

BLUETOOTH® APPLICATION PROGRAMMING
WITH THE JAVATM APIs

The Morgan Kaufmann Series in Networking

Series Editor: David Clark, M.I.T.
Bluetooth Application Programming with the Java APIs
C Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Modern Cable Television Technology: Video, Voice, and Data Communications, Second Edition
Walter Ciciora, James Farmer, David Large, and Michael Adams

Policy-Based Network Management: Solutions for the Next Generation
John Strassner

Computer Networks: A Systems Approach, Third Edition
Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, Second Edition
James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, Second Edition
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, Second Edition
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts, Architectures, and their Operational
Application
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing Infrastructure
David G. Messerschmitt

Switching in IP Networks: IP Switching, Tag Switching, and Related Technologies
Bruce S. Davie, Paul Doolan, and Yakov Rekhter

Wide Area Network Design: Concepts and Tools for Optimization
Robert S. Cahn

For further information on these books and for a list of forthcoming titles,
please visit our website at http://www.mkp.com

BLUETOOTH® APPLICATION

PROGRAMMING

WITH THE JAVATM APIs

C BALA KUMAR

PAUL J. KLINE

TIMOTHY J. THOMPSON

MOTOROLA SEMICONDUCTOR PRODUCTS SECTOR

Acquisitions Editor: Rick Adams
Associate Editor: Karyn P. Johnson
Publishing Services Manager: Simon G. Crump
Project Manager: Mamata N. Reddy
Designer: Eric DeCicco
Production Services: Graphic World Publishing Services
Composition: Expo
Illustration: Dartmouth Publishing
Printer: The Maple-Vail Book Manufacturing Group
Cover Printer: Phoenix Color

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK. Telephone: (+44) 1865 843830; FAX: (+44) 1865 853333;
E-mail: permissions@elsevier.com.uk. You may also complete your request online via the
Elsevier homepage (www.elsevier.com), by selecting “Customer Support” and then
“Obtaining Permissions.”

Morgan Kaufmann Publishers
An imprint of Elsevier Inc.
500 Sansome Street, Suite 400
San Francisco, CA 94111
www.mkp.com

© 2004 by Elsevier Inc.
All rights reserved
Printed in the United States of America

08 07 06 05 04 5 4 3 2 1

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher.

MOTOROLA, the Stylized M Logo and all other trademarks indicated as such herein
are trademarks of Motorola, Inc. registered in the U.S. Patent and Trademark Office.
The Bluetooth trademark is owned by its proprietor and used by Motorola, Inc. under
license. Java and all other Java-based terms are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other product
or service names are the property of their respective owners. © 2003 Motorola, Inc.
All rights reserved.

Library of Congress Control Number: 2003107476
International Standard Book Number: 1-55860-934-2

This book is printed on acid-free paper.

To my wife, Sundari, and sons, Sailesh and Shiva
—Bala

To my wife, Dianne
—Paul

To my wife, Karmen
—Tim

This Page Intentionally Left Blank

Contents

LIST OF TABLES . xiii

LIST OF FIGURES . xv

PREFACE . xvii

ACKNOWLEDGMENTS . xxi

CHAPTER 1 Introduction. 1
1.1 Wireless Connectivity . 1
1.2 What is Bluetooth Wireless Technology? 3

1.2.1 History of Bluetooth Wireless Technology 4
1.2.2 Bluetooth Vision . 5
1.2.3 Bluetooth Specification . 7

1.3 Overview of the Bluetooth Stack Architecture. 8
1.3.1 Bluetooth Protocols . 9
1.3.2 Bluetooth Profiles . 11
1.3.3 Bluetooth Qualification . 13

1.4 What is J2ME? . 14
1.4.1 Configurations . 15
1.4.2 Profiles . 16
1.4.3 Optional Packages. 18

1.5 Why Java Technology for Bluetooth Devices? 18
1.5.1 Java Community Process and JSR-82. 19
1.5.2 What about J2SE and PersonalJava? 20
1.5.3 Jini, JXTA, and Bluetooth Networks. 20

1.6 Summary. 22

CHAPTER 2 An Overview of JABWT . 23
2.1 Goals . 23

2.1.1 Target Devices . 24
2.1.2 Keeping Up with the Bluetooth Profiles 24

vii

2.1.3 JABWT Use Cases. 26
2.2 API Characteristics and Hardware Requirements. 27

2.2.1 JABWT Specification Characteristics 27
2.2.2 J2ME Device Requirements . 28
2.2.3 Bluetooth System Requirements 29

2.3 Scope . 30
2.4 Summary. 33

CHAPTER 3 High-Level Architecture . 35
3.1 Architecture of JABWT. 35

3.1.1 CLDC, MIDP, and JABWT . 35
3.1.2 Java Packages . 37
3.1.3 Client and Server Model . 37
3.1.4 Device Properties . 41

3.2 Bluetooth Control Center . 41
3.2.1 Conflict Resolution . 42
3.2.2 Modifying Device Properties 43
3.2.3 User Interaction. 43
3.2.4 BCC on Devices with No User Interface 43

3.3 Simple JABWT Application . 43
3.4 Summary. 50

CHAPTER 4 RFCOMM . 51
4.1 Overview . 51
4.2 API Capabilities . 56
4.3 Programming with the API . 58

4.3.1 Establishing a Server Connection 60
4.3.2 Establishing a Client Connection 65

4.4 Summary. 75

CHAPTER 5 OBEX . 77
5.1 Overview . 77

5.1.1 Use Cases . 78
5.1.2 Protocol Description. 79
5.1.3 Example Session. 81

5.2 API Capabilities . 84
5.3 Programming with the API . 87

5.3.1 Establishing a Connection . 88
5.3.2 Manipulating OBEX Headers 90

viii Contents

5.3.3 Sending a Request to the Server 92
5.3.4 Receiving a Request from a Client 98
5.3.5 Using OBEX Authentication . 102

5.4 Summary . 107

CHAPTER 6 Device Discovery . 109
6.1 Overview . 109
6.2 API Capabilities . 111
6.3 Programming with the API . 113

6.3.1 Accessing the Local Device . 114
6.3.2 Device Discovery via Inquiry 125
6.3.3 Retrieving Information from a Remote Device. 132
6.3.4 Using the DeviceClass Class 135

6.4 Summary . 138

CHAPTER 7 Service Discovery. 139
7.1 Overview . 139

7.1.1 Key Concepts . 141
7.1.2 Services Delivered by Bluetooth Profiles 142
7.1.3 Custom Services . 142

7.2 API Capabilities . 142
7.2.1 Run-before-Connect Services 143
7.2.2 Servers Are Usually Discoverable 144
7.2.3 Register a Service . 146
7.2.4 Modifications to Service Records 158
7.2.5 Device Service Classes . 160

7.3 Programming with the API . 161
7.3.1 Automatic Generation of Service Records 161
7.3.2 Modifying a Service Record . 167
7.3.3 Support for String Attributes in Several

Languages . 170
7.3.4 Service Records for Bluetooth Profiles. 173
7.3.5 Service Discovery . 181
7.3.6 Working with Service Records 191
7.3.7 Retrieving Additional Attributes after Service

Discovery . 195
7.3.8 Simple Device and Service Discovery 199
7.3.9 Connect-Anytime Services . 202

7.4 Summary . 204

Contents ix

CHAPTER 8 L2CAP . 205
8.1 Overview . 205

8.1.1 L2CAP Channels and L2CAP Packets 207
8.1.2 Reasons for Using L2CAP. 208

8.2 API Capabilities . 211
8.2.1 JABWT for L2CAP . 211
8.2.2 Open an L2CAP Connection 212
8.2.3 L2CAP Channel Configuration 215
8.2.4 No Flow Control in L2CAP. 218
8.2.5 Types of Applications Using L2CAP 220

8.3 Programming with the API . 221
8.3.1 Example: Echo L2CAP Packets 221
8.3.2 User Interface for MTU Values 230
8.3.3 L2CAP Clients and Servers Have the Same

Capabilities. 233
8.3.4 Flow Control . 234

8.4 Summary . 242

CHAPTER 9 Example Applications . 243
9.1 Overview . 243
9.2 Tic-Tac-Toe MIDlet . 244

9.2.1 Defining the TicTacToeMIDlet 244
9.2.2 The PauseCanvas and PauseTimerTask

Helper Classes. 251
9.2.3 Creating the Game Thread . 257
9.2.4 Playing the Game . 267

9.3 OBEX Application Download . 288
9.3.1 The Message Server Application. 289
9.3.2 The Message Client Application 301

9.4 Summary . 318

CHAPTER 10 Implementing JABWT on a Device 319
10.1 Porting Process . 320
10.2 Steps 1 and 2: Adding J2ME and Bluetooth Support . . . 322
10.3 Step 3: Implementing JABWT . 325

10.3.1 KVM-Stack Interface . 327
10.3.2 Implementing the BCC . 330
10.3.3 OBEX Implementation . 331

x Contents

10.4 Step 4: TCK Compliance . 332
10.5 Summary . 334

CHAPTER 11 Closing Remarks . 337

APPENDIX A Complete Code Examples . 341

APPENDIX B javax.bluetooth API . 391

APPENDIX C javax.obex API . 453

REFERENCES . 491

INDEX. 493

Contents xi

This Page Intentionally Left Blank

List of Tables

Table 1.1 Comparison of Wireless Communication Technologies 3
Table 4.1 Valid Parameters for RFCOMM Connection Strings 59
Table 5.1 OBEX Header Constants in the HeaderSet Interface, Their Meaning,

and Their Type . 91
Table 5.2 How OBEX Requests Are Translated to Methods by the JSR-82

Implementation . 99
Table 6.1 Properties Available through LocalDevice.getProperty() 116
Table 6.2 Major Service Classes Defined by the Bluetooth SIG 136
Table 6.3 Major Device Classes Defined by the Bluetooth SIG. 137
Table 7.1 Service Record Created by Connector.open("btspp:

//localhost:…") . 148
Table 7.2 Some Service Record Attribute IDs Defined by Bluetooth Assigned

Numbers . 150
Table 7.3 Examples of Conversions from a 16-Bit UUID to a 128-Bit UUID 151
Table 7.4 Service Record Created by Connector.open("btl2cap:

//localhost:…") . 154
Table 7.5 Service Record Created by Connector.open("btgoep:

//localhost:…") . 156
Table 7.6 Methods That Create a Service Record. 157
Table 7.7 Methods That Add Service Records to the SDDB 158
Table 7.8 Methods That Remove Service Records from the SDDB 158
Table 7.9 Service Record for a Bluetooth Game . 168
Table 7.10 Selected Attributes from a Service Record with English and

French Strings . 172
Table 7.11 Service Record Defined by Bluetooth Object Push Profile 174
Table 7.12 Service Record for an OBEX Object Push Server. 176
Table 7.13 Status Codes for Service Searches . 183
Table 7.14 Bluetooth Data Element Types and Their Associated Java Types 192
Table 8.1 Protocols and Profiles above Line Are Candidates for L2CAP API. 209

xiii

This Page Intentionally Left Blank

List of F igures

Figure 1.1 Bluetooth SIG timeline . 5
Figure 1.2 Bluetooth use cases . 6
Figure 1.3 Bluetooth host and device classification. 8
Figure 1.4 Bluetooth protocol stack. 9
Figure 1.5 Bluetooth profile hierarchy . 13
Figure 1.6 Java 2 platforms . 15
Figure 1.7 Components of J2ME architecture . 16
Figure 1.8 Jini and JXTA on a Bluetooth device with JABWT. 21
Figure 2.1 Target devices for JABWT . 25
Figure 2.2 JABWT provides access to selected functionality of the

Bluetooth stack . 32
Figure 3.1 CLDC + MIDP + Bluetooth architecture diagram 36
Figure 3.2 Package structure . 37
Figure 3.3 Bluetooth components involved in service discovery 38
Figure 3.4 How the BCC fits into a JABWT implementation 42
Figure 3.5 Run using the Impronto Simulator. (a) HelloServer.

(b) HelloClient . 49
Figure 4.1 Bluetooth profiles defined by the Bluetooth SIG [3] 52
Figure 4.2 Multiple Bluetooth connections can exist over a single

Bluetooth link . 53
Figure 4.3 For two devices to complete the pairing process, a common

PIN must be entered . 54
Figure 4.4 Device A attempts to authenticate device B . 54
Figure 4.5 Example of encryption . 55
Figure 4.6 GCF defined by CLDC . 57
Figure 4.7 Master connects to slave . 58
Figure 4.8 EchoServer MIDlet when it starts . 67
Figure 4.9 EchoClient (a) and EchoServer (b) communicating over RFCOMM 75
Figure 5.1 OBEX CONNECT operation . 81
Figure 5.2 OBEX SETPATH operation . 82

xv

Figure 5.3 OBEX PUT operation . 83
Figure 5.4 OBEX DISCONNECT operation . 83
Figure 5.5 OBEX client API results from combination of two connection types 85
Figure 5.6 OBEX server API created by combining two well-known APIs 86
Figure 5.7 GCF with OBEX API . 87
Figure 5.8 PUT request that combines OutputStream and HeaderSet into

an OBEX packet . 94
Figure 5.9 Phases of a PUT request . 95
Figure 5.10 Phases of a GET operation . 97
Figure 6.1 Cell phone performs a general inquiry. 110
Figure 6.2 All general and limited discoverable devices respond to a

general inquiry . 111
Figure 6.3 BluetoothInfoMIDlet running in J2ME Wireless Toolkit. 121
Figure 6.4 DiscoveryMIDlet retrieving list of preknown and cached devices . . . 123
Figure 6.5 DiscoveryMIDlet after discovering devices via inquiry 130
Figure 7.1 Unlike an inquiry, a service search is between only two devices 140
Figure 7.2 Life cycle of a service record for a run-before-connect service. 145
Figure 7.3 Example of server modifying its service record 159
Figure 7.4 Example code displays information about the default service record. . . . 162
Figure 7.5 Lifecycle of a service record for a connect-anytime service 203
Figure 8.1 Position of L2CAP in the Bluetooth stack . 206
Figure 8.2 L2CAP channels transmit L2CAP packets to multiple destinations 207
Figure 8.3 JABWT defines two interfaces for L2CAP communications 213
Figure 8.4 User interface for MTU experiments. (a) A receiveMTU of

672 bytes is entered for the server. (b) A transmitMTU of
500 bytes is entered for the client. 231

Figure 9.1 First Screen of Tic-Tac-Toe MIDlet . 248
Figure 9.2 Screenshot of TTTCanvas . 271
Figure 10.1 Components of JABWT device . 321
Figure 10.2 Components of native Bluetooth device . 322
Figure 10.3 Components of MIDP device . 323
Figure 10.4 Device with MIDP and a native Bluetooth stack 323
Figure 10.5 Implementation components . 326
Figure 10.6 Components of KVM extensions . 327
Figure 10.7 Context-switching in J2ME . 329
Figure 10.8 Not blocking the KVM . 330
Figure 10.9 OBEX implementations . 332
Figure 10.10 JSR-82 TCK setup . 334

xvi List of Figures

Preface

Bluetooth® wireless technology is a short-range radio standard that
provides new opportunities for wireless devices. This radio standard
was designed originally as a way of eliminating the cables currently
attached to nearly all consumer electronic devices. However, the goals
for Bluetooth wireless technology grew as its designers recognized
that it enables a new kind of wireless network between electronic
devices.

Recent developments in the Java™ programming language make it
possible for Java developers to write applications for wireless devices
such as cell phones and personal digital assistants. In 2000, the Java pro-
gramming community recognized the importance of creating a standard
extension to the Java programming language for use with Bluetooth
devices. A standard application programming interface (API) for
Bluetooth was needed because each Bluetooth software protocol stack
had its own API for application programmers. These proprietary APIs
meant that a Bluetooth application had to be ported to different
Bluetooth stacks to run on different devices. Apart from the work
involved in writing the code, interoperability testing on the various
devices cost time and money for the involved companies. A standard
API would help alleviate all these problems.

A team of experts from across the industry was assembled for this
effort under Java Specification Request 82 (JSR-82). The result was a
specification for Java APIs for Bluetooth wireless technology (JABWT).
The specification was the result of collaboration of many companies and
individuals in the industry. Some helped define the specification by
participating in the JSR-82 expert group, and many others contributed
by providing valuable comments.

This book introduces and explains to the community of Java
programmers the new standard extensions of the Java programming
language for Bluetooth wireless technology.

xvii

Specification documents provide you with the API to which you
are programming. But a book like this one explains why an API is
needed and how to use it. In addition, because we were members of the
Motorola team leading the JSR-82 standardization effort, we believe we
can explain the rationale for various features of JABWT.

The objectives of this book are to

• Give an overview of Java 2 Platform, Micro Edition (J2METM) and
Bluetooth wireless technology

• Outline the JABWT architecture
• Explain the API in detail
• Provide example applications
• Present the issues related to implementing JABWT on a device

Intended Audience
The book is intended for software developers, academics, and other
professionals who want to develop Java software for Bluetooth
devices. The book also is aimed at device manufacturers who want to
build devices with Java technology and Bluetooth wireless technol-
ogy. To gain the most out of this book, you will find it helpful to have
a working knowledge of J2ME and familiarity with Bluetooth wireless
technology. The book cites several references that provide additional
information on these subjects. We believe that a J2ME programmer
will need no additional reading beyond this book to write JABWT
applications.

How This Book Is Organized
Different readers of this book will be seeking different information. We
have identified three sets of people:

1. Those looking for an overview to make decisions on projects

2. Those who will be leading projects or managing projects in this
area

3. Programmers who need detailed information on how to program
using JABWT

xviii Preface

Apart from the introductory chapters, the chapters are organized
into three main sections to accommodate the three sets of people
identified above. The three divisions are

1. Overview: The executive introduction

2. API capabilities: The explanation for the project manager

3. Programming with the API: The programmer’s guide

Readers can choose the sections that suit their needs in each
chapter. Chapters 1 through 3 are overview chapters. Chapters 4
through 8 detail the various sections of the API. Chapter 9 provides
examples of JABWT applications. Chapter 10 explains how device man-
ufacturers can implement JABWT on a new device. Throughout the
book many code examples are given to explain the API. The complete
code for the examples can be found either in the chapters or in
Appendix A. The complete JSR-82 API is in Appendixes B and C.

There is a website for this book where you can access the complete
code examples found in the book. In addition, you can find the latest
news about JABWT, book errata, and other useful links. To access the
website, go to www.mkp.com and use the search option with the title of
this book.

The topics in this book are organized as follows:
Chapter 1, Introduction, presents an overview of Bluetooth wireless
technology and J2ME. It also provides a context for the JABWT
specification.
Chapter 2, An Overview of JABWT, defines the goals, characteristics,
and scope of JABWT.
Chapter 3, High-Level Architecture, presents the high-level architec-
ture of JABWT.
Chapter 4, RFCOMM, discusses the APIs for Bluetooth serial port
communications using RFCOMM.
Chapter 5, OBEX, introduces the architecture and the APIs for making
OBEX connections.
Chapter 6, Device Discovery, discusses the APIs for Bluetooth device
discovery.
Chapter 7, Service Discovery, describes the APIs for service discovery
and service registration.
Chapter 8, L2CAP, presents the API for Bluetooth communications
using the logical link control and adaptation protocol.

Preface xix

Chapter 9, Example Applications, illustrates the use of JABWT
through two sample applications.
Chapter 10, Implementing JABWT on a Device, describes the basic
porting process and highlights the major issues.
Chapter 11, Closing Remarks, provides a summary of the topics dis-
cussed in the book and discusses future trends.
Appendix A contains code for the examples from Chapters 7 and 8.
Appendix B contains the Bluetooth API from the package javax.blue-
tooth.
Appendix C contains the OBEX API from the package javax.obex.

xx Preface

Acknowledgments

A large number of people were involved with the original development
of the Java APIs for Bluetooth wireless technology. As the three of us set
out to write a book explaining those Bluetooth APIs, we were pleased to
discover that we would again receive contributions and assistance from
a large number of dedicated and talented individuals.

The authors thank Glade Diviney, Peter Kembro, and Ashwin
Kamal Whitchurch for reviewing the entire book in draft form
and making valuable comments and suggestions. Thanks also to
R. Thiagarajan, N. Murugan, and Franck Thibaut, who commented on
various chapters. Ramesh Errabolu, Ranjani Vaidyanathan, and Ravi
Viswanathan from the Motorola JSR-82 team also reviewed and com-
mented on several of the chapters. Of course, the authors are totally
responsible for any errors that remain.

When this book was in the proposal stage, we received excellent
advice and suggestions from Alok Goyal, Teck Yang Lee, Girish
Managoli, Brent Miller, Venugopal Mruthyunjaya, N. Ramachandran,
Rajeev Shorey, and Mark VandenBrink.

The Java APIs for Bluetooth wireless technology were developed
by a team of industry experts, the JSR-82 expert group, and the team
at Motorola that drafted the specification, wrote the reference imple-
mentation, and developed the conformance tests. The authors believe
that the efforts and contributions of all these individuals produced an
API that will have important benefits to the Java community. The
authors would like to thank the members of the JSR-82 expert group
for all their work on the API: Jouni Ahokas, Patrick Connolly, Glade
Diviney, Masahiro Kuroda, Teck Yang Lee, Paul Mackay, Brent Miller,
Jim Panian, Farooq Anjum, Charatpong Chotigavanich, Peter Dawson,
Peter Duchemin, Jean-Philippe Galvan, Daryl Hlasny, Knud Steven
Knudsen, Andrew Leszczynski, Martin Mellody, Anthony Scian, and
Brad Threatt.

xxi

We greatly appreciate all of the contributions of the other members
of the JSR-82 team at Motorola: Lawrence Chan, Judy Ho, Will
Holcomb, Judy Lin, Mitra Mechanic, and Allen Peloquin. Jim Erwin, Jim
Lynch, Aler Krishnan, Ed Wiencek, and Mark Patrick provided a great
deal of assistance to the JSR-82 team. Special thanks go to Anne-Marie
Larkin, vice president and director, Wireless Software, Applications and
Services for her encouragement and her support of this project.

The authors would like to thank Rococo Software for providing us
with their Impronto simulator for use as a second JABWT implementa-
tion to check the code examples.

The authors are very grateful to Rick Adams, Karyn Johnson, and
Mamata Reddy of Morgan Kaufmann for giving us this opportunity and
for all their hard work in producing the finished book.

Bala thanks Sundari, Sailesh, and Shiva for their understanding
and support through long nights and weekends working on this project.
Bala also thanks his mother, Suseela, and sister, Surya, for all their
patient nurturing and Mr. B. Kanakasabai for being his lifelong friend
and mentor.

Paul thanks his wife, Dianne, for her support and encouragement.
Tim thanks his wife, Karmen, for her encouragement, patience,

and support.

C Bala Kumar

Paul Kline

Tim Thompson

xxii Acknowledgments

About the Authors

C Bala Kumar is a Distinguished Member of the Technical Staff at
Motorola. He chaired the industry expert group that defined the Java
APIs for Bluetooth wireless technology. He currently leads the systems
software team for wireless platforms in Motorola’s Semiconductor
Products Sector. He received his Master’s degree in Electrical Engineering
from the University of Texas at Austin.

Paul J. Kline is a Distinguished Member of the Technical Staff at
Motorola and the maintenance lead for the JABWT specification. He
currently works on the System Software Architecture team in Motorola’s
Semiconductor Products Sector. He received his Ph.D. in Mathematical
Psychology from the University of Michigan.

Timothy J. Thompson is a Senior Software Engineer on the System
Software Architecture team in Motorola’s Semiconductor Products
Sector. He was the OBEX architect on the JABWT specification team at
Motorola. He received his Master’s degree in Computer Science from
Texas A&M University.

This Page Intentionally Left Blank

1
This chapter begins with an introduction to wireless connectivity and
Bluetooth wireless technology. It then gives:

• An overview of the Bluetooth protocol stack

• An overview of the Java 2 Platform, Micro Edition

• A description of the need for Java technology in Bluetooth devices

1.1 Wireless Connectivity
The rapid emergence of the Internet has changed the landscape of
modern computing. We are in the information age. The term “informa-
tion age” came about because of the exchange of massive amounts of
data between computing devices using wired and wireless forms of
communication. We are rapidly moving toward a world in which com-
munications and computing are ubiquitous.

The convergence of computing and communications began in the
early 1960s with the development of modems and the private branch
exchange (PBX). The modem allowed computers to communicate with
each other over telephone lines, and the PBX allowed computers to
control the telephone exchange. The result was computer networks.
Today, high-speed networks connect servers, personal computers, and
other personal computing devices. High-end routers manage the net-
works. The distinction between voice and data networks has blurred,
and the same network tends to carry both types of traffic. The desire and
need to communicate with distant computers led to the creation of the
Internet. The days of consumers’ buying a personal computer for stand-
alone applications have disappeared. These days the primary motive for
buying a personal computer is to use it as a communication tool, so that
one can have Internet access to e-mail and the World Wide Web.

CHAPTER Introduct ion

Increased dependence on the Internet and the need to stay con-
nected from anywhere at all times have led to advances in mobile com-
puting and communications. We have been communicating without
wires for some time with satellites, cordless phones, cellular phones, and
remote-control devices. However, in recent years the wireless communi-
cations industry has seen explosive growth. Long-range wireless
communication invariably uses radio frequency (RF). Typically long-
range communications use the licensed parts of the RF spectrum, and
user fees apply. Short-range communications can use either RF or
infrared and typically use unlicensed (i.e., free) parts of the frequency
spectrum.

There are many short-range wireless standards, but the three main
ones are Infrared from the Infrared Data Association® (IrDA®),
Bluetooth wireless technology, and wireless local area network (WLAN).
WLAN is also known as IEEE 802.11, and it comes in three main vari-
ants, 802.11b and 802.11g, which operate at 2.4 gigahertz (GHz), and
802.11a, which operates at 5 GHz. The IrDA created a wireless commu-
nications system that makes use of infrared light. Whereas RF commu-
nication can penetrate many objects, IrDA is limited to line of sight.
Both 802.11b and Bluetooth wireless technologies communicate in the
2.4-GHz RF band but are aimed at different market segments. The
802.11b technology has a longer range but consumes substantially more
power than Bluetooth wireless technology. The 802.11 variant is prima-
rily for data. The only protocol for supporting voice is Voice over
Internet Protocol (VoIP). Table 1.1 provides a comparison of these three
technologies.

Wireless communications allow computing and communication
devices to be used almost anywhere and to be used in new, progres-
sive ways. The increase in wireless mobile Internet devices is proof
that wireless connectivity is pervasive. Powerful software program-
ming environments will help fuel this mobile computing explosion
by enabling the development of compelling applications. The Java
platform provides a powerful programming environment that has
great promise for wireless devices. Many mobile devices now come
with support for Java 2, Micro Edition (J2METM) programs. This book
explains how to program Bluetooth applications with the Java pro-
gramming language.

2 Chapter One: Introduction

1.2 What Is Bluetooth Wireless Technology?
Bluetooth wireless technology is an open specification for a low-cost,
low-power, short-range radio technology for ad hoc wireless communi-
cation of voice and data anywhere in the world. Let’s examine each of
these attributes:

• An open specification means that the specification is publicly
available and royalty free.

• Short-range radio technology means devices can communicate
over the air using radio waves at a distance of 10 meters (m). With
higher transmission power the range increases to approximately
100 m.

• Because communication is within a short range, the radios are low
power and are suited for portable, battery-operated devices.

• Bluetooth wireless technology supports both voice and data, allow-
ing devices to communicate either type of content.

What Is Bluetooth Wireless Technology? 3

Table 1.1 Comparison of Wireless Communication Technologies

Feature and Function IrDA Wireless LAN Bluetooth Communication

Connection type Infrared, narrow Spread spectrum, Spread spectrum, spherical

beam, line of sight spherical

Spectrum Optical 850–900 nm RF 2.4 GHz (5 GHz for RF 2.4 GHz

802.11a)

Transmission power 40-500 mW/Sr 100 mW 10–100 mW

Maximum data rate 9600 bps–16 Mbps 11 Mbps (54 Mbps for 1 Mbps

(very rare) 802.11a, 802.11g)

Range 1 m 100 m 10–100 m

Supported devices 2 Connects through an 8 (active), 200 (passive)

access point

Voice channels No support VoIP 3

Addressing 32-bit physical ID 48-bit MAC 48-bit MAC

• Bluetooth wireless technology works anywhere in the world
because it operates at 2.4 GHz in the globally available, license-
free, industrial, scientific, and medical (ISM) band.

The ISM frequency band is available for general use by ISM applications,
hence several other devices (e.g., WLAN, cordless phones, microwave
ovens) operate in this band. Bluetooth wireless technology is designed
to be very robust in the face of interference from other devices.

1.2.1 History of Bluetooth Wireless Technology

The origins of Bluetooth communications started in 1994, when
Ericsson began a study to find alternatives to connecting mobile
phones to its accessories. The engineers looked at a low-power and
low-cost radio interface to eliminate cables between the devices. But
the engineers also realized that for the technology to be successful it
has to be an open standard and not a proprietary one. In early 1998,
Ericsson joined Intel, International Business Machines (IBM), Nokia,
and Toshiba and formed the Bluetooth Special Interest Group (SIG) to
focus on developing an open specification for Bluetooth wireless
technology. The original companies, known as promoter companies,
publicly announced the global Bluetooth SIG in May 1998 and
invited other companies to join the Bluetooth SIG as Bluetooth
adopters in return for a commitment to support the Bluetooth
specification. In July 1999, the Bluetooth SIG published version 1.0 of
the Bluetooth specification. In December 1999, four new promoter
companies—3Com, Agere, Microsoft, and Motorola—joined the
Bluetooth SIG.

Since then, the awareness of Bluetooth wireless technology has
increased, and many other companies have joined the Bluetooth SIG as
adopters, which gives them a royalty-free license to produce Bluetooth-
enabled products. Adopter companies also have early access to
specifications and the ability to comment on them. Interest in the
Bluetooth SIG has grown, and there are currently more than 2000
member companies. These companies represent academia and a variety
of industries.

Why is this technology called Bluetooth wireless technology? It
was named after a Danish Viking king, Harald Blåtand, who ruled circa
A.D. 940–981. Blåtand loosely translates to “blue tooth.” During his

4 Chapter One: Introduction

reign, King Harald Blåtand is supposed to have united and controlled
Denmark and Norway. Because this new radio technology was expected
to unify the telecommunication and computing industries, it seemed
fitting to name it after King Harald. A part-time historian on the team
proposed Bluetooth as the internal code name. Because the Bluetooth
SIG marketing team could not come up with a better name that was not
already trademarked, the name stuck.

1.2.2 Bluetooth Vision

Bluetooth wireless technology was originally developed as a cable
replacement technology for connecting devices such as mobile phone
handsets, headsets, and portable computers with each other (Figure
1.2). However, wireless connectivity between fixed and mobile devices
enables many other usage scenarios other than cable replacement. By
enabling wireless links and communication between devices, a short-
range wireless network was created that gave rise to the notion of a per-
sonal area network (PAN). Designed as an inexpensive wireless
networking system for all classes of portable devices, Bluetooth devices
have the capability to form ad hoc networks. These networks should
enable easy and convenient connections to printers, Internet access
points, and personal devices at work and at home.

What Is Bluetooth Wireless Technology? 5

1994 1998 1999 2000 2001 2003 2004

Ericsson Ericsson
Intel
IBM
Nokia
Toshiba

3Com
Agere
Microsoft
Motorola

Currently over 2000 SIG members

SIG Formed v1.0 Spec v1.0b Spec v1.1 Spec v1.2 Spec v2.0 Spec?

Figure 1.1 Bluetooth SIG timeline.

There are so many usage scenarios for Bluetooth wireless technol-
ogy that the technology will likely be put to wide use. Let’s look at a
couple of the usage models.

The three-in-one phone usage model allows a mobile telephone to
be used as a cellular phone in the normal manner, as a cordless phone
that connects to a voice access point (e.g., cordless base station), and as
an intercom or “walkie-talkie” for direct communication with another
device. The cordless telephony and the intercom features use Bluetooth
wireless technology.

The second use case is wireless telematics. Assume that a user who
is talking on a cell phone approaches his or her automobile but wants
to continue the phone conversation in the hands-free mode. Using
Bluetooth communication the user can continue the phone conversa-

6 Chapter One: Introduction

Data voice
access points

Cable
replacement

Landline

Personal ad-hoc networks

Figure 1.2 Bluetooth use cases.

tion using the microphone and speakers equipped in the dashboard of
the automobile.

Another use case is the instant post card, whereby a user (on vaca-
tion, for example) with a digital camera transmits a photo via a data
access point that could be a mobile phone or a local area network (LAN)
access point. Similar use cases include automatic synchronization, busi-
ness card exchange, hotel and airline check-in, electronic ticketing, and
wireless games.

1.2.3 Bluetooth Specification

The Bluetooth specification is the result of cooperation by many com-
panies under the Bluetooth SIG umbrella. The specification defines
the over-the-air behavior to ensure compatibility of Bluetooth devices
from different vendors. It defines the complete system from the radio
up to the application level, including the software stack. The
specification is very lengthy because of the breadth of topics it covers.
At the highest level, the specification (version 1.1) is split into two
volumes (in version 1.2 they are split into several subvolumes).
Volume 1 [1] is the core specification and describes the protocol stack
and related items such as testing and qualification. The Bluetooth pro-
tocol stack is defined as a series of layers somewhat analogous to the
familiar Open Systems Interconnect (OSI) [2] standard reference for
communication protocol stacks. Each layer of the protocol stack rep-
resents a different protocol and is separately described in the core
specification.

The Bluetooth profiles are described in volume 2 of the Bluetooth
version 1.1 specification [3]. Bluetooth profiles, essentially usage
models, describe how applications are to use the Bluetooth stack. A
Bluetooth profile is a set of capabilities of the protocol layers that rep-
resent a default solution for a usage model. Bluetooth profiles are the
basis of Bluetooth protocol stack qualification, and any new imple-
mentations of a Bluetooth profile have to go through the qualification
process described herein. The specification and profiles continue to
evolve as new areas are identified in which Bluetooth wireless tech-
nology can be used. Bluetooth protocols and profiles are discussed in
detail in the next section. For a detailed description of Bluetooth
wireless technology, see books by Miller [4] and Bray [5] and their
colleagues.

What Is Bluetooth Wireless Technology? 7

1.3 Overview of the Bluetooth Stack Architecture
This section provides a brief overview of the Bluetooth protocol stack.
The Bluetooth protocol stack can be broadly divided into two compo-
nents: the Bluetooth host and the Bluetooth controller (or Bluetooth
radio module). The Host Controller Interface (HCI) provides a standard-
ized interface between the Bluetooth host and the Bluetooth controller.
Figure 1.3 illustrates the Bluetooth host and Bluetooth device
classification.

The Bluetooth host is also known as the upper-layer stack and
usually is implemented in software. It is generally integrated with the
system software or host operating system. Bluetooth profiles are built on
top of the protocols. They are generally in software and run on the host
device hardware. For example, a laptop computer or a phone would be
the host device. The Bluetooth host would be integrated with the oper-
ating system on the laptop or the phone.

The Bluetooth radio module or controller usually is a hardware
module like a PC card (see Figure 1.3) that plugs into a target device.
More and more devices have the Bluetooth controller built into the
device. The upper stack interfaces to the Bluetooth radio module via the
HCI. The Bluetooth radio module usually interfaces with the host

8 Chapter One: Introduction

RF

Baseband

Audio
Link manager

SDP RFCOMM

Applications

Data

L2CAP

Bluetooth controller: This is usually
the hardware module or radio module
that plugs into a USB, PCMCIA, UART, etc.

BLUETOOTH

C
on

tro
l

Bluetooth host: This is usually the
software running on the host machine
and is part of the system software.

HCI interface

Figure 1.3 Bluetooth host and device classification.

system via one of the standard input/output (I/O) mechanisms, such as
peripheral component microchannel interconnect architecture
(PCMCIA), universal asynchronous receiver-transmitter (UART), and
universal serial bus (USB). Although the Bluetooth host and the
Bluetooth controller classifications apply to most devices, the two are
integrated in some devices, headsets, for example, and HCI is not used.
The various blocks in Figure 1.3 are part of the Bluetooth protocol stack,
which is discussed next.

1.3.1 Bluetooth Protocols

Figure 1.4 shows a block diagram of the Bluetooth protocol stack.
Several protocols are defined in the Bluetooth specification, but Figure
1.4 shows the common ones. The shaded boxes represent the protocols
addressed by Java APIs for Bluetooth wireless technology (JABWT, where
API stands for application programming interface). The protocol stack is
composed of protocols specific to Bluetooth wireless technology, such as

Overview of the Bluetooth Stack Architecture 9

OBEX SDP

TCP/UDP

TCS binary

IP

HCI

BNEP

LMP

Baseband and link control

Bluetooth radio

Audio
RFCOMM

L2CAP

Figure 1.4 Bluetooth protocol stack.

the Service Discovery Protocol (SDP) and other adopted protocols, such
as the Object Exchange protocol (OBEX™).

• The Bluetooth radio (layer) is the lowest defined layer of the
Bluetooth specification. It defines the requirements of the
Bluetooth transceiver device operating in the 2.4-GHz ISM band.

• The baseband and link control layer enables the physical RF link
between Bluetooth units making a connection. The baseband
handles channel processing and timing, and the link control
handles the channel access control. There are two different kinds
of physical links: synchronous connection oriented (SCO) and
asynchronous connectionless (ACL). An ACL link carries data
packets, whereas an SCO link supports real-time audio traffic.

• Audio is really not a layer of the protocol stack, but it is shown
here because it is uniquely treated in Bluetooth communication.
Audio data is typically routed directly to and from the baseband
layer over an SCO link. Of course, if a data channel is used (e.g.,
in VoIP applications), audio data will be transmitted over an ACL
link.

• The Link Manager Protocol (LMP) is responsible for link setup and
link configuration between Bluetooth devices, managing and
negotiating the baseband packet sizes. The LMP manages the secu-
rity aspects, such as authentication and encryption, by generating,
exchanging, and checking link and encryption keys.

• The HCI provides a command interface to the radio, baseband con-
troller, and link manager. It is a single standard interface for access-
ing the Bluetooth baseband capabilities, the hardware status, and
control registers.

• Logical Link Control and Adaptation Protocol (L2CAP) shields the
upper-layer protocols from the details of the lower-layer protocols.
It multiplexes between the various logical connections made by
the upper layers.

• SDP provides a means for applications to query services and char-
acteristics of services. Unlike in an LAN connection, in which one
connects to a network and then finds devices, in a Bluetooth envi-
ronment one finds the devices before one finds the service. In addi-
tion, the set of services available changes in an environment when
devices are in motion. Hence SDP is quite different from service

10 Chapter One: Introduction

discovery in traditional network-based environments. SDP is built
on top of L2CAP.

• Serial ports are one of the most common communications inter-
faces used in computing and communication devices. The
RFCOMM protocol provides emulation of serial ports over L2CAP.
RFCOMM provides transport capabilities for upper-level services
that use a serial interface as a transport mechanism. RFCOMM pro-
vides multiple concurrent connections to one device and provides
connections to multiple devices.

• Bluetooth-enabled devices will have the ability to form networks
and exchange information. For these devices to interoperate and
exchange information, a common packet format must be defined
to encapsulate layer 3 network protocols. The Bluetooth Network
Encapsulation Protocol (BNEP) [6] encapsulates packets from
various networking protocols, and the packets are transported
directly over L2CAP. BNEP is an optional protocol developed after
Bluetooth specification version 1.1 but based on the 1.1 version of
the specification.

• Telephony Control Protocol Specification, Binary (TCS binary)
defines the call control signaling for establishment of voice and
data calls between Bluetooth devices. It is built on L2CAP.

• Adopted protocols such as OBEX and the Internet Protocol (IP), are
built on one of the protocols discussed earlier (e.g., OBEX is built
on RFCOMM, and IP is built on BNEP).

• The Bluetooth SIG also is defining newer protocols built on one of
the protocols discussed earlier, but mainly they are built on top of
L2CAP. Hardcopy Control Channel [7], Hardcopy Notification
Channel [7], Audio/Video Control Transport Protocol [8], and
Audio/Video Distribution Transport Protocol [9] are examples of
some newer protocols.

1.3.2 Bluetooth Profiles

In addition to the protocols, Bluetooth profiles have been defined by the
Bluetooth SIG [3]. A Bluetooth profile defines standard ways of using
selected protocols and protocol features that enable a particular usage
model. In other words, it defines how different parts of the Bluetooth
specification can be used for a particular use case. A profile can be

Overview of the Bluetooth Stack Architecture 11

described as a vertical slice through the protocol stack. It defines options
in each protocol that are needed for the profile. The dependency of the
profiles on protocol layers and features varies. Two profiles may use a
different set of protocol layers and a different set of features within the
same protocol layer.

A Bluetooth device can support one or more profiles. The four
“basic” profiles are the Generic Access Profile (GAP), the Serial Port
Profile (SPP), the Service Discovery Application Profile (SDAP), and the
Generic Object Exchange Profile (GOEP).

• The GAP is the basis of all other profiles. Strictly speaking, all profiles
are based on the GAP. GAP defines the generic procedures related to
establishing connections between two devices, including the discov-
ery of Bluetooth devices, link management and configuration, and
procedures related to use of different security levels.

• The SDAP describes the fundamental operations necessary for
service discovery. This profile defines the protocols and procedures
to be used by applications to locate services in other Bluetooth-
enabled devices.

• The SPP defines the requirements for Bluetooth devices necessary
for setting up emulated serial cable connections using RFCOMM
between two peer devices. SPP directly maps to the RFCOMM pro-
tocol and enables legacy applications using Bluetooth wireless
technology as a cable replacement.

• The GOEP is an abstract profile on which concrete usage case
profiles can be built. These are profiles using OBEX. The profile
defines all elements necessary for support of the OBEX usage
models (e.g., file transfer, synchronization, or object push).

Figure 1.5 shows the relationships among the various Bluetooth
profiles. The Bluetooth profiles are hierarchical. For example, the File
Transfer Profile is built on top of GOEP, which depends on SPP, which is
built upon GAP. Bluetooth profiles also can be classified on the basis of
the functional or services point of view. From a programming perspec-
tive, however, it is the profile hierarchy that is applicable. The basic
profiles—GAP, SDAP, SPP, and GOEP—also are known as transport profiles,
upon which other profiles, known as application profiles, can be built.

Many profiles are based on the basic profiles. More details on these
profiles can be obtained from www.bluetooth.com. Figure 1.5 will

12 Chapter One: Introduction

probably be obsolete soon because more profiles are being continuously
developed. Refer to the Bluetooth website for specifications on the latest
available profiles.

1.3.3 Bluetooth Qualification

Bluetooth qualification is the certification process required for any
product using Bluetooth wireless technology. The qualification process
ensures that products comply with the Bluetooth specification. Only
qualified products are entitled to use the free license to the patents
required to implement Bluetooth wireless technology, the Bluetooth

Overview of the Bluetooth Stack Architecture 13

Generic Access Profile TCS-BIN based profiles
Audio/video remote

control profile

PAN profile

ESDP (2)

Generic audio/video distribution profile

Serial Port Profile

Ext. service discovery profile (1)

Common ISDN access profile

Cordless telephony profile

SIM access profile

Intercom profile

Adv. audio distribution profile

Video distribution profile

Hardcopy cable replacement profile

Service discovery app. profile

Headset profile

Hands-free profile

Dial-up networking profile

Fax profile

LAN profile

ESDP (3)

File transfer profile

Object push profile

Synchronization profile

Basic imaging profile

Basic printing profile

Generic object exchange profile

Figure 1.5 Bluetooth profile hierarchy.

brand, and the Bluetooth logo. Essentially, there are three levels of
Bluetooth qualification testing:

• Core specification conformance

• Interoperability testing to ensure that devices work with one
another at the profile level

• Bluetooth branding conformance

More details on the qualification process can be obtained from the
Bluetooth Qualification Program Website [10].

1.4 What is J2ME?
This section gives a brief overview of J2ME. For details about J2ME, refer
to books by Topley [11] and Riggs and colleagues [12].

J2ME is the Java platform for consumer and embedded devices
such as mobile phones, pagers, personal organizers, television set-top
boxes, automobile entertainment and navigation systems, Internet tele-
visions, and Internet-enabled phones. J2ME is one of the three platform
editions. The other two platform editions are Java 2 Platform, Enterprise
Edition (J2EETM) for servers and enterprise computers and Java 2
Platform, Standard Edition (J2SETM) for desktop computers. A related
technology is Java CardTM technology. The Java Card specifications
enable Java technology to run on smart cards and other devices with
more limited memory than a low-end mobile phone. These groupings
are needed to tailor the Java technology to different areas of today’s vast
computing industry. Figure 1.6 illustrates the Java 2 platform editions
and their target markets.

The J2ME platform brings the power and benefits of Java technol-
ogy (code portability, object-oriented programming, and a rapid devel-
opment cycle) to consumer and embedded devices. The main goal of
J2ME is to enable devices to dynamically download applications that
leverage the native capabilities of each device. Consumer and embedded
space covers a range of devices from pagers to television set-top boxes
that vary widely in memory, processing power, and I/O capabilities. To
address this diversity, the J2ME architecture defines configurations,
profiles, and optional packages to allow for modularity and customiz-
ability. Figure 1.7 shows the high-level relations between the layers of the
J2ME architecture. The layers are explained further in the next section.

14 Chapter One: Introduction

1.4.1 Configurations

A Java virtual machine interprets the Java byte codes generated when
Java programs are compiled. A Java program can be run on any device
that has a suitable virtual machine and a suitable set of Java class
libraries.

Configurations are composed of a Java virtual machine and a
minimal set of class libraries. The Java virtual machine usually runs on
top of a host operating system that is part of the target device’s system
software. The configuration defines the minimum functionality for a
particular category or grouping of devices. It defines the minimum capa-
bilities and requirements for a Java virtual machine and class libraries
available on all devices of the same category or grouping. Currently,
there are two J2ME configurations: the Connected, Limited Device

What is J2ME? 15

Java 2
Platform,

Enterprise
Edition
(J2EE)

Java 2
Platform,
Standard
Edition
(J2SE)

Optional
packages

Optional
packages

Servers &
enterprise
computers Desktop &

personal
computers

JVM KVM Card VM

CDC CLDC

Foundation
profile

MIDP

Smart card
profile

Smart
Cards

Personal
profile

Optional
packages

Optional
packages

High-end
consumer

devices

Low-end
consumer

devices

JAVA 2 Platform, Micro Edition (J2ME)

Figure 1.6 Java 2 Platforms.

Configuration (CLDC) [13] and the Connected Device Configuration
(CDC) [14].

Connected, Limited Device Configuration

The CDLC focuses on low-end consumer devices and is the smaller of
the two configurations. Typical CLDC devices, such as personal organ-
izers, mobile phones, and pagers, have slow processors and limited
memory, operate on batteries, and have only intermittent network con-
nections. A CLDC implementation generally includes a kilobyte virtual
machine (KVM). It gets its name because of its small memory footprint
(on the order of kilobytes). The KVM is specially designed for memory-
constrained devices.

Connected Device Configuration

The CDC focuses on high-end consumer devices that have more
memory, faster processors, and greater network bandwidth. Typical
examples of CDC devices are television set-top boxes and high-end
communicators. CDC includes a virtual machine that conforms fully to
the Java Virtual Machine Specification [15]. CDC also includes a much
larger subset of the J2SE platform than does CLDC.

1.4.2 Profiles

Configurations do not usually provide a complete solution. Profiles add
the functionality and the APIs required to complete a fully functional

16 Chapter One: Introduction

Host operating system

Configuration

Profiles(s)

Optional packages(s)

Libraries

Virtual Machine

J2ME

Figure 1.7 Components of J2ME architecture.

runtime environment for a class of devices. Configurations must be
combined with profiles that define the higher-level APIs for providing
the capabilities for a specific market or industry. It is possible for a single
device to support several profiles. Examples of profiles are Mobile
Information Device Profile (MIDP), Foundation Profile (FP), and
Personal Profile (PP). A clarification: the Bluetooth profiles defined pre-
viously are not to be confused with the J2ME profiles discussed here.
The two profiles are not related. Bluetooth profile refers to a set of func-
tionality of the Bluetooth protocols for a particular usage case. J2ME
profiles are a set of APIs that extend the functionality of a J2ME
configuration.

Mobile Information Device Profile

The first profile that was created was MIDP [16]. This profile is designed
for mobile phones, pagers, and entry-level personal organizers. MIDP
combined with CLDC offers core application functionality, such as a
user interface, network capability, and persistent storage. MIDP provides
a complete Java runtime environment for mobile information devices.
MIDP applications are called MIDlets. MIDlet is a class defined in MIDP
and is the superclass for all MIDP applications.

Foundation Profile

The FP [17] is the lowest-level profile for CDC. Other profiles can be
added on top as needed to provide application functionality. The FP is
meant for embedded devices without a user interface but with network
capability.

Personal Profile

The PP [18] is for devices such as high-end personal organizers, com-
municators, and game consoles that require a user interface and
Internet applet support. PP replaces the PersonalJavaTM technology and
provides PersonalJava applications a clear migration path to the J2ME
platform.

In addition there is a Personal Basis Profile (PBP) [19], which is a
subset of PP aimed at devices that requires only a basic level of graphi-
cal presentation (for example, television set-top boxes).

What is J2ME? 17

1.4.3 Optional Packages

Many J2ME devices include additional technologies such as Bluetooth
wireless technology, multimedia, wireless messaging, and database
connectivity. Optional packages were created to fully leverage these
technologies through standard Java APIs. Device manufacturers can
include these optional packages as needed to fully utilize the features of
each device.

In addition to the configurations, profiles, and optional packages,
device manufacturers are able to define additional Java classes to take
advantage of features specific to the device. These classes are called
licensee open classes (LOCs). An LOC defines classes available to all devel-
opers. Licensee closed classes (LCCs) define classes available only to the
device manufacturer. Programs using these classes may not be portable
across devices having the same configuration and profiles.

1.5 Why Java Technology for Bluetooth Devices?
How an end user uses Bluetooth wireless technology varies from person
to person. Two people with the same model of a Bluetooth-enabled
phone might want to use it for different purposes. One person might
want to be able to download video games to the phone and use the
phone as a television remote control. The other person might want to
use the same model phone to unlock car doors, operate kitchen appli-
ances, and open and close garage doors. One way for both people to
achieve their goals is to make it possible to download Bluetooth appli-
cations onto personal organizers and mobile phones to customize those
handheld devices. To make downloading applications a reality, one
needs a standard API that lets programmers write Bluetooth applications
that work across many hardware platforms. To define this standard API,
the Java language is the ideal choice. A Java API enables applications to
run on different types of hardware, operating systems, and classes of
device. In addition to portability, the Java language provides several
other benefits:

• Rapid development of applications because of the better abstrac-
tions and high-level programming constructs provided by an
object-oriented programming language.

• Ability to dynamically expand a program’s functionality during
execution by loading classes at runtime.

18 Chapter One: Introduction

• Class file verification and security features that provide protection
against malicious applications. These safeguards are required to
customize devices by downloading applications.

• Standards with better user interfaces and that support sophisti-
cated user interaction.

• Large developer community. The number of people who program
in the Java language is continuously growing. The developer talent
needed for programming in the Java language already exists, and
there is no need to grow a developer community.

For these reasons, the decision was made to develop a standard API
for Bluetooth wireless technology using the Java programming lan-
guage. This standardization effort resulted in the Java APIs for Bluetooth
Wireless Technology, or JABWT. As you will see later in this book, this
standardization effort complements existing technologies rather than
replacing them. JABWT is built on top of the already established and
widely used Bluetooth protocol stack.

1.5.1 Java Community Process and JSR-82

Standard APIs in the Java programming language are defined though the
Java Community ProcessSM (JCP). The JCP coordinates the evolution of
the Java programming language. Each new API is developed as a Java
Specification Request (JSR). All J2ME configurations, profiles, and
optional packages are defined as JSRs. The process for defining a stan-
dard Java API is as follows:

1. The potential specification lead submits a new JSR.

2. The JCP executive committee reviews and votes on the JSR.

3. After JSR approval, the specification lead forms an expert group.

4. The expert group defines the specification.

5. JCP members review the specification during the community
review period.

6. The specification is open for public review.

7. The specification lead submits the specification as the proposed
final draft.

8. The executive committee votes on the specification to accept or
deny the API.

Why Java Technology for Bluetooth Devices? 19

9. If the vote passes, the final release of the specification is
announced.

The above process was followed in standardizing the JABWT under
JSR-82 [20]. The expert group that defined JABWT consisted of 18 com-
panies and three individuals. The companies were Extended Systems,
IBM, Mitsubishi Electric, Motorola, Newbury Networks, Nokia, Parthus
Technologies, Research in Motion, Rococo Software, Sharp Laboratories
of America, Sony Ericsson Mobile Communications, Smart Fusion,
Smart Network Devices, Sun Microsystems, Symbian, Telecordia,
Vaultus, and Zucotto. The API was defined as an optional package for
J2ME devices based on CLDC.

1.5.2 What about J2SE and PersonalJava?

Because Bluetooth wireless technology can be found in J2SE and
PersonalJava devices, you may ask why this standardization effort
focused on J2ME devices. The expert group believed that the initial set
of devices that would use Java language capabilities over the Bluetooth
protocols would be in the J2ME device space. But, as the next chapters
show, the API was defined in such a way as to rely heavily on one set of
CLDC APIs known as the Generic Connection Framework (GCF).

That thinking paid off. An effort was undertaken to include the
GCF in J2SE under JSR-197 (Generic Connection Framework Optional
Package) [21]. The main goal of JSR-197 is to make the GCF into an
optional package that allows applications that rely on the GCF in J2ME
to migrate to J2SE. JSR-197 will bring the benefits of JABWT to J2SE.

1.5.3 Jini, JXTA, and Bluetooth Networks

As Bluetooth wireless technology becomes part of the Java program-
ming language, many Java developers are confused about how JABWT
will fit in with other Java technologies, such as the Jini architecture [22]
and the JXTA (for Juxtapose) research project [23]. Jini is an architecture
developed by Sun Microsystems to allow developers to create adaptive
network services. Jini works by moving Java objects and data over
a network to allow the network to change as the environment of
the network changes. JXTA also was developed originally by Sun

20 Chapter One: Introduction

Microsystems, but Sun turned it into an open source research project.
The goal of the JXTA project is to develop a high-level virtual peer-to-
peer network. The JXTA project has defined a communication protocol
to enable peer-to-peer networking. The project is currently working on
revising communication protocols and identifying applications and
services that use the protocols.

Although these three technologies share many basic concepts,
Bluetooth wireless technology is not a competitor of Jini and JXTA. Nor
does using Bluetooth wireless technology eliminate the ability or need to
use Jini and JXTA. These three technologies are similar because they all
provide a way to dynamically identify peers and a peer’s capabilities.
Bluetooth wireless technology differs from Jini and JXTA because
Bluetooth wireless technologies defines a set of communication protocols
that allow two devices to communicate with each other, in particular, a
wireless communication protocol. Whereas Jini and JXTA operate only at
a higher level, the Bluetooth specification defines all the components
from the application layer down to the physical communication layer.
Jini and JXTA can seamlessly span different communications networks.
For example, a Jini application could use a Bluetooth protocol to talk to
an access point, which converts the requests to Telephony Control
Protocol/Internet Protocol (TCP/IP) packets to talk to the Jini service. The
Bluetooth specification addresses only how Bluetooth devices communi-
cate, not how to transform requests over any communication medium.

It is likely that Jini and JXTA implementations in the future will
use Bluetooth communications and be available over TCP/IP. The Jini and

Why Java Technology for Bluetooth Devices? 21

JXTA
implementation

Jini
implementation

JABWT
applications

JABWT implementation

Bluetooth radio

JXTA
application

JXTA
service

Jini
application

Jini
service

Figure 1.8 Jini and JXTA on a Bluetooth device with JABWT.

JXTA implementations themselves will be Bluetooth services. Figure 1.8
shows that from a JABWT implementation perspective, JXTA and Jini
are simply other Bluetooth applications. In this way, Jini and JXTA
provide added capabilities to a JABWT implementation.

1.6 Summary
The JABWT specification provides a standard set of APIs for developing
Bluetooth applications. Tha Java APIs defined by JABWT are considered
optional packages for J2ME. Applications written with JABWT are
potentially portable to a wide range of devices with a wide range of
Bluetooth radio modules and Bluetooth protocol stacks.

This chapter gives an overview of Bluetooth wireless technology
and J2ME. These are two very large topics. To learn more about
Bluetooth wireless technology, refer to the Bluetooth specifications [1,
3] or books on the subject [4, 5]. The following websites are a good place
to start:

www.bluetooth.com

www.palowireless.com

To learn more about J2ME, see the books by Topley [11] and by Riggs
and associates [12]. Helpful websites for J2ME and JABWT are

java.sun.com

www.jcp.org

www.jcp.org/jsr/detail/82.jsp

There are several articles [24], white papers, and tutorials on these sub-
jects on the Web. There are several newsgroups on Bluetooth wireless
technology, but the following two are devoted to JABWT:

groups.yahoo.com/group/jabwt

groups.yahoo.com/group/jsr82

This chapter notes the need for Java technology on Bluetooth devices
and explains the process of defining JABWT.

22 Chapter One: Introduction

2
This chapter describes

• The goals of the JABWT specification

• The characteristics of the JABWT specification

• The scope of the JABWT specification

Some sections in the chapter may not seem relevant for those primarily
interested in programming with JABWT. But the overview of JABWT is
presented to lead to a better understanding of the capabilities and the
reasoning behind these APIs.

2.1 Goals
The Bluetooth specification defines the over-the-air behavior for ensur-
ing compatibility of Bluetooth devices from different vendors. The
Bluetooth specification does not standardize a software API to Bluetooth
stacks for use by Bluetooth applications. JABWT helps solve this
problem by defining the first standard API for Bluetooth application
developers. The overall goal of the JABWT standardization effort dis-
cussed in this book is to define a standard set of APIs that will enable an
open, third-party application development environment for Bluetooth
wireless technology.

The goals were to minimize the number of classes (the total
number of classes in JABWT is 21); keep the API simple and easy to learn
and program; and keep it powerful. The meaningful high-level abstrac-
tions help in third-party application development. This API brings
together the benefits of two different technologies: Bluetooth wireless
technology and Java technology. Having this standard API in the Java
language brings in all the benefits of Java technology, some of which are
discussed in Chapter 1. The abstractions and ease of programming of

CHAPTER An Overview
of JABWT

the Java language facilitate easy development of complex programs. The
goal of JABWT is to present access to Bluetooth wireless technology in
the easy but powerful form of the Java language.

2.1.1 Target Devices

JABWT is aimed mainly at devices that are limited in processing power
and memory and are primarily battery operated. These devices can be
manufactured in large quantities. Low cost and low power consumption
are primary goals of the manufacturers. JABWT takes these factors into
consideration. Figure 2.1 shows the types of devices that might use
JABWT. Some of the devices shown, such as the car, laptop, and LAN
access point, are not J2ME devices. These devices are likely to operate
with J2SE, CDC, or PersonalJava. Some manufacturers of these products,
however, are already incorporating JABWT in their designs. In addition,
work completed under JSR-197 will make integrating JABWT into these
products easier. JSR-197 [21] is intended to create an optional package
out of GCF alone, allowing applications that rely on the GCF to migrate
to J2SE. JSR-197 also is intended to use GCF APIs as defined by the J2ME
Foundation profile along with improvements proposed in CLDC 1.1
(JSR-139) [25].

2.1.2 Keeping Up with the Bluetooth Profiles

One initial idea was to define an API based on the Bluetooth profiles.
But the JSR-82 expert group realized that the number of Bluetooth
profiles is constantly growing and that it would not be possible to keep
up with the new profiles in the JABWT specification. Instead the JSR-82
expert group decided to provide support for only basic protocols and
profiles rather than introducing new API elements for each Bluetooth
profile. The intent of the JABWT design is to enable new Bluetooth
profiles to be built on top of this API with the Java programming lan-
guage. Bluetooth profiles are being built on top of OBEX, RFCOMM, and
L2CAP. For this reason, all three of these communication protocols are
incorporated in JABWT. Writing future Bluetooth profiles in the Java
programming language enables portability across all operating systems
and Bluetooth protocol stacks.

In addition to APIs for accessing the protocols, there are APIs for
some Bluetooth profiles. JABWT addresses the following: GAP, SDAP,

24 Chapter Two: An Overview of JABWT

SPP, and GOEP. Detailed information on Bluetooth profiles and relations
to protocols such as OBEX, RFCOMM, and L2CAP are given in the
Bluetooth Core specification [1] and the Bluetooth Profile specification
[3].

JABWT is based on Bluetooth specification version 1.1. However,
nothing in the JABWT specification is intended to preclude operating
with version 1.0–compliant stacks or hardware. In addition, if future
versions are backward compatible with version 1.1, implementations of
the JABWT specification also should operate on those versions of stacks
or hardware.

Goals 25

Integrated circuit Printer adapter

Pager

Cell phone

PDA

Laptop Printer

Camcorder

Car

LAN access pointTypical features:

• Runs J2ME or J2SE + GCF
• Supports Bluetooth

Wireless Technology
• Need to download

applications
• Support ad hoc networks
• Peer-to-peer

communications

Figure 2.1 Target devices for JABWT

2.1.3 JABWT Use Cases

Any technology does better when more applications are created for it.
Standardized APIs foster an environment to create a variety of applica-
tions. In addition, standard APIs make it possible for certain types of
applications and markets that otherwise would not be possible. The
portability of Java applications and standardization of JABWT facilitate
the use cases discussed herein.

Peer-to-Peer Networking

Peer-to-peer networking can be defined and interpreted in many ways.
For the purpose of this discussion, a peer-to-peer network is defined as
a network between two or more devices whereby each device can be
both a server and a client. JABWT supports peer-to-peer networking
with Bluetooth wireless technology. An example of a peer-to-peer
network application is a game played between two or more devices con-
nected through Bluetooth communication.

The devices involved can belong to entirely different device
classes, such as a phone and a personal digital assistant (PDA) using dif-
ferent hardware and operating systems. If these devices are JABWT
enabled, the software games can be written once in the Java program-
ming language and run on all of the devices. In addition, the device
independence of these JABWT applications makes it possible to share
and download these games onto different devices.

Kiosk

It is impractical for a kiosk that sells software to store different executa-
bles for the various Bluetooth devices that have been manufactured.
With JABWT, an application can be written once, purchased, and exe-
cuted on all Bluetooth devices that have implemented this API. This
capability enables establishments such as airports, train stations, and
malls to have custom applications that work best in their environment.
Bluetooth devices with JABWT implemented can download these
custom applications from kiosks.

Buying Soda and Bluetooth Applications through Vending Machines

Another example of the benefit of this API is a scenario in which people
purchase or download Bluetooth applications to their Bluetooth devices

26 Chapter Two: An Overview of JABWT

while using the same device to purchase a soda from a vending
machine. The API allows applications to be written once and run on
many different Bluetooth platforms. The vending machine stores these
applications and transfers them via Bluetooth transports. A game man-
ufacturer might buy advertising space on vending machines to house a
sample game. Customers purchasing soda could be given the option of
downloading a free sample game, which can be upgraded later when the
game is purchased.

2.2 API Characteristics and Hardware Requirements
This section describes the characteristics of JABWT and the hardware
requirements followed in defining JABWT. There were two categories of
hardware requirements:

• The requirements of the J2ME device

• The requirements of the Bluetooth subsystem in the device

2.2.1 JABWT Specification Characteristics

This API design was challenging because both Java technology and
Bluetooth wireless technology appear in a variety of devices. It was
difficult to try to cover all the devices with one API. The initial goal of
the JABWT specification was to define an API that could be used by all
devices that support J2ME. As stated earlier, the expert group believed
that J2ME devices would be the first to implement JABWT. Hence the
API was built with standard J2ME APIs and the GCF defined in CLDC.
Thus JABWT can be ported to any Java platform that supports the GCF.
The first two characteristics below resulted from this thinking. JSR-197
adds the GCF into J2SE platforms and will help JABWT and other J2ME
APIs to be usable on other Java 2 platforms.

The characteristics of the JABWT specification are as follows:

1. Requirement for only CLDC libraries.

2. Scalability—ability to run on any Java 2 platform that supplies the
GCF.

3. OBEX API definition independent of Bluetooth protocols. By con-
trast, applications written with the Bluetooth API are expected to
run only on platforms that incorporate Bluetooth wireless

API Characteristics and Hardware Requirements 27

technology. While defining the API for OBEX, the expert group
recognized that OBEX could be used over a number of different
transports (e.g., IrDA, USB, TCP). Therefore, the OBEX API is
defined to be transport independent. The OBEX API is in a sepa-
rate javax.obex package.

4. Use of the OBEX API without the Bluetooth API. An IrDA device
could implement the javax.obex package and not implement
the javax.bluetooth package, which contains the Bluetooth
API.

5. Prevents applications from interfering with each other. The
concept of the Bluetooth Control Center (BCC), discussed in
Chapter 3, was introduced for this reason. The intent of the BCC
is to allow multiple Bluetooth applications to run simultaneously
and be able to access Bluetooth resources.

6. Ability of applications to be both client and server to enable peer-
to-peer networking. This is one of the vital use cases for Bluetooth
wireless technology. One aspect of being a server is the ability to
register services for clients to discover. Although the Bluetooth
specification thoroughly addresses the client side of service dis-
covery, the mechanisms used by server applications to register
their services with a service discovery server are not standardized.
The JSR-82 expert group saw the need for defining service registra-
tion in detail to standardize the registration process for the appli-
cation programmer.

7. Allowance for the possibility of building Bluetooth profiles on top
of the RFCOMM, L2CAP, and OBEX APIs. The expert group real-
ized that keeping up with the growing number of Bluetooth
profiles would be difficult (see Section 2.1.2).

2.2.2 J2ME Device Requirements

JABWT is not intended to be a complete solution by itself. It is an
optional API based on GCF and extends a Java 2 platform to add support
for accessing Bluetooth wireless technology. As mentioned earlier, the
initial target devices are CLDC based. General J2ME device requirements
on which the API is designed to operate are listed below. More detailed
hardware requirements for various J2ME configurations and profiles can

28 Chapter Two: An Overview of JABWT

be obtained from the respective specifications, which are available at
www.jcp.org.

• 512K minimum total memory available for Java 2 platform
(ROM/Flash and RAM). Application memory requirements are
additional.

• Bluetooth communication hardware, with necessary Bluetooth
stack and radio. More detailed requirements are given in Section
2.2.3.

• Compliant implementation of the J2ME CLDC [13, 25] or a super-
set of CLDC APIs, such as the J2ME CDC [14] or any flavor of Java
2 platform with JSR-197 APIs.

Chapter 10 discusses detailed device requirements and issues related to
implementing JABWT.

2.2.3 Bluetooth System Requirements

The Bluetooth part of the JABWT implementation is not designed to
access the Bluetooth hardware directly. It accesses the Bluetooth hard-
ware through an underlying Bluetooth stack. The Bluetooth stack can be
implemented in many ways, such as making it part of the JABWT imple-
mentation or writing it completely in the Java language. Typically,
JABWT is to be implemented on top of a native (written in C or C++)
Bluetooth stack, thus allowing native Bluetooth applications and Java
Bluetooth applications to run on a system. The requirements of the
underlying Bluetooth system on which this API is built are as follows:

• The underlying system is qualified in accordance with the
Bluetooth Qualification Program for at least the GAP, SDAP, and
SPP.

• The following layers are supported as defined in Bluetooth
specification version 1.1, and the JABWT has access to them.

SDP
RFCOMM
L2CAP

• The BCC is provided by either the Bluetooth stack or system soft-
ware. The BCC is a “control panel”–like application that allows a
user or an original equipment manufacturer (OEM) to define

API Characteristics and Hardware Requirements 29

specific values for certain configuration parameters in a stack. The
details of the BCC are discussed in Chapter 3.

Unlike the Bluetooth part of the API, the OBEX API can either be
implemented completely in the Java programming language within the
JABWT implementation or use the OBEX implementation in the under-
lying Bluetooth stack. If OBEX is being implemented on another trans-
port, the OBEX API can use the OBEX implementation over that
transport system. More of the implementation details are discussed in
Section 10.3.3.

2.3 Scope
The Bluetooth specification covers many layers and profiles, and it is not
possible to include all of them in this API. Rather than try to address all
of them, the JABWT expert group agreed to prioritize the API functions
on the basis of size requirements and the breadth of usage of the API.
Moreover, under the JCP rules, when JABWT is implemented, all portions
of the API must be implemented (i.e., if the javax.bluetooth package
is implemented, then RFCOMM, SDP, and L2CAP must be implemented;
if javax.obex is implemented, then OBEX must be implemented). The
Bluetooth specification is different because it is flexible about the parts of
the Bluetooth specification a device manufacturer chooses to implement.
The expert group addressed areas considered essential to achieving broad
usage and areas expected to use the benefit of the Java language the
most. As stated earlier, these APIs are aimed at small, resource-constraint
devices and at devices of different classes. The Headset Profile [3] or the
Dial-Up Networking Profile [3] defined in the Bluetooth specification will
likely be developed by a device manufacturer as an application native to
the system software. For the first version of JABWT, support for voice
channels and telephony control–related areas were not included in
JABWT. The basic Bluetooth profiles and fundamental protocol layers
required to help build future profiles were included. In addition, service
registration was defined in detail.

Figure 2.2 shows that JABWT applications have access to some but
not all of the functionality of the Bluetooth protocol stack. The bottom
of Figure 2.2 reproduces Figure 1.4 from Chapter 1, which shows the
layers in a Bluetooth stack. In Figure 2.2, interface points have been

30 Chapter Two: An Overview of JABWT

added to represent the capabilities or functions of protocols that could
potentially be used by applications. In Figure 2.2 dashed arrows connect
the JABWT application at the top of the figure with interface points on
the protocols in the Bluetooth protocol stack. An arrow connecting to
an interface point indicates that JABWT applications have access to the
functionality represented by that interface point. As shown in Figure
2.2, JABWT provides access to capabilities of the following Bluetooth
protocols:

• L2CAP

• RFCOMM

• SDP

• OBEX

• LMP

JABWT does not provide APIs for the following Bluetooth
protocols.

• Audio (voice) transmissions over voice channels

• TCS Binary

• BNEP

Even when it does provide access to a Bluetooth protocol layer,
JABWT might not provide access to all of the functions provided by that
layer. For example, JABWT applications have access to connection-ori-
ented L2CAP channels but do not have access to connectionless L2CAP
channels. This possibility is indicated in Figure 2.2 by an interface point
that has nothing connected to it.

Figure 2.2 shows that in addition to providing access to the func-
tionality of Bluetooth protocols, JABWT provides access to the function-
ality specified by the Bluetooth profiles. The star shapes in Figure 2.2
represent Bluetooth profiles. JABWT applications have access to selected
functionality from the following Bluetooth profiles:

• GAP

• SDAP

• SPP

• GOEP

Scope 31

32 Chapter Two: An Overview of JABWT

OBEX

BNEP Audio

Link manager protocol

Baseboard and link control

Bluetooth radio

IP

SDP

TCP/UDP

TCS binary

JABWT
application

JABWT implementation

Generic
Object

Exchange
Profile

Service
Discovery
Application

Profile

Serial
Port

Profile

Generic
Access
Profile

L2CAP

RFCOMM

Figure 2.2 JABWT provides access to selected functionality of the Bluetooth stack.

Summary 33

In functional terms, JABWT provides the following Bluetooth
capabilities:

• Registering services

• Discovering devices and services

• Establishing RFCOMM, L2CAP, and OBEX connections

• Conducting the above three activities in a secure manner

The following capabilities were considered to be outside the scope
of JABWT. However, there is no incompatibility between JABWT and
these functions, so JABWT applications may have access to these func-
tions on some devices:

• Layer management: Many aspects of layer management are system
specific and are difficult to standardize, such as power modes and
park mode.

• Downloading and storing applications: These features are imple-
mentation specific and therefore are not defined in JABWT. Over-
the-air provisioning is being addressed in other JSRs (JSR-37 [16]
and JSR-118 [26]).

• Asynchronous start of applications: Methods by which an applica-
tion can be started asynchronously because of external requests are
permitted but are not specified in detail. For example, a service
does not have to be running after it has registered itself but could
be started when a client connects to that service.

2.4 Summary
This chapter discusses the goals, capabilities, characteristics, and scope
of JABWT. Although the Bluetooth specification defines a standard for
over-the-air communication, JABWT standardizes software APIs for use
by Bluetooth applications. One of the design goals for this API was to
make it possible to write Bluetooth profiles in the Java programming
language using JABWT. For this reason, JABWT provides support for the
most basic Bluetooth protocols and the most basic Bluetooth profiles.

The following are some of the key characteristics of JABWT:

• It uses the CLDC generic connection framework.

• It requires a BCC for system control.

• It provides a definition for service registration.

• It defines an OBEX API that is transport independent.

JABWT defines two separate Java packages, javax.bluetooth and
javax.obex. Under JCP licensing rules, these JABWT packages must be
implemented exactly as defined without addition or removal of public
classes, interfaces, or methods. The underlying Bluetooth system needs
to be qualified for GAP, SDAP, and SPP. In addition, the underlying
Bluetooth system must provide access to SDP, RFCOMM, and L2CAP.
Section 2.3 discusses the scope of the JABWT specification. The three
main areas that JABWT does not currently support are audio over SCO
links, TCS-BIN, and BNEP.

JABWT is aimed mainly at J2ME devices. In conjunction with JSR-
197, however, which adds optional support for the GCF to J2SE, JABWT
also is well suited for J2SE devices.

34 Chapter Two: An Overview of JABWT

3
This chapter discusses the high-level architecture of JABWT. The chapter
introduces the following:

• Architecture of the JABWT specification

• The Bluetooth Control Center

• A sample JABWT application

3.1 Architecture of JABWT
The functionality provided by JABWT falls into three major categories:

1. Discovery

2. Communication

3. Device management

Discovery includes device discovery, service discovery, and service regis-
tration. Communication includes establishing connections between
devices and using those connections for Bluetooth communication
between applications. These connections can be made over several dif-
ferent protocols, namely RFCOMM, L2CAP, and OBEX. Device manage-
ment allows for managing and controlling these connections. It deals
with managing local and remote device states and properties. It also
facilitates the security aspects of connections. JABWT is organized into
these three functional categories.

3.1.1 CLDC, MIDP, and JABWT

JABWT depends only on the CLDC and uses the GCF. But CLDC does
not necessarily make a complete solution. It is usually coupled with a

CHAPTER High-Level
Architecture

J2ME profile such as the MIDP [16, 26]. MIDP devices are expected to be
the first class of devices to incorporate JABWT.

Figure 3.1 is an example of how the APIs defined in JABWT fit in
a CLDC + MIDP architecture. Although shown here on an MIDP
device, JABWT does not depend on MIDP APIs. The lowest-level block
in the figure is the system software or host operating system. The host
operating system contains the host part of the Bluetooth protocol
stack and other libraries used internally and by native applications of
the system. Native Bluetooth applications interface with the operating
system directly, as shown in Figure 3.1. The CLDC/KVM implementa-
tion sits on top of the host system software. This block provides the
underlying Java execution environment on which the higher-level
Java APIs can be built. The figure shows two such APIs that can be built
on top of CLDC:

• JABWT, the set of APIs specified by JSR-82

• MIDP, the set of APIs defined by JSR-37 and JSR-118

As shown in Figure 3.1, an application written for an MIDP +
JABWT device can access MIDP, JABWT, and CLDC layers directly.

These diagrams describe the architecture of the JABWT reference
implementation developed by us and our team at Motorola. Other
JABWT implementations may involve different components or have
their components layered in a different way from that shown.

36 Chapter Three: High-Level Architecture

Native
Bluetooth
applications

MIDP + JABWT
applications

MIDP JABWT

CLDC/KVM

Operating system + Bluetooth stack

Figure 3.1 CLDC + MIDP + Bluetooth architecture diagram.

3.1.2 Java Packages

As stated in Chapter 2, JABWT essentially defines two separate APIs.
Hence two Java packages are defined. The packages are as follows:

1. javax.bluetooth

2. javax.obex

The OBEX API is defined independently of the Bluetooth transport layer
and is packaged separately. Each of the two Java packages represents a
separate optional package, the implication being that a CLDC imple-
mentation can include neither of them, one of them, or both of them.
The javax.bluetooth package contains the Bluetooth API, and the
javax.obex package contains the APIs for OBEX.

Figure 3.2 shows the package structure. The javax.obex and
javax.bluetooth packages depend on the javax.microedition.io
package, which contains the GCF.

3.1.3 Client and Server Model

An overview of the Bluetooth client and server model is given in this
section. Additional details are provided in later chapters.

A Bluetooth service is an application that acts as a server and pro-
vides assistance to client devices via Bluetooth communication. This
assistance typically takes the form of a capability or a function unavail-
able locally on the client device. A printing service is one example of a
Bluetooth server application. Three Bluetooth profiles are devoted to

Architecture of JABWT 37

javax.microedition.io

javax.obex

javax.bluetooth

Figure 3.2 Package structure.

printing [7, 27, 28]. Additional examples of Bluetooth server applica-
tions can be found in the Bluetooth profiles specification [3]: LAN access
servers, file and object servers, synchronization services, and so on.
JABWT developers can create Bluetooth server applications to imple-
ment one of the Bluetooth profiles or to implement their own custom
service. These services are made available to remote clients by the
definition of a service record that describes the service and the addition
of that service record to the service discovery database (SDDB) of the
local device.

Figure 3.3 illustrates the Bluetooth components involved in service
registration and service discovery. The SDP is a Bluetooth protocol for
discovering the services provided by a Bluetooth device. A server appli-
cation adds a service record to the SDDB. The Bluetooth stack provides
an SDP server, which maintains this database of service records. Service
discovery clients use SDP to query the SDP server for any service records
of interest [1]. A service record provides sufficient information to allow
an SDP client to connect to the Bluetooth service on the server device.

38 Chapter Three: High-Level Architecture

Client device

Client
application

Bluetooth stack

SDP client

Service
discovery

Service
access

Server device

Server
application

Bluetooth stack

SDP server

Service record

Service
registration

SDDB

Service
discovery
protocol

Figure 3.3 Bluetooth components involved in service discovery.

After registering a service record in the SDDB, the server applica-
tion waits for a client application to initiate contact with the server to
access the service. The client application and the server application then
establish a Bluetooth connection to conduct their business.

Although the Bluetooth specification was used as a guide for
defining the capabilities that should be offered in JABWT, defining the
capabilities of the server applications was more difficult, because the
Bluetooth specifications do not specify:

• How or when server applications register service records in the
SDDB

• What internal format or database mechanism is used by the SDDB

• How server applications interact with the Bluetooth stack to form
connections with remote clients

These aspects of server applications are outside the scope of the
Bluetooth specification and are likely to vary from one Bluetooth stack
implementation to another. They do not require standardization to
ensure interoperability of Bluetooth devices from different manufactur-
ers. However, the JABWT specification for service registration allows
server applications to take full advantage of Bluetooth communications.
Standardization of server registration is an additional benefit JABWT
bring to the programming community.

JABWT defines the following division of responsibilities among the
server application, the client application, and the Bluetooth stack.

Typical responsibilities of a Bluetooth server application are to:

• Create a service record describing the service offered by the appli-
cation

• Add a service record to the server’s SDDB to make potential clients
aware of this service

• Register the Bluetooth security measures associated with this
service that should be enforced for connections with clients

• Accept connections from clients that request the service offered by
the application

• Update the service record in the server’s SDDB if characteristics of
the service change

• Remove or disable the service record in the server’s SDDB when the
service is no longer available

Architecture of JABWT 39

Typical responsibilities of a Bluetooth client application are to

• Use SDP to query a remote SDDB for desired services

• Register the Bluetooth security measures associated with this
service that should be enforced for connections with servers

• Initiate connections to servers offering desired services

The Bluetooth stack is assumed to provide the following capabilities for
Bluetooth server applications:

• A repository for service records that allows servers to add, update,
and remove their own service records

• Connections with remote client applications

The Bluetooth stack is assumed to provide the following capabilities for
service discovery clients:

• Search and retrieval of service records stored in the server’s SDDB
(i.e., acting as an SDP server)

• Connections to server applications

Peer-to-Peer Applications

Although it is important to understand the distinction between a
Bluetooth client application and a Bluetooth server application, it is
possible for the same Bluetooth application to play both the client
role and the server role. It is one of the stated goals of JABWT to
support peer-to-peer applications in which the peer-to-peer applica-
tion is capable of being both server and client. For example, it is not
likely that a two-person Bluetooth game would be sold in client and
server versions. Instead, the game software would do both of the
following:

• Initiate attempts to connect to nearby devices that have the same
game (client)

• Accept connections requested by nearby devices with the same
game (server)

Whereas JABWT tends to describe the client and server techniques
separately, these techniques are not incompatible, and applications can
use them both. Service discovery and service registration are discussed
in more detail in Chapter 7.

