


BeagleBone Media Center

A practical guide to transforming your BeagleBone  
into a fully functional media center

David Lewin

BIRMINGHAM - MUMBAI



BeagleBone Media Center

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing and its dealers and distributors, will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-999-3

www.packtpub.com

www.packtpub.com


Credits

Author
David Lewin

Reviewers
Eric Feuilleaubois

Naoya Hashimoto

Pei JIA

Chidananda Matada  
Shivananda

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Larissa Pinto

Content Development Editor
Neeshma Ramakrishnan

Technical Editor
Faisal Siddiqui

Copy Editors
Dipti Kapadia

Rashmi Sawant

Project Coordinator
Danuta Jones

Proofreaders
Ameesha Green

Lawrence A. Herman

Indexer
Hemangini Bari

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph



About the Author

David Lewin was introduced early to electronics and computers by TRS-80, Atari, 
and Commodore 64; he has never quit since then. He spends his free time watching 
out for technology for the next generation of embedded systems when he is not 
exploring philosophy.

David is a passionate and creative embedded developer who spent 20 years working 
for automotive companies such as Renault, Peugeot, and Faurecia, as well as for 
satellites with Thales Alenia Space. He currently works in Sophia Antipolis, the 
French Riviera Silicon Valley, designing industrial embedded systems.

A book is a real personal investment, and I'd like to thank Lisa for her 
patience, support, and advice. Thanks to my parents for supporting 
me in my early days; it is also thanks to them that I found the way to 
write to this book. Thanks to Sarah and Lisa as well. Thanks to Eric 
and Carol for their time and efforts. I'd like also to thank Neeshma 
and Larissa at Packt Publishing for their precious help. Besides, I'd 
also like to thank the open source community as they allow you to 
benefit from the BeagleBone hardware and software.

I would also like to thank Naoya, Rachel, and Jason (the syntaxic 
killer) for their great work as I really appreciate what they brought  
to the book.



About the Reviewers

Naoya Hashimoto has been working on system design and integration with open 
source software for years. In the past few years, his career and interests have been 
shifting toward cloud engineering mainly for AWS with orchestration tools such as 
Chef or CloudFormation.

He has reviewed Icinga Network Monitoring, Home Security System with BeagleBone, 
and Building networks and servers using BeagleBone, both by Packt Publishing:

Thanks to the author and project coordinator Danuta, who gave  
me this opportunity to review the book. I am very impressed with 
her work and this project because we can create a media center 
device with BeagleBone and open source software. I hope that we 
get more such opportunities to work with BeagleBone and other 
open source software.



Pei JIA holds a PhD degree in computer science from the University of Essex, with 
full financial aid by Overseas Research Studentship (ORS). He specializes in various 
computer vision algorithms (particularly, 2D and 3D morphable models) and has 
extensive embedded machine vision experience. He is the pioneer of advocating all 
kinds of open source, both software and hardware. He has just designed his own 
smart house in beautiful British Columbia using a BeagleBone Black-based control 
center. Recently, he launched his enterprise, Longer Vision Tech., in ShenZhen, 
China, which focuses on designing intelligent vision systems. He has been keeping 
a close eye on the electronics market and a cooperating closely with the connections 
with in Seattle and Silicon Valley.

It is my pleasure to be invited to review this book, BeagleBone Media 
Center, whose title attracted me at first sight. Various single-board 
computers (SBC) have now emerged, such as BeagleBone Black, 
Raspberry Pi, Banana Pi Pro, and so on. It's certain that BeagleBone 
Black has been playing an important role in the development of 
SBCs. This book elaborates on how to design a media center based 
on a BeagleBone Black SBC and it comes down to some open source 
software, such as MediaDrop. I strongly suggest that you read this 
book (in particular, open source advocators).

Chidananda Matada Shivananda is an electrical engineering graduate who 
specializes in system dynamics and controls at Villanova University. He has 2 years 
of industry experience that involves automotive engine management software 
development at Robert Bosch, India. His interests lie in embedded systems, mobile 
robotics, and control systems.

I would like to thank Packt Publishing for giving me this  
wonderful opportunity.



www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com




Table of Contents
Preface 1
Chapter 1: Transforming Your BeagleBone Black into  
a Media Server 7

The choice that is not yours 7
You'll still be restricted by their proposals 8
You hardly manage your own content 8

Your server, your rules 8
Powerful and straightforward software installations 8
Using dedicated hardware 9

Looking at daily scenarios for media usage 10
Down in the cave is a server without a head – headless servers 10
Preparing BeagleBone to be a server 11

Booting from an SD Card or flash (eMMC) 12
Extending the root limitations on a fresh installation 12
Extending your root's partition 13

Let's get acquainted with our friend – MediaDrop 16
MediaDrop installation steps 17

BBB Debian – prerequisites 17
Setting up a dedicated database 18
Step 1 – set up a Python virtual environment 20
Step 2 – installing MediaDrop 21
Step 3 – basic configuration file 22
Step 4 – copying content from the initial data 23
Step 5 – filling the server database and contents 24
Step 6 (optional) – full-text searching 24



Table of Contents

[ ii ]

Testing time – "Hello Server" 24
Switching from development to production 26
Let's take a walk in our new MediaDrop server 27

Your first administrator action 27
General settings 28

Site name 28
Default language 28

Appearance 28
Categories 29
Comments 29
Notification e-mails 30
Players 30
Popularity 30
Tags 30
Upload 30

File size limit 31
Storage engines 31

Self-test questions 32
Summary 32

Chapter 2: Media Management, Shares, and Social Activities 33
How to use MediaDrop through workflows 34
Why approvals are required 35
Publishing your media 36

Auto administrated contents 38
Administrator tasks 39
Exploring different ways to access your media 42
Self-test questions 43
Summary 43

Chapter 3: Examples of Real-world Situations 45
Introducing the security role 46
An everyday use case – a house in Springfield 46

Defining your users list 48
Understanding role attributions 48
Group management 49
Applying groups and users 51

Second use case – media management in a company 52
Managing policies and groups 53

Self-test questions 54
Summary 55



Table of Contents

[ iii ]

Chapter 4: Getting Your Own Video and Feeds 57
Detecting the hardware device and installing drivers and  
libraries for a webcam 58

How to know your webcam 58
Setting up your webcam 60

Installing and running MJPG-Streamer 62
Installing MJPG-Streamer 62
Starting the application 63
Let's add some security 64
"I'm famous" – your first stream 64
Using our stream across the network 65
Starting the streaming service automatically on boot 66
Exploring new capabilities to install 67
Plugins 67
Another tool for the webcam 68

Configuring RSS feeds with Leed 69
Creating the environment for Leed in three steps 70

Creating a database for Leed 70
Downloading the project code and setting permissions 71
Installing Leed 71
Setting up a cron job for feed updates 72

Using Leed to add your RSS feed 73
Some Leed preferences settings in a server environment 74
Extending Leed with plugins 74

Summary 76
Chapter 5: Building Your Media Player 77

Introducing BeagleBone capes 77
Exploring capes' categories 78

Considering a personal Palm Media player 80
Functional description 81
Physical description 81

Installing a system for the expansion board 83
Looking at the available operating systems 83
Retrieving the latest files, images, documentation, or software 84
Installing drivers 84
Prerequisites for installing any system 84

Considering a virtual machine 85
Finding your SD card device 85
Adapting foreign systems for the installer script 87



Table of Contents

[ iv ]

Installing your system 87
Installing and using Android 87
Installing and using Debian 88
Installing and using TI EZSDK 89
Taking a look at TI's linux unique tools 90

Using the expansion board with Android 93
Using files from a computer 93
Installing applications 93
Games 95
Watching and listening to media 96

Summary 98
Chapter 6: Illuminate Your Imagination with Your Own Projects 99

Presenting the "matrix revolution" 100
The LED matrix 103
Introducing I2C 103
Wiring the matrix to the board 104

Diving into the software 106
Example 1 – our first client server application 106

Installing the requirements 106
Running the example 107
Jumping into the code 108
Description of the data packet 108
Describing the server code 108
Questions and suggestions related to this example 110

Example 2 – improving the first example by adding functionalities 110
From the client side 111
From the server side 111
Improving the client with Kivy 111
Questions and thoughts related to this example 116

Example 3 – creating animated graphical patterns 117
Following the project's requirements 117
Where to find help on the Internet 118
Looking at the differences from the previous example 119
Looking at the concepts of the matrix edition 120
Browsing the code 120
Compilation time 121
Describing the GUI 122
A quick tour of the code 124
Looking at the main functions 126
Questions and thoughts related to this example 126

Summary 127



Table of Contents

[ v ]

Appendix A: Troubleshooting and Tricks to Improve  
Your Server 129

Ease your life with the command line 129
Package management 129
Get to know what you did previously 130
Different ways to find your files 131

All you need to know about open network ports 132
Appendix B: Ideas to Improve Your Server 133

MiniDLNA 134
Introducing MiniDLNA 134
What a DLNA server can do for you 135
Installing miniDLNA 135
Configuring and customizing miniDLNA 136

Subsonic 137
Installing Subsonic 138
Administering Subsonic 139

Changing users 139
Restarting the service to apply changes 140
Accessing configuration settings 140
Advanced configuration 141
Troubleshooting 141

Index 143





Preface
The still young market of embedded boards is growing each day, owing to the 
Raspberry Pi effect. These single-board computers help you solve common problems, 
such as analyzing a network, programming without a PC, and others. The BeagleBone 
Black has all of these features, but at the same time, you can broaden your horizons to 
perform interesting tasks using the expansion capability of the board. Whether you use 
the basic version of the board or improve it with different accessories available in the 
market, this board will come in handy to help you decide and create the various tasks 
you want to perform with it. This book is designed to provide you with the knowledge 
to explore the world of BeagleBone Black.

Welcome aboard!

What this book covers
Chapter 1, Transforming Your BeagleBone Black into a Media Server, begins with 
an introduction to help you better understand why it is in your interest to have 
your own personal server. This chapter then describes the steps required for the 
installation of an improved multimedia server on steroids.

Chapter 2, Media Management, Shares, and Social Activities, gives indications to  
use your new server in a connected world. It begins with an explanation of the 
workflow that needs to be followed; there are also indications to understand  
what an administrator should do. The chapter ends with social sharing to let  
you share your contents with your friends or members of your family.



Preface

[ 2 ]

Chapter 3, Examples of Real-world Situations, deals with security because a connected 
server also needs to safely manage your publications. This chapter introduces you  
to the security role followed by two scenarios based on real-life experiences: one for  
a house, and another for professional activities.

Chapter 4, Getting Your Own Video and Feeds, discusses how to improve the existing 
server by giving you the opportunity to provide your own personal video streams. 
This chapter gives you the keys for hardware detection. It also presents a different 
topic that is still based on multimedia: configuring the server for RSS feeds.

Chapter 5, Building Your Media Player, describes the real USP of the BeagleBone 
Black: capes. Thus, it gives you a way to extend your board in order to create 
funnier and useful projects. In addition, with this exciting chapter, you will be  
able to build a device that can display movies and play music without making  
your imagination compromise because you can also extend this extension board 
through connectors and additional networks.

Chapter 6, Illuminate Your Imagination with Your Own Projects, lets you enter into the 
software part of the book using "Matrix Revolution," a fun project with funny tools: 
you'll use the 8 x 8 bicolor LEDs matrix from Adafruit connected to the BeagleBone 
Black. After a good introduction to the hardware of the board, the remaining part 
of this chapter is then split into three examples, starting with a simple example that 
allows beginners to start smoothly in Python and understand the main programming 
concepts related to a server and a client. This is followed by an improved version 
of the first example with a GUI as a laboratory for your experiments. It finally ends 
with a totally different example written in C++, which is a pattern generator, so 
you'll be able to display every disco pattern you like.

Appendix A, Troubleshooting and Tricks to Improve Your Server, covers the topics that will 
help you resolve issues that you might face while working with your servers, including 
some useful tools and troubleshooting steps.

Appendix B, Ideas to Improve Your Server, introduces some ideas to improve your 
server functionality.

What you need for this book
To run the book's examples, you will need a running Python environment, including 
the virtualenv package. The source code will be available from the dedicated GitHub 
repository and website as well. In all cases, Chapter 5, Building Your Media Player, and 
Chapter 6, Illuminate Your Imagination with Your Own Projects, will discuss how to install, 
compile, and run the examples.



Preface

[ 3 ]

Who this book is for
This book is intended for those who want to overcome the limitations of standard 
projects by learning electronics and programming and by using their imagination, 
knowledge, and passion.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

grid = ColorEightByEight(address=0x70)

Any command-line input or output is written as follows:

debian@arm:~$ Install v4l-utils

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this: 
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ 4 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Preface

[ 5 ]

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.





Transforming Your 
BeagleBone Black  

into a Media Server
Sharing files, watching movies, listening to music, and all the other media-related 
activities are abundantly proposed as Internet services. Any provider can propose  
an MP3 aside books and eggs; you have to choose among subscriptions that most  
of the time include items that you don't need or never use. The chapters in this book 
won't discuss these online services that, if you do the math, cost you a lot, including 
questioning your privacy, of course. Instead, you are going to be like these providers, 
and the best one too. Why the best? Because you are the person who is best placed to 
know what you need. Indeed, as you will know how to implement the services that 
please you, you'll have the functionalities that will suit you the most.

The choice that is not yours
I'm sure you'll prefer to select the applications you'll like to have at home instead  
of choosing among the fee subscriptions that providers impose on you.

Let's use an example: if you subscribe to Netflix or Spotify, you pay for the music  
or video titles you choose among their catalogs. It is obvious that these on-demand 
content providers offer an impressive choice, but this implies the following two 
major drawbacks.



Transforming Your BeagleBone Black into a Media Server

[ 8 ]

You'll still be restricted by their proposals
As royalties to the majors are required, any media content supplier is forced to 
constantly pay the titles it offers. This is the reason why:

• You might not be able to find a song
• You might find a studio recorded version although you wanted the live version
• Your music/movies selections might be removed from your playlist because 

the legal rights have changed

You hardly manage your own content
Although the ability to add personal files has been added recently, there are a few 
limitations, as follows:

• You cannot perform a search in these topics or restrict a search to  
your collection

• It also lacks a ranking by genre or composer, for enthusiasts of classical  
and film music

• Artists' profiles still do not distinguish between studio albums, concerts,  
and compilations

Your server, your rules
The solution that we are going to implement is based on different software, 
according to our choices. I mean real choices. Quoting Wikipedia, a server  
can be defined as follows:

A server is a running instance of an application (software) capable of accepting 
requests from the client and giving responses accordingly. Servers can run on any 
computer including dedicated computers, which individually are also often referred 
to as "the server."

Powerful and straightforward software 
installations
That being said, you want a media server but you are not comfortable with  
these technologies, which might scare you or put you off. The applications  
used in this book are really straightforward to install and use; particularly,  
open source applications have been selected.



Chapter 1

[ 9 ]

Using dedicated hardware
Additionally, we are going to use an embedded board instead of the heavy, large, 
and power-consuming PCs so that we can also drastically reduce the costs. While 
we will focus on BeagleBone Black in this book, the chapters have been written to 
use most of the boards available on the market, such as Raspberry Pi, WandBoard, 
CubieBoard, and some others, as long as the board supports Linux and has a 
network connection.

The main goal of this approach is that you learn to be independent enough so that 
the next time you receive a promotional e-mail with music streaming advertising, 
you'll throw it away, smiling proudly.

This chapter is about installing a MediaDrop server, which will be introduced shortly. 
As promised, it will be quite easy (really easy, in fact); no compilation or library will 
be invoked. Before the installation process itself, we will have a quick look at some 
situations that an embedded board is able to resolve. We will also find out why we 
should consider a server philosophy instead of a traditional computer. This will 
impact the remaining part of the book because the board will be accessed through an 
SSH connection; we will also have to take into consideration our available free space 
to store our applications and media contents. Then, we will start the installation part 
for the MediaDrop server itself. Management and security tasks have been split in 
additional chapters, so you can skip them and get back later if you want.

Welcome to the first step of your independence.

In this chapter, we will talk about the following topics:

• Looking at daily scenarios for media usage
• Down to the cave is a server without a head—headless servers
• Preparing BeagleBone to be a server
• Let's get acquainted with our friend – MediaDrop
• MediaDrop installation steps
• Testing time – "Hello Server"
• Switching from development to production
• Let's take a walk in our new MediaDrop server



Transforming Your BeagleBone Black into a Media Server

[ 10 ]

Looking at daily scenarios for media 
usage
With some examples being more explicit than others, here's a sample of the situations 
you might already face or will face soon. Such a platform as MediaDrop can resolve 
them by nature:

• You have been requested to build a media system that is able to display  
a presentation video clip of a product you intend to promote (in a market, 
company, and so on). A BeagleBone board with remote management will be  
handy, most of all if you have a lot of videos to handle.

• From the precedent point, compare the different PC and BeagleBone budgets.
• Your wife asked you to watch the latest TV show episode from Netflix,  

but she doesn't want to use any computer for it. Really?
• As an employee, you want to improve yourself. Having access to e-learning 

would be a good thing. Does the local proxy server grant you access to such 
media-related things? A local device having access to local contents is so easy to 
deploy for each desktop.

• A company wants its employees to use internal communication—easy and fast 
as podcasts by using the boards on the local network

Down in the cave is a server without a 
head – headless servers
Behind such a strange title are the motivations for the server that you will optimize 
needing to be headless. Even though BeagleBone is able to display GUIs, shiny 
graphics, and desktops, you need to get used to interacting with your server as if you are 
in a cave with limited light and no eye-candy gadgets. Here are some of the reasons why:

• Resources: The most important reason is that a graphical desktop consumes 
the most amount of resources. Consider not only the GUI resources but also 
the graphical server it relies on; therefore, it needs more CPU, memory, and 
disk space.

• Space: Our server can be physically anywhere. Thanks to its reduced 
dimensions, it is easy to put BeagleBone in a place and forget about it.  
This can be next to the desktop, behind your monitor, in a cupboard,  
and in your car as well.



Chapter 1

[ 11 ]

• Access and simplicity: If you need to get access to a server or maybe several 
servers, you will really not want to bother connecting to each dedicated server. 
If you need to administer 11 desktops, this will require you to connect to each 
one. On the other hand, by using a console environment, you are ensured 
having the same behaviors each time.

