive ends with a ; .

 text-align:left; Text is aligned to the left

 margin:10px; The margin is 10 pixels

THE BASICS

17

Code Explanation

 border:2px green double; The border is a 2-pIxel green double line

 padding:2px; The space between the text and the border is 2 pixels

 display:block; The article is a block, meaning there are line breaks before

and after

} Closes the style for article

</style> Closing style tag

<script> Opening script tag. We are now writing JavaScript code

document.write(Date()); One statement of code: write out what is produced by the

Date() call

</script> Closing script tag

<body> Opening body tag

<h3>Favorite Sites</h3> Text surrounded by h3 and /h3 tags. This make the text

appear somewhat larger than the norm.

<article> Opening article tag

The Jeanine
Meyer's Academic Activities
displays information on my current
and past courses, along with
publications and other activities.

This text will be subject to the style specified. It includes

an a element. Notice that the value for the href attribute is

a relative reference: it says: go to the parent folder of the

current folder and then to the index.html file. Two periods

(..) is computer-speak for “go back a folder level”, so if we

were in the tree/fruit/apple folder, then ../index.html would

take us back to the fruit folder to find the index file, and

../../index.html would take us back to the tree folder.

</article> Closing article tag

<article> Opening article tag

CHAPTER 1

18

Code Explanation

The <a href="http://stolenchair.
org">Stolen Chair Theatre
Company is the web site of a
theatre company performing mainly in
New York City. This is the postcard
for their Summer, 2010
production.

See previous. Notice that the value for the href attribute

here is a full Web address, and that the HTML includes a

 tag. This will force a line break.

<img src="postcard.jpg"
width="300"/>

An img tag. The source of the image is the file

postcard.jpg. The width is set at 300 pixels.

</article> Closing article tag

<article> Opening article tag

The <a href="http://friendsofed
.com/">friends of ED publishers
is the site for the publishers of
this book.

See previous. This also refers to a Web address. A

tag will force a line break before the image.

<img src="friendsofed.gif"
width="300"/>

An img element. The source is friendsofed.gif. The width is

set at 300 pixels.

</article> Closing article tag

</body> Closing body tag

</html> Closing html tag

It is pretty straightforward how to make this application your own: use your own favorite sites. In most

browsers, you can download and save image files if you want to use a site logo for the hyperlink, or you

can include other pictures. It is my understanding that making a list of sites with comments and including

images such as logos is within the practice called “fair use,” but I am not a lawyer. For the most part,

people like links to their sites. It doesn t affect the legal question, but you can also choose to set the src

in the img tag to the Web address of the site where the image lives if you d rather not download a particular

image file to your computer and then upload it to your web site.

Web addresses can be absolute or relative. An absolute address starts with http://. A relative address is

relative to the location of the HTML file. In my example, the postcard.jpg and the friendsofed.gif are both

located in the same folder as my HTML file. They are there because I put them there! For large projects,

many people put all the images in a subfolder called images and write addresses as "images/postcard.gif".

You also can make this application your own by changing the formatting. Styles can be used to specify

fonts, including specific font, font family, and size. This lets you pick a favorite font, and also specify

http://stolenchair.%ED%AF%80%ED%B0%81org%00%00
http://stolenchair.%ED%AF%80%ED%B0%81org%00%00
http://friendsofed%ED%AF%80%ED%B0%81.com%00%00
http://friendsofed%ED%AF%80%ED%B0%81.com%00%00

THE BASICS

19

what font to use if the preferred font is not available on the user's computer. You can specify the margin

and padding or vary independently the margin-top, margin-left, padding-top, and so forth.

Testing and uploading the application
You need to have all the files, in this case the single HTML file plus all image files, in the same folder

unless you are using full Web addresses. For the links to work, you need to have the correct addresses

for all href attributes. My examples show how to do this for HTML files in the same folder or for HTML files

somewhere else on the Web.

You can start testing your work even if it is not completely done. For example, you can put in a single img

element or a single a element. Open up a browser, such as Firefox, Chrome, or Safari (I didn t mention

Internet Explorer because it does not yet support some of the HTML5 features I ll be using in other

tutorials, though support is coming in IE9). In Firefox, click on File and then Open file and browse to your

HTML file. In Chrome, press Ctrl on the PC (CMD on the MAC) and o and then browse to the file and click

OK to open it. You should see something like my examples. Click on the hyperlinks to get to the other

sites. Reload the page using the reload icon for the browser and observe the different time. If you don't

see what you expect—something like my examples—you need to examine your code. Common mistakes

are

• missing or mismatched opening and closing tags.

• wrong name for image files or HTML files, or wrong file extension for the image files. You can

use image files of type JPG, GIF, or PNG but the file extension named in the tag must match

the actual file type of the image.

• missing quotation marks. The color coding, as available in TextPad and some other editors,

can help you identify this.

Summary
In this chapter, you learned how to compose HTML documents with text, images, and hyperlinks. This

included

• the basic tags, including html, head, title, style, script, body.

• the img element for displaying images.

• the a element for hyperlinks.

• simple formatting using a style element written following Cascading Style Sheet (CSS) rules.

• a single line of JavaScript code to provide date and time information.

This chapter was just the beginning, though it s possible to produce beautiful and informative web pages

using basic HTML, with or without Cascading Style Sheets. In the next chapter, you will learn how to

include randomness and interactivity in an application, and how to use the canvas element, the critical

feature of HTML5.

CHAPTER 1

20

21

Chapter 2

Dice Game

In this chapter, we will cover

• drawing on canvas

• random processing

• game logic

• form output

Introduction
Among the most important new features in HTML5 is the canvas. This element provides a way for

developers to make line drawings, include images, and position text in a totally free-form fashion, a

significant improvement over the older HTML. Although you could do some fancy formatting in the earlier

versions, layouts tended to be boxy and pages less dynamic. How do you draw on the canvas? You use a

scripting language, usually JavaScript. I will show you how to draw on canvas and I ll explain the important

features of JavaScript that we ll need to build an implementation of the dice game called craps: how to

define a function, how to invoke what is termed pseudo-random behavior, how to implement the logic of

this particular game, and how to display information to a player. Before we go any further, though, you

need to understand the basics of the game.

The game of craps has the following rules:

The player throws a pair of dice. The sum of the two top faces is what matters so a 1 and a 3 is the

same as 2 and 2. The sum of two 6-sided dice can be any number from 2 to 12. If the player throws

a 7 or 11 on the first throw, the player wins. If the player throws a 2, 3, or 12, the player loses. For

any other result (4, 5, 6, 8, 9, 10), this result is recorded as what is called the player's point and a

follow-up throw is required. On follow-up throws, a throw of 7 loses and a throw of the player's point

wins. For anything else, the game continues with the follow-up throw rules.

Let s see what our game play might look like. Figure 2-1 shows the result of a throw of two ones at the start

of the game.

CHAPTER 2

22

Figure 2-1. First throw, resulting in a loss for the player

It is not apparent here, but our dice game application draws the die faces each time using the canvas tag.

This means it s not necessary to download images of individual die faces.

A throw of two 1s means a loss for the player since the rules define 2, 3, or 12 on a first throw as a loss.

The next example shows a win for the player, a 7 on a first throw, as shown in Figure 2-2.

Figure 2-2. A 7 on a first throw means the player wins.

Figure 2-3 shows the next throw—an 8. This is neither a win nor a loss, but means there must be a follow-

up throw.

DICE GAME

23

Figure 2-3. An 8 means a follow-up throw with a player s point of 8 carried over.

Let's assume that the player eventually throws an 8 again, as indicated in Figure 2-4.

Figure 2-4. It s another throw of 8, the point value, so the player wins.

As the previous sequence shows, the only thing that counts is the sum of the values on the faces of the

dice. The point value was set with two 4s, but the game was won with a 2 and a 6.

The rules indicate that a game will not always take the same number of throws of the dice. The player can

win or lose on the first throw, or there may be any number of follow-up throws. It is the game builder's job is

to build a game that works—and working means following the rules, even if that means play goes on and

on. My students sometimes act as if their games only work if they win. In a correct implementation of the

game, players will win and lose.

CHAPTER 2

24

Critical requirements
The requirements for building the dice game begin with simulating the random throwing of dice. At first, this

seems impossible since programming means specifying exactly what the computer will do. Luckily,

JavaScript, like most other programming languages, has a built-in facility that produces results that

appear to be random. Sometimes languages make use of the middle bits (1s and 0s) of a very long string

of bits representing the time in milliseconds. The exact method isn t important to us. We will assume that

the JavaScript furnished by the browser does an okay job with this, which is called pseudo-random

processing.

Assuming now that we can randomly get any number from 1 to 6 and do it twice for the two die faces, we

need to implement the rules of the game. This means we need a way to keep track of whether we are at a

first throw or a follow-up throw. The formal name for this is the application state, which means the way

things are right now, and is important in both games and other types of applications. Then we need to use

constructs that make decisions based on conditions. Conditional constructs such as if and switch are a

standard part of programming languages, and you ll soon understand why computer science teachers like

me—who have never been in a casino or a back alley—really like the game of craps.

We need to give the player a way to throw the dice, so we ll implement a button on the screen to click for

that. Then we need to provide information back to the player on what happened. For this application, I

produced graphical feedback by drawing dice faces on the screen and also displayed information as text

to indicate the stage of the game, the point value, and the result. The older term for interactions with users

was input-output (I/O), back when that interaction mainly involved text. The term graphical user interface

(GUI) is now commonly used to indicate the vast variety of ways that users interact with computer

systems. These include using the mouse to click on a specific point on the screen or combining clicks with

dragging to simulate the effect of moving an object (see the slingshot game in Chapter 4). Drawing on the

screen requires the use of a coordinate system to specify points. Coordinate systems for the computer

screen are implemented in similar ways in most programming languages, as I ll explain shortly.

HTML5, CSS, and JavaScript features
Let s now take a look at the specific features of HTML5, CSS, and JavaScript that provide what we need to

implement the craps game.

Pseudo-random processing and mathematical expressions

Pseudo-random processing in JavaScript is performed using a built-in method called Math.random .

Formally, random is a method of the Math class. The Math.random method generates a number from 0 up

to, but not including 1, resulting in a decimal number, for example, 0.253012. This may not seem

immediately useful for us, but it s actually a very simple process to convert that number into one we can

use. We multiply that number, whatever it is, by 6, which produces a number from 0 up to but not including

6. For example, if we multiply the .253012 by 6 we get 1.518072. That s almost what we need, but not

quite. The next step is to strip away the fraction and keep the whole number. To do that, we make use of

another Math method, Math.floor. This method produces a whole number after removing any fractional

part. As the name suggests, the floor method rounds down. In our particular case, we started with

.253012, then arrived at 1.518072, so the result is the whole number 1. In general, when we multiply our

random number by 6 and floor it, we ll get a number from 0 to 5. The final step is to add a 1, because our

goal is to get a number from 1 to 6, over and over again, with no particular pattern.

DICE GAME

25

You can use a similar approach to get whole numbers in any range. For example, if you want the numbers 1

to 13, you d multiply the random number by 13 and then add 1. This could be useful for a card game. You ll

see similar examples throughout this book.

We can combine all of these steps together into what is called an expression. Expressions are

combinations of constants, methods, and function calls, and some things we ll explore later. We put these

items together using operators, such as + for addition and * for multiplication.

Remember from Chapter 1 how tags can be combined—nesting a tag within another tag—and the one line

of JavaScript code we used in the Favorite Sites application:

document.write(Date());

We can use a similar process here. Instead of having to write the random call and then the floor method

as separate statements, we can pass the random call as an argument of the floor method. Take a look at

this code fragment:

1+Math.floor(Math.random()*6)

This expression will produce a number from 1 to 6. I call it a code fragment because it isn't quite a

statement. The operators + and * refer to the arithmetic operations and are the same as you d use in

normal math. The order of operations starts from the inside and works out.

• Invoke Math.random() to get a decimal number from 0 up to, but not quite 1.

• Multiply the result by 6.

• Take that and strip away the fraction, leaving the whole number, using Math.floor.

• Add 1.

You ll see a statement with this expression in our final code, but we need to cover a few other things first.

Variables and assignment statements

Like other programming languages, JavaScript has a construct called a variable, which is essentially a

place to put a value, such as a number. It is a way of associating a name with a value. You can use the

value later by referencing the name. One analogy is to office holders. In the USA, we speak of “the

president.” Now, in 2010, the president is Barack Obama. Before January 21, 2009, it was George W.

Bush. The value held by the term “the president” changes. In programming, the value of the variable can

vary as well, hence the name.

The term var is used to declare a variable.

The names of variables and functions, described in the next section, are up to the programmer. There are

rules: no internal blanks and the name must start with an alphabetic character. Don't make the names too

long as you don't want to type too much, but don't make them so short you forget what they are. You do

need to be consistent, but you don't need to obey the rules of English spelling. For example, if you want to

set up a variable to hold the sum of values and you believe that sum is spelled som, that s fine. Just make

sure you use som all the time. But if you want to refer to something that s a part of JavaScript, such as

function or document or random, you need to use the spelling that JavaScript expects.

You should avoid using the names of built-in constructs in JavaScript (such as random or floor) for your

variables. Try to make the names unique, but still easily understandable. One common method of writing

variable names is to use what s called camel case. This involves starting your variable name in lower

case, then using a capital letter to denote when a new word starts, for example, numberOfTurns or

CHAPTER 2

26

userFirstThrow. You can see why it s called camel case—the capitals form “humps” in the word. You don t

have to use this naming method, but it s a convention many programmers follow.

The line of code that will hold the pseudo-random expression explained in the previous section is a

particular type of statement called an assignment statement. For example,

var ch = 1+Math.floor(Math.random()*);

sets the variable named ch to the value that is the result of the expression on the right-hand side of the

equal sign. When used in a var statement, it also would be termed an initialization statement. The =

symbol is used for setting initial values for variables as in this situation and in the assignment statements

to be described next. I chose to use the name ch as shorthand for choice. This is meaningful for me. In

general, though, if you need to choose between a short name and a longer one that you will remember,

pick the longer one! Notice that the statement ends with a semi-colon. You may ask, why not a period?

The answer is that a period is used in two other situations: as a decimal point and for accessing methods

and properties of objects, as in document.write.

Assignment statements are the most common type of statements in programming. Here s an example of

an assignment statement for a variable already defined:

bookname = "The Essential Guide to HTML5";

The use of the equal sign may be confusing. Think of it as making it true that the left-hand side equals

what s produced by the right-hand side. You ll encounter many other variables and other uses of operators

and assignment statements in this book.

Caution: The var statement defining a variable is called a declaration statement. JavaScript, unlike

many other languages, allows programmers to omit declaration statements and just start to use a

variable. I try to avoid doing that, but you will see it in many online examples.

For the game of craps, we need variables that define the state of the game, namely whether it is a first

throw or a follow-up throw, and what the player's point is (remember that the point is the value of the

previous throw). In our implementation, these values will be held by so-called global variables, variables

defined with var statements outside of any function definition so as to retain their value (the values of

variables declared inside of functions disappear when the function stops executing).

You don t always need to use variables. For example, the first application we create here sets up variables

to hold the horizontal and vertical position of the dice. I could have put literal numbers in the code because

I don't change these numbers, but since I refer to these values in several different places, storing the

values in variables mean that if I want to change one or both, I only need to make the change in one place.

Programmer-defined functions

JavaScript has many built-in functions and methods, but it doesn t have everything you might need. For

example, as far as I know, it does not have functions specifically for simulating the throwing of dice. So

JavaScript lets us define and use our own functions. These functions can take arguments, like the

Math.floor method, or not, like Math.random. Arguments are values that may be passed to the function.

Think of them as extra information. The format for a function definition is the term function followed by

the name you want to give the function, followed by parentheses holding the names of any arguments,

followed by an open bracket, some code, and then a closed bracket. As I note in the previous sections,

DICE GAME

27

the programmer chooses the name. Here s an example of a function definition that returns the product of

the two arguments. As the name indicates, you could use it to compute the area of a rectangle.

function areaOfRectangle(wd,ln) {
 return wd * ln;
}

Notice the return keyword. This tells JavaScript to send the result of the function back to us. In our

example, this lets us write something like rect1 = areaOfRectangle(5,10), which would assign a value

of 50 (5 10) to our rect1 variable. The function definition would be written as code within the script

element. It might or might not make sense to define this function in real life because it is pretty easy to

write multiplication in the code, but it does serve as a useful example of a programmer-defined function.

Once this definition is executed, which probably would be when the HTML file is loaded, other code can

use the function just by calling its name, as in areaOfRectangle(100,200) or areaOfRectangle(x2-
x1,y2-y1).

The second expression assumes that x1, x2, y1, y2 refer to coordinate values that are defined elsewhere.

Functions also can be called by setting certain tag attributes. For example, the body tag can include a

setting for the onLoad attribute:

<body onLoad="init();">

My JavaScript code contains the definition of a function I call init. Putting this into the body element

means that JavaScript will invoke my init function when the browser first loads the HTML document or

whenever the player clicks on the reload/refresh button. Similarly, making use of one of the new features

of HTML5, I could include the button element:

<button onClick="throwdice();">Throw dice </button>

This creates a button holding the text Throw dice. When the player clicks it, JavaScript invokes the

throwdice function I defined in the script element.

The form element, to be described later, could invoke a function in a similar way.

Conditional statements: if and switch

The craps game has a set of rules. One way to summarize the rules is to say, if it is a first-throw situation,

we check for certain values of the dice throw. If it s not the first throw, we check for other values of the

dice throw. JavaScript provides the if and switch statements for such purposes.

The if statement is based on conditions, which can be a comparison or a check for equality—for

example, is a variable named temp greater than 85 or does the variable named course hold the value

"Programming Games". Comparisons produce two possible logical values—true or false. So far you ve

seen values that are numbers and values that are strings of characters. Logical values are yet another

data type. They are also called Boolean values, after the mathematician, George Boole. The condition and

check that I mentioned would be written in code as

temp>85

and

course == "Programming Games"

Read the first expression as: Is the current value of the variable temp greater than 85?

3

CHAPTER 2

28

and the second one as: Is the current value of the variable course the same as the string "Programming

Games"?

The comparison example is easy to understand; we use > to check if one value is greater than another,

and < to check the opposite. The value of the expression will be one of the two logical values true or

false.

The second expression is probably a little more confusing. You may be wondering about the two equal

signs and maybe also the quotation marks .The comparison operator in JavaScript (and several other

programming languages) that checks for equality is this combination of two equal signs. We need two

equal signs because the single equal sign is used in assignment statements and it can't do double duty. If

we had written course = "Programming Games", we would have been assigning the value

"Programming Games" to our course variable rather than comparing the two items. The quotation marks

define a string of characters, starting with P, including the space, and ending with s.

With that under our belts, we can now take a look at how to write code that does something only if a

condition is true.

if (condition) {
 code
}

If we want our code to do one thing if a condition is true and another thing if it is NOT true, the format is:

if (condition) {
 if true code
}
else {
 if not true code
}

Note that I used italics here because this is what is called pseudo-code, not real JavaScript that we would

include in our HTML document.

Here are some real code examples. They make use of alert, a built-in function that causes a small

window with the message indicated by the argument given between the parentheses to pop up in the

browser. The user must click OK to continue.

if (temp>85) {
 alert("It is hot!");
}
if (age > 21) {
 alert("You are old enough to buy a drink.");
}
else {
 alert("You are too young to be served in a bar.");
}

We could write the craps application using just if statements. However, JavaScript supplies another

construct that makes things easier—the switch statement. The general format is:

switch(x) {
case a:

DICE GAME

29

 codea;
case b:
 codeb;
default: codec;
}

JavaScript evaluates the value of x in the first line of the switch statement and compares it to the values

indicated in the cases. Once there is a hit, that is, x is determined to be equal to a or b, the code following

the case label is executed. If there is no match, the code after default is executed. It s not necessary to

have a default possibility. Left to its own devices, the computer would continue running through the

switch statement even if it found a matching case statement. If you want it to stop when you find a

match, you need to include a break statement to break out of the switch.

You can probably see already how if and switch will do what we need for the dice game. You ll read how

in the next section. First, let s look at an example that determines the number of days in the month

indicated by the variable mon holding three-letter abbreviations ("Jan", "Feb", etc.).

switch(mon) {
case "Sep":
case "Apr":
case "Jun":
case "Nov":
 alert("This month has 30 days.");
 break;
case "Feb":
 alert("This month has 28 or 29 days.");
 break;
default:
 alert("This month has 31 days.");
}

If the value of the variable mon is equal to "Sep", "Apr", "Jun", or "Nov", control flows to the first alert

statement and then exits the switch statement because of the break. If the value of the variable mon is

equal to "Feb", the alert statement mentioning 28 or 29 days executes and then the control flow exits

the switch. If the value of mon is anything else, including, by the way, an invalid three-letter abbreviation,

the alert mentioning 31 days is executed.

Just as HTML ignores line breaks and other white space, JavaScript does not require a specific layout for

these statements. You could put everything on one line if you wished. However, make things easy on

yourself and use multiple lines.

Drawing on the canvas

Now we get to one of the most powerful new features in HTML5, the canvas element. I will explain the

pieces of coding that go into an application involving canvas, then show some simple examples, and

finally get back to our goal of drawing dice faces on the canvas. Recall that the outline for an HTML

document is

<html>
 <head>
 <title>… </title>

CHAPTER 2

30

 <script> …. </script>
 </head>
 <body>
 … Here is where the initial static content will go…
 </body>
</html>

To work with the canvas, we include the tags for canvas in the body element of the HTML document and

JavaScript in the script element. I'll start by describing a standard way to write a canvas element.

<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

If an HTML file with this coding is opened by a browser that does not recognize canvas, the message Your
browser doesn't support the HTML5 element canvas. appears on the screen. If you were

preparing web pages for all common browsers, you could choose to direct visitors to your site to

something else or try another strategy. In this book, I just focus on HTML5.

The HTML canvas tag defines this element to have an id of "canvas". This could have been anything, but

there s no harm in using canvas. You can have more than one canvas, however, and in that case, you

would need to use distinct values for each id. That s not what we do for this application, though, so we

don t have to worry about it. The attributes of width and height are set to specify the dimensions of this

canvas element.

Now that we ve seen the canvas in the body, let s look at the JavaScript. The first step in drawing on the

canvas is to define the appropriate object in the JavaScript code. To do this, I need a variable so I set up

one named ctx with the line

var ctx;

outside of any function definition. This makes it a global variable that can be accessed or set from any

function. The ctx variable is something that s needed for all drawing. I chose to name my variable ctx,

short for context, copying many of the examples I ve seen online. I could have chosen any name.

Later in the code (you ll see all the code in the examples that follow, and you can download it from

www.friendsofed.com/downloads.html), I write the code to set the value of ctx.

 ctx = document.getElementById('canvas').getContext('2d');

What this does is first get the element in the document with the id 'canvas' and then extract what is

called the '2d' context. We can all anticipate that the future may bring other contexts! For now, we use the

2d one.

In the JavaScript coding, you can draw rectangles, paths including line segments and arcs, and position

image files on the canvas. You can also fill in the rectangles and the paths. Before we do this, however,

we need to tackle coordinate systems and radian measures.

Just as a global positioning system uses latitude and longitude to define your location on the map, we

need a way to specify points on the screen. These points are called pixels, and we used them in the

previous chapter to specify the width of images and the thickness of borders. The pixel is a pretty small

unit of measurement, as you can see if you do any experiments. However, it s not enough for everyone to

agree on the linear unit. We also need to agree on the point from which we are measuring, just as GPS

systems use the Greenwich Meridian and the equator. For the two-dimensional rectangle that is the

http://www.friendsofed.com/downloads.html

DICE GAME

31

canvas, this goes by the name origin or registration point. The origin is the upper left corner of the canvas

element. Note that in Chapter 6, when we describe the quiz show by creating and positioning elements in

the HTML document and not in a canvas element, the coordinate system is similar. The origin is still the

upper left corner of the window.

This is different from what you may recall from analytical geometry or from making graphs. The horizontal

numbers increase in value moving from left to right. The vertical numbers increase in value moving down

the screen. The standard way to write coordinates is to put the horizontal value first, followed by the

vertical value. In some situations, the horizontal value is referred to as the x value and the vertical, the y

value. In other situations, the horizontal value is the left (think of it as from the left) and the vertical value

is the top (think of it as from the top).

Figure 2-5 shows the layout of a browser window 900 pixels wide by 600 high. The numbers indicate the

coordinate values of the corners and the middle.

Figure 2-5. Coordinate system for browser window.

Now we ll look at several statements for drawing, and then put them together to draw simple shapes (see

Figures 2-6 through 2-10). After that we ll see how to draw the dots and rectangles to represent die faces.

Here s the HTML5 JavaScript code for drawing a rectangle:

ctx.strokeRect(100,50,200,300);

This draws a hollow rectangle, with its top left corner 100 pixels from the left side and 50 pixels down from

the top. The rectangle has width 200, and height 300. This statement would use whatever the current

settings are for line width and for color.

The next piece of code demonstrates setting the line width to 5 and the color of the stroke, that is, the

outline to the indicated RGB value, namely red. The rectangle is drawn using the values in the variables x,

y, w, and h.

ctx.lineWidth = 5;
ctx.strokeStyle = "rgb(255,0,0)";
ctx.strokeRect(x,y,w,h);

CHAPTER 2

32

This snippet

ctx.fillStyle = "rgb(0,0,255)";
ctx.fillRect(x,y,w,h);

draws a solid blue rectangle at the indicated position and dimensions. If you want to draw a blue rectangle

with a red outline, you use two lines of code:

ctx.fillRect(x,y,w,h);
ctx.strokeRect(x,y,w,h);

HTML5 lets you draw so-called paths consisting of arcs and line segments. Line segments are drawn

using a combination of ctx.moveTo and ctx.lineTo. I ll cover them in a number of chapters: for the

slingshot game in Chapter 4, the memory game using polygons in Chapter 5, and Hangman in Chapter 9. In

the cannon ball game in Chapter 4, I ll also show you how to tilt a rectangle, and the Hangman game in

Chapter 9 demonstrates how to draw ovals. In this chapter, I ll focus on the arcs.

You start a path using

ctx.beginPath();

and end it, with the path being drawn, with either

ctx.closePath();
ctx.stroke();

or

ctx.closePath();
ctx.fill();

An arc can be a whole circle or part of a circle. In the dice applications, we draw only whole circles to

represent the pips on the face of each die, but I ll explain how arcs work in general to make the code less

mysterious. The method for drawing arcs has the following format:

ctx.arc(cx, cy, radius, start_angle, end_angle, direction);

where cx, cy, and radius are the center horizontal and vertical coordinates and the radius of the circle.

To explain the next two parameters requires discussing ways to measure angles. You re familiar with the

degree unit for angles: we speak of making a 180-degree turn, meaning a u-turn, and a 90-degree angle is

produced by two perpendicular lines. But most computer programming languages use another system,

called radians. Here s one way to visualize radians—think of taking the radius of a circle and laying it on

the circle itself. You can dig into your memory and realize that it won't be a neat fit, because there are 2*

PI radians around the circle, somewhat more than 6. So if we want to draw an arc that is a whole circle, we

specify a starting angle of 0 and an end angle of 2*PI. Luckily, the Math class furnishes a constant

Math.PI that is the value of PI (to as much accuracy, as many decimal places, as necessary), so in the

code, we write 2*Math.PI. If we want to specify an arc that is half a circle, we use Math.PI, while a right-

angle (90 degrees) will be .5*Math.PI.

The arc method requires one more argument, direction. How are we drawing these arcs? Think of the

movement of the hands on a clock face. In HTML 5, clockwise is the false direction and counterclockwise

is the true direction. (Don't ask why. That s just the way it s specified in HTML5.) I use the built-in

JavaScript values true and false. This will be important when we need to draw arcs that are not whole

circles. The nature of the particular problem dictates how you define the angles if you need to draw arcs

that are not full circles.

DICE GAME

33

Here are some examples, with the complete code, for you to create (using TextPad or TextWrangler) and

then vary to test your understanding. The first one draws an arc, representing a smile.

<html>
<head>
<title>Smile</title>
<script>
function init() {
 var ctx =document.getElementById("canvas").getContext('2d');
 ctx.beginPath();
 ctx.strokeStyle = "rgb(200,0,0)";
 ctx.arc(200, 200,50,0,Math.PI, false);
 ctx.stroke();
}
</script>
</head>
<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>
</body>
</html>

Figure 2-6 shows a portion of the screen with the arc produced by this code.

Figure 2-6. The “smile” produced by the expression ctx.arc(200,200,50,0,Math.PI, false);

You can look ahead to Figures 2-11, 2-12 and 2-13 in which I captured more of the screen to see the

positioning of the drawing. Please vary the numbers in your own example so you can gain an

understanding of how the coordinate system works and how big a pixel actually is.

Before going on to see a frown, try making the arc wider or taller or changing the color. Then try moving the

whole arc up, down, left, and right. Hint: you need to change the line

ctx.arc(200, 200,50,0,Math.PI, false);

Change the 200,200 to reset the center of the circle and the 50 to change the radius.

CHAPTER 2

34

Now, let s go on with other variations. Do take each one and experiment with it. Changing the last

parameter of the arc method to true:

ctx.arc(200,200,50,0,Math.PI,true);

makes the arc go in a counterclockwise direction. The complete code is:

<html>
 <head>
 <title>Frown</title>
<script type="text/javascript">
function init() {
 var ctx =document.getElementById("canvas").getContext('2d');
 ctx.beginPath();
 ctx.strokeStyle = "rgb(200,0,0)";
 ctx.arc(200, 200,50,0,Math.PI, true);
 ctx.stroke();
}
</script>
</head>

<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>
</html>

Notice that I also changed the title. This code produces the screen shown in Figure 2-7.

Figure 2-7. The “frown” produced by the expression ctx.arc(200,200,50,0,Math.PI, true);

Putting in the statement to close the path before the stroke:

ctx.closePath();
ctx.stroke();

DICE GAME

35

in the frown example, will “finish off” the arc. The complete code is

<html>
 <head>
 <title>Frown</title>
<script type="text/javascript">
function init() {
 var ctx =document.getElementById("canvas").getContext('2d');
 ctx.beginPath();
 ctx.strokeStyle = "rgb(200,0,0)";
 ctx.arc(200, 200,50,0,Math.PI, true);
 ctx.closePath();
 ctx.stroke();
}
</script>
</head>

<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>
</html>

This produces the screen show in Figure 2-8.

Figure 2-8. The frown becomes a half-circle by adding ctx.closePath(); before ctx.stroke();

The closePath command is not always necessary, but it s good practice to include it. Experiment here

and also look ahead to the drawing of the slingshot in Chapter 5 and the drawing of the hangman figure in

Chapter 9. If you want the path filled in, you use ctx.fill() in place of ctx.stroke(), which produces a

black, filled-in shape as shown in Figure 2-9. The complete code is

<html>
 <head>

CHAPTER 2

36

 <title>Smile</title>
<script type="text/javascript">
function init() {
 var ctx =document.getElementById("canvas").getContext('2d');
 ctx.beginPath();
 ctx.strokeStyle = "rgb(200,0,0)";
 ctx.arc(200, 200,50,0,Math.PI, false);
 ctx.closePath();
 ctx.fill();
}
</script>
</head>

<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>
</html>

Black is the default color.

Figure 2-9. Filling in the half circle using ctx.fill()

If you want a shape to be filled and have a distinct outline, you use both the fill and the stroke

commands and specify different colors using the fillStyle and strokeStyle properties. The color

scheme is based on the same red/green/blue codes introduced in Chapter 1. You can experiment or use a

tool such as Photoshop or Paint Shop Pro to get the colors you want. Here is the complete code:

<html>
 <head>
 <title>Smile</title>
<script type="text/javascript">
function init() {
 var ctx =document.getElementById("canvas").getContext('2d');
 ctx.beginPath();
 ctx.strokeStyle = "rgb(200,0,0)";
 ctx.arc(200, 200,50,0,Math.PI, false);
 ctx.fillStyle = "rgb(200,0,200)";
 ctx.closePath();
 ctx.fill();
 ctx.strokeStyle="rgb(255,0,0)";

DICE GAME

37

 ctx.lineWidth=5;
 ctx.stroke();
}
</script>
</head>

<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>
</html>

This code produces a half circle filled in with purple (a combination of red and blue), with a stroke, that is,

an outline of pure red as shown in Figure 2-10. The coding specifies a path, then draws the path as a fill,

and then draws the path as a stroke.

Figure 2-10. Using fill and stroke with different colors

A full circle is produced by many different commands, including:

ctx.arc(200,200,50,0, 2*Math.PI, true);
ctx.arc(200,200,50, 0, 2*Math.PI, false);
ctx.arc(200,200,50, .5*Math.PI, 2.5*Math.PI, false);

You may as well stick with the first one—it s as good as any other. Note that I still use the closePath

command. A circle may be a closed figure in geometric terms, but that doesn t matter in terms of

JavaScript.

If you think of the canvas element as a canvas on which you put some ink or paint, you realize you ll need

to erase the canvas or the appropriate part of it to draw something new. To do this, HTML5 supplies the

command

ctx.clearRect(x,y,width,height);

CHAPTER 2

38

Later examples show how to draw a slingshot (Chapter 4), polygons for the memory/concentration game

(Chapter 5), walls for a maze (Chapter 7), and the stick figure in Hangman (Chapter 9). Now let s get back

to what we need for the dice game.

Displaying text output using a form

It is possible to write text on the canvas (see Chapter 5), but for the craps application, I chose to use a

form, an element in both the older and current versions of HTML. I don't use the form for input from the

player. I do use it for outputting information on the results of the throw of the dice. The HTML5

specification indicates new ways to set up forms, including checking or validating the type and range of

input. The application in the next chapter demonstrates validation.

I used the following HTML to produce the form for the dice game:

<form name="f">
Stage: <input name="stage" value="First Throw"/>
Point: <input name="pv" value=" "/>
Outcome: <input name="outcome" value=" "/>
</form>

The form starts with a name attribute. The text Stage:, Point:, and Outcome: appear next to the input

fields. The input tags—notice these are singleton tags—have both name and value fields. These names

will be used by the JavaScript code. You can put any HTML within a form and a form within any HTML.

Because the dice game uses the new button element, I just added the form element with the fields used

for displaying information to the player, without including an input element of type submit. Alternatively, I

could have used a standard form with a submit input field (eliminating the need for the new button

element) with the following code:

<form name="f" onSubmit="throwdice();">
Stage: <input type="text" name="stage" value="First Throw"/>
Point: <input type="text" name="pv" value=" "/>
Outcome: <input type="text" name="outcome" value=" "/>
<input type="submit" value="THROW DICE"/>
</form>

The input element of type submit produces a button on the screen. These are all the concepts we need to

build the craps application. We can now go ahead and code it.

Building the application and making it your own
You may have already tried using the HTML5, CSS, and JavaScript constructs described in this chapter in

small examples. Hint: please do. The only way to learn is to make your own examples. As a way to build up

to the craps application, we will now look at three applications:

• throwing a single die and reloading to throw again

• throwing two dice by using a button

• the complete game of craps

DICE GAME

39

Figure 2-11 shows a possible opening screen for the first application. I say possible because it won't

always be a 4. I deliberately captured this screenshot to show practically all of the window so you can see

where the drawing is located on the screen.

Figure 2-11. The single die application

Figure 2-12 shows the opening screen of the application for throwing a pair of dice. All that appears is the

button.

Figure 2-12. The opening screen of the pair of dice application

Lastly, Figure 2-13 shows the screen after the player clicks on the button.

CHAPTER 2

40

Figure 2-13. Clicking the button to throw the pair of dice

It is good technique to build your application in incremental steps. These applications are built using a text

editor, such as TextPad or TextWrangler. Remember to save the file as type .html— and do this early and

often. You don t have to finish before saving. When you complete the first application and have saved and

tested it, you can save it once more using a new name and then make the modifications to this new copy

to be the second application. Do the same for the third application.

Throwing a single die

The purpose of this first application is to display a random die face on the canvas, with circles laid out in

the standard way.

For any application, there are generally many approaches that would work. I realized that I could get

double duty out of some of the coding, because the pattern for the 3 die face could be made by combining

the 2 and 1 patterns. Similarly, the pattern for 5 is a combination of 4 and 1. The pattern for 6 is a

combination of the one for 4 and something unique. I could have put all the coding into the init function or

used a single drawface function. In any case, this made sense to me and I programmed and debugged it

fairly fast. Table 2-1 lists all the functions and indicates what calls what. Table 2-2 shows the complete

code, explaining what each line does.

Table 2-1. Functions in the Singe Die Throw Application

Function Invoked By / Called By Calls

Init invoked by action of the onLoad in the <body> tag drawface

drawface called by init draw1, draw2, draw4,
draw6, draw2mid

draw1 called by drawface in 3 places for 1, 3 and 5

q

DICE GAME

41

draw2 called by drawface in 2 faces for 2 and 3

draw4 called by drawface in 3 places for 4, 5 and 6

draw2mid called by drawface in 1 place for 6

Table 2-2. The Complete Code for the Throwing a Single Die Application

Code Explanation

 <html> Opening html tag

<head> Opening head tag

<title>Throwing 1 die</title> Full title element

<script> Opening script tag

 var cwidth = 400; Variable holding the width of the canvas; also

used to erase the canvas to prepare for redrawing

 var cheight = 300; Variable holding the height of the canvas; also

used to erase the canvas to prepare for redrawing

 var dicex = 50; Variable holding the horizontal position of the

single die

 var dicey = 50; Variable holding the vertical position of the single

die

 var dicewidth = 100; Variable holding the width of a die face

 var diceheight = 100; Variable holding the height of a die face

 var dotrad = 6; Variable holding the radius of a dot

 var ctx; Variable holding the canvas context, used in all

the draw commands

function init() { Start of the function definition for the init

function, which is invoked onLoad of the

document

CHAPTER 2

42

 var ch = 1+Math.floor(Math.
random()*6);

Declare and set the value of the ch variable to

randomly be the number 1, 2, 3, 4, 5, or 6

 drawface(ch); Invoke the drawface function with the parameter

ch

} End function definition

function drawface(n) { Start of the function definition for the drawface

function, whose argument is the number of dots

 ctx = document.getElementById('canvas').
getContext('2d');

Obtain the object that is used to draw on the

canvas

 ctx.lineWidth = 5; Set the line width to 5

 ctx.clearRect(dicex,dicey,dicewidth,
diceheight);

Clear the space where the die face may have

been drawn. This has no effect the very first time.

 ctx.strokeRect(dicex,dicey,dicewidth,
diceheight)

Draw the outline of the die face

 ctx.fillStyle = "#009966"; Set the color for the circles. I used a graphics

program to determine this value. You can do this,

or experiment.

 switch(n) { Start switch using the number of dots

 case 1: If it is 1

 Draw1(); Call the draw1 function

 break; Break out of the switch

 case 2: If it is 2

 Draw2(); Call the draw2 function

 break; Break out of the switch

 case 3: If it is 3

 draw2(); First call draw2 and then

 draw1(); Call draw1

DICE GAME

43

 break; Break out of the switch

 case 4: If it is 4

 draw4(); Call the draw4 function

 break; Break out of the switch

 case 5: If it is 5

 draw4(); Call the draw4 function and then

 draw1(); Call the draw1 function

 break; Break out of the switch

 case 6: If it is 6

 draw4(); Call the draw4 function and then

 draw2mid(); Call the draw2mid function

 break; Break out of the switch (not strictly necessary)

 } Close the switch statement

} Close the drawface function

function draw1() { Start of the definition of draw1

 var dotx; Variable to be used for the horizontal position for

drawing the single dot

 var doty; Variable to be used for the vertical position for

drawing the single dot

 ctx.beginPath(); Start a path

 dotx = dicex + .5*dicewidth; Set the center of this dot to be at the center of the

die face horizontally and

 doty = dicey + .5*diceheight; … vertically

ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true); Construct a circle (which is drawn with the fill

command)

CHAPTER 2

44

 ctx.closePath(); Close the path

 ctx.fill(); Draw the path, that is, fill the circle

} Close draw1

function draw2() { Start of draw2 function

 var dotx; Variable to be used for the horizontal position for

drawing the two dots

 var doty; Variable to be used for the vertical position for

drawing the two dots

 ctx.beginPath(); Start a path

 dotx = dicex + 3*dotrad; Set the center of this dot to be 3 radius lengths

over from the upper corner of the die face,

horizontally and

 doty = dicey + 3*dotrad; … vertically

ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true); Construct the first dot

 dotx = dicex+dicewidth-3*dotrad; Set the center of this dot to be 3 radius lengths in

from the lower corner of the die face, horizontally

and

 doty = dicey+diceheight-3*dotrad; … vertically

ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true); Construct the second dot

 ctx.closePath(); Close the path

 ctx.fill(); Draw both dots

} Close draw2

function draw4() { Start of draw4 function

 var dotx; Variable to be used for the horizontal position for

drawing the dots.

 var doty; Variable to be used for the vertical position for

drawing the dots

DICE GAME

45

 ctx.beginPath(); Begin path

 dotx = dicex + 3*dotrad; Position the first dot inside the upper left corner,

horizontally and

 doty = dicey + 3*dotrad; …vertically

ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true); Construct the circle

 dotx = dicex+dicewidth-3*dotrad; Position the second dot to be inside the lower

right corner, horizontally and

 doty = dicey+diceheight-3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct dots

 ctx.closePath(); Close path

 ctx.fill(); Draw 2 dots

 ctx.beginPath(); Begin path

 dotx = dicex + 3*dotrad; Position this dot inside the lower left corner,

horizontally and

 doty = dicey + diceheight-3*dotrad; … vertically. (note that this is the same y value

just used)

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 dotx = dicex+dicewidth-3*dotrad; Position this dot just inside the upper left corner,

horizontally and

 doty = dicey+ 3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 ctx.closePath(); Close path

 ctx.fill(); Draw 2 dots

} Close draw4 function

CHAPTER 2

46

function draw2mid() { Start draw2mid function

 var dotx; Variable to be used for the horizontal position for

drawing the two dots

 var doty; Variable to be used for the vertical position for

drawing the two dots

 ctx.beginPath(); Begin path

 dotx = dicex + 3*dotrad; Position the dots to be just inside horizontally

 doty = dicey + .5*diceheight; And midway vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 dotx = dicex+dicewidth-3*dotrad; Position this dot to be just inside the right border

doty = dicey + .5*diceheight; //no change Position y midway

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 ctx.closePath(); Close path

 ctx.fill(); Draw dots

} Close draw2mid function

</script> Close script element

</head> Close head element

<body onLoad="init();"> Starting body tag, with onLoad attribute set to

invoke the init() function

<canvas id="canvas" width="400"
height="300">

Your browser doesn't support the HTML5
 element canvas.

</canvas>

Set up canvas and provide notice if browser

doesn t accept canvas element

</body>

</html>

Close body and close html elements.

DICE GAME

47

If you like, you can put comments in your code. Comments are pieces of text that are ignored by the

browser but are there to remind you and, perhaps, others who will look at this program later, what is going

on. One form of comment starts with two slashes on a line. Everything to the right of the slashes is

ignored. For larger comments, you use a slash and an asterisk to start the comment and an asterisk and a

slash to end it.

/*
This is a comment.
*/

This is a case of do as I say, not as I do. Since I m using tables to put comments on every line and you can

consider the whole chapter a comment, I haven't included comments in the code. You should, however.

HINT: when I was developing this code (and any code involving a random effect, I did not want to have to

do the initial testing with the random coding. So, right after the line

var ch = 1+Math.floor(Math.random()*6);

I put the line

ch = 1;

and tested it, then I changed it to

ch = 2;

and so on. I removed this line (or commented it out using //) when I was done with this phase of testing.

This falls under general advice, to avoid having to play a game, in all its complexity, while developing it.

Throwing two dice

The next application makes use of a button to give the player something to do, rather than just reloading

the webpage, and it also simulates the throwing of a pair of dice. Before looking at the code, think about

what you can carry over from the first application. The answer is: most of it. This second application will

need to do something about the positioning of the two die faces, using two more variables for this, dx and

dy. It also needs to repeat the code using Math.random and calling drawface twice to produce both die

faces. And there needs to be a change in what invokes a throw. Table 2-3, which describes the functions

calling and being called is essentially the same as Table 2-1, except now there s a function called

throwdice, which is invoked by an action set up by the onClick attribute of the button tag. Table 2-4

contains the full HTML document for the application of throwing two dice.

Table 2-3. Functions in the Two-Dice Application

Function Invoked By / Called By Calls

throwdice invoked by action of the onClick in the <button> tag drawface

drawface called by init draw1, draw2, draw4,
draw6, draw2mid

draw1 called by drawface in 3 places for 1, 3 and 5

CHAPTER 2

48

draw2 called by drawface in 2 faces for 2 and 3

draw4 called by drawface in 3 places for 4, 5 and 6

draw2mid called by drawface in 1 place for 6

Table 2-4. The Complete Two-Dice Application

Code Explanation

<html> Opening html tag

<head> Opening head tag

<title>Throwing dice</title> Full title element

<script> Opening script tag

 var cwidth = 400; Variable holding the width of the canvas

 var cheight = 300; Variable holding the height of the canvas; also

used to erase the canvas to prepare for

redrawing

 var dicex = 50; Variable holding the horizontal position of the

single die; also used to erase the canvas to

prepare for redrawing

 var dicey = 50; Variable holding the vertical position of the

single die

 var dicewidth = 100; Variable holding the width of a die face

 var diceheight = 100; Variable holding the height of a die face

 var dotrad = 6; Variable holding the radius of a dot

 var ctx; Variable holding the canvas context, used in all

the draw commands

 var dx; Variable used for horizontal positioning and

changed for each of the two die faces

g

DICE GAME

49

Code Explanation

 var dy; Variable used for vertical positioning. It is the

same for both die faces.

function throwdice() { Start of the throwdice function

 var ch =
1+Math.floor(Math.random()*6);

Declare the variable ch and then set it with a

random value.

 dx = dicex; Set dx for the first die face.

 dy = dicey; Set dy for the second die face.

 drawface(ch); Invoke drawface with ch as the number of

dots.

 dx = dicex + 150; Adjust dx for the second die face.

 ch=1 + Math.floor(Math.random()*6); Reset ch with a random value.

 drawface(ch); Invoke drawface with ch as the number of

dots.

} Close throwdice function.

function drawface(n) { Start of the function definition for the drawface

function, whose argument is the number of

dots.

 ctx = document.getElementById('canvas')
.getContext('2d');

Obtain the object that is used to draw on the

canvas.

 ctx.lineWidth = 5; Set the line width to 5.

 ctx.clearRect(dx,dy,dicewidth,diceheight); Clear the space where the die face may have

been drawn. This has no effect the very first

time.

 ctx.strokeRect(dx,dy,dicewidth,diceheight) Draw the outline of the die face.

 var dotx; Variable to hold horizontal position.

 var doty; Variable to hold vertical position.

CHAPTER 2

50

Code Explanation

 ctx.fillStyle = "#009966"; Set color.

 switch(n) { Start switch using the number of dots.

 case 1: If it is 1

 draw1(); Call the draw1 function

 break; Break out of the switch

 Case 2: If it is 2

 draw2(); Call the draw2 function

 break; Break out of the switch

 Case 3: If it is 3

 draw2(); First call draw2 and then

 draw1(); Call draw1

 break; Break out of the switch

 Case 4: If it is 4

 draw4(); Call the draw4 function

 break; Break out of the switch

 Case 5: If it is 5

 draw4(); Call the draw4 function and then

 draw1(); Call the draw1 function

 break; Break out of the switch

 Case 6: If it is 6

 draw4(); Call the draw4 function and then

DICE GAME

51

Code Explanation

 draw2mid(); Call the draw2mid function

 break; Break out of the switch (not strictly necessary)

 } Close switch statement

} Close drawface function

function draw1() { Start of definition of draw1

 var dotx; Variable to be used for the horizontal position

for drawing the single dot

 var doty; Variable to be used for the vertical position for

drawing the single dot

 ctx.beginPath(); Start a path

 dotx = dx + .5*dicewidth; Set the center of this dot to be at the center of

the die face (using dx) horizontally and

 doty = dy + .5*diceheight; … (using dy) vertically

 ctx.arc(dotx,doty,dotrad,
0,Math.PI*2,true);

Construct a circle (it is drawn with the fill

command)

 ctx.closePath(); Close the path

 ctx.fill(); Draw the path, that is, the circle

} Close draw1

function draw2() { Start of draw2 function

 var dotx; Variable to be used for the horizontal position

for drawing the two dots.

 var doty; Variable to be used for the vertical position for

drawing the two dots

 ctx.beginPath(); Start a path

CHAPTER 2

52

Code Explanation

 dotx = dx + 3*dotrad; Set the center of this dot to be 3 radius lengths

over from the upper corner of the die face,

horizontally and

 doty = dy + 3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math
.PI*2,true);

Construct the first dot

 dotx = dx+dicewidth-3*dotrad; Set the center of this dot to be 3 radius lengths

in from the lower corner of the die face,

horizontally and

 doty = dy+diceheight-3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct the second dot

 ctx.closePath(); Close the path

 ctx.fill(); Draw both dots

} Close draw2

function draw4() { Start of draw4 function

 var dotx; Variable to be used for the horizontal position

for drawing the dots

 var doty; Variable to be used for the vertical position for

drawing the dots

 ctx.beginPath(); Begin path

 dotx = dx + 3*dotrad; Position the first dot inside the upper left

corner, horizontally and

 doty = dy + 3*dotrad; …vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct the circle

DICE GAME

53

Code Explanation

 dotx = dx+dicewidth-3*dotrad; Position the second dot to be inside the lower

right corner, horizontally and

 doty = dy+diceheight-3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct dots

 ctx.closePath(); Close path

 ctx.fill(); Draw 2 dots

 ctx.beginPath(); Begin path

 dotx = dx + 3*dotrad; Position this dot inside the lower left corner,

horizontally and

 doty = dy + diceheight-3*dotrad;
 //no change

… vertically (note that this is the same y value

just used)

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 dotx = dx+dicewidth-3*dotrad; Position this dot just inside the upper left

corner, horizontally and

 doty = dy+ 3*dotrad; … vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 ctx.closePath(); Close path

 ctx.fill(); Draw 2 dots

} Close draw4 function

function draw2mid() { Start draw2mid function

 var dotx; Variable to be used for the horizontal position

for drawing the two dots

CHAPTER 2

54

Code Explanation

 var doty; Variable to be used for the vertical position for

drawing the two dots

 ctx.beginPath(); Begin path

 dotx = dx + 3*dotrad; Position the dots to be just inside horizontally

 doty = dy + .5*diceheight; and midway vertically

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 dotx = dx+dicewidth-3*dotrad; Position this dot to be just inside the right

border

 doty = dy + .5*diceheight;
 //no change

Position y midway

 ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

Construct circle

 ctx.closePath(); Close path

 ctx.fill(); Draw dots

} Close draw2mid function

</script> Close script element

</head> Close head element

<body> Starting body tag

<canvas id="canvas" width="400" height="300"> Canvas tag start

Your browser doesn't support the HTML5
 element canvas.

Set up canvas and provide notice if browser

doesn t accept canvas element

</canvas> Close canvas tag

 Line break

DICE GAME

55

Code Explanation

<button onClick="throwdice();">Throw
 dice </button>

Button element (note attribute onClick setting

to invoke throwdice)

</body> Close body tag

</html> Close html tag

The complete game of craps

The third application is the complete game of craps. Again, much can be carried over from the previous

application. However, now we need to add in the rules of the game. Among other things, this will mean

using the conditional statements if and switch, as well as global variables, that is variables defined

outside of any function definition, to keep track of whether or not it is a first turn (firstturn) and what is

the player's point (point). The function table is identical to the one given for the second application (Table

2-3), so I won't repeat it. Table 2-5 holds the code for this application. The new action is all in the

throwdice function. I will comment the new lines.

Table 2-5. The Complete Craps Application

Code Explanation

<html>

<head>

<title>Craps game</title>

<script>

 var cwidth = 400;

 var cheight = 300;

 var dicex = 50;

 var dicey = 50;

 var dicewidth = 100;

 var diceheight = 100;

 var dotrad = 6;

CHAPTER 2

56

 var ctx;

 var dx;

 var dy;

 var firstturn = true; Global variable, initialized to the

value true

 var point; Global variable, does not need to

be initialized because it will be set

before use

function throwdice() { Start of throwdice function

 var sum; Variable to hold the sum of the

values for the 2 dice

 var ch = 1+Math.floor(Math.random()*6); Set ch with the first random value

 sum = ch; Assign this to sum

 dx = dicex; Set dx

 dy = dicey; set dy

 drawface(ch); Draw the first die face

 dx = dicex + 150; Adjust the horizontal position

 ch=1 + Math.floor(Math.random()*6); Set ch with a random value. This

is the one for the second die.

 sum += ch; Add ch to what is already in sum

 drawface(ch); Draw the second die

 if (firstturn) { Now start the implementation of

the rules. Is it a first turn?

 switch(sum) { If it is, start a switch with sum as

the condition

 case 7: For 7

DICE GAME

57

 case 11: .. or 11

 document.f.outcome.value="You
win!";

Display You win!

 break; Exit the switch

 case 2: For 2,

 case 3: .. or 3

 case 12: .. or 12

 document.f.outcome.value="You
lose!";

Display You lose!

 break; Exit the switch

 default: For anything else

 point = sum; Save the sum in the variable point

 document.f.pv.value=point; Display the point value

 firstturn = false; Set firstturn to false

 document.f.stage.value="Need
follow-up throw.";

Display Need follow-up throw

 document.f.outcome.value=" "; Erase (clear) the outcome field

 } End the switch

 } End the if-true clause

 else { Else (not a first turn)

 switch(sum) { Start the switch, again using sum

 case point: if sum is equal to whatever is in

point

 document.f.outcome.value="You win!"; Display You win!