40 Chapter Three: High-Level Architecture

3.1.4 Device Properties

Various Bluetooth products need to be configured differently depending
on the product and the market. A set of device properties facilitates such
variations and differentiations. JABWT defines system properties that
may be retrieved by a call to LocalDevice.getProperty(). These
properties do either of the following:

• Provide additional information about the Bluetooth system, that
is, the capabilities of the device or the underlying Bluetooth pro-
tocol stack.

• Define restrictions placed on an application by an implementa-
tion. The device manufacturer may want to restrict certain capa-
bilities for various reasons.

An example of these device properties is bluetooth.connected.
devices.max, which indicates the maximum number of Bluetooth
devices that can connect to this device. Device properties are discussed
in Chapter 6.

3.2 Bluetooth Control Center
The BCC is part of the JABWT specification, but it does not have any Java
APIs that provide direct access to it. In other words, the BCC is a concept
defined by the JABWT specification, which is part of a JABWT implemen-
tation. The need for the BCC arises from the desire to prevent one appli-
cation from adversely affecting another application. The BCC is the central
authority for local Bluetooth device settings. The details of the BCC are left
to the implementation. It may be an interactive application with a user
interface or an application that provides no user interaction. The BCC may
be a native application, an application with a separate private Java API, or
simply a group of settings specified by the manufacturer.

The BCC performs three specific tasks:

1. Resolving conflicting requests between applications

2. Enabling modifications to the properties of the local Bluetooth
device

3. Handling security operations that may require user interaction

Each of these tasks is discussed individually in the next sections.
As Figure 3.4 shows, the BCC is not directly accessible with JABWT

applications. Instead, the JABWT implementation issues requests

Bluetooth Control Center 41

through the BCC to the Bluetooth stack. The BCC also can be used by
native applications. The BCC can prevent conflicting requests between
the JABWT applications and the native applications.

How does a user modify the values of the BCC? This procedure also
is up to an implementation of the BCC. It is expected that most imple-
mentations will use a native application to manipulate the settings in
the BCC.

3.2.1 Conflict Resolution

The JABWT specification allows a great deal of flexibility within a
JABWT implementation. This feature was included for two reasons.
First, the flexibility resulted from the desire to allow the JABWT imple-
mentation to be ported to a large number of Bluetooth stacks and
radios. Second, JABWT implementations are able to differentiate them-
selves on the basis of the policies the implementation enforces.

Because multiple applications are able to run and access the local
Bluetooth device at the same time, conflicting requests can be made to
the Bluetooth device. As far as JABWT is concerned, two types of
requests can conflict with another application using the same Bluetooth
device. First, two applications may request different security settings on
a link (Bluetooth security is described in Section 4.1). Second, two appli-
cations may request to set the device into two different discoverable
modes (discoverable modes are described in Chapter 6). The BCC is
responsible for resolving these conflicting requests.

42 Chapter Three: High-Level Architecture

JABWT application JABWT application
Native

 application

JABWT implementation

BCC

KVM

Operating system and Bluetooth stack

Figure 3.4 How the BCC fits into a JABWT implementation.

3.2.2 Modifying Device Properties

Although JABWT allows an application to retrieve certain properties of
the local device, no methods within JABWT allow direct modification of
a device’s properties. In particular, setting of the friendly name, the class
of device record, the list of pre-known devices, the list of trusted devices,
the minimum security requirements, and support for the different con-
nectable/discoverable modes are handled by the BCC. (Each of these
concepts is described later in this book.) The friendly name is a user-
friendly name given to a Bluetooth device. The name does not uniquely
identify a Bluetooth device but provides a name of a device that can be
displayed to a user instead of a device’s Bluetooth address. For example,
a user named Bob may assign his PDA the friendly name “Bob’s PDA.”

3.2.3 User Interaction

Certain operations within Bluetooth security may require input from
the user of a device outside the scope of the application. The BCC is
responsible for retrieving this information from the user and injecting
the information into the Bluetooth security process. What type of infor-
mation can the BCC retrieve from the user? It can range from a PIN to
simply responding to a permission request.

3.2.4 BCC on Devices with No User Interface

Because JABWT is based on CLDC, there is no guarantee that a user
interface (UI) is available on the device. In this situation, the OEM or
device manufacturer is expected to set the BCC setting in the device.
Actions that require user interaction are more complicated. A BCC on a
non–graphical user interface (GUI) device might not support these types
of actions or can specify the responses to these actions when the device
is manufactured.

3.3 Simple JABWT Application
Before describing the details of the classes and methods defined in
JABWT, the traditional “Hello, World” application is shown. This
example shows how code is presented in the remainder of the book.
Because Bluetooth technology is a wireless radio technology, developing
applications requires hardware or a simulator. To enable readers to try

Bluetooth Control Center 43

out the code in this book, the following section also describes how to
set up a development environment that makes it possible to build and
test JABWT code in a simulated environment.

Development Tools

Developing and testing J2ME applications, especially testing on a
device, can be a complicated process. Device testing is complicated due
to a general lack of debug tools and the effort it takes to download and
install an application. Therefore device simulators have been developed
to allow developers to create and debug applications on a desktop com-
puter before testing them on a device. A common tool for J2ME devel-
opment is the J2ME Wireless Toolkit available at java.sun.com/j2me.
The Wireless Toolkit provides software emulation of devices that
support the CLDC and MIDP specifications. Many device manufacturers
provide tools that allow specific device emulation. The Wireless Toolkit
is not a full integrated development environment (IDE), but it provides
a simple interface to the tools a J2ME developer needs.

Although the J2ME Wireless Toolkit provides support for J2ME
emulation, a separate tool is needed for Bluetooth networking simula-
tion. The Impronto™ Simulator developed by Rococo Software and
available at www.rococosoft.com is an example of a Bluetooth network
simulation package. These tools can easily be combined so that initial
application testing can be done quickly. It is important to note that
nothing replaces device testing. Different devices have subtle differences
that can dramatically affect the user experience. Therefore, final testing
should always be done on a device.

All the examples in this book have been tested with the Motorola
JABWT reference implementation and the J2ME Wireless Toolkit with
the Impronto Simulator. The process of setting up and running the
J2ME Wireless Toolkit and the Impronto Simulator is simple. Complete
the following steps to correctly set up the J2ME Wireless Toolkit and the
Impronto Simulator for Windows 2000. (These steps apply to the J2ME
Wireless Toolkit 1.0.4 and Impronto Simulator 1.1. The steps may need
to be modified if a different version of these tools is used or if the tools
will be running on Linux.)

1. Download and install the J2ME Wireless Toolkit from java.sun.com.

2. Download and install the Impronto Simulator from www.roco-
cosoft.com.

44 Chapter Three: High-Level Architecture

3. Let %ROCOCO% be the directory in which the Impronto
Simulator is installed and %WTK% be the directory in which the
J2ME Wireless Toolkit is installed. Copy %ROCOCO%\
ImprontoSimulator\lib\isim_midp.jar to %WTK%\apps\lib.

4. Start the Impronto Simulator and the KToolBar application (part of
the J2ME Wireless Toolkit).

5. Start coding, building, and testing your JABWT applications.

Consult the documentation for these tools for directions on how to use
and modify the tools.

Throughout the remainder of this book, screen shots of example
applications are provided. These screen shots are based on the J2ME
Wireless Toolkit and Rococo Impronto Simulator. Although these screen
shots may look like they come from an actual Motorola wireless phone,
they are just emulations. The phone whose image is used in the screen
shots does not support JABWT.

Sample Application

Before introducing the details of JABWT, let’s take a look at how simple
it is to get up and running with JABWT. A simple “Hello, World” appli-
cation follows. The HelloClient MIDlet locates a HelloServer
MIDlet and sends the text “Hello, World” to the server to be displayed
by the HelloServer on its screen. Before showing the JABWT code, the
BluetoothMIDlet class is introduced. HelloClient and HelloServer
use this class as a building block. BluetoothMIDlet starts a processing
thread and destroys the MIDlet when a Command is selected.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.bluetooth.*;

public class BluetoothMIDlet extends MIDlet implements
Runnable, CommandListener {

public BluetoothMIDlet() {}

Simple JABWT Application 45

/**
* Starts a background thread when the MIDlet is
* started.
*/

public void startApp()
throws MIDletStateChangeException {
new Thread(this).start();

}

public void pauseApp() {}

public void destroyApp(boolean unconditional) {}

public void run() {}

/**
* Destroys the MIDlet when a Command occurs.
*/

public void commandAction(Command c, Displayable d) {
notifyDestroyed();

}
}

The next step is to write the HelloServer code. The run() method of
HelloServer does all the work. It makes the server device discoverable
so that the client can find the server. Next, the run() method waits for
a client to connect and reads all the data sent from the client. The
run() method displays the data sent from the client on the screen.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

public class HelloServer extends BluetoothMIDlet {

/**
* Creates a server object. Accepts a single
* connection from a client and prints the data
* sent from the client to the screen.
*/

46 Chapter Three: High-Level Architecture

public void run() {

// Create a Form and add the Exit command to the Form
Form f = new Form("Server");
f.addCommand(new Command("Exit", Command.EXIT, 1));
f.setCommandListener(this);
Display.getDisplay(this).setCurrent(f);

try {
// Make the local device discoverable for the
// client to locate
LocalDevice local = LocalDevice.getLocalDevice();
if (!local.setDiscoverable(DiscoveryAgent.GIAC)) {

f.append("Failed to change to the " +
"discoverable mode");

return;
}

// Create a server connection object to accept
// a connection from a client
StreamConnectionNotifier notifier =
(StreamConnectionNotifier)
Connector.open("btspp://localhost:" +

"86b4d249fb8844d6a756ec265dd1f6a3");

// Accept a connection from the client
StreamConnection conn = notifier.acceptAndOpen();
// Open the input to read data from
InputStream in = conn.openInputStream();
ByteArrayOutputStream out = new
ByteArrayOutputStream();

// Read the data sent from the client until
// the end of stream
int data;
while ((data = in.read()) != -1) {

out.write(data);
}

// Add the text sent from the client to the Form
f.append(out.toString());

// Close all open resources
in.close();

Simple JABWT Application 47

conn.close();
notifier.close();

} catch (BluetoothStateException e) {
f.append("BluetoothStateException: ");
f.append(e.getMessage());

} catch (IOException e) {
f.append("IOException: ");
f.append(e.getMessage());

}
}

}

After the HelloServer MIDlet is created, the HelloClient MIDlet
must be written to send the “Hello, World” message to the server. All
the work for the HelloClient MIDlet occurs in the run() method.
The run() method uses the selectServices() method to discover
the HelloServer. After discovering the server, the HelloClient con-
nects to the server and sends the text. Figure 3.5 shows a successful run
of the HelloClient and HelloServer MIDlets.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

public class HelloClient extends BluetoothMIDlet {

/**
* Connects to the server and sends 'Hello, World'
* to the server.
*/
public void run() {

// Creates the Form and adds the Exit Command to it
Form f = new Form("Client");
f.addCommand(new Command("Exit", Command.EXIT, 1));
f.setCommandListener(this);
Display.getDisplay(this).setCurrent(f);

try {

48 Chapter Three: High-Level Architecture

// Retrieve the connection string to connect to
// the server
LocalDevice local =
LocalDevice.getLocalDevice();

DiscoveryAgent agent = local.getDiscoveryAgent();

String connString = agent.selectService(
new UUID("86b4d249fb8844d6a756ec265dd1f6a3", false),
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

if (connString != null) {
try {
// Connect to the server and send 'Hello, World'
StreamConnection conn = (StreamConnection)

Simple JABWT Application 49

A B

Figure 3.5 A run using the Impronto Simulator. (A) HelloServer; (B) HelloClient (emu-
lation only)

Connector.open(connString);

OutputStream out = conn.openOutputStream();
out.write("Hello, World".getBytes());
out.close();
conn.close();

f.append("Message sent correctly");
} catch (IOException e) {
f.append("IOException: ");
f.append(e.getMessage());

}
} else {

// Unable to locate a service so just print an error
// message on the screen

f.append("Unable to locate service");
}

} catch (BluetoothStateException e) {
f.append("BluetoothStateException: ");
f.append(e.getMessage());

}
}

}

3.4 Summary
This chapter presents the high-level architecture of JABWT to set the
stage for the detailed API discussions in the coming chapters. Because
JABWT is expected to be implemented first on CLDC/MIDP devices,
Section 3.1.1 describes how JABWT can fit into a CLDC/MIDP device. A
client-server model is basic to the operation of Bluetooth wireless tech-
nology, and that client-server model is reflected in JABWT. JABWT goes
a step further than the Bluetooth specification in standardizing service
registration. To allow for variations in Bluetooth product configuration,
JABWT define configurable system properties.

JABWT introduces the concept of a BCC to allow for system
control and monitoring. Some form of BCC must be part of all JABWT
implementations. However, the details of the BCC are left to the JABWT
implementation. The three main tasks the BCC performs are conflict
resolution, modification of system properties, and user interaction.

Section 3.3 presents a simple “Hello, World” JABWT application to
introduce the APIs discussed in the following chapters.

50 Chapter Three: High-Level Architecture

4
This chapter covers the following topics:

• What is the SPP?

• Why use RFCOMM?

• How do you establish an RFCOMM connection?

• How do you create a new RFCOMM service?

• Communicating over RFCOMM

• Bluetooth security in RFCOMM

• Specifying the master and slave device

4.1 Overview
The SPP is the Bluetooth profile that realizes an RFCOMM connection
between two devices. The SPP is defined as a building block profile. This
means that other Bluetooth profiles are built on the SPP. Figure 4.1
shows some of the Bluetooth profiles built on the SPP. In basic terms,
the SPP profile defines how two Bluetooth devices establish two-way,
reliable communication with the RFCOMM protocol.

The RFCOMM protocol is an emulation of an RS-232 serial port
connection between two devices over a wireless link. Within JABWT,
communicating with a remote device using RFCOMM is similar to
communicating over a socket connection. In other words, data is sent
between devices via streams. In most situations, RFCOMM should be
the protocol to use within a JABWT application. This is because serial
communications are widely used and the API is simple to use.

Before continuing, it is important to understand some of the ter-
minology used within Bluetooth networking. Even though Bluetooth
networking is a wireless technology, only a single “physical” link exists

CHAPTER RFCOMM

between any two Bluetooth devices. Although there may be only a
single link, there may be multiple connections between the two devices
over this link (Figure 4.2). The situation is similar to the wired net-
working world. Although there is only a single Ethernet cable between
two devices, there may be multiple connections between the two
devices.

Bluetooth wireless technology provides different levels of security
over a Bluetooth link. There are four types of Bluetooth security:
pairing, authentication, encryption, and authorization. Pairing is the
first step in the process of Bluetooth security. When two devices come
into contact with one another for the first time and want to use secu-
rity, the devices must establish a shared secret used for authentication
and encryption. Pairing requires the user of each device to input a
common code or PIN into each device. The PIN is then used to do an

52 Chapter Four: RFCOMM

Generic Access Profile TCS-BIN based profiles
Audio/video remote

control profile

PAN profile

ESDP (2)

Generic audio/video distribution profile

Serial Port Profile

Ext. service discovery profile (1)

Common ISDN access profile

Cordless telephony profile

SIM access profile

Intercom profile

Adv. audio distribution profile

Video distribution profile

Hardcopy cable replacement profile

Service discovery app. profile

Headset profile

Hands-free profile

Dial-up networking profile

Fax profile

LAN profile

ESDP (3)

File transfer profile

Object push profile

Synchronization profile

Basic imaging profile

Basic printing profile

Generic object exchange profile

Figure 4.1 Bluetooth profiles defined by the Bluetooth SIG [3].

initial authentication of both devices. After the initial pairing, a shared
secret is established and is stored within the Bluetooth device to allow
authentication of both devices in the future without the need for the
pairing process. Figure 4.3 shows how two devices can retrieve the PIN
to complete the pairing process. The pairing process is transparent to
the application. It is the responsibility of the BCC to retrieve the PIN
from the user or determine what the PIN should be.

Bluetooth authentication verifies the identity of one device to
another device using a challenge and response scheme. Bluetooth
authentication does not authenticate users but authenticates devices.
When device A wants to authenticate device B, device A sends a chal-
lenge to device B (Figure 4.4). When it receives this challenge, device B
applies the shared secret to the challenge and sends the result to device
A. Device A then combines the challenge that was sent with its shared
secret and compares the result with the result sent from device B.
Although it authenticates device B to device A, this process does not
authenticate device A to device B. The same process must be used to
authenticate device A to device B. To perform authentication, device A
and device B must complete the pairing process so that the shared secret
can be established.

Overview 53

Link

Device 1 Device 2

Bluetooth
application

Bluetooth
application

C
on

ne
ct

io
n

C
on

ne
ct

io
n

Bluetooth
application

Bluetooth
application

C
on

ne
ct

io
n

C
on

ne
ct

io
n

Figure 4.2 Multiple Bluetooth connections can exist over a single Bluetooth link.

54 Chapter Four: RFCOMM

Bluetooth
Device 1

What is the
PIN?
1234

Bluetooth
Device 2

What is the
PIN?
1234

Pairing

Device A Device B

Challenge

f(Challenge + Secret)

Success or failure

Figure 4.3 For two devices to complete the pairing process, a common PIN must be entered.

Figure 4.4 Device A attempts to authenticate device B.

Once the authentication process has been completed, encryption
can be turned on. Figure 4.5 shows an example of what it means for a
link to be encrypted. Encryption is used to prevent an eavesdropper,
Eve, from intercepting communication between two entities, Alice and
Bob. When one device wants to turn on encryption, it must ask the
other Bluetooth device to do so also. If the other device accepts the
request, all packets between the devices are encrypted. If the other
device rejects the request, the connection is closed. Unlike the mecha-
nism of authentication, it is not possible for communications sent from
device A to device B to be encrypted while communications sent from
device B to device A are unencrypted.

Another option within Bluetooth security is authorization.
Authorization is the process of determining whether a connection
request from a specific Bluetooth device should be granted.
Authorization is completed on a connection-by-connection basis. The
Bluetooth specification has also defined the concept of a trusted device.
What is a trusted device? A trusted device is a device that is automati-
cally granted authorization when authorization is requested. In other
words, a trusted device is authorized to connect to any service on the
local device. When a trusted device connects to a service that requires

Overview 55

PlainText:
Hi, how are

you?

CipherText:
K2Lfl90>,fsLCE

CipherText:
K2Lfl90>,fsLCE

Alice

Eve

PlainText:
Hi, how are

you?

CipherText:
K2Lfl90>,fsLCE

Bob

Bluetooth communication

Figure 4.5 Example of encryption.

authorization, the request is automatically accepted without the BCC
asking the user if the device is authorized to use the service. The BCC is
in charge of maintaining the list of trusted devices. When an authori-
zation request is received by the BCC for a nontrusted device, the BCC
requests the user to grant or deny the connection.

Each level of security builds on the previous level. Authentication
requires pairing. Encryption and authorization require authentication.
JABWT enforces these requirements. If encryption is requested on a link
and the link has not been authenticated, the JABWT implementation
authenticates the remote device before encrypting the link.

4.2 API Capabilities
No new methods or classes were defined for RFCOMM communication;
instead, existing classes and interfaces from the GCF were used. As with
all J2ME communication, using RFCOMM starts with the GCF. A well-
defined connection string is passed to Connector.open() to establish
the connection. For client connections, a StreamConnection object
is returned from Connector.open(). Connector.open() returns a
StreamConnectionNotifier object if a server connection string is used.
Once a connection has been established between a client and a server,
the client and server communicate via InputStreams and
OutputStreams.

JABWT allows security to be modified by an application at two
different times. Security can be modified when a connection is first
established and after the connection is established. To set security
when a connection is established, three parameters can be added to
the connection string passed to Connector.open(). (Section 6.3.3
describes how to change security on a connection after the connection
is established.) The BCC is responsible for verifying that these parame-
ters are acceptable and resolving conflicting security requests. In other
words, all security requests on a link must go through the BCC.

Resolving conflicting security requests is a complicated problem
because changing security in an unexpected way can cause serious prob-
lems for an application. For example, a banking application may allow
a user to pay for groceries over a Bluetooth link. The application trans-
mits the user’s bank account number over an encrypted Bluetooth link.
If the link is not encrypted, someone listening on the Bluetooth link
could steal the user’s bank account number.

56 Chapter Four: RFCOMM

Although JABWT does not specify how conflicting security
requests should be handled, it is expected that most implementations
prevent one application from decreasing the security on a link as long
as another application believes the link has a certain security level. This
expectation is based on the fact that an implementation that does not
enforce this policy would leave an application with no expectations of
security at any time. This expectation leads to three possible implemen-
tations. First, the BCC enforces the same level of security on all applica-
tions. If an application requests a different level of security, the
application’s request fails. Second, the first application to request secu-
rity on a link receives its requested level of security. If a second applica-
tion comes along and requests a higher level of security, the second
application’s request fails. The third approach is the most complicated.
As in the second approach, the first application receives the level of
security it requests on a link. If the second application requests a higher
level of security, the JABWT implementation attempts to increase the
level of security on the link. If the request succeeds, the second applica-
tion receives its connection. If the second application requests a lower
level of security, the second application receives a connection with the
first connection’s higher level of security.

Within every Bluetooth link between two devices, one of the
devices is considered the master and the other the slave of the connec-

API capabilities 57

Connection

ContentConnection

HttpConnection

StreamConnection DatagramConnectionStreamConnectionNotifier

Figure 4.6 GCF defined by CLDC.

tion. The master device drives the frequency-hopping sequence used by
both devices during the wireless connection. (The frequency hopping is
done for security reasons and to minimize interference with other wire-
less devices.) For most applications, the master and slave configuration
is not important, but if a developer is implementing a Bluetooth profile,
the developer may need to consider which device is the master and
which is the slave. Another reason a developer would like to configure
a device to be master is to enable the device to form a piconet. A piconet
is a network of up to seven Bluetooth devices. Being the master allows
a device to establish additional connections to other devices in the area.
The device that initiates a connection starts out as the master of the
connection. The device with the service being connected to is initially
the slave (Figure 4.7).

4.3 Programming with the API
All RFCOMM communication begins with Connector.open() and a
valid connection string. All connection strings passed to
Connector.open() are of the form

{scheme}:{target}{params}

To use RFCOMM, the {scheme} used for both client and server connec-
tion strings is btspp. The {target} and {params} are different depending
on whether the connection is a client or a server.

In addition to the {scheme} being the same for client and server
connections, there are similar {params} for both types of connections.
Table 4.1 lists all the valid {params} that may be used in an RFCOMM,
L2CAP, and OBEX over RFCOMM connection string along with the

58 Chapter Four: RFCOMM

Device A
(master)

Device B
(slave)

Connecting To

Figure 4.7 Master connects to slave.

valid values for each of the {params}. All other values would cause an
IllegalArgumentException to be thrown by Connector.open().
Each of these {params} is optional and therefore does not have to be
included in the connection string.

The parameters that set the security requirements of RFCOMM,
L2CAP, and OBEX over RFCOMM are “authenticate,” “encrypt,” and
“authorize.” These parameters have the value “true” or “false.” The secu-
rity parameters do not have to be set. If the parameter is not included in
the string, the implementation interprets the parameter as false unless
another parameter requires this parameter to be true. For example, if
“encrypt” is set to “true” and “authenticate” is not part of the connection
string, the link is authenticated even though it was not set to “true” in the
connection string, because encryption requires authentication.

Certain combinations of parameters are not valid. “Authenticate”
cannot be set to “false” if “encrypt” or “authorize” is set to “true.” If an
invalid combination of parameters is passed to Connector.open(), a
BluetoothConnectionException is thrown. If the authentication,
encryption, or authorization request fails during the establishment of
the connection, a BluetoothConnectionException also is thrown.

To enable implementing profiles over a JABWT implementation,
JABWT provides a way for a service to request that the local device be
the master of the connection. When the service makes the request to

Programming with the API 59

Table 4.1 Valid Parameters for RFCOMM Connection Strings

Name Description Valid Values Client or Server

master Specifies whether this device must be the true, false Both

master of the connection

authenticate Specifies whether the remote device must be true, false Both

authenticated before establishing a connection

encrypt Specifies whether the link must be encrypted true, false Both

authorize Specifies whether all connections to this device true, false Server

must receive authorization to use the service

name Specifies the ServiceName attribute in the Any valid string Server

service record (service records are explained

further in Chapter 7)

Connector.open() to retrieve the service’s notifier object, the connec-
tion string to produce the notifier object takes another parameter. The
“master” parameter has two valid values: “true” and “false.” If the
“master” parameter is set to “true,” then to use the service, the device ini-
tiating the connection must give up the master role. If the “master”
parameter is “false,” the device does not care whether it is the master or
the slave. There is no API to force a device to be the slave. The “master”
parameter is valid for client and server connection strings. Not all devices
support changing the master of a connection. If the device does not
support changing the master of a connection, then a
BluetoothConnectionException is thrown. (For more information on
connection strings, see Chapter 8 for L2CAP and Chapter 5 for OBEX.)

The “name” parameter is a server-specific parameter. The “name”
parameter specifies the ServiceName attribute in the service record. The
“name” parameter can have a value of any valid string.

4.3.1 Establishing a Server Connection

For establishment of a server connection, a valid server connection
string must be passed to Connector.open(). The {scheme} to use is
btspp. The {target} for server connections is the keyword //localhost fol-
lowed by a colon and the universally unique identifier (UUID) for the
service to add to the service record. Not only is a
StreamConnectionNotifier created by Connector.open(), but also
a basic service record is created. It is not registered into the service
record database until acceptAndOpen() is called on the
StreamConnectionNotifier object returned by Connector.open().
(See Chapter 7 for more information on service registration.)

Here are some examples of valid server connection strings and
their meaning:

“btspp://localhost:102030405060708090A1B1C1D1E100;name=Prin
t_Server; master=false” establishes a server connection with the
UUID 0x102030405060708090A1B1C1D1E100 in the service record.
The connection string also specifies that the ServiceName attribute is
“Print_Server” and that the server can be either the master or the
slave of the connection.

“btspp://localhost:1231242432434AAAABB;authenticate=true;autho
rize=true;name=Echo” establishes a server connection with the

60 Chapter Four: RFCOMM

0x1231242432434AAAABB UUID in the service record and the
ServiceName attribute set to “Echo.” All communication to the
server must be authenticated and authorized.

“btspp://localhost:AB9324854381231231231ADEFE;encrypt=true;au
thorize=true;master=true” creates a server connection object with a
service record that has the UUID 0xAB9324854381231231231ADEFE
in its service record. The server connection must be the master of the
link. As far as security is concerned, the link must be authenticated,
encrypted, and authorized. (Authentication is implied by setting the
encrypt or authorize parameters to true.)

After Connector.open() returns a StreamConnectionNotifier
object, we are ready to attempt to establish a connection. The
acceptAndOpen() method should be called after Connector.open().
This method blocks until a client connects to the server. The
acceptAndOpen() method returns a StreamConnection object. With
the StreamConnection object, the application can read and write to the
client application.

To show how to create a simple RFCOMM application, we will
develop an echo application. The EchoServer MIDlet accepts connec-
tions from the EchoClient MIDlet, described later in this chapter. The
EchoServer then reads messages sent from the client and sends the same
message in reply. The BluetoothMIDlet class from earlier is reused. The
thread started by the BluetoothMIDlet accepts connections from clients.
The run() method of this thread creates a Form and sets it to the current
display. An “Exit” Command is added to the Form to destroy the MIDlet.
Recall that the BluetoothMIDlet processes all Command events by
destroying the MIDlet, which is exactly what we need it to do here.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

public class EchoServer extends BluetoothMIDlet {

/**
* Accepts connections from RFCOMM clients and
* echoes back what is received from the client.

Programming with the API 61

62 Chapter Four: RFCOMM

* This method also displays the messages from a
* client on a Form. It also displays on the Form the
* connection string to use to connect to this service.
*/
public void run() {

// Create the output Form and set it to be the
// current Displayable
Form msgForm = new Form("Echo Server");
msgForm.addCommand(new Command("Exit",
Command.EXIT, 1));

msgForm.setCommandListener(this);
Display.getDisplay(this).setCurrent(msgForm);

}
}

Next, a StreamConnectionNotifier object must be created to accept
connections from the client. After the notifier object is created, the
displayConnectionString() method is called. This method deter-
mines the connection string that a client should use to connect to this
server. This connection string is appended to the Form. The connec-
tion string is used by the client to eliminate the need to do device and
service discovery. The changes needed to append the connection
string to the Form are shown below. Throughout the book a gray box
is used to identify additions or changes to code shown previously.
Some of the code shown previously will be repeated to provide
context, but this repeated code will appear outside the gray box.

public class EchoServer extends BluetoothMIDlet{

...

/**

* Adds the connection string to use to connect to
* this service to the screen.
*
* @param f the Form to add the connection string to
* @param notifier the notifier object to retrieve
* the connection
* string from
*/

private void displayConnectionString(Form f,
StreamConnectionNotifier notifier) {

try {
// Retrieve the connection string to use to
// connect to this server
LocalDevice device = LocalDevice.getLocalDevice();
ServiceRecord record = device.getRecord(notifier);
String connString = record.getConnectionURL(
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

int index = connString.indexOf(';');
connString = connString.substring(0, index);

// Display the connection string on the Form
f.append("Connection String:\n");
f.append(connString);
f.append("\n");

} catch (BluetoothStateException e) {
f.append("BluetoothStateException: " +
e.getMessage());

}
}

...

public void run() {

// Create the output Form and set it to be the
// current Displayable
Form msgForm = new Form("Echo Server");
msgForm.addCommand(new Command("Exit", Command.EXIT, 1));
msgForm.setCommandListener(this);

Display.getDisplay(this).setCurrent(msgForm);

try {
// Create the notifier object
StreamConnectionNotifier notifier =
(StreamConnectionNotifier)
Connector.open(
"btspp://localhost:123456789ABCDE;name=Echo Server");

//Display the connection string on the Form
displayConnectionString(msgForm, notifier);

} catch (IOException e) {
msgForm.append("IOException: " + e.getMessage());

}

}
}

Programming with the API 63

The final part of the EchoServer MIDlet is the most important. After
the connection string is displayed on the Form, the run() method
enters a forever loop that accepts connections from a client via a call to
acceptAndOpen(). The input and output streams are opened once the
connection has been established. The run() method then reads data
from the InputStream. After the data is read, the run() method
appends the data to the Form and sends the data in reply. The run()
method continues to read data until the client closes the input stream.

public class EchoServer extends BluetoothMIDlet {

...

public void run() {

// Create the output Form and set it to be the
// current Displayable
Form msgForm = new Form("Echo Server");
msgForm.addCommand(new Command("Exit",
Command.EXIT, 1));

msgForm.setCommandListener(this);

Display.getDisplay(this).setCurrent(msgForm);

try {
//Create the notifier object
StreamConnectionNotifier notifier =
(StreamConnectionNotifier)
Connector.open(
"btspp://localhost:123456789ABCDE"
+ "name=Echo Server");

// Display the connection string on the Form
displayConnectionString(msgForm, notifier);

// Continue accepting connections until the MIDlet
// is destroyed
for (;;) {
StreamConnection conn = notifier.acceptAndOpen();

OutputStream output = conn.openOutputStream();
InputStream input = conn.openInputStream();

// Continue reading the input stream until the
// stream is closed. Display the data on the
// screen and write it to the output stream.

64 Chapter Four: RFCOMM

byte[] data = new byte[10];
int length = 0;
while ((length = input.read(data)) != -1) {
msgForm.append(new String(data, 0, length));

output.write(data, 0, length);
}

// Close the streams and the connection
output.close();
input.close();
conn.close();

}
} catch (IOException e) {
msgForm.append("IOException: " + e.getMessage());

}

}
}

4.3.2 Establishing a Client Connection

To establish a client connection, the btspp {scheme} is used with the
{target} starting with two slashes followed by the Bluetooth address of
the device to connect to and the server channel identifier of the service
to connect to. The client connection string takes “master,” “authenti-
cate,” and “encrypt” as {params}. When this connection string is passed
to Connector.open(), the JABWT implementation attempts to estab-
lish a connection to the desired service. If the connection is established,
Connector.open() returns a StreamConnection object, which
allows the application to read and write to the server. Unlike the server’s
connection, the client’s connection to the server has been established
once Connector.open() returns.

What is the server channel identifier, and how does a service get
one? The server channel identifier is similar to a TCP/IP port number. It
uniquely identifies a service on a device. The server channel identifier is
a number between 0 and 31. The server channel identifier is assigned by
the JABWT implementation for a service. The server channel identifier
is set in the service record’s ProtocolDescriptorList attribute. This allows
the ServiceRecord’s getConnectionURL() method to generate the
connection string to use to connect to the service. Because a device is
not aware of the devices and services in an area, it is expected that most
JABWT applications will use the getConnectionURL() method.

Programming with the API 65

Now for some examples of client connection strings:

“btspp://008003DD8901:1;authenticate=true” creates an RFCOMM
connection to the device with a Bluetooth address of
008003DD8901. It connects to the service identified by the server
channel identifier 1. The connection string also causes the remote
device to be authenticated.

“btspp://008012973FAE:5;master=true;encrypt=true” establishes an
RFCOMM connection to the Bluetooth device with the address of
008012973FAE. The connection string connects to server channel 5.
The connection string requires the local device to be the master of
the connection and the link to be authenticated and encrypted.

After the connection is established and a StreamConnection
object is obtained with Connector.open(), the input and output
streams should be used to send and receive data. The streams are avail-
able via the openInputStream(), openDataInputStream(),
openOutputStream(), and openDataOutputStream() methods. To
end the connection, the close() method must be called on the
StreamConnection object and any open input or output streams.

The EchoClient MIDlet shows how to establish an RFCOMM
connection to a server and how to communicate with the server. The
EchoClient allows a user to send messages to the EchoServer MIDlet,
which echoes back what is sent. The EchoClient then reads the reply
and appends the reply to a Form so that the user can see what was sent.

To eliminate the need to do device and service discovery, the
Bluetooth address and server channel are retrieved from the user via a
Form. The user enters the Bluetooth address and server channel from
the connection string displayed on the EchoServer screen when the
EchoServer starts. Figure 4.8 shows the EchoServer and how it dis-
plays the connection string to use to connect to this server. In this
example, the Bluetooth address to connect to is 0080375a0032, and the
server channel is 1. When the EchoClient starts, a Form is displayed
that asks the user to enter the Bluetooth address and server channel for
the echo server. After the user enters the information for the server, the
user can select the “Connect” Command.

package com.jabwt.book;

import java.lang.*;
import java.io.*;

66 Chapter Four: RFCOMM

Programming with the API 67

Figure 4.8 EchoServer MIDlet when it starts (emulation only).

import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class EchoClient extends BluetoothMIDlet {
/**
* The Form that interacts with the user. Used to
* retrieve the connection information and the
* text to send.
*/
private Form connForm;

/**
* The Command used to Connect to the server.
*/

68 Chapter Four: RFCOMM

private Command connectCommand;

/**
* Called when the MIDlet is made active. This
* method displays
* a Form that retrieves the Bluetooth address and
* the channel ID
* of the Echo Server.
*/
public void startApp() throws
MIDletStateChangeException {

// Create the Form. Add the Connect and Exit
// Commands to the Form.
connForm = new Form("Echo Client");
connectCommand = new Command("Connect",
Command.OK, 1);

connForm.addCommand(connectCommand);
connForm.addCommand(new Command("Exit",
Command.EXIT, 1));

connForm.setCommandListener(this);

// Add the TextFields to retrieve the
// Bluetooth address and channel
// ID of the Echo Server
TextField address = new TextField("Address",
null, 12, TextField.ANY);

connForm.append(address);

TextField channel = new TextField("Channel",
null, 2,

TextField.NUMERIC);
connForm.append(channel);
Display.getDisplay(this).setCurrent(connForm);

}
}

Now that the Bluetooth address and server channel have been retrieved,
a connection must be made to the EchoServer. To make a connection,
a new thread is created and started if the “Connect” Command is
selected. This requires the EchoClient to implement the Runnable
interface and define a run() method. The run() method creates the
connection string and then attempts to establish a connection. The
run() method also removes the two TextFields that retrieved the
Bluetooth address and server channel ID. If a connection can be estab-

lished, the “Connect” Command is replaced with the “Send” Command, and
a TextField is added to the Form to request a message to send.

public class EchoClient extends BluetoothMIDlet {

// The InputStream to receive data from the server.
private InputStream input;
// The OutputStream to send data to the server.
private OutputStream output;
// The connection to the server
private StreamConnection conn;

...

public void commandAction(Command c, Displayable d) {
if (c.getCommandType() == Command.OK) {
// The Connect Command was selected so start a
// thread to
// establish the connection to the server
new Thread(this).start();

} else {
notifyDestroyed();

}
}

/**
* Create the connection string from the information
* entered by the user.
* @return the connection string

*/
private String getConnectionString() {
// Retrieve the TextFields from the Form
TextField address = (TextField)connForm.get(0);
TextField channel = (TextField)connForm.get(1);

// Create the connection string
StringBuffer temp = new StringBuffer("btspp://");
temp.append(address.getString());
temp.append(":");
temp.append(channel.getString());

// Remove the TextFields from the Form
connForm.delete(0);
connForm.delete(0);

return temp.toString();

Programming with the API 69

}

/**
* Establishes a connection to the server.
*
* @param connString the connection string to connect
* to the server
* @return true if the connection was established;
* false if the
* connection failed
*/
private boolean connectToServer(String connString) {
try {

// Establish a connection to the server
conn = (StreamConnection)
Connector.open(connString);

// Retrieve the input and output streams to
// communicate with
input = conn.openInputStream();
output = conn.openOutputStream();

return true;
} catch (IOException e) {
connForm.append("Connect failed (IOException: ");
connForm.append(e.getMessage());
connForm.append(")\n");

return false;
}

}

/**
* Retrieves the Bluetooth address and channel ID
* from the Form.
* This method then establishes a connection
* to the server.
*/
public void run() {

String connString = getConnectionString();
connForm.append("Connecting to Server\n");

if (connectToServer(connString)) {
connForm.append("Done");

70 Chapter Four: RFCOMM

// Remove the Connect Command and add the Send
// Command to this Form
connForm.removeCommand(connectCommand);
Command sendCommand = new Command("Send",
Command.SCREEN, 1);

connForm.addCommand(sendCommand);

// Add a TextField to the Form to retrieve the
// text to send to
// the server from the user
connForm.append(new TextField("Text to send", null, 20,

TextField.ANY));
}

}

}

Most of the previous code handles user interaction. The only code that
uses JABWT is the connectToServer() method. The
connectToServer() method establishes the connection and retrieves
the input and output streams. The getConnectionString() method
makes the connectToServer() method work because it specifies the
btspp connection scheme, which specifies that the SPP and RFCOMM
should be used to connect to the server.

The next step is to add code that sends a message to the server and
reads the reply. To minimize the amount of work done within the MIDP
CommandListener event handler, all of the communication with the
server is done in a separate thread. To perform the processing in a
separate thread, a new class must be created that implements the
Runnable interface. The Message class does this. The Message class
takes in its constructor the message, the input stream, and the output
stream. When it starts, the thread of the Message class writes the
message to the OutputStream. It then reads the reply from the server
and displays it on the Form the user is currently viewing.

public class EchoClient extends BluetoothMIDlet {

...

/**
* Sends a message and reads the echo in reply.
* Displays the reply
* on the string and adds the TextField to the end of
* the Form.

Programming with the API 71

*/
class Message implements Runnable {

// The message to send to the server.
private String theMessage;
// The InputStream to read the reply from.
private InputStream input;
// The OutputStream to send the message to.
private OutputStream output;

/**
* Creates a new Message to send to the server.
*
* @param msg the message to send
* @param in the InputStream to read the reply from
* @param out the OutputStream to write the message to
*/
public Message(String msg, InputStream in,
OutputStream out) {
theMessage = msg;
input = in;
output = out;

}

/**
* Sends the message to the server and reads the echo
* in reply. This method adds the echo to the Form and
* then adds a new TextField to the end of the Form.
*/
public void run() {

try {
// Send the message to the server.
byte[] data = theMessage.getBytes();
output.write(data);

// Read the reply and keep it in a StringBuffer until
// the full reply is received.
int fullLength = data.length;
int length = input.read(data);
fullLength -= length;

StringBuffer buf = new StringBuffer(new
String(data, 0, length));

while (fullLength > 0) {

72 Chapter Four: RFCOMM

length = input.read(data);
fullLength -= length;
buf = buf.append(new String(data, 0, length));

}

// Display the reply on the Form and remove the
// final new line sent from the server
connForm.append("\n");
String displayString = buf.toString();
displayString = displayString.substring(0,

displayString.length() – 1);

connForm.append(displayString);

} catch (IOException e) {
connForm.append("\nFailed to send message: " +
e.getMessage());

}

connForm.append(new TextField("Text to send",
null, 20, TextField.ANY));

}
}

}

The final step is to use the Message class within the EchoClient MIDlet.
This requires modifying the commandAction() method. The if statement
is changed to a switch statement to determine whether the “Send,” “Exit,”
or “Connect” Command was selected. If the “Send” Command was selected,
the commandAction()method determines whether the last element in the
Form is a TextField. This check is done to prevent two messages from
being sent at the same time. The TextField is not the last Item if a
message is currently being sent. If no message is being sent, then the Text-
Field is the last Item. After this check is made, the commandAction()
method creates a new Message object and starts the Message object in a
thread. This thread sends the message and receives the reply.

public class EchoClient extends BluetoothMIDlet {

...

public void commandAction(Command c, Displayable d) {
switch (c.getCommandType()) {

Programming with the API 73

74 Chapter Four: RFCOMM

case Command.OK:

// The Connect Command was selected so start a
// thread to
// establish the connection to the server
new Thread(this).start();
break;

case Command.SCREEN:
// The Send Command was selected so send the
// message to the server
int index = connForm.size() – 1;

// If the last Item is a TextField, then no
// message is
// currently being sent so send a Message.
Item item = connForm.get(index);
if (item instanceof TextField) {
TextField field = (TextField)item;
connForm.delete(index);
// Start a thread to send the message to the server
// and process the reply
new Thread(new Message(field.getString() +
"\n", input, output)).start();

}

break;

case Command.EXIT:

// The Exit Command was selected so destroy the
// MIDlet
try {
input.close();
output.close();
conn.close();

} catch (Exception e) {
}
notifyDestroyed();
break;

}
}

...
}

This completes the echo client/server application. Figure 4.9 shows the
EchoClient and EchoServer running. Now the EchoClient is able to
send messages to the server while the EchoServer is able to echo back
any message sent from the client. Most of the code for both applications
is not specific to JABWT but is MIDP code that provides for interaction
between the application and the user. This is likely the case for most
applications that use JABWT.

4.4 Summary
RFCOMM will likely be the most used Bluetooth protocol within JABWT
because RFCOMM provides serial two-way communication and reuses
familiar APIs from J2ME. The SPP is the Bluetooth profile realization of

Summary 75

A B

Figure 4.9 EchoClient (A) and EchoServer (B) communicating over RFCOMM (emulation only).

RFCOMM. Many Bluetooth profiles are built on the SPP to take advan-
tage of existing serial port applications and protocols developed for
wired communication.

Important concepts introduced in this chapter are links and con-
nections. Two Bluetooth devices may have only a single Bluetooth link
between them, but this link allows multiple Bluetooth connections.
Although links are device by device, connections are at the JABWT
application layer. In addition to the terms links and connection, the con-
cepts of master and slave devices are introduced. The master device
drives the frequency-hopping sequence used to communicate between
two devices. Different Bluetooth profiles require one device to be the
master and another device the slave. Being the master allows a device to
accept and establish connections to other devices. By establishing these
additional connections, the master device is able to set up a piconet.

The basic concepts of Bluetooth security are covered. Bluetooth
provides four types of security on a link basis. Pairing is the initial
process of identifying two devices to each other by exchanging a PIN
outside of Bluetooth communication. Pairing sets up a shared secret
between the devices so that pairing does not need to be completed every
time. After pairing is completed, authentication can occur.
Authentication is the process of verifying the identity of another device.
After authentication has occurred, encryption and/or authorization can
occur. Encryption is the process of encoding and decoding a message so
that an eavesdropper cannot listen in on the conversation. Finally,
authorization is the process of determining whether another device has
permission to use a specific service.

Because RFCOMM provides reliable two-way communication, the
StreamConnection and StreamConnectionNotifier interfaces from
the GCF are reused. All RFCOMM connections start with a call to
Connector.open() with a valid RFCOMM connection string. The con-
nection string can include parameters for master/slave and Bluetooth secu-
rity. If a client connection string is used in Connector.open(), a
StreamConnection object is returned when the connection is established
to the server. An RFCOMM server is created by calling Connector.open()
with a server connection string, and a StreamConnectionNotifier object
is returned. With the StreamConnectionNotifier object, the server can
accept connections from RFCOMM clients by calling acceptAndOpen().
After the connection has been established, input and output streams can
be retrieved to read and write data.

76 Chapter Four: RFCOMM

5
This chapter covers the following topics:

• What is OBEX?

• When should OBEX be used?

• How does the OBEX API fit into the JABWT specification?

• How does OBEX work?

• Establishing an OBEX connection

• Setting and retrieving OBEX headers

• Initiating and responding to OBEX requests

• Using OBEX authentication

5.1 Overview
The IrOBEX (Infrared Object Exchange protocol) [29] is defined by IrDA
as an alternative to the HyperText Transport Protocol (HTTP) for
embedded devices. IrOBEX targets memory-constrained embedded
devices, which have slower processing speeds. Whereas HTTP makes a
single request and a single reply, IrOBEX allows devices to break up
requests and replies into smaller chunks. By breaking up the requests
into smaller chunks of data, IrOBEX allows the data to be processed as
it is received and allows a request or reply to be aborted.

IrOBEX, like HTTP, is transport neutral. In other words, IrOBEX
works over almost any other transport layer protocol. Whereas the
initial implementations of IrOBEX used Infrared as the transport, there
are presently implementations of IrOBEX that are running over TCP,
serial, and RFCOMM connections. Because IrOBEX may run over differ-
ent transports and can break up requests and replies, IrOBEX may be
optimized to a specific transport protocol. What does this mean? Every

CHAPTER OBEX

IrOBEX packet is segmented to fit within each transport layer packet.
This allows for efficient use of bandwidth.

IrOBEX has become even more popular since the Bluetooth SIG
licensed the protocol from IrDA. When the protocol is used with
Bluetooth wireless technology, the Ir is dropped, and the protocol is
referred to as OBEX. (From this point forward, OBEX and IrOBEX are
used interchangeably.) The Bluetooth SIG defined OBEX as one of the
protocols in the Bluetooth protocol stack. OBEX sits on the RFCOMM
protocol. The Bluetooth SIG went a step farther. The SIG realized that
OBEX is an excellent building block protocol from which to create
Bluetooth profiles. To facilitate building new profiles, the Bluetooth SIG
defined the GOEP [3] to be the profile that defines how OBEX works
within the Bluetooth environment.

The OBEX API defined in JABWT is an optional API. This means
that the OBEX API may be implemented within a device that supports
the Bluetooth APIs, but just because a device supports the Bluetooth
APIs does not imply that it supports the OBEX APIs. This allows the
OBEX API to be included in devices that do not support the Bluetooth
APIs. The OBEX API is independent of the Bluetooth APIs.

So why would a developer use OBEX on a device that has
RFCOMM, L2CAP, or TCP/IP? OBEX is a structured protocol that allows
separation of data and the attributes of data. Using OBEX allows clear
definition of one request from another. Using protocols such as
RFCOMM or TCP/IP requires the applications to know how data is sent
and when to send the reply. OBEX hides this within the protocol. OBEX
is like the Extensible Markup Language (XML). It provides structure to
the data sent whereas RFCOMM and TCP/IP simply send bytes.

5.1.1 Use Cases

OBEX can be used for a variety of purposes. The protocol is being used
in PDAs as a way to exchange electronic business cards. OBEX also has
been used to synchronize embedded devices with desktop computers.
The OBEX API defined for the Java programming language is intended
to allow OBEX to be used for an even wider range of applications.

Provisioning

A common problem for MIDP devices, such as cell phones, is how to get
the MIDlets onto the device to run. (i.e., how do you provision

78 Chapter Five: OBEX

MIDlets?) OBEX is an ideal protocol for provisioning. One tool can be
written that provides for over-the-air provisioning. Over-the-air provi-
sioning is the act of retrieving MIDlets from a centralized server. OBEX
allows the service provider to speed up the transmission of MIDlets over
the air, which saves the user money. OBEX also provides ways to recover
from a lost connection. In other words, the user does not have to
retrieve the entire MIDlet if the connection to the server is lost. The user
simply retrieves the remaining chunks of data.

With the introduction of Bluetooth wireless technology, the soft-
ware kiosk is another way to provision MIDlets to user devices. In this
approach, a user approaches a software kiosk and establishes an OBEX
connection with the software kiosk over RFCOMM. The user finds the
MIDlets he or she wants to download. These MIDlets could be pur-
chased and then downloaded to the user’s device.

Printing

J2ME has begun to be used by businesses as a way to keep in touch with
employees. Being able to send and retrieve e-mail is now possible. Being
able to update and check an employee’s calendar and “to do” list also is
possible. There is one drawback to using a J2ME device for these tasks.
Most devices have a very limited screen size; therefore users find it quite
helpful for those devices to send e-mail or the calendar to a printer. Up
to this point, the J2ME space contained devices that could talk back
only with a central server. With the introduction of JABWT to J2ME, any
two devices can talk. Sending documents to print is a natural use of
OBEX. The Bluetooth SIG has released the Basic Printing Profile, which
uses OBEX [27].

5.1.2 Protocol Description

OBEX is built on six basic operations: CONNECT, SETPATH, GET, PUT,
ABORT, and DISCONNECT. The client initiates every operation with a
request and waits for the server to send its response. Every OBEX session
begins with a CONNECT request from the client to the server. (Although
the IrOBEX specification defined a connectionless OBEX, it is not
described here. The OBEX API defined by JABWT does not address this
type of OBEX.) Every session ends with a DISCONNECT request.
Between the CONNECT and DISCONNECT requests, the client may
send any number of SETPATH, GET, ABORT, or PUT requests. The

Overview 79

ABORT request is a special type of request. It ends a PUT or GET opera-
tion before the operation ends. (A PUT/GET operation is made of mul-
tiple PUT or GET requests and replies.)

Within each request and reply, OBEX headers may be sent. The
OBEX specification defines a list of common headers. The common
headers include but are not limited to:

• NAME, which specifies the name of the object

• LENGTH, which specifies the length of the object

• TYPE, which specifies the Multipurpose Internet Mail Extensions
(MIME) type of the object

• COUNT, which is used by a CONNECT request to specify the
number of objects to send or receive

• DESCRIPTION, a short description of the object

• HTTP, which specifies an HTTP header

• BODY, which specifies part of the object

• END OF BODY, which specifies the last part of the object

The OBEX specification defines how these common headers are
encoded. For example, the NAME header must be a Unicode string.
The BODY and END OF BODY headers are used to send or retrieve
objects from a server via PUT or GET requests. The END OF BODY
signals to the receiver that this is the last chunk of the object. In addi-
tion to the common headers, the specification also allows 64 user-
defined headers. The specification breaks these headers into four
groups of 16 headers. Each group represents a different type of data.
There are groups for Unicode strings, 4-byte unsigned integers, single
bytes, and byte sequences.

The OBEX specification defines two additional special operations:
the PUT-DELETE and CREATE-EMPTY operations. The PUT-DELETE
operation is a PUT operation with a NAME header and no BODY header.
This operation is used to tell the server to delete the object with the
specified name. The CREATE-EMPTY operation also is a PUT operation,
but the CREATE-EMPTY operation contains a NAME and an END OF
BODY header with no data. The CREATE-EMPTY operation signals to
the server to create the object with the specified name with nothing in
the object.

80 Chapter Five: OBEX

5.1.3 Example Session

Every OBEX session begins with the client issuing a CONNECT request.
If the client wants, the client can include additional headers to send to
the server. When the server receives the request, the server processes the
headers and decides whether it will accept the connection request. If the
server accepts the request, the server responds with an OK, SUCCESS
response code. If the server rejects the request, the server responds with
one of the HTTP response codes that specify why the request was not
accepted. In the example in Figure 5.1, the client issues the CONNECT
request and sends the COUNT header to the server to specify the
number of objects to be transferred. The server processes the request and
replies with the SUCCESS, OK response code.

After the connection is established, the client may want to change
to a different location on the server. The client is able to change folders
by using the SETPATH operation. The client sends the SETPATH opera-
tion and specifies the name of the directory to change to by using the
NAME header. When the server receives the request, it may decide to
allow or not allow the change. The server can deny the request for a
variety of reasons, including using the NOT FOUND response if the
folder does not exist on the server.

Even though the server was not able to fulfill the SETPATH opera-
tion, the session is still active and the client may continue to make
requests to the server. For example, the client may want to send a file to
the server. To do this, the client issues a PUT request. If the file is large,

Overview 81

CONNECT (COUNT)

OK, SUCCESS

Client Server

Figure 5.1 OBEX CONNECT operation.

the client may need to break the file up into smaller chunks to send to
the server. If this is the case, the client sends the initial PUT request with
a NAME header, to specify the name of the file, and the BODY header
containing the first chunk of the file. When the server receives this
request, the server stores the first chunk of the file and replies with a
CONTINUE response. When the client receives the CONTINUE
response, the client sends the next chunk of the file via another PUT
request with the BODY header. After storing this part of the file, the
server sends another CONTINUE response. This back and forth contin-
ues until the last chunk of data is sent to the server. For the last chunk
of the file, the client again sends a PUT request, but the client includes
the data in an END OF BODY header rather than a BODY header. This
header signals to the server that this is the last piece of the file. After the
server receives notice from the client that no more data will be sent, the
server responds with an OK, SUCCESS response code. When the client
receives this response code, the client knows that the object was suc-
cessfully sent to the server.

To end the OBEX session, the client must issue a DISCONNECT
request. Usually, a DISCONNECT request does not contain any addi-
tional headers, but OBEX does not restrict headers from being included
in the DISCONNECT request. When it receives a DISCONNECT request,
the server frees any resources that it may have allocated and sends an
OK, SUCCESS response to the client. When the client receives this
response, the OBEX session has ended.

82 Chapter Five: OBEX

SETPATH (NAME)

NOT FOUND

Client Server

Figure 5.2 OBEX SETPATH Operation.

Overview 83

PUT (NAME, BODY)

CONTINUE

PUT (BODY)

CONTINUE

PUT (END-OF-BODY)

OK, SUCCESS

Client Server

Figure 5.3 OBEX PUT operation.

DISCONNECT

OK, SUCCESS

Client Server

Figure 5.4 OBEX DISCONNECT operation.

It is important to remember that when the OBEX session has
ended, the physical connection between the two devices may not have
been closed. The transport protocol also must be disconnected. How or
when this is done is not specified by the OBEX specification.

5.2 API Capabilities
The OBEX API is quite different from most existing OBEX implementa-
tions, which provide only a high-level interface to the protocol. For
example, Palm developers can use an API for OBEX that allows a user to
send a business card or receive an appointment but not to control how
the data was sent. Control of the specifics of the transaction is not avail-
able. The Java OBEX API provides a low-level interface. The low-level
interface gives developers more control over each request and reply,
adding a new layer of complexity.

Although the OBEX API provides greater access to the protocol, the
OBEX API hides some of the details of the protocol from developers. The
OBEX API handles all the translation of OBEX headers to their corre-
sponding byte representation. The API also hides some of the details of
the CONNECT request. For example, the OBEX API implementation
handles the negotiation of OBEX packet sizes. Because the packet size is
not available to an application developer, the OBEX API implementa-
tion handles converting requests into multiple packets for PUT and GET
requests. This allows an application to simply send the BODY data while
relying on implementation of the API to convert the BODY data into
different packets.

To make it easier to learn, the OBEX API was based on other
Java APIs with which many developers are familiar. The client
API is designed from the combination of the javax.microedi-
tion.io.ContentConnection interface and the javax.microedi-
tion.io.DatagramConnection interface from the GCF. GET, PUT and
CREATE-EMPTY operations use the javax.obex.Operation interface,
which extends the ContentConnection interface. The CONNECT,
SETPATH, PUT-DELETE, and DISCONNECT operations work as the
DatagramConnection interface does. For sending a message with the
DatagramConnection, a javax.microedition.io.Datagram object
must be created and used as the argument to the send() method of the
DatagramConnection interface. Similarly, for sending OBEX headers, a
javax.obex.HeaderSet object must be created and passed to the

84 Chapter Five: OBEX

connect(), setPath(), delete(), and disconnect() methods of
the javax.obex.ClientSession interface.

For an OBEX server, the OBEX API combines concepts from the
javax.microedition.io.StreamConnectionNotifier interface and
the Java servlet API. The server API, like the client API, is based
on the GCF. After a SessionNotifier object is created by calling
Connector.open(), acceptAndOpen() is called with a javax.obex.
ServerRequestHandler object. The ServerRequestHandler class is
similar to the java.servlet.http.HttpServlet class. The
ServerRequestHandler class defines methods for each type of OBEX
request that a server may receive, such as onConnect(),
onDisconnect(), onPut(), onGet(), onDelete(), and onSetPath().
Only requests to which a server wants to respond must be implemented.

The OBEX API also provides a mechanism for OBEX authentica-
tion. OBEX authentication works via a challenge and response scheme
using two OBEX headers. The AUTHENTICATION_CHALLENGE header
is sent when an application on one device wants to authenticate an
application on another device. When a device receives an AUTHENTI-
CATION_CHALLENGE header, it combines the shared secret or
password with the 16-byte challenge received in the AUTHENTICA-
TION_CHALLENGE header. The Message Digest 5 (MD5) hash algo-
rithm is applied to the combined password and challenge. The resulting

API Capabilities 85

javax.microedition.io
DatagramConnection

javax.microedition.io
ContentConnection

OBEX
Client API

Figure 5.5 OBEX client API resulted from the combination of two connection types.

value is returned in an AUTHENTICATION_RESPONSE header. When
the challenger receives the AUTHENTICATION_RESPONSE header, the
challenger combines the 16-byte challenge sent in the original
AUTHENTICATION_CHALLENGE header and the shared secret and
applies the MD5 hash algorithm. The resulting value is compared with
the value received in the AUTHENTICATION_RESPONSE header. If the
two values are equal, the other device is authenticated.

OBEX authentication is different from Bluetooth authentication.
Bluetooth authentication authenticates two Bluetooth devices to each
other. OBEX authentication authenticates two users or applications to
each other. Although Bluetooth authentication is handled at the
Bluetooth stack and radio layer, OBEX authentication is handled at the
application layer. OBEX authentication and Bluetooth authentication
can be used at the same time.

The OBEX API uses an API similar to the J2SE authentication API
for OBEX authentication. The OBEX API defines the javax.obex.
Authenticator interface. When an AUTHENTICATION_CHALLENGE
header is received, the onAuthenticationChallenge() method
is called. This method returns a javax.obex. Password-
Authentication object with the user name and password pair that will
be used in creating the AUTHENTICATION_RESPONSE. When

86 Chapter Five: OBEX

javax.microedition.io
StreamConnectionNotifier

javax.servlets.http
HttpServlet

OBEX
Client API

Figure 5.6 OBEX server API was created by combining two well known APIs.

an AUTHENTICATION_RESPONSE header is received, the
onAuthenticationResponse() method is called. The shared secret or
password is returned from the onAuthenticationResponse()
method. The OBEX API implementation handles all the hashing of chal-
lenges/passwords and validation of the authentication request.

5.3 Programming with the API
The OBEX API is built on the GCF defined in CLDC. The OBEX API adds
three new interfaces that extend the javax.microedition.
io.Connection interface. The javax.obex.ClientSession interface
is returned from Connector.open() when a client connection string is
provided. The javax.obex.SessionNotifier interface is returned
from the Connector.open() method for server connections. Finally,
the javax.obex.Operation interface is used to process PUT and GET
requests. The javax.obex.Operation interface hides the back and
forth nature of the PUT and GET requests (Figure 5.7).

In addition to these new interfaces, the OBEX API defines the
javax.obex.Authenticator and javax.obex.HeaderSet inter-
faces. The Authenticator interface is implemented by applications
that want to handle authentication challenges and responses (OBEX
authentication is fully explained in section 5.3.5). The HeaderSet
interface encapsulates a set of OBEX headers. All OBEX headers except

Programming with the API 87

Connection

ContentConnection

Operation

StreamConnection DatagramConnectionStreamConnectionNotifier

ClientSession SessionNotifier

HttpConnection

Figure 5.7 GCF with OBEX API

for the BODY, END-OF-BODY, CONNECTION-ID, AUTHENTICA-
TION_CHALLENGE, and AUTHENTICATION_RESPONSE headers can be
set in a HeaderSet object. OBEX headers not set within the HeaderSet
interface can be set and retrieved by other methods.

The OBEX API introduces three new classes. The
javax.obex.PasswordAuthentication class keeps user name and
password pairs for OBEX authentication. The javax.obex.
ResponseCodes class defines all the valid response codes that a server
may send to a client. Finally, servers extend the javax.obex.
ServerRequestHandler class. This class defines the methods called
when the server receives different OBEX requests.

5.3.1 Establishing a Connection

For a client or a server to use the OBEX API, the client or server must
first provide a connection string to Connector.open(). The OBEX API
uses the same connection URL definition as the CLDC specification:

{scheme}:[{target}][{params}]

The OBEX connection string is slightly different from the connection
strings defined in MIDP and MIDP 2.0. Because OBEX can be used
with a number of different transports, the connection string needs to
specify the transport protocol in addition to specifying OBEX. The
transport protocol is specified within the {scheme}. With the excep-
tion of OBEX over RFCOMM, the connection string defined by the
OBEX API is

{transport}obex://{target}{params}

If TCP/IP is the transport protocol used for an OBEX connection, the
{scheme} is tcpobex. When opening a client connection to a server,
the {target} is the IP address and port number of the server. When
opening a server connection, the {target} is just the port number of
the server. In the TCP/IP case, there are no {params} defined for a client
or server connection.

If RFCOMM is the transport protocol, the connection string does
not follow this rule. This is because the GOEP is the realization of

88 Chapter Five: OBEX

OBEX in the Bluetooth specification; therefore the {scheme}
for OBEX over RFCOMM connections is btgoep. The {target} is the
Bluetooth address and RFCOMM channel number to establish a client
connection. For server connections, the {target} is the UUID of the
service. All the valid {params} for RFCOMM are valid for OBEX
over RFCOMM (see Table 4.1 for the list of valid {params} for
RFCOMM).

Some example client connection strings are

btgoep://00802d5b12af:1;authenticate=yes

tcpobex://163.10.70.75:1505

irdaobex://discover;ias=MyAppOBEX,OBEX,OBEX:IrXfer;

See the JAWBT specification [20] for an explanation of the connection
string for OBEX over IRDA.

Some server connection strings are

btgoep://localhost:1233212ADBAA9324BAFE23331231222C

tcpobex://:1801

irdaobex://localhost.0200

After Connector.open() is called with a client connection string,
a ClientSession object is returned. A transport connection is been
established by a call to Connector.open(), but an OBEX layer con-
nection has not yet been established. To establish an OBEX layer con-
nection, ClientSession.connect() must be called. Before the
transport layer connection is closed, ClientSession.disconnect()
must be called to close the OBEX layer connection.

On the server side, the SessionNotifier object returned by
Connector.open() is used to accept connections from clients by
calling acceptAndOpen() on the SessionNotifier object. The
acceptAndOpen() method takes a ServerRequestHandler argument
and an optional Authenticator argument. A developer creates a new
class that extends the ServerRequestHandler class and implements
the methods for the type of requests the developer would like the server
to handle. For example, onConnect() should be implemented for
CONNECT requests and onGet() for GET requests. The call to
acceptAndOpen() does not return until a client connects. The
acceptAndOpen() method returns a Connection object representing
the transport layer connection to the client.

Programming with the API 89

5.3.2 Manipulating OBEX Headers

OBEX communicates all of its information within headers. JABWT
allows headers to be written and read via different methods based on
the header. Of all the valid headers, the BODY, END-OF-BODY,
AUTHENTICATION_CHALLENGE, AUTHENTICATION_RESPONSE, and
CONNECTION-ID headers have specific methods that allow developers
to access them. All other headers can be accessed through the
HeaderSet interface.

Developers are not allowed to define their own implementation for
the HeaderSet interface. Instead, developers use implementations of
the interface found within the API implementation. OBEX clients use
the createHeaderSet() method defined in the ClientSession
interface. On the other hand, OBEX servers are passed HeaderSet
implementations when they override an onXXX() method in the
ServerRequestHandler class (see section 5.3.4 for more information
on how to implement an OBEX server).

Once a HeaderSet object is created or received, it is very easy to
access different headers. Within the HeaderSet interface are constants
defined for most of the headers in the OBEX specification. In addition
to these constants are 64 user-defined headers that can be used. To set a
header in the object, call the setHeader() method with the header
identifier and the header’s value. The header’s value must be of the type
specified in the OBEX API. Table 5.1 is the full list of headers that can
be set with setHeader(), their meaning according to the OBEX
specification [29], and the type of object to use. For example, the
COUNT header must be set with a java.lang.Long object, and the
NAME header must be set with a java.lang.String. If setHeader()
is called with a different type, IllegalArgumentException is thrown.
Likewise, to retrieve a header, use the getHeader() method with the
header identifier. The getHeader() method also returns an object of
the type specified in Table 5.1.

Although some headers, such as NAME and COUNT, have a specific
meaning, 64 headers are defined in OBEX that have no general meaning
according to the OBEX specification. These are the user-defined headers.
These headers should be used by applications to exchange data if the data
does not fall into one of the defined OBEX headers.

The HeaderSet interface also provides a getHeaderList()
method. This method returns an array of integers that represent the

90 Chapter Five: OBEX

header identifiers set within the HeaderSet object. The
getHeaderList() method never returns null. If no headers are avail-
able via the getHeaders() method, getHeaderlist() returns an
empty array. This method allows a developer to find all the headers
included in a request or a reply without calling getHeader() on every
header specified in the HeaderSet interface.

Five OBEX headers are handled differently. The BODY and END OF
BODY headers are manipulated via input and output streams from an
Operation object. The AUTHENTICATION_CHALLENGE and AUTHEN-
TICATION_RESPONSE headers are accessed via the Authenticator inter-

Programming with the API 91

Table 5.1 OBEX Header Constants in the HeaderSet Interface, Their Meaning, and Their Type

Value Meaning Type

COUNT Used by CONNECT to specify the number java.lang.Long

of objects to be communicated during

the session

NAME Name of the object java.lang.String

TYPE MIME type of the object java.lang.String

LENGTH Size of the object java.lang.Long

TIME_ISO_8601 Time stamp of the object (recommended java.util.Calendar

header to use to time stamp an object)

TIME_4_BYTE Time stamp of the object java.util.Calendar

DESCRIPTION Brief description of the object java.lang.String

TARGET Target OBEX service byte[]

HTTP Specifies an HTTP header byte[]

WHO OBEX service processing the request byte[]

OBJECT_CLASS OBEX object class of the object byte[]

APPLICATION_PARAMETER Application-specific parameter byte[]

48 to 63 (0×30 to 0×3F) User-defined headers to send a string java.lang.String

112 to 127 (0×70 to 0×7F) User-defined headers to send a byte array byte[]

176 to 191 (0×B0 to 0×BF) User-defined headers to send a byte java.lang.Byte

240 to 255 (0×F0 to 0×FF) User-defined headers to send an unsigned java.lang.Long

integer in the range of 0 to 232 to 1

face. The CONNECTION-ID header can be retrieved and set through the
getConnectionID()and setConnectionID()methods of ClientSession
and ServerRequestHandler.

The CONNECTION-ID header is unique within OBEX. The CON-
NECTION-ID header is used to differentiate multiple services provided
by a single OBEX notifier object. If the CONNECTION-ID header is set
in the OBEX API, the header is included in every packet sent by the API
implementation.

5.3.3 Sending a Request to the Server

After establishing a transport layer connection to a server through
Connector.open(), the client must first issue a CONNECT request to the
server to establish the OBEX layer connection. The client sends a
CONNECT request by calling connect(). Within the CONNECT request,
the client may include any headers by passing the headers to connect().
A HeaderSet object is returned from connect(). This HeaderSet object
allows the client to get the headers received from the server and the
response code. To access the response code sent by the server, the client
calls the getResponseCode() method. The getResponseCode()
method returns one of the response codes defined in the ResponseCodes
class. If the server responds with OBEX_HTTP_OK, the OBEX layer connec-
tion has been established. The server can send headers in the response.

The following code establishes a transport layer connection to the
server and then an OBEX connection. As part of the OBEX CONNECT
request, the COUNT header and a user-defined header are sent. Next the
connectToServer() method verifies that the connection has been
accepted. If the server denies the connection, the connectToServer()
method retrieves the DESCRIPTION header to find out the reason for
the failure.

ClientSession connectToServer(String connString) throws
IOException {

// Establish the transport layer connection
ClientSession conn =
(ClientSession)Connector.open(connString);

// Create the HeaderSet object to send to the server
HeaderSet header = conn.createHeaderSet();

92 Chapter Five: OBEX

// Set the headers to send to the server
header.setHeader(HeaderSet.COUNT, new Long(3));
header.setHeader(0x30, "New OBEX Connections");

HeaderSet response = conn.connect(header);

// Verify that the server accepted the connection
if (response.getResponseCode() !=
ResponseCodes.OBEX_HTTP_OK) {

try {
conn.close();

} catch (Exception e) {
}

// The connection was rejected by the server so
// throw an IOException.
throw new IOException("Connection rejected (0x" +

Integer.toHexString(response.getResponseCode()) +
": " + (String)response.getHeader(
HeaderSet.DESCRIPTION) +
")");

}

return conn;
}

The delete() and disconnect() methods work in a similar way. The
setPath() method works slightly differently. In a SETPATH request,
the NAME header is used to specify to which directory to move. In addi-
tion to passing in the NAME header in the HeaderSet argument, any
additional headers can be used. The setPath() method also takes two
boolean arguments. The first argument is set to true if the server
should move up one directory before moving to the directory specified
by NAME. (This is similar to a cd .. in DOS.) The second argument,
create, is set to true if the directory should be created if it does not
exist. If the create argument is set to false, an error should occur if
the client tries to move to a directory that does not exist. The following
code moves to the directory specified by folderName.

void moveToDirectory(ClientSession conn, String folderName)
throws IOException {

Programming with the API 93

// Specify the directory to move to
HeaderSet header = conn.createHeaderSet();
header.setHeader(HeaderSet.NAME, folderName);

// Change to the directory specified. Do not backup
// one directory
// (second argument) and do not create it if it does
// not exist (third argument).
HeaderSet reply = conn.setPath(header, false, false);

// Validate that the server moved to the specified
// directory
switch (reply.getResponseCode()) {
case ResponseCodes.OBEX_HTTP_OK:
// The request succeeded so simply return from this
// method
return;

case ResponseCodes.OBEX_HTTP_NOT_FOUND:
// There was no directory with the name so throw an
// IOException
throw new IOException("Invalid directory");

default:
// The request failed for some other reason, so
// throw a generic
// IOException

94 Chapter Five: OBEX

OBEX Packet OBEX Packet

OutputStream InputStream

Transport

Java OBEX Client Java OBEX ServerOBEX
Implementation

OBEX
Implementation

Transport Medium

HeaderSet HeaderSet

Figure 5.8 PUT request that combines OutputStream and HeaderSet into an OBEX packet.

throw new IOException(
"Move to directory request failed");

}
}

The GET and PUT operations work differently. Because PUT and GET
requests pass body data between client and server, the put() and get()
methods return an Operation object. To retrieve body data,
open the InputStream or DataInputStream by using the
openInputStream() and openDataInputStream() methods, respec-
tively. On the other hand, the OutputStream and DataOutputStream
returned by openOutputStream() and openDataOutputStream(),
respectively, allow a client to send body data to the server. The OBEX
implementation converts the BODY and non-BODY data headers to and
from packets.

Sending and retrieving data must follow a set of rules depending
on the type of OBEX request. Even though multiple packets can be

Programming with the API 95

Figure 5.9 Phases of a PUT request.

DataOutputStream.close()

OutputStream.close()

Operation.getResponseCode()

Reply
phase

Operation
closed

Request
phase

Operation.close()

DataOutputStream.close()

InputStream.close()

Operation.close()

put()

exchanged, PUT and GET operations are still broken into requests and
responses. During the request portion of the PUT and GET operation,
the operation may write to the OutputStream or DataOutputStream.
During the PUT or GET response, BODY data may be read from the
InputStream or DataInputStream.

For PUT requests, closing the OutputStream or
DataOutputStream ends the request portion of the operation. Calling
getResponseCode() also causes the OutputStream to close and thus
ends the PUT request and starts the response portion of the operation.
It should be noted that calling read() on the InputStream before
closing the OutputStream or before calling getResponesCode()
causes the application to hang because the BODY data will not be sent
until the response portion of the operation. The response portion starts
when the OutputStream is closed or getResponseCode() is called.

The following code is an example of a PUT operation that sends an
object to the server. The code also sends the TYPE and LENGTH headers
in the PUT request.

void sendBytes(ClientSession conn, String type, byte[] data)
throws IOException {

// Set the headers in the HeaderSet to send to the
// server
HeaderSet header = conn.createHeaderSet();
header.setHeader(HeaderSet.TYPE, type);
header.setHeader(HeaderSet.LENGTH, new
Long(data.length));

// Issue the PUT request to the server
Operation op = conn.put(header);

// Send the BODY data to the server
OutputStream out = op.openOutputStream();
out.write(data);
out.close();

// Verify that the server accepted the object
if (op.getResponseCode() != ResponseCodes.OBEX_HTTP_OK) {
op.close();
throw new IOException("Request failed");

}
op.close();

}

96 Chapter Five: OBEX

GET operations work slightly differently from PUT operations. For GET
operations, a call to openInputStream() or openDataInputStream()
causes the request portion to end. If getResponseCode() is called during
a GET operation, the InputStream is closed, and no further BODY data
can be read. Therefore do not call getResponseCode() until all the BODY
data sent by the server is read.

The following method retrieves an object from the server using a
GET operation.

byte[] getBytes(ClientSession conn, String name) throws
IOException {

// Create the request to send to the server
HeaderSet header = conn.createHeaderSet();
header.setHeader(HeaderSet.NAME, name);

// Send the request to the server
Operation op = conn.get(header);

Programming with the API 97

Request
phase

Reply
phase

Operation
closed

O
ut

pu
tS

tre
am.close()

D
at

aO
ut

pu
tS

tre
am.close()

Operation.close()

O
peration.getResponseCode()

DataOutputStream.close()

InputStream.close()

Operation.close()

Operation.getResponseCode()

get()

op
en

In
pu

tS
tre

am()

op
en

D
at

aI
np

utS
tre

am()

Figure 5.10 Phases of a GET operation.

// Retrieve the bytes from the server
InputStream input = op.openInputStream();

// Read the data from the server until the end of
// stream is reached
ByteArrayOutputStream out = new ByteArrayOutputStream();
int data = input.read();
while (data != -1) {

out.write(data);
data = input.read();

}
input.close();

// Verify that the whole object was received
int responseCode = op.getResponseCode();
op.close();
switch(responseCode) {

case ResponseCodes.OBEX_HTTP_OK:
return out.toByteArray();

case ResponseCodes.OBEX_HTTP_NOT_FOUND:
case ResponseCodes.OBEX_HTTP_NO_CONTENT:

// Since nothing was found, return null
return null;

default:
throw new IOException("Request Failed");

}
}

A client can end a PUT and GET request during the operation by calling
the abort() method. The abort() method sends an ABORT request
to the server and signals to the server the request should not be
processed. The abort() method closes the InputStream,
OutputStream, and Operation object. If the operation has already
ended, the abort() method throws an IOException.

5.3.4 Receiving a Request from a Client

OBEX servers are similar to Java servlets once the transport layer connec-
tion is established. HTTP servlets extend HttpServlet; OBEX servers
extend the ServerRequestHandler class. Unlike HttpServlet, the
ServerRequestHandler class does not require any methods to be over-

98 Chapter Five: OBEX

ridden. OBEX servers need only to override the methods for the type of
client requests the server would like to handle. For example, if the OBEX
server wants only to process CONNECT, SETPATH, and PUT requests, the
server needs only to override the onConnect(), onSetPath(), and
onPut() methods. If the client makes a DELETE or GET request, the
implementation on the server side would automatically respond with the
OBEX_HTTP_NOT_IMPLEMENTED response code. Table 5.2 shows how
OBEX requests are received by an application and how the implementa-
tion will respond if the method is not overridden.

The onConnect(), onDelete(), and onDisconnect() methods
allow servers to respond to OBEX CONNECT, DELETE, and DISCON-
NECT requests, respectively. All three methods have two arguments. The
first argument provides the headers sent from the client. The second
argument provides the HeaderSet to set headers in the reply. The
onConnect() and onDelete() methods both return the response
code to send in the reply as specified in the ResponseCodes class. The
onDisconnect() method returns nothing because a DISCONNECT
request must send an OBEX_HTTP_OK response.

The following example code processes an OBEX CONNECT
request. First, the COUNT and 0x30 user-defined headers are retrieved.
If they exist in the request, the connection is accepted, otherwise the
connection is rejected. If the connection is rejected, the description
header specifies the cause of the rejection.

public int onConnect(HeaderSet request, HeaderSet reply) {

try {
// Retrieve the expected headers
Long count = (Long)request.getHeader(HeaderSet.COUNT);

Programming with the API 99

Table 5.2 How OBEX Requests Are Translated to Methods by the JABWT Implementation

OBEX Request ServerRequestHandler Method Default Return Value

CONNECT onConnect() OBEX_HTTP_OK

SETPATH onSetPath() OBEX_HTTP_NOT_IMPLEMENTED

GET onGet() OBEX_HTTP_NOT_IMPLEMENTED

PUT onPut() OBEX_HTTP_NOT_IMPLEMENTED

DELETE onDelete() OBEX_HTTP_NOT_IMPLEMENTED

DISCONNECT onDisconnect() OBEX_HTTP_OK

String conName = (String)request.getHeader(0x30);

if ((count == null) || (conName == null)) {
reply.setHeader(HeaderSet.DESCRIPTION,
"Required headers missing");

return ResponseCodes.OBEX_HTTP_BAD_REQUEST;
}

return ResponseCodes.OBEX_HTTP_OK;
} catch (IOException e) {
reply.setHeader(HeaderSet.DESCRIPTION,
"IOException: " + e.getMessage());

return ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;
}

}

The onSetPath() method works similarly to onConnect(),
onDisconnect(), and onDelete() methods with one exception. As
part of a SETPATH request, the client may specify creation of the direc-
tory if it does not exist and backing up one directory before moving to
the directory specified by the NAME header. The onSetPath() method
has two boolean arguments to pass these values from the client’s
request to the server.

The onGet() and onPut() methods work differently. These
methods have only a single argument, an Operation object. The
Operation object provides access to the BODY header through the
InputStream and OutputStream. Unlike Operation objects returned
by the client’s get() and put(), Operation objects received via the
server’s onGet() and onPut() methods do not have any special order-
ing rules. (For example, an Operation object received as an argument
in onGet() may read from the InputStream first or it may write to the
OutputStream first.) The Operation getResponseCode() and
abort() methods throw an IOException if called on the server. If the
server receives an ABORT from the client, the Operation is closed, and
all the methods on the closed Operation throw an IOException.

In addition to BODY headers, GET and PUT operations can use
additional headers. These headers can be retrieved via the
getReceivedHeaders() method. This method returns a HeaderSet
object containing all the latest headers received. Because GET and PUT
operations may require multiple request and reply packets within a single
operation, the same header may be sent multiple times. The

100 Chapter Five: OBEX

getReceivedHeaders() method returns the HeaderSet object
containing only the latest headers received. To send headers, a
HeaderSet object must be created by calling the
ServerRequestHandler.createHeaderSet() method. After the
HeaderSet object is created, all headers that will be sent in the reply
should be set. After the values are set, the headers are sent when the
HeaderSet object is passed to the sendHeaders() method.