Wait a minute! Just by taking a look back at the title and after 
all that has been said, the Addams Family might have used a 
BeagleBone server.

Among others, these reasons justify the time that you are going to spend on your 
experiments. It's worth it.

Preparing BeagleBone to be a server
As mentioned previously, we will use the BeagleBone Black embedded board for 
our experiments. It is assumed that you will have completed the following:

• After visiting the Getting Started page (http://beagleboard.org/
getting-started) and executing all the mentioned steps, the board  
will be just started and you will be connected to it. All through the book,  
the PuTTY program was used for this.

• The board is using the current official bone-debian-7.5-2014-05-14-
2gb, which is related to a 2 GB SD card (as shown in the next screenshot). 
Nevertheless, it's strongly advised that you use cards with a larger size  
and we'll soon see why.

• Your board is identified in your local network; when required, we'll use  
the address 192.168.0.15, which you will need to adapt according to your 
local network. Most of the rooters provide a web interface for this purpose.

• The default credentials are debian as the username and temppwd as  
the password.

http://beagleboard.org/getting-started
http://beagleboard.org/getting-started


Transforming Your BeagleBone Black into a Media Server

[ 12 ]

Booting from an SD Card or flash (eMMC)
BeagleBone Black has the advantage of booting either from an SD card or on-board 
flash (eMMC). The pros and cons of each of these is beyond the scope of this chapter. 
Generally, for this book, you should rely on the SD card support for the following 
reasons:

• You can use all the space you want without sacrificing any other partition: 
On flash, you are limited to the provided space, which is again limited  
by design.

• You can change your mind whenever you want: If you want to install all  
the applications described in this book, you can either use different SD cards 
or buy a bigger one.

• It is an error-proof solution: If you have never burnt any electronic device 
or broken the code, you should. Of course, not intentionally but because you 
pushed the limits. Many inventions have been found by accident, such as 
Penicillin, Teflon, and even Brownies and Tatin tart. So, if sometimes you are 
not able to boot the system, you will always have the possibility to get back to 
the situation you started with, using the SD card, by writing a new image to it.

Here's a reminder: in order to boot to the SD card, just power 
on the board and keep pressing the "user button," the one near 
the SD card.

The SD card induces small additional latencies that you won't even notice, so it is 
better to use it as a sandbox. So feel free to explore and try crazy things so that you 
can learn without limitations and worry.

Extending the root limitations on a fresh 
installation
If you update or install anything right away after a boot, you will encounter 
problems related to disk space.



Chapter 1

[ 13 ]

Indeed, if you use PuTTY (www.putty.org) or any other SSH software to connect 
yourself to the board (such as, 192.168.0.15) and look at the rootfs space 
information, you can guess that the available size will be quickly saturated.

The SD card has little space left the first time

So, as the server administrator, it is up to you to resolve the size constraints.

Like everyone else, you might want to use an SD card with a bigger 
size. This will produce exactly the same result as in the preceding 
figure, as you will use the same partition scheme.

The next topic will describe how you can achieve this task easily.

Extending your root's partition
The default free space is really small; for example, you can fill it completely with 
just one upgrade. As a result, the very first thing to do at boot is to resize the /root 
partition.

Resizing a partition is not recommended for first timers. The good news is that you 
won't have to enter many commands; you can make your life easy by relying on a 
dedicated script provided with the board, which will do all that for you.

http://www.putty.org


Transforming Your BeagleBone Black into a Media Server

[ 14 ]

Enter the following two commands:

debian@beaglebone:~$ cd /opt/scripts/tools/
debian@beaglebone:/opt/scripts/tools/$ git pull

In this directory, we have downloaded the last code from the official repository,  
so we can start the script thereafter:

debian@beaglebone:/opt/scripts/tools/$ sudo ./grow_partition.sh



Chapter 1

[ 15 ]

While running, this script will display a lot of details, which, thanks to the author,  
you don't have to care about.

These are the commands that you won't have to learn

You can now go on to reboot your board (don't forget to press the user's button),  
as follows:

debian@beaglebone:/opt/scripts/tools/$ sudo reboot



Transforming Your BeagleBone Black into a Media Server

[ 16 ]

Now, if you check, you'll see that the free space has been resized to the SD  
card's capabilities.

An 8-GB resized SD card

Now, you can continue with the update and upgrade…

The local /root partition from the SD card is fast to implement and easy 
to use. Nevertheless, thinking about how you will organize your server is 
a good habit. Linux can handle multiple remote filesystems that you can 
write to. For instance, for all your media contents, you can use an NFS 
partition from a distant drive or a device that supports uPnP.

Let's get acquainted with our friend – 
MediaDrop
Through this chapter, we'll talk about a great project called MediaDrop  
(http://mediadrop.net/), which lets you manage music, movies, and podcasts 
through a nice web interface.

Mediadrop has all the features that a media server can offer, as follows:

• HTML5 and Flash video
• A CMS-like interface available from a browser and mobile devices  

(iPhone and Android)
• Have as many users as you want, without any restrictions to access your 

content, unless you choose to have restrictions

http://mediadrop.net/


Chapter 1

[ 17 ]

• User management with many capabilities, such as comment editor,  
like buttons, tags, and so on

• Storage capability, which lets you choose where your file will be located
• An administration-dedicated interface with easy access
• Access roles capability
• Social media sharing (Twitter, Facebook, and so on) and video/audio  

links possibility
• It's open source, which means that you have access to the engine itself,  

you can improve it, or you can become a part of this community at  
https://github.com/mediadrop/mediadrop

• The Mediadrop platform can be extended through Python scripts

MediaDrop installation steps
The following sections will take you through the installation of Mediadrop.

BBB Debian – prerequisites
Now that your system is ready to accept all the applications you want to install, let's 
begin with the MySQL part:

debian@beaglebone:~$ install mysql-server mysql-client

Actually, sudo apt-get install works behind the 
scenes. From this point onwards, we'll rely on aliases 
to ease our life from the command line. Refer to the 
Appendix to get all the details.

During this you'll be asked for the database's root password, then the remaining 
system files:

debian@beaglebone:~$ install libjpeg-dev zlib1g-dev libfreetype6-dev 
libmysqlclient-dev python-dev

https://github.com/mediadrop/mediadrop


Transforming Your BeagleBone Black into a Media Server

[ 18 ]

Finally, the Python-related requirements that will help you in virtual environments 
can be installed using the following command:

debian@beaglebone:~$ install python-setuptools python-virtualenv

With system requirements in place, you can set up MediaDrop in just six installation 
steps. Before doing that, you need to define a database for it.

Setting up a dedicated database
You need to create some credentials and assign a user to a new MediaDrop database. 
It requires you to type only a few commands. If this is something that you don't want 
to do, the script is available on the GitHub companion website at https://github.
com/dlewin/BeagleboneBlack-Server-Book.

Just execute the following command:

./create_mediadropdb.sh

Instead, if you are like me and want to control your entire system, then open  
a MySQL console, and pay attention to the syntax of the following command  
(with the ;):

debian@beaglebone:~$ mysql –u root –p

Then, fill in the password you have defined in the installation steps.

You will now have access to the MySQL console for all the database operations that 
MediaDrop requires. Now, perform the following steps:

1. Create your user with a password:
create user 'debian'@'localhost'IDENTIFIED BY 'temppwd';

2. Create the MediaDrop database; pay attention to the use of capital letters:
create database MediaDrop;

3. Now, we tell that we want to work on this database:
use MediaDrop;

https://github.com/dlewin/BeagleboneBlack-Server-Book
https://github.com/dlewin/BeagleboneBlack-Server-Book


Chapter 1

[ 19 ]

4. Set some rights on this database for the debian user:
grant create,insert,update,select,delete on MediaDrop.* to debian@
localhost;

exit

Here's a screenshot that shows these operations along with the related MySQL 
feedback you should get:



Transforming Your BeagleBone Black into a Media Server

[ 20 ]

Step 1 – set up a Python virtual environment
MediaDrop has been programmed in Python, a simple but powerful language  
that we'll also use in Chapter 6, Illuminate Your Imagination with Your Own Projects.  
As plugins are also in Python, you are free to extend the platform as you wish.

Let's see how to define a dedicated environment for this purpose.

Virtual environments introduce a functionality provided with Python that I like to use: 
actually, with this functionality, you can resolve the problems of software versions and 
incompatibility. The principle is to use as many virtual spaces with different packages 
or executables as you want without any confusion that might create a broken system. 
Thanks to the isolation provided by this tool, you are guaranteed that it is kept as you 
want it to be and thus you always have a safe system.

If you want to know more about virtualenv, take a look at https://
virtualenv.readthedocs.org/en/latest/. There is also a 
virtualenvwrapper that is intended to ease the creation and deletion 
of many virtual environments at https://virtualenvwrapper.
readthedocs.org/en/latest/.

Currently, we are using the 0.10.3 version of MediaDrop, but nothing stops you  
from trying the next version in order to test any side effects on your architecture. 
Thus, instead of executing the current environment, you'll just have to start 
MediaDrop from the n+1 environment.

https://virtualenv.readthedocs.org/en/latest/
https://virtualenv.readthedocs.org/en/latest/
https://virtualenvwrapper.readthedocs.org/en/latest/
https://virtualenvwrapper.readthedocs.org/en/latest/


Chapter 1

[ 21 ]

Virtual environment is presented just here, but you should create an environment 
each time you need different usages of an application or dependencies. It requires 
just less than a minute and can be done by performing the following steps:

1. Create the environment with a specific name; in our case, venv:
debian@beaglebone:~$ virtualenv --distribute venv

2. Enter the dedicated virtual environment:
debian@beaglebone:~$ source venv/bin/activate

That's all! You are in now. Cool, eh?

The command prompt is preceded by the virtual environment's name, so you can 
guess which environment is currently activated, which is shown in the screenshot 
that follows the code:

(venv)debian@beaglebone:~$

You can now install any package you want; it will only be accessible in the currently 
activated environment.

Step 2 – installing MediaDrop
For installation, retrieve the last stable release from downloads:

(venv)debian@beaglebone:~$ mkdir MediaDrop
(venv)debian@beaglebone:~$ cd MediaDrop
(venv)debian@beaglebone:~/MediaDrop$ wget http://static.mediadrop.net/
releases/MediaCore-0.10.3.tar.gz

You can find all the releases at  
http://static.mediadrop.net/releases/.

http://static.mediadrop.net/releases/


Transforming Your BeagleBone Black into a Media Server

[ 22 ]

Then, perform the following steps:

1. Extract the archive:
(venv)debian@beaglebone:~/MediaDrop$ tar xvzf MediaCore-
0.10.3.tar.gz

2. Enter the new directory to launch the installation script:
(venv)debian@beaglebone:~/MediaDrop$ cd MediaCore-0.10.3

(venv)debian@beaglebone:~/MediaDrop/MediaCore-0.10.3$ python 
setup.py develop

3. This will take a few minutes, as it checks and downloads the required 
dependencies, and will end with the following lines:
Finished processing dependencies for MediaCore==0.10.3

(venv)debian@beaglebone:~/MediaDrop/MediaCore-0.10.3$ cd ..

(venv)debian@beaglebone:~/MediaDrop$

4. From here, the recommended installation is to enter the following:
(venv)debian@beaglebone:~/MediaDrop$ paster make-config MediaCore 
production.ini

This will generate the production.ini file, which the server will use as a 
configuration file. So, we can adapt by editing it.

Step 3 – basic configuration file
What we want to do here is tell which database we created and the related credentials. 
So, edit the production.ini file, with nano (or vim) in order to focus on the 
[app:main] section, as we want to change the following line:

sqlalchemy.url = mysql://username:pass@localhost/dbname?charset=utf8&use_
unicode=0



Chapter 1

[ 23 ]

The settings are shown in the following screenshot:

At the same time, as port 8080 is already used, let's change this to an available port, 
something such as 8082. As you'll see later on, many servers use the 8080 port for 
their configuration settings, and obviously only one application will be able to use 
this port, which means that according to your configurations, you will have to  
decide which application will use the 8080 port.

Additionally, you can eventually customize your configuration file 
with an e-mail that will let you receive notifications from the server. 
You will then need to install a local SMTP server and apply the 
settings in this production.ini file at the [DEFAULT] section.

Now, save and quit the editor. We are done with the configuration part.

Step 4 – copying content from the initial data
We have completed all the configuration steps, and we are now going to deploy all 
the website data content.

To do this, copy the data directory from the sources to be at the same level as your 
production.ini file:

(venv)debian@beaglebone:~/MediaDrop$ cp -a MediaCore-0.10.3/data/.

Give it the write permissions for the debian user; when some content is uploaded,  
it will be written here:

(venv)debian@beaglebone:~/MediaDrop$ chmod 666 data



Transforming Your BeagleBone Black into a Media Server

[ 24 ]

Step 5 – filling the server database and 
contents
It's now time to fill the MediaDrop database we've created previously with some 
tables and required data. We just have to call a predefined command:

(venv)debian@beaglebone:~/MediaDrop$ paster setup-app deployment.ini

Step 6 (optional) – full-text searching
Create some triggers that will allow you to have better searches than exact matches, 
as follows:

(venv)debian@beaglebone:~/MediaDrop$ mysql -u root -proot MediaDrop < 
MediaCore-0.10.3/setup_triggers.sql

Nothing else is remaining; we are in. Time to start our first server!

Testing time – "Hello Server"
You have a server that is waiting to be started locally:

(venv)debian@beaglebone:~/MediaDrop$ paster serve --reload production.ini
source env/bin/activate

You need to wait for the last line to be displayed before you move on, which means 
that the server is ready to answer the request.

Take the example of your command, which ends with the following 
line of code:
IOError: [Errno 2] No such file or directory: '/home/
debian/production.ini'

You might not be in the good path; using the ls command, check 
whether the production.ini file exists in the current directory.

Now, from anywhere on your local network, enter the address of your board with 
the defined port—for me, it's 192.168.0.15:8082.



Chapter 1

[ 25 ]

Welcome to your own new world; you should see the home page, as shown in the 
following screenshot:

This is more than just a simple welcome screen; you also have some interesting 
videos that show you how to use your contents as well as how to add videos and 
podcasts, with examples.

You can even try and upload content right now if you want.

Currently, the server has been started manually. In Chapter 
4, Getting Your Own Video and Feeds, we will see how to start 
the streaming service automatically on boot. This is a way to 
customize the boot process so that you know how to add a 
service such as MediaDrop at the start.



Transforming Your BeagleBone Black into a Media Server

[ 26 ]

Switching from development to 
production
Until now, we have been using the server as the debian user. This can be improved 
to better suit a server, which means that MediaDrop should be located at /var/www 
so that it is seen by the Apache server that is provided along with the Debian image 
for BeagleBone Black. We will just copy and adapt our previous experiments using 
the following commands:

(venv)debian@beaglebone:~/MediaDrop$ sudo mkdir /var/www/MediaDrop
(venv)debian@beaglebone:~/MediaDrop$ sudo cp -R MediaDrop/ /var/www
(venv)debian@beaglebone:~/MediaDrop$ cd /var/www/ MediaDrop/

As this is the final version, we don't need the sources in it:

(venv)debian@beaglebone:/var/www/MediaDrop$ sudo rm –fr MediaCore-0.10.3

We also grant the root user, as shown here:

(venv)debian@beaglebone:/var/www/MediaDrop$ sudo chmod 777 -R data

Finally, you can start the server as usual:

(venv)debian@beaglebone:/var/www/MediaDrop$ paster serve --reload 
production.ini

We are done with the configuration part, and you can now play around with the 
different settings if you wish, as this project has more to propose. For access to the 
complete documentation, go to http://mediadrop.net/docs/.

http://mediadrop.net/docs/


Chapter 1

[ 27 ]

Let's take a walk in our new MediaDrop 
server
The server is running well with you as the captain. No one else will try to look into 
your files and send you a warning about moderation or deletion. That being said, it 
also implies that no one else will manage the server for you. So what? Most of the 
default settings are fine; maybe a few of them need to be reset. We can take a quick 
look to explain what this is all about.

To access the admin interface, just add admin at the end of your address,  
as shown here:

http://192.168.0.15:8082/admin/

You will be asked for the default credentials:

User : admin
Password : admin

Your first administrator action
As an administrator, the first thing you need to do is change the default password; 
this is the most obvious thing that an attacker will try, so go to Users, as shown in 
the following screenshot:

You should have a unique user: admin. Click on this to go to the user's profile in 
order to change the password.

If you have defined an SMTP server, you will also be 
interested in filling in your e-mail in here.

Now, click on Save.



Transforming Your BeagleBone Black into a Media Server

[ 28 ]

Now, let's go through some of the settings together; click on the Settings button to 
access the settings that are not related to rights, as shown here:

General settings
In this section, you'll find everything related to the overall settings.

Site name
Here, define the name of your website, which is not relevant if you are at home,  
but could be interesting if you deploy it for a company or to an external provider.

Default language
If you'd like to change the language used in the pages, it's interesting to note that 
MediaDrop comes with a lot of choices, so you can surely find one that suits you.

Appearance
This setting is used for the following actions:

• To customize the interface, such as colors and background images
• To display the login link for all the users
• To enable/disable buttons, such as Share, Embed, Like, and so on



Chapter 1

[ 29 ]

The customization is really interesting here because you can use your own CSS, 
HTML header, and footer, so you can have a personalized interface.

Categories
This part is important as you will need to enhance the provided categories for  
your needs.

While I won't explain what a category is, I can, however, say that there are useful 
combinations to create because a category can be related to another one as a child 
category, which lets you define subcategories. If all the users can use categories,  
only granted users will be able to define them. We will see how this is done in the 
next chapter.

In addition, an additional advantage is that categories are integrated during a textual 
search. This also includes entire sets of simple categories or more complex categories 
that can be made from a parent category, including many children categories.

Comments
The following functions are related to comments:

• Allow or disable
• Functions related to your Facebook account (needs application ID)
• You might want all the comments to be approved before publication
• If you have an Akismet account, put your key in here so that the comments 

will be automatically filtered
• A dictionary, so you can add words to be filtered from the comments



Transforming Your BeagleBone Black into a Media Server

[ 30 ]

Notification e-mails
You can choose the type of events that you need to be warned about, as follows:

• Media Uploaded
• Comment Posted
• Support Requested

Players
A list of players is provided with the server; these are capabilities that handle most of 
the media that a user will upload such as Vimeo, Youtube, DailyMotion, and so on.