CHAPTER 2

58

 document.f.stage.value="Back to first
throw.";

Display Back to first throw

 document.f.pv.value=" "; Clear the point value

 firstturn = true; Reset firstturn so it is again

true

 break; Exit the switch

 case 7: If the sum is equal to 7

 document.f.outcome.value="You lose!"; Display You lose!

 document.f.stage.value="Back to first
throw.";

Display Back to first throw

 document.f.pv.value=" "; Clear the point value

 firstturn = true; Reset firstturn so it is again

true

 } Close the switch

 } Close the else clause

} Close the throwdice function

function drawface(n) {

 ctx =
document.getElementById('canvas').getContext('2d');

 ctx.lineWidth = 5;

 ctx.clearRect(dx,dy,dicewidth,diceheight);

 ctx.strokeRect(dx,dy,dicewidth,diceheight)

 var dotx;

 var doty;

 ctx.fillStyle = "#009966";

DICE GAME

59

 switch(n) {

 case 1:

 draw1();

 break;

 case 2:

 draw2();

 break;

 case 3:

 draw2();

 draw1();

 break;

 case 4:

 draw4();

 break;

 case 5:

 draw4();

 draw1();

 break;

 case 6:

 draw4();

 draw2mid();

 break;

CHAPTER 2

60

 }

}

function draw1() {

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + .5*dicewidth;

 doty = dy + .5*diceheight;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 ctx.closePath();

 ctx.fill();

}

function draw2() {

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + 3*dotrad;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy+diceheight-3*dotrad;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

DICE GAME

61

 ctx.closePath();

 ctx.fill();

}

function draw4() {

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + 3*dotrad;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy+diceheight-3*dotrad;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 ctx.closePath();

 ctx.fill();

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + diceheight-3*dotrad; //no change

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy+ 3*dotrad;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

CHAPTER 2

62

 ctx.closePath();

 ctx.fill();

}

function draw2mid() {

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + .5*diceheight;

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy + .5*diceheight; //no change

 ctx.arc(dotx,doty,dotrad,0,Math.PI*2,true);

 ctx.closePath();

 ctx.fill();

}

</script>

</head>

<body>

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

DICE GAME

63

<button onClick="throwdice();">Throw dice </button>

<form name="f"> Start a form named f

Stage: <input name="stage" value="First Throw"/> With the text Stage: right before

it, set up an input field named

stage

Point: <input name="pv" value=" "/> With the text Point: right before it,

set up an input field named pv

Outcome: <input name="outcome" value=" "/> With the text Outcome: right

before it, set up an input field

named outcome

</form> Close the form

</body> Close body

</html> Close html

Making the application your own

Making this application your own is not as straightforward as with the favorite sites application, because

the rules of craps are the rules of craps. However, there are many things you can do. Change the size and

color of the dice faces, using fillRect and setting fillStyle to different colors. Change the color and

size of the whole canvas. Change the text for the outcomes to something more colorful. You also can

implement other games using standard or specially made dice.

You can look ahead to the next chapter and learn about drawing images on the canvas instead of drawing

each die face using arcs and rectangles. HTML5 provides a way to bring in external image files. The

drawback to this approach is that you do have to keep track of these separate files.

You can develop coding for keeping score. For a gambling game, you can start the player with a fixed

amount of money, say 100 of whatever the currency unit is, and deduct some amount, say 10, for playing

a game, and add some amount, say 20, if and only if the player wins. You can add this bankroll information

as part of the form element in the body:

<form name="f" id="f">
Stage: <input name="stage" value="First Throw"/>
Point: <input name="pv" value=" "/>
Outcome: <input name="outcome" value=" "/>
Bank roll: <input name="bank" value="100"/>
</form>

CHAPTER 2

64

JavaScript (and other programming languages) distinguish between numbers and strings of characters

representing numbers. That is, the value "100" is a string of characters, "1","0", and "0". The value 100 is a

number. In either case, however, the value of a variable is stored as a sequence of 1s and 0s. For

numbers, this will be the number represented as a binary number. For strings of characters, each

character will be represented using a standard coding system, such as ASCII or UNICODE. In some

situations, JavaScript will make the conversion from one data type to the other, but don't depend on it.

The coding I suggest uses the built-in functions String and Number to do these conversions.

In the throwdice function, before the if(firstturn) statement, add the code in Table 2-6 (or something

like it).

Table 2-6. Adding a Bank for the Player

Code Explanation

var bank = Number(document.f.bank.value); Sets a new variable bank to be the number

represented by the value in the bank input field.

if (bank<10) { Compare bank to 10.

 alert("You ran out of money! Add
some more and try again.");

If bank is less than 10, put out an alert.

 Return; Exit the function without doing anything.

 } Close the if true clause.

bank = bank – 10; Decrease bank by 10. This line is reached only when

bank was greater than 10.

document.f.bank.value = String(bank); Put the string representation of that value in the

bank field.

Then in each place where the player wins (in the switch statement for a first turn after the 7 and 11 cases,

or in the switch statement for a follow-up turn, after the point case, add the code in Table 2-7.

Table 2-7. Increasing the Value of the Bank

Code Explanation

bank = Number(document.f.bank.value); Set bank to be the number represented by the value in

the bank input field. Setting bank again allows for the

possibility of the player re-setting the bank amount in

the middle of a game.

DICE GAME

65

bank +=20; Use the += operator to increase the value of bank by

20

document.f.bank.value = String(bank); Put the string representation of the bank amount in the

bank field

When the player loses, or when it is a follow-up turn, you don t add any code. The bank value goes down

before each new game.

Testing and uploading the application
These applications are complete in the HTML file. No other files, such as image files, are used. Instead,

the dice faces are drawn on the canvas. (For your information, my versions of dice games written in the

older HTML used one or two img elements. To make these fixed img elements display different images, I

wrote code that changed the src attribute to be a different external image file. When I uploaded the

application, I had to upload all the image files.)

Open up the HTML file in the browser. The first application needs to be reloaded to get a new (single) die.

The second and third applications (the third one being the craps game) use a button to roll the dice.

I repeat what I wrote earlier. To test this program, you do need to check the many cases. You are not done

when you, acting as the player, win. Typical problems include

• missing or mismatched opening and closing tags

• mismatched opening and closing brackets, the { and the } surrounding functions, switch

statements, and if clauses

• missing quotation marks. The color coding, as available when using TextPad and some other

editors, can help here, as it will highlight keywords it recognizes.

• inconsistency in naming and use of variables and functions. These names can be anything

you choose, but you need to be consistent. The function draw2mid will not be invoked by

drawmid2().

These are all, except arguably the last, mistakes in syntax, analogous to mistakes in grammar and

punctuation. A mistake of semantics, that is, meaning, can be more difficult to detect. If you write the

second switch statement to win on a 7 and lose on the point value, you may have written correct

JavaScript code, but it won't be the game of craps.

It shouldn t happen here because you can copy my code, but a common mistake is to get confused about

the coordinate system and think that vertical values increase going up the screen instead of down.

Summary
In this chapter, you learned how to

• declare variables and use global variables to represent application state

• write code to perform arithmetic operations

• define and use programmer-defined functions

CHAPTER 2

66

• use several built-in features of JavaScript, including the Math.random and Math.floor

methods

• use if and switch statements

• create a canvas using an HTML element

• draw rectangles and circles

This chapter introduced a key feature of HTML5, the canvas, as well as the notions of randomness and

interactivity. It also presented many programming features you ll use in the examples in the rest of the

book. In particular, the technique of building an application in stages is useful. The next chapter will

feature the animation of a ball bouncing in a box—preparation for the real games in Chapter 4: the

ballistics simulations called cannon ball and sling shot.

67

Chapter 3

Bouncing Ball

In this chapter, we will cover:

• creating programmer-defined objects

• using setInterval for animation

• drawing images

• form input and validating form input

• for loops

• drawing with gradients

Introduction
Animation, whether at the movies, using a flipbook, or generated by computer, involves displaying a

sequence of still images fast enough so that we interpret what we see as movement, as life. In this

chapter, I ll show you how to produce animated scenes by simulating a ball bouncing in a 2-dimensional

box, with horizontal and vertical speeds that can by changed by a player. The first iteration of our program

calculates new positions for the ball at fixed intervals of time and displays the result, and it also

determines when there would be a virtual collision of ball and wall and how the ball would bounce off the

wall. After that, we ll see how you can replace the ball with an image, and how to draw rectangles using

gradients. Lastly, we ll examine the HTML5 feature for validating form input. The three examples are

• a ball bouncing in a 2-D box (Figure 3-1)

• replace the ball with an image and use a gradient for the box walls (Figure 3-2)

• validate the input (Figure 3-3)

CHAPTER 3

68

Note: The kind of animation we re going to produce is called computed animation, in which the

position of an object is recalculated by a computer program and the object is then redisplayed. This is

in contrast to cel (or frame-by-frame) animation, which uses predrawn individual static pictures.

Animated gifs are examples of cel animation and can be produced in many graphics programs. The

Flash authoring tool is excellent for producing and integrating computed animation and cel animation.

Flash also has facilities, such as tweening, to help produce the individual static pictures.

You ll have to imagine the animation represented by these static pictures. In Figure 3-1, notice the form

with fields for setting the horizontal and vertical velocity.

Figure 3-1. A bouncing ball

In Figure 3-2, the ball has been replaced by an image and the walls are filled in using a gradient.

BOUNCING BALL

69

Figure 3-2. The ball is now an image from an external file.

HTML5 lets you specify what the input should be. In this example, I ve specified the input should be a

number and indicated minimum and maximum values. I used CSS to specify that if a user makes an invalid

entry, the color of the field turns red. This is shown in Figure 3-3.

Figure 3-3. A form showing bad input

CHAPTER 3

70

This set of applications demonstrates substantial programming but it s not really a game, though people

enjoy seeing heads or other images bouncing in a box. Think about how to make it a game. You can also

use ideas learned here to draw something besides a ball bouncing around in a box. The box can have

different dimensions and the walls can be much fancier. The next chapter builds on this one and describes

how to build simulations of a cannonball and a slingshot.

Critical requirements
It is important for this application and, indeed, for all programming, to define the requirements before you

begin writing any code. The application requires things I demonstrated in previous chapters: drawing

shapes on a canvas element and using a form. For this example, we will actually use the form fields for

input. In the dice game described in Chapter 2, they were used strictly for output.

In Chapter 1, the HTML document made use of external image files. In Chapter 2, we drew the faces of the

dice entirely with coding. In this chapter, I ll demonstrate both: a bouncing circle drawn with code and a

bouncing image from an image file.

To accomplish this, we need some code that will be able to do something—right now, it doesn t matter

what—at fixed intervals of time. The intervals need to be short enough that the result looks like motion.

In this case, the something-to-be-done is to reposition the ball. In addition, the code needs to determine if

the ball would hit any wall. Now, there isn't a ball and there aren't any walls. It is all virtual, so it is all

coding. We ll write code to perform a calculation on the virtual position of the ball versus the virtual

position of each of the walls. If there is a virtual hit, the code adjusts the horizontal or vertical

displacement values so the ball bounces off the wall.

To calculate the repositioning, we use either the initial values or any new values typed into the input fields

of the form. However, the goal is to produce a robust system that will not act on bad input from the player.

Bad input would be an entry that wasn't a number or a number outside of the specified range. We could just

not act on the bad input. However, we want to give feedback to the player that the input was bad, so we ll

make the input boxes change color, as Figure 3-3 shows.

HTML5, CSS, JavaScript features
Let s take a look at the specific features of HTML5, CSS, and JavaScript we need to implement the

bouncing ball applications. We ll build on material covered in previous chapters, specifically the general

structure of an HTML document, using a canvas element, programmer-defined and built-in functions, and

a form element.

Drawing a ball, image, and gradient

As described in Chapter 2, drawing anything on the canvas, such as a circle to represent the ball, requires

including the canvas element in the body section of the HTML document. Next we need to define a variable,

ctx, and add code that sets up the value of this variable so we can use JavaScript. Here s the statement

to implement this:

ctx = document.getElementById('canvas').getContext('2d');

As we saw in Chapter 2, a circle is created by drawing an arc as part of a path. The following lines of code

start the path, set the color for the fill, specify the arc, and then use the fill method to draw a closed,

BOUNCING BALL

71

filled-in path. Notice that the arc method uses variables to specify the coordinates of the center of the

circle and the radius. The parameters 0 and Math.PI*2 represent angles, in this case 0 to Math.PI*2,

making a complete circle. The true parameter indicates counterclockwise, though in this particular case,

false would produce the same effect.

ctx.beginPath();
ctx.fillStyle ="rgb(200,0,50)";
ctx.arc(ballx, bally, ballrad,0,Math.PI*2,true);
ctx.fill();

For the first version of the bouncing ball, the box is drawn as a rectangle outline. The width of the outline,

termed the stroke, is set using

ctx.lineWidth = ballrad;

You can experiment with the line width. Keep in mind that if you make the width small and set the ball to

travel fast, the ball can bounce past the wall in one step.

The statement that draws the rectangle is

ctx.strokeRect(boxx,boxy,boxwidth,boxheight);

I put the code for the ball before the code for the rectangle so the rectangle would be on top. I thought this

looked better for the bouncing.

The second version of the program displays an image for the ball. This requires code to set up an img

object using the new operator with a call to Image(), assigning that to a variable, and giving the src

property a value. In the application, we do all this in a single statement, but let s take a look at the

individual parts.

You read about var statements in Chapter 2. Such statements define, or declare, a variable. It is okay to

use the name img for our var here; there s no conflict with the HTML img element. The new operator is well-

named: it creates a new object, in this case of the built-in type Image. The Image function does not take

any arguments, so there are just opening and closing parentheses.

Image objects have attributes, just like HTML elements such as img do. The particular image used is

indicated by the value of the src attribute. Here, "pearl.jpg" is the name of an image file located in the

same folder as the HTML document. The following two statements set up the img variable and set its src

(source) to the address, the URL, of the image file.

var img = new Image();
img.src="pearl.jpg";

For your application, use the name of an image file you ve chosen. It can be of type JPG, PNG, or GIF,

and be sure to either put it in the same folder as your HTML document or include the entire path. Be careful

about matching the case both in the name and the extension.

To draw this image on the canvas, we need a single line of code specifying the image object, the location

for the upper left corner of the image, and the width and length to be used in the display of the image. As

was the case with the rectangles, this code is a call of a method of a context object, so I use the variable

ctx defined in the init function. I need to adjust the ballx and bally values I used for the center of the

circle to indicate this upper corner. I use 2 times the ball radius for both the width and the length. The

statement is

ctx.drawImage(img,ballx-ballrad,bally-ballrad,2*ballrad,2*ballrad);

CHAPTER 3

72

Let's take a break now. It s your turn, dear reader, to do some work. Consider the following HTML

document:

<html>
<head>
<title>The Origami Frog</title>
<script>
var img = new Image();
img.src = "frogface.gif";
var ctx;
function init() {
 ctx =document.getElementById("canvas").getContext('2d');
 ctx.drawImage(img,10,20,100,100);

}
</script>
</head>
<body>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>
</body>
</html>

Find your own image file and use its name in place of frogface.gif. Change the title to something

appropriate. Experiment with the line

ctx.drawImage(img,10,20,100,100);

That is, change the 10, 20 to reposition the image, and change the 100,100 to change the width and the

height. Make the changes and see if the program responds as you intended. Remember that as you

specify the width and height, you could be changing the shape—the aspect ratio—of the picture.

Now try another exercise: drawing two images on the canvas. You ll need to have two different variables in

place of img. For this task, give the variables distinctive names. If you are emulating Dr. Seuss, you can

use thing1 and thing2; otherwise, choose something meaningful to you!

Now, on to more drawing!

Let s see how to use gradients for this version of the program. You can use gradients to set the

fillStyle property. I didn't want to have the ball on top of a filled in rectangle, so I needed to figure out

how to draw the four walls separately.

A gradient is a type of object in HTML5. There are linear gradients and radial gradients. In this application

we use a linear gradient. The code defines a variable to be a gradient object, using a method of a canvas

context that we defined earlier with the variable ctx. The code for the gradient looks like this:

var grad;
grad=ctx.createLinearGradient(boxx,boxy,boxx+boxwidth,boxy+boxheight);

The gradient stretches out over a rectangle shape.

BOUNCING BALL

73

Gradients involve sets of colors. A typical practice is to write code to set what are called the color stops,

such as to make the gradient be a rainbow. For this, I set up an array of arrays in a variable named hue.

You can think of an array as a holder for a collection of values. Whereas a variable can hold only one

value, an array can hold many. In the next chapter, you ll read about an array named everything that will

hold all the objects to be drawn on the screen. In Chapter 9, which describes the Hangman game, the word

list is an array of words. You ll read about many applications of arrays in this book. Here s a concrete

example. The following var statement sets up a variable to be a specific array:

var family = ["Daniel","Aviva", "Allison", "Grant", "Liam"];

The variable family is an array. Its data type is array. It consists of a list of people in my family (for

pictures, see the memory game described in Chapter 5). To access or to set the first element of this array,

you d use family[0]. The values to specify specific members of an array are called index values or

indices. Array indexing starts with zero. The expression family[0] would produce Daniel. The

expression family[4] would produce Liam. If the value of a variable relative was 2, then

family[relative] would produce Allison. To determine the number of elements in the array, you d use

family.length. In this case, the length is 5.

The individual items in an array can be of any type, including arrays. For example, I could modify the family

array to provide more information:

var family = [["Daniel","college teacher"],
 ["Aviva", "congressional staff"],
 ["Allison","graduate student"],
 ["Grant","kid"],
 ["Liam","kid"]
];

The formatting, with the line breaks and indents, is not required, but it s good practice.

The expression family[2][1] produces "graduate student". Remember: array indexing starts at 0 so the

index value 2 for the array, sometimes termed the outer array in this type of example, produces

["Allison","graduate student"] and the array 1, the index for the inner array, produces "graduate student".

These inner arrays do not have to be the same length. Consider the example:

var family = [["Daniel","college teacher"],
 ["Aviva", "congressional staff"],
 ["Allison","graduate student"],
 ["Grant"],
 ["Liam"]
];

The code would check the length of the array and if it was 2 instead of 1, the second item would be the

profession of the individual. If the length of the inner array was 1, it would be assumed that the individual

does not have a profession.

Arrays of arrays can be very useful for product names and costs. The following statement specifies the

very limited inventory of a store:

var inventory = [
 ["toaster",25.99],
 ["blender",74.99],

CHAPTER 3

74

 ["dish",10.50],
 ["rug",599.99]
];

This store has 4 items, with the cheapest being the dish, represented in the position at index 2, and the

most expensive the rug at index 3.

Now, let's see how we can use these concepts for defining a gradient. We ll use an array whose individual

elements are also arrays.

Each inner array holds the RGB values for a color, namely red, yellow, green, cyan, blue, magenta.

var hue = [
 [255, 0, 0],
 [255, 255, 0],
 [0, 255, 0],
 [0, 255, 255],
 [0, 0, 255],
 [255, 0, 255]
] ;

These values represent colors ranging from red (RGB 255,0,0) to magenta (RGB 255,0,255), with four

colors specified in between. The gradient feature in JavaScript fills in the colors to produce the rainbow

pattern shown in Figure 3-3. Gradients are defined by specifying points along an interval from 0 to 1. You

can specify a gradient other than a rainbow. For example, you can use a graphics program to select a set

of RGB values to be the so-called stop-points, and JavaScript will fill in values to blend from one to the

next.

The array numeric values are not quite what we need, so we will have to manipulate them to produce what

JavaScript demands.

Manipulation of arrays often requires doing something to each member of the array. One construct for

doing this, present in many programming languages, is the for loop, which uses a variable called an

indexing variable. The structure of the for loop is

for (initial value for indexing variable; condition for continuing; change for
 indexing variable) {
 code to be done every time. The code usually references the indexing variable
}

This says: start with this initial value; keep doing the loop as long as this condition holds; and change the

index value in this specified way. A typical expression for the change will use operators such as ++. The

++ operator increments the indicated variable by 1. A typical for header statement is

for (n=0;n<10;n++)

This for loop uses a variable named n, with n initialized to 0. If the value of n is less than 10, the

statements inside the loop are executed. After each iteration, the value of n is increased by 1. In this

case, the loop code will be executed 10 times, with n holding values 0, 1, 2, all the way up to 9.

Here s one more example, a common one to demonstrate arrays. Let the grades variable be set up to hold

a set of grades for a student:

var grades = [4.0, 3.7, 3, 2.3, 3];

BOUNCING BALL

75

Depending on the institution, this could indicate grades of A, A-, B, C+, and B. The following snippet

computes the grade-point average and stores it in the variable named gpa. Notice that we need to initialize

the variable named sum to start with a value of 0. The += operator adds to the value held in sum the value in

the grades array at index value g.

var sum = 0;
for (g=0;g<grades.length;g++) {
 sum += grades[g];
}
var gpa;
gpa = sum/grades.length;

To produce what we need to build the gradient, the code extracts values from the hue array and uses them

to produce character strings indicating RGB values. We use the hue array along with a variable called

color to set the color stops to define the gradient. The color stops are set at any point between 0 and 1,

using a for loop that sets color to be a character string of the required format, namely starting with

"rgb(", and including the three values.

for (h=0;h<hue.length;h++) {
 color = 'rgb('+hue[h][0]+','+hue[h][1]+','+hue[h][2]+')';
 grad.addColorStop(h*1/hue.length,color);
}

The assignment statement setting color may seem strange to you: there s a lot going on—and what are

those plus signs doing? Remember, our task is to generate the character strings indicating certain RGB

values. The plus signs do not indicate addition of numbers here but concatenation of strings of

characters. This means that the values are stuck together rather than mathematically added, so while 5+5

yields 10, '5'+'5' would give 55. Because the 5s in the second example are enclosed by quote marks, they

are strings rather than numbers. The square brackets are pulling out members of the array. JavaScript

converts the numbers to the character string equivalent and then combines them. Remember that it s

looking at arrays within arrays, so the first number within square brackets (in this case, provided by our

variable h) gives us the first array, and the second number within square brackets gives us our number

within that array. Let s look at a quick example. The first time our loop runs, the value of h will be 0, which

gives us the first entry within the hue array. We then look up the separate parts of that entry in order to

build our final color.

After all that, our code has set up the variable grad to be used to indicate a fill pattern. Instead of setting

fillStyle to be a color, the code sets it to be the variable grad.

ctx.fillStyle = grad;

Drawing the rectangles is the same as before, but now with the indicated fill. These are four narrow walls at

the left, right, top, and bottom of the original rectangle. I make the walls as thick as the radius of the ball.

This thickness is the width in the case of the vertical walls and the height in the case of the horizontal

walls.

ctx.fillRect(boxx,boxy,ballrad,boxheight);
ctx.fillRect(boxx+boxwidth-ballrad,boxy,ballrad,boxheight);
ctx.fillRect(boxx,boxy,boxwidth,ballrad);
ctx.fillRect(boxx,boxy+boxheight-ballrad,boxwidth,ballrad);

CHAPTER 3

76

An important point to note here is that since the code is drawing or painting the canvas, to produce the

effect of a moving ball, we also need code to erase everything and then redraw everything with the ball in a

new spot. The statement to erase everything is:

ctx.clearRect(box,boxy,boxwidth,boxheight);

It might be possible to erase (clear) just parts of the canvas, but I chose to erase and then redraw

everything. In each situation, you need to decide what makes sense.

Setting up a timing event

Setting up timing events in HTML5 is actually similar to the way it s done in the older versions of HTML.

There are two built-in functions: setInterval and setTimeout. We ll look at setInterval here and at

setTimeout in the memory game in Chapter 5. Each of these functions takes two arguments. Remember

that arguments are extra pieces of information included in function or method calls. Back in Chapter 1, we

saw that document.write took as its single argument what was to be written out on the screen.

I ll describe the second argument first. The second argument specifies an amount of time, in milliseconds.

There are 1000 milliseconds to a second. This may seem like a very short unit to work with, but it turns out

to be just what we want for games. A second (1000 milliseconds) is quite long for a computer game.

The first argument specifies what is to be done at the intervals specified by the second argument. The first

argument can be the name of a function. For this application, the init function definition contains the

following line:

setInterval(moveball,100);

This tells the JavaScript engine to invoke the function moveball every 100 milliseconds (10 times per

second). moveball is the name of a function that will be defined in this HTML document; it is the event

handler for the timing interval event. Don't be concerned if you write this line of code before writing the

code to define the function. What counts is what exists when the application is run.

JavaScript also provides a way other than a function name for the event handler. You could write

setInterval("moveball();",100);

for the same effect. Putting it another way, for simple cases, when the action is the call of a function

without parameters, the name of the function will do. For more complex cases (as described in the Aside

note), you can write a string to specify code. The string can be a full function call, or something like this:

setInterval("positionx = positionx+speed;",100);

That is, the complete response to the event can be written in the first argument. Using a function is the

way to go in most situations.

Note: Here is a more complex example. Suppose I had a function named slide that itself took one

argument, and I wanted this function to be called with a value 10 times the value of the variable d,

and I wanted this to happen every one and one-half seconds, I would code

setInterval("slide(10*d);",1500);

BOUNCING BALL

77

It is often the case that you want to indicate the passage of time on the screen. The following example will

display 0, 1, …. etc. with the number changing every second.

<html>
<head>
<title>elapsed</title>
<script>
function init() {
 setInterval(increase,1000);
}
function increase() {
 document.f.secs.value = String(1+Number(document.f.secs.value));
}
</script>
</head>
<body onLoad="init();">
<form name="f">
<input type="text" name="secs" value="0"/>
</form>
</body>
</html>

This is a good example for you to take the time to write and run, both because it showcases timing events

and also because it will make you appreciate how long a second lasts. The code takes the value out of the

secs input field in the form named f, converts that value to a number, adds 1 to that number, and then

converts it back to a string to assign as the value of the secs element. Try replacing the single statement

inside the increase function with the statement

document.f.secs.value = 1+document.f.secs.value;

and see what happens. This is a lesson in the difference between numbers and character strings. Please

play around with this little example. If you want to make the numbers go up in smaller increments, change

the 1000 to 250 and the 1 to .25. This makes the script show quarter-second changes.

If you want to allow your code to stop a particular event, you can set up a global variable (one that s

outside of any function). I use a variable named tev, my shorthand for timing event.

var tev;

You would then modify the setInterval call to be:

tev = setInterval(moveball,100);

When you wanted to stop this event, you d include this code:

clearInterval(tev);

To reiterate, the setInterval function sets up a timing event that keeps occurring until it is cleared. If

you know you want an event to happen just once, the setTimeout method sets up exactly one event. You

can use either method to produce the same results, but JavaScript furnishes both to make things easier.

For the bouncing ball application, the moveball function calculates a new position for the ball, does the

calculations to check for collisions and when they occur, redirects the ball and draws a new display. This

is done over and over—the calls to moveball keep happening because we used setInterval.

CHAPTER 3

78

Calculating a new position and collision detection

Now that we know how to draw, and how to clear and redraw, and we know how to do something at fixed

intervals, the challenge is how to calculate the new positions and how to do collision detection. We ll do

this by declaring variables ballx and bally to hold the x and y coordinates of the ball's center; ballvx

and ballvy to hold the amount by which the ball position is to be changed, and ballboundx ,

inboxboundx, ballboundy and inboxboundy to indicate a box slightly smaller than the actual box for the

collision calculation. The amounts by which the ball position is to be changed are initialized to 4 and 8

(totally arbitrarily) and are changed if and when a player makes a valid change (see next section) and

clicks on the change button. These amounts are termed displacements or deltas and, less formally,

velocities or speeds.

The change in direction is pretty simple in this situation. If the ball “hits” a vertical wall, the horizontal

displacement must change sign; i.e., if the ball was moving 4 units to the right and we hit a wall, we add -4

to its position, which starts it moving to the left. The vertical displacement stays the same. The hit is

determined by comparing the next horizontal value with the boundary. Similarly, if the ball “hits” a

horizontal wall as determined by comparing the vertical position with the appropriate boundary, the vertical

displacement changes sign while the horizontal displacement remains the same. The change is for the

next iteration. The check for collisions is done four times, that is, for each of the 4 walls. The calculation

consists of comparing the proposed new x or y value, as appropriate, with the boundary condition for the

particular wall. The tentative new position is adjusted if the ball center goes past one of the four walls to be

exactly at the boundary. This has the effect of making the ball go slightly behind each wall or appear to be

squeezed by each wall. The boundary values are set up to be just inside the box with the upper corner at

boxx, boxy, a width of boxwidth, and a height of boxheight. I could use a more complex calculation to

compare any point on the circle with any point on the walls. However, there is a more fundamental principle

involved here. There are no walls and no ball. This is a simulation based on calculations. The calculations

are done at intervals. If the ball is moving fast enough and the walls are thin enough, thinner than the

ballrad specified here, the ball can escape the box. This is why I do the calculation in terms of the next

move and a slightly smaller box.

var boxboundx = boxwidth+boxx-ballrad;
var boxboundy = boxheight+boxy-ballrad;
var inboxboundx = boxx+ballrad;
var inboxboundy = boxy+ballrad;

Here is the code for the moveandcheck function, the function that checks for collisions and reposition the

ball:

function moveandcheck() {
 var nballx = ballx + ballvx;
 var nbally = bally +ballvy;
 if (nballx > boxboundx) {
 ballvx =-ballvx;
 nballx = boxboundx;
 }
 if (nballx < inboxboundx) {
 nballx = inboxboundx
 ballvx = -ballvx;
 }
 if (nbally > boxboundy) {
 nbally = boxboundy;

BOUNCING BALL

79

 ballvy =-ballvy;
 }
 if (nbally < inboxboundy) {
 nbally = inboxboundy;
 ballvy = -ballvy;
 }
 ballx = nballx;
 bally = nbally;
}

You might say that not much actually happens here and you d be correct. The variables ballx and bally

are modified to be used later when things get drawn to the canvas.

It is not obvious from this code, but do keep in mind that vertical values (y values) increase going down

the screen and horizontal values (x values) increase going from left to right.

Validation

Caution: As of this writing, some validation works in Chrome, and perhaps other browsers, but not in

Firefox.

HTML5 provides new facilities for validating form input. The creator of a form can specify that an input field

is of type number as opposed to text, and HTML5 will immediately check that the user/player entered a

number. Similarly, we can specify max and min values. The code for the form is

<form name="f" id="f" onSubmit="return change();">
 Horizontal velocity <input name="hv" id="hv" value="4" type="number" min="-10"
max="10" />

 Vertical velocity <input name="vv" id="vv" value="8" type="number" min="-10"
max="10"/>
<input type="submit" value="CHANGE"/>
</form>

The input is still text, that is, a string of characters, but the values are to be text that can be interpreted as

a number in the indicated range.

Other types of input include "email" and "URL" and it is very handy to have HTML5 check these. Of course,

you can check any character string to see if it s a number using isNumber and more complicated coding,

including regular expressions (patterns of characters that can be matched against), to check for valid e-

mail addresses and URLs. One common tactic for checking an e-mail address is to make the user type it in

twice so you can compare the two and make sure the user hasn t made any mistakes.

We want to take advantage of the work HTML5 will do for us, but we also want to let the user/player know if

something is wrong. You can use HTML5 and CSS to do this, by specifying a style for valid and invalid

input.

input:valid {background:green;}
input:invalid {background:red;}

CHAPTER 3

80

HTML5 validation is not fully operational in all browsers, so I won't spend a lot of time on it. If you re using a

compliant browser, such as Chrome, you can test out the example given in the next section. Notice that

the ball keeps bouncing even if an invalid value, say "abc" is entered where a number was specified,

because the program continues to use the current settings.

Tip: Validating input and generating appropriate feedback to users is important in any application.

Among the new features HTML5 provides is a pattern attribute in the input element in which a special

language called regular expressions can be used to specify valid input. Put HTML5 regular

expressions into a search field to find up-to-date information.

HTML page reload

Before continuing, I want to mention some issues that may cause unexpected problems. Browsers come

with reload/refresh buttons. The document is reloaded when the button is clicked. We made use of this in

the simple die throw application in Chapter 2. However, at times you may want to prevent a reload and, in

such cases, you can put a return (false); in functions that don t have anything to return to keep the

page from reloading.

When a document has a form, reloading does not always reinitialize the form input. You may need to leave

the page and then reload it using the full URL.

Lastly, browsers try to use files previously downloaded to the client (user) computer rather than

requesting files from a server based on inspection of the date and time. The files on the client computer

are stored in what is called the cache. If you think you made a change but the browser isn't displaying the

latest version, you may need to take steps such as clearing the cache.

Building the application and making it your own
I will now explain the code for the basic bouncing ball application; the application that uses an image for

the ball and gradients for the walls; and the one that validates the input. Table 3-1 shows all the function

calls and what is being called. This is the same for all three applications.

Table 3-1. Functions in the Bouncing Ball Applications

Function Invoked By/Called By Calls

init Action of onLoad in the body tag moveball

moveball Invoked directly by init and by action of setInterval moveandcheck

moveandcheck Invoked by moveball

change Invoked by action of onSubmit in the form tag

The moveandcheck code could be part of the moveball function. I chose to separate it because it is a

good practice to define functions that perform specific actions. Generally, more, smaller functions are

BOUNCING BALL

81

better than fewer, larger ones when you re developing applications. By the way, when doing your own

programming, don t forget to put comments in the code as described in Chapter 2. And add blank lines to

make the code more readable. Table 3-2 shows the code for the basic bouncing ball application and

explains what each line does.

Table 3-2. The Bouncing Ball Application

Code Explanation

<html> Start html

<head> Start head

 <title>Bouncing Ball
 with inputs</title>

Complete title element

 <style> Start style

 form { Start form styling

 width:330px; Set up width

 margin:20px; Set margin

 background-color:brown; Set color

 padding:20px; Set internal padding

} Close this style

 </style> Close style element

 <script type="text/javascript"> Start script element. (The type is not required. I

show it here just to let you know what you ll see in

many examples online.)

 var boxx = 20; x location of upper corner of box

 var boxy = 30; y location of upper corner of box

 var boxwidth = 350; Box width

 var boxheight = 250; Box height

 var ballrad = 10; Radius of ball

CHAPTER 3

82

Code Explanation

 var boxboundx =
 boxwidth+boxx-ballrad;

Right boundary

 var boxboundy =
 boxheight+boxy-ballrad;

Bottom boundary

 var inboxboundx =
 boxx+ballrad;

Left boundary

 var inboxboundy =
 boxy+ballrad;

Top boundary

 var ballx = 50; Initial x position of ball

 var bally = 60; Initial y position of ball

 var ctx; Variable holding canvas context

 var ballvx = 4; Initial horizontal displacement

 var ballvy = 8; Initial vertical displacement

function init() { Start of init function

ctx = document.getElementById
('canvas').getContext('2d');

Set the ctx variable

 ctx.linewidth = ballrad; Set line width

ctx.fillStyle ="rgb(200,0,50)"; Set fill style

 moveball(); Invoke moveball function the first time to move,

check, and display the ball

setInterval(moveball,100); Set up timing event

} Close of init function

function moveball(){ Start of moveball function

 ctx.clearRect(boxx,boxy,
boxwidth,boxheight);

Clear (erase) box (including any paint from a ball)

BOUNCING BALL

83

Code Explanation

 moveandcheck(); Do the check and the move the ball

 ctx.beginPath(); Start path

 ctx.arc(ballx, bally,
ballrad,0,Math.PI*2,true);

Set up to draw of circle at current location of ball

 ctx.fill(); Fill in the path; that is, draw a filled circle

 ctx.strokeRect(boxx,boxy,
boxwidth,boxheight);

Draw rectangle outline

} Close moveball

function moveandcheck() { Start of moveandcheck

 var nballx = ballx + ballvx; Set tentative next x position

 var nbally = bally +ballvy; Set tentative next y position

 if (nballx > boxboundx) { Is this x value beyond the right wall?

 ballvx =-ballvx; If so, change vertical displacement

 nballx = boxboundx; Set the next x to be exactly at this boundary.

 } Close clause

 if (nballx < inboxboundx) { Is this x value less than the right boundary?

 nballx = inboxboundx If so, set the x value to be exactly at the boundary

 ballvx = -ballvx; Change the vertical displacement

 } Close clause

 if (nbally > boxboundy) { Is the y value beyond the bottom boundary?

 nbally = boxboundy; If so, set the y value to be exactly at the boundary

 ballvy =-ballvy; Change the horizontal displacement

CHAPTER 3

84

Code Explanation

 } Close clause

 if (nbally < inboxboundy) { Is the y value less than the top boundary?

 nbally = inboxboundy; If so, set the y value to be exactly the boundary

 ballvy = -ballvy; Change the vertical displacement

 } Close clause

 ballx = nballx; Set the x position to nballx

 bally = nbally; Set the y position to nbally

} Close moveandcheck function

function change() { Start of change function

 ballvx = Number(f.hv.value); Convert input to number and assign to ballvx

 ballvy = Number(f.vv.value); Convert input to number and assign to ballvy

 return false; Returnfalse to make sure there isn't a page reload

} Close function

</script> Close script

</head> Close head

<body onLoad="init();"> Start body element. Set up call to init function

<canvas id="canvas" width=
"400" height="300">

Start of canvas element

Your browser doesn't support the
 HTML5 element canvas.

Message for non-compliant browsers

</canvas> Close canvas element

 Line break

BOUNCING BALL

85

Code Explanation

<form name="f" id="f" onSubmit=
"return change();">

Start of form. Give name and id (may need for some

browsers). Set up action on submit button.

 Horizontal velocity <input name="hv"
 id="hv" value="4" type="number"
 min="-10" max="10" />

Label an input field for horizontal velocity

 Line break

 Vertical velocity <input name=
"vv" id="vv" value="8" type="number"
 min="-10" max="10"/>

Label an input field for vertical velocity

<input type="submit" value="CHANGE"/> Submit button

</form> Close form

</body> Close body

</html> Close html

The application that uses an image as the ball and the gradient-filled walls is very similar. Table 3-3 shows

all the code—but I just comment the code that is different. I m not being lazy; the idea is to let you see how

each application is built on the previous one.

Table 3-3. The Second Application, with an Image as the Ball and Gradient-Filled Walls

Code Explanation

<html>

<head>

 <title>Bouncing Ball with inputs</title>

 <style>

 form {

 width:330px;

 margin:20px;

CHAPTER 3

86

Code Explanation

 background-color:#b10515;

 padding:20px;

}

 </style>

 <script type="text/javascript">

 var boxx = 20;

 var boxy = 30;

 var boxwidth = 350;

 var boxheight = 250;

 var ballrad = 20; This isn't a substantial change, but the

picture required a bigger radius.

 var boxboundx = boxwidth+boxx-ballrad;

 var boxboundy = boxheight+boxy-ballrad;

 var inboxboundx = boxx+ballrad;

 var inboxboundy = boxy+ballrad;

 var ballx = 50;

 var bally = 60;

 var ballvx = 4;

 var ballvy = 8;

 var img = new Image(); Defining the img variable as an Image object.

This is what the new operator and the call to

the Image function do.

BOUNCING BALL

87

Code Explanation

 img.src="pearl.jpg"; Set the src for this image to be the

"pearl.jpg" file.

 var ctx;

 var grad; Set grad as a variable. It will be assigned a

value in the init function.

 var color; Used in setting up the gradient grad

 var hue = [Used in setting up the gradient grad. This is

an array of arrays, each inner array

supplying RGB values.

 [255, 0, 0], Red

 [255, 255, 0], Yellow

 [0, 255, 0], Green

 [0, 255, 255], Cyan

 [0, 0, 255], Blue

 [255, 0, 255] Purple (magenta)

]; Close array

function init(){ Used to set up the gradient

 var h;

 ctx = document.getElementById('canvas').
getContext('2d');

 grad = ctx.createLinearGradient(boxx,boxy,
boxx+boxwidth,boxy+boxheight);

Create and assign a gradient value.

 for (h=0;h<hue.length;h++) { Start of for loop

CHAPTER 3

88

Code Explanation

 color = 'rgb('+hue[h][0]+','
+hue[h][1]+','+hue[h][2]+')';

Set up color as a character string that

indicates an RGB value.

 grad.addColorStop(h*1/6,color); Set up the color stop to define the gradient.

 } Close for loop

 ctx.fillStyle = grad; Set the fill to be grad

ctx.lineWidth = ballrad;

 moveball();

 setInterval(moveball,100);

}

function moveball(){

 ctx.clearRect(boxx,boxy,boxwidth,boxheight);

 moveandcheck();

 ctx.drawImage(img,ballx-ballrad,
bally-ballrad,2*ballrad,2*ballrad);

Draw an image

 ctx.fillRect(boxx,boxy,ballrad,boxheight); Draw the left wall

 ctx.fillRect(boxx+boxwidth-
ballrad,boxy,ballrad,boxheight);

Draw the right wall

 ctx.fillRect(boxx,boxy,boxwidth,ballrad); Draw the top wall

 ctx.fillRect(boxx,boxy+boxheight-
ballrad,boxwidth,ballrad);

Draw the bottom wall

}

function moveandcheck() {

BOUNCING BALL

89

Code Explanation

 var nballx = ballx + ballvx;

 var nbally = bally +ballvy;

 if (nballx > boxboundx) {

 ballvx =-ballvx;

 nballx = boxboundx;

 }

 if (nballx < inboxboundx) {

 nballx = inboxboundx

 ballvx = -ballvx;

 }

 if (nbally > boxboundy) {

 nbally = boxboundy;

 ballvy =-ballvy;

 }

 if (nbally < inboxboundy) {

 nbally = inboxboundy;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

CHAPTER 3

90

Code Explanation

}

function change() {

 ballvx = Number(f.hv.value);

 ballvy = Number(f.vv.value);

 return false;

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width=
"400" height="300">

This browser doesn't support
 the HTML5 canvas element.

</canvas>

<form name="f" id="f" onSubmit=
"return change();">

 Horizontal velocity <input name=
"hv" id="hv" value="4" type=
"number" min="-10" max="10" />

 Vertical velocity <input name=
"vv" id="vv" value="8" type=
"number" min="-10" max="10"/>

<input type="submit" value="CHANGE"/>

BOUNCING BALL

91

Code Explanation

</form>

</body>

</html>

I chose to put the modest change of the style information in the first application. Table 3-4 shows the third

bouncing ball application, with form validation. Again, I have only commented the new code, but I include

all the code for completeness sake.

Table 3-4. The Third Bouncing Ball Application, with Form Validation

Code Explanation

<html>

<head>

 <title>Bouncing Ball with inputs</title>

 <style>

 form {

 width:330px;

 margin:20px;

 background-color:brown;

 padding:20px;

}

input:valid {background:green;} Set up feedback for valid input

input:invalid {background:red;} Set up feedback for invalid input

 </style>

 <script type="text/javascript">

CHAPTER 3

92

Code Explanation

 var cwidth = 400;

 var cheight = 300;

 var ballrad = 10;

 var boxx = 20;

 var boxy = 30;

 var boxwidth = 350;

 var boxheight = 250;

 var boxboundx = boxwidth+boxx-ballrad;

 var boxboundy = boxheight+boxy-ballrad;

 var inboxboundx = boxx+ballrad;

 var inboxboundy = boxy+ballrad;

 var ballx = 50;

 var bally = 60;

 var ctx;

 var ballvx = 4;

 var ballvy = 8;

function init(){

 ctx = document.getElementById('canvas').
getContext('2d');

ctx.lineWidth = ballrad;

 moveball();

BOUNCING BALL

93

Code Explanation

 setInterval(moveball,100);

}

function moveball(){

 ctx.clearRect(boxx,boxy,boxwidth,boxheight);

 moveandcheck();

 ctx.beginPath();

 ctx.fillStyle ="rgb(200,0,50)";

 ctx.arc(ballx, bally, ballrad,0,Math.PI*2,true);

 ctx.fill();

 ctx.strokeRect(boxx,boxy,boxwidth,boxheight);

}

function moveandcheck() {

 var nballx = ballx + ballvx;

 var nbally = bally +ballvy;

 if (nballx > boxboundx) {

 ballvx =-ballvx;

 nballx = boxboundx;

 }

 if (nballx < inboxboundx) {

CHAPTER 3

94

Code Explanation

 nballx = inboxboundx

 ballvx = -ballvx;

 }

 if (nbally > boxboundy) {

 nbally = boxboundy;

 ballvy =-ballvy;

 }

 if (nbally < inboxboundy) {

 nbally = inboxboundy;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

}

function change() {

 ballvx = Number(f.hv.value);

 ballvy = Number(f.vv.value);

 return false;

}

</script>

</head>

BOUNCING BALL

95

Code Explanation

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

<form name="f" id="f" onSubmit="return change();">

 Horizontal velocity <input name="hv" id=
"hv" value="4" type="number" min="-10" max="10" />

 Vertical velocity <input name="vv" id=
"vv" value="8" type="number" min="-10" max="10"/>

<input type="submit" value="CHANGE"/>

</form>

</body>

</html>

There are many ways you can make this application your own. You can select your own image for the ball

and experiment with the colors for the walls, with or without the gradients. You can change the position

and the dimensions of each wall. You can add text and HTML markup to the page. You can change the

look of the form.

You can include more than one ball, keeping track of the positions of each. If you decide to use two balls,

you need two sets of variables and two lines of code for each one line you had before. One systematic

way to do this is to use the search function in the editor to find all instances of ball and, for each line,

substitute two lines, so in place of ballx, you have ball1x and ball2x, and in place of the var ballx =
50; use

var ball1x = 50;
var ball2x = 250;

This puts the second ball 200 pixels over on the canvas.

You would also need a second set of all the comparisons for the walls.

CHAPTER 3

96

If you want to use more than two balls, you may want to consider using arrays. Subsequent chapters will

show you how to handle sets of objects.

You also can try writing code that slows the ball each time it hits a wall. This is a nice effect and does

simulate a real physical result. In each of the places in the code where the direction is changed by

changing the sign of the appropriate variable, add in a factor to decrease the absolute value. For example,

if I chose to decrease the value by 10%, I would write

 if (nballx > boxboundx) {
 ballvx =-ballvx *.9;
 nballx = boxboundx;
 }

This means that the incremental change in the vertical direction would go down to 90% of what it was.

Testing and uploading the application
The first and third applications are complete in the HTML documents. The second application requires the

image file to be present in the same folder. You can access files anywhere on the Web, but you need to

make sure you include the correct address. For example, if you upload the HTML document to a folder

called mygames and upload pearl.jpg to a subfolder of mygames named images, the line indicating this

must be

img.src = "images/pearl.jpg";

You must also use accurate file extensions, such as JPG, that indicate the correct file type. Some

browsers are forgiving but many are not. You can try to submit bad data and see the response using

different browsers.

Summary
In this chapter, you learned how to create an application with animation that changes based on input from

the user. We covered a number of programming and HTML5 features, including

• setInterval to set up a timing event for the animation

• validation of form input

• programmer-defined functions to reposition a circle or an image horizontally and vertically to

simulate a bouncing ball

• tests to check for virtual collisions

• drawing rectangles, images and circles, including gradients for the coloring

The next chapter describes the cannonball and slingshot games in which the player attempts to hit

targets. These applications use the same programming and HTML5 features we used to produce the

animation, but take them a step further. You will also see an example of animation in the rock-paper-

scissors implementation in Chapter 8.

97

Chapter 4

Cannonball and Slingshot

In this chapter, you will learn techniques for

• maintaining a list of objects to draw on the screen

• rotating objects drawn on the screen

• mouse drag and drop operations

• calculations to simulate ballistic motion (effects of gravity) and collisions

Introduction
This chapter demonstrates another example of animation, in this case simulation of ballistics, also called

projectile motion. A ball or ball-like object maintains a constant horizontal (x) displacement, with the

vertical displacement changing as it would due to gravity. The resulting motion is an arc. The ball stops

when it (virtually) hits the ground or the target. The code you ll see produces the animation using the same

technique demonstrated for the ball bouncing in a box. The code repositions the ball and redraws the

scene at fixed intervals. We will look at three examples.

• A very simple ballistics simulation: a ball taking off and traveling in an arc before hitting a

target or the ground. The parameters of flight are horizontal and initial vertical speeds, which

are set by the player using form input fields. The ball simply stops when it hits the target or the

ground.

• An improved cannonball, with a rectangle representing the cannon tilted at an angle. The

parameters of flight are the speed out of the cannon and the angle of the cannon. Again, these

are set by the player using form input fields. The program calculates the initial horizontal and

vertical displacement values.

CHAPTER 4

98

• A slingshot. The parameters of flight are determined by the player dragging, then releasing a

ball shape tethered to a stick drawing representing a slingshot. The speed is determined by the

distance from the ball to a place on the slingshot. The angle is the angle from the horizontal of

this part of the slingshot.

Figure 4-1 shows the simple (no cannon) application.

Figure 4-1. The ball lands on the ground.

Figure 4-2 shows the opening screen for the second application. The target is an Image and the rectangle

representing the cannon can be rotated. Notice the controls refer to an angle and an initial velocity

CANNONBALL AND SLINGSHOT

99

Figure 4-2. Rotating cannon with image as target

Figure 4-3 shows the scene after a successful hit. Notice that the cannon is rotated and the original image

for the target has been replaced with a new image.

Figure 4-3. After firing the cannon and hitting target

The opening screen of the slingshot application is shown in Figure 4-4. This application is similar to the

cannon, but the parameters of flight are set by the player using a mouse to drag on the ball and the target

is now a chicken.

CHAPTER 4

100

Figure 4-4. Opening screen of the slingshot application

For the slingshot, I decided I wanted the ball to keep going until it hit the ground. However, if the chicken

was hit, I wanted it to be replaced by feathers, as shown in Figure 4-5. Notice that the strings of the

slingshot remain where they were when the mouse button was released and the ball took flight. I found I

needed more time looking at the strings in order to plan my next shot. If you want, you can change the

game so that the strings snap back to their original position or create a new-game button. In my example,

the game is replayed by reloading the HTML file.

Figure 4-5. The ball lands on ground after hitting the chicken. Only feathers remain.

The programming for these applications uses many of the same techniques demonstrated in the bouncing

ball applications. The repositioning of the ball in flight is only as different as it needs to be to simulate the

effects of the vertical displacement changing because of gravity. The slingshot application provides a

new way for the player to interact with the application, using drag and drop actions with the mouse.

The cannonball with cannon and the slingshot use drawing features for the cannon and slingshot and

external image files for the original targets and hit targets. If you want to change the targets, you ll need to

find image files and upload them with the application. The complete applications are available at

www.friendsofed.com/downloads.html.

Critical requirements
Our first requirement is to produce animation by setting up an event to occur at fixed intervals of time, and

then setting up a function to handle the event by repositioning the ball and checking for collisions. We

covered this in the previous chapter on the bouncing ball application. What s new here is the calculation

for simulating gravity. The calculation indicated by a simple physics model works out a new vertical

displacement based on changing the vertical displacement by a constant amount and then computing the

average of the old and new displacements to compute the new position.

• The horizontal displacement (held by variable dx) is the horizontal velocity (horvelocity) and

does not change. In code: dx = horvelocity;

http://www.friendsofed.com/downloads.html

CANNONBALL AND SLINGSHOT

101

• The vertical velocity at the start of the interval is verticalvel1

• The vertical velocity at end of the interval is verticalvel1 plus the acceleration amount

(gravity). In code: verticalvel2 = verticalvel1 + gravity;

• The vertical displacement for the interval (dy) is the average of verticalvel1 and

verticalvel2. In code: dy = (verticalvel1 + verticalvel2)*.5;

This is a standard way of simulating gravity or any other constant acceleration.

Note: I made up my value for gravity to produce a pleasing arc. You can use a standard value, but

you ll need to do research to assign realistic values for the starting velocity out of the mouth of the

cannon and for a slingshot. You also need to determine the mapping between pixels and distances.

The factor would be different for the cannonball and the slingshot.

The second version of the program must rotate the cannon based on either the initial values or the player's

input for the velocity out of the mouth of the cannon and the cannon angle and calculate the horizontal and

vertical values based on these values.

The third version of the program, the slingshot, must allow the player to press and hold the mouse button

and drag the ball along with the strings of the slingshot, then let the mouse button up to release the ball.

The motion parameters are calculated based on the angle and the distance of the ball from the top of the

slingshot.

Both the second and third versions of the program require a way to replace the target image with another

image.

HTML5, CSS, and JavaScript features
Now let s look at the specific features of HTML5 and JavaScript that provide what we need to implement

the ballistics simulation applications. Luckily, we can build on material covered in previous chapters,

specifically the general structure of an HTML document, using a canvas element, programmer-defined and

built-in functions, a form element, and variables. Let s start with programmer-defined objects and using

arrays.

Arrays and programmer-defined objects

HTML5 lets you draw on a canvas, but once something is drawn, it s as if paint or ink were laid down; the

thing drawn doesn t retain its individual identity. HTML5 is not like Flash in which objects are positioned on

a Stage and can be individually moved and rotated. However, we can still produce the same effects,

including rotation of individual objects.

Because these applications have a somewhat more complicated display, I decided to develop a more

systematic approach to drawing and redrawing different things on the canvas. To that end, I created an

array called everything that holds the list of objects to be drawn on the canvas. Think of an array as a

set, or more accurately, a sequence of items. In previous chapters, we discussed variables set up to hold

values such as numbers or character strings. An array is another type of value. My everything array will

serve as a to-do list of what needs to be drawn on the canvas.

CHAPTER 4

102

I am using the term objects in both the English and the programming sense. In programming terms, an

object consists of properties and methods, that is, data and coding or behavior. In the annotated links

example described in the first chapter, I demonstrated the write method of the document object. I used

the variable ctx, which is of type 2D context of a canvas object, methods such as fillRect, and

properties such as fillStyle. These were built-in; that is, they were already defined objects in HTML5's

version of JavaScript. For the ballistics applications, I defined my own objects, specifically Ball,

Picture, Myrectangle, and Sling. Each of these different objects includes the definition of a draw

method as well as properties indicating position and dimensions. I did this so I can draw each of a list of

things. The appropriate draw method accesses the properties to determine what and where to draw. I also

included a way to rotate individual objects.