The following code reads the data sent to the server via a PUT
request and stores it in a Record Management System (RMS)
RecordStore.

public int onPut(Operation op) {
int response = ResponseCodes.OBEX_HTTP_OK;

try {
// Retrieve the NAME header
HeaderSet headers = op.getReceivedHeaders();
String name = (String)headers.getHeader(HeaderSet.NAME);

// Read the data from the input stream
ByteArrayOutputStream out = new
ByteArrayOutputStream();

InputStream in = op.openInputStream();
byte[] data = new byte[100];
int length = in.read(data);
while (length != -1) {
out.write(data, 0, length);
length = in.read(data);

}
in.close();

// Open the RecordStore with the name from the NAME
// header
RecordStore store = RecordStore.openRecordStore(name,
true);

data = out.toByteArray();
store.addRecord(data, 0, data.length);

// Close the RecordStore
store.closeRecordStore();

} catch (Exception e) {
HeaderSet header = createHeaderSet();

Programming with the API 101

header.setHeader(HeaderSet.DESCRIPTION,
e.getMessage());

try {
op.sendHeaders(header);

} catch (Exception ex) {
}

response = ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;
}

// Close the Operation
try {
op.close();

} catch (Exception e) {
}

return response;
}

The OBEX API implementation verifies that the response code is valid
before it is sent to the client. The implementation changes the response
code to OBEX_HTTP_INTERNAL_ERROR if the onXXX() method returns
something other than a response code specified in the ResponseCodes
class. If an uncaught exception is received by the implementation, the
implementation changes the response code to OBEX_HTTP_INTER-
NAL_ERROR.

5.3.5 Using OBEX Authentication

OBEX authentication works via a challenge and response mechanism. To
authenticate the other end of an OBEX connection, an AUTHENTICA-
TION_CHALLENGE header is sent with a challenge. To respond to an
authentication request, an AUTHENTICATION_RESPONSE header is sent
with a hash of the challenge and password and an optional user name.
Even though authentication usually occurs during a CONNECT request,
OBEX authentication can occur at any time during an OBEX session.
Before OBEX authentication is used, an Authenticator must be created
and set via a call to ClientSession.setAuthenticator() or
SessionNotifer.acceptAndOpen(). If no Authenticator is specified
for a client or server, any authentication requests or replies will fail.

To send an AUTHENTICATION_CHALLENGE header, simply call
the createAuthenticationChallenge() method on a HeaderSet

102 Chapter Five: OBEX

object that will be used in a request or a reply. The
createAuthenticationChallenge() method allows a developer to
specify which user name and password to include via a description
parameter. The method also allows the developer to specify whether a
user name is required (second argument) and whether full access will be
granted if the authentication succeeds (third argument).

The following code is an example of a client sending an authentica-
tion challenge to the server. It sets the Authenticator and issues an
authentication challenge within a CONNECT request. The following code
must set the Authenticator to handle the authentication response
header from the server. (The ClientAuthenticator class is defined later
in this chapter.)

ClientSession connectToServer(String connString) throws
IOException {

// Create the transport layer connection to the server
ClientSession conn = (ClientSession)

Connector.open(connString);

// Set the AUTHENTICATION_CHALLENGE header to send to
// the server.
// The second argument to createAuthenticationChallenge()
// specifies
// that a user name is required. The third argument
// specifies
// whether full access will be granted.
HeaderSet request = conn.createHeaderSet();
request.createAuthenticationChallenge(
"Test Password", true, false);

// Set the Authenticator to respond to the
// Authentication Response
// header
conn.setAuthenticator(new ClientAuthenticator());

// Connect to the server
HeaderSet reply = conn.connect(request);

// Verify that the server accepted the connection
if (reply.getResponseCode() !=
ResponseCodes.OBEX_HTTP_OK) {
conn.close();

Programming with the API 103

throw new IOException("Connection Failed (" +
Integer.toHexString(reply.getResponseCode()) + ")");

}
return conn;

}

To respond to an authentication challenge, an OBEX server must specify
the Authenticator in the call to acceptAndOpen(). The code below
sets the Authenticator to handle the authentication headers in this way.
(The ServerAuthenticator class is defined later in this chapter.)

SessionNotifier waitForConnection(String connString)
throws IOException {

// Establish the server connection object
SessionNotifier notifier = (SessionNotifier)
Connector.open(connString);

// Wait for the client to connect
notifier.acceptAndOpen(new RequestHandler(), new
ServerAuthenticator());

return notifier;
}

When the server receives a CONNECT request with an AUTHENTICA-
TION_CHALLENGE header, the onAuthenticationChallenge()
method is called on the Authenticator object specified in
acceptAndOpen(). The onAuthenticationChallenge() method is
written as part of an implementation of the Authenticator interface
and must return the user name and password to the implementation via
a PasswordAuthentication object. The code below shows this process.

public class ServerAuthenticator implements Authenticator {
public ServerAuthenticator() {
}

/**
* When an AUTHENTICATION_CHALLENGE header is received,
* pass the user name
* and password back to the implementation.
*
* @param description specifies which password to use

104 Chapter Five: OBEX

* @param isUserIDRequired true if the user name is
* required; false if the
* user name is not required
* @param isFullAccess true if full access will be
* granted; false if full
* access will not be granted
* @return the user name and password or null if the
* description does not
* specify "Test Password"
*/
public PasswordAuthentication onAuthenticationChallenge(
String description, boolean isUserIDRequired,
boolean isFullAccess) {

if (description.equals("Test Password")) {
return new PasswordAuthentication(
new String("Bob").getBytes(),
new String("GoodPassword").getBytes());

}

return null;
}

public byte[] onAuthenticationResponse(byte[] username) {
return null;

}
}

After calling onAuthenticationChallenge, the OBEX API implementa-
tion on the server then invokes the onConnect() method. This allows the
server to include additional headers in the reply or reject the connection.

public class RequestHandler extends
ServerRequestHandler {

public RequestHandler() {
}

/**
* Accept the connection. This method is called each
time a CONNECT request is received.

*
* @param request ignored

Programming with the API 105

* @param reply set the COUNT header
* @return always return OBEX_HTTP_OK
*/
public int onConnect(HeaderSet request, HeaderSet

reply) {
reply.setHeader(HeaderSet.TYPE, "text/text");
return ResponseCodes.OBEX_HTTP_OK;

}
}

After the server sends the response in an AUTHENTICATION_RESPONSE
header, the client’s OBEX API implementation invokes the
onAuthenticationResponse() method on the client’s
Authenticator object. The onAuthenticationResponse() method
allows the client to pass the OBEX API implementation the correct
password. After the OBEX API implementation receives a non-null pass-
word, the implementation validates the password. If the password is
valid, the connect() method returns the HeaderSet received from the
server. If the onAuthenticationResponse() method returns null,
the authentication fails. If the authentication fails because null is
returned or the wrong password was supplied, the call to connect()
throws an IOException specifying that the authentication failed. The
following code processes an AUTHENTICATION_RESPONSE header.

public class ClientAuthenticator implements Authenticator {

public ClientAuthenticator() {
}

/**
* Validates the password by returning the valid password.
* @param username the user name provided; null if no
* user name was
* included in the header
* @return the password for the user name specified;
* null if the user name
* or password is not valid
*/
public byte[] onAuthenticationResponse(byte[]
username) {

// Checks to see if the only valid user name was
// provided, otherwise

106 Chapter Five: OBEX

// fail the authentication request by returning null
if ((username == null) || (!new
String(username).equals("Bob"))) {
return null;

}
return new String("GoodPassword").getBytes();

}

public PasswordAuthentication onAuthenticationChallenge(
String description, boolean isUserIDRequired,
boolean isFullAccess) {

return null;
}

}

When a server wants to authenticate a client, the preceding process is
followed, with two exceptions. First, an onXXX() method, such as
onConnect() or onPut(), must add the AUTHENTICATION_CHAL-
LENGE header by calling createAuthenticationChallenge() and
return the OBEX_HTTP_UNAUTHORIZED response code. Second, the
OBEX API implementation invokes the onAuthenticationFailure()
method of the ServerRequestHandler specified instead of throwing
an IOException as the client implementation does if the authentica-
tion fails. (Here’s a tip: If a server uses OBEX authentication, it is easier
to detect authentication failures if a new ServerRequestHandler
object is passed to acceptAndOpen() for each connection.)

5.4 Summary
OBEX was defined by IrDA and adopted by the Bluetooth SIG. The
GOEP defines OBEX within the Bluetooth world. Many different profiles
have been defined on top of GOEP. For Bluetooth devices, OBEX uses
the RFCOMM protocol as the transport protocol.

OBEX is built on a request and response scheme. The client drives
the connection by issuing requests to the server. The server can accept
or reject the request using any of the HTTP response codes. CONNECT,
PUT, GET, SETPATH, DELETE, CREATE-EMPTY, and DISCONNECT are
the valid operations that may be performed by a client. A client session
begins with a CONNECT request and ends with a DISCONNECT
request. Between the CONNECT and DISCONNECT request, any
number of PUT, GET, SETPATH, DELETE, and CREATE-EMPTY opera-

Summary 107

tions can occur. All data is sent within OBEX headers. Any of these
headers can be included in any of the operations.

OBEX provides a structured way to send data between embedded
devices. Although RFCOMM works by sending bytes between devices
via a stream, OBEX sends logical objects, not Java objects, between
devices. By using OBEX, a developer does not need to worry about
adding structure to a stream of bits. The developer needs to worry only
about which headers to send and retrieve.

The OBEX API defined within JABWT is a separate API from the
Bluetooth API. For this reason, the OBEX API was designed to be trans-
port neutral. The OBEX API is built on the GCF defined by CLDC. The
connection string passed to Connector.open() specifies which trans-
port to use. For client connections, a ClientSession object is
returned. A SessionNotifier object is returned for server connections.

With the ClientSession object returned by
Connector.open(), HeaderSet objects can be created to send headers
in any request. After Connector.open() is called, only the transport
layer connection has been established. To establish an OBEX session,
the connect() method is called. If the server accepts the connection
request, the put(), get(), setPath(), or delete() method can be
called to issue the associated request to the server. After the client
finishes communicating with the server, the disconnect() method
should be called to end the OBEX session and should be followed by the
close() method to close the transport layer connection.

OBEX server connections work slightly differently. To process
requests from a client, the server application must provide a class that
extends the ServerRequestHandler class to the SessionNotifier’s
acceptAndOpen() method. Requests from the client are passed back to
the OBEX server via events to the ServerRequestHandler class. The
onConnect(), onPut(), onGet(), onSetPath(), onDelete(), and
onDisconnect() methods are called when the associated request is
received from the client. Within the onXXX() method, the server can
set any headers to send in the reply along with the response code.

OBEX provides a mechanism for authentication. This method is
different from Bluetooth authentication. OBEX authentication uses a
challenge and response scheme. Within the OBEX API, authentication
starts with the Authenticator interface. When an authentication
challenge or response is received, the appropriate method is called in
the Authenticator object specified to the JABWT implementation.
The JABWT implementation handles the details of packaging the
response and determining whether the response was correct.

108 Chapter Five: OBEX

6
This chapter covers the following topics:

• Retrieving information on the local device

• Why is device discovery needed?

• Making a device discoverable

• Retrieving devices without an inquiry

• How to start an inquiry

• Changing security on a link

• Working with remote devices

6.1 Overview
Because the typical Bluetooth radio is part of a mobile device, a
Bluetooth device must be able to dynamically locate devices within the
area. A Bluetooth device must also be able to determine what services
are on the devices found. The Bluetooth specification separates discov-
ery of devices and discovery of services into separate processes. In the
device discovery process, the local Bluetooth device finds the other
Bluetooth devices in the area. In the service discovery process, the
Bluetooth device determines which services the other devices have
running on them.

In Bluetooth terms, device discovery is known as an inquiry. When
a Bluetooth device issues an inquiry, the other devices in the area
respond to the inquiry requests depending on their discoverable mode.
These devices respond with their Bluetooth address and class of device
record. The Bluetooth address is a 6-byte unique identifier assigned to
every Bluetooth device by the manufacturer. The class of device record
describes the type of Bluetooth device and provides a general indication
of the types of services available on the device.

CHAPTER Device
Discovery

At the time of publication, the Bluetooth SIG had defined two
types of inquiries: general and limited. A general inquiry is used to find
all the Bluetooth devices in an area. A limited inquiry is used to find all
devices in an area that are discoverable for only a limited length of time.
A general inquiry is similar to asking all people in a room to say their
names. A limited inquiry is similar to asking all people in a room to say
their names only if they are accountants. Which devices respond to an
inquiry request depends on the discoverable mode of the device. A
Bluetooth device can be general, limited, or not discoverable. A general
discoverable device responds only to general inquiries. Limited discov-
erable devices respond to general and limited inquiries. A device cannot
respond to any inquiries if it is not discoverable.

During a general inquiry, the device performing the inquiry asks all
the devices in the area to respond to a general inquiry request. Only

110 Chapter Six: Device Discovery

Printer
(general discoverable)

Laptop
(general discoverable)

Hand held
(limited discoverable)

Scanner
(not discoverable)

PC
(not discoverable)

Cell
phone

Figure 6.1 Cell phone performs a general inquiry.

devices that are limited or general discoverable respond to the request.
For example, in Figure 6.1, the cell phone issues the general inquiry
request. Although they may receive the request, the PC and scanner do
not respond to the request because they are in the not discoverable
mode (Figure 6.2.). The remaining devices in the area do respond to the
cell phone with their Bluetooth addresses and class of device record.

6.2 API capabilities
JABWT provides two approaches to device and service discovery. First,
JABWT provides methods that allow full control over device and service
discovery. The second approach leaves the device and service discovery
up to the JABWT implementation. This separation was created to allow
the developers to develop Bluetooth profiles with the API and to

API capabilities 111

Figure 6.2 All general and limited discoverable devices respond to a general inquiry.

Printer
(general discoverable)

Hand held
(limited discoverable)

Laptop
(general discoverable)

Scanner
(not discoverable) PC

(not discoverable)

Cell
phone

optimize their applications while also allowing developers to quickly get
a Bluetooth application up and running. (The second approach is
presented in Section 7.3.8.)

Device discovery starts with the JABWT application specifying the
type of inquiry to perform, either general or limited. (Additional inquiry
types are possible but have yet to be defined by the Bluetooth SIG.) The
API returns each device found during an inquiry back to the application
as the device is found via a deviceDiscovered() event. The device
found and the class of device record of the remote device are returned.

The class of device record specifies the type of device responding
and the services available on the device. The class of device record is
made of the major service class, major device class, and minor device
class. The major service class defines the services available on a device.
The following list defines all the major service classes defined by the
Bluetooth SIG when this book was published.

• Positioning

• Networking

• Capturing

• Object Transfer

• Audio

• Information

• Limited Discoverable

• Rendering

• Telephony

A device can have multiple major service classes. In other words, a
device can have an audio and a telephony service running on it at the
same time, which makes the major service class audio and telephony.
The major device class and minor device class describe the physical type
of device of which the Bluetooth radio is a part. A device can have only
a single major device class. The Bluetooth SIG has defined the following
major device classes:

• Computer (e.g., desktop, notebook, PDA, organizers)

• Phone (e.g., cellular, cordless, pay phone, modem)

• LAN/network access point

• Audio/video (e.g., headset, speaker, stereo, video display)

112 Chapter Six: Device Discovery

• Peripheral (e.g., mouse, joystick, keyboard)

• Imaging (e.g., printing, scanner, camera, display)

• Miscellaneous

The minor device class is defined on the basis of the major device
class. The list of all the minor device classes is available from the
Bluetooth SIG [30]. The minor device class is simply a more specific
description of the device. For example, a device can be classified as an
imaging device. The minor device class specifies whether the device is a
camera, scanner, or printer. This system allows developers to perform
service searches on only the devices that fit their needs. In the example,
the developer is able to eliminate the camera and scanner devices from
the service search if the developer is looking for a printing service.

JABWT provides a simpler approach to retrieving remote devices
that eliminates the need for performing a complete inquiry. When it
performs an inquiry, an application must wait eight to ten seconds for
a 95% chance of finding all the devices in the area. In addition to taking
time, an inquiry is power consuming, which is a major concern for
embedded, battery-powered devices. To minimize the need for an
inquiry, JABWT allows an application to retrieve without performing an
inquiry a list of devices that would “likely” be in an area. These devices
are called predefined. There are two types of predefined devices: pre-
known and cached. Pre-known devices are devices with which the local
device frequently interacts. Pre-known devices are set in the BCC.
(Section 3.2 provides a full description of the BCC.) For example, a PDA
frequently synchronizes with a desktop computer. The user of the PDA
would specify the desktop computer as a pre-known device. A pre-
known device does not guarantee that the device is currently reachable
or available, but it does give an educated guess. The second type of
device that can be retrieved without an inquiry is a cached device.
Cached devices are Bluetooth devices found with a previous inquiry.
The inquiry does not have to be performed by this application. The
cached devices might have been found by a previous inquiry performed
by another application on this same Bluetooth device.

6.3 Programming with the API
The LocalDevice class provides access to the local Bluetooth device.
There is only a single LocalDevice object for the entire JABWT

Programming with the API 113

implementation. This LocalDevice object provides methods of retriev-
ing information on the local device and a gateway for starting the dif-
ferent discovery processes.

6.3.1 Accessing the Local Device

Retrieving information and manipulating a local Bluetooth device begin
with retrieving the LocalDevice object. The LocalDevice class has a
private constructor, which prevents an application from creating a new
LocalDevice object on its own. For an application to retrieve the
LocalDevice object for the JABWT implementation, the applic-
ation calls the LocalDevice.getLocalDevice() method. The
getLocalDevice() method may throw a BluetoothStateException
if the Bluetooth stack or radio is not working properly.

Once the LocalDevice has been retrieved, more information can
be gathered on the local device, such as the device’s Bluetooth address,
friendly name, current discoverable mode, and class of device record.
The getBluetoothAddress() method returns the device’s address.
The getFriendlyName() method returns the device’s user-friendly
name or returns null if the name could not be retrieved. The
getDiscoverable() method returns the local device’s current dis-
coverable mode. The DiscoveryAgent class contains constants for
general discoverable (GIAC, which stands for General Inquiry Access
Code), limited discoverable (LIAC, which stands for Limited Inquiry
Access Code), and not discoverable (NOT_DISCOVERABLE). Other dis-
coverable modes are possible but have not been defined by the
Bluetooth SIG. The getDiscoverable() method returns the actual
value of the other discoverable modes if the local device is in the
mode. Finally, the class of device record can be retrieved by means of
the getDeviceClass() method. The getDeviceClass() method
returns null if the class of device record could not be retrieved.
(Section 6.3.4 describes manipulating the class of device record
through a DeviceClass object.)

The LocalDevice class has a method for requesting a different dis-
coverable mode. The setDiscoverable() method takes the requested
discoverable mode as an argument. The discoverable mode can be
DiscoveryAgent.GIAC, DiscoveryAgent.LIAC, DiscoveryAgent.
NOT_ DISCOVERABLE, or any discoverable mode in the range 0x9E8B00
to 0x9E8B3F. The setDiscoverable() method returns true if the

114 Chapter Six: Device Discovery

discoverable mode changes to the requested mode. This method returns
false if the BCC denies the request or the local device does not support
the requested discoverable mode. The setDiscoverable() method
throws a BluetoothStateException if the requested change cannot
occur at this time because the device is in a state that does not allow the
change.

What happens when one device asks for limited discoverable while
another asks for general discoverable? This is left up to the BCC. The
JSR-82 specification does not place requirements on how the BCC
resolves conflicting discoverable requests. The possible approaches
include but are not limited to the following:

1. The first requested discoverable mode is honored until the appli-
cation ends.

2. The last request is always honored.

3. One discoverable mode has a higher priority than another. For
example, general discoverable has a higher priority than limited
discoverable. Not discoverable is the lowest priority. A request to a
higher priority is honored, whereas a request for a lower priority is
denied.

The LocalDevice class also has the getProperty() method
for retrieving additional information on the capabilities of the
Bluetooth radio and stack. The LocalDevice.getProperty()
method works similarly to the System.getProperty() method. The
LocalDevice.getProperty() method takes, as a String, the specific
property whose value is to be retrieved. The getProperty() method
returns the value of the property as a String. Table 6.1 lists all the prop-
erties available through the getProperty() method. A JABWT imple-
mentation can add parameters to the getProperty() method but must
support at a minimum all the properties in Table 6.1. The argument is case
sensitive.

To show how to use these methods within an application, the
BluetoothInfoMIDlet follows. The BluetoothInfoMIDlet displays
a Form with the Bluetooth address, friendly name, current discoverable
mode, and all the properties of the local Bluetooth device. The first step
to creating the MIDlet is creating the BluetoothInfoMIDlet class and
adding code to its startApp() method to display a Form. The next
step is to add an exit Command to the Form to destroy the MIDlet.

Programming with the API 115

116 Chapter Six: Device Discovery

Table 6.1 Properties Available through LocalDevice.getProperty

Property Description Valid Value

bluetooth.api.version The version of the JABWT that “1.0” for the current version of the

is supported. This property JABWT

does not relate to the

Bluetooth specification number.

bluetooth.master.switch Is master/slave switch allowed? “true” or “false”

bluetooth.sd.attr.retrievable.max Maximum number of service A base 10 integer (e.g., “1”, “2”)

attributes to be retrieved per

service record.

bluetooth.connected.devices.max Maximum number of A base 10 integer (e.g., “1”, “2”)

connected devices supported.

bluetooth.l2cap.receiveMTU.max Maximum ReceiveMTU size in A base 10 integer (e.g., “1”, “2”)

bytes supported in L2CAP.

bluetooth.sd.trans.max Maximum number of A base 10 integer (e.g., “1”, “2”)

concurrent service discovery

transactions.

bluetooth.connected.inquiry.scan Can the local device respond “true” or “false”

to an inquiry request while the

device has established a link to

another device?

bluetooth.connected.page.scan Can the local device accept a “true” or “false”

connection from a new remote

device if it is already connected

to another remote device?

bluetooth.connected.inquiry Can the local device start an “true” or “false”

inquiry while it is connected to

another device?

bluetooth.connected.page Can the local device establish “true” or “false”

a connection to a remote

device if the local device is

already connected to another device?

Now that the BluetoothInfoMIDlet has been created, the
getBluetoothInfo() method is added. The getBluetoothInfo()
method retrieves the Bluetooth device information and displays it on
the screen. This method first retrieves the LocalDevice object. Next,
the Bluetooth address is retrieved and displayed on the screen. Before
the user-friendly name returned from getFriendlyName() is dis-
played, the getBluetoothInfo() method must verify that null was
not returned. If null was returned, the appropriate message is added to
the Form; otherwise, the user-friendly name is displayed. A switch state-
ment is used to display the discoverable mode to resolve the value of the
discoverable mode with its associated name. Finally, each of the proper-
ties available via the LocalDevice.getProperty() method is
retrieved and appended to the Form. The values returned from

Programming with the API 117

package com.jabwt.book;

import java.lang.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

public class BluetoothInfoMIDlet extends BluetoothMIDlet {

/**
* Called when the MIDlet is started to display the
* properties of the
* MIDlet on a Form.
*/
public void startApp() throws
MIDletStateChangeException {
Display currentDisplay = Display.getDisplay(this);

Form infoForm = new Form("Device Info");
currentDisplay.setCurrent(infoForm);

// Add the exit command and set the listener
infoForm.addCommand(new Command("Exit",
Command.EXIT, 1));

infoForm.setCommandListener(this);
}

}

getProperty() do not need to be checked for null because these
values are required to be part of the JABWT implementation.

public class BluetoothInfoMIDlet
extends BluetoothMIDlet {

public void startApp() throws
MIDletStateChangeException {
Display currentDisplay = Display.getDisplay(this);

Form infoForm = new Form("Device Info");
currentDisplay.setCurrent(infoForm);

getBluetoothInfo(infoForm);

// Add the exit command and set the listener
infoForm.addCommand(new Command("Exit",
Command.EXIT, 1));

infoForm.setCommandListener(this);
}

/**
* Displays the Bluetooth device information on the
* screen.
* @param f the Form to display the information on
*/
private void getBluetoothInfo(Form f) {
LocalDevice local = null;

// Retrieve the local Bluetooth device object
try {
local = LocalDevice.getLocalDevice();

} catch (BluetoothStateException e) {
f.append("Failed to retrieve the local device (" +
e.getMessage() + ")");

return;
}

// Retrieve the Bluetooth address
f.append("Address: " + local.getBluetoothAddress());

118 Chapter Six: Device Discovery

f.append("\n");

// Retrieve the Bluetooth friendly name
String name = local.getFriendlyName();
if (name == null) {
f.append("Name: Failed to Retrieve");

} else {
f.append("Name: " + name);

}
f.append("\n");

// Retrieve the current discoverable mode
int mode = local.getDiscoverable();
StringBuffer text = new StringBuffer(
"Discoverable Mode: ");

switch (mode) {
case DiscoveryAgent.NOT_DISCOVERABLE:
text.append("Not Discoverable");
break;

case DiscoveryAgent.GIAC:
text.append("General");
break;

case DiscoveryAgent.LIAC:
text.append("Limited");
break;

default:
text.append("0x");
text.append(Integer.toString(mode, 16));
break;

}
f.append(text.toString());
f.append("\n");

// Retrieve all the default properties
// and display them on the screen.
f.append("API Version: " +
local.getProperty("bluetooth.api.version"));

f.append("\n");
f.append("Master Switch Supported: " +
local.getProperty("bluetooth.master.switch"));

f.append("\n");

Programming with the API 119

f.append("Max Attributes: " +
local.getProperty(
"bluetooth.sd.attr.retrievable.max"));

f.append("\n");
f.append("Max Connected Devices: " +
local.getProperty(
"bluetooth.connected.devices.max"));

f.append("\n");
f.append("Max Receive MTU: " +
local.getProperty(
"bluetooth.l2cap.receiveMTU.max"));

f.append("\n");
f.append("Max Service Discovery Transactions: " +
local.getProperty("bluetooth.sd.trans.max"));

f.append("\n");
f.append("Connection Options\n");
f.append(" Inquiry Scan Supported: " +
local.getProperty(
"bluetooth.connected.inquiry.scan"));

f.append("\n");
f.append(" Page Scan Supported: " +
local.getProperty(
"bluetooth.connected.page.scan"));

f.append("\n");
f.append(" Inquiry Supported: " +
local.getProperty("bluetooth.connected.inquiry"));

f.append("\n");
f.append(" Page Supported: " +
local.getProperty("bluetooth.connected.page"));

f.append("\n");
}

}

The BluetoothInfoMIDlet displays a great deal of information about
the local Bluetooth device and its JABWT implementation. Figure 6.3
shows a screen shot of the BluetoothInfoMIDlet running.

Simple Device Discovery

JABWT provides device and service discovery capabilities via the
DiscoveryAgent class and the DiscoveryListener interface. Each

120 Chapter Six: Device Discovery

device has a single DiscoveryAgent object. The DiscoveryAgent pro-
vides methods to start device and service searches. The
DiscoveryListener interface is used by the DiscoveryAgent to pass
devices and services back to the application as they are found. This
DiscoveryAgent object is retrieved from the local device via the
LocalDevice.getDiscoveryAgent() method. The following method
shows how to retrieve the DiscoveryAgent object for a Bluetooth device.

public static DiscoveryAgent getLocalDiscoveryAgent() {
try {
/*
* Retrieve the local Bluetooth device object for
* this device.

Programming with the API 121

Figure 6.3 BluetoothInfoMIDlet running in J2ME Wireless Toolkit (emulation only).

* This method may throw a BluetoothStateException
* if the local
* device could not be initialized.
*/
LocalDevice local = LocalDevice.getLocalDevice();
DiscoveryAgent agent = local.getDiscoveryAgent();
return agent;

} catch (BluetoothStateException e) {
return null;

}
}

The getLocalDiscoveryAgent() method must catch a
BluetoothStateException because LocalDevice.getLocalDevice()
may throw it. Once the LocalDevice is retrieved, the call to
getDiscoveryAgent() returns the DiscoveryAgent associated with
the LocalDevice. Multiple calls to getDiscoveryAgent() return the
same object.

The DiscoveryListener interface is the other intricate part of
device and service discovery in the JABWT. The DiscoveryListener
interface is implemented by an application to receive devices and service
records as they are discovered. The interface also provides an application
with a notification that the inquiry or service search has completed.

The easiest way to retrieve a list of RemoteDevices is using the
retrieveDevices() method in the DiscoveryAgent class. The
retrieveDevices() method returns the list of pre-known devices if
the DiscoveryAgent.PREKNOWN argument is used and the list of
cached devices if the DiscoveryAgent.CACHED option is set. Pre-
known devices are devices with which the local device commonly inter-
acts. Devices can be registered as pre-known in the BCC. There is no
guarantee that a pre-known device is in the area or can be connected to.
Cached devices are devices that have been found via a previous inquiry.
How many devices are cached and for how long is implementation
dependent. Because of these facts, there is no guarantee that a cached or
pre-known device is currently available, but the retrieveDevices()
method is a quick way to get to the service search phase.

To show how to use the retrieveDevices() method, the
DiscoveryMIDlet is created to display all the pre-known and cached
devices. To add this capability, the startApp() method creates a List
and makes it the current displayable. The startApp() method calls the

122 Chapter Six: Device Discovery

addDevices() method to retrieve the pre-known and cached devices
to print out the Bluetooth addresses of each of these devices. To identify
which devices are pre-known and which are cached, “-P” or “-C” is
appended to each device’s Bluetooth address to represent pre-known
and cached, respectively. Figure 6.4 shows the DiscoveryMIDlet
running within the J2ME Wireless Toolkit.

package com.jabwt.book;

import java.lang.*;
import java.util.*;
import java.io.*;
import javax.microedition.midlet.*;

Programming with the API 123

Figure 6.4 DiscoveryMIDlet retrieving list of pre-known and cached devices (emulation
only).

import javax.microedition.lcdui.*;
import javax.bluetooth.*;

public class DiscoveryMIDlet extends BluetoothMIDlet {
/**
* The List of remote devices
*/

private List deviceList;

/**
* The DiscoveryAgent for the local device.
*/

private DiscoveryAgent agent;

/**
* Retrieves the list of pre-known and cached devices.
* Updates the
* display to show the list of devices.
*/

public void startApp() throws MIDletStateChangeException {
// Create a new List and set it to the current
// displayable
deviceList = new List("List of Devices", List.IMPLICIT);
deviceList.addCommand(new Command("Exit",
Command.EXIT, 1));

deviceList.setCommandListener(this);
Display.getDisplay(this).setCurrent(deviceList);

// Retrieve the DiscoveryAgent object. If
// retrieving the local device causes a
// BluetoothStateException, something is wrong so
// stop the app from running.
try {

LocalDevice local = LocalDevice.getLocalDevice();
agent = local.getDiscoveryAgent();

} catch (BluetoothStateException e) {
// Prevent the application from starting if the
// Bluetooth device
// could not be retrieved.
throw new MIDletStateChangeException(
"Unable to retrieve local Bluetooth device.");

}

124 Chapter Six: Device Discovery

addDevices();
}

/**
* Updates the List of devices with the cached and
* pre-known devices.
*/
private void addDevices() {
// Retrieve the pre-known device array and append the
// addresses
// of the Bluetooth device. If there are no pre-known
// devices, move
// on to cached devices.
RemoteDevice[] list = agent.retrieveDevices(
DiscoveryAgent.PREKNOWN);

if (list != null) {
for (int i = 0; i <list.length; i++) {
String address = list[i].getBluetoothAddress();
deviceList.insert(0, address + "-P", null);

}
}

// Retrieve the cached device array and add the
// addresses to the
// list.
list = agent.retrieveDevices(DiscoveryAgent.CACHED);
if (list != null) {
for (int i = 0; i < list.length; i++) {
String address = list[i].getBluetoothAddress();
deviceList.insert(0, address + "-C", null);

}
}

}
}

6.3.2 Device Discovery via Inquiry

Starting an inquiry is more complicated than simply retrieving a list of
devices. An inquiry requires the Bluetooth radio to issue requests for all
devices in the area to respond according to their discoverable mode.

Programming with the API 125

This process uses power and can prevent the radio from being used for
other purposes. Before an application can request an inquiry, the appli-
cation must implement the DiscoveryListener interface. This
interface requires that the deviceDiscovered() and the
inquiryCompleted() methods be implemented for device discovery.
To actually start an inquiry, the startInquiry() method is used. The
startInquiry() method takes, as arguments, the type of inquiry and
an implementation of the DiscoveryListener interface.

JABWT provides constants for the two types of inquiries defined by
the Bluetooth SIG. The DiscoveryAgent.GIAC inquiry type should be
passed to startInquiry() for a general inquiry. A general inquiry
locates all devices in the general or limited discoverable mode. For a
limited inquiry, the DiscoveryAgent.LIAC inquiry type should be
used. Again, a limited inquiry finds all devices in the area in the limited
discoverable mode. A device is placed in the limited discoverable mode
when it is discoverable for only a short time. In addition to general and
limited inquiry, the Bluetooth SIG specified that other inquiry access
codes may be defined in the range 0x9E8B00 to 0x9E8B3F in the future.
Therefore, startInquiry() accepts any value in this range.

The startInquiry() method returns true if the inquiry is
started. Because not all devices support all the inquiry access codes, the
startInquiry() method returns false if a valid inquiry access code
is provided but the code is not supported. Valid inquiry access codes are
in the range 0x9E8B00 to 0x9E8B3F along with GIAC and LIAC. The
startInquiry() method throws an IllegalArgumentException if
an invalid inquiry access code is passed as an argument. The
startInquiry() method throws a BluetoothStateException if the
inquiry could not be started because the device is in a state that does not
allow an inquiry to be completed. A device may be in such a state when
the device is already performing an inquiry or when the local device is
already connected to another device.

After starting the inquiry using startInquiry(), JABWT returns
devices to the application via deviceDiscovered() events. A
deviceDiscovered() event occurs every time a remote Bluetooth device
is found by the Bluetooth radio. The deviceDiscovered() event pro-
vides the RemoteDevice object and associated DeviceClass object each
time the event occurs. The RemoteDevice object provides the Bluetooth
address of a remote Bluetooth device along with methods to retrieve the
friendly name and security controls for the remote device. The

126 Chapter Six: Device Discovery

DeviceClass object contains the class of device of the RemoteDevice.
(The DeviceClass object is explained further in Section 6.3.4).

JABWT provides a way to cancel an inquiry. An application may
want to cancel an inquiry once it finds a specific Bluetooth device or if
the application is paused or destroyed. The cancelInquiry() method
cancels an inquiry. To prevent one application from canceling the
inquiry of another Bluetooth application, the cancelInquiry()
method takes one parameter, the DiscoveryListener object used
when the inquiry was started. The cancelInquiry() method
returns true if the inquiry was canceled. If cancelInquiry() returns
false, an inquiry could not be found associated with the
DiscoveryListener provided, so no inquiry is canceled.

To notify the application that the inquiry has been completed, the
inquiryCompleted() event was added to JABWT. The
inquiryCompleted() event provides the reason the inquiry ended as
an argument to the method. The DiscoveryListener.INQUIRY_COM-
PLETED reason is specified if the inquiry completes normally. The
DiscoveryListener.INQUIRY_TERMINATED reason is passed as part
of the inquiryCompleted() event if the inquiry was canceled by the
application using the cancelInquiry() method. The call to
cancelInquiry() is a non-blocking call. The inquiryCompleted()
event occurs independently of the cancelInquiry() method
ending. Finally, the inquiryCompleted() event receives a
DiscoveryListener.INQUIRY_ERROR reason if an error occurs during
processing of the inquiry.

The following code shows a simple MIDlet that starts an inquiry
and displays all the devices that respond to the inquiry request. The
Bluetooth address of each device is displayed in a List. When the
inquiry ends and the inquiryCompleted() method is called, an
Alert appears to notify the user that the inquiry has ended. If an error
occurs during processing of the MIDlet, an Alert is displayed to the
user to notify the user of the error.

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

/**
* Retrieves the list of pre-known and cached
* devices. Updates the

Programming with the API 127

* display to show the list of devices.
*/
public void startApp() throws
MIDletStateChangeException {
// Create a new List and set it to the current
// displayable
deviceList = new List("List of Devices",
List.IMPLICIT);

deviceList.addCommand(new Command("Exit",
Command.EXIT, 1));

deviceList.setCommandListener(this);
Display.getDisplay(this).setCurrent(deviceList);

// Retrieve the DiscoveryAgent object. If
// retrieving the local device causes a
// BluetoothStateException, something is wrong
// so stop the app from running.
try {
LocalDevice local = LocalDevice.getLocalDevice();
agent = local.getDiscoveryAgent();

} catch (BluetoothStateException e) {
// Prevent the application from starting if
// the Bluetooth device
// could not be retrieved.
throw new MIDletStateChangeException(
"Unable to retrieve local Bluetooth device.");

}

addDevices();

try {
agent.startInquiry(DiscoveryAgent.GIAC, this);

} catch (BluetoothStateException e) {
throw new MIDletStateChangeException(
"Unable to start the inquiry");

}

}

...

/**

128 Chapter Six: Device Discovery

* Called each time a new device is discovered.
* This method prints the device’s Bluetooth
* address to the screen.
*
* @param device the device that was found
* @param cod the class of device record
*/
public void deviceDiscovered(RemoteDevice device,
DeviceClass cod) {
String address = device.getBluetoothAddress();
deviceList.insert(0, address + "-I", null);

}

/**
* Called when an inquiry ends. This method
* displays an Alert to notify the user the inquiry
* ended. The reason the inquiry ended is displayed
* in the Alert.
*
* @param type the reason the inquiry completed
*/
public void inquiryCompleted(int type) {

Alert dialog = null;

// Determine if an error occurred. If one did
// occur display an Alert
// before allowing the application to exit.
if (type != DiscoveryListener.INQUIRY_COMPLETED) {
dialog = new Alert("Bluetooth Error",
"The inquiry failed to complete normally",
null, AlertType.ERROR);

} else {
dialog = new Alert("Inquiry Completed",
"The inquiry completed normally", null,
AlertType.INFO);

}

dialog.setTimeout(Alert.FOREVER);
Display.getDisplay(this).setCurrent(dialog);

}

Programming with the API 129

public void servicesDiscovered(int transID,
ServiceRecord[] record) {

}
public void serviceSearchCompleted(int transID, int
type) {

}

}

Most of the DiscoveryMIDlet code is required by the MIDP specification.
The important parts of the code are found in the startApp(),
deviceDiscovered(), and inquiryCompleted()methods. The inquiry
is started with startInquiry() in the startApp() method so that it
occurs each time the MIDlet is made active. If started in the constructor,
the inquiry occurs only when the MIDlet is created. If a Bluetooth-

130 Chapter Six: Device Discovery

Figure 6.5 DiscoveryMIDlet after discovering devices via an inquiry (emulation only).

StateException occurs during retrieval of the LocalDevice object or
the start of the inquiry, the startApp() method throws a MIDlet-
StateChangeException to notify the KVM that the MIDlet is not able to
run correctly. This procedure simplifies the user experience by allowing the
KVM to handle the user interaction in the case of this type of error.

The deviceDiscovered() and inquiryCompleted() methods
must be implemented because the DiscoveryMIDlet implements the
DiscoveryListener interface. The deviceDiscovered() method is
important because this is the method used to pass the remote devices
found in the inquiry back to the MIDlet. For the purpose of this MIDlet,
all this method does is get the remote device’s Bluetooth address and
add it to the List. (Figure 6.5 shows the DiscoveryMIDlet running.)
The inquiryCompleted() method verifies that the inquiry completed
successfully. If the inquiry did not complete properly, an Alert is dis-
played to the user to notify the user of the error. If the inquiry did com-
plete properly, an Alert saying so is displayed to the user.

Because the user may exit from the MIDlet before the inquiry ends,
code must be added to cancel the inquiry. Therefore the
commandAction() method is modified to call cancelInquiry().
Because calling cancelInquiry() when no inquiry is occurring does
nothing, the commandAction() method calls cancelInquiry() every
time the user exits from the MIDlet.

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

/**
* Called when a Command is selected. If it is an
* Exit Command, then the
* MIDlet will be destroyed.
*
* @param c the Command that was selected
* @param d the Displayable that was active when
* the Command was selected
*/
public void commandAction(Command c, Displayable d) {

if (c.getCommandType() == Command.EXIT) {
// Try to cancel the inquiry.

Programming with the API 131

agent.cancelInquiry(this);

notifyDestroyed();
}

}

}

6.3.3 Retrieving Information from a Remote Device

A number of methods provide additional information about a remote
device. Before any of these methods can be called, a RemoteDevice
object must be created. There is no public constructor for the
RemoteDevice class, so an application cannot directly instantiate a new
RemoteDevice object. The application must use one of the three ways to
get a RemoteDevice object. First, RemoteDevice objects are created in
the device discovery process. RemoteDevice objects are passed to the
application as arguments via deviceDiscovered() events.

Second, a class that extends the RemoteDevice class can be
written and instantiated by an application. The following code does
just this.

package com.jabwt.book;

import javax.bluetooth.*;

public class MyRemoteDevice extends RemoteDevice {

/**
* Creates a new RemoteDevice object based upon the
* address provided.
*
* @param address the Bluetooth address
*/
public MyRemoteDevice(String address) {

super(address);
}

}

The address provided in the constructor must be 12 hex characters with
no preceding “0x.” If the address is the same as that of the local device
or if it contains non-hex characters, the constructor throws an
IllegalArgumentException. If the address string is null, the con-

132 Chapter Six: Device Discovery

structor throws a NullPointerException. After instantiating a new
MyRemoteDevice object, an application can call any of the
RemoteDevice methods.

The third and final way to get a RemoteDevice object is using
the RemoteDevice.getRemoteDevice() static method. The
getRemoteDevice() method takes, as an argument, a Bluetooth con-
nection to a remote device. The getRemoteDevice() method returns
a RemoteDevice object representing the device to which the Bluetooth
connection is connected. The getRemoteDevice() method throws an
IOException if the connection is closed. The method throws an
IllegalArgumentException if the connection is not a Bluetooth con-
nection object or if the connection object is a notifier object.

After the RemoteDevice object is retrieved, the
getBluetoothAddress(), isTrustedDevice(), and getFriendly-
Name() methods can be invoked. The getBluetoothAddress()
method returns the Bluetooth address of the remote device. The
getFriendlyName() method in the RemoteDevice class is different
from the getFriendlyName() of the LocalDevice method. The
getFriendlyName() method of the RemoteDevice class takes a boolean
argument that specifies whether the JABWT implementation should
always retrieve the friendly name from the remote device or if it should
retrieve the name only if the friendly name for the remote device is not
known. Retrieving the friendly name requires the local device to establish
a link to the remote device to retrieve the name. Because the friendly name
on a device rarely changes, using a cached value if one exists eliminates the
need to establish the link to the remote device. The getFriendlyName()
method throws an IOException if the remote device could not be con-
tacted to retrieve the friendly name.

Bluetooth security can be specified after a connection is established
by means of the RemoteDevice class. The RemoteDevice class provides
methods for authenticating, encrypting, and authorizing a connection
after a connection has been established to a remote device by the
authenticate(), encrypt(), and authorize() methods, respectively.

The authenticate() method authenticates the remote device
represented by the RemoteDevice object. The authenticate()
method requires an existing connection to the RemoteDevice. If no
connection exists, the authenticate() method throws an
IOException. Calling authenticate() can cause a pairing to occur if
the remote and local devices have not paired previously. The authen-
ticate() method returns true if the remote device is authenticated;

Programming with the API 133

otherwise, it returns false. If the remote device has already been
authenticated, the authenticate() method returns immediately with
the value true. In other words, once a link has been authenticated,
JABWT does not try to authenticate the remote device again until the
link is destroyed and a new one is created.

The encrypt() method works slightly differently. It allows
encryption on a connection to be turned on and off. This method takes
two parameters: the connection to change the encryption on and a
boolean specifying whether encryption should be turned on or off. The
Connection object passed to encrypt must be to the same remote
Bluetooth device the RemoteDevice object is representing. The
Connection object must also be a RFCOMM, L2CAP, or OBEX over
RFCOMM connection. Like authenticate(), the encrypt() method
returns true if the change succeeds and false if it fails.

Changing the encryption on a link is more complicated than
simply authenticating a link. The request to turn on encryption can fail
for a variety of reasons. First, encryption requires the link to be authen-
ticated. If the authentication or pairing fails, then the request to turn on
encryption also fails. Second, the remote device may not support or may
not want encryption enabled on the link. Third, the BCC may not allow
encryption on the link.

Turning off encryption is even more complicated because turning
off encryption actually makes the link less secure. A request to turn off
encryption may fail for two reasons. First, the remote device may
require that encryption be enabled on the link. Second, the BCC may
not allow encryption to be turned off. This may be a system-wide policy,
or another application may be running on the device that requires the
link to be encrypted. For all of these reasons, a call to encrypt() should
be considered a request and its return value checked.

The final method in the RemoteDevice class that allows a change
in the security of a connection is the authorize() method. Recall
that authorization is done on a connection basis as opposed to a link
basis. The authorize() method takes the Connection object to
authorize. Because authorization requires a link to be authenticated, a
call to authorize() can cause authentication and pairing if these
events have not occurred on the link. After it has been verified that the
link has been authenticated, the authorize() method requests the
BCC to authorize the connection. The authorize() method returns
true if the connection is authorized and false if the connection is
not authorized.

134 Chapter Six: Device Discovery

The RemoteDevice class has three methods that allow an applica-
tion to determine the security level on a connection. The
isAuthenticated() and isEncrypted() methods return true if the
link to the remote device has been authenticated or encrypted, respec-
tively. Both methods return false if the requested security is not
enabled or if there is no link between the two devices. The
isAuthorized() method works slightly differently. This method takes
the Connection object to check for authorization. The
isAuthorized() method returns true if the connection has been
authorized and false if it has not been authorized.

Finally, the RemoteDevice class contains a method that allows an
application to determine whether a device is a trusted device. The
isTrustedDevice() method returns true if the RemoteDevice object
represents a trusted device. A trusted device is a device that always passes
authorization. This condition is set and maintained by the BCC.

6.3.4 Using the DeviceClass Class

The DeviceClass is a unique object. It provides three methods to
access the class of device record. The class of device record specifies the
physical type of the device and the general services it provides. The
getServiceClasses() method retrieves the list of all service classes
on the device. Each time a service registers itself with a device, the type
of service is specified in the class of device record. This procedure allows
another device to identify whether a remote device may have a service
it is looking for. For example, if an application is looking for a printing
service, the application should look for a device that has a rendering
service class. This eliminates the overhead of performing a service search
on a device that does not have the requested service.

The getServiceClasses() method returns an integer represent-
ing all the major service classes available on a device. (The Bluetooth
SIG in the Bluetooth Assigned Numbers document [30] defines the
major service classes.) Because a device can have multiple service classes,
the Bluetooth SIG defines a service class by setting a bit in the class of
device record. For example, bit 18 is set for the rendering service class.
If a device has a rendering and an audio service, bits 18 and 21 are set.
In this situation, getServiceClasses() returns an integer with bits
18 and 21 set or the value 18874368 (0x1200000). To determine
whether a device has a rendering service, bit 18 must be isolated. The
following code provides a way of doing this.

Programming with the API 135

boolean checkForRenderingService(DeviceClass d) {
// The Rendering service bit is bit 18. Setting bit
// 18 produces the
// number 0x40000.
if ((d.getServiceClasses() & 0x40000) != 0) {

return true;
} else {

return false;
}

}

The checkForRenderingService() method isolates the rendering
service bit by performing an AND on the service class of the device and
a number with only bit 18 set. If the result of this AND is zero, then bit
18 is not set, and a rendering service is not available on the device. Table
6.2 lists the major service classes currently defined by the Bluetooth SIG,
the bit number of the service class, and the integer value of setting only
that bit. The Bluetooth SIG may add service classes in the future.
Application developers should use the major service class cautiously
because it gives only an indication of the types of services available on
a device.

136 Chapter Six: Device Discovery

Table 6.2 Major Service Classes Defined by the Bluetooth SIG

Service Class Type of Service Bit Number Hex Value

Limited Discoverable Mode Device is in the limited discoverable mode 13 0x2000

Positioning Location identification 16 0x10000

Networking LAN, ad hoc, etc. 17 0x20000

Rendering Printing, speaker, etc. 18 0x40000

Capturing Scanner, microphone, etc. 19 0x80000

Object Transfer V-inbox, v-folder, etc. 20 0x100000

Audio Speaker, microphone, headset service, etc. 21 0x200000

Telephony Cordless telephony, modem, headset service, etc. 22 0x400000

Information Web server, Wireless Application Protocol (WAP)

server, etc. 23 0x800000

The major device class is different from the service classes. The
major device class reports the physical type of device to which the
Bluetooth radio is connected. Because a device cannot have more then
one major device class, there is no need to check a bit. The
getMajorDeviceClass() returns the major device class value. At
present, the Bluetooth SIG has defined seven major device classes. Table
6.3 lists all major device classes defined by the Bluetooth SIG at the time
of publication of this book. The following code shows how simple it is
to check for the major device class.

boolean checkForImaging(DeviceClass d) {
if (d.getMajorDeviceClass() == 0x600) {

return true;
} else {

return false;
}

}

The minor device class returned via the getMinorDeviceClass()
method must be interpreted on the basis of the major device class. Each
major device class has a list of minor device classes that specify more
information about the specific device. For example, the minor device
class specifies whether a device with the computer major device class is
a desktop, notebook, or PDA. The full listing of minor device classes for
each major device class is available in the Bluetooth Assigned Numbers
document [30].

Programming with the API 137

Table 6.3 Major Device Classes Defined by the Bluetooth SIG

Major Device Class Example Hex Value

Computer Desktop, noteboook, PDA, organizer 0x100

Phone Cellular, cordless, pay phone, modem 0x200

LAN/network access point 0x300

Audio/video Headset, speaker, stereo, video display, VCR 0x400

Peripheral Mouse, joystick, keyboard 0x500

Imaging Printer, scanner, camera, display 0x600

Miscellaneous All other devices 0x000

6.4 Summary
Device discovery is a key part of any JABWT application. In Bluetooth
terms, device discovery is known as inquiry. There are two types of
inquiry: general and limited. Devices respond to inquiry requests
according to their discoverable mode. There are three types of discover-
able mode: not discoverable, limited discoverable, and general discover-
able. When a device issues a general inquiry, all devices that are limited
and general discoverable respond. When a device performs a limited
inquiry, only devices that are limited discoverable respond.

All device and service discovery is started with the
DiscoveryAgent class. The DiscoveryAgent class provides two dif-
ferent methods for discovering devices. The retrieveDevices()
method allows applications to retrieve a list of devices found via a pre-
vious inquiry or a list of devices with which the local device frequently
communicates. The startInquiry() method actually performs an
inquiry. As devices are found, they are passed back to the application via
deviceDiscovered() events. In addition to the devices,
deviceDiscovered() events also pass back the class of device record.
The class of device record contains information on the type of device
and the services available on the device.

This chapter shows how to retrieve additional information on local
and remote devices. The LocalDevice class provides methods that
allow the applications to request the current discoverable mode, retrieve
the friendly name of the local device, and retrieve information on the
JABWT implementation. The RemoteDevice class provides similar
methods for retrieving additional information on the remote device.
The RemoteDevice class also provides methods for setting and retriev-
ing different security settings on the link to the remote device.

138 Chapter Six: Device Discovery

7
This chapter covers the following topics:

• What is a Bluetooth service?

• What is a service record?

• How to perform a service search

• Retrieving additional service record attributes

• Using the simple device and service discovery API

• What is service registration?

• How are service records created and added to the SDDB?

• How are service records modified by server applications?

• What is a connect-anytime service and how does it differ from a
run-before-connect service?

7.1 Overview
After the devices in an area are discovered, the next step before con-
necting to a device is finding the services a device has running on it.
Unlike device discovery, the service discovery process involves only a
single pair of devices (Figure 7.1). The service discovery process requires
the device searching for services to ask a device with services whether it
has a service defined by a service record that has a specific set of attrib-
utes. If a remote device has a service with the attributes specified, the
remote device returns the service record describing the service. The
service record has multiple attributes. These attributes provide addi-
tional information on a specific service. These attributes may contain
anything, including information on how to connect to the service.

Service discovery follows the client-server model. A service discov-
ery client issues a service search request to a service discovery server. The

CHAPTER Service
Discovery

service discovery server determines whether the server has any services
that meet the search criteria. For a server to know what services are
available, each service registers with a service discovery database (SDDB)
kept by the Bluetooth stack. When it receives a service search request,
the server searches the SDDB for the specified service.

Chapter 3 lists the typical responsibilities of a Bluetooth server
application:

1. Creating a service record that describes the service offered by the
application

2. Adding the service record to the server’s SDDB to make potential
clients aware of this service

3. Registering the Bluetooth security measures associated with a
service

4. Accepting connections from clients that request the service offered

5. Updating the service record in the SDDB if characteristics of the
service change

6. Removing or disabling the service record in the SDDB when the
service is no longer available

140 Chapter Seven: Service Discovery

Printer

Hand held Laptop

Scanner PC

Cell phone

Figure 7.1 Unlike an inquiry, a service search is between only two devices.

Responsibilities 1, 2, 5, and 6 compose a subset of the server responsi-
bilities having to do with advertising a service to client devices. We call
this subset service registration. This chapter describes the process of
service registration with JABWT and the process of service discovery
with JABWT. Server responsibility 3, which involves security, is dis-
cussed in Chapter 4. Server responsibility 4, which involves accepting
client connections, is discussed in Chapter 4 for serial port servers and
Chapter 5 for OBEX servers. Chapter 8 discusses the process of accept-
ing client connections for L2CAP servers.

7.1.1 Key Concepts

A service record answers the following questions:

• What kind of service does this server application offer?

• How does a client connect to this service?

Figure 3.3 is an overview of the components involved in service
registration and service discovery. Service records and the Service
Discovery Protocol (SDP) are described in great detail in Part E of the
Bluetooth specification v1.1 [1]. However, the JABWT specification is
the first standard API for Bluetooth service registration. The following
questions about service registration were left unanswered by the
Bluetooth specification:

• How are service records created?

• How are service records added to the SDDB so clients can discover
them?

• How are service records modified?

• How are service records removed from the SDDB (or otherwise dis-
abled) so clients can no longer discover them?

The Bluetooth specification did not define requirements in these
areas because a standardized approach to service registration was not
required for ensuring interoperability of Bluetooth devices from differ-
ent manufacturers. Consequently, the mechanics of service registration
were left for Bluetooth stack implementations to define. The result was
a variety of different APIs for accomplishing service registration. The
standard API defined by JABWT service registration makes it possible to

Overview 141

write Bluetooth server applications that are portable across all JABWT
implementations. JABWT service registration also potentially serves as a
model for Bluetooth APIs in other programming languages.

7.1.2 Services Defined by Bluetooth Profiles

The Bluetooth SIG has provided profile specifications [3] that describe
standardized services. Examples of some of these services are LAN access
services, file transfer services, business-card exchange services, and syn-
chronization services. Additional profiles describing standardized serv-
ices were developed after the Bluetooth profiles specification v1.1 [3].
For example, three printing profiles were defined that offer various
forms of printing services [7, 27, 28].

If a service is defined by a Bluetooth profile, then the profile
specification describes the requirements for the service record, device
security, device discoverable modes, and so on. If you want to claim that
your service implements a Bluetooth profile, you have to qualify your
application through the Bluetooth qualification process [10].

7.1.3 Custom Services

Developers can define their own Bluetooth server applications beyond
and independently of those specified in the Bluetooth profiles and make
these services available to remote clients. Applications that do not claim
to provide a service described in a Bluetooth profile do not need to
undergo the Bluetooth qualification process. Custom services have a
great deal more latitude about how they are implemented than do
Bluetooth profile implementations. The developers of custom services
provide the software for both communicating Bluetooth devices. The
server application can be tailored to particular characteristics of the
client implementation. This process is different from that for servers for
Bluetooth profiles, which must be written to work with many different
implementations of the client application.

7.2 API capabilities
Once a list of devices has been retrieved via device discovery, the next
step for a Bluetooth application is determining which applications or

142 Chapter Seven: Service Discovery

services are available on the remote Bluetooth device. JABWT provides
a nonblocking way to retrieve all service records that meet a specific set
of requirements on a remote Bluetooth device. A service record describes
a service and is made of a set of attributes. Attributes specify how to
connect to a service, the name of the service, a description of the
service, and other useful information. When an application searches for
a service, the application provides a set of UUIDs to search for. (A UUID
is a bit sequence that uniquely identifies a characteristic of a service.)
UUIDs are used to describe attributes of a service. Some UUIDs are
specified by the Bluetooth specification. Other UUIDs are defined on a
service-by-service basis. JABWT provides a way to specify a set of attrib-
utes to retrieve once a service is found. When a service is found that
contains all the UUIDs specified, the service’s service record is returned
via a servicesDiscovered() event.

To provide a simple way to get a JABWT application up and
running, JABWT defines a method that performs both device and
service discovery while hiding the details of both capabilities. The
selectService() method allows an application to specify a single
UUID, which is used to locate the requested service on a remote device.
The selectService() method returns a connection string that can be
used by Connector.open() to connect to the service found. This is a
blocking method and can take longer than 10 seconds in some situa-
tions. Therefore an application should invoke this method in a separate
thread to prevent the application from appearing frozen to the user.

7.2.1 Run-before-Connect Services

Ordinarily, a server application must be running and ready to accept
connections before a client attempts to make a connection to the server.
Server applications that have this requirement are called run-before-
connect services in the JABWT specification. Figure 7.2 is a Unified
Modeling Language (UML) sequence diagram that illustrates the mes-
sages involved in service registration for a run-before-connect service.
Each arrow in the sequence diagram is a message. The top-to-bottom
ordering of the arrows indicates the time sequence of the messages. The
boxes at the top of the vertical lifelines indicate the objects that send or
receive the messages. (If these diagramming conventions are unfamiliar,
a description of UML sequence diagrams can be found in Fowler and

API capabilities 143

Scott [31].) In Figure 7.2 the boxes are all Java objects created by a
JABWT program with the exception of the SDDBRecord. The
SDDBRecord is a service record in the SDP server’s database. The
SDDBRecord is not directly accessible by a JABWT application.

Figure 7.2 illustrates the answers that JABWT offers to the follow-
ing questions about Bluetooth service records for run-before-connect
services:

• How are service records created?

• How are service records added to the SDDB so clients can discover
them?

• How are service records removed from the SDDB (or otherwise dis-
abled) so clients can no longer discover them?

The methods open(), acceptAndOpen(), and close() shown
in Figure 7.2 are part of the GCF defined by CLDC [13]. These methods
are used by a variety of J2ME applications for I/O operations. The basic
approach taken by JABWT is to add additional behavior to these GCF
methods so that service records are automatically created and then auto-
matically added and removed from the SDDB, as follows:

• Connector.open(String url) creates a Bluetooth service
record if the parameter url starts with btspp://localhost:,
btgoep://localhost:, or btl2cap://localhost:.

• The first time an acceptAndOpen() message is sent to the notifier,
a copy of the service record is added to the SDDB.

• When a close() message is sent to the notifier, the service record
is removed from the SDDB or disabled. (The “X” at the bottom of
the SDDBRecord timeline in Figure 7.2 is sequence diagram nota-
tion for deleting an object.)

One consequence of the JABWT approach is that in many cases the
server application can rely only on the automatic behavior of the
JABWT implementation and does not need to contain any code to
explicitly manipulate service records.

7.2.2 Servers Are Usually Discoverable

The GAP specification [3] describes several modes of operation that
characterize Bluetooth devices. Chapter 6 describes the discoverable

144 Chapter Seven: Service Discovery

A
PI

capabilities
145

Figure 7.2 Life cycle of a service record for a run-before-connect service.

Server
Application : : Connector

notifier :

rec : ServiceRecord

: SDDBRecord

return notifier :

: wait for client
 connection

: open(URL)

: new

: new

acceptAndOpen()

: create record like rec in SDDB

: remove from SDDB
: close()

return connection :

: set service attributes

mode that determines whether the local device will respond to an
inquiry conducted by a remote device. Most server applications want
the local device to be in either general discoverable or limited discover-
able mode so clients can find them and access their service. JABWT
server applications can request that the device be made discoverable by
means of the instance method LocalDevice.setDiscoverable(),
with an argument of either DiscoveryAgent.GIAC or
DiscoveryAgent.LIAC.

There are some scenarios in which it makes sense for a server to be
nondiscoverable. These scenarios require that the clients have some
advance knowledge about the existence of the server device and its
Bluetooth address. For example, users who own a PC and a PDA that
both have Bluetooth wireless technology might want their server appli-
cations to be accessible only to their own devices. If server applications
are run on both the PC and the PDA, users can make those services
available only to their own devices by

• Making the PC nondiscoverable using the BCC on the PC

• Making the PDA nondiscoverable using the BCC on the PDA

• Making the PDA a pre-known device for the PC using the BCC on
the PC

• Making the PC a pre-known device for the PDA using the BCC on
the PDA

Because device users may have their own reasons for making the
local device nondiscoverable, the JABWT implementation is not the
final authority on whether the device will enter a discoverable mode.
The implementation makes a request to the BCC to make the local
device discoverable, but this request might not be satisfied if the
device user has chosen to make the local device nondiscoverable (see
Chapter 3).

7.2.3 Register a Service

This section describes the service records automatically created by the
JABWT implementation for server applications. These service records
allow clients to find the service and make a connection to the server. In
many cases, these automatically generated service records are sufficient,
and the server application does not need to take any other action.

146 Chapter Seven: Service Discovery

These descriptions of the default service records are provided so that
developers

• Can decide whether these service records are sufficient to advertise
their services, and

• Can determine how to modify the service records when
modifications are necessary

Service Records for Serial Port

Table 7.1 illustrates the service record automatically created by the
JABWT implementation when a server application executes the follow-
ing statement:

Connector.open(“btspp://localhost:68EE141812D211D78EED00B0D
03D76EC;name=SPPEx”);

The Bluetooth Profiles specification [3] contains a template for the
service record used by the SPP. The JABWT implementation uses this
template to create a service record and inserts the appropriate value for
the RFCOMM server channel identifier into the service record. The
result is a minimal but sufficient service record.

The service record in Table 7.1 shows four (attribute ID, attribute
value) pairs. Each pair describes one attribute of the service. The shaded
rows in Table 7.1 are the attribute IDs and the unshaded rows are the
attribute values. The Bluetooth SDP uses a value between 0 and 216-1
(65535) to represent each attribute ID in a service record, and these are
shown in Table 7.1 as hexadecimal numbers. For example, the attribute
ID 0x0001 indicates the ServiceClassIDList attribute ID, one of the
attribute IDs defined by the Bluetooth SDP specification [1]. Table 7.2
provides a list of the most common attribute IDs defined in the
Bluetooth Assigned Numbers [30].

Each attribute value is a DataElement. A DataElement is a self-
describing data structure that contains a type and a value. For example,
the third attributeValue in the service record in Table 7.1 is a simple
DataElement with type String and value “SPPEx.” The value “SPPEx” is
extracted by the JABWT implementation from the parameter
“name=SPPEx” in the connection string. The JABWT implementation
uses this string “SPPEx” to construct a DataElement of type String. This

API capabilities 147

148 Chapter Seven: Service Discovery

Table 7.1 Service Record Created by Connector.open("btspp://localhost:…")

ServiceClassIDList<0x0001>

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(68EE141812D211D78EED00B0D03D76EC)

—from the connection string)

DataElement(type = UUID,

UUID(SerialPort<0x1101>)))

ProtocolDescriptorList<0x0004>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(L2CAP<0x0100>)))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(RFCOMM<0x0003>))

DataElement(type = U_INT_1,

1 —server channel identifier.

—Assigned by the stack;

—added to the service record

—by JABWT)))

ServiceName<0x0100>

—Name of the service in the primary language of the service record

DataElement(type = STRING,

"SPPEx" —from "name=SPPEx" in the connection string)

DataElement is then used as the ServiceName attribute of the service
record.

A DataElement may be one of the following types.

• Null

• Integer (1, 2, 4, 8, and 16 byte)

• Unsigned integer (1, 2, 4, 8, and 16 byte)

• URL

• UUID

• String

• Boolean

• DATALT—Data element alternative

• DATSEQ—Data element sequence

Three data element types require further explanation: UUID, data
element sequence, and data element alternative.

A data element sequence is a list of data elements in which all ele-
ments are part of the definition. In other words, a data element
sequence is an all-inclusive set of data elements. A data element alter-
native, on the other hand, is a data element whose value is a list of data
elements of which any one may be selected. Put slightly differently, a
data element alternative is a set of data elements of which any one of
the values may be used.

The first attribute value in Table 7.1 contains the thirty-two–digit
hexadecimal number 68EE141812D211D78EED00B0D03D76EC. This
number is also extracted from the connection string. The number is
used to create a 128-bit UUID and then is wrapped in a DataElement of
type UUID. UUIDs are used extensively in creating service records, and
their meaning varies depending on where they are used in the service
record. In this case, the UUID represents one of the ServiceClasses in the
ServiceClassIDList. ServiceClasses are very important in identifying

API capabilities 149

ServiceRecordHandle<0x0000>

DataElement(type = U_INT_4,

12345 —value assigned by the SDP Server)

150 Chapter Seven: Service Discovery

Table 7.2 Some Service Record Attribute IDs Defined by Bluetooth Assigned Numbers

Name ID Type Description

ServiceRecordHandle 0x0000 32-bit unsigned integer Uniquely identifies each service on a

device.

ServiceClassIDList 0x0001 A data element Defines the service classes that

sequence of UUIDs describes the service. The service

classes are defined by the Bluetooth

SIG.

ServiceID 0x0003 UUID Uniquely identifies the service instance

associated with this service record.

ProtocolDescriptorList 0x0004 A data element Describes the protocols to use to

sequence of data connect to the service.

element sequences of

UUID and optional

parameters

ServiceInfoTimeToLive 0x0007 32-bit unsigned Defines the length of time this service

integer record is valid and will remains

unchanged.

ServiceAvailability 0x0008 8-bit unsigned integer Describes the relative availability of

the service to accept additional

connections.

BluetoothProfileDescriptorList 0x0009 A data element Specifies all the profiles this service

sequence of data implements.

element sequence pairs

DocumentationURL 0x000A URL A URL that points to the

documentation for the service.

IconURL 0x000C URL A URL that points to an icon that

may be used to represent the service.

ServiceName 0x0100 String The name of the service in the

primary language of this service record.

ServiceDescription 0x0101 String A description of the service in the

primary language of this service record.

API capabilities 151

services. For example, each Bluetooth profile is associated with a partic-
ular ServiceClass UUID. If a client wants to find the service record for a
particular JABWT server application, it can search for the ServiceClass
UUID used by that server application.

The other service class in the ServiceClassIDList is the 16-bit UUID,
0x1101, which identifies this as a serial port service record. This list of
two service classes summarizes the type of service being offered. Because
this attribute value represents a list of service classes, the two
DataElements that represent individual service classes are wrapped in
another DataElement that represents the entire list (or sequence) of
service classes. This wrapper DataElement for the list has type DATSEQ,
which is an abbreviation for DataElement Sequence.

In the ServiceClassIDList attributeValue in Table 7.1 we see both
16-bit and 128-bit UUIDs. Although a Bluetooth UUID always
represents a 128-bit value, the Bluetooth specification defines both 16-
bit and 32-bit “short forms” or aliases for some common 128-bit
Bluetooth UUIDs. For example, the Serial Port Service Class ID,
0000110100001000800000805F9B34FB, is a 128-bit UUID that has a 16-
bit short form 0x1101. It takes fewer bits to store and transmit a service
record when these short form UUIDs are used, so the short forms are
generally used when they are available. The short-form UUIDs are
defined by the Bluetooth Assigned Numbers [30].

A 16-bit UUID can be converted to a 128-bit UUID by means of the
following formula:

UUID128 = (UUID16 * 296) + 0x0000000000001000800000805F9B34FB

Table 7.3 shows examples of the use of this formula to convert from a
16-bit UUID to a 128-bit UUID.

Table 7.3 Examples of Conversion from a 16-Bit UUID to a 128-Bit UUID

Mnemonic 16-Bit UUID 128-Bit UUID

RFCOMM 0x0003 0x0000000300001000800000805F9B34FB

BNEP 0x000F 0x0000000F00001000800000805F9B34FB

L2CAP 0x0100 0x0000010000001000800000805F9B34FB

OBEXObjectPush 0x1105 0x0000110500001000800000805F9B34FB

The ProtocolDescriptorList attribute value has the most compli-
cated structure of the four attributes shown in Table 7.1. The
ProtocolDescriptorList describes how clients can connect to the service
described by the service record. It lists the protocol stack needed to com-
municate with the service and any protocol-specific parameters needed
to uniquely address the service. In the example shown in Table 7.1, a
connection to this serial port service can be made by means of a stack
of protocols that consists of the L2CAP layer and the RFCOMM layer.
The implication is that the server application communicates directly
with RFCOMM. Server channel 1 has been assigned to the server appli-
cation by the Bluetooth stack, and this channel identifier is included in
the service record so clients know the proper channel identifier to use
to make a connection to the service.

The structure of the ProtocolDescriptorList is a list of lists with one
sublist for every stack layer involved in the communications. So con-
ceptually this looks like ((L2CAP), (RFCOMM, 1)), where parentheses are
used as shorthand for a DataElement of type DATSEQ. The first element
(L2CAP) indicates that L2CAP is the lowest protocol layer used to access
this service. Strictly speaking, other Bluetooth stack protocols below
L2CAP are involved, but stack layers below L2CAP are not included in
SDP service records. The second element, (RFCOMM, 1), consists of two
elements. The first element is the name of the next higher layer proto-
col, RFCOMM. The second element is a protocol-specific parameter, 1,
which is the RFCOMM server channel identifier.

The list-of-lists structure is represented in the service record as an
attribute value with structure

DataElement(type = DATSEQ,
DataElement(type = DATSEQ, …)
DataElement(type = DATSEQ, …))

Short-form UUIDs are used to represent the protocols L2CAP and
RFCOMM. A DataElement of type U_INT_1 represents the server
channel identifier 1 used by RFCOMM. This type of DataElement
describes an unsigned integer of size 1 byte. In addition to the U_INT_1
type, there are DataElements types for signed and unsigned integers that
are 1, 2, 4, 8, or 16 bytes long.

The third attribute shown in Table 7.1, ServiceName, has already
been discussed. Its value is a DataElement of type String with value

152 Chapter Seven: Service Discovery

“SPPEx.” The Bluetooth SDP specification defines the ServiceName
attribute as a brief string representing the service suitable for display to
the device user.

The fourth service attribute shown in Table 7.1 is the
ServiceRecordHandle. This is a required attribute for every service record
and plays an important role in the implementation of Bluetooth service
discovery. However, the ServiceRecordHandle should be considered
internal bookkeeping irrelevant to JABWT applications. JABWT applica-
tions may not modify this attribute. For this reason, the
ServiceRecordHandle attribute is omitted from the rest of the tables
describing service records in this book.

The SDP specification [1] describes the binary format used to trans-
mit (attribute ID, attribute value) pairs from a service record over the air
to another Bluetooth device. However, JABWT applications do not see
that binary representation. Table 7.1 provides a representation of a
service record that maps more directly onto the Java objects visible
to JABWT applications. Table 7.1 refers to the JABWT classes
DataElement and UUID.

Service Records for L2CAP

As an alternative to serial port communications using btspp, JABWT
server applications can communicate using L2CAP or OBEX. Servers
that use these protocols need service records different from the one
shown for btspp. Again, the JABWT implementation is responsible for
automatically creating the service records. L2CAP is described in
Chapter 8. A server’s call to Connector.open() using the following
btl2cap connection string creates a service record like the one shown
in Table 7.4:

"btl2cap://localhost:BA661F1C148911D783C300B0D03D76EC;
name=An L2CAP Server"

There are several differences between Table 7.1 and Table 7.4:

• SerialPort has been removed from the ServiceClassIDList.

• RFCOMM has been removed from the ProtocolDescriptorList.

• The value of the Protocol/Service Multiplexer (PSM), 0x1001, is
included as an L2CAP parameter in the ProtocolDescriptorList.

API capabilities 153

Because L2CAP servers talk directly to the L2CAP layer in the Bluetooth
stack, L2CAP is the last element in the ProtocolDescriptorList that
describes the sequence of protocol layers that must be traversed to reach
this server application. The protocol and service multiplexer parameter
is required because L2CAP is a multiplexing layer, so multiple applica-
tions may be interacting with the L2CAP layer on the server device. The
PSM value in the service record enables L2CAP to identify the particular
application or protocol above L2CAP that will provide the service
described by the service record. L2CAP uses the PSM value to set up an
L2CAP channel to the correct application when a client connects to this
service (see Chapter 8).

154 Chapter Seven: Service Discovery

Table 7.4 A Service Record Created by Connector.open("btl2cap://localhost:…")

ServiceClassIDList<0x0001>

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(BA661F1C148911D783C300B0D03D76EC)

—from the connection string))

ProtocolDescriptorList<0x0004>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(L2CAP<0x0100>))

DataElement(type = U_INT_2,

0x1001 –Protocol/Service Multiplexer.

–Assigned by the stack;

–filled in by JABWT)))

ServiceName<0x0100>

DataElement(type = STRING,

"An L2CAP Server" –from "name=An L2CAP Server"

–in the connection string)

As was the case for the SPP, the JABWT implementation adds all the
mandatory service attributes of the service record for L2CAP. The result
is a minimal, but sufficient, service record.

Service Records for OBEX over RFCOMM

A third option for a Bluetooth server application is to use OBEX for com-
munications. The following statement is an example of a connection
string used for OBEX over RFCOMM:

"btgoep://localhost:0E18AE04148A11D7929B00B0D03D76EC;
name=An OBEX Server"

The abbreviation goep in the protocol btgoep refers to the Generic
Object Exchange Profile [3], which is the base Bluetooth profile shared
by all of the Bluetooth OBEX profiles. The relation between OBEX and
the GOEP profile is similar to the relation between the RFCOMM proto-
col and the SPP.

This call to Connector.open("btgoep://localhost: …")
creates a service record like the one shown in Table 7.5. There are only a
few differences between this service record and the one shown in Table
7.1 for btspp. In Table 7.5 the service record contains OBEX as the last
item in its ProtocolDescriptorList. This indicates that the server applica-
tion talks directly to the OBEX layer of the Bluetooth stack. Another dif-
ference between Table 7.5 and Table 7.1 is that ServiceClassIDList in Table
7.5 does not include the SerialPort service class ID included for btspp.

Table 7.6 summarizes the three different protocols used by Bluetooth
servers and the Connector.open() methods used to create service
records for all three protocols. As shown in Table 7.6, the
Connector.open() method is primarily defined in the CLDC
specification [13]. Whereas CLDC provides the primary specification for
the behavior of the Connector.open() method, the JABWT specification
describes the valid url arguments for Bluetooth servers and the behavior
of Connector.open() in creating Bluetooth service records.

Add the Service Record to the SDDB

Although the Connector.open() methods in Table 7.6 create a
minimal service record for run-before-connect services, that service

API capabilities 155

record is not yet visible to client devices. The server that created the
service record can access it and make modifications to it if desired.
However, it is possible only for clients of run-before-connect services to
connect after the server calls acceptAndOpen(). For this reason, the
JABWT implementation adds a service record to the SDDB only the first
time the server calls one of the acceptAndOpen() methods in Table 7.7.

156 Chapter Seven: Service Discovery

Table 7.5 A Service Record Created by Connector.open("btgoep://localhost:…")

ServiceClassIDList<0x0001>

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(0E18AE04148A11D7929B00B0D03D76EC)

—from the connection string))

ProtocolDescriptorList<0x0004>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(L2CAP<0x0100>)))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(RFCOMM<0x0003>))

DataElement(type = U_INT_1,

20 –server channel identifier))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(OBEX<0x0008>))))

ServiceName<0x0100>

DataElement(type = STRING,

"An OBEX Server" –from "name=" in

–the connection string)

Once the service record is in the SDDB, client applications can discover
that service record and attempt to connect to the server application.

A RFCOMM service can accept multiple connections from different
clients by calling acceptAndOpen() repeatedly for the same notifier.
Each client accesses the same service record and connects to the service
using the same RFCOMM server channel. If the underlying Bluetooth
system does not support multiple connections, then the implementa-
tion of acceptAndOpen() throws a BluetoothStateException.
L2CAP and OBEX over RFCOMM services also can accept multiple
clients.

A ServiceRegistrationException is thrown by all of the
acceptAndOpen() methods in Table 7.7 if they fail to add a service
record to the SDDB.

Remove the Service Record from the SDDB

Once the notifier associated with a run-before-connect service is closed,
it is no longer possible to call acceptAndOpen() to accept another
client connection. For this reason, the JABWT implementation removes
the service record from the SDDB or disables the service record. Table 7.8
shows the different types of notifiers that add this behavior to the
close() method inherited from the GCF interface javax.microedi-
tion.io.Connection.

API capabilities 157

Table 7.6 Methods That Create a Service Record

Protocol Interface Methods Specification

btspp Connector open(url) CLDC

open(url,mode)

open(url,mode,timeout)

btl2cap Connector open(url) CLDC

open(url,mode)

open(url,mode,timeout)

btgoep Connector open(url) CLDC

open(url,mode)

open(url,mode,timeout)

7.2.4 Modifications to Service Records

In many cases, it is desirable to modify the service record created by the
JABWT implementation. For example, if your service corresponds to a
Bluetooth profile, you will have to modify the service record so that the
record conforms to the requirements of the profile. Even if you are
writing a custom application and are not required to have a standard-
ized service record, you may want to modify your service record to
provide various kinds of useful information to potential clients. Many
optional attributes are defined in Part E of the Bluetooth SDP
specification [1] that server applications can use to describe the proper-
ties of their service. It is also possible to add application-specific, user-
defined attributes to the service record that are not defined by the
Bluetooth specification.

Figure 7.3 adds JABWT methods for modifying service records to
the sequence diagram shown in Figure 7.2. The LocalDevice class pro-
vides a getRecord() method that a server application can use to obtain

158 Chapter Seven: Service Discovery

Table 7.7 Methods That Add Service Records to the SDDB

Protocol Interface Methods Specification

btspp StreamConnectionNotifier acceptAndOpen() CLDC

btl2cap L2CAPConnectionNotifier acceptAndOpen() JABWT

btgoep SessionNotifier acceptAndOpen(handler) JABWT

acceptAndOpen(handler,

authenticator)

Table 7.8 Methods That Remove or Disable Service Records

Protocol Interface Methods Specification

btspp StreamConnectionNotifier close() CLDC

btl2cap L2CAPConnectionNotifier close() CLDC

btgoep SessionNotifier close() CLDC

A
PI

capabilities
159

Server
Application : : Connector

notifier :

rec : ServiceRecord

: SDDBRecord

return notifier :

: wait for client
 connection

: open(URL)

: new

: new

: modify
 record

: LocalDevice

: set service attributes

: add or modify service attributes

acceptAndOpen()

: close()

rec := getRecord(notifier)

: updateRecord(rec)

return connection :

: add or modify service attributes

: create record like rec in SDDB

: remove from SDDB

Figure 7.3 Example of server modifying its service record.

its ServiceRecord. The server can modify the ServiceRecord object
by adding or modifying attributes using ServiceRecord.set-
AttributeValue(). As shown in Figure 7.3, any modifications the
server application makes to its ServiceRecord before calling
acceptAndOpen() for the first time will be reflected in the service
record added to the SDDB by acceptAndOpen().

Any changes made to the service record object by a JABWT appli-
cation after the first call to acceptAndOpen() are not reflected in the
service record in the SDDB seen by clients. This is because the service
record in the SDDB is essentially a copy of the service record Java object
at the time of the first call to acceptAndOpen(). To modify service
records already in the SDDB, JABWT provides the instance method
LocalDevice.updateRecord(serviceRecord).

7.2.5 Device Service Classes

As described in Chapter 6, clients can consult the DeviceClass of any
device they discover to determine what kind of device has been found
(e.g., phone, PDA, or PC). The DeviceClass also indicates the major
service classes offered by the discovered device (e.g., rendering, teleph-
ony, or information). This means there are two different ways in which
a server application describes the service it offers:

• By adding a service record to the SDDB

• By activating major service class bits in the DeviceClass

The server application can use the setDeviceServiceClasses()
method of ServiceRecord to turn on some of the service class bits of
the device to reflect the new service being offered. A server application
is not required to use the setDeviceServiceClasses() method.
However, it is recommended that a server use the method to describe its
service in terms of the major service classes. Keeping the major service
classes up to date reduces the likelihood that clients will erroneously
skip over this device when looking for a service.

The close() message also causes the JABWT implementation
to deactivate any service class bits that were activated by
setDeviceServiceClasses(), unless another service whose notifier
is not yet closed also activated some of the same bits.

160 Chapter Seven: Service Discovery

7.3 Programming with the API
The programming examples in this chapter are divided into examples of
service registration and examples of service discovery. Sections 7.3.1
through 7.3.4 provide examples of service registration. These sections
show examples of the use of methods for creating and modifying service
records. The examples in these sections are all server applications. These
servers simply create a service record and add it to the SDDB. No client
applications are needed to illustrate this behavior. Not all of the code
needed to produce a running application is presented in the text. The
complete code is available in Appendix A. Sections 7.3.5 through 7.3.8
provide examples of service discovery. These sections extend the
DiscoveryMIDlet that was introduced in Chapter 6 to discover various
aspects of the service defined in Section 7.3.2.