I recommend that you allow all of them (click on the green light on the left-hand side) 
and define your preferred player using Priority, with arrows beside each player.

Popularity
Each published video can be submitted to like/dislike votes. For your information 
and contrary to what one might think, popularity is not just the result of any 
addition/subtraction but it is a dedicated equation of the following form:

popularity_points = log_X(media.likes) + media.age/Y

This equation is clearly explained in the documentation at http://mediadrop.net/
docs/user/admin/settings.html#popularity.

Both the decay exponent and lifetime are adaptable in this section.

Tags
Tags are related to categories, but are nevertheless different. You can use them when 
you post a micro description of one or two words (recommended), but they are also 
useful for searches. Moreover, when users browse contents tags, they also help to get 
an overall opinion.

As with Categories, you need to have granted access in order to define tags.

Upload
Here, you will find the setting that you might look after the most.

http://mediadrop.net/docs/user/admin/settings.html#popularity
http://mediadrop.net/docs/user/admin/settings.html#popularity


Chapter 1

[ 31 ]

File size limit
Indeed, there is a default 300 MB size limit for each upload, so you might end up 
with the following error, shown in the screenshot:

Don't confuse size limits and directory rights. What is the common thread between 
the two, you might ask? It's that if you forget to set the /data directory, you will 
have the same upload error when posting a link to a file.

Storage engines
This is an important section under options that aims to list all the locations for the 
files, and mainly two of them need to be explained:



Transforming Your BeagleBone Black into a Media Server

[ 32 ]

This points to the place where your content will be kept. This is really handy because 
you can modify the default partition scheme on BeagleBone if you have a local USB 
hard drive.

For a dedicated remote partition such as NFS or another type, there is:

Remote URLs

Here, you can specify the partition that accepts the files.

Self-test questions
We have seen two commands, find and locate, which are both interesting.  
When you tried to use find and then locate, what difference did you notice  
in the results speed?

Summary
We finally found what we were looking for: a simple way to publish any media in  
a local network. We can upload a video, picture, or music to be shared with just  
a few settings that are as easy as a mouse click. Thanks to this intuitive interface,  
you can skip the complicated settings while not sacrificing by paying an expensive 
fee. Once you have completed this part, you won't have to redo.

We are going to continue, with the next chapter, to go deeper into the MediaDrop 
server; we will explore the subjects that have been introduced here, such as 
submissions and daily tasks that will help you through automatic and social group 
notifications as well. This is where you will learn more about the administrator role.



Media Management, Shares, 
and Social Activities

Now that the configuration is done, let's dive into the fun part. The MediaDrop web 
interface is intuitive enough to quickly access any required function. This chapter 
will introduce the main functionality and the concept of libraries as well as explain 
the workflow required to publish any of your media contents. Sharing media 
through social groups will also be introduced.

In this chapter, we will cover the following topics:

• How to use MediaDrop through workflows
• Why approvals are required 
• How to get published
• Administrator tasks
• Exploring different ways to access your media



Media Management, Shares, and Social Activities

[ 34 ]

By the end of this chapter, you will be able to obtain a result similar to the one shown 
in the following screenshot:

Yes, you can moderate comments as well

How to use MediaDrop through workflows
You are here stamping your feet, waiting for your new embedded server to serve 
your goals and let the world know how cute your cat is. However, before doing this, 
you have to understand the workflow that MediaDrop uses.



Chapter 2

[ 35 ]

The way a user submits the media contents

When you need to publish content (files, URL, YouTube videos, and so on), you will 
need to go through some processes. Detailed here is an overall description we are 
going to see in detail:

• The user opens a connection to the server
• Then this user can create a personalized page with some text and pictures
• After submission, the administrator is notified that a new page has been 

created and is waiting for approbation
• The administrator then connects to a dashboard to apply different actions: 

review, publish, or delete this new page
• As soon as the page has been published, it is available on the server.  

This page can be viewed, commented, liked, shared, and so on.

Why approvals are required
Using a media server is not similar to using a simple media reader, where you just 
copy/paste video or audio in it and read them later. Sharing contents implies that 
you can manage who will access them.



Media Management, Shares, and Social Activities

[ 36 ]

After submitting a video, it needs to be validated before it is made available online.

As such, consider these scenarios:

• You just came back from holidays and want to show your photos  
and videos to friends on your TV set and also let them add comments.  
How about unrelated or inappropriate comments?

• Your daughter would want to have her own space to publish her media  
and share it through Facebook from her laptop. Don't you think this should  
be supervised a bit?

• Meanwhile, your kid wants the last Disney movie from the VOD provider  
on his tablet, right now! What about account credentials?

Standard media readers are DVDs, CDs, hard drives, network attached 
storage (NAS), game consoles, or any software/device that lets you 
listen to music or watch movies. The server we are going to set up 
replaces all of them with many additional capabilities.

These examples, taken from everyday life, are easy to implement with MediaDrop as 
long as you consider the BeagleBone Black server as the center of it all, instead of just 
being a media player.

Publishing your media
When you first connect to the interface, simply click on Upload, as shown in the 
following screenshot. You will be redirected to the principal interface where you 
need to fill in the media details, as in the following screenshot.

• The title of the post: This will appear beside the thumbnail.
• The author's name: This will have implications related to user's rights.
• An email address.
• A description: To let your readers know what is it all about. Keep in mind that 

it will also be used when you share the post, so it's better to write explicitly.
• Optionally, you can also do the following:

 ° Pick up some categories to define your upload group membership



Chapter 2

[ 37 ]

 ° Add or use an existing tag for textual researches

The post submitted for publication

Just pick the video from this location; in this case, this is a YouTube video, but it  
can come from your local PC, NAS, or even the BeagleBone Black itself through  
its USB access.

Storing directly to the BeagleBone Black SD is not recommended 
because it doesn't have enough disk space for media files.

Now, click on the Submit button and a message will inform you that the post is 
submitted and is awaiting the administrator's approval.



Media Management, Shares, and Social Activities

[ 38 ]

If your media is a local file, the process will obviously be a little bit 
longer. A progress counter will appear, showing you the upload 
status (in percent) on the right-hand side of the screen. BeagleBone 
Black, being somewhat less reactive than a PC, ensures that you 
have reached 100 percent before going to the next step. Then, the 
type of file you intend to upload will be self detected.

Auto administrated contents
Here, we have focused on how users will submit content. Nevertheless, if you  
are the sole user on your server, you might not want to bother with the whole 
workflow, so you can skip the user's steps. The modified workflow, as shown  
in the following figure, lets you publish your media content directly. Anyway,  
the same functionalities are accessible as for a standard user.

The workflow for self-published content



Chapter 2

[ 39 ]

The user's submission part can be skipped by connecting as the administrator and 
directly clicking on the Add New Media button, as shown in the following screenshot:

Administrator tasks
This can be you in both the roles, or in many cases there is a dedicated person. In all 
the cases, administrator approval is required before the video is to be published.

The administrator who is connected to the dashboard page can see that some 
uploads are awaiting review.

As you have seen in Chapter 1, Transforming Your BeagleBone Black Into 
a Media Server, this phase is related to the rights that each user has 
been granted.
You can also edit and publish as a user with administrator privileges.



Media Management, Shares, and Social Activities

[ 40 ]

The administrator is someone who is often busy with different tasks, and it's his 
responsibility to react in time to one's post. Professionals define this as Quality of 
Service. For example, this could be your daughter awaiting approval because she's 
sent a post from her iPad. No problem, even from the garden, you will be able to 
manage administration just from your tab.

In Chapter 1, Transforming Your BeagleBone Black Into a Media 
Server, we saw how you can configure notifications, so you 
don't have to fix the dashboard all day to handle reviews.

Each item that you click on from the Awaiting Review or Awaiting Encoding list will 
guide you to set this post's status to Review Pending (refer to the next screenshot). 
This is how you can manage the contents and set categories as tags for it.



Chapter 2

[ 41 ]

MediaDrop often tries to extract pictures from the video as 
thumbnails; you might find appropriated choices if you pick 
one yourself from the Upload image button.

Your post might require some information, such as description, tags, and categories. 
Do keep in mind that when this post will be read, these details will help your readers 
to find and understand your content. So, while it is not mandatory, it's worthwhile 
having this completed. An example of one such description can be seen in the 
following screenshot:



Media Management, Shares, and Social Activities

[ 42 ]

You can click on Save—which is confirmed afterwards—and then validate with 
Review Complete. Finally, you can click on Publish now for the post to be 
published and can define it as Published for it to be available, as shown in the 
following screenshot:

There are more options to explore; for instance, you can define whether a file must be 
removed from publication (equivalent to unpublished) on a particular date, or you can 
even define the uploaded file's duration, resulting in an extract from the whole video.

Now, go to the MediaDrop listbox and select View site; and check whether as a user, 
you have obtained what you were expecting.

Exploring different ways to access your 
media
When your content is in the Published status, MediaDrop generates dedicated links 
for you in the form of the following:

• A permalink to be used be in e-mails, websites, and so on. This kind of a link 
is generated, so will stay unchanged indefinitely.

• A Facebook post prepared with some of the details you already provided.
• A tweet with media information, including a link to your local content.



Chapter 2

[ 43 ]

Self-test questions
Q1. Video files can be big sometimes. Storing them on the SD card in most of the 
cases should be enough, but this might become a showstopper in some other cases. 
Where should videos files indeed be stored?

1. On the local flash.
2. On an external USB hard drive.
3. On a NAS or networked file system (NFS).

Q2. This chapter focused on video: does this mean that only videos are supported?

Q3. There are so many movie readers on the market, "I don't need to bother with the 
contents' administration." So what will I do:

1. I just need to share a video directory from my computer.
2. These are just video files, not banking accounts' credentials.
3. I prefer to protect my personal life and want my files to be watched by my 

neighbors or the rest of the world so, yes, it's worth spending a few minutes.

Summary
In this chapter, we jumped from the administrator to the user's side of  
MediaDrop, so we covered contents management through simple process  
tasks that MediaDrop proposes.

Now, you know why you should select your user's rights carefully, so you don't 
need to worry about upload consequences. This means that you can be sure that  
any of your user's submitted content will have a delimited sharing perimeter:  
the one you have chosen.

As such, remember what Spiderman says:

"With great power comes great responsibility."

We also saw that submissions can be done by many users or even by a single user,  
if necessary.

Fortunately, MediaDrop gets the security jobs done, as it is built around a user's 
privileges philosophy. That's why, in the next chapter, you will see how to manage 
your user's rights according to usages from some real-world examples.





Examples of Real-world 
Situations

In the previous chapter, we looked at how we can use MediaDrop to publish our 
content. Now, we are going to discuss security, which is another important aspect 
of everyday life. You don't just ask the BeagleBone server to provide your content, 
but you also ask it to share this content the way you want. Here, you will see how 
security roles can ease administration tasks and how MediaDrop provides such a 
mechanism in the administrator console. To be as practical as possible, we will go 
through two scenarios and analyze them in a concrete manner: home and professional. 
The home scenario will be a good representation of the use cases that are encountered 
in everyday life, whereas the professional scenario will deal with use cases from a 
company where employees need to share media and access e-learning videos.

In this chapter, we will cover the following topics:

• Introducing the security role
• An everyday use case—a house in Springfield
• Second use case—media management in a company



Examples of Real-world Situations

[ 46 ]

Introducing the security role
As we live in an interconnected world, we are exposed to misuses and attacks. As we 
will see in this chapter, security is of utmost importance irrespective of whether it's a 
small or large network. Even if role definitions require additional work, you should 
take the security of your network into consideration. Just like you fasten the seat belt 
in your car, you'd rather spend this extra time once and forget about it thereafter.

It can be summarized in 3 processes: write down all users who will require access, 
itemize what resources they will have access to, and then connect the dots between 
the lists. That's what we are going to see now.

An everyday use case – a house in 
Springfield
Home will denote the scenario of a house in a town called Springfield where 
Bart lives with Homer as the administrator. Most of the use cases that might be 
encountered in everyday life have been gathered, as you can see in the picture.

The house is one of the greediest users of media you can find.

There are a desktop or laptop, computers, tablets, smartphones, gaming consoles, 
and connected TV, and our house project must use all of them at the same time. 
Nevertheless, you don't want to worry and spend your time on which user is 
connected to the tablet and what they are doing. While you have to manage these 
accesses, you'd certainly prefer to focus on the TV show and eventually take 5 
minutes to allow the publication of some posts. You know how easy it is now.



Chapter 3

[ 47 ]

As shown in the preceding image, we can list some of the activities for the Springfield 
house's users. They want to:

• Watch movies
• Listen to music
• Have some podcasting
• Access online resources such as VOD/YouTube
• Install a Wi-Fi camera at the entrance



Examples of Real-world Situations

[ 48 ]

Defining your users list
Now, we need to list all the users to give them the corresponding rights. This list 
defines the functionalities that can be accessed by each user:

• Bedroom 1 user: Bart
• Bedroom 2 user: Lisa
• Bedroom 3 user: Maggie
• Kitchen user: Marge
• Main room user: Homer who will manage the house (yes, he believes that he 

can manage it)
• Unknown: This part is left as a joker for those who "Bring their Own Device." 

This is a category for some eventual visitors, which needs to be defined in 
our scenario as well.

Understanding role attributions
Now that you know the users and what they can do in the house, the security 
perimeter is defined. What is left to know are the access types that can be granted to 
these users. This list is a tool to understand the consequences for each role you assign:

• Authenticated users: These users just need to view and upload media.  
They only need (or want) to be granted minimum access.

• Guests / people passing by / friends: This is to allow your friends or some 
guests to access a part of your media without needing to log in. By setting 
this kind of access, you ensure privacy for yourself, as the embedded player 
will only be visible if the user is logged in. In this way, we make sure that if  
a visitor comes, he will not be shocked by Homer's contents.

As each user has already been identified by a login to your local 
network, you already know that this user is granted access. This 
implies that anonymous users who might eventually try to connect 
can't access and obtain MediaDrop guest rights; therefore, they 
won't have access to any content, meaning they cannot post or 
read without your network's consent.

• Power users: These users can't do everything they want, as they inherit  
authenticated users' rights plus an additional ability to grant access to 
someone else. This role can be granted to anyone that you can rely on  
when you are unavailable for some administrator tasks. For the sake of  
the example, let's say this will be Lisa.



Chapter 3

[ 49 ]

• Administrator: This is someone who is able to access the admin panel we 
have seen earlier in Chapter 2, Media Management, Shares, and Social Activities. 
If you want to keep your security strategy as stable as possible, there should 
be very few administrators: imagine everyone changing the access roles and 
granting access to guests, leading to a security breach.

Group management
We now have all the prerequisites in place, so we can create our users in the house. 
What we are doing now is using the predefined groups of activities and setting users 
within these groups. Additionally, we are also creating our own group to see how 
easy it is.

To get started, connect to the admin console and select Groups on the interface so 
that you can see what rights are provided:

You can now associate the users with the predefined list of roles you want to  
grant them:

Can view 
published 
media

Can upload 
new media

Grants the 
ability to 
upload new 
media

Grants 
access to 
edit site 
content

Grants 
access to 
the admin 
panel

Everyone 
(including 
guests)

Logged-in 
users



Examples of Real-world Situations

[ 50 ]

Can view 
published 
media

Can upload 
new media

Grants the 
ability to 
upload new 
media

Grants 
access to 
edit site 
content

Grants 
access to 
the admin 
panel

Editors

Admins

Let's take a look at this table more closely:

• Anonymous people can view media, but we don't want them to upload new 
content, and most of all, they shouldn't be able to grant anything.

Even though this is not about the protection of jewels, you don't 
want anyone to be able to set rights. This is obviously a security 
breach: anyone can grant other people the right to upload.

• Logged-in users, on the contrary, don't have enough privileges; they should 
at least be able to view and submit content

• Editors and Admins do their job correctly, so leave those as defined

We can see here that this doesn't fit our philosophy, so let's change the group settings 
to those used for our house. Let's bring in a few modifications:

Can view 
published 
media

Can upload 
new media

Grants the 
ability to 
upload new 
media

Grants 
access to 
edit site 
content

Grants 
access to 
the admin 
panel

Everyone 
(including 
guests)

Logged-in 
users
Editors

Admins

What we did is we assigned different roles to different people. Editors will be able to 
set upload and edit accesses, while Admins are allowed to play all the roles.



Chapter 3

[ 51 ]

Most of the time, you won't need all these roles, so here we just stick to Everyone, 
logged-in users, or Admin. However, it is recommended that you set up all the roles 
for future use, as you might need to delegate Editors for extra emergent cases or 
even as a temporary role that can be removed later.

Applying groups and users
The job is nearly done; only modifications are left to be set, which will only take a 
few minutes.

To define rights according to our house's strategy, we just have to modify the 
existing rights:

• Everyone: Click on the Edit button for this group, set only View Published 
media as checked, and click on Save

• Apply the related modifications for Logged-in users as well

What you need to do now is define your users; don't be surprised if just the Admins 
and Editors groups are proposed, as the Logged-in users and Anonymous are 
implicitly identifiable.

This should end as shown in the following screenshot:

We come to the end of the home scenario, resulting from our previous analysis and 
lists of users, actions, and roles.

Most of the e-mails are real ones from the episodes; 
you can check this.



Examples of Real-world Situations

[ 52 ]

Second use case – media management in 
a company
As we already saw how to organize roles in the previous topic, this part will focus 
more on the professional approach. With a very small budget compared to those that 
many IT departments require, we are nevertheless going to see how this solution can 
fit into professional contexts.

By taking a look at the following image and comparing it with the home scenario, we 
can see that the use cases for a company are organized into a different architecture in 
order to connect users. In addition, we can easily guess that the repartition of roles 
will be totally different because of the clear differences between departments.



Chapter 3

[ 53 ]

The company's network is now structured as "grapes" with dedicated subnetworks 
for each department's activities. As the IT manager, you have to define roles:

• The welcome presentation: This is a movie player for customers
• Guests: This gives your visitors and customers access to some of your content
• R&D department: This needs to listen to music, access company streaming 

contents (for example, e-learning), and podcasts
• Media department: This provides contents and podcasts
• Marketing department: This has access to movies (presentations) and podcasts
• IT department: In a word, you are responsible for administration, but this 

role can be split into many people

Managing policies and groups
If you remember the table from the previous home scenario in the same Group 
management section, you might remember that we had quite the same repartition 
between users' types and their roles. Some differences remain, as we split more  
roles within our users; so, Editors will manage the site's contents only, while the 
Uploader Admin will manage upload attributions except the Editions ones.