Defining an object is straightforward: I simply define a function called the constructor function for Ball,

Picture, and Myrectangle, and use these functions with the operator new to assign the values to

variables. I can then write code using the familiar dot notation to access or assign the properties and to

invoke methods I ve set up in the constructor function. Here is the constructor function for a Ball object:

function Ball(sx,sy,rad,stylestring) {
 this.sx = sx;
 this.sy = sy;
 this.rad = rad;
 this.draw = drawball;
 this.moveit = moveball;
 this.fillstyle = stylestring;
}

The term this refers to the object that s created when this function is used with the keyword new. The fact

that this.draw and this.moveit are assigned the names of functions is not obvious from looking at the

code, but that s what happens. The definitions of those two functions follow. Notice that they each use the

term this to get at the properties necessary to draw and move the object.

function drawball() {
 ctx.fillStyle=this.fillstyle;
 ctx.beginPath();

 ctx.arc(this.sx,this.sy,this.rad,0,Math.PI*2,true);
 ctx.fill();
}

The drawball function draws a filled-in circle, a complete arc, on the canvas. The color of the circle is the

color set when this Ball object was created.

The function moveball doesn't move anything immediately. Looking at the issue abstractly, moveball

changes where the application positions the object. The function changes the values of the sx and sy

properties of the object and when it is displayed next, these new values are used to make the drawing.

function moveball(dx,dy) {
 this.sx +=dx;
 this.sy +=dy;
}

CANNONBALL AND SLINGSHOT

103

The next statement, declaring the variable cball, builds a new object of type Ball by using the operator

new and the function Ball. The parameters to the function are based on set values for the cannon

because I want the ball to appear at the mouth of the cannon to start out.

var cball = new
Ball(cannonx+cannonlength,cannony+cannonht*.5,ballrad,"rgb(250,0,0)");

The Picture, Myrectangle, and Slingshot functions are similar and will be explained below. They each

specify a draw method. For this application, I only use moveit for cball, but I defined moveit for the

other objects just in case I later want to build on this application. The variables cannon and ground will be

set to hold a new Myrectangle, and the variables target and htarget will be set to hold a new Picture.

Tip: Names made up by programmers are arbitrary, but it s a good idea to be consistent in both

spelling and case. HTML5 appears to disregard case, in contrast to a version of HTML called

XHTML. Many languages treat upper- and lowercase as different letters. I generally use lowercase,

but I capitalized the first letter of Ball, Picture, Slingshot, and Myrectangle because the convention is

that functions intended to be constructors of objects should start with capital letters.

Each of the variables will be added to the everything array using the array method push, which adds a

new element to the end of the array.

Rotations and translations for drawing

HTML5 lets us translate and rotate drawings. Take a look at the following code. I urge you to create this

example and then experiment with it to improve your understanding. The code draws a large red rectangle

on the canvas with the upper corner at (50,50) and a tiny blue, square on top of it.

<html>
<head>
 <title>Rectangle</title>
 <script type="text/javascript">
 var ctx;
function init(){
 ctx = document.getElementById('canvas').getContext('2d');
 ctx.fillStyle = "rgb(250,0,0)";
 ctx.fillRect(50,50,100,200);
ctx.fillStyle = "rgb(0,0,250)";
 ctx.fillRect(50,50,5,5);
}
</script>
</head>
<body onLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>
</body>
</html>

CHAPTER 4

104

The result is shown in Figure 4-6.

Figure 4-6. Rectangle (no rotation)

In this exercise, the goal is to rotate the large rectangle, pivoting on the upper-left corner where the small

blue square is. I want the rotation to be counterclockwise.

One slight complication, common to most programming languages, is that the angle input for rotations as

well as the trigonometry functions must be in radians, not degrees. Radians were explained in Chapter 2,

but here s a reminder. Instead of 360 degrees in a full circle, the measurement is based on two times the

mathematical constant pi radians in a circle. Fortunately, we can use the built-in feature of JavaScript,

Math.PI. One pi radians is equivalent to 180 degrees and pi divided by 2 is equivalent to a right angle, 90

degrees. To specify a rotation of 30 degrees, we use pi divided by 6 or, in coding, Math.PI/6. To change

the init function given previously to do a rotation, I put in a rotation of negative pi divided by 6

(equivalent to 30 degrees going counterclockwise), draw the red rectangle, and then rotate back, undo the

rotation, to draw the blue square:

function init(){
 ctx = document.getElementById('canvas').getContext('2d');
 ctx.fillStyle = "rgb(250,0,0)";
 ctx.rotate(-Math.PI/6);
 ctx.fillRect(50,50,100,200);
 ctx.rotate(Math.PI/6);
 ctx.fillStyle = "rgb(0,0,250)";
 ctx.fillRect(50,50,5,5);
}

Unfortunately, the drawing in Figure 4-7 is not what I wanted.

CANNONBALL AND SLINGSHOT

105

Figure 4-7. Drawing and rotating a rectangle

The problem is the rotation point is at the origin, (0,0) and not at the corner of the red rectangle. So, I need

to write code to perform a translation, then the rotation, then a translation back in order to draw at the

correct place. I can do this using features of HTML5. All drawing on the canvas is done in terms of a

coordinate system, and I can use the save and restore operations to save the current coordinate

system—the position and orientation of the axes—and then restore it to make follow-on drawings. Here s

the code.

function init(){
 ctx = document.getElementById('canvas').getContext('2d');
 ctx.fillStyle = "rgb(250,0,0)";
 ctx.save();
 ctx.translate(50,50);
 ctx.rotate(-Math.PI/6);
 ctx.translate(-50,-50);
 ctx.fillRect(50,50,100,200);
 ctx.restore();
 ctx.fillStyle = "rgb(0,0,250)";
 ctx.fillRect(50,50,5,5);
}

The rotate method expects an angle in radian units and clockwise is the positive direction. So my code is

rotating 30 degrees counterclockwise, producing what I had in mind, as shown in Figure 4-8.

Figure 4-8. Save, translate, rotate, translate, restore

CHAPTER 4

106

By the way, we can't expect our players to put in angles using radians. They, and we, are too accustomed

to degrees (90 degrees is a right angle, 180 degrees is your arc when you make a u-turn, etc.). The

program must do the work. The conversion from degrees to radians is to multiply by pi/180.

Note: Most programming languages use radians for angles in trig functions. Flash uses degrees in

certain situations and radians in others, so in some ways JavaScript is less confusing by only using

radians.

With this background, I add to the information in the everything array indications as to whether there is

to be a rotation and, if so, the required translation point. This is my idea. It has nothing to do with HTML5 or

JavaScript, and it could have been done differently. The underlying task is to create and maintain

information on objects in the simulated scene. The canvas feature of HTML5 provides a way to draw

pictures and display images, but it does not retain information on objects!

The items in the everything array for the second and third applications are themselves arrays. The first

(0th index) value points to the object. The second (1st index) is true or false. A value of true means that a

rotation angle value and x and y values for translation follow. In practice, this means that the inner arrays

have either two values, with the last one being false, or five values.

Note: At this point, you may be thinking: she set up a general system just to rotate the cannon. Why

not put in something just for the cannon? The answer is we could, but the general system does work

and something just for the cannon might have had just as much coding.

The first application uses horizontal and vertical displacement values picked up from the form. The player

must think of the two separate values. For the second application, the player inputs two values again, but

they are different. One is the speed out of the mouth of the cannon and the other is the angle of the

cannon. The program does the rest. The initial and unchanging horizontal displacement and the initial

vertical displacement are calculated from the player's input: the velocity out of the cannon and an angle.

The calculation is based on standard trigonometry. Luckily, JavaScript provides the trig functions as part

of the Math class of built-in methods.

Figure 4-9 shows the calculation of the displacement values from the out of cannon and angle values

specified by the player. The minus sign for the vertical is due to the way JavaScript screen coordinates

have y values increasing going down the screen.

CANNONBALL AND SLINGSHOT

107

Figure 4-9. Calculating horizontal * vertical displacements

At this point, you may want to skip ahead to read about the implementation of the cannonball applications.

You can then come back to read about what is required for the slingshot.

Drawing line segments

For the slingshot application, I have added a new object type by defining two functions, Sling and

drawsling. My idealized slingshot is represented by 4 positions, as shown in Figure 4-10. Please

understand that we could have done this in a number of different ways.

Figure 4-10. The idealized slingshot

Drawing the slingshot consists of drawing four line segments based on the four points. The bx,by point will

change as I ll describe in the next section. HTML5 lets us draw line segments as part of a path. We ve

already used paths for drawing circles. You can draw a path as a stroke or as a fill. For the circles, we

used the fill method, but for the slingshot, I just want lines. Drawing a line may involve two steps: move to

one end of the line and then draw it. HTML5 provides the moveTo and lineTo methods. The path is not

drawn until the stroke or fill method is invoked. The drawsling function is a good illustration of line

drawing.

function drawsling() {
 ctx.strokeStyle = this.strokeStyle;
 ctx.lineWidth = 4;
 ctx.beginPath();

CHAPTER 4

108

 ctx.moveTo(this.bx,this.by);
 ctx.lineTo(this.s1x,this.s1y);
 ctx.moveTo(this.bx,this.by);
 ctx.lineTo(this.s2x,this.s2y);
 ctx.moveTo(this.s1x,this.s1y);
 ctx.lineTo(this.s2x,this.s2y);
 ctx.lineTo(this.s3x,this.s3y);
 ctx.stroke();
}

It does the following:

• adds to path a line from bx,by to s1x,s1y

• adds to path a line from bx,by to s2x,s2y

• adds to path a line from s1x,s1y to s2x,s2y

• adds to path a line from s2x,s2y to s3x,s3y

As always, the way to learn this is to experiment with your own designs. If there s no invocation of moveTo,

the next lineTo draws from the destination of the last lineTo. Think of holding a pen in your hand and

either moving it on the paper or lifting it up and moving without drawing anything. You also can connect

arcs. Chapter 5 demonstrates drawing polygons.

Mouse events for pulling on the slingshot

The slingshot application replaces form input with mouse drag and drop operations. This is appealing

because it s closer to the physical act of pulling back on a slingshot.

When the player presses down on the mouse button, it is the first of a sequence of events to be managed

by the program. Here is pseudo-code for what needs to be done.

When the player presses the mouse button, check if the mouse is on top of the ball. If not, do

nothing. If so, set a variable named inmotion.

If the mouse is moving, check inmotion. If it is set, move the ball and the strings of the slingshot.

Keep doing this until the mouse button is released.

When the player releases the mouse button, reset inmotion to false. Calculate the angle and initial

velocity of the ball and from these calculate the horizontal velocity and the initial vertical velocity.

Start the ball moving.

You can use HTML5 and JavaScript to set up event handling for pressing the standard (left) mouse

button, moving the mouse, and releasing the mouse button. The code uses a method based on the canvas

element directly, not the so-called context. Here is the code, which is in the init function:

canvas1 = document.getElementById('canvas');
canvas1.addEventListener('mousedown',findball,false);
canvas1.addEventListener('mousemove',moveit,false);
canvas1.addEventListener('mouseup',finish,false);

Now because this event is in terms of the whole canvas, the findball function must determine if the

mouse is over the ball. The first task is to get the mouse x and y coordinates. Unfortunately, different

browsers implement mouse events in different ways. The following works for Firefox, Chrome, and Safari.

CANNONBALL AND SLINGSHOT

109

When other browsers, such as Internet Explorer, support HTML5, this code will need to be checked and,

possibly, modified.

if (ev.layerX || ev.layerX==0) {
 mx= ev.layerX;
 my = ev.layerY;
}
else if (ev.offsetX || ev.offsetX==0) {
 mx = ev.offsetX;
 my = ev.offsetY;
}

This works because if ev.layerX does not exist, its value will be interpreted as false. If ev.layerX does

exist but has value 0, its value will also be interpreted as false, but ev.layerX==0 will be true.

Think of this code as saying: is there a good ev.layerX value? If so, let's use it. Otherwise, let's try

ev.offsetX. If neither of these work, mx and my will not get set and I should add another else clause to

tell the player that the code doesn't work in his browser.

Now, the next step is to determine if the (mx,my) point is on the ball. I am repeating myself, but it is

important to understand that the ball is now the equivalent of ink or paint on canvas and we can t go any

further without determining whether the (mx,my) point is on top of the ball. How do we do this? We can

calculate how far (mx,my) is from the center of the ball and see if that s less than the radius of the ball.

There is a standard formula for distance in the plane. My code is a slight variation on this idea. It makes

the determination by calculating the square of the distance and comparing it to the square of the ball's

radius. I do this to avoid computing the square root.

If the mouse click was on the ball, that is, within a radius distance of the center of the ball, this function

sets the global variable inmotion to true. The findball function ends with a call to drawall().

Whenever the mouse moves, there s a call to the moveit function where we check whether inmotion is

true. If it isn't, nothing happens. If it is, the same code as before is used to get the mouse coordinates and

the ball's center, and the bx,by values for the slingshot are set to the mouse coordinates. This has the

effect of dragging the ball and stretching the slingshot strings.

When the mouse button is released, we call the finish function, which doesn't do anything if inmotion is

not true. When would this happen? If the player is moving the mouse around not on the ball and pressing

and releasing the button.

If inmotion is true, the function immediately sets it to false and does the calculations to determine the

flight of the ball, generating the information that in the earlier cannonball application was entered by the

player using a form. The information is the angle with the horizontal and the distance of the ball to the

straight part of the slingshot. This is the angle formed by (bx,by) to (s1x, s1y), and the horizontal and

the distance from (bx,by) to (s1x, s1y), more precisely, the square of the distance.

I use Math.atan2 to do these calculations: calculating an angle from change in x and change in y. This is

a variant of the arctangent function.

I use the distsq function to determine the square of the distance from (bx,by) to (s1x, s1y). I want to

make the velocity dependent on this value. Pulling the strings back farther would mean a faster flight. I did

some experiments and decided that using the square and dividing by 700 produced a nice arc.

CHAPTER 4

110

The last step is to put in a call first to drawall() and then to setInterval to set up the timing event.

Again, finish does an analogous job to fire in the first and second applications. In the first application,

our player entered the horizontal and initial vertical values. In the second application, the player entered

an angle (in degrees) and a velocity out of the mouth of the cannon, and the program did the rest. In

slingshot, we did away with a form and numbers and provided a way for the player to pull back, or virtually

pull back, on a slingshot. The program had more to do, both in terms of responding to mouse events and

calculations.

Changing the list of items displayed using array splice

The last task to explain is the replacement of the target image with another picture. Since I wanted two

different effects, I used different approaches. For the second application, I wanted the ball to disappear

along with the original target and display what I set up in the variable htarget. What I do is keep track of

where the original target was placed on the everything array and remove it and substitute htarget.

Similarly, I remove the ball from the everything array. For the slingshot operation, I don't remove the

target but change its img property to be feathers. Please note that in the code, chicken and feathers

are Image objects. Each has a src property that points to a file.

 var chicken = new Image();
 chicken.src = "chicken.jpg";
 var feathers = new Image();
 feathers.src = "feathers.gif";

For both of these operations, I use the array method splice. It has two forms: you can just remove any

number of elements or you can remove and then insert elements. The general form of splice is

arrayname.splice(index where splice is to occur, number of iterms to be removed, new item(s) to be

added)

If more than one item is to be added, there are more arguments. In my code, I add a single item, which is

itself an array. My representation of objects in the everything array uses an array for each object. The

second argument of the array indicates if there is any rotation.

The following two lines of code do what I need: remove the target, stick in htarget with no rotation, and

then remove the ball.

everything.splice(targetindex,1,[htarget,false]);
everything.splice(ballindex,1);

By the way, if I simply wanted to remove the last item in an array, I could use the method pop. In this

situation, however, the target may be somewhere in the middle of the everything array, so I need to write

code to keep track of its index value.

Distance between points

There are two places in the slingshot program in which I use the distance between points or, more

accurately, the square of the distance. I need to find out if the mouse cursor is on top of the ball and I want

to make the initial velocity—the equivalent of the velocity out of the cannon— depending on the stretch,

so to speak, of the slingshot, the distance (bx,by) to (s1x, s1y). The formula for the distance between two

points x1,y1 and x2,y2 is the square root of the sum of the squares of (x1-x2) and (y1-y2). I decided to

avoid the computation of taking a square root by just computing the sum of the squares. This provides the

same test for the mouse cursor being on top of the ball. For the other task, I decided it was okay to use the

CANNONBALL AND SLINGSHOT

111

square of the distance for the initial velocity. I experimented with some numbers and, as I mentioned

earlier, 700 seemed to work.

Building the application and making it your own
Let s now take a look at the code for the basic firing of a cannonball, without a cannon, based on

horizontal and initial vertical speeds; the firing of a cannonball from a cannon, based on angle and initial

speed out of the cannon; and the slingshot, based on angle and initial speed determined from the position

of the mouse. As in previous chapters, I ll present the functions and what they call or are called by for

each application. In this case, the tables are similar, though not identical, for all three applications. The

calling is more varied than previous examples in that there are situations in which functions are invoked

because they are named as methods of a programmer-defined object or as part of a declaration (var)

statement. This is a characteristic of object-oriented, event-driven programming. I ll also present the

complete code for each application in its own table, along with an explanation of what each line does.

Table 4-1 shows the functions for the basic cannonball application.

Table 4-1. Functions in the Simplest Cannonball Application

Function Invoked By / Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init,

fire,

change

Calls the draw method of all objects in the

everything array. These are the functions

drawball, drawrects.

fire Invoked by action of the onSubmit attribute

in form

drawall

change Invoked by action of the setInterval

function called in fire

drawall, calls the moveit method of

cball, which is moveball

Ball Invoked directly by code in a var statement

Myrectangle Invoked directly by code in a var statement

drawball Invoked by call of the draw method for the

one Ball object

drawrects Invoked by call of the draw method for the

target object

moveball Invoked by call of the moveit method for the

one Ball object

CHAPTER 4

112

Table 4-2 shows the complete code for the simplest application, with the ball moving in an arc and no

actual cannon.

Table 4-2. The First Cannonball Application

Code Explanation

<html> Opening html tag

<head> Opening head tag

 <title>Cannonball</title> Complete title element

 <style> Opening style tag

 form { Style for the form

 width:330px; Width

 margin:20px; External margin

 background-color:brown; Color

 padding:20px; Internal padding

} Close this style

 </style> Close style element

 <script> Opening script tag

 var cwidth = 600; Set value for width of canvas, used for clearing

 var cheight = 400; Set value for height of canvas, used for clearing

 var ctx; Variable to hold canvas context

 var everything = []; Array to hold all objects to be drawn. Initialized as an

empty array

 var tid; Variable to hold identifier for the timing event

 var horvelocity; Variable to hold the horizontal velocity (aka

displacement)

CANNONBALL AND SLINGSHOT

113

Code Explanation

 var verticalvel1; Variable to hold vertical displacement at start of interval

 var verticalvel2; Variable to hold vertical displacement at end of interval,

after change by gravity

 var gravity = 2; Amount of change in vertical displacement. Arbitrary.

Makes for a nice arc.

 var iballx = 20; Initial horizontal coordinate for the ball

 var ibally = 300; Initial vertical coordinate for the ball

function Ball(sx,sy,rad,stylestring) { Start of function to define a Ball. object. Use the

parameters to set the properties.

 this.sx = sx; Set the sx property of THIS object

 this.sy = sy; …sy

 this.rad = rad; …rad

 this.draw = drawball; …draw. Since drawball is the name of a function, this

makes draw a method that can be invoked

 this.moveit = moveball; …moveit set to the function moveball

 this.fillstyle = stylestring; …fillstyle

} Close the Ball function

function drawball() { Header for the drawball function

 ctx.fillStyle=this.fillstyle; Set up the fillStyle using the property of this object

 ctx.beginPath(); Start a path

 ctx.arc(this.sx,this.sy
,this.rad,0,Math.PI*2,true);

Set up to draw a circle

 ctx.fill(); Draw the path as a filled path

CHAPTER 4

114

Code Explanation

} Close the function

function moveball(dx,dy) { Header for the moveball function

 this.sx +=dx; Increment the sx property by dx

 this.sy +=dy; Increment the sy property by dy

} Close function

var cball = new Ball(iballx,ibally,
10,"rgb(250,0,0)");

Create a new Ball object at the indicated position,

radius, and color. Assign it to the variable cball. Note

that nothing is drawn at this time. The information is just

set up for later use.

function Myrectangle(sx,sy,swidth,
sheight,stylestring) {

Header for function to construct a Myrectangle object

 this.sx = sx; Sets the sx property of THIS object

 this.sy = sy; …sy

 this.swidth = swidth; …swidth

 this.sheight = sheight; …sheight

 this.fillstyle = stylestring; …stylestring

 this.draw = drawrects; … draw. This sets up a method that can be invoked.

 this.moveit = moveball; ….moveit. This sets up a method that can be invoked.

It is not used in this program.

} Close Myrectangle function

function drawrects() { Header for drawrects function

 ctx.fillStyle = this.fillstyle; Set the fillStyle

 ctx.fillRect(this.sx,this.sy,
this.swidth,this.sheight);

Draw the rectangle using the object properties

} Close function

CANNONBALL AND SLINGSHOT

115

Code Explanation

var target = new Myrectangle(300,100,
80,200,"rgb(0,5,90)");

Build a Myrectangle object and assign to target

var ground = new Myrectangle(0,300,
600,30,"rgb(10,250,0)");

Build a Myrectangle object and assign to ground

everything.push(target); Add target to everything

everything.push(ground); Add ground

everything.push(cball); Add cball (which will be drawn last, so on top of other

stuff

function init(){ Header for init function

 ctx = document.getElementById
('canvas').getContext('2d');

Set up ctx in order to draw on the canvas

 drawall(); Draw everything

} Close init

function fire() { Head for fire function

 cball.sx = iballx; Reposition cball in x

 cball.sy = ibally; Reposition cball in y

 horvelocity = Number(document.
f.hv.value);

Set horizontal velocity from form. Make a number

 verticalvel1 = Number(document.
f.vv.value);

Set initial vertical velocity from form

 drawall(); Draw everything

 tid = setInterval
(change,100);

Start timing event

 return false; Return false to prevent refresh of HTML page

} Close function

CHAPTER 4

116

Code Explanation

function drawall() { Function header for drawall

 ctx.clearRect
(0,0,cwidth,cheight);

Erase canvas

 var i; Declare var i for the for loop

for (i=0;i<everything.length;i++)
 {

For each item in everything array…

 everything[i].draw();} …invoke the object's draw method. Close for loop.

} Close function

function change() { Header for change function

 var dx = horvelocity; Set dx to be horvelocity

 verticalvel2 =
 verticalvel1 + gravity;

Compute new vertical velocity (add gravity)

 var dy = (verticalvel1 +
 verticalvel2)*.5;

Compute average velocity for the time interval

 verticalvel1 = verticalvel2; Now set old to be new

 cball.moveit(dx,dy); Move cball computed amount

 var bx = cball.sx; Set bx to simplify the if

 var by = cball.sy; ... and by

 if ((bx>=target.sx)&&(bx<=
(target.sx+target.swidth))&&

Is the ball within the target horizontally…

 (by>=target.sy)&&(by<=
(target.sy+target.sheight))) {

and vertically?

 clearInterval(tid); If so, stop motion

 } Close if true clause

 if (by>=ground.sy) { Is the ball beyond ground?

CANNONBALL AND SLINGSHOT

117

Code Explanation

 clearInterval(tid); If so, stop motion

 } Close if true clause

 drawall(); Draw everything

} Close change function

</script> Close script element

</head> Close head element

<body onLoad="init();"> Open body and set call to init

<canvas id="canvas" width=
"600" height="400">

Define canvas

Your browser doesn't support
 the HTML5 element canvas.

Warning to users of non-compliant browsers

</canvas> Close canvas

 Line break

<form name="f" id="f"
 onSubmit="return fire();">

Starting form tag, with name and id. This sets up call to

fire.

Set velocities and fire
 cannonball.

Label and line break

Horizontal displacement <input name=
"hv" id="hv" value="10" type=
"number" min="-100" max="100" />

Label and specification of input field

 Line break

Initial vertical displacement <input
 name="vv" id="vv" value="-25"
 type="number" min="-100" max="100"/>

Label and specification of input field

<input type="submit" value="FIRE"/> Submit input element

</form> Close form element

CHAPTER 4

118

Code Explanation

</body> Close body element

</html> Close html element

You certainly can make improvements to this application, but it probably makes more sense to first make

sure you understand it as is and then move on to the next.

Cannonball: with cannon, angle, and speed

Our next application adds a rectangle to represent the cannon, a picture for the original target instead of

the simple rectangle used in the first application, and a second picture for the hit target. The cannon

rotates as specified by input in the form. I made the everything array an array of arrays because I

needed a way to add the rotation and translation information. I also decided to make the result more

dramatic when the cannonball hits the target. This means the code in the change function for checking for

a collision is the same, but the code in the if-true clause removes the old target, puts in the hit target, and

removes the ball. Now, having said all this, most of the coding is the same. Table 4-3, which shows the

functions, has two additional lines for Picture and drawAnImage.

Table 4-3. Functions in the Second Cannonball Application

Function Invoked By / Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init,

fire,

change

Calls the draw method of all objects in

the everything array. These are the

functions drawball, drawrects.

fire Invoked by action of the onSubmit attribute in

form

drawall

change Invoked by action of the setInterval function

called in fire

drawall, calls the moveit method of

cball, which is moveball

Ball Invoked directly by code in a var statement

Myrectangle Invoked directly by code in a var statement

drawball Invoked by call of the draw method for the one

Ball object

drawrects Invoked by call of the draw method for the target

object

CANNONBALL AND SLINGSHOT

119

Function Invoked By / Called By Calls

moveball Invoked by call of the moveit method for the one

Ball object

Picture Invoked directly by code in var statements

drawAnImage Invoked by call of the draw method for a Picture

object

Table 4-4 shows the complete code for the second application, but only the changed lines have

comments.

Table 4-4. The Second Cannonball Application

Code Explanation

<html>

<head>

 <title>Cannonball</title>

 <style>

 form {

 width:330px;

 margin:20px;

 background-color:brown;

 padding:20px;

}

 </style>

 <script type="text/javascript">

 var cwidth = 600;

CHAPTER 4

120

Code Explanation

 var cheight = 400;

 var ctx;

 var everything = [];

 var tid;

 var horvelocity;

 var verticalvel1;

 var verticalvel2;

 var gravity = 2;

 var cannonx = 10; x location of cannon

 var cannony = 280; y location of cannon

 var cannonlength = 200; Cannon length (i.e., width)

 var cannonht = 20; Cannon height

 var ballrad = 10;

 var targetx = 500; x position of target

 var targety = 50; y position of target

 var targetw = 85; Target width

 var targeth = 280; Target height

 var htargetx = 450; x position of the hit target

 var htargety = 220; y position of the hit target

 var htargetw = 355; Hit target width

 var htargeth = 96; Hit target height

CANNONBALL AND SLINGSHOT

121

Code Explanation

function Ball(sx,sy,rad,stylestring) {

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawball;

 this.moveit = moveball;

 this.fillstyle = stylestring;

}

function drawball() {

 ctx.fillStyle=this.fillstyle;

 ctx.beginPath();

 //ctx.fillStyle= rgb(0,0,0);

 ctx.arc(this.sx,this.sy,this.rad,
0,Math.PI*2,true);

 ctx.fill();

}

function moveball(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

}

var cball = new Ball(cannonx+cannonlength,
cannony+cannonht*.5,ballrad,"rgb(250,0,0)");

CHAPTER 4

122

Code Explanation

function Myrectangle(sx,sy,swidth,sheight,
stylestring) {

 this.sx = sx;

 this.sy = sy;

 this.swidth = swidth;

 this.sheight = sheight;

 this.fillstyle = stylestring;

 this.draw = drawrects;

 this.moveit = moveball;

}

function drawrects() {

 ctx.fillStyle = this.fillstyle;

 ctx.fillRect(this.sx,this.sy,
this.swidth,this.sheight);

}

function Picture (sx,sy,swidth,
sheight,filen) {

Header for function to set up Picture object

 var imga = new Image(); Create an Image object

 imga.src=filen; Set the file name

 this.sx = sx; Set the sx property

 this.sy = sy; … sy

 this.img = imga; Set the img property to imga

 this.swidth = swidth; … swidth

CANNONBALL AND SLINGSHOT

123

Code Explanation

 this.sheight = sheight; … sheight

 this.draw = drawAnImage; … draw. This will be the draw method for

objects of this type.

 this.moveit = moveball; … This will be the moveit method. Not used.

} Close Picture function

function drawAnImage() { Header for drawAnImage function

 ctx.drawImage(this.img,this.sx,
this.sy,this.swidth,this.sheight);

Draw image using properties of this object

} Closes function

var target = new Picture(targetx,targety,
targetw,targeth,"hill.jpg");

Construct new Picture object and assign to

target variable

var htarget = new Picture(htargetx,
 htargety, htargetw, htargeth, "plateau.jpg");

Construct new Picture object and assign to

htarget variable

var ground = new Myrectangle(0,300,
600,30,"rgb(10,250,0)");

Construct new Myrectangle object and assign

to ground

var cannon = new Myrectangle(cannonx,
cannony,cannonlength,cannonht,"rgb(40,40,0)");

Construct new Myrectangle object and assign

to cannon

var targetindex = everything.length; Save what will be the index for target

everything.push([target,false]); Add target to everything

everything.push([ground,false]); Add ground to everything

var ballindex = everything.length; Save what will be the index for cball

everything.push([cball,false]); Add cball to everything

var cannonindex = everything.length; Save what will be the index for cannon

everything.push([cannon,true,0,
cannonx,cannony+cannonht*.5]);

Add cannon to everything; reserve space for

rotation

CHAPTER 4

124

Code Explanation

function init(){

 ctx = document.getElementById
('canvas').getContext('2d');

 drawall();

}

function fire() {

 var angle = Number(document.f
.ang.value);

Extract angle from form, convert to number

 var outofcannon = Number
(document.f.vo.value);

Extract velocity out of cannon from form,

convert to number

 var angleradians = angle*Math
.PI/180;

Convert to radians

 horvelocity = outofcannon*Math
.cos(angleradians);

Compute horizontal velocity

 verticalvel1 = - outofcannon*Math
.sin(angleradians);

Compute initial vertical velocity

 everything[cannonindex][2]=
 - angleradians;

Set information to rotate cannon

 cball.sx = cannonx +
 cannonlength*Math.cos(angleradians);

Set x for cball at mouth of what will be rotated

cannon

 cball.sy = cannony+cannonht*.5
 - cannonlength*Math.sin(angleradians);

Set y for cball at mouth of what will be rotated

cannon

 drawall();

 tid = setInterval(change,100);

 return false;

CANNONBALL AND SLINGSHOT

125

Code Explanation

}

function drawall() {

ctx.clearRect(0,0,cwidth,cheight);

 var i;

for (i=0;i<everything.length;i++) {

 var ob = everything[i]; Extract array for object

 if (ob[1]) { Need to translate and rotate?

 ctx.save(); Save original axes

 ctx.translate(ob[3],ob[4]); Do indicated translation

 ctx.rotate(ob[2]); Do indicated rotation

 ctx.translate(-ob[3],-ob[4]); Translate back

 ob[0].draw(); Draw object

 ctx.restore(); } Restore axes

 else { Else (no rotation)

 ob[0].draw();} Do drawing

 } Close for loop

} Close function

function change() {

 var dx = horvelocity;

verticalvel2 =verticalvel1 + gravity;

var dy=(verticalvel1 + verticalvel2)*.5;

CHAPTER 4

126

Code Explanation

verticalvel1 = verticalvel2;

 cball.moveit(dx,dy);

 var bx = cball.sx;

 var by = cball.sy;

 if ((bx>=target.sx)&&(bx<=(target
.sx+target.swidth))&&

 (by>=target.sy)&&(by<=(target
.sy+target.sheight))) {

 clearInterval(tid);

 everything.splice
(targetindex,1,[htarget,false]);

Remove target and insert htarget

 everything.splice
(ballindex,1);

Remove the ball

 drawall();

 }

 if (by>=ground.sy) {

 clearInterval(tid);

 }

 drawall();

}

</script>

</head>

<body onLoad="init();">

CANNONBALL AND SLINGSHOT

127

Code Explanation

<canvas id="canvas" width="600"
 height="400">

Your browser doesn't support the
 HTML5 element canvas.

</canvas>

<form name="f" id="f" onSubmit=
"return fire();">

Set velocity, angle and fire
 cannonball.

Velocity out of cannon <input name=
"vo" id="vo" value="10" type=
"number" min="-100" max="100" />

Label indicating that this is the velocity out of

mouth of cannon

Angle <input name="ang" id="ang"
 value="0" type="number" min=
"0" max="80"/>

Label indicating that this is the angle of the

cannon

<input type="submit" value="FIRE"/>

</form>

</body>

</html>

This application provides many possibilities for you to make it your own. You can change the cannon, the

ball, the ground, and the target. If you don't want to use images, you can use drawings for the target and

the hit target. You can draw other things on the canvas. You just need to make sure that the cannonball

(or whatever you set your projectile to be) is on top or wherever you want it to be. You could, for example,

make the ground cover up the ball. You can use an animated gif for any Image object, including the

htarget. You could also use images for the cannon and the ball. One possibility is to use an animated gif

file to represent a spinning cannonball. Remember that all image files referenced in the code must be in the

same folder as the uploaded HTML file. If they are in a different place on the Web, make sure the reference

is correct.

CHAPTER 4

128

The support for audio and video in HTML5 varies across the browsers. You can look ahead to the

presentation of video as a reward for completing the quiz in Chapter 6, and to the audio presented as part

of the rock-paper-scissors game in Chapter 8. If you want to tackle this subject, it would be great to have

a sound when the cannonball hits the target and a video clip showing the target exploding.

Moving away from the look of the game, you can invent a scoring system, perhaps keeping track of

attempts versus hits.

Slingshot: using a mouse to set parameters of flight

The slingshot application is built on the cannonball application. There are differences, but much is the

same. Reviewing and understanding how more complicated applications are built on simpler ones will help

you to create your own work.

Creating the slingshot application involves designing the slingshot, and implementing the mouse events to

move the ball and parts of the slingshot, and then fire the ball. The form is absent because the player's

moves are just the mouse actions. In addition, I used a somewhat different approach for what to do when

the target was hit. I check for the ball to intersect with an area within the target by 40 pixels. That is, I

require the ball to hit the middle of the chicken! When there s a hit, I change the target.src value to be

another Image element, going from a picture of a chicken to a picture of feathers. Moreover, I don't stop

the animation, so the ball only stops when it hits the ground. As I indicated earlier, I don't have the

slingshot slings return to their original position, as I wanted to see the position to plan my next attempt.

Table 4-5 shows the functions calling and being called in the slingshot application. This table is quite

similar to the one for the cannonball applications.

Table 4-5. Functions in the Slingshot Application

Function Invoked By / Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init,

fire,

change

Calls the draw method of all objects in

the everything array. These are the

functions drawball, drawrects.

findball Invoked by action of addEventListener in

init for the mousedown event

drawall

distsq Called by findball

moveit Invoked by action of addEventListener in

init for the mousemove event

drawall

finish Invoked by action of the addEventListener in

init for the mouseup event

drawall

CANNONBALL AND SLINGSHOT

129

Function Invoked By / Called By Calls

change Invoked by action of the setInterval function

called in finish

drawall, calls the moveit method of

cball, which is moveball.

Ball Invoked directly by code in a var statement

Myrectangle Invoked directly by code in a var statement

drawball Invoked by call of the draw method for the one

Ball object

drawrects Invoked by call of the draw method for the

target object

moveball Invoked by call of the moveit method for the

one Ball object

Picture Invoked directly by code in var statements

drawAnImage Invoked by call of the draw method for a

picture object

Sling Invoked directly by code in var statements

drawsling Invoked by call of the draw method for mysling

Table 4-6 shows the code for the slingshot application, with the new or changed lines commented. Notice

that the form is absent from the body element. Before looking at the code, try to identify what parts will be

the same as in the cannonball application and what would be different.

Table 4-6. The Slingshot Application

Code Explanation

<html>

<head>

 <title>Slingshot pulling back</title>

 <script type="text/javascript">

 var cwidth = 1200;

CHAPTER 4

130

Code Explanation

 var cheight = 600;

 var ctx;

 var canvas1;

 var everything = [];

 var tid;

 var startrockx = 100; Starting position x

 var startrocky = 240; Starting position y

 var ballx = startrockx; Set ballx

 var bally = startrocky; Set bally

 var ballrad = 10;

 var ballradsq = ballrad*ballrad; Save this value

 var inmotion = false;

 var horvelocity;

 var verticalvel1;

 var verticalvel2;

 var gravity = 2;

 var chicken = new Image(); Name of original target

 chicken.src = "chicken.jpg"; Set image file

 var feathers = new Image(); Name of hit target

 feathers.src = "feathers.gif"; Set image file

function Sling(bx,by,s1x,s1y,s2x,s2y,
s3x,s3y,stylestring) {

Function defining a slingshot based on the four

points plus a color

CANNONBALL AND SLINGSHOT

131

Code Explanation

 this.bx = bx; Set property bx

 this.by = by; … by

 this.s1x = s1x; … s1x

 this.s1y = s1y; … s1y

 this.s2x = s2x; … s2x

 this.s2y = s2y; … s2y

 this.s3x = s3x; … s3x

 this.s3y = s3y; … s3y

 this.strokeStyle = stylestring; … strokeStyle

 this.draw = drawsling; Set the draw method

 this.moveit = movesling; Set the move method (not used)

} Close function

function drawsling() { Function header for drawsling

 ctx.strokeStyle = this.strokeStyle; Set this style

 ctx.lineWidth = 4; Set line width

 ctx.beginPath(); Start the path

 ctx.moveTo(this.bx,this.by); Move to bx,by

 ctx.lineTo(this.s1x,this.s1y); Set up to draw to s1x,s1y

 ctx.moveTo(this.bx,this.by); Move to bx,by

 ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x,s2y

 ctx.moveTo(this.s1x,this.s1y); Move to s1x,s1y

CHAPTER 4

132

Code Explanation

 ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x,s2y

 ctx.lineTo(this.s3x,this.s3y); Draw to s3x,s3y

 ctx.stroke(); Now draw the path

} Close function

function movesling(dx,dy) { Header for movesling

 this.bx +=dx; Add dx to bx

 this.by +=dy; Add dy to by

 this.s1x +=dx; Add dx to slx

 this.s1y +=dy; Add dy to s1y

 this.s2x +=dx; Add dx to s2x

 this.s2y +=dy; Add dy to s2y

 this.s3x +=dx; Add dx to s3x

 this.s3y +=dy; Add dy to s3y

} Close function

var mysling= new
Sling(startrockx,startrocky,
startrockx+80,startrocky-10,startrockx+80,
 startrocky+10,startrockx+70,
startrocky+180,"rgb(120,20,10)");

Build new Sling and assign it to the mysling

variable

function Ball(sx,sy,rad,stylestring) {

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawball;

CANNONBALL AND SLINGSHOT

133

Code Explanation

 this.moveit = moveball;

 this.fillstyle = stylestring;

}

function drawball() {

 ctx.fillStyle=this.fillstyle;

 ctx.beginPath();

 ctx.arc(this.sx,this.sy,this.rad,
0,Math.PI*2,true);

 ctx.fill();

}

function moveball(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

}

var cball = new Ball(startrockx,startrocky,
ballrad,"rgb(250,0,0)");

function myrectangle(sx,sy,swidth,
sheight,stylestring) {

 this.sx = sx;

 this.sy = sy;

CHAPTER 4

134

Code Explanation

 this.swidth = swidth;

 this.sheight = sheight;

 this.fillstyle = stylestring;

 this.draw = drawrects;

 this.moveit = moveball;

}

function drawrects() {

 ctx.fillStyle = this.fillstyle;

 ctx.fillRect(this.sx,this.sy,
this.swidth,this.sheight);

}

function Picture (sx,sy,swidth,
sheight,imga) {

 this.sx = sx;

 this.sy = sy;

 this.img = imga;

 this.swidth = swidth;

 this.sheight = sheight;

 this.draw = drawAnImage;

 this.moveit = moveball;

}

function drawAnImage() {

CANNONBALL AND SLINGSHOT

135

Code Explanation

 ctx.drawImage(this.img,this.sx,this.
sy,this.swidth,this.sheight);

}

var target = new Picture(700,210,209,
179,chicken);

Build new Picture object and assign it to

target

var ground = new myrectangle(0,370,
1200,30,"rgb(10,250,0)");

everything.push(target);

everything.push(ground); Put the ground on top of the chickens feet

everything.push(mysling);

everything.push(cball);

function init(){

 ctx = document.getElementById
('canvas').getContext('2d');

 canvas1 = document.getElementById
('canvas');

 canvas1.addEventListener('mousedown',
findball,false);

Set up event handling for the mousedown event

 canvas1.addEventListener('mousemove',
moveit,false);

Set up event handling for the mousemove event

 canvas1.addEventListener('mouseup',
finish,false);

Set up event handling for the mouseup event

 drawall();

}

function findball(ev) { Function header for mousedown event

 var mx; Variable to hold mouse x

CHAPTER 4

136

Code Explanation

 var my; Variable to hold mouse y

 if (ev.layerX || ev.layerX
 == 0) {

ev.layerX is okay

 mx= ev.layerX; Use it for mx

 my = ev.layerY; } Use layerY for my

 else if (ev.offsetX || ev.offsetX
 == 0) {

Else try offset

 mx = ev.offsetX; Set mx

 my = ev.offsetY; } Set my

 if (distsq(mx,my, cball.sx,
cball.sy)<ballradsq) {

Is mouse over ball?

 inmotion = true; Set inmotion

 drawall(); Draw everything

 } Close if over ball

} Close function

function distsq(x1,y1,x2,y2) { Header for distsq

 return (x1-x2)*(x1-x2)+(y1-y2)*
(y1-y2);

Return distance squared

} Close function

function moveit(ev) { Function header for mousemove event

 var mx; For mouse x

 var my; For mouse y

 if (inmotion) { in motion?

 if (ev.layerX || ev.layerX == 0) { Does layerX work?

 mx= ev.layerX; Use it for mx

CANNONBALL AND SLINGSHOT

137

Code Explanation

 my = ev.layerY; ev.layerY for my

 } else if (ev.offsetX || ev.offsetX == 0) { Does offsetX work?

 mx = ev.offsetX; Use it for mx

 my = ev.offsetY; Use offsetY for my

 } Close if true

 cball.sx = mx; Position ball x

 cball.sy = my; …and y

 mysling.bx = mx; Position sling bx

 mysling.by = my; … and by

 drawall(); Draw everything

 } Close if in motion

} Close function

function finish(ev) { Function for mousedown

 if (inmotion) { In motion?

 inmotion = false; Reset inmotion

var outofcannon =
distsq(mysling.bx,mysling.by,
mysling.s1x,mysling.s1y)/700;

Base outofcannon proportional to square of

bx,by to s1x,s1y

 var angleradians = -Math.atan2
(mysling.s1y-mysling.by,
mysling.s1x-mysling.bx);

Compute angle

 horvelocity = outofcannon*Math.cos
(angleradians);

 verticalvel1 = - outofcannon*Math.sin
(angleradians);

CHAPTER 4

138

Code Explanation

 drawall();

 tid = setInterval(change,100);

 }

}

function drawall() {

 ctx.clearRect(0,0,cwidth,cheight);

 var i;

 for (i=0;i<everything.length;i++) {

 everything[i].draw();

 }

}

function change() {

 var dx = horvelocity;

 verticalvel2 = verticalvel1 + gravity;

 var dy = (verticalvel1 +
verticalvel2)*.5;

 verticalvel1 = verticalvel2;

 cball.moveit(dx,dy);

 var bx = cball.sx;

 var by = cball.sy;

 if ((bx>=target.sx+40)&&(bx<=
(target.sx+target.swidth-40))&&
 (by>=target.sy+40)&&(by<=
(target.sy+target.sheight-40))) {

Check for inside of target (40 pixels)

CANNONBALL AND SLINGSHOT

139

Code Explanation

 target.img = feathers; Change target img

 }

 if (by>=ground.sy) {

 clearInterval(tid);

 }

 drawall();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="1200"
 height="600">

Your browser doesn't support the
 HTML5 element canvas.

</canvas>

Hold mouse down and drag ball. Releasing
 the mouse button will shoot the slingshot.
 Slingshot remains at the last position.
 Reload page to try again.

Instructions for using mouse

</body>

</html>

CHAPTER 4

140

Testing and uploading the application
These applications can be created without external image files, but using images for the target and the hit

target is fun, so you remember to include those files when you upload your project. You can choose your

own targets. Perhaps you feel kindly towards chickens!

You ll need to test that the program performs correctly in three situations: when the ball plops down to the

left of the target, when the ball hits the target, and when the ball sails over the target. Note that I

massaged the values so that the chicken needs to be hit in the middle, so it is possible for the ball to touch

the head or tail and not cause the feathers to appear.

You can vary the position of the cannon and its target and hit target, and the slingshot and the chicken

and the feathers, by changing the variables such as startrockx, and you can modify the gravity

variable. If you put the slingshot closer to the target, you can have more ways to hit the chicken: pulling

more to the left for a direct shot versus pulling down for more of a lob. Enjoy!

As I mentioned, you could use an animated gif for the hit target in either the cannonball or slingshot

applications. This would produce a nice effect.

Summary
In this chapter, you learned how to create two ballistics applications. It is important to understand how

they are the same and how they are different. The programming techniques and HTML5 features include

• programmer-defined objects

• setInterval to set up a timing event for the animation, as done for the bouncing ball

• building an array using the push method and using the array as a list of what to display

• modifying arrays using the splice method

• the use of trig functions with calculations to rotate the cannon and to resolve the horizontal

and vertical velocities so as to simulate gravity

• using a form for player input

• handling mouse events (mousedown, mousemove, mouseup), with addEventListener to

obtain player input

• move drawing arcs, rectangles, lines and images on a canvas

The technique of programmer-defined objects and the use of an array of objects to display will come up

again in later chapters. The next chapter focuses on a familiar game known as either memory or

concentration. It will use a different timing event as well as the Date function, introduced in Chapter 1.

141

Chapter 5

The Memory (aka Concentration) Game

In this chapter, we will cover

• drawing polygons

• placing text on the canvas

• programming techniques for representing information

• programming a pause

• calculating elapsed time

• one method of shuffling a set of card objects

Introduction
This chapter demonstrates two versions of a card game known variously as memory or concentration.

Cards appear face down, and the player turns over two at a time (by clicking on them) in an attempt to find

matched pairs. The program removes matches from the board but [virtually] flips back cards that do not

match. When players make all the matches, the game shows the elapsed time.

The first version of the game I describe uses polygons for the face cards; the second uses family photos.

You ll notice other differences, which were made to illustrate several HTML5 features, but I also urge you

to think about what the versions have in common.

Figure 5-1 shows the opening screen of version one. When a player completes the game, the form that

keeps track of matches also shows the elapsed time.

CHAPTER 5

142

Figure 5-1. Opening screen of the memory game, version one

Figure 5-2 displays the result after a player has clicked on two cards (the purple squares). The depicted

polygons don t match, so after a pause the program replaces them with images of the card backs, making

the cards appear to have flipped over.

Figure 5-2. Two card fronts: no match

THE MEMORY (AKA CONCENTRATION) GAME

143

When two cards match, the application removes them and notes the match in the form (Figure 5-3).

Figure 5-3. The application has removed the two cards that matched.

As illustrated in Figure 5-4, the game displays the result—in this case, 6 matches in 36 seconds—when

the player finishes.

Figure 5-4. Version one of the game after the player has completed it.

CHAPTER 5

144

In version two of the game, the card fronts display photographs of people rather than polygons. And note

that although many memory games consider images to be the same only if they re completely identical,

this one is similar to a 2 of Hearts matching a 2 of Diamonds in a deck of playing cards. To illustrate a

programming point, we ll define a match as the same person, even in differing pictures. This requires a

method of encoding the information we use to determine matching states. Version two of the game also

demonstrates writing text on the canvas, as you can see in Figure 5-5, which depicts the opening screen.

Figure 5-5. The memory game, version two, opening screen

To see one possible result of clicking on two cards in our new game, look at Figure 5-6.

Figure 5-6. This screen shows non-matching photos.

THE MEMORY (AKA CONCENTRATION) GAME

145

Because the result shows two different people—after pausing to let the player view both pictures—the

application flips the cards over and lets the player try again. Figure 5-7 shows a successful selection—

two images of the same person (albeit in different pictures).

Figure 5-7. This screenshot shows a match (different scenes, but the same person).

The application removes matched images from the board. When all cards are removed, the time taken to

complete the game appears along with instructions on how to play again, as shown in Figure 5-8.

Figure 5-8. The final screen of the game (photo version). All images have been matched, so no cards

appear.

You can play the game using photos available for download from the book s page on the Friends of ED web

site (www.friendsofed.com/), but it s more fun to use your own. You can start with a small number—say

two or three pairs of images—then work up to images of the whole family, class, or club. And for version

one of the game, you can replace the polygons with your own designs.

http://www.friendsofed.com

CHAPTER 5

146

Critical requirements
The digital versions of the games require ways to represent the card backs (which are all the same) and

the fronts with their distinct polygons or photos. The applications must also be able to tell which cards

match and where cards are on the board. Additionally, players require feedback. In the real-world game,

participants flip over two cards and look for a match (which takes a few moments). If there s none, they flip

the cards face down again.

The computer program must show the faces of the selected cards and pause after revealing the second

card so players have time to see the two faces. This pause is an example of something required for a

computer implementation that occurs more-or-less naturally when people play the game. The application

should also display the current number of pairs found and, when the game is complete, the length of time

participants took to find them all. The polygon and photo versions of the program use different approaches

to accomplish these tasks.

Here s a summary of what the two game versions must do:

• Draw the card backs.

• Shuffle the cards before a player makes an initial selection so the same array of choices

doesn t appear every time.

• Detect when a player clicks on a card, and distinguish between a first and a second click.

• On detecting a click, show the appropriate card face by: drawing polygons in the case of game

version one or displaying the correct photograph for version two.

• Remove pairs that match.

• Operate appropriately even if those pesky players do the unexpected, such as clicking on the

same card twice or on an empty space formerly occupied by a card.

HTML5, CSS, JavaScript features
Let s go over the specific HTML5 and JavaScript features that provide what we need to implement the

games. We ll build on material covered previously: the general structure of HTML documents; how to draw

rectangles, images, and paths made up of line segments on a canvas element; programmer-defined and

built-in functions; programmer objects; the form element; and arrays.

New HTML5 and JavaScript features include the time out event, the use of Date objects for the calculation

of elapsed time, writing and drawing text on the canvas, and several useful programming techniques that

you ll find valuable in future applications.

As in the previous chapters, this section describes the HTML5 features and programming techniques in

general terms. You can see all the code in context in the “Building the Application” section. If you like, you

can skip to that section to see the code, then return here for explanations of how the features work.

Representing cards

When we hold a physical card in our hands, we can see what it is. There s a card face and back, and the

backs are all the same. We can clearly determine the cards positions on the game board and whether their

faces or backs show. To implement a computer game, we must represent—encode—all that information.

Encoding is an essential part of creating many computer applications, not just games.

THE MEMORY (AKA CONCENTRATION) GAME

147

In this chapter (and throughout the book), I describe one way to accomplish the task. Keep in mind,

though, that there s rarely just one way to implement a feature of an application. That said, different

strategies for building an application will likely have some techniques in common.

Our approach to handling cards will employ a programmer-defined object. Creating a programmer-defined

object in JavaScript involves writing the constructor function; in this case we ll call it Card. The advantage

of using programmer-defined objects is that JavaScript provides the dot notation needed to access

information and code for objects of a common type. We did this for the cannonball and slingshot games in

Chapter 4.

We ll give the Card object properties that will hold the card s location (sx and sy) and dimensions (swidth

and sheight), a pointer to a function to draw a back for the card, and for each case, the information that

specifies the appropriate front (info).

In the case of a polygon, the value of info will indicate the number of sides to be drawn. (In a later section

we ll discuss the code for drawing it.) For a photo card face, the value will be a reference, img, to an Image

object we ve created. The object will hold a specific image file along with a number (info) that ties

together pictures that match. To draw the image for the file, we ll use the built-in drawImage method.

Needless to say, the cards don t exist as physical entities, with two sides. The application draws the

card s face or back on the canvas where the player expects to see it. The function flipback draws the

card s back. To give the appearance of a removed card, flipback effectively erases a card by drawing a

rectangle that s the color of the board.

Both applications use a function named makedeck to prepare the deck, a process that includes creation of

the Card objects. For the polygon version of the game, we store the number of sides (from three to eight)

in the Card objects. The application draws no polygons during setup, though. The photos version sets up

an array called pairs, listing the image file names for the photos. You can follow this example to create

your own family or group memory game.

Tip: If you use the online code to play the game, as noted earlier, you can download the image files.

To make the game your own, you need to upload the pictures and then change the code to reference

your files. The code indicates what you need to change.

The makedeck function creates the Image objects and uses the pairs array to set the src property to the

image object. When the code creates Card objects, it puts in the index value that controls the pairs array

so that matched photos have the same value. As in the polygon version, the application draws no image

on the canvas during the creation of the deck. On the screen, the cards all appear the same; the

information is different, though. These cards are in fixed positions—shuffling comes later.

The code interprets position information, the sx and sy properties, differently for Card and Polygon. In the

first case, the information refers to the upper-left corner. In the second case, the value identifies the

center of the polygon. You can compute one from the other, though.

Using Date for timing

We need a way to determine how long the player took to make all the matches. JavaScript provides a way

to measure elapsed time. You can view the code in context in the “Building the Application section.” Here I

CHAPTER 5

148

provide an explanation of how to determine the number of seconds between two distinct events in a

running program.