7.3.1 Automatic Generation of Service Records

In this first example, the server application makes no modifications to
the service record. This is the simplest case. Figure 7.4 shows the
output produced by the DefaultBtsppRecordMIDlet. The display
shows the connection string that clients can use to connect to this
server:

btspp://0080375a0000:1

The display also shows that the service record for the server has five
service attributes and lists their attribute IDs as hex numbers.

The DefaultBtsppRecordMIDlet implements the Runnable
interface. The run() method first calls the method askToBe-
GeneralDiscoverable() defined in the DefaultBtsppRecord-
Server class to attempt to make the server device general discoverable.
The run() method calls the method defineDefaultBtsppService()
to create the service record and define the StreamConnection-
Notifier. The new service record is obtained from the LocalDevice,
and a brief description of the service record is appended to a display
Form, output. Finally, the run() method calls the acceptClient-
Connections() method defined in the DefaultBtsppRecordServer
class. This method adds the service record to the SDDB and waits for
client connections.

Programming with the API 161

public class DefaultBtsppRecordMIDlet extends MIDlet
implements Runnable, CommandListener {

StreamConnectionNotifier notifier;
/* The form displayed to the user. */
private Form output;

...

public void run() {
LocalDevice theRadio;

// Define the serial port service and create the notifier
try {
theRadio = LocalDevice.getLocalDevice();

162 Chapter Seven: Service Discovery

Figure 7.4 Example Code Displays Information about the Default Service Record
(emulation only).

server = new DefaultBtsppRecordServer();
server.askToBeGeneralDiscoverable(theRadio);
notifier = server.defineDefaultBtsppService();

} catch (IOException e) {
output.append("Unable to start server (IOException: " +
e.getMessage() + ")");

return;
}

if (notifier != null) {
ServiceRecord record = theRadio.getRecord(notifier);
output.append("URL=" + server.getURL(record));
output.append(server.describeAttributes(record));

} else {
output.append("Unable to start server");
return;

}

// Use the notifier to establish serial port connections
server.acceptClientConnections(notifier);

}
}

Now that we have seen the overall flow of execution defined by the
DefaultBtsppRecordMIDlet, we will examine the DefaultBtspp-
RecordServer class. The askToBeGeneralDiscoverable() method
uses the setDiscoverable() method to request that the device be
made general discoverable. This enables client devices that do device
discovery with the GIAC mode to find the server device. If
setDiscoverable() returns false, indicating that the request was
not granted, or if it throws an exception, the server just proceeds. Any
clients that know the Bluetooth address for this server can access this
service even if the device is not discoverable. For example, clients that
include the server device among their pre-known devices can access the
server (see Chapter 6).

The defineDefaultBtsppService() method calls Connector.
open(connString) to create a StreamConnectionNotifier. That
same call also creates a default btspp service record such as the one
shown in Table 7.1 and associates it with the notifier.

public class DefaultBtsppRecordServer {
boolean stop = false;

Programming with the API 163

void askToBeGeneralDiscoverable(LocalDevice dev) {
try {
/* Request that the device be made discoverable */
dev.setDiscoverable(DiscoveryAgent.GIAC);

} catch(BluetoothStateException ignore) {
/* discoverable is not an absolute requirement */

}
}

public StreamConnectionNotifier
defineDefaultBtsppService() {
StreamConnectionNotifier notifier;

String connString =
"btspp://localhost:" +
"68EE141812D211D78EED00B0D03D76EC;" +

"name=SPPEx";
try {
notifier =
(StreamConnectionNotifier)
Connector.open(connString);

} catch (IOException e){
return null;

}
return notifier;

}

public String getURL(ServiceRecord record) {
String url =
record.getConnectionURL(
ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
false);

if (url != null) {
return url.substring(0, url.indexOf(";"));

} else {
return "getConnectionURL()=null";

}
}

public String describeAttributes(ServiceRecord
record) {
int[] attributeIDs = record.getAttributeIDs();
StringBuffer strBuf = new StringBuffer(100);
strBuf.append("\n").append(Integer.toString(
attributeIDs.length));

164 Chapter Seven: Service Discovery

strBuf.append(" Attributes: ");
for (int i = 0; i < attributeIDs.length; i++) {
strBuf.append("<0x");
strBuf.append(Integer.toHexString(attributeIDs[i]));
strBuf.append(">\n");

}
return strBuf.toString();

}

public void acceptClientConnections(
StreamConnectionNotifier notifier) {
if (notifier == null) {
return;

}
try {
while (!stop) {
StreamConnection clientConn = null;
/*
* acceptAndOpen() waits for the next client to
* connect to this service. The first time through
* the
* loop, acceptAndOpen() adds the service record to
* the SDDB and updates the service class bits
* of the device.
*/
try {
clientConn =
(StreamConnection)notifier.acceptAndOpen();

} catch (ServiceRegistrationException e1) {
} catch (IOException e) {
continue;

}
/*
* Code to communicate to a client over clientConn
* would go here.
*/

}
} finally {

try {
shutdown(notifier);

} catch (IOException ignore) {
}

}

Programming with the API 165

}

public void shutdown(StreamConnectionNotifier notifier)
throws IOException {

stop = true;
notifier.close();

}
}

The getURL() method returns a connection string that clients can use
to connect to the DefaultBtsppRecordServer. The getURL()
method calls the JABWT getConnectionURL() method to get the con-
nection string, and then the string is shortened for display by removing
the parameter list. As shown in Figure 7.4, the result is
btspp://0080375a0000:1, where 0080375a0000 is the Bluetooth
address of the local device, and 1 is the server channel identifier.
Typically, clients send the getConnectionURL() message to a service
record obtained during service discovery to obtain a connection string
to connect to that service. Here we send the same message to the server’s
own service record to obtain the connection string for display by the
DefaultBtsppRecordMIDlet.

The describeAttributes() method uses the JABWT method
getAttributesIDs() to obtain an array of the attribute IDs that are
part of the new service record. The describeAttributes() method
returns a string that includes the number of attributes in this array
and the hexadecimal values of the attribute IDs. The
DefaultBtsppRecordMIDlet displays this string on the user interface.
These attribute IDs can be compared with the ones shown for the
default btspp service record in Table 7.1. The DefaultBtspp-
RecordMIDlet displays the attribute IDs in Table 7.1. (Some JSR-82
implementations do not return a ServiceRecordHandle, 0x0000.) One
additional attribute, ServiceRecordState 0x002, might also be displayed.
The Bluetooth stack may add the ServiceRecordState attribute to a
service record to make it easier for clients to determine whether that
service record has changed. If the value of the ServiceRecordState attrib-
ute has not changed since the last time it was checked, the client knows
that none of the attributes in the service record have changed.

The last method defined in DefaultBtsppRecordServer is
acceptClientConnections(). This method calls acceptAndOpen(),
which adds the service record to the SDDB, where it will be visible to

166 Chapter Seven: Service Discovery

clients. The acceptAndOpen()method then blocks and waits for a client
to connect. Once a client makes a connection, the acceptAndOpen()
method returns a StreamConnection that the server can use to commu-
nicate with that client using RFCOMM (see Chapter 4).

7.3.2 Modifying a Service Record

This section illustrates how a server can modify its service record by
adding additional service attributes. Suppose we want to create the
service record shown in Table 7.9 for a two-person Bluetooth game. The
JABWT implementation automatically adds the first three attributes
shown in Table 7.9 when it creates the service record. The last three
attributes must be added by the server application. Two of the service
attributes added, ServiceDescription and DocumentationURL, are stan-
dard attributes defined in the SDP specification [1, Part E]. A
ServiceDescription is a brief description of the service (fewer than 200
characters). The DocumentationURL provides a pointer to a Web page
for detailed documentation of the service. The third attribute added,
0x2222, is a nonstandard, application-specific service attribute. This
attribute shows the highest score achieved to date by the user of this
device. Clients might use this attribute to select a suitable opponent for
the game or to assign handicaps.

The defineGameService() method shown below illustrates how
the service record shown in Table 7.9 can be created by a server appli-
cation. The statement

notifier = (StreamConnectionNotifier)
Connector.open(connString)

creates the service record and returns a notifier cast to a
StreamConnectionNotifier. The notifier is used to access the new
service record by the statement

ServiceRecord record = localDev.getRecord(notifier);

The defineGameService() method then adds three additional service
attributes to the service record before that record is made visible to
clients. The method setAttributeValue() is used to add each attrib-
ute to the service record.

Programming with the API 167

168 Chapter Seven: Service Discovery

Table 7.9 The Service Record for a Bluetooth Game

ServiceClassIDList<0x0001>

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(0FA1A7AC16A211D7854400B0D03D76EC))

DataElement(type = UUID,

UUID(SerialPort<0x1101>)))

ProtocolDescriptorList<0x0004>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(L2CAP<0x0100>)))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(RFCOMM<0x0003>))

DataElement(type = U_INT_1,

3 –server channel identifier)))

ServiceName<0x0100>

DataElement(type = STRING,

"A Bluetooth Game")

ServiceDescription<0x0101>

DataElement(type = STRING,

"This game is fun! It is for two people.

You can play it on your cell phones.")

DocumentationURL<0x000A>

–Where to find documentation

public StreamConnectionNotifier
defineGameService(LocalDevice localDev, long highScore) {

StreamConnectionNotifier notifier;

String connString =
"btspp://localhost:0FA1A7AC16A211D7854400B0D03D76EC;" +
"name=A Bluetooth Game";

try {
notifier =
(StreamConnectionNotifier)Connector.open(connString);

} catch (IOException e2){
return null;

}
ServiceRecord record = localDev.getRecord(notifier);
// Add optional ServiceDescription attribute; attribute
// ID 0x0101.
record.setAttributeValue(0x0101,
new DataElement(DataElement.STRING,
"This game is fun! It " +
"is for two people. " +
"You can play it on " +
"your cell phones."));

// Add optional DocumentationURL attribute; attribute ID
// 0x000A.
record.setAttributeValue(0x000A,

new DataElement(DataElement.URL,
"http://" +
"www.gameDocsOnSomeWebpage.com"));

/*

Programming with the API 169

DataElement(type = URL,

"http://www.gameDocsOnSomeWebPage.com")

<0x2222>

–An application-specific attribute for the highest score in the game

DataElement(type = U_INT_4,

10000)

* Add an application-specific attribute for the highest
* score achieved by this player to date.
*/
record.setAttributeValue(0x2222,
new DataElement(DataElement.U_INT_4,
highScore));

return notifier;
}

When the server does acceptAndOpen(), the service record added to
the SDDB has the additional service attributes added by the
defineGameService() method. When using application-specific
service attributes, keep in mind that the Bluetooth specification reserves
certain attribute ID values. Attribute IDs in the range 0x000D to 0x01FF
are reserved and should not be used.

7.3.3 Support for String Attributes in Several Languages

Table 7.10 shows how Bluetooth service records can include strings in
more than one language. In addition to the ServiceName and
ServiceDescription attributes shown in Table 7.9, three service attributes
have been included in the service record. Two of these attributes provide
the ServiceName and ServiceDescription in French. The third attribute,
the LanguageBaseAttributeIDList, describes the two languages used in
this service record and provides the information needed to differentiate
the English strings from the French strings.

To support use of multiple languages in service records, the
Bluetooth SDP uses a base-plus-offset scheme for all service attributes of
type string. In the service record shown in Table 7.10, the base for
English service attributes is 0x0100. The base for French service attrib-
utes is 0x0120. The SDP specification [1] defines the ServiceDescription
as having an offset of 0x0001. This means the attribute ID of the
ServiceDescription in English in this service record is given by the
English base plus offset; or

0x0100 + 0x0001 = 0x0101

The attribute ID of the ServiceDescription in French is given by the
French base plus offset, or

0x0120 + 0x0001 = 0x0121

170 Chapter Seven: Service Discovery

ServiceName is defined as having an offset of 0x0000, so the
ServiceName in English has attribute ID

0x0100 + 0x0000 = 0x0100

The ServiceName in French has attribute ID

0x0120 + 0x0000 = 0x0120

The LanguageBaseAttributeIDList contains the attribute ID base for each
language. LanguageBaseAttributeIDList is an optional service attribute.
However, if a service record were to use more than one language, it
would be very difficult for applications to use the other languages
without knowing the attribute ID base value for the other languages.
The attributeValue for the LanguageBaseAttributeIDList is a list, or
DATSEQ, of DataElements of type U_INT_2, that is, of type unsigned 2-
byte integer.

The elements of the LanguageBaseAttributeIDList are implicitly
grouped into triplets, where each triplet is for a particular language. The
first element of the triplet is the language code as standardized by ISO
639 [32]. For English, this code is “en”; for French, it is “fr.” The second
element of the triplet is the character encoding used for the language.
Unicode Transformation Format 8 (UTF-8) is an example of character
encoding. The Internet Assigned Numbers Authority maintains a stan-
dard list of character encodings [33]. Each encoding in the standard has
a MIBenum value; for example, UTF-8 is 0x006A (decimal 106). The
MIBenum value of the character encoding is the second element in each
triplet contained in the LanguageBaseAttributeIDList. The third element
of each triplet is the attribute ID base value for the triplet’s language.

The base values used in the third element of each triplet are not
standardized. The service records in an SDDB may use different base
values for the same language. The only rules are the following:

• The attribute ID base for the primary language used in a particular
service record must be 0x0100.

• If there is a LanguageBaseAttributeIDList in the service record, the
first language in this list must use the attribute ID base 0x0100;
that is, the first language must be the primary language.

The attribute ID base used for a second language is not standard-
ized; that is, we chose the value of 0x0120 for the base value for French
in Table 7.10. In selection of base values, care must be taken to avoid

Programming with the API 171

172 Chapter Seven: Service Discovery

Table 7.10 Selected Attributes from a Service Record with English and French Strings.

…

ServiceName<0x0100>

–Name of the service in the primary language of the service record

DataElement(type = STRING,

"A Bluetooth Game" –from "name=" in the connection string)

ServiceDescription<0x0101>

–Description of the service in the primary language

DataElement(type = STRING,

"This game is fun! It is for two people.

You can play it on your cell phones.")

ServiceName<0x0120>

–Name of the service in French

DataElement(type = STRING,

"Jeu de Bluetooth")

ServiceDescription<0x0121>

–Description of the service in French

DataElement(type = STRING,

"Ce jeu est amusant ! Il se joue à deux. Vous pouvez

y jouer sur vos téléphones mobiles.")

LanguageBaseAttributeIDList<0x0006>

–Describe the languages used in the service record

DataElement(type = DATSEQ,

DataElement(type = U_INT_2,

0x656E –ASCII for "en", English)

DataElement(type = U_INT_2,

0x006A –the MIBenum for UTF-8)

conflicts with the attribute IDs defined by the Bluetooth Assigned
Numbers. One recommendation is to choose attribute ID base values so
that the sum of base value plus offset falls either in the range 0x0100 to
0x01FF or in the range 0x0900 to 0xFFFF. The same recommendation
applies to user-defined, service-specific attributes with string values.

7.3.4 Service Records for Bluetooth Profiles

The Bluetooth Profiles specification [3] describes a number of common
tasks that will be accomplished with Bluetooth wireless technology. The
profiles document lists requirements that help in achieving interoper-
ability between devices with independent implementations of these
standardized tasks. Developers who intend to implement one of these
Bluetooth profiles with their JABWT application need to study the
specification [3] closely so that their applications can pass any Bluetooth
qualification tests for the profile and can successfully interoperate with
other devices that also support the profile.

The profile specifications place requirements on both client and
server roles for each profile. Part of the requirements for servers is a
specification of what the service record will look like for the profile
service. As an example, Table 7.11 shows the service record for the
Object Push Profile from the Bluetooth profiles specification [3]. This
format is followed by all of the Bluetooth profiles.

The Object Push Profile describes how electronic business cards
and other similar objects can be transmitted between Bluetooth devices
by means of OBEX. The server in the Object Push Profile is called a Push
Server, and the client is called a Push Client. As Table 7.11 shows, the

Programming with the API 173

DataElement(type = U_INT_2,

0x0100 –attribute ID base for English)

DataElement(type = U_INT_2,

0x6672 –ASCII for "fr", French)

DataElement(type = U_INT_2,

0x006A –the MIBenum for UTF-8)

DataElement(type = U_INT_2,

0x0120 –attribute ID base for French))

174 Chapter Seven: Service Discovery

Table 7.11 Service Record Defined by the Bluetooth Object Push Profile

Item Definition Type Value AttrID Status Default

Value

ServiceClassIDList 0x0001 Mand.

ServiceClass #0 UUID for UUID 0x1105 Mand. 0x1105

OBEXObjectPush"

ProtocolDescriptorList 0x0004 Mand.

Protocol ID #0 UUID for L2CAP UUID 0x0100 Mand. 0x0100

protocol

Protocol ID #1 UUID for RFCOMM UUID 0x0003 Mand. 0x0003

protocol

Parameter #0 Server channel UINT8 varies Mand. varies

Protocol ID #2 UUID for OBEX UUID 0x0008 Mand. 0x0008

ServiceName Displayable Text String varies 0x0000 Opt. "OBEX

name + base Object

Push"

BluetoothProfile 0x0009 Opt.

DescriptorList

Profile ID #0 Supported profile UUID 0x1105 0x1105

Version #0 Profile version UINT16 0x0100 0x0100

Supported Formats Supported Data Formats: 0x0303 Mand.

List Formats List Element 0x01 = vCard 2.1

Sequence 0x02 = vCard 3.0

of UINT8 0x03 = vCal 1.0

0x04 = iCal 2.0

0x05 = vNote

0x06 = vMessage

0xFF = any type

of object.

UUID with short form 0x1105 is defined as the Service Class ID for Push
Servers that conform to the Object Push Profile. Push Clients can look
for service records that contain this UUID to identify Push Servers that
have demonstrated they meet the requirements of the Object Push
Profile.

The Status column in Table 7.11 indicates service record entries
that are mandatory (Mand.) and entries that are optional (Opt.) accord-
ing to the Bluetooth specification.

The UUID values in the Value and Default Value columns shown
in Table 7.11 are obtained from the Bluetooth Assigned Numbers [30].
The service attribute ID values in the AttrID column also are obtained
from the Bluetooth Assigned Numbers. The version of Table 7.11 in the
Object Push Profile specification does not contain these values explicitly
but instead refers to the assigned numbers.

The service record in Table 7.11 can be translated into the same
notation used earlier in this chapter to describe the btspp, btl2cap,
and btgoep service records. That translation is shown in Table 7.12.
The translation is straightforward for the most part. However, the two
notations use different units (bits versus bytes) when describing types
for numbers. Table 7.11 from the Bluetooth profiles specification uses
Uint8 and Uint16, which refer to unsigned 8-bit and 16-bit integers.
Table 7.12, on the other hand, uses U_INT_1 and U_INT_2 for these
same two quantities. Table 7.12 uses the names of JABWT constants
for all the “type =” entries. The javax.bluetooth.DataElement
constants U_INT_1 and U_INT_2 refer to 1-byte and 2-byte integers.
The representations in Table 7.11 and Table 7.12 are equivalent but
use different units (bits versus bytes) when describing the type of a
number.

There are several points to observe about Table 7.12. In addition to
the familiar attributes ServiceClassIDList, ProtocolDescriptorList, and
ServiceName are several attributes that we have not seen before. Table
7.12 includes a BluetoothProfileDescriptorList, which is an attribute
used to declare that this service conforms to version number 1.00 of the
Object Push Profile. The service records for Bluetooth profiles com-
monly include a BluetoothProfileDescriptorList attribute, although that
attribute usually is optional. The short-form UUID for OBEXObjectPush,
0x1105, is used in the BluetoothProfileDescriptorList to designate the
Object Push Profile. Because this UUID also is used in the

Programming with the API 175

176 Chapter Seven: Service Discovery

Table 7.12 Service Record for an OBEX Object Push Server

ServiceClassIDList<0x0001>

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(OBEXObjectPush<0x1105>)

—Object Push UUID))

ProtocolDescriptorList<0x0004>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(L2CAP<0x0100>)))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(RFCOMM<0x0003>))

DataElement(type = U_INT_1,

4 –server channel identifier))

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(OBEX<0x0008>)))

ServiceName<0x0100>

DataElement(type = STRING,

"OBEX Object Push Server")

BluetoothProfileDescriptorList<0x0009>

DataElement(type = DATSEQ,

DataElement(type = DATSEQ,

DataElement(type = UUID,

UUID(OBEXObjectPush<0x1105>))

DataElement(type = U_INT_2,

0x0100 – version 1.00)))

ServiceClassIDList, this marks the second appearance of this same UUID
in the service record.

Table 7.12 also includes one attribute, Supported Formats List, that
is unique to the Object Push Profile. The Supported Formats List attrib-
ute describes the different object formats supported by this Push Server.
The Supported Formats List entry in Table 7.11 describes the different
object formats recognized by the Object Push Profile. In Table 7.12, the
two formats for electronic business cards have been specified. The
Object Push Profile requires that Phone Book applications support data
exchange using the vCard 2.1 content format [34].

The following example code shows how a server application can
create an Object Push service record. After Connector.open() is used
to create the service record, the defineObjectPushService() method
adds the BluetoothProfileDescriptorList attribute to the service record by
calling the application method setBluetoothProfileList(). The
code for this method is presented later. It is followed by code that adds
the Supported Formats List attribute to the service record to declare that
this server understands the vCard 2.1 and 3.0 formats.

/**
* Create the service record for an OBEX Object Push
* server as defined
* by the Bluetooth Object Push profile.
*/
public SessionNotifier defineObjectPushService() {

SessionNotifier notifier;
// The UUID 00001105000... is the long-form UUID for the
// short form 0x1105 defined for the Object Push
// service ID by
// assigned numbers.

Programming with the API 177

Supported Formats List<0x0303>

DataElement(type = DATSEQ,

DataElement(type = U_INT_1,

0x01 – vCard 2.1)

DataElement(type = U_INT_1,

0x02 – vCard 3.0))

String connString =
"btgoep://localhost:" +
"0000110500001000800000805F9B34FB;" +

"name=OBEX Object Push Server";

// Connector.open() assigns a RFCOMM server channel
// and creates a service record using this channel.
try {
notifier =
(SessionNotifier)Connector.open(connString);

} catch (ServiceRegistrationException e1) {
// The open method failed because unable to obtain
// an RFCOMM
// server channel.
return null;

} catch (IOException e2){
// The open method failed due to another IOException
return null;

}

try {
localDev = LocalDevice.getLocalDevice();

} catch (BluetoothStateException e) {
return null;

}
ServiceRecord record = localDev.getRecord(notifier);

// Add the optional service attribute
// BluetoothProfileDescriptorList
ServiceRecordUtilities.setBluetoothProfileList(record,
0x1105, 0x0100);

DataElement objFormatsDE = new
DataElement(DataElement.DATSEQ);

// supported format 0x01 = vCard 2.1
objFormatsDE.addElement(new
DataElement(DataElement.U_INT_1, 0x01));

// supported format 0x02 = vCard 3.0
objFormatsDE.addElement(new
DataElement(DataElement.U_INT_1, 0x02));

// Add mandatory Supported Formats List, attribute ID
// 0x0303
record.setAttributeValue(0x0303, objFormatsDE);

178 Chapter Seven: Service Discovery

// An Object Push Server provides an Object Transfer
// service.
// Bit 20 of the Class of Device is for Object Transfer.
record.setDeviceServiceClasses(0x100000);
return notifier;

}

Table 7.12 shows that the Object Push service record has the following
ServiceClassIDList:

DataElement(type = DATSEQ,
DataElement(type = UUID,

UUID(OBEXObjectPush<0x1105>)
—-Object Push UUID))

This step is accomplished by the method defineObject-
PushService() by using the connection string:

String connString =
"btgoep://localhost:" +
"0000110500001000800000805F9B34FB;" +

"name=OBEX Object Push Server";

The JABWT implementation inserts the UUID from the connection
string into the ServiceClassIDList of the service record. Although there
is a short form UUID of 0x1105 for the OBEXObjectPush service class,
we have used the long form in the connection string. The reason is that
a UUID in a connection string is always interpreted as a 128-bit UUID.
This means that 1105 would be interpreted as the 128-bit UUID
00000000000000000000000000001105 not as the 128-bit UUID
0000110500001000800000805F9B34FB.

In the example code, the defineObjectPushService() method
uses the setDeviceServiceClasses() method of the
ServiceRecord interface to describe the object transfer major service
class provided by the server application

record.setDeviceServiceClasses(0x100000);

The specification of the Object Push Profile requires that the Push Server
indicate that it offers this object transfer service in its device class. A
server uses the setDeviceServiceClasses() method to associate the
ServiceRecord with all of the major service classes that describe that
service. Later, when a server first calls acceptAndOpen(), both its

Programming with the API 179

service record and its major service class bits are made visible to client
devices. In the case of the major service classes, acceptAndOpen() per-
forms a logical OR of the current settings of the service class bits of the
device with the major service classes declared by the
setDeviceServiceClasses() method. This OR operation might
activate additional service class bits that indicate new capabilities for the
device.

The defineObjectPushService() method makes a static method
call to create the BluetoothProfileDescriptorList. The code for that static
method is shown below. It creates the DataElement structure required
for the BluetoothProfileDescriptorList attribute by the Object Push
Profile. This method uses the DataElement.addElement() method to
assemble DataElements of type DATSEQ. One DataElement of type
DATSEQ is used for the pair of profile and version number. Another
DataElement of type DATSEQ is used for the list of pairs. In this case,
there is only one pair in the list of pairs (Table 7.12).

public class ServiceRecordUtilities {

public static final int ATT_ID_BLUETOOTH_PROFILE_LIST =
0x0009;

/**
* Sets the value of the BluetoothProfileDescriptorList
* attribute to
* be the profile represented by a short-form UUID value
* and version number.
* @param record The service record to be modified
* @param profileUuidValue The short-form UUID for the
* profile from the Bluetooth Assigned Numbers
* @param version The version of the profile this
* service conforms to.
* The format is 0xMMmm where MM is the
* major version
* number and mm is the minor version number.
*/
public static void setBluetoothProfileList(
ServiceRecord record,
long profileUuidValue,
int version) {
UUID profileUuid = new UUID(profileUuidValue);

180 Chapter Seven: Service Discovery

DataElement profileUuidDE = new
DataElement(DataElement.UUID,

profileUuid);
DataElement versionDE = new
DataElement(DataElement.U_INT_2, version);

DataElement profileVersionPairDE
= new DataElement(DataElement.DATSEQ);

DataElement profileDescriptorDE = new
DataElement(DataElement.DATSEQ);

// Create a pair with profile UUID and profile version
profileVersionPairDE.addElement(profileUuidDE);
profileVersionPairDE.addElement(versionDE);

// Add the pair to the list of profiles
profileDescriptorDE.addElement(profileVersionPairDE);

// Set the BluetoothProfileDescriptorList to a DATSEQ data
// element containing the UUID-version pair for this
// profile.
record.setAttributeValue(ATT_ID_BLUETOOTH_PROFILE_LIST,

profileDescriptorDE);
}

}

7.3.5 Service Discovery

Service discovery within Bluetooth wireless technology can be as com-
plicated or as simple as desired. Like an inquiry, service discovery is a
non-blocking request. As service records are discovered, they are passed
to the application as events. Also like an inquiry, an event occurs at the
end of the service search to notify the application that the service search
has been completed. Unlike an inquiry, many devices support multiple
service searches at any one time. The number of service searches that
the local device supports can be retrieved via a Bluetooth device prop-
erty. The “bluetooth.sd.trans.max” property can be retrieved via the
LocalDevice.getProperty() method to determine the maximum
number of concurrent service searches.

For the local device to search for a service on a remote device, the
local device sends a list of UUIDs to search for to the remote device. The
remote device checks all the service records on it for all of the UUIDs
sent to it. For every service record that has all the UUIDs, the remote

Programming with the API 181

device sends back the ServiceRecordHandle and the requested attributes
for that service record.

Starting a service search on a remote device begins with the
DiscoveryAgent.searchServices() method. The search-
Services() method takes four arguments. The first argument is the list
of attributes to retrieve in any service record that meets the other search
criteria. By default, the searchServices() method retrieves the
ServiceRecordHandle, ServiceClassIDList, ServiceRecordState, ServiceID,
and ProtocolDescriptorList attributes. These attributes are known as the
default attributes. If the attributes list argument is null, only the default
attributes are retrieved. If a list of attributes is provided, the default
attributes are retrieved in addition to the list provided. With the default
attributes, the application has enough information to establish a con-
nection to the service. Additional attributes may be retrieved if addi-
tional information about the service is needed. The second argument,
the list of UUIDs to search for, specifies all the UUIDs that must exist in
a service to be retrieved. The more complete this list of UUIDs, the less
likely it is that a service record will contain all of these UUIDs. The third
argument, the remote device to search, is a RemoteDevice object
received via an inquiry or a call to retrieveDevices(). The final
argument is the DiscoveryListener object that will be notified when
the services are discovered.

The searchServices() method returns the transaction ID for the
service search if the device is able to start the service search. The transac-
tion ID allows an application to cancel the search, identify which search
located a service, and determine when a specific search is completed. The
searchServices() method may throw a BluetoothStateException
if the local device has reached the maximum number of service searches or
if the current service search could not be started.

As services are discovered, they are sent to the Discovery-
Listener via the servicesDiscovered() method. The transaction
ID of the service search along with all the service records found
during the search also is provided. The servicesDiscovered()
method can be called multiple times for a single service search
request. The service records are returned as an array of
ServiceRecord objects. Each of these ServiceRecord objects con-
tains all the attributes requested in the call to searchServices()
along with the default attributes.

182 Chapter Seven: Service Discovery

When the service search is completed, the serviceSearch-
Completed() method is called. The serviceSearchCompleted()
method provides the transaction ID of the search that ended and a
completion status code. Table 7.13 lists all the completion status codes
and what those codes mean.

Like an inquiry, a service search can be canceled with the
cancelServiceSearch() method. The cancelServiceSearch()
method takes as an argument the transaction ID of the service search to
cancel. The method returns true if the search was canceled. Canceling
the search also causes a serviceSearchCompleted() event to occur
with the SERVICE_SEARCH_TERMINATED status code. If the method
returns false, either the service search has already ended or the trans-
action ID is not valid.

Returning to the DiscoveryMIDlet introduced in Chapter 6, the
next step is to search for services. The DiscoveryMIDlet will be
modified to search for the Bluetooth game service defined earlier in this
chapter. To determine which device to search, the DiscoveryMIDlet
waits until the user selects a Bluetooth device from a List. The
DiscoveryMIDlet then searches the device specified for the UUID
defined by the Bluetooth game service. After retrieving all the services
that use this UUID, the DiscoveryMIDlet displays the name of each
service. Before starting the service search, the DiscoveryMIDlet must

Programming with the API 183

Table 7.13 Status Codes for Service Searches

Completion Status Reason

SERVICE_SEARCH_COMPLETED At least one service record was found and the search

completed normally.

SERVICE_SEARCH_TERMINATED The service search was canceled by a call to

cancelServiceSearch().

SERVICE_SEARCH_ERROR An error occurred during the service search.

SERVICE_SEARCH_NO_RECORDS No records were found during the service search.

SERVICE_SEARCH_DEVICE_NOT_REACHABLE The RemoteDevice specified to searchServices()

could not be reached (i.e., a connection could not be

established to the remote device).

be modified to maintain a list of the RemoteDevice objects found via
device discovery and to keep track of when the device is in an inquiry.

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

/**
* Keeps track of the RemoteDevice objects.
*/
private Vector deviceVector;
/**
* Specifies if an inquiry is currently occurring.
*/
private boolean isInInquiry;

...

public void startApp() throws MIDletStateChangeException {

isInInquiry = false;

// Create a new List and set it to the current
// displayable
deviceList = new List("List of Devices", List.IMPLICIT);
deviceList.addCommand(new Command("Exit",
Command.EXIT, 1));

deviceList.setCommandListener(this);
Display.getDisplay(this).setCurrent(deviceList);

// Retrieve the DiscoveryAgent object. If the
// retrieving the
// local device causes a BluetoothStateException,
// something is wrong
// so stop the app from running.
try {
LocalDevice local = LocalDevice.getLocalDevice();
agent = local.getDiscoveryAgent();

} catch (BluetoothStateException e) {
throw new MIDletStateChangeException(
“Unable to retrieve local Bluetooth device.”);

}

deviceVector = new Vector();
addDevices();

184 Chapter Seven: Service Discovery

try {
agent.startInquiry(DiscoveryAgent.GIAC, this);

} catch (BluetoothStateException e) {
throw new MIDletStateChangeException(
"Unable to start the inquiry");

}

isInInquiry = true;

}

public void deviceDiscovered(RemoteDevice device,
DeviceClass cod) {
String address = device.getBluetoothAddress();
deviceList.insert(0, address + "-I", null);
deviceVector.insertElementAt(device, 0);

}

public void inquiryCompleted(int type) {
isInInquiry = false;

Alert dialog = null;

// Determine if an error occurred. If one did occur
// display an Alert
// before allowing the application to exit.
if (type != DiscoveryListener.INQUIRY_COMPLETED) {
dialog = new Alert("Bluetooth Error",
"The inquiry failed to complete normally", null,
AlertType.ERROR);

} else {
dialog = new Alert("Inquiry Completed",
"The inquiry completed normally", null,
AlertType.INFO);

}

dialog.setTimeout(Alert.FOREVER);
Display.getDisplay(this).setCurrent(dialog);

}

private void addDevices() {
// Retrieve the pre-known device array and append the
// addresses
// of the Bluetooth device. If there are no pre-know
// devices, move on to cached devices.
RemoteDevice[] list =
agent.retrieveDevices(DiscoveryAgent.PREKNOWN);

Programming with the API 185

if (list != null) {
for (int i = 0; i < list.length; i++) {
String address = list[i].getBluetoothAddress();
deviceList.insert(0, address + "-P", null);
deviceVector.insertElementAt(list[i], 0);

}
}

// Retrieve the cached device array and append the
// addresses to the
// list.
list = agent.retrieveDevices(DiscoveryAgent.CACHED);
if (list != null) {
for (int i = 0; i < list.length; i++) {
String address = list[i].getBluetoothAddress();
deviceList.insert(0, address + "-C", null);
deviceVector.insertElementAt(list[i], 0);

}
}

}
}

Now that the DiscoveryMIDlet keeps track of each RemoteDevice
object found and when the MIDlet is performing an inquiry, the
DiscoveryMIDlet can be modified to perform a service search. The
service search is started when a user selects one of devices displayed on
the screen. Because many Bluetooth devices cannot start service
searches while the device is performing an inquiry, the inquiry is can-
celed if one is occurring before the search is started.

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

/**
* The List of service records that were found.
*/
private List serviceRecordList;

...

public void commandAction(Command c, Displayable d) {

186 Chapter Seven: Service Discovery

if (c.getCommandType() == Command.EXIT) {
if (isInInquiry) {

// Try to cancel the inquiry.
agent.cancelInquiry(this);

}

notifyDestroyed();
} else if (c == List.SELECT_COMMAND) {
// Since the deviceList is currently visible, the user
// must
// have selected a device to search so display the
// serviceRecordList screen.
serviceRecordList = new List("Services Found",
List.IMPLICIT);

serviceRecordList.addCommand(new Command("Exit",
Command.EXIT, 1));

serviceRecordList.setCommandListener(this);

Alert splash = null;

// If an inquiry is presently occurring, cancel the
// inquiry
// before starting the service search. Otherwise,
// start the
// service search
if (isInInquiry) {
agent.cancelInquiry(this);

splash = new Alert("Cancel Inquiry",
"Ending the inquiry and starting the service search",
null, AlertType.INFO);

} else {
splash = new Alert("Starting Search",
"Starting the service search",
null, AlertType.INFO);

startServiceSearch();
}

splash.setTimeout(2000);
Display.getDisplay(this).setCurrent(splash,
serviceRecordList);

}
}

/**

Programming with the API 187

* Starts the service search.
*/
private void startServiceSearch() {

try {
// Search for the Bluetooth Game service record and
// retrieve
// the name attribute in addition to the default
// attributes.
UUID[] uuidList = new UUID[1];
uuidList[0] = new
UUID("0FA1A7AC16A211D7854400B0D03D76EC", false);

int[] attrList = new int[1];
attrList[0] = 0x100;
// The RemoteDevices are in the deviceVector in the
// same order as
// they are on the screen so getting the index
// allows us to
// retrieve the correct RemoteDevice object.
int index = deviceList.getSelectedIndex();
RemoteDevice d =
(RemoteDevice)deviceVector.elementAt(index);

int id = agent.searchServices(attrList, uuidList,
d, this);

} catch (BluetoothStateException e) {
Alert error = new Alert("Error",
"Unable to start the service search (" +
e.getMessage() +

")", null, AlertType.ERROR);
error.setTimeout(Alert.FOREVER);
Display.getDisplay(this).setCurrent(error, deviceList);

}
}

public void inquiryCompleted(int type) {
isInInquiry = false;

Alert dialog = null;

// Determine if an error occurred. If one did occur
// display an Alert
// before allowing the application to exit.
if (type != DiscoveryListener.INQUIRY_COMPLETED) {

188 Chapter Seven: Service Discovery

// If the device inquiry was terminated, then the
// user must have
// selected a Remote Device to perform a service
// search on so
// start the service search.
if (type == DiscoveryListener.INQUIRY_TERMINATED) {
startServiceSearch();

return;
} else {
dialog = new Alert("Bluetooth Error",
"The inquiry failed to complete normally", null,
AlertType.ERROR);

}
} else {
dialog = new Alert("Inquiry Completed",
"The inquiry completed normally", null,
AlertType.INFO);

}
dialog.setTimeout(Alert.FOREVER);
Display.getDisplay(this).setCurrent(dialog);

}
}

The startServiceSearch() method is called from two different parts
of the previous code. The startServiceSearch() method is called
from the commandAction() method if an inquiry is not in progress. If
an inquiry is in progress, the commandAction() method cancels the
inquiry and the startServiceSearch() method is called from the
inquiryCompleted() method when the cancel is processed.

The startServiceSearch() method starts the service search.
This method performs a service search for the Bluetooth game service
described earlier in this chapter. When a service is found with the
Bluetooth game service’s UUID, the 0x100 attribute also is retrieved.
This is the ServiceName attribute ID as defined by the Bluetooth SIG.
(This is used later in this chapter.)

Even though the startServiceSearch() method starts the
search, the DiscoveryMIDlet does not do anything with the services
that it finds at present. Therefore the servicesDiscovered() method
is modified to display the number of service records returned to the
DiscoveryMIDlet. The serviceSearchCompleted() method is also
modified to display a message to the user when the service search ends.

Programming with the API 189

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

public void servicesDiscovered(int transID,
ServiceRecord[] record) {
serviceRecordList.insert(0,
Integer.toString(record.length), null);

}

/**
* Called when the service search has ended. Displays a
* message to the
* user that the service search completed and specifies
* if the search
* completed normally.
*
* @param transID the transaction ID
* @param type specifies how the service search completed
*/
public void serviceSearchCompleted(int transID, int type) {
Alert dialog = null;

// Determine if an error occurred. If one did occur
// display an Alert
// before allowing the application to exit.
if (type !=
DiscoveryListener.SERVICE_SEARCH_COMPLETED) {
dialog = new Alert("Bluetooth Error",
"The service search failed to complete normally",
null,
AlertType.ERROR);

} else {
dialog = new Alert("Service Search Completed",
"The service search completed normally", null,
AlertType.INFO);

}
dialog.setTimeout(Alert.FOREVER);
Display.getDisplay(this).setCurrent(dialog);

}
}

190 Chapter Seven: Service Discovery

7.3.6 Working with Service Records

After a ServiceRecord is retrieved from a service search, the next step
is to determine whether the service described by the ServiceRecord is
the desired service. Once the service is determined to be the desired
service, the getConnectionURL() method can be called to retrieve the
connection string that establishes a connection to the service. This con-
nection string may then be passed to Connector.open() to establish
the connection. The getConnectionURL() method also allows the
application to specify the security requirements of the connection and
whether the local device is the master or the slave (see section 4.3 for
more information on Bluetooth security).

Before calling getConnectionURL(), the application must deter-
mine whether the ServiceRecord describes the service desired. This
step highlights the need to be as specific as possible when determining
the list of UUIDs to search for. Being as specific as possible minimizes
the need to do additional work to determine whether the
ServiceRecord returned is for the desired service. In most situations,
a complete list of UUIDs used in the service search eliminates the need
for additional verification. When the service record is discovered in this
situation, all that is required is calling the getConnectionURL()
method to begin using the service.

There are situations that require additional verification or determi-
nation. For example, if the local device is able to locate two instances of
the same service, the local device could connect to the service that is
currently less busy. The application may also want to request additional
information that allows the user of the application to determine which
service to use.

To actually access the values of each of the attributes, the
getAttributeValue() method should be used. The getAttribute-
Value() method returns the attribute value of the attribute ID specified
or null if the attribute ID is not in this service record. The value of an
attribute is encapsulated in the DataElement class. The DataElement
class provides accessor methods to determine the type of the data
element and its value. Table 7.14 lists the different types of data ele-
ments and how these types relate to the DataElement class.

Before the value of a data element is retrieved, the
getDataType() method should be called to verify the data type of the
value. This step should always be done before retrieving the value of a

Programming with the API 191

data element because calling the wrong method on a DataElement
object causes a ClassCastException to be thrown.

To show how to use DataElements and ServiceRecords, we are
modifying the DiscoveryMIDlet to display the ServiceName attribute
value for each service record found. This is done by modifying the
servicesDiscovered() method. First, the servicesDiscovered()
method retrieves the DataElement for the ServiceName attribute.
Before the string contained in the DataElement is extracted , the

192 Chapter Seven: Service Discovery

Table 7.14 Bluetooth Data Element Types and Their Associated Java Types

Bluetooth Type DataElement Java Type Method for Retrieving

Data Type Value from DataElement

Null NULL Represents a null value None

Unsigned integer U_INT_1 long value in the range getLong()

(1 byte) of 0 to 255

Unsigned integer U_INT_2 long value in the range getLong()

(2 bytes) of 0 to 216-1

Unsigned integer U_INT_4 long value in the range of getLong()

(4 bytes) 0 to 232-1

Unsigned integer U_INT_8 byte[] value in the range getValue()

(8 bytes) of 0 to 264-1

Unsigned integer U_INT_16 byte[] value in the range getValue()

(16 bytes) of 0 to 2128-1

Integer (1 byte) INT_1 long value in the range –128 to 127 getLong()

Integer (2 bytes) INT_2 long value in the range –215 to 215-1 getLong()

Integer (4 bytes) INT_4 long value in the range –231 to 231-1 getLong()

Integer (8 bytes) INT_8 byte[] value in the range –263 to 263-1 getValue()

Integer (16 bytes) INT_16 byte[] value in the range –2127 to 2127-1 getValue()

URL URL java.lang.String getValue()

UUID UUID javax.bluetooth.UUID getValue()

Boolean BOOL boolean getBoolean()

String STRING java.lang.String getValue()

Data element sequence DATSEQ java.util.Enumeration getValue()

Data element alternative DATALT java.util.Enumeration getValue()

getDataType() method must be called to determine the type of attrib-
ute value stored in the DataElement object. After it is verified that the
data element is a string, the value of the data element is displayed.

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

/**
* The service records that were found in the last
* service search.
*/
private Vector serviceRecordVector;

...

/**
* Called each time a service is discovered. Retrieve
* the name attribute
* from the service record and display it on the
* screen. Add the service
* record to the service record Vector for later.
*
* @param transID the transaction ID
* @param record the service records that were found
*/
public void servicesDiscovered(int transID,
ServiceRecord[] record) {

// Process each service record individually
for (int i = 0; i < record.length; i++) {

//Retrieve the name attribute from the service record
DataElement nameElement =
(DataElement)record[i].getAttributeValue(0x100);

// The name attribute is only valid if it exists and
// is a string
// If either of these conditions fail, move on to the
// next service record.
if ((nameElement != null) &&
(nameElement.getDataType() == DataElement.STRING)) {

//Retrieve the name and display it on the screen.

Programming with the API 193

String name = (String)nameElement.getValue();
serviceRecordList.insert(0, name, null);

serviceRecordVector.insertElementAt(record[i], 0);
}

}
}

...

private void startServiceSearch() {
serviceRecordVector = new Vector();

try {
// Search for the Bluetooth Game service record and
// retrieve
// the name attribute in addition to the default
// attributes.
UUID[] uuidList = new UUID[1];
uuidList[0] = new UUID(
"0FA1A7AC16A211D7854400B0D03D76EC", false);

int[] attrList = new int[1];
attrList[0] = 0x100;

// The RemoteDevices are in the deviceVector in the
// same order as
// they are on the screen so getting the index
// allows us to
// retrieve the correct RemoteDevice object.
int index = deviceList.getSelectedIndex();
RemoteDevice d =
(RemoteDevice)deviceVector.elementAt(index);

int id = agent.searchServices(attrList, uuidList, d,
this);

} catch (BluetoothStateException e) {
Alert error = new Alert("Error",
"Unable to start the service search (" +
e.getMessage() +
")", null, AlertType.ERROR);

error.setTimeout(Alert.FOREVER);

Display.getDisplay(this).setCurrent(error, deviceList);
}

}
}

194 Chapter Seven: Service Discovery

In addition to displaying the service name of each service discovered,
every ServiceRecord object returned to the application is stored in a
Vector so that additional information can be gathered from the service
record later.

7.3.7 Retrieving Additional Attributes after Service Discovery

The getAttributeIDs() method returns the IDs of all the attributes
that have been retrieved from the remote device. This method does not
return all the attributes defined in the service record on the remote
device. Why would a ServiceRecord that has been discovered not
have all the attributes of the service record on the remote device? The
answer is simple. To reduce the amount of data actually sent over the
air. If there is no intention to actually use an attribute, there is no reason
to retrieve the attribute.

Sometimes the local device needs an attribute only in specific
instances. JABWT provides a way to retrieve these attributes after the
service search has been completed. For retrieving additional attributes,
the populateRecord() method is called with the list of additional
attributes to retrieve. The populateRecord() method returns true if
some or all of the attributes specified are retrieved. The method may also
throw an IOException if the remote device that has the service
described by the ServiceRecord cannot be reached or the service is no
longer available.

The populateRecord() method goes over the air to retrieve these
additional attributes. Unlike searchServices(), which issues a
request and then returns, a call to populateRecord() does not
return until it fails or the information is retrieved. Because the
populateRecord() method blocks, be aware of where this method is
called. Calling the method within an event handler can affect the user’s
experience.

To show how to use the populateRecord() method, we modify
the DiscoveryMIDlet to retrieve the ServiceDescription attribute. This
procedure requires a few modifications to the DiscoveryMIDlet.
Because it implements Runnable through the BluetoothMIDlet class,
the DiscoveryMIDlet must have a run() method. When a user selects
a service name from the List displayed on the screen, a new thread is
created for the DiscoveryMIDlet that retrieves the ServiceDescription
attribute by means of the populateRecord() method.

Programming with the API 195

public class DiscoveryMIDlet extends BluetoothMIDlet
implements DiscoveryListener {

...

public void commandAction(Command c, Displayable d) {
if (c.getCommandType() == Command.EXIT) {
if (isInInquiry) {
// Try to cancel the inquiry.
agent.cancelInquiry(this);

}

notifyDestroyed();
} else if (c == List.SELECT_COMMAND) {

// Determine if the deviceList is the one that was
// selected.
if (d == deviceList) {

// Since the deviceList is currently visible, the
// user must
// have selected a device to search so display the
// serviceRecordList screen.
serviceRecordList = new List("Services Found",
List.IMPLICIT);

serviceRecordList.addCommand(new Command("Exit",
Command.EXIT, 1));

serviceRecordList.setCommandListener(this);

Alert splash = null;

// If an inquiry is presently occurring, cancel
// the inquiry
// before starting the service search. Otherwise,
// start the
// service search
if (isInInquiry) {
agent.cancelInquiry(this);

splash = new Alert("Cancel Inquiry",
"Ending the inquiry and starting the service"
+ "search",

null, AlertType.INFO);
} else {

splash = new Alert("Starting Search",
"Starting the service search",

196 Chapter Seven: Service Discovery

null, AlertType.INFO);

startServiceSearch();

}

splash.setTimeout(2000);
Display.getDisplay(this).setCurrent(splash,
serviceRecordList);

} else {

// Since the serviceRecordList is presently being
// displayed,
// get the description attribute for the service
// that was
// selected.
new Thread(this).start();

}
} else {

// The user must have selected the Back command. So
// display the
// names of all the services that were found.
serviceRecordList = new List("Services Found",
List.IMPLICIT);

serviceRecordList.addCommand(new Command("Exit",
Command.EXIT, 1));

serviceRecordList.setCommandListener(this);

for (int i = 0; i < serviceRecordVector.size(); i++) {

// Services were only added to the
// serviceRecordVector if
// they had a valid name attribute. Therefore,
// there is no need
// to test the nameElement.
ServiceRecord record =
(ServiceRecord)serviceRecordVector.elementAt(i);

DataElement nameElement =
(DataElement)record.getAttributeValue(0x100);

String name = (String)nameElement.getValue();

serviceRecordList.insert(0, name, null);
}
Display.getDisplay(this).setCurrent(
serviceRecordList);

Programming with the API 197

}
}
/**
* This thread is started when the user selects a
* service name. This
* thread retrieves the description of the service and
* displays the
* description on the screen.
*/
public void run() {
Alert error = null;

try {
// Identify the service record selected by the user
int index = serviceRecordList.getSelectedIndex();
ServiceRecord record =
(ServiceRecord)serviceRecordVector.elementAt(index);

// Retrieve the description attribute from the
// remote device
int[] attrList = new int[1];
attrList[0] = 0x101;

if (record.populateRecord(attrList)) {

// Retrieve the description data element and
// verify that it
// exists and is a String
DataElement descriptionDataElement =
record.getAttributeValue(0x101);

if ((descriptionDataElement != null) &&
(descriptionDataElement.getDataType() ==
DataElement.STRING)) {

// Display the description on the screen
String description =
(String)descriptionDataElement.getValue();

Form descriptionForm = new Form(
"Service Description");

descriptionForm.append(description);
descriptionForm.addCommand(new Command("Exit",
Command.EXIT, 1));

descriptionForm.addCommand(new Command("Back",
Command.OK, 1));

198 Chapter Seven: Service Discovery

descriptionForm.setCommandListener(this);

Display.getDisplay(this).setCurrent(
descriptionForm);

return;
}

}

error = new Alert("Error",
"Failed to retrieve the description of this service",
null, AlertType.ERROR);

} catch (IOException e) {
error = new Alert("Error",
"Failed to retrieve the description (IOException: " +
e.getMessage() + ")", null, AlertType.ERROR);

}
// Display the error message on the screen
error.setTimeout(2000);
Display.getDisplay(this).setCurrent(error);

}
}

Note that in the run() method, the ServiceDescription attribute is not
simply retrieved and displayed. Like the ServiceName attribute dis-
played on the screen previously, the DataElement returned for the
ServiceDescription attribute is inspected to determine whether the
DataElement represents a String. Also, the return value of
populateRecord() is checked to verify that the ServiceDescription
attribute was retrieved.

In addition to starting the thread that retrieves the
ServiceDescription attribute, the commandAction() method is
modified to allow the user to return to the list of service names after
retrieving the service description. This procedure allows the user to
retrieve the ServiceDescription attribute of other services that were
found during the service search.

7.3.8 Simple Device and Service Discovery

To make things easier for developers, the selectService()method com-
bines the process of device and service discovery. The selectService()
method returns a connection string that can be used by
Connector.open() to connect to the service. If a service cannot be found

Programming with the API 199

that meets the requirements of the search, selectService() returns
null. The selectService() method has three arguments. The first argu-
ment is the UUID to search for in the ServiceClassIDList attribute. The
second argument specifies the minimum security requirements needed for
the connection. The third argument specifies whether the local device
needs to be the master of this connection.

Connection getConnection(String uuidValue) throws
IOException {
String connString;

try {
// Retrieve the LocalDevice and DiscoveryAgent objects.
LocalDevice local = LocalDevice.getLocalDevice();
DiscoveryAgent agent = local.getDiscoveryAgent();

// Retrieve the connection string to the service
UUID searchUUID = new UUID(uuidValue, false);
connString = agent.selectService(searchUUID,
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

} catch (BluetoothStateException e) {
throw new IOException("BluetoothStateException: " +
e.getMessage());

}

if (connString == null) {
throw new IOException(
"Failed to locate a device with the UUID " +
uuidValue);

}
return Connector.open(connString);

}

The getConnection() method uses the selectService() method to
locate a service using the UUID value specified. If a service is found, the
code calls Connector.open() to establish a connection to the service
found. If a service is not found, the code throws an IOException to
signal that a connection could not be established.

JABWT does not specify how selectService() finds a device
with the service requested. Therefore an inquiry can occur during
the call to selectService(). Because of this possibility, the
selectService() method should be called in a separate thread

200 Chapter Seven: Service Discovery

because an inquiry can last 10 seconds or more. This procedure prevents
the application from appearing frozen while the selectService()
method is called.

Generating a UUID for Your Service

For testing your server application, you can make up an arbitrary series of
hexadecimal digits for the UUID needed in the server’s connection string.
However, when you are ready to package your application, you should
provide a UUID that is truly unique so that clients can use this UUID to
locate your server application on Bluetooth devices. For example, the
defineGameService() method shown earlier in this chapter used the
UUID 0FA1A7AC16A211D7854400B0D03D76EC. A process has been
specified for generating UUIDs that have a very high probability of being
unique [35]. This process generates a UUID using a timestamp and the
Ethernet address of the computer used to generate the UUID. It would
have been useful to provide a method for generating UUID as part of the
JABWT. However, this UUID-generating method would have been used
only during development and would not have been used for actually
running JABWT applications. This method was omitted from the API to
keep the JABWT implementation as small as possible for J2ME devices.

Several utilities are available for generating UUIDs. These utilities
tend to be operating system specific because of the need to access the
Ethernet card address. On Windows, UUIDs can be generated with the tool
Guidgen.exe that comes with Microsoft® Visual Studio®. On Linux a
uuidgen function is available as part of the e2fsprogs package for second
extended (ext2) Linux file systems. For example, the command

uuidgen -t

returns a result such as the following:

0fa1a7ac-16a2-11d7-8544-00b0d03d76ec

The last twelve hexadecimal digits are the network card address. As can
be seen from the example output from uuidgen, it is conventional to
include hyphens between certain digits of a UUID. However, hyphens
are not allowed in the String representations of JABWT UUIDs; the
hyphens must be removed before the UUID can be used in a JABWT
connection string.

Programming with the API 201

The Bluetooth SIG has reserved a range of UUIDs for use by the
Bluetooth specifications. This reserved range starts at the Bluetooth base
value of 00000000-0000-1000-8000-00805F9B34FB and includes all
232 values up to FFFFFFFF-0000-1000-8000-00805F9B34FB.
Applications should use values in this range only for the purposes
described in the Bluetooth specifications.

7.3.9 Connect-Anytime Services

Some devices may provide a capability for starting selected server appli-
cations on demand when a client application attempts to connect to a
server application not currently running. Server applications with this
capability are called connect-anytime services in the JABWT specification.
Section 7.2.1 discusses run-before-connect services. This section dis-
cusses connect-anytime services. An implementation of JABWT need
not support both run-before-connect services and connect-anytime
services. In fact, the first JABWT implementations support only run-
before-connect services.

Connect-anytime services were described in the JABWT
specification with the idea that they would take advantage of the MIDP
2.0 [26] capabilities for automatic startup of server MIDlets when clients
attempt to connect. The relevant MIDP 2.0 class is javax.microedi-
tion.io.PushRegistry. JABWT does not explicitly mention any of
the MIDP 2.0 mechanisms for automatically starting applications,
because the JABWT specification was finalized before the proposed
MIDP 2.0 APIs could be discussed publicly under the rules of the Java
Community Process.

The run-before-connect service illustrated in Figure 7.2 is a proven
scheme with demonstrated implementations. By contrast, the connect-
anytime service sketched in Figure 7.5 is currently unproved, and the
details remain to be worked out.

In Figure 7.5 the service record is added to the SDDB when the
server application is first installed on the device. The service record
remains visible to clients as long as the application has not been totally
removed from the device. When a client discovers the service record
and attempts to connect with a server installed but not currently
running, the application management system starts the server applica-
tion and hands off the client connection to the server. Clients need to
do nothing special to connect to a connect-anytime service that is not
currently running. A client simply retrieves the service record of the

202 Chapter Seven: Service Discovery

connect-anytime service from the server and then attempts to connect
using the Connector.open() string in the usual way.

There are several potential advantages of connect-anytime services.
Device users frequently are responsible for starting run-before-connect
services. This requires effort on the users’ part, and they may sometimes
forget to start a service. Connect-anytime services may be easier for users
because users have only to start the client, and then the server will be

Programming with the API 203

srv : Server
Application

: Connector

notifier :

: SDDBRecord

return notifier :

 : wait for
 client

 connection
: open(URL)

: new

: create record
in SDDB

startApp()

: Connect-Anytime
Infrastructure

:installApp
(srv)

: remove
from SDDB

:destroyApp()

:de-
installApp

(srv)

: acceptAndOpen()

: close()
return connection :

: handoff connection

Figure 7.5 Lifecycle of a service record for a connect-anytime service.

started automatically. The infrastructure for connect-anytime services is
likely to ask user permission before starting up a service, but granting
this permission should be easier for users than initiating the server
startup process on their own. Also, if a device provides several services,
it may be less computationally expensive to have the connect-anytime
infrastructure listening for all service requests than it is to have all of the
services running at all times.

Although Figure 7.5 shows the service record for a connect-anytime
service being added to the SDDB at application installation, that is only
one possibility. The JABWT specification provides a fair amount of latitude
for when service records for connect-anytime services are actually added
to the SDDB. The key point is that JABWT allows an option whereby
clients can connect to a service not currently running, if it is possible to
start the server application to complete the connection.

7.4 Summary
A Bluetooth client application communicates with a Bluetooth server
application on another device to use the services provided by the server.
Service discovery is the process of identifying the services offered by
nearby Bluetooth devices by retrieving their service records. This
chapter describes the JABWT methods used for locating service records
that contain a particular collection of UUIDs and for retrieving some of
the attributes of those service records.

Service registration is the process of creating a service record
describing a service and adding it to the SDDB, where it can be discov-
ered by clients. For many server applications, developers do not need to
be concerned about service records. The JABWT implementation creates
and registers a service record automatically. This service record adver-
tises the service to potential clients and provides the information
needed to construct a connection string that clients can use to access
the service. In many cases, this automatically generated service record is
sufficient.

In cases in which the automatically generated service record is
inadequate, JABWT provides capabilities that allow developers to
modify the service records. This chapter describes the service records
automatically generated by JABWT and the procedure for modifying
those service records when necessary.

204 Chapter Seven: Service Discovery

8
This chapter covers the following topics:

• What is L2CAP?

• What kinds of applications are appropriate for L2CAP
communications?

• What support for L2CAP communications does JABWT provide?

• How is an L2CAP channel configured by a JABWT application?

• Why do L2CAP applications need to provide flow control?

8.1 Overview
L2CAP stands for logical link control and adaptation protocol. L2CAP is a
multiplexing layer that allows several higher-level protocols or applica-
tions to use Bluetooth communications. Figure 8.1 shows where L2CAP
fits in the Bluetooth protocol stack. The figure shows a common hardware
configuration with separate host hardware and a Bluetooth radio module.
In this configuration, the L2CAP layer is on the host side of the HCI. Also
in this configuration, L2CAP uses HCI to communicate with the baseband
layer in the Bluetooth radio module. All Bluetooth data communications
use L2CAP, but Bluetooth voice communications do not.

As Figure 8.1 shows, several protocols sit on top of the L2CAP layer
and use L2CAP to provide access to the Bluetooth hardware in the
Bluetooth radio module. The SDP and the RFCOMM protocol are two of
these higher-level protocols. JABWT provides access to both SDP and
RFCOMM. Chapter 7 describes how JABWT applications use the SDP
protocol to discover service records. Chapter 4 describes how JABWT
applications use the RFCOMM protocol for serial port communications.

JABWT does not provide access to the other two protocols shown
above L2CAP in Figure 8.1. TCS binary defines the call-control signaling

CHAPTER L2CAP

that establishes speech and data calls between Bluetooth devices. The
BNEP [6] is an optional protocol developed after Bluetooth specification
version 1.1 but based on the 1.1 version of the specification. The BNEP
can be used to transmit IP packets over L2CAP and supports the PAN
profile [36].

The PAN profile is one of three Bluetooth profiles that provide
access to the Internet for Bluetooth devices. Two other profiles for
Internet access are the LAN Access Profile [3] and the Dial-up
Networking Profile [3]. The LAN Access Profile and the Dial-up
Networking Profile use the RFCOMM protocol rather than the BNEP as
their entry point into the Bluetooth protocol stack. The LAN Access
Profile addresses the case in which a data terminal such as a laptop uses
Bluetooth wireless technology to communicate with a LAN access point
that serves as a gateway to a LAN. This is one of the use cases also
addressed by the PAN profile. The PAN profile supersedes the LAN Access
Profile, so the LAN Access Profile is now considered obsolete. The Dial-
up Networking Profile describes the case in which a data terminal such
as a laptop uses Bluetooth wireless technology to communicate with a
cell phone or modem that provides a dial-up connection to a LAN.

206 Chapter Eight: L2CAP

RFCOMM

HCI

OBEX SDP TCS
binary

BNEP

Baseband

L2CAP

Bluetooth Radio

Figure 8.1 Position of L2CAP in the Bluetooth stack.

8.1.1 L2CAP Channels and L2CAP Packets

Figure 8.2 illustrates the multiplexing service that L2CAP provides. The
left side of Figure 8.2 represents one Bluetooth device, and the right side
represents another Bluetooth device. On the left side, an L2CAP server
application and the RFCOMM protocol both are using L2CAP to provide
Bluetooth communications. L2CAP establishes L2CAP channels that
connect these higher-level entities to their counterparts on the remote
device. In Figure 8.2, two L2CAP channels are represented. One L2CAP
channel runs between the L2CAP server application and the L2CAP
client application. Another L2CAP channel runs between the RFCOMM
protocol layers on the two devices. In Figure 8.2 these L2CAP channels
are represented as highways. The arrows traveling over the highways
represent L2CAP packets. L2CAP provides full-duplex communications,
so the L2CAP packets can travel in both directions.

The length of the arrow represents the size of the L2CAP packet.
There is a limit to the size of the L2CAP packet that can be transferred
over a particular L2CAP channel in a particular direction. This limit is
called the maximum transmission unit (MTU). In Figure 8.2, the arrows
heading to the L2CAP client are longer than the arrows heading from

Overview 207

L2CAP
Server

App
RFCOMM RFCOMM

L2CAP
Client
App

L2CAPACL Link

L2CAP Channel

L2CAP Channel

L2CAP

Figure 8.2 L2CAP channels transmit L2CAP packets to multiple destinations.

the L2CAP client. This configuration is intended to suggest that the
MTU for the L2CAP packets received by the L2CAP client is larger than
the MTU for packets received by the L2CAP server. When the L2CAP
channel is established, the MTU values for travel in both directions are
negotiated by the two L2CAP components. Section 8.2.3 provides addi-
tional details about MTUs.

Figure 8.2 shows the ACL link between the two devices. The base-
band layer of the protocol stack establishes the ACL link. There is
exactly one ACL link between two Bluetooth devices communicating
with each other. The ACL link and the baseband functions provide the
infrastructure needed to support the high-level, “logical” abstractions of
L2CAP channels and L2CAP packets that L2CAP presents to higher-level
protocols and applications.

L2CAP packets have to be converted into one or more baseband
packets for transmission over the ACL link. The receiving device then
reassembles these baseband packets into L2CAP packets. There are
various sizes of baseband packets, but the largest payload is 339 bytes.
This is much smaller than the largest payload possible for an L2CAP
packet, 65,535 bytes. Because baseband packets are much smaller than
packet sizes used by higher-level protocols and applications, the seg-
mentation and reassembly process hides the details about Bluetooth
baseband packets from the higher levels of the stack and from applica-
tions. By presenting abstractions such as L2CAP channels and L2CAP
packets to higher levels, L2CAP makes it easier for higher-level protocols
and applications to use Bluetooth communications. This adaptation
function is one of the important contributions of L2CAP.

The L2CAP channels shown in Figure 8.2 are what are known as
connection-oriented channels. They support L2CAP packet transmission in
both directions, and the L2CAP packets transmitted are intended for use
only by the single device at the other end of the ACL link. L2CAP also
provides connectionless channels. Connectionless channels allow only
one-way traffic, and they are intended for broadcasting L2CAP packets
to a group of nearby devices. JABWT provides no support for connec-
tionless channels.

8.1.2 Reasons for Using L2CAP

A number of Bluetooth protocols are defined on top of the L2CAP pro-
tocol. Figure 8.1 shows four of these protocols: RFCOMM, SDP, TCS

208 Chapter Eight: L2CAP

binary, and BNEP. However, the number of these protocols keeps
growing as new Bluetooth profiles are developed that define new proto-
cols based on L2CAP. The first column of Table 8.1 lists the current
Bluetooth protocols that are layered on top of L2CAP. (Additional pro-
tocols and profiles are currently under development by the Bluetooth
SIG.) The second column of Table 8.1 lists the current Bluetooth profiles
that use the protocol listed in the first column. The Bluetooth protocols
and profiles above the line dividing Table 8.1 are candidates for imple-
mentation with the JABWT L2CAP API. The profiles below the line that
use the RFCOMM protocol are candidates to be implemented with the
JABWT RFCOMM API. The JABWT service discovery API provides the
key capabilities of the SDAP, so there should be no need to use JABWT
to implement the SDAP.

The protocols and profiles above the line in Table 8.1 do not use
RFCOMM or OBEX, so if they can be implemented at all with JABWT,

Overview 209

Table 8.1 Protocols and Profiles above Line Are Candidates for L2CAP API

Protocols That Use L2CAP Directly Profiles Using the Protocol

Telephony Control Protocol Specification (TCS-BIN) [1] Cordless Telephony Profile [3]

Intercom Profile [3]

Bluetooth Network Encapsulation Protocol (BNEP) [6] Personal Area Networks [36]

Extended Service Discovery Profile [37]

Hardcopy Control Channel [7] Hardcopy Cable Replacement Profile [7]

Hardcopy Notification Channel [7] Hardcopy Cable Replacement Profile

Audio/Video Control Transport Protocol [8] Audio/Video Remote Control Profile [38]

Audio/Video Distribution Transport Protocol [9] Generic Audio/Video Distribution Profile [39]

Advanced Audio Distribution Profile [40]

RFCOMM [1] Serial Port Profile [3]

Dial-up Networking Profile [3]

FAX Profile [3]

Headset Profile [3]

Hands-Free Profile [41]

Service Discovery Protocol [1] Service Discovery Application Profile [3]

they will use the L2CAP API. Because JABWT does not provide an inter-
face to all of the L2CAP features, it may not be possible to implement
all of the protocols and profiles in Table 8.1 with JABWT. For example,
the first protocol in the table, TCS-BIN makes use of both connection-
oriented and connectionless L2CAP channels. Because JABWT does not
support connectionless L2CAP channels, it would not be possible to
implement all of the TCS-BIN protocol with JABWT.

In the case of TCS-BIN, the JSR-82 expert group made an explicit
decision that telephony control would likely be provided by device
manufacturers, so it was not necessary for JABWT to provide an API that
could be used to implement TCS-BIN. However, the other protocols and
profiles above the line were defined by the Bluetooth SIG after
definition of JABWT, which was based on the 1.1 version of the
Bluetooth specification. Consequently, it may or may not be possible to
implement these protocols and profiles with JABWT. Developers have to
study the specifications carefully and assure themselves that JABWT
support for L2CAP is sufficient to implement a particular protocol and
profile.

For example, JABWT and the Bluetooth audio/video profiles have
incompatible requirements regarding flush timeout. The baseband layer,
a layer below L2CAP in the Bluetooth stack (Figure 8.1), offers the
option of retransmitting packets until they are received successfully. The
retransmit option is controlled by a parameter called flush timeout,
which indicates how long the baseband attempts to retransmit a packet
before giving up and flushing the packet. JABWT currently requires that
L2CAP communications use a flush timeout of 0xFFFF, which means
that baseband should never give up. The baseband should continue to
retransmit until either the packet is acknowledged or the ACL link ter-
minates. On the other hand, the Bluetooth audio/video profiles specify
that applications using the audio/video profiles be allowed to set the
value of flush timeout. These audio/video profiles recommend that
small values should be used for flush timeout. Small values for flush
timeout help ensure that most of the L2CAP bandwidth is devoted to
the initial transmission of audio/video data and that retransmission is
minimized. The next revision of the JABWT specification is expected to
remove the requirement for using a flush timeout of 0xFFFF. The revised
JABWT specification could introduce a way for applications to request a
particular flush timeout. This would remove the current obstacle to
using JABWT to implement the audio/video profiles.

210 Chapter Eight: L2CAP

In addition to the standardized applications defined as Bluetooth
profiles, custom applications based on the L2CAP API are possible. In
the case of custom applications, JABWT developers have a choice about
whether to use the L2CAP API, the RFCOMM API, or the OBEX API. For
most custom applications, the stream-oriented APIs provided by the
higher-level protocols RFCOMM and OBEX would have advantages.
However, if a custom application requires control over which bytes are
sent together in a single packet, then the L2CAP API is the best choice.
This might be the case if the application needs to define a new packet-
based protocol analogous to the packet-based protocols listed in the first
column of Table 8.1. If a stream-based protocol can be used, RFCOMM
and OBEX are better options. OBEX itself is a good example of a stream-
based protocol [1, 29] that can be defined over RFCOMM.

8.2 API Capabilities
This section describes the support that JABWT provides for L2CAP com-
munications. The Java interfaces defined by JABWT for L2CAP are
described. Examples of connection strings used to open an L2CAP con-
nection are provided. Guidelines are proposed for configuring L2CAP
channels with MTU parameters in connection strings and for selecting
appropriate sizes for the byte arrays used to send and receive L2CAP
packets. Issues related to flow control are discussed.

8.2.1 JABWT for L2CAP

Figure 8.3 shows the two interfaces defined in JABWT for L2CAP com-
munications, L2CAPConnection and L2CAPConnectionNotifier. An
L2CAP server uses an L2CAPConnectionNotifier to wait for an L2CAP
client to establish a connection. The notifier then returns an
L2CAPConnection object to provide access to the L2CAP channel
between the client and the server. The L2CAPConnection interface can
be used to send data between the client and the server using the L2CAP
protocol.

When an L2CAP client is successful in opening a connection to an
L2CAP server, the result returned from Connector.open() is an
L2CAPConnection that gives the client access to the L2CAP channel.
Again, the client uses the L2CAPConnection to send and receive data.

API Capabilities 211

The L2CAP client does not use the L2CAPConnectionNotifier
interface.

For serial port (RFCOMM) communications, the JABWT
specification did not need to define any new classes or interfaces beyond
those in the GCF defined by CLDC [13]. GCF already provided
the stream-oriented interfaces StreamConnection and Stream-
ConnectionNotifier. However, these CLDC interfaces were not useful
for L2CAP because L2CAP communications are based on packets not on
streams.

CLDC has a DatagramConnection interface that is packet ori-
ented rather than stream oriented, and DatagramConnection was con-
sidered for possible use with L2CAP. As it turns out, send() and
receive() methods were defined for L2CAPConnection.
DatagramConnection has these same methods, but the method argu-
ments are different. For DatagramConnection these methods take a
Datagram argument, whereas the arguments to the L2CAPConnection
versions of the methods are byte arrays. Each Datagram object sent over
a DatagramConnection contains a destination address, because each
Datagram can be going to a different recipient. However, this overhead
associated with Datagram is not needed for L2CAP packets. Each
L2CAPConnection instance defines a unique sending application and a
unique receiving application. Because the address information is con-
tained in the connection, there is no need to provide an address as part
of the argument to send() or receive().

The receive() method blocks until either an L2CAP packet is
read or the L2CAP channel is closed. The ready() method defined by
the L2CAPConnection interface makes it possible to check whether
a call to receive() will block. The ready() method returns true if
an L2CAP packet is available to be read immediately by receive()
without blocking.

8.2.2 Open an L2CAP Connection

Here are some examples of legal arguments to Connector.open() for
L2CAP clients:

"btl2cap://0050CD00321B:1001"
"btl2cap://0050CD00321B:1001;receiveMTU=512"
"btl2cap://0050CD00321B:1001;receiveMTU=512;"
+ "transmitMTU=512"

212 Chapter Eight: L2CAP

"btl2cap://0050CD00321B:1001;authenticate=true;"
+ "encrypt=true"

"btl2cap://0050CD00321B:1001;master=true"

The protocol name btl2cap is “bee tee el two cap,” not “bee tee one two
cap.” The entry 0050CD00321B in these examples is the Bluetooth
address of the server device. The entry 1001 in these examples is the
PSM value for the server application. The PSM is obtained from the
service record. The PSM tells the L2CAP layer on the remote device
which server application the client wants as the destination of the new
L2CAP channel. Higher-level protocols such as RFCOMM and SDP have
L2CAP PSM values permanently assigned to them. A PSM has to be
dynamically generated for an application, and it is possible that a dif-
ferent PSM will be assigned to the same server application the next time
it starts up. This situation is similar to that of btspp server channel
identifiers, which can vary from device to device and can even vary over
time for the same service. One difference between PSMs and service

API Capabilities 213

javax.microedition.io

<<interface>>
Connection

javax.bluetooth

<<interface>>
L2CAPConnection

<<interface>>
L2CAPConnectionNotifier

Figure 8.3 JABWT defines two interfaces for L2CAP communications.

channel identifiers in JABWT is that PSMs in btl2cap connection
strings are interpreted as hexadecimal numbers, whereas service
channel identifiers in btspp and btgoep connection strings are inter-
preted as decimal numbers.

The security parameters authenticate and encrypt are familiar
from Chapter 4. The parameter master used to request the master role
in the resulting Bluetooth network also is familiar. The parameters
receiveMTU and transmitMTU are unique to L2CAP. The parameter
receiveMTU indicates the size in bytes of the payload of the largest
L2CAP packet that the client is willing to receive from the server. The
parameter transmitMTU indicates the size in bytes of the payload of the
largest L2CAP packet that the client will send to the server. These
parameters are discussed further in the next section.

L2CAP client applications typically get a connection string from
one of the instance methods:

• ServiceRecord.getConnectionURL(int requiredSecurity,
boolean master)

• DiscoveryAgent.selectService(UUID uuid, int secu-
rity, boolean master)

However, if either of the parameters transmitMTU or receiveMTU is to
be used, it must be appended to the Strings returned from these
methods. There is no option to include these MTU parameters in the
arguments to the methods as there is for the security parameters and the
master parameter.

Here are some examples of legal arguments to Connector.open()
for L2CAP servers:

"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC"
"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"

+ "name=L2CAPEx"
"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"

+ "receiveMTU=512"
"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"

+ "receiveMTU=512;"
+ "transmitMTU=1024"

"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"
+ "authenticate=true;"

214 Chapter Eight: L2CAP

+ "encrypt=true;"
+ "authorize=true"

"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"
+ "master=true"

The only new parameters for L2CAP servers are receiveMTU and
transmitMTU. They have the same meaning for the server as they do
for the client. A PSM value is not part of the server’s connection string.
The PSM is generated automatically and inserted into the service record
by the JABWT implementation. This is similar to the situation for btspp
servers, in which the server channel identifier also is automatically gen-
erated and inserted into the service record (see Chapter 7).

8.2.3 L2CAP Channel Configuration

There may be a limit on the size of L2CAP payload the Bluetooth stack
can receive or the size of payload a JABWT application is prepared to
receive. The largest L2CAP packet payload the Bluetooth stack can
receive is returned by LocalDevice.getProperty("bluetooth.
l2cap.receiveMTU.max").

The application should decide whether it wants to handle payloads
as large as the stack can handle or something smaller. The answer is
likely to depend on the nature of the application and the Java heap
space expected to be available to applications.

On the basis of these considerations, the application can commu-
nicate receiveMTU to the remote device when it creates a connection
using the receiveMTU parameter, Connector.open("btl2cap:
//...;receiveMTU=1024").

For some applications it is important to be able to send L2CAP
packets up to a particular size. For example, the BNEP needs to be able
to transmit the maximum Ethernet packet payload, 1500 bytes, plus all
of the associated BNEP headers in a single L2CAP packet. Consequently,
BNEP needs to be able to send L2CAP packets with payloads of at least
1691 bytes [6]. This requirement on the size of outgoing L2CAP packets
can be declared by a JABWT application with the connection string
parameter transmitMTU=1691.

In general, it is better not to specify receiveMTU or transmitMTU
values in the connection string unless absolutely necessary. MTU values

API Capabilities 215

are assigned automatically if no MTU values are mentioned in the con-
nection string. The automatic assignment usually is the default MTU of
672 defined by the L2CAP specification. However, there are cases, such
as the BNEP case discussed earlier, in which setting a particular value is
required.

The documentation on MTUs can be confusing. Many of the
details about receiveMTU and transmitMTU in the JABWT
specification [20] are relevant only to implementers of the JABWT
specification. The Bluetooth L2CAP specification [1] describes MTUs
from the point of L2CAP. However, L2CAP allows a back-and-forth
negotiation process for the MTU values for an L2CAP connection that
does not really apply to JABWT applications. The receiveMTU and
transmitMTU values specified in connection strings by JABWT applica-
tions should not be viewed as initial proposals in a back-and-forth nego-
tiation. Instead they should be viewed as non-negotiable requirements.

For application developers, we boil down the essentials about
MTUs to four rules for code development and one potential pitfall to be
aware of even if all four rules are followed.

MTU Rule 1

The values for receiveMTU and transmitMTU in your L2CAP connection
string must be no smaller than L2CAPConnection.MINIMUM_MTU, which
is 48, the minimum MTU allowed by the Bluetooth L2CAP specification.
The values for receiveMTU and transmitMTU also must be no larger
than 65,535, the maximum payload size in an L2CAP packet.

MTU Rule 2

The value for receiveMTU in your L2CAP connection string must be
smaller than or equal to LocalDevice.getProperty("bluetooth.
l2cap.receiveMTU.max"), the largest L2CAP packet that can be
received by the Bluetooth stack on the device on which your application
is currently running. Applications can use this property at runtime to
tailor their MTU values to the limits of any Bluetooth stack in use.

MTU Rule 3

For transmitting outgoing packets over an L2CAP connection with
send(byte[] outBuf), the byte array outBuf must be no larger than

216 Chapter Eight: L2CAP

L2CAPConnection.getTransmitMTU(). If outBuf is larger than this,
bytes are discarded before the L2CAP packet is sent. If transmitMTU
was declared in the L2CAP connection string, then getTransmitMTU()
has that same value.

MTU Rule 4

To receive incoming packets with receive(byte[] inBuf), allocate a
byte array of size L2CAPConnection.getReceiveMTU().

If you use an inBuf smaller than L2CAPConnection.get-
ReceiveMTU(), any bytes received in the L2CAP packet that do not fit
in inBuf are discarded. If receiveMTU was declared in the L2CAP con-
nection string, you could allocate a byte array of size receiveMTU.
However, if the remote device declares a transmitMTU in its connection
string that is smaller than receiveMTU, then L2CAPConnection.get-
ReceiveMTU() could be smaller than receiveMTU. It never is larger
than receiveMTU.

If you follow all four MTU rules, it is still possible that at runtime
a particular L2CAP client and server will be unable to form a connection
because of incompatible MTU values. For example, suppose Application
A specifies MTU values in its connection string as follows:

"btl2cap://...;receiveMTU=receiveMTUA;transmitMTU=
transmitMTUA"

Also, suppose Application B specifies MTU values in its connection
string as follows:

"btl2cap://...;receiveMTU=receiveMTUB;transmitMTU=
transmitMTUB)"

MTU Mismatch Pitfall

The applications fail to connect because of inappropriate MTU values,

• If the largest packet Application A will send, transmitMTUA, is
larger than the largest packet Application B can receive,
receiveMTUB, or

• If the largest packet Application B will send, transmitMTUB, is larger
than the largest packet Application A can receive, receiveMTUA

API Capabilities 217

The basic problem that leads to the MTU mismatch pitfall is that the
L2CAP protocol does not provide any way to inquire at runtime about
the MTU requirements of the remote device other than trying to make
a connection and seeing whether you succeed. (Server applications can
use custom service attributes in their service records to communicate
their MTU requirements, but we are not aware of any precedent for
doing this in the Bluetooth profiles.)