Can view 
published 
media

Can upload 
new media

Grants the 
ability to 
upload new 
media

Grants 
access to 
edit site 
content

Grants 
access to 
the admin 
panel

Everyone 
(including 
guests)

Logged-in 
users
Editors

Uploader 
Admin
Admins

Therefore, with these exclusive roles, rights management is guaranteed, as only 
Admins will be able to get all the roles.



Examples of Real-world Situations

[ 54 ]

So, we will set some roles, as shown here:

What we can see in the preceding screenshot is that a part of the administrative tasks 
can be shared with trusted people. So now take as an example the IT department being 
made up of the following roles:

• Admin
• Editor_master
• Upload_master

These roles also share some group attributions with the following:

• User1_RnD: Editors
• Mediadept_user1: Upload Admins

These have some delegating ability but not complete admin rights.

What about users such as John Doe from the marketing department and the 
presentation player in the hall? Actually, as they don't provide content, they don't 
need special user access; therefore, they just need to be authenticated logged-in users.

Self-test questions
Q1. Where do you get users groups' settings?

1. In the Setting menu
2. In the groups menu
3. In the users Menu



Chapter 3

[ 55 ]

Q2. True or false: In order to access a user's settings, you need to be logged in as an 
admin before accessing it.

Q3. If you want the user Bart to watch and listen to the house's contents, you will set 
his role as:

1. Authenticated user
2. Anonymous
3. Administrator

Q4. True or false: Security requires enough additional time. Having an extra  
10 minutes to obtain these details and write down lists is not useful. After all,  
your network already has some credentials

Summary
We have been through a dense chapter. You might not be a security-passionate person, 
but it is most likely that you can now understand why you should consider this topic, 
and maybe your point of view might have changed. Hopefully you'll take a few 
minutes to define your security strategy based on the examples in this chapter.

Remember to find answers to the who, what, and how questions through the lists 
you have defined at the start so that you just need to set or use predefined roles in 
the Groups and user interfaces.

Using real-world and practical examples, we saw how the Springfield house is 
organized to let everyone be happy with media, in the bedroom or even in the garden.

We also saw how security can be applied to professional aspects as well, with the 
hope this part will help you the next time you need to apply a security strategy  
and architecture.

We will now leave the MediaDrop world to let you provide the content and become 
an actor yourself and share movies.

In the next chapter, we will be more creative, as we will set up our own content as 
well as services.





Getting Your Own Video  
and Feeds

"One server to satisfy them all" could have been the name of this chapter. We now 
have a great media server where we can share any media, but we would like to  
be more independent so that we can choose the functionalities the server can have. 
The goal of this chapter is to let you cross the bridge, where you are going to increase 
your knowledge by getting your hands dirty. After all, you want to build your own 
services, so why not create your own contents as well.

More specifically, here we will begin by building a webcam streaming service from 
scratch, and we will see how this can interact with what we have implemented 
previously in the server. We will also see how to set up a service to retrieve RSS 
feeds. We will discuss the services in the following sections:

• Installing and running MJPG-Streamer
• Detecting the hardware device and installing drivers and libraries for  

a webcam
• Configuring RSS feeds with Leed



Getting Your Own Video and Feeds

[ 58 ]

Detecting the hardware device and 
installing drivers and libraries for  
a webcam
Even though today many webcams are provided with hardware encoding 
capabilities such as the Logitech HD Pro series, we will focus on those without  
this capability, as we want to have a low budget project. You will then learn how  
to reuse any webcam left somewhere in a box because it is not being used. At the 
end, you can then create a low cost video conference system as well.

How to know your webcam
As you plug in the webcam, the Linux kernel will detect it, so you can read every 
detail it's able to retrieve about the connected device.

We are going to see two ways to retrieve the webcam we have plugged in: the easy 
one that is not complete and the harder one that is complete.

"All magic comes with a price."
–Rumpelstiltskin, Once Upon a Time

Often, at a certain point in your installation, you have to choose 
between the easy or the hard way. Most of the time, powerful 
Linux commands or tools are not thought to be easy at first but 
after some experiments you'll discover that they really can make 
your life better.

Let's start with the fast and easy way, which is lsusb :

debian@arm:~$  lsusb
Bus 001 Device 002: ID 046d:0802 Logitech, Inc. Webcam C200
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This just confirms that the webcam is running well and is seen correctly from the USB.

Most of the time we want more details, because a hardware installation is not exactly 
as described in books or documentations, so you might encounter slight differences. 
This is why the second solution comes in. Among some of the advantages, you are 
able to know each step that has taken place when the USB device was discovered by 
the board and Linux, such as in a hardware scenario:

debian@arm:~$ dmesg



Chapter 4

[ 59 ]

 A UVC device (here, a Logitech C200) has been used to obtain these messages

Most probably, you won't exactly have the same outputs, but they should be close 
enough so that you can interpret them easily when they are referred to:

• New USB device found: This is the main message. In case of any issue,  
we will check its presence elsewhere. This message indicates that this is  
a hardware error and not a software or configuration error that you need  
to investigate.

• idVendor and idProduct: This message indicates that the device has  
been detected. This information is interesting so you can check the 
constructor detail.

Most recent webcams are compatible with the Linux 
USB Video Class (UVC), you can check yours at 
http://www.ideasonboard.org/uvc/#devices.

• Among all the messages, you should also look for the one that says 
Registered new interface driver interface because failing to find it can  
be a clue that Linux could detect the device but wasn't able to install it.

The new device will be detected as /dev/video0. Nevertheless, 
at start, you can see your webcam as a different device name 
according to your BeagleBone configuration, for example, if a 
video capable cape is already plugged in.

http://www.ideasonboard.org/uvc/#devices


Getting Your Own Video and Feeds

[ 60 ]

Setting up your webcam
Now we know what is seen from the USB level. The next step is to use the crucial 
Video4Linux driver, which is like a Swiss army knife for anything related to  
video capture:

debian@arm:~$ Install v4l-utils

The primary use of this tool is to inquire about what the webcam can provide with 
some of its capabilities:

debian@arm:~$ v4l2-ctl -–all

There are four distinctive sections that let you know how your webcam will be used 
according to the current settings:

• Driver info (1) : This contains the following information:
 ° Name, vendor, and product IDs that we find in the system message
 ° The driver info (the kernel's version)
 ° Capabilities: the device is able to provide video streaming



Chapter 4

[ 61 ]

• Video capture supported format(s) (2): This contains the following information:
 ° What resolution(s) are to be used. As this example uses an old 

webcam, there is not much to choose from but you can easily  
have a lot of choices with devices nowadays.

 ° The pixel format is all about how the data is encoded but more details 
can be retrieved about format capabilities (see the next paragraph).

 ° The remaining stuff is relevant only if you want to know in  
precise detail.

• Crop capabilities (3): This contains your current settings. Indeed, you  
can define the video crop window that will be used. If needed, use the  
crop settings:
--set-crop-output=top=<x>,left=<y>,width=<w>,height=<h>

• Video input (4): This contains the following information:
 ° The input number. Here we have used 0, which is the one that we 

found previously.
 ° Its current status.
 ° The famous frames per second, which gives you a local ratio. This is 

not what you will obtain when you'll be using a server, as network 
latencies will downgrade this ratio value.

You can grab capabilities for each parameter. For instance, if you want to see all the 
video formats the webcam can provide, type this command:

debian@arm:~$ v4l2-ctl --list-formats

Here, we see that we can also use MJPEG format directly provided by the cam.

While this part is not mandatory, such a hardware tour is interesting because you 
know what you can do with your device. It is also a good habit to be able to retrieve 
diagnostics when the webcam shows some bad signs.



Getting Your Own Video and Feeds

[ 62 ]

If you would like to get more in depth knowledge about your 
device, install the uvcdynctrl package, which lets you retrieve 
all the formats and frame rates supported.

Installing and running MJPG-Streamer
Now that we have checked the chain from the hardware level up to the driver,  
we can install the software that will make use of Video4Linux for video streaming. 
Here comes MJPG-Streamer.

This application aims to provide you with a JPEG stream on the network available 
for browsers and all video applications.

Besides this, we are also interested in this solution as it's made for systems with less 
advanced CPU, so we can start MJPG-Streamer as a service. With this streamer, you 
can also use the built-hardware compression and even control webcams such as pan, 
tilt, rotations, zoom capabilities, and so on.

Installing MJPG-Streamer
Before installing MJPG-Streamer, we will install all the necessary dependencies:

debian@arm:~$ install subversion libjpeg8-dev imagemagick

Next, we will retrieve the code from the project:

debian@arm:~$ svn checkout http://svn.code.sf.net/p/mjpg-streamer/code/ 
mjpg-streamer-code

You can now build the executable from the sources you just downloaded by 
performing the following steps:

1. Enter the following into the local directory you have downloaded:
debian@arm:~$ cd mjpg-streamer-code/mjpg-streamer

2. Then enter the following command:
debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ make



Chapter 4

[ 63 ]

When the compilation is complete, we end up with some new files. From this picture 
the new green files are produced from the compilation: there are the executables and 
some plugins as well.

That's all that is needed, so the application is now considered ready. We can now try 
it out. Not so much to do after all, don't you think?

Starting the application
This section aims at getting you started quickly with MJPG-Streamer. At the end, 
we'll see how to start it as a service on boot.

Before getting started, the server requires some plugins to be copied into the 
dedicated lib directory for this purpose:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ sudo cp input_uvc.
so output_http.so /usr/lib

The MJPG-Streamer application has to know the path where these files can be found, 
so we define the following environment variable:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ export LD_LIBRARY_
PATH=/usr/lib;$LD_LIBRARY_PATH

Enough preparation! Time to start streaming:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$./mjpg_streamer -i 
"input_uvc.so" -o "output_http.so -w www"



Getting Your Own Video and Feeds

[ 64 ]

As the script starts, the input parameters that will be taken into consideration  
are displayed. You can now identify this information, as they have been  
explained previously:

• The detected device from V4L2
• The resolution that will be displayed, according to your settings 
• Which port will be opened
• Some controls that depend on your camera capabilities (tilt, pan, and so on)

If you need to change the port used by MJPG-Streamer, add -p xxxx at 
the end of the command, which is shown as follows:
debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ 
./mjpg_streamer -i "input_uvc.so" -o "output_http.so -w 
www –p 1234"

Let's add some security
If you want to add some security, then you should set the credentials:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ ./mjpg-streamer -o 
"output_http.so -w ./www -c debian:temppwd"

Credentials can always be stolen and used without your consent.  
The best way to ensure that your stream is confidential all along 
would be to encrypt it.
So if you intend to use strong encryption for secured applications,  
the crypto-cape is worth taking a look at
http://datko.net/2013/10/03/howto_crypto_
beaglebone_black/.

"I'm famous" – your first stream
That's it. The webcam is made accessible to everyone across the network  
from BeagleBone; you can access the video from your browser and connect  
to http://192.168.0.15:8080/.

http://datko.net/2013/10/03/howto_crypto_beaglebone_black/
http://datko.net/2013/10/03/howto_crypto_beaglebone_black/
http://192.168.0.15:8080/


Chapter 4

[ 65 ]

You will then see the default welcome screen, bravo!:

Your first contact with the MJPG-Server

You might wonder how you would get informed about which 
port to use among those already assigned. Then teleport yourself 
to Appendix A.

Using our stream across the network
Now that the webcam is available across the network, you have several options to 
handle this:

• You can use the direct flow available from the home page. On the left-hand 
side menu, just click on the stream tab.

• Using VLC, you can open the stream with the direct link available at  
http://192.168.0.15:8080/?action=stream.

The VideoLAN menu tab is a M3U-playlist link generator that you can click 
on. This will generate a playlist file you can open thereafter.

In this case, VLC is efficient, as you can transcode the webcam 
stream to any format you need. Although it's not mandatory, 
this solution is the most efficient, as it frees the BeagleBone's 
CPU so that your server can focus on providing services.

http://192.168.0.15:8080/?action=stream


Getting Your Own Video and Feeds

[ 66 ]

• Using MediaDrop, we can integrate this new stream in our shiny MediaDrop 
server, knowing that currently MediaDrop doesn't support direct local 
streams. You can create a new post with the related URL link in the message 
body, as shown in the following screenshot:

Starting the streaming service automatically 
on boot
In the beginning, we saw that MJPG-Streamer needs only one command line  
to be started. We can put it in a bash script, but servicing on boot is far better.  
For this, use a console text editor – nano or vim – and create a file dedicated to  
this service. Let's call it start_mjpgstreamer and add the following commands:

#! /bin/sh
# /etc/init.d/start_mjpgstreamer

export LD_LIBRARY_PATH="/home/debian/mjpg-streamer/mjpg-streamer-code/
mjpg-streamer;$LD_LIBRARY_PATH" 
EXEC_PATH="/home/debian/mjpg-streamer/mjpg-streamer-code/mjpg-streamer"

$EXEC_PATH/mjpg_streamer -i "input_uvc.so" -o "output_http.so -w EXEC_
PATH /www"

You can then use administrator rights to add it to the services:

debian@arm:~$ sudo /etc/init.d/start_mjpgstreamer start

On the next reboot, MJPG-Streamer will be started automatically.



Chapter 4

[ 67 ]

Exploring new capabilities to install
For those about to explore, we salute you!

As the book is not just about installation and configuration, I thought that it would 
be useful to play around with what we just installed in the previous chapters,  
such as getting into the plugins in more depth or, why not, a different service  
with the webcam.

Plugins
Remember that at the beginning of this chapter, we began the demonstration with 
two plugins:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ ./mjpg_streamer -i 
"input_uvc.so" -o "output_http.so -w www"

If we take a moment to look at these plugins, we will understand that the first plugin 
is responsible for handling the webcam directly from the driver.

Simply ask for help and options as follows:

debian@beaglebone:~/mjpg-streamer-code/mjpg-streamer$ ./mjpg_streamer 
--input "input_uvc.so --help"



Getting Your Own Video and Feeds

[ 68 ]

The second plugin is about the web server settings:

• The path to the directory contains the final web server HTML pages.  
This implies that you can modify the existing pages with a little effort  
or create new ones based on those provided.

• Force a special port to be used. Like I said previously, port use is dedicated 
for a server. You define here which will be the one for this service.

• You can discover many others by asking:
debian@arm:~$ ./mjpg_streamer --output "output_http.so  --help"

Apart from input_uvc and output_http, you have other available 
plugins to play with. Let's take a look at the plugins directory.

Another tool for the webcam
The Mjpg_streamer project is dedicated for streaming over network, but it is not 
the only one. For instance, do you have any specific needs such as monitoring your 
house/son/cat/Jon Snow figurine?

buuuuzzz: if you answered yes to the last one, you just defined 
yourself as a geek.

Well, in that case the Motion project is for you; just install the motion package and 
start it with the default motion.conf configuration. You will then record videos 
and pictures of any moving object/person that will be detected. As MJPG-Streamer 
motion aims to be a low CPU consumer, it works very well on BeagleBone Black.



Chapter 4

[ 69 ]

Configuring RSS feeds with Leed
Our server can handle videos, pictures, and music from any source and it would  
be cool to have another tool to retrieve news from some RSS providers. This can  
be done with Leed, a RSS project organized for servers. You can have a final result, 
as shown in the following screenshot:

This project has a "quick and easy" installation spirit, so you can give it a try without 
harness. Leed (for Light Feed) allows you to you access RSS feeds from any browser, 
so no RSS reader application is needed, and every user in your network can read 
them as well. You install it on the server and feeds are automatically updated.

Well, the truth behind the scenes is that a cron task does this for you. 
You will be guided to set some synchronisation after the installation.



Getting Your Own Video and Feeds

[ 70 ]

Creating the environment for Leed in  
three steps
We already have Apache, MySQL, and PHP installed, and we need a few other 
prerequisites to run Leed:

1. Create a database for Leed
2. Download the project code and set permissions
3. Install Leed itself

Creating a database for Leed
Remember the database that we created for MediaDrop in Chapter 1, Transforming 
Your BeagleBone Black into a Media Server?

You will be at ease here, as this is exactly the same approach because Leed requires 
its own database as well.

You will begin by opening a MySQL session:

debian@arm:~$ mysql –u root –p

What we need here is to have a dedicated Leed user with its database. This user 
will be connected using the following:

create user 'debian_leed'@'localhost' IDENTIFIED BY 'temppwd';
create database leed_db;
use leed_db;
grant create, insert, update, select, delete on leed_db.* to debian_leed@
localhost;
exit



Chapter 4

[ 71 ]

Downloading the project code and setting 
permissions
We prepared our server to have its environment ready for Leed, so after getting the 
latest version, we'll get it working with Apache by performing the following steps:

1. From your home, retrieve the latest project's code. It will also create a 
dedicated directory:
debian@arm:~$  git clone https://github.com/ldleman/Leed.git
debian@arm:~$  ls
mediadrop mjpg-streamer Leed music

2. Now, we need to put this new directory where the Apache server can find it:
debian@arm:~$  sudo mv Leed /var/www/

3. Change the permissions for the application:
debian@arm:~$  chmod 777 /var/www/Leed/ -R

Installing Leed
When you go to the server address (http//192.168.0.15/leed/install.php), 
you'll get the following installation screen:

We now need to fill in the database details that we previously defined and add 
the Administrator credentials as well. Now save and quit. Don't worry about the 
explanations, we'll discuss these settings thereafter.

It's important that all items from the prerequisites list on the right are green.

http//192.168.0.15/leed/install.php


Getting Your Own Video and Feeds

[ 72 ]

Otherwise, a warning message will be displayed about the wrong permissions 
settings, as shown in the following screenshot:

After the configuration, the installation is complete: 

Leed is now ready for you.

Setting up a cron job for feed updates
If you want automatic updates for your feeds, you'll need to define a synchronization 
task with cron:

1. Modify cron jobs:
debian@arm:~$ sudo crontab –e



Chapter 4

[ 73 ]

2. Add the following line:
0 * * * * wget -q -O /var/www/leed/logsCron "http://192.168.0.15/
Leed/action.php?action=synchronize

3. Save it and your feeds will be refreshed every hour.
4. Finally, some little cleanup: remove install.php for security matters:

debian@arm:~$ rm /var/www/Leed/install.php

Using Leed to add your RSS feed
When you need to add some feeds from the Manage menu, in Feed Options (on the 
right- hand side) select Preferences and you just have to paste the RSS link and add 
it with the button:

You might find it useful to organize your feeds into groups, as we did for movies in 
MediaDrop. The Rename button will serve to achieve this goal. For example, here 
a TV Shows category has been created, so every feed related to this type will be 
organized on the main screen.