A call to Date() generates an object with date and time information. The two lines

 starttime = new Date();
 starttime = Number(starttime.getTime());

store the number of milliseconds (thousands of a second) since the start of 1970 in the variable

starttime. (The reason JavaScript uses 1970 doesn t matter.)

When either of our two memory programs determines the game is over, it invokes Date() again as follows:

var now = new Date();
var nt = Number(now.getTime());
var seconds = Math.floor(.5+(nt-starttime)/1000);

This code

1. creates a new Date object and stores it in the variable now.

2. extracts the time using getTime, converts it to Number, and assigns it to the variable nt. This

means nt holds the number of milliseconds from the start of 1970 until the point at which the

code called Date. The program then subtracts the saved starting time, starttime, from the

current time, nt.

3. divides by 1,000 to get to seconds.

4. adds .5 and invokes Math.floor to round the result up or down to whole seconds.

If you need more precision than seconds provides, omit or modify the last step.

You can use this code whenever you need to calculate time elapsed between two events in a program.

Providing a pause

When we play memory using real cards, we don t consciously pause before flipping nonmatching cards

face down. But as noted earlier, our computer implementation must provide a pause so players have time

to see the two differing cards. You may recall from chapters 3 and 4 that the animation applications—

bouncing ball, cannonball, and slingshot—used the JavaScript function setInterval to set up events at

fixed time intervals. We can employ a related function, setTimeout, in our memory games. (To see the

complete code in context, go to the “Building the Application” section.) Let s see how to set up the event

and what happens when the pause time runs out.

The setTimeout function sets up a single event, which we can use to impose a pause. The choose

function, called when a player clicks on the canvas, first checks the firstpick variable to determine if

the person has made a first or second selection. In either case, the program draws the card front on the

canvas in the same spot as the card back. If the click was a second choice and the two cards match, the

code sets the variable matched to true or false, depending on whether the cards did or didn t match. If

the application determines that the game isn t over, the code invokes

 setTimeout(flipback,1000);

THE MEMORY (AKA CONCENTRATION) GAME

149

This leads to a call to the flipback function in 1,000 milliseconds (1 second). The function flipback then

uses the matched variable to determine whether to redraw card backs or erase the cards by drawing

rectangles with the table background color at the appropriate card locations.

You can use setTimeout to set up any individual timed events. You need to specify the time interval and

the function you want invoked when the interval expires. Remember that the time unit is milliseconds.

Drawing text

HTML5 includes a mechanism for placing text on the canvas. This provides a much more dynamic, flexible

way to present text than previous versions. You can create some good effects by combining text

placement with the drawing of rectangles, lines, arcs, and images we ve already demonstrated. In this

section, we ll outline the steps for placing text in a canvas element, and we ll include a short example that

you can try. If you want, skip ahead to the “Building the Application” section to view the complete

description of the code that produces what you see in Figures 5-5 through 5-8 for the photos version of the

memory game.

To put text on the canvas, we write code that sets the font, and then we use fillText to draw a string of

characters starting at a specified x-y location. The following example creates words using an eclectic set

of fonts (see the caution note later in the section).

<html>
<head>
 <title>Fonts</title>
<script type="text/javascript">
var ctx;
function init(){
 ctx = document.getElementById('canvas').getContext('2d');
 ctx.font="15px Lucida Handwriting";
 ctx.fillText("this is Lucida Handwriting", 10, 20);
 ctx.font="italic 30px HarlemNights";
 ctx.fillText("italic HarlemNights",40,80);
 ctx.font="bold 40px HarlemNights"
 ctx.fillText("HarlemNights",100,200);
 ctx.font="30px Accent";
 ctx.fillText("Accent", 200,300);
}
</script>
</head>
<body onLoad="init();">
<canvas id="canvas" width="900" height="400">
Your browser doesn't support the HTML5 element canvas.
</canvas>
</body>
</html>

This HTML document produces the screenshot shown in Figure 5-9.

CHAPTER 5

150

Figure 5-9. Text in different fonts drawn on the canvas, produced using the font and fillText functions

Caution: Make sure you pick fonts that will be present on the computers of all your players. In

Chapter 10 you ll learn how to use a CSS feature, called font-family, that provides a systematic way

to specify a primary font and backups.

Note that although what you see appears to be text, you re actually looking at ink on the canvas—that is,

bitmap images of text, not a text field that you can modify in place. This means that to change the text, we

need to write code that will completely erase the current image. We do so by setting the fillStyle to the

value we placed in the variable tablecolor earlier, and use fillRect at the appropriate location and with

the necessary dimensions.

After creating the text image, the next step is to set fillStyle to a color other than tablecolor. We ll

use the color we chose for the card backs. For the opening screen display of the photograph memory

game, here s the code to set the font used for all text:

ctx.font="bold 20pt sans-serif";

Using the sans-serif font makes sense, since it s a standard font present on any computer.

Putting together what we ve done to this point, here s the code to display the number of matches at a

particular point in the game:

ctx.fillStyle= tablecolor;
ctx.fillRect(10,340,900,100);
ctx.fillStyle=backcolor;
ctx.fillText
 ("Number of matches so far: "+String(count),10,360);

THE MEMORY (AKA CONCENTRATION) GAME

151

The first two statements erase the current tally and the next two put in the updated result. The expression

"Number of matches so far: "+String(count) deserves more explanation. It accomplishes two

tasks:

• It takes the variable count, which is a number, and turns it into a string of characters.

• It concatenates the constant string "Number of matches so far: " with the result of

String(count).

The concatenation demonstrates that the plus sign has two meanings in JavaScript: If the operands are

numbers, the sign indicates addition. If the operands are character strings, it indicates the two strings

should be concatenated—put together. A fancy phrase for a single symbol having several meanings is

operator overloading.

What will JavaScript do if one operand is a string and the other a number? The answer depends on which of

the two operands is what data type. You ll see examples of code in which the programmer doesn t put in

the commands to convert text to a number or vice versa, but the statement works because of the specific

order of operations.

I suggest not taking chances, though. Instead, try to remember the rules that govern interpretation of the

plus sign. If you notice that your program increases a number from, say, 1 to 11 to 111 when you re

expecting 1, 2, 3, your code is concatenating strings instead of incrementing numbers, and you need to

convert strings to numbers.

Drawing polygons

Creating polygons provides a good demonstration of HTML5 s drawing facilities. To understand the code-

development process used here for drawing polygons, think of the geometric figure as a wheel-like shape

with spokes emanating from its center to each of its vertices. The spokes will not appear in the drawings,

but are to help you, like they helped me, figure out how to draw a polygon. Figure 5-10 illustrates this with a

triangle.

Figure 5-10. Representing a triangle as a spoked geometric shape can help clarify code development for

drawing polygons. The arrow indicates the first point in the drawing path.

To determine the measure of the angle between spokes, we divide the quantity 2*Math.PI
(representing a complete circle) by the number of sides the polygon has. We use the angle value

and the moveTo method to draw the points of the path.

CHAPTER 5

152

The program draws the polygon as a filled-in path that starts at the point (indicated by the arrow in Figure

5-10) specified by one-half the value of angle. To get to the point, we use the moveTo method along with

the radius, Math.sin and Math.cos. We then use the lineTo method for n-1 more points, proceeding in

clockwise fashion. For the triangle, n-1 is two more points. For the octagon it would be seven more. After

running through a for loop with the lineTo points, we invoke the fill method to produce a filled-in

shape. To see the complete annotated code, go to the “Building the Application” section.”

Note: Drawing and redrawing polygons takes time, but that doesn t cause problems with this

application. If a program has a large number of intricate designs, preparing them ahead of time as

pictures may make sense. That approach, however, requires users to download the files, which can

take quite a while. You need to experiment to see which approach works better overall.

Shuffling cards

As noted previously, the memory game requires the program to shuffle the cards before each round, since

we don t want the cards to appear in the same position time after time. The best way to shuffle sets of

values is the subject of extensive research. In Chapter 10, which describes the card game called

blackjack or 21, you'll find a reference to an article that describes a technique claimed to be the most

efficient way to produce a shuffled deck.

For memory/concentration, let's implement the way I played the game as a child. I and the others would lay

out all the cards, then pick up and swap pairs. When we thought we had done it a sufficient number of

times, we would begin to play. In this section, we ll explore a few more concepts behind this approach. (To

examine the shuffle function, you can skip ahead to the “Building the Application” section.)

To write the JavaScript for the swap method of shuffling, we first need to define “sufficient number of

times.” Let s make that three times the number of cards in the deck, which we ve represented in the array

variable deck. But since there are no cards, just data representing cards, what are we swapping? The

answer is the information uniquely defining each card. For the polygon memory game, this is the property

info. For the picture game, it s info and img.

To get a random card, we use the expression Math.floor(Math.random()*dl), where dl, standing for

deck length, holds the number of cards in the deck. We do this twice to obtain the pair of cards to be

(virtually) swapped. This could produce the same number, meaning a card is swapped with itself, but that s

not really a concern. If it happens, this step in this process has no effect. The code mandates a large

number of swaps, so one swap not doing anything is okay.

Carrying out the swap is the next challenge, and it requires some temporary storage. We ll use one

variable, holder, for the polygon version of the game and two variables, holderimg and holderinfo, for

the picture case.

Implementing clicking on a card

The next step is to explain how we implement the player moves, namely the player clicking on a card. In

HTML5, we can handle the click event employing much the same approach that we took with the

mousedown event (described in Chapter 4). We ll use the addEventListener method:

canvas1 = document.getElementById('canvas');
canvas1.addEventListener('click',choose,false);

THE MEMORY (AKA CONCENTRATION) GAME

153

This appears in the init function. The choose function must contain code to determine which card we

choose to shuffle. The program must also return the coordinates of the mouse when the player clicks on

the canvas. The methodology for obtaining mouse coordinates is also the same as that covered in

Chapter 4.

Unfortunately, different browsers implement handling of mouse events in different ways. I discussed this

in Chapter 4, and I repeat the explanation here. The following works in Chrome, Firefox, and Safari.

if (ev.layerX || ev.layerX==0) {
 mx= ev.layerX;
 my = ev.layerY;
}
else if (ev.offsetX || ev.offsetX==0) {
 mx = ev.offsetX;
 my = ev.offsetY;}

This works because if ev.layerX doesn t exist, it will be assigned a value of false. If it does exist but

has value 0, the value will also be interpreted as false, but ev.layerX==0 will be true. So if there s a

good ev.layerX value, the program uses it. Otherwise, the code looks at ev.offsetX. If neither works,

mx and my won t get set.

Because the cards are rectangles, going through the deck and doing compare operations is relatively

easy using the mouse cursor coordinates (mx, my), the location of the upper-left corner, and the width and

height of each card. Here s how we construct the if condition:

if ((mx>card.sx)&&(mx<card.sx+card.swidth)&&(my>card.sy)&&(my<card.sy+card.sheight))
{

Note: The next chapter, which describes the way you create HTML markup at runtime, shows how to

set up event handling for specific elements positioned on the screen as opposed to using the whole

canvas element.

We clear the variable firstpick and initialize it as true, which indicates that this is the first of two picks

by a player. The program changes the value to false after the first pick and back to true after the

second. Variables like this, which flip back and forth between two values, are called flags or toggles.

Preventing certain types of cheating
Note that the specifics of this section apply just to these memory games, but the general lesson holds for

building any interactive application. There are at least two ways a player can thwart the game. Clicking

twice on the same card is one; clicking on a region where a card has been removed (that is, the board has

been painted over) is another.

To deal with the first case, after the if-true clause that determines whether the mouse is over a certain

card, insert the if statement

if ((firstpick) || (i!=firstcard)) break;

CHAPTER 5

154

This line of code triggers an exit from the for statement if the index value (i) is fine, which happens when

either: 1) this is a first pick or 2) this isn t a first pick and i doesn t correspond to the first card chosen.

Preventing the second problem—clicking on a “ghost” card—requires more work. When the application

removes cards from the board, in addition to painting over that area of the canvas, we can assign a value

(-1, say) to the sx property. This will mark the card as having been removed. This is part of the flipback

function. The choose function contains the code that examines the sx property and does the checking

(only if sx is >= 0). The function incorporates both cheating tests in the following for loop:

for (i=0;i<deck.length;i++){
 var card = deck[i];
 if (card.sx >=0)
 if
((mx>card.sx)&&(mx<card.sx+card.swidth)&&(my>card.sy)&&(my<card.sy+card.sheight)) {
 if ((firstpick)|| (i!=firstcard)) break;
 }
 }

In the three if statements, the second is the whole clause of the first. The third has the single statement

break, which causes control to leave the for loop. Generally, I recommend using brackets (for example:

{ and }) for if true and else clauses, but here I used the stripped-down format for single statements

to show you that format and also because it seemed clear enough.

Now let's move on to building our two memory games.

Building the application and making it your own
This section presents the complete code for both versions of the game. Because the applications contain

multiple functions, the section provides a table for each game that tells what each function calls and is

called by.

Table 5-1 is the function listing for the polygon version of the memory game. Notice that some of the

invocation of functions is done based on events.

Table 5-1. Functions in the Polygon Version of the Memory Game

Function Invoked By/Called By Calls

init Invoked in response to the

onLoad in the body tag
makedeck

shuffle

choose Invoked in response to the
addEventListener in init

Polycard

drawpoly (invoked as the draw

method of a polygon)

flipback Invoked in response to the
setTimeout call in choose

THE MEMORY (AKA CONCENTRATION) GAME

155

Function Invoked By/Called By Calls

drawback Invoked as the draw method for a
card in makedeck and flipback

Polycard Called in choose

shuffle Called in init

makedeck Called in init

Card Called by makedeck

drawpoly Called as the draw method of
Polygon in choose

Table 5-2 shows the commented code for the complete polygon version of the application. When reviewing

it, think about the similarities to applications described in other chapters. And remember that this

illustrates just one way to name the application s components and program it. Other ways may work

equally well.

Whatever programming choices you make, put comments in your code (using two slashes per line: //) and

include blank lines. You don't need to comment every line, but doing a decent job of commenting will serve

you well when you have to go back to your code to make improvements.

Table 5-2. Complete Code for the Polygon Version of the Memory Game

<html> Starting html tag

<head> Starting head tag

 <title>Memory game using polygons</title> Complete title

element

 <style> Starting style tag

 form { Specify styling for

the form

 width:330px; Set the width

 margin:20px; Set the external

margin

 background-color:pink; Set the color

CHAPTER 5

156

 Padding:20px; Set the internal

padding

 } Close the style

 input { Set the styling for

input fields

 text-align:right; Set right alignment—

suitable for numbers

 } Close the style

 </style> Close the style

element

 <script type="text/javascript"> Start the script

element. The type

specification isn t

necessary but is

included here

because you ll see it.

 var ctx; Variable that holds the

canvas context

 var firstpick = true; Declare and initialize

firstpick

 var firstcard; Declare a variable to

hold the info defining

the first pick

 var secondcard; Declare a variable to

hold the info defining

the second pick

 var frontbgcolor = "rgb(251,215,73)"; Set the background

color value for the

card fronts

 var polycolor = "rgb(254,11,0)"; Set the color value for

the polygons

 var backcolor = "rgb(128,0,128)"; Set the color value for

card backs

THE MEMORY (AKA CONCENTRATION) GAME

157

 var tablecolor = "rgb(255,255,255)"; Set the color value for

the board (table)

 var cardrad = 30; Set the radius for the

polygons

 var deck = []; Declare the deck,

initially an empty array

 var firstsx = 30; Set the position in x of

the first card

 var firstsy = 50; Set the position in y of

the first card

 var margin = 30; Set the spacing

between cards

 var cardwidth = 4*cardrad; Set the card width to

four times the radius

of the polygons

 var cardheight = 4*cardrad; Set the card height to

four times the radius

of the polygons

 var matched; This variable is set in

choose and used in

flipback

 var starttime; This variable is set in

init and used to

calculate elapsed time

function Card(sx,sy,swidth,sheight,info) { Header for the Card

function, setting up

card objects

 this.sx = sx; Set the horizontal

coordinate

 this.sy = sy; … vertical coordinate

 this.swidth = swidth; … width

CHAPTER 5

158

 this.sheight = sheight; …. height

 this.info = info; … info (the number

of sides)

 this.draw = drawback; Specify how to draw

} Close the function

function makedeck() { Function header for

setting up the deck

 var i; Used in the for loop

 var acard; Variable to hold the

first of a pair of cards

 var bcard; Variable to hold the

second of a pair of

cards

 var cx = firstsx; Variable to hold the x

coordinate. Start out

at the first x position.

 var cy = firstsy; Will hold the y

coordinate. Start out

at the first y position.

 for(i=3;i<9;i++) { Loop to generate

cards for triangles

through octagons

 acard = new Card(cx,cy,cardwidth,cardheight,i); Create a card and

position

 deck.push(acard); Add to deck

 bcard = new
Card(cx,cy+cardheight+margin,cardwidth,cardheight,i);

Create a card with the

same info, but below

the previous card on

screen

 deck.push(bcard); Add to deck

THE MEMORY (AKA CONCENTRATION) GAME

159

 cx = cx+cardwidth+ margin; Increment to allow for

card width plus margin

 acard.draw(); Draw the card on the

canvas

 bcard.draw(); Draw the card on the

canvas

 } Close the for loop

 Shuffle(); Shuffle the cards

} Close the function

function shuffle() { Header for shuffle

function

var i; Variable to hold a

reference to a card

var k; Variable to hold a

reference to a card

var holder; Variable needed to do

the swap

var dl = deck.length Variable to hold the

number of cards in the

deck

var nt; Index for the number

of swaps

 for (nt=0;nt<3*dl;nt++) { For loop

 i = Math.floor(Math.random()*dl); Get a random card

 k = Mathfloor(Math.random()*dl); Get a random card

 holder = deck[i].info; Store the info for i

 deck[i].info = deck[k].info; Put in i info for k

 deck[k].info = holder; Put into k what was in

k

CHAPTER 5

160

 } Close for loop

} Close function

function Polycard(sx,sy,rad,n) { Function header for

Polycard

 this.sx = sx; Set up the x

coordinate

 this.sy = sy; … the y

 this.rad = rad; …the polygon radius

 this.draw = drawpoly; …how to draw

 this.n = n; …number of sides

 this.angle = (2*Math.PI)/n Compute and store

the angle

} Close the function

function drawpoly() { Function header

 ctx.fillStyle= frontbgcolor; Set the front

background

 ctx.fillRect(this.sx-2*this.rad,this.sy-
2*this.rad,4*this.rad,4*this.rad);

The corner of the

rectangle is up and to

the left of the center

of the polygon

 ctx.beginPath(); Start the path

 ctx.fillStyle=polycolor; Change to color for

polygon

 var i; Index variable

 var rad = this.rad; Extract the radius

 ctx.moveTo(this.sx+rad*Math.cos(-
.5*this.angle),this.sy+rad*Math.sin(-.5*this.angle));

Move up to the first

point

THE MEMORY (AKA CONCENTRATION) GAME

161

 for (i=1;i<this.n;i++) { For loop for the

successive points

 ctx.lineTo(this.sx+rad*Math.cos((i-
.5)*this.angle),this.sy+rad*Math.sin((i-.5)*this.angle));

Set up drawing of line

segments

 } Close for loop

 ctx.fill(); Fill in the path

} Close function

function drawback() { Function header

 ctx.fillStyle = backcolor; Set card back color

 ctx.fillRect(this.sx,this.sy,this.swidth,this.sheight);

Draw rectangle

} Close function

function choose(ev) { Function header for

choose (click on a

card)

 var mx; Variable to hold

mouse x

 var my; Variable to hold

mouse y

 var pick1; Variable to hold

reference to created

Polygon object

 var pick2; Variable to hold

reference to created

Polygon object

 if (ev.layerX || ev.layerX == 0) { Can we use layerX

and layerY?

 mx= ev.layerX; Set mx

 my = ev.layerY; Set my

CHAPTER 5

162

 } Close if true

 else if (ev.offsetX || ev.offsetX == 0) { Can we use offsetX

and offset?

 mx = ev.offsetX; Set mx

 my = ev.offsetY; Set my

 } Close else

 var i; Declare variable for

indexing in the for

loop

 for (i=0;i<deck.length;i++){ Loop through the

whole deck

 var card = deck[i]; Extract a card

reference to simplify

the code

 if (card.sx >=0) Check that card isn't

marked as having

been removed

 if
((mx>card.sx)&&(mx<card.sx+card.swidth)&&(my>card.sy)&&(my<card
.sy+card.sheight)) {

And then check if the

mouse is over this

card

 if ((firstpick)|| (i!=firstcard)) break; If so, check that the

player isn't clicking on

the first card again,

and if this is true,

leave the for loop

 } Close if true clause

 Close for loop

 if (i<deck.length) { Was the for loop

exited early?

 if (firstpick) { If this is a first pick…

THE MEMORY (AKA CONCENTRATION) GAME

163

 firstcard = i; …Set firstcard to

reference the card in

the deck

 firstpick = false; Set firstpick to

false

 pick1 = new
Polycard(card.sx+cardwidth*.5,card.sy+cardheight*.5,cardrad,car
d.info);

Create polygon with

its coordinates at the

center

 pick1.draw(); Draw polygon

 } Close if first pick

 else { Else…

 secondcard = i; …Set secondcard to

reference the card in

the deck

 pick2 = new
Polycard(card.sx+cardwidth*.5,card.sy+cardheight*.5,cardrad,car
d.info);

Create polygon with

its coordinates at the

center

 pick2.draw(); Draw polygon

 if (deck[i].info==deck[firstcard].info) { Check for a match

 matched = true; Set matched to true

 var nm =
1+Number(document.f.count.value);

Increment the number

of matches

 document.f.count.value = String(nm); Display the new count

 if (nm>= .5*deck.length) { Check if the game is

over

 var now = new Date(); Get new Date info

 var nt = Number(now.getTime()); Extract and convert

the time

 var seconds = Math.floor(.5+(nt-
starttime)/1000);

Compute the seconds

elapsed

CHAPTER 5

164

document.f.elapsed.value = String(seconds); Output the time

 } Close if this is the end

of the game

 } Close if there s a

match

 else { Else…

 matched = false; Set matched to false

 } Close the else
clause

 firstpick = true; Reset firstpick

 setTimeout(flipback,1000); Set up the pause

 } Close not first pick

 } Close good pick (click

on a card—for loop

exited early)

} Close the function

function flipback() { Function header—

flipback handling

after the pause

 if (!matched) { If no match…

 deck[firstcard].draw(); …Draw the card back

 deck[secondcard].draw(); …Draw the card back

 } …Close the clause

 else { Else need to remove

cards

 ctx.fillStyle = tablecolor; Set to the table/board

color

THE MEMORY (AKA CONCENTRATION) GAME

165

ctx.fillRect(deck[secondcard].sx,deck[secondcard].sy,deck[secon
dcard].swidth,deck[secondcard].sheight);

Draw over the card

ctx.fillRect(deck[firstcard].sx,deck[firstcard].sy,deck[firstca
rd].swidth,deck[firstcard].sheight);

Draw over the card

 deck[secondcard].sx = -1; Set this so the card

won't be checked

 deck[firstcard].sx = -1; Set this so tso card

won't be checked

 } Close if there s no

match

} Close the function

function init(){ Function header init

 ctx = document.getElementById('canvas').getContext('2d'); Set ctx to do all the

drawing

 canvas1 = document.getElementById('canvas'); Set canvas1 for event

handling

 canvas1.addEventListener('click',choose,false); Set up event handling

 makedeck(); Create the deck

 document.f.count.value = "0"; Initialize visible count

 document.f.elapsed.value = ""; Clear any old value

 starttime = new Date(); First step to setting

starting time

 starttime = Number(starttime.getTime()); Reuse the variable to

set the milliseconds

from benchmark

 shuffle(); Shuffle the card info

values

CHAPTER 5

166

} Close the function

</script> Close the script
element

</head> Close head element

<body onLoad="init();"> Body tag, set up init

<canvas id="canvas" width="900" height="400"> Canvas start tag

Your browser doesn't support the HTML5 element canvas. Warning message

</canvas> Close canvas
element

 Line break before

instructions

Click on two cards to see if you have a match. Instructions

<form name="f"> Form start tag

Number of matches: <input type="text" name="count" value="0"
size="1"/>

Label and input

element used for

output

<p> Paragraph break

Time taken to complete puzzle: <input type="text"
name="elapsed" value=" " size="4"/> seconds.

Label and input

element used for

output

</form> Close form

</body> Close body

</html> Close html

You can change this game by changing the font, font size, color, and background color for the form. More

ways to make the application your own are suggested later in this section.

The version of the memory game that uses pictures has much the same structure as the polygon version.

It doesn t require a separate function to draw the picture. Table 5-3 is the function listing for this version

of the game.

THE MEMORY (AKA CONCENTRATION) GAME

167

Table 5-3. Functions in the Photo Version of the Memory Game

Function Invoked By/Called By Calls

init Invoked in response to the

onLoad in the body tag

makedeck

shuffle

choose Invoked in response to the

addEventListener in init

flipback Invoked in response to the

setTimeout call in choose

drawback Invoked as the draw method for a

card in makedeck and flipback

shuffle Called in init

makedeck Called in init

Card Called by makedeck

The code for the photos version of the memory game is similar to that for the polygon version. Most of the

logic is the same. But because this example demonstrates the writing of text on the canvas, the HTML

document doesn t have a form element. The code follows in Table 5-4, with comments on the lines that

are different. I also indicate where you would put in the names of the image files for your photographs.

Before looking at this second version of the memory game, think about which parts are likely to be the

same and which may be different.

Table 5-4. Complete Code for the Photo Version of the Memory Game

<html>

<head>

 <title>Memory game using pictures</title> Complete title

element

 <script type="text/javascript">

 var ctx;

 var firstpick = true;

CHAPTER 5

168

 var firstcard = -1;

 var secondcard;

 var backcolor = "rgb(128,0,128)";

 var tablecolor = "rgb(255,255,255)";

 var deck = [];

 var firstsx = 30;

 var firstsy = 50;

 var margin = 30;

 var cardwidth = 100; You may need to

change this if you

want your pictures to

be a different width...

 var cardheight = 100; ...and/or height

 var matched;

 var starttime;

 var count = 0; Needed to keep

count internally

 var pairs = [The array of pairs of

image files for the

five people

 ["allison1.jpg","allison2.jpg"], This is where you

put in the names of

your picture files

 ["grant1.jpg","grant2.jpg"], ...

 ["liam1.jpg","liam2.jpg"], ...

["aviva1.jpg","aviva2.jpg"], ...

THE MEMORY (AKA CONCENTRATION) GAME

169

["daniel1.jpg","daniel2.jpg"] You can use any

number of paired

pictures, but notice

how the array

holding the last pair

does not have a

comma after the

bracket.

]

function Card(sx,sy,swidth,sheight, img, info) {

 this.sx = sx;

 this.sy = sy;

 this.swidth = swidth;

 this.sheight = sheight;

 this.info = info; Indicates matches

 this.img = img; Img reference

 this.draw = drawback;

}

function makedeck() {

 var i;

 var acard;

 var bcard;

 var pica;

 var picb;

 var cx = firstsx;

 var cy = firstsy;

 for(i=0;i<pairs.length;i++) {

CHAPTER 5

170

 pica = new Image(); Create the Image

object

 pica.src = pairs[i][0]; Set to the first file

 acard = new Card(cx,cy,cardwidth,cardheight,pica,i); Create Card

 deck.push(acard);

 picb = new Image(); Create the Image

object

 picb.src = pairs[i][1]; Set to second file

bcard = new
Card(cx,cy+cardheight+margin,cardwidth,cardheight,picb,i);

Create Card

 deck.push(bcard);

 cx = cx+cardwidth+ margin;

 acard.draw();

 bcard.draw();

 }

}

function shuffle() {

var i;

var k;

var holderinfo; Temporary place for

the swap

var holderimg; Temporary place for

the swap

var dl = deck.length

var nt;

 for (nt=0;nt<3*dl;nt++) { //do the swap 3 times
deck.length times

THE MEMORY (AKA CONCENTRATION) GAME

171

 i = Math.floor(Math.random()*dl);

 k = Math.floor(Math.random()*dl);

 holderinfo = deck[i].info; Save the info

 holderimg = deck[i].img; Save the img

 deck[i].info = deck[k].info; Put k's info into i

 deck[i].img = deck[k].img; Put k's img into i

 deck[k].info = holderinfo; Set to the original

info

 deck[k].img = holderimg; Set to the original

img

 }

}

function drawback() {

ctx.fillStyle = backcolor;

ctx.fillRect(this.sx,this.sy,this.swidth,this.sheight);

}

function choose(ev) {

 var out;

 var mx;

 var my;

 var pick1;

 var pick2;

 if (ev.layerX || ev.layerX == 0) { Reminder: This is

the code for

handling

differences among

the three browsers

CHAPTER 5

172

 mx= ev.layerX;

 my = ev.layerY;

 } else if (ev.offsetX || ev.offsetX == 0) {

 mx = ev.offsetX;

 my = ev.offsetY;

 }

 var i;

 for (i=0;i<deck.length;i++){

 var card = deck[i];

 if (card.sx >=0) //this is the way to avoid
checking for clicking on this space

 if
((mx>card.sx)&&(mx<card.sx+card.swidth)&&(my>card.sy)&&(my<card.
sy+card.sheight)) {

 if ((firstpick)|| (i!=firstcard)) {

 break;}

 }

if (i<deck.length) {

if (firstpick) {

 firstcard = i;

 firstpick = false;

ctx.drawImage(card.img,card.sx,card.sy,card.swidth,card.sheight)
;

Draw the photo

 }

else {

THE MEMORY (AKA CONCENTRATION) GAME

173

secondcard = i;

ctx.drawImage(card.img,card.sx,card.sy,card.swidth,card.sheight)
;

Draw the photo

if (card.info==deck[firstcard].info) { Check if there s a

match

 matched = true;

 count++; Increment count

 ctx.fillStyle= tablecolor;

 ctx.fillRect(10,340,900,100); Erase area where

text will be

 ctx.fillStyle=backcolor; Reset to the color

for text

ctx.fillText("Number of matches so far: "+String(count),10,360); Write out count

if (count>= .5*deck.length) {

var now = new Date();

var nt = Number(now.getTime());

var seconds = Math.floor(.5+(nt-starttime)/1000);

 ctx.fillStyle= tablecolor;

 ctx.fillRect(0,0,900,400); Erase the whole

canvas

 ctx.fillStyle=backcolor; Set for drawing

out="You finished in "+String(seconds)+
" secs.";

Prepare the text

 ctx.fillText(out,10,100); Write the text

ctx.fillText("Reload the page to try again.",10,300); Write the text

}

CHAPTER 5

174

}

else {

 matched = false;

 }

 firstpick = true;

 setTimeout(flipback,1000);

 }

 }

}

function flipback() {

 var card;

 if (!matched) {

 deck[firstcard].draw();

 deck[secondcard].draw();

 }

 else {

 ctx.fillStyle = tablecolor;

ctx.fillRect(deck[secondcard].sx,deck[secondcard].sy,deck[second
card].swidth,deck[secondcard].sheight);

ctx.fillRect(deck[firstcard].sx,deck[firstcard].sy,deck[firstcar
d].swidth,deck[firstcard].sheight);

 deck[secondcard].sx = -1;

 deck[firstcard].sx = -1;

THE MEMORY (AKA CONCENTRATION) GAME

175

 }

}

function init(){

 ctx = document.getElementById('canvas').getContext('2d');

canvas1 = document.getElementById('canvas');

canvas1.addEventListener('click',choose,false);

 makedeck();

 shuffle();

 ctx.font="bold 20pt sans-serif"; Set font

 ctx.fillText("Click on two cards to make a match.",10,20); Display instructions

as text on canvas

 ctx.fillText("Number of matches so far: 0",10,360); Display the count

 starttime = new Date();

 starttime = Number(starttime.getTime());

 }

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="900" height="400">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

CHAPTER 5

176

Though these two programs are real games, they can be improved. For example, the player can t lose.

After reviewing this material, try to figure out a way to force a loss, perhaps by limiting the number of

moves or imposing a time limit.

These applications start the clock when they re loaded. Some games wait to begin timing until the player

performs the first action. If you want to take this friendlier approach, you d need to set up a logical variable

initialized to false and create a mechanism in the choose function for checking whether this variable has

been set to true. Since it may not have been, you d have to include code for setting the starttime

variable.

This is a single-player game. You can devise a way to make it a game for two. You probably need to

assume that the people are taking turns properly, but the program can keep separate scores for each

participant.

Some people like to set up games with levels of difficulty. To do so, you could increase the number of

cards, decrease the pause time, or take other measures.

You can make this application yours by using your own pictures. You can, of course, use images of

friends and family members, but you could also create an educational game with pictures that represent

items or concepts such as musical-note names and symbols, countries and capitals, maps of counties

and names, and more. You can change the number of pairs as well. The code refers to the length of the

various arrays, so you don t need to go through the code changing the number of cards in the deck. You

may need to adjust the values of the cardwidth and cardheight variables, though, to arrange the cards

on the screen.

Another possibility, of course, is using a standard deck of 52 cards (or 54 with jokers). For an example

using playing cards, skip ahead to Chapter 10, which takes you through creation of a blackjack game. For

any matching game, you ll need to develop a way to represent the information defining which cards match.

Testing and uploading the application
When we, the developers, check our programs, we tend to do the same thing on each pass. Users,

players, and customers, however, often do strange things. That s why getting others to test our

applications is a good idea. So ask friends to test out your game. You should always have people who had

no hand in building the application test it. You may discover problems you didn t identify.

The HTML document for the polygon version of the memory game contains the complete game, since the

program draws and redraws the polygons on the fly. The photo version of the game requires you to upload

all the images. You can vary this game by using image files from the Web (outside of your own Web page).

Note that the pairs array needs to have the complete addresses.

THE MEMORY (AKA CONCENTRATION) GAME

177

Summary
In this example, you learned how to implement two versions of the game known as memory or

concentration) using programming techniques and HTML5 features. These included

• examples of programmer-defined functions and programmer-defined objects

• how to draw polygons on the canvas using moveTo and lineTo along with Math trig methods

• guidance on how to use a form to show information to players

• a method for drawing text with a specified font on the canvas

• instructions about how to draw images on the canvas

• using setTimeout to force a pause

• employing Date objects to compute elapsed time

The applications demonstrated ways to represent information to implement two versions of a familiar

game. The next chapter will temporarily depart from the use of canvas to demonstrate dynamic creation

and positioning of HTML elements. It also will feature the use of HTML5's video element.

CHAPTER 5

178

179

Chapter 6

Quiz

In this chapter, we will cover

• creating HTML by code

• positioning and repositioning HTML elements

• responding to clicks of the mouse

• arrays of arrays

• playing video

Introduction
This chapter demonstrates how HTML elements can be created dynamically and then positioned and

repositioned on the screen. This is in contrast not only to drawing on a canvas element but also to the old

way of creating static web pages. Our goal is to produce a quiz in which the player must match the names

of countries and capital cities. We will use an array of arrays to hold the necessary information and build

on the game to give more feedback to the player, including playing a video clip as a reward for getting the

correct answers. The ability to display video directly (or natively) using HTML5 is a big improvement over

the old system, which required using the <object> element and third-party plug-ins on the player s

computer. In our game, the video serves only a minor role, but the fact that developers and designers can

use HTML5 and JavaScript to produce a specific video at a specific point in the running of an application is

very important.

The basic information for the quiz consists of country and capital city name pairs for the G20 countries.

(Note: the European Union is one of the entries.) The program chooses at random four country/capital

pairs and presents them in boxes on the screen. Figure 6-1 shows an opening screen.

CHAPTER 6

180

Figure 6-1. An opening screen for the quiz

Players attempt to match a country and its capital by clicking first on one and then the other, and the

blocks change color to indicate success. Figure 6-2 shows the correct matching of Canada and Ottawa,

and Figure 6-3 shows a second match. Notice that the blocks have been colored in and the Score goes to

1 and then to 2.

Figure 6-2. One pair correctly matched

QUIZ

181

Figure 6-3. A second successful match

Now the player makes a mistake by pairing Riyadh with Australia. Figure 6-4 shows the result: the program

moves the Riyadh block, but the Action field indicates WRONG. The Score is still 2, and the blocks remain

white.

Figure 6-4. After two correct and one incorrect plays

This quiz program allows the player to try again, as shown in Figure 6-5.

CHAPTER 6

182

Figure 6-5. Choosing the correct match for Riyadh

The second version of the quiz provides more feedback to the player. Clicking on a country or capital

turns its color to tan, as in Figure 6-6. If the attempted match is correct, the blocks become gold as in the

first game. If not, the color changes back to white.

Figure 6-6. A first selection changes color.

Matching all four correctly results in a short video clip. Figure 6-7 shows the start of the video.

QUIZ

183

Figure 6-7. After success, a video clip

A game or, indeed, any application, must communicate effectively with the user. Sometimes, you may

want to be subtle, but a good rule is to provide feedback for every user action, or at least think carefully

and make a conscious decision to not provide direct feedback. The color changes are feedback. The

video is feedback: the player who completes the game gets a visual reward.

This program should be considered a starting point. As designer, you will need to make decisions on

retries, game completion, hints, and so forth. I decided to make this game a random selection of 4

questions from a set of 20. You could consider these sets of 4 questions rounds in a longer game. You

could present one country along with several alternatives for its capital. And you could use images (img

elements with the src values set by code) in place of names. See the “Building the Application and Making

It Your Own” section for more ideas.

Our quiz program creates HTML elements that change and move around the screen as a result of player

action. It also uses arrays of arrays to hold information, and it includes video that plays at a specific point

in the game. It s hard to imagine a sophisticated game nowadays that wouldn t include such elements.

Moreover, this program suggests the potential of games for education, certainly an area worth exploring.

Critical requirements
A quiz requires a way to store information or, to use a fancier term, a knowledge base. We need a way to

choose specific questions to ask, hopefully randomly, so the player sees a different set of challenges

each time. Since what we re storing is simply pairs of names, we can use a simple technique.

CHAPTER 6

184

Next we need to present questions to the player and provide feedback, something different each time. In

this example, the player sees the country and capital names in blocks on the screen, and then clicks on

the appropriate blocks to indicate a possible match. This means we need a way to generate JavaScript to

detect mouse clicks on specific blocks and then reposition the first block clicked on to be next to the

second block. We want a correct pairing to be indicated by a change in color as well as text, and an

increase in the score.

Notice that we are not using the <canvas> element. We could have, and you can read the Comment below

for a comparison of dynamically created HTML markup and the canvas. The Hangman application in

Chapter 9 includes dynamically generated HTML elements and drawing on a canvas element.

Since video is such an important advance for HTML5, I wanted to demonstrate it in an example. A critical

aspect of using video as a “reward” for a successful game is the need to hide the video until that point in

the game and then start playing it. What makes this more challenging is that currently not all browsers

accept the same video encodings. Still, as mentioned earlier, the new capability in HTML5 means that

developers can make very precise use of video without relying on third-party plug-ins.

HTML5, CSS, and JavaScript features
Now let s delve into the specific features of HTML5, CSS, and JavaScript that provide what we need to

implement the quiz. I again build on what has been explained before, with some redundancy just in case

you skipped around in your reading.

Storing and retrieving information in arrays

You may remember that an array is a sequence of values and that a variable can be set up as an array.

The individual components of an array can be any data type—including other arrays! Recall that in the

memory games in Chapter 5, we used an array variable named pairs in which each element was itself an

array of two elements, the matching photo image files.

var pairs = [
 ["allison1.jpg","allison2.jpg"],
 ["grant1.jpg","grant2.jpg"],
 ["liam1.jpg","liam2.jpg"],
 ["aviva1.jpg","aviva2.jpg"],
 ["daniel1.jpg","daniel2.jpg"]

The pairs array had 5 elements, each of which was an array. The inner arrays consisted of two elements

and each of these elements was a string of characters, the name of an image file.

In the quiz application, we will again use an array of arrays. For the quiz show, we set up a variable named

facts as an array to hold the information about the G20 members. Each element of the facts array is

itself an array. My first thought on creating the application was that these inner arrays would each hold two

elements, the country name and the capital city name. Later, I added a third element to hold whether or not

this country/capital pair had been chosen in this round of the quiz. This meant that the inner arrays had

three different elements: two character strings and a Boolean (true/false) value.

The individual components of an array are accessed or set using square brackets. Arrays in JavaScript

are indexed starting from zero and ending at one less than the total number of elements in the array. One

QUIZ

185

trick to remember that the indexing starts from zero is to imagine the array all lined up. The first element

will be at the start; the second 1 unit away; the third 2 units away, and so on.

The length of the array is kept in an attribute of the array named length. To access the first component of

the facts array, you use fact[0]; for the second element, fact[1], and so on. You will see this in the

coding.

A common way to do something with each element in an array is to use a for loop. (See also the

explanation for setting up the gradient in the walls of the bounding box in Chapter 3.) Suppose you have an

array named prices and your task is to write code to increase each of the prices by 15%. Further, each

price has to increase by a minimum of 1, even if 1 is more than the 15%. You could use the construct in

Table 6-1 to perform this task. As you can see in the Explanation column, the for loop does the same

thing for each component of the array, using the indexing variable i in this example. This example also

shows the use of the Math.max method.

Table 6-1. Increasing Prices in an Array Using a For Loop

Code Explanation

for(var i=0;i<prices.length;i++) { Do the statements inside the brackets, changing the value of

i, starting at 0 and increasing by 1 (that s what i++ does)

until the value is not less than prices.length, the number

of elements in the array.

 prices[i] += Math.max
(prices[i]*.15,1);

Remember to interpret this from the inside out. Compute .15

times the ith element of the array prices. See what s

greater, this value or 1. If it is this value, that s what

Math.max returns. If it is 1 (if 1 is more than

prices[i]*.15), use 1. Add this value to the current value

of prices[i]. That s what += does.

} Close the for loop

Notice that the code does not state the size of the prices array explicitly. Instead it is represented in the

expression prices.length. This is good because it means that the value of length changes

automatically if and when you add elements to the array. Of course, in our example we know the number to

be 20, but in other situations it s better to keep things flexible. This application can be a model for a quiz

involving any number of facts when a fact is two pieces of information.

Our facts array is an array of arrays, which means you ll see the following in the code:

facts[i][0] the country name

facts[i][1] the capital city name

facts[i][2] the true/false value indicating this country/capital has been used

These expressions are interpreted as the 0th element of the i th element of the facts array and so on. I do

refer to the inner arrays as rows, but keep in mind that there are not really any columns. Some

programming languages support multi-dimensional arrays as a primitive data type, but JavaScript only

CHAPTER 6

186

supports one-dimensional arrays. The facts array is one-dimensional. The facts[0] element is itself an

array, and so on.

Note: If the knowledge base was much more complex or if I were sharing the information or

accessing it from somewhere else, I might need to use something other than an array of arrays. I

could also store the knowledge base separate from the HTML document, perhaps using an eXtended

Markup Language (XML) file. JavaScript has functions for reading in and accessing XML.

The design for the quiz is to present a randomly chosen set of four facts for each game, so we define a

variable nq (standing for number in a quiz) to be 4. This never changes, but making it a variable means that

if we wanted to change it, it would be easy to do.

The HTML that s created dynamically (see next section) will take up two columns on the screen, with the

countries in the left column and the capitals in the right. I don't want the pairs to line up, so I use the

Math.random facility to position the capitals in the nq different positions. I think of these as slots. The

logic, presented here in pseudo-code, is the following

Make a random choice, from 0 to facts.length. If this fact has been used, try again
Mark this choice as used.
Create new HTML to be a block for the country and place in the next
position on the left.
Make a random choice, 0 to 3, to determine the slot for the capital.
If this slot has been taken, try again.
Mark this slot as used.

So how do we code this? As indicated earlier, the fact array contains arrays and the third element of the

inner arrays is a Boolean variable. Initially, these values will each be false, meaning the elements haven t

yet been used in the game. After a time, of course, some facts will have been used, so I use another type

of loop, a do-while construct that will keep trying until it comes to a fact that hasn t been used:

do {c = Math.floor(Math.random()*facts.length);}
while (facts[c][2]==true)

The do-while exits as soon as facts[c][2] is false, that is, when the element at index c is available for

use.

We use similar coding to determine the slot for the capital. We define an array called slots. Now, we could

have made the values in the slots array Booleans, but instead we re going to store the value c that holds

the index in the facts array once the code determines what that value is. For an initial value for each

element of slots, we ll use an arbitrary value of -100. The used values are in the range 0 to 19

(facts.length). The coding is:

 do {s = Math.floor(Math.random()*nq);}
 while (slots[s]>=0)
 slots[s]=c;

Creating HTML during program execution

An HTML document typically consists of the text and markup you include when you initially write the

document. However, you can also add to the document while the file is being interpreted by the browser,

QUIZ

187

specifically, when the JavaScript in the script element is being executed (called execution time or

runtime). This is what I mean by creating HTML dynamically. For the quiz application, I created two types

of elements that we ll add, with the names “country” and “cap”. For each of these, we insert an element of

type div, a general element type that suits our purposes here. (Be aware that HTML5 has added several

other types—for example, header, footer, article, and section—that convey more specific meaning

and should be considered for your applications. Chapter 1 shows one use of section, and in Chapter 10,

I ll show footer.)

The div is a block type, meaning it can contain other elements as well as text, and it is displayed with line

breaks before and after. Table 6-2 shows methods we ll use.

Table 6-2. Methods for Creating HTML

Code Explanation

createElement Creates the HTML element

appendChild Adds the element to the document by appending it to something in the

document

getElementbyID Gets a reference to the element

One trick needed for applications such as this is to come up with unique id values for the elements that

are created. We ll do this using a variable that s incremented for each set of country and capital. The id

value consists of that number, converted to a string and then preceded by a "c" or a "p". Why a "p"?

Because I'm using "c" for country and "p" came to mind when thinking of capital. By the way, the id values

don t have to be numbers or take any particular form. As you see, in our application, they are single letters

followed by numbers.

The matching country and capital city will have the same number so we can use the id values to check for

a match. We use a String method, substring, that extracts a portion of any string of characters. Let s

look at a couple of examples. To use substring, you specify the starting position and, optionally, one

more than the ending position. That is, the extracted string starts at the first parameter and goes up until

the second. If our code doesn t include the second parameter, the extract goes to the end of the string.

Suppose you had a variable

var class ;

for course or class names. Most colleges use specific patterns for such names, such as three letters for

department and then perhaps four numbers to indicate the specific course. Now let s suppose the variable

class has been assigned the value "MAT1420". In that case,

class.substring(0,3) would produce "MAT"

class.substring(3) would produce "1420"

class.substring(3,7) would produce "1420"

class.substring(3,6) would produce "142"

class.substring(3,4) would produce "1"

CHAPTER 6

188

Tip: JavaScript and many other languages also provide a string method called substr that works a

little differently. The second argument of substr is the length of the piece of string. For the class

name example,

class.substr(0,3), coincidentally, also produces "MAT"

class.substr(3,4) produces "1420"

class.substr(3,1) produces "1"

In our implementation of the quiz, we use the portion of the string starting from the position numbered 1,

that is, the second position, to the end of the string.

Once we create these new HTML elements, we use addEventListener to set up events and event

handlers. The addEventListener method is used for a variety of events. Remember, we used it on the

canvas element in Chapter 4.

For the quiz application, the following statement sets up the JavaScript engine to “listen” for clicks for

each element and to invoke the pickelement function that we ll create.

thingelem.addEventListener('click',pickelement,false);

(The false in this statement refers to a technicality involving other possible listeners for this event.)

In the pickelement function, you ll see code containing the term this, such as

thisx= this.style.left;

In the code, this refers to the current instance, namely the element that the player clicked. We set up

listening for the event for each element so when pickelement is executed, the code can refer to the

specific element that heard the click using the this. When the player clicks on the Brazil block, the code

knows it, where by “knows” I am anthropomorphizing the program more than I would like. Putting it another

way, the same pickelement function will be invoked for all the blocks we have placed on the screen, but,

by using this, the code can refer to the specific one that the player clicks on each time.

Note: If we didn't have these elements and the capability to do the addEventListener and refer to

the attributes using the this (forgive the awkward English) and instead drew stuff on a canvas, we

would need to perform calculations and comparisons to determine where the mouse cursor was and

then look up the corresponding information in some way to check for matches. (Recall the coding for

the Slingshot in Chapter 4.) Instead, the JavaScript engine is doing much of the work, and doing it

more efficiently—faster—than we could by writing the code ourselves.

After the new HTML is created, its contents are set using the innerHTML attribute. Next, the new element

is added to the document by being appended as a child of the body element. This may seem odd, but it is

how things are done.

 d.innerHTML = (
 "<div class='thing' id='"+uniqueid+"'>placeholder</div>");
 document.body.appendChild(d);

QUIZ

189

The placeholder text will be replaced and the whole thing will be repositioned. We set the text by

assigning a value to the attribute textContent. Next, we ll look at how to use CSS with our code to

position the elements and change their color.

You ll see the code in complete context in the Building the Application section.

Changing elements by modifying CSS using JavaScript code

Cascading Style Sheets (CSS) lets you specify the formatting of parts of an HTML document. Chapter 1

showed a very basic example of CSS, which is powerful and useful even for static HTML. Essentially, the

idea is to use CSS for the formatting, that is, the look of the application, and to reserve HTML for

structuring the content. See David Powers Getting StartED with CSS (friends of ED, 2009) for more

information on CSS.

Let s take a brief look here at what we ll use to generate the dynamically created blocks holding the

country and capital names.

A style element in an HTML document holds one or more styles. Each style refers to

• an element type using the element type name; or

• a specific element, using the id value; or

• a class of elements.

In Chapter 1, we used a style for the body element and for the section elements. For the video, we ll use a

reference to a specific element. Here is a fragment of the coding, starting with what goes in the style

element:

#vid {position:absolute; visibility:hidden; z-index: 0; }

where vid is the id used in the video element in the body element.

<video id="vid" controls="controls" preload="auto">

We ll get into the details of this soon when I discuss the video element and its visibility.

Now let's set the formatting for a class of elements. The class is an attribute that can be specified in any

element starting tag. For this application, I came up with a class thing. Yes, I know it s lame. It refers to a

thing our code will place on the screen. The style is

.thing {position:absolute;left: 0px; top: 0px; border: 2px; border-style: double;
 background-color: white; margin: 5px; padding: 5px; }

The period before thing indicates that this is a class specification. The position is set to absolute and

top and left include values that can be changed by code.

The absolute setting refers to the way the position is specified in the document window—as specific

coordinates. The alternative is relative, which you d use if the part of the document was within a

containing block that could be anywhere on the screen. The unit of measurement is the pixel and so the

positions from the left and from the top are given as 0px for 0 pixels, and the border, margin, and padding

measurements are 2 pixels, 5 pixels, and 5 pixels, respectively.

Now let s see how to use the style attributes to position and format the blocks. For example, after creating

a dynamic element to hold a country, we can use the following lines of code to get a reference to the thing

CHAPTER 6

190

just created, put the text holding the country name into the element, and then position it at a specified

point on the screen.

thingelem = document.getElementBy(uniqueid);
thingelem.textContent=facts[c][0];
thingelem.style.top = String(my)+"px";
thingelem.style.left = String(mx)+"px";

Here, my and mx are numbers. Setting style.top and style.left requires a string, so our code converts

the numbers to strings and adds the "px" at the ends of the strings.

We want to change the color of both boxes when there is a correct match. We can do this pretty much as

when changing the top and left to reposition the block. However, the name of the attribute for JavaScript

is slightly different than the one in the CSS: no dash.

elementinmotion.style.backgroundColor = "gold";
this.style.backgroundColor = "gold";

The gold is one of the set of established colors, including red, white, blue, etc. that can be referred to

by name. Alternatively, you can use the hexadecimal RGB values available from a program such as Corel

Paint Shop Pro, Adobe Photoshop, or Adobe Flash. For the second version of the game, I used tan and

white.

Tip: You can specify a font in the style section. You can put 'safe web fonts' in any search engine

and get a list of fonts purported to be available on all browsers and all computers. However, an

alternative approach is to specify an ordered list of fonts so if the first one is not available, the

browser will attempt to find the next. See Chapter 8 for more information.

Text feedback using form and input elements

The player gets feedback in two ways in the two applications: in both versions, a selected block always

gets moved. In the second version of the game, the first block clicked gets changed to tan. If the match is

correct, the color of both blocks is set to gold. Otherwise, both blocks revert to white. Text feedback is

given using input fields of a form element. This form is not used for input and so there s no button, either

as a separate button element or as an input element of type submit.

The following two lines set one input field to RIGHT and the other to one more than the previous value. Note

that the value must be converted from text to number before incrementing, then converted back.

document.f.out.value = "RIGHT";
document.f.score.value =String(1+Number(document.f.score.value));

What if our pesky player clicks twice on the same block? We have code to check for this.

if (makingmove) {
 if (this==elementinmotion) {
 elementinmotion.style.backgroundColor = "white";
 makingmove = false;
 return;
}

QUIZ

191

This makes the player start over with a new move if she clicks twice on the same block. Since the block

will change back to white, this should be clear to the player.

Presenting video

HTML5 provides the new video element for presenting video, either as part of a static HTML document or

under the control of JavaScript. This may well become the new standard. For more information, see Silvia

Pfeiffer's The Definitive Guide to HTML5 Video (Apress, 2010).

In brief, video comes in different file types, just like images do. The file types vary based on the

containers for the video and the associated audio, as well as on how the video and the audio are encoded.

The browser needs to know how to handle the container and how to decode the video to display the

frames—the still images making up the video—in succession on the screen, and how to decode the audio

to send the sound to the computer speakers.

Videos involve a considerable amount of data, so people still are working on the best ways to compress

the information, taking advantage, for example, of what is similar between frames without losing too much

quality. Web sites are now displayed on small screens on cell phones as well as large high-definition TV

screens, so it s important to take advantage of any knowledge of what the display device will be. With this

in mind, though we can hope that browser makers standardize on one format in the future, the HTML5

video element provides a way to work around the lack of standardization by referencing multiple files.