If you are writing both the client and server applications, you can
avoid this pitfall by not specifying MTU values at all in the connection
string or by making transmitMTUA = receiveMTUB and receiveMTUA
= transmitMTUB. If you have to interoperate with a variety of imple-
mentations, and they use different MTU values, the best strategy is to
omit the transmitMTU parameter from your connection string. By
omitting a transmitMTU, you avoid a mismatch with the receiveMTU
of the remote device.

Omitting a receiveMTU in your connection string does not
provide the same benefit. The L2CAP channel configuration process
requires that each application propose an MTU value for incoming
L2CAP packets. If there is no receiveMTU in the connection string,
then the JABWT implementation supplies a value for receiveMTU by
using the constant L2CAPConnection.DEFAULT_MTU, which has the
value 672.

8.2.4 No Flow Control in L2CAP

L2CAP does not provide any flow control mechanism nor does it
provide any mechanism for ensuring reliable transmission of L2CAP
packets. The baseband layer, which is below L2CAP in the Bluetooth
stack, provides flow control for the ACL link as a whole. Unfortunately,
it is not sufficient to rely on the flow control provided by the lower base-
band level. The problem is that L2CAP is a multiplexing layer that pro-
vides multiple L2CAP channels headed to multiple higher-level
protocols or applications. In cases in which L2CAP packets arrive faster
than they can be processed by one of the higher-level protocols and
applications, the L2CAP buffers fill up. When buffers are going to
overflow, the only options available to L2CAP are the following:

• Let the lower-level flow-control mechanisms kick in and shut off
all incoming packets over this ACL link. Baseband flow-control

218 Chapter Eight: L2CAP

shuts off L2CAP packets over all the L2CAP channels, not just the
L2CAP channels that are having trouble keeping up.

• Discard some L2CAP packets because there is no room for them in
the L2CAP buffers. The lower stack layers will not retransmit these
packets, because they have already been acknowledged as success-
fully received.

Simply discarding L2CAP packets is an unattractive option that
would lead to data corruption or hung communications. However, the
other option whereby the lower-level flow control shuts off all of the
L2CAP channels can lead to deadlock in certain situations. The same
problem of a multiplexing layer over a reliable communication layer
arises in infrared data communications. The deadlock scenario for the
IrDA protocol stack is discussed by Williams and Millar [42].

A summary of the deadlock scenario in L2CAP terms is as
follows: Suppose a higher-level application uses two L2CAP channels.
One of the L2CAP channels is used as a data channel, and the other
L2CAP channel is used as a signaling channel. It is possible that the
L2CAP buffers are overflowing because the application is waiting to
receive an L2CAP packet on the signaling channel before it processes
the packets on the data channel. If this is the case, and if baseband
flow control shuts off the entire ACL link, then the L2CAP packet on
the signaling channel cannot get through. The application continues
to wait for this packet, so it does not process the packets on the data
channel. However, processing packets on the data channel is the only
thing that will free L2CAP buffers and get packets flowing again on
the ACL link.

Because L2CAP has no flow control, the protocols and profiles that
use L2CAP communications need to have their own mechanisms for flow
control. For example, the RFCOMM protocol offers a credit-based flow
control mechanism. The Hardcopy Cable Replacement Profile [7], which
is one of three Bluetooth profiles for printing, also uses a credit-based flow
control mechanism. The Bluetooth Extended Service Discovery Profile
[37] uses an end-to-end window flow control mechanism.

If a flow control mechanism were to be added to L2CAP, it would
not be necessary for every protocol and profile based on L2CAP to
provide its own flow control. For this reason, there is a good chance that
the Bluetooth SIG will provide a version of L2CAP with flow control in
an upcoming version of the Bluetooth specification.

API Capabilities 219

8.2.5 Types of Applications Using L2CAP

L2CAP applications can be implementations of standard Bluetooth
profiles, or they can be nonstandardized, custom applications. The
issues that come up are somewhat different depending on which kind
of application is planned.

Implementing Bluetooth Profiles Using L2CAP

Certain Bluetooth profiles use L2CAP as their entry point into the
Bluetooth protocol stack. Developers who intend to implement one of
these Bluetooth profiles with JABWT applications need to study the
profile specifications closely so that their applications can pass any
Bluetooth qualification tests [10] for this profile and can successfully
interoperate with other devices that support these profiles.

Some Bluetooth profiles place requirements on MTU values
configured for L2CAP channels. For example, the Hardcopy Cable
Replacement Profile establishes two L2CAP channels: a control channel
and a data channel. The profile requires that the MTU for the control
channel be at least 128 bytes in both directions. The profile recom-
mends that the MTU for the data channel be larger than the minimum
(48 bytes) but does not require a particular value.

Implementing Custom Applications Using L2CAP

L2CAP applications that do not claim to conform to a Bluetooth profile
do not need to undergo the Bluetooth qualification process. However,
developers planning a custom application will still benefit from study-
ing the Bluetooth profiles that use L2CAP. These profiles provide useful
examples of how to best use L2CAP.

You should consider how your application will provide flow
control. Several flow control schemes have been adopted by the
Bluetooth profiles and protocols. For example, SDP entails a simple
scheme that requires that only one SDP request from an SDP client to
an SDP server can be outstanding at any point in time. Until the server
responds to this request, the client is not allowed to issue another
request over this same L2CAP channel.

Other current approaches for flow control over L2CAP are refer-
enced in Section 8.2.4. It is worth consulting those references to see
what options are available.

220 Chapter Eight: L2CAP

8.3 Programming with the API
This section shows example code for MIDP applications that use JABWT
L2CAP communications. The example code illustrates the use of JABWT
and some design considerations for L2CAP applications. Not all of the
code needed to produce a running application is presented here. The
complete code is available in Appendix A.

8.3.1 Example: Echo L2CAP Packets

The example code shows both an L2CAP server and an L2CAP client. The
L2CAP server echoes back any L2CAP packets sent by the L2CAP client.
The client sends 50,000 bytes in a series of L2CAP packets. The size of the
packets sent by the client is determined by the value of getTransmit-
MTU() for the connection. The payload of every packet the server receives
is immediately sent back to the client. Both the client and the server keep
a count of the total number of bytes sent or received over this connection.
This byte count is reported when the packet exchange is complete.

We first look at the MIDlet method openL2CAPConnection(),
which computes the connection string for either the server or the client
and then starts it running. This method takes as arguments
receiveMTU and transmitMTU and two boolean arguments that indi-
cate whether those arguments should be added as parameters to the
connection string. There is also an argument indicating whether a client
or a server should be started. In the case in which a client should be
started, openL2CAPConnection() uses the selectService()
method to obtain a connection string for a server application. The
selectService() method attempts to find a server application that
uses a particular UUID in its service record. Having computed the con-
nection string in the url variable, the openL2CAPConnection()
method starts a thread to execute the client. In the case in which the
method is starting a server, computing the connection string is just a
matter of concatenating strings for the btl2cap scheme, a UUID for the
ServiceClassID (see Chapter 7), and any MTU parameters.

void openL2CAPConnection(boolean isClient,
boolean receiveMTUInput,
int receiveMTU,
boolean transmitMTUInput,
int transmitMTU) {

Programming with the API 221

String url = null;
String paramString = "";

if (receiveMTUInput) {
paramString += ";receiveMTU=" + receiveMTU;

}
if (transmitMTUInput) {

paramString += ";transmitMTU=" + transmitMTU;
}
if (isClient) {
displayField.setText(
"searching, please wait...");

DiscoveryAgent agent =
device.getDiscoveryAgent();

try {
url

= agent.selectService(uuid,
ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
false);

} catch (BluetoothStateException e) {
displayError("Error",

"BluetoothStateException: " +
e.getMessage());

}
if (url == null) {
displayError("Error",

"failed to find server!");
return;

}
url += paramString;
new L2capClient(this).start(url);

} else {
url = "btl2cap://localhost:" + uuid.toString();
url += paramString;
new L2capServer(this).start(url);

}
}

The L2capServer runs in its own thread, and it establishes an
L2CAPConnection in its run() method.

222 Chapter Eight: L2CAP

public class L2capServer extends EchoParticipant
implements Runnable {

L2capMtuMIDlet parent;
private String url;

public L2capServer(L2capMtuMIDlet parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;
new Thread(this).start();

}

public void run() {
LocalDevice device = null;
L2CAPConnectionNotifier notifier = null;
try {
device = LocalDevice.getLocalDevice();
/* Request that the device be made discoverable */
device.setDiscoverable(DiscoveryAgent.GIAC);

} catch(BluetoothStateException e) {
parent.displayError("Error",

"BluetoothStateException: " +
e.toString());

return;
}
try {
notifier = (L2CAPConnectionNotifier)

Connector.open(url);
} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException in " +
" Connector.open()");

} catch (IOException e) {
parent.displayError("Error",

"IOException: " +
e.getMessage());

}

Programming with the API 223

if (notifier == null) {
return;
}

try {
out.setLabel("["+url+"]");
for (;;) {
L2CAPConnection conn = notifier.acceptAndOpen();
echoReceivedL2capPackets(conn);
conn.close();

}
} catch(IOException e) {
parent.displayError("Error",

"IOException: " +
e.getMessage());

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException: " +
e.getMessage());

}
}

}

The statement that creates the L2CAPConnectionNotifier is

notifier = (L2CAPConnectionNotifier)Connector.open(url);

This statement also creates an L2CAP service record (see Chapter 7). The
openL2CAPConnection() method described above provides the url.
Its value in this first example is

"btl2cap://localhost:9C68A2AA1EC011D79E6C00B0D03D76EC;"
+ "receiveMTU=672;transmitMTU=672"

If the url argument to Connector.open() violates either MTU Rule 1
or MTU Rule 2, then this statement throws an IllegalArgument-
Exception. There is code for exception handling in L2capServer to
catch the IllegalArgumentException. It is unusual to provide an
exception handler for an unchecked Java exception such as this, but it
has advantages for demonstrating the results of MTU rule violations as
described in the next section.

224 Chapter Eight: L2CAP

The statement that adds the service record to the SDDB and waits
for a client to connect is

L2CAPConnection conn = notifier.acceptAndOpen();

If this statement does not throw an exception, it returns an instance of
an L2CAPConnection, which provides access to the L2CAP channel
between the L2capServer and the L2capClient.

The definition of the echoReceivedL2capPackets() method
that actually sends and receives the bytes is described below in
the EchoParticipant class. The L2capServer extends the
EchoParticipant class, so it inherits this method.

The code for the L2capClient is shown next. Here the key state-
ment in the run() method is

conn = (L2CAPConnection)Connector.open(url);

Again, the openL2CAPConnection() method provides the url; its value
varies with the Bluetooth device address of the server and the PSM
assigned to the server application. In this first example it has the value

"btl2cap://0050CD00321B:1001;authenticate=false;"
+ "encrypt=false;master=false;"
+ "receiveMTU=672;transmitMTU=672"

The Connector.open(url) statement attempts to form an L2CAP
connection to the echo service described by the url argument.

public class L2capClient extends EchoParticipant
implements Runnable {

L2capMtuMIDlet parent;
private String url;

public L2capClient(L2capMtuMIDlet parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;

Programming with the API 225

new Thread(this).start();
}

public void run() {
L2CAPConnection conn = null;
out.setLabel("["+url+"]");
try {
conn = (L2CAPConnection)Connector.open(url);

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException in "
+ "Connector.open()\n"
+ e.getMessage());

} catch (BluetoothConnectionException e) {
String problem = "";
if (e.getStatus() ==
BluetoothConnectionException.UNACCEPTABLE_PARAMS)
{problem = "unacceptable parameters\n";

}
parent.displayError("Error",

"BluetoothConnectionException: "
+ problem + "msg=" +
e.getMessage() +

"\nstatus= " + e.getStatus());
} catch (IOException e) {
parent.displayError("Error",

"IOException: " + e.getMessage());
}
if (conn == null) {
return;

}
try {
sendL2capPacketsForEcho(conn);
conn.close();

} catch (IOException e) {
parent.displayError("Error",

"IOException: " + e.getMessage());
}

}
}

226 Chapter Eight: L2CAP

If a connection cannot be formed between the L2CAP client and
the L2CAP server because of incompatible MTU values (see the MTU
mismatch pitfall in Section 8.2.3) then a Bluetooth-
ConnectionException is thrown with a status of Bluetooth-
ConnectionException.UNACCEPTABLE_PARAMS. The error handling
code for the L2capClient class checks for a Bluetooth-
ConnectionException with that status. The Bluetooth-
ConnectionException class defines five other constants in addition to
UNACCEPTABLE_PARAMS. These constants describe different reasons
that a connection attempt might fail. As shown in the example code,
the getStatus() method is used to retrieve the constant that applies
to a particular exception.

Once the L2CAPConnection is established, it is passed to the
method sendL2capPacketsForEcho(), which sends and receives the
bytes over the L2CAP channel. The sendL2capPacketsForEcho()
method is inherited from EchoParticipant, which is the next class we
examine. This class has two methods. The method sendL2cap-
PacketsForEcho() is used by the client for generating the L2CAP
packets. The method echoReceivedL2capPackets() is used by the
server for echoing back the bytes received from the client.

public class EchoParticipant {

protected StringItem out;
private int bytesToSend = 100000;

void sendL2capPacketsForEcho(L2CAPConnection conn)
throws IOException {

byte[] sbuf = new byte[conn.getTransmitMTU()];
byte[] rbuf = new byte[conn.getReceiveMTU()];
for (int i=0; i < sbuf.length; i++) {
sbuf[i] = (byte)i;

}
int count = 0;
long start = System.currentTimeMillis();
while (count < bytesToSend) {
conn.send(sbuf);
count += sbuf.length;
count += conn.receive(rbuf);

Programming with the API 227

/* Display the bytes sent and received so far */
out.setText(Integer.toString(count));

}
/* Let the echoer know we are done sending bytes */
conn.send("DONE".getBytes());
conn.receive(rbuf);
long end = System.currentTimeMillis();
out.setText("Done (transferred "+count+" bytes)\n"

+ "Elapsed time " + (end - start)/1000
+ "sec");

}
void echoReceivedL2capPackets(L2CAPConnection conn)
throws IOException {

byte[] ibuf = new byte[conn.getReceiveMTU()];
int bytesIn;
int count = 0;
for (;;) {
bytesIn = conn.receive(ibuf);
byte[] obuf = new byte[bytesIn];
System.arraycopy(ibuf, 0, obuf, 0, bytesIn);
conn.send(obuf);
if ((bytesIn == 4) && (new
String(obuf)).equals("DONE")) {break;}

count += 2 * bytesIn;
/* Display the bytes received and sent so far */
out.setText(Integer.toString(count));

}
out.setText("Done (transferred " + count + " bytes)");

}
}

The key parts of both methods are the statements that send and receive
L2CAP packets. The method sendL2capPacketsForEcho() does

conn.send(sbuf);

followed by

count += conn.receive(rbuf);

228 Chapter Eight: L2CAP

The method echoReceivedL2capPackets() reverses the order of
these operations.

The method sendL2capPacketsForEcho() follows MTU
Rule 3, which limits the size of packets sent to a maximum of
getTransmitMTU(). This is shown in the two statements

byte[] sbuf = new byte[conn.getTransmitMTU()];

and

conn.send(sbuf);

The method sendL2capPacketsForEcho() also follows MTU Rule 4,
which recommends allocating a byte array of size getReceiveMTU() to
receive incoming packets:

byte[] rbuf = new byte[conn.getReceiveMTU()];

and

count += conn.receive(rbuf);

The method echoReceivedL2capPackets() also follows MTU Rules 3
and 4, although this is more difficult to see for MTU Rule 3. The rele-
vant statements are

bytesIn = conn.receive(ibuf);
byte[] obuf = new byte[bytesIn];
…

conn.send(obuf);

The size of the byte array sent is based on the size of the byte
array received. How do we know that the byte array obuf in
conn.send(obuf) is not larger than transmitMTU? Because all MTU
values are specified as 672 bytes in both the server and client connec-
tion strings, we know that the packet received will not be larger than
672 bytes. We can conclude that obuf, the byte array sent, also will be
no larger than 672 bytes.

The client knows it is finished sending packets when its count
exceeds 100,000 bytes. The L2capClient sends a special 4-byte packet

Programming with the API 229

corresponding to the ASCII values for the character string "DONE" to
inform the L2capServer that the client is finished sending bytes.

8.3.2 User Interface for MTU Values

The example code in this section extends the L2CAP echo program of
the previous section with a user interface that lets you enter values for
receiveMTU and transmitMTU for both the L2CAP server and the
L2CAP client. These MTU values are then used in the connection
strings. If an empty value is provided for one of these MTU values, that
is, if the field in the user interface is cleared, the corresponding MTU
parameter is not included in the connection string passed to
Connector.open(). This user interface makes it easy to try various
combinations of MTUs to see the effect of MTU Rules 1 and 2 and the
MTU mismatch pitfall discussed in Section 8.2.3. This user interface also
makes it possible to experience the effect of MTU size on the time
required for the client and server to transmit 100,000 bytes over L2CAP.

Figure 8.4 shows the user interface for entering MTU values. Both
the server and the client use the same user interface. Figure 8.4 (a) shows
the first screen, which allows the user to enter a value for receiveMTU.
Figure 8.4 (b) shows the second screen, which allows the user to enter a
value for transmitMTU. The values shown in Figure 8.4 are compatible
because transmitMTU receiveMTU for L2CAP packets sent from the
client to the server.

The method getReceiveMTUFromUser() shown below creates
the display shown in Figure 8.4 (a) for entering a value for receiveMTU.
The constant L2CAPConnection.MINIMUM_MTU is used to display the
lower bound on legal input values. The LocalDevice property blue-
tooth.l2cap.receiveMTU.max is used to display the upper bound on
legal input values. The constant L2CAPConnection.DEFAULT_MTU is
provided as the starting value of the input field.

private void getReceiveMTUFromUser(boolean isClient) {
String maxRecMTUPlus1;
String maxRecMTU
= LocalDevice.getProperty(
"bluetooth.l2cap.receiveMTU.max");

if (maxRecMTU == null) {
maxRecMTUPlus1 = "Unknown";

} else {

230 Chapter Eight: L2CAP

/* Get (max + 1) for display of (min – 1) < x <
(max + 1) */
maxRecMTUPlus1

= (new Integer(Integer.parseInt(maxRecMTU) +
1)).toString();

}
String initialMTU
= Integer.toString(L2CAPConnection.DEFAULT_MTU);

receiveMTUForm = new Form(isClient ? "L2CAP Client" :
"L2CAP Server");

String recMtuFieldLabel

Programming with the API 231

Figure 8.4 User interface for MTU experiments. (A) A receiveMTU of 672 bytes is entered for
the server. (B) A transmitMTU of 500 bytes is entered for the client (emulation only).

A B

= "ReceiveMTU \n" + (L2CAPConnection.MINIMUM_MTU
- 1) + " < x < " + maxRecMTUPlus1;

receiveMTUForm.append(new TextField(recMtuFieldLabel,
initialMTU, 10, TextField.NUMERIC));

receiveMTUForm.addCommand(new Command("Exit",
Command.EXIT, 1));

receiveMTUForm.addCommand(new Command("Next",
Command.ITEM, 1));

receiveMTUForm.setCommandListener(this);
display.setCurrent(receiveMTUForm);

}

We can cause problems for the L2capServer if we enter the following
MTU values in the user interface:

Client: receiveMTU=500, transmitMTU=672

Server: receiveMTU=672, transmitMTU=500

These values avoid the MTU mismatch pitfall, so the connection is
formed. The client sends 672-byte L2CAP packets to the server. The
server can receive these packets because 672 bytes is the same as the
server’s receiveMTU. However, when the server attempts to echo
the bytes back to the client, a 672-byte packet is larger than the server’s
transmitMTU of 500 bytes.

There are several options for dealing with this problem. For the
sake of simplicity, we adopt an approach that does only one
send(outBuf) for each receive(inBuf) and uses an outBuf of size
transmitMTU. The extra 172 bytes are not echoed back to the client.
This allows us to have just one send() for every receive() and keeps
the example code a little simpler. In theory, using an outBuf of 672
bytes with all the received bytes should lead to the same result as using
an outBuf of size transmitMTU. The excess 172 bytes should be auto-
matically discarded by the JABWT implementation. However, this
would violate MTU Rule 3. Following MTU Rule 3 here makes it clear in
the code that the failure to echo all the bytes is intentional.

The shaded statements below show the changes made to the
method echoReceivedL2capPackets() shown in Section 8.3.1. The
shaded statements limit the number of bytes echoed from each incom-
ing L2CAP packet to just transmitMTU bytes.

232 Chapter Eight: L2CAP

Programming with the API 233

void echoReceivedL2capPackets(L2CAPConnection conn)
throws IOException {

byte[] ibuf = new byte[conn.getReceiveMTU()];

int transmitMTU = conn.getTransmitMTU();

int bytesIn;

int bytesOut;

int count = 0;
for (;;) {
bytesIn = conn.receive(ibuf);

bytesOut = Math.min(bytesIn, transmitMTU);
byte[] obuf = new byte[bytesOut];
System.arraycopy(ibuf, 0, obuf, 0, bytesOut);

conn.send(obuf);
if ((bytesIn == 4) && (new String(obuf)).equals
("DONE")) {

break;}

count += bytesIn + bytesOut;

/* Display the bytes received and sent so far */
out.setText(Integer.toString(count));

}
out.setText("Done (transferred " + count + " bytes)");

}

8.3.3 L2CAP Clients and Servers Have the Same Capabilities

The example code in this chapter might leave the erroneous impression
that L2CAP server applications have to be passive and are incapable of
initiating communications. This is not the case. Although the client ini-
tiates the L2CAP connection, once that connection is formed, both sides
have access to an instance of an L2CAPConnection, so both sides have

the same capabilities. Clients and servers can both send packets when-
ever they want to. An easy experiment that illustrates this point is to
exchange these two statements in the example code:

sendL2capPacketsForEcho(conn);

and

echoReceivedL2capPackets(conn);

This exchange changes the example code so that instead of the server
echoing the packets sent by the client, the client echoes the packets sent
by the server.

8.3.4 Flow Control

L2CAP provides no flow control, so Bluetooth protocols and profiles
that use L2CAP typically provide their own flow control. Let’s consider
the echo example of this chapter from the point of view of flow control.
Suppose the client device is capable of sending L2CAP packets much
faster than the server device is capable of echoing them back. Because
our example code waits for a packet to be returned before it tries to send
the next packet, the client is paced by the server’s ability to echo the
packets. This should keep the client from getting ahead of the server and
overflowing the server’s buffers.

However, suppose that instead of a symmetric, two-way echoing
application, the data transfer is one way. In that case, a different flow
control scheme is required. In addition to the L2CAP packets that trans-
mit data and travel in one direction it would be necessary to send back
L2CAP packets containing control signals to stop and start the data flow.

The next code example illustrates a one-way data transfer using a
credit-based flow control scheme.

The code for the complete example is too lengthy to be shown
here, so only selected methods involved with credit-based flow control
are shown. The complete code is available in Appendix A. Credit-based
flow control is used in the Bluetooth specification for RFCOMM and the
Hardcopy Cable Replacement Profile. In the credit-based flow control
scheme illustrated in this example, the L2CAP server starts by issuing
four credits to the L2CAP client. The client can send as many L2CAP

234 Chapter Eight: L2CAP

packets as it has credits, so the client can then send four packets to the
L2CAP server. When the client’s credit count reaches zero, the client
must stop sending L2CAP packets and wait for additional credits from
the server.

In the CreditBased1WayXfer class shown below, the key section
that accomplishes the flow control is

if (availableCredits > 0) {
conn.send(sbuf);
availableCredits––;

The L2CAP client can use the JABWT send() method to send an L2CAP
packet to the server as long as it has available credits. However, each
packet sent uses up a credit. When the credits reach zero, the L2CAP
client has to stop sending data until more credits are received.

public class CreditBased1WayXfer {

// number of L2CAP packets the receiver has
// authorized to be sent
int availableCredits;
protected StringItem out;
private int bytesToSend = 50000;

void sendL2capPackets(L2CAPConnection conn) throws
IOException {

boolean sentDone = false;
byte[] sbuf = new byte[conn.getTransmitMTU()];
int receiveMTU = conn.getReceiveMTU();
byte[] rbuf = new byte[receiveMTU];
for (int i=0; i < sbuf.length; i++) {
sbuf[i] = (byte)i;

}
int count = 0;
long start = System.currentTimeMillis();
//listen for credits authorizing sending packets

Programming with the API 235

receiveCredits(conn, receiveMTU);
while (count < bytesToSend) {

if (availableCredits > 0) {
conn.send(sbuf);
availableCredits––;
count += sbuf.length;
// Display the number of bytes sent so far
out.setText(Integer.toString(count));

}
maybeReceiveCredits(conn, receiveMTU);

}
// Let the receiver know we are done sending bytes
while (!sentDone) {

if (availableCredits > 0) {
conn.send("DONE".getBytes());
sentDone = true;

} else {
maybeReceiveCredits(conn, receiveMTU);

}
}
long end = System.currentTimeMillis();
out.setText("Done (transferred "+count+" bytes)\n"

+ "Elapsed time " + (end -
start)/1000 + "sec");

}
}

The sendL2capPackets() method above uses the two application
methods receiveCredits() and maybeReceiveCredits() to listen
for L2CAP packets that deliver additional credits from the server. The
definition of the receiveCredits() method is shown next. This
method reads an L2CAP packet from the server and interprets the byte
array in that packet as an integer. That integer is added to
availableCredits to increase the credits available for use by the
client.

// Read an L2CAP packet. If it has four bytes, then
// interpret those

236 Chapter Eight: L2CAP

// bytes as new credits for sending L2CAP packets.
void receiveCredits(L2CAPConnection conn,
int receiveMTU) {
int incomingBytes;
int newCredits;
byte[] rbuf = new byte[receiveMTU];
try {

incomingBytes = conn.receive(rbuf);
} catch (IOException ignore) {
return;

}
// assume four bytes are used to encode new
// credits
if (incomingBytes != 4) {

return;
}
availableCredits +=
CreditBased1WayXfer.byteArray2Int(rbuf);

}

// Convert a four-byte array to an int. The byte
// array is assumed
// to have a big Endian byte order.
public static int byteArray2Int(byte[] argBytes) {

int result = 0;
// big-endian conversion
for (int i = 0, j = 0; i < 4; i++, j++) {

result = result + (((int)argBytes[i] << 24)
>>> (j * 8));

}
return result;

}

The L2CAP server issues an additional credit to the client only when the
server frees up buffer space to hold one additional L2CAP data packet. It
is unclear how long it takes the server to process one of the previously
sent L2CAP packets, free up the space needed to receive another packet
from the client, and send an L2CAP packet back to the client to issue the

Programming with the API 237

additional credit. Because receiveCredits() uses the blocking JABWT
method receive() to read an L2CAP packet from the server, there is
always the risk that a call to receive() can become stuck waiting for
this L2CAP packet from the server. The credit-based flow control scheme
is meant to block only when the client has no more credits, so we want
the client to listen for additional credits without blocking.

The key to keeping the client from getting stuck in receive() is
to use the JABWT ready() method to test whether an L2CAP packet
is available for the client to read. If ready() returns true, receive()
returns an L2CAP packet without blocking. The client’s
maybeReceiveCredits() method is shown next. It uses the ready()
method to check for additional credits issued by the server without
blocking.

// If there is an L2CAP packet waiting to be read,
// then call
// receiveCredits. Otherwise return without
// blocking.
void maybeReceiveCredits(L2CAPConnection conn,

int receiveMTU) {
try {
if (conn.ready()) {
receiveCredits(conn, receiveMTU);

}
} catch (IOException ignore) {
}

}

All of the example code we have looked at so far for credit-based flow
control has been client code. The L2CAP server in this example has two
threads: one thread to move the L2CAP packets received from the client
to a buffer storage location and a second thread to process the buffered
L2CAP packets and issue credits.

The receiveL2capPackets() method shown next is used in the
thread that receives the incoming L2CAP packets and stores them. It is
derived from the echoReceivedL2capPackets() used in the echo
examples earlier in this chapter. The receiveL2capPackets() method
has been modified to store the bytes obtained from an L2CAP packet
sent by the client to one of four L2capPacketBuffers maintained

238 Chapter Eight: L2CAP

by the server. An L2capPacketBuffer has room to store
getReceiveMTU() bytes. These bytes are processed later by the second
thread. The code in echoReceivedL2capPackets() for counting
incoming bytes and for echoing those bytes back to the client has been
removed from receiveL2capPackets().

public class CreditBased1WayXfer {
…

void receiveL2capPackets(L2CAPConnection conn,
L2capBuffers buffers,
CreditIssuer issuer)

throws IOException {

byte[] ibuf = new byte[conn.getReceiveMTU()];
L2capPacketBuffer packetBuffer;
int transmitMTU = conn.getTransmitMTU();
int bytesIn;

for (;;) {
packetBuffer =

buffers.nextAvailablePacketBuffer();
if (packetBuffer != null) {
bytesIn = conn.receive(ibuf);
packetBuffer.storeBytes(ibuf, bytesIn);
if ((bytesIn == 4) &&

(new String(ibuf, 0,
bytesIn)).equals("DONE")) {

break;
}

} else {
if (conn.ready()) {
System.out.println("Should not get here. No " +

"L2capPacketBuffer " +
"available " +
"to receive incoming " +
"packet.");

}
}

Programming with the API 239

}
issuer.setDoneProcessing();
out.setText("Done (transferred " + issuer.count +
" bytes)");

}
…
}

The following example code shows the run() method for the
CreditIssuer thread that processes the buffered packets and issues
credits to the client. The first thing that happens in the
CreditIssuer.run() method is that an L2CAP packet is sent to the
client containing a number represented as a byte array. The number in
the L2CAP packet is the number of starting credits that the server issues
to the client. This number is determined by the number of client
packets that the server has buffer space available to receive.

The CreditIssuer then continuously loops over the buffers to
process any packets that have been received and stored there by the
other server thread. The only processing of packets done in the example
is to count the number of bytes in each packet and keep a total count of
bytes received from the client over this L2CAP channel.

public class CreditIssuer implements Runnable {

…

public void run() {

L2capPacketBuffer packetBuffer;
int freedBuffers;
//Issue one credit for each L2capPacketBuffer
int totalCredits =

L2capBuffers.NUMBER_OF_PACKET_BUFFERS;
byte[] issueCreditsPacketPayload =

CreditBased1WayXfer.int2ByteArray(totalCredits);
try {

conn.send(issueCreditsPacketPayload);
} catch (IOException e) {

System.out.println("IOException when issuing "
+ "initial credits");

240 Chapter Eight: L2CAP

return;
}
while (!doneProcessing) {

freedBuffers = 0;
while ((packetBuffer =

buffers.nextUsedPacketBuffer())
!= null) {

count += packetBuffer.getNumBytesStored();
packetBuffer.eraseStoredBytes();
freedBuffers++;

}

if (freedBuffers > 0) {
try {
conn.send(CreditBased1WayXfer.int2ByteArray(

freedBuffers));
} catch (IOException e) {
System.out.println("IOException " +

e.getMessage());
}

}
try {
Thread.sleep(sleepTime);

} catch (InterruptedException ignore) {
}

}
}

…
}

After the bytes in a buffered L2CAP packet have been counted,
the CreditIssuer thread calls the application method erase-
StoredBytes() to make this L2capPacketBuffer available to store
future L2CAP packets. CreditIssuer keeps track of how many
buffers it has freed up and uses the following statement to send an
L2CAP packet to the client to issue one additional credit for each
buffer freed:

conn.send(CreditBased1WayXfer.int2ByteArray(
freedBuffers));

Summary 241

The statement Thread.sleep(sleepTime) at the bottom of the
while loop makes it possible to introduce an arbitrary delay into the
CreditIssuer thread. Experimenting with various delays shows how
credit-based flow control adjusts the client’s data-transmission rate to
match the server’s packet-processing rate.

8.4 Summary
L2CAP is one of three APIs for Bluetooth communication that are avail-
able to JABWT applications. JABWT provides a packet-based API for
L2CAP as opposed to the stream-based APIs available for serial port and
OBEX.

L2CAP communications are the right choice for an application if

• The application implements a Bluetooth profile that uses the
L2CAP protocol and that Bluetooth profile does not use one of the
higher-level protocols RFCOMM or OBEX, or

• The application implements a new custom protocol that is packet
oriented

The L2CAPConnection interface provides methods for sending and
receiving L2CAP packets over an L2CAP channel. Applications can use
the connection string parameters receiveMTU and transmitMTU to
define their requirements for maximum payload sizes of the L2CAP
packets. This chapter presents four rules regarding MTU values for use
in JABWT programs.

L2CAP provides no flow control, so JABWT applications that use
the L2CAP API need to provide their own flow control. Without some
form of flow control, L2CAP applications could encounter packet loss or
deadlock. This chapter provides example code for two flow control
schemes:

• Simple flow control that waits for a response to packet n before
sending packet n + 1

• Credit-based flow control

9
This chapter covers the following topics:

• Writing a MIDlet that uses the Bluetooth APIs

• Writing a MIDlet that uses the OBEX APIs

9.1 Overview
Now that JABWT has been introduced, what can a developer do with
the APIs? This chapter contains two sample applications that show the
API in use. These examples show how to use JABWT within an MIDP
application (i.e., MIDlet). Because peer-to-peer gaming will most likely
be one of the first uses of JABWT, the first application is an implemen-
tation of a simple game of tic-tac-toe using RFCOMM to allow a user to
compete against an opponent. The second application is a simple mes-
saging application. In this application, an OBEX client can send mes-
sages to and retrieve messages from an OBEX messaging server.

To develop MIDlets with JABWT, a J2ME development tool must
be used with a Bluetooth development kit. There are a variety of J2ME
development tools. The oldest is the J2ME Wireless Toolkit from Sun
Microsystems. The J2ME Wireless Toolkit is available free from Sun at
java.sun.com. Most Bluetooth development kits require purchasing
expensive hardware, but developers are able to get up and running
quickly and inexpensively by using a software simulator. One avail-
able from Rococo Software is called the Impromptu Simulator. A trial
version is available at www.rococosoft.com. This trial version allows
developers to try out JABWT. The following code has been tested in
this environment.

(This chapter contains a large amount of code. Added or changed
code appears on a gray background. The original, unshaded code is pro-
vided for context.)

CHAPTER Example
Appl icat ions

9.2 Tic-Tac-Toe MIDlet
The mobile gaming industry is likely to be one of the first groups of
developers to use JABWT. Despite its simplicity, the Tic-Tac-Toe MIDlet
that follows is a good example of a mobile game that uses JABWT. The
Tic-Tac-Toe MIDlet contains the main TicTacToeMIDlet class along
with the TTTGame, TTTCanvas, PauseCanvas, and PauseTimerTask
classes. All five classes work together to enable a user to play a game of
tic-tac-toe with a friend.

The TicTacToeMIDlet class is the MIDlet run by the KVM. This
class also implements the CommandListener interface for handling
requests to start and exit the game. The TTTGame class runs in a separate
thread and handles communication between devices. Depending on
what the user selects, this thread either creates a service record and regis-
ters it with the Bluetooth stack or performs device and service discovery
to find an opponent to play. The TTTCanvas class handles the display of
the game board. The PauseCanvas class is a helper class that displays a
splash screen while the application processes a request from the user. The
PauseCanvas class accepts a message in parts and displays one part of the
message every second. This gives the appearance that the MIDlet is doing
something when there is nothing to display. For example, the
PauseCanvas class is displayed when device and service discovery is
taking place. The PauseTimerTask class works with the PauseCanvas
class to notify the PauseCanvas class to repaint the screen.

9.2.1 Defining the TicTacToeMIDlet

Overview

The TicTacToeMIDlet class extends the MIDlet class. It is the main
class for the tic-tac-toe game. The class implements the
CommandListener interface to respond to Command events from the
user. In particular, these Command events signal the start or end of a
game. Because the TicTacToeMIDlet class extends MIDlet, it imple-
ments the startApp(), pauseApp(), and destroyApp() abstract
methods. These methods do nothing. The constructor on the other
hand, retrieves the Display for this MIDlet and creates the exit
Command button. The constructor also creates the initial screen for
display to the user. The first screen allows the user to select whether to
join a game or start a new game.

244 Chapter Nine: Example Applications

The only other method in the TicTacToeMIDlet class is the
commandAction() method. This method must be implemented
because the class implements the CommandListener interface. This
method is called each time the user selects a Command. When
commandAction() is called by the underlying system, the method first
checks to see whether the exit Command has been selected. If it has, the
MIDlet is destroyed, and the game ends. If the exit Command has not
been selected, the commandAction() method starts a new game thread
because the user has selected the start Command.

Implementation

After operation of the tic-tac-toe game has been defined, the next step
is to start coding the main MIDlet. First, define an empty MIDlet with
the proper imports.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

/**
* The TicTacToeMIDlet allows two users to
* play a game of
* Tic-Tac-Toe against each other. One user will start a
* new game while the
* other user searches for an existing game. When both
* users establish a
* connection, the game starts.
*/
public class TicTacToeMIDlet extends MIDlet {

/**
* Creates the Tic-Tac-Toe MIDlet. This constructor sets
* the initial
* display to the user.
*/
public TicTacToeMIDlet() {

Tic-Tac-Toe MIDlet 245

}

/**
* Called when the MIDlet is started.
*
* @exception MIDletStateChangeException never thrown
*/
public void startApp() throws MIDletStateChangeException {
}

/**
* Called when the MIDlet is paused.
*/
public void pauseApp() {
}

/**
* Called when the MIDlet is destroyed.
*
* @param unconditional ignored
*/
public void destroyApp(boolean unconditional) {
}

}

Before a user is able to start playing an opponent, one device must discover
the other device and establish a connection to it. Because this MIDlet
works as a client and a server, there are two options for figuring out who
the server and who the client are. The first option is to do device and
service discovery. If no device is found with the tic-tac-toe game service,
this TicTacToeMIDlet acts as the server. If a device is found, this
TicTacToeMIDlet acts as the client. The second option is more straight-
forward. It asks the user to act as the client or as the server. Because the
second option is more straightforward, we use this approach.

The following code creates a Form that allows the user to select
whether the user’s device is client or server. To make this request more
user-friendly, the user is asked to create a new game (act as the server)
or join an existing game (act as the client).

public class TicTacToeMIDlet extends MIDlet {

/**
* The display for this MIDlet.
*/
public Display theDisplay;

246 Chapter Nine: Example Applications

/**
* Determines if a new game should be started or if the
* MIDlet needs to find a game to join.
*/
private ChoiceGroup gameType;

/**
* The exit command.
*/
public Command exitCommand;

/**
* Creates the Tic-Tac-Toe MIDlet. This constructor
* creates the initial display to the user.
*/
public TicTacToeMIDlet() {

// Retrieve the display for this MIDlet
theDisplay = Display.getDisplay(this);
exitCommand = new Command("Exit", Command.EXIT, 1);

// Set up the initial screen for the MIDlet
createStartScreen();

}

/**
* Creates the initial screen that starts the game.
*/
public void createStartScreen() {
// Set up the initial screen for the MIDlet
Form firstScreen = new Form("JABWT Tic-Tac_Toe");
firstScreen.append("Welcome to JABWT Tic-Tac-Toe");
gameType = new ChoiceGroup(null, ChoiceGroup.EXCLUSIVE);
gameType.append("Start a new Game", null);
gameType.append("Join an Existing Game", null);
gameType.setSelectedIndex(0, true);
firstScreen.append(gameType);
firstScreen.addCommand(new Command("Start", Command.OK,
1));

firstScreen.addCommand(exitCommand);
theDisplay.setCurrent(firstScreen);

}
...

}

Tic-Tac-Toe MIDlet 247

The previous code gives a user two options, to play the game or to exit
the MIDlet. To differentiate these requests, two different Commands are
created. Because it is the CommandListener for the first screen, the
TicTacToeMIDlet must implement the commandAction() method.
This method exits the MIDlet if the “Exit” Command is selected. If the
start Command is selected, the game is started. Before the game is started,
the game class must be written (see Section 9.2.3).

public class TicTacToeMIDlet extends MIDlet implements
CommandListener {
...

/**
* The CommandListener for exit commands.
*/
public CommandListener theListener;

248 Chapter Nine: Example Applications

Figure 9.1 First Screen of the Tic-Tac-Toe MIDlet (emulation only).

/**
* Creates the initial screen that starts the game.
*/
public void createStartScreen() {
// Set up the initial screen for the MIDlet
Form firstScreen = new Form("JABWT Tic-Tac_Toe");
firstScreen.append("Welcome to JABWT Tic-Tac-Toe");
gameType = new ChoiceGroup(null, ChoiceGroup.EXCLUSIVE);
gameType.append("Start a new Game", null);
gameType.append("Join an Existing Game", null);
gameType.setSelectedIndex(0, true);
firstScreen.append(gameType);
firstScreen.addCommand(new Command("Start",
Command.OK, 1));

firstScreen.addCommand(exitCommand);
firstScreen.setCommandListener(this);
theListener = this;
theDisplay.setCurrent(firstScreen);

}

...

/**
* Called each time a command is selected. This method
* should only be
* called to start the game or to exit. If exit is
* selected, the
* MIDlet is destroyed. Otherwise,
* depending on which
* element in the ChoiceGroup is selected,
* this method either
* starts a thread to wait for another
* MIDlet to connect or
* starts a thread to find another MIDlet to
* play.
*
* @param c the Command that was selected
*
* @param d the current Displayable
*/
public void commandAction(Command c, Displayable d) {

// Determine if the exit command was selected
if (c == exitCommand) {

Tic-Tac-Toe MIDlet 249

// End the game
notifyDestroyed();

} else {

/*
* TODO: Start the game
*/

}
}
...

}

The createStartScreen() method is complete for most purposes, but
one additional modification needs to be made to simplify future code.
At present, the createStartScreen() method creates a Form and dis-
plays it to the user. On some occasions, an Alert may need to be dis-
played. The createStartScreen() method requires that a new
parameter be added to represent the Alert. The createStartScreen()
method sets this parameter to the current Displayable as long as it is
not null.

public class TicTacToeMIDlet extends MIDlet implements
CommandListener {

...

/**
* Creates the Tic-Tac-Toe MIDlet. This constructor will
* create
* the initial display to the user.
*/
public TicTacToeMIDlet() {
// Retrieve the display for this MIDlet
theDisplay = Display.getDisplay(this);
exitCommand = new Command("Exit", Command.EXIT, 1);
// Set up the initial screen for the MIDlet
createStartScreen(null);

}

/**
* Creates the initial screen that starts the game.
*
* @param alert the Alert before changing
* to the initial

250 Chapter Nine: Example Applications

* screen
*/
public void createStartScreen(Alert alert) {

// Set up the initial screen for the MIDlet
Form firstScreen = new Form("JABWT Tic-Tac_Toe");
firstScreen.append("Welcome to JABWT Tic-Tac-Toe");
gameType = new ChoiceGroup(null, ChoiceGroup.EXCLUSIVE);
gameType.append("Start a new Game", null);
gameType.append("Join an Existing Game", null);
gameType.setSelectedIndex(0, true);
firstScreen.append(gameType);
firstScreen.addCommand(new Command("Start", Command.OK,
1));

firstScreen.addCommand(exitCommand);
firstScreen.setCommandListener(this);

theListener = this;

if (alert == null) {
theDisplay.setCurrent(firstScreen);

} else {
theDisplay.setCurrent(alert, firstScreen);

}
}

...
}

9.2.2 The PauseCanvas and PauseTimerTask Helper Classes

Overview

The PauseCanvas class is a utility class that provides a splash screen to
the user. The PauseCanvas displays an array of Strings. After each
second, an index, the messageIndex, is incremented by one until the
full message is displayed. The PauseCanvas does this by creating a
TimerTask to go off every second within the PauseCanvas construc-
tor. This TimerTask increments the messageIndex and repaints the
PauseCanvas. When the PauseCanvas is no longer displayed to the
user, the hideNotify() method is called, and the TimerTask is can-
celed. The PauseCanvas provides a way for a game to work in the back-
ground without freezing the screen.

The PauseTimerTask class extends the TimerTask class and
works closely with the PauseCanvas class. The run() method is called

Tic-Tac-Toe MIDlet 251

252 Chapter Nine: Example Applications

after every second. This method increments the messageIndex of the
PauseCanvas and causes the PauseCanvas to be repainted.

Implementation

The PauseCanvas class extends the Canvas class to allow the
PauseCanvas class to draw directly on the screen via the paint()
method. When the class is loaded, the height and width of the screen
are retrieved via the getHeight() and getWidth() methods. These
values are cached so that multiple calls to these methods are not
needed. The constructor for the PauseCanvas class takes the message to
display as an argument in a String array. This allows the developer to
specify the locations of breaks between words without requiring addi-
tional processing.

package com.jabwt.book;

import java.lang.*;
import java.util.*;
import javax.microedition.lcdui.*;

/**
* The PauseCanvas class provides a screen
* that displays a
* message to the user and makes it appear like the
* MIDlet is
* doing something by displaying the message in parts.
*/

public class PauseCanvas extends Canvas {

/**
* The height of the display.
*/
private final int HEIGHT = getHeight();

/**
* The width of the display.
*/
private final int WIDTH = getWidth();

/**
* The components of the message to display. Each
* element is displayed to
* the screen starting with index 0.

*/
private String[] message;

/**
* Creates a PauseCanvas that displays
* the message provided.
*
* @param m the message to display to the screen; the
* message
* must not be null and must have at
* least one element
*/
public PauseCanvas(String[] m) {

// Set up the message
message = new String[m.length];
System.arraycopy(m, 0, message, 0, m.length);

}

/**
* Called each time the screen should be repainted.
* This method displays
* the message up to the index specified by
* messageIndex.
*
* @param g used to write the message to the screen
*/
public void paint(Graphics g) {
}

}

Because the PauseCanvas must be updated every second, a TimerTask
must be created to repaint the PauseCanvas after every second. The
PauseTimerTask class sends this repaint request. Changing the display
necessitates an index for tracking the number of the strings in the array
that should be displayed. The PauseTimerTask updates this index each
time the timer goes off. The PauseTimerTask also repaints the
PauseCanvas to update the screen to the user. The PauseTimerTask is
created and started when the PauseCanvas is made visible via the
showNotify() method.

public class PauseCanvas extends Canvas {

...

Tic-Tac-Toe MIDlet 253

/**
* Tracks which elements in the message
* array should be
* displayed.
*/
private int messageIndex;

/**
* The timer used to change the display periodically.
*/
private PauseTimerTask task;

/**
* Creates a PauseCanvas that displays the
* message provided.
*
* @param m the message to display to the screen; the
* message
* must not be null and must have at least
* one element
*/
public PauseCanvas(String[] m) {

// Set up the message
message = new String[m.length];
System.arraycopy(m, 0, message, 0, m.length);
// Start by displaying the full message on the first
// repaint
messageIndex = message.length - 1;

}

/**
* Called when this PauseCanvas is made
* visible. This method
* creates and starts a new PauseTimerTask.
*/
public void showNotify() {

// Starts the timer to periodically change the screen
task = new PauseTimerTask(this);
new Timer().scheduleAtFixedRate(task, 1500, 1000);

}

...

/**

254 Chapter Nine: Example Applications

* The PauseTimerTask class is used to
* force the
* PauseCanvas to repaint periodically.
* This class also sets
* which components of the message specified to
* PauseCanvas
* should be displayed.
*/
class PauseTimerTask extends TimerTask {

/**
* The canvas that is repainted periodically.
*/
private PauseCanvas parent;

/**
* Creates a PauseTimerTask to be used
* with the
* PauseCanvas specified.
*
* @param p the canvas to repaint
*/
public PauseTimerTask(PauseCanvas p) {

parent = p;
}

/**
* Called each time the timer goes off. This method
* will increment the index
* into the message array and then repaint the
* PauseCanvas specified in the constructor.
*/
public void run() {

parent.messageIndex++;
parent.repaint();

}
}

}

Now that the PauseTimerTask is repainting the canvas after every
second, the PauseCanvas class must be modified to draw the message to
the screen. To do this, the paint() method begins by repainting the back-
ground. Next, the paint() method draws the message on the canvas.

Tic-Tac-Toe MIDlet 255

public class PauseCanvas extends Canvas {

private static final int COLOR_WHITE = 0xFFFFFF;
private static final int COLOR_BLACK = 0x000000;

...

/**
* Called each time the screen should be repainted. This
* method will display the message up to the index
* specified by messageIndex.
*
* @param g used to write the message to the screen
*/
public void paint(Graphics g) {
int textX = WIDTH / 2;
int textY = 10;

// Clear the screen, fill screen with background
g.setColor(COLOR_WHITE);
g.fillRect(0, 0, WIDTH, HEIGHT);

// Set the message color to be black
g.setColor(COLOR_BLACK);

// Write each element to the screen up to the
// messageIndex
messageIndex = messageIndex % message.length;
for (int i = 0; i <= messageIndex; i++) {

g.drawString(message[i], textX, textY, Graphics.TOP |
Graphics.HCENTER);

textY += 15;
}

}
...

}

At this point, the PauseCanvas repeatedly updates the screen with a
message. When the PauseCanvas class is no longer visible, there is no
reason for the timer to continue to go off and repaint the screen. The
PauseCanvas is notified via the hideNotify() method that it is no
longer currently visible. At this point, the PauseCanvas stops the
TimerTask.

256 Chapter Nine: Example Applications

public class PauseCanvas extends Canvas {
...

/**
* Called when the canvas is no longer displayable.
* This method stops the
* timer.
*/
public void hideNotify() {
task.cancel();

}

...
}

9.2.3 Creating the Game Thread

Overview

The TicTacToeMIDlet class creates the TTTGame class when a new
game is started. A new game is started when the user selects to join an
existing game or start a new game. If the user selects to join a game, the
run() method creates a PauseCanvas object to display a message while
the method attempts to find an opponent by calling the
selectService() method of the local DiscoveryAgent. If no service
is found, then an Alert is displayed notifying the user that a game
could not be found. If a service is found, the run() method connects to
the service. After connecting to the service, the method creates a
TTTCanvas object and makes it the currently displayed Canvas.

If the user selects to create a new game, the run() method still
creates a PauseCanvas object with a message and sets it to the current
display. It does not perform a device or service search. The run()
method creates a service record and waits for an opponent to join. The
run() method creates the service record by calling Connector.open()
and then calling acceptAndOpen() on the StreamConnection-
Notifier object returned from Connector.open(). Once an opponent
connects, the run() method creates a TTTCanvas object and sets it to
the current display.

After the connection is established, the run() method reads an
opponent’s moves from the connection to the opponent. The method
also opens an OutputStream that the TTTCanvas class uses to send
moves made by the user to the opponent’s device.

Tic-Tac-Toe MIDlet 257

Implementation

The TTTGame class is the game thread that handles the communication
and actions within the game. Because it must run as a separate thread,
the TTTGame class implements the Runnable interface. This interface
requires that the run() method be defined. Before the run() method is
called, the constructor must be invoked to create a new TTTGame object.
The constructor takes a boolean argument, which specifies whether the
TTTGame should start as a server or as a client. The TTTGame starts when
the thread is started, but that comes later.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.bluetooth.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

/**
* This class is used to play a game of Tic-Tac-Toe.
*/
public class TTTGame implements Runnable {

/**
* The parent MIDlet for this game. The parent provides
* access to the
* current Display and game canvas.
*/
private TicTacToeMIDlet parent;

/**
* Specifies if the game should act as a client or a server
*/
private boolean isServer;

/**
* Creates a TTTGame object that starts the
* game as either a
* client or server.
*
* @param isServer true if the game should
* start as the
* server; false if the game should start
* as the client

258 Chapter Nine: Example Applications

* @param parent the parent MIDlet to this game
*/
public TTTGame(boolean isServer, TicTacToeMIDlet parent) {
this.isServer = isServer;
this.parent = parent;

}

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was requested.
*/
public void run() {

}
}

Now that the TTTGame class exists, the game can be started in the
TicTacToeMIDlet class. The game is started when the user selects
whether to start a new game or to join a game. The following code starts
the game appropriately.

public class TicTacToeMIDlet extends MIDlet implements
CommandListener {

...

/**
* The Tic-Tac-Toe Game object.
*/
public TTTGame theGame;

...

/**
* Called each time a command is selected. This method
* should only be
* called to start the game or to exit. If exit is
* selected, the
* MIDlet is destroyed. Otherwise,
* depending on which
* element in the ChoiceGroup is selected,
* this method either

Tic-Tac-Toe MIDlet 259

* starts a thread to wait for another
* MIDlet to connect or
* starts a thread to find another MIDlet to
* play.
*
* @param c the Command that was selected
*
* @param d the current Displayable
*/
public void commandAction(Command c, Displayable d) {

// Determine if the exit command was selected
if (c == exitCommand) {
// End the game
notifyDestroyed();

} else {

// Start the game
theGame = new TTTGame(gameType.isSelected(0), this);
new Thread(theGame).start();

}
}

}

Once the game thread has started, the run() method is executed. Before
an attempt is made to locate a device to connect to or wait for a connec-
tion from an opponent, a splash screen is displayed to the user by means
of the PauseCanvas class. This splash screen allows the user to end the
game by selecting the exit Command added to the Canvas. Depending on
the user’s selection, a different message is displayed on the screen.

public class TTTGame implements Runnable {
...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was requested.
*/

public void run() {
createSplashScreen();

260 Chapter Nine: Example Applications

}

/**
* Uses the PauseCanvas class to display a
* splash screen to
* the user before the game is able to begin. The message
* to display is
* dependent on whether or not the local device should
* act as the server.
*/
private void createSplashScreen() {
String[] message;

// Create a unique message depending on if the game
// should start a
// new game (server) or join an existing game (client)
if (isServer) {

// Set up the message to display to the user to
// explain the game
// is waiting for an opponent to connect
message = new String[5];
message[0] = "Waiting";
message[1] = "on an";
message[2] = "Opponent";
message[3] = "to Join";
message[4] = "the Game";

} else {

// Set up the message that states that this game is
// looking for
// an opponent
message = new String[3];
message[0] = "Searching";
message[1] = "for a Game";
message[2] = "to Join";

}
// Create the canvas and set it to the current display

PauseCanvas canvas = new PauseCanvas(message);
canvas.addCommand(parent.exitCommand);
canvas.setCommandListener(parent.theListener);
parent.theDisplay.setCurrent(canvas);
canvas.repaint();

}
}

Tic-Tac-Toe MIDlet 261

Now that the display is set for the user, the TTTGame thread must
prepare for a game. If the user has selected to create a new game, the
TTTGame thread must create an RFCOMM server to which another
TicTacToeMIDlet can connect. In this situation, the TTTGame thread
must first make the device general discoverable to allow another
TicTacToeMIDlet to find it. After the device is set to general discover-
able, the TTTGame thread creates a StreamConnectionNotifier object
by calling Connector.open(). Because a game of tic-tac-toe does not
require any security, no security requirements are specified in the call to
Connector.open(). After calling Connector.open(), the thread calls
acceptAndOpen(). This step makes the device connectable, registers
the service record in the service record database, and allows another
TicTacToeMIDlet to connect to this game.

The following code defines a method used whenever an error occurs.
This method displays an alert to the user and then closes the MIDlet.

public class TTTGame implements Runnable {

/**
* The connection to the opponent.
*/
private StreamConnection conn;

...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was requested.
*/
public void run() {

createSplashScreen();

// Determine if this game should start as a server or
// a client
if (isServer) {
// Wait for another TicTacToeMIDlet to connect to
// this one to
// start the game
conn = waitForConnection();

262 Chapter Nine: Example Applications

} else {
/*
* TODO: Handle when the game should start as a client
*/

}

try {
conn.close();

} catch (IOException e) {
}

}

/**
* Makes the device general discoverable and then waits
* for another
* TicTacToeMIDlet to connect.
*
* @return the connection to the opponent
*/
private StreamConnection waitForConnection() {

// Make the device discoverable, create the server and
// wait for a connection
StreamConnectionNotifier notifier = null;
try {
LocalDevice theRadio = LocalDevice.getLocalDevice();
theRadio.setDiscoverable(DiscoveryAgent.GIAC);
notifier = (StreamConnectionNotifier)Connector.open(
"btspp://localhost:8a02dc796f3141f1b83096cc0ac738cf");
conn = notifier.acceptAndOpen();

} catch (Exception e) {

// Reclaim any used resources
try {
notifier.close();

} catch (Exception ex) {
}
try {
conn.close();

} catch (Exception ex) {
}
displayError("Error", "Unable to wait for a " +
"connection (" +
e.getClass().getName() + ": " + e.getMessage());

Tic-Tac-Toe MIDlet 263

return null;
}

return conn;
}

/**
* Displays an error Alert to the user and go back to
* the MIDlet start screen.
*
* @param title the title of the Alert
*
* @param msg the message to include in the
* Alert
*/
private void displayError(String title, String msg) {

// Display the error message
Alert error = new Alert(title, msg, null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);

parent.createStartScreen(error);
}

...
}

Now that code has been added that allows a game to be created, the
next step is to add code to join a game. The connectToServer()
method completes device discovery and service search and establishes a
connection to the service discovered. To simplify the device discovery
and service search, the connectToServer() method uses
DiscoveryAgent.selectService(). Because this code is executing
in a separate thread, the blocking call to selectService() is not
noticed by the user. If no service is found, an error message is displayed
to the user, and the thread ends. After a service to which to connect is
located, a connection is established to the service by calling
Connector.open().

public class TTTGame implements Runnable {

...

264 Chapter Nine: Example Applications

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was
* requested.
*/
public void run() {

createSplashScreen();

// Determine if this game should start as a server or
// a client
if (isServer) {

// Wait for another TicTacToeMIDlet to connect to
// this one to
// start the game
conn = waitForConnection();

} else {

// Establish a connection to a TicTacToeMIDlet in
// the area.
conn = connectToServer();
if (conn == null) {
return;

}
}

}

/**
* Locates another device running the Tic-Tac-Toe game
* and establishes
* a connection to the game.
*
* @return a connection to another
* TicTacToeMIDlet;
* null if a connection could not be
* established to another
* TicTacToeMIDlet
*/

Tic-Tac-Toe MIDlet 265

private StreamConnection connectToServer() {

Connection conn;

// Locate another TicTacToeMIDlet that has started a
// game to
// connect to
try {
LocalDevice local = LocalDevice.getLocalDevice();
DiscoveryAgent agent = local.getDiscoveryAgent();
String connString = agent.selectService(
new UUID("8a02dc796f3141f1b83096cc0ac738cf",
false), ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
false);

// Verify that a game to join was found
if (connString == null) {

displayError("Error",
"Unable to locate a game to join");

return null;
}

// Establish a connection to the device and game that
// was found
conn = Connector.open(connString);

} catch (BluetoothStateException e) {
displayError("Bluetooth Error",
"Unable to establish a " +
"connection to another game." +
"(BluetoothStateException: " +

e.getMessage() + ")");
return null;

} catch (IOException e) {
displayError("IO Error", "Unable to establish a " +
"connection to another game. (IOException: " +
e.getMessage() + ")");

return null;
}

return (StreamConnection)conn;
}
...

}

266 Chapter Nine: Example Applications

9.2.4 Playing the Game

Overview

The TTTCanvas class draws the tic-tac-toe display and handles user
input. To handle the user input, the keyPressed() method is imple-
mented. This method is called each time the user presses a key on the
mobile device. Each of the squares that make up the tic-tac-toe board are
numbered from 1 to 9. When the user presses a key, the keyPressed()
method translates the key number and calls recordMove(). The
recordMove() method verifies that a move request is valid. A valid
request is a move to an empty square. The method records the move.
After the move is recorded, the screen is repainted, and the method
checks to see whether the move is a winning move. If the move is a
winner, an Alert is displayed indicating as such.

The paint() method is the other major method in the
TTTCanvas class. The paint() method draws the board on the screen.

Implementation

Before we are able to play the game, the user display must be created.
The TTTCanvas class provides this display. The TTTCanvas class con-
structor takes in the TTTGame associated with this Canvas. This step
allows the TTTCanvas object to communicate with the TTTGame object.
The TTTCanvas draws the tic-tac-toe game board by extending the
Canvas class and implementing the paint() method. The paint()
method draws the tic-tac-toe game board and keeps track of the moves
of both players. To keep track, an integer array is created that records
each move. The value zero represents an empty square. A value of one
represents a square that the user has selected, and a value of negative
one represents a square selected by the opponent.

For performance reasons, the TTTCanvas retrieves the width and
height of the screen when the class is loaded. This eliminates the need
to retrieve the width and height each time paint() is called.

package com.jabwt.book;

import java.lang.*;
import javax.microedition.lcdui.*;

/**

Tic-Tac-Toe MIDlet 267

* The TTTCanvas controls the display and
* helps play the
* tic-tac-toe game.
*/
public class TTTCanvas extends Canvas {

private static final int COLOR_WHITE = 0xFFFFFF;
private static final int COLOR_RED = 0xFF0000;
private static final int COLOR_BLUE = 0x0000FF;

/**
* The height of the display.
*/
private final int HEIGHT = getHeight();

/**
* The width of the display.
*/
private final int WIDTH = getWidth();

/**
* The parent MIDlet to this canvas.
*/
private TicTacToeMIDlet parent;

/**
* The game board. 0 stands for empty slot. 1 for this
* player’s
* move, -1 for the opponent’s move.
*/
private int[] board;

/**
* The game that is being played
*/
private TTTGame theGame;

/**
* Creates a TTTCanvas object and
* initializes the game.
*
* @param game the TTTGame thread running the game
*
* @param p the parent MIDlet for this canvas
*/
public TTTCanvas(TTTGame game, TicTacToeMIDlet p) {

268 Chapter Nine: Example Applications

board = new int[9];
parent = p;

// Initialize the game board
for (int i = 0; i < board.length; i++) {
board[i] = 0;

}
theGame = game;

}

/**
* Called each time the screen should be repainted.
* This method draws the
* game screen and labels the X’s and O’s according to
* the player’s moves.
*
* @param g the interface to draw to the screen
*/
public void paint(Graphics g) {

// Paint the background
g.setColor(COLOR_WHITE);
g.fillRect(0, 0, WIDTH, HEIGHT);

// Draw the game board
g.setColor(COLOR_RED);

g.fillRect(WIDTH / 3, 0, 5, HEIGHT);
g.fillRect((WIDTH * 2) / 3, 0, 5, HEIGHT);
g.fillRect(0, HEIGHT / 3, WIDTH, 5);
g.fillRect(0, (HEIGHT * 2) / 3, WIDTH, 5);

}
}

Now that the game board has been drawn, the TTTGame must be con-
nected with the TTTCanvas. The TTTGame must also set the TTTCanvas
to the current Displayable. The following code does this. The code
also gets the input and output streams to communicate with the oppo-
nent. The OutputStream needs to be a package access member variable
to allow the TTTCanvas to send the user’s move to the opponent. The
InputStream does not need to be a member variable because the
TTTCanvas does not need to read from it. The run() method reads all
the opponent’s moves and passes them to the TTTCanvas.

Because tic-tac-toe is a turn-based game, one player must be
selected to make the first move. For this tic-tac-toe game, the MIDlet

Tic-Tac-Toe MIDlet 269

that creates a new game goes first. The MIDlet that joined the game
waits for the first move from the MIDlet that created the game.

public class TTTGame implements Runnable {

/**
* The Canvas that draws the game board and the moves
*/
private TTTCanvas theCanvas;

/**
* The OutputStream to send moves over.
*/
OutputStream output;

/**
* Keeps track of whose turn it is.
*/
boolean myTurn;

...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was requested.
*/

public void run() {
createSplashScreen();

// Determine if this game should start as a server or a
// client
if (isServer) {

// Wait for another TicTacToeMIDlet to connect to this
// one to
// start the game
conn = waitForConnection();

myTurn = true;

} else {

// Establish a connection to a TicTacToeMIDlet in the
// area.

270 Chapter Nine: Example Applications

conn = connectToServer();
if (conn == null) {
return;

}

myTurn = false;
}

InputStream input = null;
try {
input = conn.openInputStream();
output = conn.openOutputStream();

} catch (IOException e) {
displayError("IO Error",
"An error occurred while opening " +
"the input and output streams" +

Tic-Tac-Toe MIDlet 271

Figure 9.2 Screenshot of the TTTCanvas (emulation only).

"(IOException: " + e.getMessage() + ")");
try {
conn.close();

} catch (Exception ex) {
}
return;

}

// Create the game Canvas and set it to the current
// display
theCanvas = new TTTCanvas(this, parent);
parent.theDisplay.setCurrent(theCanvas);
theCanvas.addCommand(parent.exitCommand);
theCanvas.setCommandListener(parent.theListener);
theCanvas.repaint();

try {

input.close();
output.close();
conn.close();

} catch (IOException e) {
}

}

...
}

The next step is to begin to process input from the user. (To make the
code more simplistic and because this is not a book on MIDP, this
MIDlet is written so that it interfaces with the user via key presses rather
than pointer presses.) Each square on the board is numbered from 1 to
9 across and down as on the keypad of a phone. The user selects the box
in which to make a move. This information is received by the
keyPressed() method of TTTCanvas. The keyPressed() method
verifies that it is this user’s turn. The method records the move and
sends it to the opponent via the output member variable of TTTGame.
After the move is sent, the keyPressed() method makes it the oppo-
nent’s turn. It also notifies the TTTGame object to allow the TTTGame to
wait for the opponent to make a move.

The paint() method is also modified so that the color changes
according to whose turn it is. The paint() method also contains code
that updates the tic-tac-toe board with Xs and Os. For this game, Xs and

272 Chapter Nine: Example Applications

Tic-Tac-Toe MIDlet 273

Os are replaced with red and blue squares. If the square has yet to be
taken by one of the players, the paint() method ignores the square.

public class TTTCanvas extends Canvas {

...

/**
* Called each time the screen should be repainted.
* This method draws the
* game screen and labels the X’s and O’s according to
* the player’s moves.
*
* @param g the interface to draw to the screen
*/
public void paint(Graphics g) {

// Paint the background
g.setColor(COLOR_WHITE);
g.fillRect(0, 0, WIDTH, HEIGHT);
// Draw the game board
if (theGame.myTurn) {
g.setColor(COLOR_RED);

} else {
g.setColor(COLOR_BLUE);

}

g.fillRect(WIDTH / 3, 0, 5, HEIGHT);
g.fillRect((WIDTH * 2) / 3, 0, 5, HEIGHT);
g.fillRect(0, HEIGHT / 3, WIDTH, 5);
g.fillRect(0, (HEIGHT * 2) / 3, WIDTH, 5);

// Fill in with the moves that have occurred.
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
int index = (i * 3) + j;

switch (board[index]) {
case 1:

// This is my square so set it to red
g.setColor(COLOR_RED);
g.fillRect((j * (WIDTH / 3)) + 5, (i * (HEIGHT /
3)) + 5,
(WIDTH / 3) - 5, (HEIGHT / 3) - 5);

break;

case -1:

// This is my opponent’s square so set it to blue
g.setColor(COLOR_BLUE);
g.fillRect((j * (WIDTH / 3)) + 5, (i * (HEIGHT /
3)) + 5,
(WIDTH / 3) - 5, (HEIGHT / 3) - 5);

break;

default:
break;

}
}

}
}

/**
* Called each time a key is pressed. This method
* records the move and
* repaints the screen.
*
* @param keyNum the key that was pressed
*/
public void keyPressed(int keyNum) {
boolean isValid;

// Verify that it was my turn to move. Do nothing if
// it is
// my opponent’s turn
if (theGame.myTurn) {

// Record the key press in the proper space if the
// space is empty
switch (keyNum) {
case KEY_NUM1:
isValid = recordMove(0, true);
break;

case KEY_NUM2:
isValid = recordMove(1, true);
break;

case KEY_NUM3:
isValid = recordMove(2, true);
break;

case KEY_NUM4:
isValid = recordMove(3, true);

274 Chapter Nine: Example Applications

break;
case KEY_NUM5:
isValid = recordMove(4, true);
break;

case KEY_NUM6:
isValid = recordMove(5, true);
break;

case KEY_NUM7:
isValid = recordMove(6, true);
break;

case KEY_NUM8:
isValid = recordMove(7, true);
break;

case KEY_NUM9:
isValid = recordMove(8, true);
break;

default:
// An invalid key was pressed so ignore it
return;

}
if (!isValid) {
return;

}

try {
theGame.output.write(keyNum - KEY_NUM1);
theGame.output.flush();

} catch (Exception e) {
}

synchronized (theGame) {
theGame.notifyAll();

}
}

}

/**
* Verifies that the space is empty and then records the move.
*
* @param key the key number that was pressed
*
* @param myMove true if it was this
* player’s move;
* false if the other player made the move

Tic-Tac-Toe MIDlet 275

*
* @return true if the move was a valid move; false if the
* move was not valid
*/
public boolean recordMove(int key, boolean myMove) {

if (board[key] == 0) {
if (myMove) {
board[key] = 1;

} else {
board[key] = -1;

}

repaint();
return true;
}

return false;
}
}

Now that one player can make a move and send it to the other player,
the other player must read the move and update the board. The
TTTGame object does this. The TTTGame object reads from the
InputStream the square that has been selected. Next, the move is
recorded by the TTTCanvas object, and the TTTCanvas is repainted.
Finally, the TTTGame object waits on itself until the current user presses
a key and sends it to the other player. One special case must be consid-
ered. The MIDlet that starts the game gets the first move; therefore this
MIDlet needs to wait for the first move to occur before it starts to read
from the InputStream. The following code does this.

public class TTTGame implements Runnable {

...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was
* requested.

276 Chapter Nine: Example Applications

*/
public void run() {
createSplashScreen();

// Determine if this game should start as a server or
// a client
if (isServer) {

// Wait for another TicTacToeMIDlet to connect to
// this one to
// start the game
conn = waitForConnection();

myTurn = true;
} else {

// Establish a connection to a TicTacToeMIDlet in
// the area.
conn = connectToServer();
if (conn == null) {
return;

}

myTurn = false;
}

InputStream input = null;
try {
input = conn.openInputStream();
output = conn.openOutputStream();

} catch (IOException e) {
displayError("IO Error",
"An error occurred while opening " +
"the input and output streams (IOException: " +
e.getMessage() + ")");

try {
conn.close();

} catch (Exception ex) {
}
return;

}

// Create the game Canvas and set it to the current display
theCanvas = new TTTCanvas(this, parent);
parent.theDisplay.setCurrent(theCanvas);

Tic-Tac-Toe MIDlet 277

theCanvas.addCommand(parent.exitCommand);
theCanvas.setCommandListener(parent.theListener);
theCanvas.repaint();

// If it is my turn, wait until the TTTCanvas
// Records the first move
if (myTurn) {
synchronized (this) {
try {
this.wait();

} catch (Exception e) {
}

}
}
// Continue processing until the game is over and the
// connection is
// closed
try {
for (;;) {
myTurn = false;
int id = (int)input.read();

if (id == -1) {
displayError("IO Error", "The connection has been " +
"closed by your opponent. The game is over.");

break;
}
theCanvas.recordMove(id, false);

myTurn = true;

// Wait until the user makes a move
synchronized (this) {

try {
this.wait();

} catch (Exception e) {
}

}
}

} catch (Exception e) {
displayError("Error",
"An error occurred while communicating with your " +
"opponent(" +

278 Chapter Nine: Example Applications

e.toString() + ")");
} finally {
try {
input.close();
output.close();
conn.close();

} catch (Exception ex) {
}

}
}

}

The TicTacToeMIDlet is almost complete. Both TicTacToeMIDlets
can communicate and send their moves back and forth, but the goal of
the game is to identify the first player to get three in a row. The
isWinner() method checks the board to determine whether there are
three in a row in any direction. The isWinner() method is called each
time a move is made. Once a winner is identified, an Alert is used to
notify the player. Because it needs to be called on each move, the
isWinner() method is added to the recordMove() method intro-
duced previously. The recordMove() method updates the board and
then calls the isWinner() method.

public class TTTCanvas extends Canvas {

...

/**
* Determines if this move created a winning pattern.
*
* @return true if their is a winner;
* false if there is no winner yet.
*/
public boolean isWinner() {

// Look for three in a row across
for (int i = 0; i < 9; i += 3) {
if ((board[i] != 0) && (board[i] == board[i + 1]) &&
(board[i + 1] == board[i + 2])) {

return true;
}

}

Tic-Tac-Toe MIDlet 279

// Look for three in a row down
for (int i = 0; i < 3; i++) {
if ((board[i] != 0) && (board[i] == board[i + 3]) &&
(board[i] == board[i + 6])) {

return true;
}

}

// Check for the crosses
if ((board[4] != 0) && (((board[0] == board[4]) &&
(board[4] == board[8])) ||
((board[2] == board[4]) && (board[4] == board[6])))) {

return true;
}

return false;
}

/**
* Verifies that the space is empty and then records
* the move.
* If the space is not empty, this method will not do
* anything.
*
* @param key the key number that was pressed
*
* @param myMove true if it was this
* player’s move;
* false if the other player made the move
*
* @return true if the move was a valid move; false
* if the
* move was not valid
*/
public boolean recordMove(int key, boolean myMove) {

if (board[key] == 0) {
if (myMove) {
board[key] = 1;

} else {
board[key] = -1;

}

280 Chapter Nine: Example Applications

repaint();

// Determine if there is a winner on this move
if (isWinner()) {

// Display a message to say there is a winner
Alert winnerScreen;
if (myMove) {
winnerScreen = new Alert("Game Over",
"You just won!", null, AlertType.INFO);

} else {
winnerScreen = new Alert("Game Over",
"Sorry, you got beat.", null, AlertType.INFO);

}
winnerScreen.setTimeout(Alert.FOREVER);
parent.createStartScreen(winnerScreen);

}

return true;
}
return false;

}
}

At present, the TTTGame thread never ends. It is stuck in the for loop
until the remote end closes the Connection. To allow the game to end,
the isWinner() method is reused, and the for loop needs to be changed
to a while loop. A check for isWinner() must be done immediately
after the call to recordMove(). This check determines whether the
opponent has made the winning move. Now, the TTTGame thread con-
tinues to execute until there is a winner.

public class TTTGame implements Runnable {

...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was

Tic-Tac-Toe MIDlet 281

* requested.
*/
public void run() {
createSplashScreen();

// Determine if this game should start as a server or
// a client
if (isServer) {

// Wait for another TicTacToeMIDlet to connect to
// this one to
// start the game
conn = waitForConnection();

myTurn = true;
} else {

// Establish a connection to a TicTacToeMIDlet in
// the area.
conn = connectToServer();
if (conn == null) {
return;

}

myTurn = false;
}

InputStream input = null;
try {
input = conn.openInputStream();
output = conn.openOutputStream();

} catch (IOException e) {
displayError("IO Error",
"An error occurred while opening " +
"the input and output streams (IOException: " +
e.getMessage() + ")");

try {
conn.close();
} catch (Exception ex) {
}
return;

}

// Create the game Canvas and set it to the current
// display

282 Chapter Nine: Example Applications

theCanvas = new TTTCanvas(this, parent);
parent.theDisplay.setCurrent(theCanvas);
theCanvas.addCommand(parent.exitCommand);
theCanvas.setCommandListener(parent.theListener);
theCanvas.repaint();

// If it is my turn, wait until the TTTCanvas records
// the first move
if (myTurn) {
synchronized (this) {
try {
this.wait();

} catch (Exception e) {
}

}
}

// Continue processing until the game is over and the
// connection is
// closed
try {
while (!theCanvas.isWinner()) {
myTurn = false;
int id = (int)input.read();

if (id == -1) {
displayError("IO Error",
"The connection has been " +
"closed by your opponent. The game is over.");

break;
}
theCanvas.recordMove(id, false);

// Determine if this move won the game
if (theCanvas.isWinner()) {
break;

}

myTurn = true;

// Wait until the user makes a move
synchronized (this) {
try {
this.wait();

} catch (Exception e) {

Tic-Tac-Toe MIDlet 283

}
}

}

} catch (Exception e) {
displayError("Error",
"An error occurred while communicating with" +
" your opponent(" +

e.toString() + ")");
} finally {
try {
input.close();
output.close();
conn.close();

} catch (Exception ex) {
}

}
}

...
}

At this point, the TicTacToeMIDlet can be played against an oppo-
nent. Only one problem exists in the code. What happens when there
is a tie, as often is the case in this game? One final method must be
added to determine whether a tie exists. The isTie() method checks to
see whether all of the squares have been taken. If there are no empty
squares, the isTie() method returns true.

public class TTTCanvas extends Canvas {

...

/**
* Determine if there is a tie. A tie exists if all the
* squares have been
* selected.
*
* @return true if all of the squares have
* been selected;
* otherwise false
*/
public boolean isTie() {

284 Chapter Nine: Example Applications

for (int i = 0; i < 9; i++) {
if (board[i] == 0) {
return false;

}
}

return true;
}

}

This procedure requires two additional checks in the TTTGame run()
method. These checks display a message to the user and take the user
back to the start if a tie occurs.

public class TTTGame implements Runnable {

...

/**
* Called when the thread is started. This is the main
* method of the
* thread. This thread determines if a new game should
* be started or a
* game should be found and joined. It then performs
* the action that was
* requested.
*/
public void run() {
createSplashScreen();

// Determine if this game should start as a server or
// a client
if (isServer) {

// Wait for another TicTacToeMIDlet to connect to
// this one to
// start the game
conn = waitForConnection();

myTurn = true;
} else {

// Establish a connection to a TicTacToeMIDlet in
// the area.
conn = connectToServer();

Tic-Tac-Toe MIDlet 285

if (conn == null) {
return;

}

myTurn = false;
}

InputStream input = null;
try {
input = conn.openInputStream();
output = conn.openOutputStream();

} catch (IOException e) {
displayError("IO Error",
"An error occurred while opening " +
"the input and output streams (IOException: " +
e.getMessage() + ")");

try {
conn.close();

} catch (Exception ex) {
}
return;

}

// Create the game Canvas and set it to the current
// display
theCanvas = new TTTCanvas(this, parent);
parent.theDisplay.setCurrent(theCanvas);
theCanvas.addCommand(parent.exitCommand);
theCanvas.setCommandListener(parent.theListener);
theCanvas.repaint();

// If it is my turn, wait until the TTTCanvas records
// the first move
if (myTurn) {
synchronized (this) {
try {
this.wait();

} catch (Exception e) {
}

}
}

// Continue processing until the game is over and the
// connection is
// closed

286 Chapter Nine: Example Applications

try {
while (!theCanvas.isWinner()) {
myTurn = false;
int id = (int)input.read();

if (id == -1) {
displayError("IO Error",
"The connection has been " +
"closed by your opponent. The game is over.");

break;
}
theCanvas.recordMove(id, false);

// Determine if this move won the game
if (theCanvas.isWinner()) {
break;

}

// Determine if this move caused a tie
if (theCanvas.isTie()) {
displayError("Tie",
"There is no winner. This game " +
"is a tie.");

break;
}

myTurn = true;

// Wait until the user makes a move
synchronized (this) {
try {
this.wait();

} catch (Exception e) {
}

}

// Determine if this move caused a tie
if (theCanvas.isTie()) {
displayError("Tie",
"There is no winner. This game " +
"is a tie.");

break;
}

}

} catch (Exception e) {

Tic-Tac-Toe MIDlet 287

displayError("Error",
"An error occurred while communicating with" +
" your opponent(" +

e.toString() + ")");
} finally {
try {
input.close();
output.close();
conn.close();

} catch (Exception ex) {
}

}
}

...
}

9.3 OBEX Application Download
The OBEX message application is a client-server application made of
a pair of MIDlets. The OBEX message application allows a client to
send and retrieve messages from a server. This application provides no
security or authentication but simply illustrates the use of the OBEX
API.

The OBEX MessageClient allows a user to send and retrieve mes-
sages from a server. The MessageClient requires the user to select a
user name. After choosing a user name, the user may select to send or
retrieve a message. If the user selects to send a message, the user enters
the user name of the recipient and the message to send. An OBEX PUT
operation is used to send the message to the server. If the user selects to
retrieve a message, the MessageClient MIDlet retrieves the message
from the server and displays the message to the user. The OBEX GET
operation is used to retrieve the message.

The OBEX MessageServer MIDlet accepts connections from
OBEX MessageClient MIDlets. When the client sends a message via a
PUT operation, the MessageServer stores the message in a Vector
with the user name of the recipient. On the other hand, the
MessageServer searches for a message with the user name sent by the
client and finds a message for that user. The MessageServer then sends
the message in the reply.

288 Chapter Nine: Example Applications

9.3.1 The Message Server Application

Overview

The MessageServer MIDlet receives and sends messages at the request
of the MessageClient. Each message is represented by an object of
type Message and is stored in a Vector. The run() method, which is
part of the MessageServer class because the class implements the
Runnable interface, simply creates a SessionNotifier object and
repeatedly calls acceptAndOpen(). For each call of acceptAndOpen(),
a new RequestHandler object is created and passed to the
acceptAndOpen() method to process requests from the client. When
the user is finished using the server, the server is shut down by means
of selection of the Exit command on the MIDlet display.