Getting Your Own Video and Feeds

[ 74 ]

Some Leed preferences settings in a server 
environment
You will be asked to choose between two synchronisation modes: Complete  
and Graduated.

• Complete: This is to be used in a usual computer, as it will update all  
your feeds in a row, which is a CPU consuming task

• Graduated: Look for the oldest 10 feeds and update them if required

You also have the possibility of allowing anonymous people to read your feeds.  
If you remember, in Chapter 3, Examples of Real-world Situations, we allowed guests to 
access our content but not to publish any. This is the same case here. Setting Allow 
anonymous readers to Yes will let your guests access your feeds but not add any.

Extending Leed with plugins
If you want to extend Leed capabilities, you can use the Leed Market—as the author 
defined it—from Feed options in the Manage menu. There, you'll be directed to  
the Leed Market space. Installation is just a matter of downloading the ZIP file  
with all plugins:

debian@arm:~/Leed$  wget  https://github.com/ldleman/Leed-market/archive/
master.zip
debian@arm:~/Leed$ sudo unzip master.zip

Let's use the AdBlock plugin for this example:

1. Copy the content of the AdBlock plugin directory where Leed can see it:
debian@arm:~/Leed$ sudo cp –r Leed-market-master/adblock /var/www/
Leed/plugins



Chapter 4

[ 75 ]

2. Connect yourself and set the plugin by navigating to Manage | Available 
Plugins and then activate adblock with Enable, as follows:

In this chapter, we covered: 

• Some words about the hardware
• How to know your webcam
• Configuring RSS feeds with Leed



Getting Your Own Video and Feeds

[ 76 ]

Summary
In this chapter, we had some good experiments with the hardware part of the server 
"from the ground," to finally end by successfully setting up the webcam service on 
boot. We discovered hardware detection, a way to "talk" with our local webcam and 
thus to be able to see what happens when we plug a device in the BeagleBone.

Through the topics, we also discovered video4linux to retrieve information about  
the device, and learned about configuring devices. Along the way, we encountered 
MJPG-Streamer. Finally, it's better to be on our own instead of being dependent on 
some GUI interfaces, where you always wonder where you need to click. Finally,  
our efforts have been rewarded, as we ended up with a web page we can use and 
modify according to our tastes.

RSS news can also be provided by our server so that you can manage all your feeds 
in one place, read them anywhere, and even organize dedicated groups.

Plenty of concepts have been seen for hardware and software. Then think of this 
chapter as a concrete example you can use and adapt to understand how Linux works.

I hope you enjoyed this freedom of choice, as you drag ideas and drop them in your 
BeagleBone as services. We entered in the DIY area, showing you ways to explore 
further. You can argue, saying that we can choose the software but still use off the 
shelf commercial devices.

Looking for more independence? Good! In the next chapter, we will see how to build 
a more personalized object, something that will resemble your choices: your own 
player device.



Building Your Media Player
As shown in the previous chapters, the BeagleBone Black board can do much more 
than provide media and services. It can be adapted to a wide range of projects you 
have in mind. Moreover, we'll see how this board differs from others with respect 
to design. You'll be introduced to the concept of add-ons, so you will know how to 
choose a functional brick that can be used in one of your projects. At the end of this 
chapter, you'll see how to get your project up and running. This is the chapter where 
we can have some fun, so let's get our brain on fire!

In this chapter, we will cover the following topics:

• Introducing BeagleBone capes
• Your own media player in your hands
• Installing a system for the expansion board
• Using the expansion board with Android

Introducing BeagleBone capes
In the first chapter, we said that the richness of a system relies mainly on its ecosystem. 
For example, the OS of a computer, such as Windows, Mac OS, or Linux, can be used 
not only for the graphical interface but also for the wide range of applications that you 
can install. This is quite similar to the embedded world, where a large choice of boards 
might confuse you quickly; you need to choose a CPU, OS, supported applications, 
programming languages that can be used on it, documentations, and so on. The list  
can be quite long depending on your final project.

A good criterion to look out for in a board is its expansion capability: the feature 
where one can add some more functionality to a board, such as plugins to software. 
In this sense, our board has a lot of features to propose. In the BeagleBone world, 
these add-ons are called capes.



Building Your Media Player

[ 78 ]

Here's a definition of capes according to the creators of BeagleBone:

Adding cape plug-in boards to the popular BeagleBone computer allows hobbyists, 
makers and developers to quickly and easily augment BeagleBone's capabilities 
with LCD screens, motor control and battery power as well as the ability to create 
their own circuits

This hardware openness lets you add functional boards, as you'd do from the 
application markets (the Apple store, Google Play, and so on) and thus enables  
you to add any functionality for your projects. You just have to plug your cape  
onto the two expansion connectors so that it is directly powered and recognized  
by the system. For a good overview, take a look at the capes' wiki page, available  
at http://elinux.org/Beagleboard:BeagleBone_Capes.

Here, you will find documentations and presentations from professionals and 
hobbyists who have designed capes.

Exploring capes' categories
At the beginning of BeagleBone Black, the Wiki was composed of 20 capes that 
weren't compatible with the Black series. At the time of writing this book, this list  
has grown to 77 capes with 51 capes for BeagleBone Black; this gives us an idea of  
the community's effort behind this market. Here's an extract:

http://elinux.org/Beagleboard:BeagleBone_Capes


Chapter 5

[ 79 ]

It's not possible to group all the capes in distinct categories, as some of them  
are conceptual. Anyway, to give you an idea, these capes mostly propose the 
following features:

• Wi-Fi
• Audio
• Power (PowerBar and the Power Supply cape are useful for autonomous 

projects)
• Displays (mini displays, LCD3, LCD4, and LCD7)
• An extension board with a display (4D capes)

For the others/miscellaneous category:

• Crypto cape: A very interesting cape that you can use to add serious security 
measures to your server or your applications. According to the author:

This cape will offload the CPU for cryptographic operations (usefully 
for a networked device that makes heavy use of VPN/TLS/SSL).  
It can also be used to enhance the security of an existing project  
with hardware RSA, ECC, SHA-2, a RTC, additional EEPROM

• Prototyping (breadboards, protoboard).
• "All in one," which includes different functionalities, sensors or actuator drivers 

such as the GVS cape (GVS stands for Ground, Voltage, and Signal).
• Robotic and I/O (Robocape, industrial I/O cape).
• ADC, PWM, Analog, dual relays, smart relays.
• Interfacing capes (for Arduino shield, mikroBUS).

No matter what you choose, before considering a cape you must look for the BB 
Black Compatible logo, as shown here:

This guarantees that the cape you buy will work with your board.



Building Your Media Player

[ 80 ]

Considering a personal Palm Media 
player
This part of the chapter deals with how you can build a media player for yourself 
using the concept of capes, which you've just been introduced to. From the long list 
of available capes, we'll use the BeagleBone Black Expansion board from Chipsee.

From the two versions of this expansion board—resistive and capacitive—we will 
use the capacitive version, which has a five-point multitouch.



Chapter 5

[ 81 ]

Functional description
If you take a look at the functionalities that this expansion board proposes, it will 
give you an idea of why this is more than a display:

• A 7-inch screen with a resolution of 1024 x 600 pixels
• Capable of 5-point detection
• One audio out and one mic in
• Two RS232 ports
• One RS485 port
• Two analog channels
• 1 CAN port
• 1 integrated buzzer
• Five user keys
• Two user LEDs (green and blue)
• One embedded 3-axis accelerometer

Physical description
On the reverse side of the board, you can see the following components (also shown 
in the following screenshot):

1. A multifunction connector with communication, acquisition, and power 
connections. You'll find the same signals from COM1 (Tx, Rx) and an 
additional COM port UART2 that is shared with RS485 #1, an additional 
port RS482 #2, and finally a Control Area Network (CAN), which is a 
network designed to be used in industrial conditions.

2. The COM1 serial port, which has been changed from its original 
implementation. The provided systems are configured to debug to UART1 
instead of UART0 on the BeagleBone, including a hardware driver. This 
implies that you can directly connect a serial terminal to the DB9 connector.

3. Power and reset buttons (coming from BeagleBone for accessibility).
4. Buzzer.
5. JTAG connector.
6. P8 header.
7. P9 header.
8. Audio output/microphone input (blue- and rose-colored, respectively).



Building Your Media Player

[ 82 ]

9. The boot switch, which allows you to choose between the SD card (up)  
or eMMC boot (down).

10. Power: 5V/2A DC input is used for BeagleBone as for all the expansion 
board's needs. You don't need any additional adapters.

On the front side (from up to down), the board consists of the following:

• 5 programmable user's keys: With Android, they are associated with the 
home screen and the back, menu, volume up, and volume down buttons

• Blue LED: This denotes CPU activity in the Android OS
• Green LED: This denotes power in the Android OS



Chapter 5

[ 83 ]

Installing a system for the expansion 
board
Chipsee provides different operating systems that you can install to start and 
manage the display. Having a look at these different OSes will help you to  
choose the one that will fit your project best.

Looking at the available operating systems
Chipsee proposes a wide range of operating systems, which are provided in the 
following table:

Operating system Features Comments
Android This is versatile and 

ergonomic and has a 
large market to offer

This is unsuitable for 
embedded boards' 
customization

Debian This offers rich apps 
and is documented 
and open source

The provided version  
is more desktop- or 
server-oriented

TI Linux EZSDK This is vastly 
documented, good 
for exploration 
and learning, 
and designed for 
embedded apps

This is not for 
beginners and has 
a non-negligible 
learning curve

We will now look at how to install Android, Debian, and EZSDK and finally see how 
Android can be used for some multimedia experiences.



Building Your Media Player

[ 84 ]

Retrieving the latest files, images, 
documentation, or software
Even if you are provided with two CD-ROMs that include the documentation, user 
manual, and software, it's better to download the latest versions delivered by the 
manufacturer at http://chipsee.eu/index.php?option=com_jdownloads&Itemi
d=204&view=viewcategory&catid=18.

Installing drivers
You can install Android USB drivers for the Windows platform. These drivers are 
located at YourRoot:\Chipsee\Android4.2\Android4.2\SoftWare\Tools\usb_
driver.

The installation is straightforward for any driver. You will end up with a new Android 
phone device. This way, you are able to use it as a disk.

Prerequisites for installing any system
Before going into the OS installation, we have to check some things, such as the SD 
card naming, and we have to set the local language.

http://chipsee.eu/index.php?option=com_jdownloads&Itemid=204&view=viewcategory&catid=18
http://chipsee.eu/index.php?option=com_jdownloads&Itemid=204&view=viewcategory&catid=18


Chapter 5

[ 85 ]

Considering a virtual machine
All the following explanations are for installation from Linux as a native operating 
system. You can install directly on your computer or you can use a virtual machine 
as well. If you want to make some developments or try some different projects, a VM 
is the best solution. Similar to a Python virtual environment, which we have seen in 
Chapter 4, Getting Your Own Video and Feeds, virtual machines give you the freedom 
to experiment with everything you want without losing your system.

There are many free virtualization managers that you can install; these are the most 
famous ones:

• VirtualBox (https://www.virtualbox.org/): This is easy and fast  
to configure.

• VMware (player) (http://www.vmware.com): This is as easy as VirtualBox 
but has some limitations in the free version.

• QEMU (www.qemu.org): This is harder to configure than the two previous 
ones, but the only one that comes close to hardware emulation. This solution 
is recommended when you don't have your ARM board with you but still 
need to use it.

In addition, VirtualBox and QEMU are open source applications, so you will have 
additional tools proposed by their respective communities.

Finding your SD card device
All the scripts provided are simple enough to require a single parameter: the SD card 
device's name. Let's see two ways to check the SD card device's name.

You won't see the device until the SD card is effectively inserted, 
and not just the USB reader.

Listing devices with lsblk
For example, after inserting an 8-GB SD card, we can use lsblk, a useful tool that is 
provided with our Linux distributions (http://linux.die.net/man/8/lsblk).  
The name stands for list block devices, so you have a tree of all the block devices  
that Linux is able to manage.

https://www.virtualbox.org/
http://www.vmware.com
http://www.qemu.org
http://linux.die.net/man/8/lsblk


Building Your Media Player

[ 86 ]

Just start lsblk from the command line, as shown here:

Depending on the size we are looking for and the device type, we can deduce that 
our SD card is currently sdf.

Using the dmesg utility
Remember in Chapter 4, Getting Your Own Video and Feeds, we looked into the system 
messages to find how our USB webcam was named. Here, we use the same recipe:

dmesg | grep 'sd.'

While being verbose, dmesg ensures that you format the correct device.

Checking your investigation
In all cases, ensure that you are using the correct device to partition:

fdisk –l /dev/sdf

With a new card, this command should return the following line of code:

/dev/sdf empty table partition



Chapter 5

[ 87 ]

Adapting foreign systems for the installer script
If you execute the provided installation scripts from a non-English speaking system, 
you will end up with a nonbootable BeagleBone. This is because the installation 
scripts rely on text searches and matches. For example, in French, instead of the 
term "disk" and "cylinders," the results will be "disque" and "cylindres," respectively. 
These are results that the script doesn't understand, and in the end no system will be 
properly installed.

A simple workaround for Debian systems is to edit your locale file, as follows:

/etc/default/locale : 
LANG="en_US"
LANGUAGE="en_US:en"

If, however, you'd like to keep the original language, then comment it with # at the 
beginning, use the script, and uncomment it thereafter.

Save the file and reboot to have the settings applied.

Installing your system
Now, it's time to prepare the expansion board and to install an operating system. 
We'll go through the three main OSes; the processes for each one are similar. 
However, for beginners, we will describe which file to install.

Installing and using Android
After you have downloaded the compressed Android file on your, you need to copy 
it to a dedicated directory. This is can be handy, so you can install all the three OSes 
beside each other in a separate space. So, if you are not really happy with Android, 
you can try Debian and get back to Android by a simple installation command.

Here's the procedure to do this, which is quite simple:

tar vzxf prebuilt-jb42-bbb-exp-20140321.tar.gz
cd prebuilt-jb42-bbb-exp-20140321
sudo fdisk -l /dev/sdf
sudo ./mksdcard.sh --device /dev/sdf

The 3rd part is just a check for you to be sure that you don't format your computer.



Building Your Media Player

[ 88 ]

When installing Android, you need to validate the installation by pressing the Y key 
so that the installation process starts:

Wait for the Done message, which notifies the end of the installation process. Plug 
your SD card into the BeagleBone board and power it on.

Remember to press the user button to tell the board to start using 
SD not eMMC. This button is located on the other side of the SD 
card slot.

You will have to wait for a while for the boot to be achieved, which is particularly 
long for Android compared with the others. However, our comfort comes at this 
price, doesn't it?

If you want, go directly to a walkthrough with Android; skip the next parts until the 
Using the expansion board with Android section.

Installing and using Debian
As we did for Android, you can define your boot disk with some easy steps  
(please remember that sdf is an example; you need to check your own SD card 
device's name):

tar vzxf prebuilt-debian-bbb-exp-20140322.tar.gz
cd Prebuilt/prebuilt-debian-bbb-exp-20140322
sudo fdisk -l /dev/sdf
sudo ./mksdcard.sh --device /dev/sdf



Chapter 5

[ 89 ]

As for Android, when installing Debian, you are asked to validate your choice before 
you start the installation process, as shown in the following screenshot:

This will take a while; wait until the Done message appears.

The connection and usage is pretty straightforward; we find the system that we had 
in the previous chapters with MediaDrop. With Debian, you will have fewer things 
to learn and you can install it finally. When you think about which system to install, 
this is something for you to consider.

All in all, a good idea can be to install MediaDrop and servers to 
the Debian OS with the Chipsee display, so you can have all the 
servers and a media player as well.

From SSH, the credentials to connect to the Debian OS are as follows:

• User: debian
• Password: chipsee

Installing and using TI EZSDK
Texas Instruments is the manufacturer of the BeagleBone Black controller.  
Actually, they did a great job of giving exhaustive documentation and even  
their own version of Linux dedicated to this board. TI's version is for those  
who want to learn the hardware parts. Execute the following commands:

tar vzxf prebuilt-chipsee-bbb-exp-ezsdk-20131210.tar.gz

cd Linux-EZSDK/prebuilt 
sudo fdisk -l /dev/sdf
sudo ./mksdcard.sh --device /dev/sdf

After the board is powered on with the user button, a nice Linux and TI's logo will 
make you wait for a bit to load the special environment called a matrix.



Building Your Media Player

[ 90 ]

Here's a compilation of the main application spaces you will find in Matrix:

Taking a look at TI's linux unique tools
After starting, you'll find the app launcher, a kind of desktop that centralizes all the 
available applications:

• Profiling (up left): Examples for process, reports, and kernel profiling.
• Benchmarking (up right): NBench (from the Byte magazine), linpack (single 

precision tests), Dhrystone, DDR, pipe communication's bandwidth, memory 
latency, Whetstone, latencies (fork, signals, TCP servicing, and so on).

• Qt4/QML (down left): Qt Quick Playground which is great for the QML 
developers. In this group are many examples to test in this script language.

• Qt4: There are 3 demos Animated Tiles, Thermostat Demo (down right),  
and Deform.

• Cryptos: Examples for everything concerning cryptography from secure, 
server, to AES, SHA1, and OpenSSL benchmarking.

• Multimedia: Audio, MPEG4, and H264 decoding applications.



Chapter 5

[ 91 ]

• Power: Set your CPU frequencies: 275 to 720 MHz, suspend/resume.
• There are more applications to explore, paying particular attention to  

settings/system Shutdown, which is handy to power off the system.

TI's website
For the complete documentation and explanations about the SDK and information on 
the AM335x microcontroller, a good source will be http://software-dl.ti.com/
sitara_linux/esd/AM335xSDK/latest/index_FDS.html.