Developers, therefore, and that includes those of us creating this quiz application, need to produce

different versions of the same video.

I downloaded a Fourth of July fireworks video clip and then used a free tool (Miro video converter) to

create three different versions with different formatting of the same short video clip. I then used the new

HTML5 video element as well as the source element to code references to all three video files. The codecs

attribute in the source element provides information on what the encoding is for the file specified in the src

attribute.

<video controls="controls">
<source src="sfire3.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="sfire3.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>
<source src="sfire3.webmvp8.webm" type="video/webm; codec="vp8, vorbis"'">
</video>

Including controls="controls" puts the familiar controls on the screen to allow the player/user to start

or pause the video clip. This code, as part of a standard HTML document, produces what is shown in

Figure 6-8.

CHAPTER 6

192

Figure 6-8. Video clip with controls

Note that the display will vary slightly across the different browsers.

The tag for the video element provides other attributes, including a standard width and height and

autoplay and preload. Three different source files are indicated in the HTML. The type attribute supplies

information on both the video and audio encoding, and you must use the single and double quotation

marks. That is, the double quotation marks indicate something within the longer single quote. The browser

interprets the HTML starting from the first source element. As soon as the determination is made that this

is a file type the browser can display, that file is downloaded to the client computer.

This is the basic way to present video. However, as mentioned earlier, for our quiz application we are going

to hide the video until it is time to play it. To do this, we define a style for the video element specifying the

visibility as hidden. We also need the video clip to be on top of any other elements, including the elements

created dynamically in the code. Placing elements on top of other elements is controlled by the z-index,

what you might consider the third dimension after x and y. To do this we need the following style:

#vid {position:absolute; visibility:hidden; z-index: 0; }

This style specifies the original settings. The code will change it when it is time to play the video. #vid

refers to the id of the video element.

<video id="vid" controls="controls" preload="auto">
<source src="sfire3.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="sfire3.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>
<source src="sfire3.webmvp8.webm" type="video/webm; codec="vp8, vorbis"'">
Your browser does not accept the video tag.
 </video>

We not only want the video to appear, we also want it to be on top of everything else. To do this, we will

modify the z-index. Think of z as the dimension coming out of the screen toward the user.

QUIZ

193

Note that the position is never changed, but the z-index only works if position has been specified in a

style.

When the code calculates that it is time for the video clip, it changes the visibility and the z-index and then

invokes the play method.

v = document.getElementById("vid");
v.style.visibility = "visible";
v.style.zIndex = "10000";
v.play();

Tip: CSS has its own language, sometimes involving hyphens in terms. The CSS term for expressing

how elements are layered on the screen is z-index; the JavaScript term is zIndex.

With this considerable JavaScript, HTML, and CSS knowledge, we are now ready to describe the details of

the quiz application.

Building the application and making it your own
The knowledge base for the quiz is represented in the facts variable, which is an array of arrays. If you

want to change the quiz to another topic, one that consists of pairs of names or other text, you just need

to change facts. Of course, you also need to change the text that appears as an h1 element in the body

element to let the player know the category of questions. I defined a variable named nq, for number in

each quiz (the number of pairs to appear onscreen) to be 4. You can, of course, change this value if you

want to present a different number of pairs to the player. The other variables are used for the original

positions of the blocks and to hold status information, such as whether it s a first click or a second click.

I created three functions for this application: init, setupgame and pickelement. I could have combined

init and setupgame, but made them separate to facilitate a replay button. Table 6-3 describes these

functions and what they call or are called by.

Table 6-3. Functions in the Quiz Application

Function Invoked By / Called By Calls

init Invoked by the action of the onLoad in the <body> tag setupgame

setupgame called by init

pickelement Called as a result of the addEventListener calls in setupgame

The setupgame function is where the HTML is created for the blocks. Briefly, an expression using

Math.random is evaluated to pick one of the rows in the facts array. If that row has been used, the code

tries again. When an unused row is found, it is marked as used (the third element, index value 2) and the

blocks are created.

CHAPTER 6

194

An alternative approach would be to remove a used fact from the array and to keep going until all rows

have been chosen. Look back to the use of splice in Chapter 4 for an idea of how you could achieve this.

The block for the capital is placed randomly in one of the four available slots. This produces the countries

and capital cities in two columns, but mixed up. The pickelement function does one thing if it is a first

click and another if it is a second click, determined by the value of makingmove, which starts off being

false and then is set to true at a first click.

Table 6-4 supplies a line-by-line explanation of the code.

Table 6-4. The Complete Code for the First Quiz Application

Code Explanation

<html> Starting html tag

<head> Starting head tag

 <title>Quiz</title> Complete title element

<style> Start of style section

.thing {position:absolute;left: 0px;
 top: 0px; border: 2px;
 border-style: double;
 background-color: white; margin:
5px;
 padding: 5px; }

A style for all elements of the class thing. The original

position is at the top, left corner of the window. There s a

thick border and a white background color.

</style> End of style element

 <script> Start script element

 var facts = [Start of declaration of the facts variable, array of arrays

["China","Beijing",false], Each row is a complete array, 3 elements, country,

capital, false

The false field will be changed if this row is chosen to be

presented

["India","New Delhi",false],

["European Union","Brussels",false],

["United States","Washington,
DC",false],

QUIZ

195

Code Explanation

["Indonesia","Jakarta",false],

["Brazil","Brasilia",false],

["Russia","Moscow",false],

["Japan","Tokyo",false],

["Mexico","Mexico City",false],

["Germany","Berlin",false],

["Turkey","Ankara",false],

["France","Paris",false],

["United Kingdom","London",false],

["Italy","Rome",false],

["South Africa","Pretoria",false],

["South Korea","Seoul",false],

["Argentina","Buenos Aires",false],

["Canada","Ottawa",false],

["Saudi Arabia","Riyadh",false],

["Australia","Canberra",false]

]; Closing the array

 var thingelem; Variable declaration for created elements

 var nq = 4; Number of pairs presented to the player

 var elementinmotion; Variable to hold the first element clicked on

 var makingmove = false; Variable to distinguish first click situation and second

click situation

CHAPTER 6

196

Code Explanation

 var inbetween = 300; Variable holding the distance between the original two

columns

 var col1 = 20; Variable holding the horizontal position of the first column

 var row1 = 200; Variable holding the vertical position of the first row

 var rowsize = 50; Variable holding the height of a row (the block itself and

the spacing) for creation of all the rows

 var slots = new Array(nq); An array variable to hold which slots in the right column

have been filled

function init(){ Start of init function

 setupgame(); Invoked setupgame();

} Close of init function

function setupgame() { Start of setupgame function

 var i; Variable used for the for loops

 var c; Variable used for the choice of row (inner array) of facts

 var s; Variable used for choice of slots

 var mx = col1; Variable holding the horizontal position

 var my = row1; Variable holding the initial vertical position

 var d; Variable holding the created html element

 var uniqueid; Variable holding the created id

 for (i=0;i<facts.length;i++) { Start of a for loop to mark all facts as not being used

 facts[i][2] = false; Set (reset) the third value, index 2, to be false

 } Close the for loop

 for (i=0;i<nq;i++) { Start of a for loop to set all the slots to unused

QUIZ

197

Code Explanation

 slots[i] = -100; Used values will be 0 to 19

 } Close of for loop

 for(i=0;i<nq;i++) { Start of for loop to choose nq country/capital pairs

Recall our nq is set to 4, 4 country-capital pairs

 do {c = Math.floor(Math.
random()*facts.length);}

Start of do/while loop. What is in the brackets is done at

least once. The variable c is set to a random value 0 to 1

less than the length of the array.

 while (facts[c][2]==true) Do this again if this inner array (country/capital pair) has

been chosen

 facts[c][2]=true; Outside of loop, now set this country/capital pair array as

being used

 uniqueid = "c"+String(c); Construct the id for the country block

 d =
document.createElement
('country');

Create an html element of type country

 d.innerHTML = (Set its innerHTML to be

 "<div class='thing'
id='"+uniqueid+"'>placeholder</div>");

… a div of class thing with the id. The contents of the

element will be changed

document.body.appendChild(d);

Add this element to the document as a child of the body

element

 thingelem =
document.getElementById(uniqueid);

Get a pointer to the element just created

 thingelem.textContent=
facts[c][0];

Set its textContent to the country name

 thingelem.style.top =
 String(my)+"px";

Position it vertically by changing the top style

 thingelem.style.left =
 String(mx)+"px";

… and horizontally by changing the left style

CHAPTER 6

198

Code Explanation

thingelem.addEventListener('click',
pickelement,false);

Set up to listen for the click event

 uniqueid = "p"+String(c); Now construct the id for the capital block

 d =
document.createElement('cap');

Create a new element

 d.innerHTML = (Set its innerHTML to be

 "<div class='thing'
id='"+uniqueid+"'>placeholder</div>");

a div, class thing, with the id. placeholder will be

changed

document.body.appendChild(d);

Add this to the document as a child to the body element

 thingelem =
document.getElementById(uniqueid);

Get a pointer to the thing element

thingelem.textContent=facts[c][1];

Set its textContent to the capital city name

 do {s = Math.floor
(Math.random()*nq);}

Start a do while loop, the code in brackets is executed

at least once. Determine a random choice from empty

slots.

 while (slots[s]>=0) But repeat if this slot IS already taken

 slots[s]=c; Store away the country/capital number

thingelem.style.top = String
(row1+s*rowsize)+"px";

Position this block according to formula based on which

slot and rowsize vertically

thingelem.style.left = String
(col1+inbetween)+"px";

Position this block horizontally in the second column

(inbetween over from col1)

thingelem.addEventListener('click',
pickelement,false);

Set up to listen for the click event

 my +=rowsize; Increase the my value to prepare for the next block

 } Close loop

QUIZ

199

Code Explanation

 document.f.score.value = "0"; Set score to 0

 return false; This is done to prevent an HTML reloading of the page

} Close setupgame function

 function pickelement(ev) { Start of pickelement function

 var thisx; Variable to hold the horizontal position of this element

(the element that received the click event)

 var thisxn; Variable to hold the number represented by thisx, which

is text

 if (makingmove) { Is this a second click?

 thisx= this.style.left; Set thisx

thisx = thisx.substring
(0,thisx.length-2);

Remove the px from the string.

 thisxn =
 Number(thisx) + 110;

Turn this into a number and then add fudge factor to

position the element first clicked to the right of this

element

elementinmotion.style.left =
 String(thisxn)+"px";

elementinmotion holds the first click element. position

it horizontally to the calculated thisxn value.

elementinmotion.style.top =
 this.style.top;

Position it vertically the same as the this element

 makingmove = false; Set makingmove back to false

if (this.id.substring(1)==
elementinmotion.id.substring(1)) {

Check if this is a match by comparing the ids, after using

substring to leave off the first character

elementinmotion.style.
backgroundColor = "gold";

If it was a match, change the color of elementinmotion

and

this.style.backgroundColor = "gold"; this element

document.f.out.value = "RIGHT"; Output the value RIGHT

CHAPTER 6

200

Code Explanation

document.f.score.value = String
(1+Number(document.f.score.value));

Increment the score (need to change value to number,

add 1, and then change back to text)

 } Close if match true clause

 else { Else

 document.f.out.value = "WRONG";} Output the value WRONG

 } Close else clause

 else { If it wasn't a second click

 makingmove = true; Check makingmove

 elementinmotion = this; Save this element in the elementinmotion variable

 } End else clause

 } End pickelement

</script> End script

</head> End head

<body onLoad="init();"> Start body tag. Set up call to init on loading.

<h1>G20 Countries and
 capitals </h1>

Heading on the screen

Click on country or capital
 and then click on corresponding
 capital or country.

Directions

<p> Paragraph

Reload for new game. Directions

<form name="f" > Start of form

Action: <input name="out" type=
"text" value="RIGHT OR WRONG"/>

Text label and then input field

QUIZ

201

Code Explanation

Score: <input name="score" type=
"text" value="0"/>

Text label and then input field

</form> Close form

</p> Close paragraph

</body> Close body

</html> Close html

The first step to making this application your own is to choose the content of your quiz. It needs to be

pairs of values. The values here are names, held in text, but they could be numbers, or numbers and text.

You also could create img tags and use the information kept in the array to set the src values of img

elements. More complicated, but still doable is to incorporate audio. Start simple, with something

resembling the G20 facts, and then be more daring.

You can change the look of the application by modifying the original HTML and/or the created HTML. You

can modify or add to the CSS section.

You can easily change the number of questions, or change the four-question game to a four-question

round and make a new round happen automatically after a certain number of guesses or when clicking on a

button. You would need to decide if country/capital pairs are to be repeated from round to round.

You can also incorporate a time feature. There are two general approaches: keep track of time and simply

display it when the player completes a game/round successfully (see the memory games in Chapter 5) or

impose a time limit. The first approach allows someone to compete with themselves but imposes no

significant pressure. The second does put pressure on the player and you can decrease the allowed time

for successive rounds. It could be implemented using the setTimeout command.

Table 6-5 shows the code for the second version of the game, which includes changing a first selection to

tan, and the video. As was the case in other chapters with multiple versions, think about what is the same

in this game, and what we ve changed or added.

Table 6-5. The Complete Code for the Second Version of the Quiz Application

Code Explanation

<html>

<head>

 <title>Quiz (multiple videos)</title>

<style>

CHAPTER 6

202

Code Explanation

.thing {position:absolute;left: 0px;
 top: 0px; border: 2px; border-style:
 double; background-color: white;
 margin: 5px; padding: 5px; }

#vid {position:absolute; visibility:
hidden; z-index: 0; }

Style for the video element.

</style>

 <script type="text/javascript">

 var facts = [

 ["China","Beijing",false],

 ["India","New Delhi",false],

 ["European Union","Brussels",false],

 ["United States","Washington,
DC",false],

 ["Indonesia","Jakarta",false],

 ["Brazil","Brasilia",false],

 ["Russia","Moscow",false],

 ["Japan","Tokyo",false],

 ["Mexico","Mexico City",false],

 ["Germany","Berlin",false],

 ["Turkey","Ankara",false],

 ["France","Paris",false],

 ["United Kingdom","London",false],

 ["Italy","Rome",false],

QUIZ

203

Code Explanation

 ["South Africa","Pretoria",false],

 ["South Korea","Seoul",false],

 ["Argentina","Buenos Aires",false],

 ["Canada","Ottawa",false],

 ["Saudi Arabia","Riyadh",false],

 ["Australia","Canberra",false]

];

 var thingelem;

 var nq = 4;

 var elementinmotion;

 var makingmove = false;

 var inbetween = 300;

 var col1 = 20;

 var row1 = 200;

 var rowsize = 50;

 var slots = new Array(nq);

function init(){

 setupgame();

}

function setupgame() {

 var i;

CHAPTER 6

204

Code Explanation

 var c;

 var s;

 var mx = col1;

 var my = row1;

 var d;

 var uniqueid;

 for (i=0;i<facts.length;i++) {

 facts[i][2] = false;

 }

 for (i=0;i<nq;i++) {

 slots[i] = -100;

 }

 for(i=0;i<nq;i++) {

 do {c = Math.floor
(Math.random()*facts.length);}

 while (facts[c][2]==true)

 facts[c][2]=true;

 uniqueid = "c"+String(c);

 d = document.createElement
('country');

 d.innerHTML = (

 "<div class='thing'
 id='"+uniqueid+"'>placeholder</div>");

4

QUIZ

205

Code Explanation

 document.body.appendChild(d);

 thingelem = document.
getElementById(uniqueid);

thingelem.textContent=facts[c][0];

 thingelem.style.top =
 String(my)+"px";

 thingelem.style.left =
 String(mx)+"px";

 thingelem.addEventListener
('click',pickelement,false);

 uniqueid = "p"+String(c);

 d = document.createElement
('cap');

 d.innerHTML = (

 "<div class='thing'
 id='"+uniqueid+"'>placeholder</div>");

 document.body.appendChild(d);

 thingelem = document.
getElementById(uniqueid);

thingelem.textContent=facts[c][1];

 do {s = Math.floor
(Math.random()*nq);}

 while (slots[s]>=0)

 slots[s]=c;

 thingelem.style.top =
 String(row1+s*rowsize)+"px";

CHAPTER 6

206

Code Explanation

 thingelem.style.left =
 String(col1+inbetween)+"px";

 thingelem.addEventListener
('click',pickelement,false);

 my +=rowsize;

 }

 document.f.score.value = "0";

 return false;

}

 function pickelement(ev) {

 var thisx;

 var thisxn;

 var sc; Variable for the number of correct matches

 if (makingmove) {

 if (this==elementinmotion) { Check that the player hasn't clicked twice on the

same block

 elementinmotion.style.backgroundColor =
 "white";

If so, reset color to white

 makingmove = false; Reset makingmove

 return; Return

 } Close if clause

 thisx= this.style.left;

 thisx = thisx.substring
(0,thisx.length-2);

QUIZ

207

Code Explanation

 thisxn = Number(thisx) + 115;

 elementinmotion.style.left =
 String(thisxn)+"px";

 elementinmotion.style.top =
 this.style.top;

 makingmove = false;

 if (this.id.substring(1)==
elementinmotion.id.substring(1)) {

 elementinmotion.
style.backgroundColor = "gold";

 this.style.
backgroundColor = "gold";

 document.f.out.value =
"RIGHT";

 sc = 1+Number
(document.f.score.value);

Pick up the score, convert to number, and

increment by 1

 document.f.score
.value = String(sc);

 if (sc==nq) { If game over

 v = document
.getElementById("vid");

…find video element

 v.style
.visibility = "visible";

…set visibility to visible

v.style.zIndex="10000";

…set zIndex to a very big number

 v.play(); …play the video

 } …close if clause

CHAPTER 6

208

Code Explanation

 }

 else {

 document.f.out
.value = "WRONG";

 elementinmotion.
style.backgroundColor = "white";

 }

 }

 else {

 makingmove = true;

 elementinmotion = this;

 elementinmotion.style.
backgroundColor = "tan";

Set first block color to tan

 }

 }

</script>

</head>

<body onLoad="init();">

<h1>G20 Countries and capitals </h1>

Click on country or capital and then
 click on corresponding capital or country.

<p>

Reload for new game.

<form name="f" >

QUIZ

209

Code Explanation

Action: <input name="out" type=
"text" value="RIGHT OR WRONG"/>

Score: <input name="score" type=
"text" value="0"/>

</form>

</p>

<video id="vid" controls=
"controls" preload="auto">

Video with controls

<source src="sfire3.mp4" type='video/
mp4; codecs="avc1.42E01E, mp4a.40.2"'>

Source for the mp4 file

<source src="sfire3.theora.ogv" type=
'video/ogg; codecs="theora, vorbis"'>

Source for the ogv file

<source src="sfire3.webmvp8.webm" type=
"video/webm; codec="vp8, vorbis"'">

Source for the webm file

Your browser does not accept the video tag. Message to noncompliant browsers

 </video> Closing tag

</body>

</html>

To make this game your own, consider other questions from geography or even other entirely different

categories. As suggested earlier, you can make one or both of the pairs of information images. The video

treat can vary depending on the content or even the player s performance.

You can identify links to web sites that discuss the facts or to Google map locations as mini-awards for

correct answers—or as clues.

You may not like the way the quiz blocks remain on the screen while the video is showing. You can remove

them using a loop that makes each element invisible. Look ahead to the Hangman application in Chapter 9

for ideas.

CHAPTER 6

210

Testing and uploading the application
The random feature of the game does not impact the testing. If you wish, you can substitute fixed choices

after the Math.random coding, do the bulk of the testing, and then remove these lines of code and test

again. The important thing to do for this and similar games is to make sure your testing involves both

correct guesses and incorrect guesses. You also need to click on the country name first and then the

capital, and then do it the other way. Check the color changes and the scores. If you add a new round

feature, make sure that the score remains or is reset as you want.

Warning: The player can cheat! There is no check to prevent the player from repeating a correct

move. See if you can make this improvement in the coding. You can add a new element to the inner

arrays in facts to mark a correctly answered question.

The basic G20 game is complete in the HTML file (which you can download from

www.friendsofed.com/downloads.html). The game with the video reward requires you to download the

video from the Friends of Ed site or use your own. To play your own choice of video, you must:

• create or acquire the video

• produce the different versions, assuming you want to support the different browsers

• upload all the files to the server

You may need to work with your server staff to make sure the different video types are properly specified.

This involves something called the htaccess file. HTML5 still is new and this way of featuring video on web

pages may be new to the server support crews.

Alternatively, you can identify video already online and use absolute URLs as the src attributes in the

source elements in the video elements.

Summary
In this chapter, we implemented a simple quiz that asked a player to match the names of countries and

capitals. The application used the following programming techniques and HTML5 features:

• creating HTML during runtime using document.createElement, document.getElementById,

and document.body.appendChild

• setting up event handling for the mouse click event using addEventListener

• changing color of objects on the screen using code to change CSS settings

• an array of arrays to hold the quiz content

• for loops for iterating over the array

• do-while loops to make a random choice of an unused question set

• substring for determining a correct match

• video and source elements for displaying video encoded in formats acceptable by different

browsers

http://www.friendsofed.com/downloads.html

QUIZ

211

You can make use of dynamically created and repositioned HTML along with the drawing on canvas that

you learned in the previous chapters. The implementation of Hangman, described in Chapter 9, does just

that. You can use video as a small part of an application, as was done here, or as the major part of a web

site. In the next chapter we return to drawing on canvas as we build a maze and then travel through it.

CHAPTER 6

212

213

Chapter 7

Mazes

In this chapter, we will cover

• responding to mouse events

• calculation of collision between circles and lines

• responding to the arrow keys

• form input

• encoding, saving, decoding, and restoring information from local storage using try and catch

for testing if coding is recognized

• using join and split to encode and decode information

• using javascript: in a button to invoke functions

• radio buttons

Introduction
In this chapter, we ll continue our exploration of programming techniques and HTML5 and JavaScript

features, this time using programs that build and traverse mazes. Players will have the ability to draw a set

of walls to make up a maze. They will be able to save and load their mazes, and to traverse them using

collision detection to make sure they don t cross any walls.

The general programming techniques include using arrays for everything that needs to be drawn on the

canvas as well as a separate array for the set of walls in the maze. The number of walls is not known

before play starts, so a flexible approach is required. Once the maze is constructed, we ll see how to

respond to presses of the arrow keys and how to detect collisions between the playing piece—a

pentagon-shaped token—and the walls. With HTML5, we can handle mouse events so the player can

press the mouse button down and then drag and release the button to define each wall of a maze; respond

to the arrow keys to move the token; and save and retrieve the layout of walls on the local computer. As

usual, we ll build more than one version of the application. In the first, everything is contained in one HTML

file. That is, the player builds a maze, can travel through it, and can optionally save it to the local computer

CHAPTER 7

214

or restore a set of walls saved earlier. In the second version, there s one program to create the mazes and

a second file that offers the player a choice of specific mazes to traverse, using radio buttons. Perhaps

one person might build the mazes on a given computer and then ask a friend to try traversing them.

HTML5 s local storage facility accepts only strings of characters, and so we ll look at how we can use

JavaScript to encode the maze information into a character string and then decode it back to rebuild the

walls of the maze. The saved information will remain on the computer even after it is turned off.

The individual capabilities we ll discuss in this chapter: building structures, using the arrow keys to move a

game piece, checking for collisions, and encoding, saving, and restoring data on the user's computer, can

all be reused in a variety of games and design applications.

Note: HTML files are generally called scripts, while the term program is typically reserved for

languages such as Java or C. This is because JavaScript is an interpreted language: the statements

are translated one at a time at execution time. In contrast, Java and C programs are compiled, that

is, completely translated all at once, with the result stored for later use. Some of us are not so strict

and use the terms script, program, application, or, simply, file for HTML documents with JavaScript.

Figure 7-1 shows the opening screen for both the all-in-one program and the first script of the second

program.

Figure 7-1. Opening screen for the maze game

Figure 7-2 shows the screen after some fairly sloppy walls have been placed on the canvas.

MAZES

215

Figure 7-2. Walls for a maze

Figure 7-3 shows the screen after the player has used the arrow keys to move the token into the maze.

Figure 7-3. Moving the token inside the maze

If the player wants to save a set of walls, he or she types in a name and clicks on the button. To retrieve

the walls, which are added to whatever is currently on the canvas, the player types in a name and presses

the GET SAVED WALLS button. If there s nothing saved under that name, nothing happens.

CHAPTER 7

216

The two-script application has the second script present the player with a choice. Figure 7-4 shows the

opening screen.

Figure 7-4. Opening screen of the travelmaze script

The two-script application assumes that someone has used the first script to create and save three

mazes with the specific names used in the second script. Furthermore, the same browser must be used

for creating a maze and for the travel maze activities. I do this to demonstrate the local storage facility of

HTML5, which is similar to cookies—a way for Web application developers to store information about

users.

Note: Cookies, and now HTML5 localStorage, are the basis of what is termed behavioral marketing.

They bring convenience to us—we don't have to remember certain items of information such as

passwords—but they are also a way to be tracked and the target of sales. I am not taking a position

here, just noting the facility.

Figure 7-5 shows an easy maze.

MAZES

217

Figure 7-5. An easy maze

Figure 7-6 shows a slightly more difficult maze.

Figure 7-6. A moderate maze

Figure 7-7 shows a more difficult maze, more difficult mainly because the player needs to move away from

the first entry point toward the bottom of the maze to make it through. Of course, it is up to the

player/creator to design the mazes.

CHAPTER 7

218

Figure 7-7. A harder maze

One important feature is that in the two-script application, clicking the GET maze button forces the current

maze to be erased and the newly selected maze to be drawn. This is different from what happens in either

the all-in-one program or the creation part of the second version, when old walls are added to what is

present. As has been the case for the other examples, these are just stubs of programs, created to

demonstrate HTML5 features and programming techniques. There is much opportunity for improvement to

make the projects your own.

Critical requirements
The maze application requires the display of a constantly updated game board, as new walls are erected

and the token is moved.

The maze-building task requires responding to mouse events to collect the information needed to build a

wall. The application displays the wall being built.

The maze-traveling task requires responding to the arrow keys to move the token. The game must not

allow the token to cross any wall.

The save and retrieve operations require the program to encode the wall information, save it on the local

computer, and then retrieve it and use it to create and display the saved walls. Mazes are moderately

complex structures: a set of some number of walls, with each wall defined by starting and ending

coordinates, that is, pairs of numbers representing x,y positions on the canvas. For the local storage

facility to be used, this information has to be turned into a single string of characters.

The two-document version makes use of radio buttons to select a maze.

MAZES

219

HTML5, CSS, and JavaScript features
Now let s take a look at the specific features of HTML5 and JavaScript that provide what we need to

implement the maze application. This builds on material covered in previous chapters: the general

structure of an HTML document; using programmer-defined functions, including programmer-defined

objects; drawing paths made up of line segments on a canvas element; programmer objects; and arrays.

Previous chapters have addressed mouse events on the canvas (the cannonball and slingshot games in

Chapter 4 and the memory game in Chapter 5) and mouse events on HTML elements (the quiz games in

Chapter 6). New features we ll be covering include a different type of event: getting input from a player

pressing on the arrow keys, called keystroke capture; and using local storage to save information on the

local computer, even after the browser has been closed and the computer turned off. Remember, you can

skip ahead to the “Building the Application” section to see all the code with comments and return to this

section to read explanations of individual features and techniques.

Representation of walls and the token

To start, we ll define a function, Wall, to define a wall object, and another function, Token, to define a

token object. We ll define these functions in a more general manner than required by this application, but I

believe this is okay: the generality does not affect much, if anything, in terms of performance, while giving

us the freedom to use the code for other applications, such as a game with different playing pieces. I

chose the pentagon shape because I liked it, and use mypent as the variable name for the playing piece.

The properties defined for a wall consist of the start and finish points specified by the mouse actions. I

name these sx, sy, fx, and fy. The wall also has a width and a strokestyle string, and a draw method is

specified as drawAline. The reason this is more general than necessary is because all walls will have the

same width and style string, and all will use the drawAline function. When it comes time to save the walls

to local storage, I save only the sx, sy, fx, and fy values. You can use the same techniques to encode

more information if and when you write other programs and need to store values.

The token that moves around the maze is defined by a call to the Token function. This function is similar to

the Polygon function defined for the polygon memory game. The Token function stores the center of the

token, sx and sy, along with a radius (rad), number of sides (n), a fillstyle, and it links to the

drawtoken function for the draw method and the movetoken function for the moveit method. In addition,

a property named angle is computed immediately as (2*Math.PI)/n. Recall that in the radian system for

measuring angles, 2*Math.PI represents a full circle, so this number divided by the number of sides will be

the angle from the center to the ends of each side.

As was the case with previous applications (see Chapter 4), after an object is created, the code adds it to

the everything array. I also add all walls to the walls array. It is this array that is used to save the wall

information to local storage.

Mouse events to build and position a wall

Recall that in previous chapters we used HTML5 and JavaScript to define an event and specify an event

handler. The init function contains code that sets up event handling for the player pressing the main

mouse button, moving the mouse, and releasing the button.

canvas1 = document.getElementById('canvas');
canvas1.addEventListener('mousedown',startwall,false);

CHAPTER 7

220

canvas1.addEventListener('mousemove',stretchwall,false);
canvas1.addEventListener('mouseup',finish,false);

We ll also use a variable called inmotion to keep track of whether or not the mouse button is down. The

startwall function determines the mouse coordinates (see Chapters 4 and 5 for accessing the mouse

coordinates after an event), creates a new Wall object with a reference stored in the global variable

curwall, adds the wall to the everything array, draws all the items in everything, and sets inmotion to

be true. If inmotion is not true, then the stretchwall function returns immediately without doing

anything. If inmotion is true, the code gets the mouse coordinates and uses them to set the fx and fy

values of curwall. This happens over and over as the player moves the mouse with the button pressed

down. When the button is released, the function finish is called. This function sets inmotion back to

false and adds the curwall to an array called walls.

Detecting the arrow keys

Detecting that a key on the keyboard has been pressed and determining which one is called capturing a

key stroke. This is another type of event that HTML5 and JavaScript can handle. We need to set up a

response to a key event, which is analogous to setting up a response to a mouse event. The coding starts

with invoking the addEventListener method, this time for the window:

window.addEventListener('keydown',getkeyAndMove,false);

The window is the object that holds the document defined by the HTML file. The third parameter, which

could be omitted because false is the default, relates to the order of responding to the event by other

objects. It isn't an issue for this application.

This means the getkeyAndMove function will be invoked if and when a key is pressed.

Tip: Event handling is a big part of programming. Event-based programming is often more complex

than demonstrated in this book. For example, you may need to consider if a contained object or a

containing object also should respond to the event, or what to do if the user has multiple windows

open. Devices such as cell phones can detect events such as tilting or shaking or using your fingers

to stroke the screen. Incorporating video may involve invoking certain actions when the video is

complete. HTML5 JavaScript is not totally consistent in handling events (setting up a time out or a

time interval does not use addEventListener), but at this point, you know enough to do research to

identify the event you want, try multiple possibilities to figure out what the event needs to be

associated with (e.g., the window or a canvas element or some other object), and then write the

function to be the event handler.

Now, as you may expect at this point, the coding to get the information for which key was pressed

involves different code for different browsers. The following code, with two ways to get the number

corresponding to the key, works in all current browsers recognizing other new features in HTML5:

if(event == null)
 {
 keyCode = window.event.keyCode;
 window.event.preventDefault();
 }
 else

MAZES

221

 {
 keyCode = event.keyCode;
 event.preventDefault();
 }

The preventDefault method does what it sounds like: prevents any default action, such as a special

shortcut action that is associated with the particular key in the particular browser. The only keys of

interest in this application are the arrow keys. The following switch statement moves the Token

referenced by the variable mypent; that is, the location information is changed so that the next time

everything is drawn, the token will move. (This isn't quite true. The moveit function contains a collision

check to make sure we don t hit any walls first, but that will be described later.)

switch(keyCode)
 {
 case 37: //left arrow
 mypent.moveit(-unit,0);
 break;
 case 38: //up arrow
 mypent.moveit(0,-unit);
 break;
 case 39: //right arrow
 mypent.moveit(unit,0);
 break;
 case 40: //down arrow
 mypent.moveit(0,unit);
 break;
 default:
 window.removeEventListener('keydown',getkeyAndMove,false);
}

Tip: Do put comments in your code as demonstrated by the comments indicating the keyCode for the

different arrow keys. The examples in this book don't have comments because I ve supplied an

explanation for every line of code in the relevant tables, so this is a case of do as I say, not as I

(mostly) do. Comments are critical for team projects and for reminding you of what s going on when

you return to old work. In JavaScript, you can use the // to indicate that the rest of the line is a

comment or surround multiple lines with /* and */. Comments are ignored by the JavaScript

interpreter.

How did I know that the keycode for the left arrow was 37? You can look up keycodes on the Web (for

example, www.w3.org/2002/09/tests/keys.html) or you can write code that issues an alert statement:

 alert(" You just pressed keycode "+keyCode);

The default action for our maze application, which occurs when the key is not one of the four arrow keys,

stops event handling on key strokes. The assumption here is that the player wants to type in a name to

save or retrieve wall information to or from local storage. In many applications, the appropriate action to

take would be a message, possibly using alert, to let the user know what the expected keys are.

http://www.w3.org/2002/09/tests/keys.html

CHAPTER 7

222

Collision detection: token and any wall

To traverse a maze, the player must not move the token across any wall. We will enforce this restriction by

writing a function, intersect, that returns true if a circle with given center and radius intersects a line

segment. For this task, we need to be exacting in our language: a line segment is part of a line, going from

sx, sy to fx, fy. Each wall corresponds to a finite line segment. The line itself is infinite. The intersect

function is called for each wall in the array walls.

Tip: My explanation of the mathematics in the intersection calculation is fairly brief, but may be

daunting if you haven t done any math in a while. Feel free to skip over it and accept the coding as is

if you don t want to work through it.

The intersect function is based on the idea of a parameterized line. Specifically, the parameterized form

of a line is (writing mathematical formula, as opposed to code)

Equation a: x = sx + t*(fx-sx);

Equation b: y = sy + t*(fy-sy);

As parameter t goes from 0 to 1, the x and y take on the corresponding values of x, y on the line segment.

The goal is to determine if a circle with center cx,cy and radius rad overlaps the line segment. One way to

do this is to determine the closest point on the line to cx,cy and see if the distance from that point is less

than rad. In Figure 7-8, you see a sketch of part of a line with the line segment depicted with a solid line

and the rest of what is shown of the line indicated by dots. The value of t at one end is 0 and the other end

is 1.There are two points c1x,c1y and c2x, c2y. The c1x,c1y point is closest to the line outside the critical

line segment. The point c2x,c2y is closest somewhere in the middle of the line segment. The value of t

would be between 0 and 1.

Figure 7-8. A line segment and two points

The formula for the distance between the two points (x,y) and (cx,cy) is

 distance = ((cx-x)*(cx-x)+(cy-y)*(cy-y)).5

Substituting for x and for y using equations a and b, we get a formula for distance.

Equation c: distance = ((cx-sx+t*(fx-sx))*(cx- sx + t*(fx-sx))+(cy- sy + t*(fy-
sy))*(cy- sy + t*(fy-sy))).5

MAZES

223

For our purposes, we want to determine the value of t when distance is at a minimum. Lessons from

calculus and reasoning about minimum versus maximum in this situation tell us first that we can use the

distance squared in place of the distance and so avoid taking square roots. Moreover, the value is at a

minimum when the derivative (with respect to t) is zero. Taking the derivative and setting that expression

to zero, produces the value of t at which the cx,cy is closest to the line. In the code, we define two extra

variables, dx and dy, to make the expressions simpler.

 dx = fx-sx

 dy = fy-sy;

 t= 0.0 –((sx-cx)*dx+(xy-cy)*dy)/((dx*dx)+(dy*dy))

This will produce a value for t. The 0.0 is used to force the calculations to be done as floating point

numbers (numbers with fractional parts, not restricted to whole numbers).

We use equations a and b to get the x,y point corresponding to the value of t. This is the x,y closest to

cx,cy. If the value of t is less than 0, we check the value for t = 0, and if it is more than 1, we check the

value for t = 1. This means that the closest point was not a point on the line segment, so we will check the

appropriate end of the line segment closest to that point.

Is the distance from cx,cy to the closest point close enough to be called a collision? We again use

distance squared and not distance. We evaluate the distance squared from cx, cy to the computed x,y. If

it is less than the radius squared, there is an intersection of the circle with the line segment. If not, there is

no intersection. Using the distance squared does not make a difference: if there is a minimum for the value

squared, then there is a minimum for the value.

Now the very good news here is that most of the equations are not part of the coding. I did the work

beforehand of determining the expression for the derivative. The intersect function follows, with

comments:

function intersect(sx,sy,fx,fy,cx,cy,rad) {
 var dx;
 var dy;
 var t;
 var rt;
 dx = fx-sx;
 dy = fy-sy;
 t =0.0-((sx-cx)*dx+(sy-cy)*dy)/((dx*dx)+(dy*dy)); //closest t
 if (t<0.0) { //closest beyond the line segment at the start
 t=0.0; }
 else if (t>1.0) { //closest beyond the line segment at the end
 t = 1.0;
 }

 dx = (sx+t*(fx-sx))-cx; // use t to define an x coordinate
 dy = (sy +t*(fy-sy))-cy; // use t to define a y coordinate
 rt = (dx*dx) +(dy*dy); //distance squared
 if (rt<(rad*rad)) { // closer than radius squared?
 return true; } // intersect
else {

CHAPTER 7

224

 return false;} // does not intersect
}

In our application, the player presses an arrow key and, based on that key, the next position of the token

is calculated. We call the intersect function to see if there would be an intersection of the token

(approximated as a circle) and a wall. If intersect returns true, the token is not moved. The checking

stops as soon as there is an intersection. This is a common technique for collision checking.

Using local storage

The Web was originally designed for files being downloaded from the server to the local, so-called client

computer for viewing, but with no permanent storage on the local computer. Over time, people and

organizations building web sites decided that some sort of local storage would be advantageous. So,

someone came up with the idea of using small files called cookies to keep track of things, such as user

IDs stored for the convenience of the user as well as the web site owner. The use of cookies, Flash's

shared objects, and now HTML5 local storage has grown considerably with the commercial Web. Unlike

the situation for the applications shown here, the user often does not know that information is being stored

and by whom, and for what purpose the information is accessed.

The localStorage facility of HTML5 is browser-specific. That is, a maze saved using Chrome is not

available to someone using FireFox.

Let s take a closer look at using local storage by examining a small application that saves date and time

information. Local storage and the Date function, introduced in Chapter 1, provide a way to store

date/time information. Think of local storage as a database in which strings of characters are stored, each

under a specific name. The name is called the key, the string itself is the value, and the system is called

key/value pairs. The fact that local storage just stores strings is a restriction, but the next section shows

how to work around it.

Figure 7-9 shows a screen shot from the opening screen of a simple date saving application.

Figure 7-9. A simple save date application

The user has three options: store information on the current date and time, retrieve the last information

saved, and remove the date information. Figure 7-10 shows what happens when clicking “Retrieve date

info” the very first time using this application (or after the date has been removed).

Figure 7-10. Data not yet saved or after removal

MAZES

225

Our application uses a JavaScript alert box to show a message. The user needs to click the OK button to

remove the alert box from the screen.

Figure 7-11 shows the message after a user clicks the Store date info button.

Figure 7-11. After storing date information

If the user later clicks on the Retrieve date info button, he ll see a message similar to Figure 7-12.

Figure 7-12. Retrieving the stored date information

You can give your players a way to remove the stored information using a Remove date info button. Figure

7-13 shows the result.

Figure 7-13. After removing stored information

HTML5 lets you save, fetch, and remove a key/value pair, using methods for the built-in object

localStorage.

CHAPTER 7

226

The command localStorage.setItem("lastdate",olddate) sets up a new key/value pair or replaces

any previous one with the key equal to lastdate. The statement

 last = localStorage.getItem("lastdate");

assigns the fetched value to the variable last. In the code for our simple example, we just display the

results. You can also check for something being null and provide a friendlier message.

The command localStorage.removeItem("lastdate") removes the key/value pair with lastdate as

the key.

For our simple date application, we set the onClick attribute of each button object to be some JavaScript

code. For example:

<button onClick="javascript:store();">Store date info. </button>

causes store() to be invoked when the button is clicked.

You may be wondering if anyone can read any of the saved information in local storage. The answer is that

access to each key/value pair in localStorage (and in other types of cookies) is restricted to the Web

site that stored the information. This is a security feature.

The Chrome browser allows testing of local storage with HTML5 scripts stored on the local computer.

Firefox does not. This means that to test these applications in Firefox, you ll need to upload the file to a

server.

Because browsers may not support local storage or there may be other problems such as exceeding limits

set by the user for local storage and cookies, it is a good practice to include some error checking. You can

use the JavaScript function typeof to check if localStorage is accepted by the browser:

if (typeof(localStorage)=="undefined")

Figure 7-14 shows the result of loading the date application and clicking on the Store date info button in an

old version of Internet Explorer. (By the time you read this book, the latest version of IE may be out and

this will not be a problem.)

Figure 7-14. The browser didn t recognize localStorage.

JavaScript also provides a general mechanism for avoiding the display of errors. The compound

statement try and catch will try to execute some code and if it doesn t work, go to the catch clause.

try {
 olddate = new Date();
 localStorage.setItem("lastdate",olddate);

7

MAZES

227

 alert("Stored: "+olddate);
 }
 catch(e) {
 alert("Error with use of local storage: "+e);}
}

If you removed the if (typeof(localStorage) test and tried the code in the old IE, you d see the

message shown in Figure 7-15.

Figure 7-15. Browser error, caught in a try/catch

The Table 7-1 shows the complete date application. Remember: you may need to upload this to a server to

test it.

Table 7-1. Complete Code for the Date Application

Code Explanation

<html> Opening html tag

<head> Opening head tag

<title>Local Storage test</title> Complete title

<script> Opening script

function store() { Store function header

 if (typeof(localStorage) == "undefined") { Check if localStorage recognized

 alert("Browser does not recognize HTML local
storage.");

Display alert message

} Close if clause

else { Else

CHAPTER 7

228

Code Explanation

 try { Set up try clause

 olddate = new Date(); Define new Date

 localStorage.setItem("lastdate",olddate); Store in local storage using the

key "lastdate"

 alert("Stored: "+olddate); Display message to show what

was stored

 } Close try clause

 Catch(e) { Start catch clause: if there was a

problem

 alert("Error with use of local storage:
"+e);}

Display message

} Close try clause

Return false; Return false to prevent any

page refresh

} Close function

 function remove() { Remove function header

 if (typeof(localStorage) == "undefined")
{

Check if localStorage

recognized

 alert("Browser does not recognize HTML
local storage.");

Display alert message

} Close if clause

else { Else

 localStorage.removeItem('lastdate'); Remove the item stored using the

key 'lastdate'.

 alert("Removed date stored."); Display message indicating what

was done

MAZES

229

Code Explanation

 } Close clause

 return false; Return false to prevent page

refresh.

 } Close function

 function fetch() { Fetch function header

 if (typeof(localStorage) == "undefined")
{

Check if localStorage

recognized.

 alert("Browser does not recognize HTML
local storage.");

Display alert message

} Close if clause

else { Else

 alert("Stored
"+localStorage.getItem('lastdate'));

Fetch the item stored under the

key 'lastdate' and display it.

 } Close clause

 return false; Return false to prevent page

refresh.

 } Close function

</script> Close script element

</head> Close head element

<body> Opening body tag

<button onClick="javascript:store();">Store date info
</button>

Button for storing

<button onClick="javascript:fetch();">Retrieve date
info </button>

Button for retrieving, that is,

fetching the stored data.

<button onClick="javascript:remove();">Remove date
info </button>

Button for removing

CHAPTER 7

230

Code Explanation

</body> Closing body tag

</html> Closing html tag

Combining the Date function with localStorage lets you do many things. For example, you can calculate

the elapsed time between a player s current and last use of the application or, perhaps, the player winning

two games. In Chapter 5, we used Date to compute the elapsed time using the getTime method. Recall

that getTime stores the number of milliseconds from January 1, 1970. You can convert that value to a

string, store it, and then when you fetch it back, do arithmetic to calculate elapsed time.

The localStorage key/value pairs last until they are removed, unlike JavaScript cookies, for which you can

set a duration.

Encoding data for local storage

For simplicity s sake, the first application consists of just one HTML document. You can use this version

to create mazes, store and retrieve them, and move the token through the maze. The second version of

the application involves two HTML documents. One script is the same as the first application and can be

used for building, traversing, and saving mazes as well as traveling each maze. The second script is just

for traveling one of a fixed list of saved mazes. A set of radio buttons allows the player to pick from easy,

moderate, and hard options, assuming someone has created and saved mazes with the names

easymaze, moderatemaze, and hardmaze. These names can be anything you want and as many as you

want. You just need to be consistent between what you create in one program and what you reference in

the second program.

Now let's address the issue that localStorage just stores character strings. The applications described

here must store enough information about the walls so that these walls can be added to the canvas. In the

one-document version, the old walls are actually added to whatever is on the canvas. The two-document

version erases any old maze and loads the requested one. I use two forms, each with an input field for the

name and a submit button. The player chooses the name for saving a maze and must remember it for

retrieving.

The data to be stored is a character string, that is, a piece of text. We will create the text holding the

information for a set of walls by doing the following for each wall:

• Combine the sx, sy, fx, fy into an array called w for a single wall.

• Using the join method, use the w array to generate a string separated by + signs.

• Add each of these strings to an array called allw, for all the walls.

• Using the join method again, use the allw array to produce a string called sw.

The sw string variable will hold all the coordinates (four numbers for each wall) for all the walls. The next

step is to use the localStorage.setItem method to store sw under the name given by the player. We do

this using the try and catch construction explained in the last section.

try {
 localStorage.setItem(lsname,sw);
}

MAZES

231

catch (e) {
 alert("data not saved, error given: "+e);
}

This is a general technique that will try something, suppress any error message, and if there is an error, it

will invoke the code in the catch block.

Note: This may not always work as you intend. For example, when executing this application on

Firefox directly on a computer, as opposed to a file downloaded from a server, the localStorage

statement does not cause an error, but nothing is stored. This code does work when the HTML file is

downloaded from a server using Firefox and the creation script works both as a local file and when

downloaded using Chrome. The two-script version must be tested using a server for each of the

browsers.

Retrieving the information works in a corresponding way. The code extracts the name given by the player

to set the variable lsname and then uses

 swalls = localStorage.getItem(lsname);

to set the variable swalls. If this is not null, we use the string method split to do the opposite of join:

split the string on the symbol given (we split at every semicolon) and assign the values to the successive

elements of an array. The relevant lines are

wallstgs = swalls.split(";");

and

 sw = wallstgs.split("+");

Next, the code uses the information just retrieved and the fixed information for wall width and wall style to

create a new Wall object:

curwall = new Wall(sx,sy,fx,fy,wallwidth,wallstyle);

Finally, there is code to add curwall to both the everything array and the walls array.

Radio buttons

Radio buttons are sets of buttons in which only one member of the set can be selected. If the player

makes a new choice, the old choice is deselected. They are an appropriate choice for the

hard/moderate/easy selection for this application. Here s the HTML markup in the <body> section:

<form name="gf" onSubmit="return getwalls()" >

<input type="radio" value="hard" name="level" />Hard

<input type="radio" value="moderate" name="level" />Moderate

<input type="radio" value="easy" name="level" />Easy

<input type="submit" value="GET maze"/>

</form>

CHAPTER 7

232

Notice that all three input elements have the same name. This is what defines the group of buttons of

which only one may be selected. In this case, the markup creates an array called level. The getwalls

function will be shown in full in the next section. It is similar to the function in the all-in-one script.

However, in this case, the name of the localStorage item is determined from the radio buttons. The code

is

for (i=0;i<document.gf.level.length;i++) {
 if (document.gf.level[i].checked) {
 lsname= document.gf.level[i].value+"maze";
 break;
 }
}

The for loop iterates over all the input items. The if test is based on the checked attribute. When it

detects a true condition, the variable lsname is constructed from the value attribute of that item, and the

break; statement causes execution to leave the for loop. If you want your radio buttons to start with

one of the items checked, use code like this:

<input type="radio" value="easy" name="level" checked />

or

<input type="radio" value="easy" name="level" checked="true" />

Building the application and making it your own
Now let s take a look at the coding for the maze applications, first the all-in-one script and then the second

script of the two-script version.

Table 7-2 shows the functions in the script for creating, saving, and retrieving, and traveling the maze.

Notice that much of the invoking of functions is done through event handling: onLoad, onSubmit ,

addEventListener calls. These do not invoke the functions directly or immediately, but set up the call to

be made when the indicated event occurs.

Table 7-2. Functions in the Maze Application

Function Invoked By / Called By Calls

init Invoked by action of onLoad in body tag drawall

drawall init
startwall
stretchwall
getkeyAndMove
getwalls

draw method for Walls and

for token: drawtoken and

drawAline

Token var statement declaring mypent

Wall startwall

MAZES

233

Function Invoked By / Called By Calls

drawtoken drawall using draw method for the token object in the

everything array

movetoken getkeyAndMove using the moveit method for mypent intersect

drawAline drawall using draw method for Wall objects in the
everything array

startwall Invoked by action of an addEventListener call in init drawall

stretchwall Invoked by action of an addEventListener call in init drawall

finish Invoked by action of an addEventListener call in init

getkeyAndMove Invoked by action of an addEventListener call in init movetoken using the
moveit method for mypent

savewalls Invoked by action of onSubmit for the sf form

getwalls Invoked by action of onSubmit for the gf form drawall

Table 7-3 shows the complete code for the maze application, with comments.

Table 7-3. Complete Code for the All-in-one Maze Application

Code Explanation

<html> Opening html tag

<head> Opening head tag

 <title>Build maze & travel maze</title> Complete title element

 <script type="text/javascript"> Opening script tag

 var cwidth = 900; To clear canvas

 var cheight = 350; To clear canvas

 var ctx; To hold canvas context

CHAPTER 7

234

Code Explanation

 var everything = []; To hold everything

 var curwall; For wall in progress

 var wallwidth = 5; Fixed wall width

 var wallstyle = "rgb(200,0,200)"; Fixed wall color

 var walls = []; Hold all walls

 var inmotion = false; Flag while wall being built by dragging

 var unit = 10; Unit of movement for token

function Token(sx,sy,rad,stylestring,n) { Function header to build token

 this.sx = sx; Set sx property

 this.sy = sy; … sy

 this.rad = rad; … rad (radius)

 this.draw = drawtoken; Set the draw method

 this.n = n; … n number of sides

 this.angle = (2*Math.PI)/n Compute and set angle

 this.moveit = movetoken; Set moveit method

 this.fillstyle = stylestring; Set color

} Close function

function drawtoken() { Function header drawtoken

 ctx.fillStyle=this.fillstyle; Set color

 var i; Index

 var rad = this.rad; Set rad

MAZES

235

Code Explanation

 ctx.beginPath(); Begin path

 ctx.moveTo(this.sx+rad*Math.cos
(-.5*this.angle),this.sy+rad*Math.sin
(-.5*this.angle));

Move to first vertex of the token polygon

(which is a pentagon)

 for (i=1;i<this.n;i++) { For loop to draw the n sides of the

token: 5 sides in this case

 ctx.lineTo(this.sx+rad*Math.cos
((i-.5)*this.angle),this.sy+rad*Math.sin
((i-.5)*this.angle));

Specify line to next vertex, setting up the

drawing of a side of the pentagon

 } Close for

 ctx.fill(); Draw token

} Close function

function movetoken(dx,dy) { Function header

 this.sx +=dx; Increment x value

 this.sy +=dy; Increment y value

 var i; Index

 var wall; Used for each wall

 for(i=0;i<walls.length;i++) { Loop over all walls

 wall = walls[i]; Extract ith wall

 if (intersect(wall.sx,
wall.sy,wall.fx,wall.fy,this.sx,this.sy,
this.rad)) {

Check for intersect. If there is an

intersection between the new position of

the token and this specific wall

 this.sx -=dx; … change x back—don't make this move

 this.sy -=dy; … change y back—don't make this move

 break; Leave for loop because it isn't

necessary to do any more checking if

there is a collision with one wall.