For OBEX CONNECT requests, the RequestHandler class does
not override the onConnect() method because no additional process-
ing is needed for CONNECT requests except to accept the connection.
The default implementation of the javax.obex.ServerRequest-
Handler class is all that is needed.

The client uses PUT requests to send messages to the server. When
a PUT request is received, the onPut() method is called. The onPut()
method first retrieves the NAME header. If no NAME header is received,
the method returns the OBEX_HTTP_BAD_REQUEST. If the NAME header
is received, the InputStream is opened on the Operation argument,
and the message is read. After the entire message is read, a new Message
object is created and added to the Vector of all messages. Before the
method returns with OBEX_HTTP_OK, the InputStream and
Operation objects are closed.

The client issues a GET request to retrieve a message from the
server. For GET requests, the onGet() method first retrieves the NAME
header to determine the name of the user whose message is to be
retrieved. If no NAME header is received, the onGet() method returns
with the OBEX_HTTP_BAD_REQUEST response code. The onGet()
method next searches for a message with the user name specified. The
method performs this search by traversing the Vector of Message
objects until a message for the user name is found. If no message is
found, the method returns OBEX_HTTP_NOT_FOUND. Otherwise, the
onGet() method sends the message found to the client by writing it to
the OutputStream of the Operation object provided as an argument.
After the message is written to the OutputStream and the

OBEX Application Download 289

OutputStream and Operation objects are closed, the onGet()
method finally returns OBEX_HTTP_OK.

For OBEX DISCONNECT requests, the onDisconnect() method
is not overridden because the server does not need to do any additional
processing when the client disconnects from the server.

Creating the Base Application

The MessageServer is a MIDlet that stores messages sent to another
user and replies with a message when requested. The MessageServer
must implement the Runnable interface so that it can have one thread
processing requests from clients and one thread handling UI events.
This mechanism allows a user to track the server because the server
prints log messages on the screen. This factor is important with an
embedded device because there is no way to print log information on
standard out. The MessageServer class also must implement the
CommandListener interface to allow a user to stop the server and exit
the MIDlet.

The following code creates the skeleton of the MessageServer
MIDlet. It starts the server thread and allows the user to stop the server.
Within the MessageServer constructor, a Vector is created to log
messages, and a Form is created to which to log messages. After the Form
is created, the MessageServer constructor adds an exit Command to the
Form and starts the processing thread. The startApp() method then
sets the Form to the current displayable. Because the MessageServer
implements the CommandListener interface, the MessageServer
receives any Command event. The only Command event possible is the
exit Command. The MessageServer is destroyed if the commandAction()
method is called.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;
import javax.obex.*;

290 Chapter Nine: Example Applications

/**
* The MessageServer class allows a client to send to and
* receive messages
* from other clients.
*/
public class MessageServer extends MIDlet implements
Runnable,
CommandListener {

/**
* Keeps all the messages sent to different users.
*/
private Vector msgList;

/**
* The form displayed to the user.
*/
private Form output;

/**
* Creates a MessageServer object and
* starts the server
* thread.
*/
public MessageServer() {
msgList = new Vector();

output = new Form("OBEX Message Server");
output.addCommand(new Command("Exit", Command.EXIT, 1));
output.setCommandListener(this);

new Thread(this).start();
}

/**
* Called each time the MIDlet is started. This method
* sets the current
* display to the logging form.
*
* @exception MIDletStateChangeException never occurs
*/
public void startApp()
throws MIDletStateChangeException {
Display currentDisplay = Display.getDisplay(this);

OBEX Application Download 291

currentDisplay.setCurrent(output);
}

public void pauseApp() {
}
public void destroyApp(boolean unconditional) {
}

/**
* The OBEX message server will wait and accept
* connections from clients
* to send and retrieve messages.
*/
public void run() {
}

/**
* Called each time a command occurs. The only command is
* the Exit command.
* This method will destroy the MIDlet.
*
* @param c ignored
* @param d ignored
*/
public void commandAction(Command c, Displayable d) {
notifyDestroyed();

}
}

Before the server can start processing requests from clients, a class that
extends the ServerRequestHandler class must be created. The
RequestHandler class fulfills this role. It processes requests from
clients. The RequestHandler class is modified later in this chapter to
handle PUT and GET requests.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import java.util.*;
import javax.obex.*;

/**

292 Chapter Nine: Example Applications

* The RequestHandler class handles requests
* from the OBEX
* client to store and retrieve messages for a specific user.
*/
public class RequestHandler extends ServerRequestHandler {

/**
* The list of messages stored by the server
*/
public Vector msgList;

/**
* Creates a RequestHandler object with the
* specified
* Vector which will be used to store and retrieve
* messages.
*
* @param list the Vector used to store and
* retrieve
* messages
*/
public RequestHandler(Vector list) {
msgList = list;

}
}

Next, the server thread is updated to receive connections from clients.
First, the SessionNotifier object is created by calling
Connector.open(). After the SessionNotifier object is created, a log
message is added to the Form. Next, a forever loop is entered. Within
the loop, a new RequestHandler object is created and used to call
acceptAndOpen() on the SessionNotifier object. If an I/O error
occurs during the call to acceptAndOpen(), the server thread ends, and
a message is appended to the current Form. The commandAction()
method also is updated. If the user selects to close the MessageServer
MIDlet, the SessionNotifier object is closed before the MIDlet is
destroyed.

public class MessageServer extends MIDlet implements
Runnable,
CommandListener {

OBEX Application Download 293

/**
* The connection string to use with
* Connector.open().
*/
public static final String CONNECTION_STRING =
"btgoep://localhost:750ef04247a54693b6384708eb87ec5e";

/**
* The server object used to accept connections.
*/
private SessionNotifier notifier;

...

/**
* The OBEX message server will wait and accept
* connections from clients
* to send and retrieve messages.
*/
public void run() {

// Create the server connection object and make the
// local device general discoverable
try {
LocalDevice local = LocalDevice.getLocalDevice();
local.setDiscoverable(DiscoveryAgent.GIAC);
notifier = (SessionNotifier)
Connector.open(CONNECTION_STRING);

} catch (IOException e) {
output.append("Unable to start server (IOException: " +
e.getMessage() + ")");

return;
}

output.append("Started Server");

while (true) {
// Accept a connection from a client
RequestHandler server = new RequestHandler(msgList);
try {
notifier.acceptAndOpen(server);

} catch (IOException e) {
output.append(
"Unable to accept a connection from a " +

294 Chapter Nine: Example Applications

"client (IOException: " +
e.getMessage() + ")");

output.append("SHUTTING DOWN SERVER!");
break;

}
}

}

/**
* Called each time a command occurs. The only command
* is the Exit
* command. This method will destroy the MIDlet.
*
* @param c ignored
* @param d ignored
*/

public void commandAction(Command c, Displayable d) {
try {
notifier.close();

} catch (Exception e) {
}
notifyDestroyed();

}
}

Receiving Messages from the Client

The next step in writing the Message Server application is writing the
code to receive messages from the client. The client sends a message to
a single user by means of the PUT operation. The user name of the
intended recipient of the message is sent within the NAME header. The
message is sent via the BODY and END-OF-BODY headers. Before this
situation is handled, a data structure to store the user name and message
pair is created. The following code for the Message class holds the user
name and message of a single message. Methods to access both member
variables also are defined.

package com.jabwt.book;

import java.lang.*;

/**
* The Message class provides a structure
* for keeping the message

OBEX Application Download 295

* and user name combination.
*/
public class Message {

/**
* The user name the message is intended for.
*/
private String userName;

/**
* The actual message.
*/
private String message;

/**
* Creates a new Message for the user
* specified with the text
* specified.
*
* @param name the user the message is intended for
*
* @param msg the message that was sent
*/
public Message(String name, String msg) {
userName = name;
message = msg;

}

/**
* The user name the message was intended for.
*/
public String getUserName() {
return userName;

}

/**
* The message for the user name.
*/
public String getMessage() {
return message;

}
}

Because the PUT operation sends the message, the onPut() method is
overwritten. Before the message is read, the user name is extracted from

296 Chapter Nine: Example Applications

the NAME header. If no user name is included, the onPut() method
returns the OBEX_HTTP_BAD_REQUEST error code because the request
was not complete. After the recipient’s user name is read, the message is
read from the InputStream of the Operation object. After the
message is read, a new Message object is created and added to the
Vector of all messages. If an Exception occurs during processing of
the request, the OBEX_HTTP_INTERNAL_ERROR response code is
returned. Otherwise, the OBEX_HTTP_OK response code is returned.

public class RequestHandler extends ServerRequestHandler {

...

/**
* Called each time an OBEX PUT request is received.
* This method will add
* the message received in the BODY header for the user
* specified in the
* NAME header to the messages Vector.
*
* @param op the interface to the Operation
*
* @return the response code to send to the client
*/
public int onPut(Operation op) {

try {
HeaderSet headers = op.getReceivedHeaders();
String name =
(String)headers.getHeader(HeaderSet.NAME);

int msgSize = (int)((Long)headers.getHeader(
HeaderSet.LENGTH)).longValue();
if (name == null) {
// If no NAME header is received, then it is not
// a valid
// request.
return ResponseCodes.OBEX_HTTP_BAD_REQUEST;

}

InputStream input = op.openInputStream();
byte[] data = new byte[msgSize];
StringBuffer msg = new StringBuffer();
// Read the BODY data / message

OBEX Application Download 297

int length = 0;
int totalLength = 0;
do {
length = input.read(data);
msg.append(new String(data, 0, length));
totalLength += length;

} while (totalLength != msgSize);

input.close();

// Add the message to the Vector
msgList.addElement(new Message(name,
msg.toString()));

// Close the open connections
op.close();

} catch (Exception e) {
return ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;

}
return ResponseCodes.OBEX_HTTP_OK;

}
}

Sending Messages to a Client

Because the GET operation is being used to retrieve messages from a
server, the onGet() method must be overwritten within the
MessageServer class. As in receiving a message from a client, the
message server first retrieves the NAME header. If the NAME header is
not present, the request cannot be completed, and an error return code
is returned. The NAME header contains the name of the user trying to
retrieve a message from the server. Next, the onGet() method steps
through every message in the msgList Vector until a message is found
for the user or the end of the Vector is reached. If the end of the
Vector is reached and no Message is found for the user, the
OBEX_HTTP_NOT_FOUND response code is returned. If a Message is
found, the onGet() method opens the OutputStream of the
Operation object and writes the message. If everything completes suc-
cessfully, the OBEX_HTTP_OK response code signals to the client that a
message has been found and returned. If an exception occurs during the
processing of the onGet() method, the OBEX_HTTP_INTERNAL_ERROR
response code is returned.

298 Chapter Nine: Example Applications

public class RequestHandler extends ServerRequestHandler {

...

/**
* Called each time an OBEX GET request is received.
* This method will
* will return a message in the BODY header for the
* user specified. If no
* message is found, this method will return a response
* code of
* OBEX_HTTP_NOT_FOUND.
*
* @param op used to retrieve the user name and send
* the message
*
* @return the response code to send to the server;
* OBEX_HTTP_OK if a message is sent in the
* reply;
* OBEX_HTTP_NOT_FOUND if no message could
* be found for the
* user specified; OBEX_HTTP_BAD_REQUEST if
* no NAME is
* specified; OBEX_HTTP_INTERNAL_ERROR if
* another error
* occurred.
*/
public int onGet(Operation op) {

try {
// Retrieve the name of the user who is requesting
// a message
HeaderSet header = op.getReceivedHeaders();

String name = (String)header.getHeader(HeaderSet.NAME);
if (name == null) {
header = createHeaderSet();
header.setHeader(HeaderSet.LENGTH, new Long(0));
op.sendHeaders(header);
op.close();

return ResponseCodes.OBEX_HTTP_BAD_REQUEST;
}

OBEX Application Download 299

// Find a message for the user specified
int length = msgList.size();
Message temp = null;
for (int i = 0; i < length; i++) {

temp = (Message)msgList.elementAt(i);
if (temp.getUserName().equals(name)) {
break;

}
temp = null;

}
header = createHeaderSet();

// If no data is found, notify the client that no
// data was found
if (temp == null) {
header.setHeader(HeaderSet.LENGTH, new Long(0));
op.sendHeaders(header);

return ResponseCodes.OBEX_HTTP_NOT_FOUND;
}

header.setHeader(HeaderSet.LENGTH,
new Long(temp.getMessage().getBytes().length));

op.sendHeaders(header);

// Send the message back to the client
OutputStream out = op.openOutputStream();
out.write(temp.getMessage().getBytes());
out.flush();

// Close all the open resources
out.close();
op.close();

msgList.removeElement(temp);
} catch (Exception e) {
return ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;

}

return ResponseCodes.OBEX_HTTP_OK;
}

}

300 Chapter Nine: Example Applications

9.3.2 The Message Client Application

Overview

The MessageClient is a MIDlet that allows a user to send messages to
and receive messages from a MessageServer. The MessageClient
starts with the user specifying a user name. Because this application
does not provide security, no password is provided. After the user name
is received, the MessageClient attempts to find a MessageServer to
which to connect. To keep things simple, the DiscoveryAgent.
selectService() method is used to find a MessageServer. After the
message server is found, the MessageClient connects to the
MessageServer using Connector.open(). Once the transport layer
connection is established, the MessageClient establishes an OBEX
connection by calling ClientSession.connect().

After connecting to the server, the MessageClient creates a
Form that allows the user to select between sending and receiving a
message. If the user chooses to send a message, a new Form is created
to allow the user to specify the user name and message. Once the user
name and message are entered, the user selects the “Send” Command.
After verifying that a user name and message have been entered, the
MessageClient sends the message to the server using a PUT
command. If the user selects to receive a message, the
MessageClient issues a GET command with the user’s user name. If
there is a message on the server, the message is retrieved and dis-
played to the user in an Alert. If no messages are found on the server,
an error message is displayed to the user.

At any time, the user can exit from the MessageClient MIDlet.
When the user selects to exit, the MIDlet is destroyed. When the MIDlet
is destroyed, the destroyApp() method is called. The connection to
the server is disconnected and closed within the destroyApp()
method.

Creating the Base MIDlet

The MessageClient MIDlet begins with the MessageClient con-
structor. The constructor retrieves the Display for the MIDlet. The
startApp() method is called next by the Application Management
engine within the KVM. Within the startApp() method, the login
Form is created and set to the current Displayable.

OBEX Application Download 301

To be notified when the user wants to log in, the MessageClient
class implements the CommandListener interface. This step requires
that the MessageClient class define the commandAction() method.
The commandAction() method first determines whether the “Exit”
Command or the “Login” Command has been selected by the user. If the
“Exit” Command has been selected, the MIDlet is destroyed by calling
notifyDestroyed(). If the user has selected the “Login” Command, the
commandAction() method first checks to see whether a user name has
been provided by the user. If the user name has not been provided, an
error Alert is displayed to the user. On the other hand, the client pro-
cessing thread is started by the commandAction() method if the user
did enter a user name. The client-processing thread is defined within the
MessageClient class. Therefore the MessageClient class implements
the Runnable interface.

package com.jabwt.book;

import java.lang.*;
import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;
import javax.obex.*;

/**
* The MessageClient MIDlet allows a user to
* send and retrieve
* messages from a MessageServer MIDlet.
*/
public class MessageClient extends MIDlet implements
CommandListener,
Runnable {

/**
* The user name to use when communicating with the server.
*/
private String userName;

/**
* The display for this MIDlet.
*/
private Display theDisplay;

302 Chapter Nine: Example Applications

/**
* Creates a MessageClient object and
* retrieves the
* Display for this MIDlet.
*/
public MessageClient() {
theDisplay = Display.getDisplay(this);

}

/**
* Called when the MIDlet is started. This method will
* create the Login
* Form and make it the current
* Displayable.
*
* @exception MIDletStateChangeException never thrown
*/
public void startApp()
throws MIDletStateChangeException {
Form login = new Form("Login");
login.append(new TextField("User Name", "", 10,
TextField.ANY));

login.addCommand(new Command("Login", Command.OK, 1));
login.addCommand(new Command("Exit", Command.EXIT, 1));
login.setCommandListener(this);

theDisplay.setCurrent(login);
}

public void pauseApp() {
}
public void destroyApp(boolean unconditional) {
}

/**
* Called when a Command is selected. If
* the Exit
* Command is selected, then the MIDlet is
* destroyed. If the
* Login Command (OK) is selected, the
* method will verify
* that the user name was entered and then start the
* processing thread.
*

OBEX Application Download 303

* @param c the Command that was selected
* @param d the Displayable which the
* Command
* is attached to
*/
public void commandAction(Command c, Displayable d) {

switch (c.getCommandType()) {
case Command.EXIT:
notifyDestroyed();
break;

case Command.OK:

// Retrieve the user name from the Form and verify
// that a user
// name has been entered
TextField userTextField =
(TextField)((Form)d).get(0);

if (userTextField.getString().trim().equals("")) {
Alert error = new Alert("Error",
"Please enter a user name before continuing",
null, AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
theDisplay.setCurrent(error);
return;

}

userName = userTextField.getString();

new Thread(this).start();

break;
}

}

public void run() {
}

}

Establishing a Connection to the Server

The run() method in the MessageClient class is responsible for locat-
ing a server and establishing a connection to the server. To keep the user
updated on the progress of the run() method, a Form is created to log
messages. After the Form is created and set to the current Displayable,

304 Chapter Nine: Example Applications

the DiscoveryAgent is retrieved for the local Bluetooth device. The
selectService() method is called on the DiscoveryAgent to
retrieve a connection string to a MessageServer. (The
selectService() method is used for simplicity’s sake.)

After a MessageServer is found, the run() method connects to
the MessageServer by calling Connector.open(). After a
ClientSession object is retrieved, the run() method issues a
CONNECT request by calling connect(). The HeaderSet returned by
connect() is checked to determine whether the connection has been
accepted by the server. If the getResponseCode() does not return
OBEX_HTTP_OK, the connection to the server is closed, and an error
message is displayed to the user.

For displaying the error message to the user, another method is added
to the MessageClient class. The displayError() method creates a
modal Alert with the title and error message provided to the method.

public class MessageClient extends MIDlet implements
CommandListener,
Runnable {

/**
* The connection to the message server.
*/
private ClientSession conn;

...

/**
* Displays an error message to the user.
*
* @param title the title of the Alert
* @param message the message to display to the user
*/
private void displayError(String title, String message) {
Alert error = new Alert(title, message, null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
theDisplay.setCurrent(error);

}

/**
* Searches for a MessageServer to connect to and
* establishes an OBEX
* connection to the MessageServer that is found.

OBEX Application Download 305

306 Chapter Nine: Example Applications

*/
public void run() {

// Create a form to keep the user updated on the
// progress of the thread
Form f = new Form("Connecting...");
f.append("Searching for Message Server...");
f.addCommand(new Command("Exit", Command.EXIT, 1));
f.setCommandListener(this);
theDisplay.setCurrent(f);

try {
// Search for a MessageServer
LocalDevice local = LocalDevice.getLocalDevice();
DiscoveryAgent agent = local.getDiscoveryAgent();
String connString = agent.selectService(
new UUID("750ef04247a54693b6384708eb87ec5e",
false),

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

if (connString == null) {
f.append("Unable to find the message server");
displayError("Error",
"Unable to find a Message Server to connect to.");

return;
}

f.append("Done\n");
f.append("Connecting to Server...");

// Establish a transport layer connection to the
// MessageServer
conn = (ClientSession)Connector.open(connString);

f.append("Done\n");
f.append("Establishing OBEX connection...");

// Issue an OBEX CONNECT request
HeaderSet header = conn.connect(null);
if (header.getResponseCode() !=
ResponseCodes.OBEX_HTTP_OK) {

f.append("The connection was rejected");
displayError("Rejected",
"The connection has been rejected by the " +
"server. (0x" +

Integer.toHexString(header.getResponseCode()) + ")");
conn.close();
conn = null;
return;

}

} catch (Exception e) {
f.append("An Error has occurred");
displayError("Error",
"An error occurred while trying to locate and " +
"connect to " +
"the Message Server (" + e.getClass().getName() +
": " +
e.getMessage() + ")");

if (conn != null) {
try {
conn.close();

} catch (Exception ex) {
}
conn = null;

}
return;
}

}
}

Now that the MessageClient is connected to the MessageServer, the
MessageClient displays a Form to the user so that the user can select
to send or retrieve a message. The getNextOptionFromUser() method
is created for this procedure. This method creates a new List and adds
two list items from which to select. This method has one argument, an
Alert, which is displayed before the List. This feature is used later.
The getNextOptionFromUser() method is placed at the end of the
run() method after the connection is established.

public class MessageClient extends MIDlet implements
CommandListener,
Runnable {

...

/**
* Creates a List that allows the user to
* select to send a

OBEX Application Download 307

* message or retrieve a message. If the
* dialog argument
* is not null, the dialog Alert is
* displayed before the
* List is displayed.
*
* @param dialog the Alert to display
* before the
* List; if null no
* Alert is
* displayed
*/
private void getNextOptionFromUser(Alert dialog) {
List requestForm = new List("Message Client",
List.EXCLUSIVE);

requestForm.append("Send a Message", null);
requestForm.append("Receive a Message", null);
requestForm.addCommand(new Command("Ok",
Command.SCREEN, 1));

requestForm.addCommand(new Command("Exit",
Command.EXIT, 1));

requestForm.setCommandListener(this);

// Display the Alert before the List if it is not null
if (dialog == null) {
theDisplay.setCurrent(requestForm);

} else {
theDisplay.setCurrent(dialog, requestForm);

}
}

/**
* Searches for a MessageServer to connect to and
* establishes an OBEX
* connection to the MessageServer that is found.
*/
public void run() {
// Create a form to keep the user updated on the
// progress of the
// thread
Form f = new Form("Connecting...");
f.append("Searching for Message Server...");
f.addCommand(new Command("Exit", Command.EXIT, 1));

308 Chapter Nine: Example Applications

f.setCommandListener(this);
theDisplay.setCurrent(f);

try {
// Search for a MessageServer
LocalDevice local = LocalDevice.getLocalDevice();
DiscoveryAgent agent = local.getDiscoveryAgent();
String connString = agent.selectService(
new UUID("750ef04247a54693b6384708eb87ec5e", false),
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

if (connString == null) {
f.append("Unable to find the message server");
displayError("Error",
"Unable to find a Message Server to connect to.");

return;
}

f.append("Done\n");
f.append("Connecting to Server...");

// Establish a transport layer connection to the
// MessageServer
conn = (ClientSession)Connector.open(connString);

f.append("Done\n");
f.append("Establishing OBEX connection...");

// Issue an OBEX CONNECT request
HeaderSet header = conn.connect(null);

if (header.getResponseCode() !=
ResponseCodes.OBEX_HTTP_OK) {
f.append("The connection was rejected");
displayError("Rejected",
"The connection has been rejected by the " +
"server. (0x" +

Integer.toHexString(header.getResponseCode()) + ")");
conn.close();
conn = null;
return;

}

// Allow the user to select what to do next
getNextOptionFromUser(null);

} catch (Exception e) {
f.append("An Error has occurred");

OBEX Application Download 309

displayError("Error",
"An error occurred while trying to locate and" +
" connect to " +

"the Message Server (" + e.getClass().getName() +
": " +

e.getMessage() + ")");
if (conn != null) {
try {
conn.close();

} catch (Exception ex) {
}
conn = null;

}
return;

}
}

}

Sending a Message to the Server

The sendMessage() method sends messages to the server via a PUT
operation. The sendMessage() method takes, as arguments, the recip-
ient of the message and the actual message. The sendMessage()
method first creates a HeaderSet object and sets the recipient’s user
name to be the NAME header. Next, the LENGTH header is set to the
length of the message to send. After the NAME and LENGTH headers are
set, the sendMessage() method calls put() with this HeaderSet to
create the Operation object for sending the message to the server. The
sendMessage() method opens the OutputStream and writes
the message to the output stream. After the message is written, the
getResponseCode() method is called to determine whether the
message was correctly received by the server. If the message is not sent
to the server correctly, an error Alert is displayed to the user.

public class MessageClient extends MIDlet implements
CommandListener,
Runnable {
...

/**
* Sends the specified message to the specified name.
*
* @param name the name of the user to send to

310 Chapter Nine: Example Applications

* @param message the message to send to the user
*/
private void sendMessage(String name, String message) {

Operation op = null;
byte[] data = message.getBytes();
Alert error = null;
try {
// Set the NAME header to the recipient’s user name
// and the
// LENGTH header to the length of the message
HeaderSet header = conn.createHeaderSet();
header.setHeader(HeaderSet.NAME, name);
header.setHeader(HeaderSet.LENGTH, new
Long(data.length));

op = conn.put(header);

// Send the message to the server via the OutputStream
OutputStream out = op.openOutputStream();
out.write(data);
out.flush();
out.close();
op.close();

// Verify the response code
int code = op.getResponseCode();
if (code != ResponseCodes.OBEX_HTTP_OK) {
error = new Alert("Request Rejected",
"The server rejected the message. (0x" +
Integer.toHexString(code) + ")", null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
}

} catch (IOException e) {
error = new Alert("IO Error",
"An IO error occurred while sending the " +
"request to the server (" + e.getMessage() + ")", null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
} finally {
try {
op.close();

} catch (Exception e) {

OBEX Application Download 311

}
}

// Retrieve the next option from the user
getNextOptionFromUser(error);

}
}

Now that it is able to send a message, the MessageClient must be able
to get the message from the user. For getting the message from the user,
a Form is displayed that allows the user to enter a user name and
message. After entering the user name and message, the user can select
to send the message using the “Send” Command. After the user chooses to
send the message, the user name and message are read from the Form. If
the user name is not specified, an error Alert is displayed. If a user name
is specified, the sendMessage() method is called to send a message. At
any time, the “Exit” Command can be selected to destroy the MIDlet. The
“Exit” Command closes the connection to the server if one exists.

public class MessageClient extends MIDlet implements
CommandListener,
Runnable {

...

/**
* Called when a Command is selected. If
* the Exit
* Command is selected, then the MIDlet is
* destroyed. If the
* Login Command (OK) is selected, the
* method will verify
* that the user name was entered and then start the
* processing thread.
*
* @param c the Command that was selected
* @param d the Displayable which the
* Command
* is attached to
*/
public void commandAction(Command c, Displayable d) {

switch (c.getCommandType()) {
case Command.EXIT:

try {

312 Chapter Nine: Example Applications

conn.close();
} catch (Exception e) {
}

notifyDestroyed();
break;

case Command.OK:

// Retrieve the user name from the Form and verify
// that a user
// name has been entered
TextField userTextField = (TextField)((Form)d).get(0);
if (userTextField.getString().trim().equals("")) {
Alert error = new Alert("Error",
"Please enter a user name before continuing",
null, AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
theDisplay.setCurrent(error);
return;

}

userName = userTextField.getString();

new Thread(this).start();

break;

case Command.SCREEN:
List requestForm = (List)d;
// Determine if the user wants to send a message or
// retrieve a
// message. If getSelectedIndex() is 0, then "Send a
// Message"
// was selected. Otherwise, retrieve a message.
if (requestForm.getSelectedIndex() == 0) {

Form sendForm = new Form("Send Msg");
sendForm.append(new TextField("User", null, 10,
TextField.ANY));

sendForm.append(new TextField("Message", null, 250,
TextField.ANY));

sendForm.addCommand(new Command("Exit", Command.EXIT,
1));

sendForm.addCommand(new Command("Send", Command.ITEM,
1));

sendForm.setCommandListener(this);

OBEX Application Download 313

theDisplay.setCurrent(sendForm);
}

break;

case Command.ITEM:

Form sendMessage = (Form)d;

// Retrieve the user name and verify that one was
// entered.
TextField userName = (TextField)sendMessage.get(0);
if (userName.getString().trim().equals("")) {

displayError("Incomplete",
"A user name must be specified to send a message");
return;

}

TextField message = (TextField)sendMessage.get(1);
sendMessage(userName.getString(), message.getString());
break;

}
}
...

}

Retrieving a Message from the Server

The retrieveMessage() method is defined to use the get() method to
retrieve a message from the server. Before get() is called, the
retrieveMessage() method creates a new HeaderSet object and sets
the name of the current user in the NAME header. The server uses this
name to search for messages. The message is read from the InputStream
of the Operation object. After the message is read, the response code is
checked to determine whether the complete message has been sent. If the
complete message has been sent and an OBEX_HTTP_OK response code is
received, the message is displayed on the screen. If another response code
is received, the appropriate error message is displayed.

The following code ties the procedure together by modifying the
commandAction() method. If the user selects “Retrieve a Message,” the
retrieveMessage() method is called to retrieve the message.

public class MessageClient extends MIDlet implements
CommandListener,
Runnable {

314 Chapter Nine: Example Applications

...

/**
* Retrieves a message for this user from the server.
*/
public void retrieveMessage() {
Alert msg = null;
try {
// Specify the name of the user whose message should
// be retrieved
HeaderSet header = conn.createHeaderSet();
header.setHeader(HeaderSet.NAME, userName);

Operation op = conn.get(header);

// Read the message from the InputStream. If an
// error response
// code was returned, the InputStream will be empty.
StringBuffer buf = new StringBuffer();
InputStream input = op.openInputStream();
header = op.getReceivedHeaders();

int size = (int)((Long)header.getHeader(
HeaderSet.LENGTH)).longValue();

// Read the message from the server
byte[] data = new byte[size];
int length = input.read(data);
int temp = 0;
int bytesRead = length;
while (bytesRead != size) {
buf = buf.append(new String(data, temp, length));
temp = length;
length = input.read(data);
bytesRead += length;

}
buf = buf.append(new String(data, temp, length));

input.close();

// Check the response code to see if the whole
// message was read
int code = op.getResponseCode();
switch (code) {

// If the whole message was read, print the message
// in an Alert

OBEX Application Download 315

case ResponseCodes.OBEX_HTTP_OK:
msg = new Alert("Message", buf.toString(), null,
AlertType.INFO);

break;

// No messages exist for this user on the server
case ResponseCodes.OBEX_HTTP_NOT_FOUND:
msg = new Alert("No Message",
"No messages on the server",
null, AlertType.INFO);

break;

// An error occurred so print out an error message
default:
msg = new Alert("Error",
"As error occurred while communicating " +
" with the server (" + Integer.toHexString(code)
+ ")",
null, AlertType.INFO);

break;
}

op.close();
} catch (IOException e) {

msg = new Alert("IO Error",
"An IO error occurred while communicating " +
"with server (IOException: " + e.getMessage() +
")", null,
AlertType.INFO);

}

msg.setTimeout(Alert.FOREVER);

getNextOptionFromUser(msg);
}

/**
* Called when a Command is selected. If the Exit
* Command is selected, then the MIDlet is
* destroyed. If the
* Login Command (OK) is selected, the
* method will verify
* that the user name was entered and then start the
* processing thread.

316 Chapter Nine: Example Applications

*
* @param c the Command that was selected
* @param d the Displayable which the
* Command
* is attached to
*/
public void commandAction(Command c, Displayable d) {

switch (c.getCommandType()) {
case Command.EXIT:
notifyDestroyed();
break;

case Command.OK:

// Retrieve the user name from the Form and verify
// that a user
// name has been entered
TextField userTextField =
(TextField)((Form)d).get(0);

if (userTextField.getString().trim().equals("")) {
Alert error = new Alert("Error",
"Please enter a user name before continuing",
null, AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
theDisplay.setCurrent(error);
return;

}

userName = userTextField.getString();

new Thread(this).start();

break;

case Command.SCREEN:

List requestForm = (List)d;

// Determine if the user wants to send a message or
// retrieve a
// message. If getSelectedIndex() is 0, then "Send a
// Message"
// was selected. Otherwise, retrieve a message.
if (requestForm.getSelectedIndex() == 0) {

Form sendForm = new Form("Send Msg");
sendForm.append(new TextField("User", null, 10,

OBEX Application Download 317

TextField.ANY));
sendForm.append(new TextField("Message", null, 250,
TextField.ANY));

sendForm.addCommand(new Command("Exit", Command.EXIT,
1));

sendForm.addCommand(new Command("Send", Command.ITEM,
1));

sendForm.setCommandListener(this);

theDisplay.setCurrent(sendForm);

} else {
// Retrieve a message from the server
retrieveMessage();

}

break;

case Command.ITEM:

Form sendMessage = (Form)d;

// Retrieve the user name and verify that one was entered.
TextField userName = (TextField)sendMessage.get(0);
if (userName.getString().trim().equals("")) {

displayError("Incomplete",
"A user name must be specified to send a message");

return;
}
TextField message = (TextField)sendMessage.get(1);
sendMessage(userName.getString(), message.getString());
break;

}
}
...

}

9.4 Summary
This chapter provides two example applications. One example applica-
tion, the tic-tac-toe game, shows how to use the Bluetooth API. The tic-
tac-toe game uses the RFCOMM protocol to allow two people to play a
simple game of tic-tac-toe. The second application uses the OBEX API to
send and receive messages from a server application using OBEX over
the RFCOMM transport protocol.

318 Chapter Nine: Example Applications

10

This chapter covers:

• The steps required to implement JABWT on a device

• Issues and requirements for implementing JABWT

• Technology Compatibility Kit (TCK) compliance

A specification becomes a standard only when it is implemented. Until
then it is merely a .pdf file.

In the previous chapters we talk extensively about the JABWT
specification and how to write applications using the API. But for these
applications to run, there needs to be devices enabled with JABWT. In
this chapter we discuss some of the issues related to implementing this
API.

Who should implement JABWT?

• J2ME device manufacturers who plan to add Bluetooth wireless
technology to their devices

• Bluetooth device manufacturers who want to extend the program-
ming capability of their devices to the vast number of Java
programmers

This API brings together two different worlds, Bluetooth wireless tech-
nology and Java technology, and unites the benefits of each.

There are several aspects to enabling a device with JABWT. An
implementation depends on the components in the system, namely, the
Bluetooth hardware, the Bluetooth stack, the operating system, the
KVM, the CLDC implementation, and possibly other optional Java APIs
or profiles. Because these components vary from device to device, the
issues with JABWT implementation vary. Typically only selection of the

CHAPTER Implementing
JABWT on a
Device

Bluetooth protocol stack and CLDC/KVM implementation influence the
porting of JABWT to a device. For the device manufacturer today, there
are a wide range of choices for each of these components. Therefore,
instead of covering the minute details of porting for a particular set of
components, this chapter highlights the main issues an implementer
needs to think about while implementing JABWT on a device.

It is recommended that anyone attempting to port JABWT to a
device understand the Bluetooth specification, the Bluetooth protocol
stack, the Bluetooth radio hardware being used, and the KVM and
CLDC on the device.

10.1 Porting Process
The general device and Bluetooth system requirements for implement-
ing JABWT are discussed in Chapter 2. But each device being built has
specific Bluetooth application and system requirements. Before starting
the porting process of JABWT, an implementer has to make sure the
JABWT hardware and system requirements are met in the device in
question. The next steps are as follows:

1. Port a CLDC/KVM implementation (or CDC/JVM or J2SE + JSR-197
implementation)

2. Integrate a Bluetooth protocol stack and radio

3. Implement JABWT and the BCC

4. Run the TCK to check for compliance of the implementation to
the JABWT specification.

How many of these steps are needed depends on the device used
for the JABWT implementation. An implementer starting to create a
JABWT device can begin with one of the following four categories:

Category 1: The device currently has neither J2ME nor native
Bluetooth support. All four steps listed above have to be
implemented.

Category 2: The device is currently a J2ME device but has no native
Bluetooth support. Steps 2 through 4 are needed.

Category 3: The device has native Bluetooth support but is not J2ME
enabled. Steps 1, 3, and 4 are needed.

320 Chapter Ten: Implementing JABWT on a Device

Category 4: The device has J2ME and native Bluetooth support but
does not have JABWT. Steps 3 and 4 are needed.

Figures 10.1 through Figure 10.4 illustrate these four categories.
The above steps and categories assume a KVM-based machine with a
non-Java interface to a native Bluetooth stack and no Java Native
Interface (JNI) in the J2ME implementation. In the case of devices that
have the Bluetooth protocol stack implemented completely in the Java
programming language or have JNI, some of the components discussed
in the next sections may not be applicable, but the general issues in the
porting process are still applicable. This chapter attempts to cover the
more difficult case, which is a device with a KVM implementation that
has a C interface to a native Bluetooth stack and no JNI.

JABWT depends only on CLDC libraries. Generally, however,
CLDC does not make a complete J2ME solution. Devices usually have
one or more J2ME profiles to complete their functionality. MIDP is one
such profile typically used in mobile phones. Mobile phones are
expected to be one of the large-volume JABWT devices. Figure 10.1
shows the components of an implementation that has CLDC/MIDP, a
native Bluetooth stack, native Bluetooth applications, and JABWT. Such
a device would support a wide range of Bluetooth applications. For
example, native Bluetooth applications would access the native
Bluetooth protocol stack through the APIs provided directly by the
stack. In addition, JABWT applications can access the Bluetooth

Porting Process 321

MIDP +
JABWT
applications

OEM-specific
applications

Native
Bluetooth
applications

OEM-specific
classes

MIDP I JABWT (step 3)

CLDC/KVM (step 1)

Operating system + Bluetooth stack (step 2)

Figure 10.1 Components of JABWT device.

protocol stack using the APIs defined by the JSR-82 specification (shown
as JABWT, next to MIDP in Figure 10.1).

The dependence of JABWT on CLDC is confined to the package
javax.microedition.io. JSR-197 defines javax.microedition.io
as an optional package in J2SE that will enable JABWT to be an optional
package in J2SE also. With JSR-197, there are three choices for step 1
above: either port CLDC/KVM, or port CDC/JVM, or port J2SE +
JSR-197.

Now let’s look at each of the four steps in the porting process.

10.2 Steps 1 and 2: Adding J2ME and Bluetooth Support
To add Java technology to a device with native Bluetooth support
(Figure 10.2), one has to port an appropriate Java virtual machine and
set of class libraries to that device (step 1). Likewise, to add Bluetooth
wireless technology to a J2ME device (Figure 10.3), one has to port a
native Bluetooth protocol stack to the device (step 2). Implementation
details of these two steps are beyond the scope of this book. These two
steps can be performed in any order if not already done on the device.
They are two independent porting efforts. When these two steps are
completed, the architecture of the resulting device is similar to that
shown in Figure 10.4.

If both step 1 and step 2 are needed, the JABWT implementation
can be simplified by selection of a Bluetooth protocol stack and a KVM
with appropriate features. Of all the modules, the KVM-stack interface is
the most crucial; hence selecting the stack for the JABWT device is an
important step. This issue is discussed next.

322 Chapter Ten: Implementing JABWT on a Device

Native Bluetooth
applications

Operating system +
Bluetooth stack

Figure 10.2 Components of a Native Bluetooth Device.

Stack Features That JABWT Requires

As stated in Chapter 2, the underlying Bluetooth protocol stack must be
qualified in accordance with the Bluetooth Qualification Program for at
least the GAP, SDAP, and SPP. Without these features in the stack,
JABWT cannot be implemented. In addition, the interface between the

Steps 1 and 2: Adding J2ME and Bluetooth Support 323

MIDP
applications

OEM-specific
applications

Native
applications

OEM-specific
classes

MIDP

CLDC/KVM

Operating system

Figure 10.3 Components of MIDP device.

MIDP
applications

OEM-specific
applications

Native
Bluetooth
applications

OEM-specific
classes

MIDP

CLDC/KVM

Operating system

Bluetooth
stack

Figure 10.4 A device with MIDP and a native Bluetooth stack.

JABWT implementation and the Bluetooth protocol stack is simplified if
the stack has the following features:

• Applications access the stack through a set of APIs.

• The stack supports asynchronous calls for all operations that may
require a nontrivial amount of time for completion.

• Applications are notified of asynchronous events. The use of call-
back functions is the most common way of accomplishing this
task, but it can also be performed through interrupts or
application-level polling.

In selection of a stack for a JABWT device, these issues must to be taken
into account. If the device already has a stack, these issues will help
identify the necessary modifications or workarounds that may be
required for completing the JABWT implementation.

A qualified stack generally has all the required functionality for a
JABWT implementation. Going through all the required functionality
would amount to listing the Bluetooth specification itself, but the key
requirements of the stack are as follows:

1. The stack should provide APIs to perform RFCOMM connections,
inquiry, and service discovery functions.

2. The stack should provide an API to add and delete service records.

3. The stack should give access to APIs for performing L2CAP con-
nections. This is a key area because many stacks have L2CAP capa-
bilities but do not provide a way of accessing them from outside
the stack. The JABWT implementation must perform L2CAP func-
tions directly.

4. The stack should provide the following security and support
features:

• Determine whether the given device is trusted

• Authorize the given connection and remote device

• Set the device PIN

• Enable or disable encryption

• Authenticate the remote device

• Determine whether a given remote device has already been
authenticated

324 Chapter Ten: Implementing JABWT on a Device

• Determine whether a given connection has already been
authorized

• Determine whether a given link is encrypted

• Get the user-friendly name of the local device

• Get the user-friendly name of the remote device

• Get the class of device information for the local device

• Change the discoverable mode of the local device

• Enable or disable the connectable mode for the local device

• Get the Bluetooth address of the local device

Other stack features that would make the porting effort easier are as
follows:

1. The stack should provide callback functions for asynchronous
event notification. Otherwise the KVM has to poll the stack, a
process that affects performance of the JABWT implementation.

2. The stack should support asynchronous calls for time-consuming
operations; otherwise the performance of the KVM will be
affected. This subject is discussed in more detail in the Section
10.3.

3. Although not required by the JABWT specification, support for (a)
sending HCI commands, (b) security modes 2 and 3, and (c)
master/slave switching in the stack will simplify the JABWT
implementation.

4. Good debugging capabilities should exist.

10.3 Step 3: Implementing JABWT
By accomplishing step 1 and step 2, one arrives at a device that has an
implementation of J2ME and native Bluetooth support but does not
have JABWT. Many such devices are available. These devices come with
step 1 and step 2 completed. Figure 10.4 shows the components of such
a device. Implementing JABWT on this device (step 3) would make this
device a JABWT device as shown in Figure 10.1.

The implementation components from steps 1 through 3 are
shown in Figure 10.5. The JABWT implementation consists of the Java

Step 3: Implementing JABWT 325

libraries, javax.bluetooth and optionally javax.obex (not shown),
and KVM extensions. The Java libraries layers most likely will not need
to change for porting to a different stack or KVM. The components of
the KVM extensions are shown in Figure 10.6.

The KVM and KVM operating system interface (KOSI) shown in
Figure 10.6 are the native code part of the CLDC implementation. The
components of the KVM extensions (i.e., Bluetooth KVM, Bluetooth-
KOSI, and BCC) are part of the JABWT implementation. The KVM
extensions provide the following:

• Native functions to make calls to the stack

• Event handling code to receive callbacks from the stack

• BCC to resolve conflicts between applications over device state and
security measures

• Code to interface with the stack and manage data structures

Depending on the KVM, it may be necessary to modify the KOSI layer
of CLDC. (If the J2ME implementation has a JNI interface, such
modifications will not be necessary.)

Bluetooth-KVM

This module contains changes to the KVM to incorporate JABWT. This
includes changes to the KVM for handling events from the Bluetooth

326 Chapter Ten: Implementing JABWT on a Device

Bluetooth
protocol

stack

Bluetooth
radio

Applications

javax.bluetooth MIDP
CLDC

KVMKVM
Extensions

Components from step 3

Components from step 2

Components from step 1

Figure 10.5 Implementation components.

protocol stack and additional native functions called by the Java
libraries. This layer is stack independent but depends on the KVM. The
details of this module depend on the architecture and design of the
KVM used.

Bluetooth-KOSI

This layer is the interface layer between the KVM and the Bluetooth pro-
tocol stack. This layer is stack dependent and needs to be ported for each
device with a different Bluetooth stack. The person implementing this
layer needs a detailed understanding of the stack API and the stack
event mechanism.

10.3.1 KVM-Stack Interface

Some of the key issues with implementing the Bluetooth-KVM and
Bluetooth-KOSI modules are as follows:

• Managing connections. Managing the Java objects in the
Bluetooth classes and the connections in the Bluetooth protocol
stack is one of key issues in the KVM extensions. When a J2ME

Step 3: Implementing JABWT 327

Bluetooth-KVM

Bluetooth-KOSI BCC

KVM

KOSI

Java Bluetooth library

Java CLDC library

Bluetooth stack

Bluetooth radio

KVM extensions

Java application

Figure 10.6 Components of KVM extensions.

application makes a Connector.open() call to establish a con-
nection, an appropriate Java object is created if the connection
request is successful. The actual connection between Bluetooth
devices is established within the Bluetooth protocol stack. It is up
to the Bluetooth-KVM and Bluetooth-KOSI layers to maintain this
association between the Java objects in the J2ME application and
the actual Bluetooth connection within the protocol stack. This
association must be maintained even if there are multiple and
simultaneous connections.

• Event handling. In addition to transferring data between the
Bluetooth Java libraries and the Bluetooth protocol stack, the
native interface must be able to transfer event notifications from
the protocol stack to the KVM, where it is processed. These events
can be generated by the protocol stack in the local device or gen-
erated as a result of some operation performed by the remote
device. These events happen asynchronously. Typical notification
mechanisms are periodic polling by the KVM or KVM callback
functions registered with the Bluetooth protocol stack. The latter is
more efficient. Choosing a stack with that capability helps ease the
JABWT port to a device. In this case the KVM registers with the
Bluetooth protocol stack to receive events that provide the results
to pass back to the application.

• Blocking and non-blocking stack calls. The layers above the KVM
extensions are context switched by the KVM, and this feature
enables different threads within J2ME to run. Even if one Java thread
is blocked, the other Java threads continue to run. It is frequently the
case, however, that the KVM itself is single threaded from the system
software perspective. This means that if the Bluetooth-KOSI layer
makes a blocking call to the Bluetooth stack, the entire J2ME engine
blocks, and no threads run. The performance of the J2ME system
suffers. Context switching in J2ME with single-threaded KVM is
illustrated in Figure 10.7. Because of the nature of Bluetooth com-
munications, many of the operations take a noticeable amount of
time to complete. Limiting the blocking calls to the Bluetooth pro-
tocol stack is highly desirable in a JABWT implementation.

The following are possible blocking and non-blocking call
scenarios. These issues are to be considered when porting to a Bluetooth
stack or in selection of a Bluetooth stack for the JABWT device.

328 Chapter Ten: Implementing JABWT on a Device

1. The JABWT application makes a blocking API call, and the KVM
makes a blocking call to the stack. In this case both the applica-
tion and the KVM block until the operation is complete.
Operations such as these should be limited only to very fast
stack calls, such as calls to get the name of the local device.
An example of such a method in JABWT is the method
LocalDevice.getBluetoothAddress().

2. The JABWT application makes a non-blocking API call using the
event-driven methods in the API. An example of such a method in
JABWT is DiscoveryAgent.searchServices(), which uses a
Java listener object to receive completed events. The KVM then
registers with the Bluetooth stack to receive notification of events.
Once this event is received, the KVM uses events in the Java API to
return results to the application. Note: if a stack does not provide
a non-blocking call for an event-driven method in JABWT, that
stack is not a good stack to be used in a JABWT device.

3. The JABWT application makes a blocking call on an operation in
which it would not be advisable to block the KVM (e.g., methods
that access a remote device). Therefore the related call to the stack

Step 3: Implementing JABWT 329

Context switching
controlled By KVM

J2ME
 application

Bluetooth
classes

Bluetooth
protocol stack

Native methods

KOSI functions

CLDC
classes

Java Bytecode
interpreter

Direct C code No KVM context
switching

Figure 10.7 Context-switching in J2ME.

that the KVM needs to make is a non-blocking call. Then the KVM
extension modules should convert the blocking call from the
application to an event-driven call. An example of this scenario
is shown in Figure 10.8. One way to do the conversion is
by using the Java methods java.lang.Object.wait() and
java.lang.Object.notify(). In general, any JABWT method
that requires Bluetooth communications over the air to remote
devices should not block the KVM and is a potential target for such
a conversion. Examples of such methods are DiscoveryAgent.
selectServices(), RemoteDevice.getBluetoothAddress(),
and RemoteDevice.getFriendlyName(alwaysAsk) when the
input parameter alwaysAsk is true.

10.3.2 Implementing the BCC

The BCC is another component of the KVM extensions. As described in
the JABWT specification, the BCC is entirely implementation depend-
ent and would require some level of porting for each device, even if the
KVM and stack are the same. The BCC serves the vital role of resolving
conflicts between multiple applications that make conflicting requests

330 Chapter Ten: Implementing JABWT on a Device

J2ME
 application

Bluetooth
classes

Bluetooth
protocol stack

Native methods

KOSI functions

KVM context
switching

No KVM context
switching

• Call a blocking method in the API

• Call returns when operation completes

• Call native method

• wait() for operation to complete

• Call non-blocking Bluetooth
stack API & return

• notify() when operation completes

• When operation completes invoke
KOSI callback function

Figure 10.8 Not blocking the KVM.

to the Bluetooth protocol stack. For example, one application may
request the Bluetooth stack to turn on encryption while another appli-
cation may request encryption to be turned off. The BCC also sets and
enforces device-wide security settings. Therefore, depending on the
requirements of the final system, the scope of the BCC may range from
something quite trivial to something very complex. The following is a
list of key BCC design and implementation issues:

• Will there be a mix of non-J2ME and J2ME applications? If so, the
BCC may have to reside in the protocol stack or be part of the oper-
ating system.

• Will there be a need to support a number of different security modes?

• Will the user have the capability of modifying the behavior of the
BCC? If so, there may be a need to develop a UI of some sort for
the BCC.

The simplest BCC implementation would consist of a set of static
device policies and security settings that would always apply to all
applications. However, a more sophisticated BCC may be required to
support a more diverse range of applications and application require-
ments, thus increasing the complexity of the BCC.

10.3.3 OBEX Implementation

The OBEX API within JABWT is independent of the Bluetooth APIs. It is
also an optional API. Thus a JABWT implementation can consist of only
the Bluetooth APIs (javax.bluetooth) and not the OBEX APIs
(javax.obex). Being transport independent makes it easy to imple-
ment the OBEX APIs on devices that do not have Bluetooth transports
but have other transports (e.g., IrDA, USB) over which OBEX can be
implemented.

The OBEX implementation can be in the Java language or be in a
native implementation. Figure 10.9 shows the difference between the
two implementations. There may be devices that already have native
OBEX implementations. In this case, it may be better to implement the
Java OBEX APIs defined in JABWT on top of the native implementation.
On the other hand, an OBEX implementation in the Java programming
language may help reduce the porting work when a manufacturer builds
many different devices with OBEX capability.

Step 3: Implementing JABWT 331

10.4 Step 4: TCK Compliance
A TCK is the suite of tests, tools, and documentation used to
verify that an implementation is compliant with a Java API
specification. All specifications defined under the JCP have a TCK. All
independent implementations of these specifications must be tested
for compliance by running the TCK. The procedure is black box API
testing with minimal functional and stress testing. JABWT imple-
menters can do additional functional and stress testing of their prod-
ucts. Only the JABWT implementation, not the applications written
with JABWT, needs to be tested for TCK compliance. An application
that runs on a compliant JABWT device should run on any compliant
JABWT device provided the application is strictly written to the
specification.

TCK compliance testing is different from the Bluetooth
Qualification process. The Bluetooth Qualification process ensures that
products comply with the Bluetooth specification. Although JSR-82
TCKs will be used to verify compliance of JABWT, the Bluetooth
Qualification process would have to be used to qualify a Bluetooth

332 Chapter Ten: Implementing JABWT on a Device

OBEX API

KVM

KOSI

OBEX implementation

Transport protocol stack

OBEX API

OBEX implementation

KVM

KOSI

Transport protocol stack

Native OBEX Implementation Java Implementation

Figure 10.9 OBEX Implementations.

profile written with JABWT. The Bluetooth profile is technically an
application of JABWT; hence TCK compliance is not applicable.

The JSR-82 specification has two TCKs for determining the com-
pliance of devices with the JABWT specification:

• The Bluetooth TCK tests the compliance of the Bluetooth API
(javax.bluetooth) of JABWT

• The OBEX TCK tests the compliance of the OBEX API
(javax.obex) of JABWT

These TCKs are a set of tests that can be inserted into Sun’s CLDC
TCK and JavaTest™ harness. They consist of test-case sources, test-case
classes, and documentation. TCKs can be licensed from the JSR
specification lead companies. Companies that lead a JSR must create a
reference implementation (RI) and TCK for the specification devel-
oped. The RI and TCK must be made available for licensing. The RI
and the TCKs for JSR-82 can be licensed from the JSR-82 specification
lead company, Motorola. (Inquires about RI and TCKs can be sent to
motorolajava@javaland.sps.mot.com). The CLDC TCK can be licensed
from Sun Microsystems. Before claiming compliance or compatibility to
the JSR-82 specification, companies implementing the JABWT APIs
must use the JSR-82 TCK to demonstrate that their implementations
conform to the specification. All tests in the JSR-82 TCK have to run and
pass on the product before the product can be claimed as JABWT
compliant or compatible.

TCK Setup and Configuration

The JABWT TCKs use the same client-server design as the CLDC TCK
does, which includes the JavaTest framework. The TCK server runs the
JavaTest application, and a TCK client device runs the CldcAgent
application.

Figure 10.10 shows the setup for the JSR-82 TCK test. The JABWT
implementation being tested on the TCK client device interacts with a
second Bluetooth device running an application designed specifically to
participate in the JABWT TCK test. This test application is called the
TCK Agent, and the JSR-82 TCK setup requires the use of a TCK Agent
to interact in a predetermined manner with the CldcAgent application
running on the TCK client. Figure 10.10 shows the TCK Agent and the
CldcAgent and indicates that the TCK Agent has been added to the

Step 4: TCK Compliance 333

CLDC TCK test setup for use in the JSR-82 TCK test. This TCK agent on
the remote device can be one of the following:

• A CLDC (or MIDP) + JABWT application running on a JABWT
device

• A native application (non-JABWT) using a native Bluetooth or
OBEX implementation

More details on the TCK setup and TCK Agent are available in the doc-
umentation that comes with the TCK.

10.5 Summary
This chapter discusses various issues and techniques involved in pro-
viding a JABWT implementation for a Bluetooth device. Because the
characteristics of the KVM chosen and the Bluetooth stack chosen have
a major impact on the details of the JABWT implementation process, it
is not possible to list all of the issues that might arise. In addition, the

334 Chapter Ten: Implementing JABWT on a Device

TCK server
(x86 PC)

Existing test bench JSR 82 modifications

TCK client device
(device/emulator)

BT TCK agent
(device/emulator)

JavaTest
Application

J2SE

OS

TCK Test
TCK HTTP Client

CLDC + BT-J2ME

OS

BT TCK Agent
Application

CLDC + BT-J2ME

OS

HTTP
Connection over

Ethernet

BT
Radio

BT
Radio2.4GHz

Radio Link

Figure 10.10 JSR-82 TCK setup.

design of JABWT varies between implementations, a factor that gives
rise to some unique issues. This chapter discusses the different situations
that confront device manufacturers and highlights areas to which an
implementer will have to pay close attention.

Depending on the device with which one starts, there would be at
most four steps in porting JABWT to that device:

• Add a Java Virtual Machine

• Add a Bluetooth protocol stack

• Implement JABWT including the BCC

• Pass the TCK compliance tests

When going through these steps, an implementer may have the option
of choosing components that will ease the integration and implemen-
tation of JABWT.

The design for a JABWT implementation needs to address the fol-
lowing potentially challenging issues:

• Managing connections

• Handling events

• Preventing the Java virtual machine from blocking when making
time-consuming calls to the Bluetooth stack

The BCC can be implemented as part of the Bluetooth stack, as part of
the JABWT implementation, or as a simple set of device settings. The
implementation of the javax.obex package can be developed totally in
the Java programming language, or it can use the native OBEX imple-
mentation that comes with some Bluetooth stacks.

Finally the TCK test procedure is discussed. All JABWT imple-
mentations have to pass the JSR-82 TCK to claim compliance with the
JABWT standard.

Summary 335

This Page Intentionally Left Blank

11
Software standards often are vital to the success of communications
technologies. An effective software standard will encourage develop-
ment of a number of successful applications. Java Specification Request-
82, developed by the Java Community Process, standardized the Java
APIs for Bluetooth Wireless Technology. JABWT makes it possible to
write an application once and then run the application on any Java-
enabled device that supports JABWT. Because JABWT was developed
with the participation of several companies that develop Bluetooth
stacks, we believe it will be possible to implement JABWT in conjunc-
tion with a wide variety of Bluetooth stacks. This phenomenon repre-
sents a significant change in the way Bluetooth applications will be
written and fielded. Because there has been no standard API for
Bluetooth stacks, each stack has defined its own API for use by
Bluetooth applications. As a consequence, Bluetooth applications have
been written to run on a particular Bluetooth stack, and considerable
effort has been required to convert that application to run on another
Bluetooth stack.

JABWT does not change the fact that Bluetooth stacks all have
their own proprietary APIs. JABWT encourages application developers
to write their applications to standard JABWT rather than writing
them for a particular Bluetooth stack. As device manufacturers adopt
JABWT implementations for their Bluetooth devices, JABWT applica-
tions will be able to run on those JABWT devices with little or no
porting effort on the part of application developers. The different APIs
used by the Bluetooth stacks on these devices will be hidden behind
the common, standardized API provided by JABWT. The current pro-
liferation of J2ME devices has demonstrated the effectiveness of this
strategy and the benefits for J2ME developers. JABWT make it possible
for Bluetooth application developers to begin experiencing these same
benefits.

CHAPTER Clos ing
Remarks

One of the goals of JABWT is to allow third-party vendors to write
Bluetooth profiles in the Java language on top of JABWT. Companies
have already created Bluetooth profiles using JABWT, especially over
OBEX.

JABWT was defined with the participation of many individuals
from many different companies. Participation of individuals with dif-
ferent backgrounds helped create a robust specification. The members’
expertise runs the entire gamut of topics—Bluetooth hardware,
Bluetooth protocol stack, J2ME implementation, Java programming lan-
guage, OBEX, middleware, and mobile devices design. The JSR-82 effort
was a true collaboration and unification of two different industries.

The work completed under JSR-197, allows J2SE devices, such as
laptops, to incorporate JABWT. J2SE implementations of JABWT will
make the API available to a much larger set of users. It makes logical
sense to make it possible for J2SE devices to incorporate JABWT, as J2SE
devices are all potential Bluetooth devices.

As we move forward, some newer protocols such as BNEP and
profiles such as PAN, which could be widely used in Bluetooth devices,
could prompt extending JABWT. Voice- and telephony-related topics
were not considered in the first version of JABWT, but they can be con-
sidered in the next version. As this book goes to press, consumer devices
that implement JABWT are just starting to emerge.

Some OEMs manufacturing JABWT devices may want to provide
custom application environments for their devices. These manufactur-
ers may want to extend JABWT in a proprietary way and provide
additional functionality. This can be accomplished by defining LOCs or
LCCs (see Chapter 1). But programs using these classes may not be
portable across devices.

This book presents the need for JABWT, explains the overall archi-
tecture, and extensively discusses the various facets of JABWT—their use
and programming techniques. The book gives insights into the
intended use of the APIs. Programming to the APIs is the primary focus
of the book, yet the book discusses issues and tricks with implementing
JABWT to a device. The book, we believe, gives enough coding examples
to help a programmer become proficient at programming with JABWT.

In summary, we believe the basic human desire to stay connected
and communicate with computing devices from anywhere and at all
times will increase the demand on wireless communications. Standard
programming environments for accessing these wireless communica-

338 Chapter Eleven: Closing Remarks

tions media will help create a myriad of applications. This book presents
a simple yet powerful standard API for Bluetooth wireless technology.
We hope the power of JABWT will encourage people to write more
applications, write Bluetooth profiles with JABWT, and build more
JABWT devices.

Closing Remarks 339

This Page Intentionally Left Blank

A
This appendix contains the complete example code for the service reg-
istration MIDlets defined in Chapter 7 and all MIDlets defined in
Chapter 8.

A.1 Code Examples from Chapter 7

A.1.1 Classes for Example in Section 7.3.1

DefaultBtsppRecordMIDlet

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

/**
* The DefaultBtsppRecordMIDlet class illustrates
* the modification of a service record
*/
public class DefaultBtsppRecordMIDlet extends

MIDlet implements Runnable, CommandListener {

StreamConnectionNotifier notifier;

/**
* A DefaultBtsppRecordServer instance provides
* the server capabilities.
*/
DefaultBtsppRecordServer server;

APPENDIX Complete Code
Examples

/**
* The form displayed to the user.
*/
private Form output;

/**
* Creates a DefaultBtsppRecordMIDlet object and
* starts the server thread.
*/
public DefaultBtsppRecordMIDlet() {

output = new Form("Default Record");
output.addCommand(new Command("Exit",

Command.EXIT, 1));
output.setCommandListener(this);
new Thread(this).start();

}

/**
* Called each time the MIDlet is started. This
* method sets the current display
* @exception MIDletStateChangeException never
* occurs
*/
public void startApp() throws

MIDletStateChangeException {
Display currentDisplay =

Display.getDisplay(this);
currentDisplay.setCurrent(output);

}

public void pauseApp() {}
public void destroyApp(boolean unconditional) {}

/**
* The server will wait and accept connections
* from clients
*/
public void run() {

LocalDevice theRadio;
/*
* Define the serial port service and create the

342 Appendix A: Complete Code Examples

* notifier
*/
try {

theRadio = LocalDevice.getLocalDevice();
server = new DefaultBtsppRecordServer();
server.askToBeGeneralDiscoverable(theRadio);
notifier = server.defineDefaultBtsppService();

} catch (IOException e) {
output.append("Unable to start server" +

"(IOException: " +
e.getMessage() + ")");
return;

}

if (notifier != null) {
ServiceRecord record =

theRadio.getRecord(notifier);
output.append("URL=" + server.getURL(record));
output.append(server.describeAttributes(record)

);
} else {

output.append("Unable to start server");
return;

}

/*
* Use the notifier to establish serial port
* connections
*/
server.acceptClientConnections(notifier);

}

/**
* Called each time a command occurs. The only
* command is the Exit
* command. This method will destroy the MIDlet.
*/
public void commandAction(Command c,
Displayable d) {

try {

Appendix A: Complete Code Examples 343

server.shutdown(notifier);
} catch (Exception e) {
}
notifyDestroyed();

}
}

DefaultBtsppRecordServer

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

public class DefaultBtsppRecordServer {

boolean stop = false;

public StreamConnectionNotifier
defineDefaultBtsppService() {

StreamConnectionNotifier notifier;
String connString =

"btspp://localhost:" +
"68EE141812D211D78EED00B0D0" +

"3D76EC;name=SPPEx";
try {

notifier = (StreamConnectionNotifier)
Connector.open(connString);

} catch (IOException e){
return null;

}
return notifier;

}

public void acceptClientConnections(
StreamConnectionNotifier notifier) {
if (notifier == null){

344 Appendix A: Complete Code Examples

return;
}
try {

while (!stop){
StreamConnection clientConn = null;
/*
* acceptAndOpen() waits for the next
* client to
* connect to this service. The first time
* through the
* loop, acceptAndOpen() adds the service
* record to
* the SDDB and updates the service class
* bits of the device.
*/
try {
clientConn = (StreamConnection)

notifier.acceptAndOpen();
} catch (ServiceRegistrationException

e1) {
} catch (IOException e) {
continue;
}

}
} finally {

try {
shutdown(notifier);

} catch (IOException ignore) {
}

}
}

void askToBeGeneralDiscoverable(LocalDevice dev) {
try {

// Request that the device be made discoverable
dev.setDiscoverable(DiscoveryAgent.GIAC);

} catch(BluetoothStateException ignore) {
// discoverable is not an absolute requirement
}

}

Appendix A: Complete Code Examples 345

public String getURL(ServiceRecord record) {
String url = record.getConnectionURL(

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
if (url != null) {

return url.substring(0, url.indexOf(";"));
} else {

return "getConnectionURL()=null";
}

}

public String describeAttributes(ServiceRecord
record) {

int[] attributeIDs = record.getAttributeIDs();
StringBuffer strBuf = new StringBuffer(100);
strBuf.append("\n").append(Integer.toString(

attributeIDs.length));
strBuf.append(" Attributes: ");
for (int i = 0; i < attributeIDs.length; i++){

strBuf.append("<0x");
strBuf.append(Integer.toHexString(

attributeIDs[i]));
strBuf.append(">\n");

}
return strBuf.toString();

}

public void shutdown(StreamConnectionNotifier
notifier)

throws IOException {
stop = true;
notifier.close();

}
}

A.1.2 Classes for Example in Section 7.3.2

ModifyServiceRecordMIDlet

package com.jabwt.book;
import java.lang.*;
import java.io.*;

346 Appendix A: Complete Code Examples

import java.util.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

/**
* The ModifyServiceRecordMIDlet class illustrates
* the modification of a service record
*/
public class ModifyServiceRecordMIDlet extends

MIDlet implements Runnable, CommandListener {

StreamConnectionNotifier notifier;

/**
* A SerialPortServerExample instance provides
* the server capabilities.
*/
RecordModifyingServer server;

/**
* The form displayed to the user.
*/
private Form output;

/**
* Creates a ModifyServiceRecordMIDlet object and
* starts the server thread.
*/
public ModifyServiceRecordMIDlet() {

output = new Form("Game Record");
output.addCommand(new Command("Exit",

Command.EXIT, 1));
output.setCommandListener(this);
new Thread(this).start();

}

/**
* Called each time the MIDlet is started. This
* method sets the current display

Appendix A: Complete Code Examples 347

* @exception MIDletStateChangeException never
* occurs
*/
public void startApp() throws

MIDletStateChangeException {
Display currentDisplay =

Display.getDisplay(this);
currentDisplay.setCurrent(output);

}

public void pauseApp() {}
public void destroyApp(boolean unconditional) {}

/**
* The server will wait and accept connections
* from clients
*/
public void run() {

LocalDevice theRadio;
// Create the server connection object

try {
theRadio = LocalDevice.getLocalDevice();
server = new RecordModifyingServer();
server.askToBeGeneralDiscoverable();
notifier = server.defineGameService(theRadio,

100000L);
} catch (IOException e) {

output.append("Unable to start server" +
"(IOException: " + e.getMessage() + ")");

return;
}
if (notifier != null) {

ServiceRecord record =
theRadio.getRecord(notifier);

output.append("URL=" +
server.getURL(record));

output.append(
server.describeAttributes(record));

348 Appendix A: Complete Code Examples

} else {
output.append("Unable to start server; " +

"error in " +
"SerialPortServerExample.defineService()");
return;

}
server.acceptClientConnections(notifier);

}

/**
* Called each time a command occurs. The
* only command is the Exit
* command. This method will destroy the MIDlet.
*/
public void commandAction(Command c,

Displayable d) {
try {

server.shutdown(notifier);
} catch (Exception e) {
}
notifyDestroyed();

}
}

RecordModifyingServer

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

public class RecordModifyingServer {

boolean stop = false;

public StreamConnectionNotifier defineGameService(
LocalDevice localDev, long highScore) {

Appendix A: Complete Code Examples 349

StreamConnectionNotifier notifier;
String connString =

"btspp://localhost:"
+ "0FA1A7AC16A211D7854400B0D03D76EC;" +

"name=A Bluetooth Game";
try {

notifier = (StreamConnectionNotifier)
Connector.open(connString);

} catch (IOException e2){
return null;

}
ServiceRecord record =

localDev.getRecord(notifier);
// Add optional ServiceDescription attribute;
// attribute ID 0x0101.
record.setAttributeValue(0x0101,

new DataElement(DataElement.STRING,
"This game is fun! It is for " +
"two people. You can play it " +
"on your cell phones."));

// Add optional DocumentationURL attribute;
// attribute ID 0x000A.
record.setAttributeValue(0x000A, new

DataElement(DataElement.URL,
"http://www.gameDocsOnSomeWebpage.com"));

/*
* Add an application-specific attribute for the
* highest score achieved by this player to date.
*/
record.setAttributeValue(0x2222, new

DataElement(DataElement.U_INT_4,
highScore));

return notifier;
}

public void acceptClientConnections(
StreamConnectionNotifier notifier) {
if (notifier == null) {

350 Appendix A: Complete Code Examples

return;
}
try {

while (!stop){
StreamConnection clientConn = null;
/*
* acceptAndOpen() waits for the next client
* to connect to this service. The first time
* through the
* loop, acceptAndOpen() adds the service
* record to
* the SDDB and updates the service class
* bits of the device.
*/
try {

clientConn = (StreamConnection)
notifier.acceptAndOpen();

} catch (ServiceRegistrationException e1) {
} catch (IOException e) {

continue;
}

}
} finally {

try {
shutdown(notifier);

} catch (IOException ignore) {
}

}
}

void askToBeGeneralDiscoverable() {
try {

LocalDevice localDev =
LocalDevice.getLocalDevice();

/* Request that the device be made
discoverable */

localDev.setDiscoverable(DiscoveryAgent.GIAC);
} catch(BluetoothStateException ignore) {

Appendix A: Complete Code Examples 351

/* discoverable is not an absolute requirement
*/

}
}

public String getURL(ServiceRecord record) {
String url = record.getConnectionURL(

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
if (url != null) {

return url.substring(0, url.indexOf(";"));
} else {

return "getConnectionURL()=null";
}

}

public String describeAttributes(ServiceRecord
record) {

int[] attributeIDs = record.getAttributeIDs();
StringBuffer strBuf = new StringBuffer(100);
strBuf.append("\n").append(

Integer.toString(attributeIDs.length));
strBuf.append(" Attributes: ");
for (int i = 0; i < attributeIDs.length; i++){

strBuf.append("<0x");
strBuf.append(Integer.toHexString(

attributeIDs[i]));
strBuf.append(">\n");

}
return strBuf.toString();

}

public void shutdown(StreamConnectionNotifier
notifier) throws IOException {

stop = true;
notifier.close();

}
}

352 Appendix A: Complete Code Examples

A.1.3 Classes for Example in Section 7.3.4

ModifyIntoObjectPushMIDlet

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;
import javax.obex.*;

/**
* The ModifyIntoObjectPushMIDlet class illustrates
* the modification of a service record
*/
public class ModifyIntoObjectPushMIDlet extends

MIDlet implements Runnable, CommandListener {

// An ObjectPushServerExample instance provides
// the server capabilities.
ObjectPushServerExample server;

// The form displayed to the user.
private Form output;

// The local Bluetooth device
LocalDevice theRadio;

private SessionNotifier notifier;

// Creates a ModifyIntoObjectPushMIDlet object
// and starts the server thread.
public ModifyIntoObjectPushMIDlet() {
output = new Form("Object Push Server");
output.addCommand(new Command("Exit",

Command.EXIT, 1));

Appendix A: Complete Code Examples 353

output.setCommandListener(this);
new Thread(this).start();

}

/**
* Called each time the MIDlet is started. This
* method sets the current display.
*/
public void startApp() throws

MIDletStateChangeException {
Display currentDisplay =

Display.getDisplay(this);
currentDisplay.setCurrent(output);

}

public void pauseApp() {}

public void destroyApp(boolean unconditional) {}
// The server will wait and accept connections
// from clients
public void run() {

try {
theRadio = LocalDevice.getLocalDevice();
// The Object Push profile recommends that Push
// Servers be put in Limited Discoverable Mode
boolean result = theRadio.setDiscoverable(

DiscoveryAgent.LIAC);
if (!result) {
System.out.println(

"***setDiscoverable=LIAC failed");
}
server = new ObjectPushServerExample();
notifier = server.defineObjectPushService();

} catch (IOException e) {
output.append("Unable to start server" +

"(IOException: " + e.getMessage() + ")");
return;

354 Appendix A: Complete Code Examples

}
if (notifier != null) {

ServiceRecord record =
theRadio.getRecord(notifier);

output.append("Started Server, URL=" +
server.getURL(notifier));

output.append(
server.describeAttributes(record));

} else {
output.append("Unable to start server; " +

"error in " +
"ObjectPushServerExample." +
"defineObjectPushService()");

return;
}
server.acceptClientConnections(notifier);

}

/**
* Called each time a command occurs. The only
* command is the Exit
* command. This method will destroy the MIDlet.
*/
public void commandAction(Command c,

Displayable d) {
try {
server.shutdown(notifier);

} catch (Exception e) {
}
notifyDestroyed();

}
}

ObjectPushServerExample

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;

Appendix A: Complete Code Examples 355

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.bluetooth.*;
import javax.obex.*;

public class ObjectPushServerExample {
int clients = 0;
int maxClients = 2;
boolean stop = false;
LocalDevice localDev;

/**
* Create the service record for an OBEX Object
* Push server as defined
* by the Bluetooth Object Push profile.
*/
public SessionNotifier defineObjectPushService() {

SessionNotifier notifier;
// The UUID 00001105000... is the long-form
// UUID for the
// short form 0x1105 defined for the Object
// Push service ID by
// assigned numbers.
String connString =

"btgoep://localhost:" +
"0000110500001000800000805F9B34FB;" +

"name=OBEX Object Push Server";
// Connector.open() assigns a RFCOMM server
// channel
// and creates a service record using this
// channel.
try {

notifier = (SessionNotifier)
Connector.open(connString);

} catch (ServiceRegistrationException e1) {
// The open method failed because unable to
// obtain an RFCOMM server channel.
return null;

} catch (IOException e2){

356 Appendix A: Complete Code Examples

// The open method failed due to another
// IOException
return null;

}
try {

localDev = LocalDevice.getLocalDevice();
} catch (BluetoothStateException e) {

return null;
}
ServiceRecord record =

localDev.getRecord(notifier);
// Add the optional service attribute
// BluetoothProfileDescriptorList
ServiceRecordUtilities.setBluetoothProfileList(

record, 0x1105, 0x0100);
DataElement objFormatsDE = new

DataElement(DataElement.DATSEQ);
// supported format 0x01 = vCard 2.1
objFormatsDE.addElement(new

DataElement(DataElement.U_INT_1, 0x01));
// supported format 0x02 = vCard 3.0
objFormatsDE.addElement(new

DataElement(DataElement.U_INT_1, 0x02));
// Add mandatory Supported Formats List,
// attribute ID 0x0303
record.setAttributeValue(0x0303, objFormatsDE);
// An Object Push Server provides an Object
// Transfer service.
// Bit 20 of the Class of Device is for Object
// Transfer.
record.setDeviceServiceClasses(0x100000);
return notifier;

}

public void acceptClientConnections(
SessionNotifier notifier) {

if (notifier == null) {
return;

}

Appendix A: Complete Code Examples 357

PushServerRequestHandler requestHandler =
new PushServerRequestHandler();

try {
while (!stop){

Connection clientConn;
/*
* acceptAndOpen() waits for the next
* client to connect to this service. The
* first time through the
* loop, acceptAndOpen() adds the service
* record to
* the SDDB and updates the service class
* bits of the device.

*/
try {

clientConn = (Connection)
notifier.acceptAndOpen(requestHandler);

} catch (ServiceRegistrationException e1) {
// The acceptAndOpen method failed;
// possibly
// because the SDDB is full or violated
// constraints when modified record.
return;

} catch (IOException e) {
continue;

}
// There would be code here to start up a
// thread
// to communicate with this client.

}
} finally {
/*
* Releases the RFCOMM server channel and
* removes the service
* record from the SDDB.
*/
try {

notifier.close();
} catch (IOException ignore) {

358 Appendix A: Complete Code Examples

}
}

}

public String getURL(SessionNotifier notifier) {
ServiceRecord record =

localDev.getRecord(notifier);
String url = record.getConnectionURL(

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
if (url != null) {

return url.substring(0, url.indexOf(";"));
} else {

return "getConnectionURL()=null";
}

}

public String describeAttributes(ServiceRecord
record) {

int[] attributeIDs = record.getAttributeIDs();
StringBuffer strBuf = new StringBuffer(100);
strBuf.append("\n").append(

Integer.toString(attributeIDs.length));
strBuf.append(" Attributes: ");
for (int i = 0; i < attributeIDs.length; i++){

strBuf.append("<0x");
strBuf.append(Integer.toHexString(

attributeIDs[i]));
strBuf.append(">\n");

}
return strBuf.toString();

}

public void shutdown(SessionNotifier notifier) {
stop = true;
try {
notifier.close();

} catch (IOException ignore) {
}

}
}

Appendix A: Complete Code Examples 359

PushServerRequestHandler

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.obex.*;

/**
* The PushServerRequestHandler class handles
* requests
* from the OBEX client to store and retrieve
* electronic business cards.
*/
public class PushServerRequestHandler extends

ServerRequestHandler {

// Creates a PushServerRequestHandler object
public PushServerRequestHandler() {}

}

ServiceRecordUtilities

package com.jabwt.book;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

/*
* This class provides static methods that are
* useful for modifying
* the in-memory versions of service records for
* JABWT servers.
*/
public class ServiceRecordUtilities {

public static final int
ATT_ID_BLUETOOTH_PROFILE_LIST = 0x0009;

360 Appendix A: Complete Code Examples

/**
* Sets the value of the
* BluetoothProfileDescriptorList attribute to
* be the profile represented by a short-form UUID
* value and version number.
* @param record The service record to be modified
* @param profileUuidValue The short-form UUID for
* the profile from the Bluetooth Assigned Numbers
* @param version The version of the profile this
* service conforms to.
* The format is 0xMMmm where MM is the major version
* number and mm is the minor version number.
*/
public static void setBluetoothProfileList(

ServiceRecord record,
long profileUuidValue, int version) {

UUID profileUuid = new UUID(profileUuidValue);
DataElement profileUuidDE = new

DataElement(DataElement.UUID,
profileUuid);

DataElement versionDE = new
DataElement(DataElement.U_INT_2,
version);

DataElement profileVersionPairDE =
new DataElement(DataElement.DATSEQ);

DataElement profileDescriptorDE = new
DataElement(DataElement.DATSEQ);

// Create a pair with profile UUID and profile
// version
profileVersionPairDE.addElement(profileUuidDE);
profileVersionPairDE.addElement(versionDE);
// Add the pair to the list of profiles
profileDescriptorDE.addElement(

profileVersionPairDE);
// Set the BluetoothProfileDescriptorList to a
// DATSEQ data
// element containing the UUID-version pair
// for this profile.
record.setAttributeValue(

ATT_ID_BLUETOOTH_PROFILE_LIST,

Appendix A: Complete Code Examples 361

profileDescriptorDE);
}

}

A.2 Code Examples from Chapter 8

A.2.1 Classes for the L2CAP MTU Example

L2capMtuMIDlet

package com.jabwt.book;
import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

public class L2capMtuMIDlet extends MIDlet
implements CommandListener {

protected Display display;
protected Form displayForm;
protected Command exitCommand = new

Command("Exit", Command.EXIT, 1);
protected StringItem displayField = new

StringItem("", "");
private final static UUID uuid

= new UUID("F37995ACFB0B456b8589D1E5FD564825",
false);

private LocalDevice device;
private Form receiveMTUForm = null;
private Form transmitMTUForm = null;
private int chosenReceiveMTU;
private int chosenTransmitMTU;
private boolean providedReceiveMTU;
private boolean providedTransmitMTU;
private boolean isClient = false;
private Form serverOrClientForm;
private ChoiceGroup serverOrClient;

public L2capMtuMIDlet() {
display = Display.getDisplay(this);

}

362 Appendix A: Complete Code Examples

public void startApp() {
serverOrClientForm = new Form("MTU Demo");
serverOrClientForm.addCommand(exitCommand);
serverOrClientForm.addCommand(new Command("OK",

Command.OK, 1));
serverOrClient = new ChoiceGroup(null,

ChoiceGroup.EXCLUSIVE);
serverOrClient.append("Server", null);
serverOrClient.append("Client", null);
serverOrClient.setSelectedIndex(0, true);
serverOrClientForm.append(serverOrClient);
serverOrClientForm.setCommandListener(this);
display.setCurrent(serverOrClientForm);

}

public void commandAction(Command c,
Displayable d) {

switch (c.getCommandType()) {
case Command.EXIT:

notifyDestroyed();
break;

case Command.OK:
if (display.getCurrent() ==

serverOrClientForm) {
device = null;
try {

device = LocalDevice.getLocalDevice();
} catch(BluetoothStateException e) {

displayError("Error",
"getLocalDevice() got error: " +
e.toString());

return;
}
if (serverOrClient.isSelected(1)) {

displayForm = new Form("L2CAP Client");
displayForm.append(displayField);
displayForm.setCommandListener(this);
displayForm.addCommand(exitCommand);
isClient = true;

Appendix A: Complete Code Examples 363

getReceiveMTUFromUser(isClient);
} else {
isClient = false;
displayForm = new Form("L2CAP Server");
displayForm.append(displayField);
displayForm.setCommandListener(this);
displayForm.addCommand(exitCommand);
getReceiveMTUFromUser(isClient);

}
}

break;

case Command.ITEM:
Form MTUForm = (Form)d;
if (display.getCurrent() == receiveMTUForm) {

/*
* Extract the receiveMTU. If empty, the
* connection string will not mention receiveMTU.
*/
TextField receiveMTUField =

(TextField)MTUForm.get(0);
String recMTUAsString =

receiveMTUField.getString();
if (recMTUAsString.trim().equals("")) {

providedReceiveMTU = false;
chosenReceiveMTU = 0; //value will not be used

} else {
providedReceiveMTU = true;
chosenReceiveMTU =

Integer.parseInt(recMTUAsString);
}
System.out.println("****receiveMTU=" +

recMTUAsString);
getTransmitMTUFromUser(isClient);

} else if (display.getCurrent() ==
transmitMTUForm) {

/*
* Extract the transmitMTU. If empty, the
* connection
* string will not mention transmitMTU.