I think http://processors.wiki.ti.com/index.php/Sitara_AM335x_Portal will 
be a good place to visit if you need to do the following:

• Get into the controllers' details
• Develop applications, as follows:

 ° Bare metal look for the composer studio, which is a complete 
development environment

 ° Linux
 ° Android
 ° Yocto

• Training lab materials
• Training slides

http://software-dl.ti.com/sitara_linux/esd/AM335xSDK/latest/index_FDS.html
http://software-dl.ti.com/sitara_linux/esd/AM335xSDK/latest/index_FDS.html
http://processors.wiki.ti.com/index.php/Sitara_AM335x_Portal


Building Your Media Player

[ 92 ]

Developing with Qt
TI' SDK is provided with a good amount of Qt sources and documentations.

If you take a look at the Qt archive, you'll see three documents, as shown here:

• Start with the user program: This is, in fact, a bash script that is worth  
taking a look at for GPIO usage

• User Guide For Embedded Qt: This shows you how to prepare, install, 
cross-compile, and get your application in the Matrix environment

• Recalibrate the resistive touch: This is the whole procedure for screen 
calibration

Aside is the Example-applications.zip file, which includes all the application 
sources you found in Matrix. These examples are for developers who already have  
a good technical background:

The examples.tar.gz file includes demos and examples that you find with all  
Qt installations, so they are all well-documented.

For more details about coding, these sources are strongly recommended.



Chapter 5

[ 93 ]

Using the expansion board with Android
With the installation completed, we will now use the expansion board as if it were a 
customized tablet.

Using files from a computer
You have many options that you can use to exchange files, as follows:

• USB devices: Using the expansion board as a device, like a disk  
(see the Installing drivers section earlier in this chapter).

• USB keys: These can be used to get files from/to a computer and 
BeagleBone. The best way to have these recognized is to use the FAT32 
filesystem. When the stick is plugged in, a styled Android logo appears, 
telling you that this new media is under analysis.

• Wi-Fi.

Installing applications
You can install applications to the expansion board in many ways; here are a  
few examples:

• By manually copying the APK file to the SD card in the data directory  
and installing it from the provided Qt file explorer. Of course, this must  
be done offline.

• By downloading the APK file on the USB stick and installing it from the 
provided Qt file explorer.

• By browsing to the application's market website. This is the most handy  
way to have your application installed; however, this implies that you  
have Wi-Fi through a USB dongle and you have referenced your Google 
account in the settings panel.



Building Your Media Player

[ 94 ]

For example, here is a screenshot that you would see during the SSHDroid SSH 
server installation:

This little software is handy if you want to use the same SSH connection you had 
when communicating with Debian previously.



Chapter 5

[ 95 ]

Games
Of course, the Chipsee expansion board can also be used as a game console, thanks 
to the included accelerometer.

The prebuilt image includes many games you can play such as NFS Shift, A tilt 3D 
labyrinth, Angry birds, Fruit slice, and more. Here's a compilation:



Building Your Media Player

[ 96 ]

What is cool about this board is that the 3-axis accelerometer can be used for the 
games. However, before you do that, you need to configure it by performing the 
following steps:

1. Start Chipsee Touch to calibrate the screen.
2. Start Chipsee sensor tool to define the axis properly, as shown in the 

following screenshot:

That way, the sensor will react properly with the board.

Watching and listening to media
On the prebuilt image, you can find some demo videos. Notice that even if there is 
no hardware decoder, the board is totally able to render different video formats.

To watch to a video, click on the application's group icon and then select Mobo Player.

This application is a movie player and a picture viewer as well.



Chapter 5

[ 97 ]

You can also enter into the SD card directory—Qt file manager/Storage/
sdcard1/Video—so you can play the samples provided with the prebuilt image,  
as shown in the following screenshot:

You can even play a video while doing something else. For this, while playing the 
video, select the resize icon  for the video's window to be resized to a smaller 
dimension, as shown here:



Building Your Media Player

[ 98 ]

Summary
We addressed a topic that will be very useful for most of the media projects  
that you'll want to implement. The Chipsee expansion board lets you create  
an interactive object to watch videos, play some games, program in different 
languages, establish network and industrial communications, and many more.

What is important to note here is that this is a good platform for creative minds.  
It means that you can use these hardware capabilities for your own software, such 
as house management, media, server, and so on. In addition, I hope that you have 
now understood that the time you've spent to learn the command line and the Linux 
system from the previous chapters have been useful here. This knowledge can be 
reused for your next projects, embedded or not. This is the most important thing:  
to learn once and then deploy multiple times.

From the BeagleBone market place, the Chipsee expansion board is just one item 
among many capes; you should regularly visit the capes store for new boards. These 
choices let you have many different combinations to be experimented with. Imagine 
that we were playing with a single BeagleBone and now this configuration can be a 
part of a network of multiple BeagleBones, each one equipped with a different cape 
using sensors/actuators, thus allowing you to have wider projects.

We will now abandon the hardware part of this book and continue on our journey  
of creativity by taking a look at the software side of the journey in the same spirit.  
In the end, you can have your own software.



Illuminate Your Imagination  
with Your Own Projects

The previous chapter showed that the BeagleBone Black board is designed to accept 
hardware add-ons called capes and how they ease the setup of projects. We can 
apply the same philosophy to the software part, thanks to the different tools that help 
developers. Now, in this chapter, we will go further with our hands-on approach by 
creating our applications.

You'll then have an overall view of how you can realize your own ideas without many 
difficulties. Thus the main purpose of this chapter could be resumed as:

Give a man a fish and you feed him for a day; teach a man to fish and you feed him 
for a lifetime

I hope that you'll be more eager to develop projects by yourself afterwards.

In this chapter, we will cover the following topics:

• Presenting the "matrix revolution"
• Diving into the software parts
• Example 1 – our first client server application 
• Example 2 – improving the first example by adding functionalities
• Example 3 – creating animated graphical patterns
• Final words



Illuminate Your Imagination with Your Own Projects

[ 100 ]

Presenting the "matrix revolution"
This project aims to connect a matrix to the BeagleBone board so that it can be remotely 
accessed through a network connection. For this purpose, you will program the 
following parts:

• The client that will establish a connection to the server
• The server on the BeagleBone where you'll be able to interact with all the 

connected devices

This project allows you to approach the following technologies:

• BeagleBone/I2C: This board communicates with the matrix using the I2C 
protocol (introduced later).

• Adafruit matrix: The matrix itself in the bicolor version. The good part is that 
when you buy two colors, you can have three (the combination of green with 
red will give you the orange color too).

• Client: Even though the hardware part will be the same among the different 
examples, you are going to implement different ways to control the matrix. 
These examples will then be different versions of a client program, which  
can run on a single PC, for example.



Chapter 6

[ 101 ]

• Server: From the other side of the network, the BeagleBone board will have a 
dedicated program that will wait for commands to be executed. Similar to the 
client, this part will also evolve along with the project.

• Python: This is a well-known and widely-used language that lets you focus 
on the project quickly.

• Code repository: Writing code is an activity that lives, which moves as 
programs are not written in stone. This is why a companion repository for 
this book has been created on GitHub. With this online code base, you only 
need to retrieve the Matrix Revolution repository with the local git command. 
As you have already used Git in the previous chapters, you know that with 
a simple command you are sure to work with the last changes (corrections, 
improvements, fixes, and so on) from the author. The dedicated site can be 
found at http://dlewin.github.io/BeagleboneBlack-Server-Book, as 
shown in the following screenshot:

 ° This is the entry point, in the form of a website where you can  
grab the latest version of the projects as a compressed file and  
get basic details.

http://dlewin.github.io/BeagleboneBlack-Server-Book


Illuminate Your Imagination with Your Own Projects

[ 102 ]

 ° Accustomed coders will prefer a more detailed view with commit 
dates, information about which files have been pulled in the repository, 
and so on. Indeed, this other view of the site will let you walk through, 
read, or retrieve the code in many different ways.

 ° This being said, the best (and the only) way to get the code is to use 
git from the command line of your board:
git clone https://github.com/dlewin/BeagleboneBlack-Server-
Book.git

Now that you know what you are going to play with, we'll mix these technologies 
in three flavors, elaborating in a progressive manner. Obviously, this implies that 
you need some additional knowledge but rest assured that it will be explained 
sufficiently. Having said that, you need to be at ease with the example and its 
concepts before you go to the next step.



Chapter 6

[ 103 ]

The LED matrix
The graphical representation of this project will be a matrix of LEDs that Adafruit has 
arranged in a very handy product, and there is no need to for additional components 
such as resistors, power circuits, and so on: the box contains all that is required to  
start quickly.

You can get more details from their website at http://www.adafruit.com/
products/902.

When you receive it, you just need to solder some pins as indicated in the Adafruit 
documentation and it's ready to be used. As shown in the presentation, the messages 
between the matrix and the BeagleBone Black board use a form of the I2C protocol. 
Let's look how it works.

Introducing I2C
Whichever board you use in your projects—Arduino, Raspberry, Mini2440—most of 
the time, you need to deal with sensors, components, or devices that "talk" I2C or SPI. 
These data buses simplify our coder's life. Indeed, our matrix just need to be managed 
with only two signals, SCL and DAT, to execute all the operations.

Instead of a wire for each function, a communication is specified by Philips on the 
two wires with the protocol part of the I2C. Fortunately, this happens behind the 
scenes, thanks to the I2C Linux driver.

Are you interested in getting more details about the I2C bus? 
Check out http://support.saleae.com/hc/en-us/
articles/200730905-Learn-I2C-Inter-Integrated-
Circuit for an interesting explanation.

Using the driver means that, even though you use the I2C protocol, you never have 
to deal with the bus message frames, CRC, and all the detail of the protocol, so you 
can focus on the data to be sent from BeagleBone to the matrix.

http://www.adafruit.com/products/902
http://www.adafruit.com/products/902
http://support.saleae.com/hc/en-us/articles/200730905-Learn-I2C-Inter-Integrated-Circuit
http://support.saleae.com/hc/en-us/articles/200730905-Learn-I2C-Inter-Integrated-Circuit
http://support.saleae.com/hc/en-us/articles/200730905-Learn-I2C-Inter-Integrated-Circuit


Illuminate Your Imagination with Your Own Projects

[ 104 ]

Wiring the matrix to the board
After this short introduction to the I2C protocol, we can now set up the connection 
between the two devices, as shown here:

This image is not a drawing. You can obtain the source file from 
the GitHub website as a design file in order to use it with Fritzing 
(http://fritzing.org/home/), an open source electronic 
design software.

Assuming that the matrix is now built, we can wire the matrix according to the 
following schema:

• SCL: Pin 20
• DAT: Pin 19
• +5V: Pin 6
• GND: Pin 2

http://fritzing.org/home/


Chapter 6

[ 105 ]

Instead of 5V, you can use the 3.3V power as well, but this 
will result in less brightness.

The synoptic is easy to understand: just wire the four pins to the board. However 
after this, if you want to access the complete header's reference, check the header 
documentation provided by the BeagleBone Wiki at http://elinux.org/
Beagleboard:Cape_Expansion_Headers.

For our experiments, we use the I2C-2 because the device's tree file defines that the 
I2C-1 is already used.

Usually, you should ensure that the function pin you intend to use is free.

This subject is outside the scope of this book and requires you to 
understand the device tree mechanism. A complete explanation 
can be found in the Free Electron presentation at http://
free-electrons.com/pub/conferences/2013/elce/
petazzoni-device-tree-dummies/petazzoni-device-
tree-dummies.pdf.
As BeagleBone Black was the first to follow the recommended 
guidelines, our board is used as an example along with the 
explanation, which is handy.

http://elinux.org/Beagleboard:Cape_Expansion_Headers
http://elinux.org/Beagleboard:Cape_Expansion_Headers
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/petazzoni-device-tree-dummies.pdf
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/petazzoni-device-tree-dummies.pdf
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/petazzoni-device-tree-dummies.pdf
http://free-electrons.com/pub/conferences/2013/elce/petazzoni-device-tree-dummies/petazzoni-device-tree-dummies.pdf


Illuminate Your Imagination with Your Own Projects

[ 106 ]

Diving into the software
We have set up the hardware that will be used along this chapter. Now, let's develop 
our application to give it some life.

Example 1 – our first client server application
Assuming that you retrieved the whole project in your local directory, simply go to 
the server_1 directory and open matrixServer.py.

Installing the requirements
Looking at the code parts, some prerequisites must be followed for both the server 
and client sides.

For the server, you can use the following command:

sudo pip install twisted

Alternatively, you can use the following line:

Install python-twisted

For the client part, you'll need to install the Python environment according to your 
operating system from https://www.python.org/downloads/.

The code that we'll use here is compatible with both the 2.7 and 3 versions.

Additionally, you'll need a twisted matrix, which you can retrieve with this command:

pip install twisted

Alternatively, you can obtain the one for your operating system from  
https://twistedmatrix.com/trac/wiki/Downloads.

The hardware is set up and the requirements are in place; you are ready to run  
the example.

https://www.python.org/downloads/
https://twistedmatrix.com/trac/wiki/Downloads


Chapter 6

[ 107 ]

Running the example
        Server_3/matrixServer.py                                                    Client/client3/

Connect to the BeagleBone Black board with PuTTY or any SSH client and enter in 
the directory, as indicated:

debian@arm:~/BeagleboneBlack-Server-Book/Server/Server_1$ ./matrixServer.
py

The message shown in the preceding screenshot indicates that the server is running 
correctly and is now waiting to accept a client connection. However, if you don't run 
the server before the client, you'll end up with the following message:

>>>
Connection failed - goodbye!

As soon as you start the client after the server, the client immediately loops over the 
data and you can see that the matrix gets its LEDs in green, according to that loop:



Illuminate Your Imagination with Your Own Projects

[ 108 ]

On the server display (the SSH connection), you can also check the coordinates for 
the LED that is currently set.

Jumping into the code
When it is running on BeagleBone, the unique purpose of a server is to wait for the 
incoming data. If you intend to modify the server's code—and I hope you will—be 
warned that in order to keep the example simple, the code doesn't check the viability 
of the data sent from the client.

Description of the data packet
Each time the server receives data, it will look for the following three values:

• The X position
• The Y position
• Color

If you want to expand this format, you'll need to apply modifications on both the 
server and client sides.

Describing the server code
As soon as the server receives a data packet, it will transcode it into I2C, then be able 
to address each LED individually.

So, functionally speaking, the server can be seen as a "remote and translator" between 
the client application and each LED.

Now, let's dive into the main parts of the source:

The preceding lines of code state that the required libraries (that is, Adafruit) are not 
in the standard path, but they can be found in the directory upwards. That way, if a 
new version is available, you just have to retrieve it (git pull), and you won't have 
to copy/paste into directories, as it's made transparent to you.



Chapter 6

[ 109 ]

The code uses a modified version of the Adafruit library, which 
has some fixes. So, as long as you are using the bicolor version 
of the matrix, you should use this library only.

grid = ColorEightByEight(address=0x70)

The grid-based object needs to be instantiated in the program with an identified 
address, 0x70.

Here's a tip about I2C-tools: If you want to know where this 
address comes from, watch the video at http://derekmolloy.
ie/beaglebone/beaglebone-an-i2c-tutorial-
interfacing-to-a-bma180-accelerometer/.

The remaining code is taken from the twisted matrix examples, which are handy to 
manage network applications. Finally, the following screenshot shows the main part 
of the server code:

The client part is also based on the Twisted Matrix example with a modification in the 
EchoClient class. The client will do the following:

• Establish a connection to the server.
• Check whether the server is alive.
• With a successful connection, some frames are generated to fill the matrix 

line by line. This is the purpose of the two for loops.

http://derekmolloy.ie/beaglebone/beaglebone-an-i2c-tutorial-interfacing-to-a-bma180-accelerometer/
http://derekmolloy.ie/beaglebone/beaglebone-an-i2c-tutorial-interfacing-to-a-bma180-accelerometer/
http://derekmolloy.ie/beaglebone/beaglebone-an-i2c-tutorial-interfacing-to-a-bma180-accelerometer/


Illuminate Your Imagination with Your Own Projects

[ 110 ]

When the client has finished, the matrix appears with all its LEDs lit, as shown here:

What we have done so far is connecting our client application to a specific server  
in order to provide a service—remember the translation we talked about before—
dedicated to a device, which is our LED matrix.

From a larger point of view, we have seen a project that aims to implement  
some customized hardware.

You can easily adapt this project to use any hardware of your choice or any  
off-the-shelf modules available, as described in the cape paragraph from  
Chapter 5, Building Your Media Player.

Questions and suggestions related to this example
The following are the questions and suggestions related to this example:

• Have you noticed that with the provided library the loop evolves in a 
particular sense?

• I've left a clear_matrix function that is yet to be used: what needs to be 
implemented on the client side in order to request the matrix to be cleared?

• You can imagine action words to create your own protocol, such as executing 
a predefined pattern, animation, and so on.

• Instead of using a hardcoded configuration, a cool improvement will  
be to parse an external file. For example, you can use configparser 
(https://wiki.python.org/moin/ConfigParserExamples), or if  
you don't like INI files, the PyYAML syntax (http://pyyaml.org/ 
wiki/PyYAML) is a good alternative.

Example 2 – improving the first example by 
adding functionalities
As you have quickly acquired confidence with the previous example, I'm sure you 
want to improve your project, and different ideas might come to mind. We are going 
to implement some of them.

https://wiki.python.org/moin/ConfigParserExamples
http://pyyaml.org/ wiki/PyYAML
http://pyyaml.org/ wiki/PyYAML


Chapter 6

[ 111 ]

From the client side
Based on the previous client-server scenario, it will be handy to add a graphical 
interface to the client in order to visually control the matrix. The GUI must be  
able to run on most known platforms, smartphones included.

We also want to control each LED color from the client side. Obviously, using all  
the available LED colors is now required, so we will add a dedicated control to the 
interface for this purpose.

From the server side
In the previous example, our focus was on the basic concepts to validate the project; 
we now intend to improve it. On the other side, the main evolution of the server is to 
find a way to allow each LED to evolve one after the other in a "traditional" direction, 
that is, from the top-left to bottom-right.

Actually, this is not exactly true. If you take a look at the provided code, you can see 
that some more functionality has already been implemented, but we will see this at 
the end of this second part:

  Server_2/matrixServer.py                                                              Client/client2.py

Improving the client with Kivy
Using the Python language, Kivy is an open source library that can be used to code 
graphical interfaces easily. With Kivy, you can run your project's executable on many 
targets, such as Windows, Linux, OS X, Android, and iOS. Multitouch is something 
that is also possible.