CHAPTER 7

236

Code Explanation

 } Close if true clause

 } Close for loop

} Close function

function Wall(sx,sy,fx,fy,width,stylestring) { Function header to make Wall

 this.sx = sx; Set up sx property

 this.sy = sy; … sy

 this.fx = fx; … fx

 this.fy = fy; … fy

 this.width = width; … width

 this.draw = drawAline; Set draw method

 this.strokestyle = stylestring; … strokestyle

} Close function

function drawAline() { Function header drawAline

 ctx.lineWidth = this.width; Set the line width

 ctx.strokeStyle = this.strokestyle; Set the strokestyle

 ctx.beginPath(); Begin path

 ctx.moveTo(this.sx,this.sy); Move to start of line

 ctx.lineTo(this.fx,this.fy); Set line to finish

 ctx.stroke(); Draw the line

} Close function

var mypent = new
Token(100,100,20,"rgb(0,0,250)",5);

Set up mypent as a pentagonal shape to

be the playing piece

everything.push(mypent); Add to everything

MAZES

237

Code Explanation

function init(){ Function header init

 ctx = document.getElementById
('canvas').getContext('2d');

Define the ctx (context) for all drawing

 canvas1 = document.getElementById('canvas'); Define canvas1, used for events

 canvas1.addEventListener('mousedown',
startwall,false);

Set up handling for mousedown

 canvas1.addEventListener('mousemove',
stretchwall,false);

Set up handling for mousemove

 canvas1.addEventListener('mouseup',finish,
false);

Set up handling for mouseup

 window.addEventListener('keydown',
getkeyAndMove,false);

Set up handling for use of the arrow keys

 drawall(); Draw everything

} Close function

function startwall(ev) { Function header startwall

 var mx; Hold mouse x

 var my; Hold mouse y

 if (ev.layerX || ev.layerX == 0) { Can we use layerX to determine the

position of the mouse? Necessary

because browsers are different.

 mx= ev.layerX; Set mx

 my = ev.layerY; Set my

 } else if (ev.offsetX
 || ev.offsetX == 0) {

Else can we use offsetX?

 mx = ev.offsetX; Set mx

 my = ev.offsetY; Set my

CHAPTER 7

238

Code Explanation

 } Close clause

 curwall = new
Wall(mx,my,mx+1,my+1,wallwidth,wallstyle);

Create new wall. It is small at this point.

 inmotion = true; Set inmotion to true

 everything.push(curwall); Add curwall to everything

 drawall(); Draw everything

} Close function

function stretchwall(ev) { Function header stretchwall to that

uses the dragging of the mouse to

stretch out a wall while the mouse is

dragged.

 if (inmotion) { Check if inmotion

 var mx; Hold mouse x

 var my; Hold mouse y

 if (ev.layerX || ev.layerX == 0) { Can we use layerX?

 mx= ev.layerX; Set mx

 my = ev.layerY; Set my

 } else if (ev.offsetX
 || ev.offsetX == 0) {

Else can we use offsetX? This is

necessary for different browsers.

 mx = ev.offsetX; Set mx

 my = ev.offsetY; Set my

 } Close clause

 curwall.fx = mx; Change curwall.fx to mx

 curwall.fy = my; Change curwall.fy to my

MAZES

239

Code Explanation

 drawall(); Draw everything (will show growing wall)

 } Close if inmotion

} Close function

function finish(ev) { Function header finish

 inmotion = false; Set inmotion to false

 walls.push(curwall); Add curwall to walls

} Close function

function drawall() { Function header drawall

 ctx.clearRect(0,0,cwidth,cheight); Erase whole canvas

 var i; Index

 for (i=0;i<everything.length;i++) { Loop through everything

 everything[i].draw(); Draw everything

 } Close loop

} Close function

function getkeyAndMove(event) { Function header getkeyAndMove

 var keyCode; Hold keyCode

 if(event == null) { If event null

 keyCode = window.event.keyCode; Get keyCode using window.event

 Window.event.preventDefault(); Stop default action

 } Close clause

 else { Else

CHAPTER 7

240

Code Explanation

 keyCode = event.keyCode; Get keyCode from event

 event.preventDefault(); Stop default action

 } Close clause

 switch(keyCode) { Switch on keyCode

 case 37: If left arrow

 mypent.moveit(-unit,0); Move back horizontally

 break; Leave switch

 case 38: If up arrow

 mypent.moveit(0,-unit); Move up screen

 break; Leave switch

 case 39: If right arrow

 mypent.moveit(unit,0); Move left

 break; Leave switch

 case 40: If down arrow

 mypent.moveit(0,unit); Move down screen

 break; Leave switch

 Default: Anything else

 window.removeEventListener('keydown',
getkeyAndMove,false);

Stop listening for keys. Assume player

trying to save to local storage or retrieve

from local storage.

 } Close switch

 Drawall(); Draw everything

MAZES

241

Code Explanation

 } Close function

 Function intersect(sx,sy,fx,fy,cx,cy,rad) { Function header intersect

 var dx; For intermediate value

 var dy; For intermediate value

 var t; For expression in t

 var rt; For holding distance squared

 dx = fx-sx; Set x difference

 dy = fy-sy; Set y difference

 t =0.0-((sx-cx)*dx+(sy-cy)*dy)/
((dx*dx)+(dy*dy));

Taking the formula for the distance

squared from each point to cx,cy. Take

derivative and solve for 0.

if (t<0.0) { If closest is at t <0

 t=0.0; } Check at 0 (this will be further)

else if (t>1.0) { If closest is at t>1

 t = 1.0; Check at 1 (this will be further)

 } Close clause

dx = (sx+t*(fx-sx))-cx; Compute difference at this value of t

dy = (sy +t*(fy-sy))-cy; Compute difference at this value of t

rt = (dx*dx) +(dy*dy); Compute distance squared

if (rt<(rad*rad)) { Compare to rad squared

 Return true; } Return true

else { Else

CHAPTER 7

242

Code Explanation

 Return false;} Return false

} Close function

function savewalls() { Function savewalls header

 var w = []; Temporary array

 var allw=[]; Temporary array

 var sw; Hold final string

 var onewall; Hold intermediate string

 var i; Index

 var lsname = document.sf.slname.value; Extract player's name for the local

storage

 for (i=0;i<walls.length;i++) { Loop over all walls

 w.push(walls[i].sx); Add sx to w array

 w.push(walls[i].sy); Add sy to w array

 w.push(walls[i].fx); Add fx to w array

 w.push(walls[i].fy); Add fy to w array

 onewall = w.join("+"); Make a string

 allw.push(onewall); Add to allw array

 w = []; Reset w to empty array

 } Close loop

 sw = allw.join(";"); Now make allw into a string

 try { Try

 localStorage.setItem(lsname,sw); Save localStorage

MAZES

243

Code Explanation

 } End try

 catch (e) { If a catchable error

 alert("data not saved,
 error given: "+e);

Display message

 } End catch clause

 return false; Return false to avoid refresh

} Close function

function getwalls() { Function header getwalls

 var swalls; Temporary storage

 var sw; Temporary storage

 var i; Index

 var sx; Hold the sw value

 var sy; Hold the sy value

 var fx; Hold the fx value

 var fy; Hold the fy value

 var curwall; Hold walls being created

 var lsname = document.gf.glname.value; Extract player's name for storage to be

retrieved

 swalls=localStorage.getItem(lsname); Get the storage

 if (swalls!=null) { If something was fetched

 wallstgs = swalls.split(";"); Split to make an array

 for (i=0;i<wallstgs.length;i++) { Loop through this array

CHAPTER 7

244

Code Explanation

 sw = wallstgs[i].split("+"); Split individual item

 sx = Number(sw[0]); Extract 0th value and convert to number

 sy = Number(sw[1]); …1st

 fx = Number(sw[2]); …2nd

 fy = Number(sw[3]); ...3rd

 curwall = new
Wall(sx,sy,fx,fy,wallwidth,wallstyle);

Create new Wall using extracted and

fixed values

 walls.push(curwall); Add to walls array

 everything.push(curwall); Add to everything array

 } Close loop

 drawall(); Draw everything

 } Close if not null

 Else { Was null

 alert("No data retrieved."); No data

 } Close clause

 window.addEventListener('keydown',
getkeyAndMove,false);

Set up keydown action

 return false; Return false to prevent refresh

} Close function

</head> End head element

<body onLoad="init();" > Start body, set up call to init

<canvas id="canvas" width="900" height="350"> Canvas tag

Your browser doesn't support the HTML5 element
canvas.

Warning for certain browser.

MAZES

245

Code Explanation

</canvas> Close canvas

 Line break

Press mouse button down, drag
 and release to make a wall.

Instructions

Use arrow keys to move token.
 Instructions and line break

Pressing any other key will stop key
 capture and allow you to save the
 maze locally.

Instructions

<form name="sf" onSubmit="return savewalls()" > Form tag, set up call to savewalls

To save your maze, enter in a name and
 click on the SAVE WALLS button.

Instructions

Name: <input name="slname" value="maze_name"
type="text">

Label and input field

<input type="submit" value="SAVE WALLS"/> Submit button

</form> Close form

<form name="gf" onSubmit="return
 getwalls()" >

Form tag, set up call to getwalls

To add old walls, enter in the name and
 click on the GET SAVED WALLS button.

Instructions

Name: <input name="glname" value="maze_name"
type="text">

Label and input field

<input type="submit" value="GET
 SAVED WALLS"/>

Submit button

</form> Close form

</body> Close body

</html> Close html

CHAPTER 7

246

Creating the second maze application

The localStorage data can be accessed by a different application from the one that created the data, as

long as it is on the same server. This is a security feature, as mentioned previously, restricting readers of

local storage to scripts on the same server.

The second script is based on this feature. Table 7-4 shows the functions calling or being called; it is a

subset of the previous one.

Table 7-4. Functions in the Travel Maze Script

Function Invoked By / Called By Calls

init Invoked by action of onLoad in body tag drawall

drawall Init
startwall
stretchwall
getkeyAndMove
getwalls

draw method for Walls and for

token: drawtoken and

drawAline

Token var statement declaring mypent

Wall startwall

drawtoken drawall using draw method for the token object in

the everything array

movetoken getkeyAndMove using the moveit method for

mypent

intersect

drawAline drawall using draw method for Wall objects in the

everything array

getkeyAndMove Invoked by action of an addEventListener call in
init

movetoken using the moveit

method for mypent

getwalls Invoked by action of onSubmit for the gf form drawall

The functions are exactly the same as in the all-in-one script with one exception, the getwalls function,

so I ve only commented the new or changed code. This application also has radio buttons in place of the

form input fields. Table 7-5 shows the complete code for the travelmaze application.

MAZES

247

Table 7-5. Complete Code for the Travel Maze Script

 Code Explanation

<html>

<head>

 <title>Travel maze</title> Travel maze

 <script type="text/javascript">

 var cwidth = 900;

 var cheight = 350;

 var ctx;

 var everything = [];

 var curwall;

 var wallwidth = 5;

 var wallstyle = "rgb(200,0,200)";

 var walls = [];

 var inmotion = false;

 var unit = 10;

function Token(sx,sy,rad,stylestring,n) {

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawtoken;

 this.n = n;

CHAPTER 7

248

 Code Explanation

 this.angle = (2*Math.PI)/n

 this.moveit = movetoken;

 this.fillstyle = stylestring;

}

function drawtoken() {

 ctx.fillStyle=this.fillstyle;

 ctx.beginPath();

 var i;

 var rad = this.rad;

 ctx.beginPath();

 ctx.moveTo(this.sx+rad*Math.cos
(-.5*this.angle),this.sy+rad*Math.sin
(-.5*this.angle));

 for (i=1;i<this.n;i++) {

 ctx.lineTo(this.sx+rad*Math.cos
((i-.5)*this.angle),this.sy+rad*Math.sin
((i-.5)*this.angle));

 }

 ctx.fill();

}

function movetoken(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

 var i;

MAZES

249

 Code Explanation

 var wall;

 for(i=0;i<walls.length;i++) {

 wall = walls[i];

 if (intersect(wall.sx,wall.sy,
wall.fx,wall.fy,this.sx,this.sy,

this.rad)) {

 this.sx -=dx;

 this.sy -=dy;

 break;

 }

 }

}

function Wall(sx,sy,fx,fy,width,stylestring)
{

 this.sx = sx;

 this.sy = sy;

 this.fx = fx;

 this.fy = fy;

 this.width = width;

 this.draw = drawAline;

 this.strokestyle = stylestring;

}

function drawAline() {

CHAPTER 7

250

 Code Explanation

 ctx.lineWidth = this.width;

 ctx.strokeStyle = this.strokestyle;

 ctx.beginPath();

 ctx.moveTo(this.sx,this.sy);

 ctx.lineTo(this.fx,this.fy);

 ctx.stroke();

}

var mypent = new
Token(100,100,20,"rgb(0,0,250)",5);

everything.push(mypent);

function init(){

 ctx = document.getElementById('canvas')
.getContext('2d');

 window.addEventListener('keydown',
getkeyAndMove,false);

 drawall();

}

function drawall() {

 ctx.clearRect(0,0,cwidth,cheight);

 var i;

 for (i=0;i<everything.length;i++) {

 everything[i].draw();

 }

MAZES

251

 Code Explanation

}

function getkeyAndMove(event) {

 var keyCode;

 if(event == null)

 {

 keyCode = window.event.keyCode;

 window.event.preventDefault();

 }

 else

 {

 keyCode = event.keyCode;

 event.preventDefault();

 }

 switch(keyCode)

 {

 case 37: //left arrow

 mypent.moveit(-unit,0);

 break;

 case 38: //up arrow

 mypent.moveit(0,-unit);

 break;

CHAPTER 7

252

 Code Explanation

 case 39: //right arrow

 mypent.moveit(unit,0);

 break;

 case 40: //down arrow

 mypent.moveit(0,unit);

 break;

 default:

 window.removeEventListener
('keydown',getkeyAndMove,false);

 }

 drawall();

 }

 function intersect(sx,sy,fx,fy,cx,cy,rad) {

 var dx;

 var dy;

 var t;

 var rt;

 dx = fx-sx;

 dy = fy-sy;

 t =0.0-((sx-cx)*dx+(sy-
cy)*dy)/((dx*dx)+(dy*dy));

if (t<0.0) {

MAZES

253

 Code Explanation

 t=0.0; }

else if (t>1.0) {

 t = 1.0;

 }

dx = (sx+t*(fx-sx))-cx;

dy = (sy +t*(fy-sy))-cy;

rt = (dx*dx) +(dy*dy);

if (rt<(rad*rad)) {

 return true; }

else {

 return false;}

}

function getwalls() {

 var swalls;

 var sw;

 var i;

 var sx;

 var sy;

 var fx;

 var fy;

 var curwall;

CHAPTER 7

254

 Code Explanation

 var lsname;

 for
(i=0;i<document.gf.level.length;i++) {

Iterate through the radio buttons in the gf

form, level group

 if (document.gf.level[i].checked) { Is this radio button checked?

 lsname=
document.gf.level[i].value+"maze";

If so, construct the local storage name using

the value attribute of the radio button element

 break; Leave the for loop

 } Close if

} Close for

 swalls=localStorage.getItem(lsname); Fetch this item from local storage

 if (swalls!=null) { If it is not null, it is good data

 wallstgs = swalls.split(";"); Extract the string for each wall

 walls = []; Removes any old walls from walls array

 everything = []; Removes any old walls from everything

array

 everything.push(mypent); Do add the pentagon-shaped token called

mypent to everything

 for (i=0;i<wallstgs.length;i++) { Proceed to decode each wall. The remaining

code is the same as the all-in-one application.

 sw = wallstgs[i].split("+");

 sx = Number(sw[0]);

 sy = Number(sw[1]);

 fx = Number(sw[2]);

 fy = Number(sw[3]);

MAZES

255

 Code Explanation

 curwall = new
Wall(sx,sy,fx,fy,wallwidth,wallstyle);

 walls.push(curwall);

 everything.push(curwall);

 }

 drawall();

 }

 else {

 alert("No data retrieved.");

 }

 window.addEventListener('keydown',
getkeyAndMove,false);

 return false;

}

</script>

</head>

<body onLoad="init();" >

<canvas id="canvas" width="900"
height="350">

Your browser doesn't support the HTML5
element canvas.

</canvas>

Choose level and click GET MAZE button to
 get a maze:

CHAPTER 7

256

 Code Explanation

<form name="gf" onSubmit="return getwalls()"
>

<input type="radio" value="hard"
name="level"
 />Hard

Set up radio button, common level, value hard

<input type="radio" value="moderate"
name="level"
 />Moderate

Set up radio button, common level, value

moderate

<input type="radio" value="easy"
name="level"
 />Easy

Set up radio button, common level, value

easy

<input type="submit" value="GET maze"/>

</form>

<p>

Use arrow keys to move token.

</p>

</body>

</html>

There are a number of ways you can make this application your own.

Some applications in which the user places objects on the screen by dragging limit the possibilities by

doing what is termed snapping the end points to grid points, perhaps even limiting the walls for a maze to

be strictly horizontal or vertical.

The second application has two levels of user: the creator of the mazes and the player who attempts to

traverse the mazes. You may want to design very intricate mazes, and for that you would want an editing

facility. Another great addition would be a timing feature. Look back at the timing for the memory game in

Chapter 5 for ways to calculate elapsed time.

Just as we added a video treat for the quiz show in Chapter 6, you could play a video when someone

completes a maze.

MAZES

257

The ability to save to local storage is a powerful feature. For this, and any game or activity that takes a fair

amount of time, you may want to add the ability to save the current state. Another common use for local

storage is to save the best scores.

Do understand that I wanted to demonstrate the use of local storage for intricate data, and these

applications did do that. However, you may want to develop maze programs using something other than

local storage. To build on this application, you need to define the sequence of starting and stopping

points, four numbers in all, for each wall, and define walls accordingly. Look ahead to the word list

implemented as an external script file in the Hangman game in Chapter 9.

This chapter and the previous one demonstrated events and event handling for mouse, keys, and timing.

New devices provide new events, such as shaking a phone or using multiple touches on a screen. With

the knowledge and experience you ve acquired here, you ll be able to put together many different

interactive applications.

Testing and uploading application
The first application is complete in one HTML document, buildmazesavelocally.html. The second

application uses two files, buildmazes.html and travelmaze.html. The buildmazesavelocally.html
and buildmaze.html are identical, except for the titles. All three files are available on the friends of ED

site. Please note that travelmaze.html will not work until you create mazes and save them using local

storage on your own computer.

To test the save and restore feature, you need to load the file to a server for it to work using Firefox and,

perhaps, other browsers. It works locally using Chrome. The two HTML documents for the two-script

version must both be uploaded to a server to be tested.

Some people may limit the use of local storage and cookies. There are differences between these

constructs. To use any of this in a production application requires considerable work. The ultimate fall-

back is to store information on the server using a language such as php.

Summary
In this chapter, you learned how to implement a program to support the building of a maze of walls and to

store it on the local computer. You also learned how to create a maze travel game. We used the following

programming techniques and HTML5 features:

• programmer-defined objects

• capturing key strokes; that is, setting up event handling for key presses, and deciphering

which key was pressed

• localStorage for saving the layout of the walls of the maze on the player's computer

• try and catch to check if certain coding is acceptable

• the join method for arrays and the split method for strings

• mouse events

• mathematical calculations for determining collisions between the token and the walls of the

maze

• radio buttons to present a choice to the player.

CHAPTER 7

258

The use of local storage was fairly intricate for this application, requiring the encoding and decoding of the

maze information. A simpler use might be for storing the highest score or the current score on any game.

You can go back to previous chapters and see if you can incorporate this feature. Remember that

localStorage is tied to the browser. In the next chapter, you will learn how to implement the rock-paper-

scissors game, and how to incorporate audio in your application.

259

Chapter 8

Rock, Paper, Scissors

In this chapter, we will cover

• playing against a computer

• creating graphics to serve as buttons

• arrays of arrays for game rules

• the font-family property

• inherited style settings

• audio

Introduction
This chapter combines programming techniques with HTML5 JavaScript features to implement the familiar

rock-paper-scissors game. In the school yard version of this game, each player uses hand symbols to

indicate one of the three possibilities: rock, paper, or scissors. The terminology is that a player throws

one of the three options. The game rules are stated this way:

• Rock crushes scissors.

• Paper covers rock.

• Scissors cuts paper.

So each symbol beats one other symbol: rock beats scissors; paper beats rock; and scissors beats

paper. If both players throw the same thing, it s a tie.

Since this is a two-player game that our player will play against the computer, we have to create the

computer's moves. We will generate random moves, and the player needs to trust that the program is

doing this and not basing its move on what the player threw. The presentation must reinforce this trust.

The first version of our game just uses the visuals you ll see here. The second version adds audio, four

different clips governed by the three winning events plus the tie option. You can either use the sound files

CHAPTER 8

260

provided in the download pack from www.friendsofed.com, or your own sounds. Note that you ll need to

change the file names in the code to match the sound files you use.

This is a situation in which we want to use special graphics for the player moves. Figure 8-1 shows the

opening screen of the application, consisting of three graphics that serve as buttons, as well as a field

labeled with the string “Score:” that holds an initial value of zero.

Figure 8-1. The Rock, Paper, Scissors opening screen

The player makes a move by clicking one of the symbols. Let s look at an example with the player clicking

on the rock icon. We ll assume the computer chose scissors. After a short animated sequence in which a

scissors symbol starts small and grows on the screen, a text message appears as shown in Figure 8-2. In

the version with added audio, the audio clip would play a sound corresponding to a rock crushing a

scissors. Notice that the score is now 1.

Figure 8-2. The player threw rock and computer threw scissors

http://www.friendsofed.com

ROCK, PAPER, SCISSORS

261

Next in the game, the player and the computer tie, as shown in Figure 8-3. There s no change in the score

when a tie occurs, so the score is still 1.

Figure 8-3. A tie

Later, the game has been even but the player loses and the score falls to negative 1, meaning the player

is behind, as Figure 8-4 shows.

Figure 8-4. Later in the game, a losing move

CHAPTER 8

262

This application, like all the examples in this book, is only a start. Both the plain and audio versions keep a

running score for the player in which a loss results in a decrease. An alternative approach is to keep

individual scores for player and computer, with only wins counted for either side. You could display a

separate count of the games played. This is preferable if you don't want to show negative numbers. You

could also save the player's score using localStorage, as described in the maze game in Chapter 7.

A more elaborate enhancement might feature video clips (look back at Chapter 6) or animated GIFs that

show rock crushing scissors, paper covering rock, and scissors cutting paper. You can also look at this

as a model for many different games. In all cases, you need to determine how to capture the player's

moves and how to generate the computer s moves; you need to represent and implement the rules of the

game; and you need to maintain the state of the game and display it for the player. The rock-paper-

scissors game has no state information except for the running score. Putting it another way, a game

consists of just one turn. This is in contrast to the dice game described in Chapter 2 in which a game can

involve one to any number of throws of the dice, or the concentration game described in Chapter 5 in which

a turn consists of two selections of cards and a completed game can take any number of turns with the

minimum equal to half the number of cards.

Note: There are competitions for rock-paper-scissors and also computer systems in which the

computer makes moves based on the player's history of moves. You may find it interesting to check

out the World RPS Society (www.worldrps.com) and the USA RPS League (www.usarps.com).

Critical requirements
The implementation of rock-paper-scissors makes use of many HTML5 and JavaScript constructs

demonstrated in earlier chapters, put together here in different ways. Programming is similar to writing. It

is putting the representation of ideas together in some logical order, just like combining words into

sentences and the sentences into paragraphs, and so on. While reading this chapter, think back to what

you have learned about drawing rectangles, images, and text on the canvas, detecting where the player

has clicked the mouse, setting up a timing event using setInterval to produce animation, and using

arrays to hold information. These are the building blocks for the rock-paper-scissors application.

In planning this application, I knew I wanted our player to click on buttons, one button for each of the

types of throws in the game. Once the player makes a throw, I wanted the program to make its own move,

namely a random choice, and have a picture corresponding to that move appear on the screen. The

program would then apply the rules of the game to display the outcome. A sound would play,

corresponding to the three possible situations in which one throw beats another, plus a groan when there

was a tie.

This application starts off with what appear as buttons or icons on the screen. These are pictures that the

player can click on to make his or her move. There is also a box for the score.

The application must generate the computer move randomly and then display it in a way that appears as if

the computer and the player are throwing their moves at the same time. My idea for this is to have the

appropriate symbol start small on the screen and then get larger, seemingly emerging from the screen as if

the computer were making its throw towards the player. This action starts right after the player clicks on

one of the three possible throws, but it is soon enough to give the impression that the two happened at the

same time.

http://www.worldrps.com
http://www.usarps.com

ROCK, PAPER, SCISSORS

263

The rules of the game must be obeyed! This includes both what beats what and the folksy message

displayed to explain it—“rock crushes scissors”; “paper covers rock”, and “scissors cuts paper”. The

score displayed goes up by one, down by one, or stays the same depending on whether the turn is a win,

loss, or tie.

The audio-enhanced version of the game must play one of four audio clips depending on the situation.

HTML5, CSS, and JavaScript features
Now let s take a look at the specific features of HTML5, CSS, and JavaScript that provide what we need to

implement the game. Except for basic HTML tags and functions and variables, the explanations here are

complete. If you ve read the other chapters, you ll notice that much of this chapter repeats explanations

given previously.

We certainly could have used the types of buttons demonstrated in the other chapters, but I wanted these

buttons to look like the throws they represent. As you ll see, the way we implement the buttons is built on

the concepts demonstrated in prior chapters. And we again use JavaScript pseudo-random processing for

defining the computer move, and setInterval for animating the display of the computer move.

Our rock-paper-scissors game will demonstrate HTML5's native audio facility. We will integrate coding for

audio with applying the rules of the game.

Providing graphical buttons for the player

There are two aspects to producing clickable buttons or icons on the screen: drawing the graphics on the

canvas and detecting when the player has moved the mouse over a button and clicked the primary mouse

button.

The buttons or icons we ll produce consist of the outline (stroke) of a rectangle, a solid rectangle, and then

an image on top of the rectangle with a vertical and horizontal margin. Since the similar operations will

occur for all three buttons, we can use the approach first introduced in the cannonball and slingshot

games in Chapter 4. We will set up a programmer-defined class of objects by writing a function named

Throw. Recall that objects consist of data and coding grouped together. The function, described as a

constructor function, will be used with the operator new to create a new object of type Throw. The term

this is used within the function to set the values associated with each object.

function Throw(sx,sy, smargin,swidth,sheight,rectcolor,picture) {
 this.sx = sx;
 this.sy = sy;
 this.swidth = swidth;
 this.bwidth = swidth + 2*smargin;
 this.bheight = sheight + 2*smargin;
 this.sheight = sheight;
 this.fillstyle = rectcolor;
 this.draw = drawThrow;
 this.img = new Image();
 this.img.src = picture;
 this.smargin = smargin;
}

CHAPTER 8

264

The parameters of the function hold all the information. The selection of names sx, sy, and so on, avoids

built-in terms by making a simple modification: putting s, for stored, in front. The location of the button is at

sx, sy. The color of the rectangle is represented by rectcolor. The file name for the image is held by

picture. What we can think of as the inner and outer widths and the inner and outer heights are

calculated based on the inputs smargin, sheight, and swidth. The b in bheight and bwidth stands for

big. The s stands for small and stored. Don't get too hung up on the proper name—there is no such thing.

The names are up to you and if a name works, meaning you remember it, it works.

The img attribute of a Throw object is an Image object. The src of that Image object is what points to the

file name that was passed to the function in the picture parameter.

Notice that the attribute this.draw is set to be drawThrow. This sets up the drawThrow function to be

used as the draw method for all objects of type Throw. The coding is more general than it needs to be:

each of the three graphics has the same margin and width and height. However, there s no harm in making

the coding general, and if you want to build on this application to make one in which objects representing

the player's choices are more complex, much of this code would work.

Tip: Don t worry when writing programs if you have code such as this.draw = drawThrow; and you

haven't written the drawThrow function yet. You will. Sometimes it is impossible to avoid referencing

a function or variable before it has been created. The critical factor is that all this coding is done

before you try to execute the program.

Here s the drawThrow method:

function drawThrow() {
 ctx.strokeStyle = "rgb(0,0,0)";
 ctx.strokeRect(this.sx,this.sy,this.bwidth,this.bheight);
 ctx.fillStyle = this.fillstyle;
 ctx.fillRect(this.sx,this.sy,this.bwidth,this.bheight);
 ctx.drawImage(this.img,this.sx+this.smargin,this.sy+this.smargin, ➥
 this.swidth,this.sheight);
}

As promised, this draws an outline of a rectangle using black for the color rgb(0,0,0). Recall that ctx is

the variable set with the property of the canvas element that is used for drawing. Black is actually the

default color, making this line unnecessary. However, we ll put it in just in case you reuse this code in an

application where the color has been changed previously. Next, the function draws a filled-in rectangle

using the rectcolor passed in for this particular object. Lastly, the code draws an image on top of the

rectangle, offset by the margin amount horizontally and vertically. The bwidth and bheight are

calculated to be bigger than the swidth and sheight, respectively, by twice the smargin value. This in

effect centers the image inside the rectangle.

The three buttons are created as Throw objects through the use of var statements, in which the variable

is initialized using the new operator, and a call to the Throw constructor function. To make this work, we

need pictures of rock, paper, and scissors, which I ve acquired by a variety of means. The three image

files are located in the same folder as the HTML file.

var rockb = new Throw(rockbx,rockby,8,50,50,"rgb(250,0,0)","rock.jpg");
var paperb = new Throw(paperbx,paperby,8,50,50,"rgb(0,200,200)","paper.gif");

ROCK, PAPER, SCISSORS

265

var scib = new Throw(scissorsbx,scissorsby,8,50,50,"rgb(0,0,200)","scissors.jpg");

As in our previous applications, an array named everything is declared and initialized to the empty array.

We push all three variables onto the everything array so we can treat them systematically.

everything.push(rockb);
everything.push(paperb);
everything.push(scib);

For example, to draw all the buttons, we use a function called drawall that iterates over the elements in

the everything array.

function drawall() {
 ctx.clearRect(0,0,cwidth,cheight);
 var i;
 for (i=0;i<everything.length;i++) {
 everything[i].draw();
 }
}

Again, this is more general than required, but it s useful, especially when it comes to object-oriented

programming, to keep things as general as possible.

But how to make these graphics act as clickable buttons? Because these are drawn on the canvas, the

code needs to set up the click event handling for the whole canvas and then use coding to check which, if

any, button was clicked.

In the slingshot game described in Chapter 4, you saw code in which the function handling the mousedown

event for the whole canvas made a calculation to see if the mouse cursor was on the ball. In the quiz show

described in Chapter 6, we set up event handling for each country and capital block. The built-in

JavaScript mechanism indicated which object had received, so to speak, the click event. This application

is like the slingshot.

We set up the event handling in the init function, explained in full in the next section. The task is to get

JavaScript to listen for the mouse click event and then do what we specify when the click happens. What

we want is for the function choose to be invoked. The following two lines accomplish this task.

canvas1 = document.getElementById('canvas');
canvas1.addEventListener('click',choose,false);

Tip: Our code needs to distinguish between the element with the id canvas and the property of this

element returned by getContext('2d'). That s just the way the HTML5 folks decided to do it. It is

not something you could have deduced on your own.

The choose function has the tasks of determining which type of throw was selected, generating the

computer move and setting up the display of that move, and applying the rules of the game. Right now,

we re just going to take a look at the code that determines what button has been clicked.

The code starts by handling differences among the browsers. Functions that are invoked as a result of a

call to addEventListener are called with a parameter holding information about the event. This

parameter, ev as we are calling it in the choose function, is examined to see what attributes exist to be

CHAPTER 8

266

used. This complexity is forced on us because the browsers implement event handling using different

terms.

function choose(ev) {
var mx;
var my;
if (ev.layerX || ev.layerX == 0) {
 mx= ev.layerX;
 my = ev.layerY;
} else if (ev.offsetX || ev.offsetX == 0) {
 mx = ev.offsetX;
 my = ev.offsetY;
}

The goal of this portion of the code is to make the variables mx and my respectively hold the horizontal and

vertical coordinates for the mouse cursor when the mouse button is clicked. Certain browsers keep the

cursor information in properties of the ev parameter named layerX and layerY and others use offsetX

and offsetY. We will use local variables to make sure we track the cursor position across all browsers.

The condition ev.layerX will evaluate as false if ev.layerX does not exist for this browser or if it does

exist and has the value 0. Therefore, to check if the property exists, we need to use the compound

condition (ev.layerX || ev.layerX == 0) to make sure the code works in all situations. By the way,

if the second if test fails, nothing happens. This code works for Chrome, FireFox, and Safari, but

presumably will work eventually with all browsers.

The next section of code iterates through the elements of everything (there are three elements, but

that s not mentioned explicitly) to see if the cursor is on any of the rectangles. The variable ch holds a

reference to a Throw and so all the Throw attributes, namely, sx, sy, bwidth, and bheight, can be used

in the compare statements. This is shorthand for all the choices of throws held in the everything array.

var i;
for (i=0;i<everything.length;i++){
 var ch = everything[i];
 if ((mx>ch.sx)&&(mx<ch.sx+ch.bwidth)&&(my>ch.sy)&&(my<ch.sy+ch.bheight)) {
 …
 break;
 }
}

The … indicates coding to be explained later. The compound condition compares the point mx,my with the

left side, right side, top, and bottom of the outer rectangle of each of the three objects representing

possible throws by the player. Each of these four conditions must be true for the point to be within the

rectangle. This is indicated by the && operator. Though long, this is a standard way to check for points

inside rectangles and you will become accustomed to using it.

So that s how the graphics are drawn on the canvas and how they serve as buttons. Notice that if the

player clicks outside of any button, nothing happens. Some people might recommend providing feedback

to the player at this point, such as an alert box saying:

Please make your move by clicking on the rock, paper, or scissors!

Others would tell you to avoid cluttering on the screen and assume that the player will figure out what to

do.

ROCK, PAPER, SCISSORS

267

Generating the computer move

Generating the computer move is similar to generating a throw of the dice, as we did in the dice game in

Chapter 2. In the rock-paper-scissors game, we want a random selection from three possible throws

instead of six possible die faces. We get that number with the line:

var compch = Math.floor(Math.random()*3);

The call to the built-in method Math.random() produces a number from zero up to, but not including, 1.

Multiplying this by 3 produces a number from 0 up to, but not including, 3. Applying Math.floor produces

a whole number not larger than its argument. It rounds the number down, knocking off any values over the

highest integer floor. Therefore, the expression on the right produces 0, 1, or 2, which is exactly what we

want. This value is assigned to compch which is declared (set up) as a variable.

The code takes the computer move, one of the numbers 0, 1, or 2 chosen by the calculation involving the

random function, and uses it as an index for the choices array:

var choices = ["rock.jpg","paper.gif","scissors.jpg"];

These three elements refer to the same three pictures used in the buttons.

At this point, just in case you were concerned, the ordering rock, paper, scissors is arbitrary. We need to

be consistent, but the ordering does not matter. If, at every instance, we made the ordering paper,

scissors, rock, everything would still work. The player never sees the encoding of 0 for rock, 1 for paper,

and 2 for scissors.

The next lines in the choose function extract one of the file names and assign it to the src attribute of an

Image variable compimg.

var compchn = choices[compch];
compimg.src = compchn;

The name of the local variable, compchn, stands for computer choice name. The compimg variable is a

global variable holding an Image object. The code sets its src property to the name of the appropriate

image file, which will be used to display the computer move.

To implement the rules of the game, I set up two arrays:

var beats = [
 ["TIE: you both threw rock.","You win: paper covers rock.", ➥
 "You lose: rock crushes scissors."],
 ["You lose: paper covers rock.","TIE: you both threw paper.", ➥
 "You win: scissors cuts paper."],
 ["You win: rock crushes scissors.","You lose: scissors cuts paper.", ➥
 "TIE: you both threw scissors"]];

And:

var points = [
 [0,1,-1],
 [-1,0,1],
 [1,-1,0]];

Each of these is an array of arrays. The first holds all the messages and the second holds the amount to

add to the score of the player. Adding 1 increases the player's score. Adding a -1 decreases the player's

CHAPTER 8

268

score by 1, which is the effect we want when the player loses a round. Adding 0 leaves the score as is.

Now, you may think that it would be easier to do nothing in the case of ties rather than add zero, but

handling this in a uniform way is the easier approach in terms of coding, and adding zero may actually take

less time than doing an if test to see if it was a tie.

The first index into each array will come from the computer move, compch, and the second index, i,

indicating the element in the inner array, will come from the player move. The beats and points arrays are

called parallel structures. The beats array is for the text message and the points array is for the scoring.

Let's check that the information is correct by picking a computer move, say scissors, which corresponds

to 2, and picking a player move, say rock, which corresponds to 0. In the beats array, the value for the

computer move tells us to go to the array with index value 2. (I am avoiding saying the second array, since

arrays start with index 0, not with 1. The value indicated by 2 is the third element of the array). The element

is:

["You win: rock crushes scissors.","You lose: scissors cuts paper.", ➥
 "TIE: you both threw scissors"]];

Now use the player value, namely 0, to index this array. The result is "You win: rock crushes
scissors." and this is exactly what we want. Doing the same thing with the points array, the element

with index 2 is

[1,-1,0]

and the value with index 0 into this array is 1, also exactly what we want: the player's score will be

adjusted by 1.

result = beats[compch][i];
…
newscore +=points[compch][i];

Recall that the operator += in a statement

a += b;

is interpreted as follows:

Get the value of the variable a

Apply the + operator to this value and the value of the expression b

Assign the result back to the variable a

The second step is written in a general way since this could apply to + interpreted as addition of numbers

as well as concatenation of strings. In this particular situation, the second step is:

Add a and b

This result gets assigned back to the variable a.

The two variables, result and newscore, are global variables. This means they are available to other

functions and this is how we use them: set in one function and referenced for use in another.

The score is presented using a form element in the body element of the HTML document.

<form name="f">
Score: <input name="score" value="0" size="3"/>
</form>

ROCK, PAPER, SCISSORS

269

Just to show you how these things are done, we ll use styles for the score field. We set up two styles, one

for the form, and one for the input field.

form {
 color: blue;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size:16px;
}
input {
 text-align:right;
 font:inherit;
 color:inherit;
}

We set the color for the text in the form to blue, and specified the font using the font-family property.

This is a way to specify a particular font and backups if that font doesn t exist on the client computer. This

is a powerful feature because it means you can be as specific as you want in terms of fonts and, with

work, still make sure that everyone can read the material.

Tip: You can research online for Web-safe fonts to see which fonts are widely available. Then you

can pick your favorite font for the first choice, one of the Web-safe fonts for the second, and make

the last choice either serif or sans-serif. You can even specify more than three choices if you wants.

Check out http://en.wikipedia.org/wiki/Web_typography for ideas.

In this style, we specify the font named Georgia, then "Times New Roman", then Times, and then

whatever the standard font with serifs is on the computer. Serifs are the little extra flags on letters. The

quotation marks around Times New Roman are necessary because the name involves multiple terms.

Quotation marks wouldn t be wrong around the other font names, but they aren t necessary. We also

specify the size as 16 pixels. The input field inherits the font, including size, and the color from the form

element, its parent. However, because the score is a number, we use the text-align property to indicate

right alignment in the field. The label Score is in the form element. The actual score is in the input

element. Using the inherit setting for the input style properties makes the two display in the same font,

size, and color.

The value in the input field will be extracted and set using its name, score. For example,

newscore = Number(document.f.score.value);

Number is required here to produce the number represented by the text in the field; that is 0 as opposed to

"0" (the character). If we left the value as a string and the code used a plus sign to add 1 to a string, this

would not be addition; it would instead be the concatenation of strings. (This is termed operator

overloading, by the way: the plus sign indicates different operations depending on the data type of the

operands.) Concatenating a "1" onto a "0" would yield "01". You might think this is okay, but the next time

around, we would get "011" or "010" or "01-1". Ugh. We don't want that, so we write the code to make sure

the value is converted to a number.

To place an adjusted new score back into the field, the code is

document.f.score.value = String(newscore);

http://en.wikipedia.org/wiki/Web_typography

CHAPTER 8

270

Now, as I frequently tell my students, I am compelled to tell you the truth. In fact, String may not be

necessary here. JavaScript sometimes does these conversions, also termed casts, automatically.

However, sometimes it doesn t, so it is good practice to make it explicit.

The size of the field is the maximum required for three characters. The Georgia font is not a monospace

font—all characters are not the same size—so this is the largest space that might be necessary. You

might notice different amounts of space left over depending on the text in the field.

Note: JavaScript makes use of parentheses, curly brackets, and square brackets. They are not

interchangeable. The parentheses are used in function headers and in function and method calls; in

if, for, switch, and while statement headers; and for specifying the order of operations in complex

expressions. The curly brackets are used to delimit the definition of functions and the clauses of if,

for, switch and while statements. The square brackets are used to define arrays and to return

specific members of arrays. The language of Cascading Style Sheets puts curly brackets around

each style. HTML markup includes < and >, often called pointy brackets or angle brackets.

Displaying results using animation

You ve seen examples of animation in the bouncing ball application in Chapter 3 and the cannonball and

slingshot in Chapter 4. To recap, animation is produced by displaying a sequence of still pictures in quick

succession. The individual pictures are called frames. In what is called computed animation, new

positions for objects on the screen are calculated for each successive frame. One way to produce

animation is to use the setInterval command to set up an interval event, like so:

tid = setInterval(flyin,100);

This causes the flyin function to be invoked every 100 milliseconds (10 times per second). The variable

tid, for timer identifier, is set so the code can turn the interval event off. The flyin function will create

Throw objects of increasing size holding the appropriate image. When an object reaches a designated

size, the code displays the result and adjusts the score. This is why the variables result and newscore

must be global variables—they are set in choose and used in flyin.

The flyin function also makes use of a global variable named size that starts off at 15 and is

incremented by 5 each time flyin is invoked. When size is over 50, the timing event is stopped, the

result message displayed, and the score changed.

function flyin() {
 ctx.drawImage(compimg, 70,100,size,size);
 size +=5;
 if (size>50) {
 clearInterval(tid);
 ctx.fillText(result,200,100,250);
 document.f.score.value = String(newscore);
 }
}

By the way, I had to modify the code in order to grab these screenshots. Figure 8-5 is the screen after the

very first invocation of flyin.

ROCK, PAPER, SCISSORS

271

Figure 8-5. First call of flyin, with a tiny image representing the computer move

After a different modification of the code, Figure 8-6 shows the animation halted at a later step.

Figure 8-6. A step further in the animation

CHAPTER 8

272

Figure 8-7 shows the animation completed, but just before the text messages with the results.

Figure 8-7. Just before text displayed on results

Now, here s a confession that should be informative. You may need to skip ahead or wait until you read

through all the code to appreciate it. When I created this application the first time, I had the code for

displaying the message and adjusting the score in the choose function. After all, that s where the code

determined the values. However, this had a very bad effect. The player saw the results before seeing the

computer move emerge out of the screen in the animation. It looked like the game was fixed! When I

realized what the problem was, I changed the code in choose to store the message and the new score

values in global variables and only display the message and set the updated score in the form input field

after the animation was complete. Don't assume you can know everything about your application before

you start. Do assume you will find problems and be able to resolve them. Companies have whole groups

devoted solely to quality assurance.

Audio and DOM processing

The situation with audio is quite similar to the one with video (see Chapter 6). Again, the bad news is that

browsers don t all recognize the same formats. And again, the good news is that HTML5 provides the

<audio> element, and JavaScript supplies features for playing audio along with ways of referencing

different formats for the audio accepted by the different browsers. Moreover, tools are available for

converting from one format to another. The two formats I use for these examples are MP3 and OGG, which

appear to be sufficient for Chrome, Firefox, and Safari. I used free sources for audio clips and found

acceptable samples in WAV and MP3. I then used the Miro converter I had downloaded for working with

the video to produce MP3 and OGG for the WAV file and OGG for the others. The Miro name for the OGG

was theor.ogv and I changed it just to keep things simple. The main point here is that this approach

requires two versions of each sound file.

ROCK, PAPER, SCISSORS

273

Caution: The order of the audio file references should not be important, but I found warnings that

Firefox will not work if MP3 is listed first. That is, it won't go on to try and work with another file.

The <audio> element has attributes I didn t use in the rock-paper-scissors game. The autoplay attribute

starts play immediately on loading, though you do need to remember that with large files loading is not

instantaneous. The src attribute specifies the source. However, good practice is to not use the src

attribute in the <audio> tag, but to specify multiple sources using the <source> element as a child of the

<audio> element. The loop attribute specifies looping, that is, repeating the clip. The controls attribute

puts controls on the screen. This may be a good thing to do because the clips can be very loud. In order to

make the audio a surprise, though, and to not add clutter to the visual presentation, I chose not to do this.

Here s a simple example for you to try. You will need to download sword.mp3 from the book s download

page at www.friendsofed.com or find your own audio file and reference it by name here. If you open the

following HTML in Chrome

Audio example

<audio src="sword.mp3" autoplay controls>
Your browser doesn't recognize audio
</audio>

you ll see what s shown in Figure 8-8.

Figure 8-8. Audio tag with controls

Remember: for our game, we will play audio for the rock crushing the scissors, the paper covering the

rock, the scissors cutting the paper, and a sigh for any tie. Here is the coding for the four audio clips in

rock-paper-scissors:

<audio autobuffer>
<source src="hithard.ogg" />
<source src="hithard.mp3" />
</audio>
<audio autobuffer>
<source src="inhale.ogg" />
<source src="inhale.mp3" />
</audio>
<audio autobuffer>
<source src="sword.ogg" />
<source src="sword.mp3" />
</audio>
<audio autobuffer>
<source src="crowdohh.ogg" />
<source src="crowdohh.mp3" />
</audio>

http://www.friendsofed.com

CHAPTER 8

274

This should appear reasonable for describing four sets of audio files, but you may be wondering how

the code knows which one to play. We could insert id attributes in each <audio> tag. However, let s

do something else instead in order to demonstrate more JavaScript that s useful in many situations.

You have seen the method document.getElementById. There is a similar method:

document.getElementsByTagname. The line:

musicelements = document.getElementsByTagName("audio");

extracts all elements of the tag name indicated by the parameter and creates an array, which, in this line

of code, assigns the array to a variable named musicelements. We use this line in the init function so

it s performed at the very start of the application. We construct another array of arrays, this one called

music, and add two other global variables:

var music = [
 [3,1,0],
 [1,3,2],
 [0,2,3]];
var musicelements;
var musicch;

You can check that music and beats are parallel structures with 0 standing for rock crushing scissors, 1

for paper covering rock, 2 for scissors cutting paper, and 3 for a tie. The choose function will have the

extra line:

musicch = music[compch][i];

The musicch variable—the name stands for choice for music—will hold 0, 1, 2, or 3. This sets up

something to happen in the flyin function when the animation is complete. We don't play the clip

immediately, as explained in my confession above.

musicelements[musicch].play();

The zeroth, first, second, or third element in musicelements is referenced by the indexing using musicch,

then its play method is invoked and the clip is played.

Starting off

The application starts by setting up a call to a function in the onLoad attribute of the <body> tag. This has

been the practice in the other games. The init function performs several tasks. It sets the initial score

value to zero. This is necessary just in case the player reloads the document; it is a quirk of HTML that

form data may not be reset by the browser. The function extracts values from the canvas element to be

used for drawing (ctx) and for the event handling (canvas1). This needs to happen after the whole

document is loaded because until then the canvas element does not exist. The function draws the three

buttons and sets up the font for the text drawn on the canvas and the fill style. After that, nothing happens

unless and until the player clicks the mouse button over one of the three symbols.

Now that we ve examined the specific features of HTML5 and JavaScript used for this game, along with

some programming techniques, such as the use of arrays of arrays, let s take a closer look at the code.

ROCK, PAPER, SCISSORS

275

Building the application and making it your own
The basic rock-paper-scissors applications use styles, global variables, six functions, and HTML markup.

The six functions are described in Table 8-1. I follow the convention that functions start with lower-case

letters unless the function is a constructor for a programmer-defined object. I present the basic

application first, and then show the modifications necessary to add audio.

Table 8-1. Functions in the Basic Rock-Paper-Scissors Application

Function Invoked / Called By Calls

init Invoked by action of the onLoad in the <body> tag drawall

drawall init, choose Invokes the draw method of

each object, which in this

application always in the

function drawThrow

Throw var statements for global variables

drawThrow drawall using the draw method of the Throw objects

choose Invoked by action of addEventListener call in init drawall

flyin Action of setInterval in choose

As you can see from the table, most of the invocation of functions is done implicitly—by event handling,

for example—as opposed to one function invoking another. After the init function does the set up, the

main work is performed by the choose function. The critical information for the rules of the games is held in

the two arrays of arrays.

Table 8-2 shows the code for the basic application, with comments for each line.

Table 8-2. Complete Code for the Basic Rock-Paper-Scissors Application

Code Explanation

<html> Starting html tag

<head> Starting head tag

 <title>Rock Paper Scissors</title> Complete title element

 <style> Starting style section

CHAPTER 8

276

Code Explanation

 form { Style specified for all form elements. There is

just one in this document.

 color: blue; Color of text set to blue, one of the 16 colors

known by name

 font-family: Georgia, "Times New
 Roman", Times, serif;

Set up the fonts to try to use

 font-size:16px; Set size of characters

 } Close style

 input { Style specified for all input elements. There is

just one.

 text-align:right; Make the text align to the right, appropriate

for numbers

 font:inherit; Inherit any font information from parent,

namely form

 color:inherit; Inherit color of text from parent, namely form

 } Close style

 </style> Close style element

 <script > Start script element

 var cwidth = 600; Canvas width, used for clearing

 var cheight = 400; Canvas height, used for clearing

 var ctx; Canvas ctx, used for all drawing

 var everything = []; Holds the 3 graphics

 var rockbx = 50; Horizontal position of rock symbol

 var rockby = 300; Vertical position of rock symbol

 var paperbx = 150; Horizontal position of paper symbol

ROCK, PAPER, SCISSORS

277

Code Explanation

 var paperby = 300; Vertical position of paper symbol

 var scissorsbx = 250; Horizontal position of scissors symbol

 var scissorsby = 300; Vertical position of scissors symbol

 var canvas1; Reference for setting up click event listening

for canvas

 var newscore; Value to be set for new score

 var size = 15; Initial size for changing image for computer

move

 var result; Value to be displayed as result message

 var choices = ["rock.jpg",
"paper.gif","scissors.jpg"];

Names for symbol images

 var compimg = new Image(); Image element used for each computer move

 var beats = [Start of declaration of array holding all the

messages

 ["TIE: you both threw
 rock","You win: computer played rock",
"You lose: computer threw rock"],

The set of messages when the computer

throws rock

 ["You lose: computer
 threw paper","TIE: you both threw paper",
"You win: computer threw paper"],

The set of messages when the computer

throws paper

 ["You win: computer
 threw scissors","You lose: computer
 threw scissors","TIE: you both threw
 scissors"]];

The set of messages when the computer

throws scissors

 var points = [Start of declaration of array holding the

increments for the score: 0 for a tie, 1 for the

player winning, -1 for the player losing

 [0,1,-1], The set of increments when the computer

throws rock

CHAPTER 8

278

Code Explanation

 [-1,0,1], The set of increments when the computer

throws paper

 [1,-1,0]]; The set of increments when the computer

throws scissors

function Throw(sx,sy, smargin,swidth,
sheight,rectcolor,picture) {

Header for constructor function to be used for

the 3 game symbols. Parameters include x

and y coordinates, margin, inner width and

height, color for the rectangle, and the picture

file

 this.sx = sx; Assign the sx attribute

 this.sy = sy; … sy attribute

 this.swidth = swidth; … swidth attribute

 this.bwidth = swidth + 2*smargin; Calculate and assign the outer width. This is

the inner width plus 2 times the margin.

 this.bheight = sheight + 2*smargin; Calculate and assign the outer height. This is

the inner height plus 2 times the margin.

 this.sheight = sheight; Assign sheight attribute

 this.fillstyle = rectcolor; Assign fillstyle attribute

 this.draw = drawThrow; Assign the draw method to be drawThrow

 this.img = new Image(); Create a new Image object

 this.img.src = picture; Set its src to be the picture file

 this.smargin = smargin; Assign the smargin attribute. It is still needed

for drawing.

} Close function

function drawThrow() { Header for function to draw the symbols

 ctx.strokeStyle = "rgb(0,0,0)"; Set the style for the rectangle outline to

black.

ROCK, PAPER, SCISSORS

279

Code Explanation

 ctx.strokeRect(this.sx,this.sy,

this.bwidth,this.bheight);
Draw rectangle outline

 ctx.fillStyle = this.fillstyle; Set the style for the filled rectangle

 ctx.fillRect(this.sx,this.sy,
this.bwidth,this.bheight);

Draw rectangle

ctx.drawImage(this.img,this.sx+this.
smargin,this.sy+this.smargin,this.swidth,
this.sheight);

Draw the image offset inside the rectangle.

} Close function

function choose(ev) { Header for function called upon a click event

 var compch = Math.floor
(Math.random()*3);

Generate computer move based on random

processing

 var compchn = choices[compch]; Pick out the image file

 compimg.src = compchn; Set the src of the already created Image

object

 var mx; Used for mouse x

 var my; Used for mouse y

 if (ev.layerX || ev.layerX
 == 0) {

Check which coding applies in this browser

 mx= ev.layerX; Set mx

 my = ev.layerY; Set my

 } else if (ev.offsetX ||
 ev.offsetX == 0) {

Else check if this coding works

 mx = ev.offsetX; Set mx

 my = ev.offsetY; Set my

CHAPTER 8

280

Code Explanation

 } Close clause

 var i; Used for indexing over the different symbols

 for (i=0;i<everything.length;i++){ For header for indexing over the elements in

the everything array, namely the three

symbols

 var ch = everything[i]; Get the ith element

 if
((mx>ch.sx)&&(mx<ch.sx+ch
.bwidth)&&(my>ch.sy)&&(my<ch.sy+ch.bheight))
{

Check if the mx, my position is within the

bounds (the outer rectangle bounds) for this

symbol

 drawall(); If so, invoke the drawall function, which will

erase everything and then draw everything in

the everything array

 size = 15; Initial size of computer-move image

 tid = setInterval
(flyin,100);

Set up timed event

 result = beats
[compch][i];

Set the result message. See the section

below the table for the addition for audio.

 newscore =
 Number(document.f.score.value);

Get the current score, converted to a number

 newscore +=
points[compch][i];

Add the adjustment and save to be displayed

later

 break; Leave the for loop

 } End the if clause

 } End the for loop

} End the function

function flyin() { Header for the function handling the timed

interval event

ROCK, PAPER, SCISSORS

281

Code Explanation

 ctx.drawImage(compimg, 70,
100,size,size);

Draw the computer-move image on the screen

at the indicated place and with dimensions

indicated

 size +=5; Change the value of the dimensions by

incrementing size

 if (size>50) { Use the size variable to see if the process

has gone on long enough

 clearInterval(tid); Stop the timing event

 ctx.fillText(result,

200,100,250);

Display the message

 document.f.score.value
 = String(newscore);

Display the new score. See the section below

the table for the addition for audio

 } Close of if true clause

} Close of function

var rockb = new Throw(rockbx,rockby,8,50,
50,"rgb(250,0,0)","rock.jpg");

Create the rock object

var paperb = new
Throw(paperbx,paperby,8,50,
50,"rgb(0,200,200)","paper.gif");

Create the paper object

var scib = new Throw(scissorsbx,scissorsby,
8,50,50,"rgb(0,0,200)","scissors.jpg");

Create the scissors object

everything.push(rockb); Add the rock object to the everything array

everything.push(paperb); Add the paper object to the everything array

everything.push(scib); Add the scissors object to the everything

array

function init(){ Header for function called on load of the

document

 document.f.score.value = "0"; Set score to zero. I also could use

CHAPTER 8

282

Code Explanation

 … = String(0);

(and it actually isn't necessary since

JavaScript will convert a number to a string in

this situation)

 ctx = document.getElementById
('canvas').getContext('2d');

Set the variable to be used for all drawing

 canvas1 = document.getElementById
('canvas');

Set the variable to be used for the mouse

click event handling

 canvas1.addEventListener
('click',choose,false);

Set up click event handling

 drawall(); Draw everything

 ctx.font="bold 16pt Georgia"; Set the font to be used for the result

messages

 ctx.fillStyle = "blue"; Set the color

} Close the function

function drawall() { Header for the function

 ctx.clearRect(0,0,cwidth,cheight); Clear the canvas

 var i; Variable for indexing

 for (i=0;i<everything.length;i++) { Iterate through the everything array

 everything[i].draw(); Draw the individual elements

 } Close the for loop

} Close the function

</script> Close the script element

</head> Close the head element

<body onLoad="init();"> Starting body tag. Set up call to the init

function

ROCK, PAPER, SCISSORS

283

Code Explanation

<canvas id="canvas" width="600" height=
"400">

Starting canvas tag

Your browser doesn't support the HTML5
 element canvas.