364 Appendix A: Complete Code Examples

*/
TextField transmitMTUField =

(TextField)MTUForm.get(0);
String transMTUAsString =

transmitMTUField.getString();
if (transMTUAsString.trim().equals("")) {
providedTransmitMTU = false;
chosenTransmitMTU = 0; //not used

} else {
providedTransmitMTU = true;
chosenTransmitMTU =

Integer.parseInt(transMTUAsString);
}
System.out.println("****transmitMTU=" +

transMTUAsString);
display.setCurrent(displayForm);
openL2CAPConnection(isClient,

providedReceiveMTU,
chosenReceiveMTU, providedTransmitMTU,
chosenTransmitMTU);

}
break;

}
}

public void destroyApp(boolean unconditionally)
{}

public void pauseApp() {}

private void getReceiveMTUFromUser(boolean
isClient) {

String maxRecMTUPlus1;
String maxRecMTU = LocalDevice.getProperty(

"bluetooth.l2cap.receiveMTU.max");
if (maxRecMTU == null) {

maxRecMTUPlus1 = "Unknown";
} else {

maxRecMTUPlus1
= (new Integer(Integer.parseInt(maxRecMTU) +

1)).toString();
}

Appendix A: Complete Code Examples 365

String initialMTU = Integer.toString(
L2CAPConnection.DEFAULT_MTU);

receiveMTUForm = new Form(isClient ?
"L2CAP Client" : "L2CAP Server");

String recMtuFieldLabel = "ReceiveMTU \n" +
(L2CAPConnection.MINIMUM_MTU - 1) + " < x < "
+ maxRecMTUPlus1;

receiveMTUForm.append(new
TextField(recMtuFieldLabel, initialMTU, 10,
TextField.NUMERIC));

receiveMTUForm.addCommand(new Command("Exit",
Command.EXIT, 1));

receiveMTUForm.addCommand(new Command("Next",
Command.ITEM, 1));

receiveMTUForm.setCommandListener(this);
display.setCurrent(receiveMTUForm);

}

private void getTransmitMTUFromUser(boolean
isClient) {

String initialMTU = Integer.toString(
L2CAPConnection.DEFAULT_MTU);

transmitMTUForm = new Form(isClient ?
"L2CAP Client" :
"L2CAP Server");

String fieldLabel = "TransmitMTU \n" +
(L2CAPConnection.MINIMUM_MTU - 1) + " < x";

transmitMTUForm.append(new TextField(fieldLabel,
initialMTU, 10, TextField.NUMERIC));

transmitMTUForm.addCommand(new Command("Exit",
Command.EXIT, 1));

transmitMTUForm.addCommand(new Command("Go",
Command.ITEM, 1));

transmitMTUForm.setCommandListener(this);
display.setCurrent(transmitMTUForm);

}

private void openL2CAPConnection(boolean isClient,
boolean receiveMTUInput, int receiveMTU,
boolean transmitMTUInput, int transmitMTU) {

366 Appendix A: Complete Code Examples

String url = null;
String paramString = "";
if (receiveMTUInput) {

paramString += ";receiveMTU=" + receiveMTU;
}
if (transmitMTUInput) {

paramString += ";transmitMTU=" + transmitMTU;
}
if (isClient) {

displayField.setText(
"searching, please wait...");

DiscoveryAgent agent =
device.getDiscoveryAgent();

try {
url = agent.selectService(uuid,
ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);
} catch (BluetoothStateException e) {

displayError("Error",
"BluetoothStateException: " +

e.getMessage());
}
if (url == null) {

displayError("Error",
"failed to find server!");

return;
}
url += paramString;
new L2capClient(this).start(url);

} else {
url = "btl2cap://localhost:" +

uuid.toString();
url += paramString;
new L2capServer(this).start(url);

}
}
/**
* Displays an error message to the user.
*
* @param title the title of the Alert

Appendix A: Complete Code Examples 367

* @param message the message to display to the
* user
*/
void displayError(String title, String message) {

Alert error = new Alert(title, message, null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
display.setCurrent(error);

}
}

L2capServer

package com.jabwt.book;
import java.io.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class L2capServer extends EchoParticipant
implements Runnable {

L2capMtuMIDlet parent;
private String url;

public L2capServer(L2capMtuMIDlet parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;
new Thread(this).start();

}

public void run() {
LocalDevice device = null;
L2CAPConnectionNotifier notifier = null;
try {
device = LocalDevice.getLocalDevice();

368 Appendix A: Complete Code Examples

/* Request that the device be made discover-
able */

device.setDiscoverable(DiscoveryAgent.GIAC);
} catch(BluetoothStateException e) {

parent.displayError("Error",
"BluetoothStateException: " + e.toString());
return;

}
try {

notifier = (L2CAPConnectionNotifier)
Connector.open(url);

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException in" +
"Connector.open()");

} catch (IOException e) {
parent.displayError("Error",
"IOException: " + e.getMessage());

}
if (notifier == null) {

return;
}
try{

out.setLabel("["+url+"]");
for (;;) {

L2CAPConnection conn =
notifier.acceptAndOpen();

echoReceivedL2capPackets(conn);
conn.close();

}
} catch(IOException e) {

parent.displayError("Error", "IOException: " +
e.getMessage());

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException: "
+ e.getMessage());

}
}

}

Appendix A: Complete Code Examples 369

L2capClient

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class L2capClient extends EchoParticipant
implements Runnable {

L2capMtuMIDlet parent;
private String url;

public L2capClient(L2capMtuMIDlet parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;
new Thread(this).start();

}

public void run() {
L2CAPConnection conn = null;
out.setLabel("["+url+"]");
try {

conn = (L2CAPConnection)Connector.open(url);
} catch (IllegalArgumentException e) {

parent.displayError("Error",
"IllegalArgumentException in " +

"Connector.open()\n"
+ e.getMessage());

} catch (BluetoothConnectionException e) {
String problem = "";
if (e.getStatus() ==

BluetoothConnectionException.UNACCEPTABLE_PARAMS) {
problem = "unacceptable parameters\n";

}

370 Appendix A: Complete Code Examples

parent.displayError("Error",
"BluetoothConnectionException: " +
problem + "msg=" + e.getMessage() +
"\nstatus= " + e.getStatus());

} catch (IOException e) {
parent.displayError("Error",

"IOException: " + e.getMessage());
}
if (conn == null) {

return;
}
try {

sendL2capPacketsForEcho(conn);
conn.close();

} catch (IOException e) {
parent.displayError("Error",

"IOException: " + e.getMessage());
}

}
}

EchoParticipant

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class EchoParticipant {

protected StringItem out;
private int bytesToSend = 100000;

void sendL2capPacketsForEcho(L2CAPConnection
conn) throws IOException {

byte[] sbuf = new byte[conn.getTransmitMTU()];
byte[] rbuf = new byte[conn.getReceiveMTU()];
for (int i=0; i < sbuf.length; i++) {

sbuf[i] = (byte)i;

Appendix A: Complete Code Examples 371

}
int count = 0;
long start = System.currentTimeMillis();
while (count < bytesToSend) {

conn.send(sbuf);
count += sbuf.length;
count += conn.receive(rbuf);
/* Display the bytes sent and received so

far */
out.setText(Integer.toString(count));

}
/* Let the echoer know we are done sending

bytes */
conn.send("DONE".getBytes());
conn.receive(rbuf);
long end = System.currentTimeMillis();
out.setText("Done (transferred "+count+

"bytes)\n"
+ "Elapsed time " +

(end - start)/1000 + "sec");
}

void echoReceivedL2capPackets(L2CAPConnection
conn) throws IOException {

byte[] ibuf = new byte[conn.getReceiveMTU()];
int transmitMTU = conn.getTransmitMTU();
int bytesIn;
int bytesOut;
int count = 0;
for (;;) {

bytesIn = conn.receive(ibuf);
bytesOut = Math.min(bytesIn, transmitMTU);
byte[] obuf = new byte[bytesOut];
System.arraycopy(ibuf, 0, obuf, 0,

bytesOut);
conn.send(obuf);
if ((bytesIn == 4) && (new

String(obuf)).equals("DONE")) {
break;

}

372 Appendix A: Complete Code Examples

count += bytesIn + bytesOut;
/* Display the bytes received and sent so

far */
out.setText(Integer.toString(count));

}
out.setText("Done (transferred " + count +

" bytes)");
}

}

A.2.2 Classes for the Example of Credit-Based Flow Control for L2CAP

L2capFlowControlMIDlet

package com.jabwt.book;
import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

public class L2capFlowControlMIDlet extends MIDlet
implements CommandListener {

protected Display display;
protected Form displayForm;
protected Command exitCommand = new

Command("Exit", Command.EXIT, 1);
protected StringItem displayField = new

StringItem("", "");
private final static UUID uuid

= new UUID("9C68A2AA1EC011D79E6C00B0D03D76EC",
false);

private LocalDevice device;
private Form receiveMTUForm = null;
private Form transmitMTUForm = null;
private int chosenReceiveMTU;
private int chosenTransmitMTU;
private boolean providedReceiveMTU;
private boolean providedTransmitMTU;
private boolean isClient = false;

Appendix A: Complete Code Examples 373

private Form serverOrClientForm;
private ChoiceGroup serverOrClient;

public L2capFlowControlMIDlet() {
display = Display.getDisplay(this);

}

public void startApp() {
serverOrClientForm = new Form("MTU Demo");
serverOrClientForm.addCommand(exitCommand);
serverOrClientForm.addCommand(new Command("OK",

Command.OK, 1));
serverOrClient = new ChoiceGroup(null,

ChoiceGroup.EXCLUSIVE);
serverOrClient.append("Server", null);
serverOrClient.append("Client", null);
serverOrClient.setSelectedIndex(0, true);
serverOrClientForm.append(serverOrClient);
serverOrClientForm.setCommandListener(this);
display.setCurrent(serverOrClientForm);

}

public void commandAction(Command c,
Displayable d) {
switch (c.getCommandType()) {
case Command.EXIT:

notifyDestroyed();
break;

case Command.OK:
if (display.getCurrent() ==

serverOrClientForm) {
device = null;
try {

device = LocalDevice.getLocalDevice();
} catch(BluetoothStateException e) {
displayError("Error",
"getLocalDevice() got error: " +

e.toString());
return;

}
if (serverOrClient.isSelected(1)) {

374 Appendix A: Complete Code Examples

displayForm = new Form("L2CAP Client");
displayForm.append(displayField);
displayForm.setCommandListener(this);
displayForm.addCommand(exitCommand);
isClient = true;
getReceiveMTUFromUser(isClient);

} else {
isClient = false;
displayForm = new Form("L2CAP Server");
displayForm.append(displayField);
displayForm.setCommandListener(this);
displayForm.addCommand(exitCommand);
getReceiveMTUFromUser(isClient);

}
}

break;
case Command.ITEM:

Form MTUForm = (Form)d;
if (display.getCurrent() == receiveMTUForm) {

/*
* Extract the receiveMTU. If empty, the
* connection string will not mention
* receiveMTU.
*/
TextField receiveMTUField =

(TextField)MTUForm.get(0);
String recMTUAsString =

receiveMTUField.getString();
if (recMTUAsString.trim().equals("")) {

providedReceiveMTU = false;
chosenReceiveMTU = 0;

//value will not be used
} else {

providedReceiveMTU = true;
chosenReceiveMTU =

Integer.parseInt(recMTUAsString);
}
System.out.println("****receiveMTU=" +

recMTUAsString);
getTransmitMTUFromUser(isClient);

Appendix A: Complete Code Examples 375

} else if (display.getCurrent() ==
transmitMTUForm) {

/*
* Extract the transmitMTU. If empty, the
* connection string will not mention
* transmitMTU.
*/
TextField transmitMTUField =

(TextField)MTUForm.get(0);
String transMTUAsString =

transmitMTUField.getString();
if (transMTUAsString.trim().equals("")) {

providedTransmitMTU = false;
//value will not be used
chosenTransmitMTU = 0;

} else {
providedTransmitMTU = true;
chosenTransmitMTU =

Integer.parseInt(transMTUAsString);
}
System.out.println("****transmitMTU=" +

transMTUAsString);
display.setCurrent(displayForm);
openL2CAPConnection(isClient,

providedReceiveMTU,
chosenReceiveMTU,
providedTransmitMTU,
chosenTransmitMTU);

}
break;
}

}

public void destroyApp(boolean unconditionally)
{}

public void pauseApp() {}

private void getReceiveMTUFromUser(boolean
isClient) {

376 Appendix A: Complete Code Examples

String maxRecMTUPlus1;
String maxRecMTU

= LocalDevice.getProperty(
"bluetooth.l2cap.receiveMTU.max");

if (maxRecMTU == null) {
maxRecMTUPlus1 = "Unknown";

} else {
maxRecMTUPlus1 = (new Integer(

Integer.parseInt(maxRecMTU) +
1)).toString();

}
String initialMTU = Integer.toString(

L2CAPConnection.DEFAULT_MTU);
receiveMTUForm = new Form(isClient ?

"L2CAP Client" : "L2CAP Server");
String recMtuFieldLabel = "ReceiveMTU \n" +
(L2CAPConnection.MINIMUM_MTU -1) + " < x < "

+ maxRecMTUPlus1;
receiveMTUForm.append(new

TextField(recMtuFieldLabel, initialMTU,
10, TextField.NUMERIC));

receiveMTUForm.addCommand(new Command("Exit",
Command.EXIT, 1));

receiveMTUForm.addCommand(new Command("Next",
Command.ITEM, 1));

receiveMTUForm.setCommandListener(this);
display.setCurrent(receiveMTUForm);

}

private void getTransmitMTUFromUser(boolean
isClient) {

String initialMTU = Integer.toString(
L2CAPConnection.DEFAULT_MTU);

transmitMTUForm = new Form(isClient ?
"L2CAP Client" :
"L2CAP Server");

String fieldLabel = "TransmitMTU \n" +
(L2CAPConnection.MINIMUM_MTU - 1) + " < x";

Appendix A: Complete Code Examples 377

transmitMTUForm.append(new TextField(fieldLabel,
initialMTU, 10, TextField.NUMERIC));

transmitMTUForm.addCommand(new Command("Exit",
Command.EXIT, 1));

transmitMTUForm.addCommand(new Command("Go",
Command.ITEM, 1));

transmitMTUForm.setCommandListener(this);
display.setCurrent(transmitMTUForm);

}

private void openL2CAPConnection(boolean
isClient, boolean receiveMTUInput,

int receiveMTU, boolean transmitMTUInput,
int transmitMTU) {

String url = null;
String paramString = "";
if (receiveMTUInput) {

paramString += ";receiveMTU=" + receiveMTU;
}
if (transmitMTUInput) {

paramString += ";transmitMTU=" +
transmitMTU;

}
if (isClient) {

displayField.setText(
"searching, please wait...");

DiscoveryAgent agent =
device.getDiscoveryAgent();

try {
url = agent.selectService(uuid,
ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);
} catch (BluetoothStateException e) {
displayError("Error",
"BluetoothStateException: " +

e.getMessage());
}
if (url == null) {
displayError("Error",

378 Appendix A: Complete Code Examples

"failed to find server!");
return;

}
url += paramString;
new L2capFlowControlClient(this).start(url);

} else {
url = "btl2cap://localhost:" +

uuid.toString();
url += paramString;
new L2capFlowControlServer(this).start(url);

}
}

/**
* Displays an error message to the user.
* @param title the title of the Alert
* @param message the message to display to the
* user
*/
void displayError(String title,

String message) {
Alert error = new Alert(title, message, null,

AlertType.ERROR);
error.setTimeout(Alert.FOREVER);
display.setCurrent(error);

}
}

L2capFlowControlServer

package com.jabwt.book;
import java.io.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class L2capFlowControlServer
extends CreditBased1WayXfer implements Runnable {
L2capFlowControlMIDlet parent;

Appendix A: Complete Code Examples 379

private String url;
CreditIssuer issuer;
L2capBuffers buffers;

public final static int CREDIT_ISSUER_SLEEP =
100;

public L2capFlowControlServer(L2capFlowControlMIDlet
parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;
new Thread(this).start();

}

public void run() {
LocalDevice device = null;
L2CAPConnectionNotifier notifier = null;
try {

device = LocalDevice.getLocalDevice();
/* Request that the device be made

discoverable */
device.setDiscoverable(DiscoveryAgent.GIAC);

} catch(BluetoothStateException e) {
parent.displayError("Error",
"BluetoothStateException: " + e.toString());
return;

}
try {

notifier = (L2CAPConnectionNotifier)
Connector.open(url);

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException in " +
"Connector.open()");

} catch (IOException e) {
parent.displayError("Error",

"IOException: " + e.getMessage());

380 Appendix A: Complete Code Examples

}
if (notifier == null) {

return;
}
try {

out.setLabel("["+url+"]");
for (;;) {

L2CAPConnection conn =
notifier.acceptAndOpen();

buffers = new
L2capBuffers(conn.getReceiveMTU());

issuer = new CreditIssuer(buffers, conn,
CREDIT_ISSUER_SLEEP);

new Thread(issuer).start();
receiveL2capPackets(conn, buffers,

issuer);
conn.close();

}
} catch(IOException e) {

parent.displayError("Error",
"IOException: " + e.getMessage());

} catch (IllegalArgumentException e) {
parent.displayError("Error",

"IllegalArgumentException: "
+ e.getMessage());

}
}

}

L2capFlowControlClient

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class L2capFlowControlClient extends
CreditBased1WayXfer implements Runnable {

Appendix A: Complete Code Examples 381

L2capFlowControlMIDlet parent;
private String url;

public L2capFlowControlClient(
L2capFlowControlMIDlet parent) {
this.parent = parent;
this.out = parent.displayField;

}

public void start(String url) {
this.url = url;
new Thread(this).start();

}

public void run() {
L2CAPConnection conn = null;
out.setLabel("["+url+"]");
try {
conn = (L2CAPConnection)

Connector.open(url);
} catch (IllegalArgumentException e) {

parent.displayError("Error",
"IllegalArgumentException in "

+ "Connector.open()\n"
+ e.getMessage());

} catch (BluetoothConnectionException e) {
String problem = "";
if (e.getStatus() ==

BluetoothConnectionException.UNACCEPTABLE_PARAMS) {
problem = "unacceptable parameters\n";

}
parent.displayError("Error",

"BluetoothConnectionException: " +
problem + "msg=" + e.getMessage() +
"\nstatus= " + e.getStatus());

} catch (IOException e) {
parent.displayError("Error", "IOException: "

+ e.getMessage());
}
if (conn == null) {

return;

382 Appendix A: Complete Code Examples

}
try {

sendL2capPackets(conn);
conn.close();

} catch (IOException e) {
parent.displayError("Error", "IOException: "

+ e.getMessage());
}

}
}

CreditBased1WayXfer

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class CreditBased1WayXfer {
// number of L2CAP packets the receiver has
// authorized to be sent
int availableCredits;
protected StringItem out;
private int bytesToSend = 50000;

void sendL2capPackets(L2CAPConnection conn)
throws IOException {

boolean sentDone = false;
byte[] sbuf = new byte[conn.getTransmitMTU()];
int receiveMTU = conn.getReceiveMTU();
byte[] rbuf = new byte[receiveMTU];
for (int i=0; i < sbuf.length; i++) {
sbuf[i] = (byte)i;

}
int count = 0;
long start = System.currentTimeMillis();
// listen for credits authorizing sending
// packets

Appendix A: Complete Code Examples 383

receiveCredits(conn, receiveMTU);
while (count < bytesToSend) {

if (availableCredits > 0) {
conn.send(sbuf);
availableCredits— —;
count += sbuf.length;
// Display the number of bytes sent so far
out.setText(Integer.toString(count));

}
maybeReceiveCredits(conn, receiveMTU);

}
// Let the receiver know we are done sending
// bytes
while (!sentDone) {

if (availableCredits > 0) {
conn.send("DONE".getBytes());
sentDone = true;

} else {
maybeReceiveCredits(conn, receiveMTU);

}
}
long end = System.currentTimeMillis();
out.setText("Done (transferred "+count+

"bytes)\n"
+ "Elapsed time " + (end - start)/1000 +

"sec");
}

// Read an L2CAP packet. If it has four bytes,
// then interpret those
// bytes as new credits for sending L2CAP
// packets.
void receiveCredits(L2CAPConnection conn, int

receiveMTU) {
int incomingBytes;
int newCredits;
byte[] rbuf = new byte[receiveMTU];
try {
incomingBytes = conn.receive(rbuf);

} catch (IOException ignore) {

384 Appendix A: Complete Code Examples

return;
}
// assume four bytes are used to encode new
// credits
if (incomingBytes != 4) {
return;

}
availableCredits +=

CreditBased1WayXfer.byteArray2Int(rbuf);
}

// If there is an L2CAP packet waiting to be
// read, then call
// receiveCredits. Otherwise return without
// blocking.
void maybeReceiveCredits(L2CAPConnection conn,

int receiveMTU) {
try {

if (conn.ready()) {
receiveCredits(conn, receiveMTU);

}
} catch (IOException ignore) {
}

}

void receiveL2capPackets(L2CAPConnection conn,
L2capBuffers buffers,

CreditIssuer issuer) throws IOException {
byte[] ibuf = new byte[conn.getReceiveMTU()];
L2capPacketBuffer packetBuffer;
int transmitMTU = conn.getTransmitMTU();
int bytesIn;
for (;;) {

packetBuffer =
buffers.nextAvailablePacketBuffer();

if (packetBuffer != null) {
bytesIn = conn.receive(ibuf);
packetBuffer.storeBytes(ibuf, bytesIn);
if ((bytesIn == 4) &&
(new String(ibuf, 0,

bytesIn)).equals("DONE")) {

Appendix A: Complete Code Examples 385

break;
}

} else {
if (conn.ready()) {

System.out.println(
"Should not get here. No " +

"L2capPacketBuffer available " +
"to receive incoming packet.");

}
}

}
issuer.setDoneProcessing();
out.setText("Done (transferred " +

issuer.count + " bytes)");
}

// Convert a four-byte array to an int. The byte
// array is assumed
// to have a big Endian byte order.
public static int byteArray2Int(

byte[] argBytes) {
int result = 0;
// big-endian conversion
for (int i = 0, j = 0; i < 4; i++, j++) {

result = result + (((int)argBytes[i] << 24)
>>> (j * 8));

}
return result;

}
// Convert an int to a four-byte array. The byte
// array will have a big Endian byte order.
public static byte[] int2ByteArray(int argInt) {

byte[] result = new byte[4];
// big-endian conversion
for (int i = 0, j = 3; i < 4; i++, j— —) {
result[i] = (byte)((argInt >>> (j * 8)) &

(byte)0xFF);
}
return result;

386 Appendix A: Complete Code Examples

}
}

CreditIssuer

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class CreditIssuer implements Runnable {
boolean doneProcessing = false;
int sleepTime;
L2capBuffers buffers;
L2CAPConnection conn;
int count = 0;

CreditIssuer(L2capBuffers buffers,
L2CAPConnection conn, int sleepTime) {

this.buffers = buffers;
this.sleepTime = sleepTime;
this.conn = conn;

}

public void run() {
L2capPacketBuffer packetBuffer;
int freedBuffers;
//Issue one credit for each L2capPacketBuffer
int totalCredits =

L2capBuffers.NUMBER_OF_PACKET_BUFFERS;
byte[] issueCreditsPacketPayload =

CreditBased1WayXfer.int2ByteArray(
totalCredits);

try {
conn.send(issueCreditsPacketPayload);

} catch (IOException e) {
System.out.println("IOException when " +

"issuing initial credits");

Appendix A: Complete Code Examples 387

return;
}
while (!doneProcessing) {

freedBuffers = 0;
while ((packetBuffer =

buffers.nextUsedPacketBuffer()) !=
null) {

count += packetBuffer.getNumBytesStored();
packetBuffer.eraseStoredBytes();
freedBuffers++;

}
if (freedBuffers > 0) {

try {
conn.send(CreditBased1WayXfer.int2ByteArray(
freedBuffers));

} catch (IOException e) {
System.out.println("IOException " +

e.getMessage());
}

}
try {
Thread.sleep(sleepTime);

} catch (InterruptedException ignore) {
}

}
}

void setDoneProcessing() {
doneProcessing = true;

}
}

L2capBuffers

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;

388 Appendix A: Complete Code Examples

import javax.microedition.lcdui.*;

public class L2capBuffers {

public static final int
NUMBER_OF_PACKET_BUFFERS = 4;

L2capPacketBuffer[] packetBuffers;

L2capBuffers(int receiveMTU) {
packetBuffers = new L2capPacketBuffer[

NUMBER_OF_PACKET_BUFFERS];
for (int i = 0; i < NUMBER_OF_PACKET_BUFFERS;

i++) {
packetBuffers[i] = new

L2capPacketBuffer(receiveMTU);
}

}

public synchronized L2capPacketBuffer
nextAvailablePacketBuffer() {

for (int i = 0; i < NUMBER_OF_PACKET_BUFFERS;
i++) {

if (packetBuffers[i].available()) {
return packetBuffers[i];

}
}
return null;

}

public synchronized L2capPacketBuffer
nextUsedPacketBuffer() {

for (int i = 0; i < NUMBER_OF_PACKET_BUFFERS;
i++) {

if (!packetBuffers[i].available()) {
return packetBuffers[i];

}
}
return null;

}
}

Appendix A: Complete Code Examples 389

L2capPacketBuffer

package com.jabwt.book;
import java.io.*;
import java.util.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

public class L2capPacketBuffer {

int numBytesStored;
byte[] byteArray;

L2capPacketBuffer (int receiveMTU){
byteArray = new byte[receiveMTU];
numBytesStored = 0;

}

public synchronized void storeBytes(byte[] input,
int length) {

System.arraycopy(input, 0, byteArray, 0,
length);

numBytesStored = length;
}

public synchronized int getNumBytesStored() {
return numBytesStored;

}

public synchronized void eraseStoredBytes() {
numBytesStored = 0;

}

public synchronized boolean available() {
if (numBytesStored == 0) {

return true;
}
return false;

}
}

390 Appendix A: Complete Code Examples

B
This appendix contains a detailed description of each class, method,
and field defined by JABWT in the javax.bluetooth package.

javax.bluetooth

BluetoothConnectionException

Declaration

public class BluetoothConnectionException extends
java.io.IOException

java.lang.Object
|
+—java.lang.Throwable

|
+—java.lang.Exception

|
+—java.io.IOException

|
+—javax.bluetooth.Bluetooth-

ConnectionException

Description

A BluetoothConnectionException is thrown when a Bluetooth
connection (L2CAP, RFCOMM, or OBEX over RFCOMM) cannot be
established successfully. The fields in this exception class indicate the
cause of the exception. For example, an L2CAP connection may fail
because of a security problem. This reason is passed on to the applica-
tion through this class.

APPENDIX javax.bluetooth API

Fields

FAILED_NOINFO

public static final int FAILED_NOINFO

Indicates the connection to the server failed for unknown reasons.

NO_RESOURCES

public static final int NO_RESOURCES

Indicates the connection failed due to a lack of resources either on the
local device or on the remote device.

SECURITY_BLOCK

public static final int SECURITY_BLOCK

Indicates the connection failed because the security settings on the local
device or the remote device were incompatible with the request.

TIMEOUT

public static final int TIMEOUT

Indicates the connection to the server failed because of a timeout.

UNACCEPTABLE_PARAMS

public static final int UNACCEPTABLE_PARAMS

Indicates the connection failed because the configuration parameters
provided were not acceptable to either the remote device or the local
device.

UNKNOWN_PSM

public static final int UNKNOWN_PSM

Indicates the connection to the server failed because no service for the
given PSM was registered.

392 Appendix B: javax.bluetooth API

Constructors

BluetoothConnectionException(int)

public BluetoothConnectionException(int error)

Creates a new BluetoothConnectionException with the error indi-
cator specified.

Parameters
error—indicates the exception condition; must be one of the constants
described in this class.

Throws
IllegalArgumentException if the input value is not one of the con-
stants in this class.

BluetoothConnectionException(int, String)

public BluetoothConnectionException(int error,
java.lang.String msg)

Creates a new BluetoothConnectionException with the error indi-
cator and message specified.

Parameters
error—indicates the exception condition; must be one of the constants
described in this class.
msg—a description of the exception; may by null.

Throws
IllegalArgumentException if the input value is not one of the con-
stants in this class.

Methods

getStatus()

public int getStatus()

Appendix B: javax.bluetooth API 393

Gets the status set in the constructor that will indicate the reason for the
exception.

Returns
Cause for the exception; will be one of the constants defined in this
class.

javax.bluetooth

BluetoothStateException

Declaration

public class BluetoothStateException extends
java.io.IOException

java.lang.Object
|
+—java.lang.Throwable

|
+—java.lang.Exception

|
+—java.io.IOException

|
+—javax.bluetooth.Bluetooth-

StateException

Description

The BluetoothStateException is thrown when a request is made to
the Bluetooth system that the system cannot support in its present state.
If, however, the Bluetooth system were not in this state, it could support
this operation. For example, some Bluetooth systems do not allow the
device to go into inquiry mode if a connection is established. This
exception would be thrown if startInquiry() were called.

394 Appendix B: javax.bluetooth API

Constructors

BluetoothStateException()

public BluetoothStateException()

Creates a new BluetoothStateException without a detail message.

BluetoothStateException(String)

public BluetoothStateException(java.lang.String
msg)

Creates a BluetoothStateException with the specified detail
message.

Parameters
msg—the reason for the exception

javax.bluetooth

DataElement

Declaration

public class DataElement

java.lang.Object
|
+—javax.bluetooth.DataElement

Description

The DataElement class defines the various data types that a Bluetooth
service attribute value may have. The following table describes the data
types and valid values a DataElement object can store.

Appendix B: javax.bluetooth API 395

Defines data of type DATALT, which is short for Data Element
Alternative. A DataElement of type DATALT contains a sequence of
other DataElements from which one DataElement is to be selected.
The elements of the sequence can be of any type defined in this class,
including DATALT.

396 Appendix B: javax.bluetooth API

Data Type Valid Values

NULL represents a null value

U_INT_1 long value range [0, 255]

U_INT_2 long value range [0, 216-1]

U_INT_4 long value range [0, 232-1]

U_INT_8 byte[] value range [0, 264-1]

U_INT_16 byte[] value range [0, 2128-1]

INT_1 long value range [-128, 127]

INT_2 long value range [-215, 215-1]

INT_4 long value range [-231, 231-1]

INT_8 long value range [-263, 263-1]

INT_16 byte[] value range [-2127, 2127-1]

URL java.lang.String

UUID javax.bluetooth.UUID

BOOL Boolean

STRING java.lang.String

DATSEQ java.util.Enumeration

DATALT java.util.Enumeration

Fields

BOOL

public static final int BOOL

Defines data of type BOOL.

DATALT

public static final int DATALT

DATSEQ

public static final int DATSEQ

Defines data of type DATSEQ, which is short for Data Element Sequence.
A DataElement of type DATSEQ contains a sequence of other
DataElements. The elements of the sequence can be of any type
defined in this class, including DATSEQ.

INT_1

public static final int INT_1

Defines a signed integer of size 1 byte.

INT_16

public static final int INT_16

Defines a signed integer of size 16 bytes.

INT_2

public static final int INT_2

Defines a signed integer of size 2 bytes.

INT_4

public static final int INT_4

Defines a signed integer of size 4 bytes.

INT_8

public static final int INT_8

Defines a signed integer of size 8 bytes.

NULL

public static final int NULL

Defines data of type NULL. The value for data type DataElement.NULL
is implicit; that is, there is no representation of it. Accordingly, there is
no method to retrieve it, and attempts to retrieve the value throw an
exception.

Appendix B: javax.bluetooth API 397

STRING

public static final int STRING

Defines data of type STRING.

U_INT_1

public static final int U_INT_1

Defines an unsigned integer of size 1 byte.

U_INT_16

public static final int U_INT_16

Defines an unsigned integer of size 16 bytes.

U_INT_2

public static final int U_INT_2

Defines an unsigned integer of size 2 bytes.

U_INT_4

public static final int U_INT_4

Defines an unsigned integer of size 4 bytes.

U_INT_8

public static final int U_INT_8

Defines an unsigned integer of size 8 bytes.

URL

public static final int URL

Defines data of type URL.

UUID

public static final int UUID

Defines data of type UUID.

398 Appendix B: javax.bluetooth API

Constructors

DataElement(boolean)

public DataElement(boolean bool)

Creates a DataElement whose data type is BOOL and whose value is
equal to bool.

Parameters
bool—the value of the DataElement of type BOOL.

DataElement(int)

public DataElement(int valueType)

Creates a DataElement of type NULL, DATALT, or DATSEQ.

Parameters
valueType—the type of DataElement to create: NULL, DATALT, or DATSEQ

Throws
IllegalArgumentException if valueType is not NULL, DATALT, or
DATSEQ

DataElement(int, long)

public DataElement(int valueType, long value)

Creates a DataElement that encapsulates an integer value of size U_INT_1,
U_INT_2, U_INT_4, INT_1, INT_2, INT_4, or INT_8. The legal values for
the valueType and the corresponding attribute values are as follows:

Appendix B: javax.bluetooth API 399

Value Type Value Range

U_INT_1 [0, 28-1]

U_INT_2 [0, 216-1]

U_INT_4 [0, 232-1]

INT_1 [-27, 27-1]

INT_2 [-215, 215-1]

INT_4 [-231, 231-1]

INT_8 [-263, 263-1]

All other pairings are illegal and cause an IllegalArgument-
Exception to be thrown.

Parameters
valueType—the data type of the object that is being created; must be
one of the following: U_INT_1, U_INT_2, U_INT_4, INT_1, INT_2,
INT_4, or INT_8
value—the value of the object being created; must be in the range
specified for the given valueType.

Throws
IllegalArgumentException if the valueType is not valid or the
value for the given legal valueType is outside the valid range

DataElement(int, Object)

public DataElement(int valueType, java.lang.Object
value)

Creates a DataElement whose data type is given by valueType and
whose value is specified by the argument value. The legal values for the
valueType and the corresponding attribute values are as follows:

400 Appendix B: javax.bluetooth API

Value Type Java Type/Value Range

URL java.lang.String

UUID javax.bluetooth.UUID

STRING java.lang.String

INT_16 [–2127, 2127-1] as a byte array whose length must be 16

U_INT_8 [0, 264-1] as a byte array whose length must be 8

U_INT_16 [0, 2128-1], as a byte array whose length must be 16

All other pairings are illegal and would cause an
IllegalArgumentException exception.

Parameters
valueType—the data type of the object that is being created; must be
one of the following: URL, UUID, STRING, INT_16, U_INT_8, or
U_INT_16.
value—the value for the DataElement being created of type
valueType.

Throws
IllegalArgumentException if the value is not of the type
valueType or is not in the range specified or is null

Methods

addElement(DataElement)

public void addElement(DataElement elem)

Adds a DataElement to this DATALT or DATSEQ DataElement object.
The elem is added at the end of the list. The elem can be of any
DataElement type; that is, URL, NULL, BOOL, UUID, STRING, DATSEQ,
DATALT, and the various signed and unsigned integer types. The same
object can be added twice. If the object is successfully added, the size of
the DataElement is increased by one.

Parameters
elem—the DataElement object to add.

Throws
ClassCastException if the method is invoked on a DataElement
whose type is not DATALT or DATSEQ
NullPointerException if elem is null

getBoolean()

public boolean getBoolean()

Returns the value of the DataElement if it is represented as a boolean.

Returns
The boolean value of this DataElement object.

Appendix B: javax.bluetooth API 401

Throws
ClassCastException—if the data type of this object is not of type BOOL

getDataType()

public int getDataType()

Returns the data type of the object this DataElement represents.

Returns
The data type of this DataElement object; the legal return values are
URL, NULL, BOOL, UUID, STRING, DATSEQ, DATALT, U_INT_1,
U_INT_2,U_INT_4, U_INT_8, U_INT_16, INT_1, INT_2, INT_4,
INT_8, or INT_16.

getLong()

public long getLong()

Returns the value of the DataElement if it can be represented as a
long. The data type of the object must be U_INT_1, U_INT_2, U_INT_4,
INT_1, INT_2, INT_4, or INT_8.

Returns
The value of the DataElement as a long.

Throws
ClassCastException—if the data type of the object is not U_INT_1,
U_INT_2, U_INT_4, INT_1, INT_2, INT_4, or INT_8.

getSize()

public int getSize()

Returns the number of DataElements that are present in this DATALT
or DATSEQ object. It is possible that the number of elements is equal to
zero.

Returns
The number of elements in this DATALT or DATSEQ.

402 Appendix B: javax.bluetooth API

Throws
ClassCastException—if this object is not of type DATALT or DATSEQ.

getValue()

public java.lang.Object getValue()

Returns the value of this DataElement as an Object. This method
returns the appropriate Java object for the following data types: URL,
UUID, STRING, DATSEQ, DATALT, U_INT_8, U_INT_16, and INT_16.
Modifying the returned Object will not change this DataElement.
The following are the legal pairs of data type and Java object type being
returned:

Appendix B: javax.bluetooth API 403

DataElement Data Type Java Data Type

URL java.lang.String

UUID javax.bluetooth.UUID

STRING java.lang.String

DATSEQ java.util.Enumeration

DATALT java.util.Enumeration

U_INT_8 byte[] of length 8

U_INT_16 byte[] of length 16

INT_16 byte[] of length 16

Returns
The value of this object.

Throws
ClassCastException—if the object is not a URL, UUID, STRING,
DATSEQ, DATALT, U_INT_8, U_INT_16, or INT_16.

insertElementAt(DataElement, int)

public void insertElementAt(DataElement elem, int
index)

Inserts a DataElement at the specified location. This method
can be invoked only on a DATALT or DATSEQ. elem can be of any
DataElement type; that is, URL, NULL, BOOL, UUID, STRING, DATSEQ,
DATALT, and the various signed and unsigned integers. The same object
can be added twice. If the object is successfully added, the size is
increased by one. Each element with an index greater than or equal to
the specified index is shifted upward to have an index one greater than
the value it had previously.

The index must be greater than or equal to 0 and less than or
equal to the current size. Therefore, DATALT and DATSEQ are zero-based
objects.

Parameters
elem—the DataElement object to add.
index—the location at which to add the DataElement.

Throws
ClassCastException—if the method is invoked on an instance of
DataElement whose type is not DATALT or DATSEQ.
IndexOutOfBoundsException—if index is negative or greater than
the size of the DATALT or DATSEQ.
NullPointerException—if elem is null.

removeElement(DataElement)

public boolean removeElement(DataElement elem)

Removes the first occurrence of the DataElement from this object. elem
may be of any type; that is, URL, NULL, BOOL, UUID, STRING, DATSEQ,
DATALT, or the variously sized signed and unsigned integers. Only the first
object in the list that is equal to elem is removed. Other objects, if present,
are not removed. Because this class does not override the equals()
method of the Object class, the remove method compares only the ref-
erences of objects. If elem is successfully removed, the size of this
DataElement is decreased by one. Each DataElement in the DATALT or
DATSEQ with an index greater than the index of elem is shifted down-
ward to have an index one smaller than the value it had previously.

Parameters
elem—the DataElement to be removed.

404 Appendix B: javax.bluetooth API

Returns
true if the input value was found and removed; otherwise false.

Throws
ClassCastException—if this object is not of type DATALT or DATSEQ.
NullPointerException—if elem is null.

javax.bluetooth

DeviceClass

Declaration

public class DeviceClass

java.lang.Object
|
+—javax.bluetooth.DeviceClass

Description

The DeviceClass class represents the CoD record as defined by the
Bluetooth specification. This record is defined in the Bluetooth Assigned
Numbers document and contains information on the type of the device
and the type of services available on the device.

The Bluetooth Assigned Numbers document [30] defines the
service class, major device class, and minor device class. The following
table provides examples of possible return values and their meaning:

Appendix B: javax.bluetooth API 405

Method Return Value Class of Device

getServiceClasses() 0x22000 Networking and Limited Discoverable Major Service Classes

getServiceClasses() 0x100000 Object Transfer Major Service Class

getMajorDeviceClass() 0x00 Miscellaneous Major Device Class

getMajorDeviceClass() 0x200 Phone Major Device Class

getMinorDeviceClass() 0x0C With a Computer Major Device Class, Laptop Minor Device

Class

getMinorDeviceClass() 0x04 With a Phone Major Device Class, Cellular Minor Device Class

Constructors

DeviceClass(int)

public DeviceClass(int record)

Creates a DeviceClass from the class of device record provided.
record must follow the format of the class of device record in the
Bluetooth specification.

Parameters
record—describes the classes of a device.

Throws
IllegalArgumentException if record has any bits between 24 and
31 set.

Methods

getMajorDeviceClass()

public int getMajorDeviceClass()

Retrieves the major device class. A device may have only a single major
device class.

Returns
The major device class.

getMinorDeviceClass()

public int getMinorDeviceClass()

Retrieves the minor device class.

Returns
The minor device class.

getServiceClasses()

public int getServiceClasses()

406 Appendix B: javax.bluetooth API

Retrieves the major service classes. A device can have multiple major
service classes. When this occurs, the major service classes are bitwise
OR’ed together.

Returns
The major service classes.

javax.bluetooth

DiscoveryAgent

Declaration

public class DiscoveryAgent

java.lang.Object
|
+—javax.bluetooth.DiscoveryAgent

Description

The DiscoveryAgent class provides methods for performing device
and service discovery. A local device must have only one
DiscoveryAgent object. This object must be retrieved by a call to
getDiscoveryAgent() on the LocalDevice object.

Device Discovery

There are two ways to discover devices. First, an application can use
startInquiry() to start an inquiry to find devices in proximity to
the local device. Discovered devices are returned via the
deviceDiscovered() method of the interface DiscoveryListener.
The second way to discover devices is via the retrieveDevices()
method. This method returns devices that have been discovered via a
previous inquiry or devices that are classified as pre-known. (Pre-known
devices are devices defined in the BCC as devices this device frequently
contacts.) The retrieveDevices() method does not perform an
inquiry but provides a quick way to get a list of devices that may be in
the area.

Appendix B: javax.bluetooth API 407

Service Discovery

The DiscoveryAgent class also encapsulates the functionality pro-
vided by the Service Discovery Application Profile. The class provides an
interface for an application to search and retrieve attributes for a partic-
ular service. There are two ways to search for services. To search for a
service on a single device, the searchServices() method should be
used. On the other hand, if you don’t care which device a service is on,
the selectService() method does a service search on a set of remote
devices.

Fields

CACHED

public static final int CACHED

Used with the retrieveDevices() method to return devices found
via a previous inquiry. If no inquiries have been started, the method
returns null.

GIAC

public static final int GIAC

The inquiry access code for General/Unlimited Inquiry Access Code.
This code is used to specify the type of inquiry to complete or respond
to. The value of GIAC is 0x9E8B33 (10390323). This value is defined in
the Bluetooth Assigned Numbers document.

LIAC

public static final int LIAC

The inquiry access code for Limited Dedicated Inquiry Access Code
(LIAC). This code is used to specify the type of inquiry to complete or
respond to. The value of LIAC is 0x9E8B00 (10390272). This value is
defined in the Bluetooth Assigned Numbers document.

NOT_DISCOVERABLE

public static final int NOT_DISCOVERABLE

408 Appendix B: javax.bluetooth API

A constant indicating a mode where a device does not respond to device
inquiries.

PREKNOWN

public static final int PREKNOWN

Used with the retrieveDevices() method to return devices defined
to be pre-known devices. Pre-known devices are specified in the BCC.
These are devices specified by the user as devices with which the local
device will frequently communicate.

Methods

cancelInquiry(DiscoveryListener)

public boolean cancelInquiry(DiscoveryListener lis-
tener)

Removes the device from inquiry mode.
An inquiryCompleted() event will occur with a type of

INQUIRY_TERMINATED as a result of calling this method. After this
event is received, no further deviceDiscovered() events will occur
as a result of this inquiry.

This method cancels the inquiry only if the listener provided is
the listener used when starting the inquiry.

Parameters
listener—the listener receiving inquiry events.

Returns
true if the inquiry was canceled; otherwise false if the inquiry was
not canceled or if the inquiry was not started with listener.

Throws
NullPointerException—if listener is null.

cancelServiceSearch(int)

public boolean cancelServiceSearch(int transID)

Appendix B: javax.bluetooth API 409

Cancels the service search transaction that has the specified transaction
ID. The ID was assigned to the transaction by the method
searchServices(). A serviceSearchCompleted() event with a
discovery type of SERVICE_SEARCH_TERMINATED will occur when this
method is called. After this event is received, no further
servicesDiscovered() events will occur as a result of this search.

Parameters
transID—the ID of the service search transaction to cancel; returned
by searchServices().

Returns
true if the service search transaction is terminated, false if the
transID does not represent an active service search transaction.

retrieveDevices(int)

public RemoteDevice[] retrieveDevices(int option)

Returns an array of Bluetooth devices that have either been found by
the local device during previous inquiry requests or been specified as
pre-known devices depending on the argument. The list of previously
found devices is maintained by the implementation of this API. (In
other words, maintenance of the list of previously found devices is an
implementation detail.) A device can be set as a pre-known device in the
BCC.

Parameters
option—CACHED if previously found devices should be returned; PRE-
KNOWN if pre-known devices should be returned.

Returns
An array containing the Bluetooth devices previously found if option
is CACHED; an array of devices that are pre-known devices if option is
PREKNOWN; null if no devices meet the criteria.

Throws
IllegalArgumentException if option is not CACHED or PREKNOWN

410 Appendix B: javax.bluetooth API

searchServices(int[], UUID[], RemoteDevice, DiscoveryListener)

public int searchServices(int[] attrSet, UUID[]
uuidSet, RemoteDevice btDev,DiscoveryListener
discListener) throws BluetoothStateException

Searches for services on a remote Bluetooth device that have all the
UUIDs specified in uuidSet. Once the service is found, the attributes
specified in attrSet and the default attributes are retrieved. The
default attributes are ServiceRecordHandle (0x0000), ServiceClassIDList
(0x0001), ServiceRecordState (0x0002), ServiceID (0x0003), and
ProtocolDescriptorList (0x0004). If attrSet is null, then only the
default attributes are retrieved. attrSet does not have to be sorted in
increasing order, but must only contain values in the range [0–(216-1)].

Parameters
attrSet—indicates the attributes whose values will be retrieved on
services that have the UUIDs specified in uuidSet.
uuidSet—the set of UUIDs being searched for; all services returned will
contain all the UUIDs specified here.
btDev—the remote Bluetooth device on which to search for services.
discListener—the object that will receive events when services are
discovered

Returns
The transaction ID of the service search; this number must be positive.

Throws
BluetoothStateException if the number of concurrent
service search transactions exceeds the limit specified by the
bluetooth.sd.trans.max property obtained from the class
LocalDevice or the system is unable to start one because of current
conditions.
IllegalArgumentException if attrSet has an illegal service
attribute ID or exceeds the property bluetooth.sd.attr.-
retrievable.max defined in the class LocalDevice; if attrSet or
uuidSet is of length 0; if attrSet or uuidSet contains duplicates.

Appendix B: javax.bluetooth API 411

NullPointerException if uuidSet, btDev, or discListener is null;
if an element in uuidSet array is null.

selectService(UUID, int, boolean)

public java.lang.String selectService(UUID uuid,
int security, boolean master)

throws BluetoothStateException

Attempts to locate a service that contains uuid in the
ServiceClassIDList of its service record. This method returns a string that
may be used in Connector.open() to establish a connection to the
service. How the service is selected if there are multiple services with
uuid and which devices to search are implementation dependent.

Parameters
uuid—the UUID to search for in the ServiceClassIDList.
security specifies the security requirements for a connection to this
service; must be one of ServiceRecord.NOAUTHENTICATE_NOEN-
CRYPT, ServiceRecord.AUTHENTICATE_NOENCRYPT, or Service-
Record.AUTHENTICATE_ENCRYPT.
master—determines whether this client must be the master of the
connection; true if the client must be the master; false if the client
can be the master or the slave.

Returns
The connection string used to connect to the service with a UUID of
uuid; or null if no service can be found with a UUID of uuid in the
ServiceClassIDList.

Throws
BluetoothStateException if the Bluetooth system cannot start the
request because of the current state of the Bluetooth system.

NullPointerException if uuid is null.
IllegalArgumentException if security is not one of

the following: ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
ServiceRecord.AUTHENTICATE_NOENCRYPT, or ServiceRecord.-
AUTHENTICATE_ENCRYPT.

412 Appendix B: javax.bluetooth API

startInquiry(int, DiscoveryListener)

public boolean startInquiry(int accessCode,
DiscoveryListener listener)

throws BluetoothStateException

Places the device into inquiry mode. The length of the inquiry is imple-
mentation dependent. This method searches for devices with the
specified inquiry access code. Devices that responded to the inquiry are
returned to the application via the method deviceDiscovered() of
the interface DiscoveryListener. The cancelInquiry() method is
called to stop the inquiry.

Parameters
accessCode—the type of inquiry to complete.
listener—the event listener that will receive device discovery
events.

Returns
true if the inquiry was started; false if the inquiry was not started
because the accessCode is not supported.

Throws
IllegalArgumentException if the access code provided is not LIAC,
GIAC, or in the range 0x9E8B00 to 0x9E8B3F.
NullPointerException if listener is null.
BluetoothStateException if the Bluetooth device does not allow an
inquiry to be started because of other operations being performed by the
device.

javax.bluetooth

DiscoveryListener

Declaration

public interface DiscoveryListener

Appendix B: javax.bluetooth API 413

Description

The DiscoveryListener interface allows an application to receive
device discovery and service discovery events. This interface provides
four methods, two for discovering devices and two for discovering
services.

Fields

INQUIRY_COMPLETED

public static final int INQUIRY_COMPLETED

Indicates the normal completion of device discovery. Used with the
inquiryCompleted() method.

INQUIRY_ERROR

public static final int INQUIRY_ERROR

Indicates that the inquiry request failed to complete normally but was
not canceled.

INQUIRY_TERMINATED

public static final int INQUIRY_TERMINATED

Indicates device discovery has been canceled by the application and did
not complete. Used with the inquiryCompleted() method.

SERVICE_SEARCH_COMPLETED

public static final int SERVICE_SEARCH_COMPLETED

Indicates the normal completion of service discovery. Used with the
serviceSearchCompleted() method.

SERVICE_SEARCH_DEVICE_NOT_REACHABLE

public static final int
SERVICE_SEARCH_DEVICE_NOT_REACHABLE

414 Appendix B: javax.bluetooth API

Indicates the service search could not be completed because the remote
device provided to DiscoveryAgent.searchServices() could not
be reached. Used with the serviceSearchCompleted() method.

SERVICE_SEARCH_ERROR

public static final int SERVICE_SEARCH_ERROR

Indicates the service search terminated with an error. Used with the
serviceSearchCompleted() method.

SERVICE_SEARCH_NO_RECORDS

public static final int SERVICE_SEARCH_NO_RECORDS

Indicates the service search has completed with no service records found
on the device. Used with the serviceSearchCompleted() method.

SERVICE_SEARCH_TERMINATED

public static final int SERVICE_SEARCH_TERMINATED

Indicates the service search has been canceled by the application and
did not complete. Used with the serviceSearchCompleted()
method.

Methods

deviceDiscovered(RemoteDevice, DeviceClass)

public void deviceDiscovered(RemoteDevice btDevice,
DeviceClass cod)

Called when a device is found during an inquiry. An inquiry searches for
devices that are discoverable. The same device may be returned multi-
ple times.

Parameters
btDevice—the device that was found during the inquiry.
cod—the service classes, major device class, and minor device class of
the remote device.

Appendix B: javax.bluetooth API 415

inquiryCompleted(int)

public void inquiryCompleted(int discType)

Called when an inquiry is completed. The discType will be
INQUIRY_COMPLETED if the inquiry ended normally or INQUIRY_TER-
MINATED if the inquiry was canceled by a call to cancelInquiry().
The discType is INQUIRY_ERROR if an error occurred during process-
ing of the inquiry and causes the inquiry to end abnormally.

Parameters
discType—the manner in which the inquiry was completed:
INQUIRY_COMPLETED, INQUIRY_TERMINATED, or INQUIRY_ERROR.

servicesDiscovered(int, ServiceRecord[])

public void servicesDiscovered(int transID,
ServiceRecord[] services)

Called when service(s) are found during a service search.

Parameters
transID—the transaction ID of the service search posting the result.
services—a list of services found during the search request.

serviceSearchCompleted(int, int)

public void serviceSearchCompleted(int transID, int
respCode)

Called when a service search is completed or was terminated because of
an error. Legal status values of the respCode argument include
SERVICE_SEARCH_COMPLETED, SERVICE_SEARCH_TERMINATED,
SERVICE_SEARCH_ERROR, SERVICE_SEARCH_NO_RECORDS, and
SERVICE_SEARCH_DEVICE_NOT_REACHABLE. The following table
describes when each respCode is used:

416 Appendix B: javax.bluetooth API

Parameters
transID—the transaction ID identifying the request that initiated the
service search.
respCode—the response code that indicates the status of the
transaction.

javax.bluetooth

L2CAPConnection

Declaration

public interface L2CAPConnection extends
javax.microedition.io.Connection

Description

The L2CAPConnection interface represents a connection-oriented
L2CAP channel. This interface is to be used as part of the CLDC GCF.

For creating a client connection, the protocol is btl2cap. The
target is the combination of the address of the Bluetooth device to
which to connect and the PSM of the service. The PSM value is used by
the L2CAP to determine which higher-level protocol or application is
the recipient of the messages the layer receives.

The parameters defined specific to L2CAP are ReceiveMTU and
TransmitMTU. The ReceiveMTU and TransmitMTU parameters are

Appendix B: javax.bluetooth API 417

respCode Reason

SERVICE_SEARCH_COMPLETED If the service search completed normally

SERVICE_SEARCH_TERMINATED If the service search request was canceled by a call to

DiscoveryAgent.cancelServiceSearch()

SERVICE_SEARCH_ERROR If an error occurred during processing of the request

SERVICE_SEARCH_NO_RECORDS If no records were found during the service search

SERVICE_SEARCH_DEVICE_NOT_REACHABLE If the device specified in the search request could not

be reached or the local device could not establish a

connection to the remote device

optional. ReceiveMTU specifies the maximum payload size this connec-
tion can accept, and TransmitMTU specifies the maximum payload size
this connection can send. An example of a valid L2CAP client connec-
tion string is as follows:

btl2cap://0050CD00321B:1003;ReceiveMTU=512;Transmit
MTU=512

Fields

DEFAULT_MTU

public static final int DEFAULT_MTU

Default MTU value for connection-oriented channels is 672 bytes.

MINIMUM_MTU

public static final int MINIMUM_MTU

Minimum MTU value for connection-oriented channels is 48 bytes.

Methods

getReceiveMTU()

public int getReceiveMTU() throws IOException

Returns the ReceiveMTU that the connection supports. If the connec-
tion string does not specify a ReceiveMTU, the value returned is less
than or equal to the DEFAULT_MTU. If the connection string did specify
an MTU, this value is less than or equal to the value specified in the
connection string.

Returns
The maximum number of bytes that can be read in a single call to
receive().

Throws
IOException if the connection is closed.

418 Appendix B: javax.bluetooth API

getTransmitMTU()

public int getTransmitMTU() throws IOException

Returns the MTU that the remote device supports. This value is obtained
after the connection has been configured. If the application specifies
TransmitMTU in the Connector.open() string, this value should be
equal to that. If the application does not specify any TransmitMTU, this
value should be less than or equal to the ReceiveMTU the remote device
advertised during channel configuration.

Returns
The maximum number of bytes that can be sent in a single call to
send() without losing any data.

Throws
IOException if the connection is closed.

ready()

public boolean ready() throws IOException

Determines whether there is a packet that can be read via a call to
receive(). If true, a call to receive() will not block the applica-
tion.

Returns
true if there is data to read; false if there is no data to read.

Throws
IOException if the connection is closed.

receive(byte[])

public int receive(byte[] inBuf) throws IOException

Reads a packet of data. The amount of data received in this operation is
related to the value of ReceiveMTU. If the size of inBuf is greater than
or equal to ReceiveMTU, then no data will be lost. Unlike read() on
a java.io.InputStream, if the size of inBuf is smaller than

Appendix B: javax.bluetooth API 419

ReceiveMTU, then the portion of the L2CAP payload that will fit into
inBuf will be placed in inBuf. The rest will be discarded. If the appli-
cation is aware of the number of bytes (less than ReceiveMTU) it will
receive in any transaction, then the size of inBuf can be less than
ReceiveMTU, and no data will be lost. If inBuf is of length 0, all data
sent in one packet is lost unless the length of the packet is 0.

Parameters
inBuf—byte array for storing the received data.

Returns
The actual number of bytes read; 0 if a zero-length packet is received; 0
if inBuf length is zero.

Throws
IOException if an I/O error occurs or the connection has been closed.
InterruptedIOException if the request times out.
NullPointerException if inBuf is null.

send(byte[])

public void send(byte[] data) throws IOException

Requests that data be sent to the remote device. The TransmitMTU
determines the amount of data that can be successfully sent in a single
send operation. If the size of data is greater than the TransmitMTU,
then only the first TransmitMTU bytes of the packet are sent, and the
rest are discarded. If data is of length 0, an empty L2CAP packet will
be sent.

Parameters
data—data to be sent.

Throws
IOException if data cannot be sent successfully or if the connection
is closed.
NullPointerException if data is null.

420 Appendix B: javax.bluetooth API

javax.bluetooth

L2CAPConnectionNotifier

Declaration

public interface L2CAPConnectionNotifier extends
javax.microedition.io.Connection

Description

The L2CAPConnectionNotifier interface provides an L2CAP connec-
tion notifier.

To create a server connection, the protocol must be btl2cap. The
target contains “localhost:” and the UUID of the service. The parame-
ters are ReceiveMTU and TransmitMTU, the same parameters used to
define a client connection.

A call to Connector.open() with a valid server connection string
will return a javax.bluetooth.L2CAPConnectionNotifier object. An
L2CAPConnection object is obtained from the L2CAPConnection-
Notifier by calling the method acceptAndOpen().

Methods

acceptAndOpen()

public L2CAPConnection acceptAndOpen() throws
IOException

Waits for a client to connect to this L2CAP service. On connection
returns an L2CAPConnection that can be used to communicate with
this client.

A service record associated with this connection will be added to
the SDDB if one does not exist in the SDDB. This method puts the local
device in connectable mode so that it responds to connection attempts
by clients.

The following checks are done to verify that any modifications
made by the application to the service record after it was created by

Appendix B: javax.bluetooth API 421

Connector.open() have not created an invalid service record. If any
of these checks fails, then a ServiceRegistrationException is
thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btl2cap service record, must be present in
the service record.

• L2CAP must be in the ProtocolDescriptorList.

• The PSM value must not have changed in the service record.

This method does not ensure that the service record created is a com-
pletely valid service record. It is the responsibility of the application to
ensure that the service record follows all of the applicable syntactic and
semantic rules for service record correctness.

Returns
A connection used to communicate with the client.

Throws
IOException if the notifier is closed before acceptAndOpen() is
called
ServiceRegistrationException if the structure of the associated
service record is invalid or if the service record could not be added suc-
cessfully to the local SDDB. The structure of service record is invalid if
the service record is missing any mandatory service attributes or has
changed any of the values described above that are fixed and cannot be
changed. Failures to add the record to the SDDB could be due to factors
such as insufficient disk space and database locks.
BluetoothStateException if the server device could not be placed
in connectable mode because the device user has configured the device
to be non-connectable.

javax.bluetooth

LocalDevice

422 Appendix B: javax.bluetooth API

Declaration

public class LocalDevice

java.lang.Object
|
+—javax.bluetooth.LocalDevice

Description

The LocalDevice class defines the basic functions of the Bluetooth
manager. The Bluetooth manager provides the lowest-level interface
possible into the Bluetooth stack. It provides access to and control of the
local Bluetooth device.

Methods

getBluetoothAddress()

public java.lang.String getBluetoothAddress()

Retrieves the Bluetooth address of the local device. The Bluetooth
address will never be null. The Bluetooth address will be 12 characters
long. Valid characters are 0-9 and A-F.

Returns
The Bluetooth address of the local device.

getDeviceClass()

public DeviceClass getDeviceClass()

Retrieves the DeviceClass object that represents the service classes,
major device class, and minor device class of the local device. This
method returns null if the service classes, major device class, or minor
device class cannot be determined.

Returns
The service classes, major device class, and minor device class of the
local device, or null if the service classes, major device class, or minor
device class cannot be determined.

Appendix B: javax.bluetooth API 423

getDiscoverable()

public int getDiscoverable()

Retrieves the discoverable mode of the local device. The return
value is DiscoveryAgent.GIAC, DiscoveryAgent.LIAC,
DiscoveryAgent.NOT_DISCOVERABLE, or a value in the range
0x9E8B00 to 0x9E8B3F.

Returns
The current discoverable mode of the device.

getDiscoveryAgent()

public DiscoveryAgent getDiscoveryAgent()

Returns the discovery agent for this device. Multiple calls to this method
return the same object. This method never returns null.

Returns
The discovery agent for the local device.

getFriendlyName()

public java.lang.String getFriendlyName()

Retrieves the name of the local device. The Bluetooth specification calls
this name the Bluetooth device name or the user-friendly name.

Returns
The name of the local device; null if the name cannot be retrieved.

getLocalDevice()

public static LocalDevice getLocalDevice() throws
BluetoothStateException

Retrieves the LocalDevice object for the local Bluetooth device.
Multiple calls to this method will return the same object. This method
never returns null.

Returns
An object that represents the local Bluetooth device.

424 Appendix B: javax.bluetooth API

Throws
BluetoothStateException if the Bluetooth system cannot be ini-
tialized.

getProperty(String)

public static java.lang.String
getProperty(java.lang.String property)

Retrieves Bluetooth system properties. The following properties must be
supported, but additional values are allowed:

Appendix B: javax.bluetooth API 425

Property Name Description

bluetooth.api.version The version of JABWT that is supported. For this version it is set to

“1.0.”

bluetooth.master.switch Is master/slave switch allowed? Valid value is either “true” or

“false.”

bluetooth.sd.attr.retrievable.max Maximum number of service attributes to be retrieved per service

record. The string will be in base 10 digits.

bluetooth.connected.devices.max The maximum number of connected devices supported. This

number can be greater than 7 if the implementation handles

parked connections. The string will be in base 10 digits.

bluetooth.l2cap.receiveMTU.max The maximum ReceiveMTU size in bytes supported in L2CAP. The

string will be in base 10 digits (e.g., “32.”).

bluetooth.sd.trans.max Maximum number of concurrent service discovery transactions. The

string will be in base 10 digits.

bluetooth.connected.inquiry.scan Is Inquiry scanning allowed during connection? Valid value is either

“true” or “false.”

bluetooth.connected.page.scan Can the local device accept a connection from a device if it is

already connected to another device? Valid value is either “true” or

“false.”

bluetooth.connected.inquiry Is Inquiry allowed during a connection? Valid value is either “true”

or “false.”

bluetooth.connected.page Can a connection be established to one device if there is already a

connection to another device? Valid value is either “true” or “false.”

Parameters
property—the property to retrieve as defined in this class.

Returns
The value of the property specified; null if the property is not
defined.

getRecord(Connection)

public ServiceRecord
getRecord(javax.microedition.io.Connection notifier)

Gets the service record corresponding to a btspp, btl2cap, or btgoep
notifier. In the case of a run-before-connect service, the service
record returned by getRecord() was created by the same call to
Connector.open() that created the notifier.

If a connect-anytime server application does not already have a
service record in the SDDB, either because a service record for this
service was never added to the SDDB or because the service record was
added and then removed, the ServiceRecord returned by
getRecord() was created by the same call to Connector.open()
that created the notifier.

In the case of a connect-anytime service, there may be a service
record in the SDDB corresponding to this service before application
startup. In this case, the getRecord() method must return a
ServiceRecord whose contents match those of the corresponding
service record in the SDDB. If a connect-anytime server application pre-
viously made changes to its service record in the SDDB (e.g., during a
previous execution of the server), and that service record is still in the
SDDB, then those changes must be reflected in the ServiceRecord
returned by getRecord().

Two invocations of this method with the same notifier argument
return objects that describe the same service attributes, but the return
values may be different object references.

Parameters
notifier—a connection that waits for clients to connect to a Bluetooth
service.

426 Appendix B: javax.bluetooth API

Returns
The ServiceRecord associated with notifier.

Throws
IllegalArgumentException if notifier is closed, or if notifier
does not implement one of the following interfaces: javax.microedi-
tion.io.StreamConnectionNotifier, javax.bluetooth.L2Cap-
ConnectionNotifier, or javax.obex.SessionNotifier. This exception
also is thrown if notifier is not a Bluetooth notifier but is, for example,
a StreamConnectionNotifier created with a scheme other than
btspp.
NullPointerException if notifier is null.

setDiscoverable(int)

public boolean setDiscoverable(int mode) throws
BluetoothStateException

Sets the discoverable mode of the device. The mode may be any number
in the range 0x9E8B00 to 0x9E8B3F as defined by the Bluetooth
Assigned Numbers document. When this specification was defined, only
GIAC (DiscoveryAgent.GIAC) and LIAC (DiscoveryAgent.LIAC)
were defined, but Bluetooth profiles may add additional access codes in
the future. To determine what values may be used, check the Bluetooth
Assigned Numbers document [30].

If DiscoveryAgent.GIAC or DiscoveryAgent.LIAC is pro-
vided, then this method will attempt to put the device into general or
limited discoverable mode, respectively. To take a device out of dis-
coverable mode, provide the DiscoveryAgent.NOT_DISCOVERABLE
flag. The BCC decides whether the request will be granted. In addition
to the BCC, the Bluetooth system could affect the discoverability of a
device.

According to the Bluetooth specification, a device should be
limited discoverable (DiscoveryAgent.LIAC) for only 1 minute. This
mechanism is handled by the implementation of the API. After the
minute is up, the device reverts to the previous discoverable mode.

Appendix B: javax.bluetooth API 427

Parameters
mode—the mode the device should be in; valid modes are
DiscoveryAgent.GIAC, DiscoveryAgent.LIAC, Discovery-
Agent.NOT_DISCOVERABLE, and any value in the range 0x9E8B00 to
0x9E8B3F.

Returns
true if the request succeeds; false if the request fails because the BCC
denied the request; false if the Bluetooth system does not support the
access mode specified in mode.

Throws
IllegalArgumentException if the mode is not Discovery-
Agent.GIAC, DiscoveryAgent.LIAC, DiscoveryAgent.NOT_-
DISCOVERABLE, or in the range 0x9E8B00 to 0x9E8B3F.
BluetoothStateException if the Bluetooth system is in a state that
does not allow the discoverable mode to be changed.

updateRecord(ServiceRecord)

public void updateRecord(ServiceRecord srvRecord)
throws ServiceRegistrationException

Updates the service record in the local SDDB that corresponds to the
srvRecord parameter. Updating is possible only if srvRecord is
obtained with the getRecord() method. The service record in the
SDDB is modified to have the same service attributes with the same con-
tents as srvRecord.

If srvRecord was obtained from the SDDB of a remote device by
the service search methods, updating is not possible, and this method
will throw an IllegalArgumentException.

If the srvRecord parameter is a btspp service record, then before
the SDDB is changed, the following checks are performed. If any of
these checks fails, an IllegalArgumentException is thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btspp service record, must be present in
srvRecord.

• L2CAP and RFCOMM must be in the ProtocolDescriptorList.

428 Appendix B: javax.bluetooth API

• srvRecord must not have changed the RFCOMM server channel
number from the channel number currently in the SDDB version
of this service record.

If the srvRecord parameter is a btl2cap service record, then before
the SDDB is changed, the following checks are performed. If any of
these checks fails, an IllegalArgumentException is thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btl2cap service record, must be present in
srvRecord.

• L2CAP must be in the ProtocolDescriptorList.

• srvRecord must not have changed the PSM value from the PSM
value currently in the SDDB version of this service record.

If the srvRecord parameter is a btgoep service record, then before the
SDDB is changed the following checks are performed. If any of these
checks fail, then an IllegalArgumentException is thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btgoep service record, must be present in
srvRecord.

• L2CAP, RFCOMM, and OBEX must all be in the Protocol-
DescriptorList.

• srvRecord must not have changed the RFCOMM server channel
number from the channel number that is currently in the SDDB
version of this service record.

updateRecord() is not required to ensure that srvRecord is a com-
pletely valid service record. It is the responsibility of the application to
ensure that srvRecord follows all of the applicable syntactic and
semantic rules for service record correctness.

If there is currently no SDDB version of the srvRecord service
record, then this method will do nothing.

Parameters
srvRecord—the new contents to use for the service record in the SDDB.

Throws
NullPointerException if srvRecord is null.

Appendix B: javax.bluetooth API 429

IllegalArgumentException if the structure of the srvRecord is
missing any mandatory service attributes, or if an attempt has been
made to change any of the values described as fixed.
ServiceRegistrationException if the local SDDB could not be
updated successfully because of insufficient disk space, database locks,
and so on.

javax.bluetooth

RemoteDevice

Declaration

public class RemoteDevice

java.lang.Object
|
+—javax.bluetooth.RemoteDevice

Description

The RemoteDevice class represents a remote Bluetooth device. It pro-
vides basic information about a remote device, including the Bluetooth
address of the device and its friendly name.

Constructors

RemoteDevice(String)

protected RemoteDevice(java.lang.String address)

Creates a Bluetooth device on the basis of its address. The Bluetooth
address must be 12 hex characters long. Valid characters are 0-9, a-f, and
A-F. There is no preceding “0x” in the string. For example, valid
Bluetooth addresses include but are not limited to

008037144297

00af8300cd0b

014bd91DA8FC

430 Appendix B: javax.bluetooth API

Parameters
address—the address of the Bluetooth device as a 12 character hex
string.

Throws
NullPointerException if address is null.
IllegalArgumentException if address is the address of the local
device or is not a valid Bluetooth address.

Methods

authenticate()

public boolean authenticate() throws IOException

Attempts to authenticate this RemoteDevice. Authentication is a
means of verifying the identity of a remote device. Authentication
involves a device-to-device challenge and response scheme that
requires a 128-bit common secret link key derived from a PIN code
shared by both devices. If either side’s PIN code does not match, the
authentication process fails, and the method returns false. The
method also returns false if authentication is incompatible with
the current security settings of the local device established by the
BCC, if the stack does not support authentication at all, or if the
stack does not support authentication subsequent to connection
establishment.

If this RemoteDevice has previously been authenticated, then
this method returns true without attempting to re-authenticate this
RemoteDevice.

Returns
true if authentication is successful; otherwise false.

Throws
IOException if there are no open connections between the local
device and this RemoteDevice.

Appendix B: javax.bluetooth API 431

authorize(Connection)

public boolean
authorize(javax.microedition.io.Connection
conn) throws IOException

Determines whether this RemoteDevice should be allowed to continue
to access the local service provided by the Connection. In Bluetooth,
authorization is defined as the process of deciding whether device X
is allowed to access service Y. The implementation of the author-
ize(Connection conn) method asks the BCC to decide whether it is
acceptable for RemoteDevice to continue to access a local service over
the connection conn. In devices with a user interface, the BCC is
expected to consult with the user to obtain approval.

Some Bluetooth systems may allow the user to permanently
authorize a remote device for all local services. When a device is
authorized in this way, it is known as a trusted device (see
isTrustedDevice()).

The authorize() method also checks that the identity of
the RemoteDevice can be verified through authentication. If this
RemoteDevice has been authorized for conn previously, then
this method returns true without attempting to reauthorize this
RemoteDevice.

Parameters
conn—the connection that this RemoteDevice is using to access a
local service.

Returns
true if this RemoteDevice is successfully authenticated and author-
ized; otherwise false if authentication or authorization fails.

Throws
IllegalArgumentException if conn is not a connection to this
RemoteDevice, or if the local device initiated the connection; that is,
the local device is the client rather than the server. This exception also
is thrown if conn is created by RemoteDevice using a scheme other
than btspp, btl2cap, or btgoep. This exception is thrown if conn is
a notifier used by a server to wait for a client connection, since the
notifier is not a connection to this RemoteDevice.

432 Appendix B: javax.bluetooth API

IOException if conn is closed.

encrypt(Connection, boolean)

public boolean
encrypt(javax.microedition.io.Connection
conn, boolean on) throws IOException

Attempts to turn encryption on or off for an existing connection. In the
case in which the parameter on is true, this method first authenticates
this RemoteDevice if it has not already been authenticated. Then it
attempts to turn on encryption. If the connection is already encrypted.
then this method returns true. Otherwise, when the parameter on is
true, either

• The method succeeds in turning on encryption for the connection
and returns true, or

• The method is unsuccessful in turning on encryption and returns
false. (This can happen because the stack does not support
encryption or because encryption conflicts with the user’s security
settings for the device.)

In the case in which the parameter on is false, there are again two
possible outcomes:

• Encryption is turned off on the connection and true is returned,
or

• Encryption is left on for the connection and false is returned

Encryption might be left on after encrypt(conn, false) for a variety
of reasons. The user’s current security settings for the device may require
encryption, or the stack may not have a mechanism to turn off encryp-
tion. Also, the BCC may have determined that encryption will be kept
on for the physical link to this RemoteDevice. The details of the BCC
are implementation dependent, but encryption might be left on because
other connections to the same device need encryption. (All of the con-
nections over the same physical link must be encrypted if any of them
are encrypted.)

Although attempting to turn off encryption may not succeed
immediately because other connections need encryption on, there may
be a delayed effect. At some point, all of the connections over this phys-
ical link needing encryption could be closed or also have had the

Appendix B: javax.bluetooth API 433

method encrypt(conn, false) invoked for them. In this case, the
BCC may turn off encryption for all connections over this physical link.
(The policy used by the BCC is implementation dependent.) It is
recommended that applications do encrypt(conn, false) once they
no longer need encryption to allow the BCC to determine whether it
can reduce the overhead on connections to this RemoteDevice.

The fact that encrypt(conn, false) may not succeed in
turning off encryption has very few consequences for applications. The
stack handles encryption and decryption, so the application does not
have to do anything different depending on whether the connection is
still encrypted or not.

Parameters
conn—the connection whose need for encryption has changed.
on—true attempts to turn on encryption; false attempts to turn off
encryption.

Returns
true if the change succeeded false if it failed.

Throws
IOException if conn is closed.
IllegalArgumentException if conn is not a connection to this
RemoteDevice; if conn was created by the client side of the connec-
tion using a scheme other than btspp, btl2cap, or btgoep (e.g., this
exception will be thrown if conn was created with the file or http
scheme); or if conn is a notifier used by a server to wait for a client con-
nection, because the notifier is not a connection to this RemoteDevice.

equals(Object)

public boolean equals(java.lang.Object obj)

Determines whether two RemoteDevices are equal. Two devices are
equal if they have the same Bluetooth device address.

Parameters
obj—the object to compare to.

434 Appendix B: javax.bluetooth API

Returns
true if both devices have the same Bluetooth address; false if both
devices do not have the same address; false if obj is null; false if
obj is not a RemoteDevice.

getBluetoothAddress()

public final java.lang.String getBluetoothAddress()

Retrieves the Bluetooth address of this device. The Bluetooth address
will be 12 characters long. Valid characters are 0-9 and A-F. This method
never returns null.

Returns
The Bluetooth address of the remote device.

getFriendlyName(boolean)

public java.lang.String getFriendlyName(boolean
alwaysAsk)

throws IOException

Returns the name of this device. The Bluetooth specification calls this
name the Bluetooth device name or the user-friendly name. This method
only contacts the remote device if the name is not known or
alwaysAsk is true.

Parameters
alwaysAsk—if true then the device will be contacted for its name;
otherwise, if there exists a known name for this device, the name will
be returned without contacting the remote device.

Returns
The name of the device, or null if the Bluetooth system does not
support this feature; if the local device is able to contact the remote
device, the result will never be null; if the remote device does not have
a name, then an empty string will be returned.

Appendix B: javax.bluetooth API 435

Throws
IOException if the remote device can not be contacted or the remote
device could not provide its name.

getRemoteDevice(Connection)

public static RemoteDevice
getRemoteDevice(javax.microedition.io.Connect
ion conn)

throws IOException

Retrieves the Bluetooth device that is at the other end of the Bluetooth
SPP connection, L2CAP connection, or OBEX over RFCOMM connec-
tion. This method never returns null.

Parameters
conn—the Bluetooth serial port connection, L2CAP connection, or
OBEX over RFCOMM connection whose remote Bluetooth device is
needed.

Returns
The remote device involved in the connection.

Throws
IllegalArgumentException if conn is not a Bluetooth SPP connec-
tion, L2CAP connection, or OBEX over RFCOMM connection; if conn
is a L2CAPConnectionNotifier, StreamConnectionNotifier, or
SessionNotifier.
IOException if the connection is closed.
NullPointerException if conn is null.

hashCode()

public int hashCode()

Computes the hash code for this object. This method returns the same
value when it is called multiple times on the same object.

Returns
The hash code for this object.

436 Appendix B: javax.bluetooth API

isAuthenticated()

public boolean isAuthenticated()

Determines whether this RemoteDevice has been authenticated.
A device could have been authenticated by this application or

another application. Authentication applies to an ACL link between
devices and not on a specific L2CAP, RFCOMM, or OBEX connection.
Therefore, if authenticate() is performed when an L2CAP connec-
tion is made to device A, then isAuthenticated() may return true
when tested as part of making an RFCOMM connection to device A.

Returns
true if this RemoteDevice has previously been authenticated; false
if it has not been authenticated or there are no open connections
between the local device and this RemoteDevice

isAuthorized(Connection)

public boolean isAuthorized(javax.microedition.io.-
Connection conn)

throws IOException

Determines whether this RemoteDevice has been authorized previ-
ously by the BCC of the local device to exchange data related to the
service associated with the connection. Both clients and servers can call
this method. However, for clients this method returns false for all
legal values of the conn argument.

Parameters
conn—a connection that this RemoteDevice is using to access a
service or provide a service.

Returns
true if conn is a server-side connection and this RemoteDevice has
been authorized; false if conn is a client-side connection or a server-
side connection that has not been authorized.

Throws
IllegalArgumentException if conn is not a connection to this
RemoteDevice; if conn was not created with one of the schemes

Appendix B: javax.bluetooth API 437

btspp, btl2cap, or btgoep; or if conn is a notifier used by a server to
wait for a client connection, because the notifier is not a connection to
this RemoteDevice.
IOException if conn is closed.

isEncrypted()

public boolean isEncrypted()

Determines whether data exchanges with this RemoteDevice are cur-
rently being encrypted.

Encryption may have been previously turned on by this or another
application. Encryption applies to an ACL link between devices and not
to a specific L2CAP, RFCOMM, or OBEX connection. Therefore, if
encrypt() is performed with the on parameter set to true when
an L2CAP connection is made to device A, then isEncrypted() may
return true when tested as part of making an RFCOMM connection to
device A.

Returns
true if data exchanges with this RemoteDevice are being encrypted;
false if they are not being encrypted, or there are no open connec-
tions between the local device and this RemoteDevice.

isTrustedDevice()

public boolean isTrustedDevice()

Determines whether this is a trusted device according to the BCC.

Returns
true if the device is a trusted device, otherwise false.

javax.bluetooth

ServiceRecord

438 Appendix B: javax.bluetooth API

Declaration

public interface ServiceRecord

Description

The ServiceRecord interface describes characteristics of a Bluetooth
service. A ServiceRecord contains a set of service attributes, wherein
each service attribute is an (ID, value) pair. A Bluetooth attribute ID is a
16-bit unsigned integer, and an attribute value is a DataElement.

The structure and use of service records are specified by the
Bluetooth specification in the SDP document. Most of the Bluetooth
Profile specifications also describe the structure of the service records
used by the Bluetooth services that conform to the profile.