Illuminate Your Imagination with Your Own Projects

[ 112 ]

You can obtain Kivy for different platforms from http://kivy.org/#download.

Please follow the installation guidelines (http://kivy.org/docs/installation/
installation-windows.html for Windows users) in order to be able to use the 
following example.

The following screenshot shows how this second version is organized:

http://kivy.org/#download
http://kivy.org/docs/installation/installation-windows.html
http://kivy.org/docs/installation/installation-windows.html


Chapter 6

[ 113 ]

This application aims to be seen as a laboratory where you can have different 
experiments; therefore, no effort is put into the presentation, in order to focus  
on code simplicity for better understanding. Our laboratory is composed of the 
controls we spoke about in the improvements. Those controls can be split into  
four main groups, as follows:

• 64 buttons organized in a matrix, representing each LED individually.  
Each time you click on any button, you will see the corresponding LED  
lit on the matrix.

• A list of choices to select the color before you click on the matrix button.
• A log where you can see events, such as the current connection status of  

the board, some values, debugging information, and so on.
• Some additional splitters, which are kept for the last part of this example.

Sharing the same code as the previous example, this client comes with  
additional functionality anyway. Let's take a look at the code; it is shown  
in the following screenshot:

The build method from TwistedClientApp is called to execute setup_gui and 
connect_to_server.



Illuminate Your Imagination with Your Own Projects

[ 114 ]

Thus, the Setup_gui method is the main method used to set up the interface,  
as shown here:

This is where you define which controls will be inserted and their arrangement,  
and more precisely their layout:

1. Label: As we want to define our GUI on three different parts of the screen, 
the program relies on a grid layout. The method also defines a text zone 
dedicated to the communications with the board, debugging details,  
and so on.

2. Spinner: This is a color selector when clicked on so that you can choose a color.
3. A matrix made up of 64 buttons: Instead of defining all of them individually, 

a for loop is in charge of instantiating all the buttons. We then associate (bind) 
each new button click event to a dedicated handler (callback). Let's take a look 
at this callback method; it is shown in the following screenshot:



Chapter 6

[ 115 ]

4. Layout management: We insert different controls in our grid layout, 
knowing that the order is important.

Each time a button is clicked, the related callback will be called. Then, in the callback, 
we can handle the event by doing some computations and eventually print out some 
text about which button has been pressed to the log window next to it.



Illuminate Your Imagination with Your Own Projects

[ 116 ]

After playing along with the client, you can see your requests executed on the matrix 
and then some LEDS set with different colors, as shown in the following screenshot:

Questions and thoughts related to this example
The Setup_Gui method is somewhat long; can you try to modify the implementation 
in order to follow the recommended object concepts?

It won't take much time to change the callback so that it can handle colors without 
selecting them from the list. Here's a hint: you can get inspired from the next example.

If you have taken a closer look at the client code, you might see that some elements 
are waiting to be used and some others are left for improvement. For example, while 
two sliders are present, only one slider is able to display values. Both are left for 
improvement, so you can use them for whatever you want.

The same applies to the server code; we didn't use the Bargraph code at all.

Sliders and Bargraphs may be functionally relied.



Chapter 6

[ 117 ]

Example 3 – creating animated graphical 
patterns
The previous two examples focused on experimentation, hardware understanding, 
and communication above others. That having been acquired, with the third example 
we will keep the same client/server basis, while we will leave the laboratory concept 
to set up a more realistic project. By doing this, we will be coding an application that 
will have a better ergonomy with a finest aspect.

Following the project's requirements
To achieve this goal, we are going to change the client programing language to use 
C++ with the Qt framework. Even though the example is quite simple, you'll need 
some C++ and object-oriented programming (OOP) knowledge. Qt is a framework that 
will allow you to keep the code universality, as in the previous example with Kivy, 
with a wider range of targets. As there are many similarities, you can then legitimately 
ask yourself why you need to change all the code? In this case, Qt benefits from many 
years of research and community efforts. Moreover and mostly, Qt provides more 
than GUI programming capabilities. Indeed, this vast and polyvalent framework 
gives access to various mechanisms for networks, threads, state machines, process 
communication, and so much more.

For installation purposes, you need to retrieve the proper installer from the 
download URL at http://qt-project.org/downloads.

Along with this installer, an editor is also provided, so you can start coding/
compiling right away.

After installation, to check your environment you can open QtCreator 
and start an empty Qt Widgets Application project. Compile it with 
the green triangle button on the left-hand side. As soon as you see 
a new empty application window popping up, this means that the 
compiler, the Qt Framework, and your settings are valid.

From now on, we will rely on QtCreator as the development environment. For the 
sake of everybody's spirit, everything is available from this environment. No external 
tools will be needed.

http://qt-project.org/downloads


Illuminate Your Imagination with Your Own Projects

[ 118 ]

Where to find help on the Internet
If you intend to develop projects but are afraid of C++ or Qt, then the Voidrealms 
website (http://www.voidrealms.com) is the solution for you.

There, the author has covered the most important subjects. From the very basic hello 
world to some advanced ones such as mutable, Model-View-Delegate, or QtConcurrent, 
you'll never waste a minute you spend there.

Indeed, behind the subjects that Voidrealms can explain, the concept is really 
attractive. Each topic is accompanied by a short video that allows you to get all 
the explanations, to finish each time with a single executable to understand and 
reproduce. The advantage of the video is that it has detailed explanations, and  
what is interesting is the mistakes that one can commit.

With most of the tutorials, you will also have a ZIP file of all the project sources of 
the video.

Bryan is the only guy to give life to all of these tutorials; 
you might consider a donation if you find the site useful.

For those who already have some C++ skills and want to jump directly to Qt without 
an introduction, I've provided here the main topics that you'll find in our project:

• C++ Qt 04 - Signals and Slots
• C++ Qt 09 - QGridLayout
• C++ Qt 12 - QFile
• C++ Qt 13 - Resource Files
• C++ Qt 15 - QPushButton
• C++ Qt 36 - Introducing containers and the QList
• C++ Qt 63 - Introduction to Network Programming Concepts
• C++ Qt 65 - QTcpSocket basics

http://www.voidrealms.com


Chapter 6

[ 119 ]

Looking at the differences from the previous 
example
The previous example not only relies on the object programming paradigm but  
also on the way the information is represented. Indeed, while we will talk with  
the BeagleBone Black server in the same way, we'll configure the matrix on the 
computer with a totally different point of view by defining a more ergonomic GUI.

   Server_3/matrixServer.py                                                               Client/Qt/Led_Matrix

As we did in the previous chapters, let's list what is done in this third example, 
knowing that a pattern represents the status of all the LEDs in the matrix:

• The graphical interface reuses the matrix representation as shown  
previously but in a way that can be adapted to different square matrices.  
This is handy for anyone who needs to implement a matrix with a different 
size and a few modifications.

• The client is completely rewritten in C++ and uses Qt.
• Each LED's status and color is set directly by a single click of the button.  

This allows you to define a pattern with different colors quickly.
• When you think that your pattern is complete, you have the possibility  

of saving it into a file or sending it directly.
• You can remove a pattern from the list.
• There is, of course, the possibility of loading some patterns from a file.



Illuminate Your Imagination with Your Own Projects

[ 120 ]

Looking at the concepts of the matrix edition
From the previous paragraph, you might want to know how these new functionalities 
will interact together. The following schema should represent the main idea:

• Begin by editing your new pattern and validate it by saving it
• This allows you to keep it in the list of all the patterns at the same time
• Then you can send it to the BeagleBone server with the server code running
• Alternatively, you can also save the pattern to a file
• You can start the application by directly loading some previously saved 

patterns as well

Browsing the code
As you have previously cloned the repository, the related Qt code is already in your 
hands and you simply need to change the directory from Client2 to Client/Qt. 
Then perform the following steps:

1. In the new directory, you should see a bunch of CPP and HPP files.
2. Now, launch QtCreator and, from the File menu, select the Open File or 

Project submenu.



Chapter 6

[ 121 ]

3. From the file's dialog box, select the Led_Matrix.pro file from the directory 
you found in step 1.

If you remember, we previously stated that the code is a living thing, 
so checking the code base from time to time is a good habit:
Git pull

Compilation time
In the opened project, you can have a look at the code, compile it, and eventually 
modify it as well.

For now, we just compile it by clicking on the green triangle on the bottom-left.



Illuminate Your Imagination with Your Own Projects

[ 122 ]

During the compilation, the output window displays some hints about eventual 
errors and warnings. On a successful build, the leds_matrix executable is  
displayed here:

The source code should be flexible enough so that if you want to 
draw a matrix with a different size, you won't have to make much 
modification to the code.

Of course, you won't have a drawing like this one at the start. You need to load your 
Load patterns file to start sending your patterns.

Describing the GUI
You can now see how the Led_Matrix Qt application differs from the Kivy version.

The same matrix representation is used to let you design your pattern in the same 
way as before. However, an improvement has been made, as you don't have to  
select the color each time you click on a cell.



Chapter 6

[ 123 ]

Indeed, the click follows a color cycle, as shown here:

Off -> Green -> Orange -> Red

This circular cycle ensures that the button is in the Off state again after the color Red. 
As soon as you are happy with your pattern, save it.

This adds your creation to the patterns list. Let's just use this single pattern for  
the moment.

There is a difference between the two buttons that let you save 
patterns. While the Save current pattern button allows you to 
keep the current pattern in a list, the Save patterns list button 
will save all the patterns from the list into a file.

Now, click on Send pattern, which will read your pattern from the list and send it  
to the server. You should now see your matrix from the server cloning the pattern 
defined in the client, as shown in the following screenshot:



Illuminate Your Imagination with Your Own Projects

[ 124 ]

Obviously, the fun lies in defining different patterns to send to the matrix in order 
to end up with a cool animation. Don't hesitate to share your patterns by proposing 
them in the repository.

A quick tour of the code
With this third example, I'd like to introduce you to a different approach for coding. 
The starting point is the main where an instance is created. The project is coded 
along two different classes:

• MyButtonGroup: This is dedicated to the graphical representation of the 
matrix (as opposed to the mathematical matrix)

• Leds_Matrix_Tools: This contains all the functions related to the matrix, 
writing the matrix, files operations, and so on

Adding code for 64 items individually is not viable; the object paradigm is done to 
avoid it. Thus, we don't have to create, instantiate, and code an event for each LED 
one by one in the graphical matrix. This is why MyButtonGroup was derived from 
the original QButtonGroup class.

Then, each item in the matrix has a SIGNAL/SLOT connection:

connect(this,SIGNAL(buttonClicked(QAbstractButton*)),
this, SLOT(buttonClick(QAbstractButton*)));



Chapter 6

[ 125 ]

This helps us to create a dedicated event, as shown in the following screenshot:

We are now free to add anything we want in the ButtonClick event handler. 
Therefore, this is the place to compute a button's position according to the *button 
pointer that is given as a call parameter.

However, this is not enough. The graphical buttons matrix has been separated from 
its logical representation. This is the role of the following command:

    QStringList Leds_Matrix    ;

This aims to define a list of matrices. In addition, the idea is to use the functions 
provided with this container class—reverting, searching, removing, finding the first, 
last, and so on—so that you can create your own graphical algorithms in an easier way.

Some transformations within switch are done because even though we know which 
button has been clicked, we still ignore its position in the matrix. After this small 
calculation, it's easy to affect the buttons due to the color-changing cycle. By the way, 
we also update the logical matrix data.



Illuminate Your Imagination with Your Own Projects

[ 126 ]

Looking at the main functions
Here is an overview of the other main functions:

• Clear(): This aims to empty the current pattern in the patterns list. This is 
used when Leds_Matrix needs to be reset from the constructor mainly.

• Savefile_click(): This is an event handler relied to the Save_To_File 
method, which will parse all the patterns and save them to the local file.

• Save_To_File(QString Filename): This parses patterns_list to save  
all the patterns in the list into a local file.

• Loadfile_click(): This is an event handler relied to the Load_From_File 
method.

• Load_From_File(QString Filename): This parses the local file to retrieve 
all the saved patterns in order to restore the patterns list.

• Populate(QGridLayout *layout, MyButtonGroup* group ): This is 
called only once, at the beginning of the application in order to initiate  
the graphical matrix.

• Read_Matrix(unsigned short x): This a low-level function that takes a 
row/column and returns the color value found at these coordinates.

• Write_Matrix(unsigned short x, unsigned short y, unsigned  
short value): This a low-level function that takes a row/column to  
write the color value at these coordinates.

• Save_Pattern_click(): This will walk through all the patterns loaded in 
memory and send them to the server. A small conversion is needed here to 
transform an array-like data into our three-data protocol (x, y, and color).

Questions and thoughts related to this example
The questions and thoughts related to this example are given as follows:

• Did you notice that while the server is developed in Python, the C++ client 
can communicate with it. How is this possible?

• Try to find the limitations of this approach.
• What will you do if you intend to modify the time delay of the animation?  

Try to identify the part of the code related to this functionality.
• Will you apply this change in the client or from the server code?
• It's legitimate to question yourself when you intend to develop a new 

functionality in your project. Take a moment to compare both the client  
and server sides, as they each have their pros and cons.



Chapter 6

[ 127 ]

Summary
This last chapter helped us develop a complete client/server project. Throughout the 
book, you learned about the background information needed to install, configure, 
and deploy a client/server.

The main objective of this book being to let you create your own project; thus, we've 
addressed the hardware and software aspects of various projects. The integration of 
both sides is what makes embedded systems unique.

Some final words

You can act on the code we saw here. These are not just words; you can be a part  
of this project by improving it. Here's how: when you think your modifications  
are good enough, send a change request to the GitHub BeagleBone Black book project 
and, after validation, you'll see your code included in the official repository.





Troubleshooting and Tricks to 
Improve Your Server

You can have the best book in your hands, but experimentation will always remain 
the best way to learn. It is even more true that, even after following the instructions 
provided in this book, you might experience some problems. Therefore, as nothing is 
written in stone, here you will find some topics to help you resolve different cases that 
can happen. From tricks to ease your life to troubleshooting steps, I have grouped the 
useful tools that you can implement daily.

In this chapter, we will cover the following situations:

• How to ease your life with the command line?
• When you need to retrieve open ports

Ease your life with the command line
At the beginning, the command line can be confusing. Even though the instructions in 
the chapters of this book have been written for you to install in the easiest way, there's 
no reason to spend more time than necessary with this command line. Therefore, it's 
always helpful to have some tools and customizations on your system. In the long run, 
you will see that you will not be able to do without them.

Package management
Throughout the chapters in this book, the Linux distribution package tools are never 
mentioned. Indeed, you will always have commands as follows:

install apackage



Troubleshooting and Tricks to Improve Your Server

[ 130 ]

This intentional abstraction helps you focus on installation itself and is short,  
to keep you away from syntax errors. Most importantly, with this you can set up 
your commands toolbox in such a way that whenever you would want to change  
to a different distribution, you will still use install package. Here is how you  
can do this:

Go and edit your bashrc in the following directory:

~/.bashrc

Here, define some aliases for debian:

• alias install="sudo apt-get install"

• alias update="sudo apt-get update"

• alias search="sudo apt-cache search"

After saving and quitting the editor, you can apply your configuration using the 
following command:

debian@beaglebone:~$ source ~/.bashrc

As easy as it can be, you will then just rely on these commands most of the time to 
handle your system. In the case, when you use a different package system, you'll just 
have to modify accordingly, such as with Fedora:

• alias install="yum install"

• alias update="yum update"

• alias search="yum list"

Get to know what you did previously
Let's keep on personalizing the bashrc file, but this time with the goal being to  
look backward for commands that you have already performed.

The aim of this trick is to avoid retyping the same command multiple times. 
Moreover, sometimes it's useful to analyze in which order you have executed 
different commands, one after the other. This is often the root cause of errors.  
This is where histogrep will make your life easier:

function histogrep{
history | grep $1
}



Appendix A

[ 131 ]

Source the file as in the previous topic, and try to search, a command you  
entered previously:

debian@beaglebone:~$ histogrep Mediadrop

Different ways to find your files
When you don't remember where a specific file is located, you can rely on  
some Linux tools. In this specific case, let's say that we want to retrieve the 
deployment.ini location; thus we can use two different commands:

To find your files, run the following command:

(mediacore_env)debian@beaglebone:~$ find / -name production.ini –type f 
2>/dev/null

The various parameters involved are as follows:

• / : We want to look into the root partition. Obviously, if you install MediaDrop 
to another partition, set it accordingly.

• –type f (optional): This optimizes the search, as we want to find only files 
but not directories.

• 2>/dev/null (optional): This is to remove annoying and most of the time 
useless Permission denied messages.

While being really powerful, the find command requires some options, which you have  
to know, to use it well. The locate command is a quick and an easy way to find your file. 
You will have to install it, as this command is not installed, by default. You will retrieve  
it from the mlocate package.

To request an update of the index of all your files, use the following command:

debian@beaglebone:~$ sudo updatedb

Now you can search for any file with the following command:

debian@beaglebone:~$ Locate production.ini

You have the result(s) instantly, faster than with the find command.

What is perturbing with locate is that you might not find a file that can exist anyway. 
This situation happens when the searched-for file had been created after the indexation 
of the locate database.



Troubleshooting and Tricks to Improve Your Server

[ 132 ]

Each command has its own pros and cons; find is really handy and powerful but 
requires a lot of options that you need to know; on the other hand, locate is easy, 
and simple but requires being updated regularly.

All you need to know about open  
network ports
As long as you aim at using BeagleBone Black for server purposes, many ports are 
going to be used. You will soon need to know those that are already assigned. For 
example, ports 8080 and 8000 are very often required so they will be most probably 
defined in many default configuration files when you install an application. Then, to 
avoid port conflicts, you will want to retrieve those that are currently used. For this, 
enter the following command:

debian@arm:~$ sudo netstat -an | grep LISTEN | grep -v ^unix

tcp        0      0 0.0.0.0:1984            0.0.0.0:*               
LISTEN
tcp        0      0 127.0.0.1:3306          0.0.0.0:*               
LISTEN
tcp        0      0 127.0.0.1:11211         0.0.0.0:*               
LISTEN
tcp        0      0 0.0.0.0:22              0.0.0.0:*               
LISTEN
tcp6       0      0 :::6600                 :::*                    
LISTEN
tcp6       0      0 :::80                   :::*                    
LISTEN
tcp6       0      0 :::22                   :::*                    
LISTEN

In the beginning of this appendix, we have seen how to ease our life with aliases  
and functions.