Message for noncompliant browsers

</canvas> Closing tag

 Line break

<form name="f"> Starting tag for form, giving form a name

Score: <input name="score" value="0"
 size="3"/>

Label and then input field, with initial value

and size

</form> Closing tag for form

</body> Closing tag for body

</html> Closing tag for html document

The audio enhanced version required three more global variables along with additions in the init, choose

and flyin functions. The new global variables are

var music = [
 [3,1,0],
 [1,3,2],
 [0,2,3]];
var musicelements;
var musicch;

Here is the clause in the choose function with the new line highlighted.

if ((mx>ch.sx)&&(mx<ch.sx+ch.bwidth)&&(my>ch.sy)&&(my<ch.sy+ch.bheight)) {
 drawall();
 size = 15;
 tid = setInterval(flyin,100);
 result = beats[compch][i];
 musicch = music[compch][i];
 newscore = Number(document.f.score.value);
 newscore +=points[compch][i];
 break;
}

Similarly, here s the complete flyin function with the new line in bold:

CHAPTER 8

284

function flyin() {
 ctx.drawImage(compimg, 70,100,size,size);
 size +=5;
 if (size>50) {
 clearInterval(tid);
 ctx.fillText(result,200,100,250);
 document.f.score.value = String(newscore);
 musicelements[musicch].play();
 }
}

Adding the audio enhancement, like adding video, provides an exercise in examining just what needs to be

changed and what remains the same. It certainly makes sense to develop a basic application first.

My idea was to make sounds for the four results. You could also have applause for any player win, booing

for any player loss, and something in between for the ties.

Some people like to include additional possible moves, with funny remarks describing what beats what, or

even replacing rock, paper, and scissors with three or more other possibilities. A few students of mine

have produced this game using a different language, such as Spanish. The more challenging task is to

make the application multilingual in a systematic way, by isolating the spoken language components. One

approach would involve changing the beats array to an array of arrays of arrays, with the first index

corresponding to the language. The label in the markup that holds the word Score also would need to

change, which you could accomplish by making it an input field and using CSS to remove its border.

Preparing applications for what is termed localization has emerged as an important area of development

for the Web.

Testing and uploading the application
You need to create or acquire (a polite term for finding something and copying the file to your computer)

the three images to represent rock, paper, and scissors. If you decide to enhance the application by

adding sounds, you need to produce or find the audio clips, convert these to the two common formats, and

upload all the sounds: this is 4 files times 2 formats for a total of 8 files.

Because this application involves a random element, make a concerted effort to do all the testing. You

want to test a player throwing each of the three possibilities versus each of the three computer moves.

You also want to test that the score goes up and down and stays the same as the situation dictates.

Typically, my testing routine is to make the rock throw repeatedly until I see all three computer moves at

least two times. Then I move on to paper, and then scissors, and then I keep changing my throw, say,

paper, rock, paper, scissors.

Test the basic program and then decide on what enhancements you d like to make to the presentation and

to the scoring. The images and the HTML document need to be uploaded when you ve tested the program

on your local computer and decide to upload it to a server. If you decide to use different images for

computer moves than for player moves, you ll have to find and upload even more. Some people like to put

images and audio files in subfolders. If you do this, don t forget to use the correct names in the code.

ROCK, PAPER, SCISSORS

285

Summary
In this chapter, you learned how to implement a familiar game using features of HTML5, JavaScript, and

CSS, along with general programming techniques. These included

• styles, in particular the font-family property

• form and input fields for displaying the score

• event handling using addEventListener for the mouse click event

• animation using setInterval and clearInterval

• audio elements for sound and source elements for working with different browsers

• getElementByTagname and play for specific control of audio clips

• programmer-defined objects for drawing programmer-created buttons on the screen, with logic

for determining if the mouse cursor was clicked on a specific button

• arrays of arrays for game rules

The next chapter describes another familiar, childhood game: Hangman. It combines techniques of

drawing on canvas and creating HTML elements using code that you have learned in previous chapters

along with some new CSS and JavaScript features.

CHAPTER 8

286

287

Chapter 9

Hangman

In this chapter, we will be covering

• CSS styles

• generating markup for alphabet buttons

• using an array for a sequence of drawings

• using a character string for the secret word

• an external script file for the word list

• setting up and removing event handling

Introduction
The goal for this chapter is to continue demonstrating programming techniques and the features of

HTML5, Cascading Style Sheets (CSS), and JavaScript, combining dynamic creation of HTML markup

along with drawing graphics and text on the canvas. The example for this chapter is another familiar

game—the paper-and-pencil game of Hangman.

Just in case you need to brush up on the rules, the game is played as follows: One player thinks of a

secret word and writes out dashes to let the other player know how many letters are in that word. The other

person guesses individual letters. If the letter appears in the word, player one replaces the dash

representing each occurrence of the guessed letter with the actual letter. If the letter does not appear in

the secret word, the first player draws the next step in a progression of stick figure drawings of a hanging.

In my example shown in Figure 9-1, the gallows are already on the screen. Next comes the head, then the

body, left arm, right arm, left leg, right leg, and finally, the rope. Players can come to an agreement on how

many steps are allowed. Player two loses the game if the hanging is complete before the word is guessed.

Yes, this is a ghoulish game, but it is popular and even considered educational.

In our game, the computer takes the role of player one and picks the secret word from a word list (in this

case an admittedly very short list). You may use my list. When you make your own game, use your own. It

CHAPTER 9

288

makes sense to start small and, once you are happy with your game, make a longer list. My technique of

using an external file for the word list supports this approach.

For the user interface, I chose to place blocks with each letter of the alphabet on the screen. The player

chooses a letter by clicking a block. After a letter is selected, its block disappears. This decision was

influenced by the fact that most people playing the pencil-and-paper version write out the alphabet and

cross out the letters as they are chosen.

Figure 9-1 shows the opening screen. The computer has selected a word with four letters. Notice that in

our program, the gallows appears on the screen already. Alternatively, you can choose to make that the

first one or two steps of the progression of drawings.

Figure 9-1. Opening screen

One advantage to using a small word bank is that I know what the word is now, even though my coding

uses a random process to select the word. This means I can develop the game without any stress in

playing it. I decided to select an a first. As Figure 9-2 shows, this letter does not appear in the secret word,

so an oval for a head is drawn on the screen, and the block for the letter a disappears.

HANGMAN

289

Figure 9-2. Screenshot after guessing an a

Working through the vowels, I guess an e, with results shown in Figure 9-3.

Figure 9-3. The game after guessing an e

Next, I guess an i, resulting in my third wrong move, as shown in Figure 9-4.

CHAPTER 9

290

Figure 9-4. The game screen after three incorrect selections

Now, I guess an o, and this turns out to be correct (as I knew since I have insider information), and an o

appears as the third letter in the word, as shown in Figure 9-5.

Figure 9-5. A correct guess of o

I try the next vowel, u, and that is correct also, as Figure 9-6 indicates.

HANGMAN

291

Figure 9-6. Two letters have been identified.

I now make some more guesses, first a t, as shown in Figure 9-7.

Figure 9-7. Another wrong guess of t

Then, I make another wrong guess, this time, an s, as shown in Figure 9-8.

CHAPTER 9

292

Figure 9-8. After a wrong guess of s

Figure 9-9 shows yet another wrong guess.

Figure 9-9. After a wrong guess of d

I decide to make a correct guess, namely m. Figure 9-10 shows three identified letters and most of the

person drawn on the screen.

HANGMAN

293

Figure 9-10. After a correct guess of m

At this point, I am trying to lose, so I guess b. This results in what is depicted in Figure 9-11.

Figure 9-11. Game lost

Notice that the drawing shows a noose; the complete secret word is revealed; and a message appears

telling the player that the game is lost and to reload to try again.

Figure 9-12 shows a screenshot from another game, and the computer has responded to a guess of the

letter e by showing it in two positions. Handling letters appearing more than once is not difficult, but that

certainly was not obvious to me before I started the programming.

CHAPTER 9

294

Figure 9-12. In this game, e appears in two spots.

I make some other guesses and finally get this word correct. Again, the list from which the choices are

made is not very long, so I can guess the words from the number of letters. Figure 9-13 shows a

screenshot from a winning game. Notice that there are two e s and three f s in the secret word.

Figure 9-13. Winning the game

The programming techniques and language features include manipulating character strings; using an

array holding the letters of the English alphabet; creating markup elements to hold the alphabet and the

spaces that represent the secret word, which may or may not be replaced by letters; handling events for

the created alphabet blocks; setting up a set of functions for drawing the steps of the hanging; and

HANGMAN

295

placing the names of the functions in an array. This implementation also demonstrates the use of external

script files for holding the word list. This game has turns within a game, unlike, say, rock, paper, scissors,

so the program must manage the game state internally as well as display it on the screen.

Critical requirements
As was true in the previous chapter, the implementation of this game makes use of many HTML5 and

JavaScript constructs demonstrated in earlier chapters, but they are put together here in different ways.

Programming is similar to writing. In programming, you put together various constructs, just like you write

sentences composed of words that you know, and then put these into paragraphs, and so on. While

reading this chapter, think back to what you have learned about drawing lines, arcs, and text on the

canvas; creating new HTML markup; setting up a mouse click event for markup on the screen; and using

if and for statements.

To implement Hangman, we need access to a list of words. Creating and testing the program does not

require a long list, which could be substituted later. I decided to make it a requirement that the word list be

separate from the program.

The user interface for player moves could have manifested in one of several ways, for example, an input

field in a form. However, I decided a better approach was to make the interface include graphics

representing the letters of the alphabet. It was necessary to make each of the graphics act as a clickable

button and provide a way to make each letter disappear after it has been selected.

The pencil-and-paper version of the game involves a progression of drawings ultimately resulting in a stick

figure with a noose around its neck. The computer game must show the same progression of drawings.

The drawings can be simple lines and ovals.

The secret word must be represented on the screen, initially as all blanks and then filled in with any

correctly identified letters. I chose to use double lines as blanks, because I wanted identified letters to be

underlined. An alternative could be question marks.

Last, the program must monitor the progress of the game and correctly determine when the player has lost

and when the player has won. The game state is visible to the player, but the program must set up and

check internal variables to make the determination that the game is won or lost.

HTML5, CSS, JavaScript features
Let s now look at the specific features of HTML5, CSS, and JavaScript that provide what we need to

implement Hangman. Except for basic HTML tags and the workings of functions and variables, the

explanations here are complete. However, much of this chapter repeats explanations given in earlier

chapters. As before, you may choose to look at all the code in the “Building the Application” section first

and return to this section if you need explanations of specific features.

Storing a word list as an array defined in an external script
file

The Hangman game requires access to a list of legal words, which can be called the word bank. It would be

a pretty sure bet to say that one approach is to use an array. The short array we ll use for this initial

example follows:

CHAPTER 9

296

var words = [
 "muon", "blight","kerfuffle","qat"
];

Notice that the words are all different lengths. This means that we can use the random processing code

that we will want for the final version and still know what word has been selected when we re testing. We ll

make sure the code uses words.length so that when you substitute a bigger array, the coding still

works.

Now, the question is how to use different arrays for this purpose if we want to bring in a different list of

words. It certainly is possible to change the HTML document. However, in HTML5 (or previous versions of

HTML), it is possible to include a reference to an external script file in place of or in addition to a script

element in the HTML document. We can take the three lines that declare and define the variable words and

place them in a file named words1.js. We can include this file with the rest of the document using the

following line of code:

<script src="words1.js" defer></script>

The defer method will cause this file to be loaded while the browser is continuing with the rest of the base

HTML document. We could not load these two files simultaneously if the external file contained part of the

body, but it works in this situation.

A more elaborate program could include multiple files with code for the player to select from among

different levels or languages.

Generating and positioning HTML markup, then making the
markup be buttons, and then disabling the buttons

The creation of the alphabet buttons and the secret word dashes is done with a combination of JavaScript

and CSS.

We ll write code to create HTML markup for two parts of the program: the alphabet icons and the blanks for

the secret word. (You can go to the quiz game in Chapter 6 for more on creating HTML markup.) In each

case, HTML markup is created using the following built-in methods:

• document.createElement(x): Creates HTML markup for the new element type x

• document.body.appendChild (d): Adds the d element as another child element of the body

element

• document.getElementById(id): Extracts the element with id the value of id

The HTML is created to include a unique id for each element. The code involves setting certain properties:

• d.innerHTML is set to hold the HTML

• thingelem.style.top is set to hold the vertical position

• thingelem.style.left is set to hold the horizontal position

With this background, here is the coding for setting up the alphabet buttons. We first declare a global

variable alphabet:

var alphabet = "abcdefghijklmnopqrstuvwxyz";

The setupgame function has this code for making the alphabet buttons:

HANGMAN

297

var i;
 var x;
 var y;
 var uniqueid;
 var an = alphabet.length;
 for(i=0;i<an;i++) {

 uniqueid = "a"+String(i);
 d = document.createElement('alphabet');
 d.innerHTML = (
 "<div class='letters' id='"+uniqueid+"'>"+alphabet[i]+"</div>");
 document.body.appendChild(d);
 thingelem = document.getElementById(uniqueid);
 x = alphabetx + alphabetwidth*i;
 y = alphabety;
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 thingelem.addEventListener('click',pickelement,false);
 }

The variable i is used for iterating over the alphabet string. The unique id is a concatenated with the index

value, which will go from 0 to 25. The HTML inserted into the created element is a div with text containing

the letter. The string is surrounded by double quotation marks, and the attributes inside this string are

surrounded by single quotation marks. The elements are spaced across the screen, starting at the

position alphabetx, alphabety (each global variable is declared earlier in the document), and

incremented horizontally by alphabetwidth. The top and left attributes need to be set to strings and

end with "px", for pixels. The last step is to set up event handling so these elements act as buttons.

The creation of the elements for the secret word is similar. A difference is that each of these elements has

two underscores as its text content. On the screen, these two underscores look like one long underscore.

The assignment to ch (for choice) is how our program selects the secret word.

var ch = Math.floor(Math.random()* words.length);
 secret = words[ch];
 for (i=0;i<secret.length;i++) {
 uniqueid = "s"+String(i);
 d = document.createElement('secret');
 d.innerHTML = (
 "<div class='blanks' id='"+uniqueid+"'> __ </div>");
 document.body.appendChild(d);
 thingelem = document.getElementById(uniqueid);
 x = secretx + secretwidth*i;
 y = secrety;
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 }

At this point, you may be asking, how did the alphabet icons get to be letters inside blocks with borders?

The answer is that I used CSS. The usefulness of CSS goes far beyond fonts and colors. The styles

provide the look and feel of critical parts of the game. Notice that the alphabet div elements have a class

CHAPTER 9

298

setting of 'letters', and the secret word letter div elements have a setting of 'blanks'. The style

section contains the following two styles:

<style>
.letters {position:absolute;left: 0px; top: 0px; border: 2px; border-style: double;
 margin: 5px; padding: 5px; color:#F00; background-color:#0FC; font-family:"Courier
New", Courier, monospace;
}
.blanks {position:absolute;left: 0px; top: 0px; border:none; margin: 5px; padding:
 5px; color:#006; background-color:white; font-family:"Courier New", Courier,
 monospace; text-decoration:underline; color: black; font-size:24px;
}
</style>

The designation of a dot followed by a name means this style applies to all elements of that class. This is

in contrast to just a name, such as form in the last chapter, in which a style was applied to all form

elements, or to a # followed by a name that refers to the one element in the document with an id of that

name. Notice that the style for letters includes a border, a color, and a background color. Specifying a font

family is a way to pick your favorite font for the task and then specify backups if that font is not available.

This feature of CSS provides a wide latitude to designers. My choices here are "Courier New", with a

second choice of Courier, and a third choice of any monospace font available (in a monospace font, all

the letters are the same width). I decided to use a monospace font to facilitate making icons that are the

same in size and space nicely across the screen. The margin attribute sets to the spacing outside the

border, and padding refers to the spacing between the text and the border.

We want the buttons representing letters of the alphabet to disappear after they are clicked. The code in

the pickelement function can use the term this to refer to the clicked object. These two statements

(which could be squeezed into one) make this happen by setting the display attribute:

var id = this.id;
document.getElementById(id).style.display = "none";

When the game is over, either through a win or a loss, we remove the click event handling for all the letters

by iterating over all the elements:

for (j=0;j<alphabet.length;j++) {
 uniqueid = "a"+String(j);
 thingelem = document.getElementById(uniqueid);
 thingelem.removeEventListener('click',pickelement,false);
}

The removeEventListener event does what it sounds like: it removes the event handling.

Creating progressive drawings on a canvas

In the chapters so far, you have read about drawing rectangles, text, images, and also paths. The paths

consist of lines and arcs. For Hangman, the drawings are all paths. For this application, code has set the

variable ctx to point to the 2D context of the canvas. Drawing a path involves setting a line width by

setting ctx.lineWidth to a numerical value and setting ctx.strokeStyle to a color. We will use

different line widths and colors for various parts of the drawing.

HANGMAN

299

The next line in the code is ctx.beginPath();, and it s followed by a sequence of operations to draw

lines or arcs or move a virtual pen. The method ctx.moveTo moves the pen without drawing and

ctx.lineTo specifies the drawing of a line from the current pen position to the point indicated. Please

keep in mind that nothing is drawn until the call of the stroke method. The moveTo, lineTo, and arc

commands set up the path that is drawn whenever either the stroke or fill methods are invoked. In our

draw functions, the next step is calling ctx.stroke();, and the last step is calling ctx.closePath(); to

end the path. For example, the gallows is drawn by the following function:

function drawgallows() {
 ctx.lineWidth = 8;
 ctx.strokeStyle = gallowscolor;
 ctx.beginPath();
 ctx.moveTo(2,180);
 ctx.lineTo(40,180);
 ctx.moveTo(20,180);
 ctx.lineTo(20,40);
 ctx.moveTo(2,40);
 ctx.lineTo(80,40);
 ctx.stroke();
 ctx.closePath();
}

The head and the noose require ovals. The ovals will be based on circles, so first I will review how to draw a

circle. You also can go back to Chapter 2. Drawing a circular arc is done with the ctx.arc command with

the following parameters: coordinates for the center of the circle, a length for the radius, the starting angle

in radians, the ending angle, and false for counter-clockwise or true for clockwise. Radians are intrinsic

measurements in which a full circle is Math.PI*2. The conversion from degrees to radians is to divide by

Math.PI and multiply by 180, but that is not needed for this example because we are drawing complete

arcs.

However, we want to draw an oval in place of a circle for the head (and later for part of the noose). The

solution is to use ctx.scale to change the coordinate system. In Chapter 4, we changed the coordinate

system to rotate the rectangle representing a cannon. Here, we manipulate the coordinate system to

squeeze one dimension to make a circle an oval. What our code does is first use ctx.save() to save the

current coordinate system. Then for the head, it uses ctx.scale(.6,1); to shorten the x axis to 60

percent of its current value and keep the y axis the same. Use the code for drawing an arc and then use

ctx.restore(); to restore the original coordinate system. The function for drawing the head follows:

function drawhead() {
 ctx.lineWidth = 3;
 ctx.strokeStyle = facecolor;
 ctx.save(); //before scaling of circle to be oval
 ctx.scale(.6,1);
 ctx.beginPath();
 ctx.arc (bodycenterx/.6,80,10,0,Math.PI*2,false);
 ctx.stroke();
 ctx.closePath();
 ctx.restore();
}

CHAPTER 9

300

The drawnoose function makes use of the same technique, except that, for the noose, the oval is wide as

opposed to narrow; that is, the vertical is squeezed and not the horizontal.

Each step in the progression of drawings is represented by a function, such as drawhead and drawbody .

We list all of these in an array called steps:

var steps = [
 drawgallows,
 drawhead,
 drawbody,
 drawrightarm,
 drawleftarm,
 drawrightleg,
 drawleftleg,
 drawnoose
];

A variable, cur, keeps track of the current step, and when the code confirms the condition that cur is

equal to the length of steps, the game is over.

After experimenting with these, I decided that I needed to draw the head and draw a neck on top of the

noose. This is done by putting in calls to drawhead and drawneck in the drawnoose function. The order is

important.

Use the draw functions as models for you to make your own drawings. Do change each of these individual

functions. You also can add or take away functions. This means you would be changing the number of

steps in the progression, that is, the number of wrong guesses the player can make before losing the

game.

Tip: If you haven't done so already (or even if you have), experiment with drawing. Create a separate

file just for drawing the steps of the hanging. Experiment with lines and arcs. You also can include

images.

Maintaining the game state and determining a win or loss

The requirement to encode and maintain the state of an application is a common one in programming. In

Chapter 2, our program kept track of whether the next move was a first throw or a follow-up throw of the

dice. The state of the Hangman game includes the identity of the hidden word, what letters in the word

have been correctly guessed, what letters of the alphabet have been tried, and the state of the

progression of the hanging.

The pickelement function, invoked when the player clicks on an alphabet block, is where the critical

action takes place, and it performs the following tasks:

• Check if the player's guess, kept in the variable picked, matches any of the letters in the

secret word held in the variable secret. For each match, the corresponding letter in the blank

elements is revealed by setting textContent to that letter.

• Keep track of how many letters have been guessed using the variable lettersguessed.

HANGMAN

301

• Check if the game has been won by comparing lettersguessed to secret.length. If the

game is won, remove event handling for the alphabet buttons and display the appropriate

messages.

• If the selected letter did not match any letters in the secret word (if the variable not is still

true), advance the hanging using the variable cur for an index into the array variable steps

• Check if the game has been lost by comparing cur to steps.length. If the two values are

equal, reveal all the letters, remove event handling, and display the appropriate messages.

• Whether or not there is a match, make the clicked alphabet button disappear by setting the

display attribute to none.

These tasks are performed using if and for statements. The check if the game has been won is done

after determining that a letter has been guessed correctly. Similarly, the check if the game has been lost

is done only when it is determined that a letter has not been correctly identified and the hanging has

advanced. The state of the game is represented in the code by the secret, lettersguessed, and cur

variables. The player sees the underscores and filled-in letters of the secret word and the remaining

alphabet blocks.

The code for the whole HTML document with line-by-line comments is in the “Building the Application”

section. The next section describes the critical first task of handling a player's guess. One general tactic

to keep in mind is that several tasks are accomplished by doing something for every member of an array

even if it may not be necessary for certain elements of the array. For example, when the task is to reveal

all the letters in the secret word, all have the textContent changed even if some of them have already

been revealed. Similarly, the variable not may be set to false multiple times.

Checking a guess and revealing letters in the secret word by
setting textContent

The player makes a move by clicking a letter. The pickelement function is set up as the event handler for

each letter icon. Therefore, within the function, we can use the term this to refer to the object that

received (listened for and heard) the click event. Consequently, the expression this.textContent will

hold the selected letter. Therefore, the statement

var picked = this.textContent;

assigns to the local variable picked the specific letter of the alphabet the player is guessing. The code

then iterates over all the letters in the secret word held in the variable secret and compares each letter to

the guess of the player. The created markup that starts out being the double underlines corresponds to

the letters in the secret word, so when there is a correct guess, the corresponding element will be

changed; that is, its textContent will be set to the letter guessed by the player, which is held in picked:

for (i=0;i<secret.length;i++) {
 if (picked==secret[i]) {
 id = "s"+String(i);
 document.getElementById(id).textContent = picked;
 not = false;
 lettersguessed++;
 …

CHAPTER 9

302

The iteration does not stop when a guess is correct; it keeps going. This means that all instances of any

one letter will be discovered and revealed. The variable not is set to false each time there is a match. If

there were two or more instances of the same letter, this variable is set more than once, which is not a

problem. I included the word kerfuffle to make sure that repeated letters were handled correctly (besides

the fact that I like the word). You can examine all the code in the next section.

Building the application and making it your own
The Hangman application makes use of CSS styles, HTML markup created by JavaScript, and JavaScript

coding. There are two initializing and set up functions (init and setupgame) and the function that does

most of the work (pickelement), plus eight functions that draw steps in the hanging. The functions are

described in Table 9-1.

Table 9-1. Functions Invoked or Called by Calls

Function Invoked / Called By Calls

init Invoked by the action of onLoad in the <body> tag setupgame

setupgame init The first of the drawing

functions, namely drawgallows

pickelement Invoked by the action of the addEventListener calls

in setupgame

One of the drawing functions

through call of steps[cur]()

drawgallows Call of steps[cur]() in pickelement

drawhead Call of steps[cur]() in pickelement, drawnoose

drawbody Call of steps[cur]() in pickelement

drawrightarm Call of steps[cur]() in pickelement

drawleftarm Call of steps[cur]() in pickelement

drawrightleg Call of steps[cur]() in pickelement

drawleftleg Call of steps[cur]() in pickelement

drawnoose Call of steps[cur]() in pickelement drawhead, drawnoose

drawneck drawnoose

Note the indirect pattern of most of the function calls. This pattern provides considerable flexibility if you

decide to change the hanging progression. Note also that you can remove the very first call in the

HANGMAN

303

setupgame function if you want the player to start with a blank page and not with the representation of the

wooden beams of the gallows.

The complete implementation of Hangman is shown in Table 9-2.

Table 9-2. The Complete Implementation of Hangman

Code Explanation

<html> Opening tag

<head> Opening tag

 <title>Hangman</title> Completes the title element

<style> Opens the style element

.letters {position:absolute;left: 0px;

 top: 0px; border: 2px; border-style: double;

 margin: 5px; padding: 5px; color:#F00;

 background-color:#0FC; font-family:

"Courier New", Courier, monospace;

Specifies styling for any element with

designated class letters, including the border,

colors, and font

} Closing style directive

.blanks {position:absolute;left: 0px;

 top: 0px; border:none; margin: 5px;

 padding: 5px; color:#006; background-color:

white; font-family:"Courier New", Courier,

 monospace; text-decoration:underline; color:
black;

Specifies styling for any element with

designated class blanks, including the border,

spacing, color, and font, and puts in

underlines

} Closing style directive

</style> Closes the style element

<script src="words1.js" defer></script> Element calling for inclusion of external file,

with directive to load the file at same time as

the rest of this document

 <script > Opening tag for the script element

 var ctx; Variable used for all drawing

 var thingelem; Variable used for created elements

CHAPTER 9

304

Code Explanation

 var alphabet = "abcdefghijklmnopqrstuvwxyz"; Defines letters of the alphabet, used for

alphabet buttons

 var alphabety = 300; Vertical position for all alphabet buttons

 var alphabetx = 20; Starting alphabet horizontal position

 var alphabetwidth = 25; Width allocated for the alphabet elements

 var secret; Will hold the secret word

 var lettersguessed = 0; Keeps count of letters guessed

 var secretx = 160; Horizontal starting position for secret word

 var secrety = 50; Vertical position for secret word

 var secretwidth = 50; Width allocated for each letter in display of

secret word

 var gallowscolor = "brown"; Color for the gallows

 var facecolor = "tan"; Color for the face

 var bodycolor = "tan"; Color for the body

 var noosecolor = "#F60"; Color for the noose

 var bodycenterx = 70; Horizontal position for the body

 var steps = [Holds the functions constituting the sequence

of drawings for the progression toward the

hanging

 drawgallows, Draws the gallows

 drawhead, Draws the head

 drawbody, Draws the body

 drawrightarm, Draws the right arm

 drawleftarm, Draws the left arm

HANGMAN

305

Code Explanation

 drawrightleg, Draws the right leg

 drawleftleg, Draws the left leg

 drawnoose Draws the noose

]; Ends the array steps

 var cur = 0; Points to the next drawing in steps

function drawgallows() { Header for the function drawing the gallows

 ctx.lineWidth = 8; Sets the line width

 ctx.strokeStyle = gallowscolor; Sets the color

 ctx.beginPath(); Begins the drawing path

 ctx.moveTo(2,180); Moves to the first position

 ctx.lineTo(40,180); Draws a line

 ctx.moveTo(20,180); Moves to the next position

 ctx.lineTo(20,40); Draws a line

 ctx.moveTo(2,40); Moves to the next position

 ctx.lineTo(80,40); Draws the line

 ctx.stroke(); Actually draws the whole path

 ctx.closePath(); Closes the path

} Closes the function

function drawhead() { Header for the function drawing the head of

the victim

 ctx.lineWidth = 3; Sets the line width

 ctx.strokeStyle = facecolor; Sets the color

CHAPTER 9

306

Code Explanation

 ctx.save(); Saves the current stage of the coordinate

system

 ctx.scale(.6,1); Applies scaling, namely squeezes the x axis

 ctx.beginPath(); Start a path

 ctx.arc (bodycenterx/.6,80,10,0,

Math.PI*2,false);
Draws an arc. Note that the x coordinate is

modified to work for the scaled coordinate

system. The complete arc will be an oval.

 ctx.stroke(); Actually does the drawing

 ctx.closePath(); Closes the path

 ctx.restore(); Restores (goes back to) the coordinates

before the scaling

} Closes function

function drawbody() { Header for the function that draws the body, a

single line

 ctx.strokeStyle = bodycolor; Sets the color

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,90); Moves to the position (right below head)

 ctx.lineTo(bodycenterx,125); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function drawrightarm() { Header for the function that draws the right

arm

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,100); Moves to the position

HANGMAN

307

Code Explanation

 ctx.lineTo(bodycenterx+20,110); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function drawleftarm() { Header for the function that draws the left arm

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,100); Moves to the position

 ctx.lineTo(bodycenterx-20,110); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function drawrightleg() { Header for the function that draws the right leg

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,125); Moves to the position

 ctx.lineTo(bodycenterx+10,155); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function drawleftleg() { Header for the function that draws the left leg

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,125); Moves to the position

CHAPTER 9

308

Code Explanation

 ctx.lineTo(bodycenterx-10,155); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function drawnoose() { Header for the function that draws noose

 ctx.strokeStyle = noosecolor; Sets the color

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx-10,40); Moves to the position

 ctx.lineTo(bodycenterx-5,95); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

 ctx.save(); Saves the coordinate system

 ctx.scale(1,.3); Does the scaling, which, squeezes the image

vertically (on the y axis)

 ctx.beginPath(); Starts a path

 ctx.arc(bodycenterx,95/.3,8,0,Math.

PI*2,false);
Draws a circle (which will become an oval)

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

 ctx.restore(); Restores the saved coordinate system

 drawneck(); Draws the neck on top of the noose

 drawhead(); Draws the head on top of the noose

HANGMAN

309

Code Explanation

} Closes the function

function drawneck() { Header for the function for drawing the neck

 ctx.strokeStyle=bodycolor; Sets the color

 ctx.beginPath(); Starts the path

 ctx.moveTo(bodycenterx,90); Moves to the position

 ctx.lineTo(bodycenterx,95); Draws the line

 ctx.stroke(); Actually draws the path

 ctx.closePath(); Closes the path

} Closes the function

function init(){ Header for the function called on document

load

 ctx = document.getElementById

('canvas').getContext('2d');
Sets up the variable for all drawing on canvas

 setupgame(); Invokes the function that sets up the game

 ctx.font="bold 20pt Ariel"; Sets the font

} Closes the function

function setupgame() { Header for the function that sets up the

alphabet buttons and the secret word

 var i; Creates the variable for iterations

 var x; Creates the variable for position

 var y; Creates the variable for position

 var uniqueid; Creates the variable for each of each set of

created HTML elements

 var an = alphabet.length; Will be 26

CHAPTER 9

310

Code Explanation

 for(i=0;i<an;i++) { Iterates to create alphabet buttons

 uniqueid = "a"+String(i); Creates a unique identifier.

 d = document.createElement('alphabet'); Creates an element of type alphabet

 d.innerHTML = (Defines the contents as specified in the next

line

 "<div class='letters'

 id='"+uniqueid+"'>"+alphabet[i]+"</div>");
Specifies a div of class letters with a

unique identifier and text content, which is the

ith letter of the alphabet

 document.body.appendChild(d); Adds to body

 thingelem = document.getElementById

(uniqueid);
Gets the element with the id

 x = alphabetx + alphabetwidth*i; Computes its horizontal position

 y = alphabety; Sets the vertical position

 thingelem.style.top = String(y)+"px"; Using the style top, sets the vertical position

 thingelem.style.left = String(x)+"px"; Using the style left, sets the horizontal

position

 thingelem.addEventListener('click',

pickelement,false);
Sets up event handling for the mouse click

event

 } Closes the for loop

 var ch = Math.floor(Math.random()*

 words.length);
Chooses, at random, an index for one of the

words

 secret = words[ch]; Set the global variable secret to be this word

 for (i=0;i<secret.length;i++) { Iterates for the length of the secret word

 uniqueid = "s"+String(i); Creates a unique identifier for the word

 d = document.createElement('secret'); Creates an element for the word

HANGMAN

311

Code Explanation

d.innerHTML = "<div class='blanks' id='"

+uniqueid+"'> __ </div>");
Sets the contents to be a div of class

blanks, with the id of the word the uniqueid

just created. The text content will be an

underscore.

 document.body.appendChild(d); Appends the created element as a child of the

body

 thingelem = document.getElementById

(uniqueid);
Gets the created element

 x = secretx + secretwidth*i; Calculates the element s horizontal position

 y = secrety; Sets its vertical position

 thingelem.style.top = String(y)+"px"; Using the style top, sets the vertical position

 thingelem.style.left = String(x)+"px"; Using the style left, sets the horizontal

position

 } Closes the for loop

 steps[cur](); Draws the first function in the steps list, the

gallows

 cur++; Increments cur

 return false; Returns false to prevent any refreshing of

the HTML page

} Closes the function

 function pickelement(ev) { Header for the function invoked as a result of

a click

 var not = true; Sets not to true, which may or may not be

changed

 var picked = this.textContent; Extracts the text content, namely the letter,

from the object this references

 var i; Iterates

CHAPTER 9

312

Code Explanation

 var j; Iterates

 var uniqueid; Used to create unique identifiers for elements

 var thingelem; Holds the element

 var out; Displays a message

 for (i=0;i<secret.length;i++) { Iterates over the letters in the secret word

 if (picked==secret[i]) { Says, “If the player guessed letter is equal to

this letter in secret…”

 id = "s"+String(i); Constructs the identifier for this letter

 document.getElementById(id).

textContent = picked;
Changes the text content to be the letter

 not = false; Sets not to false

 lettersguessed++; Increment the number of letters identified

correctly

 if (lettersguessed==secret.length) { Says, “If the whole secret word has been

guessed…”

 ctx.fillStyle=gallowscolor; Sets the color, which uses the brown of the

gallows but could be anything

 out = "You won!"; Sets the message

 ctx.fillText(out,200,80); Displays the message

 ctx.fillText("Re-load the page to

 try again.",200,120);
Displays another message

 for (j=0;j<alphabet.length;j++) { Iterates over the whole alphabet

 uniqueid = "a"+String(j); Constructs the identifier

 thingelem = document.getElementById

(uniqueid);
Gets the element

HANGMAN

313

Code Explanation

thingelem.removeEventListener('click',

pickelement,false);

Removes the event handling

 } Closes the j for loop iteration

 } Closes if (lettersguessed….), that is, the

all-done test

 } Closes the if (picked==secret[i]) true

clause

 } Closes the for loop over letters in the secret

word iteration

 if (not) { Checks if no letters were identified

 steps[cur](); Proceeds with the next step of the hanging

iteration

 cur++; Increments the counter

 if (cur>=steps.length) { Checks to see if all steps are finished

 for (i=0;i<secret.length;i++) { Starts a new iteration over the letters in the

secret word to reveal all the letters

 id = "s"+String(i); Constructs the identifier

 document.getElementById(id).textContent

 = secret[i];
Obtains a reference to the element and sets it

to that letter in the secret word

 } Close the iteration

 ctx.fillStyle=gallowscolor; Set the color

 out = "You lost!"; Sets the message

 ctx.fillText(out,200,80); Displays the message

 ctx.fillText("Re-load the

 page to try again.",200,120);
Displays the reload message

CHAPTER 9

314

Code Explanation

 for (j=0;j<alphabet.length;j++) { Iterates over all of the letters in the alphabet

 uniqueid = "a"+String(j); Constructs the unique identifier

 thingelem = document.getElementById

(uniqueid);
Gets the element

thingelem.removeEventListener('click',

pickelement,false);

Removes the event handling for this element

 } Closes the j iteration

 } Closes the cur test to determine if the

hanging is complete

 } Closes the if (not) test (bad guess by

player)

 var id = this.id; Extracts the identifier for this element

 document.getElementById(id).style.display

 = "none";
Makes this particular alphabet button

disappear

 } Closes the function

</script> Closes the script

</head> Closes the head

<body onLoad="init();"> Opening tag that sets up call to init

<h1>Hangman</h1> Puts the name of game in big letters

<p> Opening tag for paragraph

<canvas id="canvas" width="600" height="400"> Opening tag for canvas element. Includes

dimensions.

Your browser doesn't support the HTML5

 element canvas.
Message for people using browsers that don't

recognize canvas

</canvas> Closing tag for canvas

HANGMAN

315

Code Explanation

</body> Closes the body

</html> Closes the document

A variation of Hangman uses common sayings in place of words. Building on this game to create that one

is a challenge for you. The critical steps are handling of blanks between the words and the punctuation.

You probably want to reveal each instance of blanks between words and periods, commas, and question

marks immediately, making these things hints to the player. This means that you need to make sure that

lettersguessed starts off with the correct count. Do not be concerned that the selected letters are

compared to blanks or punctuation.

Another variation would be to change the alphabet. I carefully replaced all the instances of 26 with

alphabet.length. You would also need to change the language for the messages for winning and losing.

A suitable enhancement of the game is to make a New Word button. To do so, you need to split up the

workings of the setupgame button into two functions: One function creates new alphabet icons and the

positions for the longest possible secret word. The other makes sure all the alphabet icons are visible and

set up for event handling and then selects and sets up the blanks for secret word, making sure the

appropriate number are visible. If you do this, you may want to include display of a score and a number of

games.

Continuing with the educational idea and assuming you use unusual words, you may want to include

definitions. The definition can be revealed at the end, by writing text on the canvas. Or you can make a

button to click to reveal the definition as a hint to the player. Alternatively, you could create a link to a site

such as Dictionary.com.

Testing and uploading the application
To test this application, you can download my word list or create your own. If you create your own, start off

with a short word list prepared as plain text, giving it the name words1.js. When testing, do not always

guess in the same pattern, such as choosing the vowels in order. Misbehave and try to keep guessing

after the game is over. When you are satisfied with the coding, create a longer word list, and save it under

the name words1.js. Both the HTML and words1.js files need to be uploaded to your server.

Summary
In this chapter, you learned how to implement a familiar game using features of HTML5, JavaScript, and

CSS along with general programming techniques, which included the following:

• using the scale method to change the coordinate system to draw an oval, as opposed to a

circle, by saving and restoring before and after

• creating HTML markup dynamically

• setting up and removing event handling using addEventListener and removeEventListener

for individual elements

CHAPTER 9

316

• using styles to remove elements from display

• using arrays of function names to set up a progression of drawings

• manipulating variables to maintain the state of the game, with calculations to determine if there

is a win or a loss

• creating an external script file to hold the word list for increased flexibility

• using CSS, including font-family for the selection of fonts, color, and display

The next and final chapter of this book will describe the implementation of the card game, blackjack, also

called 21. It will build on what you have learned already and describe some new techniques in

programming, elements added to HTML5, and more CSS.

317

Chapter 10

Blackjack

In this chapter, we will be covering

• the footer and header tags, which are new to HTML5

• capturing key presses

• programmer-defined objects

• generating Image elements using a set of external image files

• shuffling a deck of cards

Introduction
The objective of this chapter is to combine programming techniques and HTML5 and JavaScript features

to implement the card game blackjack, also called 21. The implementation will make use of new tags

introduced in HTML5, namely footer and header. We will make use of the footer to give credit to the

source for the card images and the web site we are using for the shuffling algorithm. The cards are created

using programmer-defined objects and Image objects, with coding to generate the names of the image

files. The player makes moves using key presses.

The rules of blackjack are as follows: The player plays against the dealer (also known as the house). The

player and dealer are each dealt two cards. The first card of the dealer is hidden from the player, but the

other is visible. The value of a card is its face value for the numbered cards, 10 for a jack, queen, or king,

and either 1 or 11 for an ace. The value of a hand is the sum of the cards. The object of the game is to have

a hand with a value as close to 21 as possible without going over and to have a value greater than the

other person. Thus an ace and a face card count as 21, a winning hand. The actions are to request

another card or to hold.

Since this is a two-person game, our player will play against the computer, and as was the case with rock,

paper, scissors, we have the task of generating the computer moves. However, we are guided by the

practice of casinos—the dealer (house) will use a fixed strategy. Our dealer will request another card if the

value of the hand is under 17 (the game strategy in casinos may be slightly more complicated and may be

CHAPTER 10

318

dependent on the presence of aces). Similarly, our game does declare a tie if the player and house have

the same total if the total is under 21; some casinos may have a different practice.

An opening screenshot is shown in Figure 10-1.

Figure 10-1. Opening screen for blackjack

After the user presses the n key, the next screen would look something like Figure 10-2. Remember that

there are random processes involved, so this same set of cards is not guaranteed to appear each time.

Figure 10-2. Cards dealt

BLACKJACK

319

Figure 10-2 shows what the player sees: all of his or her own hand and all but one card of the dealer's hard.

The virtual dealer does not have knowledge of the player's hand. In this situation, the player's hand has a

value of 7 plus 10 for a total of 17. The dealer is showing an 8. The player probably should hold, but let's be

daring and press d for one more card. Figure 10-3 shows the result.

Figure 10-3. Player with 19

Now, the player clicks h to see what the dealer has. The result is shown in Figure 10-4.

Figure 10-4. Player wins with 19 versus the dealer s 18

CHAPTER 10

320

The player wins, since 19 is closer to 21 than 18.

The player can start a new game by pressing the n key or reloading the document. Reloading the

document would mean starting with a complete, freshly shuffled deck. Pressing the n key continues with

the current deck. Anyone who wants to practice card counting, a way of keeping track of what still is in

the deck and varying your play accordingly, should opt to press the n key.

Figure 10-5 shows a new game.

Figure 10-5. A new game

This time, the player presses h to hold, and Figure 10-6 shows the result.

BLACKJACK

321

Figure 10-6. Player wins

The dealer was holding 9 plus 5 for a total of 14 and drew another card. The card drawn, an 8, took the

hand over, so the player won.

Figure 10-7 shows the player being conservative by holding on 16. The dealer drew a card to add to the 10

(for the king) and 6 and then stopped with 19, beating the player.

Figure 10-7. The house wins.

CHAPTER 10

322

The actual practices of dealers at casinos may be different from this. This is an opportunity for research!

The player also can bluff the house by going over and not revealing it. This may lead the house to request

another card and go over also. The game is decided if and only if the player clicks the h key to hold, and

thus stop drawing cards.

You may want to provide feedback to the player when a key that is not d, h, or n is pressed, as shown in

Figure 10-8.

Figure 10-8. Feedback when a wrong key is pressed

Critical requirements
The blackjack game will make use of many of the HTML5, CSS, and JavaScript features described for the

previous games.

The first issue I had when starting the implementation was to find a source of images for the card faces. I

knew I could make my own drawings, but I preferred something more polished than I could produce.

The next challenge was how to design what a card was in programming terms so that I could implement

dealing cards, showing the back or the face. I also wanted to investigate how to shuffle the deck.

Another challenge was implementing the way a player would play the game. I chose to use key presses: d

to deal, h to hold, and n to begin a new game. There are, of course, alternatives, for example, displaying

buttons with words or graphics or using other keys, such as the arrow keys. The absence of a clear,

intuitive interface made it necessary to display the directions on the screen.

The last challenges are the general ones of maintaining the state of the game, the visible display, and

internal information; generating the computer moves, and following the rules.

BLACKJACK

323

HTML5, CSS, and JavaScript features
Let s now look at the specific features of HTML5, CSS, and JavaScript that provide what we need to

implement the blackjack card game. Except for basic HTML tags and functions and variables, the

explanations here are complete. If you have read the other chapters, you will notice that much of this

chapter repeats explanations given previously. Remember that you can skip ahead to the “Building the

application” section to see the complete code for the game with comments and then return to this section

for more explanation.

Source for images for card faces and setting up the Image objects

I did find an excellent source for the card faces: www.eludication.org/playingcards.html. This site

uses something called the Creative Common License, and the rules of the Creative Common License are

described at http://creativecommons.org/licenses/by-sa/2.5/. It requires any user to give credit,

and I will demonstrate how I chose to do this.

After copying the files to your computer, we need a way to access 53 (52 cards plus one image for the

back) image files without writing 53 different file names. This can be accomplished because the file names

follow a pattern. The builddeck function is the following:

function builddeck() {
 var n;
 var si;
 var suitnames= ["clubs","hearts","spades","diamonds"];
 var i;
 i=0;
 var picname;
 var nums=["a","2","3","4","5","6","7","8","9","10","j","q","k"];
 for (si=0;si<4;si++) {
 for (n=0;n<13;n++) {
 picname=suitnames[si]+"-"+nums[n]+"-75.png";
 deck[i]=new MCard(n+1,suitnames[si],picname);
 i++;
 }
 }
}

Notice the nested for loops. A for statement is a way to program code to repeat, generally referred to as

looping, for a specified amount of time. The three parts inside the parentheses specify an initial

statement, a condition for continuing, and an increment action. These can be any expressions, but,

typically, they refer to a single variable, called the looping or index variable. The first statement

initializes the variable; the second indicates a comparison operation; and the third is an increment or

decrement expression. for statements are common when dealing with arrays.

In this function, the outer loop manages the suits and the inner loop the cards within each suit. The

picname variable will be set to the names of the files that we downloaded from the source. The MCard

function is the constructor function to create a MCard object, that is, objects of the class we defined as a

programmer-defined class of objects. n+1 will be used as the value of the card, and there will be some

adjustment for the face cards.

http://www.eludication.org/playingcards.html
http://creativecommons.org/licenses/by-sa/2.5

CHAPTER 10

324

Note: The three statements in the nested for loops could be combined into

deck[i++]=new MCard(n+1,suitnames[si], suitnames[si]+"-"+nums[n]+"-75.png");.

This is because the ++ iteration operator takes place after the value has been generated for indexing

the deck array. However, I recommend that in this learning example you don't do it! Using three

statements is much easier to write and to understand.

Creating the programmer-defined object for the cards

JavaScript provides a way for programmers to create programmer-defined objects to group together data;

the different pieces of data called attributes or properties, and we use dot notation to get at the

different attributes. It is also possible to bundle together code into methods, but we don t need to do that

in this example (recall that we did do this in other applications, such as cannonball and slingshot in

Chapter 4). The function setting up the new object is called the constructor function. For cards, I defined

MCard, which was shown in use in the previous section in the builddeck function. The definition of this

function follows:

function MCard(n, s, picname){
 this.num = n;
 if (n>10) n = 10;
 this.value = n;
 this.suit = s;
 this.picture = new Image();
 this.picture.src = picname;
 this.dealt = 0;
 }

The line of the function

 if (n>10) n = 10;

will be triggered by the face cards (jack, queen, king); remember, the value of each is 10. This line

corrects the value to be 10 in these cases.

Notice that this if statement is structurally different from previous if statements. There are not any

opening and closing curly brackets setting off the if-true clause. The single-statement clause is a

legitimate form of the if statement. I generally avoid this form because if I later decide to add another

statement, I will need to insert the curly brackets. However, it is OK in this situation. You will see both

variations when examining code. Notice that nothing special is done when n equals 1. The rule for two

possible values for an ace is handled elsewhere in the program.

The properties of MCard objects include a newly created Image object with its src attribute set to the

picname passed in. The last attribute, dealt, initialized to 0, will be set to 1 or 2 depending on whether the

card goes to the player or the dealer.

Dealing the cards

The builddeck function constructs the deck array of MCard objects. The player s hand is kept in an array

called playerhand with pi holding the index of the next position. Similarly, the dealer s hand is kept in an

array called househand with hi holding the index of the next position. An example showing the syntax

BLACKJACK

325

(punctuation) for referencing an attribute of an MCard object when the object is an element of an array is

playerhand[pi].picture.

The dealstart function has the task of dealing the first four cards: two to the player and two to the

dealer. One of the dealer s cards is not shown; that is, the card s back is shown. The deal function is

invoked when the player requests a new card (see later in this section). The deal function will deal a card

to the player and see if the dealer is to get a new card. Both dealstart and deal accomplish the actual

dealing by invoking the dealfromdeck function, adding the cards to the playerhand and househand

arrays and drawing the cards on the canvas. Formally, the dealfromdeck is a function that returns a

value of type MCard. Its call appears on the right side of assignment statements. If the face of the card is

to show, the Image object drawn is the one referenced by the card. If the back of the card is to show, the

Image object is the one held in the variable back.

Here is the dealstart function. Notice the four similar sets of statements: get the card, draw the image,

increment the x position for the next time, and increase indexing variable, pi or hi.

function dealstart() {
 playerhand[pi] = dealfromdeck(1);
 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);
 playerxp = playerxp+30;
 pi++;
 househand[hi] = dealfromdeck(2);
 ctx.drawImage(back,housexp,houseyp,cardw,cardh);
 housexp = housexp+20;
 hi++;
 playerhand[pi] = dealfromdeck(1);
 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);
 playerxp = playerxp+30;
 pi++;
 househand[hi] = dealfromdeck(2);
 ctx.drawImage(househand[hi].picture,housexp,houseyp,cardw,cardh);
 housexp = housexp+20;
 hi++;
 }

The deal function is similar. A card is added to the player's hand and to the house if more_to_house

returns true.

function deal() {
 playerhand[pi] = dealfromdeck(1);
 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);
 playerxp = playerxp+30;
 pi++;
 if (more_to_house()) {
 househand[hi] = dealfromdeck(2);
 ctx.drawImage(househand[hi].picture,housexp,houseyp,cardw,cardh);
 housexp = housexp+20;
 hi++;
 }
 }

CHAPTER 10

326

Note that more_to_house is a function that generates a true or false value. This value will be based on a

calculation of the dealer s total. If the total is 17 or greater, the value returned will be false; otherwise, it

will be true. The function call is used as the condition of an if statement, so if more_to_house returns

true, the statements within the if clause will be executed. The more_to_house code could be put inside

the deal function, but dividing up large tasks into smaller ones is good practice. It means I can keep

working on the deal function and postpone temporarily writing the more_to_house function. If you want to

refine the more_to_house calculation, you know exactly where to do it.

Determining the specific card from the deck is the task of the dealfromdeck function. Again, I make this

well-defined task its own function. The parameter is the recipient of the card. We don t need to keep track

of which recipient in this application, but we ll keep that information in the code in to prepare for building

other card games. What is critical is that the card has been dealt to someone. The dealt attribute

changes from 0. Notice the line return card;, which does the work of making an MCard object be the

result of invoking the function.

function dealfromdeck(who) {
 var card;
 var ch = 0;
 while ((deck[ch].dealt>0)&&(ch<51)) {
 ch++;
 }
 if (ch>=51) {
 ctx.fillText("NO MORE CARDS IN DECK. Reload. ",200,200);
 ch = 51;
 }
 deck[ch].dealt = who;
 card = deck[ch];
 return card;
}

Keep in mind that the deck array is indexed from 0 to 51. A while statement is another type of looping

construction. In most computer programming languages, a while loop is a control flow statement that

allows code to be executed repeatedly based on a given Boolean condition; the while loop can be thought

of as a repeating if statement. The statements inside the curly brackets will execute as long as the

condition inside the parentheses remains true. It is up to the programmer to make sure that this will

happen—that the loop won t go on forever. The while loop in our application stops when a card is

identified that has not been dealt, that is, its dealt attribute is 0. This function will say there are no more

cards when the last card, the fifty-first card, is available and dealt. If the player ignores the message and

asks for another card again, the last card will be dealt again.

As an aside, the issue of when the dealer chooses to gather the used cards together or go to a new deck

is significant for card counters attempting to figure out what cards remain. At many casinos, dealers use

multiple decks of cards to impede card counting. My program does not give the house that capability. You

can build on this program to simulate these effects if you want a program to practice card counting. You

can put the number of decks under player control, use random processing, or wait until the count of

remaining cards is under a fixed amount, or perhaps something else.

The dealer may request another card when the player requests another card or when the player decides to

hold. As mentioned earlier, the function to evaluate if the dealer asks for another card is more_to_house .