An SDP server maintains an SDDB of service records that describe
the services on the local device. Remote SDP clients can use the SDP to
query an SDP server for any service records of interest. A service record
provides sufficient information to allow an SDP client to connect to the
Bluetooth service on the SDP server’s device.

ServiceRecords are made available to a client application
via an argument of the servicesDiscovered() method of the
DiscoveryListener interface. ServiceRecords are available to server
applications via the method getRecord() on LocalDevice.

There can be many service attributes in a service record, and the
SDP protocol makes it possible to specify the subset of the service attrib-
utes that an SDP client wants to retrieve from a remote service record.
The ServiceRecord interface treats certain service attribute IDs as
default IDs, and, if present, these service attributes are automatically
retrieved during service searches.

The Bluetooth Assigned Numbers document [30] defines a large
number of service attribute IDs. The following is a subset of the most
common service attribute IDs and their types.

Appendix B: javax.bluetooth API 439

Fields

AUTHENTICATE_ENCRYPT

public static final int AUTHENTICATE_ENCRYPT

Authentication and encryption are required for connections to this
service. Used with the getConnectionURL() method.

AUTHENTICATE_NOENCRYPT

public static final int AUTHENTICATE_NOENCRYPT

Authentication is required for connections to this service, but encryp-
tion is not. Encryption can be either on or off for the connection. Used
with the getConnectionURL() method.

440 Appendix B: javax.bluetooth API

Attribute Name Attribute ID Attribute Value Type

ServiceRecordHandle 0x0000 32-bit unsigned integer

ServiceClassIDList 0x0001 DATSEQ of UUIDs

ServiceRecordState 0x0002 32-bit unsigned integer

ServiceID 0x0003 UUID

ProtocolDescriptorList 0x0004 DATSEQ of DATSEQ of UUID and optional parameters

BrowseGroupList 0x0005 DATSEQ of UUIDs

LanguageBaseAttributeIDList 0x0006 DATSEQ of 16-bit unsigned integers

ServiceInfoTimeToLive 0x0007 32-bit unsigned integer

ServiceAvailability 0x0008 8-bit unsigned integer

BluetoothProfileDescriptorList 0x0009 DATSEQ of DATSEQ pairs

DocumentationURL 0x000A URL

ClientExecutableURL 0x000B URL

IconURL 0x000C URL

VersionNumberList 0x0200 DATSEQ of 16-bit unsigned integers

ServiceDatabaseState 0x0201 32-bit unsigned integer

NOAUTHENTICATE_NOENCRYPT

public static final int NOAUTHENTICATE_NOENCRYPT

Authentication and encryption are not needed on a connection to this
service. Used with the getConnectionURL() method.

Methods

getAttributeIDs()

public int[] getAttributeIDs()

Returns the service attribute IDs whose value could be retrieved by a call
to getAttributeValue(). The list of attributes being returned is not
sorted and includes default attributes.

Returns
An array of service attribute IDs that are in this object and have values
for them; if there are no attribute IDs that have values, this method
returns an array of length zero.

getAttributeValue(int)

public DataElement getAttributeValue(int attrID)

Returns the value of the service attribute ID provided it is present in the
service record, otherwise this method returns null.

Parameters
attrID—the attribute whose value is to be returned.

Returns
The value of the attribute ID if present in the service record, otherwise
null.

Appendix B: javax.bluetooth API 441

Throws
IllegalArgumentException if attrID is negative or greater than or
equal to 216.

getConnectionURL(int, boolean)

public java.lang.String getConnectionURL(int
requiredSecurity, boolean mustBeMaster)

Returns a String including optional parameters that can be used by a client
to connect to the service described by this ServiceRecord. The return
value can be used as the first argument to Connector.open(). In the case
of a Serial Port service record, this string might look like “btspp://

0050CD00321B:3;authenticate=true;encrypt=false;master=true”,
where 0050CD00321B is the Bluetooth address of the device that pro-
vided this ServiceRecord, 3 is the RFCOMM server channel men-
tioned in this ServiceRecord, and there are three optional parameters
related to security and master/slave roles.

If this method is called on a ServiceRecord returned from
LocalDevice.getRecord(), it returns the connection string that a
remote device will use to connect to this service.

Parameters
requiredSecurity—determines whether authentication or encryp-
tion is required for a connection.
mustBeMaster true—indicates this device must play the role of master
in connections to this service; false indicates that the local device is
willing to be either the master or the slave.

Returns
A string that can be used to connect to the service or null if the
ProtocolDescriptorList in this ServiceRecord is not formatted according
to the Bluetooth specification.

Throws
IllegalArgumentException if requiredSecurity is not one of
the constants NOAUTHENTICATE_NOENCRYPT, AUTHENTICATE_NOEN-
CRYPT, or AUTHENTICATE_ENCRYPT

442 Appendix B: javax.bluetooth API

getHostDevice()

public RemoteDevice getHostDevice()

Returns the remote Bluetooth device that populated the service record
with attribute values. It is important to note that the Bluetooth device
that provided the value might not be reachable anymore, because it
can move, turn off, or change its security mode, denying all further
transactions.

Returns
The remote Bluetooth device that populated the service record or null
if the local device populated this ServiceRecord.

populateRecord(int[])

public boolean populateRecord(int[] attrIDs) throws
IOException

Retrieves the values by contacting the remote Bluetooth device for a
set of service attribute IDs of a service that is available on a Bluetooth
device. (This involves going over the air and contacting the remote
device for the attribute values.) The system might impose a limit on
the number of service attribute ID values one can request at a time.
Applications can obtain the value of this limit as a String by calling
LocalDevice.getProperty("bluetooth.sd.attr.retriev-
able.max"). The method is blocking and will return when the
results of the request are available. Attribute IDs whose values are
obtained are added to this service record. If there exist attribute IDs
for which values are retrieved, the old values will be overwritten.
If the remote device cannot be reached, an IOException will be
thrown.

Parameters
attrIDs—the list of service attributes IDs whose value are to be
retrieved; the number of attributes cannot exceed the property blue-
tooth.sd.attr.retrievable.max. The attributes in the request
must be legal; that is, their values are in the range of [0, 216-1]. The
input attribute IDs can include attribute IDs from the default attrib-
ute set.

Appendix B: javax.bluetooth API 443

Returns
true if the request was successful in retrieving values for some or all of
the attribute IDs; false if it was unsuccessful in retrieving any values.

Throws
IOException if the local device is unable to connect to the
remote Bluetooth device that was the source of this ServiceRecord;
if this ServiceRecord was deleted from the SDDB of the remote
device.
IllegalArgumentException if the size of attrIDs exceeds the
system specified limit as defined by bluetooth.sd.attr.retriev-
able.max; if the attrIDs array length is zero; if any of their values are
not in the range of [0, 216-1]; if attrIDs has duplicate values.
NullPointerException if attrIDs is null.
RuntimeException if this ServiceRecord describes a service on the
local device rather than a service on a remote device.

setAttributeValue(int, DataElement)

public boolean setAttributeValue(int attrID,
DataElement attrValue)

Modifies this ServiceRecord to contain the service attribute defined
by the attribute-value pair (attrID, attrValue). If the attrID does
not exist in the ServiceRecord, this attribute-value pair is added to
this ServiceRecord object. If the attrID is already in this
ServiceRecord, the value of the attribute is changed to attrValue. If
attrValue is null, the attribute with the attribute ID of attrID is
removed from this ServiceRecord object. If attrValue is null and
attrID does not exist in this object, this method will return false.

This method makes no modifications to a service record in the
SDDB. For any changes made by this method to be reflected in
the SDDB, a call must be made to the acceptAndOpen() method of the
associated notifier to add this ServiceRecord to the SDDB for the first
time, or a call must be made to the updateRecord() method of
LocalDevice to modify the version of this ServiceRecord that is
already in the SDDB.

This method prevents the ServiceRecordHandle from being
modified by throwing an IllegalArgumentException.

444 Appendix B: javax.bluetooth API

Parameters
attrID—the service attribute ID.
attrValue—the DataElement that is the value of the service
attribute.

Returns
true if the service attribute was successfully added, removed, or
modified; false if attrValue is null and attrID is not in this
object.

Throws
IllegalArgumentException if attrID does not represent a 16-bit
unsigned integer; if attrID is the value of ServiceRecordHandle
(0x0000)
RuntimeException if this method is called on a ServiceRecord that
was created by a call to DiscoveryAgent.searchServices().

setDeviceServiceClasses(int)

public void setDeviceServiceClasses(int classes)

Used by a server application to indicate the major service class bits that
should be activated in the server’s DeviceClass when this
ServiceRecord is added to the SDDB. When client devices do device
discovery, the server’s DeviceClass is provided as one of the argu-
ments of the deviceDiscovered() method of the DiscoveryListener
interface. Client devices can consult the DeviceClass of the server
device to get a general idea of the kind of device (e.g., phone, PDA, or
PC) and the major service classes it offers (e.g., rendering, telephony, or
information). A server application should use the setDeviceService-
Classes() method to describe its service in terms of the major service
classes. This allows clients to obtain a DeviceClass for the server that
accurately describes all of the services being offered.

When acceptAndOpen() is invoked for the first time on the
notifier associated with this ServiceRecord, the classes argument
from the setDeviceServiceClasses() method is OR’ed with the
current setting of the major service class bits of the local device. The
OR operation potentially activates additional bits. These bits can
be retrieved with a call to getDeviceClass() on the LocalDevice

Appendix B: javax.bluetooth API 445

object. Likewise, a call to LocalDevice.updateRecord() causes the
major service class bits to be OR’ed with the current settings and
updated.

The documentation for DeviceClass gives examples of the inte-
gers that describe each of the major service classes and the Bluetooth
Assigned Numbers [30] provide a complete list. These integers can be
used individually or OR’ed together to describe the appropriate value for
classes.

Later, when this ServiceRecord is removed from the SDDB, the
implementation automatically deactivates the device bits activated as a
result of the call to setDeviceServiceClasses().

The only exception occurs if another ServiceRecord is in the
SDDB, and setDeviceServiceClasses() has been sent to that other
ServiceRecord to request that some of the same bits be activated.

Parameters
classes—an integer whose binary representation indicates the major
service class bits that should be activated.

Throws
IllegalArgumentException if classes is not an OR of one or more
of the major service class integers in the Bluetooth Assigned Numbers
document. Although Limited Discoverable Mode is included in this list
of major service classes, its bit is activated by placing the device in
Limited Discoverable Mode (see the GAP specification), so if bit 13 is set,
this exception will be thrown.
RuntimeException if the ServiceRecord receiving the message was
obtained from a remote device.

javax.bluetooth

ServiceRegistrationException

Declaration

public class ServiceRegistrationException extends
java.io.IOException

446 Appendix B: javax.bluetooth API

java.lang.Object
|
+—java.lang.Throwable

|
+—java.lang.Exception

|
+—java.io.IOException

|
+—javax.bluetooth.ServiceRegistration-
Exception

Description

The ServiceRegistrationException is thrown when there is a
failure to add a service record to the local SDDB or to modify an exist-
ing service record in the SDDB. The failure could occur because the
SDDB has no room for new records or because the modification being
attempted to a service record violates one of the rules about service
record updates. This exception also is thrown if it is not possible to
obtain an RFCOMM server channel needed for a btspp service record.

Constructors

ServiceRegistrationException()

public ServiceRegistrationException()

Creates a ServiceRegistrationException without a detailed
message.

ServiceRegistrationException(String)

public ServiceRegistrationException(
java.lang.String msg)

Creates a ServiceRegistrationException with a detailed message.

Parameters
msg—the reason for the exception.

Appendix B: javax.bluetooth API 447

javax.bluetooth

UUID

Declaration

public class UUID

java.lang.Object
|
+—javax.bluetooth.UUID

Description

The UUID class defines universally unique identifiers. These 128-bit
unsigned integers are intended to be unique across all time and space.
Accordingly, an instance of this class is immutable. The Bluetooth
specification [1] provides an algorithm describing how a 16-bit or 32-bit
UUID can be promoted to a 128-bit UUID. Accordingly, this class pro-
vides an interface that assists applications in creating 16-bit, 32-bit, and
128-bit long UUIDs. The methods supported by this class allow equality
testing of two UUID objects.

Constructors

UUID(long)

public UUID(long uuidValue)

Creates a UUID object from long value uuidValue. A UUID is defined as
an unsigned integer whose value can range from [0 to 2128-1]. However,
this constructor allows only those values that are in the range of [0 to 232

-1]. Negative values and values in the range of [232, 263 -1] are not allowed
and will cause an IllegalArgumentException to be thrown.

Parameters
uuidValue—the 16-bit or 32-bit value of the UUID.

448 Appendix B: javax.bluetooth API

Throws
IllegalArgumentException—if uuidValue is not in the range
[0, 232 -1].

UUID(String, boolean)

public UUID(java.lang.String uuidValue, boolean
shortUUID)

Creates a UUID object from the string provided. The characters in the
string must be from the hexadecimal set [0-9, a-f, A-F]. It is important to
note that the prefix “0x” generally used for hex representation of
numbers is not allowed. If the string has characters that are not from the
hexadecimal set, an exception will be thrown. The string length has to
be positive and less than or equal to 32. A string length that exceeds 32
is illegal and will cause an exception. A null input is also considered
illegal and causes an exception.

If shortUUID is true, uuidValue represents a 16-bit or 32-bit
UUID. If uuidValue is in the range 0x0000 to 0xFFFF, then this con-
structor will create a 16-bit UUID. If uuidValue is in the range
0x000010000 to 0xFFFFFFFF, then this constructor will create a 32-bit
UUID. Therefore, uuidValue may only be 8 characters long.

On the other hand, if shortUUID is false, then uuidValue rep-
resents a 128-bit UUID. Therefore, uuidValue may only be 32 charac-
ter long.

Parameters
uuidValue—the string representation of a 16-bit, 32-bit or 128-bit UUID
shortUUID—indicates the size of the UUID to be constructed; true is
used to indicate short UUIDs, that is, either 16-bit or 32-bit; false
indicates an 128-bit UUID.

Throws
NumberFormatException if uuidValue has characters that are not
defined in the hexadecimal set [0-9, a-f, A-F].

Appendix B: javax.bluetooth API 449

IllegalArgumentException if uuidValue length is zero; if
shortUUID is true and length of uuidValue is greater than 8; if
shortUUID is false and length of uuidValueis greater than 32.
NullPointerException if uuidValue is null.

Methods

equals(Object)

public boolean equals(java.lang.Object value)

Determines whether two UUIDs are equal. They are equal if their 128-bit
values are the same. This method returns false if value is null or
is not a UUID object.

Parameters
value—the object to compare to.

Returns
true if the 128-bit values of the two objects are equal; otherwise
false.

hashCode()

public int hashCode()

Computes the hash code for this object. This method retains the same
semantic contract as defined in the class java.lang.Object for
hashCode() while overriding the implementation.

Returns
The hash code for this object.

toString()

public java.lang.String toString()

Returns the string representation of the 128-bit UUID object. The string
being returned represents a UUID that contains characters from the
hexadecimal set, [0-9, A-F]. It does not include the prefix “0x” that is

450 Appendix B: javax.bluetooth API

generally used for hex representation of numbers. The return value
never is null.

Returns
The string representation of the UUID.

Appendix B: javax.bluetooth API 451

This Page Intentionally Left Blank

C
This appendix contains the OBEX APIs defined by JABWT.

javax.obex

Authenticator

Declaration

public interface Authenticator

Description

This interface provides a way to respond to authentication challenge
and authentication response headers. When an authentication
challenge or authentication response header is received, the
onAuthenticationChallenge() or onAuthenticationResponse()
method is called by the implementation.

For more information on how the authentication procedure works
in OBEX, review the IrOBEX specification [29].

Authentication Challenges

When a client or server receives an authentication challenge header, the
onAuthenticationChallenge() method is invoked by the OBEX API
implementation. The application then returns the user name (if needed)
and password via a PasswordAuthentication object. The password
in this object is not sent in the authentication response. Instead, the
16-byte challenge received in the authentication challenge is
combined with the password returned from the onAuthentication-
Challenge() method and passed through the MD5 hash algorithm.
The resulting value is sent in the authentication response along with the
user name if it has been provided.

APPENDIX javax.obex API

Authentication Responses

When a client or server receives an authentication response header, the
onAuthenticationResponse() method is invoked by the API imple-
mentation with the user name received in the authentication response
header. (The user name is null if no user name is provided in the
authentication response header.) The application must determine
the correct password. This value should be returned from the
onAuthenticationResponse() method. If the authentication request
should fail, null should be returned by the application. (This step is
needed for reasons such as not recognizing the user name.) If the returned
value is not null, the OBEX API implementation combines the password
returned from the onAuthenticationResponse() method and chal-
lenge sent via the authentication challenge, applies the MD5 hash algo-
rithm, and compares the result with the response hash received in the
authentication response header. If the values are not equal, an
IOException is thrown if the client has requested authentication. If the
server has requested authentication, the onAuthenticationFailure()
method is called on the ServerRequestHandler that failed authentica-
tion. The connection is not closed if authentication fails.

Methods

onAuthenticationChallenge(String, boolean, boolean)

public PasswordAuthentication onAuthentication-
Challenge(java.lang.String
description, boolean isUserIdRequired,
boolean isFullAccess)

Called when a client or a server receives an authentication challenge
header. It should respond to the challenge with a
PasswordAuthentication that contains the correct user name and
password for the challenge.

Parameters
description—description of which user name and password should
be used; if no description is provided in the authentication challenge or
the description is encoded in an encoding scheme that is not supported,
an empty string is provided.

454 Appendix C: javax.obex API

isUserIdRequired—true if the user ID is required; false if the user
ID is not required.
isFullAccess—true if full access to the server will be granted; false
if read only access will be granted.

Returns
A PasswordAuthentication object containing the user name and
password used for authentication

onAuthenticationResponse(byte[])

public byte[] onAuthenticationResponse(byte[]
userName)

Called when a client or server receives an authentication response
header. This method provides the user name and expects the correct
password to be returned.

Parameters
userName—the user name provided in the authentication response; can
be null.

Returns
The correct password for the user name provided; if null is returned,
the authentication request has failed.

javax.obex

ClientSession

Declaration

public interface ClientSession extends
javax.microedition.io.Connection

Description

The ClientSession interface provides methods for OBEX requests.
This interface provides a way to define headers for any OBEX operation.

Appendix C: javax.obex API 455

OBEX operations are CONNECT, SETPATH, PUT, GET, and
DISCONNECT. For PUTs and GETs, this interface returns a
javax.obex.Operation object to complete the operations. For
CONNECT, DISCONNECT, and SETPATH operations, this interface com-
pletes the operation and returns the result in a HeaderSet object.

Connection ID and Target Headers

According to the IrOBEX specification, a packet cannot contain both a
Connection ID and a Target header. Because the Connection ID header
is managed by the implementation, it does not send a Connection ID
header if a Connection ID is specified in a packet that has a Target
header. In other words, if an application adds a Target header to a
HeaderSet object used in an OBEX operation and a Connection ID has
been specified, no Connection ID is sent in the packet containing the
Target header.

CREATE-EMPTY and PUT-DELETE Requests

To perform a CREATE-EMPTY request, the client must call the put()
method. With the Operation object returned, the client must open
the output stream by calling openOutputStream() and then close
the stream by calling close() on the OutputStream without writing
any data. Using the DataOutputStream returned from openData-
OutputStream() works the same way.

There are two ways to perform a PUT-DELETE request. The
delete() method is one way. The second way to is to call put() and
never call openOutputStream() or openDataOutputStream() on
the Operation object returned from put().

PUT Example

void putObjectViaOBEX(ClientSession conn, HeaderSet
head, byte[] obj) throws IOException {

// Include the length header
head.setHeader(HeaderSet.LENGTH, new

Long(obj.length));
// Initiate the PUT request

456 Appendix C: javax.obex API

Operation op = conn.put(head);
// Open the output stream to put the object to it
OutputStream out = op.openOutputStream();
// Send the object to the server
out.write(obj);
// End the transaction
out.close();
op.close();

}

GET Example

byte[] getObjectViaOBEX(ClientSession conn,
HeaderSet head) throws IOException {

// Send the initial GET request to the server
Operation op = conn.get(head);
// Get the object from the input stream
InputStream in = op.openInputStream();
ByteArrayOutputStream out = new

ByteArrayOutputStream();
int data = in.read();
while (data != -1) {

out.write((byte)data);
data = in.read();

}
// End the transaction
in.close();
op.close();
byte[] obj = out.toByteArray();
out.close();
return obj;

}

Methods

connect(HeaderSet)

public HeaderSet connect(HeaderSet headers) throws
IOException

Appendix C: javax.obex API 457

Completes an OBEX CONNECT operation. If the headers argument is
null, no headers are sent in the request. This method never returns
null.

This method must be called and a successful response code of
OBEX_HTTP_OK must be received before put(), get(), setPath(),
delete(), or disconnect() can be called. Similarly, after a successful
call to disconnect(), this method must be called before put(),
get(), setPath(), delete(), or disconnect() is called.

Parameters
headers—the headers to send in the CONNECT request.

Returns
The headers that were returned from the server.

Throws
IOException if an error occurred in the transport layer; if the client is
already in an operation; if this method had already been called with a
successful response code of OBEX_HTTP_OK and calls to disconnect()
have not returned a response code of OBEX_HTTP_OK; if the headers
defined in headers exceed the maximum packet length.
IllegalArgumentException if headers was not created by a call to
createHeaderSet().

createHeaderSet()

public HeaderSet createHeaderSet()

Creates a javax.obex.HeaderSet object. This object can be used to
define header values in a request.

Returns
A new javax.obex.HeaderSet object.

delete(HeaderSet)

public HeaderSet delete(HeaderSet headers) throws
IOException

458 Appendix C: javax.obex API

Performs an OBEX DELETE operation. This method never returns null.

Parameters
headers—the header to send in the DELETE request.

Returns
The headers returned by the server.

Throws
IOException if an error occurred in the transport layer; if the client is
already in an operation; if an OBEX connection does not exist because
connect() has not been called; if disconnect() had been called and
a response code of OBEX_HTTP_OK has been received; if the headers
defined in headers exceed the maximum packet length.
IllegalArgumentException if headers are not created by a call to
createHeaderSet().

disconnect(HeaderSet)

public HeaderSet disconnect(HeaderSet headers)
throws IOException

Completes an OBEX DISCONNECT operation. If the headers argu-
ment is null, no headers are sent in the request. This method ends the
session. A new session can be started by calling connect(). This
method never returns null.

Parameters
headers—the header to send in the DISCONNECT request.

Returns
The headers returned by the server.

Throws
IOException if an error occurred in the transport layer; if the client is
already in an operation; if an OBEX connection does not exist because
connect() has not been called; if disconnect() has been called and

Appendix C: javax.obex API 459

received a response code of OBEX_HTTP_OK after the last call to
connect(); if the headers defined in headers exceed the maximum
packet length.
IllegalArgumentException if headers are not created by a call to
createHeaderSet().

get(HeaderSet)

public Operation get(HeaderSet headers) throws
IOException

Performs an OBEX GET operation. This method sends the OBEX headers
provided to the server and returns an Operation object to continue
with the operation. This method never returns null.

Parameters
headers—the OBEX headers to send as part of the initial GET request.

Returns
The OBEX operation used to complete the GET request.

Throws
IOException if an error occurred in the transport layer; if an OBEX
connection does not exist because connect() has not been called; if
disconnect() has been called and a response code of OBEX_HTTP_OK
is received; if connect() has not been called; if the client is already in
an operation.
IllegalArgumentException if headers are not created by a call to
createHeaderSet().

getConnectionID()

public long getConnectionID()

Retrieves the connection ID being used in the present connection. This
method returns –1 if no connection ID is being used.

460 Appendix C: javax.obex API

Returns
The connection ID being used or –1 if no connection ID is being used.

put(HeaderSet)

public Operation put(HeaderSet headers) throws
IOException

Performs an OBEX PUT operation. This method sends the OBEX headers
provided to the server and returns an Operation object to continue
with the PUT operation. This method never returns null.

Parameters
headers—the OBEX headers to send in the initial PUT request.

Returns
The operation object used to complete the PUT request.

Throws
IOException if an error occurred in the transport layer; if an OBEX
connection does not exist because connect() has not been called; if
disconnect() has been called and a response code of OBEX_HTTP_OK
was received; if connect() has not been called; if the client is already
in an operation.
IllegalArgumentException if headers are not created by a call to
createHeaderSet().

setAuthenticator(Authenticator)

public void setAuthenticator(Authenticator auth)

Sets the Authenticator to use with this connection. The
Authenticator allows an application to respond to authentication
challenge and authentication response headers. If no Authenticator
is set, the response to an authentication challenge or authentication
response header is implementation dependent.

Appendix C: javax.obex API 461

Parameters
auth—the Authenticator to use for this connection.

Throws
NullPointerException if auth is null.

setConnectionID(long)

public void setConnectionID(long id)

Sets the connection ID header to include in the request packets. If set, a
connection ID is sent in each request to the server except for the
CONNECT request. An application needs to set the connection ID only
if it is trying to operate with different targets over the same transport
layer connection. If a client receives a connection ID from the server,
the implementation continues to use that connection ID until the appli-
cation changes it or until the connection is closed.

Parameters
id—the connection ID to use.

Throws
IllegalArgumentException if id is not in the range 0 to 232-1.

setPath(HeaderSet, boolean, boolean)

public HeaderSet setPath(HeaderSet headers, boolean
backup, boolean create) throws IOException

Completes an OBEX SETPATH operation. This method never returns
null.

Parameters

backup—if true, instructs the server to back up one directory before
moving to the directory specified in name (similar to cd .. on PCs); if
false, apply name to the current directory.
create—if true, instructs the server to create the directory if it does
not exist; if false, instructs the server to return an error code if the
directory does not exist.

462 Appendix C: javax.obex API

headers—the headers to include in the SETPATH request.

Returns
The headers that were returned from the server.

Throws
IOException—if an error occurred in the transport layer; if the client
is already in an operation; if an OBEX connection does not exist because
connect() has not been called; if disconnect() had been called and
a response code of OBEX_HTTP_OK was received; if the headers defined
in headers exceed the maximum packet length.
IllegalArgumentException if headers are not created by a call to
createHeaderSet().

javax.obex

HeaderSet

Declaration

public interface HeaderSet

Description

The HeaderSet interface defines the methods that set and get the
values of OBEX headers.

The following table describes how the headers specified in this
interface are represented in OBEX and in Java types. The Java types are
used with the setHeader() and getHeader() methods and specify
the type of object that must be provided and will be returned from these
methods, respectively.

The APPLICATION_PARAMETER header requires additional expla-
nation. The byte array provided with the APPLICATION_PARAMETER
should be of the form Tag-Length-Value according to the OBEX
specification, where Tag is 1 byte long, Length is 1 byte long, and Value
is up to 255 bytes long. Multiple Tag-Length-Value triples are allowed
within a single APPLICATION_PARAMETER header. The implementation

Appendix C: javax.obex API 463

does not check this condition. It is mentioned only to allow for inter-
operability between OBEX implementations.

User Defined Headers

OBEX allows 64 user-defined header values. Depending on the header
identifier provided, headers have different types. The table below
defines the ranges and their types.

464 Appendix C: javax.obex API

Header Values OBEX Representation Java Type

COUNT 4-byte unsigned integer java.lang.Long in the range 0 to 232-1

NAME Unicode string java.lang.String

TYPE ASCII string java.lang.String

LENGTH 4-byte unsigned integer java.lang.Long in the range 0 to 232-1

TIME_ISO_8601 ASCII string of the form java.util.Calendar

YYYYMMDDTHHMMSS[Z]

where [Z] specifies Zulu time

TIME_4_BYTE 4 byte unsigned integer java.util.Calendar

DESCRIPTION Unicode string java.lang.String

TARGET byte sequence byte[]

HTTP byte sequence byte[]

WHO byte sequence byte[]

OBJECT_CLASS byte sequence byte[]

APPLICATION_PARAMETER byte sequence byte[]

Header Identifier Decimal Range OBEX Type Java Type

0x30 to 0x3F 48 to 63 Unicode String java.lang.String

0x70 to 0x7F 112 to 127 byte sequence byte[]

0xB0 to 0xBF 176 to 191 1 byte java.lang.Byte

0xF0 to 0xFF 240 to 255 4-byte unsigned integer java.lang.Long in the

range 0 to 232-1

Fields

APPLICATION_PARAMETER

public static final int APPLICATION_PARAMETER

Represents the OBEX Application Parameter header. This header
specifies additional application request and response information.

COUNT

public static final int COUNT

Represents the OBEX Count header. Allows the connection statement to
tell the server how many objects it plans to send or retrieve.

DESCRIPTION

public static final int DESCRIPTION

Represents the OBEX Description header. A text description of the object.

HTTP

public static final int HTTP

Represents the OBEX HTTP header. Allows an HTTP 1.X header to be
included in a request or reply.

LENGTH

public static final int LENGTH

Represents the OBEX Length header. Length of the object in bytes.

NAME

public static final int NAME

Represents the OBEX Name header. Specifies the name of the object.

OBJECT_CLASS

public static final int OBJECT_CLASS

Represents the OBEX Object Class header. Specifies the OBEX object
class of the object.

Appendix C: javax.obex API 465

TARGET

public static final int TARGET

Represents the OBEX Target header. Name of the service targeted by the
operation.

TIME_4_BYTE

public static final int TIME_4_BYTE

Represents the OBEX Time header by means of a 4-byte representation.
Included only for backward compatibility. Represents the number of
seconds since January 1, 1970.

TIME_ISO_8601

public static final int TIME_ISO_8601

Represents the OBEX Time header by means of the ISO 8601 standard.
Preferred time header.

TYPE

public static final int TYPE

Represents the OBEX Type header. Allows a request to specify the type
of object (e.g., text, html, binary).

WHO

public static final int WHO

Represents the OBEX Who header. Identifies the OBEX application to
determine whether the two peers are talking to each other.

Methods

createAuthenticationChallenge(String, boolean, boolean)

public void createAuthenticationChallenge-
(java.lang.String realm, boolean
userID,boolean access)

466 Appendix C: javax.obex API

Sets the authentication challenge header. The realm is encoded on the
basis of the default encoding scheme used by the implementation to
encode strings. Therefore the encoding scheme used to encode the
realm is implementation dependent.

Parameters
realm—a short description of the password to use; if null, no realm is
sent in the authentication challenge header.
userID—if true, a user ID is required in the reply; if false, no user ID
is required.
access—if true, then full access is granted if successful; if false, then
read-only access is granted if successful.

getHeader(int)

public java.lang.Object getHeader(int headerID)
throws IOException

Retrieves the value of the header identifier provided. The type of the
Object returned is defined in the tables shown previously.

Parameters
headerID—the header identifier whose value is to be returned.

Returns
The value of the header provided; null if the header identifier specified
is not part of this HeaderSet object.

Throws
IllegalArgumentException if the headerID is not one defined in
this interface or any of the user-defined headers.
IOException if an error occurs in the transport layer during the oper-
ation or if the connection has been closed.

getHeaderList()

public int[] getHeaderList() throws IOException

Appendix C: javax.obex API 467

Retrieves the list of headers that may be retrieved via the getHeader
method that will not return null. In other words, this method returns
all the headers available in this object.

Returns
The array of headers set in this object; null if no headers are available.

Throws
IOException if an error occurs in the transport layer during the oper-
ation or the connection has been closed.

getResponseCode()

public int getResponseCode() throws IOException

Returns the response code received from the server. Response codes are
defined in the ResponseCodes class.

Returns
The response code retrieved from the server.

Throws
IOException if an error occurs in the transport layer during the trans-
action; if this method is called on a HeaderSet object created by
calling createHeaderSet() in a ClientSession object; if an OBEX
server created this object.

setHeader(int, Object)

public void setHeader(int headerID,
java.lang.Object headerValue)

Sets the value of the header identifier to the value provided. The type of
headerValue must correspond to the Java type defined in the descrip-
tion of this interface. If null is passed as the headerValue, the header
is removed from the set of headers to be included in the next request.

Parameters
headerID—the identifier to include in the message.

468 Appendix C: javax.obex API

headerValue—the value of the header identifier.

Throws
IllegalArgumentException if the header identifier provided is not
one defined in this interface or a user-defined header; if the type of
headerValue is not the correct Java type as defined in the tables
shown previously.

javax.obex

Operation

Declaration

public interface Operation extends javax.microedi-
tion.io.ContentConnection

Description

The Operation interface provides ways to manipulate a single OBEX
PUT or GET operation. The implementation of this interface sends
OBEX packets as they are built. If during the operation the peer in the
operation ends the operation, an IOException is thrown on the next
read from the input stream, write to the output stream, or call to
sendHeaders().

Definition of Methods Inherited from ContentConnection

getEncoding() always returns null.
getLength() returns the length specified by the OBEX Length header
or –1 if the OBEX Length header was not included.
getType() returns the value specified in the OBEX Type header or
null if the OBEX Type header is not included.

How Headers Are Handled

As headers are received, they can be retrieved through the
getReceivedHeaders() method. If new headers are set during

Appendix C: javax.obex API 469

the operation, the new headers are sent during the next packet
exchange.

PUT Example

void putObjectViaOBEX(ClientSession conn, HeaderSet
head, byte[] obj) throws IOException {

// Include the length header
head.setHeader(head.LENGTH, new

Long(obj.length));
// Initiate the PUT request
Operation op = conn.put(head);
// Open the output stream to put the object to
// it
DataOutputStream out = op.openDataOutputStream();

// Send the object to the server
out.write(obj);
// End the transaction
out.close();
op.close();

}

GET Example

byte[] getObjectViaOBEX(ClientSession conn,
HeaderSet head) throws IOException {

// Send the initial GET request to the server
Operation op = conn.get(head);
// Retrieve the length of the object being sent
// back
int length = op.getLength();
// Create space for the object
byte[] obj = new byte[length];
// Get the object from the input stream
DataInputStream in = trans.openDataInputStream();
in.read(obj);

470 Appendix C: javax.obex API

// End the transaction
in.close();
op.close();
return obj;

}

Client PUT Operation Flow

For PUT operations, a call to close() the OutputStream returned
from openOutputStream() or openDataOutputStream() signals
that the request is done. (In OBEX terms, the END-OF-BODY header
should be sent and the final bit in the request is set.) At this point, the
reply from the server may begin to be processed. A call to
getResponseCode() does an implicit close on the OutputStream
and therefore signals that the request is complete.

Client GET Operation Flow

For GET operation, a call to openInputStream() or
openDataInputStream() signals that the request is complete. (In
OBEX terms, the final bit in the request is set.) A call to
getResponseCode() causes an implicit close on the InputStream.
No additional data can be read at this point.

Methods

abort()

public void abort() throws IOException

Sends an ABORT message to the server. When this method is called, the
corresponding input and output streams are closed along with this
object. No headers are sent in the abort request. This procedure ends the
operation because close() is called by this method.

Throws
IOException if the transaction has already ended or if an OBEX server
calls this method.

Appendix C: javax.obex API 471

getReceivedHeaders()

public HeaderSet getReceivedHeaders() throws
IOException

Returns the headers received during the operation. Modifying the object
returned has no effect on the headers sent or retrieved.

Returns
The headers received during this Operation.

Throws
IOException if this Operation has been closed.

getResponseCode()

public int getResponseCode() throws IOException

Returns the response code received from the server. Response codes are
defined in the ResponseCodes class.

Returns
The response code retrieved from the server.

Throws
IOException if an error occurs in the transport layer during the trans-
action; if this object was created by an OBEX server.

sendHeaders(HeaderSet)

public void sendHeaders(HeaderSet headers) throws
IOException

Specifies the headers that should be sent in the next OBEX message
sent.

Parameters
headers—the headers to send in the next message.

472 Appendix C: javax.obex API

Throws
IOException if this Operation has been closed or the transaction has
ended and no further messages will be exchanged.
IllegalArgumentException if headers is not created by a call
to ServerRequestHandler.createHeaderSet() or ClientSession.-
createHeaderSet()
NullPointerException if headers is null.

javax.obex

PasswordAuthentication

Declaration

public class PasswordAuthentication
java.lang.Object
|
+—javax.obex.PasswordAuthentication

Description

This class holds a user name and a password.

Constructors

PasswordAuthentication(byte[], byte[])

public PasswordAuthentication(byte[] userName,
byte[] password)

Creates a new PasswordAuthentication with the user name and
password provided.

Parameters
userName—the user name to include; this can be null.
password—the password to include in the response.

Throws
NullPointerException if password is null.

Appendix C: javax.obex API 473

Methods

getPassword()

public byte[] getPassword()

Retrieves the password.

Returns
The password.

getUserName()

public byte[] getUserName()

Retrieves the user name that was specified in the constructor. The user
name can be null.

Returns
The user name.

javax.obex

ResponseCodes

Declaration

public class ResponseCodes

java.lang.Object
|
+—javax.obex.ResponseCodes

Description

The ResponseCodes class contains the list of valid response codes a
server may send to a client.

Important Note

The values of these constants are different from those defined in
javax.microedition.io.HttpConnection. The values in this class

474 Appendix C: javax.obex API

represent the values defined in the IrOBEX specification [29]. The values
in javax.microedition.io.HttpConnection represent values
defined in the HTTP specification.

OBEX_DATABASE_FULL and OBEX_DATABASE_LOCKED require
further description because they are not defined in HTTP. The server
sends an OBEX_DATABASE_FULL message when the client requests that
something be placed into a database but the database is full (cannot take
more data).

OBEX_DATABASE_LOCKED is returned when the client wants to
access a database, database table, or database record that has been
locked.

Fields

OBEX_DATABASE_FULL

public static final int OBEX_DATABASE_FULL

Defines the OBEX DATABASE FULL response code.

OBEX_DATABASE_LOCKED

public static final int OBEX_DATABASE_LOCKED

Defines the OBEX DATABASE LOCKED response code.

OBEX_HTTP_ACCEPTED

public static final int OBEX_HTTP_ACCEPTED

Defines the OBEX ACCEPTED response code.

OBEX_HTTP_BAD_GATEWAY

public static final int OBEX_HTTP_BAD_GATEWAY

Defines the OBEX BAD GATEWAY response code.

OBEX_HTTP_BAD_METHOD

public static final int OBEX_HTTP_BAD_METHOD

Defines the OBEX METHOD NOT ALLOWED response code.

Appendix C: javax.obex API 475

OBEX_HTTP_BAD_REQUEST

public static final int OBEX_HTTP_BAD_REQUEST

Defines the OBEX BAD REQUEST response code.

OBEX_HTTP_CONFLICT

public static final int OBEX_HTTP_CONFLICT

Defines the OBEX METHOD CONFLICT response code.

OBEX_HTTP_CREATED

public static final int OBEX_HTTP_CREATED

Defines the OBEX CREATED response code.

OBEX_HTTP_ENTITY_TOO_LARGE

public static final int OBEX_HTTP_ENTITY_TOO_LARGE

Defines the OBEX REQUESTED ENTITY TOO LARGE response code.

OBEX_HTTP_FORBIDDEN

public static final int OBEX_HTTP_FORBIDDEN

Defines the OBEX FORBIDDEN response code.

OBEX_HTTP_GATEWAY_TIMEOUT

public static final int OBEX_HTTP_GATEWAY_TIMEOUT

Defines the OBEX GATEWAY TIMEOUT response code.

OBEX_HTTP_GONE

public static final int OBEX_HTTP_GONE

Defines the OBEX METHOD GONE response code.

OBEX_HTTP_INTERNAL_ERROR

public static final int OBEX_HTTP_INTERNAL_ERROR

476 Appendix C: javax.obex API

Defines the OBEX INTERNAL SERVER ERROR response code.

OBEX_HTTP_LENGTH_REQUIRED

public static final int OBEX_HTTP_LENGTH_REQUIRED

Defines the OBEX METHOD LENGTH REQUIRED response code.

OBEX_HTTP_MOVED_PERM

public static final int OBEX_HTTP_MOVED_PERM

Defines the OBEX MOVED PERMANENTLY response code.

OBEX_HTTP_MOVED_TEMP

public static final int OBEX_HTTP_MOVED_TEMP

Defines the OBEX MOVED TEMPORARILY response code.

OBEX_HTTP_MULT_CHOICE

public static final int OBEX_HTTP_MULT_CHOICE

Defines the OBEX MULTIPLE_CHOICES response code.

OBEX_HTTP_NO_CONTENT

public static final int OBEX_HTTP_NO_CONTENT

Defines the OBEX NO CONTENT response code.

OBEX_HTTP_NOT_ACCEPTABLE

public static final int OBEX_HTTP_NOT_ACCEPTABLE

Defines the OBEX NOT ACCEPTABLE response code.

OBEX_HTTP_NOT_AUTHORITATIVE

public static final int OBEX_HTTP_NOT_AUTHORITATIVE

Defines the OBEX NON-AUTHORITATIVE INFORMATION response
code.

Appendix C: javax.obex API 477

OBEX_HTTP_NOT_FOUND

public static final int OBEX_HTTP_NOT_FOUND

Defines the OBEX NOT FOUND response code.

OBEX_HTTP_NOT_IMPLEMENTED

public static final int OBEX_HTTP_NOT_IMPLEMENTED

Defines the OBEX NOT IMPLEMENTED response code.

OBEX_HTTP_NOT_MODIFIED

public static final int OBEX_HTTP_NOT_MODIFIED

Defines the OBEX NOT MODIFIED response code.

OBEX_HTTP_OK

public static final int OBEX_HTTP_OK

Defines the OBEX SUCCESS response code.

OBEX_HTTP_PARTIAL

public static final int OBEX_HTTP_PARTIAL

Defines the OBEX PARTIAL CONTENT response code.

OBEX_HTTP_PAYMENT_REQUIRED

public static final int OBEX_HTTP_PAYMENT_REQUIRED

Defines the OBEX PAYMENT REQUIRED response code.

OBEX_HTTP_PRECON_FAILED

public static final int OBEX_HTTP_PRECON_FAILED

Defines the OBEX PRECONDITION FAILED response code.

OBEX_HTTP_PROXY_AUTH

public static final int OBEX_HTTP_PROXY_AUTH

478 Appendix C: javax.obex API

Defines the OBEX PROXY AUTHENTICATION REQUIRED response
code.

OBEX_HTTP_REQ_TOO_LARGE

public static final int OBEX_HTTP_REQ_TOO_LARGE

Defines the OBEX REQUESTED URL TOO LARGE response code.

OBEX_HTTP_RESET

public static final int OBEX_HTTP_RESET

Defines the OBEX RESET CONTENT response code.

OBEX_HTTP_SEE_OTHER

public static final int OBEX_HTTP_SEE_OTHER

Defines the OBEX SEE OTHER response code.

OBEX_HTTP_TIMEOUT

public static final int OBEX_HTTP_TIMEOUT

Defines the OBEX REQUEST TIME OUT response code.

OBEX_HTTP_UNAUTHORIZED

public static final int OBEX_HTTP_UNAUTHORIZED

Defines the OBEX UNAUTHORIZED response code.

OBEX_HTTP_UNAVAILABLE

public static final int OBEX_HTTP_UNAVAILABLE

Defines the OBEX SERVICE UNAVAILABLE response code.

OBEX_HTTP_UNSUPPORTED_TYPE

public static final int OBEX_HTTP_UNSUPPORTED_TYPE

Defines the OBEX UNSUPPORTED MEDIA TYPE response code.

Appendix C: javax.obex API 479

OBEX_HTTP_USE_PROXY

public static final int OBEX_HTTP_USE_PROXY

Defines the OBEX USE PROXY response code.

OBEX_HTTP_VERSION

public static final int OBEX_HTTP_VERSION

Defines the OBEX HTTP VERSION NOT SUPPORTED response code.

javax.obex

ServerRequestHandler

Declaration

public class ServerRequestHandler

java.lang.Object
|
+—javax.obex.ServerRequestHandler

Description

The ServerRequestHandler class defines an event listener that
responds to OBEX requests made to the server.

The onConnect(), onSetPath(), onDelete(), onGet(), and
onPut() methods may return any response code defined in
the ResponseCodes class. If a value not defined in the Response-
Codes class is returned, the server implementation sends an
OBEX_HTTP_INTERNAL_ERROR response to the client.

Connection ID and Target Headers

According to the IrOBEX specification, a packet cannot contain a
Connection ID and a Target header. Because it is managed by the imple-
mentation, the Connection ID header will not send a Connection ID
header, if a Connection ID was specified, in a packet that has a Target
header. In other words, if an application adds a Target header to a

480 Appendix C: javax.obex API

HeaderSet object used in an OBEX operation and a Connection ID is
specified, no Connection ID will be sent in the packet containing the
Target header.

CREATE-EMPTY Requests

A CREATE-EMPTY request allows clients to create empty objects on the
server. When a CREATE-EMPTY request is received, the onPut()
method is called by the implementation. To differentiate a normal PUT
request and a CREATE-EMPTY request, an application must open the
InputStream from the Operation object passed to the onPut()
method. For a PUT request, the application is able to read Body data
from this InputStream. For a CREATE-EMPTY request, there is no Body
data to read. Therefore a call to InputStream.read() returns –1.

Constructor

ServerRequestHandler()

protected ServerRequestHandler()

Creates a ServerRequestHandler. Because the constructor is protected, an
instance is obtained by defining a subclass.

Methods

createHeaderSet()

public final HeaderSet createHeaderSet()

Creates a HeaderSet object that may be used in PUT and GET opera-
tions.

Returns
The HeaderSet object to use in PUT and GET operations.

getConnectionID()

public long getConnectionID()

Retrieves the connection ID used in the present connection. This
method returns –1 if no connection ID is being used.

Appendix C: javax.obex API 481

Returns
The connection ID being used or –1 if no connection ID is being used.

onAuthenticationFailure(byte[])

public void onAuthenticationFailure(byte[] userName)

Called when this object attempts to authenticate a client and the
authentication request fails because the response digest in the authenti-
cation response header is wrong.

If this method is not implemented by the class that extends this
class, this method does nothing.

Parameters
userName—the user name returned in the authentication response;
null if no user name is provided in the response.

onConnect(HeaderSet, HeaderSet)

public int onConnect(HeaderSet request, HeaderSet
reply)

Called when a CONNECT request is received.
If this method is not implemented by the class that extends this

class, onConnect() always returns an OBEX_HTTP_OK response code.
The headers received in the request can be retrieved from the

request argument. The headers that should be sent in the reply must
be specified in the reply argument.

Parameters
request—contains the headers sent by the client; request never is
null.
reply—the headers that should be sent in the reply; reply never is
null.

Returns
A response code defined in ResponseCodes that will be returned to the
client; if an invalid response code is provided, the OBEX_HTTP_INTER-
NAL_ERROR response code is used.

482 Appendix C: javax.obex API

onDelete(HeaderSet, HeaderSet)

public int onDelete(HeaderSet request, HeaderSet
reply)

Called when a DELETE request is received.
If this method is not implemented by the class that extends this

class, onDelete() always returns an OBEX_HTTP_NOT_IMPLEMENTED
response code.

The headers received in the request can be retrieved from the
request argument. The headers that should be sent in the reply must
be specified in the reply argument.

Parameters
request—contains the headers sent by the client; request never is
null
reply—the headers that should be sent in the reply; reply never is
null.

Returns
A response code defined in ResponseCodes that will be returned to the
client; if an invalid response code is provided, the OBEX_HTTP_INTER-
NAL_ERROR response code is used.

onDisconnect(HeaderSet, HeaderSet)

public void onDisconnect(HeaderSet request,
HeaderSet reply)

Called when a DISCONNECT request is received.
The headers received in the request can be retrieved from the

request argument. The headers that should be sent in the reply must
be specified in the reply argument.

Parameters
request—contains the headers sent by the client; request never is
null.
reply—the headers that should be sent in the reply; reply never is
null.

Appendix C: javax.obex API 483

onGet(Operation)

public int onGet(Operation op)

Called when a GET request is received.
If this method is not implemented by the class that extends this

class, onGet() returns an OBEX_HTTP_NOT_IMPLEMENTED response
code.

If an ABORT request is received during the processing of a GET
request, op is closed by the implementation.

Parameters
op—contains the headers sent by the client and allows new headers to
be sent in the reply; op never is null.

Returns
A response code defined in ResponseCodes that will be returned to the
client; if an invalid response code is provided, the OBEX_HTTP_INTER-
NAL_ERROR response code is used.

onPut(Operation)

public int onPut(Operation op)

Called when a PUT request is received.
If this method is not implemented by the class that extends this

class, onPut() always returns an OBEX_HTTP_NOT_IMPLEMENTED
response code.

If an ABORT request is received during the processing of a PUT
request, op is closed by the implementation.

Parameters
op—contains the headers sent by the client and allows new headers to
be sent in the reply; op never is null.

Returns
A response code defined in ResponseCodes that will be returned to the
client; if an invalid response code is provided, the OBEX_HTTP_INTER-
NAL_ERROR response code is used.

484 Appendix C: javax.obex API

onSetPath(HeaderSet, HeaderSet, boolean, boolean)

public int onSetPath(HeaderSet request, HeaderSet
reply, boolean backup, boolean create)

Called when a SETPATH request is received. If this method is not imple-
mented by the class that extends this class, onSetPath() will always
return an OBEX_HTTP_NOT_IMPLEMENTED response code.

The headers received in the request can be retrieved from the
request argument. The headers that should be sent in the reply must
be specified in the reply argument.

Parameters
request—contains the headers sent by the client; request never is
null.
reply—the headers that should be sent in the reply; reply never is
null.
backup—true if the client requests that the server back up one direc-
tory before changing to the path described by name; false to apply the
request to the present path.
create—true if the path should be created if it does not already exist;
false if the path should not be created if it does not exist.

Returns
A response code defined in ResponseCodes that will be returned to the
client; if an invalid response code is provided, the OBEX_HTTP_INTER-
NAL_ERROR response code is used.

setConnectionID(long)

public void setConnectionID(long id)

Sets the connection ID header to include in the reply packets.

Parameters
id—the connection ID to use; –1 if no connection ID should be sent.

Throws
IllegalArgumentException if id is not in the range –1 to 232–1.

Appendix C: javax.obex API 485

javax.obex

SessionNotifier

Declaration

public interface SessionNotifier extends
javax.microedition.io.Connection

Description

The SessionNotifier interface defines a connection notifier for
server-side OBEX connections. When it is created and calls
acceptAndOpen(), the SessionNotifier begins listening for clients
to create a connection at the transport layer. When the transport layer
connection is received, the acceptAndOpen() method returns a
javax.microedition.io.Connection, which is the connection
to the client. The acceptAndOpen() method also takes a
ServerRequestHandler argument that will process the requests from
the client that connects to the server.

Methods

acceptAndOpen(ServerRequestHandler)

public javax.microedition.io.Connection
acceptAndOpen(ServerRequestHandler handler)
throws IOException

Waits for a transport layer connection to be established and specifies the
handler to handle the requests from the client. No authenticator is asso-
ciated with this connection; therefore it is implementation dependent
as to how an authentication challenge and authentication response
header are received and processed.

Additional Note for OBEX over Bluetooth
If this method is called on a SessionNotifier object that does not
have a ServiceRecord in the SDDB, the ServiceRecord for this

486 Appendix C: javax.obex API

object is added to the SDDB. This method requests that the BCC put the
local device in connectable mode so that it will respond to connection
attempts by clients.

The following checks are done to verify that the service record pro-
vided is valid. If any of these checks fails, a ServiceRegistration-
Exception is thrown.

•ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btgoep service record, must be present in
the ServiceRecord associated with this notifier.

•L2CAP, RFCOMM, and OBEX all must be in the Protocol-
DescriptorList.

•The ServiceRecord associated with this notifier must not have
changed the RFCOMM server channel number.

This method does not ensure that the ServiceRecord associated
with this notifier is a completely valid service record. It is the respon-
sibility of the application to ensure that the service record follows all
of the applicable syntactic and semantic rules for service record
correctness.

Parameters
handler—the request handler that will respond to OBEX requests.

Returns
The connection to the client.

Throws
IOException if an error occurs in the transport layer.
NullPointerException if handler is null.
ServiceRegistrationException if the structure of the associated
service record is invalid or if the service record cannot be added
successfully to the local SDDB. The structure of service record is
invalid if the service record is missing any mandatory service
attributes or has changed any of the values described above, which are
fixed and cannot be changed. Failure to add the record to the SDDB
can be caused by factors such as insufficient disk space and database
locks.

Appendix C: javax.obex API 487

BluetoothStateException if the server device cannot be placed in
connectable mode because the device user has configured the device to
be non-connectable.

acceptAndOpen(ServerRequestHandler, Authenticator)

public javax.microedition.io.Connection
acceptAndOpen(ServerRequestHandler handler,
Authenticator auth) throws IOException

Waits for a transport layer connection to be established and specifies the
handler to handle the requests from the client and the Authenticator
to use to respond to authentication challenge and authentication
response headers.

Additional Note for OBEX over Bluetooth
If this method is called on a SessionNotifier object that does not
have a ServiceRecord in the SDDB, the ServiceRecord for this
object is added to the SDDB. This method requests the BCC to put the
local device in connectable mode so that it will respond to connection
attempts by clients.

The following checks are done to verify that the service record pro-
vided is valid. If any of these checks fails, a ServiceRegistration-
Exception is thrown.

•ServiceClassIDList and ProtocolDescriptorList, the mandatory
service attributes for a btgoep service record, must be present in
the ServiceRecord associated with this notifier.

•L2CAP, RFCOMM, and OBEX must all be in the Protocol-
DescriptorList.

•The ServiceRecord associated with this notifier must not have
changed the RFCOMM server channel number.

This method does not ensure that the ServiceRecord associated with
this notifier is a completely valid service record. It is the responsibility
of the application to ensure that the service record follows all of the
applicable syntactic and semantic rules for service record correctness.

488 Appendix C: javax.obex API

Parameters
handler—the request handler that responds to OBEX requests.
auth—the Authenticator to use with this connection; if null, then
no Authenticator is used.

Returns
The connection to the client.

Throws
IOException if an error occurs in the transport layer.
NullPointerException if handler is null.
ServiceRegistrationException if the structure of the associated
service record is invalid or if the service record cannot be added suc-
cessfully to the local SDDB. The structure of a service record is invalid if
the service record is missing any mandatory service attributes or has
changed any of the values described above, which are fixed and cannot
be changed. Failures to add the record to the SDDB can be caused by
factors such as insufficient disk space and database locks.
BluetoothStateException if the server device cannot be placed in
connectable mode because the device user has configured the device to
be non-connectable.

Appendix C: javax.obex API 489

This Page Intentionally Left Blank

References

1. Bluetooth SIG. Specification of the Bluetooth System, Core, v1.1, www.bluetooth.com, 2000.

2. J. Larmouth. Understanding OSI. International Thomson Publishing,
www.isi.salford.ac.uk//books/osi/osi.html, 1996.

3. Bluetooth SIG. Specification of the Bluetooth System, Profiles v1.1, www.bluetooth.com, 2000.

4. Miller, B. A. and C. Bisdikian. Bluetooth Revealed, 2nd ed. Upper Saddle River: Prentice-Hall, 2001.

5. Bray, J., and C. F. Sturman. Bluetooth 1.1: Connect without Cables, 2nd ed. Upper Saddle River:
Prentice-Hall, 2001.

6. Bluetooth SIG, Bluetooth Network Encapsulation Protocol (BNEP) Specification, Revision 1.0,
2003.

7. Bluetooth SIG, Hardcopy Cable Replacement Profile Interoperability Specification, Revision 1.0a,
2002.

8. Bluetooth SIG, Audio/Video Control Transport Protocol Specification, Revision 1.0, 2003.

9. Bluetooth SIG, Audio/Video Distribution Transport Protocol Specification, Revision 1.0, 2003.

10. Bluetooth SIG. Bluetooth Qualification Program Website qualweb.opengroup.org.

11. Topley, K. J2ME in a Nutshell. Sebastopol: O’Reilly, 2002.

12. Riggs, R., A. Taivalsaari, and M. VandenBrink. Programming Wireless Devices with the Java™ 2
Platform, Micro Edition. Boston: Addison-Wesley, 2001.

13. Java Community Process. J2ME Connected, Limited Device Configuration (JSR-30),
www.jcp.org/jsr/detail/30.jsp, 2000 .

14. Java Community Process. J2ME Connected Device Configuration (JSR-36),
www.jcp.org/jsr/detail/36.jsp, 2001.

15. Lindholm, T., and F. Yellin. The Java™ Virtual Machine Specification, Second Edition. Boston:
Addison-Wesley, 1999.

16. Java Community Process. Mobile Information Device Profile for the J2ME Platform (JSR-37),
www.jcp.org/jsr/detail/37.jsp, 2000.

17. Java Community Process. J2ME Foundation Profile (JSR-46), www.jcp.org/jsr/detail/46.jsp, 2001.

18. Java Community Process. Personal Profile Specification (JSR-62), www.jcp.org/jsr/detail/62.jsp,
2002.

19. Java Community Process. Personal Basis Profile Specification (JSR-129),
www.jcp.org/jsr/detail/129.jsp, 2002.

20. Java Community Process. Java APIs for Bluetooth Wireless Technology (JSR-82),
www.jcp.org/jsr/detail/82.jsp, 2002.

21. Java Community Process. Generic Connection Framework Optional Package for J2SE (JSR-197),
www.jcp.org/jsr/detail/197.jsp, 2003.

22. JINI Networking Technology Home Page, www.sun.com/jini/.

23. Project JXTA Home Page, www.jxta.org.

24. Kumar, C B., and P. Kline. “Bringing the Benefits of Java to Bluetooth.” Embedded Systems, the
European Magazine for Embedded Design 6 (2002) no. 42.

25. Java Community Process., J2ME Connected, Limited Device Configuration 1.1 (JSR-139),
www.jcp.org/jsr/detail/139.jsp, 2003.

26. Java Community Process. Mobile Information Device Profile 2.0 (JSR-118),
jcp.org/jsr/detail/118.jsp, 2002.

27. Bluetooth SIG, Basic Printing Profile, Revision 0.95a, 2003.

28. Bluetooth SIG, Basic Imaging Profile, Revision 0.95c, 2003.

29. Infrared Data Association®, IrDA® Object Exchange Protocol–OBEX™, version 1.3, 2003.

30. Bluetooth SIG. Bluetooth Assigned Numbers,
www.bluetooth.org/foundry/assignnumb/document/assigned_numbers.

31. Fowler, M., and K. Scott. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
2nd ed. Boston: Addison-Wesley, 2000.

32. International Organization for Standardization. Code for the presentation of names of languages.
ISO 639:1988 (E/F), Geneva, 1988.

33. Internet Assigned Numbers Authority. www.iana.org/assignments/character-sets.

34. The Internet Mail Consortium. vCard – The Electronic Business Card, Version 2.1, 1996.
www.imc.org/pdi/vcard-21.txt.

35. The Open Group. DCE 1.1: Remote Procedure Call, Appendix A. Document Number C706,
www.opengroup.org/onlinepubs/009629399/apdxa.htm, Reading, UK, 1997.

36. Bluetooth SIG, Personal Area Networking Profile, Revision 1.0, 2003.

37. Bluetooth SIG, Bluetooth Extended Service Discovery Profile (ESDP) for Universal Plug and PlayTM

(UPnPTM). Revision 0.95a, 2003.

38. Bluetooth SIG, Audio/Video Remote Control Profile, Revision 1.0, 2003.

39. Bluetooth SIG, Generic Audio/Video Distribution Profile, Revision 1.0, 2003.

40. Bluetooth SIG, Advanced Audio Distribution Profile, Revision 1.0, 2003.

41. Bluetooth SIG, Hands-Free Profile, Revision 1.0, 2003.

42. Williams, S., and I. Millar. “The IrDA platform,” in Insights into Mobile Multimedia Communication,
ed. D. Bull, C. Canagarajah, and A. Nix. San Francisco: Morgan Kaufmann, 1998.
www.irda.org/design/irda_platform.pdf, Infrared Data Association, Walnut Creek, California,
1996.

492 References

ACL link, 10, 208
Advanced Audio Distribution

Profile, 209
Agere, 4
API

device discovery, 111–113
JABWT, 27–30
Java, 19–20
L2CAP, 211–220
OBEX, 84–87
programming. See

Programming with the
API

RFCOMM, 56–58
service discovery, 142–160

Application profiles, 12
Application programming

interface. See API
Applications. See Example

applications
Asynchronous connectionless

(ACL), 10
Attribute ID base value, 171
Audio, 135
Audio/video, 136
Audio/Video Control Transport

Protocol, 209
Audio/Video Distribution

Transport Protocol, 209
Audio/Video Remote Control

Profile, 209
Authentication

Bluetooth, 53, 54
OBEX, 86, 102–106

Authorization, 55–56
Automatic generation of service

records, 146–147, 161–167

Base-plus-offset scheme, 170
Baseband layer, 218

Baseband packets, 208
Basic profiles, 12
BCC implementation, 330–331
Blåtand, Harald, 4–5
Blocking/non-blocking stack

calls, 328–330
Bluetooth

attributes, 3–4
client and server model,

37–41
historical overview, 4–5
link, 75
name, 4–5
native device, 322
overview, 3
profiles, 7, 11–13
protocols, 9–11
qualification process, 13–14
specification, 7
subsystem of JABWT, as,

29–30
timeline, 5
websites, 22

Bluetooth address, 109
Bluetooth authentication, 53
Bluetooth client and server

model, 37–41
Bluetooth client application, 40
Bluetooth Control Center

(BCC), 30, 41–42, 43
Bluetooth controller, 8
Bluetooth Core specification, 25
Bluetooth development kits,

243
Bluetooth device, 110
Bluetooth Extended Service

Discovery Profile, 219
Bluetooth host, 8
Bluetooth host and device

classification, 8

Bluetooth-KOSI, 327
Bluetooth-KVM, 326–327
Bluetooth link, 75
Bluetooth Network

Encapsulation Protocol
(BNEP), 11, 206, 209

Bluetooth Object Push Profile,
173–181

Bluetooth profile hierarchy, 13
Bluetooth Profile specification,

25
Bluetooth profiles, 7, 11–13
Bluetooth protocol stack, 7–10,

8, 323–325
Bluetooth protocols, 9–11
Bluetooth qualification process,

13–14, 332
Bluetooth radio module, 8
Bluetooth security, 52–56. See

also Security
Bluetooth server application,

39–40
Bluetooth service, 37
Bluetooth SIG, 4, 11
Bluetooth specification, 7
Bluetooth system requirements,

29–30
Bluetooth TCK, 333
Bluetooth use cases, 6–7
Bluetooth vision, 5–7
bluetooth.api.version, 116
bluetooth.connected.devices.

max, 116
bluetooth.connected.inquiry,

116
bluetooth.connected.inquiry.

scan, 116
bluetooth.connected.page, 116
bluetooth.connected.page.

scan, 116

Index

bluetooth.l2cap.receiveMTU.
max, 116

bluetooth.master.switch, 116
BluetoothProfileDescriptorList,

150, 175
bluetooth.sd.attr.retrievable.

max, 116
bluetooth.sd.trans.max, 116
btl2cap, 213

Cached devices, 113, 122
Capturing, 135
CDC, 16
Class of device record, 112
CLDC, 16, 35–36, 321–322
CLDC + MIDP + Bluetooth

architecture diagram, 36
CLDC TCK, 333
Client and server mode, 37–41
Client connection strings, 66

L2CAP, 212–213
OBEX, 89
RFCOMM, 61

Communication, 35
Computer, 136
Configurations, 15–16
Conflict resolution, 42–43
Connect-anytime services,

201–203
Connected, Limited Device

Configuration (CLDC), 16,
35–36, 321–322

Connected Device
Configuration (CDC), 16

Connection
client (RFCOMM), 65–75
JABWT implementation,

327–328
L2CAP, 212–215
message client application,

305–310
OBEX, 88–89
server (RFCOMM), 60–65

Connection-oriented channels,
208

Connection strings
client. See Client connection

strings
L2CAP, 212–215
OBEX, 88, 89

RFCOMM, 58–61, 66
server. See Server connection

strings
Connectionless channels, 208
Context switching, 328, 329
Cordless Telephony Profile,

209
Credit-based flow control

scheme, 234–240
Custom applications, 211
Custom services, 142

Data element alternative, 149
Data element sequence, 149
DataElement, 147, 149, 192
DATSEQ, 180
Deadlock scenario, 219
Default attributes, 181
Default service records, 147
Development tools, 44–45, 243
Device discovery, 109–138

API capabilities, 111–113
cached devices, 113, 122
DeviceClass, 134–138
discoverable mode, 110, 114
limited vs. general inquiry,

110
local device, 114–125
major device class, 112–113,

136
major service class, 112,

134–136
minor device class, 113,

136–137
overview, 109
pre-known devices, 113, 122
programming with the API,

113–137
remote device, 131–134
simple device discovery,

120–125
starting an inquiry, 125–130

Device management, 35
Device properties, 41, 43
DeviceClass, 134–138, 160
Dial-up Networking Profile,

206, 209
Discoverable mode, 110, 114
Discovery, 35
DiscoveryAgent, 114, 120

DiscoveryAgent.GIAC, 114,
125

DiscoveryAgent.LIAC, 114,
125

DocumentationURL, 150, 167

Echo client/server, 61–75
Echo L2CAP packets, 221–229
802.11b, 2
Encryption, 55
Ericsson, 4
Event handling, 328
Example applications, 243–318

OBEX message application,
289–318. See also OBEX
message application

overview, 243
Tic-Tac-Toe MIDlet, 244–288.

See also Tic-Tac-Toe
MIDlet

Extended Service Discovery
Profile, 209, 219

Extended Systems, 20

FAX Profile, 209
Flow control, 218–219,

234–240
Flush timeout, 210
Foundation Profile (FP), 17
Frequency hopping, 58
Friendly name, 43

GAP, 12
GCF, 20
General discoverable device,

110, 114
General inquiry, 110, 125
Generic Access Profile (GAP),

12
Generic Audio/Video

Distribution Profile, 209
Generic Connection Framework

(GCF), 20
Generic Object Exchange

Profile (GOEP), 12
Guidgen.exe, 201

Hands-Free Profile, 209
Hardcopy Cable Replacement

Profile, 209, 219, 220

494 Index

Hardcopy Control Channel, 209
Hardcopy Notification

Channel, 209
HCI interface, 8, 10
Headset Profile, 209
“Hello, World” JABWT

application, 45–50
High-end routers, 1
Historical overview, 4–5
Host Controller Interface (HCI),

8

IBM, 4, 20
IconURL, 150
IEEE 802.11, 2
Illustrations. See Example

applications
Imaging, 136
Implementation components,

326
Implementing JABWT, 319–335

adding J2ME/Bluetooth
support, 322–325

BCC implementation,
330–331

blocking/nonblocking stack
calls, 328–330

Bluetooth-KOSI, 327
Bluetooth-KVM, 326–327
CLDC, 321–322
connections, 327–328
context switching, 328, 329
event handling, 328
KVM extensions, 326–327
KVM-stack interface, 327–330
OBEX implementation, 331,

332
porting process, 320–322
RI, 333
stack, 323–325
TCK agent, 333–334
TCK compliance, 332–334
who should do it, 319

Impronto Simulator, 44, 45,
243

Information, 135
Information age, 1
Infrared, 2
Infrared Data Association

(IrDA), 2, 3

Infrared Object Exchange
protocol (IrOBEX), 77, 78.
See also OBEX

Inquiry, 109, 110, 125. See also
Device discovery

Inquiry access codes, 125
Instant post card, 7
Intel, 4
Intercom Profile, 209
Internet websites

Bluetooth wireless
technology, 22

J2ME, 22
JSR-82, 22
qualification process, 14
RI/TCKs, 333

IrDA, 2, 3
IrOBEX, 77, 78. See also OBEX

J2EE, 14
J2ME, 2, 14–18

components, 16
configurations, 15–16
optional packages, 17–18
overview, 14
profiles, 16–17
websites, 22

J2ME configurations, 15–16
J2ME development tools,

44–45, 243
J2ME device requirements, 28–29
J2ME Wireless Toolkit, 44, 45,

243
J2SE, 14, 20
JABWT, 19, 23–24

API characteristics/ hardware
requirements, 27–30

architecture, 35–41
BCC, 41–42, 43
Bluetooth stack, 33
Bluetooth system

requirements, 29–30
conflict resolution, 42–43
device properties, 41, 43
goals, 23–24
implementation, 319–335.

See also Implementing
JABWT

J2ME device requirements,
28–29

Java packages, 34, 37
key characteristics, 32, 34
sample application (“Hello

World”), 45–50
scope, 30–32
specification, 25, 27–28
system properties, 41
target devices, 24, 25
use cases, 26–27

JABWT packages, 34
JABWT specification

characteristics, 27–28
JABWT TCK test, 333
JABWT use cases, 26–27
Java API, 19–20
Java APIs for Bluetooth Wireless

Technology. See JABWT
Java Community Process (JCP),

19
Java language, 18–19
Java packages, 37
Java Specification Request (JSR),

19
Java virtual machine, 15
javax.bluetooth, 34, 37
javax.microedition.io, 37
javax.obex, 34, 37
Java 2, Micro Edition. See J2ME
Java 2 Platform, Enterprise

Edition (J2EE), 14
Java 2 Platform, Standard

Edition (J2SE), 14, 20
Java 2 platforms, 15
JCP, 19
Jini, 20–22
JSR, 19
JSR-82, 20, 22, 333
JSR-82 TCK setup, 333, 334
JSR-82 TCK test, 333, 334
JSR-139, 24
JSR-197, 20, 24, 29
JXTA, 20–22

Kilobyte Virtual Machine
(KVM), 16

Kiosk, 26
KOSI, 326
KToolBar, 45
KVM, 16
KVM Extensions, 326, 327

Index 495

KVM operating system interface
(KOSI), 326

KVM-stack interface, 327–330

L2CAP, 205–241
API, 211–220
application, 220
Bluetooth stack, and, 206
channel configuration,

215–218
channels/packets, 207–208
clients/servers, 233
custom applications, 211,

220
deadlock scenario, 219
echo L2CAP packets, 221–229
flow control, 218–219,

234–240
flush timeout, 210
interfaces defined in JABWT,

211–212
MTU, 207, 215–218, 229–233
open a connection, 212–215
profiles/protocols, 206, 209
programming with the API,

221–240
PSM, 213–215
service record, 153–155
user interface for MTU

values, 229–233
why used, 208–211

L2CAP applications, 220
L2CAP channel configuration,

215–218
L2CAP channels, 207–208
L2CAP clients/servers, 233
L2CAP packets, 207–208
L2CAPConnection, 211
L2CAPConnectionNotifier,

211
LAN Access Profile, 206
LAN/network access point, 136
LanguageBaseAttributeIDList,

171
Licensee closed classes (LCCs),

18
Licensee open classes (LOCs),

18
Limited discoverable device,

110, 114

Limited Discoverable Mode,
135

Limited inquiry, 110, 125
Link, 75
Link Manager Protocol (LMP),

10
List-of-lists structure, 152
LMP, 10
LocalDevice, 114
LocalDevice.getProperty, 41,

116
LOCs, 18
Logical link control and

adaptation protocol. See
L2CAP

Major device class, 112–113,
136

Major service class, 112,
134–136

Master and slave configuration,
57–58

Maximum transmission unit
(MTU), 207, 215–218,
229–233

Message application. See OBEX
message application

Message client application,
301–318

Message server application,
289–301

MIBenum, 171
Microsoft, 4
MIDlet, 17
MIDP, 17, 35–36
MIDP device, 323
Minor device classes, 113,

136–137
Miscellaneous device class, 136
Mitsubishi Electric, 20
Mobile Information Device

Profile (MIDP), 17, 35–36
Modifying a service record,

158–160, 167–170
Motorola, 4, 20, 333
MTU, 207, 215–218, 229–233
MTU mismatch pitfall, 217

Native Bluetooth Device, 322
Networking, 135

Newbury Networks, 20
Nokia, 4, 20
Non-blocking stack calls,

328–330
Not discoverable, 110, 114

OBEX, 77–108
API, 84–87
authentication, 86, 102–106
basic operations, 79
common headers, 80
connection strings, 88, 89
establishing a connection,

88–89
example session, 81–84
headers, 80, 90–92
overview, 77–78
programming with the API,

87–106
protocol description, 79–80
receiving request from client,

98–102
sending request to server,

92–98
sessions, 79–84, 107
special operations, 80
use cases, 78–79

OBEX authentication, 86,
102–106

OBEX CONNECT operation, 81
OBEX connection string, 88, 89
OBEX DISCONNECT operation,

83
OBEX GET operation, 96–97
OBEX implementation, 331,

332
OBEX message application,

289–318
establishing connection to

server, 305–310
message client application,

301–318
message server application,

289–301
receiving messages from

client, 296–298
retrieving message from

server, 314–318
sending message to server,

310–314

496 Index

OBEX message application
(continued)

sending messages to client,
299–301

OBEX PUT operation, 83, 95–96
OBEX SETPATH operation, 82
OBEX TCK, 333
Object Push service record,

173–181
Object Transfer, 135
onXXX() method, 106, 107
Optional packages, 17–18

Pairing, 52–53
PAN, 5
PAN profile, 206, 209
Parthus Technologies, 20
PauseCanvas, 252–258
PauseTimerTask, 252–258
PBP, 17
PBX, 1
Peer-to-peer applications, 40
Peer-to-peer networking, 26
Peripheral, 136
Personal area network (PAN), 5
Personal Area Networks, 209
Personal Basic Profile (PBP), 17
Personal Profile (PP), 17
PersonalJava, 17, 20
Phone, 136
Porting process, 320–322
Positioning, 135
PP, 17
Pre-known devices, 113, 122
Predefined devices, 113
Printing, 79
Printing service, 37
Private branch exchange (PBX),

1
Profiles

application, 12
basic, 12
Bluetooth, 7, 11–13
J2ME, 16–17
L2CAP, 206, 209
transport, 12

Programming with the API.
See also Example
applications

device delivery, 113–137

L2CAP, 221–240
OBEX, 87–106
RFCOMM, 58–75
service discovery, 161–203

Protocol and service
multiplexer (PSM), 154,
213–215

Protocol stack, 7–10, 323–325
ProtocolDescriptorList, 150,

152
Protocols

Bluetooth, 9–11
L2CAP, 206, 209

Provisioning, 78–79
PSM, 154, 213–215

Qualification process, 13–14,
332

Radio frequency (RF), 2
Reference implementation (RI),

333
RemoteDevice, 131–134
Rendering, 135
Research in Motion, 20
RF, 2
RFCOMM, 11, 51–76

API capabilities, 56–58
Bluetooth security, 52–56
establishing client

connection, 65–75
establishing server

connection, 60–65
master and slave

configuration, 57–58
overview, 51–56
programming with the API,

58–75
valid parameters for

connection strings, 59
RI, 333
Rococo Impronto Simulator,

44, 45
Rococo Software, 20, 44
Run-before-connect services,

143–144

SCO link, 10
SDAP, 12, 209
SDDB, 38

SDP, 10
searchServices(), 181–190
Security, 52–56

authentication, 53
authorization, 55–56
encryption, 55
pairing, 52–53

Serial Port Profile (SPP), 12, 51,
209

Serial ports, 11
Server connection strings,

60–61
L2CAP, 214–215
OBEX, 89
RFCOMM, 60–61

Service class, 134–136
Service discovery, 139–204

API capabilities, 142–160
connect-anytime services,

201–203
custom services, 142
DataElement, 147, 149, 192
device service classes, 160
overview, 139–142
programming with the API,

161–203
retrieving additional

attributes, 194–198
run-before-connect services,

143–144
service record. See Service

record
service registration, 141–142,

161, 203
service search, 181–190
simple programming

example, 199
UUID. See UUID

Service Discovery Application
Profile (SDAP), 12, 209

Service discovery database
(SDDB), 38

Service Discovery Protocol
(SDP), 10

Service record, 141
add, to SDDB, 155–157, 158
attribute IDs, 150
automatic generation,

146–147, 161–167
DataElement, 147, 149, 192

Index 497

Service record (continued)
defined, 143
L2CAP, for, 153–155
modifications to, 158–160,

167–170
multiple language, 170–173
OBEX over RFCOMM, for,

155
Object Push, 173–181
remove, from SDDB, 157, 158
serial port, for, 147–153
working with, 190–194

Service registration, 141–142,
161, 203

Service search, 181–190
ServiceAvailability, 150
ServiceClassIDList, 150, 151
ServiceDescription, 150, 167
ServiceID, 150
ServiceInfoTimeToLive, 150
ServiceName, 150, 152–153
ServiceRecordHandle, 150, 153
SERVICE_SEARCH_

COMPLETED, 183
SERVICE_SEARCH_DEVICE_

NOT_REACHABLE, 183
SERVICE_SEARCH_ERROR,

183
SERVICE_SEARCH_NO_

RECORDS, 183
SERVICE_SEARCH_

TERMINATED, 183
Sharp Laboratories of America,

20
Short-form UUIDs, 152
Short-range wireless standards,

2
Smart Fusion, 20
Smart Network Devices, 20

Sony Ericsson Mobile
Communications, 20

SPP, 12, 51, 209
Stack. See Bluetooth protocol

stack
Stream-based protocol, 211
Sun Microsystems, 20, 333
Supported Formats List, 177
Symbian, 20
Synchronous connection

oriented (SCO), 10
System properties, 41

TCK agent, 333–334
TCK compliance, 332–334
TCS-BIN, 209, 210
TCS binary, 11
Technology Compatibility Kit

(TCK) compliance, 332–334
Telecordia, 20
Telephony, 135
Telephony Control Protocol

Specification, Binary (TCS
binary or TCS-BIN), 11,
209, 210

Three-in-one phone usage
model, 6

3Com, 4
Tic-Tac-Toe MIDlet, 244–288

creating the game thread,
258–267

implementation, 245–252
overview, 244–245
PauseCanvas, 252–258
PauseTimerTask, 252–258
playing the game, 267–288
TTTCanvas, 258–267
TTTGame, 258–267

Timeline, 5

Toshiba, 4
Transport profiles, 12
TTTCanvas, 258–267
TTTGame, 258–267

Unicode Transformation
Format 8 (UTF-8), 171

Universally unique identifier.
See UUID

Upper-layer stack, 8
Use cases

Bluetooth, 6–7
JABWT, 26–27

User interface for MTU values,
229–233

UTF-8, 171
UUID, 143, 149

conversion, 151
generating, 200–201
short-form, 152
16-bit vs. 128-bit, 151

uuidgen, 200

Vaultus, 20
Vending machine, 27
Voice over Internet Protocol

(VoIP), 2

Websites. See Internet websites
Wireless communication

technologies, 3
Wireless connectivity, 1–3
Wireless local area network

(WLAN), 2, 3
Wireless telematics, 6–7
Wireless Toolkit, 44, 45, 243
WLAN, 2, 3

Zucotto, 20

498 Index

	BLUETOOTH® APPLICATION PROGRAMMING WITH THE JAVATM APIs
	Copyright Page
	Contents
	List of Tables
	List of Figures
	Preface
	Acknowledgments
	Chapter 1. Introduction
	1.1 Wireless Connectivity
	1.2 What Is Bluetooth Wireless Technology?
	1.3 Overview of the Bluetooth Stack Architecture
	1.4 What is J2ME?
	1.5 Why Java Technology for Bluetooth Devices?
	1.6 Summary

	Chapter 2. An Overview of JABWT
	2.1 Goals
	2.2 API Characteristics and Hardware Requirements
	2.3 Scope
	2.4 Summary

	Chapter 3. High-Level Architecture
	3.1 Architecture of JABWT
	3.2 Bluetooth Control Center
	3.3 Simple JABWT Application
	3.4 Summary

	Chapter 4. RFCOMM
	4.1 Overview
	4.2 API Capabilities
	4.3 Programming with the API
	4.4 Summary

	Chapter 5. OBEX
	5.1 Overview
	5.2 API Capabilities
	5.3 Programming with the API
	5.4 Summary

	Chapter 6. Device Discovery
	6.1 Overview
	6.2 API capabilities
	6.3 Programming with the API
	6.4 Summary

	Chapter 7. Service Discovery
	7.1 Overview
	7.2 API capabilities
	7.3 Programming with the API
	7.4 Summary

	Chapter 8. L2CAP
	8.1 Overview
	8.2 API Capabilities
	8.3 Programming with the API
	8.4 Summary

	Chapter 9. Example Applications
	9.1 Overview
	9.2 Tic-Tac-Toe MIDlet
	9.3 OBEX Application Download
	9.4 Summary

	Chapter 10. Implementing JABWT on a Device
	10.1 Porting Process
	10.2 Steps 1 and 2: Adding J2ME and Bluetooth Support
	10.3 Step 3: Implementing JABWT
	10.4 Step 4: TCK Compliance
	10.5 Summary

	Chapter 11. Closing Remarks
	Appendix A. Complete Code Examples
	Appendix B. javax.bluetooth API
	Appendix C. javax.obex API
	References
	Index