I strongly suggest that you use the same technique with this long command. 
Thereafter, you won't hesitate any more to use it because you won't need to 
remember the whole syntax.



Ideas to Improve Your Server
I think you have now understood the main value added by this book, which can 
be assumed to be "do more by yourself." Then, as a bonus, I thought you might be 
interested in some additional software.

As we mainly focused on servers for managing video files and streams, we'll see their 
musical equivalents, which are the following:

• MiniDLNA
• Subsonic

If you have read the chapters carefully and have successfully installed, configured, and 
run the software, then this appendix will bring you additional fun. Frankly speaking, 
you should be able to install these servers to your BeagleBone Black easily. Think of 
adding these extras servers as adding chocolate chunks to a cookie.



Ideas to Improve Your Server

[ 134 ]

MiniDLNA
Before we talk about the software that uses DLNA, let's first understand what it is.

Digital Living Network Alliance (DLNA) aims to ease the connection between 
heterogeneous devices. This means that you can connect with any other DLNA-
certified device to share your music, pictures, and videos—regardless of the 
manufacturer.

Introducing MiniDLNA
Now that we know what DLNA can do for us, we are going to see how to add it  
to our existing services. Here comes MiniDLNA.

As defined at http://sourceforge.net/projects/minidlna/, this project is  
as follows:

ReadyMedia (formerly known as MiniDLNA) is a simple media server software, 
with the aim of being fully compliant with DLNA/UPnP-AV clients. It is 
developed by a NETGEAR employee for the ReadyNAS product line.

As the Debian packages still use the original name, we will keep calling it MiniDLNA.

http://sourceforge.net/projects/minidlna/


Appendix B

[ 135 ]

What a DLNA server can do for you
MiniDLNA is able to serve media files such as music (also pictures and videos) to 
clients on a network that can be applications such as VLC, XBMC, and devices such 
as portable media players, smartphones, televisions, and gaming systems. You can 
even connect your Raspberry Pi to it.

Installing miniDLNA
In order to install miniDLNA, you need to perform the following steps:

1. Install the software:
debian@arm:~$ install minidlna

2. Verify that it's running:
debian@arm:~$ /etc/init.d/minidlna status

This is all you need, so you can use the miniDLNA right now.

On Windows Explorer, a BeagleBone device with a MiniDLNA service will appear  
as follows:

So, you can access the BeagleBone device through miniDLNA as you would do with 
usual media provider/reader.



Ideas to Improve Your Server

[ 136 ]

Configuring and customizing miniDLNA
The configuration file is located at:

debian@arm:~$ nano /etc/minidlna.conf.

This is where you can configure the different options of the server, for example:

• Your share(s):
media_dir=/media/usbdrive/Videos

• The name that the devices will retrieve:
friendly_name=BeagleBoneHomeServer

However, if you are still not at ease with the command line, there are additional 
tools, such as the web interface dedicated to miniDLNA, at http://sourceforge.
net/projects/minidlna-web/.

http://sourceforge.net/projects/minidlna-web/
http://sourceforge.net/projects/minidlna-web/


Appendix B

[ 137 ]

Subsonic
Here is another server application that is able to support a very large range of clients 
(for Android, iPhone, Windows Phone, BlackBerry, Roku, Chumby, Sonos, and so on), 
but the most interesting feature is that a lot of media formats are available as Subsonic 
support is able to manage on the fly conversions. It is available at http://www.
subsonic.org, and you will be intrigued by its simplicity; this simplicity doesn't  
avoid Subsonic to be secure and it can propose different security protocols such as 
HTTPS/SSL encryption and authentication capability with LDAP or Active Directory 
(check the documentation for more details).

You can access the subsonic online demonstration at http://demo.subsonic.org/
index.view.

http://www.subsonic.org
http://www.subsonic.org
http://demo.subsonic.org/index.view
http://demo.subsonic.org/index.view


Ideas to Improve Your Server

[ 138 ]

Installing Subsonic
Like MiniDLNA, Subsonic is really easy to install and simple to configure. Before the 
installation itself, you need to retrieve a small but needed prerequisite:

debian@arm:~$ install openjdk-6-jre

Then perform the following steps to install Subsonic:

1. Click on the Download button from the website or directly go to  
http://www.subsonic.org/pages/download.jsp.

2. Select the Debian/Ubuntu installer, which will redirect you to the nearest 
SourceForge site with the latest stable release.

3. Copy the provided URL and paste it in the BeagleBone command line  
on PuTTY:

debian@arm:~$ Wget http://sourceforge.net/projects/subsonic/files/
subsonic/4.9/subsonic-4.9.deb/download?use_mirror=netcologne -O 
subsonic.deb
debian@arm:~$ sudo dpkg -i subsonic.deb

http://www.subsonic.org/pages/download.jsp


Appendix B

[ 139 ]

Administering Subsonic
Note that the installer configures your system to start Subsonic automatically  
when booting. After the installation, open the Subsonic web page at  
http://localhost:4040.

Changing users
The Subsonic process is run with the root user in the provided default configuration. 
Therefore, you should the server as a dedicated user with fewer privileges. You 
can specify these rights by setting the SUBSONIC_USER variable in /etc/default/
subsonic:

SUBSONIC_USER=debian

Note that nonroot users are by default not allowed to use ports below 1024 then use 
ports above that. Also, make sure to grant write permissions to the user in the music 
directories, otherwise changing the album art and tags will fail.



Ideas to Improve Your Server

[ 140 ]

This can be done using the following command:

debian@arm:~$ sudo chown debian:debian /var/music

The music directory is the one defined in the configuration, as explained in the next 
section. For more details, check out the documentation at http://www.subsonic.
org/pages/getting-started.jsp#1.

Restarting the service to apply changes
When you modify a configuration, as we did before, consider restarting the service 
(no need to reboot) so that the changes are applied.

To restart Subsonic, execute the following command:

debian@arm:~$ sudo service subsonic restart 

Accessing configuration settings
Back to the web view, from Settings on the home page, you'll be able to access most 
of the settings that any network application can propose:

http://www.subsonic.org/pages/getting-started.jsp#1
http://www.subsonic.org/pages/getting-started.jsp#1


Appendix B

[ 141 ]

Advanced configuration
To change the port number, Java memory settings, or other startup parameters,  
edit the SUBSONIC_ARGS variable in /etc/default/subsonic.

Troubleshooting
You have all the logs at

debian@arm:~$ nano /var/subsonic/subsonic_sh.log

This is a good place to look when things are not working as they should.

For example, an issue with a music file might be coming from the transcoder  
(a software responsible for transforming your files) configuration. Check this  
in Setting/players.





Index
A
Adafruit matrix  100
Android  83
animated graphical patterns example

code, browsing  120
code, compiling  121, 122
coding, different approach  124, 125
creating  117
differences, with previous example  119
GUI  122-124
help, on internet  118
main functions  126
matrix edition concepts  120
questions and thoughts  126
requisites  117

applications
restrictions  8
selecting  7

B
BeagleBone

preparing  11
URL  11

BeagleBone Black
about  11
booting, from flash (eMMC)  12
booting, from SD card  12
root limitations, extending on  

fresh installation  12, 13
root partition, extending  13-16

BeagleBone capes
about  77, 78
categories, exploring  78, 79

C
capes  77
Clear() function  126
client server application example

client, improving with Kivy  111-116
code  108
creating  106
data packet, describing  108
functionality, adding  110
functionality, adding to server  111
graphical interface, adding to client  111
questions and suggestions  110
requisites, installing  106
running  107
server code, describing  108-110

code repository  101
command line

about  129
files, finding  131, 132
looking backward  130
package management  129, 130

content, managing
limitations  8

Control Area Network (CAN)  81

D
daily scenarios, media usage  10
Debian  83
Digital Living Network Alliance  

(DLNA)  134



[ 144 ]

E
environment, for Leed

creating  70
cron job, setting up for feed updates  72, 73
database, creating  70
Leed, installing  71, 72
permissions, setting  71
project code, downloading  71

expansion board, using with Android
about  93
applications, installing  93, 94
files, using from computer  93
games  95, 96
media, listening to  96, 97
media, watching  96, 97

G
general settings, MediaDrop

about  28
default language  28
site name  28

GitHub  101
group management, 
Springfield house example  49-51
groups, media management example

managing  53, 54
groups, Springfield house example

applying  51

H
headless servers  10
Hello Server  24, 25

I
I2C  103

K
Kivy

about  111
installation guidelines  112
obtaining, for different platforms  112

L
LED matrix  103
Led_Matrix Qt application  122
Leds_Matrix_Tools  124
Leed

database, creating  70
environment, creating  70
extending, with plugins  74, 75
installing  71, 72
preferences settings  74
used, for adding RSS feed  73

Loadfile_click() function  126
Load_From_File(QString Filename)  

function  126

M
matrix

about  89
wiring, to board  104, 105

matrix revolution
presenting  100

MediaDrop
about  16, 27, 33
admin interface, accessing  27
administrator action  27
administrator tasks  39-42
appearance  28
auto administrated contents  38
categories  29
comments  29
features  16, 17
general settings  28
installing  17, 21, 22
media, publishing  36, 37
notification e-mails  30
players  30
popularity  30
prerequisites  17
switching, from development  

to production  26
tags  30
testing  24, 25
upload settings  30
URL  16



[ 145 ]

user access  42
using, through workflows  34, 35
video, validating  35, 36

MediaDrop installation
basic configuration file  22, 23
BBB Debian  17
content, copying from initial data  23
contents, filling  24
dedicated database, setting up  18
full-text searching  24
Python virtual environment,  

setting up  20, 21
server database, filling  24

media management example
about  52, 53
group, managing  53, 54
policies, managing  53, 54

miniDLNA
about  134, 135
configuring  136
customizing  136
installing  135

MJPG-Streamer
about  62
application, starting  63, 64
demo page  64, 65
installing  62, 63
new capabilities, exploring  67
plugins  67, 68
security, adding  64
streaming service, starting automatically  

on boot  66
stream, using across network  65, 66

MyButtonGroup  124

O
open network ports  132
operating system installation,  

for expansion board
Android, using  87, 88
available operating systems  83
Debian, using  88, 89
drivers, installing  84
latest documentation, retrieving  84

latest files, retrieving  84
latest images, retrieving  84
latest software, retrieving  84
performing  83
prerequisites  84
process  87
TI EZSDK, using  89

P
package management  129, 130
personal Palm Media player

about  80
functional description  81
physical description  81, 82

policies, media management example
managing  53, 54

prerequisites, for operating system  
installation

about  84
foreign systems, adapting for  

installer script  87
SD card device  85
virtual machine  85

PuTTY
URL  13

Python  101

Q
Qt Widgets Application project  117

R
role attributions, Springfield house example

about  48
administrator  49
authenticated users  48
guests / people passing by / friends  48
power users  48

RSS project, with Leed
configuring  69
environment for Leed, creating  70
Leed, extending with plugins  74, 75
Leed preferences settings  74
RSS feed, adding  73



[ 146 ]

S
Savefile_click() function  126
Save_Pattern_click() function  126
Save_To_File(QString Filename)  

function  126
SD card device

devices, listing with lsblk  85, 86
dmesg utility, using  86
investigation, checking  86
searching  85

security role  46
Setup_gui method  114
software installations  8
Springfield house example

about  46, 47
group management  49-51
groups, applying  51
role attributions  48
users, applying  51
users list, defining  48

Subsonic
about  137
administering  139
advanced configuration  141
configuration, accessing  140
installing  138
online demonstration  137
restarting, for applying changes  140
troubleshooting  141
URL  137
users, changing  139, 140

T
Texas Instruments (TI)

about  89
developing, with Qt  92
website  91

TI Linux EZSDK  83
TI Linux unique tools

benchmarking  90
cryptos  90
multimedia  90

power  91
profiling  90
Qt4  90
Qt4/QML  90

U
upload settings, MediaDrop

about  30
file size limit  31
storage  engines  31

users, Springfield house example
applying  51

V
VideoLAN menu tab  65
virtualenv  20
virtualenvwrapper  20
Voidrealms

URL  118

W
webcam streaming service

building  57
drivers and libraries, installing  58
hardware device, detecting  58
webcam, detecting  58, 59
webcam, setting up  60, 61



Thank you for buying  
BeagleBone Media Center

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Raspberry Pi Media Center
ISBN: 978-1-78216-302-2              Paperback: 108 pages

Transform your Raspberry Pi into a full-blown media 
center within 24 hours

1. Discover how you can stream video, music,  
and photos straight to your TV.

2. Play existing content from your computer  
or USB drive.

3. Watch and record TV via satellite, cable,  
or terrestrial.

BeagleBone Home Automation
ISBN: 978-1-78328-573-0             Paperback: 178 pages

Live your sophisticated dream with home automation 
using BeagleBone

1. Practical approach to home automation using 
BeagleBone; starting from the very basics of 
GPIO control and progressing up to building  
a complete home automation solution.

2. Covers the operating principles of a range  
of useful environment sensors, including  
their programming and integration to the 
server application.

3. Easy-to-follow approach with electronics 
schematics, wiring diagrams, and controller 
code all broken down into manageable and 
easy-to-understand sections.

 
Please check www.PacktPub.com for information on our titles



Building a Home Security System 
with BeagleBone
ISBN: 978-1-78355-960-2            Paperback: 120 pages

Build your own high-tech alarm system at a fraction of 
the cost

1. Build your own state-of-the-art security system.

2. Monitor your system from anywhere you can 
receive e-mail.

3. Add control of other systems such as sprinklers 
and gates.

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9             Paperback: 244 pages

Create complex and exciting robotic projects with the 
BeagleBone Black

1. Get to grips with robotic systems.

2. Communicate with your robot and teach it  
to detect and respond to its environment.

3. Develop walking, rolling, swimming,  
and flying robots.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Transforming your BeagleBone Black into a Media Server
	The choice that is not yours
	You'll still be restricted by their proposals
	You hardly manage your own content

	Your server, your rules
	Powerful and straightforward software installations
	Using dedicated hardware

	Looking at daily scenarios for media usage
	Down in the cave is a server without a head – headless servers
	Preparing BeagleBone to be a server
	Booting from an SD Card or flash (eMMC)
	Extending the root limitations on a fresh installation
	Extending your root's partition

	Let's get acquainted with our friend – MediaDrop
	MediaDrop installation steps
	BBB Debian – prerequisites
	Setting up a dedicated database
	Step 1 – set up a Python virtual environment
	Step 2 – installing MediaDrop
	Step 3 – basic configuration file
	Step 4 – copying content from the initial data
	Step 5 – filling the server database and contents
	Step 6 (optional) – full-text searching

	Testing time – "Hello Server"
	Switching from development to production
	Let's take a walk in our new MediaDrop server
	Your first administrator action
	General settings
	Site name
	Default language

	Appearance
	Categories
	Comments
	Notification e-mails
	Players
	Popularity
	Tags
	Upload
	File size limit
	Storage engines


	Self-test questions
	Summary

	Chapter 2: Media Management, Shares, and Social Activities
	How to use MediaDrop through workflows
	Why approvals are required
	Publishing your media
	Auto administrated contents

	Administrator tasks
	Exploring different ways to access your media
	Self-test questions
	Summary

	Chapter 3: Examples of Real-world Situations
	Introducing the security role
	An everyday use case – a house in Springfield
	Defining your users list
	Understanding role attributions
	Group management
	Applying groups and users

	Second use case – media management in a company
	Managing policies and groups

	Self-test questions
	Summary

	Chapter 4: Getting Your Own Video and Feeds
	Detecting the hardware device and installing drivers and libraries for 
a webcam
	How to know your webcam
	Setting up your webcam

	Installing and running MJPEG-Streamer
	Installing MJPG-Streamer
	Starting the application
	Let's add some security
	"I'm famous" – your first stream
	Using our stream across the network
	Starting the streaming service automatically on boot
	Exploring new capabilities to install
	Plugins
	Another tool for the webcam

	Configuring RSS feeds with Leed
	Creating the environment for Leed in 
three steps
	Creating a database for Leed
	Downloading the project code and setting permissions
	Installing Leed
	Setting up a cron job for feed updates

	Using Leed to add your RSS feed
	Some Leed preferences settings in a server environment
	Extending Leed with plugins

	Summary

	Chapter 5: Building Your Media Player
	Introducing BeagleBone capes
	Exploring capes' categories

	Considering a personal Palm Media player
	Functional description
	Physical description

	Installing a system for the expansion board
	Taking a Look at the available operating systems
	Retrieving the latest files, images, documentation, or software
	Installing drivers
	Prerequisites for installing any system
	Considering a virtual machine
	Finding your SD card device
	Adapting foreign systems for the installer script

	Installing your system
	Installing and using Android
	Installing and using Debian
	Installing and using TI EZSDK
	Taking a look at TI's linux unique tools


	Using the expansion board with Android
	Using files from a computer
	Installing applications
	Games
	Watching and listening to media

	Summary

	Chapter 6: Illuminate Your Imagination with Your Own Projects
	Presenting the "matrix revolution"
	The LED matrix
	Introducing I2C
	Wiring the matrix to the board

	Diving into the software
	Example 1 – our first client server application
	Installing the requirements
	Running the example
	Jumping into the code
	Description of the data packet
	Describing the server code
	Questions and suggestions related to this example

	Example 2 – improving the first example by adding functionalities
	From the client side
	From the server side
	Improving the client with Kivy
	Questions and thoughts related to this example

	Example 3 – creating animated graphical patterns
	Following the project's requirements
	Where to find help on the Internet
	Looking at the differences from the previous example
	Looking at the concepts of the matrix edition
	Browsing the code
	Compilation time
	Describing the GUI
	A quick tour of the code
	Looking at the main functions
	Questions and thoughts related to this example


	Summary

	Appendix A: Troubleshooting and Tricks to Improve Your Server
	Ease your life with the command line
	Package management
	Get to know what you did previously
	Different ways to find your files

	All you need to know about open 
network ports

	Appendix B: Ideas to Improve Your Server
	MiniDLNA
	Introducing MiniDLNA
	What a DLNA server can do for you
	Installing miniDLNA
	Configuring and customizing miniDLNA

	Subsonic
	Installing Subsonic
	Administering Subsonic
	Changing users
	Restarting the service to apply changes
	Accessing configuration settings
	Advanced configuration
	Troubleshooting



	Index