The calculation is to add up the values of the hand. If there are any aces, the function adds an extra 10

points if that will make the total 21 or less—that is, it makes 1 ace count as 11. Then, it evaluates if the

BLACKJACK

327

sum is less than 17. If it is, it returns true, which tells the calling function to request a new card. If the

value exceeds 17, it returns false.

function more_to_house(){
 var ac = 0;
 var i;
 var sumup = 0;
 for (i=0;i<hi;i++) {
 sumup += househand[i].value;
 if (househand[i].value==1) {ac++;}
 }
 if (ac>0) {
 if ((sumup+10)<=21) {
 sumup += 10;
 }
 }
 housetotal = sumup;
 if (sumup<17) {
 return true;
 }
 else {
 return false;
 }
}

If you want to experiment with a different strategy for the house, more_to_house is the function you

change.

Starting a new game can be a challenge for programmers. First of all, it is necessary to understand what

starting again means. For this implementation of blackjack, I provide an option to the player for starting a

new hand, which means continuing with the same deck. To start with a fresh deck that has no cards dealt

out, the player must reload the document. My name for the function that is invoked when the player

presses the n key is newgame. The required actions are to clear the canvas and reset the pointers for

player s and dealer s hands, as well as the variables holding the horizontal position for the next card. This

function closes with a call to dealstart.

function newgame() {
 ctx.clearRect(0,0,cwidth,cheight);
 pi=0;
 hi=0;
 playerxp = 100;
 housexp= 500;
 dealstart();
}

Shuffling the deck

The technique for shuffling featured in the concentration game (see Chapter 5) represented an

implementation of what my children and I did when playing the game: we spread out the cards and seized

pairs and switched their places. For blackjack, a friend pointed me to a website by Eli Bendersky

(http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-

CHAPTER 10

328

shuffling/) explaining the Fisher-Yates algorithm. The strategy of this algorithm is to make a random

determination for each position in the deck, starting from the end and working toward the start. The

calculation determines a random position in the deck from 0 up to and including the current position and

does a swap. The main shuffle function follows:

function shuffle() {
 var i = deck.length - 1;
 var s;
 while (i>0) {
 s = Math.floor(Math.random()*(i+1));
 swapindeck(s,i);
 i--;
 }
 }

Recall that Math.random() * N returns a number from zero up to but not including N. Taking Math.floor

of the result returns an integer from zero up to N. So if we want a number from 0 to i, we need to write

Math.floor(Math.random()*(i+1)). To make the shuffle function easier to read, I made a separate

function called swapindeck that swaps the two cards that are located at the positions indicated by the

parameters to the function. To perform a swap, an extra place is needed and this is the variable hold. This

extra place is needed because the two assignment statements cannot be accomplished at the same time.

 function swapindeck(j,k) {
 var hold = new MCard(deck[j].num,deck[j].suit,deck[j].picture.src);
 deck[j] = deck[k];
 deck[k] = hold;
 }

Capturing key presses

The use of the arrow keys was described in the maze game in Chapter 7. This essentially is a repeat of

that explanation.

Detecting that a key on the keyboard has been pressed and determining which key is termed capturing

the key strokes. The code must set up the response to a key event and is analogous to setting up a

response to a mouse event. The coding starts with invoking the addEventListener method, this time for

the window for this application.

window.addEventListener('keydown',getkey,false);

This means the getkey function will be invoked if and when a key is pressed.

Note: There also are keyup and keypress events. The keydown and keyup fire only once. The

keypress event will occur again after some amount of time if the player holds down the key.

Now, as you may expect at this point, the coding to get the information for which key involves code for

different browsers. The following code, with two ways to get the number corresponding to the key, works

for Chrome, Firefox, and Safari:

if(event == null)

BLACKJACK

329

 {
 keyCode = window.event.keyCode;
 window.event.preventDefault();
 }
 else
 {
 keyCode = event.keyCode;
 event.preventDefault();
 }

The preventDefault function does what it sounds like: it prevents any default action, such as special

shortcut actions associated with particular keys. The only keys of interest in this application are the three

keys d, h, and n. The following switch statement determines which key is pressed and invokes the

correct function: deal, playerdone, or newgame. A switch statement compares the value in the

parentheses with the values after the term case and starts executing the statements with the first one

that matches. The break; statement causes execution to jump out of the switch statement. The

default clause is what it sounds like. It is not necessary, but if it is present, the statement or statements

following default: are executed if nothing matches the case values provided.

 switch(keyCode)d
 {
 case 68: //d
 deal();
 break;
 case 72: //h
 playerdone();
 break;
 case 78: //n
 newgame();
 break;
 default:
 alert("Press d, h, or n.);
 }

Recall that you can determine the key code of any key by modifying the whole switch statement to have

just the following line in the default case:

 alert(" You just pressed keycode "+keyCode);

and doing the experiment of pressing on the key and writing down what number shows up.

Caution: If, like I sometimes do, you move among different windows on your computer, you may find

that when you return to the blackjack game and press a key, the program does not respond. You will

need to click the mouse on the window holding the blackjack document. This lets the operating

system restore the focus on the blackjack document so the listening for the key press can take

place.

CHAPTER 10

330

Using header and footer element types

HTML5 added some new built-in element types including header and footer. The rationale behind these

and other new elements (for example, article and nav) was to provide elements that serve standard

purposes so that search engines and other programs would know how to treat the material, though it still is

necessary to specify the formatting. These are the styles we will use in this example:

footer {
 display:block;
 font-family:Tahoma, Geneva, sans-serif;
 text-align: center;
 font-style:oblique;
}
header {
 width:100%;
 display:block;
}

The display setting can be block or inline. Setting these to block forces a line break. Note that forcing

the line break may not be necessary for certain browsers, but using it does not hurt. The font-family

attribute is a way to specify choices of fonts. If Tahoma is available on the user's computer, it will be used.

The next font to try will be Geneva. If neither one is present, the browser will use the sans-serif font set

up as the default. The text-align and font-style settings are what they appear to be. The width

setting sets this element to be the whole width of the containing element, in this case the body. Feel free

to experiment!

Note that you cannot assume the footer is at the bottom of the screen or surrounding element, nor the

header at the top. I made that happen by using positioning in the HTML document.

I used the footer to display the sources for the card images and the shuffle algorithm. Providing credit,

showing copyright, and displaying contact information are all typical uses of footer elements, but there are

no restrictions on how you use any of these new elements or on where you put them in the HTML document

and how you format them.

Building the application and making it your own
The functions used in this game are described in Table 10-1.

Table 10-1. The Blackjack Functions

Function Invoked / Called by Calls

init Invoked by the onLoad function in the <body>

tag

builddeck, shuffle, and

dealstart

getkey Invoked by the windowaddEventListener

call in init

deal, playerdone, and

newgame

dealstart init

BLACKJACK

331

Function Invoked / Called by Calls

deal getkey Two calls to dealfromdeck

and one call to

more_to_house

more_to_house deal

dealfromdeck deal and dealstart

builddeck init MCard

MCard builddeck

add_up_player playerdone

playerdone getkey more_to_house, showhouse,

and add_up_player

newgame getkey dealstart

showhouse playerdone

shuffle init swapindeck

swapindeck shuffle

The functions in this example feature a pattern of procedural calls with only init and getkey invoked as a

result of events. Please appreciate the fact that there are many ways to program an application, including

the definition of functions. Generally, it is a good practice to split code up into small functions, but it is not

necessary. There are many places where similar lines of codes are repeated, so there is opportunity to

define more functions. The annotated document follows in Table 10-2.

Table 10-2. The Annotated Code for the Blackjack Game

Code Explanation

<html> Opening tag

<head> Opening tag

 <title>Black Jack</title> Complete title element

 <style> Opening tag

CHAPTER 10

332

Code Explanation

 body { Specifies the style for the body

element

 background-color:white; Sets the background color

 color: black; Sets the color of the text

 font-size:18px; Sets the font size

 font-family:Verdana, Geneva, sans-serif; Sets the font family

} Closes the style

footer { Specifies the style for the footer

 display:block; Treats this element as a block

 font-family:Tahoma, Geneva, sans-serif; Sets the font family

 text-align: center; Aligns the text in the center

 font-style:oblique; Makes the text slanted

} Close style

header { Specifies the style for the header

 width:100%; Make it take up the whole window

 display:block; Treats it as a block

} Close style

 </style> Close the style element

 <script> Starts the script element

var cwidth = 800; Sets the width of the canvas; used

when clearing the canvas

var cheight = 600; Sets the height of the canvas; used

when clearing the canvas

BLACKJACK

333

Code Explanation

var cardw = 75; Sets the width of each card

var cardh = 107; Sets the height of each card

var playerxp = 100; Sets the starting horizontal position

for the cards in the player's hand

var playeryp = 300; Sets the vertical position for the

cards in the player's hand

var housexp = 500; Sets the starting horizontal position

for the cards in the dealer s hand

var houseyp = 100; Sets the vertical position for the

cards in the dealer s hand

var housetotal; For the total value of the dealer s

hand

var playertotal; For the total value of the player s

hand

var pi = 0; Index for the next card in player's

hand

var hi = 0; Index for the next card in the

dealer s hand

var deck = []; Holds all the cards

var playerhand = []; Holds the cards for the player

var househand = []; Holds the cards for the dealer

var back = new Image(); Used for the card back

function init() { Function called by onLoad in body to

performs initialization tasks

 ctx = document.getElementById('canvas').
getContext('2d');

Sets the variable used for all drawing

 ctx.font="italic 20pt Georgia"; Sets the font

CHAPTER 10

334

Code Explanation

 ctx.fillStyle = "blue"; Sets the color

 builddeck(); Invokes the function to build the

deck of cards

 back.src ="cardback.png"; Specifies the image for the back of

card (note that only one back

appears: the dealer s hidden card)

 canvas1 = document.getElementById('canvas'); Sets the variable for event handling

 window.addEventListener('keydown',getkey,false); Sets up event handling for keydown.

presses

 shuffle(); Invokes the function to shuffle

 dealstart(); Invokes the function to deal out the

first four cards

 } Closes the function

 function getkey(event) { Function to respond to keydown

events

 var keyCode; Holds the code designating the key

 if(event == null) Browser-specific code to determine

if the event is null

 { Open clause

 keyCode = window.event.keyCode; Gets the key code from

window.event.keyCode

 window.event.preventDefault(); Stops other key responses

 } Close clause

 else { clause

 keyCode = event.keyCode; Picks up the key code from

even.keyCode

BLACKJACK

335

Code Explanation

 event.preventDefault(); Stops other key responses

 } Close clause

 switch(keyCode) { Header for the switch statement

based on keyCode

 case 68: d key has been pressed down

 deal(); Deals out another card to the player

and maybe to the dealer

 break; Leaves the switch

 case 72: h key has been pressed down

 playerdone(); Invokes the playerdone function

 break; Leaves the switch

 case 78: n key has been pressed down

 newgame(); Invokes the newgame function

 break; Leaves the switch

 default: Default choice, which may be

appropriate to remove if you don t

feel the need to provide feedback to

players if they use an unrecognized

key

 alert("Press d, h, or n."); Feedback message

 } Closes the switch

 } Closes the function

function dealstart() { Header for the function for initially

dealing cards

 playerhand[pi] = dealfromdeck(1); Gets the first card for player

CHAPTER 10

336

Code Explanation

 ctx.drawImage(playerhand[pi].picture,
playerxp,playeryp,cardw,cardh);

Draw on the canvas

 playerxp = playerxp+30; Adjusts the horizontal pointer

 pi++; Increases the count of cards to the

player

 househand[hi] = dealfromdeck(2); Gets the first card for the dealer

 ctx.drawImage(back,housexp,houseyp,cardw,cardh); Draws a card s back on the canvas

 housexp = housexp+20; Adjusts the horizontal pointer

 hi++; Increases the count of cards to the

dealer

 playerhand[pi] = dealfromdeck(1); Deals a second card to the player

 ctx.drawImage(playerhand[pi].picture,
playerxp,playeryp,cardw,cardh);

Draws on canvas

 playerxp = playerxp+30; Adjusts the horizontal pointer

 pi++; Increases the count of cards to the

player

 househand[hi] = dealfromdeck(2); Deals a second card to the dealer

 ctx.drawImage(househand[hi].picture,
housexp,houseyp,cardw,cardh);

Draws on the canvas

 housexp = housexp+20; Adjusts the horizontal pointer

 hi++; Increases the count of cards to the

house

 } Close function

 function deal() { Header for the function for dealing

through the game

 playerhand[pi] = dealfromdeck(1); Deals a card to the player

BLACKJACK

337

Code Explanation

 ctx.drawImage(playerhand[pi].picture,
playerxp,playeryp,cardw,cardh);

Draws on the canvas

 playerxp = playerxp+30; Adjust the horizontal pointer

 pi++; Increases the count of cards to the

player

 if (more_to_house()) { if function to say there should be

more cards for the dealer

 househand[hi] = dealfromdeck(2); Deals a card to the house

 ctx.drawImage(househand[hi].picture,
housexp,houseyp,cardw,cardh);

Draws a card on canvas

 housexp = housexp+20; Adjusts the horizontal pointer

 hi++; Increases the count of cards to the

dealer

 } Closes the if-true clause

} Close function

function more_to_house(){ Header for the function determining

the dealer s moves

 var ac = 0; Variable to hold the count of aces

 var i; Variable for iteration

 var sumup = 0; Initializes the variable for the sum

 for (i=0;i<hi;i++) { Iterates over all the cards

 sumup += househand[i].value; Adds up value of cards in the

dealer s hand

 if (househand[i].value==1) {ac++;} Keeps track of the number of aces

 } Closes the for loop

CHAPTER 10

338

Code Explanation

 if (ac>0) { if statement to determine if there

were any aces

 if ((sumup+10)<=21) { If so, asks if making one of the aces

take on the value of 11 still yield a

total less than 21

 sumup +=10; If yes, do it

 } Closes inner if

 } Closes outer if

 housetotal = sumup; Sets the global variable to be the

sum

 if (sumup<17) { Asks if the sum is under 17

 return true; Returns true if so, meaning it s OK

to get one more card

 } Closes clause

 else { Begins else clause

 return false; Return false, meaning the dealer

won't get another card

 } Closes the else clause

} Closes the function

function dealfromdeck(who) { Header for the function to deal from

the deck

 var card; Holds the card

 var ch = 0; Holds the index for the next undealt

card

 while ((deck[ch].dealt>0)&&(ch<51)) { Asks if this card has been dealt

 ch++; Increases ch to go on to the next

card

BLACKJACK

339

Code Explanation

 } Close the while loop

 if (ch>=51) { Asks if there were no undealt cards

 ctx.fillText("NO MORE CARDS IN
 DECK. Reload. ",200,250);

Displays a message

 ch = 51; Sets ch to 51 to make this function

work

 } Closes the if-true clause

 deck[ch].dealt = who; Stores who, a nonzero value, so this

card is marked as having been dealt

 card = deck[ch]; Sets a card

 return card; Returns a card

} Closes the function

function builddeck() { Header for the function that builds

the MCard objects

 var n; Variable used for inner iteration

 var si; Variable used for outer iteration,

over the suits

 var suitnames= ["clubs","hearts",
"spades","diamonds"];

Names of suits

 var i; Keeps track of elements put into the

deck array

 i=0; Initializes the array to 0

 var picname; Simplifies the coding

 var nums=["a","2","3","4","5","6","7",
"8","9","10","j","q","k"];

The names for all the cards

 for (si=0;si<4;si++) { Iterates over the suits

CHAPTER 10

340

Code Explanation

 for (n=0;n<13;n++) { Iterates over the cards in a suit

 picname=suitnames[si]+"-"+nums[n]+
"-75.png";

Constructs the name of the file

 deck[i]=new MCard(n+1,suitnames[si],
picname);

Construct an MCard with the

indicated values

 i++; Increments i

 } Closes the inner for loop

 } Closes the outer for loop

} Closes the function

function MCard(n, s, picname){ Header for the constructor function

for making objects

 this.num = n; Sets the num value

 if (n>10) n = 10; Makes an adjustment in the cases of

the face cards

 this.value = n; Set the value

 this.suit = s; Set the suit

 this.picture = new Image(); Creates a new Image object and

assigns it as an attribute

 this.picture.src = picname; Set the src attribute of this Image

object to the picture file name

 this.dealt = 0; Initializes the dealt attribute to 0

 } Closes the function

function add_up_player() { Header for the function determining

the value of player's hand

var ac = 0; Holds the count of aces

BLACKJACK

341

Code Explanation

var i; For iteration

var sumup = 0; Initializes the sum

 for (i=0;i<pi;i++) { Loops over the cards in the player's

hand

 sumup += playerhand[i].value; Increments the value of the player s

hand

 if (playerhand[i].value==1) Asks if the card is an ace

 {ac++; Increments the count of aces

 } Closes the if statement

 } Closes the for loop

 if (ac>0) { Asks if there were any aces

 if ((sumup+10)<=21) { If this doesn't make sum go over

 sumup +=10; Makes one ace an 11

 } Closes the inner if

 } Closes the outer if

 return sumup; Returns the total

} Closes the function

function playerdone() { Header for the function invoked

when player says hold

 while(more_to_house()) { While the more_to_house function

indicates the dealer should get

another card

 househand[hi] = dealfromdeck(2); Deals a card to the dealer

 ctx.drawImage(back,housexp,houseyp,
cardw,cardh);

Draws the card on the canvas

CHAPTER 10

342

Code Explanation

 housexp = housexp+20; Adjusts the horizontal pointer

 hi++; Increases the index for the dealer s

hand

 } Closes the while loop

 showhouse(); Reveals the dealer s hand

 playertotal = add_up_player(); Determines the player s total

 if (playertotal>21){ Asks if the player was over

 if (housetotal>21) { Asks if the house was over

 ctx.fillText("You and house both
 went over.",30,100);

Displays a message

 } Closes the inner if statement

 else { Begins else clause

 ctx.fillText("You went over and lost."
,30,100);

Displays a message

 } Closes the else clause

 } Closes the outer clause (player is

over)

 else else the player is not over

 if (housetotal>21) { Asks if the dealer was over

 ctx.fillText("You won. House went
 over.",30,100);

Displays a message

 } Close the clause

 else else

 if (playertotal>=housetotal) { Compares the two amounts

BLACKJACK

343

Code Explanation

 if (playertotal>housetotal) { Performs a more specific

comparison

 ctx.fillText("You won. ",30,100); Displays the winner message

 } Closes the inner clause

 else { Begins else clause

 ctx.fillText("TIE!",30,100); Displays a message

 } Closes the else clause

 } Closes the outer clause

 else else

 if (housetotal<=21) { Checks if the dealer is under

 ctx.fillText("You lost. ", 30,100); Displays a message

 } Closes the clause

 else { Begins else clause

 ctx.filltext("You won because
 house went over.");

Displays a message (player under,

house over)

 } Closes the clause

 } Closes the function

function newgame() { Header for the function for a new

game

 ctx.clearRect(0,0,cwidth,cheight); Clears the canvas

 pi=0; Resets the index for the player

 hi=0; Resets the index for the dealer

 playerxp = 100; Resets the horizontal position for

the first card of the player's hand

CHAPTER 10

344

Code Explanation

 housexp= 500; Resets the horizontal position for

the dealer s hand

 dealstart(); Calls the function to initially deal the

cards

} Closes the function

function showhouse() { Header for the function to reveal the

dealer s hand

 var i; For iteration

 housexp= 500; Resets the horizontal position

 for (i=0;i<hi;i++) { for loop over the hand

 ctx.drawImage(househand[i].picture,
housexp,houseyp,cardw,cardh);

Draws the card

 housexp = housexp+20; Adjusts the pointer

 } Closes the for loop

} Closes the function

function shuffle() { Header for the shuffle

 var i = deck.length - 1; Sets the initial value for the i

variable to point to the last card

 var s; Variable used for the random choice

 while (i>0) { As long as i is greater than zero

 s = Math.floor(Math.random()*(i+1)); Makes a random pick

 swapindeck(s,i); Swaps with the card in the i position

 i--; Decrement

 } Closes the while loop

BLACKJACK

345

Code Explanation

 } Closes the function

 function swapindeck(j,k) { Helper function for the swapping

 var hold = new MCard(deck[j].num,deck[j].
suit,deck[j].picture.src);

Saves the card in position j

 deck[j] = deck[k]; Assigns the card in the k position to

the j position

 deck[k] = hold; Assigns the hold to card in the k

position

 } Closes the function

</script> Closes the script element

</head> Closes the head element

<body onLoad="init();"> Opening tag to set the call to init

<header>Press d for deal 1 more card,
 h for hold, n for new game.</header>

Header element containing

instructions

<canvas id="canvas" width="800" height="500"> Canvas opener

Your browser doesn't support the HTML5
 element canvas.

Warning to noncompliant browsers

</canvas> Closes the element

<footer>Card images from http://www.eludication
.org/playingcards.html, Creative Common License
 (http://creativecommons.org/
licenses/by-sa/2.5/).

Opens the footer element, which

contains credit for card images and

a link to the Creative Common

License

Fisher-Yates shuffle explained at
 http://eli.thegreenplace.net
/2010/05/28/the-intuition-behind-
fisher-yates-shuffling

Adds the credit for article on the

shuffle algorithm

</footer> Closes the footer

http://www.eludication%ED%AF%80%ED%B0%81
http://creativecommons.org/%ED%AF%80%ED%B0%81licenses/by-sa/2.5%00
http://creativecommons.org/%ED%AF%80%ED%B0%81licenses/by-sa/2.5%00
http://eli.thegreenplace.net%ED%AF%80%ED%B0%81

CHAPTER 10

346

Code Explanation

</body> Closes the body

</html> Closes the HTML file

You can change the look and feel of this game in many ways, including offering different ways for the

player to request to be dealt a new card, to hold with the current hand, or to request a new hand. You can

create or acquire your own set of card images. Keeping score from hand to hand, perhaps including some

kind of betting, would be a fine enhancement. Changing the rules for the dealer s play is possible.

Testing and uploading the application
This program requires considerable testing. Remember that the testing is not finished when you, acting as

tester, have won. It is finished when you have gone through many different scenarios. I did my first testing

of the game with an unshuffled deck. I then put in the shuffling and kept track of the cases that the testing

revealed. I pressed the d key for dealing one more card, the h for holding, and the n for a new game in

different circumstances. This is definitely a situation when you want to bring in other people to test your

application.

Uploading the application requires uploading all the images. You will need to change the builddeck

function to construct the appropriate names for the files if you use something different than what I

demonstrate here.

Summary
In this chapter, you learned how to implement a card game using features of HTML5, JavaScript, and CSS

along with general programming techniques. These included

• Generating a set of Image objects based on names of external files

• Designing a programmer-defined object for cards, incorporating the Images

• Drawing images and text on the screen

• Making use of for, while, and if to implement the logic of blackjack

• Using calculations and logic to generate the computer's moves

• Establishing event handling for the keydown event so that the player could indicate a request

to deal a new card, hold, or start a new game and using switch to distinguish between the

keys

• Using the header and footer elements, new to HTML5, for directions and giving credit to

sources

This is the last chapter of this book. I hope you take what you have learned and produce enhanced

versions of these games and games of your own invention. Enjoy!

347

Index

Symbols
< > angle brackets (pointy brackets), 270

< less than operator, 28

> greater than operator, 28

&& operator, 266

() parentheses, 11, 26, 270

* multiplication operator, 25

. period, indicating method invocation, 11, 26

/ slash. See slash

; semicolon, 11, 26

" " quotation marks. See quotation marks

[] square brackets, 75, 184, 270

_ underscore, 297

{} curly brackets, 154, 270, 324

+ addition operator, 25, 151

+ plus sign, 151

++ operator, 74, 324

+= operator, 268

= equal sign assignment operator, 26, 28

== equal signs comparison operator, 28

Numbers
2*Math.PI

angles and, 219

polygons and, 151

21 card game (sample). See blackjack card

game

A
a element, for hyperlinks, 5

absolute URL, 18

acceleration, 101

add_up_player function, for blackjack card

game sample, 331

addEventListener method

keystroke capture and, 220, 328

mazes sample and, 232

quiz sample and, 188

rock-paper-scissors game sample and, 265

slingshot sample and, 108, 128

addition operator (+), 25, 151

alert function, 28, 221

alignment, 8

allw array, 230

anchor, 5

angles, 32, 219

animated .gif files, 68

animation, 270

ballistics simulation and, 97

bouncing ball sample and. See bouncing ball

rock-paper-scissors game sample and,

270–272

types of, 68

appendChild method

Hangman game sample and, 296

quiz sample and, 187

INDEX

348

application state

craps game sample and, 24

Hangman game sample and, 295, 300

applications

ballistics simulation. See ballistics

simulation

building in stages, 38, 66

examples of. See samples

multilingual, 284

samples in this book, downloading, 100

terminology and, 214

arcs, drawing, 70, 32–38

arguments, 11, 26, 76

array of arrays

audio and, 274

memory game sample and, 147

quiz sample and, 184–186, 193

rock-paper-scissors game rules and, 267

array splice, 110

arrays, 73–75, 101

everything array and, 101, 103

gradients and, 74

Hangman game word list and, 295

one-dimensional vs. multi-dimensional, 185

arrow keys, responding to, 218, 219, 220

article element, 7, 187

aspect ratio, 72

assignment statements, 26

attributes, 324

audio

for rock-paper-scissors game sample, 259,

272–274, 283

support for, 128

audio element, 272

B
bad/invalid input, 69, 79, 96

ball (sample), illustrating ballistics simulation, 97

Ball function, 102

for cannonball sample, 103, 111, 118

for slingshot sample, 129

ballboundx/ballboundy variables, bouncing ball

sample and, 78

ballistics simulation, 97–140

ball sample illustrating, 97

cannonball sample and, 97, 111–128

slingshot sample and, 98, 107–111, 128–140

ballrad (sample) variable, 78

ballvx/ballvy variables, bouncing ball sample

and, 78

ballx/bally variables, bouncing ball sample and,

78

beats array, rock-paper-scissors game sample

and, 268, 284

best practices

for comments, 81, 221

for functions, 80

blackjack card game (sample), 317–346

building, 330–346

cards for, 323

customizing, 346

d key in to deal new card, 319, 329, 346

h key in to hold, 319, 329, 346

n key in to start new game, 318, 320, 327,

329

rules of the game, 317

testing/uploading, 346

body element, 4, 8

canvas and, 30

for quiz sample, 189, 193

rock-paper-scissors game sample score

and, 268

Boolean values, 27

borders, 8

bouncing ball (sample), 67–96

in 2-D box, 67, 80–85

ball replaced with image, 67, 71, 85–91

ballboundx/ballboundy variables and, 78

ballvx/ballvy variables and, 78

ballx/bally variables and, 78

customizing, 95

function calls for, 80

inboxboundx/inboxboundy variables and, 78

input validation for, 67, 91–95

moveball function and, 76, 77

testing/uploading, 96

br singleton tag, 6

break statement, 29

browsers, 1

audio/video support and, 128, 184, 272

event handling and, 265

form input validation and, 79

keystroke capture and, 220, 328

local storage and, 224, 226

mouse event implementation and, 108, 153

INDEX

349

testing web pages and, 19

video display and, 191

viewing web pages via, 11

builddeck function, for blackjack card game

sample, 323, 331, 346

button element, 38

buttons

graphical, 260, 263–266, 295

for Hangman game sample, 296–298

C
cache, clearing, 80

camel case naming convention, 25

cannon variable, 103

cannonball (sample), 97

building, 111–128

cannon for, 118–128

customizing, 127

testing/uploading, 140

the canvas (canvas element), 2, 21, 29–38

erasing and, 37, 76

everything array and, 101, 103

object information and, 106

text, drawing on, 149–151

card back, for memory game sample, 142

card counting, 320

card face, for memory game sample, 141

Card function, for memory game sample, 147,

155, 167

cards

for blackjack card game sample, 323

for memory game sample, 141–147, 152

Cascading Style Sheets. See CSS styles

case statement, 29

casts, 270

cball variable, 103

cel (frame-by-frame) animation, 68

change function

for bouncing ball sample, 80

for cannonball sample, 111, 118

for slingshot sample, 129

cheating, preventing in games/applications, 153

checked attribute, 232

chicken and feathers, for slingshot sample, 100,

110, 128

choices array, rock-paper-scissors game

sample and, 267

choose function

for memory game sample, 148, 153, 154, 167

for rock-paper-scissors game sample, 265,

267, 270, 272, 275

Chrome, form input validation and, 79, 80

circles, drawing, 32–38, 70, 299

clearInterval function, for rock-paper-scissors

game sample, 270

clearRect function, 37, 76

click event, for memory game sample, 152

clickable buttons, 265, 295

closePath command, 35, 37

closing tag, 4, 19

code

comments in, 47, 81, 155

indenting, 4

pseudo-code and, 28

code fragments, 25

collision detection

for bounding ball sample, 78

for mazes, 222–224

color coding, 13

color variable, 75

colors, 7

invalid input and, 69

memory game sample and, 166

quiz sample and, 190, 201

rock-paper-scissors game sample and, 269

comments, 47

best practices for, 81, 221

writing, 155, 221

compch variable, 267, 268

compchn variable, 267

compiled languages, 10

compimg variable, 267

computed animation, 68, 270

computer as game player

blackjack card game sample and, 317

Hangman game sample and, 287

rock-paper-scissors game sample and, 259,

267–274

concentration game. See memory game

conditional statements, 24, 27–29

constructor function, 102, 263, 324

context, 30

cookies, 216, 224

coordinate systems, 24, 30, 105

countries/capital cities quiz. See quiz

INDEX

350

craps game (sample), 21–66

building, 38–65

the complete game, 55–65

customizing, 63

opening screen for, 39

rules of the game, 21–23, 27, 55

single-die throws for, 40–47

testing/uploading, 65

text output form for, 38

two-die throws for, 47–55

uploading, 65

createElement method

Hangman game sample and, 296

quiz sample and, 187

Creative Common License, 323

CSS styles, 1, 4, 8–10

blackjack card game sample and, 323–330

bouncing ball sample and, 70–80

cannonball sample and, 101–111

craps game sample and, 24–38

curly brackets ({ }) and, 270

formatting and, 7

Hangman game sample and, 295–302

memory game sample and, 146–154

quiz sample and, 189–193

rock-paper-scissors game sample and,

263–274

slingshot sample and, 101–111

ctx (sample) variable, 30

bouncing ball sample and, 70

Hangman game sample and, 298

rock-paper-scissors game sample and, 264

cur variable, 300, 301

curly brackets ({ }), 154, 270, 324

curwall variable, 220, 231

customizing

blackjack card game sample, 346

bouncing ball sample, 95

cannonball sample, 127

craps game sample, 63

favorite web sites sample, 18

Hangman game sample, 315

mazes, 256

memory game sample, 176

quiz sample, 183, 201, 209

rock-paper-scissors game sample, 262, 284

cx property, intersection and, 222

cy property, intersection and, 222

D
date and time

measuring elapsed time and, 147, 230

quiz sample and, 201

storage/retrieval sample application for,

224–230

within head element, 10

Date function, 11

date and time storage/retrieval and, 224

measuring elapsed time and, 147, 230

days in the month calculation (sample), 29

deal function, for blackjack card game sample,

325, 331

dealfromdeck function, for blackjack card game

sample, 325, 326, 331

dealing cards, in blackjack card game sample,

324–327

dealstart function, for blackjack card game

sample, 325, 330

dealt attribute, 324, 326

deck variable, memory game sample and, 152

declaration statements, 26

defer method, 296

degrees

converting to radians, 106

programming languages and, 106

devices, 257

dice game (sample). See craps game

distance between points, 110

distsq function, for slingshot sample, 109, 128

div element, 187, 297

do-while loop, quiz sample and, 186

!DOCTYPE tag, 5

dot notation, 102, 147, 324

downloading

audio files, 273

favorite web sites sample, 8

sample applications, 100

drag and drop operations, mouse and, 108

draw functions, for Hangman game sample, 299,

302

draw method, 102, 103, 219

draw1 function

for single-die throws, in craps game sample,

40

for two-die throws, in craps game sample, 47

INDEX

351

draw2 function

for single-die throws, in craps game sample,

41

for two-die throws, in craps game sample, 48

draw2mid function

for single-die throws, in craps game sample,

41

for two-die throws, in craps game sample, 48

draw4 function

for single-die throws, in craps game sample,

41

for two-die throws, in craps game sample, 48

drawAline function, for mazes sample, 219, 233,

246

drawall function

for cannonball sample, 111, 118

for mazes sample, 232, 246

for rock-paper-scissors game sample, 265,

275

for slingshot sample, 109, 110, 128

drawAnImage function

for cannonball sample, 119

for slingshot sample, 129

drawback function, for memory game sample,

154, 167

drawball function, 102

for cannonball sample, 111, 118

for slingshot sample, 129

drawface function

for single-die throws, in craps game sample,

40

for two-die throws, in craps game sample, 47

drawImage function, 147

drawing, 2, 21, 29–38

bouncing ball sample and, 70–80

craps game sample and, 32–38

practicing/experimenting with, 300

translations for, 103–107

drawrects function

for cannonball sample, 111, 118

for slingshot sample, 129

drawsling function, for slingshot sample, 107,

129

drawThrow function, for rock-paper-scissors

game sample, 264, 275

drawtoken function, for mazes sample, 219,

233, 246

drawpoly function, for memory game sample,

155

dx variable, 47

dy variable, 47

E
elements

generated dynamically, 184, 186–189

nested, 4, 5

placing on top of other elements, 192

types of, 4, 7, 10

eludication.org, 323

e-mail addresses, input validation and, 79

encoding, 146, 230

ending tag, 4, 19

equal sign (=) assignment operator, 26, 28

equal signs (==) comparison operator, 28

errors

common errors and, 19, 65

HTML syntax and, 11

event-driven programming, 111

event handling, 220

clickable buttons and, 265

timing interval event and, 76

everything array, 101, 103

curwall variable and, 231

mazes sample and, 219

rock-paper-scissors game sample and, 265

rotation/translation and, 106

expressions, 25

F
facts array, 184, 193

fair use, linking web sites and, 18

favorite web sites (sample), 2–19

building, 11–19

customizing, 18

downloading, 8

testing/uploading, 19

feedback, 183

craps game sample and, 24

input validation and, 80

quiz sample and, 179, 182–184, 190, 201

when clicking outside of buttons, 266

for wrong key press, in blackjack card game,

322

INDEX

352

files

errors and, 19

saving, 12

fill method

paths and, 299

polygons and, 152

fillRect function, 75, 150

fillStyle property, 72, 75, 150

fillText function, 149

findball function, for slingshot sample, 108, 128

finish function

for mazes sample, 233

for slingshot sample, 109, 128

fire function, for cannonball sample, 111, 118

firstpick variable, 148, 153

Fisher-Yates algorithm, 328

flags, 153

flipback function, for memory game sample,

147, 154, 167

flyin function, for rock-paper-scissors game

sample, 270, 274, 275

font-family property, 269, 298, 330

font function, 149

font-style property, 8, 330

fonts

Hangman game sample and, 298

memory game sample and, 149, 166

safe web fonts and, 190, 269

footer element, 7, 187, 317, 330

for header statement, 74

for loop, 323

arrays and, 74, 185

blackjack card game sample and, 323

Hangman game sample and, 301

preventing cheating and, 154

radio buttons and, 232

foreign languages, 284

form element, 27

quiz sample and, 190

rock-paper-scissors game sample score

and, 268

for text, 38

form validation. See input validation

formatting, CSS styles for. See CSS styles

frame-by-frame (cel) animation, 68

frames, 270

function keyword, 26

functions, 11

best practices for, 80

defining your own, 26

naming conventions for, 25

timing events and, 76–77

fx property, intersection and, 222, 230

fy property, intersection and, 222, 230

G
G20 countries/capitals (sample) quiz. See quiz

game design, quality assurance and, 272

game state

craps game sample and, 24

Hangman game sample and, 295, 300

games

examples of. See samples

history of moves and, 262

new round feature for, 210

getElementById function

for Hangman game sample, 296

quiz sample and, 187

getElementsByTagname function, for rock-

paper-scissors game sample, 274

getkey function, for blackjack card game

sample, 328, 330

getkeyAndMove function, for mazes sample,

220, 233, 246

getTime function

for mazes sample, 230

for memory game sample, 148

getwalls function, for mazes sample, 233, 246

gif files, animated, 68

global variables, 26, 55

grad variable, 75

gradients, 72, 85–91

graphical buttons, 260, 263–266, 295

graphical feedback, 24

graphical user interface (GUI), 24

gravity, calculation for simulating, 100

ground variable, 103

GUI (graphical user interface), 24

H
h1-h6 heading elements, 7

Hangman game (sample), 287–316

building, 302–315

checking guesses/revealing letters in, 301

INDEX

353

customizing, 315

rules of the game, 287

shapes for, 298

testing/uploading, 315

word list for stored in external script, 295

head element, 4, 7, 187, 317, 330

script element within, 10

style element within, 8

heading elements (h1-h6), 7

height attribute

canvas and, 30

for img elements, 5

hold variable, 328

holder variable, 152

holderimg variable, 152

holderinfo variable, 152

horizontal displacement, ballistics simulation

and, 100, 106

horizontal value, 31, 79

househand array, for blackjack card game

sample, 324

href attribute, 19

htaccess file, 210

htarget variable, 103, 110

HTML

angle brackets (< >) and, 270

dynamic generation and, 184, 186–189

structure of, 4–10, 29

tags for. See elements

html element, 4

.html files, 12

HTML5

audio/video support and, 128

basic HTML structure and, 1–10

blackjack card game sample and, 323–330

bouncing ball sample and, 70–80

button element new with, 38

cannonball sample and, 101–111

canvas element new with, 21, 29

craps game sample and, 24–38

element types new with, 8

features of, 2

footer element new with, 317, 330

Hangman game sample and, 295–302

header element new with, 317, 330

local storage and, 214, 224–231

mazes sample and, 219–232

memory game sample and, 146–154

naming conventions and, 103

official web site of, 10

quiz sample and, 184–193

regular expressions and, 80

rock-paper-scissors game sample and,

263–274

slingshot sample and, 101–111

video and, 179, 184, 191–193, 210

hue variable, 73, 75

hyperlink element, 5

hyperlinks

a element for, 5

favorite web sites sample illustrating, 2–19

Hypertext Markup Language. See entries at

HTML

I
I/O (input-output), 24

id attribute, 10

if statement, 24, 27

blackjack card game sample and, 324

craps game sample and, 55

Hangman game sample and, 301

preventing cheating and, 153

while loop and, 326

image files, 5, 18

Image function, 71

Image objects, 71, 110, 323

images

blackjack card game sample and, 323

drawing on the canvas, 71

memory game and, 141, 145, 147, 166

target, replacing one with another, 99, 101,

110

img element, 5, 18, 71

inboxboundx/inboxboundy variables, bouncing

ball sample and, 78

increase function, 77

indenting code, 4

index variable, 323

info property, memory game sample and, 152

init function, 27

for blackjack card game sample, 330

for bouncing ball sample, 71, 76, 80

for cannonball sample, 111, 118

for Hangman game sample, 302

for mazes sample, 232, 246

INDEX

354

for memory game sample, 153, 154, 167

for quiz sample, 193

for rock-paper-scissors game sample, 275

rotations and, 104

for single-die throws, in craps game sample,

40

for slingshot sample, 128

initialization statements, 26

inmotion variable, 108, 109, 220

innerHTML attribute, 188

input-output (I/O), 24

input validation, 38, 79

for bouncing ball sample, 67, 91–95

feedback and, 80

invalid/bad input and, 69, 70, 79

internationalization, 284

Internet Explorer, HTML5 and, 19

intersect function, 222–224

invalid/bad input, 69, 79, 96

isNumber function, 79

italics, pseudo-code and, 28

J
JavaScript, 1, 4, 10

blackjack card game sample and, 323–330

bouncing ball sample and, 70–80

cannonball sample and, 101–111

canvas and, 30

craps game sample and, 24–38

curly brackets ({ }) and, 270

declaration statements and, 26

Hangman game sample and, 295–302

mazes sample and, 219–232

memory game sample and, 146–154

parentheses () and, 270

pseudo-random processing and, 24

quiz sample and, 184–193

rock-paper-scissors game sample and,

263–274

slingshot sample and, 101–111

square brackets ([]) and, 270

join method, 230

K
key/value pairs, local storage and, 224

keycodes, 221, 329

keystroke capture, 219, 220, 328

knowledge base, for quiz sample, 183, 193

L
left value, 31

legal considerations, linking web sites and, 18

length attribute, facts array and, 185

lettersguessed variable, 300

level array, radio buttons and, 232

line breaks, 6

line segments

dice game sample and, 32

slingshot sample and, 107

linear gradients, 72

lineTo method, 107

paths and, 299

polygons and, 152

local storage, 214, 224–231, 257

encoding data for, 230

mazes sample and, 218

measuring elapsed time and, 230

localization, 284

localStorage object, 224, 225

localStorage.setItem method, 230

logical values, 27

logos, 18

looping variable, 323

lsname variable, 231

M
makedeck function, for memory game sample,

147, 155, 167

margins, 8

markup, 1, 4

Math class, 24, 32

Math.atan2, 109

Math.floor method

blackjack card game sample and, 328

craps game sample and, 24

rock-paper-scissors game sample and, 267

Math.max method, 185

Math.PI constant, 32, 104

Math.PI*2, 71

Math.PI/6, 104

Math.random method

blackjack card game sample and, 328

INDEX

355

craps game sample and, 24

quiz sample and, 186, 193

rock-paper-scissors game sample and, 267

mathematical expressions, 25

mazes sample, 213–258

building, 232–257

customizing, 256

difficulty levels and, 230, 231

testing/uploading, 257

versions of, 214, 218, 230, 232, 246

MCard function, for blackjack card game

sample, 323, 326, 331

memory game (sample), 141–177

building, 154–176

clicking on cards and, 152

customizing, 176

improving, 176

shuffling cards and, 152

testing/uploading, 176

versions of, 141

methods, 11, 102, 324

milliseconds, 76, 148

Miro converter, 191, 272

more_to_house function, for blackjack card

game sample, 325–327, 331

mouse events

browser implementations and, 153

mazes sample and, 218, 219

quiz sample and, 184

slingshot sample and, 108

moveandcheck function, 78, 80

moveball function, 102

for bouncing ball sample, 76, 77, 80

for cannonball sample, 111, 119

for slingshot sample, 129

moveit method, 102, 103

for mazes sample, 219

for slingshot sample, 109, 128

moves by computer

blackjack card game sample and, 317

history of moves and, 262

rock-paper-scissors game sample and,

267–274

moveTo method, 107

paths and, 299

polygons and, 151

movetoken function, for mazes sample, 219,

233, 246

MP3 audio format, 272

multilingual applications, 284

multiplication operator (*), 25

musicch variable, 274

mx variable, 153, 266

my variable, 153, 266

mypent variable, 219

Myrectangle function, 102, 103

for cannonball sample, 111, 118

for slingshot sample, 129

N
naming conventions, 103

for functions, 25, 103

for variables, 25

natural languages, vs. programming languages,

11

nested elements, 4, 5

nested expressions, 25

nested for loops, 323

new operator, 71, 102, 263

new round feature, for games, 210

newgame function, for blackjack card game

sample, 331

newscore variable, for rock-paper-scissors

game sample, 268, 270

notation, 11

Notepad, 12

nq variable, 186

number of days in the month calculation

(sample), 29

"Number of matches so far: " expression, 151

numbers, 27

form input and, 79

vs. strings, 77

O
object-oriented programming, 111

objects, 102

defining, 102

programmer-defined, 101, 324

OGG audio format, 272

onLoad method

mazes sample and, 232

rock-paper-scissors game sample and, 274

onSubmit method, mazes sample and, 232

INDEX

356

opening tag, 4, 19

operator overloading, 151, 269

operators, 25

origin (registration) point, 31

ovals, drawing, 299

P
p element, for paragraphs, 8

padding, 8

page reloading, disabling, 27, 80

pairs array, 147

parentheses (), 11, 26, 270

paths, drawing

bouncing ball sample and, 70

dice game sample and, 30, 32–38

Hangman game sample and, 298

pausing, 146, 148

period (.), indicating method invocation, 11, 26

pi radians, 32, 104

picked variable, 300, 301

pickelement function

for Hangman game sample, 298, 300, 302

for quiz sample, 188, 194

picname variable, 323, 324

Picture function, 102, 103

for cannonball sample, 119

for slingshot sample, 129

pixels, 30

border thickness and, 8

image width and, 5

play method, 193, 274

playerdone function, for blackjack card game

sample, 331

playerhand array, for blackjack card game

sample and, 324

plus sign (+), 151

points array, for rock-paper-scissors game

sample, 268

Polycard function, for memory game sample,

155

Polygon function, for memory game sample, 147

polygons

drawing, 151

for memory game cards, 141, 147, 151

pop method, 110

positions, calculating for new, 78

preventDefault method, 221, 329

prices array, 185

programmer-defined objects, 101, 324

programming languages, 10

HTML. See entries at HTML

JavaScript. See JavaScript

vs. natural languages, 11

radians/degrees and, 106

projectile motion. See ballistics simulation

properties, 102, 324

pseudo-code, 28

pseudo-random processing, 24

push method, 103

Q
quality assurance, 272

quiz (sample), 179–211

building, 193–209

customizing, 183, 201, 209

second version of, 182, 190, 201–209

testing/uploading, 210

video feedback in, 179, 182, 191–193, 201,

210

quotation marks (" ")

code errors and, 19

omitted from HTML syntax, 5

string definitions and, 28, 75

R
radial gradients, 72

radians, 104

circles and, 32, 299

programming languages and, 106

radio buttons, mazes sample and, 218, 230, 246

random processing, 24

rectangles, 27

drawing, 30, 71, 75

rectangle for cannonball sample s cannon,

118

rotating, 103–107

ref attribute, 5

registration (origin) point, 31

regular expressions, input validation and, 79

relative URL, 18

reload/refresh button, disabling, 27, 80

resources for further reading

CSS styles, 189

INDEX

357

HTML5 video, 191

JavaScript, 10

restore operation, coordinate systems and, 105

result variable, rock-paper-scissors game

sample and, 268, 270

return keyword, 27

RGB values, 8, 74

rock-paper-scissors game (sample), 259–285

building, 275–284

customizing, 262, 284

displaying results for using animation,

270–272

graphical buttons for, 260, 263–266

rules of the game, 259, 267

testing/uploading, 284

versions of, 259

rotations, for drawings, 103–107

S
safe web fonts, 190, 269

samples

ball, illustrating ballistics simulation, 97

blackjack card game, 317–346

bouncing ball, 67–96

cannonball, 97, 111–128, 140

craps game, 21–66

date and time storage/retrieval application,

224–230

favorite web sites, 2–19

Hangman game, 287–316

mazes, 213–258

memory game, 141–177

number of days in the month calculation, 29

quiz, 179–211

rock-paper-scissors game, 259–285

slingshot, 98, 107–111, 128–140

in this book, downloading, 100

sans-serif fonts, 150

save operation, coordinate systems and, 105

savewalls function, for mazes sample, 233

saving your work, 12, 40

Score label, for rock-paper-scissors game

sample, 260

scores

local storage and, 257

rock-paper-scissors game sample and, 262,

268

script element, 10, 30, 187

scripting languages, 10

scripts

for Hangman game word list, 295

terminology and, 214

seconds, 76, 77

secret variable, 300, 301

secs element, 77

section element, 7, 8, 187

semicolon (;), terminating statements, 11, 26

setInterval function

bouncing ball sample and, 76, 77

rock-paper-scissors game sample and, 270

slingshot sample and, 110

setTimeout function

bouncing ball sample and, 76, 77

memory game sample and, 148

quiz sample and, 201

setupgame function

for Hangman game sample, 302

for quiz sample, 193

showhouse function, for blackjack card game

sample, 331

shuffle function

for blackjack card game sample, 328, 331

for memory game sample, 152, 155, 167

singleton tags, 5, 6

site logo, 18

size variable, 270

slash (/)

in ending HTML tag, 4

indicating comments, 47, 155, 221

omitted, 5

for singleton tag, 5

Sling function, for slingshot sample, 102, 103,

107, 129

slingshot (sample), 98, 107–111

building, 111, 128–139

chicken and feathers for, 100, 110, 128

drawing the slingshot, 107

pulling the slingshot, 108

testing/uploading, 140

slots array, 186

source element, 191, 273

splice method, 110

split method, 231

square brackets ([]), 75, 184, 270

square of the distance, 110

INDEX

358

src attribute, 5, 18

starting tag, 4, 19

starttime variable, 148, 176

startwall function, for mazes sample, 220, 233

statements, 11

steps array, for Hangman game sample, 300

storage/retrieval (sample) application, 224–230

stretchwall function, for mazes sample, 233

string values, 27

strings

character, vs. numbers, 77

quotation marks (" ") and, 5, 28, 75

stroke method, paths and, 299

strokeRect function, 71

style element, 8, 189

submit element, 38

substr method, 188

substring method, 187

sw string variable, 230

swalls variable, 231

swapindeck function, for blackjack card game

sample, 328, 331

switch statement, 24, 28

blackjack card game sample and, 329

craps game sample and, 55

sx property

intersection and, 222, 230

position and, 102, 147, 154

sy property

intersection and, 222, 230

position and, 102, 147

syntax, 5, 11

T
tablecolor variable, 150

tags, 1, 4–10, 19. See also elements

target variable, 103, 110

tev variable, 77

text

drawing, 149–151, 167

form input and, 79

output, form element for, 38

text-align property, 8, 330

text editors, 11, 95

text feedback, quiz sample and, 190

textContent, 300, 301

TextPad text editor (for the PC), 11

TextWrangler text editor (for the Mac), 11

this keyword, 102, 188

Hangman game letters and, 301

rock-paper-scissors game throws and, 263

throw function for rock-paper-scissors game

sample, 263, 264, 275

throwdice function

for complete craps game sample, 55

for two-die throws, in craps game sample, 47

tid variable, 270

time. See date and time

timing events, 76–77

title element, 4

toggles, 153

token, for mazes

collision detection and, 222–224

defining, 219

token function for, 219, 232, 246

top value, 31

translations, for drawings, 103–107

triangles, polygons and, 151

try… catch statement, errors and, 226, 230

U
underscore (_), 297

URLs (Universal Resource Locators), 5

absolute/relative, 18

input validation and, 79

V
validation, for form input. See input validation

value, local storage and, 224

values, types of, 27

var statements, 25, 71

variables, 25

global, 26

naming conventions for, 25

vertical displacement, ballistics simulation and,

100

vertical value, 31, 79

video

HTML5 and, 179, 184, 191–193, 210

in quiz sample, 179, 182, 191–193, 201, 210

support for, 128

upload considerations for, 210

video element, for quiz sample, 189, 191–193

INDEX

359

W
wall function, for mazes sample, 219, 232, 246

walls for mazes, 219, 231

WAV audio format, 272

Web addresses. See URLs

web pages

fundamental requirements for, 3

viewing via a browser, 11

Web-safe fonts, 190 269

web sites, favorite web sites sample and. See

favorite web sites

while loop, blackjack card game sample and,

326

whitespace, 4, 6, 81, 155

width attribute

canvas and, 30

for img elements, 5

word bank, for Hangman game sample, 295

word dashes, for Hangman game sample,

296–298

word wrap, 13

word-processing programs, 11

write method, 11

X
x value, 31, 79

Y
y value, 31, 79

Z
z-index (CSS), 192

zIndex (JavaScript), 193

INDEX

360

INDEX

361

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	The Basics
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Basic HTML structure and tags
	JavaScript programming

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Dice Game
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Pseudo-random processing and mathematical expressions
	Variables and assignment statements
	Programmer-defined functions
	Conditional statements: if and switch
	Drawing on the canvas

	Building the application and making it your own
	Throwing a single die
	Throwing two dice
	The complete game of craps

	Testing and uploading the application
	Summary

	Bouncing Ball
	Introduction
	Critical requirements
	HTML5, CSS, JavaScript features
	Drawing a ball, image, and gradient

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Cannonball and Slingshot
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Arrays and programmer-defined objects
	Rotations and translations for drawing
	Drawing line segments
	Mouse events for pulling on the slingshot
	Changing the list of items displayed using array splice
	Distance between points

	Building the application and making it your own
	Cannonball: with cannon, angle, and speed
	Slingshot: using a mouse to set parameters of flight

	Testing and uploading the application
	Summary

	The Memory (aka Concentration) Game
	Introduction
	Critical requirements
	HTML5, CSS, JavaScript features
	Representing cards
	Using Date for timing
	Providing a pause
	Drawing text
	Drawing polygons
	Shuffling cards
	Implementing clicking on a card
	Preventing certain types of cheating

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Quiz
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Storing and retrieving information in arrays
	Creating HTML during program execution
	Changing elements by modifying CSS using JavaScript code
	Text feedback using form and input elements
	Presenting video

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Mazes
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Representation of walls and the token
	Mouse events to build and position a wall
	Detecting the arrow keys
	Collision detection: token and any wall
	Using local storage
	Encoding data for local storage
	Radio buttons

	Building the application and making it your own
	Creating the second maze application

	Testing and uploading application
	Summary

	Rock, Paper, Scissors
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Providing graphical buttons for the player
	Generating the computer move
	Starting off

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Hangman
	Introduction
	Critical requirements
	HTML5, CSS, JavaScript features
	Storing a word list as an array defined in an external script file
	Generating and positioning HTML markup, then making the markup be buttons, and then disabling the buttons
	Creating progressive drawings on a canvas
	Maintaining the game state and determining a win or loss
	Checking a guess and revealing letters in the secret word by setting textContent

	Building the application and making it your own
	Testing and uploading the application
	Summary

	Blackjack
	Introduction
	Critical requirements
	HTML5, CSS, and JavaScript features
	Building the application and making it your own
	Testing and uploading the application
	Summary

	Index
	Symbols A
	Numbers
	B
	C
	D
	E
	F
	G
	H
	I
	L
	J
	M
	K
	N
	O
	P
	Q
	R
	S
	U
	V
	T
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

